Science.gov

Sample records for gh protects insulin-producing

  1. Nanomaterial Solutions for the Protection of Insulin Producing Beta Cells

    NASA Astrophysics Data System (ADS)

    Atchison, Nicole Ann

    Islet transplantation is a promising treatment for type 1 diabetes. However, even with the many successes, islet transplantation has yet to reach its full potential. Limited islet sources, loss of cell viability during isolation and culture, and post-transplant graft loss are a few of the issues preventing extensive use of islet transplantation. The application of biomaterial systems to alleviate some of the stresses affecting islet viability has led to improvements in isolation and transplantation outcomes, but problems persist. In this work we approach two distinct issues affecting islet viability; ischemic conditions and immunological attack post-transplant. Ischemic conditions have been linked to a loss of islet graft function and occur during organ preservation, islet isolation and culture, and after islets are transplanted. We show that liposomal delivery of adenosine triphosphate (ATP) to beta cells can limit cell death and loss of function in ischemic conditions. We demonstrate that by functionalizing liposomes with the fibronectin-mimetic peptide PR_b, delivery of liposomes to porcine islets and rat beta cells is increased compared to nontargeted controls. Additionally, liposomes are shown to protect by providing both ATP and lipids to the ischemic cells. The delivery of ATP was investigated here but application of PR_b functionalized liposomes could be extended to other interesting cargos as well. The second area of investigation involves encapsulation of islets with silica nanoparticles to create a permselective barrier. Silica nanoparticles are an interesting material for encapsulation given their ability to be fine-tuned and further functionalized. We demonstrate that size-tunable, fluorescent silica nanoparticles can be assembled layer-by-layer on the surface of cells and that silica nanoparticle encapsulated islets are able to secrete insulin in response to a glucose challenge.

  2. Improved antioxidative defence protects insulin-producing cells against homocysteine toxicity.

    PubMed

    Scullion, Siobhan M; Hahn, Claudine; Tyka, Karolina; Flatt, Peter R; McClenaghan, Neville H; Lenzen, Sigurd; Gurgul-Convey, Ewa

    2016-08-25

    Homocysteine (HC) is considered to play an important role in the development of metabolic syndrome complications. Insulin-producing cells are prone to HC toxicity and this has been linked to oxidative stress. However, the exact mechanisms remain unknown. Therefore it was the aim of this study to determine the nature of reactive oxygen species responsible for HC toxicity. Chronic exposure of RINm5F and INS1E insulin-producing cells to HC decreased cell viability and glucose-induced insulin secretion in a concentration-dependent manner and led to a significant induction of hydrogen peroxide generation in the cytosolic, but not the mitochondrial compartment of the cell. Cytosolic overexpression of catalase, a hydrogen peroxide detoxifying enzyme, provided a significant protection against viability loss and hydrogen peroxide generation, while mitochondrial overexpression of catalase did not protect against HC toxicity. Overexpression of CuZnSOD, a cytosolic superoxide dismutating enzyme, also protected against HC toxicity. However, the best protection was achieved in the case of a combined overexpression of CuZnSOD and catalase. Incubation of cells in combination with alloxan resulted in a significant increase of HC toxicity and an increase of hydrogen peroxide generation. Overexpression of CuZnSOD or catalase protected against the toxicity of HC plus alloxan, with a superior protection achieved again by combined overexpression. The results indicate that HC induces oxidative stress in insulin-producing cells by stimulation of superoxide radical and hydrogen peroxide generation in the cytoplasm. The low antioxidative defence status makes the insulin-producing cells very vulnerable to HC toxicity.

  3. JNK1 Deficient Insulin-Producing Cells Are Protected against Interleukin-1β-Induced Apoptosis Associated with Abrogated Myc Expression.

    PubMed

    Prause, Michala; Mayer, Christopher Michael; Brorsson, Caroline; Frederiksen, Klaus Stensgaard; Billestrup, Nils; Størling, Joachim; Mandrup-Poulsen, Thomas

    2016-01-01

    The relative contributions of the JNK subtypes in inflammatory β-cell failure and apoptosis are unclear. The JNK protein family consists of JNK1, JNK2, and JNK3 subtypes, encompassing many different isoforms. INS-1 cells express JNK1α1, JNK1α2, JNK1β1, JNK1β2, JNK2α1, JNK2α2, JNK3α1, and JNK3α2 mRNA isoform transcripts translating into 46 and 54 kDa isoform JNK proteins. Utilizing Lentiviral mediated expression of shRNAs against JNK1, JNK2, or JNK3 in insulin-producing INS-1 cells, we investigated the role of individual JNK subtypes in IL-1β-induced β-cell apoptosis. JNK1 knockdown prevented IL-1β-induced INS-1 cell apoptosis associated with decreased 46 kDa isoform JNK protein phosphorylation and attenuated Myc expression. Transient knockdown of Myc also prevented IL-1β-induced apoptosis as well as caspase 3 cleavage. JNK2 shRNA potentiated IL-1β-induced apoptosis and caspase 3 cleavage, whereas JNK3 shRNA did not affect IL-1β-induced β-cell death compared to nonsense shRNA expressing INS-1 cells. In conclusion, JNK1 mediates INS-1 cell death associated with increased Myc expression. These findings underline the importance of differentiated targeting of JNK subtypes in the development of inflammatory β-cell failure and destruction.

  4. Transduction of PEP-1-heme oxygenase-1 into insulin-producing INS-1 cells protects them against cytokine-induced cell death

    SciTech Connect

    Lee, Su Jin; Kang, Hyung Kyung; Song, Dong Keun; Eum, Won Sik; Park, Jinseu; Choi, Soo Young; Kwon, Hyeok Yil

    2015-06-05

    Pro-inflammatory cytokines play a crucial role in the destruction of pancreatic β-cells, thereby triggering the development of autoimmune diabetes mellitus. We recently developed a cell-permeable fusion protein, PEP-1-heme oxygenase-1 (PEP-1-HO-1) and investigated the anti-inflammatory effects in macrophage cells. In this study, we transduced PEP-1-HO-1 into INS-1 insulinoma cells and examined its protective effect against cytokine-induced cell death. PEP-1-HO-1 was successfully delivered into INS-1 cells in time- and dose-dependent manner and was maintained within the cells for at least 48 h. Pre-treatment with PEP-1-HO-1 increased the survival of INS-1 cells exposed to cytokine mixture (IL-1β, IFN-γ, and TNF-α) in a dose-dependent manner. PEP-1-HO-1 markedly decreased cytokine-induced production of reactive oxygen species (ROS), nitric oxide (NO), and malondialdehyde (MDA). These protective effects of PEP-1-HO-1 against cytokines were correlated with the changes in the levels of signaling mediators of inflammation (iNOS and COX-2) and cell apoptosis/survival (Bcl-2, Bax, caspase-3, PARP, JNK, and Akt). These results showed that the transduced PEP-1-HO-1 efficiently prevented cytokine-induced cell death of INS-1 cells by alleviating oxidative/nitrosative stresses and inflammation. Further, these results suggested that PEP-1-mediated HO-1 transduction may be a potential therapeutic strategy to prevent β-cell destruction in patients with autoimmune diabetes mellitus. - Highlights: • We showed that PEP-1-HO-1 was efficiently delivered into INS-1 cells. • Transduced PEP-1-HO-1 exerted a protective effect against cytokine-induced cell death. • Transduced PEP-1-HO-1 inhibited cytokine-induced ROS and NO accumulation. • PEP-1-HO-1 suppressed cytokine-induced expression of iNOS, COX-2, and Bax. • PEP-1-HO-1 transduction may be an efficient tool to prevent β-cell destruction.

  5. Neuro-protective effects of growth hormone (GH) after hypoxia-ischemia injury in embryonic chicken cerebellum.

    PubMed

    Alba-Betancourt, Clara; Luna-Acosta, José Luis; Ramírez-Martínez, Candy Elizabeth; Avila-González, Daniela; Granados-Ávalos, Estefany; Carranza, Martha; Martínez-Coria, Hilda; Arámburo, Carlos; Luna, Maricela

    2013-03-01

    Neuroprotection is a mechanism within the central nervous system (CNS) that protects neurons from damage as a result of a severe insult. It is known that growth hormone (GH) is involved in cell survival and may inhibit apoptosis in several cell types, including those of the CNS. Both GH and GH-receptor (GHR) genes are expressed in the cerebellum. Thus, we investigated the possible neuroprotective role of GH in this organ, which is very sensitive to hypoxic/ischemic conditions. Endogenous GH levels increased in the brain and cerebellum (30% and 74%, respectively) of 15-day-old chicken embryos exposed to hypoxia during 24h compared to normoxia. In primary embryonic cerebellar neuron cultures treated under hypoxia (0.5% O(2)) and low glucose (1g/L) conditions (HLG) for 1h, GH levels increased 1.16-fold compared to the control. The addition of 1nM recombinant chicken GH (rcGH) to cultures during HLG increased cell viability (1.7-fold) and the expression of Bcl-2 (1.67-fold); in contrast the caspase-3 activity and the proportion of apoptotic cells decreased (37% and 54.2%, respectively) compared to HLG. rcGH activated the PI3K/Akt pathway both under normoxic and HLG conditions, increasing the proportion of phosphorylated Akt (1.7- and 1.4-fold, respectively). These effects were abolished by wortmannin and by immunoneutralization, indicating that GH acts through this signaling pathway. Furthermore, the 15-kDa GH variant (10nM) significantly increased cell viability and decreased caspase-3 activity during HLG condition. Thus GH may act as a paracrine/autocrine neuroprotective factor that preserves cellular viability and inhibits apoptotic cell death. Copyright © 2012 Elsevier Inc. All rights reserved.

  6. Reprogramming of liver cells into insulin-producing cells.

    PubMed

    Meivar-Levy, Irit; Ferber, Sarah

    2015-12-01

    Tissue replacement is a promising direction for the treatment of diabetes, which will become widely available only when islets or insulin-producing cells that will not be rejected by the diabetic recipients are available in unlimited amounts. The present review addresses the research in the field of generating functional insulin-producing cells by transdifferentiation of adult liver cells both in vitro and in vivo. It presents recent knowledge of the mechanisms which underlie the process and assesses the challenges which should be addressed for its efficient implementation as a cell based replacement therapy for diabetics.

  7. [Insulin producing cells as therapy in diabetes mellitus].

    PubMed

    Schnedl, W J; Hohmeier, H E; Newgard, C B

    1996-01-01

    Even with intensive insulin therapy it is impossible to reach physiological blood glucose levels in insulin-dependent diabetes mellitus. Because of the high costs and technical problems involved in islet cell transplantation broad applicability of this therapy seems uncertain. An alternative approach is the development of molecular-engineered insulin-producing clonal cell lines. The main interest is in rodent insulinoma cell lines and neuroendocrine AtT-20ins cells. This paper reviews the current knowledge about glucose-stimulated insulin secretion and the problems that have to be solved before these cells can be used for therapy in diabetes mellitus.

  8. Foot-and-mouth disease marker vaccine: cattle protection with a partial VP1 G-H loop deleted virus antigen.

    PubMed

    Fowler, V L; Bashiruddin, J B; Maree, F F; Mutowembwa, P; Bankowski, B; Gibson, D; Cox, S; Knowles, N; Barnett, P V

    2011-10-26

    Contrary to the dogma that the VP1 G-H loop is essential for FMD vaccine efficacy, it has been previously shown that foot-and-mouth disease 146s antigen containing heterologous VP1 G-H loops confers complete protection in pigs and cattle. Moreover, serological evaluation of cattle vaccinated with an antigen lacking a large proportion of the VP1 G-H loop indicated that these animals should be protected against infection with FMD. Absence of this loop provides opportunity for the development of an FMD negative marker vaccine, allowing infection to be detected by antibodies against this missing region. Cattle vaccinated with this negative marker vaccine were fully protected following virus challenge 28 days post vaccination as determined by the absence of generalised lesions on their feet. Furthermore, use of our improved differentiation ELISA identified animals exposed to infection as early as 7 days post-challenge. We thus demonstrate, for the first time, the ability of this FMD negative marker vaccine to fully protect cattle from experimental challenge and rapidly distinguish animals that are subsequently exposed to infection.

  9. Accumulation of cadmium in insulin-producing β cells.

    PubMed

    El Muayed, Malek; Raja, Meera R; Zhang, Xiaomin; MacRenaris, Keith W; Bhatt, Surabhi; Chen, Xiaojuan; Urbanek, Margrit; O'Halloran, Thomas V; Lowe, William L

    2012-01-01

    Evidence suggests that chronic low level cadmium exposure impairs the function of insulin-producing β cells and may be associated with type-2 diabetes mellitus. Herein, we describe the cadmium content in primary human islets and define the uptake kinetics and effects of environmentally relevant cadmium concentrations in cultured β cells. The average cadmium content in islets from 10 non-diabetic human subjects was 29 ± 7 nmol/g protein (range 7 to 72 nmol/g protein). Exposure of the β-cell line MIN6 to CdCl 2 concentrations between 0.1 and 1.0 µmol/L resulted in a dose- and time-dependent uptake of cadmium over 72 h. This uptake resulted in an induction of metallthionein expression, likely enhancing cellular cadmium accumulation. Furthermore, cadmium accumulation resulted in an inhibition of glucose stimulated insulin secretion in MIN6 cells and primary mouse islets. Our results indicate that this impairment in β-cell function is not due to an increase in cell death or due to an increase in oxidative stress. We conclude that mouse β cells accumulate cadmium in a dose- and time-dependent manner over a prolonged time course at environmentally relevant concentrations. This uptake leads to a functional impairment of β-cell function without significant alterations in cell viability, expression of genes important for β-cell function or increase in oxidative stress.

  10. Do we really need to differentiate mesenchymal stem cells into insulin-producing cells for attenuation of the autoimmune responses in type 1 diabetes: immunoprophylactic effects of precursors to insulin-producing cells.

    PubMed

    Sharma, Anshu; Rani, Rajni

    2017-07-12

    Type 1 diabetes (T1D) is a multifactorial autoimmune disorder where pancreatic beta cells are lost before the clinical manifestations of the disease. Administration of mesenchymal stem cells (MSCs) or MSCs differentiated into insulin-producing cells (IPCs) have yielded limited success when used therapeutically. We have evaluated the immunoprophylactic potentials of precursors to insulin-producing cells (pIPCs) and IPCs in nonobese diabetic (NOD) mice to ask a basic question: do we need to differentiate MSCs into IPCs or will pIPCs suffice to attenuate autoimmune responses in T1D? Bone marrow-derived MSCs from Balb/c mice were characterized following the International Society for Cellular Therapy (ISCT) guidelines. MSCs cultured in high-glucose media for 11 to 13 passages were characterized for the expression of pancreatic lineage genes using real-time polymerase chain reaction. Expression of the PDX1 gene in pIPCs was assessed using Western blot and fluorescence-activated cell sorting (FACS). Triple-positive MSCs were differentiated into IPCs using a three-step protocol after sorting them for cell surface markers, i.e. CD29, CD44, and SCA-1. Nonobese diabetic mice were administered pIPCs, IPCs, or phosphate-buffered saline (PBS) into the tail vein at weeks 9 or 10 and followed-up for 29-30 weeks for fasting blood glucose levels. Two consecutive blood sugar levels of more than 250 mg/dl were considered diabetic. MSCs grown in high-glucose media for 11 to 13 passages expressed genes of the pancreatic lineage such as PDX1, beta2, neurogenin, PAX4, Insulin, and glucagon. Furthermore, Western blot and FACS analysis for PDX-1, a transcription factor necessary for beta cell maturation, confirmed that these cells were precursors of insulin-producing cells (pIPCs). NOD mice administered with pIPCs were better protected from developing diabetes with a protective efficacy of 78.4% (p < 0.009); however, administration of IPCs gave protective efficacy of 55% at the end of

  11. Expression of a thioredoxin peroxidase in insulin-producing cells.

    PubMed

    Boschero, A C; Stoppiglia, L F; Collares-Buzato, C B; Bosqueiro, J R; Delghingaro-Augusto, V; Leite, A; Carvalho, C P F; Netto, L E S; Carneiro, E M

    2002-12-01

    The presence of thioredoxin peroxidase (TPx), also known as thiol specific antioxidant (TSA), was investigated in neonatal and adult rat islets, and in the beta-cell line HIT-T15. Western blotting of extracts from neonatal and adult pancreatic islets and from the tumoral cell line HIT-T15 revealed the presence of a 25 kDa protein that comigrated with purified yeast TPx. Endocrine pancreatic TPx accounted for approximately 0.01% of the total protein content. Treatment with H2O2 for 3 h increased the expression of TPx in HIT-T15 cells. The distribution of TPx throughout the islet cells was confirmed by immunocytochemistry. Since pancreatic beta-cells possess a weak antioxidant enzyme defense system, especially with regard to hydrogen peroxidase-decomposing enzymes, the presence of a TPx analog in islets suggests that this enzyme may play a role in protecting pancreatic cells against reactive oxygen species.

  12. Differentiation of stem cells into insulin-producing cells under the influence of nanostructural polyoxometalates.

    PubMed

    Bâlici, Ştefana; Şuşman, Sergiu; Rusu, Dan; Nicula, Gheorghe Zsolt; Soriţău, Olga; Rusu, Mariana; Biris, Alexandru S; Matei, Horea

    2016-03-01

    Two polyoxometalates (POMs) with W were synthesized by a two-step, self-assembling method. They were used for stimulation of mesenchymal stem cell differentiation into insulin-producing cells. The nanocompounds (tris(vanadyl)-substituted tungsto-antimonate(III) anions [POM1] and tris-butyltin-21-tungsto-9-antimonate(III) anions [POM2]) were characterized by analytical techniques, including ultraviolet-visible, Fourier transform infrared, nuclear magnetic resonance spectroscopy, and transmission electron microscopy. We found that these polyoxotungstates, with 2-4 nm diameters, did not present toxic effects at the tested concentrations. In vitro, POM1 stimulated differentiation of a greater number of dithizone-positive cells (also organized in clusters) than the second nanocompound (POM2). Based on our in vitro studies, we have concluded that both the POMs tested had significant biological activity acting as active stimuli for differentiation of stem cells into insulin-producing cells.

  13. Superficial necrolytic dermatitis in a dog with an insulin-producing pancreatic islet cell carcinoma.

    PubMed

    Isidoro-Ayza, M; Lloret, A; Bardagí, M; Ferrer, L; Martínez, J

    2014-07-01

    A 10-year-old dog presented with convulsive crisis and symmetrical hyperkeratotic cutaneous lesions affecting the abdomen, inguinal area, eyelids, muzzles, both pinnae, and all the paw pads. Hypoglycemia and hyperinsulinemia were the main biochemical findings. A mass 2 cm in diameter was detected within the left pancreatic lobe by ultrasonography. It was surgically removed and histologically and immunohistochemically diagnosed as an insulin-producing pancreatic islet cell carcinoma. The animal was eventually euthanized due to lack of clinical improvement. At necropsy, metastatic nodules were observed in the pancreatic lymph nodes and liver. Histopathological findings of cutaneous lesions were highly suggestive of superficial necrolytic dermatitis and were interpreted as a paraneoplastic syndrome derived from the islet cell carcinoma. To the authors' knowledge, this is the first report of superficial necrolytic dermatitis associated with an insulin-producing pancreatic neuroendocrine carcinoma in dogs.

  14. Autophagy is essential for the differentiation of porcine PSCs into insulin-producing cells.

    PubMed

    Ren, Lipeng; Yang, Hong; Cui, Yanhua; Xu, Shuanshuan; Sun, Fen; Tian, Na; Hua, Jinlian; Peng, Sha

    2017-07-01

    Porcine pancreatic stem cells (PSCs) are seed cells with potential use for diabetes treatment. Stem cell differentiation requires strict control of protein turnover and lysosomal digestion of organelles. Autophagy is a highly conserved process that controls the turnover of organelles and proteins within cells and contributes to the balance of cellular components. However, whether autophagy plays roles in PSC differentiation remains unknown. In this study, we successfully induced porcine PSCs into insulin-producing cells and found that autophagy was activated during the second induction stage. Inhibition of autophagy in the second stage resulted in reduced differentiational efficiency and impaired glucose-stimulated insulin secretion. Moreover, the expression of active β-catenin increased while autophagy was activated but was suppressed when autophagy was inhibited. Therefore, autophagy is essential to the formation of insulin-producing cells, and the effects of autophagy on differentiation may be regulated by canonical Wnt signalling pathway. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. A Broadly Cross-protective Vaccine Presenting the Neighboring Epitopes within the VP1 GH Loop and VP2 EF Loop of Enterovirus 71.

    PubMed

    Xu, Longfa; He, Delei; Yang, Lisheng; Li, Zhiqun; Ye, Xiangzhong; Yu, Hai; zhao, Huan; Li, Shuxuan; Yuan, Lunzhi; Qian, Hongliu; Que, Yuqiong; Shih, James Wai Kuo; Zhu, Hua; Li, Yimin; Cheng, Tong; Xia, Ningshao

    2015-08-05

    Human enterovirus 71 (EV71) and coxsackievirus A16 (CA16) are the major etiological agents of hand, foot and mouth disease (HFMD) and are often associated with neurological complications. Currently, several vaccine types are being developed for EV71 and CA16. In this study, we constructed a bivalent chimeric virus-like particle (VLP) presenting the VP1 (aa208-222) and VP2 (aa141-155) epitopes of EV71 using hepatitis B virus core protein (HBc) as a carrier, designated HBc-E1/2. Immunization with the chimeric VLPs HBc-E1/2 induced higher IgG titers and neutralization titers against EV71 and CA16 in vitro than immunization with only one epitope incorporated into HBc. Importantly, passive immunization with the recombinant HBc-E2 particles protected neonatal mice against lethal EV71 and CA16 infections. We demonstrate that anti-VP2 (aa141-155) sera bound authentic CA16 viral particles, whereas anti-VP1 (aa208-222) sera could not. Moreover, the anti-VP2 (aa141-155) antibodies inhibited the binding of human serum to virions, which demonstrated that the VP2 epitope is immunodominant between EV71 and CA16. These results illustrated that the chimeric VLP HBc-E1/2 is a promising candidate for a broad-spectrum HFMD vaccine, and also reveals mechanisms of protection by the neighboring linear epitopes of the VP1 GH and VP2 EF loops.

  16. A Broadly Cross-protective Vaccine Presenting the Neighboring Epitopes within the VP1 GH Loop and VP2 EF Loop of Enterovirus 71

    PubMed Central

    Xu, Longfa; He, Delei; Yang, Lisheng; Li, Zhiqun; Ye, Xiangzhong; Yu, Hai; zhao, Huan; Li, Shuxuan; Yuan, Lunzhi; Qian, Hongliu; Que, Yuqiong; Kuo Shih, James Wai; Zhu, Hua; Li, Yimin; Cheng, Tong; Xia, Ningshao

    2015-01-01

    Human enterovirus 71 (EV71) and coxsackievirus A16 (CA16) are the major etiological agents of hand, foot and mouth disease (HFMD) and are often associated with neurological complications. Currently, several vaccine types are being developed for EV71 and CA16. In this study, we constructed a bivalent chimeric virus-like particle (VLP) presenting the VP1 (aa208-222) and VP2 (aa141-155) epitopes of EV71 using hepatitis B virus core protein (HBc) as a carrier, designated HBc-E1/2. Immunization with the chimeric VLPs HBc-E1/2 induced higher IgG titers and neutralization titers against EV71 and CA16 in vitro than immunization with only one epitope incorporated into HBc. Importantly, passive immunization with the recombinant HBc-E2 particles protected neonatal mice against lethal EV71 and CA16 infections. We demonstrate that anti-VP2 (aa141-155) sera bound authentic CA16 viral particles, whereas anti-VP1 (aa208-222) sera could not. Moreover, the anti-VP2 (aa141-155) antibodies inhibited the binding of human serum to virions, which demonstrated that the VP2 epitope is immunodominant between EV71 and CA16. These results illustrated that the chimeric VLP HBc-E1/2 is a promising candidate for a broad-spectrum HFMD vaccine, and also reveals mechanisms of protection by the neighboring linear epitopes of the VP1 GH and VP2 EF loops. PMID:26243660

  17. Hox6 genes modulate in vitro differentiation of mESCs to insulin-producing cells.

    PubMed

    Larsen, Brian M; Marty-Santos, Leilani; Newman, Micaleah; Lukacs, Derek T; Spence, Jason R; Wellik, Deneen M

    2016-10-01

    The differentiation of glucose-responsive, insulin-producing cells from ESCs in vitro is promising as a cellular therapy for the treatment of diabetes, a devastating and common disease. Pancreatic β-cells are derived from the endoderm in vivo and therefore most current protocols attempt to generate a pure population of first endoderm, then pancreas epithelium, and finally insulin-producing cells. Despite this, differentiation protocols result in mixed populations of cells that are often poorly defined, but also contain mesoderm. Using an in vitro mESC-to-β cell differentiation protocol, we show that expression of region-specific Hox genes is induced. We also show that the loss of function of the Hox6 paralogous group, genes expressed only in the mesenchyme of the pancreas (not epithelium), affect the differentiation of insulin-producing cells in vitro. This work is consistent with the important role for these mesoderm-specific factors in vivo and highlights contribution of supporting mesenchymal cells in in vitro differentiation.

  18. Cellular therapies based on stem cells and their insulin-producing surrogates: a 2015 reality check.

    PubMed

    Giannoukakis, Nick; Trucco, Massimo

    2015-05-01

    Stem cell technology has recently gained a substantial amount of interest as one method to create a potentially limitless supply of transplantable insulin-producing cells to treat, and possibly cure diabetes mellitus. In this review, we summarize the state-of-the art of stem cell technology and list the potential sources of stem cells that have been shown to be useful as insulin-expressing surrogates. We also discuss the milestones that have been reached and those that remain to be addressed to generate bona fide beta cell-similar, insulin-producing surrogates. The caveats, limitations, and realistic expectations are also considered for current and future technology. In spite of the tremendous technical advances realized in the past decade, especially in the field of reprogramming adult somatic cells to become stem cells, the state-of-the art still relies on lengthy and cumbersome in vitro culture methods that yield cell populations that are not particularly glucose-responsive when transplanted into diabetic hosts. Despite the current impediments toward clinical translation, including the potential for immune rejection, the availability of technology to generate patient-specific reprogrammable stem cells has, and will be critical for, important insights into the genetics, epigenetics, biology, and physiology of insulin-producing cells in normal and pathologic states. This knowledge could accelerate the time to reach the desired breakthrough for safe and efficacious beta cell surrogates.

  19. Insulin-Producing Endocrine Cells Differentiated In Vitro From Human Embryonic Stem Cells Function in Macroencapsulation Devices In Vivo

    PubMed Central

    Ambruzs, Dana M.; Moorman, Mark A.; Bhoumik, Anindita; Cesario, Rosemary M.; Payne, Janice K.; Kelly, Jonathan R.; Haakmeester, Carl; Srijemac, Robert; Wilson, Alistair Z.; Kerr, Justin; Frazier, Mauro A.; Kroon, Evert J.; D’Amour, Kevin A.

    2015-01-01

    The PEC-01 cell population, differentiated from human embryonic stem cells (hESCs), contains pancreatic progenitors (PPs) that, when loaded into macroencapsulation devices (to produce the VC-01 candidate product) and transplanted into mice, can mature into glucose-responsive insulin-secreting cells and other pancreatic endocrine cells involved in glucose metabolism. We modified the protocol for making PEC-01 cells such that 73%–80% of the cell population consisted of PDX1-positive (PDX1+) and NKX6.1+ PPs. The PPs were further differentiated to islet-like cells (ICs) that reproducibly contained 73%–89% endocrine cells, of which approximately 40%–50% expressed insulin. A large fraction of these insulin-positive cells were single hormone-positive and expressed the transcription factors PDX1 and NKX6.1. To preclude a significant contribution of progenitors to the in vivo function of ICs, we used a simple enrichment process to remove remaining PPs, yielding aggregates that contained 93%–98% endocrine cells and 1%–3% progenitors. Enriched ICs, when encapsulated and implanted into mice, functioned similarly to the VC-01 candidate product, demonstrating conclusively that in vitro-produced hESC-derived insulin-producing cells can mature and function in vivo in devices. A scaled version of our suspension culture was used, and the endocrine aggregates could be cryopreserved and retain functionality. Although ICs expressed multiple important β cell genes, the cells contained relatively low levels of several maturity-associated markers. Correlating with this, the time to function of ICs was similar to PEC-01 cells, indicating that ICs required cell-autonomous maturation after delivery in vivo, which would occur concurrently with graft integration into the host. Significance Type 1 diabetes (T1D) affects approximately 1.25 million people in the U.S. alone and is deadly if not managed with insulin injections. This paper describes the production of insulin-producing

  20. Diabetes recovery by age-dependent conversion of pancreatic δ-cells into insulin producers.

    PubMed

    Chera, Simona; Baronnier, Delphine; Ghila, Luiza; Cigliola, Valentina; Jensen, Jan N; Gu, Guoqiang; Furuyama, Kenichiro; Thorel, Fabrizio; Gribble, Fiona M; Reimann, Frank; Herrera, Pedro L

    2014-10-23

    Total or near-total loss of insulin-producing β-cells occurs in type 1 diabetes. Restoration of insulin production in type 1 diabetes is thus a major medical challenge. We previously observed in mice in which β-cells are completely ablated that the pancreas reconstitutes new insulin-producing cells in the absence of autoimmunity. The process involves the contribution of islet non-β-cells; specifically, glucagon-producing α-cells begin producing insulin by a process of reprogramming (transdifferentiation) without proliferation. Here we show the influence of age on β-cell reconstitution from heterologous islet cells after near-total β-cell loss in mice. We found that senescence does not alter α-cell plasticity: α-cells can reprogram to produce insulin from puberty through to adulthood, and also in aged individuals, even a long time after β-cell loss. In contrast, before puberty there is no detectable α-cell conversion, although β-cell reconstitution after injury is more efficient, always leading to diabetes recovery. This process occurs through a newly discovered mechanism: the spontaneous en masse reprogramming of somatostatin-producing δ-cells. The juveniles display 'somatostatin-to-insulin' δ-cell conversion, involving dedifferentiation, proliferation and re-expression of islet developmental regulators. This juvenile adaptability relies, at least in part, upon the combined action of FoxO1 and downstream effectors. Restoration of insulin producing-cells from non-β-cell origins is thus enabled throughout life via δ- or α-cell spontaneous reprogramming. A landscape with multiple intra-islet cell interconversion events is emerging, offering new perspectives for therapy.

  1. Diabetes Recovery By Age-Dependent Conversion of Pancreatic δ-Cells Into Insulin Producers

    PubMed Central

    Chera, Simona; Baronnier, Delphine; Ghila, Luiza; Cigliola, Valentina; Jensen, Jan N.; Gu, Guoqiang; Furuyama, Kenichiro; Thorel, Fabrizio; Gribble, Fiona M.; Reimann, Frank; Herrera, Pedro L.

    2014-01-01

    Total or near-total loss of insulin-producing β-cells is a situation found in diabetes (Type 1, T1D) 1,2. Restoration of insulin production in T1D is thus a major medical challenge. We previously observed in mice in which β-cells are completely ablated that the pancreas reconstitutes new insulin-producing cells in absence of autoimmunity 3. The process involves the contribution of islet non-β-cells; specifically, glucagon-producing α-cells begin producing insulin by a process of reprogramming (transdifferentiation) without proliferation 3. Here we studied the influence of age on β-cell reconstitution from heterologous islet cells after near-total β-cell loss. We found that senescence does not alter α-cell plasticity: α-cells can reprogram to produce insulin from puberty through adulthood, and also in aged individuals, even a long-time after β-cell loss. In contrast, prior to puberty there is no detectable α-cell conversion, although β-cell reconstitution after injury is more efficient, always leading to diabetes recovery; it occurs through a newly discovered mechanism: the spontaneous en masse reprogramming of somatostatin-producing δ-cells. The younglings display “somatostatin-to-insulin” δ-cell conversion, involving de-differentiation, proliferation and re-expression of islet developmental regulators. This juvenile adaptability relies, at least in part, upon combined action of FoxO1 and downstream effectors. Restoration of insulin producing-cells from non-β-cell origins is thus enabled throughout life via δ- or α-cell spontaneous reprogramming. A landscape with multiple intra-islet cell interconversion events is emerging, thus offering new perspectives. PMID:25141178

  2. Differentiation of human-induced pluripotent stem cells into insulin-producing clusters.

    PubMed

    Shaer, Anahita; Azarpira, Negar; Vahdati, Akbar; Karimi, Mohammad Hosein; Shariati, Mehrdad

    2015-02-01

    In diabetes mellitus type 1, beta cells are mostly destroyed; while in diabetes mellitus type 2, beta cells are reduced by 40% to 60%. We hope that soon, stem cells can be used in diabetes therapy via pancreatic beta cell replacement. Induced pluripotent stem cells are a kind of stem cell taken from an adult somatic cell by "stimulating" certain genes. These induced pluripotent stem cells may be a promising source of cell therapy. This study sought to produce isletlike clusters of insulin-producing cells taken from induced pluripotent stem cells. A human-induced pluripotent stem cell line was induced into isletlike clusters via a 4-step protocol, by adding insulin, transferrin, and selenium (ITS), N2, B27, fibroblast growth factor, and nicotinamide. During differentiation, expression of pancreatic β-cell genes was evaluated by reverse transcriptase-polymerase chain reaction; the morphologic changes of induced pluripotent stem cells toward isletlike clusters were observed by a light microscope. Dithizone staining was used to stain these isletlike clusters. Insulin produced by these clusters was evaluated by radio immunosorbent assay, and the secretion capacity was analyzed with a glucose challenge test. Differentiation was evaluated by analyzing the morphology, dithizone staining, real-time quantitative polymerase chain reaction, and immunocytochemistry. Gene expression of insulin, glucagon, PDX1, NGN3, PAX4, PAX6, NKX6.1, KIR6.2, and GLUT2 were documented by analyzing real-time quantitative polymerase chain reaction. Dithizone-stained cellular clusters were observed after 23 days. The isletlike clusters significantly produced insulin. The isletlike clusters could increase insulin secretion after a glucose challenge test. This work provides a model for studying the differentiation of human-induced pluripotent stem cells to insulin-producing cells.

  3. Generation of insulin-producing cells from gnotobiotic porcine skin-derived stem cells

    SciTech Connect

    Yang, Ji Hoon; Lee, Sung Ho; Heo, Young Tae; Uhm, Sang Jun; Lee, Hoon Taek

    2010-07-09

    A major problem in the treatment of type 1 diabetes mellitus is the limited availability of alternative sources of insulin-producing cells for islet transplantation. In this study, we investigated the effect of bone morphogenetic protein 4 (BMP-4) treatments of gnotobiotic porcine skin-derived stem cells (gSDSCs) on their reprogramming and subsequent differentiation into insulin-producing cells (IPCs). We isolated SDSCs from the ear skin of a gnotobiotic pig. During the proliferation period, the cells expressed stem-cell markers Oct-4, Sox-2, and CD90; nestin expression also increased significantly. The cells could differentiate into IPCs after treatments with activin-A, glucagon-like peptide-1 (GLP-1), and nicotinamide. After 15 days in the differentiation medium, controlled gSDSCs began expressing endocrine progenitor genes and proteins (Ngn3, Neuro-D, PDX-1, NKX2.2, NKX6.1, and insulin). The IPCs showed increased insulin synthesis after glucose stimulation. The results indicate that stem cells derived from the skin of gnotobiotic pigs can differentiate into IPCs under the appropriate conditions in vitro. Our three-stage induction protocol could be applied without genetic modification to source IPCs from stem cells in the skin of patients with diabetes for autologous transplantation.

  4. Connexin-36 contributes to control function of insulin-producing cells.

    PubMed

    Le Gurun, Sabine; Martin, David; Formenton, Andrea; Maechler, Pierre; Caille, Dorothee; Waeber, Gérard; Meda, Paolo; Haefliger, Jacques-Antoine

    2003-09-26

    Connexin-36 (Cx36) is a gap junction protein expressed by the insulin-producing beta-cells. We investigated the contribution of this protein in normal beta-cell function by using a viral gene transfer approach to alter Cx36 content in the insulin-producing line of INS-1E cells and rat pancreatic islets. Transcripts for Cx43, Cx45, and Cx36 were detected by reverse transcriptase-PCR in freshly isolated pancreatic islets, whereas only a transcript for Cx36 was detected in INS-1E cells. After infection with a sense viral vector, which induced de novo Cx36 expression in the Cx-defective HeLa cells we used to control the transgene expression, Western blot, immunofluorescence, and freeze-fracture analysis showed a large increase of Cx36 within INS-1E cell membranes. In contrast, after infection with an antisense vector, Cx36 content was decreased by 80%. Glucose-induced insulin release and insulin content were decreased, whether infected INS-1E cells expressed Cx36 levels that were largely higher or lower than those observed in wild-type control cells. In both cases, basal insulin secretion was unaffected. Comparable observations on basal secretion and insulin content were made in freshly isolated rat pancreatic islets. The data indicate that large changes in Cx36 alter insulin content and, at least in INS-1E cells, also affect glucose-induced insulin release.

  5. Generation of insulin-producing cells from gnotobiotic porcine skin-derived stem cells.

    PubMed

    Yang, Ji Hoon; Lee, Sung Ho; Heo, Young Tae; Uhm, Sang Jun; Lee, Hoon Taek

    2010-07-09

    A major problem in the treatment of type 1 diabetes mellitus is the limited availability of alternative sources of insulin-producing cells for islet transplantation. In this study, we investigated the effect of bone morphogenetic protein 4 (BMP-4) treatments of gnotobiotic porcine skin-derived stem cells (gSDSCs) on their reprogramming and subsequent differentiation into insulin-producing cells (IPCs). We isolated SDSCs from the ear skin of a gnotobiotic pig. During the proliferation period, the cells expressed stem-cell markers Oct-4, Sox-2, and CD90; nestin expression also increased significantly. The cells could differentiate into IPCs after treatments with activin-A, glucagon-like peptide-1 (GLP-1), and nicotinamide. After 15days in the differentiation medium, controlled gSDSCs began expressing endocrine progenitor genes and proteins (Ngn3, Neuro-D, PDX-1, NKX2.2, NKX6.1, and insulin). The IPCs showed increased insulin synthesis after glucose stimulation. The results indicate that stem cells derived from the skin of gnotobiotic pigs can differentiate into IPCs under the appropriate conditions in vitro. Our three-stage induction protocol could be applied without genetic modification to source IPCs from stem cells in the skin of patients with diabetes for autologous transplantation.

  6. Lack of “Hemichannel” Activity in Insulin-Producing Cells

    PubMed Central

    SCEMES, ELIANA; BAVAMIAN, SABINE; CHAROLLAIS, ANNE; SPRAY, DAVID C.; MEDA, PAOLO

    2008-01-01

    Connexins and pannexins have been implicated in the formation of “hemichannels,” which may account for the uptake and release of membrane-impermeant molecules in single cells. The in vivo existence of “hemichannels” and their protein composition is still debated. Investigations on these matters are complicated by the lack of adequate negative controls. In search for such essential controls, the authors have investigated transformed (MIN6 line) and primary insulin-producing cells. Here, the authors report that these cells, which express Cx36 and pannexin1, cannot be shown to display functional “hemichannels,” as evaluated by (1) uptake of the membrane-impermeant tracer ethidium bromide, whether in the presence or absence of extracellular Ca2+, following stimulation of P2X7 receptors, and after exposure to hypotonic medium; and (2) lack of exocytosis-independent release of endogenous ATP. Moreover, electrophysiological recordings indicated the absence of carbenoxolone-sensitive pannexin1 currents evoked by membrane potentials above +30 mV. Thus, insulin-producing cells are expected to provide a useful tool in the further characterization of hemichannel composition, properties, and physiological relevance. PMID:18649186

  7. Synergistic Effects of GhSOD1 and GhCAT1 Overexpression in Cotton Chloroplasts on Enhancing Tolerance to Methyl Viologen and Salt Stresses

    PubMed Central

    Luo, Xiaoli; Wu, Jiahe; Li, Yuanbao; Nan, Zhirun; Guo, Xing; Wang, Yixue; Zhang, Anhong; Wang, Zhian; Xia, Guixian; Tian, Yingchuan

    2013-01-01

    In plants, CuZn superoxide dismutase (CuZnSOD, EC l.15.1.1), ascorbate peroxidase (APX, EC 1.11.1.11), and catalase (CAT, EC l.11.1.6) are important scavengers of reactive oxygen species (ROS) to protect the cell from damage. In the present study, we isolated three homologous genes (GhSOD1, GhAPX1, and GhCAT1) from Gossypium hirsutum. Overexpressing cassettes containing chimeric GhSOD1, GhAPX1, or GhCAT1 were introduced into cotton plants by Agrobacterium transformation, and overexpressed products of these genes were transported into the chloroplasts by transit peptide, as expected. The five types of transgenic cotton plants that overexpressed GhSOD1, GhAPX1, GhCAT1, GhSOD1 and GhAPX1 stack (SAT), and GhSOD1 and GhCAT1 stack (SCT) were developed. Analyses in the greenhouse showed that the transgenic plants had higher tolerance to methyl viologen (MV) and salinity than WT plants. Interestingly, SCT plants suffered no damage under stress conditions. Based on analyses of enzyme activities, electrolyte leakage, chlorophyll content, photochemical yield (Fv/Fm), and biomass accumulation under stresses, the SCT plants that simultaneously overexpressed GhSOD1 and GhCAT1 appeared to benefit from synergistic effects of two genes and exhibited the highest tolerance to MV and salt stress among the transgenic lines, while the SAT plants simultaneously overexpressing GhSOD1 and GhAPX1 did not. In addition, transgenic plants overexpressing antioxidant enzymes in their chloroplasts had higher tolerance to salt stress than those expressing the genes in their cytoplasms, although overall enzyme activities were almost the same. Therefore, the synergistic effects of GhSOD1 and GhCAT1 in chloroplasts provide a new strategy for enhancing stress tolerance to avoid yield loss. PMID:23335985

  8. Cold-sensing regulates Drosophila growth through insulin-producing cells

    PubMed Central

    Li, Qiaoran; Gong, Zhefeng

    2015-01-01

    Across phyla, body size is linked to climate. For example, rearing fruit flies at lower temperatures results in bigger body sizes than those observed at higher temperatures. The underlying molecular basis of this effect is poorly understood. Here we provide evidence that the temperature-dependent regulation of Drosophila body size depends on a group of cold-sensing neurons and insulin-producing cells (IPCs). Electrically silencing IPCs completely abolishes the body size increase induced by cold temperature. IPCs are directly innervated by cold-sensing neurons. Stimulation of these cold-sensing neurons activates IPCs, promotes synthesis and secretion of Drosophila insulin-like peptides and induces a larger body size, mimicking the effects of rearing the flies in cold temperature. Taken together, these findings reveal a neuronal circuit that mediates the effects of low temperature on fly growth. PMID:26648410

  9. Insight into Insulin Secretion from Transcriptome and Genetic Analysis of Insulin-Producing Cells of Drosophila

    PubMed Central

    Cao, Jian; Ni, Julie; Ma, Wenxiu; Shiu, Vanessa; Milla, Luis A.; Park, Sangbin; Spletter, Maria L.; Tang, Sheng; Zhang, Jun; Wei, Xing; Kim, Seung K.; Scott, Matthew P.

    2014-01-01

    Insulin-producing cells (IPCs) in the Drosophila brain produce and release insulin-like peptides (ILPs) to the hemolymph. ILPs are crucial for growth and regulation of metabolic activity in flies, functions analogous to those of mammalian insulin and insulin-like growth factors (IGFs). To identify components functioning in IPCs to control ILP production, we employed genomic and candidate gene approaches. We used laser microdissection and messenger RNA sequencing to characterize the transcriptome of larval IPCs. IPCs highly express many genes homologous to genes active in insulin-producing β-cells of the mammalian pancreas. The genes in common encode ILPs and proteins that control insulin metabolism, storage, secretion, β-cell proliferation, and some not previously linked to insulin production or β-cell function. Among these novelties is unc-104, a kinesin 3 family gene, which is more highly expressed in IPCs compared to most other neurons. Knockdown of unc-104 in IPCs impaired ILP secretion and reduced peripheral insulin signaling. Unc-104 appears to transport ILPs along axons. As a complementary approach, we tested dominant-negative Rab genes to find Rab proteins required in IPCs for ILP production or secretion. Rab1 was identified as crucial for ILP trafficking in IPCs. Inhibition of Rab1 in IPCs increased circulating sugar levels, delayed development, and lowered weight and body size. Immunofluorescence labeling of Rab1 showed its tight association with ILP2 in the Golgi of IPCs. Unc-104 and Rab1 join other proteins required for ILP transport in IPCs. PMID:24558258

  10. Insulin - producing cells derived from stem cells: recent progress and future directions

    PubMed Central

    Santana, A; Enseñat - Waser, R; Arribas, Maria Isabel; Reig, J A; Roche, E

    2006-01-01

    Type 1 diabetes is characterized by the selective destruction of pancreatic β-cells caused by an autoimmune attack. Type 2 diabetes is a more complex pathology which, in addition to β-cell loss caused by apoptotic programs, includes β-cell dedifferentiation and peripheric insulin resistance. β-Cells are responsible for insulin production, storage and secretion in accordance to the demanding concentrations of glucose and fatty acids. The absence of insulin results in death and therefore diabetic patients require daily injections of the hormone for survival. However, they cannot avoid the appearance of secondary complications affecting the peripheral nerves as well as the eyes, kidneys and cardiovascular system. These afflictions are caused by the fact that external insulin injection does not mimic the tight control that pancreaticderived insulin secretion exerts on the body’s glycemia. Restoration of damaged β-cells by transplantation from exogenous sources or by endocrine pancreas regeneration would be ideal therapeutic options. In this context, stem cells of both embryonic and adult origin (including β-cell/islet progenitors) offer some interesting alternatives, taking into account the recent data indicating that these cells could be the building blocks from which insulin secreting cells could be generated in vitro under appropriate culture conditions. Although in many cases insulin-producing cells derived from stem cells have been shown to reverse experimentally induced diabetes in animal models, several concerns need to be solved before finding a definite medical application. These refer mainly to the obtainment of a cell population as similar as possible to pancreatic β-cells, and to the problems related with the immune compatibility and tumor formation. This review will summarize the different approaches that have been used to obtain insulin-producing cells from embryonic and adult stem cells, and the main problems that hamper the clinical

  11. Cytokine toxicity in insulin-producing cells is mediated by nitro-oxidative stress-induced hydroxyl radical formation in mitochondria.

    PubMed

    Gurgul-Convey, Ewa; Mehmeti, Ilir; Lortz, Stephan; Lenzen, Sigurd

    2011-08-01

    Although nitric oxide (NO) and oxidative stress both contribute to proinflammatory cytokine toxicity in pancreatic β-cells during type 1 diabetes mellitus (T1DM) development, the interactions between NO and reactive oxygen species (ROS) in cytokine-mediated β-cell death have not been clarified. Exposure of insulin-producing RINm5F cells to IL-1β generated NO, while exposure to a combination of IL-1β, TNF-α, and IFN-γ, which simulates T1DM conditions, generated both NO and ROS. In theory, two reactions between NO and ROS are possible, one with the superoxide radical yielding peroxynitrite, and the other with hydrogen peroxide (H(2)O(2)) yielding hydroxyl radicals. Results of the present work exclude peroxynitrite involvement in cytokine toxicity to β-cells because its generation did not correlate with the toxic action of cytokines. On the other hand, we show that H(2)O(2), produced upon exposure of insulin-producing cell clones and primary rat islet cells to cytokines almost exclusively in the mitochondria, reacted in the presence of trace metal (Fe(++)) with NO forming highly toxic hydroxyl radicals, thus explaining the severe toxicity that causes apoptotic β-cell death. Expression of the H(2)O(2)-inactivating enzyme catalase in mitochondria protected against cytokine toxicity by preventing hydroxyl radical formation. We therefore conclude that proinflammatory cytokine-mediated β-cell death is due to nitro-oxidative stress-mediated hydroxyl radical formation in the mitochondria.

  12. Reprogramming of Mice Primary Hepatocytes into Insulin-Producing Cells by Transfection with Multicistronic Vectors

    PubMed Central

    Luo, Haizhao; Chen, Rongping; Yang, Rui; Liu, Yan; Chen, Youping; Chen, Hong

    2014-01-01

    The neogenesis of insulin-producing cells (IPCs) from non-beta-cells has emerged as a potential method for treating diabetes mellitus (DM). Many groups have documented that activation of pancreatic transcription factor(s) in hepatocytes can improve the hyperglycemia in diabetic mice. In the present study, we explored a novel protocol that reprogrammed primary hepatocytes into functional IPCs by using multicistronic vectors carrying pancreatic and duodenal homeobox-1 (Pdx1), neurogenin 3 (Ngn3), and v-musculoaponeurotic fibrosarcoma oncogene homolog A (MafA). These triple-transfected cells activated multiple beta-cell genes, synthesized and stored considerable amounts of insulin, and released the hormone in a glucose-regulated manner in vitro. Furthermore, when transplanted into streptozotocin-induced diabetic mice, the cells markedly ameliorated glucose tolerance. Our results indicated that ectopic expression of Pdx1, Ngn3, and MafA facilitated hepatocytes-to-IPCs reprogramming. This approach may offer opportunities for treatment of DM. PMID:25006589

  13. Circadian and feeding cues integrate to drive rhythms of physiology in Drosophila insulin-producing cells.

    PubMed

    Barber, Annika F; Erion, Renske; Holmes, Todd C; Sehgal, Amita

    2016-12-01

    Circadian clocks regulate much of behavior and physiology, but the mechanisms by which they do so remain poorly understood. While cyclic gene expression is thought to underlie metabolic rhythms, little is known about cycles in cellular physiology. We found that Drosophila insulin-producing cells (IPCs), which are located in the pars intercerebralis and lack an autonomous circadian clock, are functionally connected to the central circadian clock circuit via DN1 neurons. Insulin mediates circadian output by regulating the rhythmic expression of a metabolic gene (sxe2) in the fat body. Patch clamp electrophysiology reveals that IPCs display circadian clock-regulated daily rhythms in firing event frequency and bursting proportion under light:dark conditions. The activity of IPCs and the rhythmic expression of sxe2 are additionally regulated by feeding, as demonstrated by night feeding-induced changes in IPC firing characteristics and sxe2 levels in the fat body. These findings indicate circuit-level regulation of metabolism by clock cells in Drosophila and support a role for the pars intercerebralis in integrating circadian control of behavior and physiology.

  14. De Novo Formation of Insulin-Producing “Neo-β Cell Islets” from Intestinal Crypts

    PubMed Central

    Chen, Yi-Ju; Finkbeiner, Stacy R.; Weinblatt, Daniel; Emmett, Matthew J.; Tameire, Feven; Yousefi, Maryam; Yang, Chenghua; Maehr, Rene; Zhou, Qiao; Shemer, Ruth; Dor, Yuval; Li, Changhong; Spence, Jason R.; Stanger, Ben Z.

    2014-01-01

    SUMMARY The ability to interconvert terminally differentiated cells could serve as a powerful tool for cell-based treatment of degenerative diseases, including diabetes mellitus. To determine which, if any, adult tissues are competent to activate an islet β cell program, we performed an in vivo screen by expressing three β cell “reprogramming factors” in a wide spectrum of tissues. We report that transient intestinal expression of these factors—Pdx1, MafA, and Ngn3 (PMN)—promotes rapid conversion of intestinal crypt cells into endocrine cells, which coalesce into “neoislets” below the crypt base. Neoislet cells express insulin and show ultrastructural features of β cells. Importantly, intestinal neoislets are glucose-responsive and able to ameliorate hyperglycemia in diabetic mice. Moreover, PMN expression in human intestinal “organoids” stimulates the conversion of intestinal epithelial cells into β-like cells. Our results thus demonstrate that the intestine is an accessible and abundant source of functional insulin-producing cells. PMID:24613355

  15. Differentiation of human labia minora dermis-derived fibroblasts into insulin-producing cells

    PubMed Central

    Kim, Bona; Yoon, Byung Sun; Moon, Jai-Hee; Kim, Jonggun; Jun, Eun Kyoung; Lee, Jung Han; Kim, Jun Sung; Baik, Cheong Soon; Kim, Aeree; Whang, Kwang Youn

    2012-01-01

    Recent evidence has suggested that human skin fibroblasts may represent a novel source of therapeutic stem cells. In this study, we report a 3-stage method to induce the differentiation of skin fibroblasts into insulin-producing cells (IPCs). In stage 1, we establish the isolation, expansion and characterization of mesenchymal stem cells from human labia minora dermis-derived fibroblasts (hLMDFs) (stage 1: MSC expansion). hLMDFs express the typical mesenchymal stem cell marker proteins and can differentiate into adipocytes, osteoblasts, chondrocytes or muscle cells. In stage 2, DMEM/F12 serum-free medium with ITS mix (insulin, transferrin, and selenite) is used to induce differentiation of hLMDFs into endoderm-like cells, as determined by the expression of the endoderm markers Sox17, Foxa2, and PDX1 (stage 2: mesenchymal-endoderm transition). In stage 3, cells in the mesenchymal-endoderm transition stage are treated with nicotinamide in order to further differentiate into self-assembled, 3-dimensional islet cell-like clusters that express multiple genes related to pancreatic β-cell development and function (stage 3: IPC). We also found that the transplantation of IPCs can normalize blood glucose levels and rescue glucose homeostasis in streptozotocin-induced diabetic mice. These results indicate that hLMDFs have the capacity to differentiate into functionally competent IPCs and represent a potential cell-based treatment for diabetes mellitus. PMID:22020533

  16. Differentiation of human labia minora dermis-derived fibroblasts into insulin-producing cells.

    PubMed

    Kim, Bona; Yoon, Byung Sun; Moon, Jai Hee; Kim, Jonggun; Jun, Eun Kyoung; Lee, Jung Han; Kim, Jun Sung; Baik, Cheong Soon; Kim, Aeree; Whang, Kwang Youn; You, Seungkwon

    2012-01-31

    Recent evidence has suggested that human skin fibroblasts may represent a novel source of therapeutic stem cells. In this study, we report a 3-stage method to induce the differentiation of skin fibroblasts into insulin- producing cells (IPCs). In stage 1, we establish the isolation, expansion and characterization of mesenchymal stem cells from human labia minora dermis- derived fibroblasts (hLMDFs) (stage 1: MSC expansion). hLMDFs express the typical mesenchymal stem cell marker proteins and can differentiate into adipocytes, osteoblasts, chondrocytes or muscle cells. In stage 2, DMEM/F12 serum-free medium with ITS mix (insulin, transferrin, and selenite) is used to induce differentiation of hLMDFs into endoderm-like cells, as determined by the expression of the endoderm markers Sox17, Foxa2, and PDX1 (stage 2: mesenchymal-endoderm transition). In stage 3, cells in the mesenchymal- endoderm transition stage are treated with nicotinamide in order to further differentiate into self-assembled, 3-dimensional islet cell-like clusters that express multiple genes related to pancreatic β-cell development and function (stage 3: IPC). We also found that the transplantation of IPCs can normalize blood glucose levels and rescue glucose homeostasis in streptozotocin- induced diabetic mice. These results indicate that hLMDFs have the capacity to differentiate into functionally competent IPCs and represent a potential cell-based treatment for diabetes mellitus.

  17. Characterization of insulin-producing cells derived from PDX-1-transfected neural stem cells.

    PubMed

    Wang, Hailan; Jiang, Zesheng; Li, Aihui; Gao, Yi

    2012-12-01

    Islet cell transplantation is a promising treatment strategy for type-1 diabetes. However, functional islet cells are hard to obtain for transplantation and are in short supply. Directing the differentiation of stem cells into insulin‑producing cells, which serve as islet cells, would overcome this shortage. Bone marrow contains hematopoietic stem cells and mesenchymal stem cells. The present study used bone marrow cells isolated from rats and neural stem cells (NSCs) that were derived from bone marrow cells in culture. Strong nestin staining was detected in NSCs, but not in bone marrow stromal cells (BMSCs). In vitro transfection of the pancreatic duodenal homeobox-1 (PDX-1) gene into NSCs generated insulin‑producing cells. Reverse transcription polymerase chain reaction (RT-PCR) and enzyme-linked immunosorbent assay (ELISA) analysis confirmed that PDX-1-transfected NSCs expressed insulin mRNA and released insulin protein. However, insulin release from PDX-1-transfected NSCs did not respond to the challenge of glucose and glucagon-like peptide-1. These results support the use of bone marrow-derived NSCs as a renewable source of insulin-producing cells for autologous transplantation to treat type-1 diabetes.

  18. JNK signaling in insulin-producing cells is required for adaptive responses to stress in Drosophila

    PubMed Central

    Karpac, Jason; Hull-Thompson, Julie; Falleur, Melody; Jasper, Heinrich

    2009-01-01

    Summary Adaptation to environmental challenges is critical for survival of an organism. Repression of Insulin/IGF Signaling (IIS) by stress-responsive Jun-N-terminal Kinase (JNK) signaling is emerging as a conserved mechanism that allows reallocating resources from anabolic to repair processes under stress conditions. JNK activation in Insulin producing cells (IPCs) is sufficient to repress Insulin and Insulin-like peptide (ILP) expression in rats and flies, but the significance of this interaction for adaptive responses to stress is unclear. Here we show that JNK activity in IPCs of flies is required for oxidative stress-induced repression of the Drosophila ILP2. We find that this repression is required for growth adaptation to heat stress as well as adult oxidative stress tolerance, and that induction of stress response genes in the periphery is in part dependent on IPC-specific JNK activity. Endocrine control of IIS by JNK in IPCs is thus critical for systemic adaptation to stress. PMID:19627268

  19. Reversal of diabetes with insulin-producing cells derived in vitro from human pluripotent stem cells.

    PubMed

    Rezania, Alireza; Bruin, Jennifer E; Arora, Payal; Rubin, Allison; Batushansky, Irina; Asadi, Ali; O'Dwyer, Shannon; Quiskamp, Nina; Mojibian, Majid; Albrecht, Tobias; Yang, Yu Hsuan Carol; Johnson, James D; Kieffer, Timothy J

    2014-11-01

    Transplantation of pancreatic progenitors or insulin-secreting cells derived from human embryonic stem cells (hESCs) has been proposed as a therapy for diabetes. We describe a seven-stage protocol that efficiently converts hESCs into insulin-producing cells. Stage (S) 7 cells expressed key markers of mature pancreatic beta cells, including MAFA, and displayed glucose-stimulated insulin secretion similar to that of human islets during static incubations in vitro. Additional characterization using single-cell imaging and dynamic glucose stimulation assays revealed similarities but also notable differences between S7 insulin-secreting cells and primary human beta cells. Nevertheless, S7 cells rapidly reversed diabetes in mice within 40 days, roughly four times faster than pancreatic progenitors. Therefore, although S7 cells are not fully equivalent to mature beta cells, their capacity for glucose-responsive insulin secretion and rapid reversal of diabetes in vivo makes them a promising alternative to pancreatic progenitor cells or cadaveric islets for the treatment of diabetes.

  20. In vitro pancreas duodenal homeobox-1 enhances the differentiation of pancreatic ductal epithelial cells into insulin-producing cells

    PubMed Central

    Liu, Tao; Wang, Chun-You; Yu, Feng; Gou, Shan-Miao; Wu, He-Shui; Xiong, Jiong-Xin; Zhou, Feng

    2007-01-01

    AIM: To observe whether pancreatic and duodenal homeobox factor-1 enhances the differentiation of pancreatic ductal epithelial cells into insulin-producing cells in vitro. METHODS: Rat pancreatic tissue was submitted to digestion by collagenase, ductal epithelial cells were separated by density gradient centrifugation and then cultured in RPMI1640 medium with 10% fetal bovine serum. After 3-5 passages, the cells were incubated in a six-well plate for 24 h before transfection of recombination plasmid XlHbox8VP16. Lightcycler quantitative real-time RT-PCR was used to detect the expression of PDX-1 and insulin mRNA in pancreatic epithelial cells. The expression of PDX-1 and insulin protein was analyzed by Western blotting. Insulin secretion was detected by radioimmunoassay. Insulin-producing cells were detected by dithizone-staining. RESULTS: XlHbox8 mRNA was expressed in pancreatic ductal epithelial cells. PDX-1 and insulin mRNA as well as PDX-1 and insulin protein were significantly increased in the transfected group. The production and insulin secretion of insulin-producing cells differentiated from pancreatic ductal epithelial cells were higher than those of the untransfected cells in vitro with a significant difference (1.32 ± 0.43 vs 3.48 ± 0.81, P < 0.01 at 5.6 mmol/L; 4.86 ± 1.15 vs 10.25 ± 1.32, P < 0.01 at 16.7 mmol/L). CONCLUSION: PDX-1 can differentiate rat pancreatic ductal epithelial cells into insulin-producing cells in vitro. In vitro PDX-1 transfection is a valuable strategy for increasing the source of insulin-producing cells. PMID:17876894

  1. GH deficiency status combined with GH receptor polymorphism affects response to GH in children.

    PubMed

    Valsesia, Armand; Chatelain, Pierre; Stevens, Adam; Peterkova, Valentina A; Belgorosky, Alicia; Maghnie, Mohamad; Antoniazzi, Franco; Koledova, Ekaterina; Wojcik, Jerome; Farmer, Pierre; Destenaves, Benoit; Clayton, Peter

    2015-12-01

    Meta-analysis has shown a modest improvement in first-year growth response to recombinant human GH (r-hGH) for carriers of the exon 3-deleted GH receptor (GHRd3) polymorphism but with significant interstudy variability. The associations between GHRd3 and growth response to r-hGH over 3 years in relation to severity of GH deficiency (GHD) were investigated in patients from 14 countries. Treatment-naïve pre-pubertal children with GHD were enrolled from the PREDICT studies (NCT00256126 and NCT00699855), categorized by peak GH level (peak GH) during provocation test: ≤4 μg/l (severe GHD; n=45) and >4 to <10 μg/l mild GHD; n=49) and genotyped for the GHRd3 polymorphism (full length (fl/fl, fl/d3, d3/d3). Gene expression (GE) profiles were characterized at baseline. Changes in growth (height (cm) and SDS) over 3 years were measured. There was a dichotomous influence of GHRd3 polymorphism on response to r-hGH, dependent on peak GH level. GH peak level (higher vs lower) and GHRd3 (fl/fl vs d3 carriers) combined status was associated with height change over 3 years (P<0.05). GHRd3 carriers with lower peak GH had lower growth than subjects with fl/fl (median difference after 3 years -3.3 cm; -0.3 SDS). Conversely, GHRd3 carriers with higher peak GH had better growth (+2.7 cm; +0.2 SDS). Similar patterns were observed for GH-dependent biomarkers. GE profiles were significantly different between the groups, indicating that the interaction between GH status and GHRd3 carriage can be identified at a transcriptomic level. This study demonstrates that responses to r-hGH depend on the interaction between GHD severity and GHRd3 carriage.

  2. Reprogramming human gallbladder cells into insulin-producing β-like cells

    PubMed Central

    Benedetti, Eric; Wang, Yuhan; Pelz, Carl; Schug, Jonathan; Kaestner, Klaus H.; Grompe, Markus

    2017-01-01

    The gallbladder and cystic duct (GBCs) are parts of the extrahepatic biliary tree and share a common developmental origin with the ventral pancreas. Here, we report on the very first genetic reprogramming of patient-derived human GBCs to β-like cells for potential autologous cell replacement therapy for type 1 diabetes. We developed a robust method for large-scale expansion of human GBCs ex vivo. GBCs were reprogrammed into insulin-producing pancreatic β-like cells by a combined adenoviral-mediated expression of hallmark pancreatic endocrine transcription factors PDX1, MAFA, NEUROG3, and PAX6 and differentiation culture in vitro. The reprogrammed GBCs (rGBCs) strongly induced the production of insulin and pancreatic endocrine genes and these responded to glucose stimulation in vitro. rGBCs also expressed an islet-specific surface marker, which was used to enrich for the most highly reprogrammed cells. More importantly, global mRNA and microRNA expression profiles and protein immunostaining indicated that rGBCs adopted an overall β-like state and these rGBCs engrafted in immunodeficient mice. Furthermore, comparative global expression analyses identified putative regulators of human biliary to β cell fate conversion. In summary, we have developed, for the first time, a reliable and robust genetic reprogramming and culture expansion of primary human GBCs—derived from multiple unrelated donors—into pancreatic β-like cells ex vivo, thus showing that human gallbladder is a potentially rich source of reprogrammable cells for autologous cell therapy in diabetes. PMID:28813430

  3. Mitochondrial Respiration in Insulin-Producing β-Cells: General Characteristics and Adaptive Effects of Hypoxia.

    PubMed

    Hals, Ingrid K; Bruerberg, Simon Gustafson; Ma, Zuheng; Scholz, Hanne; Björklund, Anneli; Grill, Valdemar

    2015-01-01

    To provide novel insights on mitochondrial respiration in β-cells and the adaptive effects of hypoxia. Insulin-producing INS-1 832/13 cells were exposed to 18 hours of hypoxia followed by 20-22 hours re-oxygenation. Mitochondrial respiration was measured by high-resolution respirometry in both intact and permeabilized cells, in the latter after establishing three functional substrate-uncoupler-inhibitor titration (SUIT) protocols. Concomitant measurements included proteins of mitochondrial complexes (Western blotting), ATP and insulin secretion. Intact cells exhibited a high degree of intrinsic uncoupling, comprising about 50% of oxygen consumption in the basal respiratory state. Hypoxia followed by re-oxygenation increased maximal overall respiration. Exploratory experiments in peremabilized cells could not show induction of respiration by malate or pyruvate as reducing substrates, thus glutamate and succinate were used as mitochondrial substrates in SUIT protocols. Permeabilized cells displayed a high capacity for oxidative phosphorylation for both complex I- and II-linked substrates in relation to maximum capacity of electron transfer. Previous hypoxia decreased phosphorylation control of complex I-linked respiration, but not in complex II-linked respiration. Coupling control ratios showed increased coupling efficiency for both complex I- and II-linked substrates in hypoxia-exposed cells. Respiratory rates overall were increased. Also previous hypoxia increased proteins of mitochondrial complexes I and II (Western blotting) in INS-1 cells as well as in rat and human islets. Mitochondrial effects were accompanied by unchanged levels of ATP, increased basal and preserved glucose-induced insulin secretion. Exposure of INS-1 832/13 cells to hypoxia, followed by a re-oxygenation period increases substrate-stimulated respiratory capacity and coupling efficiency. Such effects are accompanied by up-regulation of mitochondrial complexes also in pancreatic islets

  4. From the Cover: Cell-replacement therapy for diabetes: Generating functional insulin-producing tissue from adult human liver cells

    NASA Astrophysics Data System (ADS)

    Sapir, Tamar; Shternhall, Keren; Meivar-Levy, Irit; Blumenfeld, Tamar; Cohen, Hamutal; Skutelsky, Ehud; Eventov-Friedman, Smadar; Barshack, Iris; Goldberg, Iris; Pri-Chen, Sarah; Ben-Dor, Lya; Polak-Charcon, Sylvie; Karasik, Avraham; Shimon, Ilan; Mor, Eytan; Ferber, Sarah

    2005-05-01

    Shortage in tissue availability from cadaver donors and the need for life-long immunosuppression severely restrict the large-scale application of cell-replacement therapy for diabetic patients. This study suggests the potential use of adult human liver as alternate tissue for autologous beta-cell-replacement therapy. By using pancreatic and duodenal homeobox gene 1 (PDX-1) and soluble factors, we induced a comprehensive developmental shift of adult human liver cells into functional insulin-producing cells. PDX-1-treated human liver cells express insulin, store it in defined granules, and secrete the hormone in a glucose-regulated manner. When transplanted under the renal capsule of diabetic, immunodeficient mice, the cells ameliorated hyperglycemia for prolonged periods of time. Inducing developmental redirection of adult liver offers the potential of a cell-replacement therapy for diabetics by allowing the patient to be the donor of his own insulin-producing tissue. pancreas | transdifferentiation

  5. Mitochondrial Respiration in Insulin-Producing β-Cells: General Characteristics and Adaptive Effects of Hypoxia

    PubMed Central

    Ma, Zuheng; Scholz, Hanne; Björklund, Anneli; Grill, Valdemar

    2015-01-01

    Objective To provide novel insights on mitochondrial respiration in β-cells and the adaptive effects of hypoxia. Methods and Design Insulin-producing INS-1 832/13 cells were exposed to 18 hours of hypoxia followed by 20–22 hours re-oxygenation. Mitochondrial respiration was measured by high-resolution respirometry in both intact and permeabilized cells, in the latter after establishing three functional substrate-uncoupler-inhibitor titration (SUIT) protocols. Concomitant measurements included proteins of mitochondrial complexes (Western blotting), ATP and insulin secretion. Results Intact cells exhibited a high degree of intrinsic uncoupling, comprising about 50% of oxygen consumption in the basal respiratory state. Hypoxia followed by re-oxygenation increased maximal overall respiration. Exploratory experiments in peremabilized cells could not show induction of respiration by malate or pyruvate as reducing substrates, thus glutamate and succinate were used as mitochondrial substrates in SUIT protocols. Permeabilized cells displayed a high capacity for oxidative phosphorylation for both complex I- and II-linked substrates in relation to maximum capacity of electron transfer. Previous hypoxia decreased phosphorylation control of complex I-linked respiration, but not in complex II-linked respiration. Coupling control ratios showed increased coupling efficiency for both complex I- and II-linked substrates in hypoxia-exposed cells. Respiratory rates overall were increased. Also previous hypoxia increased proteins of mitochondrial complexes I and II (Western blotting) in INS-1 cells as well as in rat and human islets. Mitochondrial effects were accompanied by unchanged levels of ATP, increased basal and preserved glucose-induced insulin secretion. Conclusions Exposure of INS-1 832/13 cells to hypoxia, followed by a re-oxygenation period increases substrate-stimulated respiratory capacity and coupling efficiency. Such effects are accompanied by up-regulation of

  6. Identification of miRNAs Involved in Reprogramming Acinar Cells into Insulin Producing Cells

    PubMed Central

    Teichenne, Joan; Morró, Meritxell; Casellas, Alba; Jimenez, Veronica; Tellez, Noelia; Leger, Adrien; Bosch, Fatima; Ayuso, Eduard

    2015-01-01

    Reprogramming acinar cells into insulin producing cells using adenoviral (Ad)-mediated delivery of Pdx1, Ngn3 and MafA (PNM) is an innovative approach for the treatment of diabetes. Here, we aimed to investigate the molecular mechanisms involved in this process and in particular, the role of microRNAs. To this end, we performed a comparative study of acinar-to-β cell reprogramming efficiency in the rat acinar cell line AR42J and its subclone B13 after transduction with Ad-PNM. B13 cells were more efficiently reprogrammed than AR42J cells, which was demonstrated by a strong activation of β cell markers (Ins1, Ins2, IAPP, NeuroD1 and Pax4). miRNome panels were used to analyze differentially expressed miRNAs in acinar cells under four experimental conditions (i) non-transduced AR42J cells, (ii) non-transduced B13 cells, (iii) B13 cells transduced with Ad-GFP vectors and (iv) B13 cells transduced with Ad-PNM vectors. A total of 59 miRNAs were found to be differentially expressed between non-transduced AR42J and B13 cells. Specifically, the miR-200 family was completely repressed in B13 cells, suggesting that these cells exist in a less differentiated state than AR42J cells and as a consequence they present a greater plasticity. Adenoviral transduction per se induced dedifferentiation of acinar cells and 11 miRNAs were putatively involved in this process, whereas 8 miRNAs were found to be associated with PNM expression. Of note, Ad-PNM reprogrammed B13 cells presented the same levels of miR-137-3p, miR-135a-5p, miR-204-5p and miR-210-3p of those detected in islets, highlighting their role in the process. In conclusion, this study led to the identification of miRNAs that might be of compelling importance to improve acinar-to-β cell conversion for the future treatment of diabetes. PMID:26690959

  7. Identification of miRNAs Involved in Reprogramming Acinar Cells into Insulin Producing Cells.

    PubMed

    Teichenne, Joan; Morró, Meritxell; Casellas, Alba; Jimenez, Veronica; Tellez, Noelia; Leger, Adrien; Bosch, Fatima; Ayuso, Eduard

    2015-01-01

    Reprogramming acinar cells into insulin producing cells using adenoviral (Ad)-mediated delivery of Pdx1, Ngn3 and MafA (PNM) is an innovative approach for the treatment of diabetes. Here, we aimed to investigate the molecular mechanisms involved in this process and in particular, the role of microRNAs. To this end, we performed a comparative study of acinar-to-β cell reprogramming efficiency in the rat acinar cell line AR42J and its subclone B13 after transduction with Ad-PNM. B13 cells were more efficiently reprogrammed than AR42J cells, which was demonstrated by a strong activation of β cell markers (Ins1, Ins2, IAPP, NeuroD1 and Pax4). miRNome panels were used to analyze differentially expressed miRNAs in acinar cells under four experimental conditions (i) non-transduced AR42J cells, (ii) non-transduced B13 cells, (iii) B13 cells transduced with Ad-GFP vectors and (iv) B13 cells transduced with Ad-PNM vectors. A total of 59 miRNAs were found to be differentially expressed between non-transduced AR42J and B13 cells. Specifically, the miR-200 family was completely repressed in B13 cells, suggesting that these cells exist in a less differentiated state than AR42J cells and as a consequence they present a greater plasticity. Adenoviral transduction per se induced dedifferentiation of acinar cells and 11 miRNAs were putatively involved in this process, whereas 8 miRNAs were found to be associated with PNM expression. Of note, Ad-PNM reprogrammed B13 cells presented the same levels of miR-137-3p, miR-135a-5p, miR-204-5p and miR-210-3p of those detected in islets, highlighting their role in the process. In conclusion, this study led to the identification of miRNAs that might be of compelling importance to improve acinar-to-β cell conversion for the future treatment of diabetes.

  8. Regulation of miRNA during direct reprogramming of dental pulp cells to insulin-producing cells.

    PubMed

    Nozaki, Tadashige; Ohura, Kiyoshi

    2014-02-07

    To further evaluate the multipotency of dental pulp cells, and to investigate the possible direct reprogramming of these cells, we examined their in vitro induction of direct conversion to an endocrine cell lineage. In vitro induction was carried out using similar conditions to those reported for regulating the differentiation of undifferentiated intestinal cells into endocrine progenitor cells. Specifically, the transcription factors Pdx1 and Neurog3 were transfected into rat dental pulp cells to induce their direct conversion to endocrine lineage cells. The degree of induction was evaluated by detecting insulin-producing cells. Using a miRCURY LNA microRNA Array (Exiqon), the miRNA expression profiles were comprehensively analyzed. At 10 days after induction, insulin-producing cells were detected. Based on the expression profiles, eight miRNA probes showing significant differences at 10 days after induction compared with their pre-induction baseline values were extracted after filtering. Notably, miR-183 was downregulated by less than 40% after induction. Following a target scan of miR-183, we identified 242 conserved targets, including molecules crucial for the development of pancreatic beta-cells such as Foxo1. These findings indicate that dental pulp cells have potential for direct reprogramming to insulin-producing cells. This potential ability for direct reprogramming of dental pulp cells shows promise for clinically relevant tissue engineering materials.

  9. The growth hormone (GH) gene is expressed in the lateral hypothalamus: enhancement by GH-releasing hormone and repression by restraint stress.

    PubMed

    Yoshizato, H; Fujikawa, T; Soya, H; Tanaka, M; Nakashima, K

    1998-05-01

    Recent studies suggest that GH may modulate emotion, behavior, or stress response by its direct actions on the brain, and possible expression of the GH gene in the brain has been predicted. In this study we have investigated whether and where the GH gene is expressed in the brain and how it is regulated. Ribonuclease protection assay and 5'-rapid amplification of complementary DNA ends-PCR analyses indicated that the GH gene was expressed in rat brain, initiating at the identical transcription start point as that for pituitary GH gene expression. The brain GH messenger RNA was predominantly detected in the lateral hypothalamus (lh) by in situ reverse transcription-PCR analysis. GH gene expression in the brain was significantly enhanced by GH-releasing hormone administration and was rapidly repressed by exposure to restraint stress in the water, whereas the changes in pituitary GH messenger RNA contents in these circumstances were relatively smaller. The results of the present study suggest that the brain GH is predominantly expressed in lh under the control of physiological conditions to play a role in the modulation of brain functions.

  10. Vitamin D across growth hormone (GH) disorders: From GH deficiency to GH excess.

    PubMed

    Ciresi, A; Giordano, C

    2017-04-01

    The interplay between vitamin D and the growth hormone (GH)/insulin-like growth factor (IGF)-I system is very complex and to date it is not fully understood. GH directly regulates renal 1 alpha-hydroxylase activity, although the action of GH in modulating vitamin D metabolism may also be IGF-I mediated. On the other hand, vitamin D increases circulating IGF-I and the vitamin D deficiency should be normalized before measurement of IGF-I concentrations to obtain reliable and unbiased IGF-I values. Indeed, linear growth after treatment of nutritional vitamin D deficiency seems to be mediated through activation of the GH/IGF-I axis and it suggests an important role of vitamin D as a link between the proliferating cartilage cells of the growth plate and GH/IGF-I secretion. Vitamin D levels are commonly lower in patients with GH deficiency (GHD) than in controls, with a variable prevalence of insufficiency or deficiency, and this condition may worsen the already known cardiovascular and metabolic risk of GHD, although this finding is not common to all studies. In addition, data on the impact of GH treatment on vitamin D levels in GHD patients are quite conflicting. Conversely, in active acromegaly, a condition characterized by a chronic GH excess, both increased and decreased vitamin D levels have been highlighted, and the interplay between vitamin D and the GH/IGF-I axis becomes even more complicated when we consider the acromegaly treatment, both medical and surgical. The current review summarizes the available data on vitamin D in the main disorders of the GH/IGF-I axis, providing an overview of the current state of the art.

  11. In vitro evaluation of different protocols for the induction of mesenchymal stem cells to insulin-producing cells.

    PubMed

    Seyedi, Fatemeh; Farsinejad, Alireza; Moshrefi, Mojgan; Nematollahi-Mahani, Seyed Noureddin

    2015-09-01

    Stem cells therapy is a new promising approach for diabetes mellitus (DM) treatment, but the insulin secretion rate in differentiated cells is low when compared with pancreas beta cells embedded in Langerhans islets. In this study, we evaluated different protocols of insulin secretion to achieve the most appropriate protocol for in vitro insulin secretion. We differentiated human umbilical cord matrix-derived mesenchymal cells (hUCMs) into insulin-producing cell (IPC) by the aim of three previously reported protocols and a modified protocol. The insulin content was analyzed through gene expression and immunocytochemistry (IHC). Dithizone (DTZ) staining was done for identification of islet-like structures. Insulin and C peptide secretion was measured by chemiluminesence immunoassay (CLIA) and enzyme immunoassay (EIA) as well. Reverse transcription-PCR (RT-PCR) showed efficient expression of insulin genes in all the study groups. IHC analysis showed higher expression of insulin and proinsulin proteins in the modified protocol. DTZ staining exhibited variable islet-like clusters in the different protocols except control. This finding was confirmed by the higher response to glucose challenge test in this group. A modified protocol using an intermediate step that makes the cells vulnerable to nestin production in combination with inducing agent results in the higher differentiation of stem cells into insulin-producing cells and more insulin secretion in vitro.

  12. Fibrin scaffold enhances function of insulin producing cells differentiated from human umbilical cord matrix-derived stem cells.

    PubMed

    Seyedi, Fatemeh; Farsinejad, Alireza; Nematollahi-Mahani, Seyed Noureddin

    2017-04-01

    Tissue engineering is a new strategy which proposed to treat numerous human diseases nowadays. Three dimensional (3D) scaffolds fill the gap between two dimensional cell culture (2D) and animal tissues through mimicking the environmental behaviors surrounding the cells. In this study, hUCMs into insulin producing cells in fibrin scaffold were differentiated compare to conventional culture condition. Differentiation rate was estimated by real time PCR, immunocytochemistry (ICC) and the chemiluminesence (CLIA) and enzyme immunoassay (EIA). Real time PCR's results showed an increasing expression in NKX2.2, PDX1 and INS (producing the hormone insulin) genes in fibrin scaffold. Furthermore ICC analysis exhibited that insulin and pro-insulin proteins were more in fibrin scaffolds. CLIA and EIA on insulin and C peptide secretion indicated that both of groups were sensitive to the glucose challenge test but significant higher response was observed in fibrin scaffold (6.5 fold in 3D, 1.8 fold in 2D culture). It could be concluded that differentiation of hUCM cells into insulin producing cells in fibrin scaffold 3D culture system is much more efficient than 2D conventional culture system. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Cardiovascular risk in adult patients with growth hormone (GH) deficiency and following substitution with GH--an update.

    PubMed

    Gazzaruso, Carmine; Gola, Monica; Karamouzis, Ioannis; Giubbini, Raffaele; Giustina, Andrea

    2014-01-01

    GH deficiency (GHD) of the adult is a clinical condition characterized by the presence of several traditional and emerging cardiovascular risk factors that can significantly increase cardiovascular morbidity and mortality. It is still an open issue whether GH replacement is able not only to improve cardiovascular risk factors but also to decrease cardiovascular morbidity and mortality. The major source of data acquisition included PubMed research strategies. Original articles, systematic reviews and meta-analyses, and included relevant citations were screened. In untreated GHD, cardiovascular risk is increased due to abnormal lipid profile (increased total and low-density lipoprotein cholesterol, increased triglycerides, and reduced high-density lipoprotein cholesterol) and impaired glucose metabolism. Emerging cardiovascular risk factors/markers such as proinflammatory cytokines, C-reactive protein, and adipokines are also increased in GHD patients. Increased cardiovascular morbidity and mortality have also been reported in GHD. GH treatment has been shown to improve both traditional and emerging cardiovascular risk factors and markers. However, evidence on the effects of GH replacement on cardiovascular events and mortality is limited. The GHD population may be considered at high cardiovascular risk, and GH substitution may be expected to bring an added value to patients with hypopituitarism in terms of cardiovascular protection. However, there is too limited evidence (rarely coming from randomized and controlled studies) to recommend GH treatment based on the cardiovascular status of the patients.

