Science.gov

Sample records for gh27 bifunctional proteins

  1. Peroxisomal D-bifunctional protein deficiency

    PubMed Central

    Lines, Matthew A.; Jobling, Rebekah; Brady, Lauren; Marshall, Christian R.; Scherer, Stephen W.; Rodriguez, Amadeo R.; Lee, Liesly; Lang, Anthony E.; Mestre, Tiago A.; Wanders, Ronald J.A.; Ferdinandusse, Sacha

    2014-01-01

    Objective: To determine the causative genetic lesion in 3 adult siblings with a slowly progressive, juvenile-onset phenotype comprising cerebellar atrophy and ataxia, intellectual decline, hearing loss, hypogonadism, hyperreflexia, a demyelinating sensorimotor neuropathy, and (in 2 of 3 probands) supratentorial white matter changes, in whom numerous prior investigations were nondiagnostic. Methods: The patients’ initial clinical assessment included history and physical examination, cranial MRI, and nerve conduction studies. We performed whole-exome sequencing of all 3 probands, followed by variant annotation and selection of rare, shared, recessive coding changes to identify the gene responsible. We next performed a panel of peroxisomal investigations in blood and cultured fibroblasts, including assessment of D-bifunctional protein (DBP) stability and activity by immunoblot and enzymologic methods, respectively. Results: Exome sequencing identified compound heterozygous mutations in HSD17B4, encoding peroxisomal DBP, in all 3 probands. Both identified mutations alter a conserved residue within the active site of DBP’s enoyl-CoA hydratase domain. Routine peroxisomal screening tests, including very long-chain fatty acids and phytanic acid, were normal. DBP enzymatic activity was markedly reduced. Conclusion: Exome sequencing provides a powerful and elegant tool in the specific diagnosis of “mild” or “atypical” neurometabolic disorders. Given the broad differential diagnosis and the absence of detectable biochemical abnormalities in blood, molecular testing of HSD17B4 should be considered as a first-line investigation in patients with compatible features. PMID:24553428

  2. Divergent evolution of a bifunctional de novo protein.

    PubMed

    Smith, Betsy A; Mularz, Ann E; Hecht, Michael H

    2015-02-01

    Primordial proteins, the evolutionary ancestors of modern sequences, are presumed to have been minimally active and nonspecific. Following eons of selective pressure, these early progenitors evolved into highly active and specific proteins. While evolutionary trajectories from poorly active and multifunctional generalists toward highly active specialists likely occurred many times in evolutionary history, such pathways are difficult to reconstruct in natural systems, where primordial sequences are lost to time. To test the hypothesis that selection for enhanced activity leads to a loss of promiscuity, we evolved a de novo designed bifunctional protein. The parental protein, denoted Syn-IF, was chosen from a library of binary patterned 4-helix bundles. Syn-IF was shown previously to rescue two different auxotrophic strains of E. coli: ΔilvA and Δfes. These two strains contain deletions for proteins with very different biochemical functions; IlvA is involved in isoleucine biosynthesis, while Fes is involved in iron assimilation. In two separate experiments, Syn-IF, was evolved for faster rescue of either ΔilvA or Δfes. Following multiple rounds of mutagenesis, two new proteins were selected, each capable of rescuing the selected function significantly faster than the parental protein. In each case, the evolved protein also lost the ability to rescue the unselected function. In both evolutionary trajectories, the original bifunctional generalist was evolved into a monofunctional specialist with enhanced activity. © 2014 The Protein Society.

  3. Divergent evolution of a bifunctional de novo protein

    PubMed Central

    Smith, Betsy A; Mularz, Ann E; Hecht, Michael H

    2015-01-01

    Primordial proteins, the evolutionary ancestors of modern sequences, are presumed to have been minimally active and nonspecific. Following eons of selective pressure, these early progenitors evolved into highly active and specific proteins. While evolutionary trajectories from poorly active and multifunctional generalists toward highly active specialists likely occurred many times in evolutionary history, such pathways are difficult to reconstruct in natural systems, where primordial sequences are lost to time. To test the hypothesis that selection for enhanced activity leads to a loss of promiscuity, we evolved a de novo designed bifunctional protein. The parental protein, denoted Syn-IF, was chosen from a library of binary patterned 4-helix bundles. Syn-IF was shown previously to rescue two different auxotrophic strains of E. coli: ΔilvA and Δfes. These two strains contain deletions for proteins with very different biochemical functions; IlvA is involved in isoleucine biosynthesis, while Fes is involved in iron assimilation. In two separate experiments, Syn-IF, was evolved for faster rescue of either ΔilvA or Δfes. Following multiple rounds of mutagenesis, two new proteins were selected, each capable of rescuing the selected function significantly faster than the parental protein. In each case, the evolved protein also lost the ability to rescue the unselected function. In both evolutionary trajectories, the original bifunctional generalist was evolved into a monofunctional specialist with enhanced activity. PMID:25420677

  4. A conserved regulatory mechanism in bifunctional biotin protein ligases.

    PubMed

    Wang, Jingheng; Beckett, Dorothy

    2017-08-01

    Class II bifunctional biotin protein ligases (BirA), which catalyze post-translational biotinylation and repress transcription initiation, are broadly distributed in eubacteria and archaea. However, it is unclear if these proteins all share the same molecular mechanism of transcription regulation. In Escherichia coli the corepressor biotinoyl-5'-AMP (bio-5'-AMP), which is also the intermediate in biotin transfer, promotes operator binding and resulting transcription repression by enhancing BirA dimerization. Like E. coli BirA (EcBirA), Staphylococcus aureus, and Bacillus subtilis BirA (Sa and BsBirA) repress transcription in vivo in a biotin-dependent manner. In this work, sedimentation equilibrium measurements were performed to investigate the molecular basis of this biotin-responsive transcription regulation. The results reveal that, as observed for EcBirA, Sa, and BsBirA dimerization reactions are significantly enhanced by bio-5'-AMP binding. Thus, the molecular mechanism of the Biotin Regulatory System is conserved in the biotin repressors from these three organisms. © 2017 The Protein Society.

  5. Protein micropatterning on bifunctional organic-inorganic sol-gel hybrid materials.

    PubMed

    Kim, Woo-Soo; Kim, Min-Gon; Ahn, Jun-Hyeong; Bae, Byeong-Soo; Park, Chan Beum

    2007-04-24

    Active protein micropatterns and microarrays made by selective localization are popular candidates for medical diagnostics, such as biosensors, bioMEMS, and basic protein studies. In this paper, we present a simple fabrication process of thick (approximately 20 microm) protein micropatterning using capillary force lithography with bifunctional sol-gel hybrid materials. Because bifunctional sol-gel hybrid material can have both an amine function for linking with protein and a methacryl function for photocuring, proteins such as streptavidin can be immobilized directly on thick bifunctional sol-gel hybrid micropatterns. Another advantage of the bifunctional sol-gel hybrid materials is the high selective stability of the amine group on bifunctional sol-gel hybrid patterns. Because amine function is regularly contained in each siloxane oligomers, immobilizing sites for streptavidin are widely distributed on the surface of thick hybrid micropatterns. The micropatterning processes of active proteins using efficient bifunctional sol-gel hybrid materials will be useful for the development of future bioengineered systems because they can save several processing steps and reduce costs.

  6. D-bifunctional protein deficiency: a cause of neonatal onset seizures and hypotonia.

    PubMed

    Nascimento, João; Mota, Céu; Lacerda, Lúcia; Pacheco, Sara; Chorão, Rui; Martins, Esmeralda; Garrido, Cristina

    2015-05-01

    Peroxisomal disorders are classified in two major groups: (1) peroxisome biogenesis disorders and (2) single peroxisomal enzyme/transporter deficiencies. D-bifunctional protein deficiency (OMIM #261515) is included in this last group of rare diseases and leads to an impaired peroxisomal beta-oxidation. D-bifunctional protein deficiencies are divided into four types based on the degree of activity of the 2-enoyl-CoA hydratase and 3-hydroxyacyl-CoA dehydrogenase protein units. We present the first Portuguese reported type II D-bifunctional protein deficiency patient, whose neonatal clinical picture is indistinguishable from a Zellweger spectrum disease. The clinical features and the neuroimaging findings of polymicrogyria raised suspicion of the diagnosis. After biochemical analysis, D-bifunctional protein deficiency was confirmed with the identification of a homozygous p.Asn457Tyr (N457Y) mutation of the HSD17B4 gene. The patient's parents were carriers of the mutated allele, confirming the patient homozygosity status and allowing prenatal diagnosis in future pregnancies. D-bifunctional protein deficiency is a rare, severe disease and the final diagnosis can only be accomplished after HSD17B4 gene sequencing. Treatment is supportive, aimed at improving nutrition and growth, controlling the central nervous system symptoms, and limiting the eventual progression of liver disease. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Bifunctional chimeric fusion proteins engineered for DNA delivery: Optimization of the protein to DNA ratio

    PubMed Central

    Gao, Shan; Simon, Melissa J.; Morrison, Barclay; Banta, Scott

    2009-01-01

    Background Cell penetrating peptides (CPPs) have been used to deliver nucleotide-based therapeutics to cells, but this approach has produced mixed results. Ionic interactions and covalent bonds between the CPPs and the cargos may inhibit the effectiveness of the CPPs or interfere with the bioactivity of the cargos. Methods We have created a bifunctional chimeric protein that binds DNA using the p50 domain of the NF-κB transcription factor and is functionalized for delivery with the TAT CPP. The green fluorescent protein (GFP) has been incorporated for tracking delivery. The new chimeric protein, p50-GFP-TAT, was compared to p50-GFP, GFP-TAT and GFP as controls for the ability to transduce PC12 cells with and without oligonucleotide cargos. Results The p50-GFP-TAT construct can deliver 30bp and 293bp oligonucleotides to PC12 cells with an optimal ratio of 1.89 protein molecules per base pair of DNA length. This correlation was validated through the delivery of a fluorescent protein transgene encoded in a plasmid to PC12 cells. Conclusion Self-assembling CPP-based bifunctional fusion proteins can be engineered for the non-viral delivery of nucleotide-based cargos to mammalian cells. General significance This work represents an important step forward in the rational design of protein-based systems for the delivery of macromolecular cargos. PMID:19402206

  8. Improved bone morphogenetic protein-2 retention in an injectable collagen matrix using bifunctional peptides.

    PubMed

    Hamilton, Paul T; Jansen, Michelle S; Ganesan, Sathya; Benson, R Edward; Hyde-Deruyscher, Robin; Beyer, Wayne F; Gile, Joseph C; Nair, Shrikumar A; Hodges, Jonathan A; Grøn, Hanne

    2013-01-01

    To promote healing of many orthopedic injuries, tissue engineering approaches are being developed that combine growth factors such as Bone Morphogenetic Proteins (BMP) with biomaterial carriers. Although these technologies have shown great promise, they still face limitations. We describe a generalized approach to create target-specific modular peptides that bind growth factors to implantable biomaterials. These bifunctional peptide coatings provide a novel way to modulate biology on the surface of an implant. Using phage display techniques, we have identified peptides that bind with high affinity to BMP-2. The peptides that bind to BMP-2 fall into two different sequence clusters. The first cluster of peptide sequences contains the motif W-X-X-F-X-X-L (where X can be any amino acid) and the second cluster contains the motif F-P-L-K-G. We have synthesized bifunctional peptide linkers that contain BMP-2 and collagen-binding domains. Using a rat ectopic bone formation model, we have injected rhBMP-2 into a collagen matrix with or without a bifunctional BMP-2: collagen peptide (BC-1). The presence of BC-1 significantly increased osteogenic cellular activity, the area of bone formed, and bone maturity at the site of injection. Our results suggest that bifunctional peptides that can simultaneously bind to a growth factor and an implantable biomaterial can be used to control the delivery and release of growth factors at the site of implantation.

  9. The phylogenetic origin of the bifunctional tyrosine-pathway protein in the enteric lineage of bacteria.

    PubMed

    Ahmad, S; Jensen, R A

    1988-05-01

    Because bifunctional enzymes are distinctive and highly conserved products of relatively infrequent gene-fusion events, they are particularly useful markers to identify clusters of organisms at different hierarchical levels of a phylogenetic tree. Within the subdivision of gram-negative bacteria known as superfamily B, there are two distinctive types of tyrosine-pathway dehydrogenases: (1) a broad-specificity dehydrogenase (recently termed cyclohexadienyl dehydrogenase [CDH]) that can utilize either prephenate or L-arogenate as alternative substrates and (2) a bifunctional CDH that also posseses chorismate mutase activity. (T-proteins). The bifunctional T-protein, thought to be encoded by fused ancestral genes for chorismate mutase and CDH, was found to be present in enteric bacteria (Escherichia, Shigella, Salmonella, Citrobacter, Klebsiella, Erwinia, Serratia, Morganella, Cedecea, Kluyvera, Hafnia, Edwardsiella, Yersinia, and Proteus) and in Aeromonas and Alteromonas. Outside of the latter "enteric lineage," the T-protein is absent in other major superfamily-B genera, such as Pseudomonas (rRNA homology group I), Xanthomonas, Acinetobacter, and Oceanospirillum. Hence, the T-protein must have evolved after the divergence of the enteric and Oceanospirillum lineages. 3-Deoxy-D-arabino-heptulosonate 7-phosphate synthase-phe, an early-pathway isozyme sensitive to feedback inhibition by L-phenylalanine, has been found in each member of the enteric lineage examined. The absence of both the T-protein and DAHP synthase-phe elsewhere in superfamily B indicates the emergence of these character states at approximately the same evolutionary time.

  10. Clickable tyrosine binding bifunctional linkers for preparation of DNA-protein conjugates.

    PubMed

    Bauer, Dennis M; Ahmed, Ishtiaq; Vigovskaya, Antonina; Fruk, Ljiljana

    2013-06-19

    We have prepared bifunctional linkers containing clickable functional groups that enable preparation of protein-DNA conjugates through binding onto tyrosine residues. Mild conjugation strategy was demonstrated using two proteins, streptavidin(STV) and myoglobin (Mb) and it resulted in conjugates with preserved functionality of both the proteins and DNA strands. Furthermore, we show that protein-DNA conjugates can be successfully immobilized onto solid surface containing complementary DNA strands and the enzymatic activity of Mb-DNA conjugates is even higher than that of corresponding conjugates prepared through Lys binding.

  11. Redirecting NK cells mediated tumor cell lysis by a new recombinant bifunctional protein

    PubMed Central

    Germain, Claire; Campigna, Emmanuelle; Salhi, Imed; Morisseau, Sébastien; Navarro-Teulon, Isabelle; Mach, Jean-Pierre; Pèlegrin, André; Robert, Bruno

    2008-01-01

    Natural killer (NK) cells are at the crossroad between innate and adaptive immunity and play a major role in cancer immunosurveillance. NK cell stimulation depends on a balance between inhibitory and activating receptors, such as the stimulatory lectinlike receptor NKG2D. To redirect NK cells against tumor cells we designed bifunctional proteins able to specifically bind tumor cells and to induce their lysis by NK cells, after NKG2D engagement. To this aim, we used the “knob into hole” heterodimerization strategy, in which “knob” and “hole” variants were generated by directed mutagenesis within the CH3 domain of human IgG1 Fc fragments fused to an anti-CEA or anti-HER2 scFv or to the H60 murine ligand of NKG2D, respectively. We demonstrated the capacity of the bifunctional proteins produced to specifically coat tumor cells surface with H60 ligand. Most importantly, we demonstrated that these bifunctional proteins were able to induce an NKG2D-dependent and antibody-specific tumor cell lysis by murine NK cells. Overall, the results show the possibility to redirect NK cytotoxicity to tumor cells by a new format of recombinant bispecific antibody, opening the way of potential NK cell-based cancer immunotherapies by specific activation of the NKG2D receptor at the tumor site. PMID:18790793

  12. Engineered bifunctional proteins and stem cells: next generation of targeted cancer therapeutics.

    PubMed

    Choi, Sung Hugh; Shah, Khalid

    2016-09-01

    Redundant survival signaling pathways and their crosstalk within tumor and/or between tumor and their microenvironment are key impediments to developing effective targeted therapies for cancer. Therefore developing therapeutics that target multiple receptor signaling pathways in tumors and utilizing efficient platforms to deliver such therapeutics are critical to the success of future targeted therapies. During the past two decades, a number of bifunctional multi-targeting antibodies, fusion proteins, and oncolytic viruses have been developed and various stem cell types have been engineered to efficiently deliver them to tumors. In this review, we discuss the design and efficacy of therapeutics targeting multiple pathways in tumors and the therapeutic potential of therapeutic stem cells engineered with bifunctional agents.

  13. Preparation and protein conjugation of a divinyl sulphone derivatized bifunctional chelating agent.

    PubMed

    Somayaji, V V; Naicker, S S; Sykes, T R; Guay, V; Noujaim, A A

    1996-12-01

    A new bifunctional chelating agent with a novel linking arm, 2-[p-¿N-benzyl-N-(2-vinylsulfoethyl)¿- (aminobenzyl)¿-1,3-propane-diamine-N,N,N',N'-tetraacetic acid (VS-PDTA) was synthesized and was conjugated to protein for the purpose of attaching radiometals to monoclonal antibodies (MAbs). The effect of various parameters such as ligand concentration, protein concentration, pH, temperature and reaction period on the conjugation have been examined using chromatographic (SE and TLC) analysis after labeling with 111In. The parameters and chemical variables studied have significant effects on the efficiency and rate of protein conjugation.

  14. Characterization of Afb, a novel bifunctional protein in Streptococcus agalactiae

    PubMed Central

    Dehbashi, Sanaz; Pourmand, Mohammad Reza; Mashhadi, Rahil

    2016-01-01

    Background and Objectives: Streptococcus agalactiae is the leading cause of bacterial sepsis and meningitis in newborns and results in pneumonia and bacteremia in adults. A number of S. agalactiae components are involved in colonization of target cells. Destruction of peptidoglycan and division of covalently linked daughter cells is mediated by autolysins. In this study, autolytic activity and plasma binding ability of AFb novel recombinant protein of S. agalactiae was investigated. Materials and Methods: The gbs1805 gene was cloned and expressed. E. coli strains DH5α and BL21 were used as cloning and expression hosts, respectively. After purification, antigenicity and binding ability to plasma proteins of the recombinant protein was evaluated. Results: AFb, the 18KDa protein was purified successfully. The insoluble mature protein revealed the ability to bind to fibrinogen and fibronectin. This insoluble mature protein revealed that it has the ability to bind to fibrinogen and fibronectin plasma proteins. Furthermore, in silico analysis demonstrated the AFb has an autolytic activity. Conclusions: AFb is a novel protein capable of binding to fibrinogen and fibronectin. This findings lay a ground work for further investigation of the role of the bacteria in adhesion and colonization to the host. PMID:27092228

  15. Peroxisomal D-bifunctional protein deficiency: First case reports from Slovakia.

    PubMed

    Konkoľová, J; Petrovič, R; Chandoga, J; Repiský, M; Zelinková, H; Kršiaková, J; Kolníková, M; Kantarská, D; Šutovský, S; Böhmer, D

    2015-08-15

    D-bifunctional protein deficiency (#OMIM 261515) is a rare autosomal recessive hereditary metabolic disorder causing severe clinical and biochemical abnormalities that are usually fatal in the course of the first years of life. This disease is classified as single enzyme peroxisomal disorder affecting the β-oxidation pathway in this compartment. In this paper we present a full overview of the clinical presentation, magnetic resonance imaging, biochemical and molecular data of two Slovak D-bifunctional protein deficient patients. In the clinical presentation of both patients severe generalized hypotonia, depression of neonatal reflexes, craniofacial dysmorphism and seizures dominated starting from the second day of life. In both patients, who died up to two years of life, we found elevated plasma levels of very long chain fatty acids and we identified the presence of causative mutations in the HSD17B4 gene. In the first case, we found the homozygous mutation c.46G>A, which is responsible for a defect in the dehydrogenase domain. In the second patient, the heterozygous mutations c.1369A>G and c.1516C>T were present and functionally they are related to the hydratase domain of the protein. This combination of mutations in the second patient is very rare and has not been reported until now. The presence of mutations was examined in all family members, and the resulting data were successfully utilized for prenatal diagnosis. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Neurodegeneration in D-bifunctional protein deficiency: diagnostic clues and natural history using serial magnetic resonance imaging.

    PubMed

    Khan, Aneal; Wei, Xing-Chang; Snyder, Floyd F; Mah, Jean K; Waterham, Hans; Wanders, Ronald J A

    2010-12-01

    We report serial neurodegenerative changes on neuroimaging in a rare peroxisomal disease called D-bifunctional protein deficiency. The pattern of posterior to anterior demyelination with white matter disease resembles X-linked adrenoleukodystrophy. We feel this case is important to (1) highlight that D-bifunctional protein deficiency should be considered in cases where the neuroimaging resembles X-linked adrenoleukodystrophy, (2) to show different stages of progression to help identify this disease using neuroimaging in children, and (3) to show that neuroimaging suggesting a leukodystrophy can warrant peroxisomal beta-oxidation studies in skin fibroblasts even when plasma very long chain fatty acids are normal.

  17. MICA/IL-12: A novel bifunctional protein for killer cell activation.

    PubMed

    Tietje, Ashlee; Yang, Xi; Yu, Xianzhong; Wei, Yanzhang

    2017-03-01

    Natural killer (NK) cells have the potential to be effective killers of tumor cells. They are governed by inhibitory and activating receptors such as NKG2D, whose ligands are normally upregulated in cells that are stressed, like cancer cells. Advanced cancer cells, however, have ways to reduce the expression of these ligands, leaving them less detectable by NK cells. Along with these receptors, NK cells also require activating cytokines, such as IL-12. A previous study in our laboratory showed that a fusion protein of the extracellular domain of mouse UL-16 binding protein-like transcript 1 (MULT1E) and mouse interleukin 12 (IL-12) can effectively activate mouse NK cells by in vitro assays and in vivo in animal tumor models. The aim of the present study was to expand the concept of developing a novel bifunctional fusion protein for enhanced NK cell activation to human killer cells. The proposed protein combines the extracellular domain of a human NKG2D ligand, MHC class I polypeptide-related sequence A (MICA) and IL-12. It is hypothesized that when expressed by tumor cells, the protein will activate human NK and other killer cells using the NKG2D receptor, and deliver IL-12 to the NK cells where it can interact with the IL-12R and enhance cytotoxicity. The fusion protein, when expressed by engineered tumor cells, indeed activated NK92 cells as measured by an increase in interferon-γ (IFN-γ) production and an increase in cytotoxicity of tumor cells. The fusion protein was also able to increase the proliferation of human peripheral blood mononuclear cells (PBMCs) and augment their production of IFN-γ. This study along with the data from the previous mouse studies suggest that the MICA/IL-12 bifunctional fusion protein represents an effective activator of killer cells for cancer treatment.

  18. Peroxisomal bifunctional protein deficiency revisited: resolution of its true enzymatic and molecular basis.

    PubMed Central

    van Grunsven, E G; van Berkel, E; Mooijer, P A; Watkins, P A; Moser, H W; Suzuki, Y; Jiang, L L; Hashimoto, T; Hoefler, G; Adamski, J; Wanders, R J

    1999-01-01

    In the past few years, many patients have been described who have a defect of unknown origin in the peroxisomal beta-oxidation pathway. Complementation analysis has been done by various groups to establish the extent of the genetic heterogeneity among the patients. These studies were based on the use of two established cell lines, one with a deficiency of acyl-CoA oxidase and one with a deficiency of l-bifunctional protein (l-BP), and they showed that most patients belong to the l-BP-deficient group. However, molecular analysis of the cDNA encoding l-BP in patients failed to show any mutations. The recent identification of a new d-specific bifunctional protein (d-BP) prompted us to reinvestigate the original patient with presumed l-BP deficiency. In a collaborative effort, we have now found that the true defect in this patient is at the level of the d-BP and not at the level of the l-BP. Our results suggest that most, if not all, patients whose condition has been diagnosed as l-BP are, in fact, d-BP deficient. We tested this hypothesis in nine patients whose condition was diagnosed as l-BP deficiency on the basis of complementation analysis and found clear-cut mutations in the d-BP cDNA from all patients. PMID:9915948

  19. Arabidopsis RIBA Proteins: Two out of Three Isoforms Have Lost Their Bifunctional Activity in Riboflavin Biosynthesis

    PubMed Central

    Hiltunen, Hanna-Maija; Illarionov, Boris; Hedtke, Boris; Fischer, Markus; Grimm, Bernhard

    2012-01-01

    Riboflavin serves as a precursor for flavocoenzymes (FMN and FAD) and is essential for all living organisms. The two committed enzymatic steps of riboflavin biosynthesis are performed in plants by bifunctional RIBA enzymes comprised of GTP cyclohydrolase II (GCHII) and 3,4-dihydroxy-2-butanone-4-phosphate synthase (DHBPS). Angiosperms share a small RIBA gene family consisting of three members. A reduction of AtRIBA1 expression in the Arabidopsis rfd1mutant and in RIBA1 antisense lines is not complemented by the simultaneously expressed isoforms AtRIBA2 and AtRIBA3. The intensity of the bleaching leaf phenotype of RIBA1 deficient plants correlates with the inactivation of AtRIBA1 expression, while no significant effects on the mRNA abundance of AtRIBA2 and AtRIBA3 were observed. We examined reasons why both isoforms fail to sufficiently compensate for a lack of RIBA1 expression. All three RIBA isoforms are shown to be translocated into chloroplasts as GFP fusion proteins. Interestingly, both AtRIBA2 and AtRIBA3 have amino acid exchanges in conserved peptides domains that have been found to be essential for the two enzymatic functions. In vitro activity assays of GCHII and DHBPS with all of the three purified recombinant AtRIBA proteins and complementation of E. coli ribA and ribB mutants lacking DHBPS and GCHII expression, respectively, confirmed the loss of bifunctionality for AtRIBA2 and AtRIBA3. Phylogenetic analyses imply that the monofunctional, bipartite RIBA3 proteins, which have lost DHBPS activity, evolved early in tracheophyte evolution. PMID:23203051

  20. A Bifunctional Amino Acid Enables Both Covalent Chemical Capture and Isolation of in Vivo Protein-Protein Interactions.

    PubMed

    Joiner, Cassandra M; Breen, Meghan E; Clayton, James; Mapp, Anna K

    2017-01-17

    In vivo covalent chemical capture by using photoactivatable unnatural amino acids (UAAs) is a powerful tool for the identification of transient protein-protein interactions (PPIs) in their native environment. However, the isolation and characterization of the crosslinked complexes can be challenging. Here, we report the first in vivo incorporation of the bifunctional UAA BPKyne for the capture and direct labeling of crosslinked protein complexes through post-crosslinking functionalization of a bioorthogonal alkyne handle. Using the prototypical yeast transcriptional activator Gal4, we demonstrate that BPKyne is incorporated at the same level as the commonly used photoactivatable UAA pBpa and effectively captures the Gal4-Gal80 transcriptional complex. Post-crosslinking, the Gal4-Gal80 adduct was directly labeled by treatment of the alkyne handle with a biotin-azide probe; this enabled facile isolation and visualization of the crosslinked adduct from whole-cell lysate. This bifunctional amino acid extends the utility of the benzophenone crosslinker and expands our toolbox of chemical probes for mapping PPIs in their native cellular environment. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Production of a bifunctional hybrid molecule B72.3/metallothionein-1 by protein engineering.

    PubMed Central

    Xiang, J; Koropatnick, J; Qi, Y; Luo, X; Moyana, T; Li, K; Chen, Y

    1993-01-01

    A hybrid anti-tumour B72.3 antibody/metallothionein protein B72.3MT-1 was produced by the construction of the expression vector mpSV2neo-EP1-B72.3MT-1. This vector contained the neo gene as a selection marker, the murine immunoglobulin promoter and enhancer, and the hybrid B72.3 heavy chain gene fragment with mouse metallothionein-1 cDNA gene ligated into its CH2 domain. The expression vector was transfected to the heavy chain loss mutant B72.3Mut(K) cell line. The hybrid protein B72.3MT-1 was purified from transfectant supernates using a Protein G column. We showed that the hybrid protein retained the binding reactivity for the TAG72 antigen as the original B72.3 antibody, and the metal-binding capacity of the native metallothionein molecule. Therefore, the bifunctional hybrid protein B72.3MT-1 may be very useful in cancer imaging when labelled with radionuclides such as 99mTc. Images Figure 3 Figure 6 Figure 7 PMID:8495976

  2. cncRNAs: Bi-functional RNAs with protein coding and non-coding functions.

    PubMed

    Kumari, Pooja; Sampath, Karuna

    2015-12-01

    For many decades, the major function of mRNA was thought to be to provide protein-coding information embedded in the genome. The advent of high-throughput sequencing has led to the discovery of pervasive transcription of eukaryotic genomes and opened the world of RNA-mediated gene regulation. Many regulatory RNAs have been found to be incapable of protein coding and are hence termed as non-coding RNAs (ncRNAs). However, studies in recent years have shown that several previously annotated non-coding RNAs have the potential to encode proteins, and conversely, some coding RNAs have regulatory functions independent of the protein they encode. Such bi-functional RNAs, with both protein coding and non-coding functions, which we term as 'cncRNAs', have emerged as new players in cellular systems. Here, we describe the functions of some cncRNAs identified from bacteria to humans. Because the functions of many RNAs across genomes remains unclear, we propose that RNAs be classified as coding, non-coding or both only after careful analysis of their functions.

  3. Development of a bifunctional filter for prion protein and leukoreduction of red blood cell components.

    PubMed

    Yokomizo, Tomo; Kai, Takako; Miura, Morikazu; Ohto, Hitoshi

    2015-02-01

    Leukofiltration of blood components is currently implemented worldwide as a precautionary measure against white blood cell-associated adverse effects and the potential transmission of variant Creutzfeldt-Jakob disease (vCJD). A newly developed bifunctional filter (Sepacell Prima, Asahi Kasei Medical) was assessed for prion removal, leukoreduction (LR), and whether the filter significantly affected red blood cells (RBCs). Sepacell Prima's postfiltration effects on RBCs, including hemolysis, complement activation, and RBC chemistry, were compared with those of a conventional LR filter (Sepacell Pure RC). Prion removal was measured by Western blot after spiking RBCs with microsomal fractions derived from scrapie-infected hamster brain homogenate. Serially diluted exogenous prion solutions (0.05 mL), with or without filtration, were injected intracerebrally into Golden Syrian hamsters. LR efficiency of 4.44 log with the Sepacell Prima was comparable to 4.11 log with the conventional LR filter. There were no significant differences between the two filters in hemoglobin loss, hemolysis, complement activation, and RBC biomarkers. In vitro reduction of exogenously spiked prions by the filter exceeded 3 log. The titer, 6.63 (log ID50 /mL), of prefiltration infectivity of healthy hamsters was reduced to 2.52 (log ID50 /mL) after filtration. The reduction factor was calculated as 4.20 (log ID50 ). With confirmed removal efficacy for exogenous prion protein, this new bifunctional prion and LR filter should reduce the residual risk of vCJD transmission through blood transfusion without adding complexity to component processing. © 2014 AABB.

  4. Versatile protein-based bifunctional nano-systems (encapsulation and directed assembly): Selective nanoscale positioning of gold nanoparticle-viral protein hybrids

    NASA Astrophysics Data System (ADS)

    Zheng, Bin; Zettsu, Nobuyuki; Fukuta, Megumi; Uenuma, Mutsunori; Hashimoto, Tatsuya; Gamo, Kentaro; Uraoka, Yukiharu; Yamashita, Ichiro; Watanabe, Heiji

    2011-04-01

    We demonstrate a selective nanoscale positioning of targeted Au nanoparticles (NPs) through a bifunctional protein-based encapsulation/delivery system. The newly designed recombinant bifunctional protein, appended with both gold-binding peptide (GBP) and Ti/Si-binding peptide (TBP) at the C- and N-termini efficiently encapsulated 15-20 nm-diameter Au NPs during the pH-controlled reversible reassembly process, and showed the ability of the internalized Au NPs in selective binding to nanometer-scale Ti islands without overshooting. This highly controlled placement of the Au NPs on substrates can be employed to make both large scale devices and point-contact devices.

  5. Bifunctional glass membrane designed to interface SDS-PAGE separations of proteins with the detection of peptides by mass spectrometry.

    PubMed

    Hattan, Stephen J; Du, Jie; Parker, Kenneth C

    2015-04-07

    We describe the construction and characterization of a novel membrane designed to allow proteins separated by gel electrophoresis (SDS-PAGE) to be detected as peptides by mass spectrometry in an efficient and comprehensive manner. The key attribute of the membrane is a bifunctional design that allows for the digestion of protein(s) and retention of the resulting peptides with minimal lateral diffusion. Silane chemistries are used to differentially treat the opposing surfaces of a glass filter paper to enable this unique capability.

  6. Peroxisomal D-bifunctional protein deficiency: three adults diagnosed by whole-exome sequencing.

    PubMed

    Lines, Matthew A; Jobling, Rebekah; Brady, Lauren; Marshall, Christian R; Scherer, Stephen W; Rodriguez, Amadeo R; Lee, Liesly; Lang, Anthony E; Mestre, Tiago A; Wanders, Ronald J A; Ferdinandusse, Sacha; Tarnopolsky, Mark A

    2014-03-18

    To determine the causative genetic lesion in 3 adult siblings with a slowly progressive, juvenile-onset phenotype comprising cerebellar atrophy and ataxia, intellectual decline, hearing loss, hypogonadism, hyperreflexia, a demyelinating sensorimotor neuropathy, and (in 2 of 3 probands) supratentorial white matter changes, in whom numerous prior investigations were nondiagnostic. The patients' initial clinical assessment included history and physical examination, cranial MRI, and nerve conduction studies. We performed whole-exome sequencing of all 3 probands, followed by variant annotation and selection of rare, shared, recessive coding changes to identify the gene responsible. We next performed a panel of peroxisomal investigations in blood and cultured fibroblasts, including assessment of D-bifunctional protein (DBP) stability and activity by immunoblot and enzymologic methods, respectively. Exome sequencing identified compound heterozygous mutations in HSD17B4, encoding peroxisomal DBP, in all 3 probands. Both identified mutations alter a conserved residue within the active site of DBP's enoyl-CoA hydratase domain. Routine peroxisomal screening tests, including very long-chain fatty acids and phytanic acid, were normal. DBP enzymatic activity was markedly reduced. Exome sequencing provides a powerful and elegant tool in the specific diagnosis of "mild" or "atypical" neurometabolic disorders. Given the broad differential diagnosis and the absence of detectable biochemical abnormalities in blood, molecular testing of HSD17B4 should be considered as a first-line investigation in patients with compatible features.

  7. Heterozygous mutations in HSD17B4 cause juvenile peroxisomal D-bifunctional protein deficiency.

    PubMed

    Amor, David J; Marsh, Ashley P L; Storey, Elsdon; Tankard, Rick; Gillies, Greta; Delatycki, Martin B; Pope, Kate; Bromhead, Catherine; Leventer, Richard J; Bahlo, Melanie; Lockhart, Paul J

    2016-12-01

    To determine the genetic cause of slowly progressive cerebellar ataxia, sensorineural deafness, and hypergonadotropic hypogonadism in 5 patients from 3 different families. The patients comprised 2 sib pairs and 1 sporadic patient. Clinical assessment included history, physical examination, and brain MRI. Linkage analysis was performed separately on the 2 sets of sib pairs using single nucleotide polymorphism microarrays, followed by analysis of the intersection of the regions. Exome sequencing was performed on 1 affected patient with variant filtering and prioritization undertaken using these intersected regions. Using a combination of sequencing technologies, we identified compound heterozygous mutations in HSD17B4 in all 5 affected patients. In all 3 families, peroxisomal D-bifunctional protein (DBP) deficiency was caused by compound heterozygosity for 1 nonsense/deletion mutation and 1 missense mutation. We describe 5 patients with juvenile DBP deficiency from 3 different families, bringing the total number of reported patients to 14, from 8 families. This report broadens and consolidates the phenotype associated with juvenile DBP deficiency.

  8. Heterozygous mutations in HSD17B4 cause juvenile peroxisomal D-bifunctional protein deficiency

    PubMed Central

    Amor, David J.; Marsh, Ashley P.L.; Storey, Elsdon; Tankard, Rick; Gillies, Greta; Delatycki, Martin B.; Pope, Kate; Bromhead, Catherine; Leventer, Richard J.; Bahlo, Melanie

    2016-01-01

    Objective: To determine the genetic cause of slowly progressive cerebellar ataxia, sensorineural deafness, and hypergonadotropic hypogonadism in 5 patients from 3 different families. Methods: The patients comprised 2 sib pairs and 1 sporadic patient. Clinical assessment included history, physical examination, and brain MRI. Linkage analysis was performed separately on the 2 sets of sib pairs using single nucleotide polymorphism microarrays, followed by analysis of the intersection of the regions. Exome sequencing was performed on 1 affected patient with variant filtering and prioritization undertaken using these intersected regions. Results: Using a combination of sequencing technologies, we identified compound heterozygous mutations in HSD17B4 in all 5 affected patients. In all 3 families, peroxisomal D-bifunctional protein (DBP) deficiency was caused by compound heterozygosity for 1 nonsense/deletion mutation and 1 missense mutation. Conclusions: We describe 5 patients with juvenile DBP deficiency from 3 different families, bringing the total number of reported patients to 14, from 8 families. This report broadens and consolidates the phenotype associated with juvenile DBP deficiency. PMID:27790638

  9. [The biotin-thyroxin conjugate as a bifunctional ligand of binding proteins].

    PubMed

    Novakovskiĭ, M E; Vashkevich, I I; Sviridov, O V

    2009-01-01

    The conjugate of the residue of vitamin H (biotin, Bt) with the hormone of thyroid gland thyroxin (T4) was prepared by N-acylation of N-(3-aminopropyl) biotin amide with N-hydroxysuccinimide ester of N-acetyl thyroxin. The interactions of the Bt-T4 conjugate with one or simultaneously with two binding proteins with affinity to Bt or T4 in solution and on a solid phase were studied by electron spectroscopy, enzyme immunoassay, and computer modeling. Bt-T4 was specifically fixed in the Bt-binding site of the streptavidin molecule via a large number of hydrogen bonds and hydrophobic interactions. The maximum of the streptavidin fluorescence shifted to a long-wave area and its intensity decreased as a result of complex formation. The degree of quenching of the protein emission was significantly higher than that of the streptavidin-Bt complex. Additional fluorescence quenching resulted from interactions which were sensitive to pH, ionic strength, and detergents and stabilized the position of the thyroxin part of the conjugate near Trp120 of streptavidin in its complex with Bt-T4. The Bt-T4 conjugate also formed a specific equimolar complex with T4-binding human globulin (TBG) by the same mechanism as that for T4. The Bt residue did not participate in the interactions which changed characteristics of the TBG fluorophores. The Bt-T4 conjugate was bound to avidin on a solid phase in the solid phase enzyme immunoassay owing to its biotin function, whereas its thyroxin part was exposed to a solution and interacted with polyclonal antibodies to T4. The intact T4 competitively inhibited this interaction after its addition to the system. Bt-T4 also exhibited its bifunctional activity in other immune analytic system. The conjugate bound streptavidin was labeled with Eu(3+)-chelate and subsequently formed a three component complex with participation of a monoclonal antibody to T4 immobilized on a solid phase. Free T4 inhibited the thyroxin function of the conjugate bound to the

  10. Diagnosis of D-Bifunctional Protein Deficiency through Whole-Genome Sequencing: Implications for Cost-Effective Care

    PubMed Central

    Khromykh, Alina; Solomon, Benjamin D.; Bodian, Dale L.; Leon, Eyby L.; Iyer, Ramaswamy K.; Baker, Robin L.; Ascher, David P.; Baveja, Rajiv; Vockley, Joseph G.; Niederhuber, John E.

    2015-01-01

    D-Bifunctional protein deficiency, caused by recessive mutations in HSD17B4, is a severe disorder of peroxisomal fatty acid oxidation. Nonspecific clinical features may contribute to diagnostic challenges. We describe a newborn female with infantile-onset seizures and nonspecific mild dysmorphisms who underwent extensive genetic workup that resulted in the detection of a novel homozygous mutation (c.302+1_4delGTGA) in the HSD17B4 gene, consistent with a diagnosis of D-bifunctional protein deficiency. By comparing the standard clinical workup to diagnostic analysis performed through research-based whole-genome sequencing (WGS), which independently identified the causative mutation, we demonstrated the ability of genomic sequencing to serve as a timely and cost-effective diagnostic tool for the molecular diagnosis of apparent and occult newborn diseases. As genomic sequencing becomes more available and affordable, we anticipate that WGS and related omics technologies will eventually replace the traditional tiered approach to newborn diagnostic workup. PMID:26733776

  11. Diagnosis of D-Bifunctional Protein Deficiency through Whole-Genome Sequencing: Implications for Cost-Effective Care.

    PubMed

    Khromykh, Alina; Solomon, Benjamin D; Bodian, Dale L; Leon, Eyby L; Iyer, Ramaswamy K; Baker, Robin L; Ascher, David P; Baveja, Rajiv; Vockley, Joseph G; Niederhuber, John E

    2015-09-01

    D-Bifunctional protein deficiency, caused by recessive mutations in HSD17B4, is a severe disorder of peroxisomal fatty acid oxidation. Nonspecific clinical features may contribute to diagnostic challenges. We describe a newborn female with infantile-onset seizures and nonspecific mild dysmorphisms who underwent extensive genetic workup that resulted in the detection of a novel homozygous mutation (c.302+1_4delGTGA) in the HSD17B4 gene, consistent with a diagnosis of D-bifunctional protein deficiency. By comparing the standard clinical workup to diagnostic analysis performed through research-based whole-genome sequencing (WGS), which independently identified the causative mutation, we demonstrated the ability of genomic sequencing to serve as a timely and cost-effective diagnostic tool for the molecular diagnosis of apparent and occult newborn diseases. As genomic sequencing becomes more available and affordable, we anticipate that WGS and related omics technologies will eventually replace the traditional tiered approach to newborn diagnostic workup.

  12. Synthesis and Detection by HPLC of 3-Oxohexadecanoyl-CoA for the Study of Peroxisomal Bifunctional Proteins.

    PubMed

    Tsuchida, Shirou; Tenma, Ayumu; Hamaue, Naoya; Murai, Tsuyoshi; Yoshimura, Teruki; Aoki, Takashi; Kurosawa, Takao

    2017-07-01

    3-oxohexadecanoyl-CoA was synthesized for the study of D-bifunctional protein (EC 4. 2. 1. 107, EC 4. 2. 1. 119, EC 1. 1. 1. n12) and L-bifunctional protein (EC 4. 2. 1. 17, EC 5. 3. 3. 8, EC 1. 1. 1. 35). First, tetradecanal was subjected to the Reformatsky reaction with ethyl bromoacetate, and the product was then converted into ethyl 3-oxohexadecanoate. After acetalization of the 3-oxo ester with ethylene glycol, 3,3-ethlenedioxyhexadecanoic acid was obtained by alkaline hydrolysis. The acid was condensed with coenzyme A (CoA) by the mixed anhydride method, and the resulting CoA ester was deprotected with 4 M HCl to obtain 3-oxohexadecanoyl-CoA. In addition, the behavior of the CoA ester under several conditions of high-performance liquid chromatography (HPLC) was also investigated. We established separation detection of (R)-3-hydroxyhexadecanoyl-CoA, (S)-3-hydroxyhexadecaboyl-CoA, 3-oxohexadecanoyl-CoA, and trans-2-hexadecenoyl-CoA.

  13. Lactoferrin binding protein B – a bi-functional bacterial receptor protein

    PubMed Central

    Ostan, Nicholas K. H.; Yu, Rong-Hua; Ng, Dixon; Lai, Christine Chieh-Lin; Sarpe, Vladimir; Schriemer, David C.

    2017-01-01

    Lactoferrin binding protein B (LbpB) is a bi-lobed outer membrane-bound lipoprotein that comprises part of the lactoferrin (Lf) receptor complex in Neisseria meningitidis and other Gram-negative pathogens. Recent studies have demonstrated that LbpB plays a role in protecting the bacteria from cationic antimicrobial peptides due to large regions rich in anionic residues in the C-terminal lobe. Relative to its homolog, transferrin-binding protein B (TbpB), there currently is little evidence for its role in iron acquisition and relatively little structural and biophysical information on its interaction with Lf. In this study, a combination of crosslinking and deuterium exchange coupled to mass spectrometry, information-driven computational docking, bio-layer interferometry, and site-directed mutagenesis was used to probe LbpB:hLf complexes. The formation of a 1:1 complex of iron-loaded Lf and LbpB involves an interaction between the Lf C-lobe and LbpB N-lobe, comparable to TbpB, consistent with a potential role in iron acquisition. The Lf N-lobe is also capable of binding to negatively charged regions of the LbpB C-lobe and possibly other sites such that a variety of higher order complexes are formed. Our results are consistent with LbpB serving dual roles focused primarily on iron acquisition when exposed to limited levels of iron-loaded Lf on the mucosal surface and effectively binding apo Lf when exposed to high levels at sites of inflammation. PMID:28257520

  14. A selectable bifunctional beta-galactosidase::phleomycin-resistance fusion protein as a potential marker for eukaryotic cells.

    PubMed

    Baron, M; Reynes, J P; Stassi, D; Tiraby, G

    1992-05-15

    The Sh ble gene, conferring phleomycin resistance (PhR), was fused in frame to both the 3' and 5' ends of the Escherichia coli lacZ gene. The bifunctionality of the resulting 130-kDa hybrid proteins was demonstrated in E. coli and in the fungus, Tolypocladium geodes. PhR transformants of both organisms could be selected for. All transformants from E. coli and most from T. geodes displayed beta Gal activity. In the fungal host, higher transformation frequencies and greater levels of beta Gal activity were observed in clones harboring the lacZ::Sh ble fusion, as compared to the Sh ble::lacZ configuration. This system appears to be a potentially useful tool for the direct selection of transformants, and the evaluation of gene expression and regulation in a wide variety of prokaryotic and eukaryotic hosts.

  15. Sinorhizobium meliloti flavin secretion and bacteria-host interaction: role of the bifunctional RibBA protein.

    PubMed

    Yurgel, Svetlana N; Rice, Jennifer; Domreis, Elizabeth; Lynch, Joseph; Sa, Na; Qamar, Zeeshan; Rajamani, Sathish; Gao, Mengsheng; Roje, Sanja; Bauer, Wolfgang D

    2014-05-01

    Sinorhizobium meliloti, the nitrogen-fixing bacterial symbiont of Medicago spp. and other legumes, secretes a considerable amount of riboflavin. This precursor of the cofactors flavin mononucleotide and flavin adenine dinucleotide is a bioactive molecule that has a beneficial effect on plant growth. The ribBA gene of S. meliloti codes for a putative bifunctional enzyme with dihydroxybutanone phosphate synthase and guanosine triphosphate (GTP) cyclohydrolase II activities, catalyzing the initial steps of the riboflavin biosynthesis pathway. We show here that an in-frame deletion of ribBA does not cause riboflavin auxotrophy or affect the ability of S. meliloti to establish an effective symbiosis with the host plant but does affect the ability of the bacteria to secrete flavins, colonize host-plant roots, and compete for nodulation. A strain missing the RibBA protein retains considerable GTP cyclohydrolase II activity. Based on these results, we hypothesize that S. meliloti has two partly interchangeable modules for biosynthesis of riboflavin, one fulfilling the internal need for flavins in bacterial metabolism and the other producing riboflavin for secretion. Our data also indicate that bacteria-derived flavins play a role in communication between rhizobia and the legume host and that the RibBA protein is important in this communication process even though it is not essential for riboflavin biosynthesis and symbiosis.

  16. Bi-functional CD22 ligands use multimeric immunoglobulins as protein scaffolds in assembly of immune complexes on B cells

    PubMed Central

    O'Reilly, Mary K.; Collins, Brian E.; Han, Shoufa; Liao, Liang; Rillahan, Cory; Kitov, Pavel I.; Bundle, David R.; Paulson, James C.

    2008-01-01

    CD22 is a B cell specific sialic-acid-binding immunoglobulin-like lectin (Siglec) whose function as a regulator of B cell signaling is modulated by its interaction with glycan ligands bearing the sequence NeuAcα2-6Gal. To date, only highly multivalent polymeric ligands (n=450) have achieved sufficient avidity to bind to CD22 on native B cells. Here we demonstrate that a synthetic bi-functional molecule comprising a ligand of CD22 linked to an antigen (nitrophenol; NP) can use a monoclonal anti-NP-IgM as a decavalent protein scaffold to efficiently drive assembly of IgM-CD22 complexes on the surface of native B cells. Surprisingly, anti-NP antibodies of lower valency, IgA (n =4) and IgG (n =2), were also found to drive complex formation, though with lower avidity. Ligands bearing alternate linkers of variable length and structure were constructed to establish the importance of a minimal length requirement, and versatility in the structural requirement. We show that the ligand drives assembly of IgM complexes exclusively on the surface of B cells and not other classes of white blood cells that do not express CD22, which lends itself to the possibility of targeting B cells in certain hematopoietic malignancies. PMID:18505252

  17. Conversion of β-carotene into astaxanthin: Two separate enzymes or a bifunctional hydroxylase-ketolase protein?

    PubMed Central

    Martín, Juan F; Gudiña, Eduardo; Barredo, José L

    2008-01-01

    Astaxanthin is a xanthophyll of great interest in animal nutrition and human health. The market prospect in the nutraceutics industries for this health-protective molecule is very promising. Astaxanthin is synthesized by several bacteria, algae and plants from β-carotene by the sequential action of two enzymes: a β-carotene, 3,3'-hydroxylase that introduces an hydroxyl group at the 3 (and 3') positions of each of the two β-ionone rings of β-carotene, and a β-carotene ketolase that introduces keto groups at carbons 4 and 4' of the β-ionone rings. Astaxanthin is also produced by the yeast-like basidiomycete Xanthophyllomyces dendrorhous. A gene crtS involved in the conversion of β-carotene to astaxanthin has been cloned simultaneously by two research groups. Complementation studies of X. dendrorhous mutants and expression analysis in Mucor circinelloides reveals that the CrtS enzyme is a β-carotene hydroxylase of the P-450 monooxygenase family that converts β-carotene to the hydroxylated derivatives β-cryptoxanthin and zeaxanthin, but it does not form astaxanthin or the ketolated intermediates in this fungus. A bifunctional β-carotene hydroxylase-ketolase activity has been proposed for the CrtS protein. The evidence for and against this hypothesis is analyzed in detail in this review. PMID:18289382

  18. Self-assembled bifunctional surface mimics an enzymatic and templating protein for the synthesis of a metal oxide semiconductor

    PubMed Central

    Kisailus, David; Truong, Quyen; Amemiya, Yosuke; Weaver, James C.; Morse, Daniel E.

    2006-01-01

    The recent discovery and characterization of silicatein, a mineral-synthesizing enzyme that assembles to form the filamentous organic core of the glassy skeletal elements (spicules) of a marine sponge, has led to the development of new low-temperature synthetic routes to metastable semiconducting metal oxides. These protein filaments were shown in vitro to catalyze the hydrolysis and structurally direct the polycondensation of metal oxides at neutral pH and low temperature. Based on the confirmation of the catalytic mechanism and the essential participation of specific serine and histidine residues (presenting a nucleophilic hydroxyl and a nucleophilicity-enhancing hydrogen-bonding imidazole nitrogen) in silicatein’s catalytic active site, we therefore sought to develop a synthetic mimic that provides both catalysis and the surface determinants necessary to template and structurally direct heterogeneous nucleation through condensation. Using lithographically patterned poly(dimethylsiloxane) stamps, bifunctional self-assembled monolayer surfaces containing the essential catalytic and templating elements were fabricated by using alkane thiols microcontact-printed on gold substrates. The interface between chemically distinct self-assembled monolayer domains provided the necessary juxtaposition of nucleophilic (hydroxyl) and hydrogen-bonding (imidazole) agents to catalyze the hydrolysis of a gallium oxide precursor and template the condensed product to form gallium oxohydroxide (GaOOH) and the defect spinel, gamma-gallium oxide (γ-Ga2O3). Using this approach, the production of patterned substrates for catalytic synthesis and templating of semiconductors for device applications can be envisioned. PMID:16585518

  19. Slowly progressive d-bifunctional protein deficiency with survival to adulthood diagnosed by whole-exome sequencing.

    PubMed

    Matsukawa, Takashi; Koshi, Kagari Mano; Mitsui, Jun; Bannai, Taro; Kawabe, Miho; Ishiura, Hiroyuki; Terao, Yasuo; Shimizu, Jun; Murayama, Keiko; Yoshimura, Jun; Doi, Koichiro; Morishita, Shinichi; Tsuji, Shoji; Goto, Jun

    2017-01-15

    d-Bifunctional protein (DBP) deficiency is an autosomal recessive disorder of peroxisomal fatty acid oxidation caused by mutations in HSD17B4. It is typically fatal by the age of two years with symptom onset during the neonatal period, and survival until late childhood is rare. We herein report the case of a patient with DBP deficiency surviving until adulthood, who showed severe sensorineural deafness, disturbances in language acquisition, slowly progressive cerebellar ataxia, and peripheral neuropathy. This patient, in whom findings of prior investigations were nondiagnostic, had been followed up as having an early-onset spinocerebellar degeneration of unknown etiology. Whole-exome sequencing analysis at the age of 36 showed two heterozygous variants in the gene HSD17B4, which encodes DBP in this patient. A panel of peroxisomal investigations showed normal levels of very long chain fatty acids (VLCFAs) in plasma and elevated serum phytanic acid levels. Recently, an increasing number of patients with DBP deficiency surviving until adolescence/adulthood have been reported, in whom abnormalities in the levels of VLCFAs and other peroxisomal metabolites are marginal or nonexistent. Genetic analysis of HSD17B4 should be considered in adult patients with cerebellar ataxia, peripheral neuropathy, and pyramidal signs in addition to sensorineural auditory disturbance since childhood. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Design of a bifunctional fusion protein for ovarian cancer drug delivery: single-chain anti-CA125 core-streptavidin fusion protein.

    PubMed

    Wang, Welson Wen-Shang; Das, Dipankar; McQuarrie, Stephen A; Suresh, Mavanur R

    2007-03-01

    We have developed a universal ovarian cancer cell targeting vehicle that can deliver biotinylated therapeutic drugs. A single-chain antibody variable domain (scFv) that recognizes the CA125 antigen of ovarian cancer cells was fused with a core-streptavidin domain (core-streptavidin-VL-VH and VL-VH-core-streptavidin orientations) using recombinant DNA technology and then expressed in Escherichia coli using the T7 expression system. The bifunctional fusion protein (bfFp) was expressed in a shaker flask culture, extracted from the periplasmic soluble protein, and affinity purified using an IMAC column. The two distinct activities (biotin binding and anti-CA125) of the bfFp were demonstrated using ELISA, Western blot and confocal laser-scanning microscopy (CLSM). The ELISA method utilized human NIH OVCAR-3 cells along with biotinylated bovine serum albumin (B-BSA) or biotinylated liposomes, whereas, the Western blot involved probing with B-BSA. The CLSM study has shown specificity in binding to the OVCAR-3 cell-line. ELISA and Western blot studies have confirmed the bifunctional activity and specificity. In the presence of bfFp, there was enhanced binding of biotinylated antigen and liposome to OVCAR-3 cells. In contrast, the control EMT6 cells, which do not express the CA125 antigen, showed minimal binding of the bfFp. Consequently, bfFp based targeting of biotinylated therapeutic drugs, proteins, liposomes, or nanoparticles could be an alternative, convenient method to deliver effective therapy to ovarian cancer patients. Peritoneal infusion of the bfFp-therapeutic complex could also be effective in locally targeting the most common site of metastatic spread.

  1. Bifunctional DTPA-type ligand

    SciTech Connect

    Gansow, O.A.; Brechbiel, M.W.

    1990-03-26

    The subject matter of the invention relates to bifunctional cyclohexyl DTPA ligands and methods of using these compounds. Specifically, such ligands are useful for radiolabeling proteins with radioactive metals, and can consequently be utilized with respect to radioimmunoimaging and/or radioimmunotherapy.

  2. The construction of bifunctional fusion proteins consisting of MutS and GFP.

    PubMed

    Stanisławska-Sachadyn, Anna; Sachadyn, Paweł; Ihle, Karolina; Sydorczuk, Cezary; Wiejacha, Katarzyna; Kur, Józef

    2006-01-24

    MutS as a mismatch binding protein is a promising tool for SNP detection. Green fluorescent protein (GFP) is known as an excellent reporter domain. We constructed chimeric proteins consisting of MutS from Thermus thermophilus and GFPuv from Aequorea victoria by cloning the GFPuv gene into the plasmid vectors carrying the mutS gene. The GFPuv domain fused to the N-terminus of MutS (histag-GFP-MutS) exhibited the same level of green fluorescence as free GFPuv. To obtain the fluorescing histag-GFP-MutS protein the expression at 30 degrees C was required, while free GFPuv fluoresces when expressed both at 30 and 37 degrees C. The chimeric protein where the GFPuv domain was fused to the C-terminus of MutS exhibited much weaker green fluorescence (20-25% compared with those of histag-GFP-MutS or free GFPuv). The insertion of (ProGly)5 peptide linker between the MutS and GFP domains resulted in no significant improvement in GFP fluorescence. No shifts in the excitation and emission spectra have been observed for the GFP domain in the fusion proteins. The fusion proteins with GFP at the N- and C-terminus of MutS recognised DNA mismatches similarly like T. thermophilus MutS. The fluorescent proteins recognising DNA mismatches could be useful for SNP scanning or intracellular DNA analysis. The fusion proteins around 125 kDa were efficiently expressed in E. coli and purified in milligram amounts using metal chellate affinity chromatography.

  3. The HtrA/DegP family protease MamE is a bifunctional protein with roles in magnetosome protein localization and magnetite biomineralization

    PubMed Central

    Quinlan, Anna; Murat, Dorothée; Vali, Hojatollah; Komeili, Arash

    2011-01-01

    Summary Magnetotactic bacteria contain nanometer-sized, membrane-bound organelles, called magnetosomes, which are tasked with the biomineralization of small crystals of the iron oxide magnetite allowing the organism to use geomagnetic field lines for navigation. A key player in this process is the HtrA/DegP family protease MamE. In its absence, Magnetospirillum magneticum str AMB-1 is able to form magnetosome membranes but not magnetite crystals, a defect previously linked to the mislocalization of magnetosome proteins. In this work we use a directed genetic approach to find that MamE, and another predicted magnetosome-associated protease, MamO, likely function as proteases in vivo. However, as opposed to the complete loss of mamE where no biomineralization is observed, the protease-deficient variant of this protein still supports the initiation and formation of small, 20 nm-sized crystals of magnetite, too small to hold a permanent magnetic dipole moment. This analysis also reveals that MamE is a bifunctional protein with a protease-independent role in magnetosome protein localization and a protease-dependent role in maturation of small magnetite crystals. Together these results imply the existence of a previously unrecognized “checkpoint” in biomineralization where MamE moderates the completion of magnetite formation and thus committal to magneto-aerotaxis as the organism’s dominant mode of navigating the environment. PMID:21414040

  4. Fluorescein Derivatives as Bifunctional Molecules for the Simultaneous Inhibiting and Labeling of FTO Protein.

    PubMed

    Wang, Tianlu; Hong, Tingting; Huang, Yue; Su, Haomiao; Wu, Fan; Chen, Yi; Wei, Lai; Huang, Wei; Hua, Xiaoluan; Xia, Yu; Xu, Jinglei; Gan, Jianhua; Yuan, Bifeng; Feng, Yuqi; Zhang, Xiaolian; Yang, Cai-Guang; Zhou, Xiang

    2015-11-04

    The FTO protein is unequivocally reported to play a critical role in human obesity and in the regulation of cellular levels of m(6)A modification, which makes FTO a significant and worthy subject of study. Here, we identified that fluorescein derivatives can selectively inhibit FTO demethylation, and the mechanisms behind these activities were elucidated after we determined the X-ray crystal structures of FTO/fluorescein and FTO/5-aminofluorescein. Furthermore, these inhibitors can also be applied to the direct labeling and enrichment of FTO protein combined with photoaffinity labeling assay.

  5. Bifunctional recombinant fusion proteins for rapid detection of antibodies to both HIV-1 and HIV-2 in whole blood

    PubMed Central

    Gupta, Amita; Chaudhary, Vijay K

    2006-01-01

    Background Availability of accurate diagnostic tests has been helpful in curtailing the spread of HIV infection. Among these, simple, point of care, inexpensive tests which require only a drop of blood from finger-prick and give reliable results within minutes are a must for expansion of testing services and for reaching mobile and marginalised populations. Such tests will not only be a boon for the infrastructure-starved developing and underdeveloped countries but will also be extremely useful in developed countries where post-testing compliance is a major problem. Our laboratory has been involved in developing reagents for heamagglutination-based rapid detection of antibodies to HIV in whole blood using recombinant molecules specific for either HIV-1 or HIV-2. Since it is not required of a screening test to differentially detect HIV and HIV-2, it would useful to create a single molecule capable of simultaneous detection of both HIV-1 and HIV-2 in a drop of blood. Results The present paper describes designing, high-level expression and large-scale purification of new molecules comprising recombinant anti-RBC Fab fused to immunodominant regions of envelope sequences from both gp41 of HIV-1 and gp36 of HIV-2. These immunodominant regions of HIV envelope contain cysteine residues, which make disulfide bond and can interfere with the assembly of light chain and heavy chain fragment to make Fab molecule in vitro. To circumvent this problem, a series of fusion proteins having different combinations of native and mutant envelope sequences were constructed, purified and evaluated for their efficacy in detecting antibodies to HIV-1 and HIV-2. A chimeric molecule comprising native envelope sequence of gp41 of HIV-1 and modified envelope sequence of gp36 of HIV-2 gave good production yield and also detected both HIV-1 and HIV-2 samples with high sensitivity and specificity. Conclusion The new bifunctional antibody fusion protein identified in this study detects both HIV-1

  6. New Helical Binding Domain Mediates a Glycosyltransferase Activity of a Bifunctional Protein*

    PubMed Central

    Zhang, Hua; Zhou, Meixian; Yang, Tiandi; Haslam, Stuart M.; Dell, Anne; Wu, Hui

    2016-01-01

    Serine-rich repeat glycoproteins (SRRPs) conserved in streptococci and staphylococci are important for bacterial colonization and pathogenesis. Fap1, a well studied SRRP is a major surface constituent of Streptococcus parasanguinis and is required for bacterial adhesion and biofilm formation. Biogenesis of Fap1 is a multistep process that involves both glycosylation and secretion. A series of glycosyltransferases catalyze sequential glycosylation of Fap1. We have identified a unique hybrid protein dGT1 (dual glycosyltransferase 1) that contains two distinct domains. N-terminal DUF1792 is a novel GT-D-type glycosyltransferase, transferring Glc residues to Glc-GlcNAc-modified Fap1. C-terminal dGT1 (CgT) is predicted to possess a typical GT-A-type glycosyltransferase, however, the activity remains unknown. In this study, we determine that CgT is a distinct glycosyltransferase, transferring GlcNAc residues to Glc-Glc-GlcNAc-modified Fap1. A 2.4-Å x-ray crystal structure reveals that CgT has a unique binding domain consisting of three α helices in addition to a typical GT-A-type glycosyltransferase domain. The helical domain is crucial for the oligomerization of CgT. Structural and biochemical studies revealed that the helix domain is required for the protein-protein interaction and crucial for the glycosyltransferase activity of CgT in vitro and in vivo. As the helix domain presents a novel structural fold, we conclude that CgT represents a new member of GT-A-type glycosyltransferases. PMID:27539847

  7. Covalent vectored binding of functional proteins by bifunctional crosslinking at silicone interfaces.

    PubMed

    Steiert, Andreas; Reimers, Kerstin; Burke, William; Zapf, Antonia; Vogt, Peter

    2012-05-01

    In the daily clinical routine, numerous synthetic medical devices are implanted in the human body, either temporarily or permanently. The synthetic material most often implanted is polydimethylsiloxane (silicone). Numerous studies have demonstrated that silicone is encompassed in a connective tissue capsule by the body, preventing integration into the surrounding tissue. This can result in complications. The aim of our study was to develop a simple procedure to functionalize the silicone surface, thereby positively affecting the material's biocompatibility. By combining a silanization with the use of ester activation, a reactive amino group is generated, which can bind any free carboxyl group. Directional crosslinking of a near-infrared-conjugated fluorophore antibody to the activated silicone surface could be demonstrated on a dose-dependent basis. The redox reaction at a silicone surface coated with an HRP-conjugated antibody caused by the addition of NBT/BCIP could be shown. Covering the silicone discs with an anti-FAS-antibody coating followed by a coincubation with FAS-sensitive T-cells allowed highly significant detection of caspase-3. In summary, our crosslinking procedure enables the stable binding of proteins without the loss of biological function. Through this process, silicones could be endowed with new functions which could improve their biocompatibility.

  8. Isolation and characterization of bifunctional Escherichia coli TatA mutant proteins that allow efficient tat-dependent protein translocation in the absence of TatB.

    PubMed

    Blaudeck, Natascha; Kreutzenbeck, Peter; Müller, Matthias; Sprenger, Georg A; Freudl, Roland

    2005-02-04

    In Escherichia coli, the Tat system promotes the membrane translocation of a subset of exported proteins across the cytoplasmic membrane. Four genes (tatA, tatB, tatC, and tatE) have been identified that encode the components of the E. coli Tat translocation apparatus. Whereas TatA and TatE can functionally substitute for each other, the TatB and the TatC proteins have been shown to perform distinct functions. In contrast to Tat systems of the ABC(E) type found in E. coli and many other bacteria, some microorganisms possess a TatAC-type translocase that consists of TatA and TatC only, suggesting that, in these systems, TatB is not required or that one of the remaining components (TatA or TatC) additionally takes over the TatB function. We have addressed the molecular basis for the difference in subunit composition between TatABC(E) and TatAC-type systems by using a genetic approach. A plasmid-encoded E. coli minimal Tat translocase consisting solely of TatA and TatC was shown to mediate a low level translocation of a sensitive Tat-dependent reporter protein. Suppressor mutations in the minimal Tat translocase were isolated that compensate for the absence of TatB and that showed substantial increases in translocation activities. All of the mutations mapped to the extreme amino-terminal domain of TatA. No mutations affecting TatC were identified. These results suggest that in TatAC-type systems, the TatA protein represents a bifunctional component fulfilling both the TatA and TatB functions. Furthermore, our results indicate that the structure of the amino-terminal domain of TatA is decisive for whether or not TatB is required.

  9. Expression of the bifunctional Bacillus subtilis TatAd protein in Escherichia coli reveals distinct TatA/B-family and TatB-specific domains.

    PubMed

    Barnett, James P; Lawrence, Janna; Mendel, Sharon; Robinson, Colin

    2011-08-01

    In the Tat protein export pathway of Gram-negative bacteria, TatA and TatB are homologous proteins that carry out distinct and essential functions in separate sub-complexes. In contrast, Gram-positive Tat systems usually lack TatB and the TatA protein is bifunctional. We have used a mutagenesis approach to delineate TatA/B-type domains in the bifunctional TatAd protein from Bacillus subtilis. This involved expression of mutated TatAd variants in Escherichia coli and tests to determine whether the variants could function as TatA or TatB by complementing E. coli tatA and/or tatB mutants. We show that mutations in the C-terminal half of the transmembrane span and the subsequent FGP 'hinge' motif are critical for TatAd function with its partner TatCd subunit, and the same determinants are required for complementation of either tatA or tatB mutants in Escherichia coli. This is thus a critical domain in both TatA and TatB proteins. In contrast, substitution of a series of residues at the N-terminus specifically blocks the ability of TatAd to substitute for E. coli TatB. The results point to the presence of a universally conserved domain in the TatA/B-family, together with a separate N-terminal domain that is linked to the TatB-type function in Gram-negative bacteria.

  10. New bifunctional ligands for radioimmunoimaging and radioimmunotherapy

    SciTech Connect

    Brechbiel, M.W.

    1988-01-01

    The bifunctional EDTA ligand and two bifunctional DTPA ligands were synthesized by direct aminolysis of an amino acid ester followed by reduction, alkylation, and functional group modification to introduced bifunctionality. The reactive substituent chosen for protein conjugation was the isothiocyanate group. The generality of this approach was demonstrated with 9 different amino acids to produce the respective substituted diethylenetriamines. The remaining three bifunctional DTPA ligands were synthesized via classical peptide methodology producing a dipeptide amide which, after deprotection, was reduced to the triamine and alkylated to produce the ligand. Biodistribution studies of the ligands conjugated to monoclonal antibody B72.3 and labelled with In-111 revealed that superior retention of In-111 was attained and the dose to the liver was minimized when a full intact octadentate bifunctional DTPA chelate was used, e.g. DTPA > EDTA > DTTA (diethylenetritetraacetic acid from use of DTPA dianhydride (CA-DTPA)). The best scintigraphic images were obtained after 72 hours when a DTPA ligand was used to complex the In-111. Biodistribution studies using Yttrium-88 revealed that the disubstituted bifunctional DTPA was necessary to minimize the bone dose from the Yttrium while maintaining a high dose to the tumor.

  11. A bi-functional antibody-receptor domain fusion protein simultaneously targeting IGF-IR and VEGF for degradation

    PubMed Central

    Shen, Yang; Zeng, Lin; Novosyadlyy, Ruslan; Forest, Amelie; Zhu, Aiping; Korytko, Andrew; Zhang, Haifan; Eastman, Scott W; Topper, Michael; Hindi, Sagit; Covino, Nicole; Persaud, Kris; Kang, Yun; Burtrum, Douglas; Surguladze, David; Prewett, Marie; Chintharlapalli, Sudhakar; Wroblewski, Victor J; Shen, Juqun; Balderes, Paul; Zhu, Zhenping; Snavely, Marshall; Ludwig, Dale L

    2015-01-01

    Bi-specific antibodies (BsAbs), which can simultaneously block 2 tumor targets, have emerged as promising therapeutic alternatives to combinations of individual monoclonal antibodies. Here, we describe the engineering and development of a novel, human bi-functional antibody-receptor domain fusion molecule with ligand capture (bi-AbCap) through the fusion of the domain 2 of human vascular endothelial growth factor receptor 1 (VEGFR1) to an antibody directed against insulin-like growth factor – type I receptor (IGF-IR). The bi-AbCap possesses excellent stability and developability, and is the result of minimal engineering. Beyond potent neutralizing activities against IGF-IR and VEGF, the bi-AbCap is capable of cross-linking VEGF to IGF-IR, leading to co-internalization and degradation of both targets by tumor cells. In multiple mouse xenograft tumor models, the bi-AbCap improves anti-tumor activity over individual monotherapies. More importantly, it exhibits superior inhibition of tumor growth, compared with the combination of anti-IGF-IR and anti-VEGF therapies, via powerful blockade of both direct tumor cell growth and tumor angiogenesis. The unique “capture-for-degradation” mechanism of the bi-AbCap is informative for the design of next-generation bi-functional anti-cancer therapies directed against independent signaling pathways. The bi-AbCap design represents an alternative approach to the creation of dual-targeting antibody fusion molecules by taking advantage of natural receptor-ligand interactions. PMID:26073904

  12. A bi-functional antibody-receptor domain fusion protein simultaneously targeting IGF-IR and VEGF for degradation.

    PubMed

    Shen, Yang; Zeng, Lin; Novosyadlyy, Ruslan; Forest, Amelie; Zhu, Aiping; Korytko, Andrew; Zhang, Haifan; Eastman, Scott W; Topper, Michael; Hindi, Sagit; Covino, Nicole; Persaud, Kris; Kang, Yun; Burtrum, Douglas; Surguladze, David; Prewett, Marie; Chintharlapalli, Sudhakar; Wroblewski, Victor J; Shen, Juqun; Balderes, Paul; Zhu, Zhenping; Snavely, Marshall; Ludwig, Dale L

    2015-01-01

    Bi-specific antibodies (BsAbs), which can simultaneously block 2 tumor targets, have emerged as promising therapeutic alternatives to combinations of individual monoclonal antibodies. Here, we describe the engineering and development of a novel, human bi-functional antibody-receptor domain fusion molecule with ligand capture (bi-AbCap) through the fusion of the domain 2 of human vascular endothelial growth factor receptor 1 (VEGFR1) to an antibody directed against insulin-like growth factor - type I receptor (IGF-IR). The bi-AbCap possesses excellent stability and developability, and is the result of minimal engineering. Beyond potent neutralizing activities against IGF-IR and VEGF, the bi-AbCap is capable of cross-linking VEGF to IGF-IR, leading to co-internalization and degradation of both targets by tumor cells. In multiple mouse xenograft tumor models, the bi-AbCap improves anti-tumor activity over individual monotherapies. More importantly, it exhibits superior inhibition of tumor growth, compared with the combination of anti-IGF-IR and anti-VEGF therapies, via powerful blockade of both direct tumor cell growth and tumor angiogenesis. The unique "capture-for-degradation" mechanism of the bi-AbCap is informative for the design of next-generation bi-functional anti-cancer therapies directed against independent signaling pathways. The bi-AbCap design represents an alternative approach to the creation of dual-targeting antibody fusion molecules by taking advantage of natural receptor-ligand interactions.

  13. Cloning and expression of IspDF from Mesorhizobium loti. Characterization of a bifunctional protein that catalyzes non-consecutive steps in the methylerythritol phosphate pathway.

    PubMed

    Testa, Charles A; Lherbet, Christian; Pojer, Florence; Noel, Joseph P; Poulter, C Dale

    2006-01-01

    Gram-negative bacteria, plant chloroplasts, green algae and some Gram-positive bacteria utilize the 2-C-methyl-d-erythritol phosphate (MEP) pathway for the biosynthesis of isoprenoids. IspD, ispE, and ispF encode the enzymes required to convert MEP to 2-C-methyl-d-erythritol 2,4-cyclodiphosphate (cMEDP) during the biosynthesis of isopentenyl diphosphate and dimethylallyl diphosphate in the MEP pathway. Upon analysis of the Mesorhizobium loti genome, ORF mll0395 showed homology to both ispD and ispF and appeared to encode a fusion protein. M. loti ispE was located elsewhere on the chromosome. Purified recombinant IspDF protein was mostly a homodimer, MW approximately 46 kDa/subunit. Incubation of IspDF with MEP, CTP, and ATP gave 4-diphosphocytidyl-2-C-methyl-d-erythritol (CDP-ME) as the only product. When Escherichia coli IspE protein was added to the incubation mixture, cMEDP was formed. In addition, M. loti ORF mll0395 complements lethal disruptions in both ispD and ispF in Salmonella typhimurium. These results indicate that IspDF is a bifunctional protein, which catalyzes the first and third steps in the conversion of MEP to cMEDP.

  14. A full-length bifunctional protein involved in c-di-GMP turnover is required for long-term survival under nutrient starvation in Mycobacterium smegmatis.

    PubMed

    Bharati, Binod K; Sharma, Indra Mani; Kasetty, Sanjay; Kumar, Manish; Mukherjee, Raju; Chatterji, Dipankar

    2012-06-01

    The bacterial second messenger cyclic diguanosine monophosphate (c-di-GMP) plays an important role in a variety of cellular functions, including biofilm formation, alterations in the cell surface, host colonization and regulation of bacterial flagellar motility, which enable bacteria to survive changing environmental conditions. The cellular level of c-di-GMP is regulated by a balance between opposing activities of diguanylate cyclases (DGCs) and cognate phosphodiesterases (PDE-As). Here, we report the presence and importance of a protein, MSDGC-1 (an orthologue of Rv1354c in Mycobacterium tuberculosis), involved in c-di-GMP turnover in Mycobacterium smegmatis. MSDGC-1 is a multidomain protein, having GAF, GGDEF and EAL domains arranged in tandem, and exhibits both c-di-GMP synthesis and degradation activities. Most other proteins containing GGDEF and EAL domains have been demonstrated to have either DGC or PDE-A activity. Unlike other bacteria, which harbour several copies of the protein involved in c-di-GMP turnover, M. smegmatis has a single genomic copy, deletion of which severely affects long-term survival under conditions of nutrient starvation. Overexpression of MSDGC-1 alters the colony morphology and growth profile of M. smegmatis. In order to gain insights into the regulation of the c-di-GMP level, we cloned individual domains and tested their activities. We observed a loss of activity in the separated domains, indicating the importance of full-length MSDGC-1 for controlling bifunctionality.

  15. Bifunctional CYP81AA proteins catalyse identical hydroxylations but alternative regioselective phenol couplings in plant xanthone biosynthesis

    PubMed Central

    El-Awaad, Islam; Bocola, Marco; Beuerle, Till; Liu, Benye; Beerhues, Ludger

    2016-01-01

    Xanthones are natural products present in plants and microorganisms. In plants, their biosynthesis starts with regioselective cyclization of 2,3′,4,6-tetrahydroxybenzophenone to either 1,3,5- or 1,3,7-trihydroxyxanthones, catalysed by cytochrome P450 (CYP) enzymes. Here we isolate and express CYP81AA-coding sequences from Hypericum calycinum and H. perforatum in yeast. Microsomes catalyse two consecutive reactions, that is, 3′-hydroxylation of 2,4,6-trihydroxybenzophenone and C–O phenol coupling of the resulting 2,3′,4,6-tetrahydroxybenzophenone. Relative to the inserted 3′-hydroxyl, the orthologues Hc/HpCYP81AA1 cyclize via the para position to form 1,3,7-trihydroxyxanthone, whereas the paralogue HpCYP81AA2 directs cyclization to the ortho position, yielding the isomeric 1,3,5-trihydroxyxanthone. Homology modelling and reciprocal mutagenesis reveal the impact of S375, L378 and A483 on controlling the regioselectivity of HpCYP81AA2, which is converted into HpCYP81AA1 by sextuple mutation. However, the reciprocal mutations in HpCYP81AA1 barely affect its regiospecificity. Product docking rationalizes the alternative C–O phenol coupling reactions. Our results help understand the machinery of bifunctional CYPs. PMID:27145837

  16. The interdomain interface in bifunctional enzyme protein 3/4A (NS3/4A) regulates protease and helicase activities.

    PubMed

    Aydin, Cihan; Mukherjee, Sourav; Hanson, Alicia M; Frick, David N; Schiffer, Celia A

    2013-12-01

    Hepatitis C (HCV) protein 3/4A (NS3/4A) is a bifunctional enzyme comprising two separate domains with protease and helicase activities, which are essential for viral propagation. Both domains are stable and have enzymatic activity separately, and the relevance and implications of having protease and helicase together as a single protein remains to be explored. Altered in vitro activities of isolated domains compared with the full-length NS3/4A protein suggest the existence of interdomain communication. The molecular mechanism and extent of this communication was investigated by probing the domain-domain interface observed in HCV NS3/4A crystal structures. We found in molecular dynamics simulations that the two domains of NS3/4A are dynamically coupled through the interface. Interestingly, mutations designed to disrupt this interface did not hinder the catalytic activities of either domain. In contrast, substrate cleavage and DNA unwinding by these mutants were mostly enhanced compared with the wild-type protein. Disrupting the interface did not significantly alter RNA unwinding activity; however, the full-length protein was more efficient in RNA unwinding than the isolated protease domain, suggesting a more direct role in RNA processing independent of the interface. Our findings suggest that HCV NS3/4A adopts an "extended" catalytically active conformation, and interface formation acts as a switch to regulate activity. We propose a unifying model connecting HCV NS3/4A conformational states and protease and helicase function, where interface formation and the dynamic interplay between the two enzymatic domains of HCV NS3/4A potentially modulate the protease and helicase activities in vivo. © 2013 The Protein Society.

  17. Dissection of the gene of the bifunctional PGK-TIM fusion protein from the hyperthermophilic bacterium Thermotoga maritima: design and characterization of the separate triosephosphate isomerase.

    PubMed Central

    Beaucamp, N.; Hofmann, A.; Kellerer, B.; Jaenicke, R.

    1997-01-01

    Triosephosphate isomerase (TIM), from the hyperthermophilic bacterium Thermotoga maritima, has been shown to be covalently linked to phosphoglycerate kinase (PGK) forming a bifunctional fusion protein with TIM as the C-terminal portion of the subunits of the tetrameric protein (Schurig et al., EMBO J 14:442-451, 1995). To study the effect of the anomalous state of association on the structure, stability, and function of Thermotoga TIM, the isolated enzyme was cloned and expressed in Escherichia coli, and compared with its wild-type structure in the PGK-TIM fusion protein. After introducing a start codon at the beginning of the tpi open reading frame, the gene was expressed in E.c.BL21(DE3)/ pNBTIM. The nucleotide sequence was confirmed and the protein purified as a functional dimer of 56.5 kDa molecular mass. Spectral analysis, using absorption, fluorescence emission, near- and far-UV circular dichroism spectroscopy were used to compare the separated Thermotoga enzyme with its homologs from mesophiles. The catalytic properties of the enzyme at approximately 80 degrees C are similar to those of its mesophilic counterparts at their respective physiological temperatures, in accordance with the idea that under in vivo conditions enzymes occupy corresponding states. As taken from chaotropic and thermal denaturation transitions, the separated enzyme exhibits high intrinsic stability, with a half-concentration of guanidinium-chloride at 3.8 M, and a denaturation half-time at 80 degrees C of 2 h. Comparing the properties of the TIM portion of the PGK-TIM fusion protein with those of the isolated recombinant TIM, it is found that the fusion of the two enzymes not only enhances the intrinsic stability of TIM but also its catalytic efficiency. PMID:9336838

  18. The interdomain interface in bifunctional enzyme protein 3/4A (NS3/4A) regulates protease and helicase activities

    PubMed Central

    Aydin, Cihan; Mukherjee, Sourav; Hanson, Alicia M; Frick, David N; Schiffer, Celia A

    2013-01-01

    Hepatitis C (HCV) protein 3/4A (NS3/4A) is a bifunctional enzyme comprising two separate domains with protease and helicase activities, which are essential for viral propagation. Both domains are stable and have enzymatic activity separately, and the relevance and implications of having protease and helicase together as a single protein remains to be explored. Altered in vitro activities of isolated domains compared with the full-length NS3/4A protein suggest the existence of interdomain communication. The molecular mechanism and extent of this communication was investigated by probing the domain–domain interface observed in HCV NS3/4A crystal structures. We found in molecular dynamics simulations that the two domains of NS3/4A are dynamically coupled through the interface. Interestingly, mutations designed to disrupt this interface did not hinder the catalytic activities of either domain. In contrast, substrate cleavage and DNA unwinding by these mutants were mostly enhanced compared with the wild-type protein. Disrupting the interface did not significantly alter RNA unwinding activity; however, the full-length protein was more efficient in RNA unwinding than the isolated protease domain, suggesting a more direct role in RNA processing independent of the interface. Our findings suggest that HCV NS3/4A adopts an “extended” catalytically active conformation, and interface formation acts as a switch to regulate activity. We propose a unifying model connecting HCV NS3/4A conformational states and protease and helicase function, where interface formation and the dynamic interplay between the two enzymatic domains of HCV NS3/4A potentially modulate the protease and helicase activities in vivo. PMID:24123290

  19. Bifunctional alkaline oxygen electrodes

    NASA Technical Reports Server (NTRS)

    Swette, L.; Kackley, N.; Mccatty, S. A.

    1991-01-01

    The authors describe the identification and testing of electrocatalysts and supports for the positive electrode of moderate-temperature, single-unit, rechargeable alkaline fuel cells. Recent work on Na(x)Pt3O4, a potential bifunctional catalyst, is described, as well as the application of novel approaches to the development of more efficient bifunctional electrode structures. The three dual-character electrodes considered here showed similar superior performance; the Pt/RhO2 and Rh/RhO2 electrodes showed slightly better performance than the Pt/IrO2 electrode. It is concluded that Na(x)Pt3O4 continues to be a promising bifunctional oxygen electrode catalyst but requires further investigation and development.

  20. The Bifunctional Protein TtFARAT from Tetrahymena thermophila Catalyzes the Formation of both Precursors Required to Initiate Ether Lipid Biosynthesis*

    PubMed Central

    Dittrich-Domergue, Franziska; Joubès, Jérôme; Moreau, Patrick; Lessire, René; Stymne, Sten; Domergue, Frédéric

    2014-01-01

    The biosynthesis of ether lipids and wax esters requires as precursors fatty alcohols, which are synthesized by fatty acyl reductases (FARs). The presence of ether glycerolipids as well as branched wax esters has been reported in several free-living ciliate protozoa. In the genome of Tetrahymena thermophila, the only ORF sharing similarities with FARs is fused to an acyltransferase-like domain, whereas, in most other organisms, FARs are monofunctional proteins of similar size and domain structure. Here, we used heterologous expression in plant and yeast to functionally characterize the activities catalyzed by this protozoan protein. Transient expression in tobacco epidermis of a truncated form fused to the green fluorescence protein followed by confocal microscopy analysis suggested peroxisomal localization. In vivo approaches conducted in yeast indicated that the N-terminal FAR-like domain produced both 16:0 and 18:0 fatty alcohols, whereas the C-terminal acyltransferase-like domain was able to rescue the lethal phenotype of the yeast double mutant gat1Δ gat2Δ. Using in vitro approaches, we further demonstrated that this domain is a dihydroxyacetone phosphate acyltransferase that uses preferentially 16:0-coenzyme A as an acyl donor. Finally, coexpression in yeast with the alkyl-dihydroxyacetone phosphate synthase from T. thermophila resulted the detection of various glycerolipids with an ether bond, indicating reconstitution of the ether lipid biosynthetic pathway. Together, these results demonstrate that this FAR-like protein is peroxisomal and bifunctional, providing both substrates required by alkyl-dihydroxyacetone phosphate synthase to initiate ether lipid biosynthesis. PMID:24917677

  1. Bifunctional homodimeric triokinase/FMN cyclase: contribution of protein domains to the activities of the human enzyme and molecular dynamics simulation of domain movements.

    PubMed

    Rodrigues, Joaquim Rui; Couto, Ana; Cabezas, Alicia; Pinto, Rosa María; Ribeiro, João Meireles; Canales, José; Costas, María Jesús; Cameselle, José Carlos

    2014-04-11

    Mammalian triokinase, which phosphorylates exogenous dihydroxyacetone and fructose-derived glyceraldehyde, is neither molecularly identified nor firmly associated to an encoding gene. Human FMN cyclase, which splits FAD and other ribonucleoside diphosphate-X compounds to ribonucleoside monophosphate and cyclic X-phosphodiester, is identical to a DAK-encoded dihydroxyacetone kinase. This bifunctional protein was identified as triokinase. It was modeled as a homodimer of two-domain (K and L) subunits. Active centers lie between K1 and L2 or K2 and L1: dihydroxyacetone binds K and ATP binds L in different subunits too distant (≈ 14 Å) for phosphoryl transfer. FAD docked to the ATP site with ribityl 4'-OH in a possible near-attack conformation for cyclase activity. Reciprocal inhibition between kinase and cyclase reactants confirmed substrate site locations. The differential roles of protein domains were supported by their individual expression: K was inactive, and L displayed cyclase but not kinase activity. The importance of domain mobility for the kinase activity of dimeric triokinase was highlighted by molecular dynamics simulations: ATP approached dihydroxyacetone at distances below 5 Å in near-attack conformation. Based upon structure, docking, and molecular dynamics simulations, relevant residues were mutated to alanine, and kcat and Km were assayed whenever kinase and/or cyclase activity was conserved. The results supported the roles of Thr(112) (hydrogen bonding of ATP adenine to K in the closed active center), His(221) (covalent anchoring of dihydroxyacetone to K), Asp(401) and Asp(403) (metal coordination to L), and Asp(556) (hydrogen bonding of ATP or FAD ribose to L domain). Interestingly, the His(221) point mutant acted specifically as a cyclase without kinase activity.

  2. (Bifunctional chelates of Rh-105, Au-199, and other metallic radionuclides as potential radiotherapeutic agents)

    SciTech Connect

    Not Available

    1991-01-01

    Progress during this period is reported under the following headings: Diethylenetriamine based and related bifunctional chelating agents and their complexation with Rh-105, Au-198, Pd-109, cu-67, In-111, and Co-57; studies of Pd-109, Rh-105 and Tc-99m with bifunctional chelates based on phenylenediamine; establishment of an appropriate protein assay method for conjugated proteins; studies of new bifunctional Bi, Tri and tetradentate amine oxime ligands with Rh-105; IgG and antibody B72.3 conjugation studies by HPLC Techniques with bifunctional metal chelates; and progress on ligand systems for Au(III).

  3. [Bifunctional chelates of Rh-105, Au-199, and other metallic radionuclides as potential radiotherapeutic agents

    SciTech Connect

    Not Available

    1991-12-31

    Progress during this period is reported under the following headings: Diethylenetriamine based and related bifunctional chelating agents and their complexation with Rh-105, Au-198, Pd-109, cu-67, In-111, and Co-57; studies of Pd-109, Rh-105 and Tc-99m with bifunctional chelates based on phenylenediamine; establishment of an appropriate protein assay method for conjugated proteins; studies of new bifunctional Bi, Tri and tetradentate amine oxime ligands with Rh-105; IgG and antibody B72.3 conjugation studies by HPLC Techniques with bifunctional metal chelates; and progress on ligand systems for Au(III).

  4. Crystal structure of CbpF, a bifunctional choline-binding protein and autolysis regulator from Streptococcus pneumoniae

    PubMed Central

    Molina, Rafael; González, Ana; Stelter, Meike; Pérez-Dorado, Inmaculada; Kahn, Richard; Morales, María; Campuzano, Susana; Campillo, Nuria E; Mobashery, Shahriar; García, José L; García, Pedro; Hermoso, Juan A

    2009-01-01

    Phosphorylcholine, a crucial component of the pneumococcal cell wall, is essential in bacterial physiology and in human pathogenesis because it binds to serum components of the immune system and acts as a docking station for the family of surface choline-binding proteins. The three-dimensional structure of choline-binding protein F (CbpF), one of the most abundant proteins in the pneumococcal cell wall, has been solved in complex with choline. CbpF shows a new modular structure composed both of consensus and non-consensus choline-binding repeats, distributed along its length, which markedly alter its shape, charge distribution and binding ability, and organizing the protein into two well-defined modules. The carboxy-terminal module is involved in cell wall binding and the amino-terminal module is crucial for inhibition of the autolytic LytC muramidase, providing a regulatory function for pneumococcal autolysis. PMID:19165143

  5. Peroxisomal bifunctional enzyme deficiency.

    PubMed Central

    Watkins, P A; Chen, W W; Harris, C J; Hoefler, G; Hoefler, S; Blake, D C; Balfe, A; Kelley, R I; Moser, A B; Beard, M E

    1989-01-01

    Peroxisomal function was evaluated in a male infant with clinical features of neonatal adrenoleukodystrophy. Very long chain fatty acid levels were elevated in both plasma and fibroblasts, and beta-oxidation of very long chain fatty acids in cultured fibroblasts was significantly impaired. Although the level of the bile acid intermediate trihydroxycoprostanoic acid was slightly elevated in plasma, phytanic acid and L-pipecolic acid levels were normal, as was plasmalogen synthesis in cultured fibroblasts. The latter three parameters distinguish this case from classical neonatal adrenoleukodystrophy. In addition, electron microscopy and catalase subcellular distribution studies revealed that, in contrast to neonatal adrenoleukodystrophy, peroxisomes were present in the patient's tissues. Immunoblot studies of peroxisomal beta-oxidation enzymes revealed that the bifunctional enzyme (enoyl-CoA hydratase/3-hydroxyacyl-CoA dehydrogenase) was deficient in postmortem liver samples, whereas acyl-CoA oxidase and the mature form of beta-ketothiolase were present. Density gradient centrifugation of fibroblast homogenates confirmed that intact peroxisomes were present. Immunoblots of fibroblasts peroxisomal fractions showed that they contained acyl-CoA oxidase and beta-ketothiolase, but bifunctional enzyme was not detected. Northern analysis, however, revealed that mRNA coding for the bifunctional enzyme was present in the patient's fibroblasts. These results indicate that the primary biochemical defect in this patient is a deficiency of peroxisomal bifunctional enzyme. It is of interest that the phenotype of this patient resembled neonatal adrenoleukodystrophy and would not have been distinguished from this disorder by clinical study alone. Images PMID:2921319

  6. Bifunctional Anti-Huntingtin Proteasome-Directed Intrabodies Mediate Efficient Degradation of Mutant Huntingtin Exon 1 Protein Fragments

    PubMed Central

    Butler, David C.; Messer, Anne

    2011-01-01

    Huntington's disease (HD) is a fatal autosomal dominant neurodegenerative disorder caused by a trinucleotide (CAG)n repeat expansion in the coding sequence of the huntingtin gene, and an expanded polyglutamine (>37Q) tract in the protein. This results in misfolding and accumulation of huntingtin protein (htt), formation of neuronal intranuclear and cytoplasmic inclusions, and neuronal dysfunction/degeneration. Single-chain Fv antibodies (scFvs), expressed as intrabodies that bind htt and prevent aggregation, show promise as immunotherapeutics for HD. Intrastriatal delivery of anti-N-terminal htt scFv-C4 using an adeno-associated virus vector (AAV2/1) significantly reduces the size and number of aggregates in HDR6/1 transgenic mice; however, this protective effect diminishes with age and time after injection. We therefore explored enhancing intrabody efficacy via fusions to heterologous functional domains. Proteins containing a PEST motif are often targeted for proteasomal degradation and generally have a short half life. In ST14A cells, fusion of the C-terminal PEST region of mouse ornithine decarboxylase (mODC) to scFv-C4 reduces htt exon 1 protein fragments with 72 glutamine repeats (httex1-72Q) by ∼80–90% when compared to scFv-C4 alone. Proteasomal targeting was verified by either scrambling the mODC-PEST motif, or via proteasomal inhibition with epoxomicin. For these constructs, the proteasomal degradation of the scFv intrabody proteins themselves was reduced<25% by the addition of the mODC-PEST motif, with or without antigens. The remaining intrabody levels were amply sufficient to target N-terminal httex1-72Q protein fragment turnover. Critically, scFv-C4-PEST prevents aggregation and toxicity of httex1-72Q fragments at significantly lower doses than scFv-C4. Fusion of the mODC-PEST motif to intrabodies is a valuable general approach to specifically target toxic antigens to the proteasome for degradation. PMID:22216210

  7. Hexameric assembly of the bifunctional methylerythritol 2,4-cyclodiphosphate synthase and protein-protein associations in the deoxy-xylulose-dependent pathway of isoprenoid precursor biosynthesis.

    PubMed

    Gabrielsen, Mads; Bond, Charles S; Hallyburton, Irene; Hecht, Stefan; Bacher, Adelbert; Eisenreich, Wolfgang; Rohdich, Felix; Hunter, William N

    2004-12-10

    The bifunctional methylerythritol 4-phosphate cytidylyltransferase methylerythritol 2,4-cyclodiphosphate synthase (IspDF) is unusual in that it catalyzes nonconsecutive reactions in the 1-deoxy-D-xylulose 5-phosphate (DOXP) pathway of isoprenoid precursor biosynthesis. The crystal structure of IspDF from the bacterial pathogen Campylobacter jejuni reveals an elongated hexamer with D3 symmetry compatible with the dimeric 2C-methyl-D-erythritol-4-phosphate cytidylyltransferase and trimeric 2C-methyl-D-erythritol-2,4-cyclodiphosphate synthase monofunctional enzymes. Complex formation of IspDF with 4-diphosphocytidyl-2C-methyl-D-erythritol kinase (IspE), the intervening enzyme activity in the pathway, has been observed in solution for the enzymes from C. jejuni and Agrobacterium tumefaciens. The monofunctional enzymes (2C-methyl-D-erythritol-4-phosphate cytidylyltransferase, IspE, and 2C-methyl-D-erythritol-2,4-cyclodiphosphate synthase) involved in the DOXP biosynthetic pathway of Escherichia coli also show physical associations. We propose that complex formation of the three enzymes at the core of the DOXP pathway can produce an assembly localizing 18 catalytic centers for the early stages of isoprenoid biosynthesis.

  8. Identification of Antithrombin-Modulating Genes. Role of LARGE, a Gene Encoding a Bifunctional Glycosyltransferase, in the Secretion of Proteins?

    PubMed Central

    de la Morena-Barrio, María Eugenia; Buil, Alfonso; Antón, Ana Isabel; Martínez-Martínez, Irene; Miñano, Antonia; Gutiérrez-Gallego, Ricardo; Navarro-Fernández, José; Aguila, Sonia; Souto, Juan Carlos; Vicente, Vicente; Soria, José Manuel; Corral, Javier

    2013-01-01

    The haemostatic relevance of antithrombin together with the low genetic variability of SERPINC1, and the high heritability of plasma levels encourage the search for modulating genes. We used a hypothesis-free approach to identify these genes, evaluating associations between plasma antithrombin and 307,984 polymorphisms in the GAIT study (352 individuals from 21 Spanish families). Despite no SNP reaching the genome wide significance threshold, we verified milder positive associations in 307 blood donors from a different cohort. This validation study suggested LARGE, a gene encoding a protein with xylosyltransferase and glucuronyltransferase activities that forms heparin-like linear polysaccharides, as a potential modulator of antithrombin based on the significant association of one SNPs, rs762057, with anti-FXa activity, particularly after adjustment for age, sex and SERPINC1 rs2227589 genotype, all factors influencing antithrombin levels (p = 0.02). Additional results sustained this association. LARGE silencing inHepG2 and HEK-EBNA cells did not affect SERPINC1 mRNA levels but significantly reduced the secretion of antithrombin with moderate intracellular retention. Milder effects were observed on α1-antitrypsin, prothrombin and transferrin. Our study suggests LARGE as the first known modifier of plasma antithrombin, and proposes a new role for LARGE in modulating extracellular secretion of certain glycoproteins. PMID:23705025

  9. Structural Analysis of Saccharomyces cerevisiae α-Galactosidase and Its Complexes with Natural Substrates Reveals New Insights into Substrate Specificity of GH27 Glycosidases*

    PubMed Central

    Fernández-Leiro, Rafael; Pereira-Rodríguez, Ángel; Cerdán, M. Esperanza; Becerra, Manuel; Sanz-Aparicio, Juliana

    2010-01-01

    α-Galactosidases catalyze the hydrolysis of terminal α-1,6-galactosyl units from galacto-oligosaccharides and polymeric galactomannans. The crystal structures of tetrameric Saccharomyces cerevisiae α-galactosidase and its complexes with the substrates melibiose and raffinose have been determined to 1.95, 2.40, and 2.70 Å resolution. The monomer folds into a catalytic (α/β)8 barrel and a C-terminal β-sandwich domain with unassigned function. This pattern is conserved with other family 27 glycosidases, but this enzyme presents a unique 45-residue insertion in the β-sandwich domain that folds over the barrel protecting it from the solvent and likely explaining its high stability. The structure of the complexes and the mutational analysis show that oligomerization is a key factor in substrate binding, as the substrates are located in a deep cavity making direct interactions with the adjacent subunit. Furthermore, docking analysis suggests that the supplementary domain could be involved in binding sugar units distal from the scissile bond, therefore ascribing a role in fine-tuning substrate specificity to this domain. It may also have a role in promoting association with the polymeric substrate because of the ordered arrangement that the four domains present in one face of the tetramer. Our analysis extends to other family 27 glycosidases, where some traits regarding specificity and oligomerization can be formulated on the basis of their sequence and the structures available. These results improve our knowledge on the activity of this important family of enzymes and give a deeper insight into the structural features that rule modularity and protein-carbohydrate interactions. PMID:20592022

  10. Efficient bifunctional gallium-68 chelators for positron emission tomography: tris(hydroxypyridinone) ligands

    PubMed Central

    Berry, David J.; Ma, Yongmin; Ballinger, James R.; Tavaré, Richard; Koers, Alexander; Sunassee, Kavitha; Zhou, Tao; Nawaz, Saima; Mullen, Gregory E. D.; Hider, Robert C.; Blower, Philip J.

    2014-01-01

    A new tripodal tris(hydroxypyridinone) bifunctional chelator for gallium allows easy production of 68Ga-labelled proteins rapidly under mild conditions in high yields at exceptionally high specific activity and low concentration. PMID:21623436

  11. Bifunctional oxygen/air electrodes

    NASA Astrophysics Data System (ADS)

    Jörissen, Ludwig

    A selective review on the materials and construction principles used for bifunctional oxygen/air electrodes is given. The discussion emphasizes the catalytically active materials used for the construction of these electrodes, which are a key component in electrically rechargeable air breathing electrochemical systems. Whereas, in acid electrolytes normally noble metal catalysts must be used, there is a possibility to use less expensive transition metal oxides in alkaline electrolytes. Typical transition metal oxides have the perovskite, pyrochlore and spinel structure.

  12. Oxaloacetate synthesis in the methanarchaeon Methanosarcina barkeri: pyruvate carboxylase genes and a putative Escherichia coli-type bifunctional biotin protein ligase gene (bpl/birA) exhibit a unique organization.

    PubMed

    Mukhopadhyay, B; Purwantini, E; Kreder, C L; Wolfe, R S

    2001-06-01

    Evidence is presented that, in Methanosarcina barkeri oxaloacetate synthesis, an essential and major CO(2) fixation reaction is catalyzed by an apparent alpha(4)beta(4)-type acetyl coenzyme A-independent pyruvate carboxylase (PYC), composed of 64.2-kDa biotinylated and 52.9-kDa ATP-binding subunits. The purified enzyme was most active at 70 degrees C, insensitive to aspartate and glutamate, mildly inhibited by alpha-ketoglutarate, and severely inhibited by ATP, ADP, and excess Mg(2+). It showed negative cooperativity towards bicarbonate at 70 degrees C but not at 37 degrees C. The organism expressed holo-PYC without an external supply of biotin and, thus, synthesized biotin. pycA, pycB, and a putative bpl gene formed a novel operon-like arrangement. Unlike other archaeal homologs, the putative biotin protein ligases (BPLs) of M. barkeri and the closely related euryarchaeon Archaeoglobus fulgidus appeared to be of the Escherichia coli-type (bifunctional, with two activities: BirA or a repressor of the biotin operon and BPL). We found the element Tyr(Phe)ProX(5)Phe(Tyr) to be fully conserved in biotin-dependent enzymes; it might function as the hinge for their "swinging arms."

  13. Cytochrome c Encapsulating Theranostic Nanoparticles: A Novel Bifunctional System for targeted delivery of therapeutic membrane-impermeable proteins to tumors and imaging of cancer therapy

    PubMed Central

    Santra, Santimukul; Kaittanis, Charalambos; Perez, J. Manuel

    2010-01-01

    The effective administration of therapeutic proteins has received increased attention for the treatment of various diseases. Encapsulation of these proteins in various matrices, as a method of protein structure and function preservation, is a widely used approach that results in maintenance of the protein’s function. However, targeted delivery and tracking of encapsulated therapeutic proteins to the affected cells is still a challenge. In an effort to advance the targeted delivery of a functional apoptosis-initiating protein (Cytochrome c) to cancer cells, we formulated theranostic polymeric nanoparticles for the simultaneous encapsulation of Cytochrome c and a near infrared dye to folate-expressing cancer cell cells. The polymeric nanoparticles were prepared using a novel water soluble hyperbranched polyhydroxyl polymer that allows for dual encapsulation of a hydrophilic protein and an amphiphilic fluorescent dye. Our protein therapeutic cargo is the endogenous protein Cytochrome c, which upon cytoplasmic release, initiates an apoptotic response leading to programmed cell death. Results indicate that encapsulation of Cytochrome c within the nanoparticle’s cavities preserved the protein’s enzymatic activity. The potential therapeutic property of these nanoparticles was demonstrated by the induction of apoptosis upon intracellular delivery. Furthermore, targeted delivery of Cytochrome c to folate-receptor-positive cancer cells was achieved via conjugation of folic acid to the nanoparticle’s surface, whereas the nanoparticle’s theranostic properties were conferred via the co-encapsulation of Cytochrome c and a fluorescent dye. Considering that these theranostic nanoparticles can carry an endogenous cellular apoptotic initiator (Cytochrome c) and a fluorescent tag (ICG) commonly used in the clinic, their use and potential translation into the clinic is anticipated, facilitating the monitoring of tumor regression. PMID:20536259

  14. Interaction of Heat Shock Protein 90 and the Co-chaperone Cpr6 with Ura2, a Bifunctional Enzyme Required for Pyrimidine Biosynthesis*

    PubMed Central

    Zuehlke, Abbey D.; Wren, Nicholas; Tenge, Victoria; Johnson, Jill L.

    2013-01-01

    The molecular chaperone heat shock protein 90 (Hsp90) is an essential protein required for the activity and stability of multiple proteins termed clients. Hsp90 cooperates with a set of co-chaperone proteins that modulate Hsp90 activity and/or target clients to Hsp90 for folding. Many of the Hsp90 co-chaperones, including Cpr6 and Cpr7, contain tetratricopeptide repeat (TPR) domains that bind a common acceptor site at the carboxyl terminus of Hsp90. We found that Cpr6 and Hsp90 interacted with Ura2, a protein critical for pyrimidine biosynthesis. Mutation or inhibition of Hsp90 resulted in decreased accumulation of Ura2, indicating it is an Hsp90 client. Cpr6 interacted with Ura2 in the absence of stable Cpr6-Hsp90 interaction, suggesting a direct interaction. However, loss of Cpr6 did not alter the Ura2-Hsp90 interaction or Ura2 accumulation. The TPR domain of Cpr6 was required for Ura2 interaction, but other TPR containing co-chaperones, including Cpr7, failed to interact with Ura2 or rescue CPR6-dependent growth defects. Further analysis suggests that the carboxyl-terminal 100 amino acids of Cpr6 and Cpr7 are critical for specifying their unique functions, providing new information about this important class of Hsp90 co-chaperones. PMID:23926110

  15. High-Resolution Structure of the Histidine-Containing Phosphocarrier Protein (HPr) from Staphylococcus aureus and Characterization of Its Interaction with the Bifunctional HPr Kinase/Phosphorylase

    PubMed Central

    Maurer, Till; Meier, Sebastian; Kachel, Norman; Munte, Claudia Elisabeth; Hasenbein, Sonja; Koch, Brigitte; Hengstenberg, Wolfgang; Kalbitzer, Hans Robert

    2004-01-01

    A high-resolution structure of the histidine-containing phosphocarrier protein (HPr) from Staphylococcus aureus was obtained by heteronuclear multidimensional nuclear magnetic resonance (NMR) spectroscopy on the basis of 1,766 structural restraints. Twenty-three hydrogen bonds in HPr could be directly detected by polarization transfer from the amide nitrogen to the carbonyl carbon involved in the hydrogen bond. Differential line broadening was used to characterize the interaction of HPr with the HPr kinase/phosphorylase (HPrK/P) of Staphylococcus xylosus, which is responsible for phosphorylation-dephosphorylation of the hydroxyl group of the regulatory serine residue at position 46. The dissociation constant Kd was determined to be 0.10 ± 0.02 mM at 303 K from the NMR data, assuming independent binding. The data are consistent with a stoichiometry of 1 HPr molecule per HPrK/P monomer in solution. Using transversal relaxation optimized spectroscopy-heteronuclear single quantum correlation, we mapped the interaction site of the two proteins in the 330-kDa complex. As expected, it covers the region around Ser46 and the small helix b following this residue. In addition, HPrK/P also binds to the second phosphorylation site of HPr at position 15. This interaction may be essential for the recognition of the phosphorylation state of His15 and the phosphorylation-dependent regulation of the kinase/phosphorylase activity. In accordance with this observation, the recently published X-ray structure of the HPr/HPrK core protein complex from Lactobacillus casei shows interactions with the two phosphorylation sites. However, the NMR data also suggest differences for the full-length protein from S. xylosus: there are no indications for an interaction with the residues preceding the regulatory Ser46 residue (Thr41 to Lys45) in the protein of S. xylosus. In contrast, it seems to interact with the C-terminal helix of HPr in solution, an interaction which is not observed for the

  16. Bifunctional transfer-messenger RNA

    PubMed Central

    Ramadoss, Nitya S.

    2011-01-01

    Transfer-messenger RNA (tmRNA) is a bifunctional RNA that has properties of a tRNA and an mRNA. tmRNA uses these two functions to release ribosomes stalled during translation and target the nascent polypeptides for degradation. This concerted reaction, known as trans-translation, contributes to translational quality control and regulation of gene expression in bacteria. tmRNA is conserved throughout bacteria, and is one of the most abundant RNAs in the cell, suggesting that trans-translation is of fundamental importance for bacterial fitness. Mutants lacking tmRNA activity typically have severe phenotypes, including defects in viability, virulence, and responses to environmental stresses. PMID:21664408

  17. Tailored bifunctional polymer for plutonium monitoring.

    PubMed

    Paul, Sumana; Pandey, Ashok K; Kumar, Pranaw; Kaity, Santu; Aggarwal, Suresh K

    2014-07-01

    Monitoring of actinides with sophisticated conventional methods is affected by matrix interferences, spectral interferences, isobaric interferences, polyatomic interferences, and abundance sensitivity problems. To circumvent these limitations, a self-supported disk and membrane-supported bifunctional polymer were tailored in the present work for acidity-dependent selectivity toward Pu(IV). The bifunctional polymer was found to be better than the polymer containing either a phosphate group or a sulfonic acid group in terms of (i) higher Pu(IV) sorption efficiency at 3-4 mol L(-1) HNO3, (ii) selective preconcentration of Pu(IV) in the presence of a trivalent actinide such as Am(III), and (iii) preferential sorption of Pu(IV) in the presence of a large excess of U(VI). The bifunctional polymer was formed as a self-supported matrix by bulk polymerization and also as a 1-2 μm thin layer anchored on a microporous poly(ether sulfone) by surface grafting. The proportions of sulfonic acid and phosphate groups in both the self-supported disk and membrane-supported bifunctional polymer were found to be the same as expected from the mole proportions of monomers in polymerizing solutions used for syntheses. α radiography by a solid-state nuclear track detector indicated fairly homogeneous anchoring of the bifunctional polymer on the surface of the membrane. Pu(IV) preconcentrated on a single bifunctional bead was used for determination of the Pu isotopic composition by thermal ionization mass spectrometry. The membrane-supported bifunctional polymer was used for preconcentration and subsequent quantification of Pu(IV) by α spectrometry using the absolute efficiency at a fixed counting geometry. The analytical performance of the membrane-supported-bifunctional-polymer-based α spectrometry method was found to be highly reproducible for assay of Pu(IV) in a variety of complex samples.

  18. A Bifunctional Converter: Fluorescein Quenching scFv/Fluorogen Activating Protein for Photostability and Improved Signal to Noise in Fluorescence Experiments

    PubMed Central

    2015-01-01

    Monoclonal antibodies are one of the most useful and ubiquitous affinity reagents used in the biological sciences. Immunostaining of fixed and live cells for microscopy or cytometry measurements frequently employs fluorescently labeled antibodies, in particular fluorescein-labeled antibodies. This dye emits light at a wavelength overlapping with cellular autofluorescence, making it difficult to measure antibody binding to proteins of relatively low copy number or in cells of high green autofluorescence. A number of high affinity fluorescein binding antibodies and antibody domains have been developed that quench the dye’s fluorescence. Using a fluorescein-binding recombinant antibody domain genetically fused to a fluorogen activating protein (FAP), we demonstrate a molecular converter capable of binding and quenching fluorescein, while binding and activating a fluorogenic triarylmethane dye. This reagent converts fluorescein conjugates to far-red fluorescent probes, where cellular autofluorescence is low, improving signal-to-background of cell-based antibody binding measurements by ∼7-fold. Microscopy experiments show colocalization of both fluorescein and MG fluorescence. This dual affinity fluorescein-quenching-FAP can also be used to convert fluorescein to the red fluorescing MG fluorogen on biological molecules other than antibodies. PMID:25072845

  19. Efficient bifunctional gallium-68 chelators for positron emission tomography: tris(hydroxypyridinone) ligands.

    PubMed

    Berry, David J; Ma, Yongmin; Ballinger, James R; Tavaré, Richard; Koers, Alexander; Sunassee, Kavitha; Zhou, Tao; Nawaz, Saima; Mullen, Gregory E D; Hider, Robert C; Blower, Philip J

    2011-07-07

    A new tripodal tris(hydroxypyridinone) bifunctional chelator for gallium allows easy production of (68)Ga-labelled proteins rapidly under mild conditions in high yields at exceptionally high specific activity and low concentration. This journal is © The Royal Society of Chemistry 2011

  20. Bifunctional Homodimeric Triokinase/FMN Cyclase

    PubMed Central

    Rodrigues, Joaquim Rui; Couto, Ana; Cabezas, Alicia; Pinto, Rosa María; Ribeiro, João Meireles; Canales, José; Costas, María Jesús; Cameselle, José Carlos

    2014-01-01

    Mammalian triokinase, which phosphorylates exogenous dihydroxyacetone and fructose-derived glyceraldehyde, is neither molecularly identified nor firmly associated to an encoding gene. Human FMN cyclase, which splits FAD and other ribonucleoside diphosphate-X compounds to ribonucleoside monophosphate and cyclic X-phosphodiester, is identical to a DAK-encoded dihydroxyacetone kinase. This bifunctional protein was identified as triokinase. It was modeled as a homodimer of two-domain (K and L) subunits. Active centers lie between K1 and L2 or K2 and L1: dihydroxyacetone binds K and ATP binds L in different subunits too distant (≈14 Å) for phosphoryl transfer. FAD docked to the ATP site with ribityl 4′-OH in a possible near-attack conformation for cyclase activity. Reciprocal inhibition between kinase and cyclase reactants confirmed substrate site locations. The differential roles of protein domains were supported by their individual expression: K was inactive, and L displayed cyclase but not kinase activity. The importance of domain mobility for the kinase activity of dimeric triokinase was highlighted by molecular dynamics simulations: ATP approached dihydroxyacetone at distances below 5 Å in near-attack conformation. Based upon structure, docking, and molecular dynamics simulations, relevant residues were mutated to alanine, and kcat and Km were assayed whenever kinase and/or cyclase activity was conserved. The results supported the roles of Thr112 (hydrogen bonding of ATP adenine to K in the closed active center), His221 (covalent anchoring of dihydroxyacetone to K), Asp401 and Asp403 (metal coordination to L), and Asp556 (hydrogen bonding of ATP or FAD ribose to L domain). Interestingly, the His221 point mutant acted specifically as a cyclase without kinase activity. PMID:24569995

  1. Metagenomic Analysis of Apple Orchard Soil Reveals Antibiotic Resistance Genes Encoding Predicted Bifunctional Proteins▿

    PubMed Central

    Donato, Justin J.; Moe, Luke A.; Converse, Brandon J.; Smart, Keith D.; Berklein, Flora C.; McManus, Patricia S.; Handelsman, Jo

    2010-01-01

    To gain insight into the diversity and origins of antibiotic resistance genes, we identified resistance genes in the soil in an apple orchard using functional metagenomics, which involves inserting large fragments of foreign DNA into Escherichia coli and assaying the resulting clones for expressed functions. Among 13 antibiotic-resistant clones, we found two genes that encode bifunctional proteins. One predicted bifunctional protein confers resistance to ceftazidime and contains a natural fusion between a predicted transcriptional regulator and a β-lactamase. Sequence analysis of the entire metagenomic clone encoding the predicted bifunctional β-lactamase revealed a gene potentially involved in chloramphenicol resistance as well as a predicted transposase. A second clone that encodes a predicted bifunctional protein confers resistance to kanamycin and contains an aminoglycoside acetyltransferase domain fused to a second acetyltransferase domain that, based on nucleotide sequence, was predicted not to be involved in antibiotic resistance. This is the first report of a transcriptional regulator fused to a β-lactamase and of an aminoglycoside acetyltransferase fused to an acetyltransferase not involved in antibiotic resistance. PMID:20453147

  2. Solid phase synthesis of bifunctional antibodies.

    PubMed

    DeSilva, B S; Wilson, G S

    1995-12-15

    Bifunctional antibodies were prepared using the principle of solid-phase synthesis. The two Fab' fragments were chemically linked together via a bismaleimide crosslinking reagent. The F(ab')2 fragments from intact IgG were prepared using an immobilized pepsin column. Goat, mouse and human antibodies were digested completely within 4 h. The F(ab')2 fragments thus produced did not contain any IgG impurities. The Fab' fragments were produced by reducing the inter-heavy chain disulfide bonds using 2-mercaptoethylamine. The use of the solid-phase reactor in the preparation of the bifunctional antibodies eliminated many of the time-consuming separation steps between the fragmentation and conjugation steps. This procedure facilitates the automation of the bifunctional antibody preparation and the rapid optimization of reaction conditions.

  3. Synthesis of bifunctional antibodies for immunoassays.

    PubMed

    DeSilva, B S; Wilson, G S

    2000-09-01

    The synthesis of bifunctional antibodies using the principle of solid-phase synthesis is described. Two Fab' fragments were chemically linked together via a bismaleimide crosslinking reagent. The F(ab')(2) fragments from intact immunoglobulin G (IgG) were prepared using an immobilized pepsin column. Goat, mouse, and human antibodies were digested completely within 4 h. The F(ab')(2) fragments thus produced did not contain any IgG impurities. Fab' fragments were produced by reducing the heavy interchain disulfide bonds using 2-mercaptoethylamine. Use of the solid-phase reactor in the preparation of the bifunctional antibodies eliminated many of the time-consuming separation steps between the fragmentation and conjugation steps. This procedure facilitates the automation of bifunctional antibody preparation and the rapid optimization of reaction conditions.

  4. Bifunctional Electrophiles Cross-Link Thioredoxins with Redox Relay Partners in Cells

    PubMed Central

    Naticchia, Matthew R.; Brown, Haley A.; Garcia, Francisco J.; Lamade, Andrew M.; Justice, Samantha L.; Herrin, Rachelle P.; Morano, Kevin A.; West, James D.

    2013-01-01

    Thioredoxin protects cells against oxidative damage by reducing disulfide bonds in improperly oxidized proteins. Previously, we found that the baker's yeast cytosolic thioredoxin Trx2 undergoes cross-linking to form several protein-protein complexes in cells treated with the bifunctional electrophile divinyl sulfone (DVSF). Here, we report that the peroxiredoxin Tsa1 and the thioredoxin reductase Trr1, both of which function in a redox relay network with thioredoxin, become cross-linked in complexes with Trx2 upon DVSF treatment. Treatment of yeast with other bifunctional electrophiles, including diethyl acetylenedicarboxylate (DAD), mechlorethamine (HN2), and 1,2,3,4-diepoxybutane (DEB), resulted in the formation of similar cross-linked complexes. Cross-linking of Trx2 and Tsa1 to other proteins by DVSF and DAD is dependent on modification of the active site Cys residues within these proteins. In addition, the human cytosolic thioredoxin, cytosolic thioredoxin reductase, and peroxiredoxin 2 form cross-linked complexes to other proteins in the presence of DVSF, although each protein shows different susceptibilities to modification by DAD, HN2, and DEB. Taken together, our results indicate that bifunctional electrophiles potentially disrupt redox homeostasis in yeast and human cells by forming cross-linked complexes between thioredoxins and their redox partners. PMID:23414292

  5. Design and applications of bifunctional small molecules: Why two heads are better than one

    PubMed Central

    Corson, Timothy W.; Aberle, Nicholas; Crews, Craig M.

    2009-01-01

    Induction of protein-protein interactions is a daunting challenge, but recent studies show promise for small molecules that specifically bring two or more protein molecules together for enhanced or novel biological effect. The first such bifunctional molecules were the rapamycin- and FK506-based “Chemical Inducers of Dimerization”, but the field has since expanded with new molecules and new applications in chemical genetics and cell biology. Examples include coumermycin-mediated gyrase B dimerization, proteolysis targeting chimeric molecules (PROTACS), drug hybrids, and strategies for exploiting multivalency in toxin binding and antibody recruitment. This review discusses these and other advances in the design and use of bifunctional small molecules, and potential strategies for future systems. PMID:19112665

  6. Bifunctional hydrogen bonds in monohydrated cycloether complexes.

    PubMed

    Vallejos, Margarita M; Angelina, Emilio L; Peruchena, Nélida M

    2010-03-04

    In this work, the cooperative effects implicated in bifunctional hydrogen bonds (H-bonds) were studied (in monohydrated six-membered cycloether) within the framework of the atoms in molecules (AIM) theory and of the natural bond orbitals (NBO) analysis. The study was carried out in complexes formed by six-membered cycloether compounds (tetrahydropyrane, 1,4-dioxane, and 1,3-dioxane) and a water molecule. These compounds were used as model systems instead of more complicated molecules of biological importance. All the results were obtained at the second-order Møller-Plesset (MP2) level theory using a 6-311++G(d,p) basis set. Attention was focused on the indicators of the cooperative effects that arise when a water molecule interacts simultaneously with a polar and a nonpolar portion of a six-membered cycloether (via bifunctional hydrogen bonds) and compared with conventional H-bonds where the water molecule only interacts with the polar portion of the cycloether. Different indicators of H-bonds strength, such as structural and spectroscopic data, electron charge density, population analysis, hyperconjugation energy and charge transference, consistently showed significant cooperative effects in bifunctional H-bonds. From the AIM, as well as from the NBO analysis, the obtained results allowed us to state that in the monohydrated six-membered cycloether, where the water molecule plays a dual role, as proton acceptor and proton donor, a mutual reinforcement of the two interactions occurs. Because of this feature, the complexes engaged by bifunctional hydrogen bonds are more stabilized than the complexes linked by conventional hydrogen bonds.

  7. Variational Convergence Of Bifunctions: Motivating Applications

    DTIC Science & Technology

    2011-01-01

    Research Office (ARO) W911NS1010246 and Fondap- Matematicas Aplicadas, Universidad de Chile 1 Variational convergence of bifunctions The analysis of...The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing...problems. 1 . REPORT DATE (DD-MM-YYYY) 4. TITLE AND SUBTITLE 13. SUPPLEMENTARY NOTES The views, opinions and/or findings contained in this report are those

  8. The Bi-Functional Organization of Human Basement Membranes

    PubMed Central

    Halfter, Willi; Monnier, Christophe; Müller, David; Oertle, Philipp; Uechi, Guy; Balasubramani, Manimalha; Safi, Farhad; Lim, Roderick; Loparic, Marko; Henrich, Paul Bernhard

    2013-01-01

    The current basement membrane (BM) model proposes a single-layered extracellular matrix (ECM) sheet that is predominantly composed of laminins, collagen IVs and proteoglycans. The present data show that BM proteins and their domains are asymmetrically organized providing human BMs with side-specific properties: A) isolated human BMs roll up in a side-specific pattern, with the epithelial side facing outward and the stromal side inward. The rolling is independent of the curvature of the tissue from which the BMs were isolated. B) The epithelial side of BMs is twice as stiff as the stromal side, and C) epithelial cells adhere to the epithelial side of BMs only. Side-selective cell adhesion was also confirmed for BMs from mice and from chick embryos. We propose that the bi-functional organization of BMs is an inherent property of BMs and helps build the basic tissue architecture of metazoans with alternating epithelial and connective tissue layers. PMID:23844050

  9. Synthesis, conjugation, and radiolabeling of a novel bifunctional chelating agent for (225)Ac radioimmunotherapy applications.