  14. Discovery of gene networks regulating cytokine-induced dysfunction and apoptosis in insulin-producing INS-1 cells.

    PubMed

    Kutlu, Burak; Cardozo, Alessandra K; Darville, Martine I; Kruhøffer, Mogens; Magnusson, Nils; Ørntoft, Torben; Eizirik, Décio L

    2003-11-01

    Locally released cytokines contribute to beta-cell dysfunction and apoptosis in type 1 diabetes. In vitro exposure of insulin-producing INS-1E cells to the cytokines interleukin (IL)-1beta + interferon (IFN)-gamma leads to a significant increase in apoptosis. To characterize the genetic networks implicated in beta-cell dysfunction and apoptosis and its dependence on nitric oxide (NO) production, we performed a time-course microarray analysis of cytokine-induced genes in insulin-producing INS-1E cells. INS-1E cells were exposed in duplicate to IL-1beta + IFN-gamma for six different time points (1, 2, 4, 8, 12, and 24 h) with or without the inducible NO synthase (iNOS) blocker N(G)-monomethyl-L-arginine (NMA). The microarray analysis identified 698 genes as cytokine modified (>or=2.5-fold change compared with control) in at least one time point. Based on their temporal pattern of variation, the cytokine-regulated genes were classified into 15 clusters by the k-means method. These genes were further classified into 14 different groups according to their putative function. Changes in the expression of genes related to metabolism, signal transduction, and transcription factors at all time points studied indicate beta-cell attempts to adapt to the effects of continuous cytokine exposure. Notably, several apoptosis-related genes were modified at early time points (2-4 h) preceding iNOS expression. On the other hand, 46% of the genes modified by cytokines after 8-24 h were NO dependent, indicating the important role of this radical for the late effects of cytokines. The present results increase by more than twofold the number of known cytokine-modified genes in insulin-producing cells and yield comprehensive information on the role of NO for these modifications in gene expression. These data provide novel and detailed insights into the gene networks activated in beta-cells facing a prolonged immune assault.

  15. Physiological effects of manipulating the level of insulin-degrading enzyme in insulin-producing cells of Drosophila

    PubMed Central

    Hyun, Joogyung

    2011-01-01

    Insulin-degrading enzyme (IDE) degrades insulin and other peptides, including the Aβ peptide of Alzheimer's disease. However, the mechanism by which IDE acts on its substrates in vivo is unclear, and its role in pathogenesis of type 2 diabetes and Alzheimer's disease is controversial. Here, we show that in Drosophila knocking down IDE in insulin-producing cells (IPCs) of the brain results in increased body weight and fecundity, decreased circulating sugar levels and reduced lifespan. Moreover, knocking down and overexpressing IDE in IPCs have opposite physiological effects. As misregulated insulin signaling in peripheral tissues is known to cause similar phenotypes, our data suggest a role for Drosophila IDE in determining the level of insulin-like peptides made by IPCs that systemically activate insulin signaling. PMID:21212741

  16. Role of injured pancreatic extract promotes bone marrow-derived mesenchymal stem cells efficiently differentiate into insulin-producing cells.

    PubMed

    Xie, Hongbin; Wang, Yunshuai; Zhang, Hui; Qi, Hui; Zhou, Hanxin; Li, Fu-Rong

    2013-01-01

    Mesenchymal stem cells (MSCs) can be successfully induced to differentiate into insulin-producing cells (IPCs) by a variety of small molecules and cytokines in vitro. However, problems remain, such as low transdifferentiation efficiency and poor maturity of trans-differentiated cells. The damaged pancreatic cells secreted a large amount of soluble proteins, which were able to promote pancreative islet regeneration and MSCs differentiation. In this study, we utilized the rat injured pancreatic tissue extract to modulate rat bone marrow-derived MSCs differentiation into IPCs by the traditional two-step induction. Our results showed that injured pancreatic tissue extract could effectively promote the trans-differentiation efficiency and maturity of IPCs by the traditional induction. Moreover, IPCs were able to release more insulin in a glucose-dependent manner and ameliorate better the diabetic conditions of streptozotocin (STZ)-treated rats. Our study provides a new strategy to induce an efficient and directional differentiation of MSCs into IPCs.

  17. Three-dimensional printed polymeric system to encapsulate human mesenchymal stem cells differentiated into islet-like insulin-producing aggregates for diabetes treatment

    PubMed Central

    Sabek, Omaima M; Farina, Marco; Fraga, Daniel W; Afshar, Solmaz; Ballerini, Andrea; Filgueira, Carly S; Thekkedath, Usha R; Grattoni, Alessandro; Gaber, A Osama

    2016-01-01

    Diabetes is one of the most prevalent, costly, and debilitating diseases in the world. Pancreas and islet transplants have shown success in re-establishing glucose control and reversing diabetic complications. However, both are limited by donor availability, need for continuous immunosuppression, loss of transplanted tissue due to dispersion, and lack of vascularization. To overcome the limitations of poor islet availability, here, we investigate the potential of bone marrow–derived mesenchymal stem cells differentiated into islet-like insulin-producing aggregates. Islet-like insulin-producing aggregates, characterized by gene expression, are shown to be similar to pancreatic islets and display positive immunostaining for insulin and glucagon. To address the limits of current encapsulation systems, we developed a novel three-dimensional printed, scalable, and potentially refillable polymeric construct (nanogland) to support islet-like insulin-producing aggregates’ survival and function in the host body. In vitro studies showed that encapsulated islet-like insulin-producing aggregates maintained viability and function, producing steady levels of insulin for at least 4 weeks. Nanogland—islet-like insulin-producing aggregate technology here investigated as a proof of concept holds potential as an effective and innovative approach for diabetes cell therapy. PMID:27152147

  18. Mesenchymal stem cells derived in vitro transdifferentiated insulin-producing cells: A new approach to treat type 1 diabetes.

    PubMed

    Dave, Shruti

    2014-01-01

    The pathophysiology of type 1 diabetes mellitus (T1DM) is largely related to an innate defect in the immune system culminating in a loss of self-tolerance and destruction of the insulin-producing β-cells. Currently, there is no definitive cure for T1DM. Insulin injection does not mimic the precise regulation of β-cells on glucose homeostasis, leading long term to the development of complications. Stem cell therapy is a promising approach and specifically mesenchymal stem cells (MSCs) offer a promising possibility that deserves to be explored further. MSCs are multipotent, nonhematopoietic progenitors. They have been explored as an treatment option in tissue regeneration as well as potential of in vitro transdifferentiation into insulin-secreting cells. Thus, the major therapeutic goals for T1DM have been achieved in this way. The regenerative capabilities of MSCs have been a driving force to initiate studies testing their therapeutic effectiveness; their immunomodulatory properties have been equally exciting; which would appear capable of disabling immune dysregulation that leads to β-cell destruction in T1DM. Furthermore, MSCs can be cultured under specially defined conditions, their transdifferentiation can be directed toward the β-cell phenotype, and the formation of insulin-producing cells (IPCs) can be targeted. To date, the role of MSCs-derived IPC in T1DM-a unique approach with some positive findings-have been unexplored, but it is still in its very early phase. In this study, a new approach of MSCs-derived IPCs, as a potential therapeutic benefit for T1DM in experimental animal models as well as in humans has been summarized.

  19. Enhanced differentiation of human amniotic fluid-derived stem cells into insulin-producing cells in vitro.

    PubMed

    Mu, Xu-Peng; Ren, Li-Qun; Yan, Hao-Wei; Zhang, Xin-Min; Xu, Tian-Min; Wei, An-Hui; Jiang, Jin-Lan

    2017-01-01

    To investigate the ability of human amniotic fluid stem cells (hAFSCs) to differentiate into insulin-producing cells. hAFSCs were induced to differentiate into pancreatic cells by a multistep protocol. The expressions of pancreas-related genes and proteins, including pancreatic and duodenal homeobox-1, insulin, and glucose transporter 2, were detected by polymerase chain reaction and immunofluorescence. Insulin secreted from differentiated cells was tested by enzyme-linked immunosorbent assay. hAFSCs were successfully isolated from amniotic fluid that expressed the pluripotent markers of embryonic stem cells, such as Oct3/4, and mesenchymal stem cells, such as integrin β-1 and ecto-5'-nucleotidase. Here, we first obtained the hAFSCs that expressed pluripotent marker stage-specific embryonic antigen 1. Real-time polymerase chain reaction analysis showed that pancreatic and duodenal homeobox-1, paired box gene 4 and paired box gene 6 were expressed in the early phase of induction, and then stably expressed in the differentiated cells. The pancreas-related genes, such as insulin, glucokinase, glucose transporter 2 and Nkx6.1, were expressed in the differentiated cells. Immunofluorescence showed that these differentiated cells co-expressed insulin, C-peptide, and pancreatic and duodenal homeobox-1. Insulin was released in response to glucose stimulation in a manner similar to that of adult human islets. The present study showed that hAFSCs, under selective culture conditions, could differentiate into islet-like insulin-producing cells, which might be used as a potential source for transplantation in patients with type 1 diabetes mellitus. © 2016 The Authors. Journal of Diabetes Investigation published by Asian Association for the Study of Diabetes (AASD) and John Wiley & Sons Australia, Ltd.

  20. Elevated GH/IGF-I promotes mammary tumors in high-fat, but not low-fat, fed mice.

    PubMed

    Gahete, Manuel D; Córdoba-Chacón, José; Lantvit, Daniel D; Ortega-Salas, Rosa; Sanchez-Sanchez, Rafael; Pérez-Jiménez, Francisco; López-Miranda, José; Swanson, Steven M; Castaño, Justo P; Luque, Raúl M; Kineman, Rhonda D

    2014-11-01

    Growth hormone (GH) and/or insulin-like growth factor I (IGF-I) are thought to promote breast cancer based on reports showing circulating IGF-I levels correlate, in epidemiological studies, with breast cancer risk. Also, mouse models with developmental GH/IGF-I deficiency/resistance are less susceptible to genetic- or chemical-induced mammary tumorigenesis. However, given the metabolic properties of GH, medical strategies have been considered to raise GH to improve body composition and metabolic function in elderly and obese patients. Since hyperlipidemia, inflammation, insulin resistance and obesity increase breast cancer risk, elevating GH may serve to exacerbate cancer progression. To better understand the role GH/IGF-I plays in tumor formation, this study used unique mouse models to determine if reducing GH/IGF-I in adults protects against 7,12-dimethylbenz[α]anthracene (DMBA)-induced mammary tumor development, and if moderate elevations in endogenous GH/IGF-I alter DMBA-induced tumorigenesis in mice fed a standard-chow diet or in mice with altered metabolic function due to high-fat feeding. We observed that adult-onset isolated GH-deficient mice, which also have reduced IGF-I levels, were less susceptible to DMBA-treatment. Specifically, fewer adult-onset isolated GH-deficient mice developed mammary tumors compared with GH-replete controls. In contrast, chow-fed mice with elevated endogenous GH/IGF-I (HiGH mice) were not more susceptible to DMBA-treatment. However, high-fat-fed, HiGH mice showed reduced tumor latency and increased tumor incidence compared with diet-matched controls. These results further support a role of GH/IGF-I in regulating mammary tumorigenesis but suggest the ultimate consequences of GH/IGF-I on breast tumor development are dependent on the diet and/or metabolic status.

  1. Elevated GH/IGF-I promotes mammary tumors in high-fat, but not low-fat, fed mice

    PubMed Central

    Gahete, Manuel D.; Córdoba-Chacón, José; Lantvit, Daniel D.; Ortega-Salas, Rosa; Sanchez-Sanchez, Rafael; Pérez-Jiménez, Francisco; López-Miranda, José; Swanson, Steven M.; Castaño, Justo P.; Luque, Raúl M.; Kineman, Rhonda D.

    2014-01-01

    Growth hormone (GH) and/or insulin-like growth factor I (IGF-I) are thought to promote breast cancer based on reports showing circulating IGF-I levels correlate, in epidemiological studies, with breast cancer risk. Also, mouse models with developmental GH/IGF-I deficiency/resistance are less susceptible to genetic- or chemical-induced mammary tumorigenesis. However, given the metabolic properties of GH, medical strategies have been considered to raise GH to improve body composition and metabolic function in elderly and obese patients. Since hyperlipidemia, inflammation, insulin resistance and obesity increase breast cancer risk, elevating GH may serve to exacerbate cancer progression. To better understand the role GH/IGF-I plays in tumor formation, this study used unique mouse models to determine if reducing GH/IGF-I in adults protects against 7,12-dimethylbenz[α]anthracene (DMBA)-induced mammary tumor development, and if moderate elevations in endogenous GH/IGF-I alter DMBA-induced tumorigenesis in mice fed a standard-chow diet or in mice with altered metabolic function due to high-fat feeding. We observed that adult-onset isolated GH-deficient mice, which also have reduced IGF-I levels, were less susceptible to DMBA-treatment. Specifically, fewer adult-onset isolated GH-deficient mice developed mammary tumors compared with GH-replete controls. In contrast, chow-fed mice with elevated endogenous GH/IGF-I (HiGH mice) were not more susceptible to DMBA-treatment. However, high-fat-fed, HiGH mice showed reduced tumor latency and increased tumor incidence compared with diet-matched controls. These results further support a role of GH/IGF-I in regulating mammary tumorigenesis but suggest the ultimate consequences of GH/IGF-I on breast tumor development are dependent on the diet and/or metabolic status. PMID:25085903

  2. Hexarelin, a novel GHRP-6 analog, stimulates growth hormone (GH) release in a GH-secreting rat cell line (GH1) insensitive to GH-releasing hormone.

    PubMed

    Giustina, A; Bonfanti, C; Licini, M; Ragni, G; Stefana, B

    1997-05-14

    Previous studies demonstrated that GHRP-6 has modest GH-releasing activity in primary pituitary cell monolayer cultures. However, the effects of this peptide have always been tested on cells very sensitive to GHRH. We have previously reported that GHRH is unable to stimulate GH secretion in the GH1 rat tumor cell line. The aim of the study was to assess for the first time the effect on GH secretion of the GHRP-6 analog, hexarelin, in the GH1 cells; moreover, we investigated the potential involvement of GHRH in the effects of hexarelin in the GH1 rat cell line. The GHRP-6 analog hexarelin (0.01-1 microM) significantly stimulated GH release in both normal and GH1 rat cells. The greatest GH-releasing effect of hexarelin was observed with the 1 microM dose both in GH1 (155+/-25% vs. control wells) and in normal rat pituitary cells (185+/-23% vs. control wells). GHRH significantly stimulated GH secretion in normal rat somatotrophs (3-fold increase). In this latter cell model, GHRH and hexarelin were demonstrated to have additive stimulatory effects on GH secretion. Conversely, GHRH did not affect hexarelin-stimulated GH release in GH1 cells at any of the doses used. Finally, 8Br-cAMP significantly stimulated GH secretion in both normal rat and GH1 cells. These results provide in vitro evidence that non-GHRH-mediated pathways for GHRP action exist. Moreover, the observation that cells not sensitive to GHRH can be significantly stimulated by hexarelin strongly suggests that GHRPs and GHRH have two distinct sites and modes of action at the pituitary level.

  3. GH62 arabinofuranosidases: Structure, function and applications.

    PubMed

    Wilkens, Casper; Andersen, Susan; Dumon, Claire; Berrin, Jean-Guy; Svensson, Birte

    2017-11-01

    Motivated by industrial demands and ongoing scientific discoveries continuous efforts are made to identify and create improved biocatalysts dedicated to plant biomass conversion. α-1,2 and α-1,3 arabinofuranosyl specific α-l-arabinofuranosidases (EC 3.2.1.55) are debranching enzymes catalyzing hydrolytic release of α-l-arabinofuranosyl residues, which decorate xylan or arabinan backbones in lignocellulosic and pectin constituents of plant cell walls. The CAZy database classifies α-l-arabinofuranosidases in Glycoside Hydrolase (GH) families GH2, GH3, GH43, GH51, GH54 and GH62. Only GH62 contains exclusively α-l-arabinofuranosidases and these are of fungal and bacterial origin. Twenty-two GH62 enzymes out of 223 entries in the CAZy database have been characterized and very recently new knowledge was acquired with regard to crystal structures, substrate specificities, and phylogenetics, which overall provides novel insights into structure/function relationships of GH62. Overall GH62 α-l-arabinofuranosidases are believed to play important roles in nature by acting in synergy with several cell wall degrading enzymes and members of GH62 represent promising candidates for biotechnological improvements of biofuel production and in various biorefinery applications. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. An efficient experimental strategy for mouse embryonic stem cell differentiation and separation of a cytokeratin-19-positive population of insulin-producing cells.

    PubMed

    Naujok, O; Francini, F; Jörns, A; Lenzen, S

    2008-08-01

    Embryonic stem cells are a potential source for insulin-producing cells, but existing differentiation protocols are of limited efficiency. Here, the aim has been to develop a new one, which drives development of embryonic stem cells towards insulin-producing cells rather than to neuronal cell types, and to combine this with a strategy for their separation from insulin-negative cells. The cytokeratin-19 (CK19) promoter was used to control the expression of enhanced yellow fluorescence protein in mouse embryonic stem cells during their differentiation towards insulin-producing cells, using a new optimized four-stage protocol. Two cell populations, CK19(+) and CK19(-) cells, were successfully fluorescence sorted and analysed. The new method reduced neuronal progeny and suppressed differentiation into glucagon- and somatostatin-producing cells. Concomitantly, beta-cell like characteristics of insulin-producing cells were strengthened, as documented by high gene expression of the Glut2 glucose transporter and the transcription factor Pdx1. This novel protocol was combined with a cell-sorting technique. Through the combined procedure, a fraction of glucose-responsive insulin-secreting CK19(+) cells was obtained with 40-fold higher insulin gene expression and 50-fold higher insulin content than CK19(-) cells. CK19(+) cells were immunoreactive for C-peptide and had ultrastructural characteristics of an insulin-secretory cell. Differentiated CK19(+) cells reflect an endocrine precursor cell type of ductal origin, potentially suitable for insulin replacement therapy in diabetes.

  5. Three-dimensional differentiation of bone marrow-derived mesenchymal stem cells into insulin-producing cells.

    PubMed

    Khorsandi, Layasadat; Nejad-Dehbashi, Fereshteh; Ahangarpour, Akram; Hashemitabar, Mahmoud

    2015-02-01

    Fibrin glue (FG) is used in a variety of clinical applications and in the laboratory for localized and sustained release of factors potentially important for tissue engineering. The aim of this study was to evaluate FG scaffold effect on differentiation of insulin-producing cells (IPCs) from bone marrow-derived mesenchymal stem cells (BM-MSCs). In this experimental study BM-MSCs were cultured and the cells characterized by analysis of cell surface markers using flow cytometry. BM-MSCs were seeded in FG scaffold (3D culture) and then treated with induction media. After induction, the presence of IPCs was demonstrated using gene expression profiles for pancreatic cell differentiation markers (PDX-1, GLUT-2 and insulin) and insulin detection in cytoplasm. Release of insulin by these cells was confirmed by radioimmunoassay. Expression of the islet-associated genes PDX-1, GLUT-2 and Insulin genes in 3D cultured cells was markedly higher than the 2D cultured cells exposure differentiation media. Compared to 2D culture of BM-MSCs-derived IPCs, the insulin release from 3D BM-MSCs-derived IPCs showed a nearly 3 fold (p<0.05) increase when exposed to a high glucose (25 mM) medium. Percentage of insulin positive cells in 3D experimental group showed an approximately 3.5-fold increase in compared to 2D experimental culture cells. The results of this study demonstrated that FG scaffold can enhance the differentiation of IPCs from rats BM-MSCs.

  6. Identification of microRNAs regulating Hlxb9 gene expression during the induction of insulin-producing cells.

    PubMed

    Mu, Changzheng; Wang, Tao; Wang, Xiaomei; Tian, He; Liu, Yong

    2016-05-01

    Bone marrow mesenchymal stem cells (bMSCs) with the capacity of self- renewal and multilineage differentiation are promising sources for cell replacement therapy in diabetes. Here, we developed an effective method with activin A, conophylline, and nicotinamide to induce mouse bMSCs to differentiate into insulin-producing cells (IPCs). The homeobox gene Hlxb9 (encoding HB9) is prominently expressed in adult human pancreas, which can also play a key role during the induction of IPCs. To find the microRNAs (miRNAs) regulating Hlxb9 gene expression, we respectively used miRanda and TargetScan to predict and got the intersection, miR-200a and miR-141, further identified by the Dual-Luciferase assay. The results illustrated miR-200a and miR-141 could inhibit the expression of Hlxb9 by binding to its mRNA 3'UTR. Furthermore, the expression of miR-200a and miR-141 was almost reciprocal to that of Hlxb9. Overexpression of miR-200a and miR-141 downregulated the expression of pancreatic progenitor cell markers Hlxb9 and Pdx1. Therefore, miR-200a and miR-141 may directly or indirectly regulate the expression of pancreatic islet transcription factors to control the differentiation of IPCs.

  7. Characteristics of the Early Immune Response Following Transplantation of Mouse ES Cell Derived Insulin-Producing Cell Clusters

    PubMed Central

    Boyd, Ashleigh S.; Wood, Kathryn J.

    2010-01-01

    Background The fully differentiated progeny of ES cells (ESC) may eventually be used for cell replacement therapy (CRT). However, elements of the innate immune system may contribute to damage or destruction of these tissues when transplanted. Methodology/Principal Findings Herein, we assessed the hitherto ill-defined contribution of the early innate immune response in CRT after transplantation of either ESC derived insulin producing cell clusters (IPCCs) or adult pancreatic islets. Ingress of neutrophil or macrophage cells was noted immediately at the site of IPCC transplantation, but this infiltration was attenuated by day three. Gene profiling identified specific inflammatory cytokines and chemokines that were either absent or sharply reduced by three days after IPCC transplantation. Thus, IPCC transplantation provoked less of an early immune response than pancreatic islet transplantation. Conclusions/Significance Our study offers insights into the characteristics of the immune response of an ESC derived tissue in the incipient stages following transplantation and suggests potential strategies to inhibit cell damage to ensure their long-term perpetuation and functionality in CRT. PMID:20532031

  8. Role of Injured Pancreatic Extract Promotes Bone Marrow-Derived Mesenchymal Stem Cells Efficiently Differentiate into Insulin-Producing Cells

    PubMed Central

    Xie, Hongbin; Wang, Yunshuai; Zhang, Hui; Qi, Hui; Zhou, Hanxin; Li, Fu-Rong

    2013-01-01

    Mesenchymal stem cells (MSCs) can be successfully induced to differentiate into insulin-producing cells (IPCs) by a variety of small molecules and cytokines in vitro. However, problems remain, such as low transdifferentiation efficiency and poor maturity of trans-differentiated cells. The damaged pancreatic cells secreted a large amount of soluble proteins, which were able to promote pancreative islet regeneration and MSCs differentiation. In this study, we utilized the rat injured pancreatic tissue extract to modulate rat bone marrow-derived MSCs differentiation into IPCs by the traditional two-step induction. Our results showed that injured pancreatic tissue extract could effectively promote the trans-differentiation efficiency and maturity of IPCs by the traditional induction. Moreover, IPCs were able to release more insulin in a glucose-dependent manner and ameliorate better the diabetic conditions of streptozotocin (STZ)-treated rats. Our study provides a new strategy to induce an efficient and directional differentiation of MSCs into IPCs. PMID:24058711

  9. Induced ICER I{gamma} down-regulates cyclin A expression and cell proliferation in insulin-producing {beta} cells

    SciTech Connect

    Inada, Akari; Weir, Gordon C.; Bonner-Weir, Susan . E-mail: susan.bonner-weir@joslin.harvard.edu

    2005-04-15

    We have previously found that cyclin A expression is markedly reduced in pancreatic {beta}-cells by cell-specific overexpression of repressor inducible cyclic AMP early repressor (ICER I{gamma}) in transgenic mice. Here we further examined regulatory effects of ICER I{gamma} on cyclin A gene expression using Min6 cells, an insulin-producing cell line. The cyclin A promoter luciferase assay showed that ICER I{gamma} directly repressed cyclin A gene transcription. In addition, upon ICER I{gamma} overexpression, cyclin A mRNA levels markedly decreased, thereby confirming an inhibitory effect of ICER I{gamma} on cyclin A expression. Suppression of cyclin A results in inhibition of BrdU incorporation. Under normal culture conditions endogenous cyclin A is abundant in these cells, whereas ICER is hardly detectable. However, serum starvation of Min6 cells induces ICER I{gamma} expression with a concomitant very low expression level of cyclin A. Cyclin A protein is not expressed unless the cells are in active DNA replication. These results indicate a potentially important anti-proliferative effect of ICER I{gamma} in pancreatic {beta} cells. Since ICER I{gamma} is greatly increased in diabetes as well as in FFA- or high glucose-treated islets, this effect may in part exacerbate diabetes by limiting {beta}-cell proliferation.

  10. Reversal of hyperglycemia in mice by using human expandable insulin-producing cells differentiated from fetal liver progenitor cells

    NASA Astrophysics Data System (ADS)

    Zalzman, Michal; Gupta, Sanjeev; Giri, Ranjit K.; Berkovich, Irina; Sappal, Baljit S.; Karnieli, Ohad; Zern, Mark A.; Fleischer, Norman; Efrat, Shimon

    2003-06-01

    Beta-cell replacement is considered to be the most promising approach for treatment of type 1 diabetes. Its application on a large scale is hindered by a shortage of cells for transplantation. Activation of insulin expression, storage, and regulated secretion in stem/progenitor cells offers novel ways to overcome this shortage. We explored whether fetal human progenitor liver cells (FH) could be induced to differentiate into insulin-producing cells after expression of the pancreatic duodenal homeobox 1 (Pdx1) gene, which is a key regulator of pancreatic development and insulin expression in beta cells. FH cells possess a considerable replication capacity, and this was further extended by introduction of the gene for the catalytic subunit of human telomerase. Immortalized FH cells expressing Pdx1 activated multiple beta-cell genes, produced and stored considerable amounts of insulin, and released insulin in a regulated manner in response to glucose. When transplanted into hyperglycemic immunodeficient mice, the cells restored and maintained euglycemia for prolonged periods. Quantitation of human C-peptide in the mouse serum confirmed that the glycemia was normalized by the transplanted human cells. This approach offers the potential of a novel source of cells for transplantation into patients with type 1 diabetes.

  11. Modulation of Methuselah Expression Targeted to Drosophila Insulin-producing Cells Extends Life and Enhances Oxidative Stress Resistance

    PubMed Central

    Gimenez, Luis E. D.; Ghildyal, Parakashtha; Fischer, Kathleen E.; Hu, Hongxiang; Ja, William W.; Eaton, Benjamin A.; Wu, Yimin; Austad, Steven N.; Ranjan, Ravi

    2013-01-01

    Ubiquitously reduced signaling via Methuselah (MTH), a G-protein coupled receptor (GPCR) required for neurosecretion, has previously been reported to extend life and enhance stress resistance in flies. Whether these effects are due to reduced MTH signaling only in specific tissue(s) and through with signaling effects reduced MTH might produce these phenotypes remains unknown. We determined that reduced expression of mth targeted only to the insulin-producing cells (IPCs) of the fly brain was sufficient to extend life and enhance oxidative stress resistance. Paradoxically, we discovered that overexpression of mth targeted to the same cells has similar phenotypic effects to reduced expression due to MTH’s interaction with β-arrestin, which uncouples GPCRs from their G-proteins. We confirmed the functional relationship between MTH and β-arrestin by finding that IPC-targeted overexpression of β-arrestin alone mimics the longevity phenotype of reduced MTH signaling. As reduced MTH signaling also inhibits insulin secretion from the IPCs, the most parsimonious mechanistic explanation for its longevity and stress resistance enhancement might be through reduced insulin/IGF signaling (IIS). However, examination of phenotypic features of long-lived IPC-mth modulated flies as well as several downstream IIS targets implicates enhanced activity of the JNK stress resistance pathway more directly than insulin signaling in the longevity and stress resistance phenotypes. PMID:23121290

  12. Insulin-producing cells regulate the sexual receptivity through the painless TRP channel in Drosophila virgin females.

    PubMed

    Sakai, Takaomi; Watanabe, Kazuki; Ohashi, Hirono; Sato, Shoma; Inami, Show; Shimada, Naoto; Kitamoto, Toshihiro

    2014-01-01

    In a variety of animal species, females hold a leading position in evaluating potential mating partners. The decision of virgin females to accept or reject a courting male is one of the most critical steps for mating success. In the fruitfly Drosophila melanogaster, however, the molecular and neuronal mechanisms underlying female receptivity are still poorly understood, particularly for virgin females. The Drosophila painless (pain) gene encodes a transient receptor potential (TRP) ion channel. We previously demonstrated that mutations in pain significantly enhance the sexual receptivity of virgin females and that pain expression in pain(GAL4) -positive neurons is necessary and sufficient for pain-mediated regulation of the virgin receptivity. Among the pain(GAL4) -positive neurons in the adult female brain, here we have found that insulin-producing cells (IPCs), a neuronal subset in the pars intercerebralis, are essential in virgin females for the regulation of sexual receptivity through Pain TRP channels. IPC-specific knockdown of pain expression or IPC ablation strongly enhanced female sexual receptivity as was observed in pain mutant females. When pain expression or neuronal activity was conditionally suppressed in adult IPCs, female sexual receptivity was similarly enhanced. Furthermore, both pain mutations and the conditional knockdown of pain expression in IPCs depressed female rejection behaviors toward courting males. Taken together, our results indicate that the Pain TRP channel in IPCs plays an important role in controlling the sexual receptivity of Drosophila virgin females by positively regulating female rejection behaviors during courtship.

  13. Differentiation of Human Mesenchymal Stem Cells into Insulin Producing Cells by Using A Lentiviral Vector Carrying PDX1

    PubMed Central

    Allahverdi, Amir; Abroun, Saied; Jafarian, Arefeh; Soleimani, Masoud; Taghikhani, Mohammad; Eskandari, Fatemeh

    2015-01-01

    Objective Type I diabetes is an immunologically-mediated devastation of insulin producing cells (IPCs) in the pancreatic islet. Stem cells that produce β-cells are a new promising tool. Adult stem cells such as mesenchymal stem cells (MSCs) are self renewing multi potent cells showing capabilities to differentiate into ectodermal, mesodermal and endodermal tissues. Pancreatic and duodenal homeobox factor 1 (PDX1) is a master regulator gene required for embryonic development of the pancreas and is crucial for normal pancreatic islets activities in adults. Materials and Methods We induced the over-expression of the PDX1 gene in human bone marrow MSCs (BM-MSCs) by Lenti-PDX1 in order to generate IPCs. Next, we examine the ability of the cells by measuring insulin/c-peptide production and INSULIN and PDX1 gene expressions. Results After transduction, MSCs changed their morphology at day 5 and gradually differentiated into IPCs. INSULIN and PDX1 expressions were confirmed by real time polymerase chain reaction (RT-PCR) and immunostaining. IPC secreted insulin and C-peptide in the media that contained different glucose concentrations. Conclusion MSCs differentiated into IPCs by genetic manipulation. Our result showed that lentiviral vectors could deliver PDX1 gene to MSCs and induce pancreatic differentiation. PMID:26199902

  14. Rescue of Isolated GH Deficiency Type II (IGHD II) via Pharmacologic Modulation of GH-1 Splicing.

    PubMed

    Miletta, Maria Consolata; Petkovic, Vibor; Eblé, Andrée; Flück, Christa E; Mullis, Primus-E

    2016-10-01

    Isolated GH deficiency (IGHD) type II, the autosomal dominant form of GHD, is mainly caused by mutations that affect splicing of GH-1. When misspliced RNA is translated, it produces a toxic 17.5-kDa GH isoform that reduces the accumulation and secretion of wild-type-human GH (wt-hGH). Usually, isolated GHD type II patients are treated with daily injections of recombinant human GH in order to maintain normal growth. However, this type of replacement therapy does not prevent toxic effects of the 17.5-kDa GH isoform on the pituitary gland, which can eventually lead to other hormonal deficiencies. Here, we tested the possibility to restore the constitutive splicing pattern of GH-1 by using butyrate, a drug that mainly acts as histone deacetylase inhibitor. To this aim, wt-hGH and/or different hGH-splice site mutants (GH-IVS3+2, GH-IVS3+6, and GH-ISE+28) were transfected in rat pituitary cells expressing human GHRH receptor (GHRHR) (GC-GHRHR). Upon butyrate treatment, GC-GHRHR cells coexpressing wt-hGH and each of the mutants displayed increased GH transcript level, intracellular GH content, and GH secretion when compared with the corresponding untreated condition. The effect of butyrate was most likely mediated by the alternative splicing factor/splicing factor 2. Overexpression of alternative ASF/SF2 in the same experimental setting, indeed, promoted the amount of full-length transcripts thus increasing synthesis and secretion of the 22-kDa GH isoform. In conclusion, our results support the hypothesis that modulation of GH-1 splicing pattern to increase the 22-kDa GH isoform levels can be clinically beneficial and hence a crucial challenge in GHD research.

  15. Reprogramming of Pancreatic Exocrine Cells AR42J Into Insulin-producing Cells Using mRNAs for Pdx1, Ngn3, and MafA Transcription Factors

    PubMed Central

    Koblas, Tomas; Leontovyc, Ivan; Loukotova, Sarka; Kosinova, Lucie; Saudek, Frantisek

    2016-01-01

    Direct reprogramming of pancreatic nonendocrine cells into insulin-producing β-cells represents a promising approach for the treatment of insulin-dependent diabetes. However, its clinical application is limited by the potential for insertional mutagenesis associated with the viral vectors currently used for cell reprogramming. With the aim of developing a nonintegrative reprogramming strategy for derivation of insulin-producing cells, here, we evaluated a new approach utilizing synthetic messenger RNAs encoding reprogramming transcription factors. Administration of synthetic mRNAs encoding three key transcription regulators of β-cell differentiation—Pdx1, Neurogenin3, and MafA—efficiently reprogrammed the pancreatic exocrine cells into insulin-producing cells. In addition to the insulin genes expression, the synthetic mRNAs also induced the expressions of genes important for proper pancreatic β-cell function, including Sur1, Kir6.2, Pcsk1, and Pcsk2. Pretreating cells with the chromatin-modifying agent 5-Aza-2′-deoxycytidine further enhanced reprogramming efficiency, increasing the proportion of insulin-producing cells from 3.5 ± 0.9 to 14.3 ± 1.9% (n = 4). Moreover, 5-Aza-2′-deoxycytidine pretreatment enabled the reprogrammed cells to respond to glucose challenge with increased insulin secretion. In conclusion, our results support that the reprogramming of pancreatic exocrine cells into insulin-producing cells, induced by synthetic mRNAs encoding pancreatic transcription factors, represents a promising approach for cell-based diabetes therapy. PMID:27187823

  16. Mechanisms of hepatocyte growth factor-mediated signaling in differentiation of pancreatic ductal epithelial cells into insulin-producing cells

    SciTech Connect

    Li, Xin-Yu; Zhan, Xiao-Rong; Lu, Chong; Liu, Xiao-Min; Wang, Xiao-Chen

    2010-07-30

    Research highlights: {yields} A hypothesis that the differentiation of PDEC is through MAPKs or PI3K/AKT pathways. {yields} Determine if kinases (ERK1/2, p38, JNK, and AKT) are activated in these pathways. {yields} Determine signal pathway(s) that may effect on HGF-induced differentiation of PDEC. {yields} PI3K-AKT pathway is involved in the differentiation of PDECs induced by HGF. {yields} MEK-ERK pathway effect on the proliferation of PDECs but not the differentiation. -- Abstract: Pancreatic ductal epithelial cells (PDECs) were induced to differentiate into insulin-producing cells by hepatocyte growth factor (HGF) in our previous study, but the mechanism through which this induction occurs is still unknown. HGF is a ligand that activates a tyrosine kinase encoded by the c-Met proto-oncogene. This activation is followed by indirect activation of multiple downstream signal transduction pathways (including MAPKs and the PI3K/AKT signaling pathways) that initiate various biological effects. Therefore, we speculated that the differentiation of PDECs is through either the MAPK signaling pathway or the PI3K/AKT signaling pathway. To test this hypothesis, isolated PDECs from adult rats were stimulated by adding HGF to their medium for 28 days. Then, the expression levels of several protein kinases, including MAPKs (ERK1/2, p38, and JNK) and AKT, were determined by Western blotting to determine if specific protein kinases are activated in these pathways. Subsequently, re-isolated from adult rats and cultured PDECs were pre-treated with specific inhibitors of proteins shown to be activated in these signaling pathways; these cells were then induced to differentiate by the addition of HGF. The expression levels of protein kinases were determined by Western blotting, and the differentiation rate of insulin-positive cells was determined by flow cytometry. The change of PDEC differentiation rates were compared between the groups in which cells with or without inhibitors

  17. Generation of insulin-producing cells from C3H10T1/2 mesenchymal progenitor cells.

    PubMed

    Jian, Ruo-Lei; Mao, Li-Bin; Xu, Yao; Li, Xiao-Fan; Wang, Feng-Po; Luo, Xue-Gang; Zhou, Hao; He, Hong-Peng; Wang, Nan; Zhang, Tong-Cun

    2015-05-10

    Mesenchymal stem cells (MSCs) have been reported to be an attractive source for the generation of transplantable surrogate β cells. A murine embryonic mesenchymal progenitor cell line C3H10T1/2 has been recognized as a model for MSCs, because of its multi-lineage differentiation potential. The purpose of this study was to explore whether C3H/10T1/2 cells have the potential to differentiate into insulin-producing cells (IPCs). Here, we investigated and compared the in vitro differentiation of rat MSCs and C3H10T1/2 cells into IPCs. After the cells underwent IPC differentiation, the expression of differentiation markers were detected by immunocytochemistry, reverse transcription-polymerase chain reaction (RT-PCR), quantitative real-time RT-PCR (qRT-PCR) and Western blotting. The insulin secretion was evaluated by enzyme-linked immunosorbent assay (ELISA). Furthermore, these differentiated cells were transplanted into streptozotocin-induced diabetic mice and their biological functions were tested in vivo. This study reports a 2-stage method to generate IPCs from C3H10T1/2 cells. Under specific induction conditions for 7-8 days, C3H10T1/2 cells formed three-dimensional spheroid bodies (SBs) and secreted insulin, while generation of IPCs derived from rat MSCs required a long time (more than 2 weeks). Furthermore, these IPCs derived from C3H10T1/2 cells were injected into diabetic mice and improves basal glucose, body weight and exhibited normal glucose tolerance test. The present study provided a simple and faithful in vitro model for further investigating the mechanism underlying IPC differentiation of MSCs and cell replacement therapy for diabetes.

  18. Role of microRNA-21 in the formation of insulin-producing cells from pancreatic progenitor cells.

    PubMed

    Bai, Chunyu; Li, Xiangchen; Gao, Yuhua; Wang, Kunfu; Fan, Yanan; Zhang, Shuang; Ma, Yuehui; Guan, Weijun

    2016-02-01

    MicroRNAs (miRNAs) regulate insulin secretion, pancreas development, and beta cell differentiation. In this study, to screen for miRNAs and their targets that function during insulin-producing cells (IPCs) formation, we examined the messenger RNA and microRNA expression profiles of pancreatic progenitor cells (PPCs) and IPCs using microarray and deep sequencing approaches, respectively. Combining our data with that from previous reports, we found that miR-21 and its targets play an important role in the formation of IPCs. However, the function of miR-21 in the formation of IPCs from PPCs is poorly understood. Therefore, we over-expressed or inhibited miR-21 and expressed small interfering RNAs of miR-21 targets in PPCs to investigate their functions in IPCs formation. We found that miR-21 acts as a bidirectional switch in the formation of IPCs by regulating the expression of target and downstream genes (SOX6, RPBJ and HES1). Small interfering RNAs were used to knock down these genes in PPCs to investigate their effects on IPCs formation. Single expression of si-RBPJ, si-SOX6 and si-HES1 in PPCs showed that si-RBPJ was an inhibitor, and that si-SOX6 and si-HES1 were promoters of IPCs formation, although si-HES1 induced formation of IPCs at higher rates than si-SOX6. These results suggest that endogenous miRNAs involved in the formation of IPCs from PPCs should be considered in the development of an effective cell transplant therapy for diabetes.

  19. Generation of insulin-producing cells from rat mesenchymal stem cells using an aminopyrrole derivative XW4.4.

    PubMed

    Ouyang, Jingfeng; Huang, Wei; Yu, Wanwan; Xiong, Wei; Mula, Ramanjaneya V R; Zou, Hongbin; Yu, Yongping

    2014-02-05

    Type 1 diabetes mellitus (T1DM), a multisystem disease with both biochemical and anatomical/structural consequences, is a major health concern worldwide. Pancreatic islet transplantation provides a promising treatment for T1DM. However, the limited availability of islet tissue or new sources of insulin producing cells (IPCs) that are responsive to glucose hinder this promising approach. Though slow, the development of pancreatic beta-cell lines from rodent or human origin has been steadily progressing. Bone marrow-derived mesenchymal stem cells (MSCs) are multipotent, culture-expanded, non-hematopoietic cells that are currently being investigated as a novel cellular therapy. The in vitro differentiation potential of IPCs has raised hopes for a treatment of clinical diseases associated with autoimmunity. We screened for small molecules that induce pancreatic differentiation of IPCs. There are some compounds which showed positive effects on the DTZ staining. The aminopyrrole derivative compound XW4.4 which shows the best activity among them was found to induce pancreatic differentiation of rat MSCs (rMSCs). The in vitro studies indicated that treatment of rMSCs with compound XW4.4 resulted in differentiated cells with characteristics of IPCs including islet-like clusters, spherical, grape-like morphology, insulin secretion, positive for dithizone, glucose stimulation and expression of pancreatic endocrine cell marker genes. The data has also suggested that hepatocyte nuclear factor 3β (HNF 3β) may be involved in pancreatic differentiation of rMSCs when treated with XW4.4. Results indicate that XW4.4 induced rMSCs support the efforts to derive functional IPCs and serve as a means to alleviate limitations surrounding islet cell transplantation in the treatment of T1DM. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  20. Bone Marrow Homing Enriches Stem Cells Responsible for Neogenesis of Insulin-Producing Cells, While Radiation Decreases Homing Efficiency.

    PubMed

    Goldenberg-Cohen, Nitza; Iskovich, Svetlana; Askenasy, Nadir

    2015-10-01

    Small-sized adult bone marrow cells isolated by counterflow centrifugal elutriation and depleted of lineage markers (Fr25lin(-)) have the capacity to differentiate into insulin-producing cells and stabilize glycemic control. This study assessed competitive migration of syngeneic stem cells to the bone marrow and islets in a murine model of chemical diabetes. VLA-4 is expressed in ∼ 25% of these cells, whereas CXCR4 is not detected, however, it is transcriptionally upregulated (6-fold). The possibility to enrich stem cells by a bone marrow homing (BM-H) functional assay was assessed in sequential transplants. Fr25lin(-) cells labeled with PKH26 were grafted into primary myeloablated recipients, and mitotically quiescent Fr25lin(-)PKH(bright) cells were sorted from the bone marrow after 2 days. The contribution of bone marrow-homed stem cells was remarkably higher in secondary recipients compared to freshly elutriated cells. The therapeutic efficacy was further increased by omission of irradiation in the secondary recipients, showing a 25-fold enrichment of islet-reconstituting cells by the bone marrow homing assay. Donor cells identified by the green fluorescent protein (GFP) and a genomic marker in sex-mismatched transplants upregulated PDX-1 and produced proinsulin, affirming the capacity of BM-H cells to convert in the injured islets. There was no evidence of transcriptional priming of freshly elutriated subsets to express PDX-1, insulin, and other markers of endocrine progenitors, indicating that the bone marrow harbors stem cells with versatile differentiation capacity. Affinity to the bone marrow can be used to enrich stem cells for pancreatic regeneration, and reciprocally, conditioning reduces the competitive incorporation in the injured islets.

  1. Insulin-Producing Cells in the Drosophila Brain also Express Satiety-Inducing Cholecystokinin-Like Peptide, Drosulfakinin

    PubMed Central

    Söderberg, Jeannette A. E.; Carlsson, Mikael A.; Nässel, Dick R.

    2012-01-01

    Regulation of meal size and assessing the nutritional value of food are two important aspects of feeding behavior. The mechanisms that regulate these two aspects have not been fully elucidated in Drosophila. Diminished signaling with insulin-like peptides Drosophila insulin-like peptides (DILPs) affects food intake in flies, but it is not clear what signal(s) mediates satiety. Here we investigate the role of DILPs and drosulfakinins (DSKs), cholecystokinin-like peptides, as satiety signals in Drosophila. We show that DSKs and DILPs are co-expressed in insulin-producing cells (IPCs) of the brain. Next we analyzed the effects of diminishing DSKs or DILPs employing the Gal4-UAS system by (1) diminishing DSK-levels without directly affecting DILP levels by targeted Dsk-RNAi, either in all DSK-producing cells (DPCs) or only in the IPCs or (2) expressing a hyperpolarizing potassium channel to inactivate either all the DPCs or only the IPCs, affecting release of both peptides. The transgenic flies were assayed for feeding and food choice, resistance to starvation, and for levels of Dilp and Dsk transcripts in brains of fed and starved animals. Diminishment of DSK in the IPCs alone is sufficient to cause defective regulation of food intake and food choice, indicating that DSK functions as a hormonal satiety signal in Drosophila. Quantification of Dsk and Dilp transcript levels reveals that knockdown of either peptide type affects the transcript levels of the other, suggesting a possible feedback regulation between the two signaling pathways. In summary, DSK and DILPs released from the IPCs regulate feeding, food choice and metabolic homeostasis in Drosophila in a coordinated fashion. PMID:22969751

  2. The reversal of diabetes in rat model using mouse insulin producing cells - a combination approach of tissue engineering and macroencapsulation.

    PubMed

    Muthyala, Sudhakar; Raj, V R Rana; Mohanty, Mira; Mohanan, P V; Nair, Prabha D

    2011-05-01

    Type 1 diabetes is a chronic disorder resulting from the autoimmune destruction of insulin-producing cells, a leading cause of morbidity and mortality all over the world. In this study a tissue engineering approach was compared with a macroencapsulation approach to reverse type 1 diabetes in a rat model, using mouse pancreatic progenitor cell (PPC)-derived islet-like clusters and mouse islets. For the tissue engineering approach the cells were cultured on gelatin scaffolds cross-linked with EDC in the presence of polyvinylpyrrolidone in vitro (GPE scaffolds), while for the macroencapsulation approach the cells were encapsulated in polyurethane-polyvinylpyrrolidone semi-interpenetrating networks. In the combination approach the cells cultured on GPE scaffolds were further encapsulated in a polyurethane-polyvinylpyrrolidone capsule. Real time PCR studies and the glucose challenge assay have shown that cells on GPE scaffolds could express and secrete insulin and glucagon in vitro. However, under in vivo conditions the animals treated by the tissue engineering approach died within 15-20 days and showed no reversal of their diabetes, due to infiltration of immune cells such as CD4 and CD8 cells and macrophages. In the macroencapsulation approach the animals showed euglycemia within 25 days, which was maintained for further 20 days, but after that the animals died. Interestingly, in the combination approach the animals showed reversal of hyperglycemia, and remained euglycemic for up to 3 months. The time needed to achieve initial euglycemia was different with different cell types, i.e. the combination approach with mouse islets achieved euglycemia within 15 days, whereas with PPC-derived islet-like clusters euglycemia was achieved within 25 days. This study confirmed that a combination of tissue engineering and macroencapsulation with mouse islets could reverse diabetes and maintain euglycemia in an experimental diabetes rat model for 90 days.

  3. Immobilization of Glycoside Hydrolase Families GH1, GH13, and GH70: State of the Art and Perspectives.

    PubMed

    Graebin, Natália G; Schöffer, Jéssie da N; Andrades, Diandra de; Hertz, Plinho F; Ayub, Marco A Z; Rodrigues, Rafael C

    2016-08-17

    Glycoside hydrolases (GH) are enzymes capable to hydrolyze the glycosidic bond between two carbohydrates or even between a carbohydrate and a non-carbohydrate moiety. Because of the increasing interest for industrial applications of these enzymes, the immobilization of GH has become an important development in order to improve its activity, stability, as well as the possibility of its reuse in batch reactions and in continuous processes. In this review, we focus on the broad aspects of immobilization of enzymes from the specific GH families. A brief introduction on methods of enzyme immobilization is presented, discussing some advantages and drawbacks of this technology. We then review the state of the art of enzyme immobilization of families GH1, GH13, and GH70, with special attention on the enzymes β-glucosidase, α-amylase, cyclodextrin glycosyltransferase, and dextransucrase. In each case, the immobilization protocols are evaluated considering their positive and negative aspects. Finally, the perspectives on new immobilization methods are briefly presented.

  4. Functional characterization of GH-like homolog in amphioxus reveals an ancient origin of GH/GH receptor system.

    PubMed

    Li, Mengyang; Gao, Zhan; Ji, Dongrui; Zhang, Shicui

    2014-12-01

    Amphioxus belongs to the subphylum cephalochordata, an extant representative of the most basal chordates. Despite many studies on the endocrine system of amphioxus, no evidence showed the presence of pituitary hormones. In this study, we clearly demonstrated the existence of a functional GH-like hormone in amphioxus, which is able to bind purified GH receptors, stimulate IGF-I expression, promote growth rate of fish, and rescue embryonic defects caused by a shortage of GH. We also showed the presence of a GH/prolactin-like-binding protein containing the entire hormone binding domain of GH/prolactin receptors in amphioxus, which is widely expressed among tissues, and interacts with the GH-like hormone. It is clear from these results that the GH/GH receptor-like system is present in amphioxus and, hence, in all classes of chordates. Notably, the GH-like hormone appears to be the only member of the vertebrate pituitary hormones family in amphioxus, suggesting that the hormone is the ancestral peptide that originated first in the molecular evolution of the pituitary hormones family in chordates. These data collectively suggest that a vertebrate-like neuroendocrine axis setting has already emerged in amphioxus, which lays a foundation for subsequent formation of hypothalamic-pituitary system in vertebrates.

  5. Prospective safety surveillance of GH-deficient adults: comparison of GH-treated vs untreated patients.

    PubMed

    Hartman, Mark L; Xu, Rong; Crowe, Brenda J; Robison, Leslie L; Erfurth, Eva Marie; Kleinberg, David L; Zimmermann, Alan G; Woodmansee, Whitney W; Cutler, Gordon B; Chipman, John J; Melmed, Shlomo

    2013-03-01

    In clinical practice, the safety profile of GH replacement therapy for GH-deficient adults compared with no replacement therapy is unknown. The objective of this study was to compare adverse events (AEs) in GH-deficient adults who were GH-treated with those in GH-deficient adults who did not receive GH replacement. This was a prospective observational study in the setting of US clinical practices. AEs were compared between GH-treated (n = 1988) and untreated (n = 442) GH-deficient adults after adjusting for baseline group differences and controlling the false discovery rate. The standardized mortality ratio was calculated using US mortality rates. After a mean follow-up of 2.3 years, there was no significant difference in rates of death, cancer, intracranial tumor growth or recurrence, diabetes, or cardiovascular events in GH-treated compared with untreated patients. The standardized mortality ratio was not increased in either group. Unexpected AEs (GH-treated vs untreated, P ≤ .05) included insomnia (6.4% vs 2.7%), dyspnea (4.2% vs 2.0%), anxiety (3.4% vs 0.9%), sleep apnea (3.3% vs 0.9%), and decreased libido (2.1% vs 0.2%). Some of these AEs were related to baseline risk factors (including obesity and cardiopulmonary disease), higher GH dose, or concomitant GH side effects. In GH-deficient adults, there was no evidence for a GH treatment effect on death, cancer, intracranial tumor recurrence, diabetes, or cardiovascular events, although the follow-up period was of insufficient duration to be conclusive for these long-term events. The identification of unexpected GH-related AEs reinforces the fact that patient selection and GH dose titration are important to ensure safety of adult GH replacement.

  6. Downregulation of the ACE2/Ang-(1-7)/Mas axis in transgenic mice overexpressing GH.

    PubMed

    Muñoz, Marina C; Burghi, Valeria; Miquet, Johanna G; Giani, Jorge F; Banegas, Ricardo D; Toblli, Jorge E; Fang, Yimin; Wang, Feiya; Bartke, Andrzej; Dominici, Fernando P

    2014-05-01

    The renin-angiotensin system (RAS) plays a crucial role in the regulation of physiological homeostasis and diseases such as hypertension, coronary artery disease, and chronic renal failure. In this cascade, the angiotensin-converting enzyme (ACE)/angiotensin II (Ang II)/AT1 receptor axis induces pathological effects, such as vasoconstriction, cell proliferation, and fibrosis, while the ACE2/Ang-(1-7)/Mas receptor axis is protective for end-organ damage. The altered function of the RAS could be a contributing factor to the cardiac and renal alterations induced by GH excess. To further explore this issue, we evaluated the consequences of chronic GH exposure on the in vivo levels of Ang II, Ang-(1-7), ACE, ACE2, and Mas receptor in the heart and the kidney of GH-transgenic mice (bovine GH (bGH) mice). At the age of 7-8 months, female bGH mice displayed increased systolic blood pressure (SBP), a high degree of both cardiac and renal fibrosis, as well as increased levels of markers of tubular and glomerular damage. Angiotensinogen abundance was increased in the liver and the heart of bGH mice, along with a concomitant increase in cardiac Ang II levels. Importantly, the levels of ACE2, Ang-(1-7), and Mas receptor were markedly decreased in both tissues. In addition, Ang-(1-7) administration reduced SBP to control values in GH-transgenic mice, indicating that the ACE2/Ang-(1-7)/Mas axis is involved in GH-mediated hypertension. The data indicate that the altered expression profile of the ACE2/Ang-(1-7)/Mas axis in the heart and the kidney of bGH mice could contribute to the increased incidence of hypertension, cardiovascular, and renal alterations observed in these animals.

  7. Laminin 411 acts as a potent inducer of umbilical cord mesenchymal stem cell differentiation into insulin-producing cells

    PubMed Central

    2014-01-01

    Background Diabetes mellitus (DM) is an incurable metabolic disease constituting a major threat to human health. Insulin-producing cells (IPCs) differentiated from mesenchymal stem cells (MSCs) hold great promise in the treatment of DM. The development of an efficient IPC induction system is a crucial step for the clinical application of IPCs for DM. Laminin 411 is a key component of the basement membrane and is involved in the regulation of cell differentiation; however, little is known about a role of laminin 411 in the regulation of IPC differentiation from human MSCs. Methods MSCs were isolated from human umbilical cord (UC-MSCs) and expanded in an in vitro culture system. UC-MSCs were then cultured in the IPC induction and differentiation medium in the presence of laminin 411. Flow cytometry, Quantitative realtime PCR, immunofluorescence staining, ELISA, Western blotting and other techniques were applied to determine IPC generation, insulin expression and related mechanisms. To evaluate potential therapeutic efficacy of IPCs induced from UC-MSCs, a type-1 diabetes (T1DM) rat model was generated using streptozotocin. Blood glucose, insulin levels, and survival of rats were monitored periodically following intravenous injection of the tested cells. Results Laminin 411 markedly induced the expression of the genes Foxa2 and Sox17, markers for pancreatic precursor cells, efficiently induced IPC differentiation from MSCs, and up-regulated insulin expression at both mRNA and protein levels. Furthermore, the expression of the genes known to govern insulin expression including Pdx1 and Ngn3 was markedly induced by laminin 411, which suggests that Pdx1 and Ngn3 signaling pathways are involved in laminin 411 induced-insulin expression machinery. More importantly, administration of laminin 411-induced IPCs rapidly and significantly down-regulated fasting blood glucose levels, significantly reduced the HbA1c concentration and markedly improved the symptoms and survival of

  8. In vitro differentiation of human umbilical cord Wharton’s jelly mesenchymal stromal cells to insulin producing clusters

    PubMed Central

    Nekoei, Seideh Masoomeh; Azarpira, Negar; Sadeghi, Ladan; Kamalifar, Sulmaz

    2015-01-01

    AIM: To investigate the differentiation of human Wharton’s jelly derived mesenchymal stromal cells (WJ-MSCs) to insulin producing clusters (IPC) this study was conducted. METHODS: The umbilical cords samples were collected from full term caesarian section mothers and the WJ-MSCS were cultured from tissue explants in High glucose-Dulbecco’s Modified Eagle Medium (H-DMEM); H-DMEM supplemented with 10% fetal bovine serum (FBS) and antibiotics. The expression of CD90, CD44, CD105, CD34 and CD133 as well as osteogenic and adipogenic differentiation of cells in appropriate medium were also evaluated. The cells were differentiated toward IPC with changing the culture medium and adding the small molecules such as nicotinic acid, epidermal growth factor, and exendin-4 during 3 wk period. The gene expression of PDX1, NGN3, Glut2, insulin was monitored by reveres transcription polymerase chain reaction method. The differentiated clusters were stained with Dithizone (DTZ) which confirms the presence of insulin granules. The insulin challenge test (low and high glucose concentration in Krebs-Ringer HEPES buffer) was also used to evaluate the functional properties of differentiated clusters. RESULTS: WJ-MSCS were positive for mesenchymal surface markers (CD90, CD44, CD105), and negative for CD34 and CD133. The accumulation of lipid vacuoles and deposition of calcium mineral in cells were considered as adipogenic and osteogenic potential of WJ-MSCS. The cells also expressed the transcriptional factors such as Nanog and OCT4. During this three step differentiation, the WJ-MSCS morphology was gradually changed from spindle shaped cells in to epithelioid cells and eventually to three dimensional clusters. The clusters expressed PDX1, NGN3, Glut2, and insulin. The cells became bright red color when stained with DTZ and the insulin secretion was also confirmed. In glucose challenge test a significant increase in insulin secretion from 0.91 ± 0.04 μIu/mL (2.8 mmol/L glucose) to

  9. Laminin 411 acts as a potent inducer of umbilical cord mesenchymal stem cell differentiation into insulin-producing cells.

    PubMed

    Qu, Huiting; Liu, Xiaoli; Ni, Yihong; Jiang, Yang; Feng, Xiaoli; Xiao, Juan; Guo, Yanan; Kong, Dexiao; Li, Ai; Li, Xiaomei; Zhuang, Xianghua; Wang, Zhilun; Wang, Yongjing; Chang, Yali; Chen, Shihong; Kong, Feng; Zhang, Xuhua; Zhao, Shengtian; Sun, Yi; Xu, Dawei; Wang, Daoqing; Zheng, Chengyun

    2014-05-20

    Diabetes mellitus (DM) is an incurable metabolic disease constituting a major threat to human health. Insulin-producing cells (IPCs) differentiated from mesenchymal stem cells (MSCs) hold great promise in the treatment of DM. The development of an efficient IPC induction system is a crucial step for the clinical application of IPCs for DM. Laminin 411 is a key component of the basement membrane and is involved in the regulation of cell differentiation; however, little is known about a role of laminin 411 in the regulation of IPC differentiation from human MSCs. MSCs were isolated from human umbilical cord (UC-MSCs) and expanded in an in vitro culture system. UC-MSCs were then cultured in the IPC induction and differentiation medium in the presence of laminin 411. Flow cytometry, Quantitative realtime PCR, immunofluorescence staining, ELISA, Western blotting and other techniques were applied to determine IPC generation, insulin expression and related mechanisms. To evaluate potential therapeutic efficacy of IPCs induced from UC-MSCs, a type-1 diabetes (T1DM) rat model was generated using streptozotocin. Blood glucose, insulin levels, and survival of rats were monitored periodically following intravenous injection of the tested cells. Laminin 411 markedly induced the expression of the genes Foxa2 and Sox17, markers for pancreatic precursor cells, efficiently induced IPC differentiation from MSCs, and up-regulated insulin expression at both mRNA and protein levels. Furthermore, the expression of the genes known to govern insulin expression including Pdx1 and Ngn3 was markedly induced by laminin 411, which suggests that Pdx1 and Ngn3 signaling pathways are involved in laminin 411 induced-insulin expression machinery. More importantly, administration of laminin 411-induced IPCs rapidly and significantly down-regulated fasting blood glucose levels, significantly reduced the HbA1c concentration and markedly improved the symptoms and survival of T1DM rats. Our results

  10. Pathology of GH-producing pituitary adenomas and GH cell hyperplasia of the pituitary.

    PubMed

    Syro, Luis V; Rotondo, Fabio; Serna, Carlos A; Ortiz, Leon D; Kovacs, Kalman

    2017-02-01

    Histologic, immunohistochemical and electron microscopic studies have provided conclusive evidence that a marked diversity exists between tumors which secrete growth hormone (GH) in excess. GH cell hyperplasia can also be associated with acromegaly in patients with extrapituitary GH-releasing hormone secreting tumors or in familial pituitary tumor syndromes. A literature search was performed for information regarding pathology, GH-producing tumors and acromegaly. This review summarizes the current knowledge on the morphology of GH-producing and silent GH adenomas, as well as GH hyperplasia of the pituitary. The importance of morphologic classification and identification of different subgroups of patients with GH-producing adenomas and their impact on clinical management is discussed.

  11. Elutriated stem cells derived from the adult bone marrow differentiate into insulin-producing cells in vivo and reverse chemical diabetes.

    PubMed

    Iskovich, Svetlana; Goldenberg-Cohen, Nitza; Stein, Jerry; Yaniv, Isaac; Fabian, Ina; Askenasy, Nadir

    2012-01-01

    An ongoing debate surrounds the existence of stem cells in the adult endowed with capacity to differentiate into multiple lineages. We examined the possibility that adult bone marrow cells participate in recovery from chemical diabetes through neogenesis of insulin-producing cells. Small-sized cells negative for lineage markers derived by counterflow centrifugal elutriation from the bone marrow were transplanted into mice made diabetic with streptozotocin and sublethal irradiation. These cells homed efficiently to the injured islets and contributed to tissue revascularization. Islet-homed CD45-negative donor cells identified by sex chromosomes downregulated GFP, expressed PDX-1 and proinsulin, and converted the hormone precursor to insulin. An estimated 7.6% contribution of newly formed insulin-producing cells to islet cellularity increased serum insulin and stabilized glycemic control starting at 5 weeks post-transplant and persisting for 20 weeks. Newly differentiated cells displayed normal diploid genotype and there was no evidence of fusion between the grafted stem cells or their myeloid progeny and injured β-cells. Considering the extensive functional incorporation of insulin-producing donor cells in the injured islets, we conclude that the adult bone marrow contains a subset of small cells endowed with plastic developmental capacity.

  12. Growth hormone (GH), brain development and neural stem cells.

    PubMed

    Waters, M J; Blackmore, D G

    2011-12-01

    A range of observations support a role for GH in development and function of the brain. These include altered brain structure in GH receptor null mice, and impaired cognition in GH deficient rodents and in a subgroup of GH receptor defective patients (Laron dwarfs). GH has been shown to alter neurogenesis, myelin synthesis and dendritic branching, and both the GH receptor and GH itself are expressed widely in the brain. We have found a population of neural stem cells which are activated by GH infusion, and which give rise to neurons in mice. These stem cells are activated by voluntary exercise in a GH-dependent manner. Given the findings that local synthesis of GH occurs in the hippocampus in response to a memory task, and that GH replacement improves memory and cognition in rodents and humans, these new observations warrant a reappraisal of the clinical importance of GH replacement in GH deficient states.

  13. Epidermal growth factor receptor (EGFR) involvement in successful growth hormone (GH) signaling in GH transduction defect.

    PubMed

    Kostopoulou, Eirini; Rojas-Gil, Andrea Paola; Karvela, Alexia; Spiliotis, Bessie E

    2017-02-01

    Growth hormone (GH) transduction defect (GHTD) is a growth disorder with impaired signal transducer and activator of transcription 3 (STAT3) phosphorylation mediated by overexpression of cytokine-inducible SH2-containing protein (CIS), which causes increased growth hormone receptor (GHR) degradation. This study investigated the role of epidermal growth factor (EGF) in the restoration of normal GH signaling in GHTD. Protein expression, cellular localization and physical contact of proteins of the GH and EGF signaling pathways were studied by Western immunoblotting, immunofluorescence and co-immunoprecipitation, respectively. These were performed in fibroblasts of one GHTD patient (P) and one control child (C) at the basal state and after induction with human GH (hGH) 200 μg/L (GH200), either with or without silencing of CIS mRNA, and after induction with hGH 1000 μg/L (GH1000) or 50 ng/mL EGF. The membrane availability of the EGF receptor (EGFR) and the activated EGFR (pEGFR) was increased in P only after simultaneous GH200 and silencing of CIS mRNA or with GH1000, whereas this occurred in C after GH200 alone. After EGF induction, the membrane localization of GHR, STAT3 and that of EGFR were increased in P more than in C. In conclusion, in GHTD, the EGFR seems to participate in successful GH signaling, but induction of GHTD fibroblasts with a higher dose of hGH is needed. The EGF/EGFR pathway, in contrast to the GH/GHR pathway, seems to function normally in P and is more primed compared to C. The involvement of the EGFR in successful GH signaling may explain the catch-up growth seen in the Ps when exogenous hGH is administered.

  14. Models of GH deficiency in animal studies.

    PubMed

    Gahete, Manuel D; Luque, Raul M; Castaño, Justo P

    2016-12-01

    Growth hormone (GH) is a peptide hormone released from pituitary somatotrope cells that promotes growth, cell division and regeneration by acting directly through the GH receptor (GHR), or indirectly via hepatic insulin-like growth factor 1 (IGF1) production. GH deficiency (GHD) can cause severe consequences, such as growth failure, changes in body composition and altered insulin sensitivity, depending of the origin, time of onset (childhood or adulthood) or duration of GHD. The highly variable clinical phenotypes of GHD can now be better understood through research on transgenic and naturally-occurring animal models, which are widely employed to investigate the origin, phenotype, and consequences of GHD, and particularly the underlying mechanisms of metabolic disorders associated to GHD. Here, we reviewed the most salient aspects of GH biology, from somatotrope development to GH actions, linked to certain GHD types, as well as the animal models employed to reproduce these GHD-associated alterations.

  15. Comparison between the growth response to growth hormone (GH) therapy in children with partial GH insensitivity or mild GH deficiency.

    PubMed

    Cardoso, Daniela F; Martinelli, Carlos Eduardo; Campos, Viviane C; Gomes, Elenilde S; Rocha, Ivina E S; Oliveira, Carla R P; Vicente, Taisa A R; Pereira, Rossana M C; Pereira, Francisco A; Cartaxo, Carla K A; Milani, Soraya L S; Oliveira, Mario C P; Melo, Enaldo V; Oliveira, Andre L P; Aguiar-Oliveira, Manuel H

    2014-02-01

    GH therapy is still controversial, except in severe GH deficiency (SGHD). The objective of this study was to compare the response to growth hormone (GH) therapy in children with partial GH insensitivity (PGHIS) and mild GH deficiency (MGHD) with those with SGHD. Fifteen PGHIS, 11 MGHD, and 19 SGHD subjects, followed up for more than one year in the Brazilian public care service, were evaluated regarding anthropometric and laboratory data at the beginning of treatment, after one year (1st year) on treatment, and at the last assessment (up to ten years in SGHD, up to four years in MGHD, and up to eight years in PGHIS). Initial height standard deviation score (SDS) in SGHD was lower than in MGHD and PGHIS. Although the increase in 1 st year height SDS in comparison to initial height SDS was not different among the groups, height-SDS after the first year of treatment remained lower in SGHD than in MGHD. There was no difference in height-SDS at the last assessment of the children among the three groups. GH therapy, in the entire period of observation, caused a trend towards lower increase in height SDS in PGHIS than SGHD but similar increases were observed in MGHD and SGHD. GH therapy increases height in PGHIS and produces similar height effects in MGHD and SGHD.

  16. In Vivo Differentiation of Mesenchymal Stem Cells into Insulin Producing Cells on Electrospun Poly-L-Lactide Acid Scaffolds Coated with Matricaria chamomilla L. Oil.

    PubMed

    Fazili, Afsaneh; Gholami, Soghra; Minaie Zangi, Bagher; Seyedjafari, Ehsan; Gholami, Mahdi

    2016-01-01

    This study examined the in vivo differentiation of mesenchymal stem cells (MSCs) into insulin producing cells (IPCs) on electrospun poly-L-lactide acid (PLLA) scaffolds coated with Matricaria chammomila L. (chamomile) oil. In this interventional, experimental study adipose MSCs (AMSCs) were isolated from 12 adult male New Zealand white rabbits and characterized by flow cytometry. AMSCs were subsequently differentiated into osteogenic and adipogenic lines. Cells were seeded onto either a PLLA scaffold (control) or PLLA scaffold coated with chamomile oil (experimental). A total of 24 scaffolds were inserted into the pancreatic area of each rabbit and placement was confirmed by ultrasound. After 21 days, immunohistochemistry analysis of insulin-producing like cells on protein levels confirmed insulin expression of insulin producing cells (IPSCs). Real-time polymerase chain reaction (PCR) determined the expressions of genes related to pancreatic endocrine development and function. Fourier transform infrared spectroscopy (FTIR) results confirmed the existence of oil on the surface of the PLLA scaffold. The results showed a new peak at 2854 cm(-1) for the aliphatic CH2 bond. Pdx1 expression was 0.051 ± 0.007 in the experimental group and 0.009 ± 0.002 in the control group. There was significantly increased insulin expression in the scaffold coated with chamomile oil (0.09 ± 0.001) compared to control group (0.063 ± 0.009, P≤0.05). Both groups expressed Ngn3 and Pdx1 specific markers and pancreatic tissue was observed at 21 days post transplantation. The pancreatic region is an optimal site for differentiation of AMSCs to IPCs. Chamomile oil (as an antioxidant agent) can affect cell adhesion to the scaffold and increase cell differentiation. In addition, the oil may lead to increased blood glucose uptake in pathways in the muscles, liver and fatty tissue of a diabetic animal model by some probable molecular mechanisms.

  17. Unwinding the Novel Genes Involved in the Differentiation of Embryonic Stem Cells into Insulin-Producing Cells: A Network-Based Approach.

    PubMed

    Blessia, T Femlin; Singh, Sachidanand; Vennila, J Jannet

    2017-03-01

    Diabetes is one of the main causes of death in the world. Diabetes is marked by high blood glucose levels and develops when the body doesn't produce enough insulin or is not able to use insulin effectively, or both. Type I diabetes is a chronic sickness caused by lack of insulin due to the autoimmune destruction of pancreatic insulin-producing beta cells. Research on permanent cure for diabetes is in progress with several remarkable findings in the past few decades among which stem cell therapy has turned out to be a promising way to cure diabetes. Stem cells have the remarkable potential to differentiate into glucose-responsive beta cells through controlled differentiation protocols. Discovering novel targets that could potentially influence the differentiation to specific cell type will help in disease therapy. The present work focuses on finding novel genes or transcription factors involved in the human embryonic stem cell differentiation into insulin-producing beta cells using network biology approach. The interactome of 321 genes and their associated molecules involved in human embryonic stem cell differentiation into beta cells was constructed, which includes 1937 nodes and 8105 edges with a scale-free topology. Pathway analysis for the hubs obtained through MCODE revealed that four highly interactive hubs were relevant to embryonic stem cell differentiation into insulin-producing cells. Their role in different pathways and stem cell differentiation was studied. Centrality parameters were applied to identify the potential controllers of the differentiation processes: BMP4, SALL4, ZIC1, NTS, RNF2, FOXO1, AKT1 and GATA4. This type of approach gives an insight to identify potential genes/transcription factors which may play influential role in many complex biological processes.

  18. In Vivo Differentiation of Mesenchymal Stem Cells into Insulin Producing Cells on Electrospun Poly-L-Lactide Acid Scaffolds Coated with Matricaria chamomilla L. Oil

    PubMed Central

    Fazili, Afsaneh; Gholami, Soghra; Minaie Zangi, Bagher; Seyedjafari, Ehsan; Gholami, Mahdi

    2016-01-01

    Objective This study examined the in vivo differentiation of mesenchymal stem cells (MSCs) into insulin producing cells (IPCs) on electrospun poly-L-lactide acid (PLLA) scaffolds coated with Matricaria chammomila L. (chamomile) oil. Materials and Methods In this interventional, experimental study adipose MSCs (AMSCs) were isolated from 12 adult male New Zealand white rabbits and characterized by flow cytometry. AMSCs were subsequently differentiated into osteogenic and adipogenic lines. Cells were seeded onto either a PLLA scaffold (control) or PLLA scaffold coated with chamomile oil (experimental). A total of 24 scaffolds were inserted into the pancreatic area of each rabbit and placement was confirmed by ultrasound. After 21 days, immunohistochemistry analysis of insulin-producing like cells on protein levels confirmed insulin expression of insulin producing cells (IPSCs). Real-time polymerase chain reaction (PCR) determined the expressions of genes related to pancreatic endocrine development and function. Results Fourier transform infrared spectroscopy (FTIR) results confirmed the existence of oil on the surface of the PLLA scaffold. The results showed a new peak at 2854 cm-1 for the aliphatic CH2 bond. Pdx1 expression was 0.051 ± 0.007 in the experimental group and 0.009 ± 0.002 in the control group. There was significantly increased insulin expression in the scaffold coated with chamomile oil (0.09 ± 0.001) compared to control group (0.063 ± 0.009, P≤0.05). Both groups expressed Ngn3 and Pdx1 specific markers and pancreatic tissue was observed at 21 days post transplantation. Conclusion The pancreatic region is an optimal site for differentiation of AMSCs to IPCs. Chamomile oil (as an antioxidant agent) can affect cell adhesion to the scaffold and increase cell differentiation. In addition, the oil may lead to increased blood glucose uptake in pathways in the muscles, liver and fatty tissue of a diabetic animal model by some probable molecular mechanisms

  19. Lymphocyte GH-axis hormones in immunity.

    PubMed

    Weigent, Douglas A

    2013-01-01

    The production and utilization of common ligands and their receptors by cells of the immune and neuroendocrine systems constitutes a biochemical information circuit between and within the immune and neuroendocrine systems. The sharing of ligands and receptors allows the immune system to serve as the sixth sense notifying the nervous system of the presence of foreign entities. Within this framework, it is also clear that immune cell functions can be altered by neuroendocrine hormones and that cells of the immune system have the ability to produce neuroendocrine hormones. This review summarizes a part of this knowledge with particular emphasis on growth hormone (GH). The past two decades have uncovered a lot of detail about the actions of GH, acting through its receptor, at the molecular and cellular level and its influence on the immune system. The production and action of immune cell-derived GH is less well developed although its important role in immunity is also slowly emerging. Here we discuss the production of GH, GH-releasing hormone (GHRH) and insulin-like growth factor-1 (IGF-1) and their cognate receptors on cells of the immune system and their influence via endocrine/autocrine/paracrine and intracrine pathways on immune function. The intracellular mechanisms of action of immune cell-derived GH are still largely unexplored, and it is anticipated that further work in this particular area will establish an important role for this source of GH in normal physiology and in pathologic situations. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. Endogenous growth hormone (GH)-releasing hormone is required for GH responses to pharmacological stimuli.

    PubMed Central

    Jaffe, C A; DeMott-Friberg, R; Barkan, A L

    1996-01-01

    The roles of hypothalamic growth hormone-releasing hormone (GHRH) and of somatostatin (SRIF) in pharmacologically stimulated growth hormone (GH) secretion in humans are unclear. GH responses could result either from GHRH release or from acute decline in SRIF secretion. To assess directly the role of endogenous GHRH in human GH secretion, we have used a competitive GHRH antagonist, (N-Ac-Tyr1,D-Arg2)GHRH(1-29)NH2 (GHRH-Ant), which we have previously shown is able to block the GH response to GHRH. We first tested whether an acute decline in SRIF, independent of GHRH action, would release GH. Pretreatment with GHRH-Ant abolished the GH response to exogenous GHRH (0.33 microgram/kg i.v.) but did not modify the GH rise after termination of an SRIF infusion. We then investigated the role of endogenous GHRH in the GH responses to pharmacologic stimuli of GH release. The GH responses to arginine (30 g i.v. over 30 min), L-dopa (0.5 g orally), insulin hypoglycemia (0.1 U/Kg i.v.), clonidine (0.25 mg orally), or pyridostigmine (60 mg orally) were measured in healthy young men after pretreatment with either saline of GHRH-Ant 400 microgram/kg i.v. In every case, GH release was significantly suppressed by GHRH-Ant. We conclude that endogenous GHRH is required for the GH response to each of these pharmacologic stimuli. Acute release of hypothalamic GHRH may be a common mechanism by which these compounds mediate GH secretion. PMID:8613546

  1. Effect of long-term GH replacement therapy on cardiovascular outcomes in isolated GH deficiency compared with multiple pituitary hormone deficiencies: a sub-analysis from the Dutch National Registry of Growth Hormone Treatment in Adults.

    PubMed

    van Bunderen, Christa C; van den Dries, Carline J; Heymans, Martijn W; Franken, Anton A M; Koppeschaar, Hans P F; van der Lely, Aart J; Drent, Madeleine L

    2014-08-01

    Isolated GH deficiency (IGHD) could provide a model to investigate the influence of GH deficiency per se and the effect of GH replacement therapy without the influence from other pituitary hormone deficiencies or their treatment. The aim of this study is to address the questions about differences between IGHD and multiple pituitary hormone deficiencies (MPHDs) in clinical presentation and in responsiveness to GH treatment. A nationwide surveillance study was carried out to describe the difference in the clinical presentation and responsiveness to GH treatment of patients with IGHD and MPHDs. The Dutch National Registry of GH Treatment in Adults was founded in 1998 to gain more insight into long-term efficacy and safety of GH therapy. Out of 2891 enrolled patients, 266 patients with IGHD at the start of GH treatment were identified and compared with 310 patients with MPHDs. Cardiovascular indices will be investigated at baseline and during long-term follow-up, including body composition, lipid profile, glucose metabolism, blood pressure, and morbidity. Patients with IGHD and MPHDs were demonstrated to be different entities at clinical presentation. Metabolically, patients with MPHDs had a larger waist circumference, lower HDL cholesterol level, and higher triglyceride level. The effect of GH treatment was comparable between patient groups. GH seems to protect against rising lipid levels and blood pressure, even after excluding patients using corresponding concomitant medication. The risk for cardiovascular disease or diabetes mellitus during follow-up was not different between patients with IGHD and MPHDs. Patients with IGHD had a less impaired metabolic profile than patients with MPHDs at baseline. Influence of other pituitary hormone replacement therapies on the effect of GH treatment is not demonstrated. © 2014 European Society of Endocrinology.

  2. Generation of insulin-producing β-like cells from human iPS cells in a defined and completely xeno-free culture system.

    PubMed

    Shahjalal, Hussain Md; Shiraki, Nobuaki; Sakano, Daisuke; Kikawa, Kazuhide; Ogaki, Soichiro; Baba, Hideo; Kume, Kazuhiko; Kume, Shoen

    2014-10-01

    Human induced pluripotent stem (hiPS) cells are considered a potential source for the generation of insulin-producing pancreatic β-cells because of their differentiation capacity. In this study, we have developed a five-step xeno-free culture system to efficiently differentiate hiPS cells into insulin-producing cells in vitro. We found that a high NOGGIN concentration is crucial for specifically inducing the differentiation first into pancreatic and duodenal homeobox-1 (PDX1)-positive pancreatic progenitors and then into neurogenin 3 (NGN3)-expressing pancreatic endocrine progenitors, while suppressing the differentiation into hepatic or intestinal cells. We also found that a combination of 3-isobutyl-1-methylxanthine (IBMX), exendin-4, and nicotinamide was important for the differentiation into insulin single-positive cells that expressed various pancreatic β-cell markers. Most notably, the differentiated cells contained endogenous C-peptide pools that were released in response to various insulin secretagogues and high levels of glucose. Therefore, our results demonstrate the feasibility of generating hiPS-derived pancreatic β-cells under xeno-free conditions and highlight their potential to treat patients with type 1 diabetes.

  3. Correlation between GH and IGF-1 during treatment for acromegaly.

    PubMed

    Oldfield, Edward H; Jane, John A; Thorner, Michael O; Pledger, Carrie L; Sheehan, Jason P; Vance, Mary Lee

    2016-11-18

    OBJECTIVE The relationship between growth hormone (GH) and insulin-like growth factor-1 (IGF-1) in patients with acromegaly as serial levels drop over time after treatment has not been examined previously. Knowledge of this relationship is important to correlate pretreatment levels that best predict response to treatment. To examine the correlation between GH and IGF-1 and IGF-1 z-scores over a wide range of GH levels, the authors examined serial GH and IGF-1 levels at intervals before and after surgery and radiosurgery for acromegaly. METHODS This retrospective analysis correlates 414 pairs of GH and IGF-1 values in 93 patients with acromegaly. RESULTS Absolute IGF-1 levels increase linearly with GH levels only up to a GH of 4 ng/ml, and with IGF-1 z-scores only to a GH level of 1 ng/ml. Between GH levels of 1 and 10 ng/ml, increases in IGF-1 z-scores relative to changes in GH diminish and then plateau at GH concentrations of about 10 ng/ml. From patient to patient there is a wide range of threshold GH levels beyond which IGF-1 increases are no longer linear, GH levels at which the IGF-1 response plateaus, IGF-1 levels at similar GH values after the IGF-1 response plateaus, and of IGF-1 levels at similar GH levels. CONCLUSIONS In acromegaly, although IGF-1 levels represent a combination of the integrated effects of GH secretion and GH action, the tumor produces GH, not IGF-1. Nonlinearity between GH and IGF-1 occurs at GH levels far below those previously recognized. To monitor tumor activity and tumor viability requires measurement of GH levels.

  4. GH3-Mediated Auxin Conjugation Can Result in Either Transient or Oscillatory Transcriptional Auxin Responses.

    PubMed

    Mellor, Nathan; Bennett, Malcolm J; King, John R

    2016-02-01

    The conjugation of the phytohormone auxin to amino acids via members of the gene family GH3 is an important component in the auxin-degradation pathway in the model plant species Arabidopsis thaliana, as well as many other plant species. Since the GH3 genes are themselves up-regulated in response to auxin, providing a negative feedback on intracellular auxin levels, it is hypothesised that the GH3s have a role in auxin homoeostasis. To investigate this, we develop a mathematical model of auxin signalling and response that includes the auxin-inducible negative feedback from GH3 on the rate of auxin degradation. In addition, we include a positive feedback on the rate of auxin input via the auxin influx transporter LAX3, shown previously to be expressed in response to auxin and to have an important role during lateral root emergence. In the absence of the LAX3 positive feedback, we show that the GH3 negative feedback suffices to generate a transient transcriptional response to auxin in the shape of damped oscillations of the model system. When LAX3 positive feedback is present, sustained oscillations of the system are possible. Using steady-state analyses, we identify and discuss key parameters affecting the oscillatory behaviour of the model. The transient peak of auxin and subsequent transcriptional response caused by the up-regulation of GH3 represents a possible protective homoeostasis mechanism that may be used by plant cells in response to excess auxin.