    PubMed

    Chappell, L L; Deal, K A; Dadachova, E; Brechbiel, M W

    2000-01-01

    225Ac (t(1/2) = 10 days) is an alternative alpha-emitter that has been proposed for radioimmunotherapy (RIT) due to its many favorable properties, such as half-life and mode of decay. The factor limiting use of (225)Ac in RIT is the lack of an acceptably stable chelate for in vivo applications. Herein is described the first reported bifunctional chelate for (225)Ac that has been evaluated for stability for in vivo applications. The detailed synthesis of a bifunctional chelating agent 2-(4-isothiocyanatobenzyl)-1,4,7,10,13, 16-hexaazacyclohexadecane- 1,4,7,10,13,16-hexaacetic acid (HEHA-NCS) is reported. This ligand was conjugated to three monoclonal antibodies, CC49, T101, and BL-3 with chelate-to-protein ratios between 1.4 and 2. The three conjugates were radiolabeled with (225)Ac, and serum stability study of the [(225)Ac]BL-3-HEHA conjugate was performed.

  10. Bifunctional crosslinking ligands for transthyretin

    PubMed Central

    Mangione, P. Patrizia; Deroo, Stéphanie; Ellmerich, Stephan; Bellotti, Vittorio; Kolstoe, Simon; Wood, Stephen P.; Robinson, Carol V.; Smith, Martin D.; Tennent, Glenys A.; Broadbridge, Robert J.; Council, Claire E.; Thurston, Joanne R.; Steadman, Victoria A.; Vong, Antonio K.; Swain, Christopher J.; Pepys, Mark B.; Taylor, Graham W.

    2015-01-01

    Wild-type and variant forms of transthyretin (TTR), a normal plasma protein, are amyloidogenic and can be deposited in the tissues as amyloid fibrils causing acquired and hereditary systemic TTR amyloidosis, a debilitating and usually fatal disease. Reduction in the abundance of amyloid fibril precursor proteins arrests amyloid deposition and halts disease progression in all forms of amyloidosis including TTR type. Our previous demonstration that circulating serum amyloid P component (SAP) is efficiently depleted by administration of a specific small molecule ligand compound, that non-covalently crosslinks pairs of SAP molecules, suggested that TTR may be also amenable to this approach. We first confirmed that chemically crosslinked human TTR is rapidly cleared from the circulation in mice. In order to crosslink pairs of TTR molecules, promote their accelerated clearance and thus therapeutically deplete plasma TTR, we prepared a range of bivalent specific ligands for the thyroxine binding sites of TTR. Non-covalently bound human TTR–ligand complexes were formed that were stable in vitro and in vivo, but they were not cleared from the plasma of mice in vivo more rapidly than native uncomplexed TTR. Therapeutic depletion of circulating TTR will require additional mechanisms. PMID:26400472

  11. Combining conformational sampling and selection to identify the binding mode of zinc-bound amyloid peptides with bifunctional molecules

    NASA Astrophysics Data System (ADS)

    Xu, Liang; Gao, Ke; Bao, Chunyu; Wang, Xicheng

    2012-08-01

    The pathogenesis of Alzheimer's disease (AD) has been suggested to be related with the aggregation of amyloid β (Aβ) peptides. Metal ions (e.g. Cu, Fe, and Zn) are supposed to induce the aggregation of Aβ. Recent development of bifunctional molecules that are capable of interacting with Aβ and chelating biometal ions provides promising therapeutics to AD. However, the molecular mechanism for how Aβ, metal ions, and bifunctional molecules interact with each other is still elusive. In this study, the binding mode of Zn2+-bound Aβ with bifunctional molecules was investigated by the combination of conformational sampling of full-length Aβ peptides using replica exchange molecular dynamics simulations (REMD) and conformational selection using molecular docking and classical MD simulations. We demonstrate that Zn2+-bound Aβ(1-40) and Aβ(1-42) exhibit different conformational ensemble. Both Aβ peptides can adopt various conformations to recognize typical bifunctional molecules with different binding affinities. The bifunctional molecules exhibit their dual functions by first preferentially interfering with hydrophobic residues 17-21 and/or 30-35 of Zn2+-bound Aβ. Additional interactions with residues surrounding Zn2+ could possibly disrupt interactions between Zn2+ and Aβ, which then facilitate these small molecules to chelate Zn2+. The binding free energy calculations further demonstrate that the association of Aβ with bifunctional molecules is driven by enthalpy. Our results provide a feasible approach to understand the recognition mechanism of disordered proteins with small molecules, which could be helpful to the design of novel AD drugs.

  12. Reciprocal Regulation as a Source of Ultrasensitivity in Two-Component Systems with a Bifunctional Sensor Kinase

    PubMed Central

    Straube, Ronny

    2014-01-01

    Two-component signal transduction systems, where the phosphorylation state of a regulator protein is modulated by a sensor kinase, are common in bacteria and other microbes. In many of these systems, the sensor kinase is bifunctional catalyzing both, the phosphorylation and the dephosphorylation of the regulator protein in response to input signals. Previous studies have shown that systems with a bifunctional enzyme can adjust the phosphorylation level of the regulator protein independently of the total protein concentrations – a property known as concentration robustness. Here, I argue that two-component systems with a bifunctional enzyme may also exhibit ultrasensitivity if the input signal reciprocally affects multiple activities of the sensor kinase. To this end, I consider the case where an allosteric effector inhibits autophosphorylation and, concomitantly, activates the enzyme's phosphatase activity, as observed experimentally in the PhoQ/PhoP and NRII/NRI systems. A theoretical analysis reveals two operating regimes under steady state conditions depending on the effector affinity: If the affinity is low the system produces a graded response with respect to input signals and exhibits stimulus-dependent concentration robustness – consistent with previous experiments. In contrast, a high-affinity effector may generate ultrasensitivity by a similar mechanism as phosphorylation-dephosphorylation cycles with distinct converter enzymes. The occurrence of ultrasensitivity requires saturation of the sensor kinase's phosphatase activity, but is restricted to low effector concentrations, which suggests that this mode of operation might be employed for the detection and amplification of low abundant input signals. Interestingly, the same mechanism also applies to covalent modification cycles with a bifunctional converter enzyme, which suggests that reciprocal regulation, as a mechanism to generate ultrasensitivity, is not restricted to two-component systems, but

  13. Reciprocal regulation as a source of ultrasensitivity in two-component systems with a bifunctional sensor kinase.

    PubMed

    Straube, Ronny

    2014-05-01

    Two-component signal transduction systems, where the phosphorylation state of a regulator protein is modulated by a sensor kinase, are common in bacteria and other microbes. In many of these systems, the sensor kinase is bifunctional catalyzing both, the phosphorylation and the dephosphorylation of the regulator protein in response to input signals. Previous studies have shown that systems with a bifunctional enzyme can adjust the phosphorylation level of the regulator protein independently of the total protein concentrations--a property known as concentration robustness. Here, I argue that two-component systems with a bifunctional enzyme may also exhibit ultrasensitivity if the input signal reciprocally affects multiple activities of the sensor kinase. To this end, I consider the case where an allosteric effector inhibits autophosphorylation and, concomitantly, activates the enzyme's phosphatase activity, as observed experimentally in the PhoQ/PhoP and NRII/NRI systems. A theoretical analysis reveals two operating regimes under steady state conditions depending on the effector affinity: If the affinity is low the system produces a graded response with respect to input signals and exhibits stimulus-dependent concentration robustness--consistent with previous experiments. In contrast, a high-affinity effector may generate ultrasensitivity by a similar mechanism as phosphorylation-dephosphorylation cycles with distinct converter enzymes. The occurrence of ultrasensitivity requires saturation of the sensor kinase's phosphatase activity, but is restricted to low effector concentrations, which suggests that this mode of operation might be employed for the detection and amplification of low abundant input signals. Interestingly, the same mechanism also applies to covalent modification cycles with a bifunctional converter enzyme, which suggests that reciprocal regulation, as a mechanism to generate ultrasensitivity, is not restricted to two-component systems, but may

  14. Development of Benzophenone-Alkyne Bifunctional Sigma Receptor Ligands

    PubMed Central

    Guo, Lian-Wang; Hajipour, Abdol R.; Karaoglu, Kerim; Mavlyutov, Timur A.; Ruoho, Arnold E.

    2012-01-01

    Sigma (σ) receptors represent unique non-opioid binding sites that are associated with a broad range of disease states. Sigma-2 receptors provide a promising target for diagnostic imaging and pharmacological interventions to curb tumor progression. Most recently, the progesterone receptor (PGRMC1, 25 kDa) has been identified to contain σ2 receptor-like binding properties, highlighting the need to understand the biological function of an 18-kDa protein that exhibits σ2-like photoaffinity labeling (herein denoted as σ2-18k) but the amino acid sequence of which is not known. In order to provide novel tools for the study of the σ2-18k protein, we have developed bifunctional sigma receptor ligands that bear a benzophenone photo-crosslinking moiety and an alkyne group, to which an azide-containing biotin affinity tag can be covalently attached via click chemistry following photo-crosslink. While several compounds showed favorable σ2 binding properties, compound 22 exhibited the highest affinity (2 nM) and the greatest potency in blocking photolabeling of the σ2-18k by a radioactive photoaffinity ligand. Thus, these benzophenone-alkyne sigma receptor ligands may be amenable for studying the σ2-18k protein via chemical biology approaches. To our knowledge, these compounds represent the first reported benzophenone-containing clickable sigma receptor ligands, which may potentially serve broad applications by “plugging” in various tags. PMID:23001760

  15. Gemini, a Bifunctional Enzymatic and Fluorescent Reporter of Gene Expression

    PubMed Central

    Endy, Drew

    2009-01-01

    Background The development of collections of quantitatively characterized standard biological parts should facilitate the engineering of increasingly complex and novel biological systems. The existing enzymatic and fluorescent reporters that are used to characterize biological part functions exhibit strengths and limitations. Combining both enzymatic and fluorescence activities within a single reporter protein would provide a useful tool for biological part characterization. Methodology/Principal Findings Here, we describe the construction and quantitative characterization of Gemini, a fusion between the β-galactosidase (β-gal) α-fragment and the N-terminus of full-length green fluorescent protein (GFP). We show that Gemini exhibits functional β-gal activity, which we assay with plates and fluorometry, and functional GFP activity, which we assay with fluorometry and microscopy. We show that the protein fusion increases the sensitivity of β-gal activity and decreases the sensitivity of GFP. Conclusions/Significance Gemini is therefore a bifunctional reporter with a wider dynamic range than the β-gal α-fragment or GFP alone. Gemini enables the characterization of gene expression, screening assays via enzymatic activity, and quantitative single-cell microscopy or FACS via fluorescence activity. The analytical flexibility afforded by Gemini will likely increase the efficiency of research, particularly for screening and characterization of libraries of standard biological parts. PMID:19888458

  16. Bifunctional Gallium-68 Chelators: Past, Present, and Future.

    PubMed

    Spang, Philipp; Herrmann, Christian; Roesch, Frank

    2016-09-01

    This article reviews the development of bifunctional chelates for synthesising (68)Ga radiopharmaceuticals. It structures the chelates into groups of macrocycles, nonmacrocycles, and chimeric derivatives. The most relevant bifunctional chelates are discussed in chelate structure, parameters of (68)Ga-labeling, and stability of the (68)Ga-chelate complexes. Furthermore those derivatives are included, where (67)Ga was applied instead of (68)Ga. A particular feature discussed is the ability of certain bifunctional chelate structures to function in kit-type preparation of the (68)Ga radiopharmaceuticals. Currently, nonmacrocyclic and chimeric derivates attract particular attention such as THP-derivates and DATA-derivates. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Bifunctional acoustic metamaterial lens designed with coordinate transformation

    NASA Astrophysics Data System (ADS)

    Zhu, Rongrong; Ma, Chu; Zheng, Bin; Musa, Muhyiddeen Yahya; Jing, Liqiao; Yang, Yihao; Wang, Huaping; Dehdashti, Shahram; Fang, Nicholas X.; Chen, Hongsheng

    2017-03-01

    We propose a method to design bifunctional acoustic lens using acoustic metamaterials that possess separate functions at different directions. The proposed bifunctional acoustic lens can be implemented in practice with subwavelength unit cells exhibiting effective anisotropic parameters. With this methodology, we experimentally demonstrate an acoustic Luneburg-fisheye lens at operational frequencies from 6300 Hz to 7300 Hz. Additionally, a bifunctional acoustic square lens is proposed with different focal lengths for multi directions. This method paves the way to manipulating acoustic energy flows with functional lenses.

  18. Acid-base bifunctional catalytic surfaces for nucleophilic addition reactions.

    PubMed

    Motokura, Ken; Tada, Mizuki; Iwasawa, Yasuhiro

    2008-09-01

    This article illustrates the modification of oxide surfaces with organic amine functional groups to create acid-base bifunctional catalysts, summarizing our previous reports and also presenting new data. Immobilization of organic amines as bases on inorganic solid-acid surfaces afforded highly active acid-base bifunctional catalysts, which enabled various organic transformations including C--C coupling reactions, though these reactions did not proceed with either the homogeneous amine precursors or the acidic supports alone. Spectroscopic characterization, such as by solid-state MAS NMR and FTIR, revealed not only the interactions between acidic and basic sites but also bifunctional catalytic reaction mechanisms.

  19. A novel bifunctional transcriptional regulator of riboflavin metabolism in Archaea.

    PubMed

    Rodionova, Irina A; Vetting, Matthew W; Li, Xiaoqing; Almo, Steven C; Osterman, Andrei L; Rodionov, Dmitry A

    2017-01-09

    Riboflavin (vitamin B2) is the precursor of flavin mononucleotide (FMN) and flavin adenine dinucleotide, which are essential coenzymes in all free-living organisms. Riboflavin biosynthesis in many Bacteria but not in Archaea is controlled by FMN-responsive riboswitches. We identified a novel bifunctional riboflavin kinase/regulator (RbkR), which controls riboflavin biosynthesis and transport genes in major lineages of Crenarchaeota, Euryarchaeota and Thaumarchaeota. RbkR proteins are composed of the riboflavin kinase domain and a DNA-binding winged helix-turn-helix-like domain. Using comparative genomics, we predicted RbkR operator sites and reconstructed RbkR regulons in 94 archaeal genomes. While the identified RbkR operators showed significant variability between archaeal lineages, the conserved core of RbkR regulons includes riboflavin biosynthesis genes, known/predicted vitamin uptake transporters and the rbkR gene. The DNA motifs and CTP-dependent riboflavin kinase activity of two RbkR proteins were experimentally validated in vitro The DNA binding activity of RbkR was stimulated by CTP and suppressed by FMN, a product of riboflavin kinase. The crystallographic structure of RbkR from Thermoplasma acidophilum was determined in complex with CTP and its DNA operator revealing key residues for operator and ligand recognition. Overall, this study contributes to our understanding of metabolic and regulatory networks for vitamin homeostasis in Archaea.

  20. A bifunctional spin label reports the structural topology of phospholamban in magnetically-aligned bicelles

    NASA Astrophysics Data System (ADS)

    McCaffrey, Jesse E.; James, Zachary M.; Svensson, Bengt; Binder, Benjamin P.; Thomas, David D.

    2016-01-01

    We have applied a bifunctional spin label and EPR spectroscopy to determine membrane protein structural topology in magnetically-aligned bicelles, using monomeric phospholamban (PLB) as a model system. Bicelles are a powerful tool for studying membrane proteins by NMR and EPR spectroscopies, where magnetic alignment yields topological constraints by resolving the anisotropic spectral properties of nuclear and electron spins. However, EPR bicelle studies are often hindered by the rotational mobility of monofunctional Cys-linked spin labels, which obscures their orientation relative to the protein backbone. The rigid and stereospecific TOAC label provides high orientational sensitivity but must be introduced via solid-phase peptide synthesis, precluding its use in large proteins. Here we show that a bifunctional methanethiosulfonate spin label attaches rigidly and stereospecifically to Cys residues at i and i + 4 positions along PLB's transmembrane helix, thus providing orientational resolution similar to that of TOAC, while being applicable to larger membrane proteins for which synthesis is impractical. Computational modeling and comparison with NMR data shows that these EPR experiments provide accurate information about helix tilt relative to the membrane normal, thus establishing a robust method for determining structural topology in large membrane proteins with a substantial advantage in sensitivity over NMR.

  1. A bifunctional spin label reports the structural topology of phospholamban in magnetically-aligned bicelles.

    PubMed

    McCaffrey, Jesse E; James, Zachary M; Svensson, Bengt; Binder, Benjamin P; Thomas, David D

    2016-01-01

    We have applied a bifunctional spin label and EPR spectroscopy to determine membrane protein structural topology in magnetically-aligned bicelles, using monomeric phospholamban (PLB) as a model system. Bicelles are a powerful tool for studying membrane proteins by NMR and EPR spectroscopies, where magnetic alignment yields topological constraints by resolving the anisotropic spectral properties of nuclear and electron spins. However, EPR bicelle studies are often hindered by the rotational mobility of monofunctional Cys-linked spin labels, which obscures their orientation relative to the protein backbone. The rigid and stereospecific TOAC label provides high orientational sensitivity but must be introduced via solid-phase peptide synthesis, precluding its use in large proteins. Here we show that a bifunctional methanethiosulfonate spin label attaches rigidly and stereospecifically to Cys residues at i and i+4 positions along PLB's transmembrane helix, thus providing orientational resolution similar to that of TOAC, while being applicable to larger membrane proteins for which synthesis is impractical. Computational modeling and comparison with NMR data shows that these EPR experiments provide accurate information about helix tilt relative to the membrane normal, thus establishing a robust method for determining structural topology in large membrane proteins with a substantial advantage in sensitivity over NMR.

  2. Iron Group Hydrides in Noyori Bifunctional Catalysis.

    PubMed

    Morris, Robert H

    2016-12-01

    This is an overview of the hydride-containing catalysts prepared in the Morris group for the efficient hydrogenation of simple ketones, imines, nitriles and esters and the asymmetric hydrogenation and transfer hydrogenation of prochiral ketones and imines. The work was inspired by and makes use of Noyori metal-ligand bifunctional concepts involving the hydride-ruthenium amine-hydrogen HRuNH design. It describes the synthesis and some catalytic properties of hydridochloro, dihydride and amide complexes of ruthenium and in one case, osmium, with monodentate, bidentate and tetradentate phosphorus and nitrogen donor ligands. The iron hydride that has been identified in a very effective asymmetric transfer hydrogenation process is also mentioned. The link between the HMNH structure and the sense of enantioinduction is demonstrated by use of simple transition state models.

  3. Targeting Prostate Cancer with Bifunctional Modulators of the Androgen Receptor

    DTIC Science & Technology

    2015-06-01

    Award Number: W81XWH-11-1-0692 TITLE: Targeting Prostate Cancer with Bifunctional Modulators of the Androgen Receptor PRINCIPAL INVESTIGATOR: Anna ...Bifunctional Modulators of the Sb. GRANT NUMBER Androgen Receptor W81XWH-11-1-0692 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER Anna ... Carey , N.; Finn, P.; Collins, L.; Tumber, A.; Ritchie, J.; Jensen, P.; Lichenstein, H.; Sehested, M. Determination of the class and isoform

  4. Nanoparticle Superlattices as Efficient Bifunctional Electrocatalysts for Water Splitting.

    PubMed

    Li, Jun; Wang, Yongcheng; Zhou, Tong; Zhang, Hui; Sun, Xuhui; Tang, Jing; Zhang, Lijuan; Al-Enizi, Abdullah M; Yang, Zhongqin; Zheng, Gengfeng

    2015-11-18

    The solar-driven water splitting process is highly attractive for alternative energy utilization, while developing efficient, earth-abundant, bifunctional catalysts for both oxygen evolution reaction and hydrogen evolution reaction has remained as a major challenge. Herein, we develop an ordered CoMnO@CN superlattice structure as an efficient bifunctional water-splitting electrocatalyst, in which uniform Co-Mn oxide (CoMnO) nanoparticles are coated with a thin, continuous nitrogen-doped carbon (CN) framework. The CoMnO nanoparticles enable optimized OER activity with effective electronic structure configuration, and the CN framework serves as an excellent HER catalyst. Importantly, the ordered superlattice structure is beneficial for enhanced reactive sites, efficient charge transfer, and structural stability. This bifunctional superlattice catalyst manifests optimized current densities and electrochemical stability in overall water splitting, outperforming most of the previously reported single- or bifunctional electrocatalysts. Combining with a silicon photovoltaic cell, this CoMnO@CN superlattice bifunctional catalyst enables unassisted solar water splitting continuously for ∼5 days with a solar-to-hydrogen conversion efficiency of ∼8.0%. Our discovery suggests that these transition metal oxide-based superlattices may serve as a unique structure modality for efficient bifunctional water splitting electrocatalysts with scale-up potentials.

  5. A new approach to wastewater remediation based on bifunctional electrodes.

    PubMed

    Asmussen, Robert Matthew; Tian, Min; Chen, Aicheng

    2009-07-01

    Here we report an a novel approach, the marriage of photocatalytic degradation and electrochemical oxidation, to wastewater remediation based on the use of bifunctional electrodes. To illustrate this innovative technique, TiO2/Ti/ Ta2O5-IrO2 bifunctional electrodes were prepared using a facile thermal decomposition technique and employed in this study. The TiO2 photocatalyst was coated on one side of the Ti substrate, while the Ta2O5-IrO2 electrocatalytic thin film was coated on the other side. The fabricated bifunctional electrodes were characterized by scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). The performance of the bifunctional electrodes was tested using both 4-nitrophenol (4-NPh) and 2-nitrophenol (2-NPh) as model pollutants. Our study demonstrates that the prepared bifunctional electrodes exhibit high efficiency for both 4-NPh and 2-NPh degradation. In the degradation of 4-NPh a rate constant of 1.06 x 10(-2) min(-1) was created and a rate constant of 1.93 x 10(-2) min(-1) was produced for 2-NPh by the combination of the photochemical and electrochemical oxidation on the novel bifunctional electrodes, quadruple the rate constant created by the individual photochemical and photoelectrochemical methods. The innovative approach described in this study provides a very promising and energy efficient environmentally friendly technology for water purification and waste effluent treatment.

  6. Identification of a Bifunctional Maize C- and O-Glucosyltransferase*

    PubMed Central

    Falcone Ferreyra, María Lorena; Rodriguez, Eduardo; Casas, María Isabel; Labadie, Guillermo; Grotewold, Erich; Casati, Paula

    2013-01-01

    Flavonoids accumulate in plant vacuoles usually as O-glycosylated derivatives, but several species can also synthesize flavonoid C-glycosides. Recently, we demonstrated that a flavanone 2-hydroxylase (ZmF2H1, CYP93G5) converts flavanones to the corresponding 2-hydroxy derivatives, which are expected to serve as substrates for C-glycosylation. Here, we isolated a cDNA encoding a UDP-dependent glycosyltransferase (UGT708A6), and its activity was characterized by in vitro and in vivo bioconversion assays. In vitro assays using 2-hydroxyflavanones as substrates and in vivo activity assays in yeast co-expressing ZmF2H1 and UGT708A6 show the formation of the flavones C-glycosides. UGT708A6 can also O-glycosylate flavanones in bioconversion assays in Escherichia coli as well as by in vitro assays with the purified recombinant protein. Thus, UGT708A6 is a bifunctional glycosyltransferase that can produce both C- and O-glycosidated flavonoids, a property not previously described for any other glycosyltransferase. PMID:24045947

  7. Sorption and detoxification of toxic compounds by a bifunctional organoclay.

    PubMed

    Groisman, Ludmila; Rav-Acha, Chaim; Gerstl, Zev; Mingelgrin, Uri

    2004-01-01

    Organoclays are excellent sorbents for nonionic contaminants and therefore may have many environmental applications. A major limitation on the use of organoclays is that the contaminant merely changes its location from one environmental compartment to another while still remaining intact. In this study, a new type of organoclay, termed a bifunctional organoclay, has been prepared. It is able not only to sorb organophosphate pesticides, but also to catalyze their hydrolysis, and thereby detoxify them. The bifunctional organoclay prepared in this study is based on sodium montmorillonite, in which the inorganic counter ions are replaced by N-decyl-N,N-dimethyl-N-(2-aminoethyl) ammonium (DDMAEA). The detoxifying capacity of this organoclay for two organophosphate pesticides, methyl parathion [O,O-dimethyl O-(p-nitrophenyl) thionophosphate] and tetrachlorvinphos [2-chloro-1-(2,4,5-trichlorophenyl)ethenyl dimethyl phosphate], was demonstrated. It was shown that although the sorption of these pesticides on the bifunctional organoclay is very similar to that on N-decyl-N,N,N-trimethyl ammonium (DTMA) organoclay (the corresponding nonbifunctional organoclay), the hydrolysis of these pesticides is substantially enhanced only by the bifunctional organoclay. The half-life for the hydrolysis of the investigated pesticides in the presence of the bifunctional organoclay is about 12 times less than for their spontaneous hydrolysis, and the enhancement is even more pronounced relative to the hydrolysis of these pesticides in the presence of the DTMA organoclay (which actually inhibits their hydrolysis). Based on kinetic measurements, the pK(a) of the ethylamino group of the bifunctional organoclay was estimated to be around 9.0. It is postulated that the catalytic effect of the bifunctional organoclay can be attributed to a nucleophilic attack of the unprotonated ethylamino group of the organoclay on the organophosphate ester.

  8. Enhanced Uptake of Porous Silica Microparticles by Bifunctional Surface Modification with a Targeting Antibody and a Biocompatible Polymer

    PubMed Central

    Cheng, Kai; Blumen, Steven R.; MacPherson, Maximilian B.; Steinbacher, Jeremy L.; Mossman, Brooke T.; Landry, Christopher C.

    2010-01-01

    Strategies were developed by which mesoporous microparticles were modified on their external surfaces with tetraethylene glycol (TEG), a protein, or both, leaving the pore surfaces available for modification with a separate moiety, such as a dye. Only particles bifunctionally modified with both TEG and a cell-specific antibody were taken up specifically by a targeted cancer cell line. In contrast to similarly functionalized nanoparticles, endocytosed microparticles were not contained within a lysosome. PMID:20707315

  9. A bifunctional locus (BIO3-BIO1) required for biotin biosynthesis in Arabidopsis.

    PubMed

    Muralla, Rosanna; Chen, Elve; Sweeney, Colleen; Gray, Jennifer A; Dickerman, Allan; Nikolau, Basil J; Meinke, David

    2008-01-01

    We identify here the Arabidopsis (Arabidopsis thaliana) gene encoding the third enzyme in the biotin biosynthetic pathway, dethiobiotin synthetase (BIO3; At5g57600). This gene is positioned immediately upstream of BIO1, which is known to be associated with the second reaction in the pathway. Reverse genetic analysis demonstrates that bio3 insertion mutants have a similar phenotype to the bio1 and bio2 auxotrophs identified using forward genetic screens for arrested embryos rescued on enriched nutrient medium. Unexpectedly, bio3 and bio1 mutants define a single genetic complementation group. Reverse transcription-polymerase chain reaction analysis demonstrates that separate BIO3 and BIO1 transcripts and two different types of chimeric BIO3-BIO1 transcripts are produced. Consistent with genetic data, one of the fused transcripts is monocistronic and encodes a bifunctional fusion protein. A splice variant is bicistronic, with distinct but overlapping reading frames. The dual functionality of the monocistronic transcript was confirmed by complementing the orthologous auxotrophs of Escherichia coli (bioD and bioA). BIO3-BIO1 transcripts from other plants provide further evidence for differential splicing, existence of a fusion protein, and localization of both enzymatic reactions to mitochondria. In contrast to most biosynthetic enzymes in eukaryotes, which are encoded by genes dispersed throughout the genome, biotin biosynthesis in Arabidopsis provides an intriguing example of a bifunctional locus that catalyzes two sequential reactions in the same metabolic pathway. This complex locus exhibits several unusual features that distinguish it from biotin operons in bacteria and from other genes known to encode bifunctional enzymes in plants.

  10. Development of bifunctional photoactivatable benzophenone probes and their application to glycoside substrates.

    PubMed

    Qvit, Nir; Monderer-Rothkoff, Galya; Ido, Ayelet; Shalev, Deborah E; Amster-Choder, Orna; Gilon, Chaim

    2008-01-01

    Photoaffinity labeling is used to covalently attach ligands to macromolecules to determine their spatial arrangement and structure. Benzophenone (BP) groups are widely used for covalent photoaffinity labeling and for probing protein interactions. We developed bifunctional BP photoactivatable derivatives using three different general chemical approaches. In addition to the photoaffinity reactivity of the BP, these derivatives contain an additional group: A radioactive tracer for biological studies, or an N-ethylmaleimide group as an additional crosslinker, or a biotin group to be used during purification and characterization of probe-protein complexes using the high-affinity biotin-avidin interaction. A model series of photoaffinity labeling probes was synthesized based on the arbutin ligand. These compounds can be used as probes to study the arbutin binding site of microbial beta-glucoside transporters by photolabeling residues in its vicinity. The second functionality provides additional options for studying proteins and binding sites. The probes were developed using different methodologies: (i) a diazotation reaction; (ii) protecting group methodology; and (iii) solid-phase synthesis. These procedures are general and provide a simple and versatile approach for synthesizing bifunctional BP ligands, as demonstrated here on arbutin. Copyright (c) 2008 Wiley Periodicals, Inc.

  11. Astaxanthin diferulate as a bifunctional antioxidant.

    PubMed

    Papa, T B R; Pinho, V D; do Nascimento, E S P; Santos, W G; Burtoloso, A C B; Skibsted, L H; Cardoso, D R

    2015-01-01

    Astaxanthin when esterified with ferulic acid is better singlet oxygen quencher with k2 = (1.58 ± 0.1) 10(10) L mol(-1)s(-1) in ethanol at 25°C compared with astaxanthin with k2 = (1.12 ± 0.01) 10(9) L mol(-1)s(-1). The ferulate moiety in the astaxanthin diester is a better radical scavenger than free ferulic acid as seen from the rate constant of scavenging of 1-hydroxyethyl radicals in ethanol at 25°C with a second-order rate constant of (1.68 ± 0.1) 10(8) L mol(-1)s(-1) compared with (1.60 ± 0.03) 10(7) L mol(-1)s(-1) for the astaxanthin:ferulic acid mixture, 1:2 equivalents. The mutual enhancement of antioxidant activity for the newly synthetized astaxanthin diferulate becoming a bifunctional antioxidant is rationalized according to a two-dimensional classification plot for electron donation and electron acceptance capability.

  12. Bifunctional Ligands Allow Deliberate Extrinsic Reprogramming of the Glucocorticoid Receptor

    PubMed Central

    Højfeldt, Jonas W.; Cruz-Rodríguez, Osvaldo; Imaeda, Yasuhiro; Van Dyke, Aaron R.; Carolan, James P.; Mapp, Anna K.

    2014-01-01

    Therapies based on conventional nuclear receptor ligands are extremely powerful, yet their broad and long-term use is often hindered by undesired side effects that are often part of the receptor's biological function. Selective control of nuclear receptors such as the glucocorticoid receptor (GR) using conventional ligands has proven particularly challenging. Because they act solely in an allosteric manner, conventional ligands are constrained to act via cofactors that can intrinsically partner with the receptor. Furthermore, effective means to rationally encode a bias for specific coregulators are generally lacking. Using the (GR) as a framework, we demonstrate here a versatile approach, based on bifunctional ligands, that extends the regulatory repertoire of GR in a deliberate and controlled manner. By linking the macrolide FK506 to a conventional agonist (dexamethasone) or antagonist (RU-486), we demonstrate that it is possible to bridge the intact receptor to either positively or negatively acting coregulatory proteins bearing an FK506 binding protein domain. Using this strategy, we show that extrinsic recruitment of a strong activation function can enhance the efficacy of the full agonist dexamethasone and reverse the antagonist character of RU-486 at an endogenous locus. Notably, the extrinsic recruitment of histone deacetylase-1 reduces the ability of GR to activate transcription from a canonical GR response element while preserving ligand-mediated repression of nuclear factor-κB. By providing novel ways for the receptor to engage specific coregulators, this unique ligand design approach has the potential to yield both novel tools for GR study and more selective therapeutics. PMID:24422633

  13. Biochemical and Structural Characterization of the Arabidopsis Bifunctional Enzyme Dethiobiotin Synthetase–Diaminopelargonic Acid Aminotransferase: Evidence for Substrate Channeling in Biotin Synthesis[C][W

    PubMed Central

    Cobessi, David; Dumas, Renaud; Pautre, Virginie; Meinguet, Céline; Ferrer, Jean-Luc; Alban, Claude

    2012-01-01

    Diaminopelargonic acid aminotransferase (DAPA-AT) and dethiobiotin synthetase (DTBS) catalyze the antepenultimate and the penultimate steps, respectively, of biotin synthesis. Whereas DAPA-AT and DTBS are encoded by distinct genes in bacteria, in biotin-synthesizing eukaryotes (plants and most fungi), both activities are carried out by a single enzyme encoded by a bifunctional gene originating from the fusion of prokaryotic monofunctional ancestor genes. In few angiosperms, including Arabidopsis thaliana, this chimeric gene (named BIO3-BIO1) also produces a bicistronic transcript potentially encoding separate monofunctional proteins that can be produced following an alternative splicing mechanism. The functional significance of the occurrence of a bifunctional enzyme in biotin synthesis pathway in eukaryotes and the relative implication of each of the potential enzyme forms (bifunctional versus monofunctional) in the plant biotin pathway are unknown. In this study, we demonstrate that the BIO3-BIO1 fusion protein is the sole protein form produced by the BIO3-BIO1 locus in Arabidopsis. The enzyme catalyzes both DAPA-AT and DTBS reactions in vitro and is targeted to mitochondria in vivo. Our biochemical and kinetic characterizations of the pure recombinant enzyme show that in the course of the reaction, the DAPA intermediate is directly transferred from the DAPA-AT active site to the DTBS active site. Analysis of several structures of the enzyme crystallized in complex with and without its ligands reveals key structural elements involved for acquisition of bifunctionality and brings, together with mutagenesis experiments, additional evidences for substrate channeling. PMID:22547782

  14. Shadow enhancers enable Hunchback bifunctionality in the Drosophila embryo.

    PubMed

    Staller, Max V; Vincent, Ben J; Bragdon, Meghan D J; Lydiard-Martin, Tara; Wunderlich, Zeba; Estrada, Javier; DePace, Angela H

    2015-01-20

    Hunchback (Hb) is a bifunctional transcription factor that activates and represses distinct enhancers. Here, we investigate the hypothesis that Hb can activate and repress the same enhancer. Computational models predicted that Hb bifunctionally regulates the even-skipped (eve) stripe 3+7 enhancer (eve3+7) in Drosophila blastoderm embryos. We measured and modeled eve expression at cellular resolution under multiple genetic perturbations and found that the eve3+7 enhancer could not explain endogenous eve stripe 7 behavior. Instead, we found that eve stripe 7 is controlled by two enhancers: the canonical eve3+7 and a sequence encompassing the minimal eve stripe 2 enhancer (eve2+7). Hb bifunctionally regulates eve stripe 7, but it executes these two activities on different pieces of regulatory DNA--it activates the eve2+7 enhancer and represses the eve3+7 enhancer. These two "shadow enhancers" use different regulatory logic to create the same pattern.

  15. Bi-functional elastin-like polypeptide nanoparticles bind rapamycin and integrins, and suppress tumor growth in vivo.

    PubMed

    Dhandhukia, Jugal P; Shi, Pu; Peddi, Santosh; Li, Zhe; Aluri, Suhaas Rayudu; Ju, Yaping; Brill, Dab; Wang, Wan; Janib, Siti; Lin, Yi-An; Liu, Shuanglong; Cui, Honggang; MacKay, John Andrew

    2017-09-22

    Recombinant protein-polymer scaffolds such as Elastin-Like Polypeptides (ELPs) offer drug delivery opportunities including biocompatibility, monodispersity, and multi-functionality. We recently reported that fusion of FK-506 binding protein 12 (FKBP) to an ELP nanoparticle (FSI) increases rapamycin (Rapa) solubility, suppresses growth of breast cancer xenografts, and reduces side-effects observed with free drug controls. This new report significantly advances this carrier strategy by demonstrating the co-assembly of two different ELP diblock copolymers containing drug-loading and tumor-targeting domains. A new ELP nanoparticle (ISR) was synthesized, which includes the canonical integrin targeting ligand (Arg-Gly-Asp, RGD). FSI and ISR mixed in a 1:1 molar ratio co-assemble into bi-functional nanoparticles containing both the FKBP domain for Rapa loading and the RGD ligand for integrin binding. Co-assembled nanoparticles were evaluated for bi-functionality by performing in vitro cell binding and drug retention assays and in vivo MDA-MB-468 breast tumor xenograft and tumor accumulation studies. The bi-functional nanoparticle demonstrated superior cell target binding and similar drug retention to FSI; however, it enhanced the formulation potency, such that tumor growth was suppressed at a 3-fold lower dose compared to an untargeted FSI-Rapa control. This data suggests that ELP-mediated scaffolds are useful tools for generating multifunctional nanomedicines with potential activity in cancer.

  16. Bifunctional Oxygen Reaction Catalysis of Quadruple Manganese Perovskites.

    PubMed

    Yamada, Ikuya; Fujii, Hiroshi; Takamatsu, Akihiko; Ikeno, Hidekazu; Wada, Kouhei; Tsukasaki, Hirofumi; Kawaguchi, Shogo; Mori, Shigeo; Yagi, Shunsuke

    2017-01-01

    Bifunctional electrocatalysts for oxygen evolution/reduction reaction (OER/ORR) are desirable for the development of energy conversion technologies. It is discovered that the manganese quadruple perovskites CaMn7 O12 and LaMn7 O12 show bifunctional catalysis in the OER/ORR. A possible origin of the high OER activity is the unique surface structure through corner-shared planar MnO4 and octahedral MnO6 units to promote direct OO bond formations. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Novel bifunctional natriuretic peptides as potential therapeutics.

    PubMed

    Dickey, Deborah M; Burnett, John C; Potter, Lincoln R

    2008-12-12

    Synthetic atrial natriuretic peptide (carperitide) and B-type natriuretic peptide (BNP; nesiritide) are used to treat congestive heart failure. However, despite beneficial cardiac unloading properties, reductions in renal perfusion pressures limit their clinical effectiveness. Recently, CD-NP, a chimeric peptide composed of C-type natriuretic peptide (CNP) fused to the C-terminal tail of Dendroaspis natriuretic peptide (DNP), was shown to be more glomerular filtration rate-enhancing than BNP in dogs. However, the molecular basis for the increased responsiveness was not determined. Here, we show that the DNP tail has a striking effect on CNP, converting it from a non-agonist to a partial agonist of natriuretic peptide receptor (NPR)-A while maintaining the ability to activate NPR-B. This effect is specific for human receptors because CD-NP was only a slightly better activator of rat NPR-A due to the promiscuous nature of CNP in this species. Interesting, the DNP tail alone had no effect on any NPR even though it is effective in vivo. To further increase the potency of CD-NP for NPR-A, we converted two different triplet sequences within the CNP ring to their corresponding residues in BNP. Both variants demonstrated increased affinity and full agonist activity for NPR-A, whereas one was as potent as any NPR-A activator known. In contrast to a previous report, we found that DNP binds the natriuretic peptide clearance receptor (NPR-C). However, none of the chimeric peptides bound NPR-C with significantly higher affinity than endogenous ligands. We suggest that bifunctional chimeric peptides represent a new generation of natriuretic peptide therapeutics.

  18. Electrocatalysts for bifunctional oxygen/air electrodes

    NASA Astrophysics Data System (ADS)

    Nikolova, V.; Iliev, P.; Petrov, K.; Vitanov, T.; Zhecheva, E.; Stoyanova, R.; Valov, I.; Stoychev, D.

    Oxygen reduction and evolution have been studied with respect to the development of bifunctional air/oxygen electrode (BFE). Three groups of catalysts have been prepared: (i) Cu xCo 3- xO 4 by thermal decomposition of mixed nitrate and carbonate precursors; (ii) thin films of Co-Ni-Te-O and Co-Te-O were deposited by vacuum co-evaporation of Co, Ni and TeO 2 and (iii) Co xO v/ZrO 2 films were obtained by electrochemical deposition. The electrochemical behavior of the chemically synthesized catalysts was studied on classical bilayered gas diffusion electrodes (GDEs), where the catalyst is in form of powder. The GDE catalyzed with vacuum deposited catalysts was prepared by direct deposition of the catalyst on gas-supplying layer, thus creating a ready-to-use gas diffusion electrode. Catalysts prepared electrochemically were first deposited on Ni foam and than pressed onto the gas-supplying layer. Different catalysts deposited on classical and originally designed GDEs were compared by their electrochemical performances. Cu 0.3Co 2.7O 4 deposited on a classical bilayered GDE with loading of 50 mg cm -2 exhibits stable current-voltage characteristics after 200 charge-discharge cycles in a real metal hydride-air battery. The electrochemically and vacuum deposited Co xO v/ZrO 2, Co-Ni-Te-O and Co-Te-O films exhibit much higher mass activity compared to Cu 0.2Co 2.8O 4 for both oxygen reduction and evolution reactions. The difference is that the loading of electrochemically and vacuum deposited films is 0.06 mg cm -2 only, which is a substantial advantage from a practical viewpoint.

  19. Robust control of PEP formation rate in the carbon fixation pathway of C(4) plants by a bi-functional enzyme.

    PubMed

    Hart, Yuval; Mayo, Avraham E; Milo, Ron; Alon, Uri

    2011-10-24

    C(4) plants such as corn and sugarcane assimilate atmospheric CO(2) into biomass by means of the C(4) carbon fixation pathway. We asked how PEP formation rate, a key step in the carbon fixation pathway, might work at a precise rate, regulated by light, despite fluctuations in substrate and enzyme levels constituting and regulating this process. We present a putative mechanism for robustness in C(4) carbon fixation, involving a key enzyme in the pathway, pyruvate orthophosphate dikinase (PPDK), which is regulated by a bifunctional enzyme, Regulatory Protein (RP). The robust mechanism is based on avidity of the bifunctional enzyme RP to its multimeric substrate PPDK, and on a product-inhibition feedback loop that couples the system output to the activity of the bifunctional regulator. The model provides an explanation for several unusual biochemical characteristics of the system and predicts that the system's output, phosphoenolpyruvate (PEP) formation rate, is insensitive to fluctuations in enzyme levels (PPDK and RP), substrate levels (ATP and pyruvate) and the catalytic rate of PPDK, while remaining sensitive to the system's input (light levels). The presented PPDK mechanism is a new way to achieve robustness using product inhibition as a feedback loop on a bifunctional regulatory enzyme. This mechanism exhibits robustness to protein and metabolite levels as well as to catalytic rate changes. At the same time, the output of the system remains tuned to input levels.

  20. Bifunctional mesoporous silicas with clearly distinguished localization of grafted groups

    NASA Astrophysics Data System (ADS)

    Roik, N. V.; Belyakova, L. A.

    2013-12-01

    Bifunctional mesoporous silicas with clearly distinguished localization of grafted groups on the surface of particles and inside their pores were obtained by means of sol-gel synthesis with postsynthetic vapor-phase treatment in vacuum. It was found that the synthesized materials have the hexagonally ordered porous structure typical of MCM-41 type silica.

  1. pH-Sensitive, N-ethoxybenzylimidazole (NEBI) bifunctional crosslinkers enable triggered release of therapeutics from drug delivery carriers.

    PubMed

    Luong, Alice; Issarapanichkit, Tawny; Kong, Seong Deok; Fong, Rina; Yang, Jerry

    2010-11-21

    This paper presents a pH-sensitive bifunctional crosslinker that enables facile conjugation of small molecule therapeutics to macromolecular carriers for use in drug delivery systems. This N-ethoxybenzylimidazole (NEBI) bifunctional crosslinker was designed to exploit mildly acidic, subcellular environments to trigger the release of therapeutics upon internalization in cells. We demonstrate that an analog of doxorubicin (a representative example of an anticancer therapeutic) conjugated to human serum albumin (HSA, a representative example of a macromolecular carrier) via this NEBI crosslinker can internalize and localize into acidic lysosomes of ovarian cancer cells. Fluorescence imaging and cell viability studies demonstrate that the HSA-NEBI-doxorubicin conjugate exhibited improved uptake and cytotoxic activity compared to the unconjugated doxorubicin analog. The pH-sensitive NEBI group was also shown to be relatively stable to biologically-relevant metal Lewis acids and to serum proteins, supporting that these bifunctional crosslinkers may be useful for constructing drug delivery systems that will be stable in biological fluids such as blood.

  2. Energetic methods to study bifunctional biotin operon repressor.

    PubMed

    Beckett, D

    1998-01-01

    measurements. The results of quantitative studies of the biotin regulatory system can be interpreted in the context of the biological function of the system. The biotin holoenzyme ligases are a class of enzymes found across the evolutionary spectrum. Only a subset of these enzymes, including BirA, also function as transcriptional repressors. The tight binding of the allosteric effector may be understood in light of the bifunctional nature of the BirA-bio-5'-AMP complex. It is possible that the unusually high thermodynamic and kinetic stability of the complex ensures that the most probable state of the protein in vivo is the adenylate-bound form. This complex, not the unliganded protein, is active in both enzymatic transfer of biotin and site-specific DNA binding. This ensures that on depletion of the intracellular pool of apoBCCP, BirA-bio-5'-AMP accumulates and binds to bioO to repress transcription of the biotin biosynthesis operon. The intracellular demand for and synthesis of biotin are, consequently, tightly coupled in the system. The dimerization that accompanies adenylate binding to BirA appears to be significant for site-specific binding of the protein to bioO. Functionally, the simultaneous binding of the two monomers to the two operator half-sites, regardless of the kinetic mechanism by which it occurs, ensures coordinate regulation of transcription initiation from both biotin operon promoters. The multifaceted approach utilized in studies of the biotin regulatory system can serve as a model for studies of any complex transcriptional regulatory system. It is critical in elucidating the functional energetics of any of these systems that the assembly first be dissected into the constituent interactions and that each of these interactions be studied in isolation. This is not only critical for understanding the physicochemical properties of each individual contributing interaction, but is also a necessary precursor to studies of thermodynamic linkage in the system. (AB

  3. Parasite-specific inserts in the bifunctional S-adenosylmethionine decarboxylase/ornithine decarboxylase of Plasmodium falciparum modulate catalytic activities and domain interactions.

    PubMed Central

    Birkholtz, Lyn-Marie; Wrenger, Carsten; Joubert, Fourie; Wells, Gordon A; Walter, Rolf D; Louw, Abraham I

    2004-01-01

    Polyamine biosynthesis of the malaria parasite, Plasmodium falciparum, is regulated by a single, hinge-linked bifunctional PfAdoMetDC/ODC [ P. falciparum AdoMetDC (S-adenosylmethionine decarboxylase)/ODC (ornithine decarboxylase)] with a molecular mass of 330 kDa. The bifunctional nature of AdoMetDC/ODC is unique to Plasmodia and is shared by at least three species. The PfAdoMetDC/ODC contains four parasite-specific regions ranging in size from 39 to 274 residues. The significance of the parasite-specific inserts for activity and protein-protein interactions of the bifunctional protein was investigated by a single- and multiple-deletion strategy. Deletion of these inserts in the bifunctional protein diminished the corresponding enzyme activity and in some instances also decreased the activity of the neighbouring, non-mutated domain. Intermolecular interactions between AdoMetDC and ODC appear to be vital for optimal ODC activity. Similar results have been reported for the bifunctional P. falciparum dihydrofolate reductase-thymidylate synthase [Yuvaniyama, Chitnumsub, Kamchonwongpaisan, Vanichtanankul, Sirawaraporn, Taylor, Walkinshaw and Yuthavong (2003) Nat. Struct. Biol. 10, 357-365]. Co-incubation of the monofunctional, heterotetrameric approximately 150 kDa AdoMetDC domain with the monofunctional, homodimeric ODC domain (approximately 180 kDa) produced an active hybrid complex of 330 kDa. The hinge region is required for bifunctional complex formation and only indirectly for enzyme activities. Deletion of the smallest, most structured and conserved insert in the ODC domain had the biggest impact on the activities of both decarboxylases, homodimeric ODC arrangement and hybrid complex formation. The remaining large inserts are predicted to be non-globular regions located on the surface of these proteins. The large insert in AdoMetDC in contrast is not implicated in hybrid complex formation even though distinct interactions between this insert and the two domains

  4. AmpH, a Bifunctional dd-Endopeptidase and dd-Carboxypeptidase of Escherichia coli▿

    PubMed Central

    González-Leiza, Silvia M.; de Pedro, Miguel A.; Ayala, Juan A.

    2011-01-01

    In Escherichia coli, low-molecular-mass penicillin-binding proteins (LMM PBPs) are important for correct cell morphogenesis. These enzymes display dd-carboxypeptidase and/or dd-endopeptidase activities associated with maturation and remodeling of peptidoglycan (PG). AmpH has been classified as an AmpH-type class C LMM PBP, a group closely related to AmpC β-lactamases. AmpH has been associated with PG recycling, although its enzymatic activity remained uncharacterized until now. Construction and purification of His-tagged AmpH from E. coli permitted a detailed study of its enzymatic properties. The N-terminal export signal of AmpH is processed, but the protein remains membrane associated. The PBP nature of AmpH was demonstrated by its ability to bind the β-lactams Bocillin FL (a fluorescent penicillin) and cefmetazole. In vitro assays with AmpH and specific muropeptides demonstrated that AmpH is a bifunctional dd–endopeptidase and dd-carboxypeptidase. Indeed, the enzyme cleaved the cross-linked dimers tetrapentapeptide (D45) and tetratetrapeptide (D44) with efficiencies (kcat/Km) of 1,200 M−1 s−1 and 670 M−1 s−1, respectively, and removed the terminal d-alanine from muropeptides with a C-terminal d-Ala-d-Ala dipeptide. Both dd-peptidase activities were inhibited by 40 μM cefmetazole. AmpH also displayed a weak β-lactamase activity for nitrocefin of 1.4 × 10−3 nmol/μg protein/min, 1/1,000 the rate obtained for AmpC under the same conditions. AmpH was also active on purified sacculi, exhibiting the bifunctional character that was seen with pure muropeptides. The wide substrate spectrum of the dd-peptidase activities associated with AmpH supports a role for this protein in PG remodeling or recycling. PMID:22001512

  5. Recent progress in asymmetric bifunctional catalysis using multimetallic systems.

    PubMed

    Shibasaki, Masakatsu; Kanai, Motomu; Matsunaga, Shigeki; Kumagai, Naoya

    2009-08-18

    The concept of bifunctional catalysis, wherein both partners of a bimolecular reaction are simultaneously activated, is very powerful for designing efficient asymmetric catalysts. Catalytic asymmetric processes are indispensable for producing enantiomerically enriched compounds in modern organic synthesis, providing more economical and environmentally benign results than methods requiring stoichiometric amounts of chiral reagents. Extensive efforts in this field have produced many asymmetric catalysts, and now a number of reactions can be rendered asymmetric. We have focused on the development of asymmetric catalysts that exhibit high activity, selectivity, and broad substrate generality under mild reaction conditions. Asymmetric catalysts based on the concept of bifunctional catalysis have emerged as a particularly effective class, enabling simultaneous activation of multiple reaction components. Compared with conventional catalysts, bifunctional catalysts generally exhibit enhanced catalytic activity and higher levels of stereodifferentiation under milder reaction conditions, attracting much attention as next-generation catalysts for prospective practical applications. In this Account, we describe recent advances in enantioselective catalysis with bifunctional catalysts. Since our identification of heterobimetallic rare earth-alkali metal-BINOL (REMB) complexes, we have developed various types of bifunctional multimetallic catalysts. The REMB catalytic system is effective for catalytic asymmetric Corey-Chaykovsky epoxidation and cyclopropanation. A dinucleating Schiff base has emerged as a suitable multidentate ligand for bimetallic catalysts, promoting catalytic syn-selective nitro-Mannich, anti-selective nitroaldol, and Mannich-type reactions. The sugar-based ligand GluCAPO provides a suitable platform for polymetallic catalysts; structural elucidation revealed that their higher order polymetallic structures are a determining factor for their function in the

  6. Genetics Home Reference: D-bifunctional protein deficiency

    MedlinePlus

    ... unusually large space between the bones of the skull (fontanel). An enlarged liver (hepatomegaly) occurs in about ... Accessibility FOIA Viewers & Players U.S. Department of Health & Human Services National Institutes of Health National Library of ...

  7. Crystal structure of the bifunctional ATP sulfurylase-APS kinase from the chemolithotrophic thermophile Aquifex aeolicus.

    PubMed

    Yu, Zhihao; Lansdon, Eric B; Segel, Irwin H; Fisher, Andrew J

    2007-01-19

    The thermophilic chemolithotroph, Aquifex aeolicus, expresses a gene product that exhibits both ATP sulfurylase and adenosine-5'-phosphosulfate (APS) kinase activities. These enzymes are usually segregated on two separate proteins in most bacteria, fungi, and plants. The domain arrangement in the Aquifex enzyme is reminiscent of the fungal ATP sulfurylase, which contains a C-terminal domain that is homologous to APS kinase yet displays no kinase activity. Rather, in the fungal enzyme, the motif serves as a sulfurylase regulatory domain that binds the allosteric effector 3'-phosphoadenosine-5'-phosphosulfate (PAPS), the product of true APS kinase. Therefore, the Aquifex enzyme may represent an ancestral homolog of a primitive bifunctional enzyme, from which the fungal ATP sulfurylase may have evolved. In heterotrophic sulfur-assimilating organisms such as fungi, ATP sulfurylase catalyzes the first committed step in sulfate assimilation to produce APS, which is subsequently metabolized to generate all sulfur-containing biomolecules. In contrast, ATP sulfurylase in sulfur chemolithotrophs catalyzes the reverse reaction to produce ATP and sulfate from APS and pyrophosphate. Here, the 2.3 A resolution X-ray crystal structure of Aquifex ATP sulfurylase-APS kinase bifunctional enzyme is presented. The protein dimerizes through its APS kinase domain and contains ADP bound in all four active sites. Comparison of the Aquifex ATP sulfurylase active site with those from sulfate assimilators reveals similar dispositions of the bound nucleotide and nearby residues. This suggests that minor perturbations are responsible for optimizing the kinetic properties for the physiologically relevant direction. The APS kinase active-site lid adopts two distinct conformations, where one conformation is distorted by crystal contacts. Additionally, a disulfide bond is observed in one ATP-binding P-loop of the APS kinase active site. This linkage accounts for the low kinase activity of the

  8. Bifunctional electrocatalysis in pt-ru nanoparticle systems.

    PubMed

    Roth, C; Benker, N; Theissmann, R; Nichols, R J; Schiffrin, D J

    2008-03-04

    Pt-Ru alloys are prominent electrocatalysts in fuel cell anodes as they feature a very high activity for the oxidation of reformate and methanol. The improved CO tolerance of these alloys has been discussed in relation to the so-called ligand and bifunctional mechanisms. Although these effects have been known for many years, they are still not completely understood. A new approach that bridges the gap between single crystals and practical catalysts is presented in this paper. Nanoparticulate model systems attached to an oxidized glassy carbon electrode were prepared by combining both ligand-stabilized and spontaneously deposited Pt and Ru nanoparticles. These electrodes showed very different voltammetric responses for CO and methanol oxidation. The cyclic voltammograms were deconvoluted into contributions attributed to Pt, Ru, and Pt-Ru contact regions to quantify the contribution of the latter to the bifunctional mechanism. Scanning transmission electron microscopy confirmed the proximity of Pt and Ru nanoparticles in the different samples.

  9. Preparation of a Versatile Bifunctional Zeolite for Targeted Imaging Applications

    PubMed Central

    Ndiege, Nicholas; Raidoo, Renugan; Schultz, Michael K.; Larsen, Sarah

    2011-01-01

    Bifunctional zeolite Y was prepared for use in targeted in vivo molecular imaging applications. The strategy involved functionalization of the external surface of zeolite Y with chloropropyltriethoxysilane followed by reaction with sodium azide to form azide-functionalized NaY, which is amenable to copper(1) catalyzed click chemistry. In this study, a model alkyne (4-pentyn-1-ol) was attached to the azide-terminated surface via click chemistry to demonstrate feasibility for attachment of molecular targeting vectors (e.g., peptides, aptamers) to the zeolite surface. The modified particle efficiently incorporates the imaging radioisotope gallium-68 (68Ga) into the pores of the azide-functionalized NaY zeolite to form a stable bifunctional molecular targeting vector. The result is a versatile “clickable” zeolite platform that can be tailored for future in vivo molecular targeting and imaging modalities. PMID:21306141

  10. The aminoindanol core as a key scaffold in bifunctional organocatalysts.

    PubMed

    G Sonsona, Isaac; Marqués-López, Eugenia; Herrera, Raquel P

    2016-01-01

    The 1,2-aminoindanol scaffold has been found to be very efficient, enhancing the enantioselectivity when present in organocatalysts. This may be explained by its ability to induce a bifunctional activation of the substrates involved in the reaction. Thus, it is easy to find hydrogen-bonding organocatalysts ((thio)ureas, squaramides, quinolinium thioamide, etc.) in the literature containing this favored structural core. They have been successfully employed in reactions such as Friedel-Crafts alkylation, Michael addition, Diels-Alder and aza-Henry reactions. However, the 1,2-aminoindanol core incorporated into proline derivatives has been scarcely explored. Herein, the most representative and illustrative examples are compiled and this review will be mainly focused on the cases where the aminoindanol moiety confers bifunctionality to the organocatalysts.

  11. Preparation of a versatile bifunctional zeolite for targeted imaging applications.

    PubMed

    Ndiege, Nicholas; Raidoo, Renugan; Schultz, Michael K; Larsen, Sarah

    2011-03-15

    Bifunctional zeolite Y was prepared for use in targeted in vivo molecular imaging applications. The strategy involved functionalization of the external surface of zeolite Y with chloropropyltriethoxysilane followed by reaction with sodium azide to form azide-functionalized NaY, which is amenable to copper(1)-catalyzed click chemistry. In this study, a model alkyne (4-pentyn-1-ol) was attached to the azide-terminated surface via click chemistry to demonstrate feasibility for attachment of molecular targeting vectors (e.g., peptides, aptamers) to the zeolite surface. The modified particle efficiently incorporates the imaging radioisotope gallium-68 ((68)Ga) into the pores of the azide-functionalized NaY zeolite to form a stable bifunctional molecular targeting vector. The result is a versatile "clickable" zeolite platform that can be tailored for future in vivo molecular targeting and imaging modalities.

  12. The aminoindanol core as a key scaffold in bifunctional organocatalysts

    PubMed Central

    G. Sonsona, Isaac

    2016-01-01

    Summary The 1,2-aminoindanol scaffold has been found to be very efficient, enhancing the enantioselectivity when present in organocatalysts. This may be explained by its ability to induce a bifunctional activation of the substrates involved in the reaction. Thus, it is easy to find hydrogen-bonding organocatalysts ((thio)ureas, squaramides, quinolinium thioamide, etc.) in the literature containing this favored structural core. They have been successfully employed in reactions such as Friedel–Crafts alkylation, Michael addition, Diels–Alder and aza-Henry reactions. However, the 1,2-aminoindanol core incorporated into proline derivatives has been scarcely explored. Herein, the most representative and illustrative examples are compiled and this review will be mainly focused on the cases where the aminoindanol moiety confers bifunctionality to the organocatalysts. PMID:27340443

  13. Nanoscale intimacy in bifunctional catalysts for selective conversion of hydrocarbons

    NASA Astrophysics Data System (ADS)

    Zecevic, Jovana; Vanbutsele, Gina; de Jong, Krijn P.; Martens, Johan A.

    2015-12-01

    The ability to control nanoscale features precisely is increasingly being exploited to develop and improve monofunctional catalysts. Striking effects might also be expected in the case of bifunctional catalysts, which are important in the hydrocracking of fossil and renewable hydrocarbon sources to provide high-quality diesel fuel. Such bifunctional hydrocracking catalysts contain metal sites and acid sites, and for more than 50 years the so-called intimacy criterion has dictated the maximum distance between the two types of site, beyond which catalytic activity decreases. A lack of synthesis and material-characterization methods with nanometre precision has long prevented in-depth exploration of the intimacy criterion, which has often been interpreted simply as ‘the closer the better’ for positioning metal and acid sites. Here we show for a bifunctional catalyst—comprising an intimate mixture of zeolite Y and alumina binder, and with platinum metal controllably deposited on either the zeolite or the binder—that closest proximity between metal and zeolite acid sites can be detrimental. Specifically, the selectivity when cracking large hydrocarbon feedstock molecules for high-quality diesel production is optimized with the catalyst that contains platinum on the binder, that is, with a nanoscale rather than closest intimacy of the metal and acid sites. Thus, cracking of the large and complex hydrocarbon molecules that are typically derived from alternative sources, such as gas-to-liquid technology, vegetable oil or algal oil, should benefit especially from bifunctional catalysts that avoid locating platinum on the zeolite (the traditionally assumed optimal location). More generally, we anticipate that the ability demonstrated here to spatially organize different active sites at the nanoscale will benefit the further development and optimization of the emerging generation of multifunctional catalysts.

  14. Stereoselective Glycosylation of 2-Nitrogalactals Catalyzed by a Bifunctional Organocatalyst

    PubMed Central

    2016-01-01

    The use of a bifunctional cinchona/thiourea organocatalyst for the direct and α-stereoselective glycosylation of 2-nitrogalactals is demonstrated for the first time. The conditions are mild, practical, and applicable to a wide range of glycoside acceptors with products being isolated in good to excellent yields. The method is exemplified in the synthesis of mucin type Core 6 and 7 glycopeptides. PMID:27529800

  15. Bifunctional air electrodes containing elemental iron powder charging additive

    DOEpatents

    Liu, Chia-tsun; Demczyk, Brian G.; Gongaware, Paul R.

    1982-01-01

    A bifunctional air electrode for use in electrochemical energy cells is made, comprising a hydrophilic layer and a hydrophobic layer, where the hydrophilic layer essentially comprises a hydrophilic composite which includes: (i) carbon; (ii) elemental iron particles having a particle size of between about 25 microns and about 700 microns diameter; (iii) an oxygen evolution material; (iv) a nonwetting agent; and (v) a catalyst, where at least one current collector is formed into said composite.

  16. Nanoscale intimacy in bifunctional catalysts for selective conversion of hydrocarbons

    PubMed Central

    Zečević, Jovana; Vanbutsele, Gina; de Jong, Krijn P.; Martens, Johan A.

    2016-01-01

    The ability to precisely control nanoscale features is increasingly exploited to develop and improve monofunctional catalysts1–4. Striking effects might also be expected in the case of bifunctional catalysts, which play an important role in hydrocracking of fossil and renewable hydrocarbon sources to provide high-quality diesel fuel5–7. Such bifunctional hydrocracking catalysts contain metal sites and acid sites, and for more than 50 years the so-called ‘intimacy criterion’8 has dictated the maximum distance between the two site types beyond which catalytic activity decreases. The lack of synthesis and material characterization methods with nanometer precision has long prevented in-depth exploration of the criterion, which has often been interpreted simply as ‘the closer the better’ for positioning metal and acid sites8–11. Here we show for a bifunctional catalyst, comprised of an intimate mixture of zeolite Y and alumina binder and with platinum (Pt) metal controllably deposited20,21 on either the zeolite or the binder, that close proximity between metal and zeolite acid sites can be detrimental: the selectivity when cracking large hydrocarbon feedstock molecules for high-quality diesel production is optimized with the catalyst that contains Pt on the binder, i.e. with a larger distance between metal and acid sites. Cracking of the large and complex hydrocarbon molecules typically derived from alternative sources such as gas-to-liquid technology, vegetable oil or algal oil6–7 should thus benefit especially from bifunctional catalysts that avoid locating Pt on the zeolite as the traditionally assumed optimal location. More generally, we anticipate that the ability to spatially organize different active sites at the nanoscale demonstrated here will benefit the further development and optimization of the newly emerging generation of multifunctional catalysts12–15. PMID:26659185

  17. Room Temperature Hydrosilylation of Silicon Nanocrystals with Bifunctional Terminal Alkenes

    PubMed Central

    Yu, Yixuan; Hessel, Colin M.; Bogart, Timothy; Panthani, Matthew G.; Rasch, Michael R.; Korgel, Brian A.

    2013-01-01

    H-terminated Si nanocrystals undergo room temperature hydrosilylation with bifunctional alkenes with distal polar moieties—ethyl-, methyl-ester or carboxylic acids—without the aid of light or added catalyst. The passivated Si nanocrystals exhibit bright photoluminescence (PL) and disperse in polar solvents, including water. We propose a reaction mechanism in which ester or carboxylic acid groups facilitate direct nucleophilic attack of the highly curved Si surface of the nanocrystals by the alkene. PMID:23312033

  18. Phosphine-boronates: efficient bifunctional organocatalysts for Michael addition.

    PubMed

    Baslé, Olivier; Porcel, Susana; Ladeira, Sonia; Bouhadir, Ghenwa; Bourissou, Didier

    2012-05-11

    Phosphine-boronates R(2)P(o-C(6)H(4))B(OR')(2) have been evaluated as bifunctional organocatalysts for the Michael addition of malonate pronucleophiles to methylvinylketone. The presence of the Lewis acidic boron center adjacent to phosphorus significantly improves catalytic performance. Isolation and complete characterization of a key intermediate, namely a β-phosphonium enolate, substantiate the role of the Lewis acidic moiety in the catalytic process.

  19. SCO5745, a Bifunctional RNase J Ortholog, Affects Antibiotic Production in Streptomyces coelicolor

    PubMed Central

    Bralley, Patricia; Aseem, Madiha

    2014-01-01

    The bacterial RNases J are considered bifunctional RNases possessing both endo- and exonucleolytic activities. We have isolated an RNase J ortholog from Streptomyces coelicolor encoded by the gene sco5745. We overexpressed a decahistidine-tagged version of SCO5745 and purified the overexpressed protein by immobilized metal ion affinity chromatography. We demonstrated the presence of both 5′-to-3′ exonucleolytic and endonucleolytic activities on the Bacillus subtilis thrS transcript. Exonucleoytic activity predominated with 5′ monophosphorylated thrS, while endonucleolytic activity predominated with 5′ triphosphorylated thrS. While sco5745 is the only RNase J allele in S. coelicolor, the gene is not essential. Its disruption resulted in delayed production of the antibiotic actinorhodin, overproduction of undecylprodigiosin, and diminished production of the calcium-dependent antibiotic, in comparison with the parental strain. PMID:24415725

  20. Invariants reveal multiple forms of robustness in bifunctional enzyme systems.

    PubMed

    Dexter, Joseph P; Dasgupta, Tathagata; Gunawardena, Jeremy

    2015-08-01

    Experimental and theoretical studies have suggested that bifunctional enzymes catalyzing opposing modification and demodification reactions can confer steady-state concentration robustness to their substrates. However, the types of robustness and the biochemical basis for them have remained elusive. Here we report a systematic study of the most general biochemical reaction network for a bifunctional enzyme acting on a substrate with one modification site, along with eleven sub-networks with more specialized biochemical assumptions. We exploit ideas from computational algebraic geometry, introduced in previous work, to find a polynomial expression (an invariant) between the steady state concentrations of the modified and unmodified substrate for each network. We use these invariants to identify five classes of robust behavior: robust upper bounds on concentration, robust two-sided bounds on concentration ratio, hybrid robustness, absolute concentration robustness (ACR), and robust concentration ratio. This analysis demonstrates that robustness can take a variety of forms and that the type of robustness is sensitive to many biochemical details, with small changes in biochemistry leading to very different steady-state behaviors. In particular, we find that the widely-studied ACR requires highly specialized assumptions in addition to bifunctionality. An unexpected result is that the robust bounds derived from invariants are strictly tighter than those derived by ad hoc manipulation of the underlying differential equations, confirming the value of invariants as a tool to gain insight into biochemical reaction networks. Furthermore, invariants yield multiple experimentally testable predictions and illuminate new strategies for inferring enzymatic mechanisms from steady-state measurements.

  1. Shadow enhancers enable Hunchback bifunctionality in the Drosophila embryo

    PubMed Central

    Staller, Max V.; Vincent, Ben J.; Bragdon, Meghan D. J.; Lydiard-Martin, Tara; Wunderlich, Zeba; Estrada, Javier; DePace, Angela H.

    2015-01-01

    Hunchback (Hb) is a bifunctional transcription factor that activates and represses distinct enhancers. Here, we investigate the hypothesis that Hb can activate and repress the same enhancer. Computational models predicted that Hb bifunctionally regulates the even-skipped (eve) stripe 3+7 enhancer (eve3+7) in Drosophila blastoderm embryos. We measured and modeled eve expression at cellular resolution under multiple genetic perturbations and found that the eve3+7 enhancer could not explain endogenous eve stripe 7 behavior. Instead, we found that eve stripe 7 is controlled by two enhancers: the canonical eve3+7 and a sequence encompassing the minimal eve stripe 2 enhancer (eve2+7). Hb bifunctionally regulates eve stripe 7, but it executes these two activities on different pieces of regulatory DNA—it activates the eve2+7 enhancer and represses the eve3+7 enhancer. These two “shadow enhancers” use different regulatory logic to create the same pattern. PMID:25564665

  2. Expression, crystallization and preliminary crystallographic studies of a novel bifunctional N-acetylglutamate synthase/kinase from Xanthomonas campestris homologous to vertebrate N-acetylglutamate synthase

    SciTech Connect

    Shi, Dashuang Caldovic, Ljubica; Jin, Zhongmin; Yu, Xiaolin; Qu, Qiuhao; Roth, Lauren; Morizono, Hiroki; Hathout, Yetrib; Allewell, Norma M.; Tuchman, Mendel

    2006-12-01

    Expression, crystallization and preliminary X-ray diffraction studies of a novel bifunctional N-acetylglutamate synthase/kinase from X. campestris homologous to vertebrate N-acetylglutamate synthase are reported. A novel N-acetylglutamate synthase/kinase bifunctional enzyme of arginine biosynthesis that was homologous to vertebrate N-acetylglutamate synthases was identified in Xanthomonas campestris. The protein was overexpressed, purified and crystallized. The crystals belong to the hexagonal space group P6{sub 2}22, with unit-cell parameters a = b = 134.60, c = 192.11 Å, and diffract to about 3.0 Å resolution. Selenomethionine-substituted recombinant protein was produced and selenomethionine substitution was verified by mass spectroscopy. Multiple anomalous dispersion (MAD) data were collected at three wavelengths at SER-CAT, Advanced Photon Source, Argonne National Laboratory. Structure determination is under way using the MAD phasing method.

  3. A Bifunctional Locus (BIO3-BIO1) Required for Biotin Biosynthesis in Arabidopsis1[W][OA

    PubMed Central

    Muralla, Rosanna; Chen, Elve; Sweeney, Colleen; Gray, Jennifer A.; Dickerman, Allan; Nikolau, Basil J.; Meinke, David

    2008-01-01

    We identify here the Arabidopsis (Arabidopsis thaliana) gene encoding the third enzyme in the biotin biosynthetic pathway, dethiobiotin synthetase (BIO3; At5g57600). This gene is positioned immediately upstream of BIO1, which is known to be associated with the second reaction in the pathway. Reverse genetic analysis demonstrates that bio3 insertion mutants have a similar phenotype to the bio1 and bio2 auxotrophs identified using forward genetic screens for arrested embryos rescued on enriched nutrient medium. Unexpectedly, bio3 and bio1 mutants define a single genetic complementation group. Reverse transcription-polymerase chain reaction analysis demonstrates that separate BIO3 and BIO1 transcripts and two different types of chimeric BIO3-BIO1 transcripts are produced. Consistent with genetic data, one of the fused transcripts is monocistronic and encodes a bifunctional fusion protein. A splice variant is bicistronic, with distinct but overlapping reading frames. The dual functionality of the monocistronic transcript was confirmed by complementing the orthologous auxotrophs of Escherichia coli (bioD and bioA). BIO3-BIO1 transcripts from other plants provide further evidence for differential splicing, existence of a fusion protein, and localization of both enzymatic reactions to mitochondria. In contrast to most biosynthetic enzymes in eukaryotes, which are encoded by genes dispersed throughout the genome, biotin biosynthesis in Arabidopsis provides an intriguing example of a bifunctional locus that catalyzes two sequential reactions in the same metabolic pathway. This complex locus exhibits several unusual features that distinguish it from biotin operons in bacteria and from other genes known to encode bifunctional enzymes in plants. PMID:17993549

  4. Electrospinning fabrication and characterization of magnetic-upconversion fluorescent bifunctional core-shell nanofibers

    NASA Astrophysics Data System (ADS)

    Ma, Qianli; Wang, Jinxian; Dong, Xiangting; Yu, Wensheng; Liu, Guixia

    2014-02-01

    Novel magnetic-upconversion fluorescent bifunctional core-shell nanofibers have been successfully fabricated by coaxial electrospinning technology. NaYF4:Yb3+,Er3+ and Fe3O4 nanoparticles (Nps) were incorporated into polyvinylpyrrolidone (PVP) and electrospun into core-shell nanofibers with Fe3O4/PVP as core and NaYF4:Yb3+,Er3+/PVP as the shell. The morphology and properties of the final products were investigated in detail by X-ray diffractometry, scanning electron microscopy, transmission electron microscopy, vibrating sample magnetometer, and fluorescence spectroscopy. The core contained magnetic Nps was ca. 100 nm in diameter, and the shell scattered with NaYF4:Yb3+, Er3+ Nps was ca. 80 nm in thickness. Fluorescence emission peaks of Er3+ in the [Fe3O4/PVP]@[NaYF4:Yb3+,Er3+/PVP] core-shell nanofibers were observed. Compared with Fe3O4/NaYF4:Yb3+,Er3+/PVP composite nanofibers, the luminescent intensity of the [Fe3O4/PVP]@[NaYF4:Yb3+,Er3+/PVP] core-shell nanofibers was much higher, because the Fe3O4 Nps were only distributed in the core of the core-shell nanofibers, thus the manufactured core-shell nanofibers possessed excellent magnetic properties. The new type magnetic-upconversion fluorescent bifunctional [Fe3O4/PVP]@[NaYF4:Yb3+,Er3+/PVP] core-shell nanofibers have many potential applications in display device, nanorobots, protein determination, and target delivery of drug owing to their excellent magnetism and fluorescence.

  5. Dimerization and Bifunctionality Confer Robustness to the Isocitrate Dehydrogenase Regulatory System in Escherichia coli*

    PubMed Central

    Dexter, Joseph P.; Gunawardena, Jeremy

    2013-01-01

    An important goal of systems biology is to develop quantitative models that explain how specific molecular features give rise to systems-level properties. Metabolic and regulatory pathways that contain multifunctional proteins are especially interesting to study from this perspective because they have frequently been observed to exhibit robustness: the ability for a system to perform its proper function even as levels of its components change. In this study, we use extensive biochemical data and algebraic modeling to develop and analyze a model that shows how robust behavior arises in the isocitrate dehydrogenase (IDH) regulatory system of Escherichia coli, which was shown in 1985 to experimentally exhibit robustness. E. coli IDH is regulated by reversible phosphorylation catalyzed by the bifunctional isocitrate dehydrogenase kinase/phosphatase (IDHKP), and the level of IDH activity determines whether carbon flux is directed through the glyoxylate bypass (for growth on two-carbon substrates) or the full tricarboxylic acid cycle. Our model, which incorporates recent structural data on IDHKP, identifies several specific biochemical features of the system (including homodimerization of IDH and bifunctionality of IDHKP) that provide a potential explanation for robustness. Using algebraic techniques, we derive an invariant that summarizes the steady-state relationship between the phospho-forms of IDH. We use the invariant in combination with kinetic data on IDHKP to calculate IDH activity at a range of total IDH levels and find that our model predicts robustness. Our work unifies much of the known biochemistry of the IDH regulatory system into a single quantitative framework and highlights the importance of constructing biochemically realistic models in systems biology. PMID:23192354

  6. A novel bifunctional metabolizable linker for the conjugation of antibodies with radionuclides

    SciTech Connect

    Arano, Y.; Matsushima, H.; Tagawa, M.; Koizumi, M.; Endo, K.; Konishi, J.; Yokoyama, A. )

    1991-03-01

    A novel heterogeneous bifunctional reagent containing an ester bond, N-((4-(2-maleimidoethoxy)-succinyl)oxy)succinimide (MESS), was designed and synthesized for the conjugation of antibodies with the gallium-67 (67Ga) chelate of succinyldeferoxamine (SDF) via the ester bond. MESS was synthesized by the acylation of N-(2-hydroxyethyl)maleimide with succinic anhydride, followed by the activation of the resulting carboxylic acid to a succinimido ester. MESS possesses a maleimide group for protein conjugation and an active ester group for deferoxamine (DFO) coupling, and the two functional groups are linked via ester bonding. Conjugation of 67Ga-SDF with nonspecific human IgG was performed by reacting freshly thiolated IgG with the reaction product of MESS and DFO, followed by 67Ga labeling of the resulting conjugate using GaCl3 (67Ga-DFO-MESS-IgG). For comparison, 67Ga-DFO conjugated nonspecific human IgG with a nonmetabolizable linkage was synthesized under the same conjugation conditions as those for 67Ga-DFO-MESS-IgG, using a nonmetabolizable heterogenous bifunctional reagent (N-((6-maleimidocaproyl)oxy)succinimide, EMCS) instead of MESS (67Ga-DFO-EMCS-IgG). HPLC size-exclusion chromatography of both preparations showed a single radioactivity and UV peak corresponding to the intact IgG. Generation of 67Ga-SDF from the 67Ga-DFO-MESS-IgG was demonstrated by reverse-phase HPLC analysis and cellulose acetate electrophoresis after the incubation of 67Ga-DFO-MESS-IgG in a buffered solution containing carboxyesterase. After injection of 67Ga-DFO-MESS-IgG into mice, faster radioactivity clearance from the blood and less radioactivity accumulation in the liver, kidney, and spleen was noted than when 67Ga-DFO-EMCS-IgG was injected.

  7. Bifunctional apoptosis inhibitor (BAR) protects neurons from diverse cell death pathways.

    PubMed

    Roth, W; Kermer, P; Krajewska, M; Welsh, K; Davis, S; Krajewski, S; Reed, J C

    2003-10-01

    The bifunctional apoptosis regulator (BAR) is a multidomain protein that was originally identified as an inhibitor of Bax-induced apoptosis. Immunoblot analysis of normal human tissues demonstrated high BAR expression in the brain, compared to low or absent expression in other organs. Immunohistochemical staining of human adult tissues revealed that the BAR protein is predominantly expressed by neurons in the central nervous system. Immunofluorescence microscopy indicated that BAR localizes mainly to the endoplasmic reticulum (ER) of cells. Overexpression of BAR in CSM 14.1 neuronal cells resulted in significant protection from a broad range of cell death stimuli, including agents that activate apoptotic pathways involving mitochondria, TNF-family death receptors, and ER stress. Downregulation of BAR by antisense oligonucleotides sensitized neuronal cells to induction of apoptosis. Moreover, the search for novel interaction partners of BAR identified several candidate proteins that might contribute to the regulation of neuronal apoptosis (HIP1, Hippi, and Bap31). Taken together, the expression pattern and functional data suggest that the BAR protein is involved in the regulation of neuronal survival.

  8. Cloning and characterization of bifunctional enzyme farnesyl diphosphate/geranylgeranyl diphosphate synthase from Plasmodium falciparum

    PubMed Central

    2013-01-01

    Background Isoprenoids are the most diverse and abundant group of natural products. In Plasmodium falciparum, isoprenoid synthesis proceeds through the methyl erythritol diphosphate pathway and the products are further metabolized by farnesyl diphosphate synthase (FPPS), turning this enzyme into a key branch point of the isoprenoid synthesis. Changes in FPPS activity could alter the flux of isoprenoid compounds downstream of FPPS and, hence, play a central role in the regulation of a number of essential functions in Plasmodium parasites. Methods The isolation and cloning of gene PF3D7_18400 was done by amplification from cDNA from mixed stage parasites of P. falciparum. After sequencing, the fragment was subcloned in pGEX2T for recombinant protein expression. To verify if the PF3D7_1128400 gene encodes a functional rPfFPPS protein, its catalytic activity was assessed using the substrate [4-14C] isopentenyl diphosphate and three different allylic substrates: dimethylallyl diphosphate, geranyl diphosphate or farnesyl diphosphate. The reaction products were identified by thin layer chromatography and reverse phase high-performance liquid chromatography. To confirm the product spectrum formed of rPfFPPS, isoprenic compounds were also identified by mass spectrometry. Apparent kinetic constants KM and Vmax for each substrate were determined by Michaelis–Menten; also, inhibition assays were performed using risedronate. Results The expressed protein of P. falciparum FPPS (rPfFPPS) catalyzes the synthesis of farnesyl diphosphate, as well as geranylgeranyl diphosphate, being therefore a bifunctional FPPS/geranylgeranyl diphosphate synthase (GGPPS) enzyme. The apparent KM values for the substrates dimethylallyl diphosphate, geranyl diphosphate and farnesyl diphosphate were, respectively, 68 ± 5 μM, 7.8 ± 1.3 μM and 2.06 ± 0.4 μM. The protein is expressed constitutively in all intra-erythrocytic stages of P. falciparum, demonstrated by using transgenic

  9. Bi-functionality of Opisthorchis viverrini aquaporins.

    PubMed

    Geadkaew, Amornrat; von Bülow, Julia; Beitz, Eric; Tesana, Smarn; Vichasri Grams, Suksiri; Grams, Rudi

    2015-01-01

    Aquaporins (AQP) are essential mediators of water regulation in all living organisms and members of the major intrinsic protein (MIP) superfamily of integral membrane proteins. They are potential vehicles or targets for chemotherapy, e.g. in Trypanosoma brucei melarsoprol and pentamidine uptake is facilitated by TbAQP-2. Transcriptome data suggests that there are at least three active aquaporins in the human liver fluke, Opisthorchis viverrini, OvAQP-1, 2 and 3, and crude RNA silencing of OvAQP-1 and 2 has recently been shown to affect parasite swelling in destilled water. In the present work we demonstrate that OvAQP-3 is a major water-conducting channel of the parasite, that it can be detected from the newly excysted juvenile to the adult stage and that it is present in major tissues of the parasite. Furthermore, a comparative functional characterization of the three parasite AQPs was performed by using Xenopus oocyte swelling and yeast phenotypic assays. OvAQP-1, OvAQP-2, and OvAQP-3 were found to conduct water and glycerol while only the latter two were also able to conduct urea. In addition, all OvAQPs were found to transport ammonia and methylamine. Our findings demonstrate that the sequence-based classification into orthodox aquaporins and glycerol-conducting aquaglyceroporins is not functionally conserved in the parasite and implicate a broder range of functions for these channels.

  10. Cupreines and cupreidines: an established class of bifunctional cinchona organocatalysts

    PubMed Central

    Bryant, Laura A; Fanelli, Rossana

    2016-01-01

    Summary Cinchona alkaloids with a free 6'-OH functionality are being increasingly used within asymmetric organocatalysis. This fascinating class of bifunctional catalyst offers a genuine alternative to the more commonly used thiourea systems and because of the different spacing between the functional groups, can control enantioselectivity where other organocatalysts have failed. In the main, this review covers the highlights from the last five years and attempts to show the diversity of reactions that these systems can control. It is hoped that chemists developing asymmetric methodologies will see the value in adding these easily accessible, but underused organocatalysts to their screens. PMID:27340439

  11. Extraction of uranium by macroporous bifunctional phosphinic acid resin

    SciTech Connect

    Sabharwal, K.N.; Rao, P.R.V.; Srinivasan, M.

    1995-05-01

    The extraction of U(VI), Th(IV) and a number of fission products from nitric acid medium by a newly synthesised macroporous bifunctional phosphinic acid resin has been studied. The extraction of uranium from sulphuric acid medium has also been studied. While the gel type phosphinic acid resins seems to pose a number of problems in practical applications, the macroporous type resins are shown to be suitable for a variety of applications where conventional ion exchange resins are of limited use. 12 refs., 5 figs., 3 tabs.

  12. Enantioselective Iodolactonization of Disubstituted Olefinic Acids Using a Bifunctional Catalyst

    PubMed Central

    Fang, Chao; Paull, Daniel H.; Hethcox, J. Caleb; Shugrue, Christopher R.; Martin, Stephen F.

    2012-01-01

    The enantioselective iodolactonizations of a series of diversely-substituted olefinic carboxylic acids are promoted by a BINOL-derived, bifunctional catalyst. Reactions involving 5-alkyl- and 5-aryl-4(Z)-pentenoic acids and 6-alkyl- and 6-aryl-5(Z)-hexenoic acids provide the corresponding γ- and δ-lactones having stereogenic C–I bonds in excellent yields and >97:3 er. Significantly, this represents the first organocatalyst that promotes both bromo- and iodolactonization with high enantioselectivities. The potential of this catalyst to induce kinetic resolutions of racemic unsaturated acids is also demonstrated. PMID:23199100

  13. Charge transfer to a semi-esterified bifunctional phenol

    NASA Astrophysics Data System (ADS)

    Brede, O.; Hermann, R.; Orthner, H.

    1996-03-01

    The charge transfer from solvent radical cations of n-butyl chloride and cyclohexane to 2-butyl-6(3'-t-butyl-2'-hydroxy-5'-methylbenzyl)-4-methyl-phenylacrylate (GM) yields in the first step phenoxyl radicals as well as acrylate radical cations of this semi-acrylated bifunctional phenol. Subsequently an intramolecular charge transfer from the acrylate radical cation to the phenol group takes place. Because of the instability of phenol radical cations, under our experimental conditions (nanosecond pulse radiolysis, non-polar solvents, room temperature) phenoxyl radicals are the only observable products of phenol ionization.

  14. Bifunctional activation of a direct methanol fuel cell

    NASA Astrophysics Data System (ADS)

    Kulikovsky, A. A.; Schmitz, H.; Wippermann, K.; Mergel, J.; Fricke, B.; Sanders, T.; Sauer, D. U.

    We report a novel method for performance recovery of direct methanol fuel cells. Lowering of air flow rate below a critical value turns the cell into bifunctional regime, when the oxygen-rich part of the cell generates current while the rest part works in electrolysis mode (electrolytic domain). Upon restoring the normal (super-critical) air flow rate, the galvanic performance of the electrolytic domain increases. This recovery effect is presumably attributed to Pt surface cleaning on the cathode with the simultaneous increase in catalyst utilization on the anode.

  15. A Fundamental Trade-off in Covalent Switching and Its Circumvention by Enzyme Bifunctionality in Glucose Homeostasis*

    PubMed Central

    Dasgupta, Tathagata; Croll, David H.; Owen, Jeremy A.; Vander Heiden, Matthew G.; Locasale, Jason W.; Alon, Uri; Cantley, Lewis C.; Gunawardena, Jeremy

    2014-01-01

    Covalent modification provides a mechanism for modulating molecular state and regulating physiology. A cycle of competing enzymes that add and remove a single modification can act as a molecular switch between “on” and “off” and has been widely studied as a core motif in systems biology. Here, we exploit the recently developed “linear framework” for time scale separation to determine the general principles of such switches. These methods are not limited to Michaelis-Menten assumptions, and our conclusions hold for enzymes whose mechanisms may be arbitrarily complicated. We show that switching efficiency improves with increasing irreversibility of the enzymes and that the on/off transition occurs when the ratio of enzyme levels reaches a value that depends only on the rate constants. Fluctuations in enzyme levels, which habitually occur due to cellular heterogeneity, can cause flipping back and forth between on and off, leading to incoherent mosaic behavior in tissues, that worsens as switching becomes sharper. This trade-off can be circumvented if enzyme levels are correlated. In particular, if the competing catalytic domains are on the same protein but do not influence each other, the resulting bifunctional enzyme can switch sharply while remaining coherent. In the mammalian liver, the switch between glycolysis and gluconeogenesis is regulated by the bifunctional 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFK-2/FBPase-2). We suggest that bifunctionality of PFK-2/FBPase-2 complements the metabolic zonation of the liver by ensuring coherent switching in response to insulin and glucagon. PMID:24634222

  16. GST-TAT-SOD: Cell Permeable Bifunctional Antioxidant Enzyme-A Potential Selective Radioprotector.

    PubMed

    Pan, Jianru; He, Huocong; Su, Ying; Zheng, Guangjin; Wu, Junxin; Liu, Shutao; Rao, Pingfan

    2016-01-01

    Superoxide dismutase (SOD) fusion of TAT was proved to be radioprotective in our previous work. On that basis, a bifunctional recombinant protein which was the fusion of glutathione S-transferase (GST), SOD, and TAT was constructed and named GST-TAT-SOD. Herein we report the investigation of the cytotoxicity, cell-penetrating activity, and in vitro radioprotective effect of GST-TAT-SOD compared with wild SOD, single-function recombinant protein SOD-TAT, and amifostine. We demonstrated that wild SOD had little radioprotective effect on irradiated L-02 and Hep G2 cells while amifostine was protective to both cell lines. SOD-TAT or GST-TAT-SOD pretreatment 3 h prior to radiation protects irradiated normal liver cells against radiation damage by eliminating intracellular excrescent superoxide, reducing cellular MDA level, enhancing cellular antioxidant ability and colony formation ability, and reducing apoptosis rate. Compared with SOD-TAT, GST-TAT-SOD was proved to have better protective effect on irradiated normal liver cells and minimal effect on irradiated hepatoma cells. Besides, GST-TAT-SOD was safe for normal cells and effectively transduced into different organs in mice, including the brain. The characteristics of this protein suggest that it may be a potential radioprotective agent in cancer therapy better than amifostine. Fusion of two antioxidant enzymes and cell-penetrating peptides is potentially valuable in the development of radioprotective agent.

  17. GST-TAT-SOD: Cell Permeable Bifunctional Antioxidant Enzyme—A Potential Selective Radioprotector

    PubMed Central

    Pan, Jianru; He, Huocong; Su, Ying; Zheng, Guangjin; Wu, Junxin; Liu, Shutao; Rao, Pingfan

    2016-01-01

    Superoxide dismutase (SOD) fusion of TAT was proved to be radioprotective in our previous work. On that basis, a bifunctional recombinant protein which was the fusion of glutathione S-transferase (GST), SOD, and TAT was constructed and named GST-TAT-SOD. Herein we report the investigation of the cytotoxicity, cell-penetrating activity, and in vitro radioprotective effect of GST-TAT-SOD compared with wild SOD, single-function recombinant protein SOD-TAT, and amifostine. We demonstrated that wild SOD had little radioprotective effect on irradiated L-02 and Hep G2 cells while amifostine was protective to both cell lines. SOD-TAT or GST-TAT-SOD pretreatment 3 h prior to radiation protects irradiated normal liver cells against radiation damage by eliminating intracellular excrescent superoxide, reducing cellular MDA level, enhancing cellular antioxidant ability and colony formation ability, and reducing apoptosis rate. Compared with SOD-TAT, GST-TAT-SOD was proved to have better protective effect on irradiated normal liver cells and minimal effect on irradiated hepatoma cells. Besides, GST-TAT-SOD was safe for normal cells and effectively transduced into different organs in mice, including the brain. The characteristics of this protein suggest that it may be a potential radioprotective agent in cancer therapy better than amifostine. Fusion of two antioxidant enzymes and cell-penetrating peptides is potentially valuable in the development of radioprotective agent. PMID:27313832

  18. Photovoltachromic device with a micropatterned bifunctional counter electrode.

    PubMed

    Cannavale, Alessandro; Manca, Michele; De Marco, Luisa; Grisorio, Roberto; Carallo, Sonia; Suranna, Gian Paolo; Gigli, Giuseppe

    2014-02-26

    A photovoltachromic window can potentially act as a smart glass skin which generates electric energy as a common dye-sensitized solar cell and, at the same time, control the incoming energy flux by reacting to even small modifications in the solar radiation intensity. We report here the successful implementation of a novel architecture of a photovoltachromic cell based on an engineered bifunctional counter electrode consisting of two physically separated platinum and tungsten oxide regions, which are arranged to form complementary comb-like patterns. Solar light is partially harvested by a dye-sensitized photoelectrode made on the front glass of the cell which fully overlaps a bifunctional counter electrode made on the back glass. When the cell is illuminated, the photovoltage drives electrons into the electrochromic stripes through the photoelectrochromic circuit and promotes the Li(+) diffusion towards the WO3 film, which thus turns into its colored state: a photocoloration efficiency of 17 cm(2) min(-1) W(-1) at a wavelength of 650 nm under 1.0 sun was reported along with fast response (coloration time <2 s and bleaching time <5 s). A fairly efficient photovoltaic functionality was also retained due to the copresence of the independently switchable micropatterned platinum electrode.

  19. Stability and kinetics of a bifunctional amylase/trypsin inhibitor.

    PubMed

    Alagiri, S; Singh, T P

    1993-11-10

    The stability of the bifunctional amylase/trypsin inhibitor from ragi (Indian finger millet, Eleusine coracana) has been studied by methods of circular dichroism, UV absorption and intrinsic fluorescence. The inhibitor is stable in 8 M urea and 6 M guanidine-HCl. In 150 mM NaCl, thermal denaturation does not occur up to 90 degrees C. However, it is irreversibly denatured in 5 mM NaCl if heated over 73 degrees C. The acidic denaturation is reversible in both high and low salt conditions, but it shows different behavior below pH 1.65 under similar salt conditions. The helical content is about 2-4% in the pH range of 7-9 at which the inhibitor is active maximally. The NaCl concentration does not have a significant effect on the secondary structure elements. The beta-strand form does not show much variation under various conditions. Arg34-Leu35 is the reactive peptide bond in the trypsin-binding site. Trp and Tyr are involved in the binding with amylase. The bifunctional inhibitor represents the sum of individual inhibitors of trypsin and amylase.

  20. Product dependence and bifunctionality compromise the ultrasensitivity of signal transduction cascades

    PubMed Central

    Ortega, Fernando; Acerenza, Luis; Westerhoff, Hans V.; Mas, Francesc; Cascante, Marta

    2002-01-01

    Covalent modification cycles are ubiquitous. Theoretical studies have suggested that they serve to increase sensitivity. However, this suggestion has not been corroborated experimentally in vivo. Here, we demonstrate that the assumptions of the theoretical studies, i.e., irreversibility and absence of product inhibition, were not trivial: when the conversion reactions are close to equilibrium or saturated by their product, “zero-order” ultrasensitivity disappears. For high sensitivities to arise, not only substrate saturation (zero-order) but also high equilibrium constants and low product saturation are required. Many covalent modification cycles are catalyzed by one bifunctional ‘ambiguous’ enzyme rather than by two independent proteins. This makes high substrate concentration and low product concentration for both reactions of the cycle inconsistent; such modification cycles cannot have high responses. Defining signal strength as ratios of modified (e.g., phosphorylated) over unmodified protein, signal-to-signal response sensitivity equals 1: signal strength should remain constant along a cascade of ambiguous modification cycles. We also show that the total concentration of a signalling effector protein cannot affect the signal emanating from a modification cycle catalyzed by an ambiguous enzyme if the ratio of the two forms of the effector protein is not altered. This finding may explain the experimental result that the pivotal signal transduction protein PII plus its paralogue GlnK do not control steady-state N-signal transduction in Escherichia coli. It also rationalizes the absence of strong phenotypes for many signal-transduction proteins. Emphasis on extent of modification of these proteins is perhaps more urgent than transcriptome analysis. PMID:11830657

  1. Therapeutic potential of a non-steroidal bifunctional anti-inflammatory and anti-cholinergic agent against skin injury induced by sulfur mustard

    SciTech Connect

    Chang, Yoke-Chen; Wang, James D.; Hahn, Rita A.; Gordon, Marion K.; Joseph, Laurie B.; Heck, Diane E.; Heindel, Ned D.; Young, Sherri C.; Sinko, Patrick J.; Casillas, Robert P.; Laskin, Jeffrey D.; Laskin, Debra L.; Gerecke, Donald R.

    2014-10-15

    Sulfur mustard (bis(2-chloroethyl) sulfide, SM) is a highly reactive bifunctional alkylating agent inducing edema, inflammation, and the formation of fluid-filled blisters in the skin. Medical countermeasures against SM-induced cutaneous injury have yet to be established. In the present studies, we tested a novel, bifunctional anti-inflammatory prodrug (NDH 4338) designed to target cyclooxygenase 2 (COX2), an enzyme that generates inflammatory eicosanoids, and acetylcholinesterase, an enzyme mediating activation of cholinergic inflammatory pathways in a model of SM-induced skin injury. Adult SKH-1 hairless male mice were exposed to SM using a dorsal skin vapor cup model. NDH 4338 was applied topically to the skin 24, 48, and 72 h post-SM exposure. After 96 h, SM was found to induce skin injury characterized by edema, epidermal hyperplasia, loss of the differentiation marker, keratin 10 (K10), upregulation of the skin wound marker keratin 6 (K6), disruption of the basement membrane anchoring protein laminin 322, and increased expression of epidermal COX2. NDH 4338 post-treatment reduced SM-induced dermal edema and enhanced skin re-epithelialization. This was associated with a reduction in COX2 expression, increased K10 expression in the suprabasal epidermis, and reduced expression of K6. NDH 4338 also restored basement membrane integrity, as evidenced by continuous expression of laminin 332 at the dermal–epidermal junction. Taken together, these data indicate that a bifunctional anti-inflammatory prodrug stimulates repair of SM induced skin injury and may be useful as a medical countermeasure. - Highlights: • Bifunctional anti-inflammatory prodrug (NDH4338) tested on SM exposed mouse skin • The prodrug NDH4338 was designed to target COX2 and acetylcholinesterase. • The application of NDH4338 improved cutaneous wound repair after SM induced injury. • NDH4338 treatment demonstrated a reduction in COX2 expression on SM injured skin. • Changes of skin repair

  2. RNA Secondary Structure Modulates FMRP’s Bi-Functional Role in the MicroRNA Pathway

    PubMed Central

    Kenny, Phillip; Ceman, Stephanie

    2016-01-01

    MicroRNAs act by post-transcriptionally regulating the gene expression of 30%–60% of mammalian genomes. MicroRNAs are key regulators in all cellular processes, though the mechanism by which the cell activates or represses microRNA-mediated translational regulation is poorly understood. In this review, we discuss the RNA binding protein Fragile X Mental Retardation Protein (FMRP) and its role in microRNA-mediated translational regulation. Historically, FMRP is known to function as a translational suppressor. However, emerging data suggests that FMRP has both an agonistic and antagonistic role in regulating microRNA-mediated translational suppression. This bi-functional role is dependent on FMRP’s interaction with the RNA helicase Moloney leukemia virus 10 (MOV10), which modifies the structural landscape of bound mRNA, therefore facilitating or inhibiting its association with the RNA-Induced Silencing Complex. PMID:27338369

  3. Synthesis, Characterization, and in Vitro Evaluation of a New TSPO-Selective Bifunctional Chelate Ligand

    PubMed Central

    2014-01-01

    The 18-kDa translocator protein (TSPO) is overexpressed in many types of cancers and is also abundant in activated microglial cells occurring in inflammatory neurodegenerative diseases. Thus, TSPO has become an extremely attractive subcellular target not only for imaging disease states overexpressing this protein, but also for a selective mitochondrial drug delivery. In this work we report the synthesis, the characterization, and the in vitro evaluation of a new TSPO-selective ligand, 2-(8-(2-(bis(pyridin-2-yl)methyl)amino)acetamido)-2-(4-chlorophenyl)H-imidazo[1,2-a]pyridin-3-yl)-N,N-dipropylacetamide (CB256), which fulfils the requirements for a bifunctional chelate approach. The goal was to provide a new TSPO ligand that could be used further to prepare coordination complexes of a metallo drug to be used in diagnosis and therapy. However, the ligand itself proved to be a potent tumor cell growth inhibitor and DNA double-strand breaker. PMID:24944744

  4. QD as a bifunctional cell-surface marker for both fluorescence and atomic force microscopy.

    PubMed

    Wang, Yunqi; Chen, Yong; Cai, Jiye; Zhong, Liyun

    2009-02-01

    Fluorescent quantum dots (QDs) are a new class of fluorescent label and have been extensively used in cell imaging. Streptavidin-conjugated QDs have a diameter of ca. 10-15 nm; therefore when used as probes to label cell-surface biomolecules, they can provide contrast enhancement under atomic force microscopy (AFM) and allow specific proteins to be distinguished from the background. In addition, the size and fluorescent properties potentially make them as probes in correlative fluorescence microscopy (FM) and AFM. In this study, we tested the feasibility of using QD-streptavidin conjugates as probes to label wheat germ agglutinin (WGA) receptors on the membrane of human red blood cells (RBCs) and simultaneously obtain fluorescence and AFM images. The results show that the distribution of QDs labeled on human RBCs was non-uniform and that the number of labeled QDs on different erythrocytes varied significantly, which perhaps indicates different ages of the erythrocytes. Thus, QDs may be employed as bifunctional cell-surface markers for both FM and AFM to quantitatively investigate the distribution and expression of membrane proteins or receptors on cell surface.

  5. Pluronic-lysozyme conjugates as anti-adhesive and antibacterial bifunctional polymers for surface coating.

    PubMed

    Muszanska, Agnieszka K; Busscher, Henk J; Herrmann, Andreas; van der Mei, Henny C; Norde, Willem

    2011-09-01

    This paper describes the preparation and characterization of polymer-protein conjugates composed of a synthetic triblock copolymer with a central polypropylene oxide (PPO) block and two terminal polyethylene oxide (PEO) segments, Pluronic F-127, and the antibacterial enzyme lysozyme attached to the telechelic groups of the PEO chains. Covalent conjugation of lysozyme proceeded via reductive amination of aldehyde functionalized PEO blocks (CHO-Pluronic) and the amine groups of the lysine residues in the protein. SDS-PAGE gel electrophoresis together with MALDI-TOF mass spectrometry analysis revealed formation of conjugates of one or two lysozyme molecules per Pluronic polymer chain. The conjugated lysozyme showed antibacterial activity towards Bacillus subtilis. Analysis with a quartz crystal microbalance with dissipation revealed that Pluronic-lysozyme conjugates adsorb in a brush conformation on a hydrophobic gold-coated quartz surface. X-ray photoelectron spectroscopy indicated surface coverage of 32% by lysozyme when adsorbed from a mixture of unconjugated Pluronic and Pluronic-lysozyme conjugate (ratio 99:1) and of 47% after adsorption of 100% Pluronic-lysozyme conjugates. Thus, bifunctional brushes were created, possessing both anti-adhesive activity due to the polymer brush, combined with the antibacterial activity of lysozyme. The coating having a lower degree of lysozyme coverage proved to be more bactericidal.

  6. BIFUNCTIONAL ALUMINUN: A PERMEABLE BARRIER MATERIAL FOR THE DEGRADATION OF MTBE

    EPA Science Inventory

    Bifunctional aluminum is an innovative remedial material for the treatment of gasoline oxygenates in permeable reactive barriers (PRBs). PRBs represent a promising environmental technology for remediation of groundwater contamination. Although zero-valent metals (ZVM) have been...

  7. Bifunctional chelates of RH-105 and AU199 as potential radiotherapeutic agents

    SciTech Connect

    Droege, P.

    1997-03-01

    Research is presented on new bifunctional chelating ligand systems with stability on the macroscopic and radiochemical levels. The synthesis of the following complexes are described: rhodium 105, palladium 109, and gold 198.

  8. BIFUNCTIONAL ALUMINUN: A PERMEABLE BARRIER MATERIAL FOR THE DEGRADATION OF MTBE

    EPA Science Inventory

    Bifunctional aluminum is an innovative remedial material for the treatment of gasoline oxygenates in permeable reactive barriers (PRBs). PRBs represent a promising environmental technology for remediation of groundwater contamination. Although zero-valent metals (ZVM) have been...

  9. Bifunctional chelating agent for the design and development of site specific radiopharmaceuticals and biomolecule conjugation strategy

    DOEpatents

    Katti, Kattesh V.; Prabhu, Kandikere R.; Gali, Hariprasad; Pillarsetty, Nagavara Kishore; Volkert, Wynn A.

    2003-10-21

    There is provided a method of labeling a biomolecule with a transition metal or radiometal in a site specific manner to produce a diagnostic or therapeutic pharmaceutical compound by synthesizing a P.sub.2 N.sub.2 -bifunctional chelating agent intermediate, complexing the intermediate with a radio metal or a transition metal, and covalently linking the resulting metal-complexed bifunctional chelating agent with a biomolecule in a site specific manner. Also provided is a method of synthesizing the --PR.sub.2 containing biomolecules by synthesizing a P.sub.2 N.sub.2 -bifunctional chelating agent intermediate, complexing the intermediate with a radiometal or a transition metal, and covalently linking the resulting radio metal-complexed bifunctional chelating agent with a biomolecule in a site specific manner. There is provided a therapeutic or diagnostic agent comprising a --PR.sub.2 containing biomolecule.

  10. Detection and isolation of nucleic acid sequences using a bifunctional hybridization probe

    DOEpatents

    Lucas, Joe N.; Straume, Tore; Bogen, Kenneth T.

    2000-01-01

    A method for detecting and isolating a target sequence in a sample of nucleic acids is provided using a bifunctional hybridization probe capable of hybridizing to the target sequence that includes a detectable marker and a first complexing agent capable of forming a binding pair with a second complexing agent. A kit is also provided for detecting a target sequence in a sample of nucleic acids using a bifunctional hybridization probe according to this method.

  11. Development of a Tetrathioether (S4) Bifunctional Chelate System for Rh-105

    DTIC Science & Technology

    2012-07-01

    bombesin (BBN) targeting vector. Bombesin targets gastrin releasing peptide (GRP) receptors, which have been shown to be over-expressed on the surface of...prostate cancer cells. Here we report the successful synthesis and characterization of a bombesin agonist coupled tetrathioether (S4) bifunctional...1: Synthesis of bombesin (7-14) coupled tetrathioether bifunctional chelate 1a: Synthesize dicarboxylic acid functionalized ligand 3,3,3-S4-(COOH)2

  12. Biosynthesis of isoprenoids: a bifunctional IspDF enzyme from Campylobacter jejuni.

    PubMed

    Gabrielsen, Mads; Rohdich, Felix; Eisenreich, Wolfgang; Gräwert, Tobias; Hecht, Stefan; Bacher, Adelbert; Hunter, William N

    2004-07-01

    In the nonmevalonate pathway of isoprenoid biosynthesis, the conversion of 2C-methyl-d-erythritol 4-phosphate into its cyclic diphosphate proceeds via nucleotidyl intermediates and is catalyzed by the products of the ispD, ispE and ispF genes. An open reading frame of Campylobacter jejuni with similarity to the ispD and ispF genes of Escherichia coli was cloned into an expression vector directing the formation of a 42 kDa protein in a recombinant E. coli strain. The purified protein was shown to catalyze the transformation of 2C-methyl-D-erythritol 4-phosphate into 4-diphosphocytidyl-2C-methyl-D-erythritol and the conversion of 4-diphosphocytidyl-2C-methyl-D-erythritol 2-phosphate into 2C-methyl-D-erythritol 2,4-cyclodiphosphate at catalytic rates of 19 micro mol x mg(-1) x min(-1) and 7 micro mol x mg(-1) x min(-1), respectively. Both enzyme-catalyzed reactions require divalent metal ions. The C. jejuni enzyme does not catalyze the formation of 2C-methyl-D-erythritol 3,4-cyclophosphate from 4-diphosphocytidyl-2C-methyl-D-erythritol, a side reaction catalyzed in vitro by the IspF proteins of E. coli and Plasmodium falciparum. Comparative genomic analysis show that all sequenced alpha- and epsilon-proteobacteria have fused ispDF genes. These bifunctional proteins are potential drug targets in several human pathogens (e.g. Helicobacter pylori, C. jejuni and Treponema pallidum).

  13. Characterization of a bifunctional glyoxylate cycle enzyme, malate synthase/isocitrate lyase, of Euglena gracilis.

    PubMed

    Nakazawa, Masami; Nishimura, Masaaki; Inoue, Kengo; Ueda, Mitsuhiro; Inui, Hiroshi; Nakano, Yoshihisa; Miyatake, Kazutaka

    2011-01-01

    The glyoxylate cycle is a modified form of the tricarboxylic acid cycle, which enables organisms to synthesize carbohydrates from C2 compounds. In the protozoan Euglena gracilis, the key enzyme activities of the glyoxylate cycle, isocitrate lyase (ICL) and malate synthase (MS), are conferred by a single bifunctional protein named glyoxylate cycle enzyme (Euglena gracilis glyoxylate cycle enzyme [EgGCE]). We analyzed the enzymatic properties of recombinant EgGCE to determine the functions of its different domains. The 62-kDa N-terminal domain of EgGCE was sufficient to provide the MS activity as expected from an analysis of the deduced amino acid sequence. In contrast, expression of the 67-kDa C-terminal domain of EgGCE failed to yield ICL activity even though this domain was structurally similar to ICL family enzymes. Analyses of truncation mutants suggested that the N-terminal residues of EgGCE are critical for both the ICL and MS activities. The ICL activity of EgGCE increased in the presence of micro-molar concentrations of acetyl-coenzyme A (CoA). Acetyl-CoA also increased the activity in a mutant type EgGCE with a mutation at the acetyl-CoA binding site in the MS domain of EgGCE. This suggests that acetyl-CoA regulates the ICL reaction by binding to a site other than the catalytic center of the MS reaction.

  14. Chrysanthemyl Diphosphate Synthase Operates in Planta as a Bifunctional Enzyme with Chrysanthemol Synthase Activity*

    PubMed Central

    Yang, Ting; Gao, Liping; Hu, Hao; Stoopen, Geert; Wang, Caiyun; Jongsma, Maarten A.

    2014-01-01

    Chrysanthemyl diphosphate synthase (CDS) is the first pathway-specific enzyme in the biosynthesis of pyrethrins, the most widely used plant-derived pesticide. CDS catalyzes c1′-2-3 cyclopropanation reactions of two molecules of dimethylallyl diphosphate (DMAPP) to yield chrysanthemyl diphosphate (CPP). Three proteins are known to catalyze this cyclopropanation reaction of terpene precursors. Two of them, phytoene and squalene synthase, are bifunctional enzymes with both prenyltransferase and terpene synthase activity. CDS, the other member, has been reported to perform only the prenyltransferase step. Here we show that the NDXXD catalytic motif of CDS, under the lower substrate conditions prevalent in plants, also catalyzes the next step, converting CPP into chrysanthemol by hydrolyzing the diphosphate moiety. The enzymatic hydrolysis reaction followed conventional Michaelis-Menten kinetics, with a Km value for CPP of 196 μm. For the chrysanthemol synthase activity, DMAPP competed with CPP as substrate. The DMAPP concentration required for half-maximal activity to produce chrysanthemol was ∼100 μm, and significant substrate inhibition was observed at elevated DMAPP concentrations. The N-terminal peptide of CDS was identified as a plastid-targeting peptide. Transgenic tobacco plants overexpressing CDS emitted chrysanthemol at a rate of 0.12–0.16 μg h−1 g−1 fresh weight. We propose that CDS should be renamed a chrysanthemol synthase utilizing DMAPP as substrate. PMID:25378387

  15. A novel magnetic/photoluminescence bifunctional nanohybrid for the determination of trypsin.

    PubMed

    Xia, Tingting; Ma, Qiang; Hu, Tianyu; Su, Xingguang

    2017-08-01

    In this work, we have designed a novel kind of nanohybrid with magnetic and photoluminescence (PL) property for trypsin detection. The modified magnetic Fe3O4 nanoparticles (MNPs) with polydopamine (PDA) and human serum albumin (HSA) were prepared through a one step self-polymerization under mild condition. The polydopamine (PDA) coating on MNPs can improve the biocompatibility of the MNP-PDA-HAS composite due to its hydrophilicity and multifunctional groups. When MNP-PDA-HSA composite was added into the Anti-HSA modified CdTe QDs (anti-HSA-QDs), HSA on the MNP-PDA-HSA composite was captured by the site of anti-HSA-QDs to form MNP-PDA-HSA/anti-HSA-QDs nanohybrid. Therefore, the photoluminescence of QDs can be quenched by Fe3O4 nanoparticles due to the electron transfer. In the presence of trypsin, the protein (anti-HSA) was digested by trypsin and QDs was separated from the nanohybrid surface. As a result, the photoluminescence intensity of QDs was recovered. The magnetic/luminescent bifunctional nanohybrid displayed excellent analytical performance for the detection of trypsin in the range of 0.5-30μg/mL with a low detection limit of 0.25μg/mL. Copyright © 2017. Published by Elsevier B.V.

  16. Coupling prokaryotic cell fate and division control with a bifunctional and oscillating oxidoreductase homolog.

    PubMed

    Radhakrishnan, Sunish Kumar; Pritchard, Sean; Viollier, Patrick H

    2010-01-19

    NAD(H)-binding proteins play important roles in cell-cycle and developmental signaling in eukaryotes. We identified a bifunctional NAD(H)-binding regulator (KidO) that integrates cell-fate signaling with cytokinesis in the bacterium Caulobacter crescentus. KidO stimulates the DivJ kinase and directly acts on the cytokinetic tubulin, FtsZ, to tune cytokinesis with the cell cycle. At the G1-->S transition, DivJ concomitantly signals the ClpXP-dependent degradation of KidO and CtrA, a cell-cycle transcriptional regulator/DNA replication inhibitor. This proteolytic event directs KidO and CtrA into oscillatory cell-cycle abundance patterns that coordinately license replication and cytokinesis. KidO resembles NAD(P)H-dependent oxidoreductases, and conserved residues in the KidO NAD(H)-binding pocket are critical for regulation of FtsZ, but not for DivJ. Since NADPH-dependent regulation by a KidO-like oxidoreductase also occurs in humans, organisms from two domains of life exploit the enzymatic fold of an ancestral oxidoreductase potentially to coordinate cellular or developmental activities with the availability of the metabolic currency, NAD(P)H.

  17. Development of Bifunctional Inhibitors of Polo-Like Kinase 1 with Low-Nanomolar Activities Against the Polo-Box Domain.

    PubMed

    Scharow, Andrej; Knappe, Daniel; Reindl, Wolfgang; Hoffmann, Ralf; Berg, Thorsten

    2016-04-15

    Polo-like kinase 1 (Plk1), a validated cancer target, harbors a protein-protein interaction domain referred to as the polo-box domain (PBD), in addition to its enzymatic domain. Although functional inhibition either of the enzymatic domain or of the PBD has been shown to inhibit Plk1, so far there have been no reports of bifunctional agents with the potential to target both protein domains. Here we report the development of Plk1 inhibitors that incorporate both an ATP-competitive ligand of the enzymatic domain, derived from BI 2536, and a functional inhibitor of the PBD, based either on the small molecule poloxin-2 or on a PBD-binding peptide. Although these bifunctional agents do not seem to bind both protein domains simultaneously, the most potent compound displays low-nanomolar activity against the Plk1 PBD, with excellent selectivity over the PBDs of Plk2 and Plk3. Our data provide insights into challenges and opportunities relating to the optimization of Plk1 PBD ligands as potent Plk1 inhibitors.

  18. Cloning of a full-length cDNA encoding ent-kaurene synthase from Gibberella fujikuroi: functional analysis of a bifunctional diterpene cyclase.

    PubMed

    Toyomasu, T; Kawaide, H; Ishizaki, A; Shinoda, S; Otsuka, M; Mitsuhashi, W; Sassa, T

    2000-03-01

    We report here the nucleotide sequence of a full-length cDNA encoding ent-kaurene synthase that was isolated by a reverse-transcription polymerase chain reaction from Gibberella fujikuroi (Gcps/ks). This cDNA encodes 952 amino acid residues with a relative molecular mass of 107 kDa. The sequence similarity between Gcps/ks and ent-kaurene synthase of the gibberellin A1-producing fungus, Phaeosphaeria sp. L487, is very high, suggesting that Gcps/ks is also a bifunctional diterpene cyclase. Its recombinant protein expressed in Escherichia coli converted geranylgeranyl diphosphate to copalyl diphosphate and ent-kaurene.

  19. Xenon in And at the End of the Tunnel of Bifunctional Carbon Monoxide Dehydrogenase/Acetyl-CoA Synthase

    SciTech Connect

    Doukov, T.I.; Blasiak, L.C.; Seravalli, J.; Ragsdale, S.W.; Drennan, C.L.; /MIT /SLAC, SSRL /Nebraska U.

    2009-05-11

    A fascinating feature of some bifunctional enzymes is the presence of an internal channel or tunnel to connect the multiple active sites. A channel can allow for a reaction intermediate generated at one active site to be used as a substrate at a second active site, without the need for the intermediate to leave the safety of the protein matrix. One such bifunctional enzyme is carbon monoxide dehydrogenase/acetyl-CoA synthase from Moorella thermoacetica (mtCODH/ACS). A key player in the global carbon cycle, CODH/ACS uses a Ni-Fe-S center called the C-cluster to reduce carbon dioxide to carbon monoxide and uses a second Ni-Fe-S center, called the A-cluster, to assemble acetyl-CoA from a methyl group, coenzyme A, and C-cluster-generated CO. mtCODH/ACS has been proposed to contain one of the longest enzyme channels (138 A long) to allow for intermolecular CO transport. Here, we report a 2.5 A resolution structure of xenon-pressurized mtCODH/ACS and examine the nature of gaseous cavities within this enzyme. We find that the cavity calculation program CAVENV accurately predicts the channels connecting the C- and A-clusters, with 17 of 19 xenon binding sites within the predicted regions. Using this X-ray data, we analyze the amino acid composition surrounding the 19 Xe sites and consider how the protein fold is utilized to carve out such an impressive interior passageway. Finally, structural comparisons of Xe-pressurized mtCODH/ACS with related enzyme structures allow us to study channel design principles, as well as consider the conformational flexibility of an enzyme that contains a cavity through its center.

  20. Xenon in and at the end of the tunnel of bifunctional carbon monoxide dehydrogenase/acetyl-CoA synthase.

    PubMed

    Doukov, Tzanko I; Blasiak, Leah C; Seravalli, Javier; Ragsdale, Stephen W; Drennan, Catherine L

    2008-03-18

    A fascinating feature of some bifunctional enzymes is the presence of an internal channel or tunnel to connect the multiple active sites. A channel can allow for a reaction intermediate generated at one active site to be used as a substrate at a second active site, without the need for the intermediate to leave the safety of the protein matrix. One such bifunctional enzyme is carbon monoxide dehydrogenase/acetyl-CoA synthase from Moorella thermoacetica (mtCODH/ACS). A key player in the global carbon cycle, CODH/ACS uses a Ni-Fe-S center called the C-cluster to reduce carbon dioxide to carbon monoxide and uses a second Ni-Fe-S center, called the A-cluster, to assemble acetyl-CoA from a methyl group, coenzyme A, and C-cluster-generated CO. mtCODH/ACS has been proposed to contain one of the longest enzyme channels (138 A long) to allow for intermolecular CO transport. Here, we report a 2.5 A resolution structure of xenon-pressurized mtCODH/ACS and examine the nature of gaseous cavities within this enzyme. We find that the cavity calculation program CAVENV accurately predicts the channels connecting the C- and A-clusters, with 17 of 19 xenon binding sites within the predicted regions. Using this X-ray data, we analyze the amino acid composition surrounding the 19 Xe sites and consider how the protein fold is utilized to carve out such an impressive interior passageway. Finally, structural comparisons of Xe-pressurized mtCODH/ACS with related enzyme structures allow us to study channel design principles, as well as consider the conformational flexibility of an enzyme that contains a cavity through its center.

  1. Synthesis and Evaluation of a New Bifunctional NETA Chelate for Molecular Targeted Radiotherapy Using 90Y or 177Lu

    PubMed Central

    Kang, Chi Soo; Chen, Yunwei; Lee, Hyunbeom; Liu, Dijie; Sun, Xiang; Kweon, Junghun; Lewis, Michael R.; Chong, Hyun-Soon

    2015-01-01

    Introduction Therapeutic potential of β-emitting cytotoxic radionuclides 90Y and 177Lu have been demonstrated in numerous preclinical and clinical trials. A bifunctional chelate that can effectively complex with the radioisotopes is a critical component for molecular targeted radiotherapy 90Y and 177Lu. A new bifunctional chelate 5p-C-NETA with a relatively long alkyl spacer between the chelating backbone and the functional unit for conjugation to a tumor targeting moiety was synthesized. 5p-C-NETA was conjugated to a model targeting moiety, a cyclic Arg-Gly-Asp-D-Tyr-Lys (RGDyK) peptide binding integrin αvβ3 protein overexpressed on various cancers. 5p-C-NETA was conjugated to c(RGDyK) peptide and evaluated for potential use in molecular targeted radiotherapy of 90Y and 177Lu. Methods 5p-C-NETA conjugated with c(RGDyK) was evaluated in vitro for radiolabeling, serum stability, binding affinity, and the result of the in vitro studies of 5p-C-NETA-c(RGDyK) was compared to that of 3p-CNETA-c(RGDyK). 177Lu-5p-C-NETA-c(RGDyK) was further evaluated for in vivo biodistribution using gliobastoma bearing mice. Result The new chelate rapidly and tightly bound to a cytotoxic radioisotope for cancer therapy, 90Y or 177Lu with excellent radiolabeling efficiency and maximum specific activity under mild condition (>99%, RT, <1 min). 90Y- and 177Lu-radiolabeled complexes of the new chelator remained stable in human serum without any loss of the radiolanthanide for 14 days. Introduction of the tumor targeting RGD moiety to the new chelator made little impact on complexation kinetics and stability with 90Y or 177Lu. 177Lu-radiolabeled 5p-C-NETA-c(RGDyK) conjugate was shown to target tumors in mice and produced a favorable in vivo stability profile. Conclusion The results of in vitro and in vivo evaluation suggest that 5p-C-NETA is an effective bifunctional chelate of 90Y and 177Lu that can be applied for generation of versatile molecular targeted radiopharmaceuticals. PMID

  2. Synthesis and evaluation of a new bifunctional NETA chelate for molecular targeted radiotherapy using(90)Y or(177)Lu.

    PubMed

    Kang, Chi Soo; Chen, Yunwei; Lee, Hyunbeom; Liu, Dijie; Sun, Xiang; Kweon, Junghun; Lewis, Michael R; Chong, Hyun-Soon

    2015-03-01

    Therapeutic potential of β-emitting cytotoxic radionuclides (90)Y and (177)Lu has been demonstrated in numerous preclinical and clinical trials. A bifunctional chelate that can effectively complex with the radioisotopes is a critical component for molecular targeted radiotherapy (90)Y and (177)Lu. A new bifunctional chelate 5p-C-NETA with a relatively long alkyl spacer between the chelating backbone and the functional unit for conjugation to a tumor targeting moiety was synthesized. 5p-C-NETA was conjugated to a model targeting moiety, a cyclic Arg-Gly-Asp-D-Tyr-Lys (RGDyK) peptide binding integrin αvβ3 protein overexpressed on various cancers. 5p-C-NETA was conjugated to c(RGDyK) peptide and evaluated for potential use in molecular targeted radiotherapy of (90)Y and (177)Lu. 5p-C-NETA conjugated with c(RGDyK) was evaluated in vitro for radiolabeling, serum stability, binding affinity, and the result of the in vitro studies of 5p-C-NETA-c(RGDyK) was compared to that of 3p-C-NETA-c(RGDyK). (177)Lu-5p-C-NETA-c(RGDyK) was further evaluated for in vivo biodistribution using gliobastoma bearing mice. The new chelate rapidly and tightly bound to a cytotoxic radioisotope for cancer therapy, (90)Y or (177)Lu with excellent radiolabeling efficiency and maximum specific activity under mild condition (>99%, RT, <1 min). (90)Y- and (177)Lu-radiolabeled complexes of the new chelator remained stable in human serum without any loss of the radiolanthanide for 14 days. Introduction of the tumor targeting RGD moiety to the new chelator made little impact on complexation kinetics and stability with (90)Y or (177)Lu. (177)Lu-radiolabeled 5p-C-NETA-c(RGDyK) conjugate was shown to target tumors in mice and produced a favorable in vivo stability profile. The results of in vitro and in vivo evaluation suggest that 5p-C-NETA is an effective bifunctional chelate of (90)Y and (177)Lu that can be applied for generation of versatile molecular targeted radiopharmaceuticals. Copyright © 2014

  3. A novel bifunctional electrocatalyst for unitized regenerative fuel cell

    NASA Astrophysics Data System (ADS)

    Zhang, Yining; Zhang, Huamin; Ma, Yuanwei; Cheng, Jinbin; Zhong, Hexiang; Song, Shidong; Ma, Haipeng

    5 wt.% of platinum (Pt) nanoparticles are highly dispersed on the surface of IrO 2 by chemical reduction, and the catalyst is mixed with Pt black to be used as a novel bifunctional oxygen electrocatalyst for the unitized regenerative fuel cell (URFC). The novel cell has been evaluated in the hydrogen and oxygen fuel cell and water electrolysis modes, and compared to a similar cell with an oxygen electrode using conventional mixed Pt black and IrO 2 catalyst. With the novel oxygen electrode catalyst, the highest fuel cell power density is 1160 mW cm -2 at 2600 mA cm -2; the overall performance is close to that with the commercial Pt supported on carbon catalyst and about 1.8 times higher than that with the conventional mixed Pt black and IrO 2 catalyst. Additionally, the cell performance for water electrolysis is also slightly improved, which is probably the result of lower interparticle catalyst resistance with 5 wt.% Pt on IrO 2 compared to no Pt on IrO 2.