  5. Functional characterization of GhSOC1 and GhMADS42 homologs from upland cotton (Gossypium hirsutum L.).

    PubMed

    Zhang, Xiaohong; Wei, Jianghui; Fan, Shuli; Song, Meizhen; Pang, Chaoyou; Wei, Hengling; Wang, Chengshe; Yu, Shuxun

    2016-01-01

    In Arabidopsis flowering pathway, MADS-box genes encode transcription factors, with their structures and functions highly conserved in many species. In our study, two MADS-box genes GhSOC1 and GhMADS42 (Gossypium hirsutum L.) were cloned from upland cotton CCRI36 and transformed into Arabidopsis. GhSOC1 was additionally transformed into upland cotton. Comparative analysis demonstrated sequence conservation between GhSOC1 and GhMADS42 and genes of other plant species. Tissue-specific expression analysis of GhSOC1 and GhMADS42 revealed spatiotemporal expression patterns involving high transcript levels in leaves, shoot apical buds, and flowers. In addition, overexpression of both GhSOC1 and GhMADS42 in Arabidopsis accelerated flowering, with GhMADS42 transgenic plants showing abnormal floral organ phenotypes. Overexpression of GhSOC1 in upland cotton also produced variations in floral organs. Furthermore, chromatin immunoprecipitation assay demonstrated that GhSOC1 could regulate GhMADS41 and GhMADS42, but not FLOWERING LOCUS T, by directly binding to the genes promoter. Finally, yeast two-hybrid and bimolecular fluorescence complementation approaches were undertaken to better understand the interaction of GhSOC1 and other MADS-box factors. These experiments showed that GhSOC1 can interact with APETALA1/FRUITFULL-like proteins in cotton.

  6. Regulation of the growth hormone (GH) receptor and GH-binding protein mRNA

    SciTech Connect

    Kaji, Hidesuke; Ohashi, Shin-Ichirou; Abe, Hiromi; Chihara, Kazuo

    1994-12-31

    In fasting rats, a transient increase in growth hormone-binding protein (GHBP) mRNA levels was observed after 1 day, in muscle, heart, and liver, but not in fat tissues. The liver GH receptor (GHR) mRNA level was significantly increased after 1 day (but not after 5 days) of bovine GH (bGH) treatment in fed rats. Both the liver GHR mRNA level and the net increment of plasma IGF-I markedly decreased after 5 days of bGH administration in fasting rats. These findings suggest that GHR and GHBP mRNAs in the liver are expressed in a different way and that the expression of GHBP mRNA is regulated differently between tissues, at least in rats. The results also suggest that refractoriness to GH in a sustained fasting state might be beneficial in preventing anabolic effects of GH. In humans, GHR mRNA in lymphocytes, from subjects with either GH-deficiency or acromegaly, could be detected by the reverse transcription-polymerase chain reaction method. In one patient with partial GH insensitivity, a heterozygous missense mutation (P561T) was identified in the cytoplasmic domain of GHR. 15 refs., 4 figs.

  7. Growth hormone (GH) peak after falling asleep reflects spontaneous nocturnal GH secretion, however is not corresponding to the results of GH stimulating tests in children with short stature.

    PubMed

    Smyczynska, Joanna; Stawerska, Renata; Lewinski, Andrzej; Hilczer, Maciej

    2012-01-01

    Growth hormone (GH) secretion is characterized by a pulsatile, circadian rhythm, with the highest concentrations at night hours. Evaluation of nocturnal GH secretion may be truncated to 6 hours. Growth hormone stimulating tests are the standard method of assessment of GH secretion. In Poland, the assessment of GH peak during 2 hours after falling asleep was introduced as a screening procedure in children, suspected for GH deficiency. The aim of current study was to compare the results of a screening test with GH secretion during 6-hour nocturnal profile and with the results of GH stimulating tests, as well as with IGF-I secretion in children with short stature. In 72 short children, GH concentrations were measured every 30 minutes during first 6 hours after falling asleep and in two GH stimulating tests (the cut-off level of GH peak for all the tests was 10.0 ng/ml). Also, IGF-I concentrations were measured and expressed as IGF-I SDS for age and sex. The screening test results correlated significantly with both GH peak in 6-hour profile and mean GH concentration, and the area under the curve (AUC) in 6 hour profile (r= 0.94, r=0.90 and r=0.89, respectively, p<0.05) but not with GH peak in stimulating tests (r=0.07, NS). There was no correlation between IGF-I secretion and any of the analyzed parameters of spontaneous and stimulated GH secretion. The results of screening test seem to reflect overnight GH secretion in short children, remaining, however, discordant with the results of GH stimulating tests and with IGF-I secretion.

  8. Activities of Amphioxus GH-Like Protein in Osmoregulation: Insight into Origin of Vertebrate GH Family

    PubMed Central

    Li, Mengyang; Jiang, Chengyan

    2017-01-01

    GH is known to play an important role in both growth promotion and osmoregulation in vertebrates. We have shown that amphioxus possesses a single GH-like hormone (GHl) gene encoding a functional protein capable of promoting growth. However, if GHl can mediate osmoregulation remains open. Here, we demonstrated clearly that GHl increased not only the survival rate of amphioxus but also the muscle moisture under high salinity. Moreover, GHl induced the expression of both the ion transporter Na+-K+-ATPase (NKA) and Na+-K+-2Cl− cotransporter (NKCC) in the gill as well as the mediator of GH action IGFl in the hepatic caecum, indicating that GHl fulfills this osmoregulatory activity through the same mechanisms of vertebrate GH. These results together suggest that the osmoregulatory activities of GH had emerged in the basal chordate amphioxus. We also proposed a new model depicting the origin of pituitary hormone family in vertebrates. PMID:28408927

  9. Growth hormone (GH)-releasing activity of chicken GH-releasing hormone (GHRH) in chickens.

    PubMed

    Harvey, S; Gineste, C; Gaylinn, B D

    2014-08-01

    Two peptides with sequence similarities to growth hormone releasing hormone (GHRH) have been identified by analysis of the chicken genome. One of these peptides, chicken (c) GHRH-LP (like peptide) was previously found to poorly bind to chicken pituitary membranes or to cloned and expressed chicken GHRH receptors and had little, if any, growth hormone (GH)-releasing activity in vivo or in vitro. In contrast, a second more recently discovered peptide, cGHRH, does bind to cloned and expressed cGHRH receptors and increases cAMP activity in transfected cells. The possibility that this peptide may have in vivo GH-releasing activity was therefore assessed. The intravenous (i.v.) administration of cGHRH to immature chickens, at doses of 3-100 μg/kg, significantly increased circulating GH concentrations within 10 min of injection and the plasma GH levels remained elevated for at least 30 min after the injection of maximally effective doses. The plasma GH responses to cGHRH were comparable with those induced by human (h) or porcine (p) GHRH preparations and to that induced by thyrotropin releasing hormone (TRH). In marked contrast, the i.v. injection of cGHRH-LP had no significant effect on circulating GH concentrations in immature chicks. GH release was also increased from slaughterhouse chicken pituitary glands perifused for 5 min with cGHRH at doses of 0.1 μg/ml or 1.0 μg/ml, comparable with GH responses to hGHRH1-44. In contrast, the perifusion of chicken pituitary glands with cGHRH-LP had no significant effect on GH release. In summary, these results demonstrate that cGHRH has GH-releasing activity in chickens and support the possibility that it is the endogenous ligand of the cGHRH receptor.

  10. Subchronic toxicity study of GH transgenic carp.

    PubMed

    Yong, Ling; Liu, Yu-Mei; Jia, Xu-Dong; Li, Ning; Zhang, Wen-Zhong

    2012-11-01

    A subchronic toxicity study of GH (growth hormone) transgenic carp was carried out with 60 SD rats aged 4 weeks, weight 115∼125 g. Ten male and 10 female rats were allotted into each group. Animals of the three groups (transgenic carp group (GH-TC), parental carp group (PC) and control group) were fed soy- and alfalfa-free diet (SAFD) with 10% GH transgenic carp powder, 10% parental carp powder or 10% common carp powder for 90 consecutive days, respectively. In the end of study, animals were killed by exsanguination via the carotid artery under diethyl ether anesthesia, then weights of heart, liver, kidneys, spleen, thymus, brain, ovaries and uterus/testis were measured. Pathological examination of organs was determined. Endocrine hormones of triiodothyronine (T3), thyroid hormone (T4), follicle-stimulating hormone (FSH), 17β-estradiol (E2), progesterone (P) and testosterone (T) levels were detected by specific ELISA kit. Parameters of blood routine and blood biochemical were measured. The weights of the body and organs of the rats, food intake, blood routine, blood biochemical test and serum hormones showed no significant differences among the GH transgenic carp-treated, parental carp-treated and control groups (P>0.05). Thus, it was concluded that at the dose level of this study, GH transgenic carp showed no subchronic toxicity and endocrine disruption to SD rats.

  11. The influence of growth hormone (GH) deficiency and GH replacement on quality of life in GH-deficient patients.

    PubMed

    Deijen, J B; van der Veen, E A

    1999-01-01

    The total absence of hormones such as cortisol or thyroxine causes death within weeks. Lack of estrogen or testosterone is followed by infertility and impaired sexual functioning. Relative deficiencies of almost all classical hormones have a substantial impact on quality of life (QOL). However, in contrast to virtually all aspects of metabolism, QOL is difficult to measure. Only recently have tests been developed to assess general QOL, whereas specific tests address those aspects of QOL affected only in specific situations or disease states. For example, in rheumatoid arthritis and other chronic disabling diseases, the use of measures of QOL to assess treatment modalities is almost routine. In diseases with overt metabolic disturbances attention is generally focused on changes in metabolic parameters and the issue of QOL is neglected. Although very few practising endocrinologists will not support the idea that they specialize in improving QOL, its assessment in patients with endocrinological disorders began only recently--in patients with growth hormone (GH) deficiency only 10 years ago. It became apparent that GH deficiency in adult life is unmistakably followed by changes in parameters that determine QOL. In adults with childhood-onset GH deficiency, the unemployment rate is higher and the marriage rate lower than in the general population. Another symbol of success in life, the possession of a driver's licence, is less frequently attained by these patients. Most patients with adult-onset GH deficiency score unfavourably in questionnaires such as the Nottingham Health Profile. GH substitution is now available on a scale large enough to enable studies to be made of the effects on QOL in adults. The first studies were reported in 1989. However, only in the last few years have studies appeared in which sufficient number of patients and sufficient length of treatment were reported to allow a more objective judgement of the effectiveness of GH substitution. Although

  12. Growth hormone and cancer: GH production and action in glioma?

    PubMed

    Lea, Robert W; Dawson, Timothy; Martinez-Moreno, Carlos G; El-Abry, Nasra; Harvey, Steve

    2015-09-01

    The hypersecretion of pituitary growth hormone (GH) is associated with an increased risk of cancer, while reducing pituitary GH signaling reduces this risk. Roles for pituitary GH in cancer are therefore well established. The expression of the GH gene is, however, not confined to the pituitary gland and it is now known to occur in many extrapituitary tissues, in which it has local autocrine or paracrine actions, rather than endocrine function. It is, for instance, expressed in cancers of the prostate, lung, skin, endometrium and colon. The oncogenicity of autocrine GH may also be greater than that induced by endocrine or exogenous GH, as higher concentrations of GHR antagonists are required to inhibit its actions. This may reflect the fact that autocrine GH is thought to act at intracellular receptors directly after synthesis, in compartments not readily accessible to endocrine (or exogenous) GH. The roles and actions of extrapituitary GH in cancer may therefore differ from those of pituitary GH. The possibility that GH may be expressed and act in glioma tumors was therefore examined by immunohistochemistry. These results demonstrate, for the first time, the presence of abundant GH- and GH receptor (GHR-) immunoreactivity in glioma, in which they were co-localized in cytoplasmic but not nuclear compartments. These results demonstrate that glioma differs from most cancers in lacking nuclear GHRs, but GH is nevertheless likely to have autocrine or paracrine actions in the induction and progression of glioma.

  13. Knock-down of ZBED6 in insulin-producing cells promotes N-cadherin junctions between beta-cells and neural crest stem cells in vitro

    PubMed Central

    Wang, Xuan; Xie, Beichen; Qi, Yu; Wallerman, Ola; Vasylovska, Svitlana; Andersson, Leif; Kozlova, Elena Nickolaevna; Welsh, Nils

    2016-01-01

    The role of the novel transcription factor ZBED6 for the adhesion/clustering of insulin-producing mouse MIN6 and βTC6 cells was investigated. Zbed6-silencing in the insulin producing cells resulted in increased three-dimensional cell-cell clustering and decreased adhesion to mouse laminin and human laminin 511. This was paralleled by a weaker focal adhesion kinase phosphorylation at laminin binding sites. Zbed6-silenced cells expressed less E-cadherin and more N-cadherin at cell-to-cell junctions. A strong ZBED6-binding site close to the N-cadherin gene transcription start site was observed. Three-dimensional clustering in Zbed6-silenced cells was prevented by an N-cadherin neutralizing antibody and by N-cadherin knockdown. Co-culture of neural crest stem cells (NCSCs) with Zbed6-silenced cells, but not with control cells, stimulated the outgrowth of NCSC processes. The cell-to-cell junctions between NCSCs and βTC6 cells stained more intensely for N-cadherin when Zbed6-silenced cells were co-cultured with NCSCs. We conclude that ZBED6 decreases the ratio between N- and E-cadherin. A lower N- to E-cadherin ratio may hamper the formation of three-dimensional beta-cell clusters and cell-to-cell junctions with NCSC, and instead promote efficient attachment to a laminin support and monolayer growth. Thus, by controlling beta-cell adhesion and cell-to-cell junctions, ZBED6 might play an important role in beta-cell differentiation, proliferation and survival. PMID:26750727

  14. Cytokine induction of Fas gene expression in insulin-producing cells requires the transcription factors NF-kappaB and C/EBP.

    PubMed

    Darville, M I; Eizirik, D L

    2001-08-01

    Fas-mediated cell death may play a role in the autoimmune destruction of pancreatic beta-cells in type 1 diabetes. beta-Cells do not express Fas under physiological conditions, but Fas mRNA and protein are induced in cytokine-exposed mouse and human islets, rendering the beta-cells susceptible to Fas ligand-induced apoptosis. The aim of the present study was to investigate the molecular regulation of Fas by cytokines in rat beta-cells and in insulin-producing RINm5F cells. Fas mRNA expression was increased 15-fold in fluorescence-activated cell sorting-purified rat beta-cells exposed to interleukin (IL)-1beta, whereas gamma-interferon had no effect. Transfection experiments of rat Fas promoter-luciferase reporter constructs into purified rat beta-cells and RINm5F insulinoma cells identified an IL-1beta-responsive region between nucleotides -223 and -54. Inactivation of two adjacent NF-kappaB and C/EBP sites in this region abolished IL-1beta-induced Fas promoter activity in RINm5F cells. Binding of NF-kappaB and C/EBP factors to their respective sites was confirmed by gel shift assays. In cotransfection experiments, NF-kappaB p65 transactivated the Fas promoter. NF-kappaB p50 and C/EBPbeta overexpression had no effect by themselves on the Fas promoter activity, but when cotransfected with p65, each factor inhibited transactivation by p65. These results suggest a critical role for NF-kappaB and C/EBP factors in cytokine-regulation of Fas expression in insulin-producing cells.

  15. Ultrasound-assisted extraction of gymnemic acids from Gymnema sylvestre leaves and its effect on insulin-producing RINm-5 F β cell lines.

    PubMed

    Sheoran, Sunita; Panda, Bibhu Prasad; Admane, Prasad S; Panda, Amulya Kumar; Wajid, Saima

    2015-01-01

    Gymnema sylvestre is an important anti-diabetic medicinal plant, hence it is necessary to study the effective extraction of its active medicinal components. To develop an efficient ultrasound-assisted extraction method for anti-diabetic gymnemic acids from Gymnema sylvestre leaves and measure their effect on insulin-producing RINm-5 F β cells. Box-Behnken's design and response surface methodology was applied to the ultrasound-assisted extraction of gymnemic acids from Gymnema sylvestre leaves. Analysis of gymnemic acids was carried out by high-performance thin-layer chromatography by converting total gymnemic acids into gymnemagenin by alkali hydrolysis. Effects of extracts on insulin production were tested on cultured, insulin-producing RINm-5 F β cell lines. The point prediction tool of the design expert software predicted 397.9 mg gymnemic acids per gram of the defatted G. sylvestre leaves using ultrasound-assisted extraction, with ethanol at 60 °C for 30 min. The predicted condition shows 93.34% validity under experimental conditions. The ultrasound-assisted extract caused up to about four times more insulin production from RINm-5 F β cells than extracts obtained from Soxhlet extraction. Response surface methodology was successfully used to improve the extraction of gymnemic acids from G. sylvestre leaves. The ultrasound-assisted extraction process may be a better alternative to prepare such herbal extracts because it saves time and may prevent excess degradation of the target analytes. Copyright © 2014 John Wiley & Sons, Ltd.

  16. Generation of functional insulin-producing cells from neonatal porcine liver-derived cells by PDX1/VP16, BETA2/NeuroD and MafA.

    PubMed

    Ham, Dong-Sik; Shin, Juyoung; Kim, Ji-Won; Park, Heon-Seok; Cho, Jae-Hyoung; Yoon, Kun-Ho

    2013-01-01

    Surrogate β-cells derived from stem cells are needed to cure type 1 diabetes, and neonatal liver cells may be an attractive alternative to stem cells for the generation of β-cells. In this study, we attempted to generate insulin-producing cells from neonatal porcine liver-derived cells using adenoviruses carrying three genes: pancreatic and duodenal homeobox factor1 (PDX1)/VP16, BETA2/NeuroD and v-maf musculo aponeurotic fibrosarcoma oncogene homolog A (MafA), which are all known to play critical roles in pancreatic development. Isolated neonatal porcine liver-derived cells were sequentially transduced with triple adenoviruses and grown in induction medium containing a high concentration of glucose, epidermal growth factors, nicotinamide and a low concentration of serum following the induction of aggregation for further maturation. We noted that the cells displayed a number of molecular characteristics of pancreatic β-cells, including expressing several transcription factors necessary for β-cell development and function. In addition, these cells synthesized and physiologically secreted insulin. Transplanting these differentiated cells into streptozotocin-induced immunodeficient diabetic mice led to the reversal of hyperglycemia, and more than 18% of the cells in the grafts expressed insulin at 6 weeks after transplantation. These data suggested that neonatal porcine liver-derived cells can be differentiated into functional insulin-producing cells under the culture conditions presented in this report and indicated that neonatal porcine liver-derived cells (NPLCs) might be useful as a potential source of cells for β-cell replacement therapy in efforts to cure type I diabetes.

  17. Effect of zinc binding residues in growth hormone (GH) and altered intracellular zinc content on regulated GH secretion.

    PubMed

    Petkovic, Vibor; Miletta, Maria Consolata; Eblé, Andrée; Iliev, Daniel I; Binder, Gerhard; Flück, Christa E; Mullis, Primus E

    2013-11-01

    Endocrine cells store hormones in concentrated forms (aggregates) in dense-core secretory granules that are released upon appropriate stimulation. Zn(2+) binding to GH through amino acid residues His18, His21, and Glu174 are essential for GH dimerization and might mediate its aggregation and storage in secretory granules. To investigate whether GH-1 gene mutations at these positions interfere with this process, GH secretion and intracellular production were analyzed in GC cells (rat pituitary cell line) transiently expressing wt-GH and/or GH Zn mutant (GH-H18A-H21A-E174A) in forskolin-stimulated vs nonstimulated conditions. Reduced secretion of the mutant variant (alone or coexpressed with wt-GH) compared with wt-GH after forskolin stimulation was observed, whereas an increased intracellular accumulation of GH Zn mutant vs wt-GH correlates with its altered extracellular secretion. Depleting Zn(2+) from culture medium using N,N,N',N'-tetrakis(2-pyridylemethyl)ethylenediamine, a high-affinity Zn(2+) chelator, led to a significant reduction of the stimulated wt-GH secretion. Furthermore, externally added Zn(2+) to culture medium increased intracellular free Zn(2+) levels and recovered wt-GH secretion, suggesting its direct dependence on free Zn(2+) levels after forskolin stimulation. Confocal microscopy analysis of the intracellular secretory pathway of wt-GH and GH Zn mutant indicated that both variants pass through the regulated secretory pathway in a similar manner. Taken together, our data support the hypothesis that loss of affinity of GH to Zn(2+) as well as altering intracellular free Zn(2+) content may interfere with normal GH dimerization (aggregation) and storage of the mutant variant (alone or with wt-GH), which could possibly explain impaired GH secretion.

  18. GH/STAT5 signaling during the growth period in livers of mice overexpressing GH.

    PubMed

    Martinez, Carolina S; Piazza, Verónica G; Díaz, María E; Boparai, Ravneet K; Arum, Oge; Ramírez, María C; González, Lorena; Becú-Villalobos, Damasia; Bartke, Andrzej; Turyn, Daniel; Miquet, Johanna G; Sotelo, Ana I

    2015-04-01

    GH/STAT5 signaling is desensitized in the liver in adult transgenic mice overexpressing GH; however, these animals present greater body size. To assess whether the STAT5 pathway is active during the growth period in the liver in these animals, and how signaling modulators participate in this process, growing transgenic mice and normal siblings were evaluated. STAT5 does not respond to an acute GH-stimulus, but displays higher basal phosphorylation in the livers of growing GH-overexpressing mice. GH receptor and the positive modulators glucocorticoid receptor and HNF1 display greater abundance in transgenic animals, supporting the activity of STAT5. The negative modulators cytokine-induced suppressor and PTP1B are increased in GH-overexpressing mice. The suppressors SOCS2 and SOCS3 exhibit higher mRNA levels in transgenic mice but lower protein content, indicating that they are being actively degraded. Therefore, STAT5 signaling is increased in the liver in GH-transgenic mice during the growth period, with a balance between positive and negative effectors resulting in accelerated but controlled growth.

  19. Reduced microvascular perfusion and reactivity in adult GH deficient patients is restored by GH replacement.

    PubMed

    Hána, V; Prázný, M; Marek, J; Skrha, J; Justová, V

    2002-09-01

    An increased cardiovascular risk and mortality in hypopituitary patients receiving conventional hormonal treatment without GH replacement have been shown in several studies. Various atherogenic risk factors including endothelial dysfunction - an early event in the atherogenesis - are more expressed in adults with GH-deficiency (GHD). Changes in microcirculation and vascular reactivity could represent an early marker of developing vascular changes. To evaluate the microcirculation and vascular reactivity in a GHD state before and during GH replacement. SUBJECTS, METHODS AND DESIGN: Thirteen adult patients (ten men, mean age 40+/-9 years) with severe GHD were studied. The skin microvascular perfusion and reactivity were measured by laser-Doppler flowmetry on the forearm. Two dynamic tests for vascular perfusion and reactivity were used - postocclusive reactive hyperemia (PORH) and thermal hyperemia (TH) at 44 degrees C. Measurements were performed before and after 6 and 12 months on GH replacement with a dose of GH that normalized IGF-I serum levels. The parameters of tissue perfusion and vascular reactivity measured in GHD were compared with values during GH treatment and with the results of the control group. Peak flow during TH in GHD patients was significantly reduced before GH treatment when compared with healthy subjects (means+/-s.e.m., 68+/-6.6 vs 111+/-8.3 perfusion units (PU), P<0.001) and normalized on GH treatment (109+/-12.7 PU). The velocity of perfusion increase during TH before treatment was significantly reduced in GHD as well (0.84+/-0.07 vs 1.53+/-0.19 PU/s, P<0.03) and normalized on GH treatment (1.38+/-0.24 PU/s). The PORH was also significantly reduced in GHD compared with controls (PORH(max) 414+/-63 vs 528+/-58%, P<0.05) and during GH treatment was restored to values not different from controls (642+/-86%, P=NS). Skin microcirculation and vascular reactivity measured by laser-Doppler flowmetry is significantly reduced in GHD adults and is

  20. 48 CFR Appendixes G-H to Chapter 7 - [Reserved

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 5 2010-10-01 2010-10-01 false G Appendixes G-H to Chapter 7 Federal Acquisition Regulations System AGENCY FOR INTERNATIONAL DEVELOPMENT Appendixes G-H to Chapter 7 ...

  1. 48 CFR Appendixes G-H to Chapter 7 - [Reserved

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 5 2011-10-01 2011-10-01 false G Appendixes G-H to Chapter 7 Federal Acquisition Regulations System AGENCY FOR INTERNATIONAL DEVELOPMENT Appendixes G-H to Chapter 7 ...

  2. Estradiol Regulates GH Releasing-Peptide's Interactions with GH-Releasing Hormone and Somatostatin in Postmenopausal Women

    PubMed Central

    Norman, Catalina; Rollene, Nanette L.; Erickson, Dana; Miles, John M.; Bowers, Cyril Y.; Veldhuis, Johannes D.

    2013-01-01

    Objective Estrogen stimulates pulsatile secretion of growth hormone (GH), albeit via mechanisms that are largely unknown. An untested hypothesis is that estradiol (E2) drives GH secretion by amplifying interactions among GH-releasing hormone (GHRH), somatostatin (SS) and GH-releasing peptide (GHRP). Design The design comprised double-blind randomized prospective administration of transdermal E2 vs placebo to healthy postmenopausal women (N=24) followed by pulsatile GHRH or SS infusions for 13 hr overnight with or without continuous GHRP-2 stimulation. Methods Endpoints were mean GH concentration, deconvolved GH secretion, and GH ApEn (a regularity measure). Results By generalized ANOVA models, E2 vs placebo supplementation: (1) augmented mean (13-hr) GH concentrations (P=0.023), GHRH-induced pulsatile GH secretion over the first 3.0 hr (P=0.0085) and pulsatile GH secretion over the next 10 hr (P=0.054); (2) increased GHRP- (P=0.022) and SS- (P<0.001) modulated GH ApEn; and (3) did not amplify GHRH/GHRP synergy on pulsatile GH secretion. By linear regression, E2 concentrations correlated positively with GH secretion during GHRP-2 infusion (P=0.022), whereas BMI correlated negatively with GH secretion during GHRH (P=0.006) and combined GHRH/GHRP (P=0.015) stimulation. E2 and BMI jointly determined triple (combined L-arginine, GHRH, GHRP-2) stimulation of GH secretion after saline (R2=0.44, P=0.003) and pulsatile GHRH (R2=0.39, P=0.013) infusions. Conclusion In summary, in postmenopausal individuals, E2 supplementation augments the amount (mass) and alters the pattern (regularity) of GH secretion via interactions among GHRH, SS, GHRP, and BMI. These outcomes introduce a more complex model of E2 supplementation in coordinating GH secretion in aging women. PMID:24114435

  3. Growth hormone (GH) and GH-releasing hormone (GHRH): Co-localization and action in the chicken testis.

    PubMed

    Martínez-Moreno, Carlos G; López-Marín, Luz M; Carranza, Martha; Giterman, Daniel; Harvey, Steve; Arámburo, Carlos; Luna, Maricela

    2014-04-01

    Growth hormone (GH) gene expression is not confined to the pituitary gland and occurs in many extrapituitary tissues, including the chicken testis. The regulation and function of GH in extrapituitary tissues is, however, largely unknown. The possibility that chicken testicular GH might be regulated by GH-releasing hormone (GHRH), as in the avian pituitary gland, was investigated in the present study. GHRH co-localized with GH in the germinal epithelium and in interstitial zones within the chicken testes, particularly in the spermatogonia and spermatocytes. In testicular cell cultures, exogenous human GHRH1-44 induced (at 1, 10 and 100nM) a dose-related increase in GH release. Western blot analysis showed a heterogeneous pattern in the GH moieties released during GHRH stimulation. 26kDa monomer GH was the most abundant moiety under basal conditions, but 15 and 17kDa isoforms were more abundant after GHRH stimulation. GHRH treatment also increased the abundance of PCNA (proliferating cell nuclear antigen) immunoreactivity in the testes. This may have been GH-mediated, since exogenous GH similarly increased the incorporation of ((3)H)-thymidine into cultured testicular cells and increased their metabolic activity, as determined by increased MTT reduction. Furthermore, GH and GHRH immunoneutralization blocked GHRH-stimulated proliferative activity. In summary, these results indicate that GHRH stimulates testicular GH secretion in an autocrine or paracrine manner. Data also demonstrate proliferative actions of GHRH on testicular cell number and suggest that this action is mediated by local GH production.

  4. Evaluation of growth hormone (GH) action in mice: discovery of GH receptor antagonists and clinical indications.

    PubMed

    Kopchick, John J; List, Edward O; Kelder, Bruce; Gosney, Elahu S; Berryman, Darlene E

    2014-04-05

    The discovery of a growth hormone receptor antagonist (GHA) was initially established via expression of mutated GH genes in transgenic mice. Following this discovery, development of the compound resulted in a drug termed pegvisomant, which has been approved for use in patients with acromegaly. Pegvisomant treatment in a dose dependent manner results in normalization of IGF-1 levels in most patients. Thus, it is a very efficacious and safe drug. Since the GH/IGF-1 axis has been implicated in the progression of several types of cancers, many have suggested the use of pegvisomant as an anti-cancer therapeutic. In this manuscript, we will review the use of mouse strains that possess elevated or depressed levels of GH action for unraveling many of GH actions. Additionally, we will describe experiments in which the GHA was discovered, review results of pegvisomant's preclinical and clinical trials, and provide data suggesting pegvisomant's therapeutic value in selected types of cancer.

  5. Metabolomics: a tool for the diagnosis of GH deficiency and for monitoring GH replacement?

    PubMed

    Höybye, Charlotte; Wahlström, Erik; Tollet-Egnell, Petra; Norstedt, Gunnar

    2014-12-01

    The diagnostic value of insulin-like growth factor 1 (IGF1) for GH deficiency (GHD) in adults is not optimal. Molecular profiling could be used for biomarker discovery. The aim of this pilot study was to compare the serum metabolome between GHD patients and healthy controls, and identification of potential markers for diagnosis and/or for individual GH dosing. A total of ten patients with GHD, median age of 55 years and BMI of 27 kg/m(2), were compared with ten healthy age- and gender-matched controls. The serum metabolic profiles were generated using gas chromatography-coupled mass spectroscopy on fasting samples taken in the morning from the controls and at baseline and during 6 months of GH replacement in the patients with GHD. The difference in low-molecular weight compounds (LMC) distinguished the healthy controls from GHD patients. Among 285 measured metabolites, 13 were identified as being most important in differentiating GHD patients from controls. Of these, 11 could not be structurally annotated but many were classified as lipids. The difference in the LMC pattern persisted despite normalisation of IGF1 following GH replacement. GH replacement increased the levels of specific fatty acid compounds and decreased the levels of certain amino acids. No metabolite changed in response to GH treatment, to the same extent as IGF1. The measurement of 285 metabolites resulted in a unique pattern in GHD, but changes in the metabolite patterns during GH treatment were limited. The utility of metabolomics to find new markers in GHD and GH replacement remains to be further elucidated.

  6. Expression and function of chicken bursal growth hormone (GH).

    PubMed

    Luna, Maricela; Rodríguez-Méndez, Adriana Jheny; Luna-Acosta, José Luis; Carranza, Martha; Arámburo, Carlos

    2013-09-01

    Growth hormone (GH) has several effects on the immune system. Our group has shown that GH is produced in the chicken bursa of Fabricius (BF) where it may act as an autocrine/paracrine modulator that participates in B-cell differentiation and maturation. The time course of GH mRNA and protein expression in the BF suggests that GH may be involved in development and involution of the BF, since GH is known to be present mainly in B lymphocytes and epithelial cells. In addition, as GH is anti-apoptotic in other tissues, we assessed the possibility that GH promotes cell survival in the BF. This work focused on determining the mechanism by which GH can inhibit apoptosis of B cells and if the PI3K/Akt pathway is activated. Bursal cell cultures were treated with a range of GH concentrations (0.1-100nM). The addition of 10nM GH significantly increased viability (16.7±0.6%) compared with the control and decreased caspase-3 activity to 40.6±6.5% of the control. Together, these data indicate that GH is produced locally in the BF and that the presence of exogenous GH in B cell cultures has antiapoptotic effects and increases B cell survival, probably through the PI3k/Akt pathway. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. Inflammatory cytokine signaling in insulin producing beta-cells enhances the colocalization correlation coefficient between L-type voltage-dependent calcium channel and calcium-sensing receptor.

    PubMed

    Parkash, Jai

    2008-08-01

    The immunological processes in type 1 diabetes and metabolic/inflammatory disorder in type 2 diabetes converge on common signaling pathway(s) leading to beta-cell death in these two diseases. The cytokine-mediated beta-cell death seems to be dependent on voltage-dependent calcium channel (VDCC)-mediated Ca2+ entry. The Ca2+ handling molecular networks control the homeostasis of [Ca2+]i in the beta-cell. The activity and membrane density of VDCC are regulated by several mechanisms including G protein-coupled receptors (GPCRs). CaR is a 123-kDa seven transmembrane extracellular Ca2+ sensing protein that belongs to GPCR family C. Tumor necrosis factor-alpha (TNF-alpha), is a cytokine widely known to activate nuclear factor-kappaB (NF-kappaB) transcription in beta-cells. To obtain a better understanding of TNF-alpha-induced molecular interactions between CaR and VDCC, confocal fluorescence measurements were performed on insulin-producing beta-cells exposed to varying concentrations of TNF-alpha and the results are discussed in the light of increased colocalization correlation coefficient. The insulin producing beta-cells were exposed to 5, 10, 20, 30, and 50 ng/ml TNF-alpha for 24 h at 37 degrees . The cells were then immunolabelled with antibodies directed against CaR, VDCC, and NF-kappaB. The confocal fluorescence imaging data showed enhancement in the colocalization correlation coefficient between CaR and VDCC in beta-cells exposed to TNF-alpha thereby indicating increased membrane delimited spatial interactions between these two membrane proteins. TNF-alpha-induced colocalization of VDCC with CaR was inhibited by nimodipine, an inhibitor of L-type VDCC thereby suggesting that VDCC activity is required for spatial interactions with CaR. The 3-D confocal fluorescence imaging data also demonstrated that addition of TNF-alpha to RIN cells led to the translocation of NF-kappaB from the cytoplasm to the nucleus. Such molecular interactions between CaR and VDCC in tissues

  8. A long-acting GH receptor antagonist through fusion to GH binding protein

    PubMed Central

    Wilkinson, Ian R.; Pradhananga, Sarbendra L.; Speak, Rowena; Artymiuk, Peter J.; Sayers, Jon R.; Ross, Richard J.

    2016-01-01

    Acromegaly is a human disease of growth hormone (GH) excess with considerable morbidity and increased mortality. Somatostatin analogues are first line medical treatment but the disease remains uncontrolled in up to 40% of patients. GH receptor (GHR) antagonist therapy is more effective but requires frequent high-dose injections. We have developed an alternative technology for generating a long acting potent GHR antagonist through translational fusion of a mutated GH linked to GH binding protein and tested three candidate molecules. All molecules had the amino acid change (G120R), creating a competitive GHR antagonist and we tested the hypothesis that an amino acid change in the GH binding domain (W104A) would increase biological activity. All were antagonists in bioassays. In rats all antagonists had terminal half-lives >20 hours. After subcutaneous administration in rabbits one variant displayed a terminal half-life of 40.5 hours. A single subcutaneous injection of the same variant in rabbits resulted in a 14% fall in IGF-I over 7 days. In conclusion: we provide proof of concept that a fusion of GHR antagonist to its binding protein generates a long acting GHR antagonist and we confirmed that introducing the W104A amino acid change in the GH binding domain enhances antagonist activity. PMID:27731358

  9. Growth hormone (GH) and atherosclerosis: changes in morphology and function of major arteries during GH treatment.

    PubMed

    Pfeifer, M; Verhovec, R; Zizek, B

    1999-04-01

    Patients with hypopituitarism have increased carotid artery intima-media thickness and reduced arterial distensibility. The effect of 2 years of growth hormone (GH) replacement therapy on these parameters was studied in 11 GH-deficient men (age range, 24-49 years) with hypopituitarism and compared with 12 healthy, age-matched men with no evidence of pituitary or vascular disease. Before treatment the intima-media of the common carotid arteries and the carotid bifurcations were significantly thicker in patients (P < 0.001) than in the control group. Treatment with GH normalized the intima-media thickness of the common carotid artery within 6 months and of the carotid bifurcation within 3 months. The changes in intima-media thickness of the carotid artery were negatively correlated with changes in serum levels of insulin-like growth factor I during treatment. There was a significant improvement in flow-mediated, endothelium-dependent dilation of the brachial artery at 3 months, which was sustained at 6, 18 and 24 months of GH treatment (P < 0.05). Thus, GH replacement therapy in GH-deficient men reverses early morphological and functional atherosclerotic changes in major arteries, and may reduce rates of vascular morbidity and mortality.

  10. GH and IGF1: Roles in Energy Metabolism of Long-Living GH Mutant Mice

    PubMed Central

    Bartke, Andrzej

    2012-01-01

    Of the multiple theories to explain exceptional longevity, the most robust of these has centered on the reduction of three anabolic protein hormones, growth hormone (GH), insulin-like growth factor, and insulin. GH mutant mice live 50% longer and exhibit significant differences in several aspects of energy metabolism as compared with wild-type mice. Mitochondrial metabolism is upregulated in the absence of GH, whereas in GH transgenic mice and dwarf mice treated with GH, multiple aspects of these pathways are suppressed. Core body temperature is markedly lower in dwarf mice, yet whole-body metabolism, as measured by indirect calorimetry, is surprisingly higher in Ames dwarf and Ghr–/– mice compared with normal controls. Elevated adiponectin, a key antiinflammatory cytokine, is also very likely to contribute to longevity in these mice. Thus, several important components related to energy metabolism are altered in GH mutant mice, and these differences are likely critical in aging processes and life-span extension. PMID:22466316

  11. GH safety workshop position paper: A critical appraisal of recombinant human GH therapy in children and adults

    USDA-ARS?s Scientific Manuscript database

    Recombinant human Growth Hormone (rhGH) has been in use for 30 years, and over that time its safety and efficacy in children and adults has been subject to considerable scrutiny. In 2001, a statement from the GH Research Society (GRS) concluded that 'for approved indications, GH is safe'; however, t...

  12. Plasma total homocysteine concentrations in adults with growth hormone (GH) deficiency: effects of GH replacement.

    PubMed

    Lewandowski, Krzysztof C; Murray, Robert D; Drzewoski, J; O'Callaghan, Chris J; Czupryniak, L; Hillhouse, Edward W; Shalet, Stephen M; Randeva, Harpal S

    2003-11-01

    Growth hormone (GH) deficiency is associated with increased cardiovascular morbidity and mortality. GH treatment improves the profile of many cardiovascular risk markers in individuals with GH deficiency (GHD). The aim of the present was to assess whether GH replacement may decrease plasma total homocysteine, an independent cardiovascular risk factor, thus potentially contributing to benefits of GH replacement in adult subjects with GHD. Twenty-five patients (17 female, 8 male), mean age 39-years, with GHD were studied. GH status had been determined by an insulin tolerance test and/or arginine stimulation test. After an overnight fast, plasma insulin, IGF-1, total homocysteine (Hcy), free thyroxine (FT4), creatinine, vitamin B12, and folate were measured at baseline (V1), 3 months (V2) and then at 6 months (V3) on GH treatment. The data were analysed by hierarchical statistical models, univariate and multivariate correlation. GH treatment resulted in an increase in IGF-1 (p<0.001, p<0.001), and insulin (p=0.068, p<0.001), at each visit, respectively. Hcy levels increased from V1 to V2 (7.7+/-0.53 to 9.15+/-0.45 micromol/L; p=0.051), but this was followed by a decline at V3 (to 8.8+/-0.59), so that the overall change of Hcy levels from V1 to V3, once individuals had achieved 'adequate' GH replacement, was no longer significantly different (p=0.090). When separated by gender, at 6 months (V3) there was a small, but significant increase in Hcy in men (p=0.028), but not in women (p=0.58). There was no significant change in B12, folate, free T4 or creatinine levels. Univariate analysis revealed that only B12 and folate showed significant negative relationships with Hcy (B12: parameter= -0.013, p<0.001; folate: parameter=-1.31, p<0.001), but not between Hcy and IGF-1 (p=0.18). In a multiple variable model, both B12 and folate remained significantly negatively associated with plasma total homocysteine (p=0.018; p<0.001, respectively). In this observational study

  13. Association of expression levels of pluripotency/stem cell markers with the differentiation outcome of Wharton's jelly mesenchymal stem cells into insulin producing cells.

    PubMed

    Kassem, Dina H; Kamal, Mohamed M; El-Kholy, Abd El-Latif G; El-Mesallamy, Hala O

    2016-08-01

    Recently, there has been much attention towards generation of insulin producing cells (IPCs) from stem cells, especially from Wharton's jelly mesenchymal stem cells (WJ-MSCs). However, generation of mature IPCs remains a challenge. Assessment of generation of IPCs was usually done by examining β-cell markers, however, assessment of pluripotency/stem cell markers drew less attention. Therefore, the purpose of this study was to investigate the levels of pluripotency/stem cell markers during differentiation of WJ-MSCs into IPCs and the association of these levels with differentiation outcomes. WJ-MSCs were isolated, characterized then induced to differentiate into IPCs using three different protocols namely A, B and C. Differentiated IPCs were assessed by the expression of pluripotency/stem cell markers, together with β-cell markers using qRT-PCR, and functionally by measuring glucose stimulated insulin secretion. Differentiated cells from protocol A showed lowest expression of pluripotency/stem cell markers and relatively best GSIS. However, protocol B showed concomitant expression of pluripotency/stem cell and β-cell markers with relatively less insulin secretion as compared to protocol A. Protocol C failed to generate glucose-responsive IPCs. In conclusion, sustained expression of pluripotency/stem cell markers could be associated with the incomplete differentiation of WJ-MSCs into IPCs. A novel finding for which further investigations are warranted.

  14. Pdx1 and controlled culture conditions induced differentiation of human amniotic fluid-derived stem cells to insulin-producing clusters.

    PubMed

    Chun, So Young; Mack, David L; Moorefield, Emily; Oh, Se Heang; Kwon, Tae Gyun; Pettenati, Mark J; Yoo, James J; Coppi, Paolo De; Atala, Anthony; Soker, Shay

    2015-05-01

    This study investigated the differentiation of human amniotic fluid-derived stem cells (hAFSCs) into insulin-producing clusters in vitro. Adenovirally-delivered mouse Pdx1 (Ad-Pdx1) induced human Pdx1 expression in hAFSCs and enhanced the coordinated expression of downstream β-cell markers. When Ad-Pdx1-transduced hAFSCs were sequentially treated with activin A, bFGF and nicotinamide and the culture plate surface coated with poly-l-ornithine, the expression of islet-associated human mRNAs for Pdx1, Pax6, Ngn3 and insulin was increased. C-peptide ELISA confirmed that Ad-Pdx1-transduced hAFSCs processed and secreted insulin in a manner consistent with that pathway in pancreatic β-cells. To sustain the β-cell-like phenotype and investigate the effect of three-dimensional (3D) conformation on the differentiation of hAFSCs, Pdx1-transduced cells were encapsulated in alginate and cultured long-term under serum-free conditions. Over 2 weeks, partially differentiated hAFSC clusters increased in size and increased insulin secretion. Taken together, these data demonstrate that ectopic Pdx1 expression initiates pancreatic differentiation in hAFSCs and that a β-cell-like phenotype can be augmented by culture conditions that mimic the stromal components and 3D geometry associated with pancreatic islets.

  15. A feasibility study of an in vitro differentiation potential toward insulin-producing cells by dental tissue-derived mesenchymal stem cells.

    PubMed

    Sawangmake, Chenphop; Nowwarote, Nunthawan; Pavasant, Prasit; Chansiripornchai, Piyarat; Osathanon, Thanaphum

    2014-09-26

    Dental tissue-derived mesenchymal stem cells have been proposed as an alternative source for mesenchymal stem cells. Here, we investigated the differentiation ability toward insulin producing cells (IPCs) of human dental pulp stem cells (hDPSCs) and human periodontal ligament stem cells (hPDLSCs). These cells expressed mesenchymal stem cell surface markers and were able to differentiate toward osteogenic and adipogenic lineages. Upon 3 step-IPCs induction, hDPSCs exhibited more colony number than hPDLSCs. The mRNA upregulation of pancreatic endoderm/islet markers was noted. However, the significant increase was noted only for PDX-1, NGN-3, and INSULIN mRNA expression of hDPSCs. The hDPSCs-derived IPCs expressed PRO-INSULIN and released C-PEPTIDE upon glucose stimulation in dose-dependent manner. After IPCs induction, the Notch target, HES-1 and HEY-1, mRNA expression was markedly noted. Notch inhibition during the last induction step or throughout the protocol disturbed the ability of C-PEPTIDE release upon glucose stimulation. The results suggested that hDPSCs had better differentiation potential toward IPCs than hPDLSCs. In addition, the Notch signalling might involve in the differentiation regulation of hDPSCs into IPCs. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Differentiation of Human Bone Marrow-Derived Mesenchymal Stem Cells into Insulin-Producing Cells: Evidence for Further Maturation In Vivo.

    PubMed

    Gabr, Mahmoud M; Zakaria, Mahmoud M; Refaie, Ayman F; Khater, Sherry M; Ashamallah, Sylvia A; Ismail, Amani M; El-Halawani, Sawsan M; Ghoneim, Mohamed A

    2015-01-01

    The aim of this study was to provide evidence for further in vivo maturation of insulin-producing cells (IPCs) derived from human bone marrow-derived mesenchymal stem cells (HBM-MSCs). HBM-MSCs were obtained from three insulin-dependent type 2 diabetic volunteers. Following expansion, cells were differentiated according to a trichostatin-A/GLP protocol. One million cells were transplanted under the renal capsule of 29 diabetic nude mice. Blood glucose, serum human insulin and c-peptide levels, and glucose tolerance curves were determined. Mice were euthanized 1, 2, 4, or 12 weeks after transplantation. IPC-bearing kidneys were immunolabeled, number of IPCs was counted, and expression of relevant genes was determined. At the end of in vitro differentiation, all pancreatic endocrine genes were expressed, albeit at very low values. The percentage of IPCs among transplanted cells was small (≤3%). Diabetic animals became euglycemic 8 ± 3 days after transplantation. Thereafter, the percentage of IPCs reached a mean of ~18% at 4 weeks. Relative gene expression of insulin, glucagon, and somatostatin showed a parallel increase. The ability of the transplanted cells to induce euglycemia was due to their further maturation in the favorable in vivo microenvironment. Elucidation of the exact mechanism(s) involved requires further investigation.

  17. Two distinct mechanisms mediate the involvement of bone marrow cells in islet remodeling: neogenesis of insulin-producing cells and support of islet recovery.

    PubMed

    Iskovich, Svetlana; Goldenberg-Cohen, Nitza; Sadikov, Tamila; Yaniv, Isaac; Stein, Jerry; Askenasy, Nadir

    2015-01-01

    We have recently reported that small-sized bone marrow cells (BMCs) isolated by counterflow centrifugal elutriation and depleted of lineage markers (Fr25lin(-)) have the capacity to differentiate and contribute to regeneration of injured islets. In this study, we assess some of the characteristics of these cells compared to elutriated hematopoietic progenitors (R/O) and whole BMCs in a murine model of streptozotocin-induced chemical diabetes. The GFP(bright)CD45(+) progeny of whole BMCs and R/O progenitors progressively infiltrate the pancreas with evolution of donor chimerism; are found at islet perimeter, vascular, and ductal walls; and have a modest impact on islet recovery from injury. In contrast, Fr25lin(-) cells incorporate in the islets, convert to GFP(dim)CD45(-)PDX-1(+) phenotypes, produce proinsulin, and secrete insulin with significant contribution to stabilization of glucose homeostasis. The elutriated Fr25lin(-) cells express low levels of CD45 and are negative for SCA-1 and c-kit, as removal of cells expressing these markers did not impair conversion to produce insulin. BMCs mediate two synergistic mechanisms that contribute to islet recovery from injury: support of islet remodeling by hematopoietic cells and neogenesis of insulin-producing cells from stem cells.

  18. The robustness of diagnostic tests for GH deficiency in adults.

    PubMed

    Andersen, Marianne

    2015-06-01

    Since the 1970s, GH treatment has been an important tool in paediatric endocrinology for the management of growth retardation. It is now accepted that adults with severe GH deficiency (GHD) demonstrate impaired physical and psychological well-being and may benefit from replacement therapy with recombinant human GH. There is, however, an ongoing debate on how to diagnose GHD, especially in adults. A GH response below the cut-off limit of a GH-stimulation test is required in most cases for establishing GHD in adults. No 'gold standard' GH-stimulation test exists, but some GH stimulation tests may be more robust to variations in patient characteristics such as age and gender, as well as to pre-test conditions like heat exposure due to a hot bath or bicycling. However, body mass index (BMI) is negatively associated with GH-responses to all available GH-stimulation tests and glucocorticoid treatment, including conventional substitution therapy, influences the GH-responses. Recently, the role of IGF-I measurements in the clinical decision making has been discussed. The aim of this review is to discuss the available GH-stimulation tests. In this author's opinion, tests which include growth-hormone-releasing hormone (GHRH) tend to be more potent and robust, especially the GHRH+arginine test which has been proven to be of clinical use. In contrast, the insulin tolerance test (ITT) and the glucagon test appear to have too many drawbacks.

  19. Estradiol regulates GH-releasing peptide's interactions with GH-releasing hormone and somatostatin in postmenopausal women.

    PubMed

    Norman, Catalina; Rollene, Nanette L; Erickson, Dana; Miles, John M; Bowers, Cyril Y; Veldhuis, Johannes D

    2014-01-01

    Estrogen stimulates pulsatile secretion of GH, via mechanisms that are largely unknown. An untested hypothesis is that estradiol (E₂) drives GH secretion by amplifying interactions among GH-releasing hormone (GHRH), somatostatin (SS), and GH-releasing peptide (GHRP). The design comprised double-blind randomized prospective administration of transdermal E₂ vs placebo to healthy postmenopausal women (n=24) followed by pulsatile GHRH or SS infusions for 13 h overnight with or without continuous GHRP2 stimulation. End points were mean concentrations, deconvolved secretion, and approximate entropy (ApEn; a regularity measure) of GH. By generalized ANOVA models, it was observed that E₂ vs placebo supplementation: i) augmented mean (13-h) GH concentrations (P=0.023), GHRH-induced pulsatile GH secretion over the first 3 h (P=0.0085) and pulsatile GH secretion over the next 10 h (P=0.054); ii) increased GHRP-modulated (P=0.022) and SS-modulated (P<0.001) GH ApEn; and iii) did not amplify GHRH/GHRP synergy during pulsatile GH secretion. By linear regression, E₂ concentrations were found to be positively correlated with GH secretion during GHRP2 infusion (P=0.022), whereas BMI was found to be negatively correlated with GH secretion during GHRH (P=0.006) and combined GHRH/GHRP (P=0.015) stimulation. E₂ and BMI jointly determined triple (combined l-arginine, GHRH, and GHRP2) stimulation of GH secretion after saline (R²=0.44 and P=0.003) and pulsatile GHRH (R²=0.39 and P=0.013) infusions. In summary, in postmenopausal women, E₂ supplementation augments the amount (mass) and alters the pattern (regularity) of GH secretion via interactions among GHRH, SS, GHRP, and BMI. These outcomes introduce a more complex model of E₂ supplementation in coordinating GH secretion in aging women.

  20. Insulin and GH signaling in human skeletal muscle in vivo following exogenous GH exposure: impact of an oral glucose load.

    PubMed

    Krusenstjerna-Hafstrøm, Thomas; Madsen, Michael; Vendelbo, Mikkel H; Pedersen, Steen B; Christiansen, Jens S; Møller, Niels; Jessen, Niels; Jørgensen, Jens O L

    2011-05-03

    GH induces acute insulin resistance in skeletal muscle in vivo, which in rodent models has been attributed to crosstalk between GH and insulin signaling pathways. Our objective was to characterize time course changes in signaling pathways for GH and insulin in human skeletal muscle in vivo following GH exposure in the presence and absence of an oral glucose load. Eight young men were studied in a single-blinded randomized crossover design on 3 occasions: 1) after an intravenous GH bolus 2) after an intravenous GH bolus plus an oral glucose load (OGTT), and 3) after intravenous saline plus OGTT. Muscle biopsies were taken at t = 0, 30, 60, and 120. Blood was sampled at frequent intervals for assessment of GH, insulin, glucose, and free fatty acids (FFA). GH increased AUC(glucose) after an OGTT (p<0.05) without significant changes in serum insulin levels. GH induced phosphorylation of STAT5 independently of the OGTT. Conversely, the OGTT induced acute phosphorylation of the insulin signaling proteins Akt (ser(473) and thr(308)), and AS160.The combination of OGTT and GH suppressed Akt activation, whereas the downstream expression of AS160 was amplified by GH. WE CONCLUDED THE FOLLOWING: 1) A physiological GH bolus activates STAT5 signaling pathways in skeletal muscle irrespective of ambient glucose and insulin levels 2) Insulin resistance induced by GH occurs without a distinct suppression of insulin signaling proteins 3) The accentuation of the glucose-stimulated activation of AS 160 by GH does however indicate a potential crosstalk between insulin and GH. ClinicalTrials.gov NCT00477997.

  1. Sequence polymorphisms at the growth hormone GH1/GH2-N and GH2-Z gene copies and their relationship with dairy traits in domestic sheep (Ovis aries).

    PubMed

    Vacca, G M; Dettori, M L; Balia, F; Luridiana, S; Mura, M C; Carcangiu, V; Pazzola, M

    2013-09-01

    The purpose was to analyze the growth hormone GH1/GH2-N and GH2-Z gene copies and to assess their possible association with milk traits in Sarda sheep. Two hundred multiparous lactating ewes were monitored. The two gene copies were amplified separately and each was used as template for a nested PCR, to investigate single strand conformation polymorphism (SSCP) of the 5'UTR, exon-1, exon-5 and 3'UTR DNA regions. SSCP analysis revealed marked differences in the number of polymorphic patterns between the two genes. Sequencing revealed five nucleotide changes at the GH1/GH2-N gene. Five nucleotide changes occurred at the GH2-Z gene: one was located in exon-5 (c.556G > A) and resulted in a putative amino acid substitution G186S. All the nucleotide changes were copy-specific, except c.*30delT, which was common to both GH1/GH2-N and GH2-Z. Variability in the promoter regions of each gene might have consequences on the expression level, due to the involvement in potential transcription factor binding sites. Both gene copies influenced milk yield. A correlation with milk protein and casein content was also evidenced. These results may have implications that make them useful for future breeding strategies in dairy sheep breeding.

  2. Growth hormone (GH) treatment reverses early atherosclerotic changes in GH-deficient adults.

    PubMed

    Pfeifer, M; Verhovec, R; Zizek, B; Prezelj, J; Poredos, P; Clayton, R N

    1999-02-01

    Hypopituitary patients have increased mortality from vascular disease, and in these patients, early markers of atherosclerosis [increased carotid artery intima-media thickness (IMT) and reduced distensibility] are more prevalent. As GH replacement can reverse some risk factors of atherosclerosis, the present study examined the effect of GH treatment on morphological and functional changes in the carotid and brachial arteries of GH-deficient (GHD) adults. Eleven GHD hypopituitary men (24-49 yr old) were treated with recombinant human GH (0.018 U/kg BW x day) for 18 months. IMT of the common carotid artery (CCA) and the carotid bifurcation (CB), and flow-mediated endothelium-dependent dilation (EDD) of the brachial artery were measured by B mode ultrasound before and at 3, 6, 12, and 18 months of treatment, and values were compared with those in 12 age-matched control men. Serum concentrations of lipids, lipoprotein(a), insulin-like growth factor I (IGF-I), and IGF-binding protein-3 (IGFBP-3) were also measured. In GHD men before treatment the IMTs of the CCA [mean(SD), 0.67(0.05) mm] and CB [0.75(0.04) mm] were significantly greater (P < 0.001) than those in control men [0.52(0.07) and 0.65(0.07) mm, respectively]. GH treatment normalized the IMT of the CCA by 6 months [0.53(0.04) mm] and that of the CB by 3 months [0.68(0.05) mm]. The IMT of the carotid artery (CCA and CB) was negatively correlated with serum IGF-I (r = -0.53; P < 0.0001). There was a significant improvement in flow-mediated EDD of the brachial artery at 3 months, which was sustained at 6 and 18 months of GH treatment (P < 0.05). GH treatment increased high density lipoprotein cholesterol at 3 and 6 months, but did not reduce total or low density lipoprotein cholesterol and was without effect on lipoprotein(a). There was no correlation between plasma lipids and changes in IMT or EDD of the arteries examined. In conclusion, GH treatment of hypopituitary GHD men reverses early morphological and

  3. A long-acting GH receptor antagonist through fusion to GH binding protein.

    PubMed

    Wilkinson, Ian R; Pradhananga, Sarbendra L; Speak, Rowena; Artymiuk, Peter J; Sayers, Jon R; Ross, Richard J

    2016-10-12

    Acromegaly is a human disease of growth hormone (GH) excess with considerable morbidity and increased mortality. Somatostatin analogues are first line medical treatment but the disease remains uncontrolled in up to 40% of patients. GH receptor (GHR) antagonist therapy is more effective but requires frequent high-dose injections. We have developed an alternative technology for generating a long acting potent GHR antagonist through translational fusion of a mutated GH linked to GH binding protein and tested three candidate molecules. All molecules had the amino acid change (G120R), creating a competitive GHR antagonist and we tested the hypothesis that an amino acid change in the GH binding domain (W104A) would increase biological activity. All were antagonists in bioassays. In rats all antagonists had terminal half-lives >20 hours. After subcutaneous administration in rabbits one variant displayed a terminal half-life of 40.5 hours. A single subcutaneous injection of the same variant in rabbits resulted in a 14% fall in IGF-I over 7 days.

  4. A model of consumers' risk perceptions toward recombinant bovine growth hormone (rbGH): the impact of risk characteristics.

    PubMed

    Grobe, D; Douthitt, R; Zepeda, L

    1999-08-01

    This study estimates the effect risk characteristics, described as outrage factors by Hadden, have on consumers' risk perceptions toward the food-related biotechnology, recombinant bovine growth hormone (rbGH). The outrage factors applicable to milk from rbGH treated herds are involuntary risk exposure, unfamiliarity with the product's production process, unnatural product characteristics, lack of trust in regulator's ability to protect consumers in the marketplace, and consumers' inability to distinguish milk from rbGH treated herds compared to milk from untreated herds. An empirical analysis of data from a national survey of household food shoppers reveals that outrage factors mediate risk perceptions. The results support the inclusion of outrage factors into the risk perception model for the rbGH product, as they add significantly to the explanatory power of the model and therefore reduce bias compared to a simpler model of attitudinal and demographic factors. The study indicates that outrage factors which have a significant impact on risk perceptions are the lack of trust in the FDA as a food-related information source, and perceiving no consumer benefits from farmers' use of rbGH. Communication strategies to reduce consumer risk perceptions therefore could utilize agencies perceived as more trustworthy and emphasize the benefits of rbGH use to consumers.

  5. Marker vaccine potential of a foot-and-mouth disease virus with a partial VP1 G-H loop deletion.

    PubMed

    Fowler, V L; Knowles, N J; Paton, D J; Barnett, P V

    2010-04-26

    Previous work in cattle and pigs demonstrated that protection against foot-and-mouth disease (FMD) could be achieved following vaccination with chimeric foot-and-mouth disease virus (FMDV) vaccines, in which the VP1 G-H loop had been substituted with that from another serotype. This indicated that the VP1 G-H loop may not be essential for the protection of natural hosts against FMDV. If this could be substantiated there would be potential to develop FMD marker vaccines, characterised by the absence of this region. Here, we investigate the serological responses to vaccination with a virus with a partial VP1 G-H loop deletion in order to determine the likelihood of achieving protection and the potential of this virus as a marker vaccine. Inactivated, oil adjuvanted, vaccines, consisting of chemically inactivated virus with or without a partially deleted VP1 G-H loop, were used to immunise cattle. Serum was collected on days 0, 7, 14 and 21 and antibody titres calculated using the virus neutralisation test (VNT) to estimate the likelihood of protection. We predict a good likelihood that cattle vaccinated with a vaccine characterised by a partial VP1 G-H loop would be protected against challenge with the same virus containing the VP1 G-H loop. We also present evidence on the potential of such a construct to act as a marker vaccine, when used in conjunction with a novel serological test.

  6. Plasma GH, IGF-I, and conception rate in cattle treated with low doses of recombinant bovine GH.

    PubMed

    Bilby, C R; Bader, J F; Salfen, B E; Youngquist, R S; Murphy, C N; Garverick, H A; Crooker, B A; Lucy, M C

    1999-05-01

    Blood and uterine concentrations of GH and insulin-like growth factor (IGF)-I are correlated with improved fertility in cattle. We tested incremental doses of a 14-d sustained release recombinant bovine GH (rbGH) to increase blood GH and IGF-I (Experiments 1 and 2). Conception rate after administration of an optimized rbGH dose was also tested (Experiment 3). In Experiment 1, lactating Holstein cows (n = 18) were randomly assigned to receive 0 (n = 5), 100 (n = 5), 200 (n = 5), or 500 (n = 3) mg sc rbGH. Increasing the doses of rbGH was associated with increased serum concentrations of GH and IGF-I. The 100- and 200-mg doses caused an IGF-I release that was below and above, respectively, the perceived optimum response. Therefore, Experiment 2 was designed to test a rbGH dose (167 mg), which was intermediate to the doses tested in Experiment 1. Lactating and nonlactating postpartum beef cows were treated with 0 (n = 9) or 167 (n = 9) mg rbGH at insemination. Plasma concentrations of GH and IGF-I were greater in rbGH-treated cows than in controls. Lactating cows had initial IGF-I concentrations that were lower than nonlactating cows. The 167-mg dose of rbGH increased plasma IGF-I concentrations in lactating cows to the levels of those of nonlactating cows. In Experiment 3, cows and heifers were administered either 0 or 167 mg rbGH at insemination. The conception rate for rbGH-treated and control cows was 54.4 and 49.5% (n = 617), and 46.0 and 46.3% for heifers (n = 1123), respectively. Herd (P<0.01) and parity (P<0.01) affected conception rate, but conception rates for rbGH and control cattle were similar. In summary, low doses of rbGH increased blood GH and restored blood IGF-I concentrations in lactating cows to those of nonlactating cows, but the conception rate in cows and heifers was not affected by administration of 14-d sustained-release rbGH at insemination.

  7. Improved differentiation of umbilical cord blood-derived mesenchymal stem cells into insulin-producing cells by PDX-1 mRNA transfection.

    PubMed

    Van Pham, Phuc; Thi-My Nguyen, Phuoc; Thai-Quynh Nguyen, Anh; Minh Pham, Vuong; Nguyen-Tu Bui, Anh; Thi-Tung Dang, Loan; Gia Nguyen, Khue; Kim Phan, Ngoc

    2014-06-01

    Numerous studies have sought to identify diabetes mellitus treatment strategies with fewer side effects. Mesenchymal stem cell (MSC) therapy was previously considered as a promising therapy; however, it requires the cells to be trans-differentiated into cells of the pancreatic-endocrine lineage before transplantation. Previous studies have shown that PDX-1 expression can facilitate MSC differentiation into insulin-producing cells (IPCs), but the methods employed to date use viral or DNA-based tools to express PDX-1, with the associated risks of insertional mutation and immunogenicity. Thus, this study aimed to establish a new method to induce PDX-1 expression in MSCs by mRNA transfection. MSCs were isolated from human umbilical cord blood and expanded in vitro, with stemness confirmed by surface markers and multipotentiality. MSCs were transfected with PDX-1 mRNA by nucleofection and chemically induced to differentiate into IPCs (combinatorial group). This IPC differentiation was then compared with that of untransfected chemically induced cells (inducer group) and uninduced cells (control group). We found that PDX-1 mRNA transfection significantly improved the differentiation of MSCs into IPCs, with 8.3±2.5% IPCs in the combinatorial group, 3.21±2.11% in the inducer group and 0% in the control. Cells in the combinatorial group also strongly expressed several genes related to beta cells (Pdx-1, Ngn3, Nkx6.1 and insulin) and could produce C-peptide in the cytoplasm and insulin in the supernatant, which was dependent on the extracellular glucose concentration. These results indicate that PDX-1 mRNA may offer a promising approach to produce safe IPCs for clinical diabetes mellitus treatment.

  8. Promoting Long-Term Survival of Insulin-Producing Cell Grafts That Differentiate from Adipose Tissue-Derived Stem Cells to Cure Type 1 Diabetes

    PubMed Central

    Zhang, Shuzi; Dai, Hehua; Wan, Ni; Moore, Yolonda; Dai, Zhenhua

    2011-01-01

    Background Insulin-producing cell clusters (IPCCs) have recently been generated in vitro from adipose tissue-derived stem cells (ASCs) to circumvent islet shortage. However, it is unknown how long they can survive upon transplantation, whether they are eventually rejected by recipients, and how their long-term survival can be induced to permanently cure type 1 diabetes. IPCC graft survival is critical for their clinical application and this issue must be systematically addressed prior to their in-depth clinical trials. Methodology/Principal Findings Here we found that IPCC grafts that differentiated from murine ASCs in vitro, unlike their freshly isolated islet counterparts, did not survive long-term in syngeneic mice, suggesting that ASC-derived IPCCs have intrinsic survival disadvantage over freshly isolated islets. Indeed, β cells retrieved from IPCC syngrafts underwent faster apoptosis than their islet counterparts. However, blocking both Fas and TNF receptor death pathways inhibited their apoptosis and restored their long-term survival in syngeneic recipients. Furthermore, blocking CD40-CD154 costimulation and Fas/TNF signaling induced long-term IPCC allograft survival in overwhelming majority of recipients. Importantly, Fas-deficient IPCC allografts exhibited certain immune privilege and enjoyed long-term survival in diabetic NOD mice in the presence of CD28/CD40 joint blockade while their islet counterparts failed to do so. Conclusions/Significance Long-term survival of ASC-derived IPCC syngeneic grafts requires blocking Fas and TNF death pathways, whereas blocking both death pathways and CD28/CD40 costimulation is needed for long-term IPCC allograft survival in diabetic NOD mice. Our studies have important clinical implications for treating type 1 diabetes via ASC-derived IPCC transplantation. PMID:22216347

  9. Promoting long-term survival of insulin-producing cell grafts that differentiate from adipose tissue-derived stem cells to cure type 1 diabetes.

    PubMed

    Zhang, Shuzi; Dai, Hehua; Wan, Ni; Moore, Yolonda; Dai, Zhenhua

    2011-01-01

    Insulin-producing cell clusters (IPCCs) have recently been generated in vitro from adipose tissue-derived stem cells (ASCs) to circumvent islet shortage. However, it is unknown how long they can survive upon transplantation, whether they are eventually rejected by recipients, and how their long-term survival can be induced to permanently cure type 1 diabetes. IPCC graft survival is critical for their clinical application and this issue must be systematically addressed prior to their in-depth clinical trials. Here we found that IPCC grafts that differentiated from murine ASCs in vitro, unlike their freshly isolated islet counterparts, did not survive long-term in syngeneic mice, suggesting that ASC-derived IPCCs have intrinsic survival disadvantage over freshly isolated islets. Indeed, β cells retrieved from IPCC syngrafts underwent faster apoptosis than their islet counterparts. However, blocking both Fas and TNF receptor death pathways inhibited their apoptosis and restored their long-term survival in syngeneic recipients. Furthermore, blocking CD40-CD154 costimulation and Fas/TNF signaling induced long-term IPCC allograft survival in overwhelming majority of recipients. Importantly, Fas-deficient IPCC allografts exhibited certain immune privilege and enjoyed long-term survival in diabetic NOD mice in the presence of CD28/CD40 joint blockade while their islet counterparts failed to do so. Long-term survival of ASC-derived IPCC syngeneic grafts requires blocking Fas and TNF death pathways, whereas blocking both death pathways and CD28/CD40 costimulation is needed for long-term IPCC allograft survival in diabetic NOD mice. Our studies have important clinical implications for treating type 1 diabetes via ASC-derived IPCC transplantation. © 2011 Zhang et al.

  10. Local renin-angiotensin system regulates the differentiation of mesenchymal stem cells into insulin-producing cells through angiotensin type 2 receptor.

    PubMed

    Sadik, Nermin Abdel-Hamid; Metwally, Nadia Said; Shaker, Olfat Gamil; Soliman, Mahmoud Sanad; Mohamed, Ahmed Abdelaziz; Abdelmoaty, Mai Mohamed

    2017-06-01

    Differentiation of stem cells into insulin-producing cells (IPCs) suitable for therapeutic transplantation offers a desperately needed approach for the diabetic patients. Elucidation of the molecular mechanisms during the differentiation of mesenchymal stem cells (MSCs) into IPCs assists the successful production of IPCs and provides an important insight into the improvement of the role of MSCs as a therapeutic tool for diabetes mellitus (DM). The present study aimed to investigate the role of local renin-angiotensin system (RAS) on MSCs differentiation into IPCs by measuring the expression of local RAS in MSCs during the differentiation into IPCs and assessing the effect of angiotensin type 1 receptor (AT1R) blocker and angiotensin type 2 receptor (AT2R) blocker on the differentiation process. Our data showed that the differentiation of MSCs into IPCs was associated with an increase in cellular angiotensinogen, angiotensin-converting enzyme (ACE), renin, and AT2R expression and undetectable expression of AT1R. The net effect was an increase in cellular angiotensin II (Ang II) during the differentiation process. AT1R blockade allowed the differentiation of MSCs into IPCs, whereas AT2R blockade alone and blockade of both AT1R and AT2R inhibited the differentiation of MSCs into IPCs. Our data demonstrated an important role of local RAS in the regulation of MSCs differentiation into IPCs and that Ang II mainly orchestrates this role through AT2R activation. Copyright © 2017 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  11. Pancreatic insulin-producing cells differentiated from human embryonic stem cells correct hyperglycemia in SCID/NOD mice, an animal model of diabetes.

    PubMed

    Hua, Xiu-feng; Wang, Yan-wei; Tang, Yu-xiao; Yu, Sheng-qiang; Jin, Shao-hua; Meng, Xiao-mei; Li, Hua-feng; Liu, Fu-jun; Sun, Qiang; Wang, Hai-yan; Li, Jian-yuan

    2014-01-01

    Human pancreatic islet transplantation is a prospective curative treatment for diabetes. However, the lack of donor pancreases greatly limits this approach. One approach to overcome the limited supply of donor pancreases is to generate functional islets from human embryonic stem cells (hESCs), a cell line with unlimited proliferative capacity, through rapid directed differentiation. This study investigated whether pancreatic insulin-producing cells (IPCs) differentiated from hESCs could correct hyperglycemia in severe combined immunodeficient (SCID)/non-obese diabetic (NOD) mice, an animal model of diabetes. We generated pancreatic IPCs from two hESC lines, YT1 and YT2, using an optimized four-stage differentiation protocol in a chemically defined culture system. Then, about 5-7 × 10(6) differentiated cells were transplanted into the epididymal fat pad of SCID/NOD mice (n = 20). The control group were transplanted with undifferentiated hESCs (n = 6). Graft survival and function were assessed using immunohistochemistry, and measuring serum human C-peptide and blood glucose levels. The pancreatic IPCs were generated by the four-stage differentiation protocol using hESCs. About 17.1% of differentiated cells expressed insulin, as determined by flow cytometry. These cells secreted insulin/C-peptide following glucose stimulation, similarly to adult human islets. Most of these IPCs co-expressed mature β cell-specific markers, including human C-peptide, GLUT2, PDX1, insulin, and glucagon. After implantation into the epididymal fat pad of SCID/NOD mice, the hESC-derived pancreatic IPCs corrected hyperglycemia for ≥ 8 weeks. None of the animals transplanted with pancreatic IPCs developed tumors during the time. The mean survival of recipients was increased by implanted IPCs as compared to implanted undifferentiated hESCs (P<0.0001). The results of this study confirmed that human terminally differentiated pancreatic IPCs derived from hESCs can correct hyperglycemia in

  12. Human growth hormone (GH) immunoassay: standardization and clinical implications.

    PubMed

    Carrozza, Cinzia; Lapolla, Rosa; Canu, Giulia; Annunziata, Francesca; Torti, Eleonora; Baroni, Silvia; Zuppi, Cecilia

    2011-05-01

    The poor comparability of growth hormone (GH) results obtained using commercially available methods, is partly due to standard preparations used in calibration. The system relies on the use of the International Reference Preparation (IRP) international standard (IS) 80/505, of human pituitary origin, containing all GH isoforms. Recently, a 22K recombinant GH isoform IRP IS 98/574 was commercialized. Our aim was to evaluate the influence of both calibrators on GH results. GH concentration in 97 serum samples from children undergoing a growth hormone releasing hormone+arginine stimulation test was measured using Siemens IMMULITE electro-chemiluminescence method, calibrated with both IS 80/505 and IS 98/574 (GRH Growth hormone-Recombinant 98/574-kit). Comparison of our results obtained with the two sets of calibrators showed good correlation, although we found higher percentage variation (var%) than that stated by Siemens. The mean var% value was confirmed when all results were sub-divided into subgroups based on both high and low GH concentrations. Since the GH assay is influenced by a variety of binding proteins, isoforms and conversion factors, standardization of the assay is strongly required. In Italy, the Agenzia Italiana del Farmaco 39 note provides GH laboratory values which are useful for therapy. On the basis of our results, we therefore propose to adjourn these GH values in order to ensure better management of patients with GH-related disorders.

  13. Comparative analysis of three hyperthermophilic GH1 and GH3 family members with industrial potential.

    PubMed

    Cota, Junio; Corrêa, Thamy L R; Damásio, André R L; Diogo, José A; Hoffmam, Zaira B; Garcia, Wanius; Oliveira, Leandro C; Prade, Rolf A; Squina, Fabio M

    2015-01-25

    Beta-glucosidases (BGLs) are enzymes of great potential for several industrial processes, since they catalyze the cleavage of glucosidic bonds in cellobiose and other short cellooligosaccharides. However, features such as good stability to temperature, pH, ions and chemicals are required characteristics for industrial applications. This work aimed to provide a comparative biochemical analysis of three thermostable BGLs from Pyrococcus furiosus and Thermotoga petrophila. The genes PfBgl1 (GH1 from P. furiosus), TpBgl1 (GH1 from T. petrophila) and TpBgl3 (GH3 from T. petrophila) were cloned and proteins were expressed in Escherichia coli. The purified enzymes are hyperthermophilic, showing highest activity at temperatures above 80°C at acidic (TpBgl3 and PfBgl1) and neutral (TpBgl1) pHs. The BGLs showed greatest stability to temperature mainly at pH 6.0. Activities using a set of different substrates suggested that TpBgl3 (GH3) is more specific than GH1 family members. In addition, the influence of six monosaccharides on BGL catalysis was assayed. While PfBgl1 and TpBgl3 seemed to be weakly inhibited by monosaccharides, TpBgl1 was activated, with xylose showing the strongest activation. Under the conditions tested, TpBgl1 showed the highest inhibition constant (Ki=1100.00mM) when compared with several BGLs previously characterized. The BGLs studied have potential for industrial use, specifically the enzymes belonging to the GH1 family, due to its broad substrate specificity and weak inhibition by glucose and other saccharides.

  14. Novel mutations in the GH gene (GH1) uncover putative splicing regulatory elements.

    PubMed

    Babu, Deepak; Mellone, Simona; Fusco, Ileana; Petri, Antonella; Walker, Gillian E; Bellone, Simonetta; Prodam, Flavia; Momigliano-Richiardi, Patricia; Bona, Gianni; Giordano, Mara

    2014-05-01

    Mutations affecting exon 3 splicing are the main cause of autosomal dominant Isolated GH Deficiency II (IGHDII) by increasing the level of exon 3-skipped mRNA encoding the functionally inactive dominant-negative 17.5-kDa isoform. The exons and introns of the gene encoding GH (GH1) were screened for the presence of mutations in 103 sporadic isolated GH deficiency cases. Four different variations within exon 3 were identified in 3 patients. One carried c.261C>T (p.Pro87Pro) and c.272A>T (p.Glu91Val), the second c.255G>A (p.Pro85Pro) and c.261 C>T, and the third c.246G>C (p.Glu82Asp). All the variants were likely generated by gene conversion from an homologous gene in the GH1 cluster. In silico analysis predicted that positions c.255 and c.272 were included within 2 putative novel exon splicing enhancers (ESEs). Their effect on splicing was confirmed in vitro. Constructs bearing these 2 variants induced consistently higher levels both of transcript and protein corresponding to the 17.5-kDa isoform. When c.255 and c.272 were combined in cis with the c.261 variant, as in our patients, their effect was weaker. In conclusion, we identified 2 variations, c.255G>A and c.272A>T, located in 2 novel putative exon splicing enhancers and affecting GH1 splicing in vitro by increasing the production of alternatively spliced isoforms. The amount of aberrant isoforms is further regulated by the presence in cis of the c.261 variant. Thus, our results evidenced novel putative splicing regulatory elements within exon 3, confirming the crucial role of this exon in mRNA processing.

  15. Aip regulates cAMP signalling and GH secretion in GH3 cells.

    PubMed

    Formosa, R; Xuereb-Anastasi, A; Vassallo, J

    2013-08-01

    Mutations in the aryl hydrocarbon receptor-interacting protein (AIP) gene have been linked to predisposition to pituitary adenomas. However, the mechanism by which this occurs remains unknown. AIP interacts with a number of interesting proteins, including members of the cAMP signalling pathway that has been shown to be consistently altered in pituitary tumours. The functional role of Aip was investigated using both over-expression and knock down of Aip in GH3 cells. cAMP signalling and its downstream effectors, including GH secretion, were then investigated. cAMP signalling was analysed using cAMP assays, cAMP-response element-promoter luciferase reporter assays, real-time PCR and finally secreted GH quantification. Over-expression of wild-type (WT)-Aip reduced forskolin-induced cAMP signalling at the total cAMP level, luciferase reporter activity and target gene expression, when compared with empty vector and the non-functional R304X mutant. Additionally, GH secretion was reduced in WT-Aip over-expressing GH3 cells treated with forskolin. Knock down of endogenous Aip resulted in increased cAMP signalling but a decrease in GH secretion was also noted. Inhibition of phosphodiesterase activity using general and selective inhibitors did not completely ablate the effect of Aip on forskolin-augmented cAMP signalling. A mechanism by which Aip acts as a tumour suppressor, by maintaining a low cAMP signalling and concentration, is suggested. Mutations of Aip render the protein incapable of such activity. This effect appears not to be mediated by the AIP-PDE interaction, suggesting the involvement of other interacting partners in mediating this outcome.

  16. Occurrence of impaired fasting glucose in GH-deficient adults receiving GH replacement compared with untreated subjects.

    PubMed

    Woodmansee, Whitney W; Hartman, Mark L; Lamberts, Steven W J; Zagar, Anthony J; Clemmons, David R

    2010-01-01

    The effects of GH replacement on glucose metabolism in GH-deficient (GHD) adults in clinical practice are not well defined. Therefore, we assessed GH treatment effects on fasting plasma glucose (FPG) and haemoglobin A1c (A1c) concentrations in GHD adults in a clinical setting. Post-hoc analysis of the observational Hypopituitary Control and Complications Study conducted at 157 US centres (1997-2002). GH-deficient adults who were GH-naïve at study entry and had at least two FPG measurements. Effect of GH treatment on the frequency and time course of abnormal FPG (> or =5.6 mmol/l) development, FPG normalization, progression of increased FPG and abnormal follow-up A1c (>6%) values in GHD patients treated with GH (n = 403) or untreated (n = 169) at their physician's discretion. In subjects without pre-existing diabetes mellitus, development of an abnormal FPG tended to occur in a greater percentage of GH-treated than untreated subjects (35.3% versus 24.5, P = 0.06). Additionally, GH treatment was associated with a mild, transient increase in FPG and shorter time to development of an abnormal FPG in these subjects (P < 0.01). Most ( approximately 80%) abnormal FPG values were below 7 mmol/l and normalized in 69% of GH-treated subjects without diabetes. Treatment with GH had no effect on the rate of FPG normalization, progression of increased FPG or abnormal follow-up A1c values. Initiation of GH replacement in GHD adults was associated with a mild increase in FPG that often normalized spontaneously. Nevertheless, clinicians should monitor FPG in patients receiving GH treatment.

  17. GH/IGF-I axis in anorexia nervosa.

    PubMed

    Gianotti, L; Lanfranco, F; Ramunni, J; Destefanis, S; Ghigo, E; Arvat, E

    2002-06-01

    Patients with anorexia nervosa (AN) may develop multiple endocrine abnormalities, including amenorrhea, hyperactivity of the hypothalamus-pituitary-adrenal axis, hypothyroidism and particular changes in the activity of the growth hormone (GH)/insulin-like growth factor I (IGF-I) axis. Exaggerated GH secretion and reduced IGF-I levels are usually found in AN, as well as in conditions of malnutrition and malabsorption, insulin-dependent diabetes mellitus, liver cirrhosis and catabolic states. In AN, GH hypersecretion at least partially reflects malnutrition-induced peripheral GH resistance, which leads to reduced IGF-I synthesis and release; this implies an impairment of the negative IGF-I feedback action on GH secretion. On the other hand, primary alterations in the neural control of GH secretion cannot be ruled out. The neuroendocrine alterations include enhanced somatotroph responsiveness to growth hormone releasing hormone (GHRH) and impaired GH response to most central nervous system-mediated stimuli. Particular resistance to cholinergic manipulation has also been demonstrated, thus suggesting a somewhat specific alteration in the somatostatin (SS)-mediated cholinergic influence on GH secretion. Moreover, paradoxical GH responses to glucose load, thyrotropin releasing hormone (TRH) and luteinizing hormone releasing hormone (LHRH) have also been reported. The effect of reduced leptin levels on GH hypersecretion in AN is still unclear, but ghrelin (the gastric hormone that is a natural ligand of the GH secretagogue receptor and strongly stimulates somatotroph secretion) is thought to play a major role. Regardless of the supposed central and peripheral alterations, it has to be emphasised that the activity of the GH/IGF-I axis in AN is generally restored by nutritional and stable weight gain. It therefore reflects an impaired nutritional state and cannot be considered a primary hallmark of the disease.

  18. G.H. Mead's social behaviorism.

    PubMed

    Cook, G A

    1977-10-01

    This paper seeks to clarify those conceptual foundations of G.H. Mead's social behaviorism which are assumed, but not made explicit, in that writer's well-known volume Mind, Self and Society. These foundations are shown to be an outgrowth of Mead's early commitment to the organic conception of conduct underlying the psychological functionalism of the Chicago School. Further light is shed upon Mead's position by pointing out the fundamental differences between his model of conduct and that characteristic of the behaviorist tradition in American psychology.

  19. Investigation of GH2-GO2 combustion

    NASA Technical Reports Server (NTRS)

    Calhoon, D. F.

    1972-01-01

    Data from prototype GO2-GH2 injection elements were obtained and analyzed. The bulk of the testing was conducted with nonreacting propellants, N2 to simulate the O2 and H2. A limited number of tests were conducted in combusting environment, with the purpose of this testing being to evaluate the effects of combustion on cold flow mixture ratio and mass profiles. The cold flow testing was completed in 223 tests. Analytical model correlations of these data are under way. The hot flow testing was completed in 36 tests. These data have been reduced and are documented in the report.

  20. GH1 — EDRN Public Portal

    Cancer.gov

    Growth hormone, a secreted protein which exists as a monomer, dimer, trimer, tetramer and pentamer and is disulfide-linked or non-covalently associated in homopolymeric and heteropolymeric combinations, plays an important role in growth control. Its major role in stimulating body growth is to stimulate the liver and other tissues to secrete IGF-1. It stimulates both the differentiation and proliferation of myoblasts. It also stimulates amino acid uptake and protein synthesis in muscle and other tissues. GH belongs to the somatotropin/prolactin family.

  1. Development of Recombinant Human Growth Hormone (rhGH) sustained-release microspheres by a low temperature aqueous phase/aqueous phase emulsion method.

    PubMed

    Kang, Jian; Wu, Fei; Cai, Yunpeng; Xu, Mingxin; He, Mu; Yuan, Weien

    2014-10-01

    A novel method has been developed to protect Recombinant Human Growth Hormone (rhGH) in poly (lactic-co-glycolic acid) (PLGA) microspheres using an aqueous phase/aqueous phase emulsion and S/O/W multi-emulsion method. This method develops a novel rhGH sustained-release system, which is based on the combination of rhGH-loaded dextran microparticles and PLGA microspheres. The process to fabricate rhGH-loaded dextran microparticles involves an aqueous phase/aqueous phase emulsion system formed at the reduced temperature. RhGH was first dissolved in water together with dextran and polyethylene glycol, followed by stirring at the speed of 2000 rpm for 20-30s at 0°C, and then a freezing process could enable the dextran phase to separate from the continuous PEG phase and rhGH could preferentially be loaded with dextran. The sample after freezing and phase separation was then lyophilized to powder and washed with dichloromethane to remove the PEG. Once loaded in the dextran microparticles (1-4 μm in diameter), rhGH gained resistance to interface tensions and was encapsulated into PLGA microspheres without aggregation thereafter. RhGH released from PLGA microspheres was in a sustained manner with minimal burst and maximally reduced incomplete release in vitro. Single subcutaneous injection of rhGH-loaded PLGA microspheres to rats resulted in a stable plasma concentration for 30 days avoiding the drug concentration fluctuations after multiple injections of protein solutions. In a hypophysectomized rat model, the IGF-1 and bodyweight results showed that there were higher than the levels obtained for the sustained release formulation by W/O/W for 40 days. These results suggest that the microsphere delivery system had the potential to be an injectable depot for sustained-release of the biocompatible protein of rhGH.

  2. Differential inhibition of recombinant bovine GH (rbGH) activity in vitro by in vivo enhancing monoclonal antibodies.

    PubMed

    Beattie, J; Phillips, K; Borromeo, V

    2001-04-01

    We have previously described the effects of complexing recombinant bovine growth hormone (rbGH) with the in vivo enhancing monoclonal antibodies (Mabs) OA11 and OA15 and the non-enhancing Mab OA14 on the subsequent activity of GH in different tissue culture models. We reported that all of these Mabs caused the inhibition of GH-stimulated Jak-2 tyrosine kinase phosphorylation in the GH responsive pre-adipocyte cell line 3T3-F442A. However, using the mouse myeloid cell line FDC-P1 transfected with the full length ovine GH receptor (GHR), we subsequently found that OA11 and OA14 remained inhibitory with respect to the end point measurement of GH stimulated mitogenesis but that OA15 had no inhibitory effect on GH stimulated mitogenesis in this cell line. In order to correlate longer term mitogenic effects of Mab-GH complexes with signalling events in this transfected cell line model, we now report on the effects of complexing with Mab on the subsequent GH stimulated phosphorylation of Stat5b (signal transducer and activator of transcription). In agreement with our data for the mitogenic activity of GH-Mab complexes, we found that OA11 and OA14 inhibit GH activation of Stat5b but that OA15 is not inhibitory. Further to this, the dose-response effect of both OA11 and OA14 on the GH stimulation of Stat5b in the FDC-P1-oGHR transfected cells correlates with the previously described dose-response effects for both Mabs in the context of GH stimulation of mitogenic effects. We conclude that in this oGHR transfected cell line model, Mab effects on short and long term GH signalling events are tightly correlated. The observation that neither of the in vivo enhancing Mabs--OA11 or OA15--amplifies the response to GH in our transfected cell line model, coupled with the differential nature of Mab effects on GH activity (OA11--inhibition; OA15--no effect) may argue for an in vivo mechanism for enhancement of GH activity.

  3. Silencing GhNDR1 and GhMKK2 compromises cotton resistance to Verticillium wilt.

    PubMed

    Gao, Xiquan; Wheeler, Terry; Li, Zhaohu; Kenerley, Charles M; He, Ping; Shan, Libo

    2011-04-01

    Cotton is an important cash crop worldwide, and is a significant source of fiber, feed, foodstuff, oil and biofuel products. Considerable effort has been expended to increase sustainable yield and quality through molecular breeding and genetic engineering of new cotton cultivars. Given the recent availability of the whole-genome sequence of cotton, it is necessary to develop molecular tools and resources for large-scale analysis of gene functions at the genome-wide level. We have successfully developed an Agrobacterium-mediated virus-induced gene silencing (VIGS) assay in several cotton cultivars with various genetic backgrounds. The genes of interest were potently and readily silenced within 2 weeks after inoculation at the seedling stage. Importantly, we showed that silencing GhNDR1 and GhMKK2 compromised cotton resistance to the infection by Verticillium dahliae, a fungal pathogen causing Verticillium wilt. Furthermore, we developed a cotton protoplast system for transient gene expression to study gene functions by a gain-of-function approach. The viable protoplasts were isolated from green cotyledons, etiolated cotyledons and true leaves, and responded to a wide range of pathogen elicitors and phytohormones. Remarkably, cotton plants possess conserved, but also distinct, MAP kinase activation with Arabidopsis upon bacterial elicitor flagellin perception. Thus, using gene silencing assays, we have shown that GhNDR1 and GhMKK2 are required for Verticillium resistance in cotton, and have developed high throughput loss-of-function and gain-of-function assays for functional genomic studies in cotton.

  4. Evaluation of growth hormone (GH) action in mice: discovery of GH receptor antagonists and clinical indications

    PubMed Central

    Kopchick, John J.; List, Edward O.; Kelder, Bruce; Gosney, Elahu S.; Berryman, Darlene E.

    2013-01-01

    The discovery of a growth hormone receptor antagonist (GHA) was initially established via expression of mutated GH genes in transgenic mice. Following this discovery, development of the compound resulted in a drug termed pegvisomant, which has been approved for use in patients with acromegaly. Pegvisomant treatment in a dose dependent manner results in normalization of IGF-1 levels in most patients. Thus, it is a very efficacious and safe drug. Since the GH/IGF-1 axis has been implicated in the progression of several types of cancers, many have suggested the use of pegvisomant as an anti-cancer therapeutic. In this manuscript, we will review the use of mouse strains that possess elevated or depressed levels of GH action for unraveling many of GH actions. Additionally, we will describe experiments in which the GHA was discovered, review results of pegvisomant’s preclinical and clinical trials, and provide data suggesting pegvisomant’s therapeutic value in selected types of cancer. PMID:24035867

  5. Successive attachment of electrons to protonated Guanine: (G+H)* radicals and (G+H)- anions.

    PubMed

    Zhang, Jun D; Xie, Yaoming; Schaefer, Henry F

    2006-11-02

    The structures, energetics, and vibrational frequencies of nine hydrogenated 9H-keto-guanine radicals (G+H)(*) and closed-shell anions (G+H)(-) are predicted using the carefully calibrated (Chem. Rev. 2002, 102, 231) B3LYP density functional method in conjunction with a DZP++ basis set. These radical and anionic species come from consecutive electron attachment to the corresponding protonated (G+H)(+) cations in low pH environments. The (G+H)(+) cations are studied using the same level of theory. The proton affinity (PA) of guanine computed in this research (228.1 kcal/mol) is within 0.7 kcal/mol of the latest experiment value. The radicals range over 41 kcal/mol in relative energy, with radical r1, in which H is attached at the C8 site of guanine, having the lowest energy. The lowest energy anion is a2, derived by hydride ion attachment at the C2 site of guanine. No stable N2-site hydride should exist in the gas phase. Structure a9 was predicted to be dissociative in this research. The theoretical adiabatic electron affinities (AEA), vertical electron affinities, and vertical detachment energies were computed, with AEAs ranging from 0.07 to 3.12 eV for the nine radicals.

  6. Moss (Physcomitrella patens) GH3 proteins act in auxin homeostasis.

    PubMed

    Ludwig-Müller, Jutta; Jülke, Sabine; Bierfreund, Nicole M; Decker, Eva L; Reski, Ralf

    2009-01-01

    Auxins are hormones involved in many cellular, physiological and developmental processes in seed plants and in mosses such as Physcomitrella patens. Control of auxin levels is achieved in higher plants via synthesis of auxin conjugates by members of the GH3 family. The role of the two GH3-like proteins from P. patens for growth and auxin homeostasis was therefore analysed. The in vivo-function of the two P. patens GH3 genes was investigated using single and double knockout mutants. The two P. patens GH3 proteins were also heterologously expressed to determine their enzymatic activity. Both P. patens GH3 enzymes accepted the auxin indole acetic acid (IAA) as substrate, but with different preferences for the amino acid to which it is attached. Cytoplasmic localization was shown for PpGH3-1 tagged with green fluorescent protein (GFP). Targeted knock-out of either gene exhibited an increased sensitivity to auxin, resulting in growth inhibition. On plain mineral media mutants had higher levels of free IAA and less conjugated IAA than the wild type, and this effect was enhanced when auxin was supplied. The DeltaPpGH3-1/DeltaPpGH3-2 double knockout had almost no IAA amide conjugates but still synthesized ester conjugates. Taken together, these data suggest a developmentally controlled involvement of P. patens GH3 proteins in auxin homeostasis by conjugating excess of physiologically active free auxin to inactive IAA-amide conjugates.

  7. Plasma lactate, GH and GH-binding protein levels in exercise following BCAA supplementation in athletes.

    PubMed

    De Palo, E F; Gatti, R; Cappellin, E; Schiraldi, C; De Palo, C B; Spinella, P

    2001-01-01

    Branched chain amino acids (BCAA) stimulate protein synthesis, and growth hormone (GH) is a mediator in this process. A pre-exercise BCAA ingestion increases muscle BCAA uptake and use. Therefore after one month of chronic BCAA treatment (0.2 gkg(-1) of body weight), the effects of a pre-exercise oral supplementation of BCAA (9.64 g) on the plasma lactate (La) were examined in triathletes, before and after 60 min of physical exercise (75% of VO2 max). The plasma levels of GH (pGH) and of growth hormone binding protein (pGHBP) were also studied. The end-exercise La of each athlete was higher than basal. Furthermore, after the chronic BCAA treatment, these end-exercise levels were lower than before this treatment (8.6+/-0.8 mmol L(-1) after vs 12.8+/-1.0 mmol L(-1) before treatment; p < 0.05 [mean +/- std. err.]). The end-exercise pGH of each athlete was higher than basal (p < 0.05). Furthermore, after the chronic treatment, this end-exercise pGH was higher (but not significantly, p = 0.08) than before this treatment (12.2+/-2.0 ng mL(-1) before vs 33.8+/-13.6 ngmL(-1) after treatment). The end-exercise pGHBP was higher than basal (p < 0.05); and after the BCAA chronic treatment, this end-exercise pGHBP was 738+/-85 pmol L(-1) before vs 1691+/-555 pmol L(-1) after. pGH/pGHBP ratio was unchanged in each athlete and between the groups, but a tendency to increase was observed at end-exercise. The lower La at the end of an intense muscular exercise may reflect an improvement of BCAA use, due to the BCAA chronic treatment. The chronic BCAA effects on pGH and pGHBP might suggest an improvement of muscle activity through protein synthesis.

  8. Impairment of GH responsiveness to GH-releasing hexapeptide (GHRP-6) in Prader-Willi syndrome.

    PubMed

    Grugni, G; Guzzaloni, G; Morabito, F

    2001-05-01

    The aim of this study was to evaluate the GH-releasing activity of a synthetic hexapeptide, GHRP-6, in the Prader-Willi syndrome (PWS). Sixteen PWS patients (7 males and 9 females, aged 12.7-38.3 yr), 15 with essential obesity (OB) (7 males and 8 females, aged 12.9-42.9 yr), and 8 short normal children (SN; 3 males and 5 females, aged 10.2-14.3 yr) underwent 2 tests on separate occasions, being challenged with GHRP-6 (1 microg/kg, iv) or GHRH (1 microg/kg, iv)+PD (60 or 120 mg for children or adults, po). Moreover, in 11 patients with PWS and in the group of SN, the GH response to at least 2 stimulation tests had been previously determined. GH was analyzed either as mean peak values (GHp, mcg/l), or as the area under the curve (AUC, mcg/l/h) and the net incremental area under the curve (nAUC, mcg/l/h). In the group of PWS subjects, GH responses to both GHRP-6 (GHp: 11.4+/-2.0; AUC: 588+/-113; nAUC: 483+/-108) and GHRH+PD (GHp: 7.3+/-1.8; AUC: 486+/-122; nAUC: 371+/-250) were significantly lower than those observed either in OB (GHRP-6: GHp: 25.7+/-3.2, p<0.003; AUC: 1833+/-305, p<0.005; nAUC: 1640+/-263, p<0.0001. GHRH+PD: GHp: 15.1+/-2.4, p<0.009; AUC: 1249+/-248, p<0.003; nAUC: 918+/-230, p<0.006) or in SN patients (GHRP-6: GHp: 39.1+/-3.1, p<0.0001; AUC: 2792+/-158, p<0.0001; nAUC: 2705+/-165, p<0.00005. GHRH+PD: GHp: 27.5+/-3.7, p<0.0001; AUC: 1873+/-251, p<0.0001; nAUC: 1692+/-219, p<0.0005). Unlike control groups, in PWS patients GH levels after GHRP-6 did not differ from those obtained after GHRH+PD. Interestingly, low IGF-I values were present in all PWS subjects. Furthermore, no patient with PWS showed normal GH response to the previously performed GH stimulation tests. As already reported, GH release after GHRP-6 or GHRH+PD was significantly lower in OB than in SN subjects. In conclusion, our data indicate that: 1) GH response to GHRP-6 is clearly impaired in PWS; 2) the blunted GH responses to the provocative stimuli in PWS are not an artifact of obesity

  9. Endothelial Cell Co-culture Mediates Maturation of Human Embryonic Stem Cell to Pancreatic Insulin Producing Cells in a Directed Differentiation Approach

    PubMed Central

    Jaramillo, Maria; Banerjee, Ipsita

    2012-01-01

    Embryonic stem cells (ESC) have two main characteristics: they can be indefinitely propagated in vitro in an undifferentiated state and they are pluripotent, thus having the potential to differentiate into multiple lineages. Such properties make ESCs extremely attractive for cell based therapy and regenerative treatment applications 1. However for its full potential to be realized the cells have to be differentiated into mature and functional phenotypes, which is a daunting task. A promising approach in inducing cellular differentiation is to closely mimic the path of organogenesis in the in vitro setting. Pancreatic development is known to occur in specific stages 2, starting with endoderm, which can develop into several organs, including liver and pancreas. Endoderm induction can be achieved by modulation of the nodal pathway through addition of Activin A 3 in combination with several growth factors 4-7. Definitive endoderm cells then undergo pancreatic commitment by inhibition of sonic hedgehog inhibition, which can be achieved in vitro by addition of cyclopamine 8. Pancreatic maturation is mediated by several parallel events including inhibition of notch signaling; aggregation of pancreatic progenitors into 3-dimentional clusters; induction of vascularization; to name a few. By far the most successful in vitro maturation of ESC derived pancreatic progenitor cells have been achieved through inhibition of notch signaling by DAPT supplementation 9. Although successful, this results in low yield of the mature phenotype with reduced functionality. A less studied area is the effect of endothelial cell signaling in pancreatic maturation, which is increasingly being appreciated as an important contributing factor in in-vivo pancreatic islet maturation 10,11. The current study explores such effect of endothelial cell signaling in maturation of human ESC derived pancreatic progenitor cells into insulin producing islet-like cells. We report a multi-stage directed

  10. Development of antibodies against growth hormone (GH) during rhGH therapy in a girl with idiopathic GH deficiency: a case report.

    PubMed

    Meazza, Cristina; Schaab, Michael; Pagani, Sara; Calcaterra, Valeria; Bozzola, Elena; Kratzsch, Juergen; Bozzola, Mauro

    2013-01-01

    A 12.5-year-old Italian girl was referred to our institute for progressive growth failure from the age of 6 years, with a height of 128.2 cm (-3.37 SDS) and a bone age of 9 years. Endocrinological evaluation revealed a partial growth hormone deficiency (GHD) and GH therapy was started at a dosage of 0.25 mg/kg/week. During the first 3 years, she showed an increase in growth rate and experienced pubertal development onset. Then a poor growth rate (2 cm/year=0.43 SDS) was observed, notwithstanding an increase in GH dosage (0.35 mg/kg/week) and good compliance. We found a positive anti-GH antibody titre (1:1850, cutoff 1/100), confirmed 6 months later (1:2035); the antibodies had low binding capacity (0.63 μg/mL) and were only partially capable of inhibiting the GH effect. However, GH treatment was discontinued, and after 3 months the antibody titre decreased (1:950). In conclusion, we suggest evaluation of anti-GH antibodies in GH-treated idiopathic GHD children in whom growth response decreases after some years of therapy.

  11. EPA Extends Comment Period for Proposed Cleanup Plan for the Wells G&H Superfund Site in Woburn Massachusetts

    EPA Pesticide Factsheets

    The U.S. Environmental Protection Agency has proposed a cleanup plan for the Wells G&H Superfund Site, Southwest Properties, Operable Unit (OU4). The comment period will now be a total of 62 days and be open until September 13, 2017.

  12. Combination Therapy of LysGH15 and Apigenin as a New Strategy for Treating Pneumonia Caused by Staphylococcus aureus.

    PubMed

    Xia, Feifei; Li, Xin; Wang, Bin; Gong, Pengjuan; Xiao, Feng; Yang, Mei; Zhang, Lei; Song, Jun; Hu, Liyuan; Cheng, Mengjun; Sun, Changjiang; Feng, Xin; Lei, Liancheng; Ouyang, Songying; Liu, Zhi-Jie; Li, Xinwei; Gu, Jingmin; Han, Wenyu

    2015-10-16

    Pneumonia is one of the most prevalent Staphylococcus aureus-mediated diseases, and the treatment of this infection is becoming challenging due to the emergence of multidrug-resistant S. aureus, especially methicillin-resistant S. aureus (MRSA) strains. It has been reported that LysGH15, the lysin derived from phage GH15, displays high efficiency and a broad lytic spectrum against MRSA and that apigenin can markedly diminish the alpha-hemolysin of S. aureus. In this study, the combination therapy of LysGH15 and apigenin was evaluated in vitro and in a mouse S. aureus pneumonia model. No mutual adverse influence was detected between LysGH15 and apigenin in vitro. In animal experiments, the combination therapy showed a more effective treatment effect than LysGH15 or apigenin monotherapy (P < 0.05). The bacterial load in the lungs of mice administered the combination therapy was 1.5 log units within 24 h after challenge, whereas the loads in unprotected mice or mice treated with apigenin or LysGH15 alone were 10.2, 4.7, and 2.6 log units, respectively. The combination therapy group showed the best health status, the lowest ratio of wet tissue to dry tissue of the lungs, the smallest amount of total protein and cells in the lung, the fewest pathological manifestations, and the lowest cytokine level compared with the other groups (P < 0.05). With regard to its better protective efficacy, the combination therapy of LysGH15 and apigenin exhibits therapeutic potential for treating pneumonia caused by MRSA. This paper reports the combination therapy of lysin and natural products derived from traditional Chinese medicine.

  13. [A case of GH and TSH secreting pituitary macroadenoma].

    PubMed

    Gołkowski, Filip; Buziak-Bereza, Monika; Stefańska, Agnieszka; Trofimiuk, Małgorzata; Pantofliński, Jacek; Huszno, Bohdan; Czepko, Ryszard; Adamek, Dariusz

    2006-01-01

    A case of GH and TSH secreting pituitary macroadenoma is reported. A 45-year-old female presented clinical features of acromegaly (the abnormal growth of the hands and feet, with lower jaw protrusion), diabetes mellitus, hypertension, nodular goiter and hyperthyroidism of unclear origin. NMR pituitary imaging revealed intra and extrasellar tumor. The laboratory examinations showed very high plasma levels of GH and IGF-1 and normal level of TSH coexisting with high plasma levels of free thyroid hormones. Pharmacological pretreatment with somatostatin analogues caused the substantial reduction of GH and TSH plasma levels. Histological and immunohistochemical examination of the tissue obtained at transsphenoidal surgery showed GH and TSH secreting adenoma. The laboratory examinations after surgery showed normal GH and IGF-1 plasma levels and reduced insulin requirement, what indicates radical operation. The very low plasma levels of TSH and free thyroid hormones after surgery and immunohistochemical examination suggest central hyperthyroidism due to TSH secreting pituitary tumor (thyrotropinoma).

  14. The GH-IGF1 axis and longevity. The paradigm of IGF1 deficiency.

    PubMed

    Laron, Zvi

    2008-01-01

    Primary or secondary IGF1 deficiency has been implicated in shortening of lifespan. This paper reviews available data on the influence of IGF1 deficiency on lifespan and longevity in animals and man. It has been shown that inactivation of the IGF1 gene or of the GH receptor in both invertebrates (C-elegans, flies-Drosphila) and rodents (mice and rats), leading to IGF1 deficiency, prolong life, particularly in females. In man, evaluation of the 2 largest cohorts of patients with Laron syndrome (inactive GH receptor resulting in IGF1 deficiency) in Israel and Ecuador revealed that despite their dwarfism and marked obesity, patients are alive at the ages of 75-78 years, with some having reached even more advanced ages. It is assumed that a major contributing factor is their protection from cancer, a major cause of death in the general population.

  15. Direct effects of growth hormone (GH)-releasing hexapeptide (GHRP-6) and GH-releasing factor (GRF) on GH secretion from cultured porcine somatotropes.

    PubMed

    Sánchez-Hormigo, A; Castaño, J P; Torronteras, R; Malagón, M M; Ramírez, J L; Gracia-Navarro, F

    1998-01-01

    Growth hormone (GH)-releasing hexapeptide (GHRP-6) belongs to the expanding family of synthetic GH secretagogues (GHSs). Previous studies have shown that non-peptidyl GHRP-6 analogues stimulate GH release in vivo in pigs, and interact synergistically with GH-releasing factor (GRF), but its direct effects on porcine somatotropes have not been addressed hitherto. In the present study, we have evaluated the response of cultured porcine pituitary cells to GHRP-6, and its interaction with GRF and somatostatin (SRIF). Secretory response of somatotropes was assessed by using two distinct techniques. GH released by monolayer cell cultures was evaluated by enzyme immunoassay, whereas that secreted by individual somatotropes was measured by immunodensitometry using a cell blotting assay. Our results demonstrate that both GHRP-6 and GRF stimulated GH release from monolayer cultures at doses equal to or above 10(-9) M. Use of cell immunoblot assay demonstrated that, like GRF, the hexapeptide acts directly upon porcine somatotropes to exert its action. Moreover, regardless of the technique applied, combined administration of GHRP-6 (10(-6) or 10(-9) M) and GRF (10(-8) M) resulted in an additive, but not synergistic, stimulatory GH response. Finally, SRIF (10(-7) M) inhibited the stimulatory effect of GHRP-6 alone or in combination with GRF. These results indicate that GHRP-6 directly and effectively stimulates GH secretion from porcine somatotropes in vitro, and acts additively when coadministered with GRF. Therefore, the synergistic stimulatory effect of GHSs and GRF reported in vivo in this species might require additional factors that are lacking in the in vitro situation.

  16. Thyroid hormone modulation of the hypothalamic growth hormone (GH)-releasing factor-pituitary GH axis in the rat.

    PubMed Central

    Miki, N; Ono, M; Hizuka, N; Aoki, T; Demura, H

    1992-01-01

    Both thyroid hormone and hypothalamic growth hormone (GH)-releasing factor (GRF) facilitate pituitary somatotroph function. However, the pathophysiological role of thyroid hormone in GRF secretion is less well understood. Thyrotoxicosis, induced by administration of thyroxine (T4) in rats, inhibited both pituitary GH levels and immunoreactive GRF secretion from incubated hypothalamus. At the highest dose of T4 given for 12 d, GRF secretion and pituitary GH decreased by 50 and 39%, respectively. Hypothyroidism induced by thyroidectomy (Tx) enhanced GRF secretion approximately twofold while depleting pituitary GH by greater than 99%. Both of these hypothalamic and pituitary effects were reversed by replacement of T4 but not human GH for 7 or 14 d. Human GH was as potent as T4 in restoring decreased body weight gains or serum insulin-like growth factor-1 levels in Tx rats. These results indicate that at both physiological and pathological concentrations in serum, thyroid hormone acts as an inhibitory modulator of GRF secretion, probably not involving a feedback mechanism through GH. A biphasic effect of thyroid hormone on pituitary GH levels appears to derive from the difference in primary target tissues of hyper- and hypothyroidism, the hypothalamus and the pituitary, respectively. PMID:1634603

  17. Considering GH replacement for GH-deficient adults with a previous history of cancer: a conundrum for the clinician.

    PubMed

    Yuen, Kevin C J; Heaney, Anthony P; Popovic, Vera

    2016-05-01

    Previous studies have shown that GH and IGF-I may enhance tumorigenesis, metastasis, and cell proliferation in humans and animals. Evidence supporting this notion is derived from animal model studies, epidemiological studies, experience from patients with acromegaly, molecular therapeutic manipulation of GH and IGF-I actions, and individuals with GH receptor and congenital IGF-I deficiencies. Prior exposure to radiation therapy, aging, family history of cancer, and individual susceptibility may also contribute to increase this risk. Therefore, the use of GH replacement in patients with a history of cancer raises hypothetical safety concerns for patients, caregivers, and providers. Studies of GH therapy in GH-deficient adults with hypopituitarism and childhood cancer survivors have not convincingly demonstrated an increased cancer risk. Conversely, the risk of occurrence of a second neoplasm (SN) in childhood cancer survivors may be increased, with meningiomas being the most common tumor; however, this risk appears to decline over time. In light of these findings, if GH replacement is to be considered in patients with a previous history of cancer, we propose this consideration to be based on each individual circumstance and that such therapy should only be initiated at least 2 years after cancer remission is achieved with the understanding that in some patients (particularly those with childhood cancers), GH may potentially increase the risk of SNs. In addition, close surveillance should be undertaken working closely with the patient's oncologist. More long-term data are thus needed to determine if GH replacement in GH-deficient adults with a history of cancer is associated with the development of de novo tumors and tumor recurrence.

  18. Acute cardiovascular and hormonal effects of GH and hexarelin, a synthetic GH-releasing peptide, in humans.

    PubMed

    Bisi, G; Podio, V; Valetto, M R; Broglio, F; Bertuccio, G; Del Rio, G; Arvat, E; Boghen, M F; Deghenghi, R; Muccioli, G; Ong, H; Ghigo, E

    1999-04-01

    Reduced cardiac mass and performances are present in GH deficiency and are counteracted by rhGH replacement. GH and IGF-I possess specific myocardial receptors and have been reported able to exert an acute inotropic effect. Synthetic GH secretagogues (GHS) possess specific pituitary and hypothalamic but even myocardial receptors. In 7 male volunteers, we studied cardiac performance by radionuclide angiocardiography after iv administration of rhGH or hexarelin (HEX), a peptidyl GHS. The administration of rhGH or HEX increased circulating GH levels to the same extent (AUC: 1594.6+/-88.1 vs 1739.3+/-262.2 microg/l/min for 90 min) while aldosterone and catecholamine levels did not change; HEX, but not rhGH, significantly increased cortisol levels. Left ventricular ejection fraction (LVEF), mean blood pressure (MBP) and heart rate (HR) were unaffected by rhGH (62.4+/-2.1 vs 62.1+/-2.3%, 90.6+/-3.4 vs 92.0+/-2.5 mm Hg, 62.3+/-1.8 vs 66.7+/-2.7 bpm). HEX increased LVEF (70.7+/-3.0 vs 64.0+/-1.5%, p<0.03) without significant changes in MBP and HR (92.8+/-4.7 vs 92.4+/-3.2 mm Hg, 63.1+/-2.1 vs 67.0+/-2.9 bpm). LVEF significantly raised at 15 min, peaked at 30 min and lasted up to 60 min after HEX. These findings suggest that in man, the acute administration of Hexarelin exerts a short-lasting, positive inotropic effect. This effect seems GH-independent and might be mediated by specific GHS myocardial receptors.

  19. Effects of thyroid hormone on the GH signal transduction pathway.

    PubMed

    Ocaranza, Paula; Lammoglia, Juan Javier; Iñiguez, Germán; Román, Rossana; Cassorla, Fernando

    2014-02-01

    The importance of thyroid hormone on growth and development in children is well recognized. In addition, linear growth is highly dependent on the response of peripheral tissues to growth hormone, a process known as GH sensitivity, but little is known about the possible effects of T4 on this process. We determined the effect of stimulation with recombinant human GH (rhGH; 200 ng/mL) alone or in combination with two different concentrations of T4 (250 nM and 500 nM for 24 h) on JAK2 and STAT5 activation in skin fibroblast cultures obtained from prepubertal boys with normal height. JAK2 and STAT5 were activated under co-incubation with T4 (at both concentrations) and rhGH in the non-nuclear fraction of the fibroblasts. In addition, after 24h of co-incubation with rhGH and T4 (500 nM), we observed an increase in phospho-STAT5 in the nuclear fraction, when compared to GH and T4 stimulation alone. This effect was not observed when the fibroblasts were co-incubated with GH and the lower concentration of T4 (250 nM). Combined stimulation with GH and T4 at a concentration of 500 nM increases synergistically nuclear phospho-STAT5 in skin fibroblasts, which may amplify tissue sensitivity to GH. These findings may help to explain the effect of T4 administration on growth velocity in some children with idiopathic short stature. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Dexamethasone and BCAA Failed to Modulate Muscle Mass and mTOR Signaling in GH-Deficient Rats

    PubMed Central

    Nishida, Hikaru; Ikegami, Ayaka; Kaneko, Chiaki; Kakuma, Hitomi; Nishi, Hisano; Tanaka, Noriko; Aoyama, Michiko; Usami, Makoto; Okimura, Yasuhiko

    2015-01-01

    Branched-chain amino acids (BCAAs) and IGF-I, the secretion of which is stimulated by growth hormone (GH), prevent muscle atrophy. mTOR plays a pivotal role in the protective actions of BCAA and IGF-1. The pathway by which BCAA activates mTOR is different from that of IGF-1, which suggests that BCAA and GH work independently. We tried to examine whether BCAA exerts a protective effect against dexamethasone (Dex)-induced muscle atrophy independently of GH using GH-deficient spontaneous dwarf rats (SDRs). Unexpectedly, Dex did not induce muscle atrophy assessed by the measurement of cross-sectional area (CSA) of the muscle fibers and did not increase atrogin-1, MuRF1 and REDD1 expressions, which are activated during protein degradation. Glucocorticoid (GR) mRNA levels were higher in SDRs compared to GH-treated SDRs, indicating that the low expression of GR is not the reason of the defect of Dex’s action in SDRs. BCAA did not stimulate the phosphorylation of p70S6K or 4E-BP1, which stimulate protein synthesis. BCAA did not decrease the mRNA level of atrogin-1 or MuRF1. These findings suggested that Dex failed to modulate muscle mass and that BCAA was unable to activate mTOR in SDRs because these phosphorylations of p70S6K and 4E-BP1 and the reductions of these mRNAs are regulated by mTOR. In contrast, after GH supplementation, these responses to Dex were normalized and muscle fiber CSA was decreased by Dex. BCAA prevented the Dex-induced decrease in CSA. BCAA increased the phosphorylation of p70S6K and decreased the Dex-induced elevations of atrogin-1 and Bnip3 mRNAs. However, the amount of mTORC1 components including mTOR was not decreased in the SDRs compared to the normal rats. These findings suggest that GH increases mTORC1 activity but not its content to recover the action of BCAA in SDRs and that GH is required for actions of Dex and BCAA in muscles. PMID:26086773

  1. Dexamethasone and BCAA Failed to Modulate Muscle Mass and mTOR Signaling in GH-Deficient Rats.

    PubMed

    Nishida, Hikaru; Ikegami, Ayaka; Kaneko, Chiaki; Kakuma, Hitomi; Nishi, Hisano; Tanaka, Noriko; Aoyama, Michiko; Usami, Makoto; Okimura, Yasuhiko

    2015-01-01

    Branched-chain amino acids (BCAAs) and IGF-I, the secretion of which is stimulated by growth hormone (GH), prevent muscle atrophy. mTOR plays a pivotal role in the protective actions of BCAA and IGF-1. The pathway by which BCAA activates mTOR is different from that of IGF-1, which suggests that BCAA and GH work independently. We tried to examine whether BCAA exerts a protective effect against dexamethasone (Dex)-induced muscle atrophy independently of GH using GH-deficient spontaneous dwarf rats (SDRs). Unexpectedly, Dex did not induce muscle atrophy assessed by the measurement of cross-sectional area (CSA) of the muscle fibers and did not increase atrogin-1, MuRF1 and REDD1 expressions, which are activated during protein degradation. Glucocorticoid (GR) mRNA levels were higher in SDRs compared to GH-treated SDRs, indicating that the low expression of GR is not the reason of the defect of Dex's action in SDRs. BCAA did not stimulate the phosphorylation of p70S6K or 4E-BP1, which stimulate protein synthesis. BCAA did not decrease the mRNA level of atrogin-1 or MuRF1. These findings suggested that Dex failed to modulate muscle mass and that BCAA was unable to activate mTOR in SDRs because these phosphorylations of p70S6K and 4E-BP1 and the reductions of these mRNAs are regulated by mTOR. In contrast, after GH supplementation, these responses to Dex were normalized and muscle fiber CSA was decreased by Dex. BCAA prevented the Dex-induced decrease in CSA. BCAA increased the phosphorylation of p70S6K and decreased the Dex-induced elevations of atrogin-1 and Bnip3 mRNAs. However, the amount of mTORC1 components including mTOR was not decreased in the SDRs compared to the normal rats. These findings suggest that GH increases mTORC1 activity but not its content to recover the action of BCAA in SDRs and that GH is required for actions of Dex and BCAA in muscles.

  2. Effect of growth hormone (GH)-releasing hormone (GRH) on plasma GH in relation to magnitude and duration of GH deficiency in 26 children and adults with isolated GH deficiency or multiple pituitary hormone deficiencies: evidence for hypothalamic GRH deficiency.

    PubMed

    Schriock, E A; Lustig, R H; Rosenthal, S M; Kaplan, S L; Grumbach, M M

    1984-06-01

    Synthetic, amidated, 44 amino acid GH-releasing hormone ( GRH -44) was administered iv at a dose of 5 micrograms/kg to 20 patients with severe GH deficiency (GHD), 6 children and adolescents with partial GHD, and 6 non-GH deficient ( NGHD ) children and adolescents. The 17 patients with severe GHD that responded to GRH -44 had lower peak concentrations of plasma GH than the NGHD individuals (5.0 +/- 1.2 (SEM) vs. 27.2 +/- 3.5 ng/ml; P less than 0.0001). The children and adolescents with severe GHD tended to have higher peak GH responses to GRH -44 than the GHD adults (6.9 +/- 1.7 vs. 2.4 +/- 0.3 ng/ml) although the difference was not significant. The peak GH concentration was attained earlier in the GHD children and adolescents than in the GHD adults (28 +/- 4.7 vs. 69.3 +/- 13 min, P less than 0.004). There was a negative correlation between chronological age and peak plasma GH response to GRH in the children and adolescents with severe GHD (r = -0.758, P less than 0.02). Children and adolescents with partial GHD had a higher mean peak concentration of plasma GH (13. 1 +/- 1.8 ng/ml) than the children, adolescents, and adults with severe GHD (P less than 0.04), but one lower than the NGHD children and adolescents (P less than 0.05). In both severe and partial GHD the GH response to GRH was greater than that elicited by standard pharmacological tests. Serum somatomedin-C did not increase after a single pulse of GRH -44 in the 12 GHD patients studied. PRL increased minimally 30 min after 5 micrograms/kg iv GRH -44 in patients with multiple hypothalamic-pituitary hormone deficiencies but not in patients with isolated GHD or in NGHD individuals. The GH responses to GRH suggest that the majority of patients with isolated GHD as well as those with multiple hypothalamic-pituitary hormone deficiencies have deficiency of hypothalamic GRH . Lack of a GH response to a single pulse of GRH does not exclude GRH deficiency as priming of the somatotrope with multiple pulses of

  3. Growth hormone (GH)/STAT5 signaling during the growth period in liver of mice overexpressing GH

    PubMed Central

    Martinez, Carolina S; Piazza, Verónica G; Díaz, María E; Boparai, Ravneet K; Arum, Oge; Ramírez, María C; González, Lorena; Becú-Villalobos, Damasia; Bartke, Andrzej; Turyn, Daniel; Miquet, Johanna G; Sotelo, Ana I

    2016-01-01

    Growth hormone (GH)/STAT5 signaling is desensitized in liver of adult transgenic mice overexpressing GH; however, these animals present greater body size. To assess if the STAT5 pathway is active during the growth period in liver of these animals, and how signaling modulators participate in this process, growing transgenic mice and normal siblings were evaluated. STAT5 does not respond to an acute GH-stimulus but presents higher basal phosphorylation in liver of growing GH-overexpressing mice. GH receptor and positive modulators GR and HNF1 display greater abundance in transgenic animals, supporting STAT5 activity. Negative modulators CIS and PTP1B are increased in GH-overexpressing mice. Suppressors SOCS2 and SOCS3 exhibit higher mRNA levels in transgenic mice but lower protein content, suggesting they are being actively degraded. Therefore, STAT5 signaling is increased in liver of GH-transgenic mice during the growth period, with a balance between positive and negative effectors resulting in an accelerated but controlled growth. PMID:25691498

  4. Growth hormone (GH) activity is associated with increased serum oestradiol and reduced anti-Müllerian hormone in healthy male volunteers treated with GH and a GH antagonist.

    PubMed

    Andreassen, M; Frystyk, J; Faber, J; Kristensen, L Ø; Juul, A

    2013-07-01

    Growth hormone (GH) and insulin-like growth factor I (IGF-I) receptors are present on pituitary gonadotrophs and on testicular Leydig and Sertoli cells. Thus, the GH/IGF-I system may modulate the pituitary-gonadal axis in males. This is a randomized cross-over study. Eight healthy male volunteers (mean age 35, range 29-46 years) were treated with GH for 3 weeks (1st week 0.01, 2nd week 0.02, 3rd week 0.03 mg/day/kg) or a GH receptor antagonist (Pegvisomant) (1st week 10, last 2 weeks 15 mg/day), separated by 8 weeks of washout. Before and after the two treatment periods, concentrations of luteinizing hormone (LH), follicle-stimulating hormone, testosterone, oestradiol, sex hormone-binding globulin, inhibin B and Anti-Müllerian Hormone (AMH) were measured. During GH treatment, IGF-I increased [(median (IQR)] 166 (162-235) vs. 702 (572-875) μg/L, p < 0.001) together with oestradiol [(mean ± SD) 78 ± 23 vs. 111 ± 30 pm, p = 0.019], and the oestradiol/testosterone ratio (p = 0.003). By contrast, AMH (42 ± 14 vs. 32 ± 7 pm, p = 0.018), Inhibin B (211 (146-226) vs. 176 (129-204) ng/L, p = 0.059) and LH (3.8 ± 1.5 vs. 3.2 ± 1.2 U/L, p = 0.096) decreased. During pegvisomant treatment IGF-I (204 (160-290) vs. 106 (97-157) μg/L, p = 0.001) and oestradiol (86 ± 28 vs. 79 ± 25 pm, p = 0.060) decreased. No significant changes or trends in the other reproductive hormones occurred during the two treatment regimens. GH/IGF-I activity was positively associated with serum oestradiol, suggesting that GH/IGF-I stimulates aromatase activity in vivo. As a novel observation, we found that high GH activity was associated with reduced levels of the Sertoli cell marker AMH. Further studies are needed to evaluate possible effects of GH on Sertoli cell function and/or spermatogenesis. © 2013 American Society of Andrology and European Academy of Andrology.

  5. Three-year experience with access to nationally funded growth hormone (GH) replacement for GH-deficient adults.

    PubMed

    Holdaway, I M; Hunt, P; Manning, P; Cutfield, W; Gamble, G; Ninow, N; Staples-Moon, D; Moodie, P; Metcalfe, S

    2015-07-01

    Treatment of growth hormone (GH)-deficient adults with GH has been shown to improve a range of metabolic abnormalities and enhance quality of life. However, the results of access to nationally funded treatment have not been reported. Retrospective case series auditing nationally funded treatment of defined GH-deficient adults in New Zealand, with carefully designed entry and exit criteria overseen by a panel of endocrinologists. Applications for 201 patients were assessed and 191 approved for funded treatment over the initial 3 years since inception. The majority had GH deficiency following treatment of pituitary adenomas or tumours adjacent to the pituitary. After an initial 9-month treatment period using serum IGF-I measurements to adjust GH dosing, all patients reported a significant improvement in quality of life (QoL) score on the QoL-AGHDA(®) instrument (baseline (95%CI) 19 (18-21), 9 months 6 (5-7.5)), and mean serum IGF-I SD scores rose from -3 to zero. Mean waist circumference decreased significantly by 2.8 ± 0.6 cm. The mean maintenance GH dose after 9 months of treatment was 0.39 mg/day. After 3 years, 17% of patients had stopped treatment, and all of the remaining patients maintained the improvements seen at 9 months of treatment. Carefully designed access to nationally funded GH replacement in GH-deficient adults was associated with a significant improvement in quality of life over a 3-year period with mean daily GH doses lower than in the majority of previously reported studies. © 2014 John Wiley & Sons Ltd.

  6. Gender differences in the effects of long term growth hormone (GH) treatment on bone in adults with GH deficiency.

    PubMed

    Johansson, A G; Engström, B E; Ljunghall, S; Karlsson, F A; Burman, P

    1999-06-01

    We recently observed that among patients with GH deficiency due to adult-onset hypopituitarism, men responded with a greater increase in serum levels of insulin-like growth factor I (IGF-I) and biochemical markers of bone metabolism than women when the same dose of recombinant human GH (rhGH) per body surface area was administered for 9 months. In the present study, 33 of the 36 patients in the previous trial (20 men and 13 women) continued therapy for up to 45 months. The dose of rhGH was adjusted according to side-effects and to maintain serum IGF-I within the physiological range. This resulted in a significant dose reduction in the men; consequently, the women received twice as much rhGH as the men (mean +/- SD, 1.9 +/- 1.1 vs. 1.0 +/- 0.6 U/day; P < 0.01). The increases in serum IGF-I levels and serum biochemical markers of bone metabolism were similar in men and women with these doses. The total bone mineral content (BMC) was increased after 33 and 45 months of treatment up to 5.1% (P = 0.004 and 0.0001). Bone mineral density (BMD), BMC, and the area of the femoral neck and the lumbar spine were also significantly increased after 33 and 45 months of treatment. When analyzed by gender, total body BMC, femoral neck BMD and BMC, and spinal BMC were significantly increased in males, but not in females (P < 0.05-0.01). In conclusion, rhGH treatment continued to have an effect on bone metabolism and bone mass for up to 45 months of therapy. The changes in bone mass were greater in the men, although they received lower doses of rhGH than the women. The results indicate that the sensitivity to GH in adult patients with GH deficiency is gender dependent.

  7. Combined treatment with GH and anastrozole in a pubertal boy with Cushing's disease and postsurgical GH deficiency.

    PubMed

    Boronat, Mauro; Marrero, Dunia; López-Plasencia, Yaiza; Nóvoa, Yeray; García-Delgado, Yaiza; Nóvoa, Francisco J

    2012-06-01

    Growth failure is a characteristic manifestation of pediatric Cushing's disease. Catch-up growth is usually incomplete after cure of the disease, and final height is often compromised. Possible mechanisms for this phenomenon include postoperative persistence of GH hyposecretion and absence of retardation of bone maturation in spite of GH deficiency. This report describes the outcome in the case of a boy with Cushing's disease for whom GH replacement therapy was combined with anastrozole, an aromatase inhibitor, in order to delay skeletal maturation and extend the available time for linear growth. The case of a 14 years 4-months-old pubertal male (Tanner stage III) with GH deficiency after successful surgical treatment of Cushing's disease is presented. His height was 147.2 cm (-2.34 SDS), and his midparental target height 171.2 cm (-0.95 SDS). Bone age was 13.5 years and predicted adult height 163.2 cm (-2.2 SDS). Combined treatment was administered for 2.5 years. GH was maintained up to age 18 years. Anastrozole induced a substantial deceleration of bone age. Near-final height at 18 years was 169.5 cm (-1.07 SDS). Puberty progressed normally. Compared with population reference data, bone mineral density before GH plus anastrozole treatment was -4.07 SDS in the lumbar spine and -1.85 SDS in the femoral neck. These measures increased to -1.95 and -0.89 SDSs respectively, at 18 years, when GH was discontinued. Combined treatment with GH and aromatase inhibitors could be a therapeutic alternative to improve the stature of pubertal boys with Cushing's disease and postsurgical GH deficiency.

  8. Biomarker detection of rhGH doping: an excretion study.

    PubMed

    Jing, Jing; Zhou, Xinmiao; He, Chunji; Zhang, Lisi; Yang, Sheng; Xu, Youxuan; Xie, Minhao; Yan, Yi; Su, Hao; Wu, Moutian

    2012-10-01

    The purpose of this research is to validate the biomarker-based approach for the detection of doping with recombinant human growth hormone (rhGH) in sport. The GH-2000 project proposed an indirect method for the detection of exogenously administered growth hormone (GH) based on the measurement of the GH-dependent markers: insulin-like growth factor-I (IGF-I) and Type III pro-collagen (P-III-P). These markers rise in a dose-dependent manner after GH application. In this study, the concentrations of IGF-I, IGF-BP3, and P-III-P in serum were determined to provide further incentives for the implementation of this detection assay in modern anti-doping programmes. This paper reports on an administration study of rhGH involving 25 Chinese male volunteers at a dose of 0.1 IU /kg/day for a continuous 14-day period. We observed that the serum IGF-I concentration increased rapidly in the rhGH treatment group and showed significantly higher levels compared to baseline between days 4 and day 16 after administration. Although the response of P-III-P to rhGH administration was delayed compared to the IGF-I axis, the P-III-P concentration remained increased for a longer period (from day 4 to day 28). Statistical analysis was carried out to establish a discriminant formula with Statistical Product and Service Solutions (SPSS) concluding that the biomarker methodology is valid and universally applicable.

  9. [Influence of growth hormone (GH) and nutrition on neonatal growth].

    PubMed

    Díaz-Gómez, N M; Doménech Martínez, E; Barroso Guerrero, F; Cortabarria Bayona, C; Rico Sevillano, J

    1997-01-01

    At present, growth regulating factors in the transition from fetal to postnatal life remain unknown. The purpose of this study was to analyze the influence of GH and nutrition on neonatal growth. Serum and 24-hour urine GH levels, various anthopometric variables and daily energy and nutrient intake were measured in appropriate (AGA), large (LGA) and small for gestational age (SGA) newborn infants. These variables were measured at 1 (n = 98), 3 (n = 41) and 5 weeks of postnatal age (n = 8). The highest GH levels at the 1st week of postnatal life were obtained in preterm SGA infants (GHs: 61.4 +/- 20.0 microUI/m; GHu: 18.6 +/- 10.3 ng/kg/24 h). GH levels decreased in preterm infants, so that differences between groups failed to be significant at the third and fifth weeks of postnatal life. Urinary GH excretion did not show significant variations in the control group during the study (1st wk 3.0 +/- 3.5; 3rd wk 2.3 +/- 2.7; 5th wk 3.2 +/- 4.7 ng/kg/24 h). Daily protein intake had a direct relationship with both triceps skinfold and weight and head perimeter increase. SGA preterm infants showed a higher fat increase compared to AGA preterm infants. Serum and urinary GH levels were not related to the anthopometric variables studied. There are differences in GH secretion and body composition between SGA and AGA preterm infants. GH probably does not contribute to neonatal growth.

  10. Aerosol Observing System Greenhouse Gas (AOS GhG) Handbook

    SciTech Connect

    Biraud, S. C.; Reichl, K.

    2016-03-01

    The Greenhouse Gas (GhG) Measurement system is a combination of two systems in series: (1) the Tower Gas Processing (TGP) System, an instrument rack which pulls, pressurizes, and dries air streams from an atmospheric sampling tower through a series of control and monitoring components, and (2) the Picarro model G2301 cavity ringdown spectrometer (CRDS), which measures CO2, CH4, and H2O vapor; the primary measurements of the GhG system.

  11. Expression and characterization of hyperthermostable exo-polygalacturonase TtGH28 from Thermotoga thermophilus

    USDA-ARS?s Scientific Manuscript database

    The gene TtGH28 encoding a putative GH28 polygalacturonase from Pseudothermotoga thermarum DSM 5069 (Theth_0397, NCBI# AEH50492.1) was synthesized, expressed in E. coli, and characterized. Alignment of the amino acid sequence of gene product TtGH28 with other GH28 proteins whose structures and detai...

  12. Systemic overexpression of growth hormone (GH) in transgenic FVB/N inbred mice: an optimized model for holistic studies of molecular mechanisms underlying GH-induced kidney pathology.

    PubMed

    von Waldthausen, Dagmar C; Schneider, Marlon R; Renner-Müller, Ingrid; Rauleder, Dirk N; Herbach, Nadja; Aigner, Bernhard; Wanke, Rüdiger; Wolf, Eckhard

    2008-08-01

    Transgenic mice overexpressing growth hormone (GH) display a plethora of phenotypic alterations and provide unique models for studying and influencing consequences of chronic GH excess. Since the first report on GH transgenic mice was published in 1982, many different mouse models overexpressing GH from various species at different levels and with different tissue specificities were established, most of them on random-bred or hybrid genetic background. We have generated a new transgenic mouse model on FVB/N inbred background, expressing bovine (b) GH under the control of the chicken beta-actin promoter (cbetaa). cbetaa-bGH transgenic mice exhibit ubiquitous expression of bGH mRNA and protein and circulating bGH levels in the range of several microg/ml, resulting in markedly stimulated growth and the characteristic spectrum of pathological lesions which were described in previous GH overexpressing mouse models. Importantly, a consistent sequence of renal alterations is observed, mimicking progressive kidney disease in human patients. The novel, genetically standardized GH transgenic mouse model is ideal for holistic transcriptome and proteome studies aiming at the identification of the molecular mechanisms underlying GH-induced pathological alterations especially in the kidney. Moreover, genetically defined cbetaa-bGH mice facilitate random mutagenesis screens for modifier genes which influence the effects of chronic GH excess and associated pathological lesions.

  13. The regulation of GH secretion by sex steroids.

    PubMed

    Chowen, Julie A; Frago, Laura M; Argente, Jesús

    2004-11-01

    Gonadal sex steroids modulate GH synthesis and secretion with effects on both the hypothalamus and anterior pituitary. In the post-pubertal animal, androgens and oestrogens modulate hypothalamic somatostatin (SS) and GHRH synthesis respectively. These effects may be direct as SS neurons express the androgen receptor and many GHRH neurons are oestrogen receptor positive. The neonatal steroid environment modulates the number of GHRH neurons in the adult hypothalamus, as well as their responsivity to post-pubertal steroids. Furthermore, both neonatal and post-pubertal steroids modulate hypothalamic synaptic organisation affecting the number of synaptic inputs and the morphology of glial cells. This in turn has important effects on the ability of the hypothalamus to drive the secretory pulsatility of anterior pituitary hormone release. At the level of the somatotroph, androgens and oestrogens have been reported to stimulate, inhibit or have no effect on GH synthesis. In primary cultures, we found no effect of either androgens or oestrogens on GH mRNA levels. However, the sex steroid environment significantly modified the response of somatotrophs to SS. Furthermore, males have more somatotrophs compared with female rats and this partially depends on the neonatal sex steroid environment. In conclusion, sex steroids have both organisational and activational effects on the GH axis. These effects range from modulating the number of hypothalamic neurons controlling GH secretion, their responsiveness to later steroids, and the synaptic connectivity and neuropeptide production, to modulation of somatotroph numbers in the anterior pituitary and their responsiveness to inputs controlling GH synthesis and secretion.

  14. Approach to testing growth hormone (GH) secretion in obese subjects.

    PubMed

    Popovic, Vera

    2013-05-01

    Identification of adults with GH deficiency (GHD) is challenging because clinical features of adult GHD are not distinctive and because clinical suspicion must be confirmed by biochemical tests. Adults are selected for testing for adult GHD if they have a high pretest probability of GHD, ie, if they have hypothalamic-pituitary disease, if they have received cranial irradiation or central nervous system tumor treatment, or if they survived traumatic brain injury or subarachnoid hemorrhage. Testing should only be carried out if a decision has already been made that if deficiency is found it will be treated. There are many pharmacological GH stimulation tests for the diagnosis of GHD; however, none fulfill the requirements for an ideal test having high discriminatory power; being reproducible, safe, convenient, and economical; and not being dependent on confounding factors such as age, gender, nutritional status, and in particular obesity. In obesity, GH secretion is reduced, GH clearance is enhanced, and stimulated GH secretion is reduced, causing a false-positive result. This functional hyposomatotropism in obesity is fully reversed by weight loss. In conclusion, GH stimulation tests should be avoided in obese subjects with very low pretest probability.

  15. Decreased ghrelin-induced GH release in thyrotoxicosis: comparison with GH-releasing peptide-6 (GHRP-6) and GHRH.

    PubMed

    Nascif, Sergio Oliva; Correa-Silva, Silvia Regina; Silva, Marcos Roberto; Lengyel, Ana-Maria Judith

    2007-01-01

    In thyrotoxicosis GH response to several stimuli is impaired, but there is no data on ghrelin-induced GH release in these patients. Ghrelin is a potent GH secretagogue and it also increases glucose levels in men. The aim of this study was to evaluate the effects of ghrelin (1 microg/kg), GHRP-6 (1 mug/kg) and GHRH (100 microg), i.v., on GH levels in 10 hyperthyroid patients and in 8 controls. Glucose levels were also measured during ghrelin and GHRP-6 administration. In control subjects and hyperthyroid patients peak GH (microg/l; mean +/- SE) values after ghrelin injection (controls: 66.7 +/- 13.6; hyper: 19.3 +/- 2.4) were significantly higher than those obtained after GHRP-6 (controls: 26.7 +/- 5.1; hyper: 12.6 +/- 1.3) and GHRH (controls: 13.5 +/- 4.3; hyper: 5.3 +/- 1.3). There was a significant decrease in GH responsiveness to ghrelin, GHRP-6 and GHRH in the hyperthyroid group compared to controls. In control subjects and hyperthyroid patients basal glucose (mmol/l) values were 4.5 +/- 0.1 and 4.7 +/- 0.2, respectively. There was a significant increase in glucose levels 30 min after ghrelin injection (controls: 4.9 +/- 0.1; hyper: 5.2 +/- 0.2), which remained elevated up to 120 min. When the two groups were compared no differences in glucose values were observed. GHRP-6 administration was not able to increase glucose levels in both groups. Our data shows that GH release after ghrelin, GHRP-6 and GHRH administration is decreased in thyrotoxicosis. This suggests that thyroid hormone excess interferes with GH-releasing pathways activated by these peptides. Our results also suggest that ghrelin's ability to increase glucose levels is not altered in thyrotoxicosis.

  16. [Influence of replacement growth hormone therapy (hGH) on pituitary-thyroid and pituitary-adrenal systems in prepubertal children with GH deficiency].

    PubMed

    Vyshnevs'ka, O A; Bol'shova, O V

    2013-06-01

    Today, the most pathogenic therapy of GH deficiency is hGH replacement therapy. Replacement hGH therapy a highly effective method of growth correction in children with GH deficiency, but further investigations are necessary for timely detection of disturbances of other organs and systems. The authors reported that hGH therapy supressed thyroid and adrenal functions. Besides, most patients with GH deficiency have multiple defficiency of pituitary hormones (both TSH and ACTH), so hGH therapy can enhances hypothyroidism and hypoadrenalism. In the Department of Pediatric Endocrinology of the Institute of Endocrinology and Metabolism a great experience was accumulated in the treatment of GH deficiency children and in the study of the efficacy and safety of this treatment.

  17. Substance P stimulates Growth Hormone (GH) and GH-Releasing Hormone (GHRH) secretions through tachykinin NK2 receptors in sheep.

    PubMed

    Lemamy, Guy-Joseph; Guillaume, Viviane; Ndéboko, Bénédicte; Mouecoucou, Justine; Oliver, Charles

    2012-05-01

    Substance P is ubiquitous undecapeptide belonging to the tachykinins family. It has been found in the hypothalamus and is involved in the hypothalamo-hypophysial axis in several mammals, including human. Previous studies have shown that substance P increases GH secretions in rats and human. In this study, we have shown that intravenously infused substance P in sheep caused an increased level of Growth Hormone (GH) and GH-Releasing Hormone (GHRH), and decreased Somatotropin Release Inhibiting Hormone (SRIH) secretions. GH was obtained from peripheral blood. GHRH and SRIH were directly collected from hypophysial portal blood, using a trans-nasal surgery technique in a vigil sheep that allowed accessing to hypothalamo-hypophysial portal vessels. Hormones assays were performed by radioimmunoassay (RIA). Moreover, we showed that substance P-induced GH and GHRH secretion appears to be mediated by NK2 tachykinin receptors, since it is specifically blocked by a non peptidic tachykinin NK2 receptor antagonist (SR48968, Sanofi, Montpellier, France) whereas a non peptidic tachykinin NK1 antagonist (SR140333, Sanofi, Montpellier, France) failed to modify GH and GHRH hormones secretions. Copyright © 2012 Elsevier Inc. All rights reserved.

  18. Purification, partial characterization, and heterologous radioimmunoassay of growth hormone (cGH) in red deer.

    PubMed

    Curlewis, J D; Loudon, A S; McNeilly, A S

    1992-10-01

    Red deer growth hormone (cGH; 3.3 mg) was purified from an aqueous extract of seven pituitary glands (4.01 g wet weight) by preparative gel filtration on Sephadex G-100, gel filtration on Sephadex G-100 SF, and anion exchange chromatography on DEAE-Sepharose CL-6B. Purified cGH gave a single band on sodium dodecyl sulfate-polyacrylamide gel electrophoresis with a molecular weight under reducing conditions of 20,000 Da and gave a single peak on reverse-phase high-performance liquid chromatography. N-Terminal amino acid determination of 42 residues gave a sequence identical with those published for bovine and ovine GH. In a radioreceptor assay based on binding of iodinated recombinant bovine GH (rbGH) to liver microsomes prepared from a pregnant ewe, cGH was equipotent with an ovine GH (oGH) standard. In an oGH radioimmunoassay, cGH diluted in parallel with oGH and rbGH. Using this assay plasma GH concentrations were determined in adult nonpregnant red deer hinds over a 12-month period. There was a significant seasonality in plasma GH concentrations with concentrations consistently low between mid-May and mid-September. This is the period when voluntary food intake and liveweight gain are greatest. It is suggested that in the presence of low plasma GH concentrations nutrients may be diverted toward lipogenesis and hence promote fat deposition.

  19. The characterization of six auxin-induced tomato GH3 genes uncovers a member, SlGH3.4, strongly responsive to arbuscular mycorrhizal symbiosis.

    PubMed

    Liao, Dehua; Chen, Xiao; Chen, Aiqun; Wang, Huimin; Liu, Jianjian; Liu, Junli; Gu, Mian; Sun, Shubin; Xu, Guohua

    2015-04-01

    In plants, the GH3 gene family is widely considered to be involved in a broad range of plant physiological processes, through modulation of hormonal homeostasis. Multiple GH3 genes have been functionally characterized in several plant species; however, to date, limited works to study the GH3 genes in tomato have been reported. Here, we characterize the expression and regulatory profiles of six tomato GH3 genes, SlGH3.2, SlGH3.3, SlGH3.4, SlGH3.7, SlGH3.9 and SlGH3.15, in response to different phytohormone applications and arbuscular mycorrhizal (AM) fungal colonization. All six GH3 genes showed inducible responses to external IAA, and three members were significantly up-regulated in response to AM symbiosis. In particular, SlGH3.4, the transcripts of which were barely detectable under normal growth conditions, was strongly activated in the IAA-treated and AM fungal-colonized roots. A comparison of the SlGH3.4 expression in wild-type plants and M161, a mutant with a defect in AM symbiosis, confirmed that SlGH3.4 expression is highly correlated to mycorrhizal colonization. Histochemical staining demonstrated that a 2,258 bp SlGH3.4 promoter fragment could drive β-glucuronidase (GUS) expression strongly in root tips, steles and cortical cells of IAA-treated roots, but predominantly in the fungal-colonized cells of mycorrhizal roots. A truncated 654 bp promoter failed to direct GUS expression in IAA-treated roots, but maintained the symbiosis-induced activity in mycorrhizal roots. In summary, our results suggest that a mycorrhizal signaling pathway that is at least partially independent of the auxin signaling pathway has evolved for the co-regulation of the auxin- and mycorrhiza-activated GH3 genes in plants.

  20. Growth Hormone (GH) Retesting and Final Adult Height in Childhood-Onset GH Deficiency (CO-GHD): Experiences from King Chulalongkorn Memorial Hospital, Thailand.

    PubMed

    Wacharasindhu, Suttipong; Aroonparkmongkol, Suphab; Sahakitrungrueng, Taninee; Supornsilchai, Vichit

    2015-06-01

    Evaluate GHstatus in CO-GHD subjects after completion of linear growth, and report the auxological outcomes of rhGH treatment. Twenty-four CO-GHD subjects (14 with IGHD and 10 with MPHD), treated with rhGH for a period of 6.6 ± 3.1 years were re-evaluated for their capacity of GH secretion by performing insulin tolerance test (ITT). Ht SDS at final height was compared with Ht SDS at the start of the treatment and MPH SDS. Thirty-eight percent (9 in 24) of CO-GHD subjects had normal GH secretion on retesting. All subjects were diagnosed as isolated GHD during childhood. In contrast, all MPHD subjects during childhood period had GH insufficiency on retesting. GH insufficient subjects had higher total cholesterol level than those with GH sufficiency (214 ± 51 vs. 1 74 ± 36 mg/mL, p = 0.03). rhGH treatment significantly increased Ht SDS of -2.0 ± 1.1 at the start of the treatment to -0.6 ± 1.3 at the end of the treatment (p < 0.01) and -0.8 ± 1.2 at GH retesting (p < 0.01). GH retesting is recommended in subjects with IGHD during the childhood period. However rhGH treatment can enhance the final height in both GH sufficient and insufficient subjects on retesting.

  1. Cloning and characterization of the first GH10 and GH11 xylanases from Rhizopus oryzae.

    PubMed

    Xiao, Zhizhuang; Grosse, Stephan; Bergeron, Hélène; Lau, Peter C K

    2014-10-01

    The only available genome sequence for Rhizopus oryzae strain 99-880 was annotated to not encode any β-1,4-endoxylanase encoding genes of the glycoside hydrolase (GH) family 10 or 11. Here, we report the identification and cloning of two such members in R. oryzae strain NRRL 29086. Strain 29086 was one of several selected fungi grown on wheat or triticale bran and screened for xylanase activity among other hydrolytic actions. Its high activity (138 U/ml) in the culture supernatant led to the identification of two activity-stained proteins, designated Xyn-1 and Xyn-2 of respective molecular masses 32,000 and 22,000. These proteins were purified to electrophoretic homogeneity and characterized. The specific activities of Xyn-1 and Xyn-2 towards birchwood xylan were 605 and 7,710 U/mg, respectively. Kinetic data showed that the lower molecular weight Xyn-2 had a higher affinity (K m=3.2 ± 0.2 g/l) towards birchwood xylan than Xyn-1 by about 4-fold. The melting temperature (T m) of the two proteins, estimated to be in the range of 49.5-53.7 °C indicated that they are rather thermostable proteins. N-terminal and internal peptide sequences were obtained by chemical digestion of the purified xylanases to facilitate cloning, expression in Escherichia coli, and sequencing of the respective gene. The cloned Rhizopus xylanases were used to demonstrate release of xylose from flax shives-derived hemicellulose as model feedstock. Overall, this study expands the catalytic toolbox of GH10 and 11 family proteins that have applications in various industrial and bioproducts settings.

  2. Soybean GH3 promoter contains multiple auxin-inducible elements.

    PubMed Central

    Liu, Z B; Ulmasov, T; Shi, X; Hagen, G; Guilfoyle, T J

    1994-01-01

    The soybean GH3 gene is transcriptionally induced in a wide variety of tissues and organs within minutes after auxin application. To determine the sequence elements that confer auxin inducibility to the GH3 promoter, we used gel mobility shift assays, methylation interference, deletion analysis, linker scanning, site-directed mutagenesis, and gain-of-function analysis with a minimal cauliflower mosaic virus 35S promoter. We identified at least three sequence elements within the GH3 promoter that are auxin inducible and can function independently of one another. Two of these elements are found in a 76-bp fragment, and these consist of two independent 25- and 32-bp auxin-inducible elements. Both of these 25- and 32-bp auxin-inducible elements contain the sequence TGTCTC just upstream of an AATAAG. An additional auxin-inducible element was found upstream of the 76-bp auxin-inducible fragment; this can function independently of the 76-bp fragment. Two TGA-box or Hex-like elements (TGACGTAA and TGACGTGGC) in the promoter, which are strong binding sites for proteins in plant nuclear extracts, may also elevate the level of auxin inducibility of the GH3 promoter. The multiple auxin-inducible elements within the GH3 promoter contribute incrementally to the overall level of auxin induction observed with this promoter. PMID:8038604

  3. GH and the cardiovascular system: an update on a topic at heart.

    PubMed

    Isgaard, Jörgen; Arcopinto, Michele; Karason, Kristjan; Cittadini, Antonio

    2015-02-01

    In this review, the importance of growth hormone (GH) for the maintenance of normal cardiac function in adult life is discussed. Physiological effects of GH and underlying mechanisms for interactions between GH and insulin-like growth factor I (IGF-I) and the cardiovascular system are covered as well as the cardiac dysfunction caused both by GH excess (acromegaly) and by GH deficiency in adult hypopituitary patients. In both acromegaly and adult GH deficiency, there is also increased cardiovascular morbidity and mortality possibly linked to aberrations in GH status. Finally, the status of the GH/IGF-I system in relation to heart failure and the potential of GH as a therapeutic tool in the treatment of heart failure are reviewed in this article.

  4. Two GH3 genes from longan are differentially regulated during fruit growth and development.

    PubMed

    Kuang, Jian-Fei; Zhang, Yu; Chen, Jian-ye; Chen, Qiu-Jin; Jiang, Yue-Ming; Lin, He-Tong; Xu, Shi-Juan; Lu, Wang-Jin

    2011-10-01

    In the present work, two full length cDNAs of GH3 genes, named DlGH3.1 and DlGH3.2 were cloned from pericarp and aril tissues of the longan fruit, respectively. Three conserved motifs, SSGTSAGERK, YASSE and YRVGD, as a characteristic of the acyladenylate/thioester forming enzyme superfamily were observed in DlGH3.1 and DlGH3.2 proteins. DlGH3.1 mainly expressed in pericarp tissues while DlGH3.2 accumulated in both the pericarp and aril tissues during fruit growth and development. In addition, NAA treatment induced the expression of DlGH3.1 and DlGH3.2 in the pericarp tissues at 21 and 77days after anthesis (DAA), while only DlGH3.2 in the aril tissues could be induced by NAA at 77DAA. More importantly, ABA and ethrel treatments suppressed the accumulations of DlGH3.1 and DlGH3.2 in the pericarp tissues of longan fruit at 21DAA (a rapid growth stage of pericarp), but enhanced DlGH3.2 expression in the aril tissues at 77DAA (a fruit ripening stage). Furthermore, the expression patterns of DlGH3.1 and DlGH3.2 showed different tissue specificity. Thus, our results suggest that DlGH3.1 gene expression might be associated with pericarp growth, while DlGH3.2 accumulation is likely to be related to both pericarp growth and fruit ripening, and the responses of DlGH3s to plant growth hormones are different and dependent on fruit development stage and fruit tissue. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. Increased Secretion of Endogenous GH after Treatment with an Intranasal GH-releasing Peptide-2 Spray Does Not Promote Growth in Short Children with GH Deficiency.

    PubMed

    Tanaka, Toshiaki; Hasegawa, Yukihiro; Yokoya, Susumu; Nishi, Yoshikazu

    2014-10-01

    We investigated whether treatment with an intranasal GH-releasing peptide (GHRP)-2 spray, which acts as a potent GH secretagogue that stimulates endogenous GH secretion, promotes growth in patients with GH deficiency (GHD). This study involved 126 prepubertal short children (81 males, 45 females) with a height SD score of -2 SD or less, who had been diagnosed as having GHD based on GH stimulation tests, and in whom the serum GH concentrations increased up to 9 ng/ml after preliminary administration of an intranasal GHRP-2 spray. The subjects included in this study were divided into 3 groups by use of a double-blind method; that is 44 were placed into the placebo group (P group: 30 males, 14 females), 41 were placed into the GHRP-2 low dose group (L group: 25 males, 16 females), and 41 were placed into the GHRP-2 high dose group (H group: 26 males, 15 females). Those with a body wt of less than 20 kg were administered a placebo (P group), 50 μg of GHRP-2 (L group) or 100 μg of GHRP-2 (H group), and those with a body wt of 20 kg or more were administered a placebo (P group), 100 µg of GHRP-2 (L group) or 200 µg of GHRP-2 (H group) twice daily (morning and evening) for 48 continuous wk. Age and height SD scores at baseline were not significantly different among the three groups: 7.5 yr old and -2.26 SD in the P group, 7.3 yr old and -2.38 SD in the L group, and 7.5 yr old and -2.27 SD in the H group. Of the 126 subjects, 44, 40 and 40 subjects in the P, L and H groups, respectively, completed the 48 continuous wk of treatment. The changes in the mean height SD scores (mean growth rate) after 48 wk of treatment in the P, L and H groups were 0.07 SD, 0.03 SD, and 0.02 SD, respectively, and thus no significant differences was observed among the 3 groups. Also no significant changes in blood IGF-I levels at baseline or after 48 wk of treatment were observed among the 3 groups. This study revealed that in patients with GHD, an increase in endogenous GH secretion as a

  6. An efficient expression of Human Growth Hormone (hGH) in the milk of transgenic mice using rat {beta}-casein/hGH fusion genes

    SciTech Connect

    Lee, Chul-Sang; Yu, Dae-Yeul; Lee, Kyung-Kwang

    1996-03-01

    In order to produce human growth hormone (hGH) in the milk of transgenic mice, two expression vectors for hGH differing in their 3{prime} flanking sequences were constructed by placing the genomic sequences of hGH gene under the control of the rat {beta}-casein gene promotor. The 3{prime} flanking sequences of the expression constructs were derived from either the hGH gene (pBCN1GH) or the rat {beta}-casein gene (pBCN2GH). Transgenic lines bearing pBCN1GH expressed hGH more efficiently than those bearing pBCN2GH in the milk (19-5500 {mu}g/mL vs 0.7-2 {mu}g/mL). In particular, one of the BCN1GH lines expressed hGH as much as 5500 {plus_minus} 620 {mu}g/mL. Northern blot analysis showed that the transgene expression was specifically confined to the mammary gland and developmentally regulated like the endogeneous mouse {beta}-casein gene in the mammary gland. However, a low level of nonmammary expression was also detected with more sensitive assay methods. In conclusion, the rat {beta}-casein/hGH fusion gene could direct an efficient production of hGH in a highly tissue- and stage-specific manner in the transgenic mice and the 3{prime} flanking sequences of hGH gene had an important role for the efficient expression. 27 refs., 5 figs., 2 tabs.

  7. Comparison of continuation or cessation of growth hormone (GH) therapy on body composition and metabolic status in adolescents with severe GH deficiency at completion of linear growth.

    PubMed

    Carroll, P V; Drake, W M; Maher, K T; Metcalfe, K; Shaw, N J; Dunger, D B; Cheetham, T D; Camacho-Hübner, C; Savage, M O; Monson, J P

    2004-08-01

    Although GH replacement improves the features of GH deficiency (GHD) in adults, it has yet to be established whether cessation of GH at completion of childhood growth results in adverse consequences for the adolescent with GHD. Effects of continuation or cessation of GH on body composition, insulin sensitivity, and lipid levels were studied in 24 adolescents (13 males, 11 females, aged 17.0 +/- 0.3, yr, mean +/- se, puberty stage 4 or 5) in whom height velocity was less than 2 cm/yr. Provocative testing confirmed severe GHD [peak GH < 9 mU/liter (3 microg/liter)] in all cases and was followed by a lead-in period of 3 months during which the pediatric dose of GH continued unchanged. Baseline investigations were then performed using dual-energy x-ray absorptiometry (body composition), lipid measurements, and assessment of insulin sensitivity by both homeostasis model assessment and a short insulin tolerance test. Twelve patients remained on GH (0.35 U/kg.wk), and 12 patients ceased GH treatment. The groups were followed up in parallel with repeat observations made after 6 and 12 months. No endocrine differences were evident between the groups at baseline. GH cessation resulted in a reduction of serum IGF-I Z score [-1.62 +/- 0.29, baseline vs. -2.52 +/- 0.12, 6 months (P < 0.05) vs. -2.52 +/- 0.10, 12 months (P < 0.01)] but values remained unchanged in those continuing GH replacement. Lean body mass increased by 2.5 +/- 0.5 kg ( approximately 6%) over 12 months in those receiving GH but was unchanged after GH discontinuation. Cessation of GH resulted in increased insulin sensitivity [short insulin tolerance test, 153 +/- 22 micromol/liter.min, baseline vs. 187 +/- 20, 6 months (P < 0.05) vs. 204 +/- 14, 12 months (P = 0.05)], but no significant change was seen during 12 months of GH continuation. Lipid levels remained unaltered in both groups. Continuation of GH at completion of linear growth resulted in ongoing accrual of lean body mass (LBM), whereas skeletal

  8. Expression of lymphocyte-derived growth hormone (GH) and GH-releasing hormone receptors in aging rats.

    PubMed

    Weigent, Douglas A

    2013-04-01

    In the present study, we show that higher levels of lymphocyte GH are expressed in spleen cells from aging animals compared to young animals. Further, leukocytes from primary and secondary immune tissues and splenic T and B cells from aging rats all express higher levels of GHRH receptors compared to younger animals. Bone marrow and splenic T cells express the highest levels of GHRH receptor in aging animals. Spleen cells from aging animals showed no significant change in proliferation or GH induction after treatment with GHRH. Taken together, the data for the first time show alterations in GH synthesis and expression of the GHRH receptor on cells of the immune system that may play a role in the immune response in aging.

  9. Internalization and synaptogenic effect of GH in retinal ganglion cells (RGCs).

    PubMed

    Fleming, Thomas; Martínez-Moreno, Carlos G; Mora, Janeth; Aizouki, Miray; Luna, Maricela; Arámburo, Carlos; Harvey, Steve

    2016-08-01

    In the chicken embryo, GH gene expression occurs in the neural retina and retinal GH promotes cell survival and induces axonal growth of retinal ganglion cells. Neuroretinal GH is therefore of functional importance before the appearance of somatotrophs and the onset of pituitary GH secretion to the peripheral plasma (at ED15-17). Endocrine actions of pituitary GH in the development and function of the chicken embryo eye are, however, unknown. This possibility has therefore been investigated in ED15 embryos and using the quail neuroretinal derived cell line (QNR/D). During this research, we studied for the first time, the coexistence of exogenous (endocrine) and local GH (autocrine/paracrine) in retinal ganglion cells (RGCs). In ovo systemic injections of Cy3-labeled GH demonstrated that GH in the embryo bloodstream was translocated into the neural retina and internalized into RGC's. Pituitary GH may therefore be functionally involved in retinal development during late embryogenesis. Cy3-labelled GH was similarly internalized into QNR/D cells after its addition into incubation media. The uptake of exogenous GH was by a receptor-mediated mechanism and maximal after 30-60min. The exogenous (endocrine) GH induced STAT5 phosphorylation and increased growth associated protein 43 (GAP43) and SNAP-25 immunoreactivity. Ex ovo intravitreal injections of Cy3-GH in ED12 embryos resulted in GH internalization and STAT5 activation. Interestingly, the CY3-labeled GH accumulated in perinuclear regions of the QNR/D cells, but was not found in the cytoplasm of neurite outgrowths, in which endogenous retinal GH is located. This suggests that exogenous (endocrine) and local (autocrine/paracrine) GH are both involved in retinal function in late embryogenesis but they co-exist in separate intracellular compartments within retinal ganglion cells.

  10. Effect of GH/IGF-1 on Bone Metabolism and Osteoporsosis

    PubMed Central

    Locatelli, Vittorio; Bianchi, Vittorio E.

    2014-01-01

    Background. Growth hormone (GH) and insulin-like growth factor (IGF-1) are fundamental in skeletal growth during puberty and bone health throughout life. GH increases tissue formation by acting directly and indirectly on target cells; IGF-1 is a critical mediator of bone growth. Clinical studies reporting the use of GH and IGF-1 in osteoporosis and fracture healing are outlined. Methods. A Pubmed search revealed 39 clinical studies reporting the effects of GH and IGF-1 administration on bone metabolism in osteopenic and osteoporotic human subjects and on bone healing in operated patients with normal GH secretion. Eighteen clinical studies considered the effect with GH treatment, fourteen studies reported the clinical effects with IGF-1 administration, and seven related to the GH/IGF-1 effect on bone healing. Results. Both GH and IGF-1 administration significantly increased bone resorption and bone formation in the most studies. GH/IGF-1 administration in patients with hip or tibial fractures resulted in increased bone healing, rapid clinical improvements. Some conflicting results were evidenced. Conclusions. GH and IGF-1 therapy has a significant anabolic effect. GH administration for the treatment of osteoporosis and bone fractures may greatly improve clinical outcome. GH interacts with sex steroids in the anabolic process. GH resistance process is considered. PMID:25147565

  11. Heat shock of cultured GC cells enhances the level of triiodothyronine induced growth hormone (GH) and GH messenger ribonucleic acid.

    PubMed

    Shapiro, L E; Katz, C P; DeFesi, C R; Surks, M I

    1989-07-01

    We have previously proposed that the effects of heat shock on thyroid hormone-responsive rat pituitary tumor (GC) cells may be a model relevant to the in vivo effects of nonthyroidal disease on thyroid hormone action. To determine the effects of heat shock on thyroid hormone responses, GC cells (normally cultured at 37 C) were studied after incubation at 41 C. After 18 h at 41 C there was enhanced synthesis of proteins (mol wt, 70,000 and 90,000) considered to be universal markers of the cellular response to heat shock. Incubation at 41 C also resulted in a significant decrease in GC cell viability and (after 24 h) arrest of GC cell growth. However, the induction of GH synthesis by T3 was significantly enhanced in GC cells stressed by incubation at 41 C. The addition of 5 nM T3 to thyroid hormone-depeleted GC cells resulted in a significantly greater (P less than 0.001) accumulation of GH (2642 +/- 280 ng/18 h) during 41 C incubation than during 37 C incubation (1223 +/- 175 ng/18 h). The enhanced T3-induced production of GH was coincident with a proportional increase (P less than 0.05) in cellular GH mRNA determined by dot hybridization analysis. Thus, the stress of 41 C incubation elicits a heat shock response in GC cells characterized by decreased viability and growth arrest, but enhanced accumulation of GH mRNA in response to T3. Our recent report on the identical effects due to the stress of implantation of the Walker 256 carcinoma on T3-induced rat pituitary GH mRNA in vivo suggests that heat shock of cultured GC cells is a valid in vitro model of nonthyroidal disease.

  12. Seven years of growth hormone (GH) replacement improves quality of life in hypopituitary patients with adult-onset GH deficiency.

    PubMed

    Elbornsson, Mariam; Horvath, Alexandra; Götherström, Galina; Bengtsson, Bengt-Åke; Johannsson, Gudmundur; Svensson, Johan

    2017-02-01

    Few studies have determined the effects of long-term growth hormone (GH) replacement on quality of life (QoL). This study investigated the effects of 7 years of GH replacement on QoL. A prospective, single-center, open-label study of 95 adults (mean age 52.8 years; 46 men) with adult-onset GH deficiency (GHD). QoL was measured using Quality of Life-Assessment for Growth Hormone Deficiency in Adults (QoL-AGHDA) and Psychological General Well-Being (PGWB) scores. The GH dose was gradually increased from 0.13 mg/day to 0.42 mg/day. IGF-I SD score increased from -1.49 at baseline to 0.35 at study end. The GH replacement induced sustained improvements in total QoL-AGHDA and PGWB scores. GHD women had a more marked improvement in total QoL-AGHDA score than GHD men after 5 and 7 years. Most of the improvement in QoL was seen during the first year, but there was a small further improvement also after one year as measured using QoL-AGHDA. All QoL-AGHDA dimensions improved, but the improvement in memory and concentration as well as tenseness occurred later than that of other dimensions. Correlation analysis demonstrated that the patients with the lowest baseline QoL had the greatest improvement in QoL. Seven years of GH replacement improved QoL with the most marked improvements in GHD women and in patients with low baseline QoL. Most, but not all, of the improvement in QoL was seen during the first year. Some QoL-AGHDA dimensions (memory and concentration, tenseness) responded at a slower rate than other dimensions. © 2017 European Society of Endocrinology.

  13. Tripeptide amide L-pyroglutamyl-histidyl-L-prolineamide (L-PHP-thyrotropin-releasing hormone, TRH) promotes insulin-producing cell proliferation.