  4. Bioinspired Bifunctional Membrane for Efficient Clean Water Generation.

    PubMed

    Liu, Yang; Lou, Jinwei; Ni, Mengtian; Song, Chengyi; Wu, Jianbo; Dasgupta, Neil P; Tao, Peng; Shang, Wen; Deng, Tao

    2016-01-13

    Solving the problems of water pollution and water shortage is an urgent need for the sustainable development of modern society. Different approaches, including distillation, filtration, and photocatalytic degradation, have been developed for the purification of contaminated water and the generation of clean water. In this study, we explored a new approach that uses solar light for both water purification and clean water generation. A bifunctional membrane consisting of a top layer of TiO2 nanoparticles (NPs), a middle layer of Au NPs, and a bottom layer of anodized aluminum oxide (AAO) was designed and fabricated through multiple filtration processes. Such a design enables both TiO2 NP-based photocatalytic function and Au NP-based solar-driven plasmonic evaporation. With the integration of these two functions into a single membrane, both the purification of contaminated water through photocatalytic degradation and the generation of clean water through evaporation were demonstrated using simulated solar illumination. Such a demonstration should also help open up a new strategy for maximizing solar energy conversion and utilization.

  5. Preparation of proton conducting membranes containing bifunctional titania nanoparticles

    NASA Astrophysics Data System (ADS)

    Aslan, Ayşe; Bozkurt, Ayhan

    2013-07-01

    Throughout this work, the synthesis and characterization of novel proton conducting nanocomposite membranes including binary and ternary mixtures of sulfated nano-titania (TS), poly(vinyl alcohol) (PVA), and nitrilotri(methyl phosphonic acid) (NMPA) are discussed. The materials were produced by means of two different approaches where in the first, PVA and TS (10-15 nm) were admixed to form a binary system. The second method was the ternary nanocomposite membranes including PVA/TS/NMPA that were prepared at several compositions to get PVA-TS-(NMPA) x . The interaction of functional nano particles and NMPA in the host matrix was explored by FT-IR spectroscopy. The homogeneous distribution of bifunctional nanoparticles in the membrane was confirmed by SEM micrographs. The spectroscopic measurements and water/methanol uptake studies suggested a complexation between PVA and NMPA, which inhibited the leaching of the latter. The thermogravimetry analysis results verified that the presence of TS in the composite membranes suppressed the formation of phosphonic acid anhydrides up to 150 °C. The maximum proton conductivity has been measured for PVA-TS-(NMPA)3 as 0.003 S cm-1 at 150 °C.

  6. A bifunctional spin detector made of quantum anomalous Hall insulator

    NASA Astrophysics Data System (ADS)

    Shi, Zhangsheng; Wu, Jiansheng

    2016-10-01

    The spin selection of the topological boundary states (TBS) which are protected by the chiral-like symmetry in quantum anomalous Hall insulator (QAHI) can be used to construct a bifunctional spin detector (SD). Such device made of QAHIs in parallel with opposite chirality can divide an incoming spin-polarized current into two outgoing currents. The agreement between numerical and analytical calculation proves that the SD device functions as both spin filter and spin separator well in reflecting the spin polarization of source material from the ratio of two currents. The monotonic relation of spin polarization and current ratio suggests that using such kind of device, the spin polarization can be obtained directly. We also find that such device has a broad working energy region attributed by the TBS within the bulk gap. Combining with the result that the current ratio is barely dependent on the coupling between candidate materials and device, it is reasonable to apply this technique with a stable measuring accuracy. Furthermore, the features such as having simple geometry, being manipulated without external magnetic field, and the prospect of working at room temperature make this proposed device seem promising in developing future low-power-consumption spintronic device.

  7. Gold-Copper Nanoparticles: Nanostructural Evolution and Bifunctional Catalytic Sites

    SciTech Connect

    Yin, Jun; Shan, Shiyao; Yang, Lefu; Mott, Derrick; Malis, Oana; Petkov, Valeri; Cai, Fan; Ng, Mei; Luo, Jin; Chen, Bing H.; Engelhard, Mark H.; Zhong, Chuan-Jian

    2012-12-12

    Understanding of the atomic-scale structure is essential for exploiting the unique catalytic properties of any nanoalloy catalyst. This report describes novel findings of an investigation of the nanoscale alloying of gold-copper (AuCu) nanoparticles and its impact on the surface catalytic functions. Two pathways have been explored for the formation of AuCu nanoparticles of different compositons, including wet chemical synthesis from mixed Au- and Cu-precursor molecules, and nanoscale alloying via an evolution of mixed Au- and Cu-precursor nanoparticles near the nanoscale melting temperatures. For the evolution of mixed precursor nanoparticles, synchrotron x-ray based in-situ real time XRD was used to monitor the structural changes, revealing nanoscale alloying and reshaping towards an fcc-type nanoalloy (particle or cube) via a partial melting–resolidification mechanism. The nanoalloys supported on carbon or silica were characterized by in-situ high-energy XRD/PDFs, revealing an intriguing lattice "expanding-shrinking" phenomenon depending on whether the catalyst is thermochemically processed under oxidative or reductive atmosphere. This type of controllable structural changes is found to play an important role in determining the catalytic activity of the catalysts for carbon monoxide oxidation reaction. The tunable catalytic activities of the nanoalloys under thermochemically oxidative and reductive atmospheres are also discussed in terms of the bifunctional sites and the surface oxygenated metal species for carbon monoxide and oxygen activation.

  8. Bifunctional drugs for the treatment of asthma and chronic obstructive pulmonary disease.

    PubMed

    Page, Clive; Cazzola, Mario

    2014-08-01

    Over the last decade, there has been a steady increase in the use of fixed-dose combinations of drugs for the treatment of a range of diseases, including hypertension, cancer, AIDS, tuberculosis and other infectious diseases. It is now evident that patients with asthma or chronic obstructive pulmonary disease (COPD) can also benefit from the use of fixed-dose combinations, including combinations of a long-acting β2-agonist and an inhaled corticosteroid, and combinations of long-acting β2-agonists and long-acting muscarinic receptor antagonists. In fact, there are now a number of "triple-inhaler" fixed-dose combinations under development, with the first such triple combination having been approved in India. This use of combinations containing drugs with complementary pharmacological actions in the treatment of patients with asthma or COPD has also led to the discovery and development of drugs having two different primary pharmacological actions in the same molecule, which we have called "bifunctional drugs". In this review, we discuss the state of the art of these new bifunctional drugs as novel treatments for asthma and COPD that can be categorised as bifunctional bronchodilators, bifunctional bronchodilator/anti-inflammatory drugs and bifunctional anti-inflammatory drugs.

  9. Single flexible nanofiber to achieve simultaneous photoluminescence-electrical conductivity bifunctionality.

    PubMed

    Sheng, Shujuan; Ma, Qianli; Dong, Xiangting; Lv, Nan; Wang, Jinxian; Yu, Wensheng; Liu, Guixia

    2015-02-01

    In order to develop new-type multifunctional composite nanofibers, Eu(BA)3 phen/PANI/PVP bifunctional composite nanofibers with simultaneous photoluminescence and electrical conductivity have been successfully fabricated via electrospinning technology. Polyvinyl pyrrolidone (PVP) is used as a matrix to construct composite nanofibers containing different amounts of Eu(BA)3 phen and polyaniline (PANI). X-Ray diffractometry (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), vibrating sample magnetometry (VSM), fluorescence spectroscopy and a Hall effect measurement system are used to characterize the morphology and properties of the composite nanofibers. The results indicate that the bifunctional composite nanofibers simultaneously possess excellent photoluminescence and electrical conductivity. Fluorescence emission peaks of Eu(3+) ions are observed in the Eu(BA)3 phen/PANI/PVP photoluminescence-electrical conductivity bifunctional composite nanofibers. The electrical conductivity reaches up to the order of 10(-3)  S/cm. The luminescent intensity and electrical conductivity of the composite nanofibers can be tuned by adjusting the amounts of Eu(BA)3 phen and PANI. The obtained photoluminescence-electrical conductivity bifunctional composite nanofibers are expected to possess many potential applications in areas such as microwave absorption, molecular electronics, biomedicine and future nanomechanics. More importantly, the design concept and construction technique are of universal significance to fabricate other bifunctional one-dimensional naonomaterials. Copyright © 2014 John Wiley & Sons, Ltd.

  10. Perovskite-nitrogen-doped carbon nanotube composite as bifunctional catalysts for rechargeable lithium-air batteries.

    PubMed

    Park, Hey Woong; Lee, Dong Un; Park, Moon Gyu; Ahmed, Raihan; Seo, Min Ho; Nazar, Linda F; Chen, Zhongwei

    2015-03-01

    Developing an effective bifunctional catalyst is a significant issue, as rechargeable metal-air batteries are very attractive for future energy systems. In this study, a facile one-pot process is introduced to prepare an advanced bifunctional catalyst (op-LN) incorporating nitrogen-doped carbon nanotubes (NCNTs) into perovskite La0.5 Sr0.5 Co0.8 Fe0.2 O3 nanoparticles (LSCF-NPs). Confirmed by half-cell testing, op-LN exhibits synergistic effects of LSCF-NP and NCNT with excellent bifunctionality for both the oxygen reduction reaction and the oxygen evolution reaction. Furthermore, op-LN exhibits comparable performances in these reactions to Pt/C and Ir/C, respectively, which highlights its potential for use as a commercially viable bifunctional catalyst. Moreover, the results obtained by testing op-LN in a practical Li-air battery demonstrate improved and complementary charge/discharge performance compared to those of LSCF-NP and NCNT, and this confirms that simply prepared op-LN is a promising candidate as a highly effective bifunctional catalyst for rechargeable metal-air batteries.

  11. SLEEPLESS is a bi-functional regulator of excitability and cholinergic synaptic transmission

    PubMed Central

    Wu, Meilin; Robinson, James E.; Joiner, William J.

    2014-01-01

    Summary Background Although sleep is conserved throughout evolution, the molecular basis of its control is still largely a mystery. We previously showed that the quiver/sleepless (qvr/sss) gene encodes a membrane-tethered protein that is required for normal sleep in Drosophila. SLEEPLESS (SSS) protein functions, at least in part, by upregulating the levels and open probability of Shaker (Sh) potassium channels to suppress neuronal excitability and enable sleep. Consistent with this proposed mechanism, loss-of-function mutations in Sh phenocopy qvr/sss null mutants. However, sleep is more genetically modifiable in Sh than in qvr/sss mutants, suggesting that sss may regulate additional molecules to influence sleep. Results Here we show that SSS also antagonizes nicotinic acetylcholine receptors (nAChRs) to reduce synaptic transmission and promote sleep. Mimicking this antagonism with the nAChR inhibitor mecamylamine or by RNAi knockdown of specific nAChR subunits is sufficient to restore sleep to qvr/sss mutants. Regulation of nAChR activity by SSS occurs post-transcriptionally since the levels of nAChR mRNAs are unchanged in qvr/sss mutants. Regulation of nAChR activity by SSS may in fact be direct, since SSS forms a stable complex with and antagonizes fly nAChR function in transfected cells. Intriguingly, lynx1, a mammalian homolog of SSS, can partially restore normal sleep to qvr/sss mutants, and lynx1 can form stable complexes with Shaker-type channels and nAChRs. Conclusions Together, our data point to an evolutionarily conserved, bi-functional role for SSS and its homologs in controlling excitability and synaptic transmission in fundamental processes of the nervous system such as sleep. PMID:24613312

  12. SLEEPLESS is a bifunctional regulator of excitability and cholinergic synaptic transmission.

    PubMed

    Wu, Meilin; Robinson, James E; Joiner, William J

    2014-03-17

    Although sleep is conserved throughout evolution, the molecular basis of its control is still largely a mystery. We previously showed that the quiver/sleepless (qvr/sss) gene encodes a membrane-tethered protein that is required for normal sleep in Drosophila. SLEEPLESS (SSS) protein functions, at least in part, by upregulating the levels and open probability of Shaker (Sh) potassium channels to suppress neuronal excitability and enable sleep. Consistent with this proposed mechanism, loss-of-function mutations in Sh phenocopy qvr/sss-null mutants. However, sleep is more genetically modifiable in Sh than in qvr/sss mutants, suggesting that SSS may regulate additional molecules to influence sleep. Here we show that SSS also antagonizes nicotinic acetylcholine receptors (nAChRs) to reduce synaptic transmission and promote sleep. Mimicking this antagonism with the nAChR inhibitor mecamylamine or by RNAi knockdown of specific nAChR subunits is sufficient to restore sleep to qvr/sss mutants. Regulation of nAChR activity by SSS occurs posttranscriptionally, since the levels of nAChR mRNAs are unchanged in qvr/sss mutants. Regulation of nAChR activity by SSS may in fact be direct, since SSS forms a stable complex with and antagonizes nAChR function in transfected cells. Intriguingly, lynx1, a mammalian homolog of SSS, can partially restore normal sleep to qvr/sss mutants, and lynx1 can form stable complexes with Shaker-type channels and nAChRs. Together, our data point to an evolutionarily conserved, bifunctional role for SSS and its homologs in controlling excitability and synaptic transmission in fundamental processes of the nervous system such as sleep. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Double diastereocontrol in bifunctional thiourea organocatalysis: iterative Michael-Michael-Henry sequence regulated by the configuration of chiral catalysts.

    PubMed

    Varga, Szilárd; Jakab, Gergely; Drahos, László; Holczbauer, Tamás; Czugler, Mátyás; Soós, Tibor

    2011-10-21

    The importance and reactivity consequences of the double diastereocontrol in noncovalent bifunctional organocatalysis were studied. The results suggest that the bifunctional thioureas can have synthetic limitations in multicomponent domino or autotandem catalysis. Nevertheless, we provided a means to exploit this behavior and used the configuration of the chiral catalyst as a control element in organo-sequential reactions.

  14. Scaling-Relation-Based Analysis of Bifunctional Catalysis: The Case for Homogeneous Bimetallic Alloys

    DOE PAGES

    Andersen, Mie; Medford, Andrew J.; Norskov, Jens K.; ...

    2017-04-14

    Here, we present a generic analysis of the implications of energetic scaling relations on the possibilities for bifunctional gains at homogeneous bimetallic alloy catalysts. Such catalysts exhibit a large number of interface sites, where second-order reaction steps can involve intermediates adsorbed at different active sites. Using different types of model reaction schemes, we show that such site-coupling reaction steps can provide bifunctional gains that allow for a bimetallic catalyst composed of two individually poor catalyst materials to approach the activity of the optimal monomaterial catalyst. However, bifunctional gains cannot result in activities higher than the activity peak of the monomaterialmore » volcano curve as long as both sites obey similar scaling relations, as is generally the case for bimetallic catalysts. These scaling-relation-imposed limitations could be overcome by combining different classes of materials such as metals and oxides.« less

  15. Nickel sulfide microsphere film on Ni foam as an efficient bifunctional electrocatalyst for overall water splitting.

    PubMed

    Zhu, Wenxin; Yue, Xiaoyue; Zhang, Wentao; Yu, Shaoxuan; Zhang, Yuhuan; Wang, Jing; Wang, Jianlong

    2016-01-25

    Developing low-cost, efficient, and bifunctional electrocatalysts for both the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) is an appealing yet challenging task. Herein, for the first time, a NiS microsphere film was grown in situ on Ni foam (NiS/Ni foam) via a sulfurization reaction as an efficient bifunctional electrocatalyst for overall water splitting with superior activity and good durability. This NiS/Ni foam electrode delivers 20 mA cm(-2) at an overpotential of 158 mV for the HER and 50 mA cm(-2) at an overpotential of 335 mV for the OER in 1.0 M KOH. This bifunctional electrode also enables a high-efficiency alkaline water electrolyzer with 10 mA cm(-2) at a cell voltage of only 1.64 V, which could be promising in water splitting devices for large-scale hydrogen production.

  16. Watt-Level Continuous-Wave Emission from a Bifunctional Quantum Cascade Laser/Detector

    PubMed Central

    2017-01-01

    Bifunctional active regions, capable of light generation and detection at the same wavelength, allow a straightforward realization of the integrated mid-infrared photonics for sensing applications. Here, we present a high performance bifunctional device for 8 μm capable of 1 W single facet continuous wave emission at 15 °C. Apart from the general performance benefits, this enables sensing techniques which rely on continuous wave operation, for example, heterodyne detection, to be realized within a monolithic platform and demonstrates that bifunctional operation can be realized at longer wavelength, where wavelength matching becomes increasingly difficult and that the price to be paid in terms of performance is negligible. In laser operation, the device has the same or higher efficiency compared to the best lattice-matched QCLs without same wavelength detection capability, which is only 30% below the record achieved with strained material at this wavelength. PMID:28540324

  17. Enhanced Bifunctional Oxygen Catalysis in Strained LaNiO3 Perovskites

    SciTech Connect

    Petrie, Jonathan R.; Cooper, Valentino R.; Freeland, John W.; Meyer, Tricia L.; Zhang, Zhiyong; Lutterman, Daniel A.; Lee, Ho Nyung

    2016-03-02

    Strain is known to greatly influence low temperature oxygen electro catalysis on noble metal films, leading to significant enhancements in bifunctional activity essential for fuel cells and Metal-air batteries. However, its catalytic impact on transition-metal oxide thin films, such as perovskites, is not widely understood. Here, we epitaxially strain the conducting perovskite LaNiO3 to systematically determine its influence on both the oxygen reduction and oxygen evolution reaction. Uniquely, we found that compressive strain could significantly enhance both reactions, yielding a bifunctional catalyst that surpasses the performance of noble metals' such as Pt. We attribute the improved bifunctionality to strain induced splitting of the e(g) Orbitals, which can customize orbital asymmetry at the surface. Analogous to strain induced shifts in the d-band center of noble metals relative to the Fermi level, :such splitting can dramatically affect catalytic activity in this perovskite and other potentially more active Oxides.

  18. Polymer-Supported Reagents: The Role of Bifunctionality in the Design of Ion-Selective Complexants

    SciTech Connect

    Alexandratos, S. D.

    2001-06-01

    The importance of multi-functionality in the preparation of ion-selective polymers is evident from the structure of enzymes where specific metal ions are bound through cooperative interactions among different amino acids. In synthetic polymers, ionic selectivity is enhanced when a chemical reaction is superimposed on an ion-exchange process. The concept of reactive ion exchange has been extended through the synthesis of crosslinked polymers whose metal ion selectivity is a function of reduction, coordination or precipitation reactions as determined by various covalently bound ligands. Development of three classes of dual mechanism bifunctional polymers, a new series of bifunctional diphosphonate polymers, and novel bifunctional ion-selective polymers with enhanced ionic accessibility has been accomplished.

  19. Synthesis, characterization and catalytic activity of acid-base bifunctional materials through protection of amino groups

    SciTech Connect

    Shao, Yanqiu; Liu, Heng; Yu, Xiaofang; Guan, Jingqi; Kan, Qiubin

    2012-03-15

    Graphical abstract: Acid-base bifunctional mesoporous material SO{sub 3}H-SBA-15-NH{sub 2} was successfully synthesized under low acidic medium through protection of amino groups. Highlights: Black-Right-Pointing-Pointer The acid-base bifunctional material SO{sub 3}H-SBA-15-NH{sub 2} was successfully synthesized through protection of amino groups. Black-Right-Pointing-Pointer The obtained bifunctional material was tested for aldol condensation. Black-Right-Pointing-Pointer The SO{sub 3}H-SBA-15-NH{sub 2} catalyst containing amine and sulfonic acid groups exhibited excellent acid-basic properties. -- Abstract: Acid-base bifunctional mesoporous material SO{sub 3}H-SBA-15-NH{sub 2} was successfully synthesized under low acidic medium through protection of amino groups. X-ray diffraction (XRD), N{sub 2} adsorption-desorption, transmission electron micrographs (TEM), back titration, {sup 13}C magic-angle spinning (MAS) NMR and {sup 29}Si magic-angle spinning (MAS) NMR were employed to characterize the synthesized materials. The obtained bifunctional material was tested for aldol condensation reaction between acetone and 4-nitrobenzaldehyde. Compared with monofunctional catalysts of SO{sub 3}H-SBA-15 and SBA-15-NH{sub 2}, the bifunctional sample of SO{sub 3}H-SBA-15-NH{sub 2} containing amine and sulfonic acid groups exhibited excellent acid-basic properties, which make it possess high activity for the aldol condensation.

  20. Reaction Current Phenomenon in Bifunctional Catalytic Metal-Semiconductor Nanostructures

    NASA Astrophysics Data System (ADS)

    Hashemian, Mohammad Amin

    Energy transfer processes accompany every elementary step of catalytic chemical processes on material surface including molecular adsorption and dissociation on atoms, interactions between intermediates, and desorption of reaction products from the catalyst surface. Therefore, detailed understanding of these processes on the molecular level is of great fundamental and practical interest in energy-related applications of nanomaterials. Two main mechanisms of energy transfer from adsorbed particles to a surface are known: (i) adiabatic via excitation of quantized lattice vibrations (phonons) and (ii) non-adiabatic via electronic excitations (electron/hole pairs). Electronic excitations play a key role in nanocatalysis, and it was recently shown that they can be efficiently detected and studied using Schottky-type catalytic nanostructures in the form of measureable electrical currents (chemicurrents) in an external electrical circuit. These nanostructures typically contain an electrically continuous nanocathode layers made of a catalytic metal deposited on a semiconductor substrate. The goal of this research is to study the direct observations of hot electron currents (chemicurrents) in catalytic Schottky structures, using a continuous mesh-like Pt nanofilm grown onto a mesoporous TiO2 substrate. Such devices showed qualitatively different and more diverse signal properties, compared to the earlier devices using smooth substrates, which could only be explained on the basis of bifunctionality. In particular, it was necessary to suggest that different stages of the reaction are occurring on both phases of the catalytic structure. Analysis of the signal behavior also led to discovery of a formerly unknown (very slow) mode of the oxyhydrogen reaction on the Pt/TiO2(por) system occurring at room temperature. This slow mode was producing surprisingly large stationary chemicurrents in the range 10--50 microA/cm2. Results of the chemicurrent measurements for the bifunctional

  1. Biochemical characterization, stability studies and N-terminal sequence of a bi-functional inhibitor from Phaseolus aureus Roxb. (Mung bean).

    PubMed

    Haq, Soghra Khatun; Atif, Shaikh Muhammad; Khan, Rizwan Hasan

    2005-12-01

    Herein, we report the purification and biochemical characterization of a novel bi-functional protein proteinase/amylase inhibitor from the dietary leguminous pulse Phaseolus aureus Roxb. (Vigna radiata L.) by means of acetic acid precipitation, salt fractionation, ion-exchange chromatography (DEAE-cellulose) and affinity chromatography on trypsin-sepharose column. P. aureus inhibitor is a bi-functional inhibitor since it exhibits inhibitory activity towards trypsin-like and alpha-chymotrypsin-like serine proteinases as well as against alpha-amylases. It is a helix-rich protein (Mr 13,600) containing approximately eight tyrosines, one tryptophan and two cystines. N-terminal sequence alignment reveals no homology to other proteinase inhibitors reported from Phaseolus sp. thereby confirming that it is a novel inhibitor. Inhibitory activity measurements show that the inhibitor is quite stable even at extremely high temperatures and is only slightly affected by pH changes. Circular dichroism (CD) conformational studies revealed some changes in its near- as well as far-ultraviolet spectrum at extremes of pH and temperature. Treatments with trypsin for varying time periods did not alter its proteolytic inhibitory activity but caused some reduction in its amylase inhibitory activity.

  2. Induction of 26S proteasome subunit PSMB5 by the bifunctional inducer 3-methylcholanthrene through the Nrf2-ARE, but not the AhR/Arnt-XRE, pathway

    SciTech Connect

    Kwak, Mi-Kyoung . E-mail: mkwak@yumail.ac.kr; Kensler, Thomas W.

    2006-07-14

    The 26S proteasome is responsible for degradation of abnormal intracellular proteins, including oxidatively damaged proteins and may play a role as a component of a cellular antioxidative system. However, little is known about regulation of proteasome expression. In the present study, regulation of proteasome expression by the bifunctional enzyme inducer and a specific signaling pathway for this regulation were investigated in murine neuroblastoma cells. Expression of catalytic core subunits including PSMB5 and peptidase activities of the proteasome were elevated following incubation with 3-methylcholanthrene (3-MC). Studies using reporter genes containing the murine Psmb5 promoter showed that transcriptional activity of this gene was enhanced by 3-MC. Overexpression of AhR/Arnt did not affect activation of the Pmsb5 promoter by 3-MC and deletion of the xenobiotic response elements (XREs) from this promoter exerted modest effects on inducibility in response to 3-MC. However, mutation of the proximal AREs of the Psmb5 promoter largely abrogated its inducibility by 3-MC. In addition, this promoter showed a blunted response toward 3-MC in the absence of nrf2; 3-MC incubation increased nuclear levels of Nrf2 only in wild-type cells. Collectively, these results indicate that expression of proteasome subunit PSMB5 is modulated by bifunctional enzyme inducers in a manner independent of the AhR/Arnt-XRE pathway but dependent upon the Nrf2-ARE pathway.

  3. Therapeutic potential of a non-steroidal bifunctional anti-inflammatory and anti-cholinergic agent against skin injury induced by sulfur mustard.

    PubMed

    Chang, Yoke-Chen; Wang, James D; Hahn, Rita A; Gordon, Marion K; Joseph, Laurie B; Heck, Diane E; Heindel, Ned D; Young, Sherri C; Sinko, Patrick J; Casillas, Robert P; Laskin, Jeffrey D; Laskin, Debra L; Gerecke, Donald R

    2014-10-15

    Sulfur mustard (bis(2-chloroethyl) sulfide, SM) is a highly reactive bifunctional alkylating agent inducing edema, inflammation, and the formation of fluid-filled blisters in the skin. Medical countermeasures against SM-induced cutaneous injury have yet to be established. In the present studies, we tested a novel, bifunctional anti-inflammatory prodrug (NDH 4338) designed to target cyclooxygenase 2 (COX2), an enzyme that generates inflammatory eicosanoids, and acetylcholinesterase, an enzyme mediating activation of cholinergic inflammatory pathways in a model of SM-induced skin injury. Adult SKH-1 hairless male mice were exposed to SM using a dorsal skin vapor cup model. NDH 4338 was applied topically to the skin 24, 48, and 72 h post-SM exposure. After 96 h, SM was found to induce skin injury characterized by edema, epidermal hyperplasia, loss of the differentiation marker, keratin 10 (K10), upregulation of the skin wound marker keratin 6 (K6), disruption of the basement membrane anchoring protein laminin 322, and increased expression of epidermal COX2. NDH 4338 post-treatment reduced SM-induced dermal edema and enhanced skin re-epithelialization. This was associated with a reduction in COX2 expression, increased K10 expression in the suprabasal epidermis, and reduced expression of K6. NDH 4338 also restored basement membrane integrity, as evidenced by continuous expression of laminin 332 at the dermal-epidermal junction. Taken together, these data indicate that a bifunctional anti-inflammatory prodrug stimulates repair of SM induced skin injury and may be useful as a medical countermeasure.

  4. Therapeutic Potential of a Non-Steroidal Bifunctional Anti-Inflammatory and Anti-Cholinergic Agent against Skin Injury Induced by Sulfur Mustard

    PubMed Central

    Chang, Yoke-Chen; Wang, James D.; Hahn, Rita A.; Gordon, Marion K.; Joseph, Laurie B.; Heck, Diane E.; Heindel, Ned D.; Young, Sherri C.; Sinko, Patrick J.; Casillas, Robert P.; Laskin, Jeffrey D.; Laskin, Debra L.; Gerecke, Donald R.

    2014-01-01

    Sulfur mustard (bis(2-chloroethyl) sulfide, SM) is a highly reactive bifunctional alkylating agent inducing edema, inflammation, and the formation of fluid-filled blisters in the skin. Medical countermeasures against SM-induced cutaneous injury have yet to be established. In the present studies, we tested a novel, bifunctional anti-inflammatory prodrug (NDH 4338) designed to target cyclooxygenase 2 (COX2), an enzyme that generates inflammatory eicosanoids, and acetylcholinesterase, an enzyme mediating activation of cholinergic inflammatory pathways in a model of SM-induced skin injury. Adult SKH-1 hairless male mice were exposed to SM using a dorsal skin vapor cup model. NDH 4338 was applied topically to the skin 24, 48, and 72 hr post-SM exposure. After 96 hr, SM was found to induce skin injury characterized by edema, epidermal hyperplasia, loss of the differentiation marker, keratin 10 (K10), upregulation of the skin wound marker keratin 6 (K6), disruption of the basement membrane anchoring protein laminin 322, and increased expression of epidermal COX2. NDH 4338 post-treatment reduced SM-induced dermal edema and enhanced skin re-epithelialization. This was associated with a reduction in COX2 expression, increased K10 expression in the suprabasal epidermis, and reduced expression of K6. NDH 4338 also restored basement membrane integrity, as evidenced by continuous expression of laminin 332 at the dermalepidermal junction. Taken together, these data indicate that a bifunctional anti-inflammatory prodrug stimulates repair of SM induced skin injury and may be useful as a medical countermeasure. PMID:25127551

  5. Opioid bifunctional ligands from morphine and the opioid pharmacophore Dmt-Tic.

    PubMed

    Balboni, Gianfranco; Salvadori, Severo; Marczak, Ewa D; Knapp, Brian I; Bidlack, Jean M; Lazarus, Lawrence H; Peng, Xuemei; Si, Yu Gui; Neumeyer, John L

    2011-02-01

    Bifunctional ligands containing an ester linkage between morphine and the δ-selective pharmacophore Dmt-Tic were synthesized, and their binding affinity and functional bioactivity at the μ, δ and κ opioid receptors determined. Bifunctional ligands containing or not a spacer of β-alanine between the two pharmacophores lose the μ agonism deriving from morphine becoming partial μ agonists 4 or μ antagonists 5. Partial κ agonism is evidenced only for compound 4. Finally, both compounds showed potent δ antagonism. Copyright © 2010 Elsevier Masson SAS. All rights reserved.

  6. Structural basis for bifunctional peptide recognition at human δ-Opioid receptor

    PubMed Central

    Fenalti, Gustavo; Zatsepin, Nadia A.; Betti, Cecilia; Giguere, Patrick; Han, Gye Won; Ishchenko, Andrii; Liu, Wei; Guillemyn, Karel; Zhang, Haitao; James, Daniel; Wang, Dingjie; Weierstall, Uwe; Spence, John C.H.; Boutet, Sébastien; Messerschmidt, Marc; Williams, Garth J.; Gati, Cornelius; Yefanov, Oleksandr M.; White, Thomas A.; Oberthuer, Dominik; Metz, Markus; Yoon, Chun Hong; Barty, Anton; Chapman, Henry N.; Basu, Shibom; Coe, Jesse; Conrad, Chelsie E.; Fromme, Raimund; Fromme, Petra; Tourwé, Dirk; Schiller, Peter W.; Roth, Bryan L.; Ballet, Steven; Katritch, Vsevolod; Stevens, Raymond C.; Cherezov, Vadim

    2015-01-01

    Bi-functional μ- and δ- opioid receptor (OR) ligands are potential therapeutic alternatives to alkaloid opiate analgesics with diminished side effects. We solved the structure of human δ-OR bound to the bi-functional δ-OR antagonist and μ-OR agonist tetrapeptide H-Dmt(1)-Tic(2)-Phe(3)-Phe(4)-NH2 (DIPP-NH2) by serial femtosecond crystallography, revealing a cis-peptide bond between H-Dmt(1) and Tic(2). The observed receptor-peptide interactions are critical to understand the pharmacological profiles of opioid peptides, and to develop improved analgesics. PMID:25686086

  7. Structural basis for bifunctional peptide recognition at human δ-opioid receptor

    DOE PAGES

    Fenalti, Gustavo; Zatsepin, Nadia A.; Betti, Cecilia; ...

    2015-02-16

    Bi-functional μ- and δ- opioid receptor (OR) ligands are potential therapeutic alternatives to alkaloid opiate analgesics with diminished side effects. We solved the structure of human δ-OR bound to the bi-functional δ-OR antagonist and μ-OR agonist tetrapeptide H-Dmt-Tic-Phe-Phe-NH2 (DIPP-NH2) by serial femtosecond crystallography, revealing a cis-peptide bond between H-Dmt and Tic. In summary, the observed receptor-peptide interactions are critical to understand the pharmacological profiles of opioid peptides, and to develop improved analgesics.

  8. Structural basis for bifunctional peptide recognition at human δ-opioid receptor

    SciTech Connect

    Fenalti, Gustavo; Zatsepin, Nadia A.; Betti, Cecilia; Giguere, Patrick; Han, Gye Won; Ishchenko, Andrii; Liu, Wei; Guillemyn, Karel; Zhang, Haitao; James, Daniel; Wang, Dingjie; Weierstall, Uwe; Spence, John C. H.; Boutet, Sébastien; Messerschmidt, Marc; Williams, Garth J.; Gati, Cornelius; Yefanov, Oleksandr M.; White, Thomas A.; Oberthuer, Dominik; Metz, Markus; Yoon, Chun Hong; Barty, Anton; Chapman, Henry N.; Basu, Shibom; Coe, Jesse; Conrad, Chelsie E.; Fromme, Raimund; Fromme, Petra; Tourwé, Dirk; Schiller, Peter W.; Roth, Bryan L.; Ballet, Steven; Katritch, Vsevolod; Stevens, Raymond C.; Cherezov, Vadim

    2015-02-16

    Bi-functional μ- and δ- opioid receptor (OR) ligands are potential therapeutic alternatives to alkaloid opiate analgesics with diminished side effects. We solved the structure of human δ-OR bound to the bi-functional δ-OR antagonist and μ-OR agonist tetrapeptide H-Dmt-Tic-Phe-Phe-NH2 (DIPP-NH2) by serial femtosecond crystallography, revealing a cis-peptide bond between H-Dmt and Tic. In summary, the observed receptor-peptide interactions are critical to understand the pharmacological profiles of opioid peptides, and to develop improved analgesics.

  9. Design, synthesis and DNA-binding capacity of a new peptidic bifunctional intercalating agent.

    PubMed Central

    Bernier, J L; Henichart, J P; Catteau, J P

    1981-01-01

    A lysyl-lysine bifunctional derivative of 9-aminoacridine has been synthesized and its DNA-binding capacity established by electron-paramagnetic-resonance study. For this purpose the binding parameters of a spin-labelled aminoacridine probe were estimated and the affinities of the lysylacridinyl-lysyldiamino-octane dimer and of 9-amino-acridine could be evaluated by competitive assays. The competition study provided quantitative results concerning the dissociation constant (KD) of the dimer. The obtained value was closely similar to the KD of 9-aminoacridine determined by the same method and to the KD previously reported for the anti-tumour and antibiotic bifunctional intercalator quinomycins. PMID:6280671

  10. Structural basis for bifunctional peptide recognition at human δ-opioid receptor.

    PubMed

    Fenalti, Gustavo; Zatsepin, Nadia A; Betti, Cecilia; Giguere, Patrick; Han, Gye Won; Ishchenko, Andrii; Liu, Wei; Guillemyn, Karel; Zhang, Haitao; James, Daniel; Wang, Dingjie; Weierstall, Uwe; Spence, John C H; Boutet, Sébastien; Messerschmidt, Marc; Williams, Garth J; Gati, Cornelius; Yefanov, Oleksandr M; White, Thomas A; Oberthuer, Dominik; Metz, Markus; Yoon, Chun Hong; Barty, Anton; Chapman, Henry N; Basu, Shibom; Coe, Jesse; Conrad, Chelsie E; Fromme, Raimund; Fromme, Petra; Tourwé, Dirk; Schiller, Peter W; Roth, Bryan L; Ballet, Steven; Katritch, Vsevolod; Stevens, Raymond C; Cherezov, Vadim

    2015-03-01

    Bifunctional μ- and δ-opioid receptor (OR) ligands are potential therapeutic alternatives, with diminished side effects, to alkaloid opiate analgesics. We solved the structure of human δ-OR bound to the bifunctional δ-OR antagonist and μ-OR agonist tetrapeptide H-Dmt-Tic-Phe-Phe-NH2 (DIPP-NH2) by serial femtosecond crystallography, revealing a cis-peptide bond between H-Dmt and Tic. The observed receptor-peptide interactions are critical for understanding of the pharmacological profiles of opioid peptides and for development of improved analgesics.

  11. Engineering Bifunctional Laccase-Xylanase Chimeras for Improved Catalytic Performance*

    PubMed Central

    Ribeiro, Lucas F.; Furtado, Gilvan P.; Lourenzoni, Marcos R.; Costa-Filho, Antonio J.; Santos, Camila R.; Nogueira, Simone C. Peixoto; Betini, Jorge A.; Polizeli, Maria de Lourdes T. M.; Murakami, Mario T.; Ward, Richard J.

    2011-01-01

    Two bifunctional enzymes exhibiting combined xylanase and laccase activities were designed, constructed, and characterized by biochemical and biophysical methods. The Bacillus subtilis cotA and xynA genes were used as templates for gene fusion, and the xynA coding sequence was inserted into a surface loop of the cotA. A second chimera was built replacing the wild-type xynA gene by a thermostable variant (xynAG3) previously obtained by in vitro molecular evolution. Kinetic measurements demonstrated that the pH and temperature optima of the catalytic domains in the chimeras were altered by less than 0.5 pH units and 5 °C, respectively, when compared with the parental enzymes. In contrast, the catalytic efficiency (kcat/Km) of the laccase activity in both chimeras was 2-fold higher than for the parental laccase. Molecular dynamics simulations of the CotA-XynA chimera indicated that the two domains are in close contact, which was confirmed by the low resolution structure obtained by small angle x-ray scattering. The simulation also indicates that the formation of the inter-domain interface causes the dislocation of the loop comprising residues Leu-558 to Lys-573 in the laccase domain, resulting in a more accessible active site and exposing the type I Cu2+ ion to the solvent. These structural changes are consistent with the results from UV-visible electronic and EPR spectroscopy experiments of the type I copper between the native and chimeric enzymes and are likely to contribute to the observed increase in catalytic turnover number. PMID:22006920

  12. Physical properties of bifunctional BST/LSMO nanocomposites

    SciTech Connect

    Beltran-Huarac, Juan Morell, Gerardo; Martinez, Ricardo

    2014-02-28

    We report the fabrication of bifunctional nanocomposites consisting of ferroelectric Ba{sub 0.7}Sr{sub 0.3}TiO{sub 3} (BST) and ferromagnetic La{sub 0.67}Sr{sub 0.33}MnO{sub 3} (LSMO) at different concentrations via a high-temperature solid state route. The structural, dielectric, electrical, magnetodielectric (MD), magnetoelectric (ME) and magnetic properties of BST/LSMO nanocomposites were systematically investigated over a wide range of temperatures and frequencies. The X-Ray Diffraction analyses reveal the nanocrystalline nature of the heterostructures, wherein both perovskite phases co-exist. No parasitic phases were observed. The study of the dielectric properties shows that the nanocomposites exhibit relaxor ferroelectric character, with ferroelectric-paraelectric phase transition temperatures around 287–292 K that do not follow the Curie-Weiss law. The electrical measurements indicate that ac conductivities of the nanocomposites follow the Jonscher's universal power law, with activation energies of 0.42–0.63 eV based on Arrhenius-type behavior at high temperatures. The nanocomposites exhibit well-defined ferromagnetic hysteresis loops at room temperature (RT). The MD and ME measurements at RT indicate that BST/LSMO exhibits a nonlinear ME effect at low frequencies, with a threshold near 0.5 T. The magnetocapacitance (MC{sub p}) measurements evidence a quadratic dependence on magnetic field, further confirming the multiferroic nature of BST/LSMO. The order of MC{sub p} was found to be ∼7% per Tesla. The analysis of the MC{sub p} measurements indicates that one of the BST/LSMO compositions studied can be considered as a new multiferroic compound.

  13. Monodisperse Magneto-Fluorescent Bifunctional Nanoprobes for Bioapplications

    NASA Astrophysics Data System (ADS)

    Zhang, Hongwang; Huang, Heng; Pralle, Arnd; Zeng, Hao

    2013-03-01

    We present the work on the synthesis of dye-doped monodisperse Fe/SiO2 core/shell nanoparticles as bifunctional probes for bioapplications. Magnetic nanoparticles (NP) have been widely studied as nano-probes for bio-imaging, sensing as well as for cancer therapy. Among all the NPs, Fe NPs have been the focus because they have very high magnetization. However, Fe NPs are usually not stable in ambient due to the fast surface oxidation of the NPs. On the other hand, dye molecules have long been used as probes for bio-imaging. But they are sensitive to environmental conditions. It requires passivation for both so that they can be stable for applications. In this work, monodisperse Fe NPs with sizes ranging from 13-20 nm have been synthesized through the chemical thermal-decomposition in a solution. Silica shells were then coated on the Fe NPs by a two-phase oil-in-water method. Dye molecules were first bonded to a silica precursor and then encapsulated into the silica shell during the coating process. The silica shells protect both the Fe NPs and dye molecules, which makes them as robust probes. The dye doped Fe/SiO2 core/shell NPs remain both highly magnetic and highly fluorescent. The stable dye doped Fe/SiO2NPs have been used as a dual functional probe for both magnetic heating and local nanoscale temperature sending, and their performance will be reported. Research supported by NSF DMR 0547036, DMR1104994.

  14. Domain Organization in Candida glabrata THI6, a Bifunctional Enzyme Required for Thiamin Biosynthesis in Eukaryotes

    SciTech Connect

    Paul, Debamita; Chatterjee, Abhishek; Begley, Tadhg P.; Ealick, Steven E.

    2010-11-15

    THI6 is a bifunctional enzyme found in the thiamin biosynthetic pathway in eukaryotes. The N-terminal domain of THI6 catalyzes the ligation of the thiamin thiazole and pyrimidine moieties to form thiamin phosphate, and the C-terminal domain catalyzes the phosphorylation of 4-methyl-5-hydroxyethylthiazole in a salvage pathway. In prokaryotes, thiamin phosphate synthase and 4-methyl-5-hydroxyethylthiazole kinase are separate gene products. Here we report the first crystal structure of a eukaryotic THI6 along with several complexes that characterize the active sites responsible for the two chemical reactions. THI6 from Candida glabrata is a homohexamer in which the six protomers form a cage-like structure. Each protomer is composed of two domains, which are structurally homologous to their monofunctional bacterial counterparts. Two loop regions not found in the bacterial enzymes provide interactions between the two domains. The structures of different protein-ligand complexes define the thiazole and ATP binding sites of the 4-methyl-5-hydroxyethylthiazole kinase domain and the thiazole phosphate and 4-amino-5-hydroxymethyl-2-methylpyrimidine pyrophosphate binding sites of the thiamin phosphate synthase domain. Our structural studies reveal that the active sites of the two domains are 40 {angstrom} apart and are not connected by an obvious channel. Biochemical studies show 4-methyl-5-hydroxyethylthiazole phosphate is a substrate for THI6; however, adenosine diphospho-5{beta}-ethyl-4-methylthiazole-2-carboxylic acid, the product of THI4, is not a substrate for THI6. This suggests that an unidentified enzyme is necessary to produce the substrate for THI6 from the THI4 product.

  15. Domain organization in Candida glabrata THI6, a bifunctional enzyme required for thiamin biosynthesis in eukaryotes.

    PubMed

    Paul, Debamita; Chatterjee, Abhishek; Begley, Tadhg P; Ealick, Steven E

    2010-11-16

    THI6 is a bifunctional enzyme found in the thiamin biosynthetic pathway in eukaryotes. The N-terminal domain of THI6 catalyzes the ligation of the thiamin thiazole and pyrimidine moieties to form thiamin phosphate, and the C-terminal domain catalyzes the phosphorylation of 4-methyl-5-hydroxyethylthiazole in a salvage pathway. In prokaryotes, thiamin phosphate synthase and 4-methyl-5-hydroxyethylthiazole kinase are separate gene products. Here we report the first crystal structure of a eukaryotic THI6 along with several complexes that characterize the active sites responsible for the two chemical reactions. THI6 from Candida glabrata is a homohexamer in which the six protomers form a cage-like structure. Each protomer is composed of two domains, which are structurally homologous to their monofunctional bacterial counterparts. Two loop regions not found in the bacterial enzymes provide interactions between the two domains. The structures of different protein-ligand complexes define the thiazole and ATP binding sites of the 4-methyl-5-hydroxyethylthiazole kinase domain and the thiazole phosphate and 4-amino-5-hydroxymethyl-2-methylpyrimidine pyrophosphate binding sites of the thiamin phosphate synthase domain. Our structural studies reveal that the active sites of the two domains are 40 Å apart and are not connected by an obvious channel. Biochemical studies show 4-methyl-5-hydroxyethylthiazole phosphate is a substrate for THI6; however, adenosine diphospho-5β-ethyl-4-methylthiazole-2-carboxylic acid, the product of THI4, is not a substrate for THI6. This suggests that an unidentified enzyme is necessary to produce the substrate for THI6 from the THI4 product.

  16. Molecular Evolution and Functional Characterization of a Bifunctional Decarboxylase Involved in Lycopodium Alkaloid Biosynthesis.

    PubMed

    Bunsupa, Somnuk; Hanada, Kousuke; Maruyama, Akira; Aoyagi, Kaori; Komatsu, Kana; Ueno, Hideki; Yamashita, Madoka; Sasaki, Ryosuke; Oikawa, Akira; Saito, Kazuki; Yamazaki, Mami

    2016-08-01

    Lycopodium alkaloids (LAs) are derived from lysine (Lys) and are found mainly in Huperziaceae and Lycopodiaceae. LAs are potentially useful against Alzheimer's disease, schizophrenia, and myasthenia gravis. Here, we cloned the bifunctional lysine/ornithine decarboxylase (L/ODC), the first gene involved in LA biosynthesis, from the LA-producing plants Lycopodium clavatum and Huperzia serrata We describe the in vitro and in vivo functional characterization of the L. clavatum L/ODC (LcL/ODC). The recombinant LcL/ODC preferentially catalyzed the decarboxylation of l-Lys over l-ornithine (l-Orn) by about 5 times. Transient expression of LcL/ODC fused with the amino or carboxyl terminus of green fluorescent protein, in onion (Allium cepa) epidermal cells and Nicotiana benthamiana leaves, showed LcL/ODC localization in the cytosol. Transgenic tobacco (Nicotiana tabacum) hairy roots and Arabidopsis (Arabidopsis thaliana) plants expressing LcL/ODC enhanced the production of a Lys-derived alkaloid, anabasine, and cadaverine, respectively, thus, confirming the function of LcL/ODC in plants. In addition, we present an example of the convergent evolution of plant Lys decarboxylase that resulted in the production of Lys-derived alkaloids in Leguminosae (legumes) and Lycopodiaceae (clubmosses). This convergent evolution event probably occurred via the promiscuous functions of the ancestral Orn decarboxylase, which is an enzyme involved in the primary metabolism of polyamine. The positive selection sites were detected by statistical analyses using phylogenetic trees and were confirmed by site-directed mutagenesis, suggesting the importance of those sites in granting the promiscuous function to Lys decarboxylase while retaining the ancestral Orn decarboxylase function. This study contributes to a better understanding of LA biosynthesis and the molecular evolution of plant Lys decarboxylase. © 2016 American Society of Plant Biologists. All Rights Reserved.

  17. Molecular Evolution and Functional Characterization of a Bifunctional Decarboxylase Involved in Lycopodium Alkaloid Biosynthesis1[OPEN

    PubMed Central

    Bunsupa, Somnuk; Hanada, Kousuke; Maruyama, Akira; Aoyagi, Kaori; Komatsu, Kana; Ueno, Hideki; Yamashita, Madoka; Sasaki, Ryosuke; Oikawa, Akira; Yamazaki, Mami

    2016-01-01

    Lycopodium alkaloids (LAs) are derived from lysine (Lys) and are found mainly in Huperziaceae and Lycopodiaceae. LAs are potentially useful against Alzheimer’s disease, schizophrenia, and myasthenia gravis. Here, we cloned the bifunctional lysine/ornithine decarboxylase (L/ODC), the first gene involved in LA biosynthesis, from the LA-producing plants Lycopodium clavatum and Huperzia serrata. We describe the in vitro and in vivo functional characterization of the L. clavatum L/ODC (LcL/ODC). The recombinant LcL/ODC preferentially catalyzed the decarboxylation of l-Lys over l-ornithine (l-Orn) by about 5 times. Transient expression of LcL/ODC fused with the amino or carboxyl terminus of green fluorescent protein, in onion (Allium cepa) epidermal cells and Nicotiana benthamiana leaves, showed LcL/ODC localization in the cytosol. Transgenic tobacco (Nicotiana tabacum) hairy roots and Arabidopsis (Arabidopsis thaliana) plants expressing LcL/ODC enhanced the production of a Lys-derived alkaloid, anabasine, and cadaverine, respectively, thus, confirming the function of LcL/ODC in plants. In addition, we present an example of the convergent evolution of plant Lys decarboxylase that resulted in the production of Lys-derived alkaloids in Leguminosae (legumes) and Lycopodiaceae (clubmosses). This convergent evolution event probably occurred via the promiscuous functions of the ancestral Orn decarboxylase, which is an enzyme involved in the primary metabolism of polyamine. The positive selection sites were detected by statistical analyses using phylogenetic trees and were confirmed by site-directed mutagenesis, suggesting the importance of those sites in granting the promiscuous function to Lys decarboxylase while retaining the ancestral Orn decarboxylase function. This study contributes to a better understanding of LA biosynthesis and the molecular evolution of plant Lys decarboxylase. PMID:27303024

  18. Characterization of the bisintercalative DNA binding mode of a bifunctional platinum–acridine agent

    PubMed Central

    Choudhury, Jayati Roy; Bierbach, Ulrich

    2005-01-01

    The DNA interactions of PT-BIS(ACRAMTU) ([Pt(en)(ACRAMTU)2](NO3)4; ACRAMTU = 1-[2-(acridin-9-ylamino)ethyl]-1,3-dimethylthiourea, en = ethylenediamine), a bifunctional platinum–acridine conjugate, have been studied in native and synthetic double-stranded DNAs and model duplexes using various biophysical techniques. These include ethidium-DNA fluorescence quenching and thermal melting experiments, circular dichroism (CD) spectroscopy and plasmid unwinding assays. In addition, the binding mode was studied in a short octamer by NMR spectroscopy in conjunction with molecular modeling. In alternating copolymers, PT-BIS(ACRAMTU) shows a distinct preference for poly(dA-dT)2, which is ∼3-fold higher than that of ACRAMTU. In the ligand-oligomer complex, d(GCTATAGC)2·PT-BIS(ACRAMTU) (complex I*), PT-BIS(ACRAMTU) increases the thermal stability of the B-form host duplex by ΔTm > 30 K (CD and UV melting experiments). The agent unwinds pSP73 plasmid DNA by 44(±2)° per bound molecule, indicating bisintercalative binding. A 2-D NMR study unequivocally demonstrates that PT-BIS(ACRAMTU)'s chromophores deeply bisintercalate into the 5′-TA/TA base pair steps in I*, while the platinum linker lies in the minor groove. An AMBER model reflecting the NMR results shows that bracketing of the central AT base pairs in a classical nearest neighbor excluded fashion is feasible. PT-BIS(ACRAMTU) inhibits DNA hydrolysis by BstZ17 I at the enzyme's restriction site, GTA↓TAC. Possible consequences for other relevant DNA–protein interactions, such as those involved in TATA-box-mediated transcription initiation and the utility of the platinum-intercalator technology for the design of sequence-specific agents are discussed. PMID:16192574

  19. Bifunctional bioceramics stimulating osteogenic differentiation of a gingival fibroblast and inhibiting plaque biofilm formation.

    PubMed

    Shen, Ya; Wang, Zhejun; Wang, Jiao; Zhou, Yinghong; Chen, Hui; Wu, Chengtie; Haapasalo, Markus

    2016-04-01

    Gingival recession is a common clinical problem that results in esthetic deficiencies and poor plaque control and predominantly occurs in aged patients. In order to restore the cervical region, ideal biomaterials should possess the ability to stimulate proliferation and osteogenesis/cementogenesis of human gingival fibroblasts (HGF) and have a strong antibiofilm effect. The aim of the present study was to investigate the interactions of HGF and oral multispecies biofilms with Ca, Mg and Si-containing bredigite (BRT, Ca7MgSi4O16) bioceramics. BRT extract induced osteogenic/cementogenic differentiation of HGF and its inhibition of plaque biofilm formation were systematically studied. BRT extract in concentrations lower than <200 mg mL(-1) presented high biocompatibility to HGF cells in 3 days. Ion extracts from BRT also stimulated a series of bone-related gene and protein expressions in HGF cells. Furthermore, BRT extract significantly inhibited oral multispecies plaque biofilm growth on its surface and contributed to over 30% bacterial cell death without additional antibacterial agents in two weeks. A planktonic killing test showed that BRT suppressed 98% plaque bacterial growth compared to blank control in 3 days. The results also revealed that BRT extract has an osteostimulation effect on HGF. The suppression effect on plaque biofilms suggested that BRT might be used as a bioactive material for cervical restoration and that the synergistic effect of bioactive ions, such as Ca, Mg and Si ions, played an important role in the design and construction of bifunctional biomaterials in combination with tissue regeneration and antibiofilm activity.

  20. The structure of Haemophilus influenzae prephenate dehydrogenase suggests unique features of bifunctional TyrA enzymes

    PubMed Central

    Chiu, Hsiu-Ju; Abdubek, Polat; Astakhova, Tamara; Axelrod, Herbert L.; Carlton, Dennis; Clayton, Thomas; Das, Debanu; Deller, Marc C.; Duan, Lian; Feuerhelm, Julie; Grant, Joanna C.; Grzechnik, Anna; Han, Gye Won; Jaroszewski, Lukasz; Jin, Kevin K.; Klock, Heath E.; Knuth, Mark W.; Kozbial, Piotr; Krishna, S. Sri; Kumar, Abhinav; Marciano, David; McMullan, Daniel; Miller, Mitchell D.; Morse, Andrew T.; Nigoghossian, Edward; Okach, Linda; Reyes, Ron; Tien, Henry J.; Trame, Christine B.; van den Bedem, Henry; Weekes, Dana; Xu, Qingping; Hodgson, Keith O.; Wooley, John; Elsliger, Marc-André; Deacon, Ashley M.; Godzik, Adam; Lesley, Scott A.; Wilson, Ian A.

    2010-01-01

    Chorismate mutase/prephenate dehydrogenase from Haemophilus influenzae Rd KW20 is a bifunctional enzyme that catalyzes the rearrangement of chorismate to prephenate and the NAD(P)+-dependent oxidative decarboxyl­ation of prephenate to 4-hydroxyphenylpyruvate in tyrosine biosynthesis. The crystal structure of the prephenate dehydrogenase component (HinfPDH) of the TyrA protein from H. influenzae Rd KW20 in complex with the inhibitor tyrosine and cofactor NAD+ has been determined to 2.0 Å resolution. HinfPDH is a dimeric enzyme, with each monomer consisting of an N-terminal α/β dinucleotide-binding domain and a C-terminal α-helical dimerization domain. The structure reveals key active-site residues at the domain interface, including His200, Arg297 and Ser179 that are involved in catalysis and/or ligand binding and are highly conserved in TyrA proteins from all three kingdoms of life. Tyrosine is bound directly at the catalytic site, suggesting that it is a competitive inhibitor of HinfPDH. Comparisons with its structural homologues reveal important differences around the active site, including the absence of an α–β motif in HinfPDH that is present in other TyrA proteins, such as Synechocystis sp. arogenate dehydrogenase. Residues from this motif are involved in discrimination between NADP+ and NAD+. The loop between β5 and β6 in the N-terminal domain is much shorter in HinfPDH and an extra helix is present at the C-terminus. Furthermore, HinfPDH adopts a more closed conformation compared with TyrA proteins that do not have tyrosine bound. This conformational change brings the substrate, cofactor and active-site residues into close proximity for catalysis. An ionic network consisting of Arg297 (a key residue for tyrosine binding), a water molecule, Asp206 (from the loop between β5 and β6) and Arg365′ (from the additional C-terminal helix of the adjacent monomer) is observed that might be involved in gating the active site. PMID:20944228

  1. Incorporation of collagen in poly(3,4-ethylenedioxythiophene) for a bifunctional film with high bio- and electrochemical activity.

    PubMed

    Xiao, Yinghong; Li, Chang Ming; Wang, Shenqi; Shi, Jingsheng; Ooi, Chiu Ping

    2010-02-01

    Electrochemical polymerization can be used to directly synthesize conducting polymers while incorporating different functional molecules such as proteins for specific applications. There is a need to systematically study the effects of synthetic conditions for a polymer/protein composite on its nanostructure, chem/physical properties, and bioactivities. In this study, collagen, a cell-adhesion protein, was impregnated in poly(3,4-ethylenedioxythiophene) (PEDOT) via galvanostatic electropolymerization, and demonstrated binding with the PEDOT backbone and excellent stability. The polymer polymerized at lower current densities shows good electroactivity. Oxidation level of PEDOT was investigated by Raman spectroscopy. The results show that simple inorganic anions are more readily to be doped into the polymer than the bulky collagen molecules. Scanning electron microscope (SEM) observation reveals that the PEDOT/collagen system has a surface morphology different from those previously studied, exhibiting a network structure with nano-silks interlacing. Optical microscopy examination shows that rat pheochromocytoma (PC12) cells are preferentially seeded on PEDOT/collagen other than PEDOT/LiClO(4), indicating that collagen is highly bioactive for cell adhesion. Further study shows that synthesis with a lower current density favors the incorporation of collagen and thus increases the cell attachment to the PEDOT/collagen matrix. This study renders a simple approach to tailor a bifunctional film with high bio- and electrochemical activity. (c) 2009 Wiley Periodicals, Inc.

  2. Turning the spotlight on protein-lipid interactions in cells

    PubMed Central

    Peng, Tao; Yuan, Xiaoqiu; Hang, Howard C.

    2014-01-01

    Protein function is largely dependent on coordinated and dynamic interactions of the protein with biomolecules including other proteins, nucleic acids and lipids. While powerful methods for global profiling of protein-protein and protein-nucleic acid interactions are available, proteome-wide mapping of protein-lipid interactions is still challenging and rarely performed. The emergence of bifunctional lipid probes with photoactivatable and clickable groups offers new chemical tools for globally profiling protein-lipid interactions under cellular contexts. In this review, we summarize recent advances in the development of bifunctional lipid probes for studying protein-lipid interactions. We also highlight how in vivo photocrosslinking reactions contribute to the characterization of lipid-binding proteins and lipidation-mediated protein-protein interactions. PMID:25129056

  3. Asymmetric Michael addition reactions of nitroalkanes to 2-furanones catalyzed by bifunctional thiourea catalysts.

    PubMed

    Bai, Zhushuang; Ji, Ling; Ge, Zemei; Wang, Xin; Li, Runtao

    2015-05-21

    The first bifunctional thiourea catalyzed asymmetric Michael addition reactions of nitroalkanes to 2-furanones are described. The highly functionalized γ-lactones with two or three consecutive stereogenic carbons were obtained in high yields (up to 99%), high diastereoselectivities (up to >20 : 1 dr) and enantioselectivities (up to >99% ee).

  4. Liquid phase in situ hydrodeoxygenation of biomass-derived phenolic compounds to hydrocarbons over bifunctional catalysts

    Treesearch

    Junfeng Feng; Chung-yun Hse; Zhongzhi Yang; Kui Wang; Jianchun Jiang; Junming Xu

    2017-01-01

    The objective of this study was to find an effective method for converting renewable biomass-derived phenolic compounds into hydrocarbons bio-fuel via in situ catalytic hydrodeoxygenation. The in situ hydrodeoxygenation of biomass-derived phenolic compounds was carried out in methanol-water solvent over bifunctional catalysts of Raney Ni and HZSM-5 or H-Beta. In the in...

  5. Preparation of bi-functional silica particles for antibacterial and self cleaning surfaces.

    PubMed

    Hebalkar, Neha Y; Acharya, Snigdhatanu; Rao, Tata N

    2011-12-01

    Synthesis of bi-functional silica particles by a simple wet chemical method is described where the mixture of ultra fine nanoparticles (1-3 nm) of titania and silver were attached on the silica particle surface in a controlled way to form a core-shell structure. The silica surface showed efficient bi-functional activity of photo-catalytically self cleaning and antibacterial activity due to nanotitania and nanosilver mutually benefiting each other's function. The optimum silver concentration was found where extremely small silver nanoparticles are formed and the total composite particle remains white in color. This is an important property in view of certain applications such as antibacterial textiles where the original fabric color has to be retained even after applying the nanosilver on it. The particles were characterized at each step of the synthesis by X-ray photoelectron spectroscopy, UV-visible spectroscopy, X-ray diffraction, scanning electron microscopy, transmission electron microscopy and electron energy loss spectroscopy. Bi-functional silica particles showed accelerated photocatalytic degradation of methylene blue as well as enhanced antibacterial property when tested as such particles and textiles coated with these bi-functional silica particles even at lower silver concentration.