    PubMed

    Luo, LuGuang; Luo, John Z Q; Jackson, Ivor

    2013-02-01

    A very small tripeptide amide L-pyroglutamyl-L-histidyl-L-prolineamide (L-PHP, Thyrotropin-Releasing Hormone, TRH), was first identified in the brain hypothalamus area. Further studies found that L-PHP was expressed in pancreas. The biological role of pancreatic L-PHP is still not clear. Growing evidence indicates that L-PHP expression in the pancreas may play a pivotal role for pancreatic development in the early prenatal period. However, the role of L-PHP in adult pancreas still needs to be explored. L-PHP activation of pancreatic β cell Ca2+ flow and stimulation of β-cell insulin synthesis and release suggest that L-PHP involved in glucose metabolism may directly act on the β cell separate from any effects via the central nervous system (CNS). Knockout L-PHP animal models have shown that loss of L-PHP expression causes hyperglycemia, which cannot be reversed by administration of thyroid hormone, suggesting that the absence of L-PHP itself is the cause. L-PHP receptor type-1 has been identified in pancreas which provides a possibility for L-PHP autocrine and paracrine regulation in pancreatic function. During pancreatic damage in adult pancreas, L-PHP may protect beta cell from apoptosis and initiate its regeneration through signal pathways of growth hormone in β cells. L-PHP has recently been discovered to affect a broad array of gene expression in the pancreas including growth factor genes. Signal pathways linked between L-PHP and EGF receptor phosphorylation suggest that L-PHP may be an important factor for adult β-cell regeneration, which could involve adult stem cell differentiation. These effects suggest that L-PHP may benefit pancreatic β cells and diabetic therapy in clinic.

  14. Growth hormone (GH) secretion, GH-dependent gene expression, and sexually dimorphic body growth in young rats with chronic renal failure.

    PubMed

    Krieg, Richard J; Veldhuis, Johannes D; Thornhill, Barbara A; Chevalier, Robert L; Gil, Gregorio

    2008-06-01

    Chronic renal disease results in growth failure in children. This study sought to determine the influences of early renal failure on body growth, growth hormone (GH) secretion, and GH-dependent hepatic gene expression. Neonatal animals were subjected to five-sixth nephrectomy (Nephr) and monitored during growth. Sham-operated male (Sham) and female (Fem) rats served as controls. Whereas Nephr of adult animals causes renal insufficiency, neonatal nephrectomy leads to frank renal failure. In male Nephr compared with Sham animals, GH half-life and GH pulse frequency increased by 1.55- and 1.33-fold, respectively, and GH secretory-burst size decreased by 80%. Approximate entropy analysis quantified more disorderly patterns of GH secretion in Nephr animals, which differed from Sham males, but not from Fem rats. Expression of liver P450 CYP2C11 mRNA, which is dependent upon the male GH pattern, became undetectable, whereas expression of liver P450 CYP2C12 mRNA, which is dependent upon the female GH pattern, increased multifold. Renal failure in young rats abrogates the male pattern of GH pulsatility, abolishes the sexual dimorphism of body weight gain, and induces a female pattern of hepatic gene expression. These data raise the possibility that disruption of pulsatile GH secretion contributes to the growth failure of renal disease.

  15. Regulation of growth hormone (GH) receptor (GHR1 and GHR2) mRNA level by GH and metabolic hormones in primary cultured tilapia hepatocytes.

    PubMed

    Pierce, A L; Breves, J P; Moriyama, S; Uchida, K; Grau, E G

    2012-10-01

    Growth hormone (GH) regulates essential physiological functions in teleost fishes, including growth, metabolism, and osmoregulation. Recent studies have identified two clades of putative receptors for GH (GHR1 clade and GHR2 clade) in fishes, both of which are highly expressed in the liver. Moreover, the liver is an important target for the anabolic effects of GH via endocrine IGFs, and liver sensitivity to GH is modulated by metabolic hormones. We investigated the effects of GH, insulin, glucagon, cortisol and triiodothyronine on GHR1 and GHR2 mRNA levels in primary cultured tilapia hepatocytes. Physiological concentrations of GH strongly stimulated GHR2 mRNA level (0.5-50×10(-9) M), but did not affect GHR1 mRNA level. Insulin suppressed stimulation of GHR2 mRNA level by GH (10(-8)-10(-6) M). Insulin increased basal GHR1 mRNA level (10(-8)-10(-6) M). Cortisol increased basal GHR2 mRNA level (10(-7)-10(-6) M), but did not consistently affect GH-stimulated GHR2 mRNA level. Cortisol increased basal GHR1 mRNA level (10(-9)-10(-6) M). Glucagon suppressed GH-stimulated GHR2 mRNA level and increased basal GHR1 mRNA level at a supraphysiological concentration (10(-6) M). A single injection of GH (5 μg/g) increased liver GHR2 mRNA level, and insulin injection (5 μg/g) decreased both basal and GH-stimulated GHR2 mRNA levels after 6 h. In contrast, insulin and GH injection had little effect on liver GHR1 mRNA level. This study shows that GHR1 and GHR2 gene expression are differentially regulated by physiological levels of GH and insulin in tilapia primary hepatocytes. Copyright © 2012 Elsevier Inc. All rights reserved.

  16. Diagnosis of growth hormone deficiency is affected by calibrators used in GH immunoassays.

    PubMed

    Meazza, C; Albertini, R; Pagani, S; Sessa, N; Laarej, K; Falcone, R; Bozzola, E; Calcaterra, V; Bozzola, M

    2012-11-01

    Growth hormone (GH) values vary among immunoassays depending on different factors, such as the assay method used, specificity of antibodies, matrix difference between standards and samples, and interference with endogenous GH binding proteins (GHBPs). We evaluated whether the use of different calibrators for GH measurement may affect GH values and, consequently, the formulation of GH deficiency (GHD) diagnosis in children. Twenty-three short children (5 F, 18 M; age 11.4±3.1 years), with the clinical characteristics of GHD (height:  -2.3±0.5 SDS; height velocity  -2.3±1.5 SDS; IGF-I  -1.2±0.9 SDS), underwent GH stimulation tests to confirm the clinical diagnosis of GHD. Serum GH values were measured with Immulite 2000, using 2 different calibrators, IS 98/574, a recombinant 22 kDa molecule of more than 95% purity, and IS 80/505, of pituitary origin and resembling a variety of GH isoforms. We found blunted GH secretion in 20 subjects with the Immulite assay using the IS 98/574 GH as a calibrator, confirming the diagnosis of GHD. Subsequently, using IS 80/505 GH as a calibrator, in the same samples only 14 children showed reduced GH levels. The total cost for the first year of GH therapy of patients diagnosed with IS 98/574 as a calibrator was higher than that for patients diagnosed with IS 80/505 as a calibrator. These data confirm that GH values may depend on different calibrators used in the GH assay, affecting the formulation of GHD diagnosis and the consequent decision to start GH treatment. © Georg Thieme Verlag KG Stuttgart · New York.

  17. Role of growth hormone (GH) in liver regeneration.

    PubMed

    Pennisi, Patricia A; Kopchick, John J; Thorgeirsson, Snorri; LeRoith, Derek; Yakar, Shoshana

    2004-10-01

    Liver regeneration is a fundamental mechanism by which the liver responds to injury. This process is regulated by endogenous growth factors and cytokines, and it involves proliferation of all mature cells that exist within the intact organ. To understand the role of the GH/IGF-I axis in liver regeneration, we performed partial hepatectomies in three groups of mice: GH antagonist (GHa) transgenic mice, in which the action of GH is blocked; liver IGF-I-deficient mice that lack IGF-I specifically in the liver and also lack the acid-labile subunit (ALS; LID+ALSKO mice), in which IGF-I levels are very low and GH secretion is increased; and control mice. Interestingly, the survival rate of GHa transgenic mice was dramatically reduced after partial hepatectomy (57%) compared with the survival rate of controls (100%) or LID+ALSKO mice (88%). In control mice, the liver was completely regenerated after 4 d, whereas liver regeneration required 7 d in LID+ALSKO mice. In contrast, in GHa mice, liver regeneration reached only 70% of the original liver mass after 4 d and did not improve thereafter. Strikingly, 36 and 48 h after hepatectomy, the livers of control and LID+ALSKO mice, respectively, exhibited intense 5-bromo-2'-deoxyuridine (BrdU) staining, whereas BrdU staining was dramatically decreased in the livers of GHa-treated mice. These results suggest that GH plays a critical role in liver regeneration, although whether it acts directly or indirectly remains to be determined.

  18. Safety, pharmacokinetic and pharmacodynamic properties of TV-1106, a long-acting GH treatment for GH deficiency.

    PubMed

    Cohen-Barak, Orit; Sakov, Anat; Rasamoelisolo, Michele; Bassan, Merav; Brown, Kurt; Mendzelevski, Boaz; Spiegelstein, Ofer

    2015-11-01

    TV-1106 (Teva Pharmaceuticals) is a genetically fused recombinant protein of human GH (hGH) and human serum albumin, in development for treatment of GH deficiency (GHD). TV-1106 is expected to have an extended duration of action compared to daily GH treatment and may enable a reduction in the frequency of injections and improve compliance and quality of life for adults and children requiring GHD therapy. To assess the safety, local tolerability, pharmacokinetics and pharmacodynamics of TV-1106 following single s.c. injections in healthy male volunteers. Subjects (n=56) were assigned to one of seven ascending dose groups (3-100 mg) and received either a single dose of TV-1106 (n=6) or placebo (n=2) by s.c. injection. Eighteen subjects reported 43 adverse effects (AEs), which were mild to moderate; no serious AEs (SAEs) occurred. In 50, 70 and 100 mg groups there were mild to moderate increases in heart rate and systolic blood pressure that significantly correlated with higher levels of IGF1. TV-1106 showed pharmacokinetic characteristics of a long-acting hGH as demonstrated by a terminal elimination half-life of 23-35 h, delayed time of peak concentration, and systemic levels seen up to 7 days after dosing. IGF1 levels increased in a dose-dependent manner, before reaching a plateau, with levels above baseline extending beyond 7 days post dose. Single administration of TV-1106 up to 100 mg was safe in healthy volunteers. Pharmacokinetics and pharmacodynamics support once-weekly administration in patients with GHD. © 2015 The authors.

  19. Structural-Functional Analysis Reveals a Specific Domain Organization in Family GH20 Hexosaminidases.

    PubMed

    Val-Cid, Cristina; Biarnés, Xevi; Faijes, Magda; Planas, Antoni

    2015-01-01

    Hexosaminidases are involved in important biological processes catalyzing the hydrolysis of N-acetyl-hexosaminyl residues in glycosaminoglycans and glycoconjugates. The GH20 enzymes present diverse domain organizations for which we propose two minimal model architectures: Model A containing at least a non-catalytic GH20b domain and the catalytic one (GH20) always accompanied with an extra α-helix (GH20b-GH20-α), and Model B with only the catalytic GH20 domain. The large Bifidobacterium bifidum lacto-N-biosidase was used as a model protein to evaluate the minimal functional unit due to its interest and structural complexity. By expressing different truncated forms of this enzyme, we show that Model A architectures cannot be reduced to Model B. In particular, there are two structural requirements general to GH20 enzymes with Model A architecture. First, the non-catalytic domain GH20b at the N-terminus of the catalytic GH20 domain is required for expression and seems to stabilize it. Second, the substrate-binding cavity at the GH20 domain always involves a remote element provided by a long loop from the catalytic domain itself or, when this loop is short, by an element from another domain of the multidomain structure or from the dimeric partner. Particularly, the lacto-N-biosidase requires GH20b and the lectin-like domain at the N- and C-termini of the catalytic GH20 domain to be fully soluble and functional. The lectin domain provides this remote element to the active site. We demonstrate restoration of activity of the inactive GH20b-GH20-α construct (model A architecture) by a complementation assay with the lectin-like domain. The engineering of minimal functional units of multidomain GH20 enzymes must consider these structural requirements.

  20. Structural-Functional Analysis Reveals a Specific Domain Organization in Family GH20 Hexosaminidases

    PubMed Central

    Val-Cid, Cristina; Biarnés, Xevi; Faijes, Magda; Planas, Antoni

    2015-01-01

    Hexosaminidases are involved in important biological processes catalyzing the hydrolysis of N-acetyl-hexosaminyl residues in glycosaminoglycans and glycoconjugates. The GH20 enzymes present diverse domain organizations for which we propose two minimal model architectures: Model A containing at least a non-catalytic GH20b domain and the catalytic one (GH20) always accompanied with an extra α-helix (GH20b-GH20-α), and Model B with only the catalytic GH20 domain. The large Bifidobacterium bifidum lacto-N-biosidase was used as a model protein to evaluate the minimal functional unit due to its interest and structural complexity. By expressing different truncated forms of this enzyme, we show that Model A architectures cannot be reduced to Model B. In particular, there are two structural requirements general to GH20 enzymes with Model A architecture. First, the non-catalytic domain GH20b at the N-terminus of the catalytic GH20 domain is required for expression and seems to stabilize it. Second, the substrate-binding cavity at the GH20 domain always involves a remote element provided by a long loop from the catalytic domain itself or, when this loop is short, by an element from another domain of the multidomain structure or from the dimeric partner. Particularly, the lacto-N-biosidase requires GH20b and the lectin-like domain at the N- and C-termini of the catalytic GH20 domain to be fully soluble and functional. The lectin domain provides this remote element to the active site. We demonstrate restoration of activity of the inactive GH20b-GH20-α construct (model A architecture) by a complementation assay with the lectin-like domain. The engineering of minimal functional units of multidomain GH20 enzymes must consider these structural requirements. PMID:26024355

  1. Two degradation strategies for overcoming the recalcitrance of natural lignocellulosic xylan by polysaccharides-binding GH10 and GH11 xylanases of filamentous fungi.

    PubMed

    Miao, Youzhi; Li, Pan; Li, Guangqi; Liu, Dongyang; Druzhinina, Irina S; Kubicek, Christian P; Shen, Qirong; Zhang, Ruifu

    2017-03-01

    The recalcitrance of lignocellulose forms a strong barrier for the bioconversion of lignocellulosic biomass in chemical or biofuel industries. Filamentous fungi are major plant biomass decomposer, and capable of forming all the required enzymes. Here, they characterized the GH10 and GH11 endo-xylanases and a CE1 acetyl-xylan esterase (Axe1) from a superior biomass-degrading strain, Aspergillus fumigatus Z5, and examined how they interact in xylan degradation. Cellulose-binding (CBM1) domain inhibited GH10 xylanase activities for pure xylan, but afforded them an ability to hydrolyze washed corncob particles (WCCP). CBM1-containing GH10 xylanases also showed synergism with CBM1-containing Axe1 in WCCP hydrolysis, and this synergy was strictly dependent on the presence of their CBM1 domains. In contrast, GH11 xylanases had no CBM1, but still could bind xylan and hydrolyzed WCCP; however, no synergism displayed with Axe1. GH10 xylanases and GH11 xylanases showed a pronounced synergism in WCCP hydrolysis, which was dependent on the presence of the CBM1 in GH10 xylanases and absence from GH11 xylanases. They exhibit different mechanisms to bind to cellulose and xylan, and act in synergy when these two structures are intact. These findings will be helpful for the further development of highly efficient enzyme mixtures for lignocellulosic biomass conversion.

  2. Structure-function relationships of family GH70 glucansucrase and 4,6-α-glucanotransferase enzymes, and their evolutionary relationships with family GH13 enzymes.

    PubMed

    Meng, Xiangfeng; Gangoiti, Joana; Bai, Yuxiang; Pijning, Tjaard; Van Leeuwen, Sander S; Dijkhuizen, Lubbert

    2016-07-01

    Lactic acid bacteria (LAB) are known to produce large amounts of α-glucan exopolysaccharides. Family GH70 glucansucrase (GS) enzymes catalyze the synthesis of these α-glucans from sucrose. The elucidation of the crystal structures of representative GS enzymes has advanced our understanding of their reaction mechanism, especially structural features determining their linkage specificity. In addition, with the increase of genome sequencing, more and more GS enzymes are identified and characterized. Together, such knowledge may promote the synthesis of α-glucans with desired structures and properties from sucrose. In the meantime, two new GH70 subfamilies (GTFB- and GTFC-like) have been identified as 4,6-α-glucanotransferases (4,6-α-GTs) that represent novel evolutionary intermediates between the family GH13 and "classical GH70 enzymes". These enzymes are not active on sucrose; instead, they use (α1 → 4) glucans (i.e. malto-oligosaccharides and starch) as substrates to synthesize novel α-glucans by introducing linear chains of (α1 → 6) linkages. All these GH70 enzymes are very interesting biocatalysts and hold strong potential for applications in the food, medicine and cosmetic industries. In this review, we summarize the microbiological distribution and the structure-function relationships of family GH70 enzymes, introduce the two newly identified GH70 subfamilies, and discuss evolutionary relationships between family GH70 and GH13 enzymes.

  3. Early in vitro induction of rat pituitary GH mRNA by T31.

    PubMed

    Seo, H; Brocas, H; Vassart, G; Refetoff, S

    1978-10-01

    Previous work has shown that thyroid hormone stimulates rat pituitary GH synthesis and GH mRNA activity and concentration. However, the earliest demonstration of increase in GH mRNA activity was 24 hours following T3 addition whereas stimulation of GH synthesis has been observed 2 hours after treatment with T3. Thus, it is unknown whether increase in pituitary GH mRNA is a prerequisite for the stimulation of GH synthesis. In the present investigation in vitro addition of 1.5 x 10(-10) M T3 to pituitaries isolated from hypothyroid rats resulted in a slight but significant increase of GH mRNA activity within 2 hours. Further stimulation of GH mRNA activity was observed over the period of 12 hours. No increase of GH mRNA activity occurred in the absence of T3, and T3 had no effect on the PRL mRNA activity. These findings suggest that increase in GH mRNA may be responsible for the observed induction of GH synthesis, and that at least one of the primary actions of thyroid hormone is at the nuclear level.

  4. Increased adiposity and insulin correlates with the progressive suppression of pulsatile GH secretion during weight gain.

    PubMed

    Steyn, F J; Xie, T Y; Huang, L; Ngo, S T; Veldhuis, J D; Waters, M J; Chen, C

    2013-01-01

    Pathological changes associated with obesity are thought to contribute to GH deficiency. However, recent observations suggest that impaired GH secretion relative to excess calorie consumption contributes to progressive weight gain and thus may contribute to the development of obesity. To clarify this association between adiposity and GH secretion, we investigated the relationship between pulsatile GH secretion and body weight; epididymal fat mass; and circulating levels of leptin, insulin, non-esterified free fatty acids (NEFAs), and glucose. Data were obtained from male mice maintained on a standard or high-fat diet. We confirm the suppression of pulsatile GH secretion following dietary-induced weight gain. Correlation analyses reveal an inverse relationship between measures of pulsatile GH secretion, body weight, and epididymal fat mass. Moreover, we demonstrate an inverse relationship between measures of pulsatile GH secretion and circulating levels of leptin and insulin. The secretion of GH did not change relative to circulating levels of NEFAs or glucose. We conclude that impaired pulsatile GH secretion in the mouse occurs alongside progressive weight gain and thus precedes the development of obesity. Moreover, data illustrate key interactions between GH secretion and circulating levels of insulin and reflect the potential physiological role of GH in modulation of insulin-induced lipogenesis throughout positive energy balance.

  5. Muscle and skeletal health in children and adolescents with GH deficiency.

    PubMed

    Improda, Nicola; Capalbo, Donatella; Esposito, Andrea; Salerno, Mariacarolina

    2016-12-01

    In addition to promoting linear growth, GH plays a key role in the regulation of bone and muscle development and metabolism. Although GH deficiency is frequently listed among the causes of secondary osteoporosis in children, its impact on bone and muscle health and on fracture risk is still not completely established. Current data suggest that childhood-onset GH deficiency can affect bone and muscle mass and strength, with GH replacement therapy exerting beneficial effects. Moreover, GH withdrawal at final height can result in reduced peak bone and muscle mass, potentially leading to increased fracture risk in adulthood. Thus, the muscle-bone unit in GH deficient subjects should be monitored during childhood and adolescence in order to prevent osteoporosis and increased fracture risk and GH replacement should be tailored to ensure an optimal bone and muscle health.

  6. Optimization of a GO2/GH2 Impinging Injector Element

    NASA Technical Reports Server (NTRS)

    Tucker, P. Kevin; Shyy, Wei; Vaidyanathan, Rajkumar

    1999-01-01

    An existing injector optimization methodology, method i, is used to investigate optimal design points for a GO2/GH2 impinging injector element. The impinging element, an F-O-F triplet, is optimized in terms of such relevant design variables as fuel pressure drop, DELTA-P(sub f), oxidizer pressure drop, DELTA-P(sub o), combustor length, L(sub comb), and impingement angle, alpha, for a given mixture ratio and chamber pressure.

  7. Flowfield Characterization in a LOX/GH2 Propellant Rocket

    NASA Technical Reports Server (NTRS)

    Pal, S.; Moser, M. D.; Ryan, H. M.; Foust, M. J.; Santoro, R. J.

    1993-01-01

    The objective of the current work is to experimentally characterize the flowfield associated with an uni-element shear coaxial injector burning liquid oxygen/gaseous hydrogen (LOX/GH2) propellants. These experiments were carried out in an optically-accessible rocket chamber operating at a high pressure (approximately 400 psia). Quantitative measurements of drop size and velocity were obtained along with qualitative measurements of the disintegrating jet.

  8. Mode of GH administration and gene expression in the female rat brain.

    PubMed

    Walser, Marion; Schiöler, Linus; Oscarsson, Jan; Åberg, Maria A I; Wickelgren, Ruth; Svensson, Johan; Isgaard, Jörgen; Aberg, N David

    2017-03-08

    The endogenous secretion of growth hormone (GH) is sexually dimorphic in rats with females having a more even and males a more pulsatile secretion and low trough levels. The mode of GH administration, mimicking the sexually dimorphic secretion, has different systemic effects. In the brains of male rats, we have previously found that the mode of GH administration differently affects neuron haemoglobin beta (Hbb) expression whereas effects on other transcripts were moderate. The different modes of GH administration could have different effects on brain transcripts in female rats. Hypophysectomised female rats were given GH either as injections twice daily or as continuous infusion and GH-responsive transcripts were assessed by quantitative reverse transcription polymerase chain reaction in the hippocampus and parietal cortex (cortex). The different modes of GH-administration markedly increased Hbb and 5'-aminolevulinate synthase 2 (Alas2) in both brain regions. As other effects were relatively moderate, a mixed model analysis (MMA) was used to investigate general effects of the treatments. In the hippocampus, MMA showed that GH-infusion suppressed glia- and neuron-related transcript expression whereas GH-injections increased expression. In the cortex, GH-infusion instead increased neuron-related transcripts, whereas GH-injections had no significant effect. Interestingly, this contrasts to previous results from male rat cortex where GH-infusion generally decreased expression levels. In conclusion, the results indicate that there is a small but significant difference in response to mode of GH administration, in the hippocampus as compared to the cortex. For both modes of GH administration, there was a robust effect on Hbb and Alas2.

  9. Adults with Prader-Willi syndrome have weaker bones: effect of treatment with GH and sex steroids.

    PubMed

    Longhi, Silvia; Grugni, Graziano; Gatti, Davide; Spinozzi, Emiliano; Sartorio, Alessandro; Adami, Silvano; Fanolla, Antonio; Radetti, Giorgio

    2015-02-01

    Obesity has been considered to have a protective effect against the risk of fractures in adults. However, a high frequency of fracture is described in obese adults with Prader-Willi syndrome. To evaluate bone geometry, density and strength in a group of adult obese patients with Prader-Willi syndrome (PWS) and to examine the modulating effect on bone of treatment with growth hormone (GH) and sex steroids. This was a cross-sectional study performed in 41 (17 males, 24 females) obese subjects with genetically confirmed PWS, aged 29.4 ± 8.6 years. Forty-six healthy subjects (22 males and 24 females) served as controls. Digitalized X-rays were evaluated at the level of the 2nd metacarpal bone to assess bone geometry, i.e. cross-sectional area (CSA), cortical area (CA), medullary area (MA), metacarpal index (MI) and bone strength evaluated as bending breaking resistance index (BBRI). DEXA was also used to evaluate body composition and bone mineral density (total body, lumbar spine and femoral neck). PWS subjects, after adjusting for height and bone size, had a reduced CSA, CA and BBRI, while bone density was not different. GH treatment had a positive effect and sex steroids a negative effect on bone size and strength. PWS subjects showed a reduced bone size at the metacarpus leading to a reduced strength, while bone density was appropriate for size. GH treatment improves bone geometry but not bone density. Bone strength was significantly reduced in PWS patients who did not receive GH and had been treated with sex steroids.

  10. Oral glucose-stimulated growth hormone (GH) test in adult GH deficiency patients and controls: Potential utility of a novel test.

    PubMed

    Pena-Bello, Lara; Seoane-Pillado, Teresa; Sangiao-Alvarellos, Susana; Outeiriño-Blanco, Elena; Varela-Rodriguez, Barbara; Juiz-Valiña, Paula; Cordido, María; Cordido, Fernando

    2017-06-09

    The diagnosis of adult GH deficiency requires confirmation with a GH stimulation test. Oral glucose (OG) administration affects GH secretion, initially decreasing and subsequently stimulating GH secretion. The aim of this study was to investigate the diagnostic efficacy and safety of a long OG test (LOGT) as a stimulus of GH secretion for the diagnosis of adult GH deficiency (AGHD). Prospective experimental cross-sectional study. The study was conducted at the Endocrinology department of the University Hospital of a Coruña, Spain. We included 60 (40 women) AGHD patients (15) and controls (45) paired 1:3, of similar age, sex and BMI. The area under the curve (AUC) and peak were calculated for GH. The Mann-Whitney test was used to compare the different groups. ROC curve analyses were used. p-Values<0.05 were considered as statistically significant. The intervention consisted of orally administering 75g oral glucose administration; GH was obtained every 30min for a total of 300min. Peak GH area under receiver operating characteristic curve (ROC-AUC) following LOGT. Peak GH (μg/L) levels were lower in the AGHD patients (0.26±0.09) than in the controls (4.00±0.45), p<0.001. After LOGT, with the ROC plot analysis the best peak GH cut-point was 1.0μg/L, with 100% sensitivity, 78% specificity, ROC-AUC of 0.9089 and 81.82% accuracy. There were no relevant adverse events during any of the LOGT. The LOGT could be a cheap, safe, convenient and effective test for the diagnosis of AGHD. Copyright © 2017 European Federation of Internal Medicine. Published by Elsevier B.V. All rights reserved.

  11. Intranasal Human Growth Hormone (hGH) Induces IGF-1 Levels Comparable With Subcutaneous Injection With Lower Systemic Exposure to hGH in Healthy Volunteers

    PubMed Central

    Lewis, Andrew L.; Patel, Tina; Jeffery, Kirk; King, Gareth; Savage, Martin; Shalet, Stephen; Illum, Lisbeth

    2015-01-01

    Context: The development of an improved, efficacious human GH (hGH) product administered by a noninjectable route of delivery such as the nasal route is highly desirable. We have developed a novel nasal hGH product (CP024) that showed excellent nasal absorption in animal models; however, the translation of these results into the clinical setting is essential because past attempts to develop such formulations by other groups have been unable to induce IGF-1 in man. Objective: The objective of the study was to assess the pharmacokinetics, pharmacodynamics, and tolerability of CP024 compared with a sc hGH injection. Design: This was a single-center, nonrandomized placebo-controlled, open-label, five-way crossover study in eight healthy volunteers. Setting: The study was carried out at a contract research organization, Quotient Bioresearch. Volunteers: Eight healthy male volunteers, given an iv infusion of octreotide to suppress the endogenous GH secretion during the study period, participated in the study. No volunteers were withdrawn due to side effects. Main Outcome Measures: Measurement of hGH and IGF-1 levels and tolerability of the drug product was performed. Results: No serious adverse events were reported and no subjects withdrawn from study due to the treatment. After the nasal administration of CP024, 3-fold higher hGH blood levels were obtained as compared with hGH nasal control. The relative bioavailability was about 3%. CP024 (given twice daily) induced a significant increase in IGF-1 levels up to 19 hours after administration, with no significant difference to those obtained after the sc injection of hGH. Conclusions: The study indicates that CP024 is a promising candidate for an efficacious nasal product for the treatment of GH deficiency due to induction of IGF-1 similar to that after a sc injection, despite the lower plasma hGH concentration obtained. A dose-response study is needed to evaluate the optimal nasal dose. PMID:26425883

  12. Study and design of stability in GH5 cellulases.

    PubMed

    Badieyan, Somayesadat; Bevan, David R; Zhang, Chenming

    2012-01-01

    Thermostable enzymes that hydrolyze lignocellulosic materials provide potential advantages in process configuration and enhancement of production efficiency over their mesophilic counterparts in the bioethanol industry. In this study, the dynamics of β-1,4-endoglucanases (EC: 3.2.1.4) from family 5 of glycoside hydrolases (GH5) were investigated computationally. The conformational flexibility of 12 GH5 cellulases, ranging from psychrophilic to hyperthermophilic, was investigated by molecular dynamics (MD) simulations at elevated temperatures. The results indicated that the protein flexibility and optimum activity temperatures are appreciably correlated. Intra-protein interactions, packing density and solvent accessible area were further examined in crystal structures to investigate factors that are possibly involved in higher rigidity of thermostable cellulases. The MD simulations and the rules learned from analyses of stabilizing factors were used in design of mutations toward the thermostabilization of cellulase C, one of the GH5 endoglucanases. This enzyme was successfully stabilized both chemically and thermally by introduction of a new disulfide cross-link to its highly mobile 56-amino acid subdomain. Copyright © 2011 Wiley Periodicals, Inc.

  13. Stereotactic Irradiation of GH-Secreting Pituitary Adenomas

    PubMed Central

    Minniti, G.; Scaringi, C.; Amelio, D.; Maurizi Enrici, R.

    2012-01-01

    Radiotherapy (RT) is often employed in patients with acromegaly refractory to medical and/or surgical interventions in order to prevent tumour regrowth and normalize elevated GH and IGF-I levels. It achieves tumour control and hormone normalization up to 90% and 70% of patients at 10–15 years. Despite the excellent tumour control, conventional RT is associated with a potential risk of developing late toxicity, especially hypopituitarism, and its role in the management of patients with GH-secreting pituitary adenomas remains a matter of debate. Stereotactic techniques have been developed with the aim to deliver more localized irradiation and minimize the long-term consequences of treatment, while improving its efficacy. Stereotactic irradiation can be given in a single dose as stereotactic radiosurgery (SRS) or in multiple doses as fractionated stereotactic radiotherapy (FSRT). We have reviewed the recent published literature on stereotactic techniques for GH-secreting pituitary tumors with the aim to define the efficacy and potential adverse effects of each of these techniques. PMID:22518123

  14. GH administration and discontinuation in healthy elderly men: effects on body composition, GH-related serum markers, resting heart rate and resting oxygen uptake.

    PubMed

    Lange, K H; Isaksson, F; Rasmussen, M H; Juul, A; Bülow, J; Kjaer, M

    2001-07-01

    GH administration results in increased lean body mass (LBM), decreased fat mass (FM) and increased energy expenditure (EE). GH therapy may therefore have potential benefits, especially in the elderly, who are known to have decreased function of the GH/IGF-I axis. Several studies have focused on effects of GH administration in the elderly in the last decade. However, very limited information is available regarding changes in body composition and EE upon GH discontinuation in the elderly. The present study therefore investigated the effects of 12 weeks of GH administration and subsequent discontinuation on body composition, resting oxygen uptake (VO2), resting heart rate (HR) and GH related serum markers in healthy elderly men. Sixteen healthy men [age 74 +/- 1 years (mean +/- SEM), height 174.2 +/- 1.6 cm, body weight 80.7 +/- 2.6 kg, body fat 27.5 +/- 1.1%] completed the study protocol. Recombinant human GH (1.80 +/- 0.24 IU/day) was administered for 12 weeks in a single-blinded, placebo-controlled design. Body composition (dual energy X-ray absorptiometry), resting VO2 (indirect calorimetry), resting HR (telemetry) and serum IGF-I, IGF-II, IGFBP-3 and acid labile subunit (ALS) were measured at baseline, after 12 weeks of GH administration and, additionally in the GH group, 1, 2, 3, 4, 5 and 9 days after GH discontinuation. Body weight was unchanged from baseline to 12 weeks in both groups. However, GH administration caused a decrease in FM (3.4 +/- 1.0 kg, P < 0.012), paralleled by a similar increase in LBM (3.2 +/- 0.4 kg, P < 0.0002). Resting VO2 and resting HR increased by 31 +/- 3.6% and 7.3 +/- 1.9 per minute, respectively, in the GH-group, where significant increases in serum IGF-I, IGFBP-3 and ALS also were noted. None of the above parameters changed in the placebo group. Within 2-3 days after GH discontinuation, the GH related serum markers and resting HR returned to baseline levels, whereas resting VO2 remained elevated even 9 days after GH

  15. GH and IGF1 levels are positively associated with musculotendinous collagen expression: experiments in acromegalic and GH deficiency patients.

    PubMed

    Doessing, Simon; Holm, Lars; Heinemeier, Katja M; Feldt-Rasmussen, Ulla; Schjerling, Peter; Qvortrup, Klaus; Larsen, Jytte O; Nielsen, Rie H; Flyvbjerg, Allan; Kjaer, Michael

    2010-12-01

    Disproportionate growth of musculoskeletal tissue is a major cause of morbidity in both acromegalic (ACRO) and GH-deficient (GHD) patients. GH/IGF1 is likely to play an important role in the regulation of tendon and muscle collagen. We hypothesized that the local production of collagen is associated with the level of GH/IGF1. As primary outcomes, collagen mRNA expression and collagen protein fractional synthesis rate (FSR) were determined locally in skeletal muscle and tendon in nine ACRO and nine GHD patients. Moreover, muscle myofibrillar protein synthesis and tendon collagen morphology were determined. Muscle collagen I and III mRNA expression was higher in ACRO patients versus GHD patients (P<0.05), whereas collagen protein FSR did not differ significantly between ACRO and GHD patients in muscle (P=0.21) and tendon (P=0.15). IGF1Ea and IGF1Ec mRNA expression in muscle was higher in ACRO patients versus GHD patients (P<0.01). Muscle IGF1Ea mRNA expression correlated positively with collagen I mRNA expression (P<0.01). Tendon collagen fibrillar area tended to be higher in GHD patients relative to ACRO patients (P=0.07). Thus, we observed a higher expression for collagen and IGF1 mRNA in local musculotendinous tissue in ACRO patients relative to GHD patients. Moreover, there was a tendency towards a higher collagen protein FSR and a smaller collagen fibril diameter in ACRO patients relative to GHD patients. The results indicate a collagen-stimulating role of local IGF1 in human connective tissue and add to the understanding of musculoskeletal pathology in patients with either high or low GH/IGF1 axis activity.

  16. Effects of recombinant growth hormone (GH) replacement and psychomotor and cognitive stimulation in the neurodevelopment of GH-deficient (GHD) children with cerebral palsy: a pilot study.

    PubMed

    Devesa, Jesús; Alonso, Begoña; Casteleiro, Nerea; Couto, Paula; Castañón, Beatriz; Zas, Eva; Reimunde, Pedro

    2011-01-01

    Cerebral palsy (CP) is the main cause of physical disability in childhood and is an important health issue that has a strong socioeconomic impact. There is no effective treatment for CP and therapeutic approaches report only partial benefits for affected people. In this study we assessed the effects of growth hormone (GH) treatment combined with psychomotor and cognitive stimulation in the neurodevelopment of children with CP and GH deficiency (GHD). The study was carried out in 11 patients (7 boys and 4 girls; 4.12 ± 1.31 years) with GHD and CP who were treated with recombinant GH (rGH) and psychomotor and cognitive stimulation during 2 months. Battelle Developmental Inventory Screening Test (BDIST) was performed 2 months before commencing GH treatment, just before commencing GH administration, and after 2 months of combined treatment involving GH and cognitive stimulation. Psychomotor and cognitive status did not change during the period in which only cognitive stimulation was performed; however, significant improvements in personal and social skills, adaptive behavior, gross motor skills and total psychomotor abilities, receptive and total communication, cognitive skills and in the total score of the test (P < 0.01), and in fine motor skills and expressive communication (P < 0.02) were observed after the combined treatment period. Therefore, GH replacement together with psychomotor and cognitive stimulation seem to be useful for the appropriate neurodevelopment of children with GHD and CP.

  17. Effects of recombinant growth hormone (GH) replacement and psychomotor and cognitive stimulation in the neurodevelopment of GH-deficient (GHD) children with cerebral palsy: a pilot study

    PubMed Central

    Devesa, Jesús; Alonso, Begoña; Casteleiro, Nerea; Couto, Paula; Castañón, Beatriz; Zas, Eva; Reimunde, Pedro

    2011-01-01

    Cerebral palsy (CP) is the main cause of physical disability in childhood and is an important health issue that has a strong socioeconomic impact. There is no effective treatment for CP and therapeutic approaches report only partial benefits for affected people. In this study we assessed the effects of growth hormone (GH) treatment combined with psychomotor and cognitive stimulation in the neurodevelopment of children with CP and GH deficiency (GHD). The study was carried out in 11 patients (7 boys and 4 girls; 4.12 ± 1.31 years) with GHD and CP who were treated with recombinant GH (rGH) and psychomotor and cognitive stimulation during 2 months. Battelle Developmental Inventory Screening Test (BDIST) was performed 2 months before commencing GH treatment, just before commencing GH administration, and after 2 months of combined treatment involving GH and cognitive stimulation. Psychomotor and cognitive status did not change during the period in which only cognitive stimulation was performed; however, significant improvements in personal and social skills, adaptive behavior, gross motor skills and total psychomotor abilities, receptive and total communication, cognitive skills and in the total score of the test (P < 0.01), and in fine motor skills and expressive communication (P < 0.02) were observed after the combined treatment period. Therefore, GH replacement together with psychomotor and cognitive stimulation seem to be useful for the appropriate neurodevelopment of children with GHD and CP. PMID:21691590

  18. Chronic growth hormone (GH) hypersecretion induces reciprocal and reversible changes in mRNA levels from hypothalamic GH-releasing hormone and somatostatin neurons in the rat.

    PubMed Central

    Bertherat, J; Timsit, J; Bluet-Pajot, M T; Mercadier, J J; Gourdji, D; Kordon, C; Epelbaum, J

    1993-01-01

    Effects of growth hormone (GH) hypersecretion on somatostatin-(SRIH) and GH-releasing hormone (GHRH) were studied by in situ hybridization and receptor autoradiography in rats bearing a GH-secreting tumor. 6 and 18 wk after tumor induction, animals displayed a sharp increase in body weight and GH plasma levels; pituitary GH content was reduced by 47 and 55%, while that of prolactin and thyrotropin was unchanged. At 18 wk, hypothalamic GHRH and SRIH levels had fallen by 84 and 52%, respectively. In parallel, the density of GHRH mRNA per arcuate neuron was reduced by 52 and 50% at 6 and 18 wk, while SRIH mRNA levels increased by 71 and 83% in the periventricular nucleus (with no alteration in the hilus of the dentate gyrus). The numbers of GHRH- and SRIH-synthetizing neurons in the hypothalamus were not altered in GH-hypersecreting rats. Resection of the tumor restored hypothalamic GHRH and SRIH mRNAs to control levels. GH hypersecretion did not modify 125I-SRIH binding sites on GHRH neurons. Thus, chronic GH hypersecretion affects the expression of the genes encoding for GHRH and SRIH. The effect is long lasting, not desensitizable and reversible. Images PMID:8097209

  19. TPA enhances growth hormone (GH) secretion effect of GH-releasing hormone (GHRH) by human gsp-positive pituitary somatotrophinomas.

    PubMed

    Lei, T; Bai, X; Hu, W; Xue, D; Jiang, X

    1999-01-01

    In recent years, one of the most exciting advances in the researches of pituitary adenomas is the discovery that 30%-40% of human pituitary somatotrophinomas carry somatic mutations of the gene for the alpha-subunit of the stimulatory GTP-binding protein, Gs (Gs alpha). These mutations, termed gsp oncogenes, may play an important role in the tumorigenesis of pituitary adenomas. Of 10 somatotrophinomas examined, 3 (30%) were proved to be gsp positive, as determined by sequence analysis of DNA generated by the polymerase chain reaction (PCR). GHRH exerted a significant stimulatory effect on GH secretion in 2 of 3 gsp-positive and 4 of 7 gsp-negative tumors. Moreover, phorbol ester, 1, 2-tetradecanoylphorbol-13-acetate (TPA), enhanced stimulation of lated the GH secretion effect exerted by GHRH in gsp-positive somatotrophinomas, whereas this effect was not observed in gsp-negative tumors. This result suggests that the protein kinase C signal system as well as adenylyl cyclase-cAMP-protein kinase A intracellular signal transduction system plays a pivotal role in GH secretory control of GHRH, which may work together via a cross-talk mechanism.

  20. Neuroprotection by GH against excitotoxic-induced cell death in retinal ganglion cells.

    PubMed

    Martínez-Moreno, Carlos G; Ávila-Mendoza, José; Wu, Yilun; Arellanes-Licea, Elvira Del Carmen; Louie, Marcela; Luna, Maricela; Arámburo, Carlos; Harvey, Steve

    2016-08-01

    Retinal growth hormone (GH) has been shown to promote cell survival in retinal ganglion cells (RGCs) during developmental waves of apoptosis during chicken embryonic development. The possibility that it might also against excitotoxicity-induced cell death was therefore examined in the present study, which utilized quail-derived QNR/D cells as an in vitro RGC model. QNR/D cell death was induced by glutamate in the presence of BSO (buthionine sulfoxamide) (an enhancer of oxidative stress), but this was significantly reduced (P<0.01) in the presence of exogenous recombinant chicken GH (rcGH). Similarly, QNR/D cells that had been prior transfected with a GH plasmid to overexpress secreted and non-secreted GH. This treatment reduced the number of TUNEL-labeled cells and blocked their release of lactate dehydrogenase (LDH). In a further experiment with dissected neuroretinal explants from ED (embryonic day) 10 embryos, rcGH treatment of the explants also reduced (P<0.01) the number of glutamate-BSO-induced apoptotic cells and blocked the explant release of LDH. This neuroprotective action was likely mediated by increased STAT5 phosphorylation and increased bcl-2 production, as induced by exogenous rcGH treatment and the media from GH-overexpressing QNR/D cells. As rcGH treatment and GH-overexpression cells also increased the content of IGF-1 and IGF-1 mRNA this neuroprotective action of GH is likely to be mediated, at least partially, through an IGF-1 mechanism. This possibility is supported by the fact that the siRNA knockdown of GH or IGF-1 significantly reduced QNR/D cell viability, as did the immunoneutralization of IGF-1. GH is therefore neuroprotective against excitotoxicity-induced RGC cell death by anti-apoptotic actions involving IGF-1 stimulation.

  1. Primary hyperparathyroidism is associated with marked impairment of GH response to acylated ghrelin.

    PubMed

    Cecconi, E; Bogazzi, F; Morselli, L L; Gasperi, M; Procopio, M; Gramaglia, E; Broglio, F; Giovannetti, C; Ghigo, E; Martino, E

    2008-08-01

    Impaired GH secretion is a common finding in patients with primary hyperparathyroidism (PHP). Ghrelin displays strong GH-releasing action, mainly at the hypothalamic level. To evaluate secretory response of GH to ghrelin in PHP patients. Fifteen patients [11 women/4 men, mean age 54 years, range 32-70 years, body mass index (BMI) 25.0 +/- 0.7 kg/m(2)] affected with PHP due to single parathyroid adenoma and 35 normal age-matched subjects (23 women/12 men, mean age 58 years, range 35-68 years, BMI 24.1 +/- 1.1 kg/m(2)). A measure of 1 microg/kg body weight i.v. acylated ghrelin or 1 microg/kg body weight i.v. GH releasing hormone (GHRH) followed by 0.5 g/kg body weight i.v. arginine (ARG) hydrochloride were administered to all subjects on alternate days in order to evaluate GH response. Mean serum GH peak after GHRH + ARG was 32.6 +/- 7.8 and 17.4 +/- 4.0 microg/l, in controls and PHP patients, respectively (P < 0.05). Mean serum GH peak after ghrelin was 70.4 +/- 31.5 and 16.8 +/- 1.9 microg/l, in controls and PHP patients, respectively, (P < 0.001). Using ROC curves, a serum GH peak > 22 microg/l after ghrelin stimulation might be considered as a cut-off value for identifying normal subjects. Ten (67%) PHP patients have impaired GH response to GHRH + ARG and 13 (87%) to ghrelin. Serum GH peak after ghrelin or GHRH + ARG was unrelated to serum IGF-1, PTH or ionized calcium concentrations. The present data confirm that GH secretion is impaired in PHP patients using the potent GH secretagogue ghrelin and suggest that impaired GH secretion is likely due to a deleterious effect of hypercalcaemia at the hypothalamic level in PHP patients.

  2. Low doses of estradiol partly inhibit release of GH in sheep without affecting basal levels.

    PubMed

    Hudmon, A; Davenport, G; Coleman, E S; Sartin, J L

    2009-10-01

    Estradiol increases basal growth hormone (GH) concentrations in sheep and cattle. This study sought to determine the effects of estradiol on GH-releasing hormone (GRH)-stimulated GH release in sheep. Growth hormone secretory characteristics, the GH response to GRH, and steady-state GH mRNA concentrations were determined in castrated male lambs treated with 2 different doses of estradiol 17-beta for a 28-d experimental period. Although no differences between treatments in mean GH, basal GH, or GH pulse number were observed after 28 d of estradiol treatment, GH pulse amplitude was greater (P < 0.05) in the 2.00-cm implant-treated animals than in the control and 0.75-cm implant group. The effect of estradiol treatment on GRH-stimulated GH release revealed differences between the control and estradiol-treated animals (P < 0.05). The 15-min GH responses to 0.075 microg/kg hGRH in the control, 0.75-cm, and 2.00-cm implant groups, respectively, were 76 +/- 10, 22.6 +/- 2.1, and 43.6 +/- 15.0 ng/mL. Growth hormone mRNA content was determined for pituitary glands from the different treatment groups, and no differences in steady-state GH mRNA levels were observed. There were no differences in the mean plasma concentrations of IGF-I, cortisol, T(3), or T(4) from weekly samples. Growth hormone release from cultured ovine pituitary cells from control sheep was not affected by estradiol after 72 h or in a subsequent 3-h incubation with estradiol combined with GRH. These data suggest that estradiol has differing actions on basal and GRH-stimulated GH concentrations in plasma, but the increase in pulse amplitude does not represent an increased pituitary sensitivity to GRH.

  3. Excessive growth hormone expression in male GH transgenic mice adversely alters bone architecture and mechanical strength.

    PubMed

    Lim, S V; Marenzana, M; Hopkinson, M; List, E O; Kopchick, J J; Pereira, M; Javaheri, B; Roux, J P; Chavassieux, P; Korbonits, M; Chenu, C

    2015-04-01

    Patients with acromegaly have a higher prevalence of vertebral fractures despite normal bone mineral density (BMD), suggesting that GH overexpression has adverse effects on skeletal architecture and strength. We used giant bovine GH (bGH) transgenic mice to analyze the effects of high serum GH levels on BMD, architecture, and mechanical strength. Five-month-old hemizygous male bGH mice were compared with age- and sex-matched nontransgenic littermates controls (NT; n=16/group). Bone architecture and BMD were analyzed in tibia and lumbar vertebrae using microcomputed tomography. Femora were tested to failure using three-point bending and bone cellular activity determined by bone histomorphometry. bGH transgenic mice displayed significant increases in body weight and bone lengths. bGH tibia showed decreases in trabecular bone volume fraction, thickness, and number compared with NT ones, whereas trabecular pattern factor and structure model index were significantly increased, indicating deterioration in bone structure. Although cortical tissue perimeter was increased in transgenic mice, cortical thickness was reduced. bGH mice showed similar trabecular BMD but reduced trabecular thickness in lumbar vertebra relative to controls. Cortical BMD and thickness were significantly reduced in bGH lumbar vertebra. Mechanical testing of femora confirmed that bGH femora have decreased intrinsic mechanical properties compared with NT ones. Bone turnover is increased in favor of bone resorption in bGH tibia and vertebra compared with controls, and serum PTH levels is also enhanced in bGH mice. These data collectively suggest that high serum GH levels negatively affect bone architecture and quality at multiple skeletal sites.

  4. Influence of the d3GH receptor polymorphism on the metabolic and biochemical phenotype of GH-deficient adults at baseline and during short- and long-term recombinant human GH replacement therapy.

    PubMed

    Giavoli, Claudia; Ferrante, Emanuele; Profka, Eriselda; Olgiati, Luca; Bergamaschi, Silvia; Ronchi, Cristina L; Verrua, Elisa; Filopanti, Marcello; Passeri, Elena; Montefusco, Laura; Lania, Andrea G; Corbetta, Sabrina; Arosio, Maura; Ambrosi, Bruno; Spada, Anna; Beck-Peccoz, Paolo

    2010-09-01

    A common polymorphic variant of GH receptor (exon 3 deletion, d3GHR) has been linked with increased response to recombinant human GH (rhGH) in some patients with or without GH deficiency (GHD). The aim of the study was to investigate the impact of the GHR genotype on the phenotype of GHD adults and on the metabolic effect of rhGH therapy. Prospective study of GHD patients evaluated before and during short- (1 year, n=100) and long-term (5 years, n=50) rhGH therapy. Effects of rhGH on IGF1 levels, body composition (body fat percentage, BF%), body mass index, lipid profile, and glucose homeostasis (fasting insulin and glucose, insulin sensitivity indexes) were evaluated according to the presence or the absence of the d3GHR variant. The different genotype did not influence basal phenotype of GHD. Short-term rhGH determined normalization of IGF1 levels, decrease in BF%, and worsening of insulin sensitivity, independently from the presence of the d3GHR allele. A significant increase in high-density lipoprotein cholesterol occurred in the d3GHR group. Normalization of IGF1 levels and decrease in BF% were maintained after 5 years. Insulin sensitivity restored to basal values, though in d3GHR patients fasting glucose remained significantly higher than at baseline. After both 1 and 5 years, percentage of subjects with impaired glucose tolerance, similar in the two groups at baseline, decreased in fl/fl while doubled in d3GHR patients. In this last group, a long-term significant reduction in total and low-density lipoprotein cholesterol was also observed. The functional difference of d3GHR may influence some metabolic effects of rhGH on GHD adults.

  5. Measurement of free GH and bioactive IGF-I in non-diabetic haemodialysis patients treated with GH for 7 days.

    PubMed

    Frystyk, Jan; Djurhuus, Christian Born; Johansen, Thue; Lange, Martin; Smidt, Kamille; Christiansen, Jens Sandahl

    2012-11-01

    End-stage renal failure (ESRF) patients demonstrate augmented growth hormone (GH) secretion, but normal insulin-like growth factor-I (IGF-I) concentrations, indicating a state of GH resistance. To test this hypothesis, we compared the IGF-I response with exogenous GH in haemodialysis patients and healthy controls, with special focus on free GH and bioactive IGF-I. Ultrafiltered free GH and total GH were measured in serum collected hourly for 24 h at baseline and after 7 days of recombinant human (rh) GH (50 µg/kg/day) treatment in 11 non-diabetic haemodialysis patients and 10 matched controls. Serum levels of bioactive IGF-I (determined by cell-based IGF-I receptor activation assay), total IGF-I and the GH-binding protein (GHBP) were assayed twice daily. At baseline, patients showed elevated total GH (24 ± 5 versus 9 ± 1 µg/L × h, P < 0.02), free GH (21 ± 5 versus 7 ± 1 µg/L × h, P < 0.02), reduced GHBP (1.5 ± 0.3 versus 2.5 ± 0.2 nmol/L, P < 0.01), high-normal total IGF-I (173 ± 18 versus 135 ± 14 µg/L, P = 0.12) and subnormal bioactive IGF-I (2.1 ± 0.3 versus 2.8 ± 0.2 µg/L, P < 0.05) when compared with controls. After 7 days of rhGH treatment, there was a greater GH increase in the non-diabetic haemodialysis patients than in controls (total GH: 293 ± 33 versus 166 ± 13 µg/L × h, P < 0.001; free GH: 284 ± 40 versus 126 ± 15 µg/L × h, P < 0.001). GHB remained unaffected and total IGF-I increased to the same extent in patients and controls (701 ± 87 versus 572 ± 33 µg/L, P = 0.17), whereas bioactive IGF-I tended to be lower in patients (5.37 ± 0.55 versus 6.63 ± 0.25 µg/L, P < 0.10). When adjusting for the actual increments in plasma GH, the ability of exogenous GH to stimulate bioactive IGF-I levels was reduced by ~50% in ESRF (P < 0.02), whereas the response of total IGF-I remained normal (74%; P= 0.18) The study demonstrates that ESRF is associated with markedly elevated serum levels of free GH. Furthermore changes in bioactive

  6. Antiproliferative and GH-inhibitory activity of chimeric peptides consisting of GHRP-6 and somatostatin.

    PubMed

    Dasgupta, P; Singh, A T; Mukherjee, R

    1999-06-07

    Chimeric peptides consisting of growth hormone releasing peptide (GHRP-6) linked to somatostatin (6-11) via an amide bond to provide the effector parts of both the peptides were synthesized. The anti-proliferative, cytotoxic, and GH-inhibitory activities of these chimeric peptides were determined in vitro in the rat pituitary adenoma cell line GH3. One of the chimeric peptides, GSD, exhibited significantly greater (p < 0.001) anti-neoplastic and GH-inhibitory activity, as compared to RC-160. The hybrid peptides displayed high affinity binding to somatostatin receptors on GH3 cells. The bioactivity of GSD was found to be mediated by the stimulation of tyrosine phosphatase, involving a cGMP-dependent pathway, through pertussis toxin-sensitive G-proteins. Such potent GH-inhibitory chimeric peptides may be of potential importance in the therapy of acromegaly, as well as provide novel tools to study the regulation of GH secretion by GHRP and somatostatin.

  7. Functional divergence of GhCFE5 homoeologs revealed in cotton fiber and Arabidopsis root cell development.

    PubMed

    Lv, Fenni; Li, Peng; Zhang, Rui; Li, Nina; Guo, Wangzhen

    2016-04-01

    In GhCFE5 homoeologs, GhCFE5D interacted with more actin homologs and stronger interaction activity than GhCFE5A. GhCFE5D - but not GhCFE5A -overexpression severely disrupted actin cytoskeleton organization and significantly suppressed cell elongation. Homoeologous genes are common in polyploid plants; however, their functional divergence is poorly elucidated. Allotetraploid Upland cotton (Gossypium hirsutum, AADD) is the most widely cultivated cotton; accounting for more than 90 % of the world's cotton production. Here, we characterized GhCFE5A and GhCFE5D homoeologs from G. hirsutum acc TM-1. GhCFE5 homoeologs are expressed preferentially in fiber cells; and a significantly greater accumulation of GhCFE5A mRNA than GhCFE5D mRNA was found in all tested tissues. Overexpression of GhCFE5D but not GhCFE5A seriously inhibits the Arabidopsis hypocotyl and root cell elongation. Yeast two-hybrid assay and bimolecular fluorescence complementation (BiFC) analysis showed that compared with GhCFE5A, GhCFE5D interacts with more actin homologs and has a stronger interaction activity both from Arabidopsis and Upland cotton. Interestingly, subcellular localization showed that GhCFE5 resides on the cortical endoplasmic reticulum (ER) network and is colocalized with actin cables. The interaction activities between GhCFE5 homoeologs and actin differ in their effects on F-actin structure in transgenic Arabidopsis root cells. The F-actin changed direction from vertical to lateral, and the actin cytoskeleton organization was severely disrupted in GhCFE5D-overexpressing root cells. These data support the functional divergence of GhCFE5 homoeologs in the actin cytoskeleton structure and cell elongation, implying an important role for GhCFE5 in the evolution and selection of cotton fiber.

  8. GH/IGF-I Transgene Expression on Muscle Homeostasis

    NASA Technical Reports Server (NTRS)

    Schwartz, Robert J.

    1999-01-01

    We propose to test the hypothesis that the growth hormone/ insulin like growth factor-I axis through autocrine/paracrine mechanisms may provide long term muscle homeostasis under conditions of prolonged weightlessness. As a key alternative to hormone replacement therapy, ectopic production of hGH, growth hormone releasing hormone (GHRH), and IGF-I will be studied for its potential on muscle mass impact in transgenic mice under simulated microgravity. Expression of either hGH or IGF-I would provide a chronic source of a growth-promoting protein whose biosynthesis or secretion is shut down in space. Muscle expression of the IGF-I transgene has demonstrated about a 20% increase in hind limb muscle mass over control nontransgenic litter mates. These recent experiments, also establish the utility of hind-limb suspension in mice as a workable model to study atrophy in weight bearing muscles. Thus, transgenic mice will be used in hind-limb suspension models to determine the role of GH/IGF-I on maintenance of muscle mass and whether concentric exercises might act in synergy with hormone treatment. As a means to engineer and ensure long-term protein production that would be workable in humans, gene therapy technology will be used by to monitor muscle mass preservation during hind-limb suspension, after direct intramuscular injection of a genetically engineered muscle-specific vector expressing GHRH. Effects of this gene-based therapy will be assessed in both fast twitch (medial gastrocnemius) and slow twitch muscle (soleus). End-points include muscle size, ultrastructure, fiber type, and contractile function, in normal animals, hind limb suspension, and reambutation.

  9. The R3-MYB gene GhCPC negatively regulates cotton fiber elongation.

    PubMed

    Liu, Bingliang; Zhu, Yichao; Zhang, Tianzhen

    2015-01-01

    Cotton (Gossypium spp.) fibers are single-cell trichomes that arise from the outer epidermal layer of seed coat. Here, we isolated a R3-MYB gene GhCPC, identified by cDNA microarray analysis. The only conserved R3 motif and different expression between TM-1 and fuzzless-lintless mutants suggested that it might be a negative regulator in fiber development. Transgenic evidence showed that GhCPC overexpression not only delayed fiber initiation but also led to significant decreases in fiber length. Interestingly, Yeast two-hybrid analysis revealed an interaction complex, in which GhCPC and GhTTG1/4 separately interacted with GhMYC1. In transgenic plants, Q-PCR analysis showed that GhHOX3 (GL2) and GhRDL1 were significantly down regulated in -1-5 DPA ovules and fibers. In addition, Yeast one-hybrid analysis demonstrated that GhMYC1 could bind to the E-box cis-elements and the promoter of GhHOX3. These results suggested that GhHOX3 (GL2) might be downstream gene of the regulatory complex. Also, overexpression of GhCPC in tobacco led to differential loss of pigmentation. Taken together, the results suggested that GhCPC might negatively regulate cotton fiber initiation and early elongation by a potential CPC-MYC1-TTG1/4 complex. Although the fibers were shorter in transgenic cotton lines than in the wild type, no significant difference was detected in stem or leaf trichomes, even in cotton mutants (five naked seed or fuzzless), suggesting that fiber and trichome development might be regulated by two sets of genes sharing a similar model.

  10. Endogenous Estrogen Regulates Somatostatin-Induced Rebound GH Secretion in Postmenopausal Women.

    PubMed

    Veldhuis, Johannes D; Erickson, Dana; Yang, Rebecca; Takahashi, Paul; Bowers, Cyril

    2016-11-01

    Systemic concentrations of T, estradiol (E2), GH, IGF-1, and IGF binding protein-3 decline in healthy aging individuals. Conversely, T and E2 stimulate GH and IGF-1 production in hypogonadal patients. Because E2 stimulates GH secretion, putatively via the nuclear estrogen receptor-α and E2 and GH fall with menopause, we postulated that diminished endogenous E2 contributes to low GH output in older women. The study was conducted at the Mayo Center for Clinical and Translational Science. This was a randomized, double-blind, controlled study in 60 healthy postmenopausal women treated with the following: 1) double placebo; 2) anastrozole, a potent inhibitor of aromatase-enzyme activity, which mediates E2 synthesis from T; and/or 3) fulvestrant, a selective estrogen receptor-α antagonist. GH pulse generation was quantified by frequent GH sampling before and after short-term iv somatostatin infusion, thought to induce hypothalamic GHRH-mediated rebound-like GH secretion. On anastrozole, E2 fell from 3.1 ± 0.35 pg/mL to 0.36 ± 0.04 pg/mL, and estrone from 13 ± 1.4 pg/mL to 1.9 ± 0.01 pg/mL (P < .001) by mass spectrometry. Estrogen values were unchanged by fulvestrant. T concentrations did not change. One-hour peak GH rebound after somatostatin infusion declined markedly during both estrogen-deprivation schedules (P < .001). Mean (150 min) maximal GH rebound decreased comparably (P < .001). Measures of GH rebound correlated negatively with computed tomography-estimated abdominal visceral fat (all P < .05). These data suggest a previously unrecognized dependence of hypothalamo-pituitary GH regulation on low levels of endogenous estrogen after menopause.

  11. Growth hormone (GH) differentially regulates NF-kB activity in preadipocytes and macrophages: implications for GH's role in adipose tissue homeostasis in obesity.

    PubMed

    Kumar, P Anil; Chitra, P Swathi; Lu, Chunxia; Sobhanaditya, J; Menon, Ram

    2014-06-01

    Adipose tissue remodeling in obesity involves macrophage infiltration and chronic inflammation. NF-kB-mediated chronic inflammation of the adipose tissue is directly implicated in obesity-associated insulin resistance. We have investigated the effect of growth hormone (GH) on NF-kB activity in preadipocytes (3T3-F442A) and macrophages (J774A.1). Our studies indicate that whereas GH increases NF-kB activity in preadipocytes, it decreases NF-kB activity in macrophages. This differential response of NF-kB activity to GH correlates with the GH-dependent expression of a cadre of NF-kB-activated cytokines in these two cell types. Activation of NF-kB by GH in preadipocytes heightens inflammatory response by stimulating production of multiple cytokines including TNF-α, IL-6, and MCP-1, the mediators of both local and systemic insulin resistance and chemokines that recruit macrophages. Our studies also suggest differential regulation of miR132 and SIRT1 expression as a mechanism underlying the observed variance in GH-dependent NF-kB activity and altered cytokine profile in preadipocytes and macrophages. These findings further our understanding of the complex actions of GH on adipocytes and insulin sensitivity.

  12. GH gene polymorphisms and expression associated with egg laying in muscovy ducks (Cairina moschata).

    PubMed

    Wu, X; Yan, M J; Lian, S Y; Liu, X T; Li, A

    2014-02-01

    Accumulated evidence suggests that the growth hormone (GH) gene plays a physiological role in the control of reproductive function. Here, we examined the correlation between egg-laying traits and GH gene polymorphisms and expression patterns in the muscovy duck (Cairina moschata). PCR single-strand conformation polymorphism was used to identify polymorphisms in intron 3 of GH. One single nucleotide polymorphism (g.3270 A > G) was detected by sequencing, and the frequencies of the A and G alleles in the population were 0.65 and 0.35, respectively. A comparison test showed that the AA genotype group had more consecutive laying days and more eggs at 300 days than the GG genotype group (P < 0.05); however, there was no significant difference for the age at first laying (P > 0.05). Such a significant correlation between GH polymorphisms and egg-laying performance suggested that GH could be a candidate locus affecting the laying trait in muscovy duck. Furthermore, real-time fluorescent quantitative PCR demonstrated that GH is expressed in all selected tissues, but is highly expressed in the hypothalamic-pituitary-gonadal axis and heart. This unique expression pattern suggested that GH may exert its local physiological function through the autocrine or paracrine pathway during gonad development and growth in the muscovy duck. The data presented in this paper revealed GH polymorphisms and expression patterns in the muscovy duck and indicated a potential regulatory effect of GH on reproduction. © 2014 The Authors.

  13. Osmoregulatory actions of the GH/IGF axis in non-salmonid teleosts

    USGS Publications Warehouse

    Mancera, J.M.; McCormick, S.D.

    1998-01-01

    Salmonid fishes provided the first findings on the influence of the growth hormone (GH)/insulin-like growth factor I (IGF-I) axis on osmoregulation in teleost fishes. Recent studies on non-salmonid species, however, indicate that this physiological action of the GH/IGF-I axis is not restricted to salmonids or anadromous fishes. GH-producing cells in the pituitary of fish acclimated to different salinities show different degrees of activation depending on the species studied. Plasma GH levels either increase or do not change after transfer of fish from freshwater to seawater. Treatment with GH or IGF-I increases salinity tolerance and/or increases gill Na+,K+-ATPase activity of killifish (Fundulus heteroclitus), tilapia (Oreochromis mossambicus and Oreochromis niloticus) and striped bass (Morone saxatilis). As in salmonids, a positive interaction between GH and cortisol for improving hypoosmoregulatory capacity has been described in tilapia (O. mossambicus). Research on the osmoregulatory role of the GH/IGF-I axis is derived from a small number of teleost species. The study of more species with different osmoregulary patterns will be necessary to fully clarify the osmoregulatory role of GH/IGF-I axis in fish. The available data does suggest, however, that the influence of the GH/IGF-I axis on osmoregulation may be a common feature of euryhalinity in teleosts. Copyright (C) 1998 Elsevier Science Inc.

  14. Functional rectification of the newly described African henipavirus fusion glycoprotein (Gh-M74a).

    PubMed

    Pernet, Olivier; Beaty, Shannon; Lee, Benhur

    2014-05-01

    Recent evidence identified multiple Henipavirus species in Africa distinct from those in Southeast Asia and Australia. The reported fusion glycoprotein (F) sequence of the African Gh-M74a strain (GhV-F) is likely incorrect: a single base pair deletion near the N terminus results in multiple aberrancies. Rectifying this by adding single nucleotide insertions results in a GhV-F that now possesses a signal peptide, is efficiently cell surface expressed, exhibits syncytium formation when coexpressed with GhV-G protein, and mediates pseudotyped viral particle entry.

  15. Growth hormone activity in mitochondria depends on GH receptor Box 1 and involves caveolar pathway targeting

    SciTech Connect

    Perret-Vivancos, Cecile; Abbate, Aude; Ardail, Dominique; Raccurt, Mireille; Usson, Yves; Lobie, Peter E.; Morel, Gerard . E-mail: gerard.morel@univ-lyon1.fr

    2006-02-01

    Growth hormone (GH) binding to its receptor (GHR) initiates GH-dependent signal transduction and internalization pathways to generate the biological effects. The precise role and way of action of GH on mitochondrial function are not yet fully understood. We show here that GH can stimulate cellular oxygen consumption in CHO cells transfected with cDNA coding for the full-length GHR. By using different GHR cDNA constructs, we succeeded in determining the different parts of the GHR implicated in the mitochondrial response to GH. Polarography and two-photon excitation fluorescence microscopy analysis showed that the Box 1 of the GHR intracellular domain was required for an activation of the mitochondrial respiration in response to a GH exposure. However, confocal laser scanning microscopy demonstrated that cells lacking the GHR Box 1 could efficiently internalize the hormone. We demonstrated that internalization mediated either by clathrin-coated pits or by caveolae was able to regulate GH mitochondrial effect: these two pathways are both essential to obtain the GH stimulatory action on mitochondrial function. Moreover, electron microscopic and biochemical approaches allowed us to identify the caveolar pathway as essential for targeting GH and GHR to mitochondria.

  16. Structure and Kinetic Investigation of Streptococcus pyogenes Family GH38 α-Mannosidase

    PubMed Central

    Suits, Michael D. L.; Zhu, Yanping; Taylor, Edward J.; Walton, Julia; Zechel, David L.; Gilbert, Harry J.; Davies, Gideon J.

    2010-01-01

    Background The enzymatic hydrolysis of α−mannosides is catalyzed by glycoside hydrolases (GH), termed α−mannosidases. These enzymes are found in different GH sequence–based families. Considerable research has probed the role of higher eukaryotic “GH38” α−mannosides that play a key role in the modification and diversification of hybrid N-glycans; processes with strong cellular links to cancer and autoimmune disease. The most extensively studied of these enzymes is the Drosophila GH38 α−mannosidase II, which has been shown to be a retaining α−mannosidase that targets both α−1,3 and α−1,6 mannosyl linkages, an activity that enables the enzyme to process GlcNAc(Man)5(GlcNAc)2 hybrid N-glycans to GlcNAc(Man)3(GlcNAc)2. Far less well understood is the observation that many bacterial species, predominantly but not exclusively pathogens and symbionts, also possess putative GH38 α−mannosidases whose activity and specificity is unknown. Methodology/Principal Findings Here we show that the Streptococcus pyogenes (M1 GAS SF370) GH38 enzyme (Spy1604; hereafter SpGH38) is an α−mannosidase with specificity for α−1,3 mannosidic linkages. The 3D X-ray structure of SpGH38, obtained in native form at 1.9 Å resolution and in complex with the inhibitor swainsonine (Ki 18 µM) at 2.6 Å, reveals a canonical GH38 five-domain structure in which the catalytic “–1” subsite shows high similarity with the Drosophila enzyme, including the catalytic Zn2+ ion. In contrast, the “leaving group” subsites of SpGH38 display considerable differences to the higher eukaryotic GH38s; features that contribute to their apparent specificity. Conclusions/Significance Although the in vivo function of this streptococcal GH38 α−mannosidase remains unknown, it is shown to be an α−mannosidase active on N-glycans. SpGH38 lies on an operon that also contains the GH84 hexosaminidase (Spy1600) and an additional putative glycosidase. The activity of SpGH38, together

  17. Genetic and protein biomarkers in blood for the improved detection of GH abuse.

    PubMed

    Ferro, P; Ventura, R; Pérez-Mañá, C; Farré, M; Segura, J

    2016-09-05

    Human Growth Hormone (hGH, somatotropin) is one of the relevant forbidden substances to be detected in sport drug testing. Since the appearance of recombinant hGH (rhGH) in the 80's, its expansion and availability through the black market have increased, so the detection of its abuse continues to be a challenge at present. New techniques or biomarkers that are robust, reliable, sensitive and allowing a large detection time window are welcome. rhGH produces an increase of insulin-like growth factor 1 (IGF-1). FN1 (fibronectin 1) and RAB31 (member of RAS oncogene family) genes have been suggested as two potential biomarkers for IGF-1 abuse. Following this line, in the present study some genetic and proteomic approaches have been performed with fourteen healthy male subjects treated with rhGH (which produces increase of IGF-1 concentrations) to study FN1 gene, FN1 protein, RAB31 gene and RAB31 protein as potential biomarkers for rhGH abuse. The results showed that both, RAB31 and FN1 genes and FN1 protein could be potential biomarkers for rhGH administration. Preliminary assessments of gender, age, acute sport activities and GHRP-2 (pralmorelin, a rhGH releasing peptide) influence suggest they are not relevant confounding factors. Thus, the selected markers present high sensitivity and a larger detection window for rhGH detection than IGF-1 itself.

  18. Osmoregulatory actions of the GH/IGF axis in non-salmonid teleosts

    USGS Publications Warehouse

    Mancera, J.M.; McCormick, S.D.

    1998-01-01

    Salmonid fishes provided the first findings on the influence of the growth hormone (GH)/insulin-like growth factor I (IGF-I) axis on osmoregulation in teleost fishes. Recent studies on non-salmonid species, however, indicate that this physiological action of the GH/IGF-I axis is not restricted to salmonids or anadromous fishes. GH-producing cells in the pituitary of fish acclimated to different salinities show different degrees of activation depending on the species studied. Plasma GH levels either increase or do not change after transfer of fish from freshwater to seawater. Treatment with GH or IGF-I increases salinity tolerance and/or increases gill Na+,K+-ATPase activity of killifish (Fundulus heteroclitus), tilapia (Oreochromis mossambicus and Oreochromisniloticus) and striped bass (Morone saxatilis). As in salmonids, a positive interaction between GH and cortisol for improving hypoosmoregulatory capacity has been described in tilapia (O. mossambicus). Research on the osmoregulatory role of the GH/IGF-I axis is derived from a small number of teleost species. The study of more species with different osmoregulary patterns will be necessary to fully clarify the osmoregulatory role of GH/IGF-I axis in fish. The available data does suggest, however, that the influence of the GH/IGF-I axis on osmoregulation may be a common feature of euryhalinity in teleosts.

  19. GH improves growth and clinical status in children with cystic fibrosis -- a review of published studies.

    PubMed

    Hardin, Dana S

    2004-08-01

    Children with cystic fibrosis (CF) have problems with poor linear growth and inadequate weight gain. Nutritional augmentation has been the mainstay of therapy for improving both weight and height in CF; however, inadequate growth continues to be a problem. Furthermore, protein catabolism has been documented even in non-acutely ill adults and children with CF, and could adversely affect longitudinal growth. Human recombinant GH has positive effects on nitrogen balance, and multiple studies have demonstrated improved height and weight in children treated with GH. The purpose of this article is to summarize studies evaluating GH use in children with CF. All published studies of GH use in children with CF have demonstrated significant improvement in height velocity and height Z score. All studies but one, in which subjects were treated only three times per week with GH, have demonstrated improvement in weight as reported by weight velocity and/or weight Z score, and one trial has demonstrated a substantial improvement when GH was used to augment nutritional therapy. Several reports suggest that GH treatment results in improved forced vital capacity, and multiple studies have found improved clinical status as measured by decreased hospitalizations and courses of intravenous antibiotics. Furthermore studies to date also suggest that GH results in improvement in exercise tolerance and bone accumulation. To date significant side effects, including glucose intolerance, have not been reported. Thus mounting evidence suggests that human recombinant GH provides safe and effective therapy in children with CF.

  20. Structure of the GH1 domain of guanylate kinase-associated protein from Rattus norvegicus

    SciTech Connect

    Tong, Junsen; Yang, Huiseon; Eom, Soo Hyun; Chun, ChangJu; Im, Young Jun

    2014-09-12

    Graphical abstract: - Highlights: • The crystal structure of GKAP homology domain 1 (GH1) was determined. • GKAP GH1 is a three-helix bundle connected by short flexible loops. • The predicted helix α4 associates weakly with the helix α3, suggesting dynamic nature of the GH1 domain. - Abstract: Guanylate-kinase-associated protein (GKAP) is a scaffolding protein that links NMDA receptor-PSD-95 to Shank–Homer complexes by protein–protein interactions at the synaptic junction. GKAP family proteins are characterized by the presence of a C-terminal conserved GKAP homology domain 1 (GH1) of unknown structure and function. In this study, crystal structure of the GH1 domain of GKAP from Rattus norvegicus was determined in fusion with an N-terminal maltose-binding protein at 2.0 Å resolution. The structure of GKAP GH1 displays a three-helix bundle connected by short flexible loops. The predicted helix α4 which was not visible in the crystal structure associates weakly with the helix α3 suggesting dynamic nature of the GH1 domain. The strict conservation of GH1 domain across GKAP family members and the lack of a catalytic active site required for enzyme activity imply that the GH1 domain might serve as a protein–protein interaction module for the synaptic protein clustering.

  1. Postprandial changes in plasma GH and insulin concentrations, and responses to stimulation with GH-releasing hormone (GHRH) and GHRP-6 in calves around weaning.

    PubMed

    Katoh, K; Furukawa, G; Kitade, K; Katsumata, N; Kobayashi, Y; Obara, Y

    2004-12-01

    Changes in plasma concentrations of GH and insulin in response to feeding and stimulation with GH-releasing hormone (GHRH) or GH-releasing peptide (GHRP-6, a ligand for endogenous GH secretagogue receptors) were compared between 3-week-old (milk-fed) and 12-week-old (concentrate and hay-fed) calves. Feeding of a milk-replacer diet in 3-week-old animals significantly increased the basal (prefeeding) concentrations of GH, insulin and glucose in plasma, whereas feeding of concentrate and hay in 12-week-old animals did not cause a significant change in these traits. However, in the animals maintained on a milk-replacer diet until 12 weeks of age, postprandial plasma GH concentrations and AUC (area under the curve) were not different from those in the age-matched weaned group. The venous injection of either GHRH (0.25 microg/kg) or GHRP-6 (2.5 microg/kg) significantly increased plasma GH concentrations in both 3- and 12-week-old animals, but GH AUC was significantly greater in 3-week-old than in 12-week-old animals. Insulin concentration was transiently but significantly increased by the injection of GHRP-6 only in 12-week-old animals, the AUC being greater in 12-week-old than 3-week-old animals. From these results, we conclude that postprandial levels of plasma GH and insulin concentrations are altered after weaning and by aging, and that the quality of diets or development of the neuroendocrine functions in the digestive-pituitary system may be involved in this alteration.

  2. Serum homocysteine concentrations in children with growth hormone (GH) deficiency before and after 12 months GH replacement.

    PubMed

    Esposito, Valentina; Di Biase, Sebastiano; Lettiero, Teresa; Labella, Donato; Simeone, Rossella; Salerno, Mariacarolina

    2004-11-01

    This open, prospective study was designed to evaluate the effect of growth hormone deficiency (GHD) and GH replacement therapy on serum homocysteine (Hcy) concentration in children with GHD. Seventeen prepubertal children with GHD (11 boys and six girls) aged 8.6 +/- 1.9 years were studied before and after 12 months of GH replacement therapy at a dose of GH of 30 microg/kg/day. Seventeen healthy children acted as controls and were matched for age, sex and body mass index (BMI). At study entry, height, weight, blood pressure, serum Hcy, serum IGF-I, total-low density lipoprotein (LDL)- and high density lipoprotein (HDL) cholesterol, triglycerides, free T4, free T3, vitamin B12, folate, glucose and creatinine were measured in all subjects. The atherogenic index (AI) was also calculated as the ratio of total cholesterol/HDL cholesterol (T/HDL). In GHD children these parameters were also revaluated after 12 months of GH therapy. At study entry height and serum IGF-I were significantly lower, as expected, in GHD patients than in controls (P < 0.0001 and P < 0.007, respectively). Serum Hcy levels were significantly higher in GHD patients than in healthy children (8.4 +/- 2.9 vs. 6.0 +/- 2.9 micromol/l; P < 0.03), although the absolute values were within the normal values for age and sex. There were no significant differences at baseline with respect to blood pressure, serum vitamin B12, folate, fT3, fT4, lipid profile, creatinine and glucose levels. After 12 months of GH replacement therapy height and serum IGF-I increased significantly compared to pretreatment values (P < 0.0001); serum Hcy levels decreased significantly (6.0 +/- 3.3 micromol/l; P < 0.002) compared to baseline values, becoming similar to control values. Total cholesterol (3.5 +/- 0.6 mmol/l) and the AI (2.5 +/- 0.8) decreased significantly with respect to both pretreatment (4.2 +/- 1.0 mmol/l; P < 0.0002 and 3.4 +/- 0.8; < 0.002, respectively) and control values (4.2 +/- 0.4 mmol/l; P < 0.0005 and 3

  3. Pulsatile characteristics of spontaneous growth hormone (GH) concentration profiles in boys evaluated by an ultrasensitive immunoradiometric assay: Evidence for ultradian periodicity of GH secretion

    SciTech Connect

    Goji, Katsumi )

    1993-03-01

    To investigate underlying ultradian periodicities in spontaneous circulating GH concentrations, blood samples were drawn from 15 normal short boys every 20 min over a 24-h period, and plasma GH concentrations were measured using an ultrasensitive immunoradiometric assay. The limit of detection for the GH assay was 0.01 [mu]g/L. The GH time series were analyzed using the Cluster program, Ultra program, cosinor analysis, and autocorrelation analysis. Plasma GH concentrations in 1,095 samples derived from 15 normal short boys were all within the detectable range of the assay and ranged from 0.07-52.2 [mu]g/L. Thirty-six percent of the GH values in the 1,095 samples from 15 normal short boys were below 1 [mu]g/L, and 82% of them occurred during the diurnal awakening period. Cluster analysis disclosed a total of 176 peaks in 15 normal short boys, with a mean [+-] SEM number of significant GH peaks of 12.1 [+-] 0.5/24 h. Twelve percent of the 176 peaks were below 1 [mu]g/L, and 95% of them occurred during the diurnal awakening period. In addition, Cluster analysis disclosed 161 interpulse intervals in total, with a mean [+-] SEM interval of 116.5 [+-] 4.3 min. The GH interpulse interval did not show a significant 24-h rhythm, whereas the GH peak height increased significantly at night. An independent discrete peak detection in program, Ultra, identified 12.6 [+-] 0.5 GH peaks/24 h. This result was in good agreement with that from analysis by the Cluster program (P = NS). Autocorrelation analysis revealed that GH time series were significantly autocorrelated in 9 of the 15 boys, with maximal autocorrelation coefficients at 115.5 min, on the average. The mean autocorrelation coefficient for a group of 15 normal short boys was significantly positive at a 100-min lag. These findings suggest that there could be a regularly occurring periodicity of approximately 100-120 min in the human GH time series. 18 refs., 4 figs., 1 tab.

  4. The GH secretagogues ipamorelin and GH-releasing peptide-6 increase bone mineral content in adult female rats.

    PubMed

    Svensson, J; Lall, S; Dickson, S L; Bengtsson, B A; Rømer, J; Ahnfelt-Rønne, I; Ohlsson, C; Jansson, J O

    2000-06-01

    Growth hormone (GH) is of importance for normal bone remodelling. A recent clinical study demonstrated that MK-677, a member of a class of GH secretagogues (GHSs), increases serum concentrations of biochemical markers of bone formation and bone resorption. The aim of the present study was to investigate whether the GHSs, ipamorelin (IPA) and GH-releasing peptide-6 (GHRP-6), increase bone mineral content (BMC) in young adult female rats. Thirteen-week-old female Sprague-Dawley rats were given IPA (0.5 mg/kg per day; n=7), GHRP-6 (0.5 mg/kg per day; n=8), GH (3.5 mg/kg per day; n=7), or vehicle administered continuously s.c. via osmotic minipumps for 12 weeks. The animals were followed in vivo by dual X-ray absorptiometry (DXA) measurements every 4th week. After the animals were killed, femurs were analysed in vitro by mid-diaphyseal peripheral quantitative computed tomography (pQCT) scans. After this, excised femurs and vertebrae L6 were analysed by the use of Archimedes' principle and by determinations of ash weights. All treatments increased body weight and total tibial and vertebral BMC measured by DXA in vivo compared with vehicle-treated controls. However, total BMC corrected for the increase in body weight (total BMC:body weight ratio) was unaffected. Tibial area bone mineral density (BMD, BMC/area) was increased, but total and vertebral area BMDs were unchanged. The pQCT measurements in vitro revealed that the increase in the cortical BMC was due to an increased cross-sectional bone area, whereas the cortical volumetric BMD was unchanged. Femur and vertebra L6 volumes were increased but no effect was seen on the volumetric BMDs as measured by Archimedes' principle. Ash weight was increased by all treatments, but the mineral concentration was unchanged. We conclude that treatment of adult female rats with the GHSs ipamorelin and GHRP-6 increases BMC as measured by DXA in vivo. The results of in vitro measurements using pQCT and Archimedes' principle, in

  5. Enzymes for Pancreatic Islet Isolation Impact Chemokine-Production and Polarization of Insulin-Producing β-Cells with Reduced Functional Survival of Immunoisolated Rat Islet-Allografts as a Consequence

    PubMed Central

    de Vos, Paul; Smink, Alexandra M.; Paredes, Genaro; Lakey, Jonathan R. T.; Kuipers, Jeroen; Giepmans, Ben N. G.; de Haan, Bart J.; Faas, Marijke M.

    2016-01-01

    The primary aim of this study was to determine whether normal variations in enzyme-activities of collagenases applied for rat-islet isolation impact longevity of encapsulated islet grafts. Also we studied the functional and immunological properties of rat islets isolated with different enzyme preparations to determine whether this impacts these parameters. Rat-islets were isolated from the pancreas with two different collagenases with commonly accepted collagenase, neutral protease, and clostripain activities. Islets had a similar and acceptable glucose-induced insulin-release profile but a profound statistical significant difference in production of the chemokines IP-10 and Gro-α. The islets were studied with nanotomy which is an EM-based technology for unbiased study of ultrastructural features of islets such as cell-cell contacts, endocrine-cell condition, ER stress, mitochondrial conditions, and cell polarization. The islet-batch with higher chemokine-production had a lower amount of polarized insulin-producing β-cells. All islets had more intercellular spaces and less interconnected areas with tight cell-cell junctions when compared to islets in the pancreas. Islet-graft function was studied by implanting encapsulated and free islet grafts in rat recipients. Alginate-based encapsulated grafts isolated with the enzyme-lot inducing higher chemokine production and lower polarization survived for a two-fold shorter period of time. The lower survival-time of the encapsulated grafts was correlated with a higher influx of inflammatory cells at 7 days after implantation. Islets from the same two batches transplanted as free unencapsulated-graft, did not show any difference in survival or function in vivo. Lack of insight in factors contributing to the current lab-to-lab variation in longevity of encapsulated islet-grafts is considered to be a threat for clinical application. Our data suggest that seemingly minor variations in activity of enzymes applied for islet

  6. Clinical challenges in the management of isolated GH deficiency type IA in adulthood

    PubMed Central

    Casteràs, Anna; Kratzsch, Jürgen; Ferrández, Ángel; Zafón, Carles; Carrascosa, Antonio; Mesa, Jordi

    2014-01-01

    Summary Isolated GH deficiency type IA (IGHDIA) is an infrequent cause of severe congenital GHD, often managed by pediatric endocrinologists, and hence few cases in adulthood have been reported. Herein, we describe the clinical status of a 56-year-old male with IGHDIA due to a 6.7 kb deletion in GH1 gene that encodes GH, located on chromosome 17. We also describe phenotypic and biochemical parameters, as well as characterization of anti-GH antibodies after a new attempt made to treat with GH. The height of the adult patient was 123 cm. He presented with type 2 diabetes mellitus, dyslipidemia, osteoporosis, and low physical and psychological performance, compatible with GHD symptomatology. Anti-GH antibodies in high titers and with binding activity (>101 IU/ml) were found 50 years after exposure to exogenous GH, and their levels increased significantly (>200 U/ml) after a 3-month course of 0.2 mg/day recombinant human GH (rhGH) treatment. Higher doses of rhGH (1 mg daily) did not overcome the blockade, and no change in undetectable IGF1 levels was observed (<25 ng/ml). IGHDIA patients need lifelong medical surveillance, focusing mainly on metabolic disturbances, bone status, cardiovascular disease, and psychological support. Multifactorial conventional therapy focusing on each issue is recommended, as anti-GH antibodies may inactivate specific treatment with exogenous GH. After consideration of potential adverse effects, rhIGF1 treatment, even theoretically indicated, has not been considered in our patient yet. Learning points Severe isolated GHD may be caused by mutations in GH1 gene, mainly a 6.7 kb deletion.Appearance of neutralizing anti-GH antibodies upon recombinant GH treatment is a characteristic feature of IGHDIA.Recombinant human IGF1 treatment has been tested in children with IGHDIA with variable results in height and secondary adverse effects, but any occurrence in adult patients has not been reported yet.Metabolic disturbances (diabetes

  7. Clinical challenges in the management of isolated GH deficiency type IA in adulthood.

    PubMed

    Casteràs, Anna; Kratzsch, Jürgen; Ferrández, Angel; Zafón, Carles; Carrascosa, Antonio; Mesa, Jordi

    2014-01-01

    Isolated GH deficiency type IA (IGHDIA) is an infrequent cause of severe congenital GHD, often managed by pediatric endocrinologists, and hence few cases in adulthood have been reported. Herein, we describe the clinical status of a 56-year-old male with IGHDIA due to a 6.7 kb deletion in GH1 gene that encodes GH, located on chromosome 17. We also describe phenotypic and biochemical parameters, as well as characterization of anti-GH antibodies after a new attempt made to treat with GH. The height of the adult patient was 123 cm. He presented with type 2 diabetes mellitus, dyslipidemia, osteoporosis, and low physical and psychological performance, compatible with GHD symptomatology. Anti-GH antibodies in high titers and with binding activity (>101 IU/ml) were found 50 years after exposure to exogenous GH, and their levels increased significantly (>200 U/ml) after a 3-month course of 0.2 mg/day recombinant human GH (rhGH) treatment. Higher doses of rhGH (1 mg daily) did not overcome the blockade, and no change in undetectable IGF1 levels was observed (<25 ng/ml). IGHDIA patients need lifelong medical surveillance, focusing mainly on metabolic disturbances, bone status, cardiovascular disease, and psychological support. Multifactorial conventional therapy focusing on each issue is recommended, as anti-GH antibodies may inactivate specific treatment with exogenous GH. After consideration of potential adverse effects, rhIGF1 treatment, even theoretically indicated, has not been considered in our patient yet. Severe isolated GHD may be caused by mutations in GH1 gene, mainly a 6.7 kb deletion.Appearance of neutralizing anti-GH antibodies upon recombinant GH treatment is a characteristic feature of IGHDIA.Recombinant human IGF1 treatment has been tested in children with IGHDIA with variable results in height and secondary adverse effects, but any occurrence in adult patients has not been reported yet.Metabolic disturbances (diabetes and hyperlipidemia) and

  8. Targeting GH-1 splicing as a novel pharmacological strategy for growth hormone deficiency type II.

    PubMed

    Miletta, Maria Consolata; Flück, Christa E; Mullis, Primus-E

    2017-01-15

    Isolated growth hormone deficiency type II (IGHD II) is a rare genetic splicing disorder characterized by reduced growth hormone (GH) secretion and short stature. It is mainly caused by autosomal dominant-negative mutations within the growth hormone gene (GH-1) which results in missplicing at the mRNA level and the subsequent loss of exon 3, producing the 17.5-kDa GH isoform: a mutant and inactive GH protein that reduces the stability and the secretion of the 22-kDa GH isoform, the main biologically active GH form. At present, patients suffering from IGHD II are treated with daily injections of recombinant human GH (rhGH) in order to reach normal height. However, this type of replacement therapy, although effective in terms of growth, does not prevent the toxic effects of the 17.5-kDa mutant on the pituitary gland, which may eventually lead to other hormonal deficiencies. As the severity of the disease inversely correlates with the 17.5-kDa/22-kDa ratio, increasing the inclusion of exon 3 is expected to ameliorate disease symptoms. This review focuses on the recent advances in experimental and therapeutic strategies applicable to treat IGHD II in clinical and preclinical contexts. Several avenues for alternative IGHD II therapy will be discussed including the use of small interfering RNA (siRNA) and short hairpin RNA (shRNA) constructs that specifically target the exon 3-deleted transcripts as well as the application of histone deacetylase inhibitors (HDACi) and antisense oligonucleotides (AONs) to enhance full-length GH-1 transcription, correct GH-1 exon 3 splicing and manipulate GH pathway.

  9. Expression and functional characterization of intrafollicular GH-IGF system in the zebrafish ovary.

    PubMed

    Zhou, Rui; Yu, Susana Man Ying; Ge, Wei

    2016-06-01

    The somatotrophic axis plays important roles in influencing reproduction. All key members of this axis including growth hormone (GH, gh), GH receptors (ghra and ghrb), insulin-like growth factors (IGFs, igf1, igf2 and igf3) and IGF receptors (igf1ra and igf1rb) were detected in the zebrafish ovary. GH was exclusively expressed in the full-grown oocytes, while its receptors were detectable in both the follicle cells and oocytes. The IGFs and their receptors were all expressed in both compartments except igf3, which was expressed in the follicle cells only. During folliculogenesis, there was a sharp decrease of gh expression at follicle activation; however, the expression of its receptors increased significantly. The expression profiles of igf1, igf2a, and igf2b were similar to that of fshr, whereas igf3 expression was close to lhcgr, suggesting differential roles for different forms of IGFs in follicle development. To examine if the ovarian GH-IGF system is regulated by gonadotropins (e.g., hCG) and GH, we performed in vitro experiments using cultured zebrafish follicle cells. The expression of igf1 and igf1ra, but not others, was down-regulated by hCG (LH analog), whereas recombinant zebrafish GH stimulated igf1 expression. In addition, GH also increased the expression of activin βA subunit (inhbaa). In agreement with this, the stimulatory effect of GH but not IGF-I on oocyte maturation could be abolished by follistatin. In conclusion, the present study revealed an intrafollicular network involving GH-IGF mini-axis in the zebrafish ovary; however, it might not work in the same way as that of the systemic somatotrophic axis.

  10. Direct stimulation of bone mass by increased GH signalling in the osteoblasts of Socs2-/- mice.

    PubMed

    Dobie, R; MacRae, V E; Huesa, C; van't Hof, R; Ahmed, S F; Farquharson, C

    2014-10-01

    The suppressor of cytokine signalling (Socs2(-/-))-knockout mouse is characterised by an overgrowth phenotype due to enhanced GH signalling. The objective of this study was to define the Socs2(-/-) bone phenotype and determine whether GH promotes bone mass via IGF1-dependent mechanisms. Despite no elevation in systemic IGF1 levels, increased body weight in 4-week-old Socs2(-/-) mice following GH treatment was associated with increased cortical bone area (Ct.Ar) (P<0.01). Furthermore, detailed bone analysis of male and female juvenile and adult Socs2(-/-) mice revealed an altered cortical and trabecular phenotype consistent with the known anabolic effects of GH. Indeed, male Socs2(-/-) mice had increased Ct.Ar (P<0.05) and thickness associated with increased strength. Despite this, there was no elevation in hepatic Igf1 expression, suggesting that the anabolic bone phenotype was the result of increased local GH action. Mechanistic studies showed that in osteoblasts and bone of Socs2(-/-) mice, STAT5 phosphorylation was significantly increased in response to GH. Conversely, overexpression of SOCS2 decreased GH-induced STAT5 signalling. Although an increase in Igf1 expression was observed in Socs2(-/-) osteoblasts following GH, it was not evident in vivo. Igf1 expression levels were not elevated in response to GH in 4-week-old mice and no alterations in expression was observed in bone samples of 6-week-old Socs2(-/-) mice. These studies emphasise the critical role of SOCS2 in controlling the local GH anabolic bone effects. We provide compelling evidence implicating SOCS2 in the regulation of GH osteoblast signalling and ultimately bone accrual, which maybe via mechanisms that are independent of IGF1 production in vivo.

  11. Epidermal cell differentiation in cotton mediated by the homeodomain leucine zipper gene, GhHD-1.

    PubMed

    Walford, Sally-Ann; Wu, Yingru; Llewellyn, Danny J; Dennis, Elizabeth S

    2012-08-01

    Gossypium hirsutum L. (cotton) fibres are specialized trichomes a few centimetres in length that grow from the seed coat. Few genes directly involved in the differentiation of these epidermal cells have been identified. These include GhMYB25-like and GhMYB25, two related MYB transcription factors that regulate fibre cell initiation and expansion. We have also identified a putative homeodomain leucine zipper (HD-ZIP) transcription factor, GhHD-1, expressed in trichomes and early fibres that might play a role in cotton fibre initiation. Here, we characterize GhHD-1 homoeologues from tetraploid G. hirsutum and show, using reporter constructs and quantitative real-time PCR (qRT-PCR), that they are expressed predominantly in epidermal tissues during early fibre development, and in other tissues bearing epidermal trichomes. Silencing of GhHD-1 reduced trichome formation and delayed the timing of fibre initiation. Constitutive overexpression of GhHD-1 increased the number of fibres initiating on the seed, but did not affect leaf trichomes. Expression of GhHD-1 in cotton silenced for different fibre MYBs suggest that in ovules it acts downstream of GhMYB25-like, but is unaffected in GhMYB25- or GhMYB109-silenced plants. Microarray analysis of silencing and overexpression lines of GhHD-1 indicated that it potentially regulates the levels of ethylene and reactive oxidation species (ROS) through a WRKY transcription factor and calcium-signalling pathway genes to activate downstream genes necessary for cell expansion and elongation. © 2012 CSIRO. The Plant Journal © 2012 Blackwell Publishing Ltd.

  12. Multipathway Modulation of Exercise and Glucose Stress Effects upon GH Secretion in Healthy Men

    PubMed Central

    Veldhuis, Johannes D.; Olson, Thomas P.; Takahashi, Paul Y.; Miles, John M.; Joyner, Michael J.; Yang, Rebecca J.; Wigham, Jean

    2015-01-01

    Objective Exercise evokes pulsatile GH release followed by autonegative feedback, whereas glucose suppresses GH release followed by rebound-like GH release (feedforward escape). Here we test the hypothesis that age, sex steroids, insulin, body composition and physical power jointly determine these dynamic GH responses. Methods This was a prospectively randomized glucose-blinded study conducted in the Mayo Center for Advancing Translational Sciences in healthy men ages 19–77 yr (N = 23). Three conditions, fasting/rest/saline, fasting/exercise/saline and fasting/rest/iv glucose infusions, were used to drive GH dynamics during 10-min blood sampling for 6 hr. Linear correlation analysis was applied to relate peak/nadir GH dynamics to age, sex steroids, insulin, CT-estimated abdominal fat and physical power (work per unit time). Results Compared with the fasting/rest/saline (control) day, fasting/exercise/saline infusion evoked peak GH within 1 h, followed by negative feedback 3–5 h later. The dynamic GH excursion was strongly (R2 = 0.634) influenced by (i) insulin negatively (P = 0.011), (ii) power positively (P = 0.0008), and (iii) E2 positively (P = 0.001). Dynamic glucose-modulated GH release was determined by insulin negatively (P = 0.0039) and power positively (P = 0.0034) [R2 = 0.454]. Under rest/saline, power (P = 0.031) and total abdominal fat (P = 0.012) [R2 = 0.267] were the dominant correlates of GH excursions. Conclusion In healthy men, dynamic GH perturbations induced by exercise and glucose are strongly related to physical power, insulin, estradiol, and body composition, thus suggesting a network of regulatory pathways. PMID:26028283

  13. GH action influences adipogenesis of mouse adipose tissue-derived mesenchymal stem cells.

    PubMed

    Olarescu, Nicoleta C; Berryman, Darlene E; Householder, Lara A; Lubbers, Ellen R; List, Edward O; Benencia, Fabian; Kopchick, John J; Bollerslev, Jens

    2015-07-01

    GH influences adipocyte differentiation, but both stimulatory and inhibitory effects have been described. Adipose tissue-derived mesenchymal stem cells (AT-MSCs) are multipotent and are able to differentiate into adipocytes, among other cells. Canonical Wnt/β-catenin signaling activation impairs adipogenesis. The aim of the present study was to elucidate the role of GH on AT-MSC adipogenesis using cells isolated from male GH receptor knockout (GHRKO), bovine GH transgenic (bGH) mice, and wild-type littermate control (WT) mice. AT-MSCs from subcutaneous (sc), epididiymal (epi), and mesenteric (mes) AT depots were identified and isolated by flow cytometry (Pdgfrα+ Sca1+ Cd45- Ter119- cells). Their in vitro adipogenic differentiation capacity was determined by cell morphology and real-time RT-PCR. Using identical in vitro conditions, adipogenic differentiation of AT-MSCs was only achieved in the sc depot, and not in epi and mes depots. Notably, we observed an increased differentiation in cells isolated from sc-GHRKO and an impaired differentiation of sc-bGH cells as compared to sc-WT cells. Axin2, a marker of Wnt/β-catenin activation, was increased in mature sc-bGH adipocytes, which suggests that activation of this pathway may be responsible for the decreased adipogenesis. Thus, the present study demonstrates that (i) adipose tissue in mice has a well-defined population of Pdgfrα+ Sca1+ MSCs; (ii) the differentiation capacity of AT-MSCs varies from depot to depot regardless of GH genotype; (iii) the lack of GH action increases adipogenesis in the sc depot; and iv) activation of the Wnt/β-catenin pathway might mediate the GH effect on AT-MSCs. Taken together, the present results suggest that GH diminishes fat mass in part by altering adipogenesis of MSCs. © 2015 Society for Endocrinology.

  14. Effect of growth hormone (hGH) replacement therapy on physical work capacity and cardiac and pulmonary function in patients with hGH deficiency acquired in adulthood.

    PubMed

    Nass, R; Huber, R M; Klauss, V; Müller, O A; Schopohl, J; Strasburger, C J

    1995-02-01

    The effects of 6 months of replacement therapy with recombinant human GH (hGH) on physical work capacity and cardiac structure and function were investigated in 20 patients with hGH deficiency of adult onset in a double blind, placebo-controlled trial. The GH dose of 12.5 micrograms/kg BW was self-administered daily sc. Oxygen consumption (VO2), CO2 production, and ventilatory volumes were measured during exercise on a bicycle spiroergometer. M-Mode echocardiography was performed using standard techniques. The VO2 max data, expressed per kg BW (mL/min.kg BW) showed a significant increase from 23.2 +/- 2.4 to 30.0 +/- 2.3 (P < 0.01) in the hGH-treated group, whereas the VO2 max data, expressed per lean body mass (milliliters per min/kg lean body mass) did not change significantly in either group. Maximal O2 pulse (milliliters per beat) increased significantly from 15.2 +/- 5.6 to 19.6 +/- 3.3 mL/beat (P < 0.01), but remained constant in the placebo group. The maximal power output (watts +/- SE) increased significantly (P < 0.01) from 192.5 +/- 13.5 to 227.5 +/- 11.5 in the hGH-treated group, but remained constant in the placebo group. Cardiac structure (left ventricular posterior wall, interventricular septum thickness, left ventricular mass, left ventricular end-systolic dimension, and left ventricular end-diastolic dimension) as well as echocardiographically assessed cardiac function did not change significantly after 6 months of treatment in either group. We conclude that hGH replacement in hGH-deficient adults improves oxygen uptake and exercise capacity. These improvements in pulmonary parameters might be due to an increase in respiratory muscle strength and partly to the changes in muscle volume per se observed during hGH replacement therapy. Furthermore, an increased cardiac output might contribute to the improvement in exercise performance during hGH treatment. According to our data, hGH replacement therapy leads to an improvement of exercise capacity and

  15. Decreased GH secretion and enhanced ACTH and cortisol release after ghrelin administration in Cushing's disease: comparison with GH-releasing peptide-6 (GHRP-6) and GHRH.

    PubMed

    Correa-Silva, Silvia Regina; Nascif, Sérgio Oliva; Lengyel, Ana-Maria Judith

    2006-01-01

    GH responsiveness to GH secretagogues (GHS) is blunted in Cushing's disease (CD), while ACTH/cortisol responses are enhanced, by mechanisms still unclear. Ghrelin, the endogenous ligand for GHS-receptors (GHS-R), increases GH, ACTH, cortisol and glucose levels in humans. This study evaluated the GH, ACTH, cortisol and glucose-releasing effects of ghrelin in CD in comparison with GHRP-6. GHRH-induced GH release was also studied. Ten patients with CD (BMI 26.9+/-1.0 kg/m(2)) and ten controls (BMI 24.4+/-1.1 kg/m(2)) received ghrelin (1 microg/kg), GHRP-6 (1 microg/kg) and GHRH (100 microg) separately. GH, ACTH, cortisol and glucose levels were measured. In CD ghrelin-induced GH (microg/L; mean +/- SE) release (peak: 7.2+/-3.0) was higher than seen with GHRP-6 (2.7+/-1.0) and GHRH (0.7+/-0.2), but lower than in controls (ghrelin: 58.3+/-12.1; GHRP-6: 22.9+/-4.8; GHRH: 11.3+/-3.7). In controls ACTH (pg/mL) release after ghrelin (79.2+/-26.8) was higher than after GHRP-6 (23.6+/-5.7). In CD these responses (ghrelin: 192+/-43; GHRP-6: 185+/-56) were similar, and enhanced compared to controls. The same was observed with cortisol. Glucose levels failed to increase after ghrelin in CD, differently than in controls. Our data suggests that hypothalamic and pituitary pathways of GH release activated by ghrelin, GHRP-6 and GHRH are deranged in chronic hypercortisolism. The increased ACTH/cortisol responses to ghrelin and GHRP-6 in CD could be mediated by overexpression of GHS-R in ACTH-secreting adenomas. Hypercortisolism apparently impairs the ability of ghrelin to increase glucose levels.

  16. Metabolic co-morbidities revealed in patients with childhood-onset adult GH deficiency after cessation of GH replacement therapy for short stature.

    PubMed

    Fukuda, Izumi; Hizuka, Naomi; Yasumoto, Kumiko; Morita, Junko; Kurimoto, Makiko; Takano, Kazue

    2008-12-01

    GH therapy was approved in 2006 for treatment of adult growth hormone deficiency (GHD) in Japan. Until then, GH was used only to treat short stature in children with GHD and the treatment was stopped when the final height was reached. In the present study, we investigated metabolic co-morbidities experienced by adults with childhood-onset (CO) GHD after the cessation of GH. Forty-two patients with COGHD (M/F 22/20, age at follow up when the retrospective analysis was carried out: 18-52 yr) treated with GH in childhood were studied. We reviewed the medical records of these patients to determine the metabolic co-morbidities that developed after cessation of GH. The median age was 19 yrs (range: 14-38) at cessation of GH, and the following co-morbidities were observed: hypertriglyceridemia in 15 (41%) patients, non-alcoholic fatty liver disease (NAFLD) in 11 (29%) patients, hypercholesterolemia in 10 (26%) patients, diabetes mellitus (DM) in 4 (10%) patients, and hypertension in 1 (2.4%) patient. The median BMI when these complications became overt was 23.5 kg/m(2) for those with hypertriglyceridemia, 26.0 kg/m(2) for those with NAFLD, 20.9 kg/m(2) for those with hypercholesterolemia, and 27.2 kg/m(2 ) for those with DM. More than two co-morbidities were experienced by 32% of men and 30% of women. In conclusion, adults with COGHD after the cessation of GH have multiple metabolic co-morbidities. Lifelong GH replacement might be important for improving the overall metabolic profiles in these patients.

  17. Common exon 3 polymorphism of the GH receptor (GHR) gene and effect of GH therapy on growth in Korean children with idiopathic short stature (ISS).

    PubMed

    Ko, Jung Min; Park, Jung Young; Yoo, Han-Wook

    2009-01-01

    A human GH receptor (GHR) gene exon 3 polymorphism (d3-GHR) has been reported to be associated with responsiveness to GH therapy. We assessed the frequencies of this polymorphism in Korean control and idiopathic short stature (ISS) populations, and analysed short-term growth response to GH therapy according to GHR-exon 3 genotypes in Korean children with ISS. This was a retrospective study in 158 ISS children. Auxological and endocrine parameters were measured, and the GHR-exon 3 genotype was analysed. Allelic frequencies of GHR-exon 3 genotype were compared between the ISS group and a control group. GH had been administered for 62 patients, 52 of whom remained prepubertal after the first follow-up year. Changes in height velocity (HV) and IGF-1 and IGFBP-3 concentrations following GH therapy were compared in patients with these genotypes. There was no difference in GHR-exon 3 genotype frequency between ISS and control groups of Koreans. However, the fl/fl genotype was more frequent in Koreans than in Caucasians. ISS children with d3-GHR showed a significantly higher increment in HV (P = 0.002) and a marginally significant increment in IGF-1 concentration (P = 0.064) at the first year of GH therapy. fl-GHR was more frequently detected in a Korean population than in Caucasians. The growth promotion efficacy of GH therapy differed significantly between ISS patients with and without the d3-GHR allele. These findings indicate that the GHR-exon 3 polymorphism can affect the growth promoting efficacy of short-term GH therapy in Korean children with ISS.

  18. Autocrine/paracrine proliferative effect of ovarian GH and IGF-I in chicken granulosa cell cultures.

    PubMed

    Ahumada-Solórzano, S Marisela; Martínez-Moreno, Carlos G; Carranza, Martha; Ávila-Mendoza, José; Luna-Acosta, José Luis; Harvey, Steve; Luna, Maricela; Arámburo, Carlos

    2016-08-01

    It is known that growth hormone (GH) and its receptor (GHR) are expressed in granulosa cells (GC) and thecal cells during the follicular development in the hen ovary, which suggests GH is involved in autocrine/paracrine actions in the female reproductive system. In this work, we show that the knockdown of local ovarian GH with a specific cGH siRNA in GC cultures significantly decreased both cGH mRNA expression and GH secretion to the media, and also reduced their proliferative rate. Thus, we analyzed the effect of ovarian GH and recombinant chicken GH (rcGH) on the proliferation of pre-hierarchical GCs in primary cultures. Incubation of GCs with either rcGH or conditioned media, containing predominantly a 15-kDa GH isoform, showed that both significantly increased proliferation as determined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, proliferating cell nuclear antigen (PCNA) quantification and ((3)H)-thymidine incorporation ((3)H-T) assays in a dose response fashion. Both, locally produced GH and rcGH also induced the phosphorylation of Erk1/2 in GC cultures. Furthermore, GH increased IGF-I synthesis and its release into the GC culture incubation media. These results suggest that GH may act through local IGF-I to induce GC proliferation, since IGF-I immunoneutralization completely abolished the GH-induced proliferative effect. These data suggest that GH and IGF-I may play a role as autocrine/paracrine regulators during the follicular development in the hen ovary at the pre-hierarchical stage.

  19. Evolution, homology conservation, and identification of unique sequence signatures in GH19 family chitinases.

    PubMed

    Udaya Prakash, N A; Jayanthi, M; Sabarinathan, R; Kangueane, P; Mathew, Lazar; Sekar, K

    2010-05-01

    The discovery of GH (Glycoside Hydrolase) 19 chitinases in Streptomyces sp. raises the possibility of the presence of these proteins in other bacterial species, since they were initially thought to be confined to higher plants. The present study mainly concentrates on the phylogenetic distribution and homology conservation in GH19 family chitinases. Extensive database searches are performed to identify the presence of GH19 family chitinases in the three major super kingdoms of life. Multiple sequence alignment of all the identified GH19 chitinase family members resulted in the identification of globally conserved residues. We further identified conserved sequence motifs across the major sub groups within the family. Estimation of evolutionary distance between the various bacterial and plant chitinases are carried out to better understand the pattern of evolution. Our study also supports the horizontal gene transfer theory, which states that GH19 chitinase genes are transferred from higher plants to bacteria. Further, the present study sheds light on the phylogenetic distribution and identifies unique sequence signatures that define GH19 chitinase family of proteins. The identified motifs could be used as markers to delineate uncharacterized GH19 family chitinases. The estimation of evolutionary distance between chitinase identified in plants and bacteria shows that the flowering plants are more related to chitinase in actinobacteria than that of identified in purple bacteria. We propose a model to elucidate the natural history of GH19 family chitinases.

  20. GH/IGF-I axis and matrix adaptation of the musculotendinous tissue to exercise in humans.

    PubMed

    Heinemeier, K M; Mackey, A L; Doessing, S; Hansen, M; Bayer, M L; Nielsen, R H; Herchenhan, A; Malmgaard-Clausen, N M; Kjaer, M

    2012-08-01

    Exercise is not only associated with adaptive responses within skeletal muscle fibers but also with induction of collagen synthesis both in muscle and adjacent connective tissue. Additionally, exercise and training leads to activation of the systemic growth hormone/insulin-like growth factor I axis (GH/IGF-I), as well as increased local IGF-I expression. Studies in humans with pathologically high levels of GH/IGF-I, and in healthy humans who receive either weeks of GH administration or acute injection of IGF-I into connective tissue, demonstrate increased expression and synthesis of collagen in muscle and tendon. These observations support a stimulatory effect of GH/IGF-I on the connective tissue in muscle and tendon, which appears far more potent than the effect on contractile proteins of skeletal muscle. However, GH/IGF-I may play an additional role in skeletal muscle by regulation of stem cells (satellite cells), as increased satellite cell numbers are found in human muscle with increased GH/IGF-I levels, despite no change in myofibrillar protein synthesis. Although advanced age is associated with both a reduction in the GH/IGF-I axis activity, and in skeletal muscle mass (sarcopenia) as well as in tendon connective tissue, there is no direct proof linking age-related changes in the musculotendinous tissue to an impaired GH/IGF-I axis.

  1. Effects of GH on protein metabolism during dietary restriction in man.

    PubMed

    Nørrelund, Helene; Riis, Anne Lene; Møller, Niels

    2002-08-01

    The metabolic response to dietary restriction involves a series of hormonal and metabolic adaptations leading to protein conservation. An increase in the serum level of growth hormone (GH) during fasting has been well substantiated. GH has potent protein anabolic actions, as evidenced by a significant decrease in lean body mass and muscle mass in chronic GH deficiency, and vice versa in patients with acromegaly. The present review outlines current knowledge about the role of GH in the metabolic response to fasting, with particular reference to the effects on protein metabolism. Physiological bursts of GH secretion seem to be of seminal importance for the regulation of protein conservation during fasting. Apart from the possible direct effects of GH on protein dynamics, a number of additional anabolic agents, such as insulin, insulin-like growth factor-I, and free fatty acids (FFAs), are activated. Taken together the effects of GH on protein metabolism seem to include both stimulation of protein synthesis and inhibition of breakdown, depending on the nature of GH administration, which tissues are being studied, and on the physiological conditions of the subjects.

  2. Induction of chronic growth hormone deficiency by anti-GH serum

    NASA Technical Reports Server (NTRS)

    Grindeland, R. E.; Smith, A. T.; Ellis, S.; Evans, E. S.

    1974-01-01

    The observations reported indicate that the growth rate of neonatal rats can be specifically inhibited for at least 78 days following the administration of antisera against growth hormone (GH) for only four days after birth. The inhibition can be correlated with a marked deficit of tibial growth promoting activity in the pituitary but not with the plasma concentrations of immuno-reactive GH.

  3. Expression and ontogeny of growth hormone (Gh) in the protogynous hermaphroditic ricefield eel (Monopterus albus).

    PubMed

    Chen, Dong; Liu, Jiang; Chen, Wanping; Shi, Shuxia; Zhang, Weimin; Zhang, Lihong

    2015-12-01

    Growth hormone (GH) is a single-chain polypeptide hormone mainly secreted by somatotropes of the anterior pituitary gland and is an important regulator of somatic growth in vertebrates including teleosts. In this study, a polyclonal antiserum against ricefield eel Gh was generated and the expression of Gh at the mRNA and protein levels was analyzed. Both RT-PCR and western blot analysis showed that Gh was predominantly expressed in the pituitary glands of ricefield eels. The immunoreactive Gh signals were localized to the multicellular layers of the adenohypophysis adjacent to the neurohypophysis in ricefield eels. Ontogenetic analysis showed that immunoreactive Gh signals could be detected in the pituitary glands of ricefield eel embryos as early as 3 days post-fertilization. During the sex change from female to male, the levels of the immunoreactive Gh signals in the pituitary glands of the ricefield eels peaked at the intersexual stage. These results suggest that Gh in the pituitary glands may be associated with embryonic development before hatching, as well as with the sex change in the adult ricefield eels, possibly via the classical endocrine manner.

  4. Induction of chronic growth hormone deficiency by anti-GH serum

    NASA Technical Reports Server (NTRS)

    Grindeland, R. E.; Smith, A. T.; Ellis, S.; Evans, E. S.

    1974-01-01

    The observations reported indicate that the growth rate of neonatal rats can be specifically inhibited for at least 78 days following the administration of antisera against growth hormone (GH) for only four days after birth. The inhibition can be correlated with a marked deficit of tibial growth promoting activity in the pituitary but not with the plasma concentrations of immuno-reactive GH.

  5. Structural basis for glucose tolerance in GH1 β-glucosidases.

    PubMed

    de Giuseppe, Priscila Oliveira; Souza, Tatiana de Arruda Campos Brasil; Souza, Flavio Henrique Moreira; Zanphorlin, Leticia Maria; Machado, Carla Botelho; Ward, Richard John; Jorge, Joao Atilio; Furriel, Rosa dos Prazeres Melo; Murakami, Mario Tyago

    2014-06-01

    Product inhibition of β-glucosidases (BGs) by glucose is considered to be a limiting step in enzymatic technologies for plant-biomass saccharification. Remarkably, some β-glucosidases belonging to the GH1 family exhibit unusual properties, being tolerant to, or even stimulated by, high glucose concentrations. However, the structural basis for the glucose tolerance and stimulation of BGs is still elusive. To address this issue, the first crystal structure of a fungal β-glucosidase stimulated by glucose was solved in native and glucose-complexed forms, revealing that the shape and electrostatic properties of the entrance to the active site, including the +2 subsite, determine glucose tolerance. The aromatic Trp168 and the aliphatic Leu173 are conserved in glucose-tolerant GH1 enzymes and contribute to relieving enzyme inhibition by imposing constraints at the +2 subsite that limit the access of glucose to the -1 subsite. The GH1 family β-glucosidases are tenfold to 1000-fold more glucose tolerant than GH3 BGs, and comparative structural analysis shows a clear correlation between active-site accessibility and glucose tolerance. The active site of GH1 BGs is located in a deep and narrow cavity, which is in contrast to the shallow pocket in the GH3 family BGs. These findings shed light on the molecular basis for glucose tolerance and indicate that GH1 BGs are more suitable than GH3 BGs for biotechnological applications involving plant cell-wall saccharification.

  6. Natural history of the classical form of primary growth hormone (GH) resistance (Laron syndrome).

    PubMed

    Laron, Z

    1999-04-01

    A description of the clinical, biochemical and endocrinological features of the classical form of the syndrome of primary growth hormone (GH) resistance (Laron syndrome) is presented including the progressive changes during follow-up from infancy into adulthood. The main diagnostic features are: severe growth retardation, acromicria, small gonads and genitalia, and obesity. Serum GH levels are elevated and insulin-like growth factor-I (IGF-I) values are low and do not rise upon stimulation by exogenous hGH. The pathogenesis of this syndrome is due to various molecular defects from exon deletion to nonsense, frameshift, splice and missense mutations in the GH receptor (GH-R) gene or in its post-receptor pathways.

  7. [Chronic renal failure and growth hormone: effects on GH-IGF axis and leptin].

    PubMed

    Oliveira, Josenilson C de; Machado Neto, Francisco de A; Morcillo, André Moreno; Oliveira, Laurione C de; Belangero, Vera Maria S; Geloneze Neto, Bruno; Tambascia, Marcos Antonio; Guerra-Júnior, Gil

    2005-12-01

    To analyze the changes in IGF-1, IGFBP-3, leptin and insulin after replacement doses of recombinant human growth hormone (rhGH) in short prepubertal children with chronic renal failure (CRF). Eleven children (3F:8M), with mean age of 9.6 years, were treated with rhGH (0.23 mg/Kg weekly for 12 months). Serum leptin, insulin, glucose, IGF-1 and IGFBP-3 were measured before, 6 and 12 months after beginning rhGH treatment. The serum levels of leptin, insulin and glucose did not vary during the treatment; normal leptin and glucose levels and high insulin were observed. There was a significant increment of IGF-1 and IGFBP-3 during the use of rhGH. The replacement doses of rhGH during 12 months in a selected group of CRF children determined an increment in IGF-1 and IGFBP-3, associated to normal serum leptin and insulin resistance.

  8. The dopamine D2 receptor is expressed in GH3 cells.

    PubMed

    Johnston, J M; Wood, D F; Bolaji, E A; Johnston, D G

    1991-10-01

    Some pituitary tumours respond to dopamine by decreasing the release of prolactin and/or GH and by inhibition of tumour growth. Certain tumours are unresponsive. Dopamine D2 receptor high-affinity binding is impaired in these tumours, and the rat GH3 cell line behaves in a similar way. The hypothesis that the dopamine-binding defect results from impaired D2 receptor gene expression has been tested in the present study. On Northern blots, D2 receptor mRNA was present in both normal rat pituitary cells and in GH3 cells. Sodium dodecyl sulphate-polyacrylamide gel electrophoresis identified a putative D2 receptor protein in normal and GH3 cell membranes. The lack of effect of dopamine in GH3 cells does not reflect the absence of D2 receptor gene expression.

  9. Effects of Double Transgenesis of Somatotrophic Axis (GH/GHR) on Skeletal Muscle Growth of Zebrafish (Danio rerio).

    PubMed

    Silva, Ana Cecilia Gomes; Almeida, Daniela Volcan; Nornberg, Bruna Felix; Figueiredo, Marcio Azevedo; Romano, Luis Alberto; Marins, Luis Fernando

    2015-12-01

    Transgenic fish for growth hormone (GH) has been considered as a potential technological improvement in aquaculture. In this study, a double-transgenic zebrafish was used to evaluate the effect of GH and its receptor (GHR) on muscle growth. Double transgenics reached the same length of GH transgenic, but with significantly less weight, featuring an unbalanced growth. The condition factor of GH/GHR-transgenic fish was lower than the other genotypes. Histological analysis showed a decrease in the percentage of thick muscle fibers in GH/GHR genotype of ∼ 80% in comparison to GH-transgenic line. The analysis of gene expression showed a significant decrease in genes related to muscle growth in GH/GHR genotype. It seems that concomitant overexpression of GH and GHR resulted in a strong decrease of the somatotrophic axis intracellular signaling by diminishing its principal transcription factor signal transducer and activator of transcription 5.1 (STAT5.1).

  10. Effects of Double Transgenesis of Somatotrophic Axis (GH/GHR) on Skeletal Muscle Growth of Zebrafish (Danio rerio)

    PubMed Central

    Silva, Ana Cecilia Gomes; Almeida, Daniela Volcan; Nornberg, Bruna Felix; Figueiredo, Marcio Azevedo; Romano, Luis Alberto

    2015-01-01

    Abstract Transgenic fish for growth hormone (GH) has been considered as a potential technological improvement in aquaculture. In this study, a double-transgenic zebrafish was used to evaluate the effect of GH and its receptor (GHR) on muscle growth. Double transgenics reached the same length of GH transgenic, but with significantly less weight, featuring an unbalanced growth. The condition factor of GH/GHR-transgenic fish was lower than the other genotypes. Histological analysis showed a decrease in the percentage of thick muscle fibers in GH/GHR genotype of ∼80% in comparison to GH-transgenic line. The analysis of gene expression showed a significant decrease in genes related to muscle growth in GH/GHR genotype. It seems that concomitant overexpression of GH and GHR resulted in a strong decrease of the somatotrophic axis intracellular signaling by diminishing its principal transcription factor signal transducer and activator of transcription 5.1 (STAT5.1). PMID:26574627

  11. Anthropometry, CT, and DXA as predictors of GH deficiency in premenopausal women: ROC curve analysis

    PubMed Central

    Bredella, Miriam A.; Utz, Andrea L.; Torriani, Martin; Thomas, Bijoy; Schoenfeld, David A.; Miller, Karen K.

    2009-01-01

    Visceral adiposity is a strong determinant of growth hormone (GH) secretion, and states of GH deficiency are associated with increased visceral adiposity and decreased lean body mass. The purpose of our study was to determine the sensitivity and specificity of different methods of assessing body composition [anthropometry, dual-energy X-ray absorptiometry (DXA), and computed tomography (CT)] to predict GH deficiency in premenopausal women and threshold values for each technique to predict GH deficiency, using receiver operator characteristic (ROC) curve analysis. We studied a group of 45 healthy lean, overweight, and obese premenopausal women who underwent anthropometric measurements (body mass index, waist and hip circumferences, skin fold thickness), DXA, CT, and a GH-releasing hormone-arginine stimulation test. ROC curve analysis was used to determine cutoff values for each method to identify GH deficiency. Visceral adiposity measured by CT showed the highest sensitivity and specificity for identifying subjects with GH deficiency with a cutoff of >9,962 mm2 [area under the curve (AUC), 0.95; sensitivity, 100%; specificity, 77.8%; P = 0.0001]. Largest waist circumference showed high sensitivity and specificity with a cutoff of >101.7 cm (AUC, 0.89; sensitivity, 88.9%; specificity, 75%; P = 0.0001). When the ROC curves of visceral fat measured by CT and largest waist circumference were compared, the difference between the two methods was not statistically significant (P = 0.36). Our study showed that the largest waist circumference predicts the presence of GH deficiency in healthy premenopausal women with high sensitivity and specificity and nearly as well as CT measurement of visceral adiposity. It can be used to identify women in whom GH deficiency is likely and therefore in whom formal GH stimulation testing might be indicated. PMID:19095751

  12. The GH-IGF-I axis and the cardiovascular system: clinical implications.

    PubMed

    Colao, Annamaria

    2008-09-01

    GH and IGF-I affect cardiac structure and performance. In the general population, low IGF-I has been associated with higher prevalence of ischaemic heart disease and mortality. Both in GH deficiency (GHD) and excess life expectancy has been reported to be reduced because of cardiovascular disease. To review the role of the GH-IGF-I system on the cardiovascular system. Recent epidemiological evidence suggests that serum IGF-I levels in the low-normal range are associated with increased risk of acute myocardial infarction, ischaemic heart disease, coronary and carotid artery atherosclerosis and stroke. This confirms previous findings in patients with acromegaly or with GH-deficiency showing cardiovascular impairment. Patients with either childhood- or adulthood-onset GHD have cardiovascular abnormalities such as reduced cardiac mass, diastolic filling and left ventricular response at peak exercise, increased intima-media thickness and endothelial dysfunction. These abnormalities can be reversed, at least partially, after GH replacement therapy. In contrast, in acromegaly chronic GH and IGF-I excess causes a specific cardiomyopathy: concentric cardiac hypertrophy (in more than two-thirds of the patients at diagnosis) associated to diastolic dysfunction is the most common finding. In later stages, impaired systolic function ending in heart failure can occur, if GH/IGF-I excess is not controlled. Abnormalities of cardiac rhythm and of cardiac valves can also occur. Successful control of acromegaly is accompanied by decrease of the left ventricular mass and improvement of cardiac function. The cardiovascular system is a target organ for GH and IGF-I. Subtle dysfunction in the GH-IGF-I axis are correlated with increased prevalence of ischaemic heart disease. Acromegaly and GHD are associated with several abnormalities of the cardiovascular system and control of GH/IGF-I secretion reverses (or at least stops) cardiovascular abnormalities.

  13. A bacterial GH6 cellobiohydrolase with a novel modular structure.

    PubMed

    Cerda-Mejía, Liliana; Valenzuela, Susana Valeria; Frías, Cristina; Diaz, Pilar; Pastor, F I Javier

    2017-04-01

    Cel6D from Paenibacillus barcinonensis is a modular cellobiohydrolase with a novel molecular architecture among glycosyl hydrolases of family 6. It contains an N-terminal catalytic domain (family 6 of glycosyl hydrolases (GH6)), followed by a fibronectin III-like domain repeat (Fn31,2) and a C-terminal family 3b cellulose-binding domain (CBM3b). The enzyme has been identified and purified showing catalytic activity on cellulosic substrates and cellodextrins, with a marked preference for phosphoric acid swollen cellulose (PASC). Analysis of mode of action of Cel6D shows that it releases cellobiose as the only hydrolysis product from cellulose. Kinetic parameters were determined on PASC showing a K m of 68.73 mg/ml and a V max of 1.73 U/mg. A series of truncated derivatives of Cel6D have been constructed and characterized. Deletion of CBM3b caused a notable reduction in hydrolytic activity, while deletion of the Fn3 domain abolished activity, as the isolated GH6 domain was not active on any of the substrates tested. Mutant enzymes Cel6D-D146A and Cel6D-D97A were constructed in the residues corresponding to the putative acid catalyst and to the network for the nucleophilic attack. The lack of activity of the mutant enzymes indicates the important role of these residues in catalysis. Analysis of cooperative activity of Cel6D with cellulases from the same producing P. barcinonensis strain reveals high synergistic activity with processive endoglucanase Cel9B on hydrolysis of crystalline substrates. The characterized cellobiohydrolase can be a good contribution for depolymerization of cellulosic substrates and for the deconstruction of native cellulose.

  14. GH and Pituitary Hormone Alterations After Traumatic Brain Injury.

    PubMed

    Karaca, Züleyha; Tanrıverdi, Fatih; Ünlühızarcı, Kürşad; Kelestimur, Fahrettin

    2016-01-01

    Traumatic brain injury (TBI) is a crucially important public health problem around the world, which gives rise to increased mortality and is the leading cause of physical and psychological disability in young adults, in particular. Pituitary dysfunction due to TBI was first described 95 years ago. However, until recently, only a few papers have been published in the literature and for this reason, TBI-induced hypopituitarism has been neglected for a long time. Recent studies have revealed that TBI is one of the leading causes of hypopituitarism. TBI which causes hypopituitarism may be characterized by a single head injury such as from a traffic accident or by chronic repetitive head trauma as seen in combative sports including boxing, kickboxing, and football. Vascular damage, hypoxic insult, direct trauma, genetic predisposition, autoimmunity, and neuroinflammatory changes may have a role in the development of hypopituitarism after TBI. Because of the exceptional structure of the hypothalamo-pituitary vasculature and the special anatomic location of anterior pituitary cells, GH is the most commonly lost hormone after TBI, and the frequency of isolated GHD is considerably high. TBI-induced pituitary dysfunction remains undiagnosed and therefore untreated in most patients because of the nonspecific and subtle clinical manifestations of hypopituitarism. Treatment of TBI-induced hypopituitarism depends on the deficient anterior pituitary hormones. GH replacement therapy has some beneficial effects on metabolic parameters and neurocognitive dysfunction. Patients with TBI without neuroendocrine changes and those with TBI-induced hypopituitarism share the same clinical manifestations, such as attention deficits, impulsion impairment, depression, sleep abnormalities, and cognitive disorders. For this reason, TBI-induced hypopituitarism may be neglected in TBI victims and it would be expected that underlying hypopituitarism would aggravate the clinical picture of TBI

  15. Growth hormone (GH) substitution for one year normalizes elevated GH-binding protein levels in GH-deficient adults secondary to a reduction in body fat. A placebo-controlled trial.

    PubMed

    Fisker, S; Vahl, N; Hansen, T B; Jørgensen, J O; Hagen, C; Orskov, H; Christiansen, J S

    1998-04-01

    The high affinity growth hormone binding protein (GHBP) in human serum derives from the extracellular domain of the GH receptor. It is well known that fat mass correlates positively to GHBP levels, but it is uncertain whether GH secretory status influences GHBP levels. Since body composition is known to change during GH substitution in adult GHD patients, we determined the relation between GHBP and body composition during GH substitution in GHD adults. Twenty-five GHD adults aged 45.0 +/- 1.8 years, were examined before and after 12 months of placebo-controlled GH substitution (2 IU/m2) in a parallel design. A group of 27 healthy age- and gender-matched normal-weight adults provided reference data. The participants underwent anthropometric measurements [body mass index (BMI), waist/hip ratio (W/H)], computer-tomography (CT-scan) of femoral and abdominal regions, dual-energy X-ray absorptiometry (DEXA-scan), and bioimpedance (BIA), as well as blood sampling. At baseline, the GHBP levels were increased compared to controls (1.63 +/- 0.14 nmol/l vs 1.12 +/- 0.1 nmol/l, P = 0.01). During 12 months of GH substitution, GHBP levels decreased to the levels of the control subjects. GHBP correlated positively to indices of adiposity in GHD patients at baseline: intra-abdominal fat (r = 0.54, P = 0.005), subcutaneous abdominal fat (r = 0.59, P < 0.002), body fat (BIA) (r= 0.41, P= 0.044), BMI (r= 0.58, P = 0.002), and total body fat (DEXA scan) (r= 0.61, P < 0.001). After 12 months of GH substitution, different estimates of body fat were significantly decreased in the GH treated group, but the positive relationship between GHBP and these estimates of body fat was maintained. In multiple linear regression analyses, fasting insulin levels were also a significant determinant of GHBP levels. We conclude that GHBP levels are increased in GHD patients and decrease to normal levels during 12 months of GH substitution. Furthermore, GHBP is predominantly correlated to indices of

  16. Differential effects of central and peripheral administration of growth hormone (GH) and insulin-like growth factor on hypothalamic GH-releasing hormone and somatostatin gene expression in GH-deficient dwarf rats.

    PubMed

    Sato, M; Frohman, L A

    1993-08-01

    The roles of GH and insulin-like growth factor-I (IGF-I) in the regulation of hypothalamic GH-releasing hormone (GRH) and somatostatin (SRIH) gene expression were investigated in the GH-deficient dwarf (dw) rat, in which endogenous feedback signals are lacking. Adult male and female dw rats were treated with GH or IGF-I by systemic (sc) administration or intracerebroventricular (icv) infusion, and hypothalamic GRH and SRIH mRNA were determined by Northern blotting and densitometric analysis. Systemic sc injection of rGH (75 micrograms every 12 h for 3 days) decreased GRH mRNA levels in both sexes. However, systemic sc injection of human IGF-I (150 micrograms every 12 h for 3 days) did not affect GRH mRNA levels in either sex despite significant stimulation of body weight gain. The use of a continuous sc infusion, which normalized serum IGF-I levels, and prolongation of the treatment period to 7 days also failed to change GRH mRNA levels. SRIH mRNA was unaffected by systemic administration of either GH or IGF-I. Continuous icv infusion of GH (1 microgram/h for 7 days) decreased GRH mRNA levels in both sexes, but did not alter SRIH mRNA levels. Continuous icv infusion of IGF-I (100 ng/h for 7 days) decreased GRH mRNA in both sexes. In contrast, SRIH mRNA levels were increased in both sexes. IGF-I decreased GRH mRNA levels at icv infusion rates of 100 and 300 ng/h and stimulated SRIH mRNA levels at infusion rates of 30 and 100 ng/h. Food intake was unaffected at these infusion rates. Changes in GRH and SRIH mRNA levels in response to systemic or central GH and IGF-I administration were similar in both sexes, except that the decrease in GRH mRNA levels produced by the icv infusion of IGF-I was greater in female than in male rats. The results provide evidence for a direct inhibitory feedback effect of GH in the central nervous system on the regulation of hypothalamic GRH gene expression that is independent of peripheral IGF-I. IGF-I feedback, in contrast, appears to

  17. Molecular Engineering of Fungal GH5 and GH26 Beta-(1,4)-Mannanases toward Improvement of Enzyme Activity

    PubMed Central

    Couturier, Marie; Féliu, Julia; Bozonnet, Sophie; Roussel, Alain; Berrin, Jean-Guy

    2013-01-01

    Microbial mannanases are biotechnologically important enzymes since they target the hydrolysis of hemicellulosic polysaccharides of softwood biomass into simple molecules like manno-oligosaccharides and mannose. In this study, we have implemented a strategy of molecular engineering in the yeast Yarrowia lipolytica to improve the specific activity of two fungal endo-mannanases, PaMan5A and PaMan26A, which belong to the glycoside hydrolase (GH) families GH5 and GH26, respectively. Following random mutagenesis and two steps of high-throughput enzymatic screening, we identified several PaMan5A and PaMan26A mutants that displayed improved kinetic constants for the hydrolysis of galactomannan. Examination of the three-dimensional structures of PaMan5A and PaMan26A revealed which of the mutated residues are potentially important for enzyme function. Among them, the PaMan5A-G311S single mutant, which displayed an impressive 8.2-fold increase in kcat/KM due to a significant decrease of KM, is located within the core of the enzyme. The PaMan5A-K139R/Y223H double mutant revealed modification of hydrolysis products probably in relation to an amino-acid substitution located nearby one of the positive subsites. The PaMan26A-P140L/D416G double mutant yielded a 30% increase in kcat/KM compared to the parental enzyme. It displayed a mutation in the linker region (P140L) that may confer more flexibility to the linker and another mutation (D416G) located at the entrance of the catalytic cleft that may promote the entrance of the substrate into the active site. Taken together, these results show that the directed evolution strategy implemented in this study was very pertinent since a straightforward round of random mutagenesis yielded significantly improved variants, in terms of catalytic efiiciency (kcat/KM). PMID:24278180

  18. Effects of growth hormone (GH) administration on homocyst(e)ine levels in men with GH deficiency: a randomized controlled trial.

    PubMed

    Sesmilo, G; Biller, B M; Llevadot, J; Hayden, D; Hanson, G; Rifai, N; Klibanski, A

    2001-04-01

    GH deficiency is associated with increased cardiovascular mortality and early manifestations of atherosclerosis. Elevated serum homocyst(e)ine levels have been found to be associated with increased cardiovascular risk. The effect of GH replacement on homocyst(e)ine has not been investigated to date. We evaluated the effect of GH replacement on fasting homocyst(e)inemia in a group of men with adult-onset GH deficiency in a randomized, single blind, placebo-controlled trial. Forty men with adult-onset GH deficiency were randomized to GH or placebo for 18 months, with dose adjustments made according to serum insulin-like growth factor I (IGF-I) levels. Fasting serum homocyst(e)ine, folate, vitamin B12, and total T(3) levels were determined at baseline and 6 and 18 months. Anthropometry, IGF-I levels, insulin, and glucose were measured at 1, 3, 6, 12, and 18 months. Nutritional assessment, body composition, total T(4), thyroid hormone binding index, and free T(4) index were assessed every 6 months. Homocyst(e)ine decreased in the GH-treated group compared with that in the placebo group (net difference, -1.2 +/- 0.6 micromol/L; confidence interval, -2.4, -0.02 micromol/L; P = 0.047). Homocyst(e)ine at baseline was negatively correlated with plasma levels of folate (r = -0.41; P = 0.0087). Total T(3) increased in the GH-treated group vs. that in the placebo group (net difference, 0.17 +/- 0.046 ng/dL; confidence interval, 0.071, 0.26 nmol/L; P = 0.0012). Folate and vitamin B12 levels did not significantly change between groups. Changes in homocyst(e)ine were negatively correlated with changes in IGF-I. For each 1 nmol/L increase in IGF-I, homocyst(e)ine decreased by 0.04 +/- 0.02 micromol/L (P = 0.029). In contrast, changes in homocyst(e)ine did not correlate with changes in folate, vitamin B12, total T(3), C-reactive protein, interleukin-6, or insulin levels. This study shows that GH replacement decreases fasting homocyst(e)ine levels compared with placebo. This may be

  19. Growth hormone (GH) dose-dependent IGF-I response relates to pubertal height gain.

    PubMed

    Lundberg, Elena; Kriström, Berit; Jonsson, Bjorn; Albertsson-Wikland, Kerstin

    2015-12-18

    Responsiveness to GH treatment can be estimated by both growth and ∆IGF-I. The primary aim of the present study was to investigate if mimicking the physiological increase during puberty in GH secretion, by using a higher GH dose could lead to pubertal IGFs in short children with low GH secretion. The secondary aim was to explore the relationship between IGF-I, IGFBP-3 and the IGF-I/IGFBP-3 ratio and gain in height. A multicentre, randomized, clinical trial (TRN88-177) in 104 children (90 boys), who had received GH 33 μg/kg/day during at least 1 prepubertal year. They were followed from GH start to adult height (mean, 7.5 years; range, 4.6-10.7). At onset of puberty, children were randomized into three groups, to receive 67 μg/kg/day (GH(67)) given once (GH(67x1); n = 30) or divided into two daily injection (GH(33x2); n = 36), or to remain on a single 33 μg/kg/day dose (GH(33x1); n = 38). The outcome measures were change and obtained mean on-treatment IGF-I(SDS), IGFBP3(SDS) and IGF-I/IGFBP3 ratio(SDS) during prepuberty and puberty. These variables were assessed in relation to prepubertal, pubertal and total gain in heightSDS. Mean prepubertal increases 1 year after GH start were: 2.1 IGF-I(SDS), 0.6 IGFBP3(SDS) and 1.5 IGF-I/IGFBP3ratio(SDS). A significant positive correlation was found between prepubertal ∆IGFs and both prepubertal and total gain in height(SDS). During puberty changes in IGFs were GH dose-dependent: mean pubertal level of IGF-I(SDS) was higher in GH(67) vs GH(33) (p = 0.031). First year pubertal ∆IGF-I(SDS) was significantly higher in the GH(67)vs GH(33) group (0.5 vs -0.1, respectively, p = 0.007), as well as ∆IGF-I(SDS) to the pubertal mean level (0.2 vs -0.2, p = 0.028). In multivariate analyses, the prepubertal increase in '∆IGF-I(SDS) from GH start' and the 'GH dose-dependent pubertal ∆IGF-I(SDS)' were the most important variables for explaining variation in prepubertal (21 %), pubertal (26 %) and total

  20. Cello-oligosaccharide oxidation reveals differences between two lytic polysaccharide monooxygenases (family GH61) from Podospora anserina.

    PubMed

    Bey, Mathieu; Zhou, Simeng; Poidevin, Laetitia; Henrissat, Bernard; Coutinho, Pedro M; Berrin, Jean-Guy; Sigoillot, Jean-Claude

    2013-01-01

    The genome of the coprophilic ascomycete Podospora anserina encodes 33 different genes encoding copper-dependent lytic polysaccharide monooxygenases (LPMOs) from glycoside hydrolase family 61 (GH61). In this study, two of these enzymes (P. anserina GH61A [PaGH61A] and PaGH61B), which both harbored a family 1 carbohydrate binding module, were successfully produced in Pichia pastoris. Synergistic cooperation between PaGH61A or PaGH61B with the cellobiose dehydrogenase (CDH) of Pycnoporus cinnabarinus on cellulose resulted in the formation of oxidized and nonoxidized cello-oligosaccharides. A striking difference between PaGH61A and PaGH61B was observed through the identification of the products, among which were doubly and triply oxidized cellodextrins, which were released only by the combination of PaGH61B with CDH. The mass spectrometry fragmentation patterns of these oxidized products could be consistent with oxidation at the C-6 position with a geminal diol group. The different properties of PaGH61A and PaGH61B and their effect on the interaction with CDH are discussed in regard to the proposed in vivo function of the CDH/GH61 enzyme system in oxidative cellulose hydrolysis.

  1. Cello-Oligosaccharide Oxidation Reveals Differences between Two Lytic Polysaccharide Monooxygenases (Family GH61) from Podospora anserina

    PubMed Central

    Bey, Mathieu; Zhou, Simeng; Poidevin, Laetitia; Henrissat, Bernard; Coutinho, Pedro M.; Sigoillot, Jean-Claude

    2013-01-01

    The genome of the coprophilic ascomycete Podospora anserina encodes 33 different genes encoding copper-dependent lytic polysaccharide monooxygenases (LPMOs) from glycoside hydrolase family 61 (GH61). In this study, two of these enzymes (P. anserina GH61A [PaGH61A] and PaGH61B), which both harbored a family 1 carbohydrate binding module, were successfully produced in Pichia pastoris. Synergistic cooperation between PaGH61A or PaGH61B with the cellobiose dehydrogenase (CDH) of Pycnoporus cinnabarinus on cellulose resulted in the formation of oxidized and nonoxidized cello-oligosaccharides. A striking difference between PaGH61A and PaGH61B was observed through the identification of the products, among which were doubly and triply oxidized cellodextrins, which were released only by the combination of PaGH61B with CDH. The mass spectrometry fragmentation patterns of these oxidized products could be consistent with oxidation at the C-6 position with a geminal diol group. The different properties of PaGH61A and PaGH61B and their effect on the interaction with CDH are discussed in regard to the proposed in vivo function of the CDH/GH61 enzyme system in oxidative cellulose hydrolysis. PMID:23124232

  2. Serum leptin levels and leptin expression in growth hormone (GH)-deficient and healthy adults: influence of GH treatment, gender, and fasting.

    PubMed

    Kristensen, K; Pedersen, S B; Fisker, S; Nørrelund, H; Rosenfalck, A M; Jørgensen, J O; Richelsen, B

    1998-12-01

    Growth hormone (GH) treatment is associated with a reduction in fat mass in healthy and GH-deficient (GHD) subjects. This is mainly mediated via a direct GH action on adipose cells and stimulation of lipolysis. Leptin is secreted from adipose tissue and may be involved in signaling information about adipose tissue stores to the brain. Hormonal regulation of leptin is still not fully elucidated, and in the present study, we investigated both the long-term (4-month) and short-term (28-hour) GH effects on serum leptin and leptin gene expression in subcutaneous adipose tissue. In GHD adults (n = 24), leptin correlated with most estimates of adiposity (r = .62 to .86), as previously found in healthy subjects. However, no correlation was observed with intraabdominal fat determined by computed tomographic (CT) scan (INTRA-CT). GH treatment for 4 months had no independent effect on either serum leptin or leptin gene expression. In a short-term study, we found that fasting gradually reduced leptin levels in both healthy men and GHD adults, with a maximum reduction of 58% to 60% (P < .01) after 31 hours. No independent effect of GH suppression or GH substitution on serum leptin was found during fasting. Adipose tissue leptin mRNA correlated with serum leptin (r = .51, P < .01) and the body mass index ([BMI] r = .55, P < .05). Serum leptin levels and gene expression were significantly higher in women compared with men (26.6 +/- 5.8 v 10.0 +/- 1.30 ng/mL, P < .05). However, in regression analysis accounting for the gender differences in subcutaneous femoral adipose tissue (FEM-CT), the difference in serum leptin disappeared, indicating that subcutaneous femoral fat or factors closely related to femoral fat (eg, sex hormones) may be causal factors for the gender difference in leptin.

  3. Limited usefulness of the test of spontaneous growth hormone (GH) nocturnal secretion as a screening procedure in diagnosing GH deficiency in children with short stature.

    PubMed

    Smyczyńska, Joanna; Stawerska, Renata; Lewiński, Andrzej; Hilczer, Maciej

    2014-01-01

    In Poland, the assessment of nocturnal GH secretion has gained the status of screening test; however, this procedure is not included in international recommendations. The aim of the study was to assess the accuracy and predictive value of the test of nocturnal GH secretion as a screening procedure in diagnosing GHD, and to check the adequacy of the cut-off value for GH peak in this test on the level of 10 ng/ml. The analysis comprised the data of 1,000 children with short stature. In all the patients, GH secretion was assessed in a screening test (after falling asleep) and in 2 stimulating tests (reference tests), with simultaneous assessment of IGF-I secretion before stimulating tests. The indices of screening test accuracy, likelihood ratios and predictive values were assessed. The cut-off level of GH peak after falling asleep, ensuring its 95% sensitivity, was calculated in ROC curve analysis. Sensitivity of the screening test was 70.4%, while the specificity--61.2%, positive likelihood ratio--1.842, negative likelihood ratio--0.482, positive predictive value--0.462, negative predictive value--0.812. The sensitivity of the test of GH secretion after falling asleep is too low with respect to the requirements for screening test. The ROC curve analysis showed 95% sensitivity for the screening test on the level of 19.0 ng/ml; however, with a very low specificity--below 25%, thus making this test completely useless as a screening procedure. The obtained results strongly contradict the opinion that the assessment of GH secretion after falling asleep should be a screening test in diagnosing GHD in children with short stature.

  4. The glucose-dependent insulinotropic polypeptide receptor is overexpressed amongst GNAS1 mutation-negative somatotropinomas and drives growth hormone (GH)-promoter activity in GH3 cells.

    PubMed

    Occhi, G; Losa, M; Albiger, N; Trivellin, G; Regazzo, D; Scanarini, M; Monteserin-Garcia, J L; Fröhlich, B; Ferasin, S; Terreni, M R; Fassina, A; Vitiello, L; Stalla, G; Mantero, F; Scaroni, C

    2011-07-01

    Somatic mutations in the GNAS1 gene, encoding the α-subunit of the heterotrimeric stimulatory G protein (Gαs), occur in approximately 40% of growth hormone (GH)-secreting pituitary tumours. By altering the adenylate cyclase-cAMP-protein kinase A pathway, they unequivocally give somatotroph cells a growth advantage. Hence, the pathogenesis of somatotropinomas could be linked to anomalies in receptors coupled to the cAMP second-messenger cascade. Among them, the glucose-dependent insulinotropic polypeptide receptor (GIPR) is already known to play a primary role in the impaired cAMP-dependent cortisol secretion in patients affected by food-dependent Cushing's syndrome. In the present study, 43 somatotropinomas and 12 normal pituitary glands were investigated for GIPR expression by quantitative reverse transcriptase-polymerase chain reaction, western blotting and immunohistochemistry. Tumoural specimens were also evaluated for GNAS1 mutational status. The effect of GIPR overexpression on cAMP levels and GH transcription was evaluated in an in vitro model of somatotropinomas, the GH-secreting pituitary cell line GH3. GIPR was expressed at higher levels compared to normal pituitaries in 13 GNAS1 mutation-negative somatotropinomas. GIP stimulated adenylyl cyclase and GH-promoter activity in GIPR-transfected GH3 cells, confirming a correct coupling of GIPR to Gαs. In a proportion of acromegalic patients, GIPR overexpression appeared to be associated with a paradoxical increase in GH after an oral glucose tolerance test. Whether GIPR overexpression in acromegalic patients may be associated with this paradoxical response or more generally involved in the pathogenesis of acromegaly, as suggested by the mutually exclusive high GIPR levels and GNAS1 mutations, remains an open question.

  5. Examination of Growth Hormone (GH) Gene Polymorphism and its Association with Body Weight and Selected Body Dimensions in Ducks.

    PubMed

    Mazurowski, Artur; Frieske, Anna; Kokoszynski, Dariusz; Mroczkowski, Sławomir; Bernacki, Zenon; Wilkanowska, Anna

    2015-01-01

    The main objective of the study was to assess the polymorphism in intron 2 of the GH gene and its association with some morphological traits (body weight--BW, length of trunk with neck--LTN, length of trunk--LT, chest girth--CG, length of breast bone--LBB, length of shank--LS). Polymorphism in intron 2 of the GH gene was evaluated for four duck populations (Pekin ducks AF51, Muscovy ducks from a CK and CRAMMLCFF mother and Mulard ducks). Genetic polymorphism was determined with the PCR-RFLP method using the BsmFI restriction enzyme. In the studied duck sample two alleles (GH(C) and GH(T)) and three genotypes (GH/TT, GH/CT, GH/CC) were found at locus GH/BsmFI. In both groups of Muscovies and in Mulards the dominant allele was GH(T). On the contrary in Pekin ducks AF51, the frequency of both alleles was found to be similar. The most frequent genotype in the examined ducks was GH/TT. In Pekin ducks AF51 three genotypes were observed, while in Mulard ducks and in male Muscovy ducks from a mother marked as CK, two genotypes (GH/TT and GH/CT) were identified. Muscovy duck females from a CK mother and all males and females of Muscovy duck from a CRAMMLCFF mother were monomorphic with only the GH/TTgenotype detected. The results showed that males of Pekin duck AF51 with the GH/TT genotype were characterized by higher (P < 0.01) BW value than those with the GH/CC and GH/CTgenotype. In females of Pekin ducks AF51, this same trend was observed; individuals with GH/TT genotype were superior (P < 0.05 and P < 0.01) to birds with two other detected genotypes in respect to BW, CG, LBB and LS. In the case of Mulards, ducks with the GH/TT genotype were distinguished by higher values of all evaluated traits compared to ducks with GH/CT and GH/CC genotypes, however most of the recorded differences were not significant. The only trait markedly impacted (P < 0.05) by the polymorphism of the GH gene intron 2 was the LS value in males.

  6. Role of growth hormone (GH) in the treatment on neural diseases: from neuroprotection to neural repair.

    PubMed

    Arce, Víctor M; Devesa, Pablo; Devesa, Jesús

    2013-08-01

    Growth hormone (GH) is a pleiotropic hormone that exerts important functions in the control of brain development as well as in the regulation neuronal differentiation and function, together with several behavioral and psychological effects that have been linked to its modulatory actions on brain neurotransmitters. In addition, the possibility that GH may play a role on brain repair after injury has been also envisaged, and a number of reports have shown that GH administration following injury confers neuroprotection and accelerates the recovery of some neural functions. In this review we have analyzed the state of the art of GH administration in several neural diseases. Though more studies are still necessary in order to completely understand the importance of GH in these processes, the promising results obtained so far, together with the absence of untoward effects during GH therapy, encourages the development of clinical assays in order to further support the use GH treatment in neural diseases in which neuroprotection and/or neuroregeneration are involved. Copyright © 2013. Published by Elsevier Ireland Ltd.

  7. Human GH pulsatility: an ensemble property regulated by age and gender.

    PubMed

    Veldhuis, J D; Bowers, C Y

    2003-09-01

    Age and gender impact the full repertoire of neurohormone systems, including most prominently the somatotropic, gonadotropic and lactotropic axes. For example, daily GH production is approximately 2-fold higher in young women than men and varies by 20-fold by sexual developmental status and age. Deconvolution estimates of 24-h GH secretion rates exceed 1200 microg/m2 in adolescents and fall below 60 microg/m2 in aged individuals. The present overview highlights plausible factors driving such lifetime variations in GH availability, i.e., estrogen, aromatizable androgen, hypothalamic peptides and negative feedback by GH and IGF-I. In view of the daunting complexity of potential neuromodulatory signals, we underline the utility of conceptualizing a simplified three-peptide regulatory ensemble of GHRH, GHRP (ghrelin) and somatostatin. The foregoing signals act as individual and conjoint mediators of adaptive GH control. Regulation is enforced at 3-fold complementary time scales, which embrace pulsatile (burst-like), entropic (orderly) and 24-h rhythmic (nycthemeral) modes of GH release. This unifying platform offers a convergent perspective of multivalent control of GH outflow.

  8. Growth hormone releasing hexapeptide-6 (GHRP-6) test in the diagnosis of GH-deficiency.

    PubMed

    Pombo, M; Leal-Cerro, A; Barreiro, J; Peñalva, A; Peino, R; Mallo, F; Dieguez, C; Casanueva, F F

    1996-06-01

    Pituitary GH reserve can be assessed by substances that act directly at the somatotroph, such as GHRH, or by a variety of metabolic and neuropharmacological tests acting at the hypothalamic level, such as hypoglycemia, clonidine or L-Dopa. In order to evaluate GHRP-6 as a test of pituitary GH reserve, we studied GH responses of i.v. administered GHRP-6 in a group of short-statured children, as well as in a group of adults diagnosed with growth hormone deficiency (GHD) by conventional GH testing. Although we found that the GH response to GHRP-6 was lower in patients with GHD than in normal children, on an individual basis a considerable degree of overlap was observed between the two groups. In contrast, we found an almost complete blockade of GH response to either GHRP-6 or GHRH plus GHRP-6 in patients with pituitary stalk transection, suggesting that this could be a cost-effective test for the diagnosis of this condition. A similar finding was also obtained in GH response to the combined administration of GHRH plus GHRP-6 in patients with GHD of adult onset; this test may well prove valuable in the diagnosis of this clinical entity.

  9. Effects of GH on immune and endocrine responses of channel catfish challenged with Edwardsiella ictaluri.

    PubMed

    Peterson, Brian C; Small, Brian C; Bilodeau, Lanie

    2007-01-01

    The effects of GH on immune and endocrine responses to channel catfish challenged with the bacterium Edwardsiella ictaluri were examined. Catfish (11.7+/-1.0 g) treated with recombinant bovine growth hormone (rbGH) and challenged with E. ictaluri experienced similar mortality as control-exposed fish. Plasma activity of lysozyme was higher (P<0.01) in rbGH-exposed fish. Compared to day 0 controls (non-exposed fish), IGF-I levels decreased (P<0.05) in challenged fish while levels were similar (P>0.10) between treatments. Abundance of GH receptor (GHR) mRNA tended to decrease (P=0.055) in liver of challenged fish while toll like receptor 5 (TLR5) mRNA increased (P<0.05) in liver compared to d 0 controls. An increase in lysozyme may suggest GH enhances a nonspecific immune response. A decrease in GHR mRNA and plasma IGF-I suggests a downregulation of the somatotropic axis in response to disease. The increase in TLR5 mRNA suggests that TLR5 may play a role in host response to bacterial challenge. While exogenous rbGH may play a stimulatory role to increase lysozyme levels, there was no apparent effect of rbGH on mortality to E. ictaluri.

  10. Enhanced lignocellulosic biomass hydrolysis by oxidative lytic polysaccharide monooxygenases (LPMOs) GH61 from Gloeophyllum trabeum.

    PubMed

    Jung, Sera; Song, Younho; Kim, Ho Myeong; Bae, Hyeun-Jong

    2015-09-01

    Lignocellulose is a renewable resource that is extremely abundant, and the complete enzymatic hydrolysis of lignocellulose requires a cocktail containing a variety of enzyme groups that act synergistically. The hydrolysis efficiency can be improved by introducing glycoside hydrolase 61 (GH61), a new enzyme that belongs to the auxiliary activity family 9 (AA9). GH61was isolated from Gloeophyllum trabeum and cleaves the glycosidic bonds on the cellulose surface via oxidation of various carbons. In this study, we investigated the properties of GH61. GtGH61 alone did not exhibit any notable activity, but the synergistic activity of GtGH61 with xylanase (GtXyl10G) or cellulase (GtCel5B) showed efficient bioconversion rates of 56 and 174% in pretreated kenaf (Hibiscus cannabinus L.) and oak (Quercus spp.), respectively. Furthermore, the GtGH61 activity was strongly accelerated in the presence of cobalt Co(2+). Enzyme cocktails (GtXyl10G, GtCel5B, and GtGH61) increased the amount of sugar released by 7 and 6% for pretreated oak and kenaf, respectively, and the addition of Co(2+) stimulated bioconversion by 12 and 11% in pretreated oak and kenaf, respectively. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Quantitative expression analysis of GH3, a gene induced by plant growth regulator herbicides in soybean.

    PubMed

    Kelley, Kevin B; Lambert, Kris N; Hager, Aaron G; Riechers, Dean E

    2004-02-11

    Symptoms resembling off-target plant growth regulator (PGR) herbicide injury are frequently found in soybean fields, but the causal agent is often difficult to identify. The expression of GH3, an auxin-regulated soybean gene, was quantified from soybean leaves injured by PGR herbicides using real-time RT-PCR. Expression of GH3 was analyzed to ascertain its suitability for use in a diagnostic assay to determine whether PGR herbicides are the cause of injury. GH3 was highly induced by dicamba within 3 days after treatment (DAT) and remained high at 7 DAT, but induction was much lower at 17 DAT. GH3 was also highly induced at 7 DAT by dicamba + diflufenzopyr, and to a lesser extent by the other PGR herbicides clopyralid and 2,4-D. The non-PGR herbicides glyphosate, imazethapyr, and fomesafen did not significantly induce GH3 expression above a low constitutive level. These results indicate that a diagnostic assay for PGR herbicide injury based on overexpression of auxin-responsive genes is feasible, and that GH3 is a potential candidate from which a diagnostic assay could be developed. However, time course analysis of GH3 expression indicates the assay would be effective for a limited time after exposure to the herbicide.

  12. GhATAF1, a NAC transcription factor, confers abiotic and biotic stress responses by regulating phytohormonal signaling networks.

    PubMed

    He, Xin; Zhu, Longfu; Xu, Lian; Guo, Weifeng; Zhang, Xianlong

    2016-10-01

    Dual function of GhATAF1 in the responses to salinity stress and Verticillium dahliae infection in cotton. NAC (NAM/ATAF1/2/CUC2) is a large plant-specific transcription factor family that plays important roles in the response to abiotic stresses. We previously isolated a cotton NAC transcription factor gene, GhATAF1, which was up-regulated by ABA, cold and salt stresses and classified into AFAT1/2, a sub-family of NAC. Here, we report that GhATAF1 was also highly induced by MeJA, SA and Verticillium dahliae inoculation, which implied that GhATAF1 was involved not only in the response to abiotic stress but also in the response to biotic stress. GhATAF1 was localized in the nucleus and possessed transactivation activity. Overexpression of GhATAF1 enhanced cotton plant tolerance to salt stress by enhancing the expression of various stress-related genes, including the ABA response gene GhABI4; the transporter gene GhHKT1, involved in Na(+)/K(+) homeostasis; and several stress-response genes (GhAVP1, GhRD22, GhDREB2A, GhLEA3, and GhLEA6). Additionally, overexpressing GhATAF1 increased cotton plant susceptibility to the fungal pathogens V. dahliae and Botrytis cinerea, coupled with the suppression of JA-mediated signaling and the activation of SA-mediated signaling. Our results suggested that GhATAF1, the cotton stress-responsive NAC transcription factor, plays important roles in the response to both abiotic stress and biotic stress by coordinating the phytohormone signaling networks.

  13. Insulin and IGF-I Inhibit GH Synthesis and Release in Vitro and in Vivo by Separate Mechanisms

    PubMed Central

    Gahete, Manuel D.; Córdoba-Chacón, José; Lin, Qing; Brüning, Jens C.; Kahn, C. Ronald; Castaño, Justo P.; Christian, Helen; Luque, Raúl M.

    2013-01-01

    IGF-I is considered a primary inhibitor of GH secretion. Insulin may also play an important role in regulating GH levels because insulin, like IGF-I, can suppress GH synthesis and release in primary pituitary cell cultures and insulin is negatively correlated with GH levels in vivo. However, understanding the relative contribution insulin and IGF-I exert on controlling GH secretion has been hampered by the fact that circulating insulin and IGF-I are regulated in parallel and insulin (INSR) and IGF-I (IGFIR) receptors are structurally/functionally related and ubiquitously expressed. To evaluate the separate roles of insulin and IGF-I in directly regulating GH secretion, we used the Cre/loxP system to knock down the INSR and IGFIR in primary mouse pituitary cell cultures and found insulin-mediated suppression of GH is independent of the IGFIR. In addition, pharmacological blockade of intracellular signals in both mouse and baboon cultures revealed insulin requires different pathways from IGF-I to exert a maximal inhibitory effect on GH expression/release. In vivo, somatotrope-specific knockout of INSR (SIRKO) or IGFIR (SIGFRKO) increased GH levels. However, comparison of the pattern of GH release, GH expression, somatotrope morphometry, and pituitary explant sensitivity to acute GHRH challenge in lean SIRKO and SIGFRKO mice strongly suggests the primary role of insulin in vivo is to suppress GH release, whereas IGF-I serves to regulate GH synthesis. Finally, SIRKO and/or SIGFRKO could not prevent high-fat, diet-induced suppression of pituitary GH expression, indicating other factors/tissues are involved in the decline of GH observed with weight gain. PMID:23671263

  14. Insulin and IGF-I inhibit GH synthesis and release in vitro and in vivo by separate mechanisms.

    PubMed

    Gahete, Manuel D; Córdoba-Chacón, José; Lin, Qing; Brüning, Jens C; Kahn, C Ronald; Castaño, Justo P; Christian, Helen; Luque, Raúl M; Kineman, Rhonda D

    2013-07-01

    IGF-I is considered a primary inhibitor of GH secretion. Insulin may also play an important role in regulating GH levels because insulin, like IGF-I, can suppress GH synthesis and release in primary pituitary cell cultures and insulin is negatively correlated with GH levels in vivo. However, understanding the relative contribution insulin and IGF-I exert on controlling GH secretion has been hampered by the fact that circulating insulin and IGF-I are regulated in parallel and insulin (INSR) and IGF-I (IGFIR) receptors are structurally/functionally related and ubiquitously expressed. To evaluate the separate roles of insulin and IGF-I in directly regulating GH secretion, we used the Cre/loxP system to knock down the INSR and IGFIR in primary mouse pituitary cell cultures and found insulin-mediated suppression of GH is independent of the IGFIR. In addition, pharmacological blockade of intracellular signals in both mouse and baboon cultures revealed insulin requires different pathways from IGF-I to exert a maximal inhibitory effect on GH expression/release. In vivo, somatotrope-specific knockout of INSR (SIRKO) or IGFIR (SIGFRKO) increased GH levels. However, comparison of the pattern of GH release, GH expression, somatotrope morphometry, and pituitary explant sensitivity to acute GHRH challenge in lean SIRKO and SIGFRKO mice strongly suggests the primary role of insulin in vivo is to suppress GH release, whereas IGF-I serves to regulate GH synthesis. Finally, SIRKO and/or SIGFRKO could not prevent high-fat, diet-induced suppression of pituitary GH expression, indicating other factors/tissues are involved in the decline of GH observed with weight gain.

  15. Mechanisms Involved in Glucocorticoid Induction of Pituitary GH Expression During Embryonic Development

    PubMed Central

    Ellestad, Laura E.; Puckett, Stefanie A.

    2015-01-01

    Glucocorticoid hormones are involved in functional differentiation of GH-producing somatotrophs. Glucocorticoid treatment prematurely induces GH expression in mammals and birds in a process requiring protein synthesis and Rat sarcoma (Ras) signaling. The objective of this study was to investigate mechanisms through which glucocorticoids initiate GH expression during embryogenesis, taking advantage of the unique properties of chicken embryos as a developmental model. We determined that stimulation of GH expression occurred through transcriptional activation of GH, rather than enhancement of mRNA stability, and this process requires histone deacetylase activity. Through pharmacological inhibition, we identified the ERK1/2 pathway as a likely downstream Ras effector necessary for glucocorticoid stimulation of GH. However, we also found that chronic activation of ERK1/2 activity with a constitutively active mutant or stimulatory ligand reduced initiation of GH expression by glucocorticoid treatment. Corticosterone treatment of cultured embryonic pituitary cells increased ERK1/2 activity in an apparent cyclical manner, with a rapid increase within 5 minutes, followed by a reduction to near-basal levels at 3 hours, and a subsequent increase again at 6 hours. Therefore, we conclude that ERK1/2 signaling must be strictly controlled for maximal glucocorticoid induction of GH to occur. These results are the first in any species to demonstrate that Ras- and ERK1/2-mediated transcriptional events requiring histone deacetylase activity are involved in glucocorticoid induction of pituitary GH during embryonic development. This report increases our understanding of the molecular mechanisms underlying glucocorticoid recruitment of somatotrophs during embryogenesis and should provide insight into glucocorticoid-induced developmental changes in other tissues and cell types. PMID:25560830

  16. An audit of growth hormone replacement for GH-deficient adults in Scotland.

    PubMed

    Philip, Sam; Howat, Isobel; Carson, Maggie; Booth, Anne; Campbell, Karen; Grant, Donna; Patterson, Catherine; Schofield, Christopher; Bevan, John; Patrick, Alan; Leese, Graham; Connell, John

    2013-04-01

    Guidelines on the clinical use of growth hormone therapy in adults were issued by the UK National Institute for Clinical Excellence (NICE) in August 2003. We conducted a retrospective clinical audit on the use of growth hormone (GH) in Scotland to evaluate the use of these guidelines and their impact on clinical practice. The audit had two phases. In phase I, the impact of NICE criteria on specialist endocrine practice in starting and continuing GH replacement was assessed. In phase II, the reasons why some adults in Scotland with growth hormone deficiency were not on replacement therapy were evaluated. A retrospective cross-sectional case note review was carried out of all adult patients being followed up for growth hormone deficiency during the study period (1 March 2005 to 31 March 2008). Phase I of the audit included 208 patients and phase II 108 patients. Sellar tumours were the main cause of GH deficiency in both phases of the audit. In phase I, 53 patients (77%) had an AGHDA-QoL score >11 documented before commencing GH post-NICE guidance, compared with 35 (25%) pre-NICE guidance. Overall, only 39 patients (18%) met the full NICE criteria for starting and continuing GH (pre-NICE, 11%; post-NICE, 35%). Phase II indicated that the main reasons for not starting GH included perceived satisfactory quality of life (n = 47, 43%), patient reluctance (16, 15%) or a medical contraindication (16, 15%). Although the use of quality of life assessments has increased following publication of the NICE guidelines, most adults on GH in Scotland did not fulfil the complete set of NICE criteria. The main reason for not starting GH therapy in adult GH-deficient patients was perceived satisfactory quality of life. © 2012 Blackwell Publishing Ltd.