  6. Asymmetric α-amination of β-keto esters using a guanidine–bisurea bifunctional organocatalyst

    PubMed Central

    Yamamoto, Yoshiharu

    2016-01-01

    Summary An asymmetric α-amination of β-keto esters with azodicarboxylate in the presence of a guanidine–bisurea bifunctional organocatalyst was investigated. The α-amination products were obtained in up to 99% yield with up to 94% ee. PMID:26977179

  7. Nanosheet Supported Single-Metal Atom Bifunctional Catalyst for Overall Water Splitting.

    PubMed

    Ling, Chongyi; Shi, Li; Ouyang, Yixin; Zeng, Xiao Cheng; Wang, Jinlan

    2017-08-09

    Nanosheet supported single-atom catalysts (SACs) can make full use of metal atoms and yet entail high selectivity and activity, and bifunctional catalysts can enable higher performance while lowering the cost than two separate unifunctional catalysts. Supported single-atom bifunctional catalysts are therefore of great economic interest and scientific importance. Here, on the basis of first-principles computations, we report a design of the first single-atom bifunctional eletrocatalyst, namely, isolated nickel atom supported on β12 boron monolayer (Ni1/β12-BM), to achieve overall water splitting. This nanosheet supported SAC exhibits remarkable electrocatalytic performance with the computed overpotential for oxygen/hydrogen evolution reaction being just 0.40/0.06 V. The ab initio molecular dynamics simulation shows that the SAC can survive up to 800 K elevated temperature, while enacting a high energy barrier of 1.68 eV to prevent isolated Ni atoms from clustering. A viable experimental route for the synthesis of Ni1/β12-BM SAC is demonstrated from computer simulation. The desired nanosheet supported single-atom bifunctional catalysts not only show great potential for achieving overall water splitting but also offer cost-effective opportunities for advancing clean energy technology.

  8. Bifunctional N-heterocyclic carbene-catalyzed highly enantioselective synthesis of spirocyclic oxindolo-β-lactams.

    PubMed

    Zhang, Han-Ming; Gao, Zhong-Hua; Ye, Song

    2014-06-06

    The N-heterocyclic carbene-catalyzed Staudinger reaction of ketenes with isatin-derived ketimines was investigated. The bifunctional NHCs with a free hydroxyl group were demonstrated as efficient catalysts for the reaction, giving the corresponding spirocyclic oxindolo-β-lactams in high yields with excellent diastereo- and enantioselectivities.

  9. Small-angle X-ray scattering analysis of the bifunctional antibiotic resistance enzyme aminoglycoside (6') acetyltransferase-ie/aminoglycoside (2'') phosphotransferase-ia reveals a rigid solution structure.

    PubMed

    Caldwell, Shane J; Berghuis, Albert M

    2012-04-01

    Aminoglycoside (6') acetyltransferase-Ie/aminoglycoside (2″) phosphotransferase-Ia [AAC(6')-Ie/APH(2″)-Ia] is one of the most problematic aminoglycoside resistance factors in clinical pathogens, conferring resistance to almost every aminoglycoside antibiotic available to modern medicine. Despite 3 decades of research, our understanding of the structure of this bifunctional enzyme remains limited. We used small-angle X-ray scattering (SAXS) to model the structure of this bifunctional enzyme in solution and to study the impact of substrate binding on the enzyme. It was observed that the enzyme adopts a rigid conformation in solution, where the N-terminal AAC domain is fixed to the C-terminal APH domain and not loosely tethered. The addition of acetyl-coenzyme A, coenzyme A, GDP, guanosine 5'-[β,γ-imido]triphosphate (GMPPNP), and combinations thereof to the protein resulted in only modest changes to the radius of gyration (R(G)) of the enzyme, which were not consistent with any large changes in enzyme structure upon binding. These results imply some selective advantage to the bifunctional enzyme beyond coexpression as a single polypeptide, likely linked to an improvement in enzymatic properties. We propose that the rigid structure contributes to improved electrostatic steering of aminoglycoside substrates toward the two active sites, which may provide such an advantage.

  10. Small-Angle X-Ray Scattering Analysis of the Bifunctional Antibiotic Resistance Enzyme Aminoglycoside (6′) Acetyltransferase-Ie/Aminoglycoside (2″) Phosphotransferase-Ia Reveals a Rigid Solution Structure

    PubMed Central

    Caldwell, Shane J.

    2012-01-01

    Aminoglycoside (6′) acetyltransferase-Ie/aminoglycoside (2″) phosphotransferase-Ia [AAC(6′)-Ie/APH(2″)-Ia] is one of the most problematic aminoglycoside resistance factors in clinical pathogens, conferring resistance to almost every aminoglycoside antibiotic available to modern medicine. Despite 3 decades of research, our understanding of the structure of this bifunctional enzyme remains limited. We used small-angle X-ray scattering (SAXS) to model the structure of this bifunctional enzyme in solution and to study the impact of substrate binding on the enzyme. It was observed that the enzyme adopts a rigid conformation in solution, where the N-terminal AAC domain is fixed to the C-terminal APH domain and not loosely tethered. The addition of acetyl-coenzyme A, coenzyme A, GDP, guanosine 5′-[β,γ-imido]triphosphate (GMPPNP), and combinations thereof to the protein resulted in only modest changes to the radius of gyration (RG) of the enzyme, which were not consistent with any large changes in enzyme structure upon binding. These results imply some selective advantage to the bifunctional enzyme beyond coexpression as a single polypeptide, likely linked to an improvement in enzymatic properties. We propose that the rigid structure contributes to improved electrostatic steering of aminoglycoside substrates toward the two active sites, which may provide such an advantage. PMID:22290965

  11. Structures of a bi-functional Kunitz-type STI family inhibitor of serine and aspartic proteases: Could the aspartic protease inhibition have evolved from a canonical serine protease-binding loop?

    PubMed

    Guerra, Yasel; Valiente, Pedro A; Pons, Tirso; Berry, Colin; Rudiño-Piñera, Enrique

    2016-08-01

    Bi-functional inhibitors from the Kunitz-type soybean trypsin inhibitor (STI) family are glycosylated proteins able to inhibit serine and aspartic proteases. Here we report six crystal structures of the wild-type and a non-glycosylated mutant of the bifunctional inhibitor E3Ad obtained at different pH values and space groups. The crystal structures show that E3Ad adopts the typical β-trefoil fold of the STI family exhibiting some conformational changes due to pH variations and crystal packing. Despite the high sequence identity with a recently reported potato cathepsin D inhibitor (PDI), three-dimensional structures obtained in this work show a significant conformational change in the protease-binding loop proposed for aspartic protease inhibition. The E3Ad binding loop for serine protease inhibition is also proposed, based on structural similarity with a novel non-canonical conformation described for the double-headed inhibitor API-A from the Kunitz-type STI family. In addition, structural and sequence analyses suggest that bifunctional inhibitors of serine and aspartic proteases from the Kunitz-type STI family are more similar to double-headed inhibitor API-A than other inhibitors with a canonical protease-binding loop.

  12. Selective peptide inhibitors of bifunctional thymidylate synthase-dihydrofolate reductase from Toxoplasma gondii provide insights into domain-domain communication and allosteric regulation.

    PubMed

    Landau, Mark J; Sharma, Hitesh; Anderson, Karen S

    2013-09-01

    The bifunctional enzyme thymidylate synthase-dihydrofolate reductase (TS-DHFR) plays an essential role in DNA synthesis and is unique to several species of pathogenic protozoans, including the parasite Toxoplasma gondii. Infection by T. gondii causes the prevalent disease toxoplasmosis, for which TS-DHFR is a major therapeutic target. Here, we design peptides that target the dimer interface between the TS domains of bifunctional T. gondii TS-DHFR by mimicking β-strands at the interface, revealing a previously unknown allosteric target. The current study shows that these β-strand mimetic peptides bind to the apo-enzyme in a species-selective manner to inhibit both the TS and distal DHFR. Fluorescence spectroscopy was used to monitor conformational switching of the TS domain and demonstrate that these peptides induce a conformational change in the enzyme. Using structure-guided mutagenesis, nonconserved residues in the linker between TS and DHFR were identified that play a key role in domain-domain communication and in peptide inhibition of the DHFR domain. These studies validate allosteric inhibition of apo-TS, specifically at the TS-TS interface, as a potential target for novel, species-specific therapeutics for treating T. gondii parasitic infections and overcoming drug resistance. © 2013 The Protein Society.

  13. New Tris(hydroxypyridinone) Bifunctional Chelators Containing Isothiocyanate Groups Provide a Versatile Platform for Rapid One-Step Labeling and PET Imaging with (68)Ga(3.).

    PubMed

    Ma, Michelle T; Cullinane, Carleen; Imberti, Cinzia; Baguña Torres, Julia; Terry, Samantha Y A; Roselt, Peter; Hicks, Rodney J; Blower, Philip J

    2016-02-17

    Two new bifunctional tris(hydroxypyridinone) (THP) chelators designed specifically for rapid labeling with (68)Ga have been synthesized, each with pendant isothiocyanate groups and three 1,6-dimethyl-3-hydroxypyridin-4-one groups. Both compounds have been conjugated with the primary amine group of a cyclic integrin targeting peptide, RGD. Each conjugate can be radiolabeled and formulated by treatment with generator-produced (68)Ga(3+) in over 95% radiochemical yield under ambient conditions in less than 5 min, with specific activities of 60-80 MBq nmol(-1). Competitive binding assays and in vivo biodistribution in mice bearing U87MG tumors demonstrate that the new (68)Ga(3+)-labeled THP peptide conjugates retain affinity for the αvβ3 integrin receptor, clear within 1-2 h from circulation, and undergo receptor-mediated tumor uptake in vivo. We conclude that bifunctional THP chelators can be used for simple, efficient labeling of (68)Ga biomolecules under mild conditions suitable for peptides and proteins.

  14. New Tris(hydroxypyridinone) Bifunctional Chelators Containing Isothiocyanate Groups Provide a Versatile Platform for Rapid One-Step Labeling and PET Imaging with 68Ga3+

    PubMed Central

    2015-01-01

    Two new bifunctional tris(hydroxypyridinone) (THP) chelators designed specifically for rapid labeling with 68Ga have been synthesized, each with pendant isothiocyanate groups and three 1,6-dimethyl-3-hydroxypyridin-4-one groups. Both compounds have been conjugated with the primary amine group of a cyclic integrin targeting peptide, RGD. Each conjugate can be radiolabeled and formulated by treatment with generator-produced 68Ga3+ in over 95% radiochemical yield under ambient conditions in less than 5 min, with specific activities of 60–80 MBq nmol–1. Competitive binding assays and in vivo biodistribution in mice bearing U87MG tumors demonstrate that the new 68Ga3+-labeled THP peptide conjugates retain affinity for the αvβ3 integrin receptor, clear within 1–2 h from circulation, and undergo receptor-mediated tumor uptake in vivo. We conclude that bifunctional THP chelators can be used for simple, efficient labeling of 68Ga biomolecules under mild conditions suitable for peptides and proteins. PMID:26286399

  15. Novel Bifunctional Nucleases, OmBBD and AtBBD1, Are Involved in Abscisic Acid-Mediated Callose Deposition in Arabidopsis1[W][OA

    PubMed Central

    You, Min Kyoung; Shin, Hyun Young; Kim, Young Jin; Ok, Sung Han; Cho, Sung Ki; Jeung, Ji Ung; Yoo, Sang Dong; Kim, Jeong Kook; Shin, Jeong Sheop

    2010-01-01

    Screening of the expressed sequence tag library of the wild rice species Oryza minuta revealed an unknown gene that was rapidly and strongly induced in response to attack by a rice fungal pathogen (Magnaporthe oryzae) and an insect (Nilaparvata lugens) and by wounding, abscisic acid (ABA), and methyl jasmonate treatments. Its recombinant protein was identified as a bifunctional nuclease with both RNase and DNase activities in vitro. This gene was designated OmBBD (for O. minuta bifunctional nuclease in basal defense response). Overexpression of OmBBD in an Arabidopsis (Arabidopsis thaliana) model system caused the constitutive expression of the PDF1.2, ABA1, and AtSAC1 genes, which are involved in priming ABA-mediated callose deposition. This activation of defense responses led to an increased resistance against Botrytis cinerea. atbbd1, the knockout mutant of the Arabidopsis ortholog AtBBD1, was susceptible to attack by B. cinerea and had deficient callose deposition. Overexpression of either OmBBD or AtBBD1 in atbbd1 plants complemented the susceptible phenotype of atbbd1 against B. cinerea as well as the deficiency of callose deposition. We suggest that OmBBD and AtBBD1 have a novel regulatory role in ABA-mediated callose deposition. PMID:20018603

  16. The bifunctional role of LiuE from Pseudomonas aeruginosa, displays additionally HIHG-CoA lyase enzymatic activity.

    PubMed

    Chávez-Avilés, Mauricio; Díaz-Pérez, Alma Laura; Campos-García, Jesús

    2010-04-01

    Pseudomonas aeruginosa is able to utilize leucine/isovalerate and acyclic terpenes as sole carbon sources. Key enzymes which play an important role in these catabolic pathways are 3-hydroxy-3-methylglutaryl-coenzyme A (CoA) lyase (EC 4.1.3.4; HMG-CoA lyase) and the 3-hydroxy-3-isohexenylglutaryl-CoA lyase (EC 4.1.2.26; HIHG-CoA lyase), respectively. HMG-CoA lyase is encoded by the liuE gene while the gene for HIHG-CoA lyase remains unidentified. A mutant in the liuE gene was unable to utilize both leucine/isovalerate and acyclic terpenes indicates an involvement of liuE in both catabolic pathways (Chávez-Avilés et al. 2009, FEMS Microbiol Lett 296:117-123). The LiuE protein was purified as a His-tagged recombinant protein and in addition to show HMG-CoA lyase activity (Chávez-Avilés et al. 2009, FEMS Microbiol Lett 296:117-123), also displays HIHG-CoA lyase activity, indicating a bifunctional role in both the leucine/isovalerate and acyclic terpenes catabolic pathways.

  17. Molecular cloning and characterization of a novel bi-functional α-amylase/subtilisin inhibitor from Hevea brasiliensis.

    PubMed

    Bunyatang, Orawan; Chirapongsatonkul, Nion; Bangrak, Phuwadol; Henry, Robert; Churngchow, Nunta

    2016-04-01

    A novel cDNA encoding a bi-functional α-amylase/subtilisin inhibitor (HbASI) was isolated from rubber (Hevea brasiliensis) leaves cultivar RRIM600. The HbASI had strong homology with the soybean trypsin inhibitor (Kunitz) family of protease inhibitors. Its putative amino acid sequence was similar to that of the α-amylase/subtilisin inhibitor from Ricinus communis (72% identity). Genomic sequencing indicated that the HbASI gene contained no introns. The messenger RNA of HbASI was detected in leaf, hypocotyl and root. The recombinant HbASI expressed extracellularly in Pichia pastoris exhibited inhibitory activity against α-amylase from Aspergillus oryzae, trypsin and subtilisin A. The HbASI gene was induced in the rubber leaves infected with a rubber tree pathogen, Phytophthora palmivora. It was also enhanced by salicylic acid (SA) treatment and mechanical wounding. In addition, the biological activity of the HbASI protein involving in the plant defence responses was also investigated. The HbASI at a concentration of 0.16 mg mL(-1) could inhibit the mycelium growth of P. palmivora. These data suggested that the HbASI protein might play a crucial role in defence against pathogen of rubber trees.

  18. Bifunctional phosphine-catalyzed cross-Rauhut-Currier/Michael/aldol condensation triple domino reaction: synthesis of functionalized cyclohexenes.

    PubMed

    Xie, Peizhong; Huang, You; Lai, Wenqing; Meng, Xiangtai; Chen, Ruyu

    2011-10-07

    A novel bifunctional phosphine-catalyzed reaction was developed. Cross-Rauhut-Currier, Michael and aldol reactions were successfully combined into a domino process. This method offers a powerful approach to the construction of highly substituted cyclohexene skeletons.

  19. A Metal-Amino Acid Complex-Derived Bifunctional Oxygen Electrocatalyst for Rechargeable Zinc-Air Batteries.

    PubMed

    Ding, Yanjun; Niu, Yuchen; Yang, Jia; Ma, Liang; Liu, Jianguo; Xiong, Yujie; Xu, Hangxun

    2016-10-01

    Bifunctional oxygen electrocatalyst: A metal-amino acid complex is developed to prepare high-performance mesoporous carbon electrocatalyst for both oxygen reduction and oxygen evolution reactions. Such prepared catalyst can be used to assemble rechargeable zinc-air batteries with excellent durability. This work represents a new route toward low-cost, highly active, and durable bifunctional electrocatalysts for cutting-edge energy conversion devices.

  20. CXCL10 Acts as a Bifunctional Antimicrobial Molecule against Bacillus anthracis

    PubMed Central

    Margulieux, Katie R.; Fox, Jay W.; Nakamoto, Robert K.

    2016-01-01

    ABSTRACT Bacillus anthracis is killed by the interferon-inducible, ELR(−) CXC chemokine CXCL10. Previous studies showed that disruption of the gene encoding FtsX, a conserved membrane component of the ATP-binding cassette transporter-like complex FtsE/X, resulted in resistance to CXCL10. FtsX exhibits some sequence similarity to the mammalian CXCL10 receptor, CXCR3, suggesting that the CXCL10 N-terminal region that interacts with CXCR3 may also interact with FtsX. A C-terminal truncated CXCL10 was tested to determine if the FtsX-dependent antimicrobial activity is associated with the CXCR3-interacting N terminus. The truncated CXCL10 exhibited antimicrobial activity against the B. anthracis parent strain but not the ΔftsX mutant, which supports a key role for the CXCL10 N terminus. Mutations in FtsE, the conserved ATP-binding protein of the FtsE/X complex, resulted in resistance to both CXCL10 and truncated CXCL10, indicating that both FtsX and FtsE are important. Higher concentrations of CXCL10 overcame the resistance of the ΔftsX mutant to CXCL10, suggesting an FtsX-independent killing mechanism, likely involving its C-terminal α-helix, which resembles a cationic antimicrobial peptide. Membrane depolarization studies revealed that CXCL10 disrupted membranes of the B. anthracis parent strain and the ΔftsX mutant, but only the parent strain underwent depolarization with truncated CXCL10. These findings suggest that CXCL10 is a bifunctional molecule that kills B. anthracis by two mechanisms. FtsE/X-dependent killing is mediated through an N-terminal portion of CXCL10 and is not reliant upon the C-terminal α-helix. The FtsE/X-independent mechanism involves membrane depolarization by CXCL10, likely because of its α-helix. These findings present a new paradigm for understanding mechanisms by which CXCL10 and related chemokines kill bacteria. PMID:27165799

  1. Molecular characterization of the thi3 gene involved in thiamine biosynthesis in Zea mays: cDNA sequence and enzymatic and structural properties of the recombinant bifunctional protein with 4-amino-5-hydroxymethyl-2-methylpyrimidine (phosphate) kinase and thiamine monophosphate synthase activities.

    PubMed

    Rapala-Kozik, Maria; Olczak, Mariusz; Ostrowska, Katarzyna; Starosta, Agata; Kozik, Andrzej

    2007-12-01

    A thiamine biosynthesis gene, thi3, from maize Zea mays has been identified through cloning and sequencing of cDNA and heterologous overexpression of the encoded protein, THI3, in Escherichia coli. The recombinant THI3 protein was purified to homogeneity and shown to possess two essentially different enzymatic activities of HMP(-P) [4-amino-5-hydroxymethyl-2-methylpyrimidine (phosphate)] kinase and TMP (thiamine monophosphate) synthase. Both activities were characterized in terms of basic kinetic constants, with interesting findings that TMP synthase is uncompetitively inhibited by excess of one of the substrates [HMP-PP (HMP diphosphate)] and ATP. A bioinformatic analysis of the THI3 sequence suggested that these activities were located in two distinct, N-terminal kinase and C-terminal synthase, domains. Models of the overall folds of THI3 domains and the arrangements of active centre residues were obtained with the SWISS-MODEL protein modelling server, on the basis of the known three-dimensional structures of Salmonella enterica serotype Typhimurium HMP(-P) kinase and Bacillus subtilis TMP synthase. The essential roles of Gln98 and Met134 residues for HMP kinase activity and of Ser444 for TMP synthase activity were experimentally confirmed by site-directed mutagenesis.

  2. Increasing round trip efficiency of hybrid Li-air battery with bifunctional catalysts

    SciTech Connect

    Huang, K; Li, YF; Xing, YC

    2013-07-30

    Previously it was shown that Pt as cathode catalyst ha's a large overpotential during charge in rechargeable hybrid Li-air battery with sulfuric acid catholyte. This article demonstrates that a bifunctional catalyst composed of Pt and IrO2 supported on carbon nanotubes can address this problem. The specially designed and synthesized bifunctional catalyst showed significant overpotential reduction and achieved a round trip energy efficiency of 81% after 10 cycles, higher than many achieved in aprotic Li-O-2 batteries. The hybrid Li-air battery was discharged and recharged for 20 cycles at 0.2 mA/cm(2), showing a fairly stable cell performance. A specific capacity of 306 mAh/g and a specific energy of 1110 Wh/kg were obtained for the hybrid Li-air battery in terms of acid weight. (c) 2013 Elsevier Ltd. All rights reserved.

  3. Tethering metal ions to photocatalyst particulate surfaces by bifunctional molecular linkers for efficient hydrogen evolution.

    PubMed

    Yu, Weili; Isimjan, Tayirjan; Del Gobbo, Silvano; Anjum, Dalaver H; Abdel-Azeim, Safwat; Cavallo, Luigi; Garcia-Esparza, Angel T; Domen, Kazunari; Xu, Wei; Takanabe, Kazuhiro

    2014-09-01

    A simple and versatile method for the preparation of photocatalyst particulates modified with effective cocatalysts is presented; the method involves the sequential soaking of photocatalyst particulates in solutions containing bifunctional organic linkers and metal ions. The modification of the particulate surfaces is a universal and reproducible method because the molecular linkers utilize strong covalent bonds, which in turn result in modified monolayer with a small but controlled quantity of metals. The photocatalysis results indicated that the CdS with likely photochemically reduced Pd and Ni, which were initially immobilized via ethanedithiol (EDT) as a linker, were highly efficient for photocatalytic hydrogen evolution from Na2S-Na2SO3-containing aqueous solutions. The method developed in this study opens a new synthesis route for the preparation of effective photocatalysts with various combinations of bifunctional linkers, metals, and photocatalyst particulate materials.

  4. Bifunctional nanoarrays for probing the immune response at the single-molecule level.

    PubMed

    Cai, Haogang; Depoil, David; Palma, Matteo; Sheetz, Michael P; Dustin, Michael L; Wind, Shalom J

    2013-11-01

    Bifunctional nanoarrays were created to simulate the immunological synapse and probe the T-cell immune response at the single-molecule level. Sub-5 nm AuPd nanodot arrays were fabricated using both e-beam and nanoimprint lithography. The nanoarrays were then functionalized by two costimulatory molecules: antibody UCHT1 Fab, which binds to the T-cell receptor (TCR) and activates the immune response, bound to metallic nanodots; and intercellular adhesion molecule-1, which enhances cell adhesion, on the surrounding area. Initial T-cell experiments show successful attachment and activation on the bifunctional nanoarrays. This nanoscale platform for single-molecule control of TCR in living T-cells provides a new approach to explore how its geometric arrangement affects T-cell activation and behavior, with potential applications in immunotherapy. This platform also serves as a general model for single-molecule nanoarrays where more than one molecular species is required.

  5. Bifunctional metamaterials with simultaneous and independent manipulation of thermal and electric fields.

    PubMed

    Lan, Chuwen; Bi, Ke; Fu, Xiaojian; Li, Bo; Zhou, Ji

    2016-10-03

    Metamaterials offer a powerful way to manipulate a variety of physical fields ranging from wave fields (electromagnetic field, acoustic field, elastic wave, etc.), static fields (static magnetic field, static electric field) to diffusive fields (thermal field, diffusive mass). However, the relevant reports and studies are usually limited to a single physical field or functionality. In this study, we proposed and experimentally demonstrated a bifunctional metamaterial which could manipulate thermal and electric fields simultaneously and independently. Specifically, a composite with independently controllable thermal and electric conductivity was introduced, on the basis of which a bifunctional device capable of shielding thermal flux and concentrating electric current simultaneously was designed, fabricated and characterized. This work provides an encouraging example of metamaterials transcending their natural limitations, which offers a promising future in building a broad platform for the manipulation of multi-physics fields.

  6. Radiometals (non-Tc, non-Re) and Bifunctional Labeling Chemistry

    NASA Astrophysics Data System (ADS)

    Fani, M.; Good, S.; Maecke, H. R.

    Radiometals are of increased current interest because of the growing use of targeted radiotherapy for tumors and the development of generators that produce positron-emitting radiometals. In addition, biomedical cyclotrons allow the cheap production of some relevant radiometals. The design of the corresponding radiopharmaceuticals includes the synthesis of bifunctional chelators, which carry a functional unit for the immobilization of the radiometal and a functional group for the covalent attachment to a vector molecule. Radiometals of interest for therapeutic applications are some lanthanides, 67Cu, and 90Y. For diagnostic applications 61Cu, 62Cu, 64Cu, 89Zr, and 68Ga are currently used and corresponding radiopharmaceuticals are being designed. In this chapter, some properties and the synthesis of bifunctional chelators including metal ion selectivity and special aspects of coupling chemistry are being described.

  7. Biochemical characterization of a bifunctional acetaldehyde-alcohol dehydrogenase purified from a facultative anaerobic bacterium Citrobacter sp. S-77.

    PubMed

    Tsuji, Kohsei; Yoon, Ki-Seok; Ogo, Seiji

    2016-03-01

    Acetaldehyde-alcohol dehydrogenase (ADHE) is a bifunctional enzyme consisting of two domains of an N-terminal acetaldehyde dehydrogenase (ALDH) and a C-terminal alcohol dehydrogenase (ADH). The enzyme is known to be important in the cellular alcohol metabolism. However, the role of coenzyme A-acylating ADHE responsible for ethanol production from acetyl-CoA remains uncertain. Here, we present the purification and biochemical characterization of an ADHE from Citrobacter sp. S-77 (ADHE(S77)). Interestingly, the ADHE(S77) was unable to be solubilized from membrane with detergents either 1% Triton X-100 or 1% Sulfobetaine 3-12. However, the enzyme was easily dissociated from membrane by high-salt buffers containing either 1.0 M NaCl or (NH(4))(2)SO(4) without detergents. The molecular weight of a native protein was estimated as approximately 400 kDa, consisting of four identical subunits of 96.3 kDa. Based on the specific activity and kinetic analysis, the ADHES77 tended to have catalytic reaction towards acetaldehyde elimination rather than acetaldehyde formation. Our experimental observation suggests that the ADHES77 may play a pivotal role in modulating intracellular acetaldehyde concentration. Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  8. A nanotherapy strategy significantly enhances anticryptosporidial activity of an inhibitor of bifunctional thymidylate synthase-dihydrofolate reductase from Cryptosporidium.

    PubMed

    Mukerjee, Anindita; Iyidogan, Pinar; Castellanos-Gonzalez, Alejandro; Cisneros, José A; Czyzyk, Daniel; Ranjan, Amalendu Prakash; Jorgensen, William L; White, A Clinton; Vishwanatha, Jamboor K; Anderson, Karen S

    2015-01-01

    Cryptosporidiosis, a gastrointestinal disease caused by protozoans of the genus Cryptosporidium, is a common cause of diarrheal diseases and often fatal in immunocompromised individuals. Bifunctional thymidylate synthase-dihydrofolate reductase (TS-DHFR) from Cryptosporidium hominis (C. hominis) has been a molecular target for inhibitor design. C. hominis TS-DHFR inhibitors with nM potency at a biochemical level have been developed however drug delivery to achieve comparable antiparasitic activity in Cryptosporidium infected cell culture has been a major hurdle for designing effective therapies. Previous mechanistic and structural studies have identified compound 906 as a nM C. hominis TS-DHFR inhibitor in vitro, having μM antiparasitic activity in cell culture. In this work, proof of concept studies are presented using a nanotherapy approach to improve drug delivery and the antiparasitic activity of 906 in cell culture. We utilized PLGA nanoparticles that were loaded with 906 (NP-906) and conjugated with antibodies to the Cryptosporidium specific protein, CP2, on the nanoparticle surface in order to specifically target the parasite. Our results indicate that CP2 labeled NP-906 (CP2-NP-906) reduces the level of parasites by 200-fold in cell culture, while NP-906 resulted in 4.4-fold decrease. Moreover, the anticryptosporidial potency of 906 improved 15 to 78-fold confirming the utility of the antibody conjugated nanoparticles as an effective drug delivery strategy.

  9. 3D Ordered Mesoporous Bifunctional Oxygen Catalyst for Electrically Rechargeable Zinc-Air Batteries.

    PubMed

    Park, Moon Gyu; Lee, Dong Un; Seo, Min Ho; Cano, Zachary Paul; Chen, Zhongwei

    2016-05-01

    To enhance energy efficiency and durability, a highly active and durable 3D ordered mesoporous cobalt oxide framework has been developed for rechargeable zinc-air batteries. The bifunctional air electrode consisting of 3DOM Co3 O4 having high active surface area and robust structure, results in superior charge and discharge battery voltages, and durable performance for electrically rechargeable zinc-air batteries.

  10. Phase-Transfer Catalysis via a Proton Sponge: A Bifunctional Role for Biscyclopropenimine.

    PubMed

    Belding, Lee; Stoyanov, Peter; Dudding, Travis

    2016-01-15

    The use of a bis(diisopropylamino)cyclopropenimine-substituted bis-protonated proton sponge as a bifunctional phase-transfer catalyst is reported. Experimental studies and DFT calculations suggest it operates simultaneously as a hydrogen bond donor and a phase-transfer catalyst, facilitating the movement of charged intermediates from the interface to the organic phase via favorable partitioning of hydrophilic/hydrophobic surface areas, resulting in high catalytic activity.

  11. Synthesis of acid-base bifunctional mesoporous materials by oxidation and thermolysis

    SciTech Connect

    Yu, Xiaofang; Zou, Yongcun; Wu, Shujie; Liu, Heng; Guan, Jingqi; Kan, Qiubin

    2011-06-15

    Graphical abstract: A novel and efficient method has been developed for the synthesis of acid-base bifunctional catalyst. The obtained sample of SO{sub 3}H-MCM-41-NH{sub 2} containing amine and sulfonic acids exhibits excellent catalytic activity in aldol condensation reaction. Research highlights: {yields} Synthesize acid-base bifunctional mesoporous materials SO{sub 3}H-MCM-41-NH{sub 2}. {yields} Oxidation and then thermolysis to generate acidic site and basic site. {yields} Exhibit good catalytic performance in aldol condensation reaction between acetone and various aldehydes. -- Abstract: A novel and efficient method has been developed for the synthesis of acid-base bifunctional catalyst SO{sub 3}H-MCM-41-NH{sub 2}. This method was achieved by co-condensation of tetraethylorthosilicate (TEOS), 3-mercaptopropyltrimethoxysilane (MPTMS) and (3-triethoxysilylpropyl) carbamicacid-1-methylcyclohexylester (3TAME) in the presence of cetyltrimethylammonium bromide (CTAB), followed by oxidation and then thermolysis to generate acidic site and basic site. X-ray diffraction (XRD) and transmission electron micrographs (TEM) show that the resultant materials keep mesoporous structure. Thermogravimetric analysis (TGA), X-ray photoelectron spectra (XPS), back titration, solid-state {sup 13}C CP/MAS NMR and solid-state {sup 29}Si MAS NMR confirm that the organosiloxanes were condensed as a part of the silica framework. The bifunctional sample (SO{sub 3}H-MCM-41-NH{sub 2}) containing amine and sulfonic acids exhibits excellent acid-basic properties, which make it possess high activity in aldol condensation reaction between acetone and various aldehydes.

  12. Design and Testing of Bi-functional, P-loop Targeted MDM2 Inhibitors

    DTIC Science & Technology

    2008-03-01

    based on the discovery that nucleotides can bind to the P-loop of MDM2 and cause its relocalization to the nucleolus. Such bifunctional compounds will be...developed a high-throughput docking assay based on Mdm2’s RING domain structure and (4) developed a high-throughput compatible luciferase- based ...target. Based on previous mutational studies on the RING domain (Poyurovsky et al. 2003.) and molecular dynamics simulations we predicted the ATP

  13. Bifunctional ruthenium(II) hydride complexes with pendant strong Lewis acid moieties: structure, dynamics, and cooperativity.

    PubMed

    Ostapowicz, Thomas G; Merkens, Carina; Hölscher, Markus; Klankermayer, Jürgen; Leitner, Walter

    2013-02-13

    The synthesis of a novel class of bifunctional ruthenium hydride complexes incorporating Lewis acidic BR(2) moieties is reported. Determination of the molecular structures in the solid state and in solution provided evidence for tunable interaction between the two functionalities. Cooperative effects on the reactivity of the complexes were demonstrated including the activation of small Lewis basic molecules by reversible anchoring at the boron center.

  14. Kinetic and inhibition studies on substrate channelling in the bifunctional enzyme catalysing C-terminal amidation.

    PubMed Central

    Moore, A B; May, S W

    1999-01-01

    A series of experiments has been conducted to investigate the possibility that substrate channelling might occur in the bifunctional forms of enzymes carrying out C-terminal amidation, a post-translational modification essential to the biological activity of many neuropeptides. C-terminal amidation entails sequential action by peptidylglycine mono-oxygenase (PAM, EC 1.14.17.3) and peptidylamidoglycolate lyase (PGL, EC 4.3.2.5), with the mono-oxygenase catalysing conversion of a glycine-extended pro-peptide into the corresponding alpha-hydroxyglycine derivative, which is then converted by the lyase into amidated peptide plus glyoxylate. Since the mono-oxygenase and lyase reactions exhibit tandem reaction stereospecificities, channelling of the alpha-hydroxy intermediate might occur, as is the case for some other multifunctional enzymes. Selective inhibition of the mono-oxygenase domain by competitive ester inhibitors, as well as mechanism-based mono-oxygenase inactivation by the novel olefinic inhibitor 5-acetamido-4-oxo-6-phenylhex-2-enoate (N-acetylphenylalanyl acrylate), has little to no effect on the kinetic parameters of the lyase domain of the AE from Xenopus laevis. Similarly, inhibition of the lyase domain by the potent dioxo inhibitor 2,4-dioxo-5-acetamido-6-phenylhexanoate has little effect on the activity of the monooxygenase domain in the bifunctional enzyme. A series of experiments on intermediate accumulation and conversion were also carried out, along with kinetic investigations of the reactivities of the monofunctional and bifunctional forms of PAM and PGL towards substrates and inhibitors. Taken together, the results demonstrate the kinetic independence of the mono-oxygenase and lyase domains, and provide no evidence for substrate channelling between these domains in the bifunctional amidating enzyme. PMID:10377242

  15. Grafting of bifunctional phosphonic and carboxylic acids on Phynox: Impact of induction heating

    NASA Astrophysics Data System (ADS)

    Devillers, S.; Lanners, L.; Delhalle, J.; Mekhalif, Z.

    2011-05-01

    Phynox, a cobalt-chromium alloy, exhibits interesting mechanical properties making it a valuable material for a number of applications. However, its applications (especially biomedical ones) often require specific surface properties that can be imparted via suitable surface functionalizations. Based on Faraday's law of induction, induction heating is a widely used method to heat metallic substrates directly and contactless. The aim of this work is to compare the influence of induction heating and a conventional heating method on the functionalization of Phynox surfaces with bifunctional (6-phosphonohexanoic and 11-phosphoundecanoic acids) monolayers in order to create a platform for a large variety of post-grafting chemical reactions, e.g. with alcohols and amines, to modify and control the surface properties. In a first part, we assess the influence of the heating method on the interaction between the two terminal moieties of the 6-phosphonohexanoic and 11-phosphoundecanoic acids and the Phynox surface by studying the grafting of n-dodecylphosphonic acid and n-dodecanoic acid separately. The suitability of such bifunctional molecules for post-grafting chemical reactions has then been assessed by studying the post-grafting of a fluorinated alcohol by the Steglich esterification reaction between the carboxylic end of the grafted bifunctional molecules and the alcohol function of the post-grafted molecule. It has been shown that induction heating can lead to a much more selective adsorption of bifunctional molecules on the surface of Phynox, leaving a higher amount of free carboxylic acid functions to react during the second modification step.

  16. L-Proline Derived Bifunctional Organocatalysts: Enantioselective Michael Addition of Dithiomalonates to trans-β-Nitroolefins.

    PubMed

    Jin, Hui; Kim, Seung Tae; Hwang, Geum-Sook; Ryu, Do Hyun

    2016-04-15

    A series of novel L-proline derived tertiary amine bifunctional organocatalysts 9 are reported, which were applied to the asymmetric Michael addition of dithiomalonates 2 to trans-β-nitroolefins 1. The reaction proceeded in high yields (up to 99%) with high enantioselectivities (up to 97% ee). The synthetic utility of this methodology was demonstrated in the short synthesis of (R)-phenibut in high yield.

  17. Enantioselective, organocatalytic reduction of ketones using bifunctional thiourea-amine catalysts.

    PubMed

    Li, De Run; He, Anyu; Falck, J R

    2010-04-16

    Prochiral ketones are reduced to enantioenriched, secondary alcohols using catecholborane and a family of air-stable, bifunctional thiourea-amine organocatalysts. Asymmetric induction is proposed to arise from the in situ complexation between the borane and chiral thiourea-amine organocatalyst resulting in a stereochemically biased boronate-amine complex. The hydride in the complex is endowed with enhanced nucleophilicity while the thiourea concomitantly embraces and activates the carbonyl.

  18. Enantioselective, Organocatalytic Reduction of Ketones using Bifunctional Thiourea-Amine Catalysts

    PubMed Central

    Li, De Run; He, Anyu; Falck, J. R.

    2010-01-01

    Prochiral ketones are reduced to enantioenriched, secondary alcohols using catecholborane and a family of air-stable, bifunctional thiourea-amine organocatalysts. Asymmetric induction is proposed to arise from the in situ complexation between the borane and chiral thiourea-amine organocatalyst resulting in a stereochemically biased boronate-amine complex. The hydride in the complex is endowed with enhanced nucleophilicity while the thiourea concomitantly embraces and activates the carbonyl. PMID:20334398

  19. Enhancement of Bacillus thuringiensis insecticidal activity by combining Cry1Ac and bi-functional toxin HWTX-XI from spider.

    PubMed

    Sun, Yunjun; Fu, Zujiao; He, Xiaohong; Yuan, Chunhua; Ding, Xuezhi; Xia, Liqiu

    2016-03-01

    In order to assess the potency of bi-functional HWTX-XI toxin from spider Ornithoctonus huwena in improving the insecticidal activity of Bacillus thuringiensis, a fusion gene of cry1Ac and hwtx-XI was constructed and expressed in an acrystalliferous B. thuringiensis strain Cry(-)B. Western blot analysis and microscopic observation revealed that the recombinant strain could express 140-kDa Cry1Ac-HWTX-XI fusion protein and produce parasporal inclusions during sporulation. Bioassay using the larvae of Helicoverpa armigera and Spodoptera exigua showed that the Cry1Ac-HWTX-XI fusion was more toxic than the control Cry1Ac protoxin, as revealed by 95% lethal concentration. Our study indicated that the HWTX-XI from spider might be a candidate for enhancing the toxicity of B. thuringiensis products.

  20. Quantification of a bifunctional drug in the presence of an immune response: a ligand-binding assay specific for 'active' drug.

    PubMed

    Staack, Roland F; Jordan, Gregor; Viert, Maria; Schäfer, Martin; Papadimitriou, Apollon; Heinrich, Julia

    2015-12-01

    During development of biologics, safety and efficacy assessments are often hampered by immune responses to the treatment. The raised antidrug antibodies (ADA) might interfere with the bioanalytical method and complicate result interpretation if non-fully characterized bioanalytical methods were applied. Here, we report an approach to characterize a ligand-binding assay (LBA) for the quantification of active drug exposure of a bifunctional therapeutic protein in the presence of antidrug antibodies, by correlating LBA results with those of a cell-based PK assay. A clear correlation between both assays could be observed when monoclonal and polyclonal antibodies against the toxin moiety of the drug were used as ADA surrogates, and results were confirmed with human ADA-positive sera. The observed correlation between the LBA-based and cell-based PK assay indicated the suitability of the developed LBA for the determination of active drug exposure in the presence of an immune response.

  1. Development of Cobalt Hydroxide as a Bifunctional Catalyst for Oxygen Electrocatalysis in Alkaline Solution.

    PubMed

    Zhan, Yi; Du, Guojun; Yang, Shiliu; Xu, Chaohe; Lu, Meihua; Liu, Zhaolin; Lee, Jim Yang

    2015-06-17

    Co(OH)2 in the form of hexagonal nanoplates synthesized by a simple hydrothermal reaction has shown even greater activity than cobalt oxides (CoO and Co3O4) in oxygen reduction and oxygen evolution reactions (ORR and OER) under alkaline conditions. The bifunctionality for oxygen electrocatalysis as shown by the OER-ORR potential difference (ΔE) could be reduced to as low as 0.87 V, comparable to the state-of-the-art non-noble bifunctional catalysts, when the Co(OH)2 nanoplates were compounded with nitrogen-doped reduced graphene oxide (N-rGO). The good performance was attributed to the nanosizing of Co(OH)2 and the synergistic interaction between Co(OH)2 and N-rGO. A zinc-air cell assembled with a Co(OH)2-air electrode also showed a performance comparable to that of the state-of-the-art zinc-air cells. The combination of bifunctional activity and operational stability establishes Co(OH)2 as an effective low-cost alternative to the platinum group metal catalysts.

  2. Bifunctional Catalysts for Upgrading of Biomass-Derived Oxygenates: A Review

    SciTech Connect

    Robinson, Allison M.; Hensley, Jesse E.; Medlin, J. Will

    2016-08-05

    Deoxygenation is an important reaction in the conversion of biomass-derived oxygenates to fuels and chemicals. A key route for biomass refining involves the production of pyrolysis oil through rapid heating of the raw biomass feedstock. Pyrolysis oil as produced is highly oxygenated, so the feasibility of this approach depends in large part on the ability to selectively deoxygenate pyrolysis oil components to create a stream of high-value finished products. Identification of catalytic materials that are active and selective for deoxygenation of pyrolysis oil components has therefore represented a major research area. One catalyst is rarely capable of performing the different types of elementary reaction steps required to deoxygenate biomass-derived compounds. For this reason, considerable attention has been placed on bifunctional catalysts, where two different active materials are used to provide catalytic sites for diverse reaction steps. Here, we review recent trends in the development of catalysts, with a focus on catalysts for which a bifunctional effect has been proposed. We summarize recent studies of hydrodeoxygenation (HDO) of pyrolysis oil and model compounds for a range of materials, including supported metal and bimetallic catalysts as well as transition-metal oxides, sulfides, carbides, nitrides, and phosphides. Particular emphasis is placed on how catalyst structure can be related to performance via molecular-level mechanisms. These studies demonstrate the importance of catalyst bifunctionality, with each class of materials requiring hydrogenation and C-O scission sites to perform HDO at reasonable rates.

  3. Comparison of Dynamical Behaviors Between Monofunctional and Bifunctional Two-Component Signaling Modules

    NASA Astrophysics Data System (ADS)

    Yang, Xiyan; Wu, Yahao; Yuan, Zhanjiang

    2015-06-01

    Two-component signaling modules exist extensively in bacteria and microbes. These modules can be, based on their distinct network structures, divided into two types: the monofunctional system (denoted by MFS) where the sensor kinase (SK) modulates only phosphorylation of the response regulator (RR), and the bifunctional system (denoted by BFS) where the SK catalyzes both phosphorylation and dephosphorylation of the RR. Here, we analyze dynamical behaviors of these two systems based on stability theory, focusing on differences between them. The analysis of the deterministic behavior indicates that there is no difference between the two modules, that is, each system has the unique stable steady state. However, there are significant differences in stochastic behavior between them. Specifically, if the mean phosphorylated SK level is kept the same for the two modules, then the variance and the Fano factor for the phosphorylated RR in the BFS are always no less than those in the MFS, indicating that bifunctionality always enhances fluctuations. The correlation between the phosphorylated SK and the phosphorylated RR in the BFS is always positive mainly due to competition between system components, but this correlation in the MFS may be positive, almost zero, or negative, depending on the ratio between two rate constants. Our overall analysis indicates that differences between dynamical behaviors of monofunctional and bifunctional signaling modules are mainly in the stochastic rather than deterministic aspect.

  4. Bifunctional catalysts for upgrading of biomass-derived oxygenates: A review

    DOE PAGES

    Robinson, Allison M.; Hensley, Jesse E.; Medlin, J. Will

    2016-06-21

    Deoxygenation is an important reaction in the conversion of biomass-derived oxygenates to fuels and chemicals. A key route for biomass refining involves the production of pyrolysis oil through rapid heating of the raw biomass feedstock. Pyrolysis oil as produced is highly oxygenated, so the feasibility of this approach depends in large part on the ability to selectively deoxygenate pyrolysis oil components to create a stream of high-value finished products. Identification of catalytic materials that are active and selective for deoxygenation of pyrolysis oil components has therefore represented a major research area. One catalyst is rarely capable of performing the differentmore » types of elementary reaction steps required to deoxygenate biomass-derived compounds. For this reason, considerable attention has been placed on bifunctional catalysts, where two different active materials are used to provide catalytic sites for diverse reaction steps. Here, we review recent trends in the development of catalysts, with a focus on catalysts for which a bifunctional effect has been proposed. We summarize recent studies of hydrodeoxygenation (HDO) of pyrolysis oil and model compounds for a range of materials, including supported metal and bimetallic catalysts as well as transition-metal oxides, sulfides, carbides, nitrides, and phosphides. Particular emphasis is placed on how catalyst structure can be related to performance via molecular-level mechanisms. Finally, these studies demonstrate the importance of catalyst bifunctionality, with each class of materials requiring hydrogenation and C-O scission sites to perform HDO at reasonable rates.« less

  5. A Processive Carbohydrate Polymerase That Mediates Bifunctional Catalysis Using a Single Active Site

    PubMed Central

    May, John F.; Levengood, Matthew R.; Splain, Rebecca A.; Brown, Christopher D.; Kiessling, Laura L.

    2012-01-01

    Even in the absence of a template, glycosyltransferases can catalyze the synthesis of carbohydrate polymers of specific sequence. The paradigm has been that one enzyme catalyzes the formation of one type of glycosidic linkage, yet certain glycosyltransferases generate polysaccharide sequences composed of two distinct linkage types. In principle, bifunctional glycosyltransferases can possess separate active sites for each catalytic activity or one active site with dual activities. We encountered the fundamental question of one or two distinct active sites in our investigation of the galactosyltransferase GlfT2. GlfT2 catalyzes the formation of mycobacterial galactan, a critical cell-wall polymer composed of galactofuranose residues connected with alternating, regioisomeric linkages. We found that GlfT2 mediates galactan polymerization using only one active site that manifests dual regioselectivity. Structural modeling of the bifunctional glycosyltransferases hyaluronan synthase and cellulose synthase suggests that these enzymes also generate multiple glycosidic linkages using a single active site. These results highlight the versatility of glycosyltransferases for generating polysaccharides of specific sequence. We postulate that a hallmark of processive elongation of a carbohydrate polymer by a bifunctional enzyme is that one active site can give rise to two separate types of glycosidic bonds. PMID:22217153

  6. Enhanced Bifunctional Oxygen Catalysis in Strained LaNiO3 Perovskites

    DOE PAGES

    Petrie, Jonathan R.; Cooper, Valentino R.; Freeland, John W.; ...

    2016-02-11

    Strain is known to greatly influence low-temperature oxygen electrocatalysis on noble metal films, leading to significant enhancements in bifunctional activity essential for fuel cells and metal-air batteries. Still, its catalytic impact on transition-metal oxide thin films, such as perovskites, is not widely understood. Here, we epitaxially strain the conducting perovskite LaNiO3 to systematically determine its influence on both the oxygen reduction and oxygen evolution reaction. Uniquely, we found that compressive strain could significantly enhance both reactions, yielding a bifunctional catalyst that surpasses the performance of noble metals such as Pt. We attribute the improved bifunctionality to strain-induced splitting of themore » eg orbitals, which can customize orbital asymmetry at the surface. Lastly, analogous to strain-induced shifts in the d-band center of noble metals relative to the Fermi level, such splitting can dramatically affect catalytic activity in this perovskite and other potentially more active oxides.« less

  7. Mechanical Characterization of a Bi-functional Tetronic Hydrogel Adhesive for Soft Tissues

    PubMed Central

    Sanders, Lindsey; Stone, Roland; Webb, C. Kenneth; Mefford, O. Thompson; Nagatomi, Jiro

    2014-01-01

    Although a number of tissue adhesives and sealants for surgical use are currently available, attaining a useful balance in high strength, high compliance, and low swelling has proven difficult. Recent studies have demonstrated that a 4-arm poly(propylene oxide)-poly(ethylene oxide) (PPO-PEO) block copolymer, Tetronic, can be chemically modified to form a hydrogel tissue adhesive21–23. Building on the success of these studies, the present study explored bi-functionalization of Tetronic with acrylates for chemical crosslinking of the hydrogel and N-hydroxysuccinimide (NHS) for reaction with tissue amines. The adhesive bond strengths of various uni- and bi-functional Tetronic blends (T1107 ACR: T1107 ACR/NHS) determined by lap shear testing ranged between 8 and 74 kPa, with the 75:25 (T1107 ACR: T1107 ACR/NHS) blend displaying the highest value. These results indicated that addition of NHS led to improvement of tissue bond strength over acrylation alone Furthermore, ex vivo pressure tests using the rat bladder demonstrated that the bi-functional Tetronic adhesive exhibited high compliance and maintained pressures under hundreds of filling and emptying cycles. Together, the results of the present study provided evidence that the bi-functional Tetronic adhesive with a proper blend ratio may be used to achieve an accurate balance in bulk and tissue bond strengths, as well as the compliance and durability for soft tissue such as the bladder. PMID:25111445

  8. (S)-5-(p-Nitrobenzyl)-PCTA, a Promising Bifunctional Ligand with Advantageous Metal Ion Complexation Kinetics

    PubMed Central

    Tircsó, Gyula; Benyó, Enikő Tircsóné; Suh, Eul Hyun; Jurek, Paul; Kiefer, Garry E.; Sherry, A. Dean; Kovács, Zoltán

    2009-01-01

    A bifunctional version of PCTA (3,6,9,15-tetraazabicyclo[9.3.1]pentadeca-1(15),11,13-triene-3,6,9,-triacetic acid) that exhibits fast complexation kinetics with the trivalent lanthanide(III) ions was synthesized in reasonable yields starting from N, N′, N″-tristosyl-(S)-2-(p-nitrobenzyl)-diethylenetriamine. pH-potentiometric studies showed that the basicities of p-nitrobenzyl-PCTA and the parent ligand PCTA were similar. The stability of M(NO2-Bn-PCTA) (M = Mg2+, Ca2+, Cu2+, Zn2+) complexes was similar to that of the corresponding PCTA complexes while the stability of Ln3+ complexes of the bifunctional ligand is somewhat lower than that of PCTA chelates. The rate of complex formation of Ln(NO2-Bn-PCTA) complexes was found to be quite similar to that of PCTA, a ligand known to exhibit the fastest formation rates among all lanthanide macrocyclic ligand complexes studied to date. The acid catalyzed decomplexation kinetic studies of the selected Ln(NO2-Bn-PCTA) complexes showed that the kinetic inertness of the complexes was comparable to that of Ln(DOTA) chelates making the bifunctional ligand NO2-Bn-PCTA suitable for labeling biological vectors with radioisotopes for nuclear medicine applications. PMID:19220012

  9. Bifunctional bridging linker-assisted synthesis and characterization of TiO2/Au nanocomposites

    NASA Astrophysics Data System (ADS)

    Žunič, Vojka; Kurtjak, Mario; Suvorov, Danilo

    2016-11-01

    Using a simple organic bifunctional bridging linker, titanium dioxide (TiO2) nanoparticles were coupled with the Au nanoparticles to form TiO2/Au nanocomposites with a variety of Au loadings. This organic bifunctional linker, meso-2,3-dimercaptosuccinic acid, contains two types of functional groups: (i) the carboxyl group, which enables binding to the TiO2, and (ii) the thiol group, which enables binding to the Au. In addition, the organic bifunctional linker acts as a stabilizing agent to prevent the agglomeration and growth of the Au particles, resulting in the formation of highly dispersed Au nanoparticles. To form the TiO2/Au nanocomposites in a simple way, we deliberately applied a synthetic method that simultaneously ensures: (i) the capping of the Au nanoparticles and (ii) the binding of different amounts of Au to the TiO2. The TiO2/Au nanocomposites formed with this method show enhanced UV and Vis photocatalytic activities when compared to the pure TiO2 nanopowders.

  10. Bifunctional Transition Metal Hydroxysulfides: Room-Temperature Sulfurization and Their Applications in Zn-Air Batteries.

    PubMed

    Wang, Hao-Fan; Tang, Cheng; Wang, Bin; Li, Bo-Quan; Zhang, Qiang

    2017-07-17

    Bifunctional electrocatalysis for oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) constitutes the bottleneck of various sustainable energy devices and systems like rechargeable metal-air batteries. Emerging catalyst materials are strongly requested toward superior electrocatalytic activities and practical applications. In this study, transition metal hydroxysulfides are presented as bifunctional OER/ORR electrocatalysts for Zn-air batteries. By simply immersing Co-based hydroxide precursor into solution with high-concentration S(2-) , transition metal hydroxides convert to hydroxysulfides with excellent morphology preservation at room temperature. The as-obtained Co-based metal hydroxysulfides are with high intrinsic reactivity and electrical conductivity. The electron structure of the active sites is adjusted by anion modulation. The potential for 10 mA cm(-2) OER current density is 1.588 V versus reversible hydrogen electrode (RHE), and the ORR half-wave potential is 0.721 V versus RHE, with a potential gap of 0.867 V for bifunctional oxygen electrocatalysis. The Co3 FeS1.5 (OH)6 hydroxysulfides are employed in the air electrode for a rechargeable Zn-air battery with a small overpotential of 0.86 V at 20.0 mA cm(-2) , a high specific capacity of 898 mAh g(-1) , and a long cycling life, which is much better than Pt and Ir-based electrocatalyst in Zn-air batteries. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Bifunctional chelators in the design and application of radiopharmaceuticals for oncological diseases.

    PubMed

    Sarko, D; Eisenhut, M; Haberkorn, U; Mier, W

    2012-01-01

    Radiopharmaceuticals constitute diagnostic and therapeutic tools for both clinical and preclinical applications. They are a blend of a tracer moiety that mediates a site specific accumulation and an effector: a radioisotope whose decay enables either molecular imaging or exhibits cytotoxic effects. Radioactive halogens and lanthanides are the most commonly used isotopes for radiopharmaceuticals. Due to their ready availability and the facile labeling metallic radionuclides offer ideal characteristics for applications in nuclear medicine. A stable link between the radionuclide and the carrier molecule is the primary prerequisite for in vivo applications. The radionuclide is selected according to its physical and chemical properties i.e. half-life, the type of decay, the energy emitted and its availability. Bifunctional chelating agents are used to stably link the radiometal to the carrier moiety of the radiopharmaceutical. The design of the bifunctional chelator has to consider the impact of the radiometal chelate on the biological properties of the target-specific pharmaceutical. Here, with an emphasis on oncology, we review applications of radiopharmaceuticals that contain bifunctional chelators, while highlighting successes and identifying the key challenges that need to be addressed for the successful translation of target binding molecules into tracers for molecular imaging and endoradiotherapy.

  12. (S)-5-(p-nitrobenzyl)-PCTA, a promising bifunctional ligand with advantageous metal ion complexation kinetics.

    PubMed

    Tircsó, Gyula; Benyó, Eniko Tircsóné; Suh, Eul Hyun; Jurek, Paul; Kiefer, Garry E; Sherry, A Dean; Kovács, Zoltán

    2009-03-18

    A bifunctional version of PCTA (3,6,9,15-tetraazabicyclo[9.3.1]pentadeca-1(15),11,13-triene-3,6,9,-triacetic acid) that exhibits fast complexation kinetics with the trivalent lanthanide(III) ions was synthesized in reasonable yields starting from N,N',N''-tristosyl-(S)-2-(p-nitrobenzyl)-diethylenetriamine. pH-potentiometric studies showed that the basicities of p-nitrobenzyl-PCTA and the parent ligand PCTA were similar. The stability of M(NO(2)-Bn-PCTA) (M = Mg(2+), Ca(2+), Cu(2+), Zn(2+)) complexes was similar to that of the corresponding PCTA complexes, while the stability of Ln(3+) complexes of the bifunctional ligand is somewhat lower than that of PCTA chelates. The rate of complex formation of Ln(NO(2)-Bn-PCTA) complexes was found to be quite similar to that of PCTA, a ligand known to exhibit the fastest formation rates among all lanthanide macrocyclic ligand complexes studied to date. The acid-catalyzed decomplexation kinetic studies of the selected Ln(NO(2)-Bn-PCTA) complexes showed that the kinetic inertness of the complexes was comparable to that of Ln(DOTA) chelates making the bifunctional ligand NO(2)-Bn-PCTA suitable for labeling biological vectors with radioisotopes for nuclear medicine applications.

  13. Enhanced Bifunctional Oxygen Catalysis in Strained LaNiO3 Perovskites

    SciTech Connect

    Petrie, Jonathan R.; Cooper, Valentino R.; Freeland, John W.; Meyer, Tricia L.; Zhang, Zhiyong; Lutterman, Daniel A.; Lee, Ho Nyung

    2016-02-11

    Strain is known to greatly influence low-temperature oxygen electrocatalysis on noble metal films, leading to significant enhancements in bifunctional activity essential for fuel cells and metal-air batteries. Still, its catalytic impact on transition-metal oxide thin films, such as perovskites, is not widely understood. Here, we epitaxially strain the conducting perovskite LaNiO3 to systematically determine its influence on both the oxygen reduction and oxygen evolution reaction. Uniquely, we found that compressive strain could significantly enhance both reactions, yielding a bifunctional catalyst that surpasses the performance of noble metals such as Pt. We attribute the improved bifunctionality to strain-induced splitting of the eg orbitals, which can customize orbital asymmetry at the surface. Lastly, analogous to strain-induced shifts in the d-band center of noble metals relative to the Fermi level, such splitting can dramatically affect catalytic activity in this perovskite and other potentially more active oxides.

  14. Bifunctional alkylating agent-mediated MGMT-DNA cross-linking and its proteolytic cleavage in 16HBE cells.

    PubMed

    Cheng, Jin; Ye, Feng; Dan, Guorong; Zhao, Yuanpeng; Wang, Bin; Zhao, Jiqing; Sai, Yan; Zou, Zhongmin

    2016-08-15

    Nitrogen mustard (NM), a bifunctional alkylating agent (BAA), contains two alkyl arms and can act as a cross-linking bridge between DNA and protein to form a DNA-protein cross-link (DPC). O(6)-methylguanine-DNA methyltransferase (MGMT), a DNA repair enzyme for alkyl adducts removal, is found to enhance cell sensitivity to BAAs and to promote damage, possibly due to its stable covalent cross-linking with DNA mediated by BAAs. To investigate MGMT-DNA cross-link (mDPC) formation and its possible dual roles in NM exposure, human bronchial epithelial cell line 16HBE was subjected to different concentrations of HN2, a kind of NM, and we found mDPC was induced by HN2 in a concentration-dependent manner, but the mRNA and total protein of MGMT were suppressed. As early as 1h after HN2 treatment, high mDPC was achieved and the level maintained for up to 24h. Quick total DPC (tDPC) and γ-H2AX accumulation were observed. To evaluate the effect of newly predicted protease DVC1 on DPC cleavage, we applied siRNA of MGMT and DVC1, MG132 (proteasome inhibitor), and NMS-873 (p97 inhibitor) and found that proteolysis plays a role. DVC1 was proven to be more important in the cleavage of mDPC than tDPC in a p97-dependent manner. HN2 exposure induced DVC1 upregulation, which was at least partially contributed to MGMT cleavage by proteolysis because HN2-induced mDPC level and DNA damage was closely related with DVC1 expression. Homologous recombination (HR) was also activated. Our findings demonstrated that MGMT might turn into a DNA damage promoter by forming DPC when exposed to HN2. Proteolysis, especially DVC1, plays a crucial role in mDPC repair.

  15. Synthesis and comparative biological evaluation of bifunctional ligands for radiotherapy applications of (90)Y and (177)Lu.