  17. Does the GH/IGF-1 axis contribute to skeletal sexual dimorphism? Evidence from mouse studies.

    PubMed

    Liu, Zhongbo; Mohan, Subburaman; Yakar, Shoshana

    2016-04-01

    The contribution of the gonadotropic axis to skeletal sexual dimorphism (SSD) was clarified in recent years. Studies with animal models of estrogen receptor (ER) or androgen receptor (AR) null mice, as well as mice with bone cell-specific ablation of ER or AR, revealed that both hormones play major roles in skeletal acquisition, and that estrogen regulates skeletal accrual in both sexes. The growth hormone (GH) and its downstream effector, the insulin-like growth factor-1 (IGF-1) are also major determinants of peak bone mass during puberty and young adulthood, and play important roles in maintaining bone integrity during aging. A few studies in both humans and animal models suggest that in addition to the differences in sex steroid actions on bone, sex-specific effects of GH and IGF-1 play essential roles in SSD. However, the contributions of the somatotropic (GH/IGF-1) axis to SSD are controversial and data is difficult to interpret. GH/IGF-1 are pleotropic hormones that act in an endocrine and autocrine/paracrine fashion on multiple tissues, affecting body composition as well as metabolism. Thus, understanding the contribution of the somatotropic axis to SSD requires the use of mouse models that will differentiate between these two modes of action. Elucidation of the relative contribution of GH/IGF-1 axis to SSD is significant because GH is approved for the treatment of normal children with short stature and children with congenital growth disorders. Thus, if the GH/IGF-1 axis determines SSD, treatment with GH may be tailored according to sex. In the following review, we give an overview of the roles of sex steroids in determining SSD and how they may interact with the GH/IGF-1 axis in bone. We summarize several mouse models with impaired somatotropic axis and speculate on the possible contribution of that axis to SSD.

  18. Genetic predictors of long-term response to growth hormone (GH) therapy in children with GH deficiency and Turner syndrome: the influence of a SOCS2 polymorphism.

    PubMed

    Braz, Adriana F; Costalonga, Everlayny F; Trarbach, Ericka B; Scalco, Renata C; Malaquias, Alexsandra C; Guerra-Junior, Gil; Antonini, Sonir R R; Mendonca, Berenice B; Arnhold, Ivo J P; Jorge, Alexander A L

    2014-09-01

    There is great interindividual variability in the response to GH therapy. Ascertaining genetic factors can improve the accuracy of growth response predictions. Suppressor of cytokine signaling (SOCS)-2 is an intracellular negative regulator of GH receptor (GHR) signaling. The objective of the study was to assess the influence of a SOCS2 polymorphism (rs3782415) and its interactive effect with GHR exon 3 and -202 A/C IGFBP3 (rs2854744) polymorphisms on adult height of patients treated with recombinant human GH (rhGH). Genotypes were correlated with adult height data of 65 Turner syndrome (TS) and 47 GH deficiency (GHD) patients treated with rhGH, by multiple linear regressions. Generalized multifactor dimensionality reduction was used to evaluate gene-gene interactions. Baseline clinical data were indistinguishable among patients with different genotypes. Adult height SD scores of patients with at least one SOCS2 single-nucleotide polymorphism rs3782415-C were 0.7 higher than those homozygous for the T allele (P < .001). SOCS2 (P = .003), GHR-exon 3 (P= .016) and -202 A/C IGFBP3 (P = .013) polymorphisms, together with clinical factors accounted for 58% of the variability in adult height and 82% of the total height SD score gain. Patients harboring any two negative genotypes in these three different loci (homozygosity for SOCS2 T allele; the GHR exon 3 full-length allele and/or the -202C-IGFBP3 allele) were more likely to achieve an adult height at the lower quartile (odds ratio of 13.3; 95% confidence interval of 3.2-54.2, P = .0001). The SOCS2 polymorphism (rs3782415) has an influence on the adult height of children with TS and GHD after long-term rhGH therapy. Polymorphisms located in GHR, IGFBP3, and SOCS2 loci have an influence on the growth outcomes of TS and GHD patients treated with rhGH. The use of these genetic markers could identify among rhGH-treated patients those who are genetically predisposed to have less favorable outcomes.

  19. Presence of growth hormone receptor (GH-R) mRNA and protein in goat ovarian follicles and improvement of in vitro preantral follicle survival and development with GH.

    PubMed

    Martins, F S; Saraiva, M V A; Magalhães-Padilha, D M; Almeida, A P; Celestino, J J H; Padilha, R T; Cunha, R M S; Silva, J R V; Campello, C C; Figueiredo, J R

    2014-07-01

    This study aimed to demonstrate the expression of growth hormone receptor (GH-R) mRNA and protein in goat ovarian follicles in order to investigate the effects of GH on the survival and development of preantral follicles. The ovaries were processed for the isolation of follicles to study GH-R mRNA expression or to localization of GH-R by immunohistochemical analysis. Pieces of ovarian cortex were cultured for 7 days in minimum essential medium(+) (MEM(+)) in the presence or absence of GH at different concentrations (1, 10, 50, 100, and 200 ng/mL). High expression levels of GH-R mRNA were observed in granulosa/theca cells from large antral follicles. However, preantral follicles do not express mRNA for GH-R. Immunohistochemistry demonstrated that the GH-R protein was expressed in the oocytes/granulosa cells of antral follicles, but any protein expression was observed in preantral follicles. The highest (P < 0.05) rate of normal follicles and intermediate follicles was observed after 7 days in MEM(+) plus 10 ng/mL GH (70%). In conclusion, GH-R mRNA and protein are expressed in caprine antral follicles, but not in preantral follicles. Moreover, GH maintains the survival of goat preantral follicles and promotes the development of primordial follicles. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Targeted deletion of growth hormone (GH) receptor in macrophage reveals novel osteopontin-mediated effects of GH on glucose homeostasis and insulin sensitivity in diet-induced obesity.

    PubMed

    Lu, Chunxia; Kumar, P Anil; Sun, Jinhong; Aggarwal, Anjali; Fan, Yong; Sperling, Mark A; Lumeng, Carey N; Menon, Ram K

    2013-05-31

    We investigated GH action on macrophage (MΦ) by creating a MΦ-specific GH receptor-null mouse model (MacGHR KO). On a normal diet (10% fat), MacGHR KO and littermate controls exhibited similar growth profiles and glucose excursions on intraperitoneal glucose (ipGTT) and insulin tolerance (ITT) tests. However, when challenged with high fat diet (HFD, 45% fat) for 18 weeks, MacGHR KO mice exhibited impaired ipGTT and ITT compared with controls. In MacGHR KO, adipose-tissue (AT) MΦ abundance was increased with skewing toward M1 polarization. Expression of pro-inflammatory cytokines (IL1β, TNF-α, IL6, and osteopontin (OPN)) were increased in MacGHR KO AT stromal vascular fraction (SVF). In MacGHR KO AT, crown-like-structures were increased with decreased insulin-dependent Akt phosphorylation. The abundance of phosphorylated NF-κB and of OPN was increased in SVF and bone-marrow-derived MΦ in MacGHR KO. GH, acting via an NF-κB site in the distal OPN promoter, inhibited the OPN promoter. Thus in diet-induced obesity (DIO), lack of GH action on the MΦ exerts an unexpected deleterious effect on glucose homeostasis by accentuating AT inflammation and NF-κB-dependent activation of OPN expression. These novel results in mice support the possibility that administration of GH could have salutary effects on DIO-associated chronic inflammation and insulin resistance in humans.

  1. Pharmacogenomics of insulin-like growth factor-I generation during GH treatment in children with GH deficiency or Turner syndrome

    PubMed Central

    Stevens, A; Clayton, P; Tatò, L; Yoo, H W; Rodriguez-Arnao, M D; Skorodok, J; Ambler, G R; Zignani, M; Zieschang, J; Della Corte, G; Destenaves, B; Champigneulle, A; Raelson, J; Chatelain, P

    2014-01-01

    Individual responses to growth hormone (GH) treatment are variable. Short-term generation of insulin-like growth factor-I (IGF-I) is recognized as a potential marker of sensitivity to GH treatment. This prospective, phase IV study used an integrated genomic analysis to identify markers associated with 1-month change in IGF-I (ΔIGF-I) following initiation of recombinant human (r-h)GH therapy in treatment-naïve children with GH deficiency (GHD) (n=166) or Turner syndrome (TS) (n=147). In both GHD and TS, polymorphisms in the cell-cycle regulator CDK4 were associated with 1-month ΔIGF-I (P<0.05). Baseline gene expression was also correlated with 1-month ΔIGF-I in both GHD and TS (r=0.3; P<0.01). In patients with low IGF-I responses, carriage of specific CDK4 alleles was associated with MAPK and glucocorticoid receptor signaling in GHD, and with p53 and Wnt signaling pathways in TS. Understanding the relationship between genomic markers and early changes in IGF-I may allow development of strategies to rapidly individualize r-hGH dose. PMID:23567489

  2. Effects of naloxone on the insulin and GH responses to alpha-adrenergic stimulation with clonidine.

    PubMed

    Massara, F; Limone, P; Cagliero, E; Tagliabue, M; Isaia, G C; Molinatti, G M

    1983-07-01

    To find if endorphins can influence hormonal responses mediated by noradrenergic pathways, we examined the effects of naloxone, an opiate receptor blocker, on the GH and insulin responses to clonidine, a drug which acts by stimulation of alpha-adrenergic receptors. Intravenous clonidine (0.15 mg in 10 min) induced a significant fall of plasma insulin and a marked increase of plasma GH. Intravenous naloxone (bolus of 1.6 mg followed by 50 micrograms/min) did not change the insulin response to clonidine, and seemed to induce only a slight delay in the GH response.

  3. A novel soluble supramolecular system for sustained rh-GH delivery.

    PubMed

    Salmaso, Stefano; Bersani, Sara; Scomparin, Anna; Balasso, Anna; Brazzale, Chiara; Barattin, Michela; Caliceti, Paolo

    2014-11-28

    Methoxy-poly(ethylene glycol)s bearing a terminal cholanic moiety (mPEG(5kDa)-cholane, mPEG(10kDa)-cholane and mPEG(20kDa)-cholane) were physically combined with recombinant human growth hormone (rh-GH) to obtain supramolecular assemblies for sustained hormone delivery. The association constants (Ka) calculated by Scatchard analysis of size exclusion chromatography (SEC) data were in the order of 10(5)M(-1). The complete rh-GH association with mPEG(5kDa)-cholane, mPEG(10kDa)-cholane and mPEG(20kDa)-cholane was achieved with 7.5 ± 1.1, 3.9 ± 0.4 and 2.6 ± 0.4 w/w% rh-GH/mPEG-cholane, respectively. Isothermal titration calorimetry (ITC) yielded association constants similar to that calculated by SEC and showed that rh-GH has 21-25 binding sites for mPEG-cholane, regardless the polymer molecular weight. Dialysis studies showed that the mPEG-cholane association strongly delays the protein release; 80-90% of the associated rh-GH was released in 200 h. However, during the first 8h the protein formulations obtained with mPEG(10kDa)-cholane and mPEG(20kDa)-cholane showed a burst release of 8 and 28%, respectively. Circular dichroism (CD) analyses showed that the mPEG(5kDa)-cholane association does not alter the secondary structure of the protein. Furthermore, mPEG(5kDa)-cholane was found to enhance both the enzymatic and physical stability of rh-GH. In vivo pharmacokinetic and pharmacodynamic studies were performed by subcutaneous administration of rh-GH and rh-GH/mPEG(5kDa)-cholane to normal and hypophysectomised rats. The study showed that mPEG(5kDa)-cholane decreases the maximal concentration in the blood but prolongs the body exposure of the protein, which resulted in 55% bioavailability increase. Finally, rh-GH formulated with mPEG(5kDa)-cholane yielded prolonged weight increase of hypophysectomised rats as compared to rh-GH in buffer or formulated with mPEG(5kDa)-OH. After the second administration the weight of the animals treated with rh-GH formulated with m

  4. Lack of dietary carbohydrates induces hepatic growth hormone (GH) resistance in rats.

    PubMed

    Bielohuby, Maximilian; Sawitzky, Mandy; Stoehr, Barbara J M; Stock, Peggy; Menhofer, Dominik; Ebensing, Sabine; Bjerre, Mette; Frystyk, Jan; Binder, Gerhard; Strasburger, Christian; Wu, Zida; Christ, Bruno; Hoeflich, Andreas; Bidlingmaier, Martin

    2011-05-01

    GH is a well established regulator of growth, lipid, and glucose metabolism and therefore important for fuel utilization. However, little is known about the effects of macronutrients on the GH/IGF system. We used low-carbohydrate/high-fat diets (LC-HFD) as a model to study the impact of fat, protein, and carbohydrates on the GH/IGF-axis; 12-wk-old Wistar rats were fed either regular chow, a moderate, protein-matched LC-HFD, or a ketogenic LC-HFD (percentage of fat/protein/carbohydrates: chow, 16.7/19/64.3; LC-HF-1, 78.7/19.1/2.2; LC-HF-2, 92.8/5.5/1.7). After 4 wk, body and tibia length, lean body mass, and fat pad weights were measured. Furthermore, we investigated the effects of LC-HFD on 1) secretion of GH and GH-dependent factors, 2) expression and signaling of components of the GH/IGF system in liver and muscle, and 3) hypothalamic and pituitary regulation of GH release. Serum concentrations of IGF-I, IGF binding protein-1, and IGF binding protein-3 were lower with LC-HF-1 and LC-HF-2 (P < 0.01). Both LC-HFD-reduced hepatic GH receptor mRNA and protein expression, decreased basal levels of total and phosphorylated Janus kinase/signal transducers and activators of transcription signaling proteins and reduced hepatic IGF-I gene expression. Hypothalamic somatostatin expression was reduced only with LC-HF-1, leading to increased pituitary GH secretion, higher IGF-I gene expression, and activation of IGF-dependent signaling pathways in skeletal muscle. In contrast, despite severely reduced IGF-I concentrations, GH secretion did not increase with LC-HF-2 diet. In conclusion, lack of carbohydrates in LC-HFD induces hepatic GH resistance. Furthermore, central feedback mechanisms of the GH/IGF system are impaired with extreme, ketogenic LC-HFD.

  5. Regulation of Pit-1 expression by ghrelin and GHRP-6 through the GH secretagogue receptor.

    PubMed

    García, A; Alvarez, C V; Smith, R G; Diéguez, C

    2001-09-01

    GH secretagogues are an expanding class of synthetic peptide and nonpeptide molecules that stimulate the pituitary gland to secrete GH through their own specific receptor, the GH-secretagogue receptor. The cloning of the receptor for these nonclassical GH releasing molecules, together with the more recent characterization of an endogenous ligand, named ghrelin, have unambiguously demonstrated the existence of a physiological system that regulates GH secretion. Somatotroph cell-specific expression of the GH gene is dependent on a pituitary-specific transcription factor (Pit-1). This factor is transcribed in a highly restricted manner in the anterior pituitary gland. The present experiments sought to determine whether the synthetic hexapeptide GHRP-6, a reference GH secretagogue compound, as well as an endogenous ligand, ghrelin, regulate pit-1 expression. By a combination of Northern and Western blot analysis we found that GHRP-6 elicits a time- and dose-dependent activation of pit-1 expression in monolayer cultures of infant rat anterior pituitary cells. This effect was blocked by pretreatment with actinomycin D, but not by cycloheximide, suggesting that this action was due to direct transcriptional activation of pit-1. Using an established cell line (HEK293-GHS-R) that overexpresses the GH secretagogue receptor, we showed a marked stimulatory effect of GHRP-6 on the pit-1 -2,500 bp 5'-region driving luciferase expression. We truncated the responsive region to -231 bp, a sequence that contains two CREs, and found that both CREs are needed for GHRP-6-induced transcriptional activation in both HEK293-GHS-R cells and infant rat anterior pituitary primary cultures. The effect was dependent on PKC, MAPK kinase, and PKA activation. Increasing Pit-1 by coexpression of pCMV-pit-1 potentiated the GHRP-6 effect on the pit-1 promoter. Similarly, we showed that the endogenous GH secretagogue receptor ligand ghrelin exerts a similar effect on the pit-1 promoter. These data

  6. Genetic dissection of IGF1-dependent and -independent effects of permanent GH excess on postnatal growth and organ pathology of mice.

    PubMed

    Blutke, A; Schneider, M R; Renner-Müller, I; Herbach, N; Wanke, R; Wolf, E

    2014-08-25

    To study insulin-like growth factor 1 (IGF1)-independent effects of permanent growth hormone (GH) excess on body and organ growth and pathology in vivo, hemizygous bovine GH transgenic mice with homozygous disruption of the Igf1 gene (Igf1(-/-)/GH) were generated, and examined in comparison to Igf1(-/-), Igf1(+/-), wild-type (WT), Igf1(+/-)/GH, and GH mice. GH mice and Igf1(+/-)/GH mice showed increased serum IGF1 levels and the well-known giant-phenotype of GH transgenic mice. In contrast, the typical dwarf-phenotype of Igf1(-/-) mice was only slightly ameliorated in Igf1(-/-)/GH mice. Similar to GH mice, Igf1(-/-)/GH mice displayed hepatocellular hypertrophy, glomerulosclerosis, and reduced volumes of acidophilic cells in the pituitary gland. However, GH excess associated skin lesions of male GH mice were not observed in Igf1(-/-)/GH mice. Therefore, development of GH excess induced liver-, kidney-, and pituitary gland-alterations in GH transgenic mice is independent of IGF1 whereas GH stimulated body growth depends on IGF1.

  7. Impact of growth hormone (GH) and follicle stimulating hormone (FSH) on in vitro canine preantral follicle development and estradiol production.

    PubMed

    Serafim, M K B; Duarte, A B G; Silva, G M; Souza, C E A; Magalhães-Padilha, D M; Moura, A A A; Silva, L D M; Campello, C C; Figueiredo, J R

    2015-04-01

    Evaluate the effect of different concentrations of growth hormone (GH) on the in vitro development of domestic dog (Canis lupus familiaris) preantral follicles in the presence or absence of follicle stimulating hormone (FSH). Secondary preantral follicles, isolated by microdissection, were cultured in a medium composed of αMEM with bovine serum albumin (BSA), glutamine, hypoxanthine, insulin, transferrin, selenium and ascorbic acid (αMEM(+)-control) added at different concentrations of GH (GH10 ng/ml or GH50 ng/ml) and FSH (GH10+FSH, GH50+FSH). Follicle development was evaluated based on the percentage of intact follicles, antrum formation, follicular diameter, follicular viability using fluorescent markers and estradiol production. GH50 was the only treatment that maintained the same percentage of normal morphologically follicles from day 0 to day 18 of culture (P<0.05). For all treatments, except the control, follicles were viable throughout the 18 days of culture (P<0.05). GH50 supplemented with FSH (GH50+FSH) resulted in the highest average follicular diameter (P<0.05) from day 12 to 18. Follicles from both the control and the GH50+FSH treatment groups actively and increasingly secreted estradiol from day 6 to 18 of culture (P<0.05). Our study demonstrates that GH benefits the maintenance of follicular morphology in a dose-dependent manner and, in association with FSH, stimulates in vitro follicular growth and estradiol production. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Overexpression of GhDof1 improved salt and cold tolerance and seed oil content in Gossypium hirsutum.

    PubMed

    Su, Ying; Liang, Wei; Liu, Zhengjie; Wang, Yumei; Zhao, Yanpeng; Ijaz, Babar; Hua, Jinping

    2017-07-28

    A homologous GhDof1, which belongs to a large family of plant-specific transcription factor DOF, was isolated from Upland cotton (Gossypium hirsutum L.). GhDof1 protein was located in the nucleus of onion epidermal cells, the core domain of transcriptional activity existed in the C-terminal, and the activity elements of GhDof1 promoter existed in the regions of -645∼ -469bp and -286∼ -132bp of transcriptional start codon. GhDof1 constitutively expressed in leaves, roots and stems, accumulated highest in leaves. The salinity and cold treatments induced GhDof1 transcript accumulation. The GhDof1-overexpressed cotton showed significantly higher salt and cold tolerance over the wild-type plants. Under salt stress, the root growth of overexpressed GhDof1 lines was promoted. The expression levels of stress-responsive genes, GhP5CS, GhSOD and GhMYB, were differently up-regulated in transgenic lines. Oil contents increased in some transgenic plants, and protein contents reduced compared with transformed receptor. These results suggested that GhDof1 was a functional transcription factor for improving the abiotic tolerance and seed oil content in Upland cotton. Copyright © 2017 Elsevier GmbH. All rights reserved.

  9. Short-term changes in bone formation markers following growth hormone (GH) treatment in short prepubertal children with a broad range of GH secretion.

    PubMed

    Andersson, Björn; Swolin-Eide, Diana; Magnusson, Per; Albertsson-Wikland, Kerstin

    2015-01-01

    Growth hormone (GH) promotes longitudinal growth and bone modelling/remodelling. This study investigated the relationship between levels of bone formation markers and growth during GH treatment in prepubertal children with widely ranging GH secretion levels. The study group comprised 113 short prepubertal children (mean age ± SD, 9·37 ± 2·13 years; 99 boys) on GH treatment (33·0 ± 0·06 μg/kg/day) for 1 year. Blood samples were taken at baseline and 1 and 2 weeks, 1 and 3 months, and 1 year after treatment start. Intact amino-terminal propeptide of type I procollagen (PINP), bone-specific alkaline phosphatase (BALP) and osteocalcin were measured using an automated IDS-iSYS immunoassay system. Intact amino-terminal propeptide of type I procollagen (PINP), BALP and osteocalcin, increased in the short-term during GH treatment. PINP after 1 week (P = 0·00077), and BALP and osteocalcin after 1 month (P < 0·0001 and P = 0·0043, respectively). PINP levels at 1 and 3 months correlated positively, and osteocalcin levels at 1 week and percentage change after 1 month correlated negatively, with first year growth response. No significant correlations were found between BALP and first year growth. Multiple regression analysis showed that bone marker levels together with auxological data and insulin-like growth factor binding protein-3 explained the variation in first year growth response to 36% at start, 32% after 2 weeks and 48% at 3 months. Short-term increases in levels of the bone formation markers PINP, BALP and osteocalcin showed different temporal patterns, but all correlated with first year growth response during GH treatment. These markers may be a useful addition to existing prediction models for growth response. © 2014 John Wiley & Sons Ltd.

  10. pKa modulation of the acid/base catalyst within GH32 and GH68: a role in substrate/inhibitor specificity?

    PubMed

    Yuan, Shuguang; Le Roy, Katrien; Venken, Tom; Lammens, Willem; Van den Ende, Wim; De Maeyer, Marc

    2012-01-01

    Glycoside hydrolases of families 32 (GH32) and 68 (GH68) belong to clan GH-J, containing hydrolytic enzymes (sucrose/fructans as donor substrates) and fructosyltransferases (sucrose/fructans as donor and acceptor substrates). In GH32 members, some of the sugar substrates can also function as inhibitors, this regulatory aspect further adding to the complexity in enzyme functionalities within this family. Although 3D structural information becomes increasingly available within this clan and huge progress has been made on structure-function relationships, it is not clear why some sugars bind as inhibitors without being catalyzed. Conserved aspartate and glutamate residues are well known to act as nucleophile and acid/bases within this clan. Based on the available 3D structures of enzymes and enzyme-ligand complexes as well as docking simulations, we calculated the pKa of the acid-base before and after substrate binding. The obtained results strongly suggest that most GH-J members show an acid-base catalyst that is not sufficiently protonated before ligand entrance, while the acid-base can be fully protonated when a substrate, but not an inhibitor, enters the catalytic pocket. This provides a new mechanistic insight aiming at understanding the complex substrate and inhibitor specificities observed within the GH-J clan. Moreover, besides the effect of substrate entrance on its own, we strongly suggest that a highly conserved arginine residue (in the RDP motif) rather than the previously proposed Tyr motif (not conserved) provides the proton to increase the pKa of the acid-base catalyst.

  11. pKa Modulation of the Acid/Base Catalyst within GH32 and GH68: A Role in Substrate/Inhibitor Specificity?

    PubMed Central

    Yuan, Shuguang; Le Roy, Katrien; Venken, Tom; Lammens, Willem; Van den Ende, Wim; De Maeyer, Marc

    2012-01-01

    Glycoside hydrolases of families 32 (GH32) and 68 (GH68) belong to clan GH-J, containing hydrolytic enzymes (sucrose/fructans as donor substrates) and fructosyltransferases (sucrose/fructans as donor and acceptor substrates). In GH32 members, some of the sugar substrates can also function as inhibitors, this regulatory aspect further adding to the complexity in enzyme functionalities within this family. Although 3D structural information becomes increasingly available within this clan and huge progress has been made on structure-function relationships, it is not clear why some sugars bind as inhibitors without being catalyzed. Conserved aspartate and glutamate residues are well known to act as nucleophile and acid/bases within this clan. Based on the available 3D structures of enzymes and enzyme-ligand complexes as well as docking simulations, we calculated the pKa of the acid-base before and after substrate binding. The obtained results strongly suggest that most GH-J members show an acid-base catalyst that is not sufficiently protonated before ligand entrance, while the acid-base can be fully protonated when a substrate, but not an inhibitor, enters the catalytic pocket. This provides a new mechanistic insight aiming at understanding the complex substrate and inhibitor specificities observed within the GH-J clan. Moreover, besides the effect of substrate entrance on its own, we strongly suggest that a highly conserved arginine residue (in the RDP motif) rather than the previously proposed Tyr motif (not conserved) provides the proton to increase the pKa of the acid-base catalyst. PMID:22662155

  12. Preweaning GH Treatment Normalizes Body Growth Trajectory and Reverses Metabolic Dysregulation in Adult Offspring After Maternal Undernutrition.

    PubMed

    Li, Minglan; Reynolds, Clare M; Gray, Clint; Vickers, Mark H

    2015-09-01

    Maternal undernutrition (UN) results in growth disorders and metabolic dysfunction in offspring. Although dysregulation of the GH-IGF axis in offspring is a known consequence of maternal UN, little is known about the efficacy of GH treatment during the period of developmental plasticity on later growth and metabolic outcomes. The present study investigated the effect of preweaning GH treatment on growth, glucose metabolism, and the GH-IGF axis in adult male and female offspring after maternal UN. Female Sprague Dawley rats were fed either a chow diet ad libitum (control [CON]) or 50% of ad libitum (UN) throughout pregnancy. From postnatal day 3, CON and UN pups received either saline (CON-S and UN-S) or GH (2.5 μg/g·d CON-GH and UN-GH) daily throughout lactation. At weaning, male and female offspring were randomly selected from each litter and fed a standard chow diet for the remainder of the study. Preweaning GH treatment normalized maternal UN-induced alterations in postweaning growth trajectory and concomitant adiposity in offspring. Plasma leptin concentrations were increased in UN-S offspring and normalized in the UN-GH group. Hepatic GH receptor expression was significantly elevated in UN-S offspring and normalized with GH treatment. Hepatic IGF binding protein-2 gene expression and plasma IGF-1 to IGF binding protein-3 ratio was reduced in UN-S offspring and elevated with GH treatment. GH treatment during a critical developmental window prevented maternal UN-induced changes in postnatal growth patterns and related adiposity, suggesting that manipulation of the GH-IGF-1 axis in early development may represent a promising avenue to prevent adverse developmental programming effects in adulthood.

  13. GH response to GHRH plus arginine is impaired in lipoatrophic women with human immunodeficiency virus compared with controls.

    PubMed

    Zirilli, Lucia; Orlando, Gabriella; Carli, Federica; Madeo, Bruno; Cocchi, Stefania; Diazzi, Chiara; Carani, Cesare; Guaraldi, Giovanni; Rochira, Vincenzo

    2012-03-01

    GH secretion is impaired in lipodystrophic human immunodeficiency virus (HIV) patients and inversely related to lipodystrophy-related fat redistribution in men. Less is known about the underlying mechanisms involved in reduced GH secretion in HIV-infected women. A case-control, cross-sectional study comparing GH/IGF1 status, body composition, and metabolic parameters in 92 nonobese women with HIV-related lipodystrophy and 63 healthy controls matched for age, ethnicity, sex, and body mass index (BMI). GH, IGF1, IGF binding protein 3 (IGFBP3), GH after GHRH plus arginine (GHRH+Arg), several metabolic variables, and body composition were evaluated. GH response to GHRH+Arg was lower in HIV-infected females than in controls. Using a cutoff of peak GH ≤ 7.5 μg/l, 20.6% of HIV-infected females demonstrated reduced peak GH response after GHRH+Arg. In contrast, none of the control subjects demonstrated a peak GH response ≤ 7.5 μg/l. Bone mineral density (BMD), quality of life, IGF1, and IGFBP3 were lowest in the HIV-infected females with a GH peak ≤ 7.5 μg/l. BMI was the main predictive factor of GH peak in stepwise multiregression analysis followed by age, with a less significant effect of visceral fat in the HIV-infected females. This study establishes that i) GH response to GHRH+Arg is lower in lipoatrophic HIV-infected women than in healthy matched controls, ii) BMI more than visceral adipose tissue or trunk fat influences GH peak in this population, and iii) HIV-infected women with a GH peak below or equal to 7.5 μg/l demonstrate reduced IGF1, IGFBP3, BMD, and quality of life.

  14. Diagnosis and treatment of GH deficiency in Prader-Willi syndrome.

    PubMed

    Grugni, Graziano; Marzullo, Paolo

    2016-12-01

    Prader-Willi syndrome (PWS) results from under-expression of the paternally-derived chromosomal region 15q11-13. Growth failure is a recognized feature of PWS, and both quantitative and qualitative defects of the GH/IGF-I axis revealing GH deficiency (GHD) have been demonstrated in most children with PWS. In PWS adults, criteria for GHD are biochemically fulfilled in 8-38% of the studied cohorts. Published data support benefits of early institution of GH therapy (GHT) in PWS children, with positive effects on statural growth, body composition, metabolic homeostasis, and neurocognitive function. Like in pediatric PWS, GHT also yields beneficial effects on lean and body fat, exercise capacity, and quality of life of PWS adults. Although GHT has been generally administered safely in PWS children and adults, careful surveillance of risks is mandatory during prolonged GH replacement for all PWS individuals.

  15. Immunohistochemical detection of growth hormone (GH) in canine hepatoid gland tumors.

    PubMed

    Petterino, Claudio; Martini, Marco; Castagnaro, Massimo

    2004-05-01

    The aim of this study was to detect immunohistochemically means growth hormone (GH) in 24 hepatoid gland adenomas and 5 hepatoid gland carcinomas and to compare the difference of immunoreactivity between types of tumors. The tumors were classified according to the WHO standards. Tissue sections which were prepared from formalin-fixed, paraffin wax-embedded tissues from 25 male and 4 female dogs were carried out immunostaining using polyclonal primary anti-hGH and EnVision method. Of 24 hepatoid gland adenomas (perianal gland adenomas) 23 (95.8%) were positive. All 5 hepatoid gland carcinomas (perianal gland carcinomas) were positive. No statistically significant differences in percentage of labelled cells between malignant and benign tumors were seen. The present demonstration of GH in hepatoid gland tumors adds new data on GH in extra-pituitary tissues and hormon-dependent tumors.

  16. Health Alert: Adrenal Crisis Causes Death in Some People Who Were Treated with hGH

    MedlinePlus

    ... Disease Resource List Health Alert: Adrenal Crisis Causes Death in Some People Who Were Treated with hGH ... People lacking this hormone are at risk of death from adrenal crisis, but adrenal crisis can be ...

  17. Structural Basis for Prereceptor Modulation of Plant Hormones by GH3 Proteins

    SciTech Connect

    Westfall, Corey S.; Zubieta, Chloe; Herrmann, Jonathan; Kapp, Ulrike; Nanao, Max H.; Jez, Joseph M.

    2013-04-08

    Acyl acid amido synthetases of the GH3 family act as critical prereceptor modulators of plant hormone action; however, the molecular basis for their hormone selectivity is unclear. Here, we report the crystal structures of benzoate-specific Arabidopsis thaliana AtGH3.12/PBS3 and jasmonic acid-specific AtGH3.11/JAR1. These structures, combined with biochemical analysis, define features for the conjugation of amino acids to diverse acyl acid substrates and highlight the importance of conformational changes in the carboxyl-terminal domain for catalysis. We also identify residues forming the acyl acid binding site across the GH3 family and residues critical for amino acid recognition. Our results demonstrate how a highly adaptable three-dimensional scaffold is used for the evolution of promiscuous activity across an enzyme family for modulation of plant signaling molecules.

  18. Impact of estradiol supplementation on dual peptidyl drive of GH secretion in postmenopausal women.

    PubMed

    Veldhuis, J D; Evans, W S; Bowers, C Y

    2002-02-01

    As an indirect probe of estrogen-regulated hypothalamic somatostatin restraint, the present study monitors the ability of short-term oral E2 supplementation to modulate GH secretion during combined continuous stimulation by recombinant human GHRH [GHRH-(1-44)-amide] and the potent and selective synthetic GH-releasing peptide, GHRP-2. According to a simplified tripeptidyl model of GH neuroregulation, the effects of estrogen in this dual secretagogue paradigm should mirror alterations in endogenous somatostatinergic signaling. To this end, seven healthy postmenopausal women underwent frequent (10-min) blood sampling for 24 h during simultaneous i.v. infusion of GHRH and GHRP-2 each at a rate of 1 microg/kg x h on d 10 of randomly ordered placebo or 17beta-estradiol (E2) (1 mg orally twice daily) replacement. Serum GH concentrations (n = 280/subject) were assayed by chemiluminescence. The resultant GH time series was evaluated by deconvolution analysis, the approximate entropy statistic, and cosine regression to quantitate pulsatile, entropic (feedback-sensitive), and 24-h rhythmic GH release, respectively. Statistical comparisons revealed that E2 repletion increased the mean (+/- SEM) serum E2 concentration to 222 +/- 26 pg/ml from 16 +/- 1.7 pg/ml during placebo (P < 0.001) and suppressed the serum LH by 48% (P = 0.0033), serum FSH by 64% (P < 0.001), and serum IGF-I by 44% (P = 0.021). Double peptidyl secretagogue stimulation elevated mean 24-h serum GH concentrations to 8.1 +/- 1.0 microg/liter (placebo) and 7.7 +/- 0.89 microg/liter (E2; P = NS) and evoked prominently pulsatile patterns of GH secretion. No primary measure of pulsatile or basal GH release was altered by the disparate sex steroid milieu, i.e. GH secretory burst amplitudes of 0.62 +/- 0.93 (placebo) and 0.72 +/- 0.16 (E2) microg/liter x min, GH pulse frequencies of 27 +/- 1.8 (placebo) and 23 +/- 1.9 (E2) events/24 h, GH half-lives of 12 +/- 0.74 (placebo) and 15 +/- 4.5 (E2) min, and basal

  19. Substrate Metabolism and Insulin Sensitivity During Fasting in Obese Human Subjects: Impact of GH Blockade.

    PubMed

    Pedersen, Morten Høgild; Svart, Mads Vandsted; Lebeck, Janne; Bidlingmaier, Martin; Stødkilde-Jørgensen, Hans; Pedersen, Steen Bønløkke; Møller, Niels; Jessen, Niels; Jørgensen, Jens O L

    2017-04-01

    Insulin resistance and metabolic inflexibility are features of obesity and are amplified by fasting. Growth hormone (GH) secretion increases during fasting and GH causes insulin resistance. To study the metabolic effects of GH blockade during fasting in obese subjects. Nine obese males were studied thrice in a randomized design: (1) after an overnight fast (control), (2) after 72 hour fasting (fasting), and (3) after 72 hour fasting with GH blockade (pegvisomant) [fasting plus GH antagonist (GHA)]. Each study day consisted of a 4-hour basal period followed by a 2-hour hyperinsulinemic, euglycemic clamp combined with indirect calorimetry, assessment of glucose and palmitate turnover, and muscle and fat biopsies. GH levels increased with fasting (P < 0.01), and the fasting-induced reduction of serum insulin-like growth factor I was enhanced by GHA (P < 0.05). Fasting increased lipolysis and lipid oxidation independent of GHA, but fasting plus GHA caused a more pronounced suppression of lipid intermediates in response to hyperinsulinemic, euglycemic clamp. Fasting-induced insulin resistance was abrogated by GHA (P < 0.01) primarily due to reduced endogenous glucose production (P = 0.003). Fasting plus GHA also caused elevated glycerol levels and reduced levels of counterregulatory hormones. Fasting significantly reduced the expression of antilipolytic signals in adipose tissue independent of GHA. Suppression of GH activity during fasting in obese subjects reverses insulin resistance and amplifies insulin-stimulated suppression of lipid intermediates, indicating that GH is an important regulator of substrate metabolism, insulin sensitivity, and metabolic flexibility also in obese subjects.

  20. Transcriptome analysis of the mammary gland from GH transgenic goats during involution.

    PubMed

    Lin, Jian; Bao, Ze Kun; Zhang, Qiang; Hu, Wei Wei; Yu, Qing Hua; Yang, Qian

    2015-07-10

    Mammary glands are organs for milk production in female mammals. Growth hormone (GH) is known to affect the growth and development of the mammary gland, as well as to increase milk production in dairy goats. This study performed a comprehensive expression profiling of genes expressed in the mammary gland of early involution GH transgenic (n=4) and non-transgenic goats (n=4) by RNA sequencing. RNA was extracted from mammary gland tissues collected at day 3 of involution. Gene expression analysis was conducted by Illumina RNA sequencing and sequence reads were assembled and analyzed using TopHat. FPKM (fragments per kilobase of exon per million) values were analyzed for differentially expressed genes using the Cufflinks package. Gene ontology analysis of differentially expressed genes was categorized using agriGO, while KEGG pathway analysis was performed with the online KEGG automatic annotation server. Our results revealed that 75% of NCBI goat annotated genes were expressed during early involution. A total of 18,323 genes were expressed during early involution in GH transgenic goats, compared with 18,196 expressed genes during early involution of non-transgenic goats. In these expressed genes, the majority (17,589) were ubiquitously expressed in GH transgenic and non-transgenic goats. However, there were 745 differentially expressed genes, 421 of which were upregulated and 324 were downregulated in GH transgenic goats. GO and KEGG pathway analysis showed that these genes were involved in mammary gland physiology, including cell adhesion molecules, ECM-receptor interaction, Jak-STAT signaling pathway, and fat metabolism. Our results demonstrated that the GH receptor was strongly affected in GH transgenic goats, which may activate the IGF-1/Stat3 signaling pathway. Overall, our study provided a global view of the transcriptome during involution of GH transgenic and non-transgenic goats, which increases our understanding of the biology of involution in the goat

  1. Genome-wide analysis of the GH3 family in apple (Malus × domestica)

    PubMed Central

    2013-01-01

    Background Auxin plays important roles in hormone crosstalk and the plant’s stress response. The auxin-responsive Gretchen Hagen3 (GH3) gene family maintains hormonal homeostasis by conjugating excess indole-3-acetic acid (IAA), salicylic acid (SA), and jasmonic acids (JAs) to amino acids during hormone- and stress-related signaling pathways. With the sequencing of the apple (Malus × domestica) genome completed, it is possible to carry out genomic studies on GH3 genes to indentify candidates with roles in abiotic/biotic stress responses. Results Malus sieversii Roem., an apple rootstock with strong drought tolerance and the ancestral species of cultivated apple species, was used as the experimental material. Following genome-wide computational and experimental identification of MdGH3 genes, we showed that MdGH3s were differentially expressed in the leaves and roots of M. sieversii and that some of these genes were significantly induced after various phytohormone and abiotic stress treatments. Given the role of GH3 in the negative feedback regulation of free IAA concentration, we examined whether phytohormones and abiotic stresses could alter the endogenous auxin level. By analyzing the GUS activity of DR5::GUS-transformed Arabidopsis seedlings, we showed that ABA, SA, salt, and cold treatments suppressed the auxin response. These findings suggest that other phytohormones and abiotic stress factors might alter endogenous auxin levels. Conclusion Previous studies showed that GH3 genes regulate hormonal homeostasis. Our study indicated that some GH3 genes were significantly induced in M. sieversii after various phytohormone and abiotic stress treatments, and that ABA, SA, salt, and cold treatments reduce the endogenous level of axuin. Taken together, this study provides evidence that GH3 genes play important roles in the crosstalk between auxin, other phytohormones, and the abiotic stress response by maintaining auxin homeostasis. PMID:23638690

  2. Genome-wide analysis of the GH3 family in apple (Malus × domestica).

    PubMed

    Yuan, Huazhao; Zhao, Kai; Lei, Hengjiu; Shen, Xinjie; Liu, Yun; Liao, Xiong; Li, Tianhong

    2013-05-02

    Auxin plays important roles in hormone crosstalk and the plant's stress response. The auxin-responsive Gretchen Hagen3 (GH3) gene family maintains hormonal homeostasis by conjugating excess indole-3-acetic acid (IAA), salicylic acid (SA), and jasmonic acids (JAs) to amino acids during hormone- and stress-related signaling pathways. With the sequencing of the apple (Malus × domestica) genome completed, it is possible to carry out genomic studies on GH3 genes to indentify candidates with roles in abiotic/biotic stress responses. Malus sieversii Roem., an apple rootstock with strong drought tolerance and the ancestral species of cultivated apple species, was used as the experimental material. Following genome-wide computational and experimental identification of MdGH3 genes, we showed that MdGH3s were differentially expressed in the leaves and roots of M. sieversii and that some of these genes were significantly induced after various phytohormone and abiotic stress treatments. Given the role of GH3 in the negative feedback regulation of free IAA concentration, we examined whether phytohormones and abiotic stresses could alter the endogenous auxin level. By analyzing the GUS activity of DR5::GUS-transformed Arabidopsis seedlings, we showed that ABA, SA, salt, and cold treatments suppressed the auxin response. These findings suggest that other phytohormones and abiotic stress factors might alter endogenous auxin levels. Previous studies showed that GH3 genes regulate hormonal homeostasis. Our study indicated that some GH3 genes were significantly induced in M. sieversii after various phytohormone and abiotic stress treatments, and that ABA, SA, salt, and cold treatments reduce the endogenous level of axuin. Taken together, this study provides evidence that GH3 genes play important roles in the crosstalk between auxin, other phytohormones, and the abiotic stress response by maintaining auxin homeostasis.

  3. Expansion and divergence of the GH locus between spider monkey and chimpanzee.

    PubMed

    Revol De Mendoza, Agnès; Esquivel Escobedo, Dolores; Martínez Dávila, Irma; Saldaña, Hugo

    2004-07-21

    Growth hormone (GH) has been previously described as showing distinct evolutionary stories between primates and other mammals. A burst of changes and successive amplification events took place in the primate lineage giving rise to a multigene family in the three Anthropoidea lineages. Polymerase chain reaction (PCR) was used to obtain the genes and the intergenic regions comprising the GH loci of the spider monkey (Ateles geoffroyi), a New-World primate, and of the chimpanzee (Pan troglodytes), an ape. The intergenic sequences of both species were screened by hybridization to detect copies of the Alu family, which have been implicated in the formation of the human GH locus. The GH locus of the spider monkey contains at least six GH-related genes, four of them were cloned. Likewise, five short intergenic sequences of approximately 3 kb were amplified and cloned. On the other hand, in the chimpanzee four new placental lactogen (PL) genes as well as four intergenic regions were amplified. Consequently, in this ape, six genes (two GHs, previously obtained, and four PLs) are clustered, separated by intergenic sequences of different lengths (two short ones of about 5 kb, and at least two long ones between 9 and 13 kb). The presence of Alu sequences within the intergenic regions of both GH loci corroborates the current hypothesis that they acted as a driving force for the locus expansion. GH sequence comparisons reveal that several gene-conversion events might have occurred during the formation of this genome region, which has undergone independent evolution in the three Anthropoidea branches. To establish the GH's evolutionary history may prove to be a difficult task due to these gene-conversion events.

  4. Statistical methodology for age-adjustment of the GH-2000 score detecting growth hormone misuse.

    PubMed

    Böhning, Dankmar; Böhning, Walailuck; Guha, Nishan; Cowan, David A; Sönksen, Peter H; Holt, Richard I G

    2016-10-28

    The GH-2000 score has been developed as a powerful and unique technique for the detection of growth hormone misuse by sportsmen and women. The score depends upon the measurement of two growth hormone (GH) sensitive markers, insulin-like growth factor-I (IGF-I) and the amino-terminal pro-peptide of type III collagen (P-III-NP). With the collection and establishment of an increasingly large database it has become apparent that the score shows a positive age effect in the male athlete population, which could potentially place older male athletes at a disadvantage. We have used results from residual analysis of the general linear model to show that the residual of the GH-2000 score when regressed on the mean-age centred age is an appropriate way to proceed to correct this bias. As six GH-2000 scores are possible depending on the assays used for determining IGF-I and P-III-NP, methodology had to be explored for including six different age effects into a unique residual. Meta-analytic techniques have been utilized to find a summary age effect. The age-adjusted GH-2000 score, a form of residual, has similar mean and variance as the original GH-2000 score and, hence, the developed decision limits show negligible change when compared to the decision limits based on the original score. We also show that any further scale-transformation will not change the adjusted score. Hence the suggested adjustment is optimal for the given data. The summary age effect is homogeneous across the six scores, and so the generic adjustment of the GH-2000 score formula is justified. A final revised GH-2000 score formula is provided which is independent of the age of the athlete under consideration.

  5. Adiponectin in mice with altered GH action: links to insulin sensitivity and longevity?

    PubMed

    Lubbers, Ellen R; List, Edward O; Jara, Adam; Sackman-Sala, Lucila; Cordoba-Chacon, Jose; Gahete, Manuel D; Kineman, Rhonda D; Boparai, Ravneet; Bartke, Andrzej; Kopchick, John J; Berryman, Darlene E

    2013-03-01

    Adiponectin is positively correlated with longevity and negatively correlated with many obesity-related diseases. While there are several circulating forms of adiponectin, the high-molecular-weight (HMW) version has been suggested to have the predominant bioactivity. Adiponectin gene expression and cognate serum protein levels are of particular interest in mice with altered GH signaling as these mice exhibit extremes in obesity that are positively associated with insulin sensitivity and lifespan as opposed to the typical negative association of these factors. While a few studies have reported total adiponectin levels in young adult mice with altered GH signaling, much remains unresolved, including changes in adiponectin levels with advancing age, proportion of total adiponectin in the HMW form, adipose depot of origin, and differential effects of GH vs IGF1. Therefore, the purpose of this study was to address these issues using assorted mouse lines with altered GH signaling. Our results show that adiponectin is generally negatively associated with GH activity, regardless of age. Further, the amount of HMW adiponectin is consistently linked with the level of total adiponectin and not necessarily with previously reported lifespan or insulin sensitivity of these mice. Interestingly, circulating adiponectin levels correlated strongly with inguinal fat mass, implying that the effects of GH on adiponectin are depot specific. Interestingly, rbGH, but not IGF1, decreased circulating total and HMW adiponectin levels. Taken together, these results fill important gaps in the literature related to GH and adiponectin and question the frequently reported associations of total and HMW adiponectin with insulin sensitivity and longevity.

  6. Effects of dietary genistein on GH/IGF-I axis of Nile tilapia Oreochromis niloticus

    NASA Astrophysics Data System (ADS)

    Chen, Dong; Wang, Wei; Ru, Shaoguo

    2016-09-01

    There is considerable concern that isoflavones, such as genistein in fish feed composed of soybean protein, aff ects somatic growth in fish. Our previous works demonstrated that 30 and 300 μg/g dietary genistein had no significant eff ect on growth performance in Nile tilapia ( Oreochromis niloticus), but the higher level of genistein (3 000 μg/g) significantly depressed growth. This study was conducted to further examine the eff ects of dietary genistein on the endocrine disruption on growth hormone/insulin-like growth factor-I (GH/IGF-I) axis in Nile tilapia ( O. niloticus). Juvenile fish were fed by hand twice daily to satiation with one of four isonitrogenous and isoenergetic diets, each containing either 0, 30, 300 or 3 000 μg/g genistein. Following an 8-week feeding period, plasma GH and IGF-I levels were investigated by radioimmunoassay and gene expression levels of gh, ghrelin, gnrhs, ghr, npy, npyrs, pacap, ghrs, i gf-I, igf-Ir, and igfbp3 were examined by real-time PCR. The results show that no significant change in plasma GH and IGF-I levels in fish fed with diets containing 30 μg/g and 300 μg/g genistein. mRNA expression of genes along the GH/IGF-I axis remained unaff ected, except for igf-Ir, which was stimulated by the 300 μg/g genistein diet. While in fish fed the 3 000 μg/g genistein diet, the plasma GH and IGF-I levels decreased, and mRNA expression of gh, ghr2, npyr1, igf-I, and igf-Ir were also significantly depressed. In contrast, npy and igfbp3 mRNA expression were enhanced. This study provides convincing evidence for growth impediment by genistein by disturbing the GH/IGF-I axis in Nile tilapia O. niloticus.

  7. Identification of novel GHRHR and GH1 mutations in patients with isolated growth hormone deficiency.

    PubMed

    Birla, Shweta; Khadgawat, Rajesh; Jyotsna, Viveka P; Jain, Vandana; Garg, M K; Bhalla, Ashu Seith; Sharma, Arundhati

    2016-08-01

    Human growth is an elementary process which starts at conception and continues through different stages of development under the influence of growth hormone (GH) secreted by the anterior pituitary gland. Variation affecting the production, release and functional activity of GH leads to growth hormone deficiency (GHD), which is of two types: isolated growth hormone deficiency (IGHD) and combined pituitary hormone deficiency (CPHD). IGHD may result from mutations in GH1 and GHRHR while CPHD is associated with defects in transcription factor genes PROP1, POU1F1 and HESX1. The present study reports on the molecular screening of GHRHR and GH1 in IGHD patients. A total of 116 clinically diagnosed IGHD patients and 100 controls were enrolled for the study after taking informed consent. Family history was noted and 5ml blood sample was drawn. Anatomical and/or morphological pituitary gland alterations were studied using magnetic resonance imaging (MRI). DNA from blood samples was processed for screening the GHRHR and GH1 by Sanger sequencing. Mean age at presentation of the 116 patients (67 males and 49 females) was 11.71±3.5years. Mean height standard deviation score (SDS) and weight SDS were -4.5 and -3.5 respectively. Nine (7.8%) were familial and parental consanguinity was present in 21 (19.8%) families. Eighty-three patients underwent MRI and morphological alterations of the pituitary were observed in 39 (46.9%). GH1 and GHRHR screening revealed eleven variations in 24 (21%) patients of which, four were novel deleterious, one novel non-pathogenic and six reported changes. GHRHR contributed more to IGHD in our patients which confirmed that GHRHR should be screened first before GH1 in our population. Identification of GH1 and GHRHR variations helped in defining our mutational spectrum which will play a crucial role in providing predictive and prenatal genetic testing to the patients. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. [Cloning and functional analysis of the cotton Trihelix transcription factor GhGT29].

    PubMed

    Yue, Li; Xiaodong, Liu; Yongmei, Dong; Zongming, Xie; Shouyi, Chen

    2015-12-01

    Trihelix transcription factors are important proteins involved in response to abiotic stresses in plants. Understanding the molecular mechanisms of Trihelix in cottons will lay the foundation to improve stress tolerance by gene engineering. In this study, a gene encoding Trihelix transcription factor was isolated in upland cottons using reverse transcription PCR according to bioinformatic analysis. The gene was named as GhGT29 (GenBank accession No. JQ013097), which was 1 092 bp, contained a 1 089 bp open reading frame and encoded a protein of 363 amino acids with a predicted molecular weight of 40.9 kDa and a isoelectric point of 5.45. SMART analysis showed GhGT29 contained one typical SANT motif. Phylogenetic analysis showed that GhGT29 belonged to the SH4 subfamily of the Trihelix family and was most closely related to AtSH4-like1 and AtSH4-like2. Quantitative real-time PCR (qRT-PCR) analysis revealed that GhGT29 was induced by high salt, drought, cold and abscisic acid. The expression profile also revealed that GhGT29 was constitutively expressed in all tested tissues, such as roots, stems, leaves, flowers, ovules (0 DPA) and fibers (12 DPA). The expression level of GhGT29 was the highest in flowers and the lowest in stems. Using the Arabidopsis protoplasts assay system, we found that the GhGT29 protein was located in cell nuclei and had trans-activation activity. These results revealed that GhGT29 might be involved in the regulation of stress resistance-related genes in stress signaling pathways in upland cottons.

  9. Is growth hormone bad for your heart? Cardiovascular impact of GH deficiency and of acromegaly.

    PubMed

    Lombardi, G; Colao, A; Marzullo, P; Ferone, D; Longobardi, S; Esposito, V; Merola, B

    1997-10-01

    At present, there is growing evidence implicating GH and/or IGF-I in the intricate cascade of events connected with the regulation of heart development and hypertrophy. Moreover, GH excess and/or deficiency have been shown to include in their advanced clinical manifestations almost always an impaired cardiac function, which may reduce life expectancy. This finding is related both to a primitive impairment of heart structure and function and to metabolic changes such as hyperlipidemia, increase of body fat and premature atherosclerosis. Patients with childhood or adulthood-onset GH deficiency have a reduced left ventricular mass and ejection fraction and the indexes of left ventricular systolic function remain markedly depressed during exercise. Conversely, in acromegaly the cardiac enlargement, which is disproportionate to the increase in size of other internal body organs, has been a rather uniform finding. The severity of the acromegalic cardiomyopathy was reported to be correlated better with the disease duration than with circulating GH and/or IGF-I levels. Myocardial hypertrophy with interstitial fibrosis, lymphomononuclear infiltration and areas of monocyte necrosis often results in concentric hypertrophy of both ventricles. The treatment of GH deficiency and excess improved cardiac function. Interestingly, based on the evidence that GH increases cardiac mass, recombinant GH was administered to patients with idiopathic dilated cardiomyopathy. It increased the myocardial mass and reduced the size of the left ventricular chamber, resulting in improvement of hemodynamics, myocardial energy metabolism and clinical status. These promising results open new perspectives for the use of GH in heart failure.

  10. Hb Beograd [beta121(GH4)Glu-->Val, GAA-->GTA] in the Turkish population.

    PubMed

    Atalay, Ayfer; Koyuncu, Hasan; Köseler, Aylin; Ozkan, Anzel; Atalay, Erol O

    2007-01-01

    Hb Beograd [beta121(GH4)Glu-->Val, GAA-->GTA] is a rare variant first reported in Yugoslavia and then in Turkey, Australia and New Zealand. We report two further unrelated cases from Turkey. The importance of identifying Hb Beograd at the molecular level, especially in regions where Hb D-Los Angeles [beta121(GH4)Glu-->Gln, GAA-->CAA] is prevalent, is emphasized.

  11. Significant increase of IGF-I concentration and of IGF-I/IGFBP-3 molar ratio in generation test predicts the good response to growth hormone (GH) therapy in children with short stature and normal results of GH stimulating tests.

    PubMed

    Smyczynska, Joanna; Hilczer, Maciej; Stawerska, Renata; Lewinski, Andrzej

    2013-01-01

    Insulin-like growth factor-I (IGF-I) generation test has been introduced for the assessment of growth hormone (GH) sensitivity, however, its significance in predicting growth response to GH therapy has also been brought up. The molar ratio of IGF-I to its binding protein-3 (IGFBP-3) determines IGF-I bioavailability. Evaluation of usefulness of IGF-I and IGFBP-3 generation test in predicting the effectiveness of rhGH therapy in children with short stature. The analysis comprised 60 children with short stature, normal results of GH stimulating tests but decreased IGF-I secretion. In all the patients, GH insensitivity was excluded on the basis of IGF-I and IGFBP-3 generation test. Next, GH therapy was administered and height velocity (HV), together with IGF-I and IGFBP-3 secretion, was assessed every year, during 3 years. The comparative group consisted of 30 children with partial GH deficiency (pGHD). Both IGF-I secretion and IGF-I/IGFBP-3 molar ratio increased significantly during generation test (p<0.05) and - further - during GH therapy (however insignificantly), together with at least doubling of pretreatment HV. There was no significant difference between the studied group of patients and children with pGHD. Significant increase of IGF-I in generation test speaks for GH therapy effectiveness in short children, despite normal results of GH stimulating tests.

  12. Growth hormone (GH) secretory dynamics in a case of acromegalic gigantism associated with hyperprolactinemia: nonpulsatile secretion of GH may induce elevated insulin-like growth factor-I (IGF-I) and IGF-binding protein-3 levels.

    PubMed

    Yoshida, T; Shimatsu, A; Sakane, N; Hizuka, N; Horikawa, R; Tanaka, T

    1996-01-01

    We describe a case of pituitary gigantism with low levels of growth hormone (GH), elevated insulin-like growth factor-I (IGF-I), and IGF-binding protein-3 (IGF-BP-3). The patient had characteristic clinical features of gigantism and acromegaly. The basal serum GH levels ranged from 1.2-1.9 micrograms/L, which were considered to be within normal limits. Serum GH response to either insulin-induced hypoglycemia or GH-releasing hormone was blunted. Frequent blood samplings during daytime and at night showed nonpulsatile GH secretion. Serum prolactin, IGF-I and IGF-binding protein-3 levels were elevated. After unsuccessful surgery, bromocryptine treatment normalized serum prolactin without affecting serum GH and IGF-I levels. Combined administration of octreotide and bromocryptine reduced serum GH and IGF-I levels. GH bioactivity as measured by Nb2 cell proliferation assay was within reference range. In the present case, nonpulsatile GH secretion and enhanced tissue sensitivity to GH may induce hypersecretion of IGF-I and IGF-BP-3 and cause clinical acromegalic gigantism.

  13. GhWRKY68 reduces resistance to salt and drought in transgenic Nicotiana benthamiana.

    PubMed

    Jia, Haihong; Wang, Chen; Wang, Fang; Liu, Shuchang; Li, Guilin; Guo, Xingqi

    2015-01-01

    The WRKY transcription factors modulate numerous physiological processes, including plant growth, development and responses to various environmental stresses. Currently, our understanding of the functions of the majority of the WRKY family members and their possible roles in signalling crosstalk is limited. In particular, very few WRKYs have been identified and characterised from an economically important crop, cotton. In this study, we characterised a novel group IIc WRKY gene, GhWRKY68, which is induced by different abiotic stresses and multiple defence-related signalling molecules. The β-glucuronidase activity driven by the GhWRKY68 promoter was enhanced after exposure to drought, salt, abscisic acid (ABA) and H2O2. The overexpression of GhWRKY68 in Nicotiana benthamiana reduced resistance to drought and salt and affected several physiological indices. GhWRKY68 may mediate salt and drought responses by modulating ABA content and enhancing the transcript levels of ABA-responsive genes. GhWRKY68-overexpressing plants exhibited reduced tolerance to oxidative stress after drought and salt stress treatments, which correlated with the accumulation of reactive oxygen species (ROS), reduced enzyme activities, elevated malondialdehyde (MDA) content and altered ROS-related gene expression. These results indicate that GhWRKY68 is a transcription factor that responds to drought and salt stresses by regulating ABA signalling and modulating cellular ROS.

  14. Dwarfism and increased adiposity in the gh1 mutant zebrafish vizzini.

    PubMed

    McMenamin, Sarah K; Minchin, James E N; Gordon, Tiffany N; Rawls, John F; Parichy, David M

    2013-04-01

    Somatic growth and adipogenesis are closely associated with the development of obesity in humans. In this study, we identify a zebrafish mutant, vizzini, that exhibits both a severe defect in somatic growth and increased accumulation of adipose tissue. Positional cloning of vizzini revealed a premature stop codon in gh1. Although the effects of GH are largely through igfs in mammals, we found no decrease in the expression of igf transcripts in gh1 mutants during larval development. As development progressed, however, we found overall growth to be progressively retarded and the attainment of specific developmental stages to occur at abnormally small body sizes relative to wild type. Moreover, both subcutaneous (sc) and visceral adipose tissues underwent precocious development in vizzini mutants, and at maturity, the sizes of different fat deposits were greatly expanded relative to wild type. In vivo confocal imaging of sc adipose tissue (SAT) expansion revealed that vizzini mutants exhibit extreme enlargement of adipocyte lipid droplets without a corresponding increase in lipid droplet number. These findings suggest that GH1 signaling restricts SAT hypertrophy in zebrafish. Finally, nutrient deprivation of vizzini mutants revealed that SAT mobilization was greatly diminished during caloric restriction, further implicating GH1 signaling in adipose tissue homeostasis. Overall, the zebrafish gh1 mutant, vizzini, exhibits decreased somatic growth, increased adipose tissue accumulation, and disrupted adipose plasticity after nutrient deprivation and represents a novel model to investigate the in vivo dynamics of vertebrate obesity.

  15. A Phylogenetically Informed Comparison of GH1 Hydrolases between Arabidopsis and Rice Response to Stressors

    PubMed Central

    Cao, Yun-Ying; Yang, Jing-Fang; Liu, Tie-Yuan; Su, Zhen-Feng; Zhu, Fu-Yuan; Chen, Mo-Xian; Fan, Tao; Ye, Neng-Hui; Feng, Zhen; Wang, Ling-Juan; Hao, Ge-Fei; Zhang, Jianhua; Liu, Ying-Gao

    2017-01-01

    Glycoside hydrolases Family 1 (GH1) comprises enzymes that can hydrolyze β-O-glycosidic bond from a carbohydrate moiety. The plant GH1 hydrolases participate in a number of developmental processes and stress responses, including cell wall modification, plant hormone activation or deactivation and herbivore resistance. A large number of members has been observed in this family, suggesting their potential redundant functions in various biological processes. In this study, we have used 304 sequences of plant GH1 hydrolases to study the evolution of this gene family in plant lineage. Gene duplication was found to be a common phenomenon in this gene family. Although many members of GH1 hydrolases showed a high degree of similarity in Arabidopsis and rice, they showed substantial tissue specificity and differential responses to various stress treatments. This differential regulation implies each enzyme may play a distinct role in plants. Furthermore, some of salt-responsive Arabidopsis GH1 hydrolases were selected to test their genetic involvement in salt responses. The knockout mutants of AtBGLU1 and AtBGLU19 were observed to be less-sensitive during NaCl treatment in comparison to the wild type seedlings, indicating their participation in salt stress response. In summary, Arabidopsis and rice GH1 glycoside hydrolases showed distinct features in their evolutionary path, transcriptional regulation and genetic functions. PMID:28392792

  16. Identification and characterization of the GhHsp20 gene family in Gossypium hirsutum

    PubMed Central

    Ma, Wei; Zhao, Ting; Li, Jie; Liu, Bingliang; Fang, Lei; Hu, Yan; Zhang, Tianzhen

    2016-01-01

    In higher plants, Heat Shock Protein 20 (Hsp20) plays crucial roles in growth, development and responses to abiotic stresses. In this study, 94 GhHsp20 genes were identified in G. hirsutum, and these genes were phylogenetically clustered into 14 subfamilies. Out of these, 73 paralogous gene pairs remained in conserved positions on segmental duplicated blocks and only 14 genes clustered into seven tandem duplication event regions. Transcriptome analysis showed that 82 GhHsp20 genes were expressed in at least one tested tissues, indicating that the GhHsp20 genes were involved in physiological and developmental processes of cotton. Further, expression profiles under abiotic stress exhibited that two-thirds of the GhHsp20 genes were responsive to heat stress, while 15 genes were induced by multiple stresses. In addition, qRT-PCR confirmed that 16 GhHsp20 genes were hot-induced, and eight genes were up-regulated under multiple abiotic stresses and stress-related phytohormone treatments. Taken together, our results presented here would be helpful in laying the foundation for understanding the complex mechanisms of GhHsp20 mediated developmental processes and abiotic stress signaling transduction pathways in cotton. PMID:27580529

  17. A botulinum toxin–derived targeted secretion inhibitor downregulates the GH/IGF1 axis

    PubMed Central

    Somm, Emmanuel; Bonnet, Nicolas; Martinez, Alberto; Marks, Philip M.H.; Cadd, Verity A.; Elliott, Mark; Toulotte, Audrey; Ferrari, Serge L.; Rizzoli, René; Hüppi, Petra S.; Harper, Elaine; Melmed, Shlomo; Jones, Richard; Aubert, Michel L.

    2012-01-01

    Botulinum neurotoxins (BoNTs) are zinc endopeptidases that block release of the neurotransmitter acetylcholine in neuromuscular synapses through cleavage of soluble N-ethylmaleimide-sensitive fusion (NSF) attachment protein receptor (SNARE) proteins, which promote fusion of synaptic vesicles to the plasma membrane. We designed and tested a BoNT-derived targeted secretion inhibitor (TSI) targeting pituitary somatotroph cells to suppress growth hormone (GH) secretion and treat acromegaly. This recombinant protein, called SXN101742, contains a modified GH-releasing hormone (GHRH) domain and the endopeptidase domain of botulinum toxin serotype D (GHRH-LHN/D, where HN/D indicates endopeptidase and translocation domain type D). In vitro, SXN101742 targeted the GHRH receptor and depleted a SNARE protein involved in GH exocytosis, vesicle-associated membrane protein 2 (VAMP2). In vivo, administering SXN101742 to growing rats produced a dose-dependent inhibition of GH synthesis, storage, and secretion. Consequently, hepatic IGF1 production and resultant circulating IGF1 levels were reduced. Accordingly, body weight, body length, organ weight, and bone mass acquisition were all decreased, reflecting the biological impact of SXN101742 on the GH/IGF1 axis. An inactivating 2–amino acid substitution within the zinc coordination site of the endopeptidase domain completely abolished SXN101742 inhibitory actions on GH and IGF1. Thus, genetically reengineered BoNTs can be targeted to nonneural cells to selectively inhibit hormone secretion, representing a new approach to treating hormonal excess. PMID:22850878

  18. GH response to intravenous clonidine challenge correlates with history of childhood trauma in personality disorder.

    PubMed

    Lee, Royce J; Fanning, Jennifer R; Coccaro, Emil F

    2016-05-01

    Childhood trauma is a risk factor for personality disorder. We have previously shown that childhood trauma is associated with increased central corticotrophin-releasing hormone concentration in adults with personality disorder. In the brain, the release of corticotrophin-releasing hormone can be stimulated by noradrenergic neuronal activity, raising the possibility that childhood trauma may affect the hypothalamic-pituitary adrenal (HPA) axis by altering brain noradrenergic function. In this study, we sought to test the hypothesis that childhood trauma is associated with blunted growth hormone response to the α-2 adrenergic autoreceptor agonist clonidine. All subjects provided written informed consent. Twenty personality disordered and twenty healthy controls (without personality disorder or Axis I psychopathology) underwent challenge with clonidine, while plasma Growth Hormone (GH) concentration was monitored by intravenous catheter. On a different study session, subjects completed the Childhood Trauma Questionnaire and underwent diagnostic interviews. Contrary to our a priori hypothesis, childhood trauma was associated with enhanced GH response to clonidine. This positive relationship was present in the group of 40 subjects and in the subgroup 20 personality disordered subjects, but was not detected in the healthy control subjects when analyzed separately. The presence of personality disorder was unrelated to the magnitude of GH response. Childhood trauma is positively correlated with GH response to clonidine challenge in adults with personality disorder. Enhanced rather that blunted GH response differentiates childhood trauma from previously identified negative predictors of GH response, such as anxiety or mood disorder. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Development of a Transnasal Delivery System for Recombinant Human Growth Hormone (rhGH): Effects of the Concentration and Molecular Weight of Poly-L-arginine on the Nasal Absorption of rhGH in Rats.

    PubMed

    Kawashima, Ryo; Uchida, Masaki; Yamaki, Tsutomu; Ohtake, Kazuo; Hatanaka, Tomomi; Uchida, Hiroyuki; Ueda, Hideo; Kobayashi, Jun; Morimoto, Yasunori; Natsume, Hideshi

    2016-01-01

    A novel system for delivering recombinant human growth hormone (rhGH) that is noninvasive and has a simple method of administration is strongly desired to improve the compliance of children. The aim of this study was to investigate the potential for the intranasal (i.n.) co-administration of rhGH with poly-L-arginine (PLA) as a novel delivery system by evaluating the effects of the concentration and molecular weight of PLA on the nasal absorption of rhGH. The influence of the formation of insoluble aggregates and a soluble complex in the dosage formulation on nasal rhGH absorption was also evaluated by size-exclusion chromatography and ultrafiltration. PLA enhanced the nasal absorption of rhGH at each concentration and molecular weight examined. Nasal rhGH absorption increased dramatically when the PLA concentration was 1.0 % (w/v) due to the improved solubility of rhGH in the formulation. A delay in rhGH absorption was observed when the molecular weight of PLA was increased. This appeared to be because the increase in molecular weight caused the formation of a soluble complex. It seems that the PLA concentration affects the absorption-enhancing effect on rhGH, while the molecular weight of PLA affects the time when the maximum plasma rhGH concentration was reached (Tmax) of rhGH after i.n. administration, mainly because of the interactions among rhGH, PLA, and additives. Therefore, the transnasal rhGH delivery system using PLA is considered to be a promising alternative to subcutaneous (s.c.) injection if these interactions are sufficiently controlled.

  20. GH responses to GHRH and GHRP-6 in Streptozotocin (STZ)-diabetic rats.

    PubMed

    Diz Chaves, Yolanda; Spuch Calvar, Carlos; Pérez Tilve, Diégo; Mallo Ferrer, Federico

    2003-11-14

    GH responses to GHRH, the physiologic hypothalamic stimulus, and GHRP-6, a synthetic hexapeptide that binds the Ghrelin receptor, were studied in rats treated with streptozotocin (STZ), an experimental model of diabetes. Sprague-Dawley male rats received a single injection either of STZ (70 mg/Kg in 0.01 M SSC, i.p.) or of the vehicle (0.01 M SSC). GH responses were challenged with two different doses of GHRH (1 and 10 microg/kg) or GHRP-6 (3 and 30 microg/kg) and with a combination of both at low (1 + 3 microg/kg) or high (10 + 30 microg/kg) doses, respectively. We observed a dose-dependent effect for GH responses to GHRH both in STZ-treated rats and in controls. However, we could not find significant differences between STZ-rats and controls. GH responses to GHRP-6 occurred in a dose-dependent manner in STZ-rats, but not in controls. GH responses to GHRP-6 in both groups were clearly lower than those elicited by GHRH. GH responses to 30 microg/Kg of GHRP-6 were significantly greater in STZ-rats than in controls (AUC: 3549.9 +/- 1001.4 vs. 2046.4 +/- 711.7; p<0.05). The combined administration of GHRH plus GHRP-6 was the most potent stimuli for GH in both groups. The administration of doses in the lower range (1 + 3 microg/Kg, GHRH + GHRP-6 respectively) induced a great peak of GH in STZ-rats and in control rats, revealing a synergistic effect of GHRH and GHRP-6 in both groups. When the higher doses were administered (10 + 30 microg/kg), GH levels in time 5, and AUC were significantly higher in control rats. In addition, a negative correlation between WT (weight tendency) values and GH responses, represented as AUC, could be established in STZ-rats (r2=-0.566, p=0.004 for GHRH; r2=-0.412, p=0.028 for GHRP-6). Thus, the more negative the values of WT were, the more severe the metabolic alteration and, therefore, the higher the GH response to GHRH and GHRHP-6. In conclusion, our results do not support the existence of a functional hypothalamic hypertone of SS in

  1. Optimization of a GO2/GH2 Impinging Injector Element

    NASA Technical Reports Server (NTRS)

    Tucker, P. Kevin; Shyy, Wei; Vaidyanathan, Rajkumar

    2001-01-01

    An injector optimization methodology, method i, is used to investigate optimal design points for a gaseous oxygen/gaseous hydrogen (GO2/GH2) impinging injector element. The unlike impinging element, a fuel-oxidizer- fuel (F-O-F) triplet, is optimized in terms of design variables such as fuel pressure drop, (Delta)P(sub f), oxidizer pressure drop, (Delta)P(sub o), combustor length, L(sub comb), and impingement half-angle, alpha, for a given mixture ratio and chamber pressure. Dependent variables such as energy release efficiency, ERE, wall heat flux, Q(sub w), injector heat flux, Q(sub inj), relative combustor weight, W(sub rel), and relative injector cost, C(sub rel), are calculated and then correlated with the design variables. An empirical design methodology is used to generate these responses for 163 combinations of input variables. Method i is then used to generate response surfaces for each dependent variable. Desirability functions based on dependent variable constraints are created and used to facilitate development of composite response surfaces representing some, or all, of the five dependent variables in terms of the input variables. Three examples illustrating the utility and flexibility of method i are discussed in detail. First, joint response surfaces are constructed by sequentially adding dependent variables. Optimum designs are identified after addition of each variable and the effect each variable has on the design is shown. This stepwise demonstration also highlights the importance of including variables such as weight and cost early in the design process. Secondly, using the composite response surface which includes all five dependent variables, unequal weights are assigned to emphasize certain variables relative to others. Here, method i is used to enable objective trade studies on design issues such as component life and thrust to weight ratio. Finally, specific variable weights are further increased to illustrate the high marginal cost of

  2. Glycoside Hydrolase (GH) 45 and 5 Candidate Cellulases in Aphelenchoides besseyi Isolated from Bird’s-Nest Fern

    PubMed Central

    Tsay, Tung-Tsuan; Tsai, Isheng J.; Chen, Peichen J.

    2016-01-01

    Five Aphelenchoides besseyi isolates collected from bird’s-nest ferns or rice possess different parasitic capacities in bird’s-nest fern. Two different glycoside hydrolase (GH) 45 genes were identified in the fern isolates, and only one was found in the rice isolates. A Abe GH5-1 gene containing an SCP-like family domain was found only in the fern isolates. Abe GH5-1 gene has five introns suggesting a eukaryotic origin. A maximum likelihood phylogeny revealed that Abe GH5-1 is part of the nematode monophyletic group that can be clearly distinguished from those of other eukaryotic and bacterial GH5 sequences with high bootstrap support values. The fern A. besseyi isolates were the first parasitic plant nematode found to possess both GH5 and GH45 genes. Surveying the genome of the five A. besseyi isolates by Southern blotting using an 834 bp probe targeting the GH5 domain suggests the presence of at least two copies in the fern-origin isolates but none in the rice-origin isolates. The in situ hybridization shows that the Abe GH5-1 gene is expressed in the nematode ovary and testis. Our study provides insights into the diversity of GH in isolates of plant parasitic nematodes of different host origins. PMID:27391812

  3. Glycoside Hydrolase (GH) 45 and 5 Candidate Cellulases in Aphelenchoides besseyi Isolated from Bird's-Nest Fern.

    PubMed

    Wu, Guan-Long; Kuo, Tzu-Hao; Tsay, Tung-Tsuan; Tsai, Isheng J; Chen, Peichen J

    2016-01-01

    Five Aphelenchoides besseyi isolates collected from bird's-nest ferns or rice possess different parasitic capacities in bird's-nest fern. Two different glycoside hydrolase (GH) 45 genes were identified in the fern isolates, and only one was found in the rice isolates. A Abe GH5-1 gene containing an SCP-like family domain was found only in the fern isolates. Abe GH5-1 gene has five introns suggesting a eukaryotic origin. A maximum likelihood phylogeny revealed that Abe GH5-1 is part of the nematode monophyletic group that can be clearly distinguished from those of other eukaryotic and bacterial GH5 sequences with high bootstrap support values. The fern A. besseyi isolates were the first parasitic plant nematode found to possess both GH5 and GH45 genes. Surveying the genome of the five A. besseyi isolates by Southern blotting using an 834 bp probe targeting the GH5 domain suggests the presence of at least two copies in the fern-origin isolates but none in the rice-origin isolates. The in situ hybridization shows that the Abe GH5-1 gene is expressed in the nematode ovary and testis. Our study provides insights into the diversity of GH in isolates of plant parasitic nematodes of different host origins.

  4. Growth hormone (GH) is a survival rather than a proliferative factor for embryonic striatal neural precursor cells.

    PubMed

    Regalado-Santiago, Citlalli; López-Meraz, María Leonor; Santiago-García, Juan; Fernández-Pomares, Cynthia; Juárez-Aguilar, Enrique

    2013-10-01

    A possible role of GH during central nervous system (CNS) development has been suggested by the presence of this hormone and its receptor in brain areas before its production by the pituitary gland. Although several effects have been reported for GH, the specific role of this hormone during CNS development remains unclear. Here, we examined the effect of GH on proliferation, survival and neurosphere formation in primary cultures of striatal tissue from 14-day-old (E14) mouse embryos. GH receptor gene expression was confirmed by RT-PCR. Primary cultures of embryonic striatal cells were treated with different doses of GH in serum free media, then the number of neurospheres was determined. To examine the GH effect on proliferation and survival of the striatal primary cultures, bromodeoxyuridine (BrdU) and TUNEL immunoreactivity was conducted. In the presence of the epidermal growth factor (EGF), GH increased the formation of neurospheres, with a maximal response at 10 ng/ml, higher doses were inhibitory. In absence of EGF, GH failed to stimulate neurosphere formation. Proliferation rate in the primary striatal cultures was inhibited by 24 or 48 h incubation with GH. However, in the absence of EGF, GH increased BrdU incorporation. GH treatment decreases the rate of apoptosis of nestin and GFAP positive cells in the primary striatal cultures, enhancing neurosphere formation. Our in vitro data demonstrate that GH plays a survival role on the original population of embryonic striatal cells, improving Neural Precursor Cells (NPCs) expansion. We suggest that this GH action could be predominant during striatal neurodevelopment. © 2013.

  5. Immunocytochemical study of the GH cells in the anterior pituitary gland of human fetus II. Anencephalic fetus.

    PubMed

    Tachibana, Toshiaki; Ito, Takayasu

    2003-12-01

    In order to elucidate the effects of hypothalamic regulation on the morphology of GH cells, light and electron microscopic immunocytochemical examinations were carried out comparing GH cells in the anterior pituitary gland of anencephalic fetus with those of normal fetuses. Three types of GH cells were identified in the anterior pituitary gland of anencephalic fetus as well as in the normal fetus. Type-I is a small, round cell containing a few small secretory granules. Type-III is a large, polygonal cell with numerous large secretory granules. Type-II is a polygonal cell with medium-sized secretory granules. The Type-II GH cell was predominant in both anencephalic and normal fetuses. The most striking difference between anencephalic and normal fetuses was the presence of atypical forms of the Type II cell. These were polygonal cells containing secretory granules, which were either immunopositive or immunonegative to anti-human GH (anti-hGH) serum. Furthermore, two other types of GH cells were identified. The somatomammotroph (SM cell) contained GH and PRL in different granules within the same cell. Also, a different type of the GH cell was noted containing two varieties of secretory granules; one was immunolabeled only with anti-hGH and the other was not immunolabeled to either anti-hGH or anti-human PRL (anti-hPRL). From these results, we suggest that an absence of hypothalamic regulation in the anencehpalic does not seriously modify GH cell morphology but induces an altered GH storage pattern in some of the cells.

  6. Macimorelin (AEZS-130)-stimulated growth hormone (GH) test: validation of a novel oral stimulation test for the diagnosis of adult GH deficiency.

    PubMed

    Garcia, J M; Swerdloff, R; Wang, C; Kyle, M; Kipnes, M; Biller, B M K; Cook, D; Yuen, K C J; Bonert, V; Dobs, A; Molitch, M E; Merriam, G R

    2013-06-01

    In the absence of panhypopituitarism and low serum IGF-I levels, the diagnosis of adult GH deficiency (AGHD) requires confirmation with a GH stimulation test. Macimorelin is a novel, orally active ghrelin mimetic that stimulates GH secretion. The objective of the study was to determine the diagnostic efficacy and safety of macimorelin in AGHD. This was a multicenter open-label study comparing the diagnostic accuracy of oral macimorelin with that of arginine+GHRH in AGHD patients and healthy, matched controls. After 43 AGHD patients and 10 controls were tested, the GHRH analog Geref Diagnostic [GHRH(1-29)NH2] became unavailable in the United States. The study was completed by testing 10 additional AGHD patients and 38 controls with macimorelin alone. Peak GH area under the receiver operating characteristic curve after macimorelin was measured. Fifty AGHD subjects and 48 controls were evaluated. Peak GH levels in AGHD patients and controls after macimorelin were 2.36 ± 5.69 and 17.71 ± 19.11 ng/mL, respectively (P < .0001). With macimorelin, the receiver operating characteristic analysis yielded an optimal GH cut point of 2.7 ng/mL, with 82% sensitivity, 92% specificity, and 13% misclassification rate. For subjects receiving both tests, macimorelin showed discrimination comparable with arginine+GHRH (area under the receiver operating characteristic curve 0.99 vs 0.94, respectively, P = .29). Obesity (body mass index > 30 kg/m(2)) was present in 58% of subjects, and peak GH levels were inversely associated with body mass index in controls (r = -0.37, P = .01). Using the separate cut points of 6.8 ng/mL for nonobese and 2.7 for obese subjects reduced the misclassification rate to 11%. Only 1 drug-related serious adverse event, an asymptomatic QT interval prolongation on the electrocardiogram, was reported. Oral macimorelin is safe, convenient, and effective in diagnosing AGHD with accuracy comparable with the arginine+GHRH test.

  7. Macimorelin (AEZS-130)-Stimulated Growth Hormone (GH) Test: Validation of a Novel Oral Stimulation Test for the Diagnosis of Adult GH Deficiency

    PubMed Central

    Swerdloff, R.; Wang, C.; Kyle, M.; Kipnes, M.; Biller, B. M. K.; Cook, D.; Yuen, K. C. J.; Bonert, V.; Dobs, A.; Molitch, M. E.; Merriam, G. R.