    PubMed

    Chong, Hyun-Soon; Sun, Xiang; Chen, Yunwei; Sin, Inseok; Kang, Chi Soo; Lewis, Michael R; Liu, Dijie; Ruthengael, Varyanna C; Zhong, Yongliang; Wu, Ningjie; Song, Hyun A

    2015-03-01

    Zevalin® is an antibody-drug conjugate radiolabeled with a cytotoxic radioisotope ((90)Y) that was approved for radioimmunotherapy (RIT) of B-cell non-Hodgkin's lymphoma. A bifunctional ligand that displays favorable complexation kinetics and in vivo stability is required for effective RIT. New bifunctional ligands 3p-C-DE4TA and 3p-C-NE3TA for potential use in RIT were efficiently prepared by the synthetic route based on regiospecific ring opening of aziridinium ions with prealkylated triaza- or tetraaza-backboned macrocycles. The new bifunctional ligands 3p-C-DE4TA and 3p-C-NE3TA along with the known bimodal ligands 3p-C-NETA and 3p-C-DEPA were comparatively evaluated for potential use in targeted radiotherapy using β-emitting radionuclides (90)Y and (177)Lu. The bifunctional ligands were evaluated for radiolabeling kinetics with (90)Y and (177)Lu, and the corresponding (90)Y or (177)Lu-radiolabeled complexes were studied for in vitro stability in human serum and in vivo biodistribution in mice. The results of the comparative complexation kinetic and stability studies indicate that size of macrocyclic cavity, ligand denticity, and bimodality of donor groups have a substantial impact on complexation of the bifunctional ligands with the radiolanthanides. The new promising bifunctional chelates in the DE4TA and NE3TA series were rapid in binding (90)Y and (177)Lu, and the corresponding (90)Y- and (177)Lu-radiolabeled complexes remained inert in human serum or in mice. The in vitro and in vivo data show that 3p-C-DE4TA and 3p-C-NE3TA are promising bifunctional ligands for targeted radiotherapy applications of (90)Y and (177)Lu. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Synthesis and Comparative Biological Evalution of Bifunctional Ligands for Radiotherapy Applications of 90Y and 177Lu

    PubMed Central

    Chong, Hyun-Soon; Sun, Xiang; Chen, Yunwei; Sin, Inseok; Kang, Chi Soo; Lewis, Michael R.; Liu, Dijie; Ruthengael, Varyanna C.; Zhong, Yongliang; Wu, Ningjie; Song, Hyun A

    2015-01-01

    Zevalin® is an antibody-drug conjugate radiolabeled with a cytotoxic radioisotope (90Y) that was approved for radioimmunotherapy (RIT) of B-cell non-Hodgkin’s lymphoma. A bifunctional ligand that displays favorable complexation kinetics and in vivo stability is required for effective RIT. New bifunctional ligands 3p-C-DE4TA and 3p-C-NE3TA for potential use in RIT were efficiently prepared by the synthetic route based on regiospecific ring opening of aziridinium ions with prealkylated triaza- or tetraaza-backboned macrocycles. The new bifunctional ligands 3p-C-DE4TA and 3p-C-NE3TA along with the known bimodal ligands 3p-C-NETA and 3p-C-DEPA were comparatively evaluated for potential use in targeted radiotherapy using β-emitting radionuclides 90Y and 177Lu. The bifunctional ligands were evaluated for radiolabeling kinetics with 90Y and 177Lu, and the corresponding 90Y or 177Lu-radiolabeled complexes were studied for in vitro stability in human serum and in vivo biodistribution in mice. The results of the comparative complexation kinetic and stability studies indicate that size of macrocyclic cavity, ligand denticity, and bimodality of donor groups have a substantial impact on complexation of the bifunctional ligands with the radiolanthanides. The new promising bifunctional chelates in the DE4TA and NE3TA series were rapid in binding 90Y and 177Lu, and the corresponding 90Y- and 177Lu-radiolabeled complexes remained inert in human serum or in mice. The in vitro and in vivo data show that 3p-C-DE4TA and 3p-C-NE3TA are promising bifunctional ligands for targeted radiotherapy applications of 90Y and 177Lu. PMID:25648683

  17. New approach to immunochemical determinations for triclopyr and 3,5,6-trichloro-2-pyridinol by using a bifunctional hapten, and evaluation of polyclonal antiserum.

    PubMed

    Watanabe, Eiki; Hoshino, Ryoko; Kanzaki, Yukiko; Tokumoto, Hiroshi; Kubo, Hiroaki; Nakazawa, Hiroyuki

    2002-06-19

    The present work describes the design and synthesis of the structurally unique hapten, "bifunctional hapten", to produce a group-specific polyclonal antiserum to triclopyr and 3,5,6-trichloro-2-pyridinol. A bifunctional hapten was designed and synthesized by conjugating commercially available Nepsilon-2,4-dinitrophenyl (DNP)-L-lysine to triclopyr, and then coupling this to carrier proteins such as bovine serum albumin (BSA). The synthesized bifunctional hapten greatly raised the antiserum titer in comparison with that of the conventional hapten, triclopyr. Antiserum with a sufficiently high titer to provide the determinations of targeted compounds was obtained only 63 days after the primary immunization. The obtained antiserum showed the highest affinity to triclopyr (IC(50) = 3.5 nM) and 3,5,6-trichloro-2-pyridinol (IC(50) = 5.1 nM) in homologous ELISA. The cross-reactivities to various agrochemicals and some chlorinated phenolic compounds were determined. Significant cross-reactivity was found to the herbicide 2,4,5-T. The antiserum reacted to both triclopyr and its metabolite. Assay sensitivity was evaluated for effects of various assay conditions, including pH value and concentrations of organic solvents and detergents. Under optimized assay conditions, the quantitative working range of triclopyr ELISA was from 0.1 to 5.2 ng/mL with a limit of detection (LOD) of 0.037 ng/mL, and an IC(50) of 0.72 ng/mL. On the other hand, the quantitative working range of 3,5,6-trichloro-2-pyridinol ELISA was from 0.13 to 6.0 ng/mL with a LOD of 0.052 ng/mL, and an IC(50) of 0.95 ng/mL. Water samples fortified with triclopyr or its metabolite at 1, 5, and 10 ng/mL were directly analyzed without extraction and cleanup by the proposed ELISA. The mean recovery was 101.6%, and the mean coefficient of variation (CV) was 7.1% in the case of the triclopyr ELISA. In the case of the 3,5,6-trichloro-2-pyridinol ELISA, the mean recovery was 99.8%, and the mean CV was 9.5%. The proposed

  18. Regulation of NAD metabolism in Salmonella typhimurium: molecular sequence analysis of the bifunctional nadR regulator and the nadA-pnuC operon.

    PubMed Central

    Foster, J W; Park, Y K; Penfound, T; Fenger, T; Spector, M P

    1990-01-01

    In Salmonella typhimurium, de novo synthesis of NAD is regulated through the transcriptional control of the nadA and nadB loci. Likewise, the pyridine nucleotide salvage pathway is controlled at pncB. The transcriptional expression of these three loci is coordinately regulated by the product of nadR. However, there is genetic evidence suggesting that NadR is bifunctional, serving in both regulatory and transport capacities. One class of mutations in the nadR locus imparts a transport-defective PnuA- phenotype. These mutants retain regulation properties but are unable to transport nicotinamide mononucleotide (NMN) intact across the cell membrane. Other nadR mutants lose both regulatory and transport capabilities, while a third class loses only regulatory ability. The unusual NMN transport activity requires both the PnuC and NadR proteins, with the pnuC locus residing in an operon with nadA. To prove that nadR encoded a single protein and to gain insight into a regulatory target locus, the nadR and nadA pnuC loci were cloned and sequenced. A DNA fragment which complemented both regulatory and transport mutations was found to contain a single open reading frame capable of encoding a 409-amino-acid protein (47,022 daltons), indicating that NadR is indeed bifunctional. Confirmation of the operon arrangement for nadA and pnuC was obtained through the sequence analysis of a 2.4-kilobase DNA fragment which complemented both NadA and PnuC mutant phenotypes. The nadA product, confirmed in maxicells, was a 365-amino-acid protein (40,759 daltons), while pnuC encoded a 322-amino-acid protein (36,930 daltons). The extremely hydrophobic (71%) nature of the PnuC protein indicated that it was an integral membrane protein, consistent with its central role in the transport of NMN across the cytoplasmic membrane. The results presented here and in previous studies suggest a hypothetical model in which NadR interacts with PnuC at low internal NAD levels, permitting transport of NMN

  19. Regulation of NAD metabolism in Salmonella typhimurium: molecular sequence analysis of the bifunctional nadR regulator and the nadA-pnuC operon.

    PubMed

    Foster, J W; Park, Y K; Penfound, T; Fenger, T; Spector, M P

    1990-08-01

    In Salmonella typhimurium, de novo synthesis of NAD is regulated through the transcriptional control of the nadA and nadB loci. Likewise, the pyridine nucleotide salvage pathway is controlled at pncB. The transcriptional expression of these three loci is coordinately regulated by the product of nadR. However, there is genetic evidence suggesting that NadR is bifunctional, serving in both regulatory and transport capacities. One class of mutations in the nadR locus imparts a transport-defective PnuA- phenotype. These mutants retain regulation properties but are unable to transport nicotinamide mononucleotide (NMN) intact across the cell membrane. Other nadR mutants lose both regulatory and transport capabilities, while a third class loses only regulatory ability. The unusual NMN transport activity requires both the PnuC and NadR proteins, with the pnuC locus residing in an operon with nadA. To prove that nadR encoded a single protein and to gain insight into a regulatory target locus, the nadR and nadA pnuC loci were cloned and sequenced. A DNA fragment which complemented both regulatory and transport mutations was found to contain a single open reading frame capable of encoding a 409-amino-acid protein (47,022 daltons), indicating that NadR is indeed bifunctional. Confirmation of the operon arrangement for nadA and pnuC was obtained through the sequence analysis of a 2.4-kilobase DNA fragment which complemented both NadA and PnuC mutant phenotypes. The nadA product, confirmed in maxicells, was a 365-amino-acid protein (40,759 daltons), while pnuC encoded a 322-amino-acid protein (36,930 daltons). The extremely hydrophobic (71%) nature of the PnuC protein indicated that it was an integral membrane protein, consistent with its central role in the transport of NMN across the cytoplasmic membrane. The results presented here and in previous studies suggest a hypothetical model in which NadR interacts with PnuC at low internal NAD levels, permitting transport of NMN

  20. Triamines and their derivatives as bifunctional chelating agents

    DOEpatents

    Troutner, David E.; John, Christy S.; Pillai, Maroor R. A.

    1992-03-31

    A group of functionalized triamine chelants and their derivatives that form complexes with radioactive metal ions are disclosed. The complexes can be covalently attached to a protein or an antibody or antibody fragment and used for therapeutic and/or diagnostic purposes.

  1. Biophysical Characterization of an Bifunctional Iron Regulating Enzyme

    DTIC Science & Technology

    2002-05-01

    IRP-1 is the central regulatory factor involved in the post-transcriptiona l control of the expression of ferritin, erythroid 5- aminolevulinate ...the iron species. The final protein post-transcriptionally controlled by the influence of h-IRP1 is erythroid translational 5- aminolevulinate (eALAS

  2. Triamines and their derivatives as bifunctional chelating agents

    DOEpatents

    Troutner, D.E.; John, C.S.; Pillai, M.R.A.

    1992-03-31

    A group of functionalized triamine chelants and their derivatives that form complexes with radioactive metal ions are disclosed. The complexes can be covalently attached to a protein or an antibody or antibody fragment and used for therapeutic and/or diagnostic purposes. No Drawings

  3. Nucleotide sequence analysis of the gene specifying the bifunctional 6'-aminoglycoside acetyltransferase 2"-aminoglycoside phosphotransferase enzyme in Streptococcus faecalis and identification and cloning of gene regions specifying the two activities.

    PubMed

    Ferretti, J J; Gilmore, K S; Courvalin, P

    1986-08-01

    The gene specifying the bifunctional 6'-aminoglycoside acetyltransferase [AAC(6')] 2"-aminoglycoside phosphotransferase [APH(2")] enzyme from the Streptococcus faecalis plasmid pIP800 was cloned in Escherichia coli. A single protein with an apparent molecular weight of 56,000 was specified by this cloned determinant as detected in minicell experiments. Nucleotide sequence analysis revealed the presence of an open reading frame capable of specifying a protein of 479 amino acids and with a molecular weight of 56,850. The deduced amino acid sequence of the bifunctional AAC(6')-APH(2") gene product possessed two regions of homology with other sequenced resistance proteins. The N-terminal region contained a sequence that was homologous to the chloramphenicol acetyltransferase of Bacillus pumilus, and the C-terminal region contained a sequence homologous to the aminoglycoside phosphotransferase of Streptomyces fradiae. Subcloning experiments were performed with the AAC(6')-APH(2") resistance determinant, and it was possible to obtain gene segments independently specifying the acetyltransferase and phosphotransferase activities. These data suggest that the gene specifying the AAC(6')-APH(2") resistance enzyme arose as a result of a gene fusion.

  4. A bifunctional kinase-phosphatase in bacterial chemotaxis.

    PubMed

    Porter, Steven L; Roberts, Mark A J; Manning, Cerys S; Armitage, Judith P

    2008-11-25

    Phosphorylation-based signaling pathways employ dephosphorylation mechanisms for signal termination. Histidine to aspartate phosphosignaling in the two-component system that controls bacterial chemotaxis has been studied extensively. Rhodobacter sphaeroides has a complex chemosensory pathway with multiple homologues of the Escherichia coli chemosensory proteins, although it lacks homologues of known signal-terminating CheY-P phosphatases, such as CheZ, CheC, FliY or CheX. Here, we demonstrate that an unusual CheA homologue, CheA(3), is not only a phosphodonor for the principal CheY protein, CheY(6), but is also is a specific phosphatase for CheY(6)-P. This phosphatase activity accelerates CheY(6)-P dephosphorylation to a rate that is comparable with the measured stimulus response time of approximately 1 s. CheA(3) possesses only two of the five domains found in classical CheAs, the Hpt (P1) and regulatory (P5) domains, which are joined by a 794-amino acid sequence that is required for phosphatase activity. The P1 domain of CheA(3) is phosphorylated by CheA(4), and it subsequently acts as a phosphodonor for the response regulators. A CheA(3) mutant protein without the 794-amino acid region lacked phosphatase activity, retained phosphotransfer function, but did not support chemotaxis, suggesting that the phosphatase activity may be required for chemotaxis. Using a nested deletion approach, we showed that a 200-amino acid segment of CheA(3) is required for phosphatase activity. The phosphatase activity of previously identified nonhybrid histidine protein kinases depends on the dimerization and histidine phosphorylation (DHp) domains. However, CheA(3) lacks a DHp domain, suggesting that its phosphatase mechanism is different from that of other histidine protein kinases.

  5. Folate biosynthesis in higher plants: purification and molecular cloning of a bifunctional 6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase/7,8-dihydropteroate synthase localized in mitochondria.

    PubMed

    Rébeillé, F; Macherel, D; Mouillon, J M; Garin, J; Douce, R

    1997-03-03

    In pea leaves, the synthesis of 7,8-dihydropteroate, a primary step in folate synthesis, was only detected in mitochondria. This reaction is catalyzed by a bifunctional 6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase/7,8-dihydropteroate synthase enzyme, which represented 0.04-0.06% of the matrix proteins. The enzyme had a native mol. wt of 280-300 kDa and was made up of identical subunits of 53 kDa. The reaction catalyzed by the 7,8-dihydropteroate synthase domain of the protein was Mg2+-dependent and behaved like a random bireactant system. The related cDNA contained an open reading frame of 1545 bp and the deduced amino acid sequence corresponded to a polypeptide of 515 residues with a calculated M(r) of 56,454 Da. Comparison of the deduced amino acid sequence with the N-terminal sequence of the purified protein indicated that the plant enzyme is synthesized with a putative mitochondrial transit peptide of 28 amino acids. The calculated M(r) of the mature protein was 53,450 Da. Southern blot experiments suggested that a single-copy gene codes for the enzyme. This result, together with the facts that the protein is synthesized with a mitochondrial transit peptide and that the activity was only detected in mitochondria, strongly supports the view that mitochondria is the major (unique?) site of 7,8-dihydropteroate synthesis in higher plant cells.

  6. Cloning, functional expression and characterization of a bifunctional 3-hydroxybutanal dehydrogenase /reductase involved in acetone metabolism by Desulfococcus biacutus.

    PubMed

    Frey, Jasmin; Rusche, Hendrik; Schink, Bernhard; Schleheck, David

    2016-11-25

    The strictly anaerobic, sulfate-reducing bacterium Desulfococcus biacutus can utilize acetone as sole carbon and energy source for growth. Whereas in aerobic and nitrate-reducing bacteria acetone is activated by carboxylation with CO2 to acetoacetate, D. biacutus involves CO as a cosubstrate for acetone activation through a different, so far unknown pathway. Proteomic studies indicated that, among others, a predicted medium-chain dehydrogenase/reductase (MDR) superfamily, zinc-dependent alcohol dehydrogenase (locus tag DebiaDRAFT_04514) is specifically and highly produced during growth with acetone. The MDR gene DebiaDRAFT_04514 was cloned and overexpressed in E. coli. The purified recombinant protein required zinc as cofactor, and accepted NADH/NAD(+) but not NADPH/NADP(+) as electron donor/acceptor. The pH optimum was at pH 8, and the temperature optimum at 45 °C. Highest specific activities were observed for reduction of C3 - C5-aldehydes with NADH, such as propanal to propanol (380 ± 15 mU mg(-1) protein), butanal to butanol (300 ± 24 mU mg(-1)), and 3-hydroxybutanal to 1,3-butanediol (248 ± 60 mU mg(-1)), however, the enzyme also oxidized 3-hydroxybutanal with NAD(+) to acetoacetaldehyde (83 ± 18 mU mg(-1)). The enzyme might play a key role in acetone degradation by D. biacutus, for example as a bifunctional 3-hydroxybutanal dehydrogenase/reductase. Its recombinant production may represent an important step in the elucidation of the complete degradation pathway.

  7. Unusual non-bifunctional mechanism for Co-PNP complex catalyzed transfer hydrogenation governed by the electronic configuration of metal center.

    PubMed

    Hou, Cheng; Jiang, Jingxing; Li, Yinwu; Zhang, Zhihan; Zhao, Cunyuan; Ke, Zhuofeng

    2015-10-07

    The mimic of hydrogenases has unleashed a myriad of bifunctional catalysts, which are widely used in the catalytic hydrogenation of polar multiple bonds. With respect to ancillary ligands, the bifunctional mechanism is generally considered to proceed via the metal-ligand cooperation transition state. Inspired by the interesting study conducted by Hanson et al. (Chem Commun., 2013, 49, 10151), we present a computational study of a distinctive example, where a Co(II)-PNP catalyst with an ancillary ligand exhibits efficient transfer hydrogenation through a non-bifunctional mechanism. Both the bifunctional and non-bifunctional mechanisms are discussed. The calculated results, which are based on a full model of the catalyst, suggest that the inner-sphere non-bifunctional mechanism is more favorable (by ∼11 kcal mol(-1)) than the outer-sphere bifunctional mechanism, which is in agreement with the experimental observations. The origin of this mechanistic preference of the Co(II)-PNP catalyst can be attributed to its preference for the square planar geometry. A traditional bifunctional mechanism is less plausible for Co(II)-PNP due to the high distortion energy caused by the change in electronic configuration with the varied ligand field. Considering previous studies that focus on the development of ligands more often, this computational study indicates that the catalytic hydrogenation mechanism is controlled not only by the structure of the ligand but also by the electronic configuration of the metal center.

  8. Adenosine-5′-phosphosulfate – a multifaceted modulator of bifunctional 3′-phospho-adenosine-5′-phosphosulfate synthases and related enzymes

    PubMed Central

    Mueller, Jonathan W; Shafqat, Naeem

    2013-01-01

    All sulfation reactions rely on active sulfate in the form of 3′-phospho-adenosine-5′-phosphosulfate (PAPS). In fungi, bacteria, and plants, the enzymes responsible for PAPS synthesis, ATP sulfurylase and adenosine-5′-phosphosulfate (APS) kinase, reside on separate polypeptide chains. In metazoans, however, bifunctional PAPS synthases catalyze the consecutive steps of sulfate activation by converting sulfate to PAPS via the intermediate APS. This intricate molecule and the related nucleotides PAPS and 3′-phospho-adenosine-5′-phosphate modulate the function of various enzymes from sulfation pathways, and these effects are summarized in this review. On the ATP sulfurylase domain that initially produces APS from sulfate and ATP, APS acts as a potent product inhibitor, being competitive with both ATP and sulfate. For the APS kinase domain that phosphorylates APS to PAPS, APS is an uncompetitive substrate inhibitor that can bind both at the ATP/ADP-binding site and the PAPS/APS-binding site. For human PAPS synthase 1, the steady-state concentration of APS has been modelled to be 1.6 μm, but this may increase up to 60 μm under conditions of sulfate excess. It is noteworthy that the APS concentration for maximal APS kinase activity is 15 μm. Finally, we recognized APS as a highly specific stabilizer of bifunctional PAPS synthases. APS most likely stabilizes the APS kinase part of these proteins by forming a dead-end enzyme–ADP–APS complex at APS concentrations between 0.5 and 5 μm; at higher concentrations, APS may bind to the catalytic centers of ATP sulfurylase. Based on the assumption that cellular concentrations of APS fluctuate within this range, APS can therefore be regarded as a key modulator of PAPS synthase functions. PMID:23517310

  9. acs1 of Haemophilus influenzae type a capsulation locus region II encodes a bifunctional ribulose 5-phosphate reductase- CDP-ribitol pyrophosphorylase.

    PubMed

    Follens, A; Veiga-da-Cunha, M; Merckx, R; van Schaftingen, E; van Eldere, J

    1999-04-01

    The serotype-specific, 5.9-kb region II of the Haemophilus influenzae type a capsulation locus was sequenced and found to contain four open reading frames termed acs1 to acs4. Acs1 was 96% identical to H. influenzae type b Orf1, previously shown to have CDP-ribitol pyrophosphorylase activity (J. Van Eldere, L. Brophy, B. Loynds, P. Celis, I. Hancock, S. Carman, J. S. Kroll, and E. R. Moxon, Mol. Microbiol. 15:107-118, 1995). Low but significant homology to other pyrophosphorylases was only detected in the N-terminal part of Acs1, whereas the C-terminal part was homologous to several short-chain dehydrogenases/reductases, suggesting that Acs1 might be a bifunctional enzyme. To test this hypothesis, acs1 was cloned in an expression vector and overexpressed in Escherichia coli. Cells expressing this protein displayed both ribitol 5-phosphate dehydrogenase and CDP-ribitol pyrophosphorylase activities, whereas these activities were not detectable in control cells. Acs1 was purified to near homogeneity and found to copurify with ribitol 5-phosphate dehydrogenase and CDP-ribitol pyrophosphorylase activities. These had superimposable elution profiles from DEAE-Sepharose and Blue-Sepharose columns. The dehydrogenase activity was specific for ribulose 5-phosphate and NADPH in one direction and for ribitol 5-phosphate and NADP+ in the other direction and was markedly stimulated by CTP. The pyrophosphorylase showed activity with CTP and ribitol 5-phosphate or arabitol 5-phosphate. We conclude that acs1 encodes a bifunctional enzyme that converts ribulose 5-phosphate into ribitol 5-phosphate and further into CDP-ribitol, which is the activated precursor form for incorporation of ribitol 5-phosphate into the H. influenzae type a capsular polysaccharide.

  10. Nanostructured Perovskite LaCo1-xMnxO3 as Bifunctional Catalysts for Rechargeable Metal-Air Batteries

    NASA Astrophysics Data System (ADS)

    Ge, Xiaoming; Li, Bing; Wuu, Delvin; Sumboja, Afriyanti; An, Tao; Hor, T. S. Andy; Zong, Yun; Liu, Zhaolin

    2015-09-01

    Bifunctional catalyst that is active for both oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) is one of the most important components of rechargeable metal-air batteries. Nanostructured perovskite bifunctional catalysts comprising La, Co and Mn(LaCo1-xMnxO3, LCMO) are synthesized by hydrothermal methods. The morphology, structure and electrochemical activity of the perovskite bifunctional catalysts are characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and rotating disk electrode (RDE) techniques. Nanorod, nanodisc and nanoparticle are typical morphologies of LCMO. The electrocatalytic activity of LCMO is significantly improved by the addition of conductive materials such as carbon nanotube. To demonstrate the practical utilization, LCMO in the composition of LaCo0.8Mn0.2O3(LCMO82) is used as air cathode catalysts for rechargeable zinc-air batteries. The battery prototype can sustain 470 h or 40 discharge-charge cycles equivalent.

  11. Use of Bifunctional Immunotherapeutic Agents to Target Breast Cancer

    DTIC Science & Technology

    2007-07-01

    the Gal(1–3)Gal(1–4)Glc trisaccharide possessing an amine- bearing poly(ethylene glycol) linker (Figure 2) (42). Evaluating Cell-Surface Receptor...integrin. It inspired the design of 2, which bears a linker for conjugation to other moieties. Compound 2 can be functionalized to append a fluorophore (3...conjugated human albumin protein bearing (1-3) galactose epitopes,Oncol. Rep. 11, 613–616. 23. Naicker, K. P., Li, H., Heredia, A., Song, H., andWang, L.-X

  12. Bifunctional activity of deoxyhypusine synthase/hydroxylase from Trichomonas vaginalis.

    PubMed

    Quintas-Granados, Laura Itzel; Carvajal Gamez, Bertha Isabel; Villalpando, Jose Luis; Ortega-Lopez, Jaime; Arroyo, Rossana; Azuara-Liceaga, Elisa; Álvarez-Sánchez, María Elizbeth

    2016-04-01

    The Trichomonas vaginalis genome analysis suggested the presence of a putative deoxyhypusine synthase (TvDHS) that catalyzes the posttranslational modification of eIF-5A. Herein, we expressed and purified the recombinant TvDHS (rTvDHS) protein (43 kDa) and the recombinant TveIF-5A (rTveIF-5A) precursor protein (46 kDa). A 41 kDa band of the native TvDHS was recognized by western blot analysis in T. vaginalis total protein extract by a mouse polyclonal anti-rTvDHS antibody. The enzymatic activity of rTvDHS was determined by in vitro rTveIF-5A precursor modification. The modification reaction was performed by using ((3)H)-spermidine, and the biochemical analysis showed that rTvDHS exhibited Km value of 0.6 μM. The rTvDHS activity was inhibited by the spermidine analog, N″-guanyl-1,7-diamino-heptane (GC7). Native gel electrophoresis analysis showed two bands corresponding to an rTvDHS-rTveIF-5A complex and an intermediate form of rTveIF-5A. The two forms were subsequently separated by ion exchange chromatography to identify the hypusine residue by MS/MS analysis. Moreover, mutations in TvDHS showed that the putative HE motif present in this enzyme is involved in the hydroxylation of TveIF-5A. We observed that only hypusine-containing TveIF-5A was bound to an RNA hairpin ERE structure from the cox-2 gene, which contains the AAAUGUCACAC consensus sequence. Interestingly, 2DE-WB assays, using parasites that were grown in DAB-culture conditions and transferred to exogenous putrescine, showed the new isoform of TveIF-5A. In summary, our results indicate that T. vaginalis contains an active TvDHS capable of modifying the precursor TveIF-5A protein, which subsequently exhibits RNA binding activity.

  13. Bifunctional heterogeneous catalysts from oil palm empty fruit bunches ash and alum for biodiesel synthesis simultaneously

    NASA Astrophysics Data System (ADS)

    Astar, Ismail; Usman, Thamrin; Wahyuni, Nelly; Rudiyansyah, Alimuddin, Andi Hairil

    2017-03-01

    Free fatty acids (FFA) contained in crude palm oil (CPO) and sludge oil has been used as the base material of biodiesel with the aid of a catalyst in the transesterification and esterification reactions. This study aims to synthesize and characterize bifunctional catalysts were synthesized from the ashes of palm empty fruit bunches (EFB) and alum based on the analysis of XRD, XRF and acidity test. Bifunctional catalyst obtained was used as a catalyst to production of biodiesel with different levels of FFA. The optimum ratio alum added was 0.2 mol at 3 hours of reaction time and 3% of catalyst by the FFA samples were used 67,40%. The catalyst with optimum alum mole variations subsequently used on samples with varying levels of FFA, namely 1.29%, 4.98%, 29.21%, 67.40% and 74.47%. Optimum conversion of methyl ester in the esterification reaction occurs in the sample with 67.40% FFA content, which reached 86.17%, while the conversion of methyl ester transesterification process optimum amounted to 45.70% in the samples with 4.98% FFA content. Methyl ester produced has a refractive index of 1.448 (29.8 ° C), density of 0.883 g / mL (25 °C) and a viscosity of 8.933 cSt (25 ° C). The results of GC-MS analysis showed that the main composition of methyl ester result of esterification of sludge oil methyl palmitate (36.84%), while the CPO transesterification shows the main composition of methyl ester is methyl oleic (38.87%). Based on the research results, the catalyst synthesized from alum and EFB ash can be used as a Bifunctional catalysts for biodiesel synthesis.

  14. Monolithic column modified with bifunctional ionic liquid and styrene stationary phases for capillary electrochromatography.

    PubMed

    Mao, Zhenkun; Chen, Zilin

    2017-01-13

    A novel monolithic column with ionic liquid and styrene-modified bifunctional group was prepared for capillary electrochromatography (CEC) by in situ copolymerization in a ternary porogenic solvent. Ionic liquid (1-allyl-methylimidazolium chloride, AlMeIm(+)Cl(-)) and styrene served as the bifunctional monomer, while ethylene dimethacrylate (EDMA) was used as the cross-linker. The monomer of AlMeIm(+)Cl(-) was introduced as anion-exchange group, while styrene as hydrophobic and aromatic group; the similar conjugated structure in AlMeIm(+)Cl(-) and styrene was beneficial for offeing obvious synergistic effect. The bifunctional stationary phase possessed powerful selectivity for the separation of neutral compounds, acidic analytes and phenols. The highest column efficiency was 2.70×10(5) platesm(-1) (theoretical plates, N) for toluene. A relatively strong electroosmotic flow (EOF) was obtained in a wide range of pH values from 2.0 to 12.0, which could successfully achieve the rapid separation of the analytes within 10min. The proposed monolithic column was characterized by scanning electron microscopy (SEM) and Fourier transform infrared (FT-IR). The results indicated that the resultant monolithic column had good permeability and excellent mechanical stability. Good reproducibility was obtained with relative standard deviations (RSDs) of the retention time in the range of 0.24-0.47% and 0.81-2.17% for run-to-run (n=5) and day-to-day (n=5), while 1.09-2.70% and 0.98-1.70% for column-to-column (n=3) and batch-to-batch (n=3), respectively. The combination of AlMeIm(+)Cl(-) and styrene was a promising option in the fabrication of the organic polymer monolithic column. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Crystallization and preliminary crystallographic analysis of Abp, a GH27 β-L-arabinopyranosidase from Geobacillus stearothermophilus.

    PubMed

    Lansky, Shifra; Salama, Rachel; Solomon, Vered H; Belrhali, Hassan; Shoham, Yuval; Shoham, Gil

    2013-06-01

    Geobacillus stearothermophilus T-6 is a thermophilic soil bacterium that possesses an extensive system for the utilization of hemicellulose. The bacterium produces a small number of endo-acting extracellular enzymes that cleave high-molecular-weight hemicellulolytic polymers into short decorated oligosaccharides, which are further hydrolysed into the respective sugar monomers by a battery of intracellular glycoside hydrolases. One of these intracellular processing enzymes is β-L-arabinopyranosidase (Abp), which is capable of removing β-L-arabinopyranose residues from naturally occurring arabino-polysaccharides. As arabino-polymers constitute a significant part of the hemicellulolytic content of plant biomass, their efficient enzymatic degradation presents an important challenge for many potential biotechnological applications. This aspect has led to an increasing interest in the biochemical characterization and structural analysis of this and related hemicellulases. Abp from G. stearothermophilus T-6 has recently been cloned, overexpressed, purified, biochemically characterized and crystallized in our laboratory, as part of its complete structure-function study. The best crystals obtained for this enzyme belonged to the primitive orthorhombic space group P2(1)2(1)2(1), with average unit-cell parameters a = 107.7, b = 202.2, c = 287.3 Å. Full diffraction data sets to 2.3 Å resolution have been collected for both the wild-type enzyme and its D197A catalytic mutant from flash-cooled crystals at 100 K, using synchrotron radiation. These data are currently being used for a high-resolution three-dimensional structure determination of Abp.

  16. A Proton-Switchable Bifunctional Ruthenium Complex That Catalyzes Nitrile Hydroboration.

    PubMed

    Geri, Jacob B; Szymczak, Nathaniel K

    2015-10-14

    A new bifunctional pincer ligand framework bearing pendent proton-responsive hydroxyl groups was prepared and metalated with Ru(II) and subsequently isolated in four discrete protonation states. Stoichiometric reactions with H2 and HBPin showed facile E-H (E = H or BPin) activation across a Ru(II)-O bond, providing access to unusual Ru-H species with strong interactions with neighboring proton and boron atoms. These complexes were found to promote the catalytic hydroboration of ketones and nitriles under mild conditions, and the activity was highly dependent on the ligand's protonation state. Mechanistic experiments revealed a crucial role of the pendent hydroxyl groups for catalytic activity.

  17. Bifunctional phase-transfer catalysis in the asymmetric synthesis of biologically active isoindolinones.

    PubMed

    Di Mola, Antonia; Tiffner, Maximilian; Scorzelli, Francesco; Palombi, Laura; Filosa, Rosanna; De Caprariis, Paolo; Waser, Mario; Massa, Antonio

    2015-01-01

    New bifunctional chiral ammonium salts were investigated in an asymmetric cascade synthesis of a key building block for a variety of biologically relevant isoindolinones. With this chiral compound in hand, the development of further transformations allowed for the synthesis of diverse derivatives of high pharmaceutical value, such as the Belliotti (S)-PD172938 and arylated analogues with hypnotic sedative activity, obtained in good overall total yield (50%) and high enantiomeric purity (95% ee). The synthetic routes developed herein are particularly convenient in comparison with the current methods available in literature and are particularly promising for large scale applications.

  18. Recovery of uranium from acid media by macroporous bifunctional phosphinic acid resin

    SciTech Connect

    Sabharwal, K.N.; Srinivasan, T.G.; Rao, P.R.V.; Nandy, K.K.

    1996-11-01

    The extraction of uranium from various acid media such as nitric acid, sulphuric acid, hydrochloric acid, phosphoric acid and perchloric acid by a macroporous bifunctional phosphinic acid resin (MPBPA) has been studied. The distribution coefficients for the extraction of uranium by the MPBPA resin are compared with the corresponding values reported in literature for the conventional sulphonic acid resin. The results clearly indicate the suitability of the MPBPA resin to recover uranium from different types of acid solutions of widely ranging acidities. 17 refs., 6 figs., 5 tabs.

  19. Acid–base bifunctional shell cross-linked micelle nanoreactor for one-pot tandem reaction

    DOE PAGES

    Lee, Li -Chen; Lu, Jie; Weck, Marcus; ...

    2015-12-29

    In shell cross-linked micelles (SCMs) containing acid sites in the shell and base sites in the core are prepared from amphiphilic poly(2-oxazoline) triblock copolymers. These materials are utilized as two-chamber nanoreactors for a prototypical acid-base bifunctional tandem deacetalization-nitroaldol reaction. Furthermore, the acid and base sites are localized in different regions of the micelle, allowing the two steps in the reaction sequence to largely proceed in separate compartments, akin to the compartmentalization that occurs in biological systems.

  20. An efficient bifunctional electrocatalyst for water splitting based on cobalt phosphide.

    PubMed

    Yang, Libin; Qi, Honglan; Zhang, Chengxiao; Sun, Xuping

    2016-06-10

    The development of highly efficient electrocatalysts for water splitting is critical for various renewable-energy technologies. In this letter, we demonstrate a cobalt phosphide nanowire array grown on a Ti mesh (CoP/TM) behaving as a bifunctional electrocatalyst for water splitting. The CoP/TM electrode delivers 10 mA cm(-2) at an overpotential of 72 mV for the hydrogen evolution reaction (HER) and 310 mV for the oxygen evolution reaction (OER) in 1.0 M KOH. Furthermore, its corresponding two-electrode alkaline electrolyzer displays 10 mA cm(-2) at 1.64 V.

  1. Maleimido-functionalized NOTA derivatives as bifunctional chelators for site-specific radiolabeling.

    PubMed

    Förster, Christian; Schubert, Maik; Pietzsch, Hans-Jürgen; Steinbach, Jörg

    2011-06-22

    Two basic and simple synthetic routes for mono- and bis-maleimide bearing 1,4,7-triazacyclononane-N,N',N''-triacetic acid (NOTA) chelators as new bifunctional chelators are described. The syntheses are characterized by their simplicity and short reaction times, as well as practical purification methods and acceptable to very good chemical yields. The usefulness of these two synthetic pathways is demonstrated by the preparation of a set of mono- and bis-maleimide functionalized NOTA derivatives. In conclusion, these two methods can easily be expanded to the syntheses of further tailored maleimide-NOTA chelators for diverse applications.

  2. Bifunctional phase-transfer catalysis in the asymmetric synthesis of biologically active isoindolinones

    PubMed Central

    Di Mola, Antonia; Tiffner, Maximilian; Scorzelli, Francesco; Palombi, Laura; Filosa, Rosanna; De Caprariis, Paolo

    2015-01-01

    Summary New bifunctional chiral ammonium salts were investigated in an asymmetric cascade synthesis of a key building block for a variety of biologically relevant isoindolinones. With this chiral compound in hand, the development of further transformations allowed for the synthesis of diverse derivatives of high pharmaceutical value, such as the Belliotti (S)-PD172938 and arylated analogues with hypnotic sedative activity, obtained in good overall total yield (50%) and high enantiomeric purity (95% ee). The synthetic routes developed herein are particularly convenient in comparison with the current methods available in literature and are particularly promising for large scale applications. PMID:26734105

  3. Preparation of bifunctional isocyanate hydroxamate linkers: Synthesis of carbamate and urea tethered polyhydroxamic acid chelators

    PubMed Central

    Fernando, Rasika; Shirley, Jonathan M.; Torres, Emilio; Jacobs, Hollie K.; Gopalan, Aravamudan S.

    2012-01-01

    Two novel bifunctional N-methylhydroxamate-isocyanate linkers 20 and 21 were prepared in good yield and high purity from the corresponding amine salts using a biphasic reaction with phosgene. The facile ring opening reaction of N-Boc lactams using the anion of O-benzylhydroxylamine gave the protected amino hydroxamates 6a and 6c in good yields. The selective methylation of the hydroxamate nitrogen in the presence of the N-Boc group in these intermediates could be readily accomplished. The utility of the linkers was clearly demonstrated by the synthesis of the carbamate-tethered trishydroxamic acid 27 and the urea-tethered 29 PMID:23162172

  4. Controlled Covalent Functionalization of Thermally Reduced Graphene Oxide To Generate Defined Bifunctional 2D Nanomaterials

    PubMed Central

    Faghani, Abbas; Donskyi, Ievgen S.; Fardin Gholami, Mohammad; Ziem, Benjamin; Lippitz, Andreas; Unger, Wolfgang E. S.; Böttcher, Christoph; Rabe, Jürgen P.

    2017-01-01

    Abstract A controlled, reproducible, gram‐scale method is reported for the covalent functionalization of graphene sheets by a one‐pot nitrene [2+1] cycloaddition reaction under mild conditions. The reaction between commercially available 2,4,6‐trichloro‐1,3,5‐triazine and sodium azide with thermally reduced graphene oxide (TRGO) results in defined dichlorotriazine‐functionalized sheets. The different reactivities of the chlorine substituents on the functionalized graphene allow stepwise post‐modification by manipulating the temperature. This new method provides unique access to defined bifunctional 2D nanomaterials, as exemplified by chiral surfaces and multifunctional hybrid architectures. PMID:28165179

  5. Bifunctional Organic Polymeric Catalysts with a Tunable Acid-Base Distance and Framework Flexibility

    PubMed Central

    Chen, Huanhui; Wang, Yanan; Wang, Qunlong; Li, Junhui; Yang, Shiqi; Zhu, Zhirong

    2014-01-01

    Acid-base bifunctional organic polymeric catalysts were synthesized with tunable structures. we demonstrated two synthesis approaches for structural fine-tune. In the first case, the framework flexibility was tuned by changing the ratio of rigid blocks to flexible blocks within the polymer framework. In the second case, we precisely adjusted the acid-base distance by distributing basic monomers to be adjacent to acidic monomers, and by changing the chain length of acidic monomers. In a standard test reaction for the aldol condensation of 4-nitrobenzaldehyde with acetone, the catalysts showed good reusability upon recycling and maintained relatively high conversion percentage. PMID:25267260

  6. An efficient bifunctional electrocatalyst for water splitting based on cobalt phosphide

    NASA Astrophysics Data System (ADS)

    Yang, Libin; Qi, Honglan; Zhang, Chengxiao; Sun, Xuping

    2016-06-01

    The development of highly efficient electrocatalysts for water splitting is critical for various renewable-energy technologies. In this letter, we demonstrate a cobalt phosphide nanowire array grown on a Ti mesh (CoP/TM) behaving as a bifunctional electrocatalyst for water splitting. The CoP/TM electrode delivers 10 mA cm-2 at an overpotential of 72 mV for the hydrogen evolution reaction (HER) and 310 mV for the oxygen evolution reaction (OER) in 1.0 M KOH. Furthermore, its corresponding two-electrode alkaline electrolyzer displays 10 mA cm-2 at 1.64 V.

  7. Tunable catalytic properties of bi-functional mixed oxides in ethanol conversion to high value compounds

    SciTech Connect

    Ramasamy, Karthikeyan K.; Gray, Michel J.; Job, Heather M.; Smith, Colin D.; Wang, Yong

    2016-04-10

    tA highly versatile ethanol conversion process to selectively generate high value compounds is pre-sented here. By changing the reaction temperature, ethanol can be selectively converted to >C2alcohols/oxygenates or phenolic compounds over hydrotalcite derived bi-functional MgO–Al2O3cata-lyst via complex cascade mechanism. Reaction temperature plays a role in whether aldol condensationor the acetone formation is the path taken in changing the product composition. This article containsthe catalytic activity comparison between the mono-functional and physical mixture counterpart to thehydrotalcite derived mixed oxides and the detailed discussion on the reaction mechanisms.

  8. Tunable catalytic properties of bi-functional mixed oxides in ethanol conversion to high value compounds

    DOE PAGES

    Ramasamy, Karthikeyan K.; Gray, Michel; Job, Heather; ...

    2016-02-03

    Here, a highly versatile ethanol conversion process to selectively generate high value compounds is presented here. By changing the reaction temperature, ethanol can be selectively converted to >C2 alcohols/oxygenates or phenolic compounds over hydrotalcite derived bi-functional MgO–Al2O3 catalyst via complex cascade mechanism. Reaction temperature plays a role in whether aldol condensation or the acetone formation is the path taken in changing the product composition. This article contains the catalytic activity comparison between the mono-functional and physical mixture counterpart to the hydrotalcite derived mixed oxides and the detailed discussion on the reaction mechanisms.

  9. Tunable catalytic properties of bi-functional mixed oxides in ethanol conversion to high value compounds

    SciTech Connect

    Ramasamy, Karthikeyan K.; Gray, Michel; Job, Heather; Smith, Colin; Wang, Yong

    2016-02-03

    Here, a highly versatile ethanol conversion process to selectively generate high value compounds is presented here. By changing the reaction temperature, ethanol can be selectively converted to >C2 alcohols/oxygenates or phenolic compounds over hydrotalcite derived bi-functional MgO–Al2O3 catalyst via complex cascade mechanism. Reaction temperature plays a role in whether aldol condensation or the acetone formation is the path taken in changing the product composition. This article contains the catalytic activity comparison between the mono-functional and physical mixture counterpart to the hydrotalcite derived mixed oxides and the detailed discussion on the reaction mechanisms.

  10. Bifunctional Organic Polymeric Catalysts with a Tunable Acid-Base Distance and Framework Flexibility

    NASA Astrophysics Data System (ADS)

    Chen, Huanhui; Wang, Yanan; Wang, Qunlong; Li, Junhui; Yang, Shiqi; Zhu, Zhirong

    2014-09-01

    Acid-base bifunctional organic polymeric catalysts were synthesized with tunable structures. we demonstrated two synthesis approaches for structural fine-tune. In the first case, the framework flexibility was tuned by changing the ratio of rigid blocks to flexible blocks within the polymer framework. In the second case, we precisely adjusted the acid-base distance by distributing basic monomers to be adjacent to acidic monomers, and by changing the chain length of acidic monomers. In a standard test reaction for the aldol condensation of 4-nitrobenzaldehyde with acetone, the catalysts showed good reusability upon recycling and maintained relatively high conversion percentage.

  11. A novel bifunctional mitochondria-targeted anticancer agent with high selectivity for cancer cells

    PubMed Central

    He, Huan; Li, Dong-Wei; Yang, Li-Yun; Fu, Li; Zhu, Xun-Jin; Wong, Wai-Kwok; Jiang, Feng-Lei; Liu, Yi

    2015-01-01

    Mitochondria have recently emerged as novel targets for cancer therapy due to its important roles in fundamental cellular function. Discovery of new chemotherapeutic agents that allow for simultaneous treatment and visualization of cancer is urgent. Herein, we demonstrate a novel bifunctional mitochondria-targeted anticancer agent (FPB), exhibiting both imaging capability and anticancer activity. It can selectively accumulate in mitochondria and induce cell apoptosis. Notably, it results in much higher toxicity toward cancer cells owing to much higher uptake by cancer cells. These features make it highly attractive in cancer imaging and treatment. PMID:26337336

  12. Au@Cu(II)-MOF: Highly Efficient Bifunctional Heterogeneous Catalyst for Successive Oxidation-Condensation Reactions.

    PubMed

    Wang, Jing-Si; Jin, Fa-Zheng; Ma, Hui-Chao; Li, Xiao-Bo; Liu, Ming-Yang; Kan, Jing-Lan; Chen, Gong-Jun; Dong, Yu-Bin

    2016-07-05

    A new composite Au@Cu(II)-MOF catalyst has been synthesized via solution impregnation and full characterized by HRTEM, SEM-EDS, XRD, gas adsorption-desorption, XPS, and ICP analysis. It has been shown here that the Cu(II)-framework can be a useful platform to stabilize and support gold nanoparticles (Au NPs). The obtained Au@Cu(II)-MOF exhibits a bifunctional catalytic behavior and is able to promote selective aerobic benzyl alcohol oxidation-Knoevenagel condensation in a stepwise way.

  13. MoO3 nanoparticle anchored graphene as bifunctional agent for water purification

    NASA Astrophysics Data System (ADS)

    Lahan, Homen; Roy, Raju; Namsa, Nima D.; Das, Shyamal K.

    2016-10-01

    We report here a facile one step hydrothermal method to anchor MoO3 nanoparticles in graphene. The bifunctionality of graphene-MoO3 nanoparticles is demonstrated via dye adsorption and antibacterial activities. The nanocomposite showed excellent adsorption of methylene blue, a cationic dye, from water compared to pristine MoO3 and graphene. However, it showed negligible adsorption of methyl orange, an anionic dye. Again, the graphene-MoO3 nanoparticles exhibited bacteriostatic property against both Gram-negative (E. coli) and Gram-positive (S. aureus) bacteria.

  14. Asymmetric Synthesis of Rauhut-Currier type Products by a Regioselective Mukaiyama Reaction under Bifunctional Catalysis.

    PubMed

    Frias, María; Mas-Ballesté, Rubén; Arias, Saira; Alvarado, Cuauhtemoc; Alemán, José

    2017-01-18

    The reactivity and the regioselective functionalization of silyl-diene enol ethers under a bifunctional organocatalyst provokes a dramatic change in the regioselectivity, from the 1,5- to the 1,3-functionalization. This variation makes possible the 1,3-addition of silyl-dienol ethers to nitroalkenes, giving access to the synthesis of tri- and tetrasubstituted double bonds in Rauhut-Currier type products. The process takes place under smooth conditions, nonanionic conditions, and with a high enantiomeric excess. A rational mechanistic pathway is presented based on DFT and mechanistic experiments.

  15. The bifunctional catalytic role of water clusters in the formation of acid rain.

    PubMed

    Romero-Montalvo, Eduardo; Guevara-Vela, José Manuel; Vallejo Narváez, Wilmer Esteban; Costales, Aurora; Pendás, Ángel Martín; Hernández-Rodríguez, Marcos; Rocha-Rinza, Tomás

    2017-03-23

    State-of-the-art chemical bonding analyses show that water clusters have a bifunctional catalytic role in the formation of H2SO4 in acid rain. The embedded H2O monomers mitigate the change in the chemical bonding scenario of the rate-limiting step, reducing thereby the corresponding activation energy in accordance with Hammond's postulate. We expect that the insights given herein will prove useful in the elucidation of the catalytic mechanisms of water in inorganic and organic aqueous chemistry.

  16. Supported bifunctional thioureas as recoverable and reusable catalysts for enantioselective nitro-Michael reactions

    PubMed Central

    Ceballos, Miriam; Maestro, Alicia; Sanz, Isabel

    2016-01-01

    Summary The catalytic activity of different supported bifunctional thioureas on sulfonylpolystyrene resins has been studied in the nitro-Michael addition of different nucleophiles to trans-β-nitrostyrene derivatives. The activity of the catalysts depends on the length of the tether linking the chiral thiourea to the polymer. The best results were obtained with the thiourea derived from (L)-valine and 1,6-hexanediamine. The catalysts can be used in only 2 mol % loading, and reused for at least four cycles in neat conditions. The ball milling promoted additions also worked very well. PMID:27340453

  17. Supported bifunctional thioureas as recoverable and reusable catalysts for enantioselective nitro-Michael reactions.

    PubMed

    Andrés, José M; Ceballos, Miriam; Maestro, Alicia; Sanz, Isabel; Pedrosa, Rafael

    2016-01-01

    The catalytic activity of different supported bifunctional thioureas on sulfonylpolystyrene resins has been studied in the nitro-Michael addition of different nucleophiles to trans-β-nitrostyrene derivatives. The activity of the catalysts depends on the length of the tether linking the chiral thiourea to the polymer. The best results were obtained with the thiourea derived from (L)-valine and 1,6-hexanediamine. The catalysts can be used in only 2 mol % loading, and reused for at least four cycles in neat conditions. The ball milling promoted additions also worked very well.

  18. Cobalt nanoparticles embedded in N-doped carbon as an efficient bifunctional electrocatalyst for oxygen reduction and evolution reactions

    NASA Astrophysics Data System (ADS)

    Su, Yunhe; Zhu, Yihua; Jiang, Hongliang; Shen, Jianhua; Yang, Xiaoling; Zou, Wenjian; Chen, Jianding; Li, Chunzhong

    2014-11-01

    Cobalt based catalysts are promising bifunctional electrocatalysts for both oxygen reduction and oxygen evolution reactions (ORR and OER) in unitized regenerative fuel cells (URFCs) operating with alkaline electrolytes. Here we report a hybrid composite of cobalt nanoparticles embedded in nitrogen-doped carbon (Co/N-C) via a solvothermal carbonization strategy. With the synergistic effect arising from the N-doped carbon and cobalt nanoparticles in the composite, the Co/N-C hybrid catalyst exhibits highly efficient bifunctional catalytic activity and excellent stability toward both ORR and OER. The ΔE (oxygen electrode activity parameter for judging the overall electrocatalytic activity of a bifunctional electrocatalyst) value for Co/N-C is 0.859 V, which is smaller than those of Pt/C and most of the non-precious metal catalysts in previous studies. Furthermore, the Co/N-C composite also shows better bifunctional catalytic activity than its oxidative counterparts, which could be attributed to the high specific surface area and the efficient charge transfer ability of the composite, as well as the good synergistic effect between N-doped carbon and the Co nanoparticles in the Co/N-C composite.Cobalt based catalysts are promising bifunctional electrocatalysts for both oxygen reduction and oxygen evolution reactions (ORR and OER) in unitized regenerative fuel cells (URFCs) operating with alkaline electrolytes. Here we report a hybrid composite of cobalt nanoparticles embedded in nitrogen-doped carbon (Co/N-C) via a solvothermal carbonization strategy. With the synergistic effect arising from the N-doped carbon and cobalt nanoparticles in the composite, the Co/N-C hybrid catalyst exhibits highly efficient bifunctional catalytic activity and excellent stability toward both ORR and OER. The ΔE (oxygen electrode activity parameter for judging the overall electrocatalytic activity of a bifunctional electrocatalyst) value for Co/N-C is 0.859 V, which is smaller than those

  19. Crystallization, dehydration and experimental phasing of WbdD, a bifunctional kinase and methyltransferase from Escherichia coli O9a

    SciTech Connect

    Hagelueken, Gregor; Huang, Hexian; Harlos, Karl; Clarke, Bradley R.; Whitfield, Chris; Naismith, James H.

    2012-10-01

    The optimization of WbdD crystals using a novel dehydration protocol and experimental phasing at 3.5 Å resolution by cross-crystal averaging followed by molecular replacement of electron density into a non-isomorphous 3.0 Å resolution native data set are reported. WbdD is a bifunctional kinase/methyltransferase that is responsible for regulation of lipopolysaccharide O antigen polysaccharide chain length in Escherichia coli serotype O9a. Solving the crystal structure of this protein proved to be a challenge because the available crystals belonging to space group I23 only diffracted to low resolution (>95% of the crystals diffracted to resolution lower than 4 Å and most only to 8 Å) and were non-isomorphous, with changes in unit-cell dimensions of greater than 10%. Data from a serendipitously found single native crystal that diffracted to 3.0 Å resolution were non-isomorphous with a lower (3.5 Å) resolution selenomethionine data set. Here, a strategy for improving poor (3.5 Å resolution) initial phases by density modification and cross-crystal averaging with an additional 4.2 Å resolution data set to build a crude model of WbdD is desribed. Using this crude model as a mask to cut out the 3.5 Å resolution electron density yielded a successful molecular-replacement solution of the 3.0 Å resolution data set. The resulting map was used to build a complete model of WbdD. The hydration status of individual crystals appears to underpin the variable diffraction quality of WbdD crystals. After the initial structure had been solved, methods to control the hydration status of WbdD were developed and it was thus possible to routinely obtain high-resolution diffraction (to better than 2.5 Å resolution). This novel and facile crystal-dehydration protocol may be useful for similar challenging situations.

  20. Crystallization, dehydration and experimental phasing of WbdD, a bifunctional kinase and methyltransferase from Escherichia coli O9a

    PubMed Central

    Hagelueken, Gregor; Huang, Hexian; Harlos, Karl; Clarke, Bradley R.; Whitfield, Chris; Naismith, James H.

    2012-01-01

    WbdD is a bifunctional kinase/methyltransferase that is responsible for regulation of lipopolysaccharide O antigen polysaccharide chain length in Escherichia coli serotype O9a. Solving the crystal structure of this protein proved to be a challenge because the available crystals belonging to space group I23 only diffracted to low resolution (>95% of the crystals diffracted to resolution lower than 4 Å and most only to 8 Å) and were non-isomorphous, with changes in unit-cell dimensions of greater than 10%. Data from a serendipitously found single native crystal that diffracted to 3.0 Å resolution were non-isomorphous with a lower (3.5 Å) resolution selenomethionine data set. Here, a strategy for improving poor (3.5 Å resolution) initial phases by density modification and cross-crystal averaging with an additional 4.2 Å resolution data set to build a crude model of WbdD is desribed. Using this crude model as a mask to cut out the 3.5 Å resolution electron density yielded a successful molecular-replacement solution of the 3.0 Å resolution data set. The resulting map was used to build a complete model of WbdD. The hydration status of individual crystals appears to underpin the variable diffraction quality of WbdD crystals. After the initial structure had been solved, methods to control the hydration status of WbdD were developed and it was thus possible to routinely obtain high-resolution diffraction (to better than 2.5 Å resolution). This novel and facile crystal-dehydration protocol may be useful for similar challenging situations. PMID:22993091

  1. Characterization of bifunctional L-glutathione synthetases from Actinobacillus pleuropneumoniae and Actinobacillus succinogenes for efficient glutathione biosynthesis.

    PubMed

    Yang, Jianhua; Li, Wei; Wang, Dezheng; Wu, Hui; Li, Zhimin; Ye, Qin

    2016-07-01

    Glutathione (GSH), an important bioactive substance, is widely applied in pharmaceutical and food industries. In this work, two bifunctional L-glutathione synthetases (GshF) from Actinobacillus pleuropneumoniae (GshFAp) and Actinobacillus succinogenes (GshFAs) were successfully expressed in Escherichia coli BL-21(DE3). Similar to the GshF from Streptococcus thermophilus (GshFSt), GshFAp and GshFAs can be applied for high titer GSH production because they are less sensitive to end-product inhibition (Ki values 33 and 43 mM, respectively). The active catalytic forms of GshFAs and GshFAp are dimers, consistent with those of GshFPm (GshF from Pasteurella multocida) and GshFSa (GshF from Streptococcus agalactiae), but are different from GshFSt (GshF from S. thermophilus) which is an active monomer. The analysis of the protein sequences and three dimensional structures of GshFs suggested that the binding sites of GshFs for substrates, L-cysteine, L-glutamate, γ-glutamylcysteine, adenosine-triphosphate, and glycine are highly conserved with only very few differences. With sufficient supply of the precursors, the recombinant strains BL-21(DE3)/pET28a-gshFas and BL-21(DE3)/pET28a-gshFap were able to produce 36.6 and 34.1 mM GSH, with the molar yield of 0.92 and 0.85 mol/mol, respectively, based on the added L-cysteine. The results showed that GshFAp and GshFAs are potentially good candidates for industrial GSH production.

  2. Trypanosoma brucei DHFR-TS Revisited: Characterisation of a Bifunctional and Highly Unstable Recombinant Dihydrofolate Reductase-Thymidylate Synthase

    PubMed Central

    Gibson, Marc W.; Dewar, Simon; Ong, Han B.; Sienkiewicz, Natasha

    2016-01-01

    Bifunctional dihydrofolate reductase–thymidylate synthase (DHFR-TS) is a chemically and genetically validated target in African trypanosomes, causative agents of sleeping sickness in humans and nagana in cattle. Here we report the kinetic properties and sensitivity of recombinant enzyme to a range of lipophilic and classical antifolate drugs. The purified recombinant enzyme, expressed as a fusion protein with elongation factor Ts (Tsf) in ThyA- Escherichia coli, retains DHFR activity, but lacks any TS activity. TS activity was found to be extremely unstable (half-life of 28 s) following desalting of clarified bacterial lysates to remove small molecules. Stability could be improved 700-fold by inclusion of dUMP, but not by other pyrimidine or purine (deoxy)-nucleosides or nucleotides. Inclusion of dUMP during purification proved insufficient to prevent inactivation during the purification procedure. Methotrexate and trimetrexate were the most potent inhibitors of DHFR (Ki 0.1 and 0.6 nM, respectively) and FdUMP and nolatrexed of TS (Ki 14 and 39 nM, respectively). All inhibitors showed a marked drop-off in potency of 100- to 1,000-fold against trypanosomes grown in low folate medium lacking thymidine. The most potent inhibitors possessed a terminal glutamate moiety suggesting that transport or subsequent retention by polyglutamylation was important for biological activity. Supplementation of culture medium with folate markedly antagonised the potency of these folate-like inhibitors, as did thymidine in the case of the TS inhibitors raltitrexed and pemetrexed. PMID:27175479

  3. The bifunctional effector AvrXccC of Xanthomonas campestris pv. campestris requires plasma membrane-anchoring for host recognition.

    PubMed

    Wang, Lifeng; Tang, Xiaoyan; He, Chaozu

    2007-07-01

    Bacterial pathogens use type III secretion systems (TTSS) to deliver effector proteins into eukaryotic cells for pathogenesis. In bacterial-plant interactions, one effector may function as an avirulence factor to betray the pathogen to the plant surveillance system and induce the hypersensitive response (HR) in the resistant host carrying a corresponding resistance (R) gene. However, the same effector can also sustain the growth of the pathogen by acting as a virulence factor to modulate plant physiology in the susceptible host lacking the corresponding R gene. Here, we identified and characterized a bifunctional TTSS effector AvrXccC belonging to the AvrB effector family in Xanthomonas campestris pv. campestris 8004. This effector is required for full bacterial virulence in the susceptible host cabbage (Brassica oleracea) and avirulence in the resistant host mustard (Brassica napiformis L.H. Baily). Expressing avrXccC in mustard-virulent strain Xcc HRI 3849A converts its virulence to avirulence. The effector AvrXccC is anchored to the plant plasma membrane, and the N-terminal myristoylation site (amino acids 2-7: GLcaSK) is essential for its localization. In addition, the avirulence function of AvrXccC for host recognition depends on its plasma membrane localization. Promoter activity assays showed that the expression of avrXccC is hrpG/hrpX-dependent. Moreover, the secretion of AvrXccC displayed hrp-dependency and the core sequence for AvrXccC translocation was defined to the N-terminal 40 amino acids.

  4. Labeling Biomolecules with Radiorhenium - a Review of the Bifunctional Chelators

    PubMed Central

    Liu, Guozheng; Hnatowich, Donald J.

    2007-01-01

    For radiotherapy, biomolecules such as intact antibodies, antibody fragments, peptides, DNAs and other oligomers have all been labeled with radiorhenium (186Re and 188Re). Three different approaches have been employed that may be referred to as direct, indirect and integral labeling. Direct labeling applies to proteins and involves the initial reduction of endogenous disulfide bridges to provide chelation sites. Indirect labeling can apply to most biomolecules and involves the initial attachment of an exogenous chelator. Finally, integral labeling is a special case applying only to small molecules in which the metallic radionuclide serves to link two parts of a biomolecule together in forming the labeled complex. While the number of varieties for the direct and integral radiolabeling approaches is rather limited, a fairly large and diverse number of chelators have been reported in the case of indirect labeling. Our objective herein is to provide an overview of the various chelators that have been used in the indirect labeling of biomolecules with radiorhenium, including details on the labeling procedures, the stability of the radiolabel and, where possible, the influence of the label on biological properties. PMID:17504162

  5. Apelin/APJ system: A bifunctional target for cardiac hypertrophy.

    PubMed

    Lu, Liqun; Wu, Di; Li, Lanfang; Chen, Linxi

    2017-03-01

    Apelin acts as the endogenous ligand of G protein coupled receptors APJ. The apelin/APJ system is responsible for the occurrence and development of cardiovascular diseases. In recent years, apelin/APJ has been considered to play an important role in cardiac hypertrophy, but whether that role is beneficial or aggravating remains controversial. Apelin/APJ alleviates cardiac hypertrophy which is triggered by angiotensin II, oxidative stress and exercise. However, central administration of apelin induces cardiac hypertrophy. Peripheral administration of apelin also promotes the development of cardiac hypertrophy under non-pathological conditions. Furthermore, our laboratory discovers that apelin/APJ is able to induce hypertrophy of cardiomyocytes in vitro. The exact mechanism of apelin/APJ's dual effects in cardiac hypertrophy requires further study. In this paper, we review the controversies associated with apelin/APJ in cardiac hypertrophy and we elaborate the role of apelin/APJ in cardiac hypertrophy related-diseases including obesity, diabetes, hypertension, myocarditis and myocardial infarction. We conclude that further studies should emphasize more about the relationship between apelin/APJ and pathological hypertrophy especially in clinical patients. Moreover, apelin/APJ can be a promising therapeutic target for cardiac hypertrophy.