    2013-01-01

    Context: In the absence of panhypopituitarism and low serum IGF-I levels, the diagnosis of adult GH deficiency (AGHD) requires confirmation with a GH stimulation test. Macimorelin is a novel, orally active ghrelin mimetic that stimulates GH secretion. Objective: The objective of the study was to determine the diagnostic efficacy and safety of macimorelin in AGHD. Design: This was a multicenter open-label study comparing the diagnostic accuracy of oral macimorelin with that of arginine+GHRH in AGHD patients and healthy, matched controls. After 43 AGHD patients and 10 controls were tested, the GHRH analog Geref Diagnostic [GHRH(1–29)NH2] became unavailable in the United States. The study was completed by testing 10 additional AGHD patients and 38 controls with macimorelin alone. Main Outcome Measure: Peak GH area under the receiver operating characteristic curve after macimorelin was measured. Results: Fifty AGHD subjects and 48 controls were evaluated. Peak GH levels in AGHD patients and controls after macimorelin were 2.36 ± 5.69 and 17.71 ± 19.11 ng/mL, respectively (P < .0001). With macimorelin, the receiver operating characteristic analysis yielded an optimal GH cut point of 2.7 ng/mL, with 82% sensitivity, 92% specificity, and 13% misclassification rate. For subjects receiving both tests, macimorelin showed discrimination comparable with arginine+GHRH (area under the receiver operating characteristic curve 0.99 vs 0.94, respectively, P = .29). Obesity (body mass index > 30 kg/m2) was present in 58% of subjects, and peak GH levels were inversely associated with body mass index in controls (r = −0.37, P = .01). Using the separate cut points of 6.8 ng/mL for nonobese and 2.7 for obese subjects reduced the misclassification rate to 11%. Only 1 drug-related serious adverse event, an asymptomatic QT interval prolongation on the electrocardiogram, was reported. Conclusion: Oral macimorelin is safe, convenient, and effective in diagnosing AGHD with accuracy

  8. Growth Hormone Mediates Its Protective Effect in Hepatic Apoptosis through Hnf6

    PubMed Central

    Wang, Kewei; Wang, Minhua; Gannon, Maureen

    2016-01-01

    Background and Aims Growth hormone (GH) not only supports hepatic metabolism but also protects against hepatocyte cell death. Hnf6 (or Oc1) belonging to the Onecut family of hepatocyte transcription factors known to regulate differentiated hepatic function, is a GH-responsive gene. We evaluate if GH mediates Hnf6 activity to attenuate hepatic apoptotic injury. Methods We used an animal model of hepatic apoptosis by bile duct ligation (BDL) with Hnf6 -/- (KO) mice in which hepatic Hnf6 was conditionally inactivated. GH was administered to adult wild type WT and KO mice for the 7 days of BDL to enhance Hnf6 expression. In vitro, primary hepatocytes derived from KO and WT liver were treated with LPS and hepatocyte apoptosis was assessed with and without GH treatment. Results In WT mice, GH treatment enhanced Hnf6 expression during BDL, inhibited Caspase -3, -8 and -9 responses and diminished hepatic apoptotic and fibrotic injury. GH-mediated upregulation of Hnf6 expression and parallel suppression of apoptosis and fibrosis in WT BDL liver were abrogated in KO mice. LPS activated apoptosis and suppressed Hnf6 expression in primary hepatocytes. GH/LPS co-treatment enhanced Hnf6 expression with corresponding attenuation of apoptosis in WT-derived hepatocytes, but not in KO hepatocytes. ChiP-on-ChiP and electromobility shift assays of KO and WT liver nuclear extracts identified Ciap1 (or Birc2) as an Hnf6-bound target gene. Ciap1 expression patterns closely follow Hnf6 expression in the liver and in hepatocytes. Conclusion GH broad protective actions on hepatocytes during liver injury are effected through Hnf6, with Hnf6 transcriptional activation of Ciap1 as an underlying molecular mediator. PMID:27936029

  9. Growth responses following a single intra-muscular hGH plasmid administration compared to daily injections of hGH in dwarf mice.

    PubMed

    Higuti, Eliza; Cecchi, Claudia R; Oliveira, Nelio A J; Vieira, Daniel P; Jensen, Thomas G; Jorge, Alexander A L; Bartolini, Paolo; Peroni, Cibele N

    2012-12-01

    In previous work, sustained levels of circulating human growth hormone (hGH) and a highly significant weight increase were observed after electrotransfer of naked plasmid DNA (hGH-DNA) into the muscle of immunodeficient dwarf mice (lit/scid). In the present study, the efficacy of this in vivo gene therapy strategy is compared to daily injections (5 μg/twice a day) of recombinant hGH (r-hGH) protein, as assessed on the basis of several growth parameters. The slopes of the two growth curves were found to be similar (P > 0.05): 0.095 g/mouse/d for protein and 0.094 g/mouse/d for DNA injection. In contrast, the weight increases averaged 35.5% (P < 0.001) and 23.1% (P < 0.01) for protein and DNA administration, respectively, a difference possibly related to the electroporation methodology. The nose-to-tail linear growth increases were 15% and 9.6% for the protein and DNA treatments, respectively, but mouse insulin-like growth factor I (mIGF-I) showed a greater increase over the control with DNA (5- to 7-fold) than with protein (3- to 4-fold) administration. The weight increases of several organs and tissues (kidneys, spleen, liver, heart, quadriceps and gastrocnemius muscles) were 1.3- to 4.6-fold greater for protein than for DNA administration, which gave a generally more proportional growth. Glucose levels were apparently unaffected, suggesting the absence of effects on glucose tolerance. A gene transfer strategy based on a single hGH-DNA administration thus appears to be comparable to repeated hormone injections for promoting growth and may represent a feasible alternative for the treatment of growth hormone deficiency.

  10. Short-Term, Low-Dose GH Therapy Improves Insulin Sensitivity Without Modifying Cortisol Metabolism and Ectopic Fat Accumulation in Adults With GH Deficiency

    PubMed Central

    Roberts, Charles T.; Frystyk, Jan; Rooney, William D.; Pollaro, James R.; Klopfenstein, Bethany J.; Purnell, Jonathan Q.

    2014-01-01

    Context: Low-dose GH (LGH) therapy has been reported to improve insulin sensitivity in GH-deficient adults; however, the mechanism is unclear. Hypothesis: Effects of LGH therapy on insulin sensitivity are mediated through changes in cortisol metabolism and ectopic fat accumulation. Design and Setting: This was a double-blind, placebo-controlled, parallel, 3-month study. Participants and Intervention: Seventeen GH-deficient adults were randomized to receive either daily LGH or placebo injections. Fasting blood samples were collected at baseline, and months 1 and 3, whereas hyperinsulinemic-euglycemic clamps, magnetic resonance spectroscopy scans, 24-hour cortisol production rates (CPRs), and sc abdominal fat biopsies were performed at baseline and month 3. Main Outcome Measures: Clamp glucose infusion rate, intramyocellular, extramyocellular, and intrahepatic lipid content, 24-hour CPRs, adipocyte size, and adipocyte 11β-hydroxysteroid dehydrogenase activity in adults with GH deficiency were evaluated. Results: At month 1, LGH did not alter fasting levels of glucose, insulin, C-peptide, free fatty acid, adiponectin, total IGF-1, IGF-1 bioactivity, IGF-2, IGF binding protein (IGFBP)-2, or IGF-1 to IGFBP-3 molar ratio. At month 3, LGH increased clamp glucose infusion rates (P < .01) and IGF-1 to IGFBP-3 molar ratio (P < .05), but fasting glucose, insulin, C-peptide, free fatty acid, adiponectin, IGF-1 bioactivity, IGF-2, IGFBP-2, 24-hour CPRs, adipocyte size, adipocyte 11β-hydroxysteroid dehydrogenase activity, intrahepatic lipid, extramyocellular, or intramyocellular were unchanged. In the placebo group, all within-group parameters from months 1 and 3 compared with baseline were unchanged. Conclusions: Short-term LGH therapy improves insulin sensitivity without inducing basal lipolysis and had no effect on cortisol metabolism and ectopic fat accumulation in GH-deficient adults. This may reflect an LGH-induced increase in IGF-1 to IGFBP-3 molar ratio exerting

  11. Growth Hormone (GH) and Rehabilitation Promoted Distal Innervation in a Child Affected by Caudal Regression Syndrome.

    PubMed

    Devesa, Jesús; Alonso, Alba; López, Natalia; García, José; Puell, Carlos I; Pablos, Tamara; Devesa, Pablo

    2017-01-23

    Caudal regression syndrome (CRS) is a malformation occurring during the fetal period and mainly characterized by an incomplete development of the spinal cord (SC), which is often accompanied by other developmental anomalies. We studied a 9-month old child with CRS who presented interruption of the SC at the L2-L3 level, sacral agenesis, a lack of innervation of the inferior limbs (flaccid paraplegia), and neurogenic bladder and bowel. Given the known positive effects of growth hormone (GH) on neural stem cells (NSCs), we treated him with GH and rehabilitation, trying to induce recovery from the aforementioned sequelae. The Gross Motor Function Test (GMFM)-88 test score was 12.31%. After a blood analysis, GH treatment (0.3 mg/day, 5 days/week, during 3 months and then 15 days without GH) and rehabilitation commenced. This protocol was followed for 5 years, the last GH dose being 1 mg/day. Blood analysis and physical exams were performed every 3 months initially and then every 6 months. Six months after commencing the treatment the GMFM-88 score increased to 39.48%. Responses to sensitive stimuli appeared in most of the territories explored; 18 months later sensitive innervation was complete and the patient moved all muscles over the knees and controlled his sphincters. Three years later he began to walk with crutches, there was plantar flexion, and the GMFM-88 score was 78.48%. In summary, GH plus rehabilitation may be useful for innervating distal areas below the level of the incomplete spinal cord in CRS. It is likely that GH acted on the ependymal SC NSCs, as the hormone does in the neurogenic niches of the brain, and rehabilitation helped to achieve practically full functionality.

  12. Detection of doping with rhGH: excretion study with WADA-approved kits.

    PubMed

    Jing, Jing; Yang, Sheng; Zhou, Xinmiao; He, Chunji; Zhang, Lisi; Xu, Youxuan; Xie, Minhao; Yan, Yi; Su, Hao; Wu, Moutian

    2011-01-01

    The detection of recombinant human growth hormone (rhGH) doping using the World Anti-Doping Agency (WADA) approved kits is reported in this research. Twenty-five young male students were selected and divided randomly into two groups with six belonging to the placebo and nineteen to the administration group. Thirteen volunteers in one group were administered with a Chinese preparation of rhGH while six volunteers included in the other group were given rhGH made in Switzerland. Both preparations were administered at a dose of 0.1 IU/kg body weight, one injection per day for 14 consecutive days. Blood samples were collected using WADA guidelines and all blood samples were analyzed with WADA-approved Kits 1 and 2. The time window for detection of rhGH doping using WADA-approved kits and criteria are discussed. Based on the comparison of the data obtained from this excretion study and from our routine (Chinese population as reference), consideration of the recent WADA criteria for rhGH AAF (Analytical Adverse Findings) is reported statistically. A comparison of data obtained from the two sample groups administered with pharmaceutical preparations, one Chinese rhGH (GenHeal®, S19990019, 1.6 mg (4 IU), Shanghai, China) obtained from prokaryotic cells and the other (Saizen®, S20080036, 1.33 mg (4 IU), Laboratoires Serone S.A., Switzerland) from eukaryotic cells is reported and did not show any significant difference for the detection of doping with rhGH.

  13. Evolution, substrate specificity and subfamily classification of glycoside hydrolase family 5 (GH5)

    PubMed Central

    2012-01-01

    Background The large Glycoside Hydrolase family 5 (GH5) groups together a wide range of enzymes acting on β-linked oligo- and polysaccharides, and glycoconjugates from a large spectrum of organisms. The long and complex evolution of this family of enzymes and its broad sequence diversity limits functional prediction. With the objective of improving the differentiation of enzyme specificities in a knowledge-based context, and to obtain new evolutionary insights, we present here a new, robust subfamily classification of family GH5. Results About 80% of the current sequences were assigned into 51 subfamilies in a global analysis of all publicly available GH5 sequences and associated biochemical data. Examination of subfamilies with catalytically-active members revealed that one third are monospecific (containing a single enzyme activity), although new functions may be discovered with biochemical characterization in the future. Furthermore, twenty subfamilies presently have no characterization whatsoever and many others have only limited structural and biochemical data. Mapping of functional knowledge onto the GH5 phylogenetic tree revealed that the sequence space of this historical and industrially important family is far from well dispersed, highlighting targets in need of further study. The analysis also uncovered a number of GH5 proteins which have lost their catalytic machinery, indicating evolution towards novel functions. Conclusion Overall, the subfamily division of GH5 provides an actively curated resource for large-scale protein sequence annotation for glycogenomics; the subfamily assignments are openly accessible via the Carbohydrate-Active Enzyme database at http://www.cazy.org/GH5.html. PMID:22992189

  14. Effects of sustained exercise on GH-IGFs axis in gilthead sea bream (Sparus aurata).

    PubMed

    Vélez, Emilio J; Azizi, Sheida; Millán-Cubillo, Antonio; Fernández-Borràs, Jaume; Blasco, Josefina; Chan, Shu Jin; Calduch-Giner, Josep A; Pérez-Sánchez, Jaume; Navarro, Isabel; Capilla, Encarnación; Gutiérrez, Joaquim

    2016-02-15

    The endocrine system regulates growth mainly through the growth hormone (GH)/insulin-like growth factors (IGFs) axis and, although exercise promotes growth, little is known about its modulation of these factors. The aim of this work was to characterize the effects of 5 wk of moderate sustained swimming on the GH-IGFs axis in gilthead sea bream fingerlings. Plasma IGF-I/GH ratio and tissue gene expression of total IGF-I and three splice variants, IGF-II, three IGF binding proteins, two GH receptors, two IGF-I receptors, and the downstream molecules were analyzed. Fish under exercise (EX) grew more than control fish (CT), had a higher plasma IGF-I/GH ratio, and showed increased hepatic IGF-I expression (mainly IGF-Ia). Total IGF-I expression levels were similar in the anterior and caudal muscles; however, IGF-Ic expression increased with exercise, suggesting that this splice variant may be the most sensitive to mechanical action. Moreover, IGFBP-5b and IGF-II increased in the anterior and caudal muscles, respectively, supporting enhanced muscle growth. Furthermore, in EX fish, hepatic IGF-IRb was reduced together with both GHRs; GHR-II was also reduced in anterior muscle, while GHR-I showed higher expression in the two muscle regions, indicating tissue-dependent differences and responses to exercise. Exercise also increased gene and protein expression of target of rapamycin (TOR), suggesting enhanced muscle protein synthesis. Altogether, these data demonstrate that moderate sustained activity may be used to increase the plasma IGF-I/GH ratio and to potentiate growth in farmed gilthead sea bream, modulating the gene expression of different members of the GH-IGFs axis (i.e., IGF-Ic, IGF-II, IGFBP-5b, GHR-I, and TOR).

  15. Growth Hormone (GH) and Rehabilitation Promoted Distal Innervation in a Child Affected by Caudal Regression Syndrome

    PubMed Central

    Devesa, Jesús; Alonso, Alba; López, Natalia; García, José; Puell, Carlos I.; Pablos, Tamara; Devesa, Pablo

    2017-01-01

    Caudal regression syndrome (CRS) is a malformation occurring during the fetal period and mainly characterized by an incomplete development of the spinal cord (SC), which is often accompanied by other developmental anomalies. We studied a 9-month old child with CRS who presented interruption of the SC at the L2–L3 level, sacral agenesis, a lack of innervation of the inferior limbs (flaccid paraplegia), and neurogenic bladder and bowel. Given the known positive effects of growth hormone (GH) on neural stem cells (NSCs), we treated him with GH and rehabilitation, trying to induce recovery from the aforementioned sequelae. The Gross Motor Function Test (GMFM)-88 test score was 12.31%. After a blood analysis, GH treatment (0.3 mg/day, 5 days/week, during 3 months and then 15 days without GH) and rehabilitation commenced. This protocol was followed for 5 years, the last GH dose being 1 mg/day. Blood analysis and physical exams were performed every 3 months initially and then every 6 months. Six months after commencing the treatment the GMFM-88 score increased to 39.48%. Responses to sensitive stimuli appeared in most of the territories explored; 18 months later sensitive innervation was complete and the patient moved all muscles over the knees and controlled his sphincters. Three years later he began to walk with crutches, there was plantar flexion, and the GMFM-88 score was 78.48%. In summary, GH plus rehabilitation may be useful for innervating distal areas below the level of the incomplete spinal cord in CRS. It is likely that GH acted on the ependymal SC NSCs, as the hormone does in the neurogenic niches of the brain, and rehabilitation helped to achieve practically full functionality. PMID:28124993

  16. Somatomammotrophic cells in GH-secreting and PRL-secreting human pituitary adenomas.

    PubMed

    Bassetti, M; Brina, M; Spada, A; Giannattasio, G

    1989-11-01

    A morphological study has been carried out on 20 GH-secreting adenomas removed from acromegalic normoprolactinemic patients, on 29 PRL-secreting adenomas removed from hyperprolactinemic patients without signs of acromegaly and on one normal human anterior pituitary gland collected at autopsy. The protein A-gold immunoelectron microscopic technique has been utilized in order to verify the presence of mixed cells producing both GH and PRL (somatomammotrophs) in these pituitary tissues. In the normal pituitary a considerable number of somatomammotrophs (15-20%) was found, thus supporting the idea that these cells are normal components of the human anterior pituitary gland. In 10 GH-secreting adenomas and in 10 PRL-secreting adenomas somatomammotrophs were present in a variable number (from 4 to 20% of the whole cell population in GH adenomas and from 1 to 47% in PRL tumors). It can be concluded therefore that these cells, largely present in all GH/PRL-secreting adenomas, can also be found in GH-secreting and PRL-secreting tumors without clinical evidence of a mixed secretion. Adenomatous somatomammotrophs displayed ultrastructural features of adenomatous somatotrophs and mammotrophs (prominent Golgi complexes, abundant rough endoplasmic reticulum, irregular nuclei). The size and the number of granules were variable. In some cells GH and PRL were stored in distinct secretory granules, in others in mixed granules or both in mixed and distinct granules, thus suggesting that in adenomatous somatomammotrophs the efficiency of the mechanisms of sorting of the two hormones varies from one cell to another.(ABSTRACT TRUNCATED AT 250 WORDS)

  17. Effects of short- and long-term dexamethasone treatment on growth and growth hormone (GH)-releasing hormone (GRH)-GH-insulin-like growth factor-I axis in conscious rats.

    PubMed

    Ohyama, T; Sato, M; Niimi, M; Hizuka, N; Takahara, J

    1997-12-01

    Although the inhibitory effects of a chronic excess of glucocorticoids (GC) on body growth and GH secretion are well established, the mechanisms involved remain unclear. In this study, we examined the chronic effects of a high dose of dexamethasone (DEX) on spontaneous GH secretion and insulin-like growth factor (IGF)-I in conscious rats. The animals were given daily i.p. injections of DEX (200 microg/day) for either one or four weeks. Body growth assessed by tibia length and serum IGF-I levels was significantly inhibited 1 week after treatment. By contrast, spontaneous GH secretion was not altered 1 week after the treatment. Neither hypothalamic GRH and somtatostain mRNA levels nor GH responses to GRH from single somatotropes were affected 1 week after the treatment. Four weeks after DEX treatment, body growth of the rats was noticeably suppressed. Interestingly, spontaneous GH secretion, hypothalamic GRH mRNA levels and GH responses to GRH were all inhibited 4 weeks after treatment. Pituitary GRH receptor mRNA levels were not altered 1 week after treatment, but increased after 4 weeks. These results indicate that a high dose of DEX initially impairs IGF-I production and subsequently inhibits spontaneous GH secretion in rats. Inhibition of spontaneous GH secretion resulting from chronic GC excess is due, at least in part, to the impairment of hypothalamic GRH synthesis and pituitary GH responsiveness. An increase in the pituitary GRH receptor may be caused by decreased GRH secretion.

  18. Arginine induces GH gene expression by activating NOS/NO signaling in rat isolated hemi-pituitaries

    PubMed Central

    Olinto, S.C.F.; Adrião, M.G.; Castro-Barbosa, T.; Goulart-Silva, F.; Nunes, M.T.

    2012-01-01

    The amino acid arginine (Arg) is a recognized secretagogue of growth hormone (GH), and has been shown to induce GH gene expression. Arg is the natural precursor of nitric oxide (NO), which is known to mediate many of the effects of Arg, such as GH secretion. Arg was also shown to increase calcium influx in pituitary cells, which might contribute to its effects on GH secretion. Although the mechanisms involved in the effects of Arg on GH secretion are well established, little is known about them regarding the control of GH gene expression. We investigated whether the NO pathway and/or calcium are involved in the effects of Arg on GH gene expression in rat isolated pituitaries. To this end, pituitaries from approximately 170 male Wistar rats (∼250 g) were removed, divided into two halves, pooled (three hemi-pituitaries) and incubated or not with Arg, as well as with different pharmacological agents. Arg (71 mM), the NO donor sodium nitroprusside (SNP, 1 and 0.1 mM) and a cyclic guanosine monophosphate (cGMP) analogue (8-Br-cGMP, 1 mM) increased GH mRNA expression 60 min later. The NO acceptor hemoglobin (0.3 µM) blunted the effect of SNP, and the combined treatment with Arg and L-NAME (an NO synthase (NOS) inhibitor, 55 mM) abolished the stimulatory effect of Arg on GH gene expression. The calcium channel inhibitor nifedipine (3 µM) also abolished Arg-induced GH gene expression. The present study shows that Arg directly induces GH gene expression in hemi-pituitaries isolated from rats, excluding interference from somatostatinergic neurons, which are supposed to be inhibited by Arg. Moreover, the data demonstrate that the NOS/NO signaling pathway and calcium mediate the Arg effects on GH gene expression. PMID:22641416

  19. Relationship of adiponectin to endogenous GH pulse secretion parameters in response to stimulation with a growth hormone releasing factor.

    PubMed

    Makimura, H; Stanley, T L; Chen, C Y; Branch, K L; Grinspoon, S K

    2011-06-01

    Obesity is associated with both reduced growth hormone (GH) and adiponectin. However, the relationship between adiponectin and parameters of endogenous GH secretion remains unknown. The aim of this study was to determine the relationship between total and high molecular weight (HMW) adiponectin and parameters of endogenous pulsatile GH secretion and the effects of tesamorelin, a synthetic GH releasing hormone (GHRH(1-44)), on total and HMW adiponectin. A 2-week interventional study with tesamorelin was conducted at an academic medical center in 13 men with BMI 20-35 kg/m(2). Overnight frequent blood sampling and measurement of total and HMW adiponectin at baseline and after treatment were performed to assess the effects of augmenting endogenous pulsatile GH secretion. Total, but not HMW, adiponectin was positively associated with log(10)Peak GH area (r=+0.73; P=0.005), basal GH secretion (r=+0.67; P=0.01), and total GH production (r=+0.57; P=0.04), but was not associated with the number of secretion events (P=0.85). Two-week treatment with tesamorelin increased endogenous GH release and IGF-1, but neither total (change -0.16±0.64; P=0.40), nor HMW (change +0.03±0.70; P=0.87) adiponectin changed significantly with treatment. Sub-analyses in overweight and obese men yielded similar results. Our study demonstrates a strong relationship between specific parameters of endogenous GH pulsatility and adiponectin. However, short-term augmentation of GH pulsatility over 2-weeks does not change adiponectin. Therefore, the relationship between GH and adiponectin is most likely mediated by specific covariates related to adiposity or other factors. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Early growth hormone (GH) treatment promotes relevant motor functional improvement after severe frontal cortex lesion in adult rats.

    PubMed

    Heredia, Margarita; Fuente, A; Criado, J; Yajeya, J; Devesa, J; Riolobos, A S

    2013-06-15

    A number of studies, in animals and humans, describe the positive effects of the growth hormone (GH) treatment combined with rehabilitation on brain reparation after brain injury. We examined the effect of GH treatment and rehabilitation in adult rats with severe frontal motor cortex ablation. Thirty-five male rats were trained in the paw-reaching-for-food task and the preferred forelimb was recorded. Under anesthesia, the motor cortex contralateral to the preferred forelimb was aspirated or sham-operated. Animals were then treated with GH (0.15 mg/kg/day, s.c) or vehicle during 5 days, commencing immediately or 6 days post-lesion. Rehabilitation was applied at short- and long-term after GH treatment. Behavioral data were analized by ANOVA following Bonferroni post hoc test. After sacrifice, immunohistochemical detection of glial fibrillary acid protein (GFAP) and nestin were undertaken in the brain of all groups. Animal group treated with GH immediately after the lesion, but not any other group, showed a significant improvement of the motor impairment induced by the motor lesion, and their performances in the motor test were no different from sham-operated controls. GFAP immunolabeling and nestin immunoreactivity were observed in the perilesional area in all injured animals; nestin immunoreactivity was higher in GH-treated injured rats (mainly in animals GH-treated 6 days post-lesion). GFAP immunoreactivity was similar among injured rats. Interestingly, nestin re-expression was detected in the contralateral undamaged motor cortex only in GH-treated injured rats, being higher in animals GH-treated immediately after the lesion than in animals GH-treated 6 days post-lesion. Early GH treatment induces significant recovery of the motor impairment produced by frontal cortical ablation. GH effects include increased neurogenesis for reparation (perilesional area) and for increased brain plasticity (contralateral motor area). Copyright © 2013 Elsevier B.V. All rights

  1. GhAGL15s, preferentially expressed during somatic embryogenesis, promote embryogenic callus formation in cotton (Gossypium hirsutum L.).

    PubMed

    Yang, Zuoren; Li, Changfeng; Wang, Ye; Zhang, Chaojun; Wu, Zhixia; Zhang, Xueyan; Liu, Chuanliang; Li, Fuguang

    2014-10-01

    Somatic embryogenesis is a useful tool for gene transfer and propagation of plants. AGAMOUS-LIKE15 (AGL15) promotes somatic embryogenesis in many plant species. In this study, three homologous AGL15 genes were isolated from Gossypium hirsutum L., namely GhAGL15-1, GhAGL15-3, and GhAGL15-4. Their putative proteins contained a highly conserved MADS-box DNA-binding domain and a less conserved K domain. Phylogenetic analysis suggested that the three GhAGL15s clustered most closely with AGL15 proteins in other plants. Subcellular location analyses revealed that three GhAGL15s were localized in the nucleus. Furthermore, their expression levels increased following embryogenic callus induction, but sharply decreased during the embryoid stage. GhAGL15-1 and GhAGL15-3 were significantly induced by 2,4-D and kinetin, whereas GhAGL15-4 was only responsive to 2,4-D treatment. Over-expression of the three GhAGL15s in cotton callus improved callus quality and significantly increased the embryogenic callus formation rate, while GhAGL15-4 had the highest positive effect on the embryogenic callus formation rate (an increase from 38.1 to 65.2%). These results suggest that over-expression of GhAGL15s enhances embryogenic potential of transgenic calli. Therefore, spatiotemporal manipulation of GhAGL15s expression may prove valuable in improving cotton transformation efficiency.

  2. Effects of somatotrophic axis (GH/GHR) double transgenesis on structural and molecular aspects of the zebrafish immune system.

    PubMed

    Batista, Carolina Reyes; Figueiredo, Marcio Azevedo; Almeida, Daniela Volcan; Romano, Luis Alberto; Marins, Luis Fernando

    2015-08-01

    The development of growth hormone (GH) transgenic fish has been shown to be a promising method to improve growth rates. However, the role of GH is not restricted only to processes involved in growth. Several others physiological processes, including immune function, are impaired due to GH imbalances. Given the importance of generating GH transgenic organisms for aquaculture purposes, it is necessary to develop strategies to reduce or compensate for the collateral effects of GH. We hypothesized that the generation of double transgenic fish that overexpress GH and growth hormone receptor (GHR) in the skeletal muscle could be a possible alternative to compensate for the deleterious effects of GH on the immune system. Specifically, we hypothesized that increased GHR amounts in the skeletal muscle would be able to reduce the level of circulating GH, attenuating the GH signaling on the immune cells while still increasing the growth rate. To test this hypothesis, we evaluated the size of the immune organs, T cell content in the thymus and head kidney, and expression of immune-related genes in double-transgenic fish. Contrary to our expectations, we found that the overexpression of GHR does not decrease the deleterious effect of GH excess on the size of the thymus and head kidney, and in the content of CD3(+) and CD4(+) cells in the thymus and head kidney. Unexpectedly, the control GHR transgenic group showed similar impairments in immune system parameters. These results indicate that GHR overexpression does not reverse the impairments caused by GH and, in addition, could reinforce the damage to the immune functions in GH transgenic zebrafish.

  3. Type II SOCS as a feedback repressor for GH-induced Igf1 expression in carp hepatocytes.

    PubMed

    Jiang, Xue; Xiao, Jia; He, Mulan; Ma, Ani; Wong, Anderson O L

    2016-05-01

    Type II suppressor of cytokine signaling (SOCS) serve as feedback repressors for cytokines and are known to inhibit growth hormone (GH) actions. However, direct evidence for SOCS modulation of GH-induced insulin-like growth factor 1 (Igf1) expression is lacking, and the post-receptor signaling for SOCS expression at the hepatic level is still unclear. To shed light on the comparative aspects of SOCS in GH functions, grass carp was used as a model to study the role of type II SOCS in GH-induced Igf1 expression. Structural identity of type II SOCS, Socs1-3 and cytokine-inducible SH2-containing protein (Cish), was established in grass carp by 5'/3'-RACE, and their expression at both transcript and protein levels were confirmed in the liver by RT-PCR and LC/MS/MS respectively. In carp hepatocytes, GH treatment induced rapid phosphorylation of JAK2, STATs, MAPK, PI3K, and protein kinase B (Akt) with parallel rises in socs1-3 and cish mRNA levels, and these stimulatory effects on type II SOCS were shown to occur before the gradual loss of igf1 gene expression caused by prolonged exposure of GH. Furthermore, GH-induced type II SOCS gene expression could be negated by inhibiting JAK2, STATs, MEK1/2, P38 (MAPK), PI3K, and/or Akt respectively. In CHO cells transfected with carp GH receptor, over-expression of these newly cloned type II SOCS not only suppressed JAK2/STAT5 signaling with GH treatment but also inhibited GH-induced grass carp Igf1 promoter activity. These results, taken together, suggest that type II SOCS could be induced by GH in the carp liver via JAK2/STATs, MAPK, and PI3K/Akt cascades and serve as feedback repressors for GH signaling and induction of igf1 gene expression.

  4. Quantification of the GH/IGF-axis components: lessons from human studies.

    PubMed

    Frystyk, J

    2012-08-01

    Originally, the circulating bioactivity of IGF-I was estimated by bioassays measuring the ability of serum to stimulate uptake of labeled sulfate or thymidine in cultures of costal cartilage or by the ability of serum to stimulate the uptake of glucose in fat tissue cultures. However, because of their laborious and unspecific nature, the original bioassays were quickly abandoned with the development of the first RIA for IGF-I in 1977. Consequently, for the past three decades the endogenous IGF-I bioactivity has been almost exclusively estimated by the use of immunoassays. Beyond any doubt, the immunoassays have provided an extensive insight into IGF-I physiology and pathophysiology. However, immunoassays ignore the presence of the IGFBPs, which are important regulators of IGF-I action in vivo. In addition, immunoassays do not consider the presence of IGF-II, which also interacts with the IGF-I receptor (IGF-IR). This aroused our interest to reintroduce the bioassay; therefore, we established a cell-based kinase receptor activation (KIRA) assay based on cells transfected with the human IGF-IR. The output signal of the KIRA assay is IGF-IR phosphorylation, and, as such, it is highly specific. Further, because detection of phosphorylated IGF-IRs is based on modern immunoassay techniques, the overall performance of the assay is close to that of a traditional IGF-I immunoassay. The first part of this review comprises a short description of the bioassay, and a more in-depth presentation of the data that have been obtained so far. It will be demonstrated that the bioassay is indeed able to yield novel information on the IGF system, most likely because it is able to integrate the different components of the IGF system into one signal: IGF-IR activation. As IGF-I, circulating GH is bound to larger proteins, the far most important GH-binding protein (GHBP) is identical to the extracellular domain of the GH receptor (GHR). Because of its origin, GHBP binds GH with the same

  5. Cloning and characterization of a novel Gladiolus hybridus AFP family gene (GhAFP-like) related to corm dormancy

    SciTech Connect

    Wu, Jian; Seng, Shanshan; Carianopol, Carina; Sui, Juanjuan; Yang, Qiuyan; Zhang, Fengqin; Jiang, Huiru; He, Junna; Yi, Mingfang

    2016-02-26

    Abscisic acid (ABA) is an important phytohormone controlling seed dormancy. AFPs (ABA INSENSITIVE FIVE BINDING PROTEINS) are reported to be negative regulators of the ABA signaling pathway. The involvement of AFPs in dormant vegetative organs remains poorly understood. Here, we isolated and characterized a novel AFP family member from Gladiolus dormant cormels, GhAFP-like, containing three conserved domains of the AFP family. Quantitative PCR analysis revealed that GhAFP-like was expressed in dormant organs and its expression was down-regulated along with corm storage. GhAFP-like was verified to be a nuclear-localized protein. Overexpressing GhAFP-like in Arabidopsis thaliana not only showed weaker seed dormancy with insensitivity to ABA, but also changed the expression of some ABA related genes. In addition, a primary root elongation assay showed GhAFP-like may involve in auxin signaling response. The results in this study indicate that GhAFP-like acts as a negative regulator in ABA signaling and is related to dormancy. - Highlights: • GhAFP-like is expessed in dormant corm. • Overexpressing GhAFP-like showed early germination and insensitivity to ABA. • Overexpressing GhAFP-like changed ABI5 downstream genes expression.

  6. In silico Identification and Taxonomic Distribution of Plant Class C GH9 Endoglucanases

    PubMed Central

    Kundu, Siddhartha; Sharma, Rita

    2016-01-01

    The glycoside hydrolase 9 superfamily, mainly comprising the endoglucanases, is represented in all three domains of life. The current division of GH9 enzymes, into three subclasses, namely A, B, and C, is centered on parameters derived from sequence information alone. However, this classification is ambiguous, and is limited by the paralogous ancestry of classes B and C endoglucanases, and paucity of biochemical and structural data. Here, we extend this classification schema to putative GH9 endoglucanases present in green plants, with an emphasis on identifying novel members of the class C subset. These enzymes cleave the β(1 → 4) linkage between non-terminal adjacent D-glucopyranose residues, in both, amorphous and crystalline regions of cellulose. We utilized non redundant plant GH9 enzymes with characterized molecular data, as the training set to construct Hidden Markov Models (HMMs) and train an Artificial Neural Network (ANN). The parameters that were used for predicting dominant enzyme function, were derived from this training set, and subsequently refined on 147 sequences with available expression data. Our knowledge-based approach, can ascribe differential endoglucanase activity (A, B, or C) to a query sequence with high confidence, and was used to construct a local repository of class C GH9 endoglucanases (GH9C = 241) from 32 sequenced green plants. PMID:27570528

  7. Brain Recovery after a Plane Crash: Treatment with Growth Hormone (GH) and Neurorehabilitation: A Case Report

    PubMed Central

    Devesa, Jesús; Díaz-Getino, Gustavo; Rey, Pablo; García-Cancela, José; Loures, Iria; Nogueiras, Sonia; Hurtado de Mendoza, Alba; Salgado, Lucía; González, Mónica; Pablos, Tamara; Devesa, Pablo

    2015-01-01

    The aim of this study is to describe the results obtained after growth hormone (GH) treatment and neurorehabilitation in a young man that suffered a very grave traumatic brain injury (TBI) after a plane crash. Methods: Fifteen months after the accident, the patient was treated with GH, 1 mg/day, at three-month intervals, followed by one-month resting, together with daily neurorehabilitation. Blood analysis at admission showed that no pituitary deficits existed. At admission, the patient presented: spastic tetraplegia, dysarthria, dysphagia, very severe cognitive deficits and joint deformities. Computerized tomography scanners (CT-Scans) revealed the practical loss of the right brain hemisphere and important injuries in the left one. Clinical and blood analysis assessments were performed every three months for three years. Feet surgery was needed because of irreducible equinovarus. Results: Clinical and kinesitherapy assessments revealed a prompt improvement in cognitive functions, dysarthria and dysphagia disappeared and three years later the patient was able to live a practically normal life, walking alone and coming back to his studies. No adverse effects were observed during and after GH administration. Conclusions: These results, together with previous results from our group, indicate that GH treatment is safe and effective for helping neurorehabilitation in TBI patients, once the acute phase is resolved, regardless of whether or not they have GH-deficiency (GHD). PMID:26703581

  8. Brain Recovery after a Plane Crash: Treatment with Growth Hormone (GH) and Neurorehabilitation: A Case Report.

    PubMed

    Devesa, Jesús; Díaz-Getino, Gustavo; Rey, Pablo; García-Cancela, José; Loures, Iria; Nogueiras, Sonia; Hurtado de Mendoza, Alba; Salgado, Lucía; González, Mónica; Pablos, Tamara; Devesa, Pablo

    2015-12-21

    The aim of this study is to describe the results obtained after growth hormone (GH) treatment and neurorehabilitation in a young man that suffered a very grave traumatic brain injury (TBI) after a plane crash. Fifteen months after the accident, the patient was treated with GH, 1 mg/day, at three-month intervals, followed by one-month resting, together with daily neurorehabilitation. Blood analysis at admission showed that no pituitary deficits existed. At admission, the patient presented: spastic tetraplegia, dysarthria, dysphagia, very severe cognitive deficits and joint deformities. Computerized tomography scanners (CT-Scans) revealed the practical loss of the right brain hemisphere and important injuries in the left one. Clinical and blood analysis assessments were performed every three months for three years. Feet surgery was needed because of irreducible equinovarus. Clinical and kinesitherapy assessments revealed a prompt improvement in cognitive functions, dysarthria and dysphagia disappeared and three years later the patient was able to live a practically normal life, walking alone and coming back to his studies. No adverse effects were observed during and after GH administration. These results, together with previous results from our group, indicate that GH treatment is safe and effective for helping neurorehabilitation in TBI patients, once the acute phase is resolved, regardless of whether or not they have GH-deficiency (GHD).

  9. Steep-Spectrum Radio Emission from the Low-Mass Active Galactic Nucleus GH 10

    NASA Astrophysics Data System (ADS)

    Wrobel, J. M.; Greene, J. E.; Ho, L. C.; Ulvestad, J. S.

    2008-10-01

    GH 10 is a broad-lined active galactic nucleus (AGN) energized by a black hole of mass 800,000 M⊙. It was the only object detected by Greene et al. in their Very Large Array (VLA) survey of 19 low-mass AGNs discovered by Greene & Ho. New VLA imaging at 1.4, 4.9, and 8.5 GHz reveals that GH 10's emission has an extent of less than 320 pc, has an optically thin synchrotron spectrum with a spectral index α = - 0.76 +/- 0.05 (Sν propto ν+ α), is less than 11% linearly polarized, and is steady—although poorly sampled—on timescales of weeks and years. Circumnuclear star formation cannot dominate the radio emission, because the high inferred star formation rate, 18 M⊙ yr-1, is inconsistent with the rate of less than 2 M⊙ yr-1 derived from narrow Hα and [O II] λ3727 emission. Instead, the radio emission must be mainly energized by the low-mass black hole. GH 10's radio properties match those of the steep-spectrum cores of Palomar Seyfert galaxies, suggesting that, like those galaxies, the emission is outflow-driven. Because GH 10 is radiating close to its Eddington limit, it may be a local analog of the starting conditions, or seeds, for supermassive black holes. Future imaging of GH 10 at higher linear resolution thus offers an opportunity to study the relative roles of radiative versus kinetic feedback during black hole growth.

  10. [Transsphenoidal microsurgical removal of GH-secreting pituitary adenoma in: a report of 200 cases].

    PubMed

    Su, C; Ren, Z; Wang, W; Yin, Z; Wang, R

    1995-10-01

    From July 1979 to April 1992, 212 cases of GH-secreting pituitary adenoma were treated transsphenoidally by microsurgical technique, of whom two hundred cases monitored with their GH levels at preoperative and postoperative periods. The majority of cases totally 132 cases were of macroadenoma, and 68 cases were of microadenoma. 138 cases were operated on after April 1986. The cure and remission rate averaged to 72.5%, rising from 44.4% (before 1986) to 80.5% for microadenoma and from 31.4% to 69.1% for macroadenoma due to improvement of technique and accumulation of experience. One patient died of angiocardiopathy suddenly during operation. Mortality rate was 0.5%. The follow-up observation of postoperative GH levels in 52 cases revealed that the GH levels within 2 weeks after operation were the same as in 3-6 months. It is thought that the early GH levels may represent the surgical results. The surgical technique is described and factors influencing the surgical results, prevention and treatment of operative complications are discussed in this paper.

  11. Growth Hormone and Treatment Controversy; Long Term Safety of rGH

    PubMed Central

    DiVall, Sara A.; Radovick, Sally

    2013-01-01

    The availability of recombinant human growth hormone (rGH) for treatment of growth disorders has provided an unlimited supply for replacement in patients with growth hormone insufficiency but also for short stature due to Turner syndrome, renal failure, Prader-Willi syndrome, small for gestational age and idiopathic short stature. Considering the potential for side effects in the use of a growth promoting agent, the community of physicians and pharmaceutical manufacturers developed systematic methods to survey for short and long term effects. Recently published data from the National Cooperative Growth Study (NCGS), managed by Genentech, concluded that GH has a ‘favorable profile’. In 2012, results from the European Union’s Safety and Appropriateness of GH treatment in Europe (EU SAGhE) study about the long term mortality in GH treated patients were published in two separate manuscripts. This review will examine the issue of safety of rGH in order that practitioners are informed as they consider initiation of therapy with patients. PMID:23772352

  12. GH deficiency as the most common pituitary defect after TBI: clinical implications.

    PubMed

    Popovic, Vera

    2005-01-01

    Recent studies have demonstrated that hypopituitarism, and in particular growth hormone deficiency (GHD), is common among survivors of traumatic brain injury (TBI) tested several months or years following head trauma. In addition, it has been shown that post-traumatic neuroendocrine abnormalities occur early and with high frequency. These findings may have significant implications for the recovery and rehabilitation of patients with TBI. The subjects at risk are those who have suffered moderate-to severe head trauma although mild intensity trauma may precede hypopituitarism also. Particular attention should be paid to this problem in children and adolescents. GH deficiency is very common in TBI, particularly isolated GHD. For the assessment of the GH-IGF axis in TBI patients, plasma IGF-I concentrations plus GH response to a provocative test is mandatory. Growth retardation secondary to GHD is a predominant feature of GHD after TBI in children. Clinical features of adult GHD are variable and in most obesity is present. Neuropsychological examinations of patients with TBI show that a significant portion of variables like attention, concentration, learning, memory, conceptual thinking, problem solving and language are impaired in patients with TBI. In the few case reports described, hormone replacement therapy in hormone deficient head-injured patients resulted in major neurobehavioral improvements. Improvements in mental-well being and cognitive function with GH replacement therapy in GHD adults have been reported. The effect of GH replacement in posttraumatic GHD needs to be examined in randomized controlled studies.

  13. Cotton AnnGh3 encoding an annexin protein is preferentially expressed in fibers and promotes initiation and elongation of leaf trichomes in transgenic Arabidopsis.

    PubMed

    Li, Bing; Li, Deng-Di; Zhang, Jie; Xia, Hui; Wang, Xiu-Lan; Li, Ying; Li, Xue-Bao

    2013-10-01

    The annexins are a multifamily of calcium-regulated phospholipid-binding proteins. To investigate the roles of annexins in fiber development, four genes encoding putative annexin proteins were isolated from cotton (Gossypium hirsutum) and designated AnnGh3, AnnGh4, AnnGh5, and AnnGh6. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) results indicated that AnnGh3, AnnGh4, and AnnGh5 were preferentially expressed in fibers, while the transcripts of AnnGh6 were predominantly accumulated in roots. During fiber development, the transcripts of AnnGh3/4/5 genes were mainly accumulated in rapidly elongating fibers. With fiber cells further developed, their expression activity was dramatically declined to a relatively low level. In situ hybridization results indicated that AnnGh3 and AnnGh5 were expressed in initiating fiber cells (0-2 DPA). Additionally, their expression in fibers was also regulated by phytohormones and [Ca(2+)]. Subcellular localization analysis discovered that AnnGh3 protein was localized in the cytoplasm. Overexpression of AnnGh3 in Arabidopsis resulted in a significant increase in trichome density and length on leaves of the transgenic plants, suggesting that AnnGh3 may be involved in fiber cell initiation and elongation of cotton.

  14. Long-term effects of growth hormone (GH) replacement therapy on hematopoiesis in a large cohort of children with GH deficiency.

    PubMed

    Esposito, Andrea; Capalbo, Donatella; De Martino, Lucia; Rezzuto, Martina; Di Mase, Raffaella; Pignata, Claudio; Salerno, Mariacarolina

    2016-07-01

    The aim of our prospective case-control study was to evaluate long-term effects of GH replacement therapy on erythrocytes parameters, leukocytes, and platelets numbers in a large cohort of children with isolated GH deficiency (GHD). Hemoglobin (Hb) concentration, hematocrit (Hct), mean corpuscular volume, mean corpuscular hemoglobin, red cell distribution width, number of erythrocytes, leukocytes, neutrophils, lymphocytes, monocytes and platelets, ferritin, and C-reactive protein were evaluated in 85 children with isolated GHD (10.20 ± 3.50 years) before and annually during the first 5 years of GH replacement therapy and in 85 healthy children age and sex comparable to patients during 5 years of follow-up. Compared with controls, GHD children at study entry showed lower Hb (-1.18 ± 0.87 vs. -0.40 ± 0.90 SDS, p < 0.0001), red cells number (-0.24 ± 0.81 vs. 0.25 ± 1.14 SDS, p < 0.0001), and Hct (-1.18 ± 0.86 vs. -0.68 ± 0.99 SDS, p < 0.0001). Twelve GHD patients (14 %) showed a normocytic anemia. GH therapy was associated with a significant increase in Hb, Hct, and red cells number which became all comparable to controls within the first 2 years of treatment. Moreover, hemoglobin levels normalized in all anemic GHD patients after 5 years of therapy. No difference between patients and controls was found in leukocytes and platelets numbers neither at baseline nor during the study. GHD in childhood is associated with an impairment of erythropoiesis which causes a normocytic anemia in a considerable percentage of patients. GH replacement therapy exerts a beneficial effect leading to a significant increase of erythrocytes parameters and recovery from anemia. Neither GHD nor GH replacement treatment exerts effects on leukocytes or platelets numbers.

  15. Effects of ghrelin, GH-releasing peptide-6 (GHRP-6) and GHRH on GH, ACTH and cortisol release in hyperthyroidism before and after treatment.

    PubMed

    Molica, Patricia; Nascif, Sergio Oliva; Correa-Silva, Silvia Regina; de Sá, Larissa Bianca Paiva Cunha; Vieira, José Gilberto Henriques; Lengyel, Ana-Maria Judith

    2010-12-01

    In thyrotoxicosis GH responses to stimuli are diminished and the hypothalamic-pituitary-adrenal axis is hyperactive. There are no data on ghrelin or GHRP-6-induced GH, ACTH and cortisol release in treated hyperthyroidism. We, therefore, evaluated these responses in 10 thyrotoxic patients before treatment and in 7 of them after treatment. GHRH-induced GH release was also studied. Peak GH (μg/L; mean ± SE) values after ghrelin (22.6 ± 3.9), GHRP-6 (13.8 ± 2.3) and GHRH (4.9 ± 0.9) were lower in hyperthyroidism before treatment compared to controls (ghrelin: 67.6 ± 19.3; GHRP-6: 25.4 ± 2.7; GHRH: 12.2 ± 2.8) and did not change after 6 months of euthyroidism (ghrelin: 32.7 ± 4.7; GHRP-6: 15.6 ± 3.6; GHRH: 7.4 ± 2.3), although GH responses to all peptides increased in ~50% of the patients. In thyrotoxicosis before treatment ACTH response to ghrelin was two fold higher (107.4 ± 26.3) than those of controls (54.9 ± 10.3), although not significantly. ACTH response to GHRP-6 was similar in both groups (hyperthyroid: 44.7 ± 9.0; controls: 31.3 ± 7.9). There was a trend to a decreased ACTH response to ghrelin after 3 months of euthyroidism (35.6 ± 5.3; P = 0.052), but after 6 months this decrease was non-significant (50.7 ± 14.0). After 3 months ACTH response to GHRP-6 decreased significantly (20.4 ± 4.2), with no further changes. In hyperthyroidism before treatment, peak cortisol (μg/dL) responses to ghrelin (18.2 ± 1.2) and GHRP-6 (15.9 ± 1.4) were comparable to controls (ghrelin: 16.4 ± 1.6; GHRP-6: 13.5 ± 0.9) and no changes were seen after treatment. Our results suggest that the pathways of GH release after ghrelin/GHRP-6 and GHRH are similarly affected by thyroid hormone excess and hypothalamic mechanisms of ACTH release modulated by ghrelin/GHSs may be activated in this situation.

  16. Growth hormone (GH) therapy markedly increases the motility of spermatozoa and the concentration of insulin-like growth factor-I in seminal vesicle fluid in the male GH-deficient dwarf rat.

    PubMed

    Breier, B H; Vickers, M H; Gravance, C G; Casey, P J

    1996-09-01

    There is increasing evidence for an important role of the somatotropic axis in male reproductive function. We investigated the effect of recombinant bovine GH (rbGH) treatment for 21 days on semen characteristics in post-pubertal GH-deficient dwarf (dw/dw) rats. Male dw/dw rats at an age of 75-80 days were divided into two groups (n = 10 per group) and injected twice per day with either rbGH (2 micrograms/g/day) or saline. While the concentration (96.4 +/- 51.3 x 10(6) per ml) and morphology of spermatozoa (spermatozoa with normal morphology 73.5 +/- 6.3%) in the dw/dw rat were within the normal range, the motility of spermatozoa was very low (27.5 +/- 11.7%), establishing a state of sub-fertility. The rbGH treatment markedly increased (p < 0.01) motility of spermatozoa (44.5 +/- 10.7%) but did not change the concentration (144 +/- 80.3 x 10(6) per ml) and morphology (spermatozoa with normal morphology 79.5 +/- 6.0%). The rbGH treatment also significantly increased the concentration of insulin-like growth factor-I (IGF-I) in blood plasma (control 389.1 +/- 65 ng/ml, rbGH 813.9 ng/ml, p < 0.001) and in seminal vesicle fluid (control 11.3 +/- 3.0 ng/ml, rbGH 16.1 +/- 5.4 ng/ml, p < 0.05). We conclude that rbGH therapy markedly increases motility of spermatozoa in sub-fertile male GH-deficient dw/dw rats. Thus, GH therapy may offer considerable potential for the treatment of impaired male reproductive performance.

  17. The 20kDa and 22kDa forms of human growth hormone (hGH) exhibit different intracellular signalling profiles and properties.

    PubMed

    Yao-Xia, Liu; Jing-Yan, Chen; Xia-Lian, Tang; Ping, Chen; Min, Zhang

    2017-07-01

    Human Growth Hormone (hGH) includes two main variants. The first is 22kDa GH (22K-GH), which is predominant in the blood circulation. The second most abundant variant is 20K-GH, which makes up 5-10% of the blood circulation. Both bind and activate the same receptor, called the human growth hormone receptor (GHR). However, the reason why 22K-GH and 20K-GH exhibit similar, but not identical physiological activities remains poorly understood. In this article, the intracellular signalling profiles between these two hormones were examined. Western blot analyses were performed in 3T3-F442A and CHO cells transfected with GHR (CHO-GHR). The results revealed that both 22K-GH and 20K-GH can activate Janus kinase 2 (JAK2) and signal transducers and activators of transcription 1, 3 and 5 (STATs 1/3/5). Both induced tyrosine phosphorylation of JAK2 and STAT/1/3/5 in a time-dependent and dose-dependent manner. However, there were significant differences in the intracellular signalling properties between 22K-GH and 20K-GH. In particular, the kinetics of signalling shown by 22K-GH and 20K-GH is different. In addition, we found that the 20K-GH-induced tyrosine phosphorylation of signalling proteins was weaker than that of 22K-GH. Together, these observations indicate that the levels and kinetics of phosphorylation mediated by the main signalling proteins triggered by 22K-GH or 20K-GH were not exactly the same. This may provide a possible explanation for the different biological activities exhibited by 22K-GH and 20K-GH. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. [Growth Hormone-Insulin Growth Factor I (GH-IGF-I) axis and growth].

    PubMed

    Castell, A-L; Sadoul, J-L; Bouvattier, C

    2013-10-01

    Normal human linear growth results from an evolutionary process expressing the sum effect of multiple genes. The growth hormone (GH) - insulin like growth factor (IGF)-I axis is one of the main actors in the growth process. Defects in this axis can be responsible for short or tall stature. Short stature is defined as smaller than - 2 standard deviations (SD). It is a very common reason for consultation in pediatrics; indeed, 2.5 % of children are concerned. Multiple causes make diagnosis difficult. In this article, we detail the most common constitutional causes of small size, including those related to a defect in the GH-IGF-I axis. Then, we report, the first results of the clinical and genetic study conducted on 213 patients with gigantism. Tall stature is defined by a height superior to 2 SD. Finally, recent work linking epigenetics and growth - via signaling pathways of GH-IGF-I axis - will be presented.

  19. Attenuation of epidermal growth factor (EGF) signaling by growth hormone (GH).

    PubMed

    González, Lorena; Miquet, Johanna G; Irene, Pablo E; Díaz, M Eugenia; Rossi, Soledad P; Sotelo, Ana I; Frungieri, Mónica B; Hill, Cristal M; Bartke, Andrzej; Turyn, Daniel

    2017-05-01

    Transgenic mice overexpressing growth hormone (GH) show increased hepatic protein content of the epidermal growth factor receptor (EGFR), which is broadly associated with cell proliferation and oncogenesis. However, chronically elevated levels of GH result in desensitization of STAT-mediated EGF signal and similar response of ERK1/2 and AKT signaling to EGF compared to normal mice. To ascertain the mechanisms involved in GH attenuation of EGF signaling and the consequences on cell cycle promotion, phosphorylation of signaling mediators was studied at different time points after EGF stimulation, and induction of proteins involved in cell cycle progression was assessed in normal and GH-overexpressing transgenic mice. Results from kinetic studies confirmed the absence of STAT3 and 5 activation and comparable levels of ERK1/2 phosphorylation upon EGF stimulation, which was associated with diminished or similar induction of c-MYC, c-FOS, c-JUN, CYCLIN D1 and CYCLIN E in transgenic compared to normal mice. Accordingly, kinetics of EGF-induced c-SRC and EGFR phosphorylation at activating residues demonstrated that activation of these proteins was lower in the transgenic mice with respect to normal animals. In turn, EGFR phosphorylation at serine 1046/1047, which is implicated in the negative regulation of the receptor, was increased in the liver of GH-overexpressing transgenic mice both in basal conditions and upon EGF stimulus. Increased basal phosphorylation and activation of the p38-mitogen-activated protein kinase might account for increased Ser 1046/1047 EGFR. Hyperphosphorylation of EGFR at serine residues would represent a compensatory mechanism triggered by chronically elevated levels of GH to mitigate the proliferative response induced by EGF.

  20. Reported shoes size during GH therapy: is foot overgrowth a myth or reality?

    PubMed

    Lago, Débora C F; Coutinho, Cláudia A; Kochi, Cristiane; Longui, Carlos A

    2015-10-01

    To describe population reference values for shoes size, and to identify possible disproportional foot growth during GH therapy. Construction of percentile chart based on 3,651 controls (male: 1,838; female: 1,813). The GH treated group included 13 children with idiopathic short stature (ISS) and 50 children with normal height, but with height prediction below their target height; male: 26 and female: 37 mean ± SD age 13.3 ± 1.9 and 12.9 ± 1.5 years, respectively. GH (0.05 mg/kg/day) was used for 3.2 ± 1.6 years, ranging from 1.0-10.3 years. Height expressed as SDS, target height (TH) SDS, self-reported shoes size and target shoes size (TSS) SDS were recorded. Reference values were established showed as a foot SDS calculator available online at www.clinicalcaselearning.com/v2. Definitive shoes size was attained in controls at mean age of 13y in girls and 14y in boys (average values 37 and 40, respectively). In the study group, shoes size was -0.15 ± 0.9 and -0.02 ± 1.3 SDS, with target feet of 0.08 ± 0.8 and -0.27 ± 0.7 SDS in males and females, respectively. There was a significant positive correlation between shoes size and familial TSS, between shoes size and height and between TSS and TH. There was no correlation between duration of GH treatment and shoes size. Our data suggest that during long-term treatment with GH, patients maintain proportional growth in shoes size and height, and the expected correlation with the familial target. We conclude that there is no excessive increase in the size of foot as estimated by the size of shoes in individuals under long term GH therapy.

  1. Characterization of African bat henipavirus GH-M74a glycoproteins.

    PubMed

    Weis, Michael; Behner, Laura; Hoffmann, Markus; Krüger, Nadine; Herrler, Georg; Drosten, Christian; Drexler, Jan Felix; Dietzel, Erik; Maisner, Andrea

    2014-03-01

    In recent years, novel henipavirus-related sequences have been identified in bats in Africa. To evaluate the potential of African bat henipaviruses to spread in non-bat mammalian cells, we compared the biological functions of the surface glycoproteins G and F of the prototype African henipavirus GH-M74a with those of the glycoproteins of Nipah virus (NiV), a well-characterized pathogenic member of the henipavirus genus. Glycoproteins are central determinants for virus tropism, as efficient binding of henipavirus G proteins to cellular ephrin receptors and functional expression of fusion-competent F proteins are indispensable prerequisites for virus entry and cell-to-cell spread. In this study, we analysed the ability of the GH-M74a G and F proteins to cause cell-to-cell fusion in mammalian cell types readily permissive to NiV or Hendra virus infections. Except for limited syncytium formation in a bat cell line derived from Hypsignathus monstrosus, HypNi/1.1 cells, we did not observe any fusion. The highly restricted fusion activity was predominantly due to the F protein. Whilst GH-M74a G protein was found to interact with the main henipavirus receptor ephrin-B2 and induced syncytia upon co-expression with heterotypic NiV F protein, GH-M74a F protein did not cause evident fusion in the presence of heterotypic NiV G protein. Pulse-chase and surface biotinylation analyses revealed delayed F cleavage kinetics with a reduced expression of cleaved and fusion-active GH-M74a F protein on the cell surface. Thus, the F protein of GH-M74a showed a functional defect that is most likely caused by impaired trafficking leading to less efficient proteolytic activation and surface expression.

  2. Insulin and GH secretion in adolescent girls with irregular cycles: polycystic vs multifollicular ovaries.

    PubMed

    Villa, P; Rossodivita, A; Fulghesu, A M; Cucinelli, F; Barini, A; Apa, R; Belosi, C; Lanzone, A

    2003-04-01

    In the present study insulin (I) and GH secretion was studied in a group of twenty-five young adolescent girls (mean age: 15 +/- 0.23 yr) with cycle irregularity associated to clinical signs of hyperandrogenism in comparison with that observed in eleven normal matched subjects with regular menses. All patients underwent basal hormone measurements and, on two consecutive days, an oral glucose tolerance test (OGTT) and a GHRH iv test. Therefore, all subjects had a transabdominal US scan for the measurement of ovarian volume and the characterization of ovarian morphology. On the basis of the US examination we found patients with polycystic ovaries (PCO-like group) and subjects with multifollicular ovaries (MFO group). PCO-like group exhibited T (p<0.01) and LH (p<0.05) plasma levels higher than control group and the highest free androgen index (FAI) values (13 +/- 0.87). All patients with irregular menses showed plasma concentrations of AUC for I (AUC-I) significantly higher in respect to control group (7359.4 +/- 709 vs 5447 +/- 431 microIU/ml x 180 min, p<0.01) as well as both PCO-like group and MFO group did (p<0.001 and p<0.01) respectively. MFO group showed higher values of the AUC for GH (AUC-GH) (2809 +/- 432 ng/ml x 120 min) in respect to controls (1708 +/- 208 ng/ml x 120 min, p<0.05) and PCO-like subjects (p<0.001), who on the contrary showed the lowest AUC-GH values (618 +/- 119 ng/ml x 120 min). In conclusion, PCO-like patients associated hyperinsulinemia with a blunted GH secretion while MFO patients had higher GH secretion associated with higher AUC-I values in a way suggesting an immature and still developing reproductive system.

  3. Effects of levothyroxine on growth hormone (gh) sensitivity in children with idiopathic short stature.

    PubMed

    García, Roberto J; Iñiguez, German; Gaete, Ximena; Linares, Jeannette; Ocaranza, Paula; Avila, Alejandra; Roman, Rossana; Cassorla, Fernando

    2014-08-01

    The possible relationship between the circulating concentrations of T4 and GH sensitivity has not been elucidated. The aim of this study is to evaluate the effect of levothyroxine supplementation on GH sensitivity in prepubertal boys with idiopathic short stature (ISS). We selected 28 prepubertal boys with ISS (mean age 8.2±0.5years) and free T4 (Ft4) concentrations between the 3rd and the 25th percentiles (Ft4: 0.8-1.5ng/dl). They were randomly divided into two groups: Group A received thyroid supplementation (1-3μg/kg/day) for 120days, and Group B received placebo for the same period. To evaluate GH sensitivity, an IGF-I generation test (GH: 33μg/kg/day sc for 3days) was performed in both groups: under basal conditions, and after 120days of levothyroxine supplementation (or placebo). After thyroid supplementation, Group A had higher Ft4 concentrations compared with Group B (2.14±0.06 vs 1.48±0.06ng/dl, p=0.01), their growth velocity was significantly higher (2.3±0.1 vs 1.5±0.2cm/4months), and they exhibited a greater increase in IGF-I after GH administration (Group A: 32.5±3.8% vs Group B 17.3±2.6%). Supplementation with levothyroxine for 120days promotes an increase in growth velocity, and a greater IGF-I response to short-term GH administration in prepubertal boys with ISS and low-normal thyroid hormone concentrations. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Effects of Hypergravity Rearing on Growth Hormone (GH) Secretion In Preweanling Rats

    NASA Technical Reports Server (NTRS)

    Baer, L. A.; Chowdhury, J. H.; Wade, C. E.; Ronca, A. E.; Dalton, Bonnie (Technical Monitor)

    2002-01-01

    We previously reported that rat pups reared at 1.5-g, 1.75 or 2.0-g hypergravity weigh 6-15% less than 1.0-g controls. To account for these findings. we measured the lactational hormones, prolaction (Prl) and oxytocin (OT), in the pups' mothers. Gravity related differences in Prl were not observed whereas OT of lactating dams was significantly reduced relative to controls. Milk transfer from dam to pup was not impaired in hypergravity-reared litters tested at 1-g. Together, these findings suggest that impaired lactation and milk transfer do not account for reduced body masses of postnatal rats reared in hypergravity. In the present study, we analyzed growth hormone (GH) secretion and maternal licking in pups reared in hypergravity and in 1.0-g controls. Recent reports using dwarfing phenotypes in mouse mutants have provided evidence for postnatal dependence on GH and insulin-like growth factors (IGFs). Beginning on Gestational day (G)11 of the rats' 22 day pregnancy, rat dams and their litters were exposed to either 1.5-g, 1.75-g or 2.0-g. On Postnatal day (P)10, we measured plasma GH using enzyme immunoassay (EIA). Contrary to our hypothesis, GH was significantly elevated in pups reared at 2.0-g relative to 1.0-g controls. Pup-oriented behaviors of the hypergravity dams were also changed, possibly accounting for the increase in pup GH. GH alone does not appear to play a role in reduced body weights of hypergravity-reared pups.

  5. Adaptation of ghrelin and the GH/IGF axis to high altitude.

    PubMed

    Riedl, Stefan; Kluge, Michael; Schweitzer, Katharina; Waldhör, Thomas; Frisch, Herwig

    2012-06-01

    High altitude (HA) provokes a variety of endocrine adaptive processes. We investigated the impact of HA on ghrelin levels and the GH/IGF axis. Observational study as part of a medical multidisciplinary project in a mountainous environment. Thirty-three probands (12 females) were investigated at three timepoints during ascent to HA (A: d -42, 120 m; B: d +4, 3440 m; C: d +14, 5050 m). The following parameters were obtained: ghrelin; GH; GH-binding protein (GHBP); IGF1; IGF2; IGF-binding proteins (IGFBPs) -1, -2, and -3; acid-labile subunit (ALS); and insulin. Weight was monitored and general well being assessed using the Lake Louise acute mountain sickness (AMS) score. Ghrelin (150 VS 111PG/ML; P0.01) and GH (3.4 VS 1.7G/L; P0.01) were significantly higher at timepoint C compared with A whereas GHBP, IGF1, IGF2, IGFBP3, ALS, and insulin levels did not change. IGFBP1 (58 VS 47G/L; P0.05) and, even more pronounced, IGFBP2 (1141 VS 615G/L; P0.001) increased significantly. No correlation, neither sex-specific nor in the total group, between individual weight loss (females: -2.1 kg; males: -5.1 kg) and rise in ghrelin was found. Five of the subjects did not reach investigation point C due to AMS. After 14 days of exposure to HA, we observed a significant ghrelin and GH increase without changes in GHBP, IGF1, IGF2, IGFBP3, ALS, and insulin. Higher GH seems to be needed for acute metabolic effects rather than IGF/IGFBP3 generation. Increased IGFBP1 and -2 may reflect effects from HA on IGF bioavailability.

  6. McCune-Albright syndrome: surgical and therapeutic challenges in GH-secreting pituitary adenomas.

    PubMed

    Madsen, Helen; Borges, Manuel Thomas; Kerr, Janice M; Lillehei, Kevin O; Kleinschmidt-Demasters, B K

    2011-08-01

    McCune-Albright syndrome (MAS) is a postzygotic (non-germline) disorder characterized by polyostotic fibrous dysplasia, cafe-au-lait macules and hypersecretory endocrinopathies. A significant percentage of MAS patients have pituitary adenomas that are either growth hormone (GH) or mixed GH/prolactin (PRL)-producing. Surgical excision may be challenging-or even impossible-due to the associated severe fibrous dysplasia of the skull base. Treatment relies on an interdisciplinary, multi-modal approach from endocrinologists, neurosurgeons and radiation oncologists. We present two cases of women with MAS and GH-secreting pituitary adenomas, encountered in our 30-year experience with pituitary diseases. The first patient successfully underwent transsphenoidal surgical resection for a pituitary microadenoma in 1997 (at age 18) and again in 2009 for recurrent disease, with a significant reduction in IGF-1 level. Immunohistochemistry (IHC) and electron microscopy (EM), performed on both specimens, showed a mammosomatotroph adenoma with GH, PRL, alpha subunit (+) IHC, with increased fibrous bodies developing over the 13-year interval. Focal hyperplasia could be discerned. EM in 1997 showed an admixture of mammosomatotrophs, mature lactotrophs and somatotrophs, with a bimodal population identified in 2009. The second MAS patient had long-standing polyostotic fibrous dysplasia, but was only recently diagnosed with GH excess and a pituitary adenoma, at the age of 29 years. Surgical resection was not advised in this patient because of the massive obstructive skull-base fibrous dysplasia. Medical therapy was initiated with somatostatin analogues, although responses in both patients have been suboptimal to date. We review the literature on GH excess in MAS to highlight its surgical and medical challenges.

  7. Effects of Hypergravity Rearing on Growth Hormone (GH) Secretion In Preweanling Rats

    NASA Technical Reports Server (NTRS)

    Baer, L. A.; Chowdhury, J. H.; Wade, C. E.; Ronca, A. E.; Dalton, Bonnie (Technical Monitor)

    2002-01-01

    We previously reported that rat pups reared at 1.5-g, 1.75 or 2.0-g hypergravity weigh 6-15% less than 1.0-g controls. To account for these findings. we measured the lactational hormones, prolaction (Prl) and oxytocin (OT), in the pups' mothers. Gravity related differences in Prl were not observed whereas OT of lactating dams was significantly reduced relative to controls. Milk transfer from dam to pup was not impaired in hypergravity-reared litters tested at 1-g. Together, these findings suggest that impaired lactation and milk transfer do not account for reduced body masses of postnatal rats reared in hypergravity. In the present study, we analyzed growth hormone (GH) secretion and maternal licking in pups reared in hypergravity and in 1.0-g controls. Recent reports using dwarfing phenotypes in mouse mutants have provided evidence for postnatal dependence on GH and insulin-like growth factors (IGFs). Beginning on Gestational day (G)11 of the rats' 22 day pregnancy, rat dams and their litters were exposed to either 1.5-g, 1.75-g or 2.0-g. On Postnatal day (P)10, we measured plasma GH using enzyme immunoassay (EIA). Contrary to our hypothesis, GH was significantly elevated in pups reared at 2.0-g relative to 1.0-g controls. Pup-oriented behaviors of the hypergravity dams were also changed, possibly accounting for the increase in pup GH. GH alone does not appear to play a role in reduced body weights of hypergravity-reared pups.

  8. Growth hormone response to long-term GH-RH administration in lambs.

    PubMed

    Pérez-Romero, A; Rol De Lama, M A; Granados, B; Vara, E; Vázquez González, I; Ariznavarreta, C; Tresguerres, J A

    2000-06-01

    The pattern of long-term GHRH administration capable of stimulating GH release without depleting pituitary GH content has been investigated using two experimental approaches. In experiment 1, recently weaned male lambs were treated for 3 weeks as follows: Group A) control; B) subcutaneous (sc) continuous infusion of GHRH (1200 mg/day) using a slow release pellet; C) the same as B plus 1 daily sc injection of long acting somatostatin (SS) (octreotide, 20 mg) ; D) 3 daily sc GHRH (250 mg) injections ; E) 2 daily sc injections of GHRH (250 mg) and 2 of natural SS (250 mg). In experiment 2, recently weaned male lambs were continuously GHRH-treated using sc osmotic minipumps (900 mg/day) alone or combined with a daily sc injection of octreotide (20 mg) for 4 weeks. Basal plasma GH levels were increased after chronic pulsatile GHRH treatment but not after any kind of continuous GHRH administration. This increment was maintained during the 3 weeks of experimentation and appeared accompanied by a pituitary GH content similar to controls. A marked GH response to the iv GHRH challenge was observed in controls and in lambs receiving both types of continuous sc GHRH infusions, whereas pulsatile sc GHRH-treated animals did not respond to the iv GHRH challenge in the first and second weeks of the study but did so in the third week of treatment. These data demonstrate that long-term pulsatile GHRH administration is capable of stimulating GH release in growing male lambs, without producing pituitary desensitization.

  9. Low insulin resistance after surgery predicts poor GH suppression one year after complete resection for acromegaly: a retrospective study.

    PubMed

    Edo, Naoki; Morita, Koji; Suzuki, Hisanori; Takeshita, Akira; Miyakawa, Megumi; Fukuhara, Noriaki; Nishioka, Hiroshi; Yamada, Shozo; Takeuchi, Yasuhiro

    2016-05-31

    Remission of acromegaly is defined as a nadir in GH <1.0 ng/mL during a 75-g oral glucose tolerance test (75gOGTT) and insulin-like growth factor-1 (IGF-1) normalization. Recently, a lower cut-off value for GH nadir (<0.4 ng/mL) has been proposed. We retrospectively evaluated the prevalence and clinical characteristics of postoperative cases with normalized IGF-1 levels and a GH nadir of 0.4-1.0 ng/mL one year after complete resection of GH-secreting pituitary adenoma (GHoma). We included 110 cases of acromegaly with complete adenoma resection, no preoperative treatment, preoperative glycosylated hemoglobin <6.5%, preoperative basal plasma glucose <126 mg/dL, GH nadir <1.0 ng/mL during a 75gOGTT, and normalized IGF-1 at the first postoperative year evaluation, whereupon patients were divided into two groups: control (GH nadir <0.4 ng/mL) and high GH (GH nadir >0.4 ng/mL). Clinical parameters, including measures of insulin secretion and resistance, were compared between groups. The high GH group included 10 patients (9.1%) and had a lesser level of insulin resistance immediately following surgery and at the first postoperative year evaluation. On single regression analysis, insulin resistance immediately following surgery was predictive of and correlated with the GH nadir at the first postoperative year evaluation. The GH nadir at the first postoperative year evaluation may be insufficient in patients with normalized IGF-1 with low insulin resistance immediately following complete resection of GHoma. Careful evaluation is needed to assess remission in such patients.

  10. Increased linear bone growth by GH in the absence of SOCS2 is independent of IGF-1.

    PubMed

    Dobie, Ross; Ahmed, Syed F; Staines, Katherine A; Pass, Chloe; Jasim, Seema; MacRae, Vicky E; Farquharson, Colin

    2015-11-01

    Growth hormone (GH) signaling is essential for postnatal linear bone growth, but the relative importance of GHs actions on the liver and/or growth plate cartilage remains unclear. The importance of liver derived insulin like-growth factor-1 (IGF-1) for endochondral growth has recently been challenged. Here, we investigate linear growth in Suppressor of Cytokine Signaling-2 (SOCS2) knockout mice, which have enhanced growth despite normal systemic GH/IGF-1 levels. Wild-type embryonic ex vivo metatarsals failed to exhibit increased linear growth in response to GH, but displayed increased Socs2 transcript levels (P < 0.01). In the absence of SOCS2, GH treatment enhanced metatarsal linear growth over a 12 day period. Despite this increase, IGF-1 transcript and protein levels were not increased in response to GH. In accordance with these data, IGF-1 levels were unchanged in GH-challenged postnatal Socs2(-/-) conditioned medium despite metatarsals showing enhanced linear growth. Growth-plate Igf1 mRNA levels were not elevated in juvenile Socs2(-/-) mice. GH did however elevate IGF-binding protein 3 levels in conditioned medium from GH challenged metatarsals and this was more apparent in Socs2(-/-) metatarsals. GH did not enhance the growth of Socs2(-/-) metatarsals when the IGF receptor was inhibited, suggesting that IGF receptor mediated mechanisms are required. IGF-2 may be responsible as IGF-2 promoted metatarsal growth and Igf2 expression was elevated in Socs2(-/-) (but not WT) metatarsals in response to GH. These studies emphasise the critical importance of SOCS2 in regulating GHs ability to promote bone growth. Also, GH appears to act directly on the metatarsals of Socs2(-/-) mice, promoting growth via a mechanism that is independent of IGF-1.

  11. Development of a sandwich enzyme-linked immunosorbent assay for dTMP-GH fusion protein by rational immunogen selection.

    PubMed

    Wang, Song; Shen, Mingqiang; Chen, Shilei; Wang, Cheng; Chen, Fang; Chen, Mo; Zhao, Gaomei; Ran, Xinze; Cheng, Tianmin; Su, Yongping; Xu, Yang; Wang, Junping

    2017-12-01

    dTMP-GH is a chimeric protein containing a tandem dimer of thrombopoietin mimetic peptide (dTMP) fused to human growth hormone (hGH) prepared previously by our team. It shows significant bioactivity in promoting thrombocytopoiesis, but detection of intact dTMP-GH in plasma is still a challenge due to the presence of endogenous hGH. In this study, a rabbit polyclonal antibody with high affinity to dTMP was obtained with a BSA-conjugated immunogen composed of 20 amino acids sequence spanning two TMP and the linker. A monoclonal antibody termed as 3B2 was screened out by using immunizing mice with whole dTMP-GH, which was proved to simultaneously interact with rhGH, TMP-GH, and dTMP-GH, respectively. In this study, we developed a specific and sensitive sandwich enzyme-linked immunosorbent assay (ELISA) with two antibodies (one polyclonal and one HRP-conjugated monoclonal) to quantify dTMP-GH. The polyclonal antibody and HRP-conjugated monoclonal antibody 3B2 were applied as the capture antibody and detection antibody, respectively. A good correlation between ELISA and bicinchoninic acid (BCA) assay in the quantification of diluted dTMP-GH was observed (r(2) = 0.996). Meanwhile, the standard curve of this ELISA method was found in a linear relationship between 0.2 and 10 ng/mL in the presence of rabbit plasma. In vivo experiments demonstrate that the newly developed method is effective to detect dTMP-GH in rabbits, which paves the way for further pharmacokinetic evaluation.

  12. Somatostatin Is Essential for the Sexual Dimorphism of GH Secretion, Corticosteroid-Binding Globulin Production, and Corticosterone Levels in Mice

    PubMed Central

    Adams, Jessica M.; Otero-Corchon, Veronica; Hammond, Geoffrey L.; Veldhuis, Johannes D.; Qi, Nathan

    2015-01-01

    Distinct male and female patterns of pituitary GH secretion produce sexually differentiated hepatic gene expression profiles, thereby influencing steroid and xenobiotic metabolism. We used a fully automated system to obtain serial nocturnal blood samples every 15 minutes from cannulated wild-type (WT) and somatostatin knockout (Sst-KO) mice to determine the role of SST, the principal inhibitor of GH release, in the generation of sexually dimorphic GH pulsatility. WT males had lower mean and median GH values, less random GH secretory bursts, and longer trough periods between GH pulses than WT females. Each of these parameters was feminized in male Sst-KO mice, whereas female Sst-KO mice had higher GH levels than all other groups, but GH pulsatility was unaffected. We next performed hepatic mRNA profiling with high-density microarrays. Male Sst-KO mice exhibited a globally feminized pattern of GH-dependent mRNA levels, but female Sst-KO mice were largely unaffected. Among the differentially expressed female-predominant genes was Serpina6, which encodes corticosteroid-binding globulin (CBG). Increased CBG was associated with elevated diurnal peak plasma corticosterone in unstressed WT females and both sexes of Sst-KO mice compared with WT males. Sst-KO mice also had exaggerated ACTH and corticosterone responses to acute restraint stress. However, consistent with their lack of phenotypic signs of excess glucocorticoids, cerebrospinal fluid concentrations of free corticosterone in Sst-KO mice were not elevated. In summary, SST is necessary for the prolonged interpulse troughs that define masculinized pituitary GH secretion. SST also contributes to sexual dimorphism of the hypothalamic-pituitary-adrenal axis via GH-dependent regulation of hepatic CBG production. PMID:25551181

  13. Secondary IGF-I deficiency as a prognostic factor of growth hormone (GH) therapy effectiveness in children with isolated, non-acquired GH deficiency.

    PubMed

    Smyczyńska, J; Stawerska, R; Hilczer, M; Lewiński, A

    2015-04-01

    Growth hormone (GH) deficiency (GHD) has recently been classified as secondary IGF-I deficiency but the significance of IGF-I measurement in diagnosing GHD is still discussed. The aim of the study was to assess the relationships between IGF-I secretion and GH therapy effectiveness in children with GHD. The analysis comprised 300 children with isolated, non-acquired GHD (GH peak below 10 μg/l) who completed GH therapy and attained final height (FH). In all patients IGF-I concentration was measured before the treatment and IGF-I deficiency was diagnosed if IGF-I SDS for age and sex was below -1.0. The following auxological indices were assessed: patients' height SDS before treatment (H₀SDS), FH SDS and improvement of FHSDS vs. H₀SDS (ΔHSDS). In the patients with IGF-I deficiency when compared with those with normal IGF-I secretion before treatment, significantly better FH SDS (-1.42±0.90 vs. -1.74±0.86, p=0.004) and ΔHSDS (1.64±1.01 vs. 1.32±1.05, p=0.010) were observed, despite similar H₀SDS (- 3.07±0.78 vs. - 3.11±0.77, p=0.63) and GH peak (7.0±3.1 μg/l vs. 6.8±2.1 μg/l, p=0.55). The patients who achieved FH over 10(th) centile had significantly lower IGF-I SDS before treatment than those with FH below 10(th) centile (- 1.59±1.54 vs. - 1.20±1.64, p=0.04), despite similar GH peak (7.0±2.3 μg/l vs. 6.7±3.1 μg/l, p=0.45). The patients with ΔHSDS over the median value had significantly lower IGF-I SDS than those with ΔHSDS below the median value (- 1.59±1.71 vs. - 1.09±1.47, p<0.0001), despite similar GH peak (6.8±2.5 μg/l vs. 7.0±2.7 μg/l, p=0.86). In children with isolated, non-acquired GHD, secondary IGF-I deficiency is an important predictor of better GH therapy effectiveness. © Georg Thieme Verlag KG Stuttgart · New York.

  14. Phylogenetic analysis of β-xylanase SRXL1 of Sporisorium reilianum and its relationship with families (GH10 and GH11) of Ascomycetes and Basidiomycetes

    PubMed Central

    Álvarez-Cervantes, Jorge; Díaz-Godínez, Gerardo; Mercado-Flores, Yuridia; Gupta, Vijai Kumar; Anducho-Reyes, Miguel Angel

    2016-01-01

    In this paper, the amino acid sequence of the β-xylanase SRXL1 of Sporisorium reilianum, which is a pathogenic fungus of maize was used as a model protein to find its phylogenetic relationship with other xylanases of Ascomycetes and Basidiomycetes and the information obtained allowed to establish a hypothesis of monophyly and of biological role. 84 amino acid sequences of β-xylanase obtained from the GenBank database was used. Groupings analysis of higher-level in the Pfam database allowed to determine that the proteins under study were classified into the GH10 and GH11 families, based on the regions of highly conserved amino acids, 233–318 and 180–193 respectively, where glutamate residues are responsible for the catalysis. PMID:27040368

  15. Effects of GH on Body Composition and Cardiovascular Risk Markers in Young Men With Abdominal Obesity

    PubMed Central

    Gerweck, Anu V.; Lin, Eleanor; Landa, Melissa G.; Torriani, Martin; Schoenfeld, David A.; Hemphill, Linda C.; Miller, Karen K.

    2013-01-01

    Context: Visceral adiposity is associated with increased cardiometabolic risk and decreased GH secretion. Objective: Our objective was to determine the effects of GH administration in abdominally obese young men on body composition, including liver fat, mitochondrial function, and cardiovascular (CV) risk markers. Design and Participants: This was a 6-month, randomized, double-blind, placebo-controlled study with 62 abdominally obese men (IGF-1 below the mean, no exclusion based on GH level), 21 to 45 years of age. Main Outcome Measures: We evaluated abdominal fat depots, thigh muscle and fat (computed tomography), fat and lean mass (dual-energy x-ray absorptiometry), intramyocellular and intrahepatic lipids (proton magnetic resonance spectroscopy), mitochondrial function (dynamic phosphorous magnetic resonance spectroscopy), CV risk markers, carotid intimal-medial thickness, and endothelial function. Results: GH administration resulted in a mean IGF-1 SD score increase from −1.9 ± 0.08 to −0.2 ± 0.3 in the GH group and a decrease in visceral adipose tissue (VAT), VAT/sc adipose tissue, trunk/extremity fat, intrahepatic lipids, high-sensitivity C-reactive protein and apolipoprotein B/low-density lipoprotein vs placebo after controlling for the increase in weight observed in both groups. There were inverse associations between change in IGF-1 levels and change in VAT, VAT/sc adipose tissue, trunk fat, trunk/ext