  6. Labeling biomolecules with radiorhenium: a review of the bifunctional chelators.

    PubMed

    Liu, Guozheng; Hnatowich, Donald J

    2007-05-01

    For radiotherapy, biomolecules such as intact antibodies, antibody fragments, peptides, DNAs and other oligomers have all been labeled with radiorhenium ((186)Re and (188)Re). Three different approaches have been employed that may be referred to as direct, indirect and integral labeling. Direct labeling applies to proteins and involves the initial reduction of endogenous disulfide bridges to provide chelation sites. Indirect labeling can apply to most biomolecules and involves the initial attachment of an exogenous chelator. Finally, integral labeling is a special case applying only to small molecules in which the metallic radionuclide serves to link two parts of a biomolecule together in forming the labeled complex. While the number of varieties for the direct and integral radiolabeling approaches is rather limited, a fairly large and diverse number of chelators have been reported in the case of indirect labeling. Our objective herein is to provide an overview of the various chelators that have been used in the indirect labeling of biomolecules with radiorhenium, including details on the labeling procedures, the stability of the radiolabel and, where possible, the influence of the label on biological properties.

  7. Orderly Layered Zr-Benzylphosphonate Nanohybrids for Efficient Acid-Base-Mediated Bifunctional/Cascade Catalysis.

    PubMed

    Li, Hu; Fang, Zhen; He, Jian; Yang, Song

    2017-02-22

    The development of functional metal-organic materials that are robust and active for bifunctional/cascade catalysis is of great significance. Herein, a series of mesoporous and orderly layered nanohybrids were synthesized for the first time through simple and template-free assembly of ortho-, meta-, or para-xylylenediphosphonates (o-, p-, or m-PhP) containing zirconium. It was found that m-PhPZr nanoparticles (20-50 nm) with mesopores centered at 7.9 nm and high Lewis acid-base site ratio (1:0.7) showed excellent performance under mild conditions (as low as 82 °C) in transfer hydrogenation of carbonyl compounds, including bioaldehydes and alcohols, with near quantitative yields and little Zr leaching. Isotopic labeling studies indicated the occurrence of direct hydrogen transfer rather than metal hydride route by bifunctional catalysis. Lewis acidic (Zr) and basic (PO3 ) centers of the heterogeneous catalyst were further revealed to play a synergistic role in one-pot cascade transformations, for example, of ethyl levulinate to γ-valerolactone and glucose to 5-hydroxymethylfurfural. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Bifunctional Ag/C3N4.5 composite nanobelts for photocatalysis and antibacterium

    NASA Astrophysics Data System (ADS)

    Lei, Renbo; Jian, Jikang; Zhang, Zhihua; Song, Bo; Wu, Rong

    2016-09-01

    Multiple functions can be achieved in carbon nitride-based composite nanomaterials by tuning their components and structures. Here, we report on a large-scale synthesis of novel bifunctional Ag/C3N4.5 composite nanobelts (CNBs) with efficient photocatalytic and antibacterial activity. The Ag/C3N4.5 CNBs were synthesized in high yield by a two-step route including a homogeneous precipitation process and a subsequent calcination treatment. The structural, morphological, compositional, and spectroscopic characterizations revealed that the Ag/C3N4.5 CNBs are composed of N-deficient melem ultrathin nanobelts and crystalline Ag nanoparticles attached to the surface of the nanobelts with good contact. The band gap of the Ag/C3N4.5 CNBs is determined to be about 3.04 eV. The efficient photocatalytic and antibacterial activities of the composite nanomaterials are verified by testing the degradation of Rhodamine B (RhB) and the inhibition zone to bacterium E. coli. The work provides a facile route to bifunctional carbon nitride-based composites with potential applications in the fields of the environment and biology.

  9. Large-scale Generation of Patterned Bubble Arrays on Printed Bi-functional Boiling Surfaces

    PubMed Central

    Choi, Chang-Ho; David, Michele; Gao, Zhongwei; Chang, Alvin; Allen, Marshall; Wang, Hailei; Chang, Chih-hung

    2016-01-01

    Bubble nucleation control, growth and departure dynamics is important in understanding boiling phenomena and enhancing nucleate boiling heat transfer performance. We report a novel bi-functional heterogeneous surface structure that is capable of tuning bubble nucleation, growth and departure dynamics. For the fabrication of the surface, hydrophobic polymer dot arrays are first printed on a substrate, followed by hydrophilic ZnO nanostructure deposition via microreactor-assisted nanomaterial deposition (MAND) processing. Wettability contrast between the hydrophobic polymer dot arrays and aqueous ZnO solution allows for the fabrication of heterogeneous surfaces with distinct wettability regions. Heterogeneous surfaces with various configurations were fabricated and their bubble dynamics were examined at elevated heat flux, revealing various nucleate boiling phenomena. In particular, aligned and patterned bubbles with a tunable departure frequency and diameter were demonstrated in a boiling experiment for the first time. Taking advantage of our fabrication method, a 6 inch wafer size heterogeneous surface was prepared. Pool boiling experiments were also performed to demonstrate a heat flux enhancement up to 3X at the same surface superheat using bi-functional surfaces, compared to a bare stainless steel surface. PMID:27034255

  10. A Cost-Efficient Bifunctional Ultrathin Nanosheets Array for Electrochemical Overall Water Splitting.

    PubMed

    Zhang, Ying; Shao, Qi; Pi, Yecan; Guo, Jun; Huang, Xiaoqing

    2017-07-01

    The design of cost-efficient earth-abundant catalysts with superior performance for the electrochemical water splitting is highly desirable. Herein, a general strategy for fabricating superior bifunctional water splitting electrodes is reported, where cost-efficient earth-abundant ultrathin Ni-based nanosheets arrays are directly grown on nickel foam (NF). The newly created Ni-based nanosheets@NF exhibit unique features of ultrathin building block, 3D hierarchical structure, and alloy effect with the optimized Ni5 Fe layered double hydroxide@NF (Ni5 Fe LDH@NF) exhibiting low overpotentials of 210 and 133 mV toward both oxygen evolution reaction and hydrogen evolution reaction at 10 mA cm(-2) in alkaline condition, respectively. More significantly, when applying as the bifunctional overall water splitting electrocatalyst, the Ni5 Fe LDH@NF shows an appealing potential of 1.59 V at 10 mA cm(-2) and also superior durability at the very high current density of 50 mA cm(-2) . © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Strongly Coupled Molybdenum Carbide on Carbon Sheets as a Bifunctional Electrocatalyst for Overall Water Splitting.

    PubMed

    Wang, Hao; Cao, Yingjie; Sun, Cheng; Zou, Guifu; Huang, Jianwen; Kuai, Xiaoxiao; Zhao, Jianqing; Gao, Lijun

    2017-09-22

    High-performance and affordable electrocatalysts from earth-abundant elements are desirably pursued for water splitting involving hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). Here, a bifunctional electrocatalyst of highly crystalline Mo2 C nanoparticles supported on carbon sheets (Mo2 C/CS) was designed toward overall water splitting. Owing to the highly active catalytic nature of Mo2 C nanoparticles, the high surface area of carbon sheets and efficient charge transfer in the strongly coupled composite, the designed catalysts show excellent bifunctional behavior with an onset potential of -60 mV for HER and an overpotential of 320 mV to achieve a current density of 10 mA cm(-2) for OER in 1 m KOH while maintaining robust stability. Moreover, the electrolysis cell using the catalyst only requires a low cell voltage of 1.73 V to achieve a current density of 10 mA cm(-2) and maintains the activity for more than 100 h when employing the Mo2 C/CS catalyst as both anode and cathode electrodes. Such high performance makes Mo2 C/CS a promising electrocatalyst for practical hydrogen production from water splitting. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. New bifunctional metalloproteinase inhibitors: an integrated approach towards biological improvements and cancer therapy.

    PubMed

    Marques, Sérgio M; Abate, Claudia C; Chaves, Sílvia; Marques, Fernanda; Santos, Isabel; Nuti, Elisa; Rossello, Armando; Santos, M Amélia

    2013-10-01

    The key role of some matrix metalloproteinases (MMPs) on several pathological processes, including carcinogenesis and tumor growth, makes the development of MMP inhibitors (MMPIs) an attractive approach for cancer therapy. We present herein an integrated approach for the development of a new series of inhibitors of MMP2 and MMP14, two enzymes over-expressed by human ovarian cancer. As a first step, a new series of single model compounds bearing different zinc-binding groups (ZBGs), such as carboxylic, hydroxamic acid, hydrazide and sulfonylhydrazide groups, were studied and revealed reasonably good capacity for the Zn(II) chelation in solution and for the MMP inhibition. Aimed at further reinforcing the biological activity of these MMPIs as anti-cancer agents, a selection of those models was extra-functionalized with benzothiazole (BTA), a group with recognized antitumor activity. Analysis of the results obtained for these bifunctional compounds, in particular the inhibitory activity against MMP2 and MMP14 as well as the anti-proliferative activity on the A2780 ovarian cancer cell line, allowed to understand the activity dependence on the type of ZBG, as well as the relevance of the BTA moiety. Overall, the evidenced BTA-associated activity improvements on enzyme inhibition and cell antiproliferactivity, combined with the hydrolytic stability revealed by the hydrazide group, suggest that these new bifunctional BTA-hydrazide derivatives should be taken in consideration for the development of new generations of MMPIs with anti-cancer activity.

  13. The development and application of bi-functional clay inhibitor of CYY-2

    NASA Astrophysics Data System (ADS)

    Li, Yongbin; Li, Fengqun; Yu, Jiliang; Han, Changsheng; Gong, Hui; Wang, Jing; Wu, Yingde; Wang, Rui

    2017-04-01

    with the constant discovery and gradual development of low-permeability and water-sensitivity formation, reservoir protection is especially important for improving water-injection development efficiency and enhancing working level of low-permeability reservoir, which will be a critical sector in enhancing development quality of low-permeability and water-sensitivity reservoir. Combined with the understanding of clay mineral expansion theory, starting from hydratability, polarity and oxidability of adopted materials, one type of bi-functional clay inhibitor, CYY-2, is developed which has the function of swelling prevention and swelling shrinkage, and property evaluation is carried out by adopting different methods and measures. Test results indicated that: by using this bi-functional clay inhibitor, the swelling prevention rate of magcogel and natural core powder could reach to 91.7% and 89.8%, swelling shrinkage of which could reach to 61.3% and 81.5%; in the natural flowing experiment, core damage ratio was declined from 86.3% to 12.8%, and the core permeability could be raised by 3 times averagely; in the field experiment of 5 wells, effective rate of 80%, the well effect, is reached. With the extension of injection time of injecting wells, injection pressure rose constantly, injection allocation request was not finished, which influenced the overall reservoir development effect. So reservoir protection is important to deal with the above problems.

  14. NiO/CoN Porous Nanowires as Efficient Bifunctional Catalysts for Zn-Air Batteries.

    PubMed

    Yin, Jie; Li, Yuxuan; Lv, Fan; Fan, Qiaohui; Zhao, Yong-Qing; Zhang, Qiaolan; Wang, Wei; Cheng, Fangyi; Xi, Pinxian; Guo, Shaojun

    2017-02-28

    The development of highly efficient bifunctional catalysts for oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) is crucial for improving the efficiency of the Zn-air battery. Herein, we report porous NiO/CoN interface nanowire arrays (PINWs) with both oxygen vacancies and a strongly interconnected nanointerface between NiO and CoN domains for promoting the electrocatalytic performance and stability for OER and ORR. Extended X-ray absorption fine structure spectroscopy, electron spin resonance, and high-resolution transmission electron microscopy investigations demonstrate that the decrease of the coordination number for cobalt, the enhanced oxygen vacancies on the NiO/CoN nanointerface, and strongly coupled nanointerface between NiO and CoN domains are responsible for the good bifunctional electrocatalytic performance of NiO/CoN PINWs. The primary Zn-air batteries, using NiO/CoN PINWs as an air-cathode, display an open-circuit potential of 1.46 V, a high power density of 79.6 mW cm(-2), and an energy density of 945 Wh kg(-1). The three-series solid batteries fabricated by NiO/CoN PINWs can support a timer to work for more than 12 h. This work demonstrates the importance of interface coupling and oxygen vacancies in the development of high-performance Zn-air batteries.

  15. Novel 16-substituted bifunctional derivatives of huperzine B: multifunctional cholinesterase inhibitors.

    PubMed

    Shi, Yu-fang; Zhang, Hai-yan; Wang, Wei; Fu, Yan; Xia, Yu; Tang, Xi-can; Bai, Dong-lu; He, Xu-chang

    2009-08-01

    To design novel bifunctional derivatives of huperzine B (HupB) based on the concept of dual binding site of acetylcholinesterase (AChE) and evaluate their pharmacological activities for seeking new drug candidates against Alzheimer's disease (AD). Novel 16-substituted bifunctional derivatives of HupB were synthesized through chemical reactions. The inhibitory activities of the derivatives toward AChE and butyrylcholinesterase (BuChE) were determined in vitro by modified Ellman's method. Cell viability was quantified by the reduction of MTT. A new preparative method was developed for the generation of 16-substituted derivatives of HupB, and pharmacological trials indicated that the derivatives were multifunctional cholinesterase inhibitors targeting both AChE and BuChE. Among the derivatives tested, 9c, 9e, 9f, and 9i were 480 to 1360 times more potent as AChE inhibitors and 370 to 1560 times more potent as BuChE inhibitors than the parent HupB. Further preliminary pharmacological trials of derivatives 9c and 9i were performed, including examining the mechanism of AChE inhibition, the substrate kinetics of the enzyme inhibition, and protection against hydrogen peroxide (H2O2)-induced cytotoxicity in PC12 cells. Preliminary pharmacological evaluation indicated that 16-substituted derivatives of HupB, particularly 9c and 9i, would be potentially valuable new drug candidates for AD therapy, and further exploration is needed to evaluate their pharmacological and clinical efficacies.

  16. Dispersion polymerization of methyl methacrylate with a novel bifunctional polyurethane macromonomer as a reactive stabilizer.

    PubMed

    Shim, Sang Eun; Jung, Hyejun; Lee, Kangseok; Lee, Jung Min; Choe, Soonja

    2004-11-15

    A novel macromonomer of vinyl-terminated bifunctional polyurethane was synthesized and applied to the dispersion polymerization of MMA in ethanol. The existence of the vinyl terminal groups and the grafted macromonomer with PMMA was verified using 1H NMR and 13C NMR. The stable and monodisperse PMMA microspheres having a weight-average diameter of 5.09 microm and a good uniformity of 1.01 were obtained with 20 wt% polyurethane macromonomer. The molecular weight increased, but the size of the synthesized PMMA microspheres decreased with the macromonomer concentration since the macromonomer acts as a reactive stabilizer in dispersion polymerization. Furthermore, the molecular weight of the PMMA prepared by the use of the macromonomer was approximately twofold higher than that prepared by a conventional stabilizer, poly(N-vinylpyrrolidone). The higher molecular weight is thought to originate from the grafting and a possibly slight crosslinking of PMMA molecules due to the bifunctional reactive groups at the ends of macromonomer chains.

  17. Bifunctional silica nanospheres with 3-aminopropyl and phenyl groups. Synthesis approach and prospects of their applications

    NASA Astrophysics Data System (ADS)

    Kotsyuda, Sofiya S.; Tomina, Veronika V.; Zub, Yuriy L.; Furtat, Iryna M.; Lebed, Anastasia P.; Vaclavikova, Miroslava; Melnyk, Inna V.

    2017-10-01

    Spherical silica particles with bifunctional (tbnd Si(CH2)3NH2/tbnd SiC6H5) surface layers were synthesized by the Stöber method using ternary alkoxysilanes systems. The influence of the synthesis conditions, such as temperature and stirring time on the process of nanoparticles formation was studied. The presence of introduced functional groups was confirmed by FTIR. The composition of the surface layers examined by elemental analysis and acid-base titration was shown to be independent from the synthesis temperature. However, the size of the obtained particles depends on the synthesis temperature and, according to photon cross-correlation spectroscopy, can be varied from 50 to 846 nm. The variation of electric charges of N-functional groups was disclosed in obtained nanospheres and attributed to different surface location of these groups and their surrounding with other groups. The sorption of Cu(II) ions by functionalized silicas depends on the concentration of amino groups, which correlates with the isoelectric point values (determined to vary from 8.26 to 9.21). Bifunctional nanoparticles adsorb 99.0 mg/g of methylene blue, compared with 48.0 mg/g by silica sample with only amino groups. The nanospheres, both with and without adsorbed Cu2+, demonstrate reasonable antibacterial activity against S. aureus ATCC 25923, depending on particle concentration in water suspension.

  18. The bifunctional pyruvate decarboxylase/pyruvate ferredoxin oxidoreductase from Thermococcus guaymasensis.

    PubMed

    Eram, Mohammad S; Oduaran, Erica; Ma, Kesen

    2014-01-01

    The hyperthermophilic archaeon Thermococcus guaymasensis produces ethanol as a metabolic end product, and an alcohol dehydrogenase (ADH) catalyzing the reduction of acetaldehyde to ethanol has been purified and characterized. However, the enzyme catalyzing the formation of acetaldehyde has not been identified. In this study an enzyme catalyzing the production of acetaldehyde from pyruvate was purified and characterized from T. guaymasensis under strictly anaerobic conditions. The enzyme had both pyruvate decarboxylase (PDC) and pyruvate ferredoxin oxidoreductase (POR) activities. It was oxygen sensitive, and the optimal temperatures were 85°C and >95°C for the PDC and POR activities, respectively. The purified enzyme had activities of 3.8 ± 0.22 U mg(-1) and 20.2 ± 1.8 U mg(-1), with optimal pH-values of 9.5 and 8.4 for each activity, respectively. Coenzyme A was essential for both activities, although it did not serve as a substrate for the former. Enzyme kinetic parameters were determined separately for each activity. The purified enzyme was a heterotetramer. The sequences of the genes encoding the subunits of the bifunctional PDC/POR were determined. It is predicted that all hyperthermophilic β -keto acids ferredoxin oxidoreductases are bifunctional, catalyzing the activities of nonoxidative and oxidative decarboxylation of the corresponding β -keto acids.

  19. Carbon Nitrogen Nanotubes as Efficient Bifunctional Electrocatalysts for Oxygen Reduction and Evolution Reactions.

    PubMed

    Yadav, Ram Manohar; Wu, Jingjie; Kochandra, Raji; Ma, Lulu; Tiwary, Chandra Sekhar; Ge, Liehui; Ye, Gonglan; Vajtai, Robert; Lou, Jun; Ajayan, Pulickel M

    2015-06-10

    Oxygen reduction and evolution reactions are essential for broad range of renewable energy technologies such as fuel cells, metal-air batteries and hydrogen production through water splitting, therefore, tremendous effort has been taken to develop excellent catalysts for these reactions. However, the development of cost-effective and efficient bifunctional catalysts for both reactions still remained a grand challenge. Herein, we report the electrocatalytic investigations of bamboo-shaped carbon nitrogen nanotubes (CNNTs) having different diameter distribution synthesized by liquid chemical vapor deposition technique using different nitrogen containing precursors. These CNNTs are found to be efficient bifunctional electrocatalyst for oxygen reduction and evolution reactions. The electrocatalytic activity strongly depends on the nanotube diameter as well as nitrogen functionality type. The higher diameter CNNTs are more favorable for these reactions. The increase in nanotube diameter itself enhances the catalytic activity by lowering the oxygen adsorption energy, better conductivity, and further facilitates the reaction by increasing the percentage of catalytically active nitrogen moieties in CNNTs.

  20. Bifunctional Ag/C3N4.5 composite nanobelts for photocatalysis and antibacterium.

    PubMed

    Lei, Renbo; Jian, Jikang; Zhang, Zhihua; Song, Bo; Wu, Rong

    2016-09-30

    Multiple functions can be achieved in carbon nitride-based composite nanomaterials by tuning their components and structures. Here, we report on a large-scale synthesis of novel bifunctional Ag/C3N4.5 composite nanobelts (CNBs) with efficient photocatalytic and antibacterial activity. The Ag/C3N4.5 CNBs were synthesized in high yield by a two-step route including a homogeneous precipitation process and a subsequent calcination treatment. The structural, morphological, compositional, and spectroscopic characterizations revealed that the Ag/C3N4.5 CNBs are composed of N-deficient melem ultrathin nanobelts and crystalline Ag nanoparticles attached to the surface of the nanobelts with good contact. The band gap of the Ag/C3N4.5 CNBs is determined to be about 3.04 eV. The efficient photocatalytic and antibacterial activities of the composite nanomaterials are verified by testing the degradation of Rhodamine B (RhB) and the inhibition zone to bacterium E. coli. The work provides a facile route to bifunctional carbon nitride-based composites with potential applications in the fields of the environment and biology.

  1. Cell Growth on ("Janus") Density Gradients of Bifunctional Zeolite L Crystals.

    PubMed

    Kehr, Nermin Seda; Motealleh, Andisheh; Schäfer, Andreas H

    2016-12-28

    Nanoparticle density gradients on surfaces have attracted interest as two-dimensional material surfaces that can mimic the complex nano-/microstructure of the native extracellular matrix, including its chemical and physical gradients, and can therefore be used to systematically study cell-material interactions. In this respect, we report the preparation of density gradients made of bifunctional zeolite L crystals on glass surfaces and the effects of the density gradient and biopolymer functionalization of zeolite L crystals on cell adhesion. We also describe how we created "Janus" density gradient surfaces by gradually depositing two different types of zeolite L crystals that were functionalized and loaded with different chemical groups and guest molecules onto the two distinct sides of the same glass substrate. Our results show that more cells adhered on the density gradient of biopolymer-coated zeolites than on uncoated ones. The number of adhered cells increased up to a certain surface coverage of the glass by the zeolite L crystals, but then it decreased beyond the zeolite density at which a higher surface coverage decreased fibroblast cell adhesion and spreading. Additionally, cell experiments showed that cells gradually internalized the guest-molecule-loaded zeolite L crystals from the underlying density gradient containing bifunctional zeolite L crystals.

  2. A modular, bifunctional RNA that integrates itself into a target RNA

    PubMed Central

    Kumar, Roshan M.; Joyce, Gerald F.

    2003-01-01

    Nature often combines independent functional domains to achieve complex function, but this approach has not been extensively explored with artificial enzymes. Here, a group I ribozyme, which can act as an endoribonuclease, was partnered with the R3C ribozyme, which catalyzes the ligation of RNA molecules. The conjoined ribozymes have the potential to perform successive RNA cleavage and joining reactions, resulting in their mutual integration into a target RNA substrate. When simply joined together, however, the ribozymes were unable to achieve this outcome because of inefficient transfer of the substrate between the two catalytic subunits. In vitro evolution was used to optimize the behavior of the conjoined ribozymes, resulting in bifunctional molecules with substantially improved integration activity. The ligase subunit of these molecules was unchanged, whereas the group I subunit acquired several mutations, mostly in peripheral regions. The generation and study of this bifunctional assembly helps shed light on the evolution of modular enzymes and the obstacles that must be overcome in bringing together independent functional domains. These molecules also may be useful as tools for the insertional mutagenesis of target mRNAs. PMID:12913125

  3. Synthesis and characterization of ZnS@Fe3O4 fluorescent-magnetic bifunctional nanospheres

    NASA Astrophysics Data System (ADS)

    Koc, Kenan; Karakus, Baris; Rajar, Kausar; Alveroglu, Esra

    2017-10-01

    Herein, we synthesized and characterized fluorescent and super paramagnetic ZnS@Fe3O4 nanospheres. First, (3-mercaptopropyl) trimethoxysilane (MPS) capped ZnS quantum dots (QDs) and SiO2 coated Fe3O4 nanoparticles were synthesized separately by using solution growth and co-precipitation techniques. After synthesis and characterization of these two nanoparticles, they were conglutinated together in a nano sized sphere. The QDs were attached to the surface of the Fe3O4 nanoparticles by Sisbnd Osbnd Si bonds and so Sisbnd Osbnd Si bonds created a SiO2 network around the nanoparticles during the formation of the ZnS@Fe3O4 nanospheres. The synthesized MPS capped ZnS fluorescent QDs, SiO2 coated magnetite super paramagnetic nanoparticles and ZnS@Fe3O4 fluorescent-magnetic bifunctional nanospheres were characterized by using UV-Vis Absorption Spectroscopy, Fluorescence Spectroscopy, X-ray analysis, Vibrating Sample Magnetometer analysis, Attenuated Total Reflection-Fourier Transform Infrared Spectroscopy, Scanning Electron Microscope and Energy-dispersive X-ray spectroscopy. ZnS@Fe3O4 bifunctional nanospheres were shown to retain the magnetic properties of magnetite, while exhibiting the luminescent optical properties of ZnS nanoparticles. The combination of fluorescent and magnetic behaviors of nano composites make them useful for potential applications in the field of bio-medical and environmental.

  4. Space-Confined Earth-Abundant Bifunctional Electrocatalyst for High-Efficiency Water Splitting.

    PubMed

    Tang, Yanqun; Fang, Xiaoyu; Zhang, Xin; Fernandes, Gina; Yan, Yong; Yan, Dongpeng; Xiang, Xu; He, Jing

    2017-10-12

    Hydrogen generation from water splitting could be an alternative way to meet increasing energy demands while also balancing the impact of energy being supplied by fossil-based fuels. The efficacy of water splitting strongly depends on the performance of electrocatalysts. Herein, we report a unique space-confined earth-abundant electrocatalyst having the bifunctionality of simultaneous hydrogen evolution reaction (HER) and oxygen evolution reaction (OER), leading to high-efficiency water splitting. Outperforming Pt/C or RuO2 catalysts, this mesoscopic, space-confined, bifunctional configuration is constructed from a monolithic zeolitic imidazolate framework@layered double hydroxide (ZIF@LDH) precursor on Ni foam. Such a confinement leads to a high dispersion of ultrafine Co3O4 nanoparticles within the N-doped carbon matrix by temperature-dependent calcination of the ZIF@LDH. We demonstrate that the OER has an overpotential of 318 mV at a current density of 10 mA cm(-2), while that of HER is -106 mV @ -10 mA cm(-2). The voltage applied to a two-electrode cell for overall water splitting is 1.59 V to achieve a stable current density of 10 mA cm(-2) while using the monolithic catalyst as both the anode and the cathode. It is anticipated that our space-confined method, which focuses on earth-abundant elements with structural integrity, may provide a novel and economically sound strategy for practical energy conversion applications.

  5. Highly Efficient and Robust Nickel Phosphides as Bifunctional Electrocatalysts for Overall Water-Splitting.

    PubMed

    Li, Jiayuan; Li, Jing; Zhou, Xuemei; Xia, Zhaoming; Gao, Wei; Ma, Yuanyuan; Qu, Yongquan

    2016-05-04

    To search for the efficient non-noble metal based and/or earth-abundant electrocatalysts for overall water-splitting is critical to promote the clean-energy technologies for hydrogen economy. Herein, we report nickel phosphide (NixPy) catalysts with the controllable phases as the efficient bifunctional catalysts for water electrolysis. The phases of NixPy were determined by the temperatures of the solid-phase reaction between the ultrathin Ni(OH)2 plates and NaH2PO2·H2O. The NixPy with the richest Ni5P4 phase synthesized at 325 °C (NixPy-325) delivered efficient and robust catalytic performance for hydrogen evolution reaction (HER) in the electrolytes with a wide pH range. The NixPy-325 catalysts also exhibited a remarkable performance for oxygen evolution reaction (OER) in a strong alkaline electrolyte (1.0 M KOH) due to the formation of surface NiOOH species. Furthermore, the bifunctional NixPy-325 catalysts enabled a highly performed overall water-splitting with ∼100% Faradaic efficiency in 1.0 M KOH electrolyte, in which a low applied external potential of 1.57 V led to a stabilized catalytic current density of 10 mA/cm(2) over 60 h.

  6. Conversion of cellulose into isosorbide over bifunctional ruthenium nanoparticles supported on niobium phosphate.

    PubMed

    Sun, Peng; Long, Xiangdong; He, Hao; Xia, Chungu; Li, Fuwei

    2013-11-01

    Considerable effort has been applied to the development of new processes and catalysts for cellulose conversion to valuable platform chemicals. Isosorbide is among the most interesting products as it can be applied as a monomer and building block for the future replacement of fossil resource-based products. A sustainable method of isosorbide production from cellulose is presented in this work. The strategy relies on a bifunctional Ru catalyst supported on mesoporous niobium phosphate in a H2 atmosphere under pressure without further addition of any soluble acid. Over 50 % yield of isosorbide with almost 100 % cellulose conversion can be obtained in 1 h. The large surface area, pore size, and strong acidity of mesoporous niobium phosphate promote the hydrolysis of cellulose and dehydration of sorbitol; additionally, the appropriate size of the supported Ru nanoparticles avoids unnecessary hydrogenolysis of sorbitol. Under a cellulose/catalyst mass ratio of 43.3, the present bifunctional catalyst could be stably used up to six times, with its mesoporous structure well preserved and without detectable Ru leaching into the reaction solution.

  7. Pushing the Theoretical Limit of Li-CFx Batteries: A Tale of Bi-functional Electrolyte

    SciTech Connect

    Rangasamy, Ezhiylmurugan; Li, Juchuan; Sahu, Gayatri; Dudney, Nancy J; Liang, Chengdu

    2014-01-01

    In a typical battery, electrodes deliver capacities less or equal the theoretical maxima of the electrode materials.1 The inert electrolyte functions solely as the ionic conductor without contribution to the cell capacity because of its distinct mono-function in the concept of conventional batteries. Here we demonstrate that the most energy-dense Li-CFx battery2 delivers a capacity exceeding the theoretical maximum of CFx with a solid electrolyte of Li3PS4 (LPS) that has dual functions: as the inert electrolyte at the anode and the active component at the cathode. Such a bi-functional electrolyte reconciles both inert and active characteristics through a synergistic discharge mechanism of CFx and LPS. Li3PS4 is known as an inactive solid electrolyte with a broad electrochemical window over 5 V.3 The synergy at the cathode is through LiF, the discharge product of CFx, which activates the electrochemical discharge of LPS at a close electrochemical potential of CFx. Therefore, the solid-state Li-CFx batteries output 126.6% energy beyond their theoretic limits without compromising the stability of the cell voltage. The extra energy comes from the electrochemical discharge of LPS, the inert electrolyte. This bi-functional electrolyte revolutionizes the concept of conventional batteries and opens a new avenue for the design of batteries with an unprecedentedly high energy density.

  8. Determining the Origin of Half-bandgap-voltage Electroluminescence in Bifunctional Rubrene/C60 Devices

    NASA Astrophysics Data System (ADS)

    Chen, Qiusong; Jia, Weiyao; Chen, Lixiang; Yuan, De; Zou, Yue; Xiong, Zuhong

    2016-05-01

    Lowering the driving voltage of organic light-emitting diodes (OLEDs) is an important approach to reduce their energy consumption. We have fabricated a series of bifunctional devices (OLEDs and photovoltaics) using rubrene and fullerene (C60) as the active layer, in which the electroluminescence threshold voltage(~1.1 V) was half the value of the bandgap of rubrene. Magneto-electroluminescence (MEL) response of planner heterojunction diodes exhibited a small increase in response to a low magnetic field strength (<20 mT) however, a very large decay was observed at a high magnetic field strength (>20 mT). When a hole-transport layer with a low mobility was included in these devices, the MEL response reversed in shape, and simultaneously, the EL threshold voltage became larger than the bandgap voltage. When bulk heterojunction device was examined, the amplitude of MEL curves presented an anomalous voltage-dependence. Following an analysis of the MEL responses of these devices, we proposed that the EL of half-bandgap-voltage device originated from bimolecular triplet-triplet annihilation in the rubrene film, rather than from singlet excitons that formed via an interface auger recombination. This work provides critical insight into the mechanisms of OLED emission and will help advance the applications of bifunctional devices.

  9. The Bifunctional Pyruvate Decarboxylase/Pyruvate Ferredoxin Oxidoreductase from Thermococcus guaymasensis

    PubMed Central

    2014-01-01

    The hyperthermophilic archaeon Thermococcus guaymasensis produces ethanol as a metabolic end product, and an alcohol dehydrogenase (ADH) catalyzing the reduction of acetaldehyde to ethanol has been purified and characterized. However, the enzyme catalyzing the formation of acetaldehyde has not been identified. In this study an enzyme catalyzing the production of acetaldehyde from pyruvate was purified and characterized from T. guaymasensis under strictly anaerobic conditions. The enzyme had both pyruvate decarboxylase (PDC) and pyruvate ferredoxin oxidoreductase (POR) activities. It was oxygen sensitive, and the optimal temperatures were 85°C and >95°C for the PDC and POR activities, respectively. The purified enzyme had activities of 3.8 ± 0.22 U mg−1 and 20.2 ± 1.8 U mg−1, with optimal pH-values of 9.5 and 8.4 for each activity, respectively. Coenzyme A was essential for both activities, although it did not serve as a substrate for the former. Enzyme kinetic parameters were determined separately for each activity. The purified enzyme was a heterotetramer. The sequences of the genes encoding the subunits of the bifunctional PDC/POR were determined. It is predicted that all hyperthermophilic β-keto acids ferredoxin oxidoreductases are bifunctional, catalyzing the activities of nonoxidative and oxidative decarboxylation of the corresponding β-keto acids. PMID:24982594

  10. Identification and functional analysis of bifunctional ent-kaurene synthase from the moss Physcomitrella patens.

    PubMed

    Hayashi, Ken-Ichiro; Kawaide, Hiroshi; Notomi, Miho; Sakigi, Yuka; Matsuo, Akihiko; Nozaki, Hiroshi

    2006-11-13

    ent-Kaurene is the key intermediate in biosynthesis of gibberellins (GAs), plant hormones. In higher plants, ent-kaurene is synthesized successively by copalyl diphosphate synthase (CPS) and ent-kaurene synthase (KS) from geranylgeranyl diphosphate (GGDP). On the other hand, fungal ent-kaurene synthases are bifunctional cyclases with both CPS and KS activity in a single polypeptide. The moss Physcomitrella patens is a model organism for the study of genetics and development in an early land plant. We identified ent-kaurene synthase (PpCPS/KS) from P. patens and analyzed its function. PpCPS/KS cDNA encodes a 101-kDa polypeptide, and shows high similarity with CPSs and abietadiene synthase from higher plants. PpCPS/KS is a bifunctional cyclase and, like fungal CPS/KS, directly synthesizes the ent-kaurene skeleton from GGDP. PpCPS/KS has two aspartate-rich DVDD and DDYFD motifs observed in CPS and KS, respectively. The mutational analysis of two conserved motifs in PpCPS/KS indicated that the DVDD motif is responsible for CPS activity (GGDP to CDP) and the DDYFD motif for KS activity (CDP to ent-kaurene and ent-16alpha-hydroxykaurene).

  11. Large-scale Generation of Patterned Bubble Arrays on Printed Bi-functional Boiling Surfaces.

    PubMed

    Choi, Chang-Ho; David, Michele; Gao, Zhongwei; Chang, Alvin; Allen, Marshall; Wang, Hailei; Chang, Chih-hung

    2016-04-01

    Bubble nucleation control, growth and departure dynamics is important in understanding boiling phenomena and enhancing nucleate boiling heat transfer performance. We report a novel bi-functional heterogeneous surface structure that is capable of tuning bubble nucleation, growth and departure dynamics. For the fabrication of the surface, hydrophobic polymer dot arrays are first printed on a substrate, followed by hydrophilic ZnO nanostructure deposition via microreactor-assisted nanomaterial deposition (MAND) processing. Wettability contrast between the hydrophobic polymer dot arrays and aqueous ZnO solution allows for the fabrication of heterogeneous surfaces with distinct wettability regions. Heterogeneous surfaces with various configurations were fabricated and their bubble dynamics were examined at elevated heat flux, revealing various nucleate boiling phenomena. In particular, aligned and patterned bubbles with a tunable departure frequency and diameter were demonstrated in a boiling experiment for the first time. Taking advantage of our fabrication method, a 6 inch wafer size heterogeneous surface was prepared. Pool boiling experiments were also performed to demonstrate a heat flux enhancement up to 3X at the same surface superheat using bi-functional surfaces, compared to a bare stainless steel surface.

  12. Rational Design and Generation of a Bimodal Bifunctional Ligand for Antibody-Targeted Radiation Cancer Therapy

    PubMed Central

    Chong, Hyun-Soon; Ma, Xiang; Le, Thien; Kwamena, Baidoo; Milenic, Diane E.; Brady, Erik D.; Song, Hyun A.; Brechbiel, Martin W.

    2008-01-01

    An antibody-targeted radiation therapy (radioimmunotherapy, RIT) employs a bifunctional ligand that can effectively hold a cytotoxic metal with clinically acceptable complexation kinetics and stability while being attached to a tumor-specific antibody. Clinical exploration of the therapeutic potential of RIT has been challenged by the absence of adequate ligand, a critical component for enhancing the efficacy of the cancer therapy. To address this deficiency, the bifunctional ligand C-NETA in a unique structural class possessing both a macrocyclic cavity and a flexible acyclic moiety was designed. The practical, reproducible, and readily scalable synthetic route to C-NETA was developed, and its potential as the chelator of 212Bi, 213Bi, and 177Lu for RIT was evaluated in vitro and in vivo. C-NETA rapidly binds both Lu(III) and Bi(III), and the respective metal complexes remain extremely stable in serum for 14 days. 177Lu—C-NETA and 205/6Bi—C-NETA possess an excellent or acceptable in vivo biodistribution profile. PMID:18062661

  13. Proteins.

    ERIC Educational Resources Information Center

    Doolittle, Russell F.

    1985-01-01

    Examines proteins which give rise to structure and, by virtue of selective binding to other molecules, make genes. Binding sites, amino acids, protein evolution, and molecular paleontology are discussed. Work with encoding segments of deoxyribonucleic acid (exons) and noncoding stretches (introns) provides new information for hypotheses. (DH)

  14. Proteins.

    ERIC Educational Resources Information Center

    Doolittle, Russell F.

    1985-01-01

    Examines proteins which give rise to structure and, by virtue of selective binding to other molecules, make genes. Binding sites, amino acids, protein evolution, and molecular paleontology are discussed. Work with encoding segments of deoxyribonucleic acid (exons) and noncoding stretches (introns) provides new information for hypotheses. (DH)

  15. Protein

    USDA-ARS?s Scientific Manuscript database

    Proteins are the major structural and functional components of all cells in the body. They are macromolecules that comprise 1 or more chains of amino acids that vary in their sequence and length and are folded into specific 3-dimensional structures. The sizes and conformations of proteins, therefor...

  16. Cobalt nanoparticles embedded in N-doped carbon as an efficient bifunctional electrocatalyst for oxygen reduction and evolution reactions.

    PubMed

    Su, Yunhe; Zhu, Yihua; Jiang, Hongliang; Shen, Jianhua; Yang, Xiaoling; Zou, Wenjian; Chen, Jianding; Li, Chunzhong

    2014-12-21

    Cobalt based catalysts are promising bifunctional electrocatalysts for both oxygen reduction and oxygen evolution reactions (ORR and OER) in unitized regenerative fuel cells (URFCs) operating with alkaline electrolytes. Here we report a hybrid composite of cobalt nanoparticles embedded in nitrogen-doped carbon (Co/N-C) via a solvothermal carbonization strategy. With the synergistic effect arising from the N-doped carbon and cobalt nanoparticles in the composite, the Co/N-C hybrid catalyst exhibits highly efficient bifunctional catalytic activity and excellent stability toward both ORR and OER. The ΔE (oxygen electrode activity parameter for judging the overall electrocatalytic activity of a bifunctional electrocatalyst) value for Co/N-C is 0.859 V, which is smaller than those of Pt/C and most of the non-precious metal catalysts in previous studies. Furthermore, the Co/N-C composite also shows better bifunctional catalytic activity than its oxidative counterparts, which could be attributed to the high specific surface area and the efficient charge transfer ability of the composite, as well as the good synergistic effect between N-doped carbon and the Co nanoparticles in the Co/N-C composite.

  17. Long-Term Persistence of Bi-functionality Contributes to the Robustness of Microbial Life through Exaptation

    PubMed Central

    Sterner, Reinhard; Merkl, Rainer

    2016-01-01

    Modern enzymes are highly optimized biocatalysts that process their substrates with extreme efficiency. Many enzymes catalyze more than one reaction; however, the persistence of such ambiguities, their consequences and evolutionary causes are largely unknown. As a paradigmatic case, we study the history of bi-functionality for a time span of approximately two billion years for the sugar isomerase HisA from histidine biosynthesis. To look back in time, we computationally reconstructed and experimentally characterized three HisA predecessors. We show that these ancient enzymes catalyze not only the HisA reaction but also the isomerization of a similar substrate, which is commonly processed by the isomerase TrpF in tryptophan biosynthesis. Moreover, we found that three modern-day HisA enzymes from Proteobacteria and Thermotogae also possess low TrpF activity. We conclude that this bi-functionality was conserved for at least two billion years, most likely without any evolutionary pressure. Although not actively selected for, this trait can become advantageous in the case of a gene loss. Such exaptation is exemplified by the Actinobacteria that have lost the trpF gene but possess the bi-functional HisA homolog PriA, which adopts the roles of both HisA and TrpF. Our findings demonstrate that bi-functionality can perpetuate in the absence of selection for very long time-spans. PMID:26824644

  18. A dramatic synergistic effect of a flexible achiral linker on a rigid chiral cis-1,2-diamine bifunctional organocatalyst.

    PubMed

    Matsunaga, Hirofumi; Tajima, Daisuke; Kawauchi, Tetsuro; Yasuyama, Takuro; Ando, Shin; Ishizuka, Tadao

    2017-04-05

    The combination of a "rigid" chiral bicyclic cis-1,2-diamine skeleton with steric bulkiness and a "flexible" achiral linker was newly designed as a bifunctional organocatalyst framework and it showed excellent catalytic activity of up to 0.05 mol%, accompanied by the reversal of enantioselection depending on the position of the linker, in an amine-thiourea organocatalyzed asymmetric Michael reaction.

  19. Self-Supported 3D PdCu Alloy Nanosheets as a Bifunctional Catalyst for Electrochemical Reforming of Ethanol.

    PubMed

    Zhao, Xiaojing; Dai, Lei; Qin, Qing; Pei, Fei; Hu, Chengyi; Zheng, Nanfeng

    2017-03-01

    3D PdCu alloy nanosheets exhibit enhanced electrocatalytic activity toward hydrogen evolution reaction and ethanol oxidation reaction in alkaline media. Simultaneous hydrogen and acetate production via a solar-powered cell for ethanol reforming has been fabricated using the nanosheets as bifunctional electrocatalysts. The device is promising for the production of both hydrogen and value-added chemicals using renewable energy.

  20. Dual actions of a novel bifunctional compound to lower glucose in mice with diet-induced insulin resistance.

    PubMed

    Chen, Katherine; Jih, Alice; Kavaler, Sarah T; Lagakos, William S; Oh, Dayoung; Watkins, Steven M; Kim, Jane J

    2015-08-01

    Docosahexaenoic acid (DHA 22:6n-3) and salicylate are both known to exert anti-inflammatory effects. This study investigated the effects of a novel bifunctional drug compound consisting of DHA and salicylate linked together by a small molecule that is stable in plasma but hydrolyzed in the cytoplasm. The components of the bifunctional compound acted synergistically to reduce inflammation mediated via nuclear factor κB in cultured macrophages. Notably, oral administration of the bifunctional compound acted in two distinct ways to mitigate hyperglycemia in high-fat diet-induced insulin resistance. In mice with diet-induced obesity, the compound lowered blood glucose by reducing hepatic insulin resistance. It also had an immediate glucose-lowering effect that was secondary to enhanced glucagon-like peptide-1 (GLP-1) secretion and abrogated by the administration of exendin(9-39), a GLP-1 receptor antagonist. These results suggest that the bifunctional compound could be an effective treatment for individuals with type 2 diabetes and insulin resistance. This strategy could also be employed in other disease conditions characterized by chronic inflammation.

  1. Long-Term Persistence of Bi-functionality Contributes to the Robustness of Microbial Life through Exaptation.

    PubMed

    Plach, Maximilian G; Reisinger, Bernd; Sterner, Reinhard; Merkl, Rainer

    2016-01-01

    Modern enzymes are highly optimized biocatalysts that process their substrates with extreme efficiency. Many enzymes catalyze more than one reaction; however, the persistence of such ambiguities, their consequences and evolutionary causes are largely unknown. As a paradigmatic case, we study the history of bi-functionality for a time span of approximately two billion years for the sugar isomerase HisA from histidine biosynthesis. To look back in time, we computationally reconstructed and experimentally characterized three HisA predecessors. We show that these ancient enzymes catalyze not only the HisA reaction but also the isomerization of a similar substrate, which is commonly processed by the isomerase TrpF in tryptophan biosynthesis. Moreover, we found that three modern-day HisA enzymes from Proteobacteria and Thermotogae also possess low TrpF activity. We conclude that this bi-functionality was conserved for at least two billion years, most likely without any evolutionary pressure. Although not actively selected for, this trait can become advantageous in the case of a gene loss. Such exaptation is exemplified by the Actinobacteria that have lost the trpF gene but possess the bi-functional HisA homolog PriA, which adopts the roles of both HisA and TrpF. Our findings demonstrate that bi-functionality can perpetuate in the absence of selection for very long time-spans.

  2. A bifunctional curcumin analogue for two-photon imaging and inhibiting crosslinking of amyloid beta in Alzheimer's disease.

    PubMed

    Zhang, Xueli; Tian, Yanli; Yuan, Peng; Li, Yuyan; Yaseen, Mohammad A; Grutzendler, Jaime; Moore, Anna; Ran, Chongzhao

    2014-10-09

    In this report, we designed a highly bright bifunctional curcumin analogue CRANAD-28. In vivo two-photon imaging suggested that CRANAD-28 could penetrate the blood brain barrier (BBB) and label plaques and cerebral amyloid angiopathies (CAAs). We also demonstrated that this imaging probe could inhibit the crosslinking of amyloid beta induced either by copper or by natural conditions.

  3. Enantioselective Friedel-Crafts reactions between phenols and N-tosylaldimines catalyzed by a leucine-derived bifunctional catalyst.

    PubMed

    Li, Guo-Xing; Qu, Jin

    2012-06-04

    Enantioselective Friedel-Crafts reactions between phenols and N-tosylaldimines were developed using a bifunctional catalyst readily prepared from L-leucine. The chiral benzylic amine products were obtained in high yields (up to 96% yield) and good to high enantiomeric excesses (up to 95% ee).

  4. Pyrrolidinyl-sulfamide derivatives as a new class of bifunctional organocatalysts for direct asymmetric Michael addition of cyclohexanone to nitroalkenes.

    PubMed

    Chen, Jia-Rong; Fu, Liang; Zou, You-Quan; Chang, Ning-Jie; Rong, Jian; Xiao, Wen-Jing

    2011-07-21

    A series of chiral pyrrolidinyl-sulfamide derivatives have been identified as efficient bifunctional organocatalysts for the direct Michael addition of cyclohexanone to a wide range of nitroalkenes. The desired Michael adducts were obtained in high chemical yields and excellent stereoselectivities (up to 99/1 dr and 95% ee).

  5. Asymmetric Michael addition of ketones to alkylidene malonates and allylidene malonates via enamine-metal Lewis acid bifunctional catalysis.

    PubMed

    Liu, Lu; Sarkisian, Ryan; Xu, Zhenghu; Wang, Hong

    2012-09-07

    Novel enamine-metal Lewis acid bifunctional catalysts were successfully applied to the asymmetric Michael addition of ketones to alkylidene malonates, offering excellent stereoselectivity (up to >99% ee and >99:1 dr). The asymmetric Michael addition of ketones to allylidene malonates was also achieved.

  6. Dual actions of a novel bifunctional compound to lower glucose in mice with diet-induced insulin resistance

    PubMed Central

    Chen, Katherine; Jih, Alice; Kavaler, Sarah T.; Lagakos, William S.; Oh, Dayoung; Watkins, Steven M.

    2015-01-01

    Docosahexaenoic acid (DHA 22:6n-3) and salicylate are both known to exert anti-inflammatory effects. This study investigated the effects of a novel bifunctional drug compound consisting of DHA and salicylate linked together by a small molecule that is stable in plasma but hydrolyzed in the cytoplasm. The components of the bifunctional compound acted synergistically to reduce inflammation mediated via nuclear factor κB in cultured macrophages. Notably, oral administration of the bifunctional compound acted in two distinct ways to mitigate hyperglycemia in high-fat diet-induced insulin resistance. In mice with diet-induced obesity, the compound lowered blood glucose by reducing hepatic insulin resistance. It also had an immediate glucose-lowering effect that was secondary to enhanced glucagon-like peptide-1 (GLP-1) secretion and abrogated by the administration of exendin(9–39), a GLP-1 receptor antagonist. These results suggest that the bifunctional compound could be an effective treatment for individuals with type 2 diabetes and insulin resistance. This strategy could also be employed in other disease conditions characterized by chronic inflammation. PMID:26058862

  7. Dynamic assembly of a zinc-templated bifunctional organocatalyst in the presence of water for the asymmetric aldol reaction.

    PubMed

    Serra-Pont, Anna; Alfonso, Ignacio; Jimeno, Ciril; Solà, Jordi

    2015-12-21

    A bifunctional organocatalytic system consisting of simple pyridine ligands containing separate catalytic functionalities was assembled using ZnCl2. This novel metal-templated catalyst furnished high yields and stereoselectivities towards the aldol reaction. The addition of controlled amounts of water turned out to be crucial to dissolve the system and achieve optimal results.

  8. Bifunctional μ/δ opioid peptides: variation of the type and length of the linker connecting the two components.

    PubMed

    Ding, Jinguo; Lemieux, Carole; Chung, Nga N; Schiller, Peter W

    2012-02-01

    On the basis of evidence that opioid compounds with a mixed μ agonist/δ antagonist profile may produce an antinociceptive effect with low propensity to induce side effects, bifunctional opioid peptides containing the μ agonist H-Dmt-d-Arg-Phe-Lys-NH(2) ([Dmt(1) ]DALDA; Dmt = 2',6'-dimethyltyrosine) connected tail-to-tail via various α,ω-diaminoalkyl- or diaminocyclohexane linkers to the δ antagonists H-Tyr-TicΨ[CH(2) -NH]Cha-Phe-OH (TICP[Ψ]; Cha = cyclohexylalanine, Tic = 1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid), H-Dmt-Tic-OH or H-Bcp-Tic-OH (Bcp = 4'-[N-((4'-phenyl)phenethyl)carboxamido]phenylalanine) were synthesized and pharmacologically characterized in vitro. Bifunctional [Dmt(1) ]DALDA→NH-(CH(2) )(n) -NH←TICP[Ψ] compounds (n = -12) showed decreasing μ and δ receptor binding affinities with increasing linker length. As expected, several of the bifunctional peptides were μ agonist/δ antagonists with low nanomolar μ and δ receptor binding affinities. However, compounds with unexpected opioid activity profiles, including a μ partial agonist/δ partial agonist, μ antagonist/δ antagonists and μ agonist/δ agonists, were also identified. These results indicate that the binding affinities and intrinsic efficacies of these bifunctional compounds at both receptors depend on the length and type of the linker connecting the μ and δ components. An important recommendation emerging from this study is that the in vitro activity profiles of bifunctional compounds containing an agonist and an antagonist component connected via a linker need to be determined prior to their pharmacological evaluation in vivo.

  9. Protein

    MedlinePlus

    ... Search for: Harvard T.H. Chan School of Public Health Email People Departments Calendar Careers Give my.harvard ... Nutrition Source Harvard T.H. Chan School of Public Health > The Nutrition Source > What Should I Eat? > Protein ...

  10. Oxygen electrode bifunctional electrocatalyst NiCo2O4 spinel

    NASA Technical Reports Server (NTRS)

    Fielder, William L.; Singer, Joseph

    1988-01-01

    A significant increase in energy density may be possible if a two-unit alkaline regenerative H2-O2 fuel cell is replaced with a single-unit system that uses passive means for H2O transfer and thermal control. For this single-unit system, new electrocatalysts for the O2 electrode will be required which are not only bifunctionally active but also chemically and electrochemically stable between the voltage range of about 0.7 and 1.5 V. NiCo2O4 spinel is reported to have certain characteristics that make it useful for a study of electrode fabrication techniques. High surface area NiCo2O4 powder was fabricated into unsupported, bifunctional, PTFE-bonded, porous gas fuel cell electrodes by commercial sources using varying PTFE contents and sintering temperatures. The object of this study is to measure the bifunctional activities of these electrodes and to observe what performance differences might result from different commercial electrode fabricators. O2 evolution and O2 reduction data were obtained at 80 C (31 percent KOH). An irreversible reaction (i.e., aging) occurred during O2 evolution at potentials greater than about 1.5 V. Anodic Tafel slopes of 0.06 and 0.12 V/decade were obtained for the aged electrodes. Within the range of 15 to 25 percent, the PTFE content was not a critical parameter for optimizing the electrode for O2 evolution activity. Sintering temperatures between 300 and 340 C may be adequate but heating at 275 C may not be sufficient to properly sinter the PTFE-NiCo2O4 mixture. Electrode disintegration was observed during O2 reduction. Transport of O2 to the NiCo2O4 surface became prohibitive at greater than about -0.02 A/sq cm. Cathodic Tafel slopes of -0.6 and -0.12 V/decade were assumed for the O2 reduction process. A PTFE content of 25 percent (or greater) appears to be preferable for sintering the PTFE-NiCo2O4 mixture.

  11. Oxygen electrode bifunctional electrocatalyst NiCo2O4 spinel

    NASA Astrophysics Data System (ADS)

    Fielder, William L.; Singer, Joseph

    1988-09-01

    A significant increase in energy density may be possible if a two-unit alkaline regenerative H2-O2 fuel cell is replaced with a single-unit system that uses passive means for H2O transfer and thermal control. For this single-unit system, new electrocatalysts for the O2 electrode will be required which are not only bifunctionally active but also chemically and electrochemically stable between the voltage range of about 0.7 and 1.5 V. NiCo2O4 spinel is reported to have certain characteristics that make it useful for a study of electrode fabrication techniques. High surface area NiCo2O4 powder was fabricated into unsupported, bifunctional, PTFE-bonded, porous gas fuel cell electrodes by commercial sources using varying PTFE contents and sintering temperatures. The object of this study is to measure the bifunctional activities of these electrodes and to observe what performance differences might result from different commercial electrode fabricators. O2 evolution and O2 reduction data were obtained at 80 C (31 percent KOH). An irreversible reaction (i.e., aging) occurred during O2 evolution at potentials greater than about 1.5 V. Anodic Tafel slopes of 0.06 and 0.12 V/decade were obtained for the aged electrodes. Within the range of 15 to 25 percent, the PTFE content was not a critical parameter for optimizing the electrode for O2 evolution activity. Sintering temperatures between 300 and 340 C may be adequate but heating at 275 C may not be sufficient to properly sinter the PTFE-NiCo2O4 mixture. Electrode disintegration was observed during O2 reduction. Transport of O2 to the NiCo2O4 surface became prohibitive at greater than about -0.02 A/sq cm. Cathodic Tafel slopes of -0.6 and -0.12 V/decade were assumed for the O2 reduction process. A PTFE content of 25 percent (or greater) appears to be preferable for sintering the PTFE-NiCo2O4 mixture.

  12. A bifunctional α-amylase/trypsin inhibitor from pigeonpea seeds: Purification, biochemical characterization and its bio-efficacy against Helicoverpa armigera.

    PubMed

    Gadge, Prafull P; Wagh, Sandip K; Shaikh, Faiyaz K; Tak, Rajesh D; Padul, Manohar V; Kachole, Manvendra S

    2015-11-01

    This paper evaluates α-amylase inhibitor (α-AI) mediated defense of pigeonpea against Helicoverpa armigera. A bifunctional α-amylase/trypsin inhibitor was purified from the seeds of pigeonpea by native liquid phase isoelectric focusing (N-LP-IEF), affinity chromatography and preparative electrophoresis. Its in-vivo and in-vitro interaction with midgut amylases of H. armigera was studied along with growth inhibitory activity. One and two dimensional (2D) zymographic analyses revealed that the purified inhibitor is dimeric glycoprotein (60.2kDa and 56kDa) exist in a multi-isomeric form with five pI variants (pI 5.5 to 6.3). It was found to be heat labile with complete inactivation up to 80°C and stable over a wide range of pH (4-11). The slow binding and competitive type of α-amylase inhibition was observed with 0.08μM of dissociation constant (Ki) for the enzyme-inhibitor complex (EI). The internal protein sequence of two subunits obtained by mass spectrometry matched with cereal-type α-AI, a conserved domain from AAI_LTSS superfamily and sialyltransferase-like protein respectively. In-vivo studies indicated up-regulation of total midgut α-amylase activity with negative effect on growth rate of H. armigera suggesting its suitability for pest control. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Biochemical Properties and Biological Function of a Monofunctional Microbial Biotin Protein Ligase

    PubMed Central

    Daniels, Kyle G.; Beckett, Dorothy

    2010-01-01

    Biotin protein ligases constitute a family of enzymes that catalyze biotin linkage to biotin-dependent carboxylases. In bacteria these enzymes are functionally divided into two classes; the monofunctional enzymes that only catalyze biotin addition and the bifunctional enzymes that also bind to DNA to regulate transcription initiation. Biochemical and biophysical studies of the bifunctional Escherichia coli ligase suggest that several properties of the enzyme have evolved to support its additional regulatory role. Included among these properties are the order of substrate binding and linkage between oligomeric state and ligand binding. PMID:20499837

  14. Enhanced tumor retention of radioiodinated anti-epidermal growth factor receptor antibody using novel bifunctional iodination linker for radioimmunotherapy

    PubMed Central

    KIM, EUN JUNG; KIM, BYOUNG SOO; CHOI, DAN BEE; CHI, SUNG-GIL; CHOI, TAE HYUN

    2016-01-01

    Radioimmunotherapy (RIT) uses an antibody labeled with a radionuclide to deliver cytotoxic radiation to a target tumor cells. Radioiodine is most commonly employed to prepare radiolabeled proteins (antibodies, peptides) for in vitro and in vivo applications. A major shortcoming of radioiodinated proteins prepared by direct labeling methods is their deiodination in vivo. For the preparation of more stable radioiodinated antibodies, we developed a new linker (N-(4-isothiocyanatobenzyl)-2-(3-(tributylstannyl)phenyl) acetamide (IBPA). This study evaluated the usefulness of IBPA as a linker for the stable radioiodinated internalizing antibody, cetuximab. Directly labeled cetuximab ([125I]-cetuximab) was prepared by the chloramine T method. To prepare indirectly labeled cetuximab using IBPA ([125I]-IBPA-cetuximab), IBPA was radioiodinated using chloramine-T to give N-(4-isothiocyanatobenzyl)-2-(3-[125I]phenyl)acetamide ([125I]-IBPA), which was purified by high performance liquid chromatography. [125I]-IBPA was then conjugated to cetuximab. In vitro target binding and internalizing assays were performed in PC9, LS174T, and FaDu cell lines. In vivo planar images were obtained using an Inveon SPECT scanner 3, 24, 48, and 168 h after i.v. injection of [125I]-cetuximab or [125I]-IBPA-cetuximab in athymic mice bearing LS174T tumor xenografts. Specific binding and internalized radioactivity of [125I]-IBPA-cetuximab were higher than those of [125I]-cetuximab in PC9, LS174T, and FaDu cell lines. In planar images scant radioactivity was evident in thyroid glands after injection of [125I]-IBPA-cetuximab, while a high level of radioactivity was present in thyroid glands after injection of [125I]-cetuximab. Tumor uptake value of [125I]-IBPA-cetuximab was higher than that of [125I]-cetuximab for up to 168 h. [125I]-IBPA-cetuximab is stable and resistant to deiodination in vivo. IBPA is a promising bi-functional linker for radioiodination of internalizing monoclonal antibodies for in

  15. Utilization of specific and non-specific peptide interactions with inorganic nanomaterials on the surface of bacteriophage M13: Methodologies towards phage supported bi-functional materials

    NASA Astrophysics Data System (ADS)

    Avery, Kendra Nicole

    Many types of organisms create a variety of nano and micro scale materials from precursors available in their surrounding environments by a process called biomineralization. As scientists begin to understand how these organisms utilize specific and non-specific interactions with a variety of biopolymers such as chitin, peptides, proteins and nucleic acids with these precursors to create inorganic/organic composite materials, they have begun to wonder about the synthesis of other types of non-biologically templated synthetic techniques that might be possible. Bioengineered organisms and biopolymers have begun to be used for these types of studies. A variety of selection techniques exist for discovering biopolymers with an affinity for a target material, however, one of the most notable is a technique called peptide phage display. This is a technique that utilizes a commercially available randomized peptide library attached at the tip of the filamentous bacteriophage M13. In this dissertation capabilities of bacteriophage M13 are explored in regard to the creation of bi-functional nano materials by exploiting both specific peptide interactions as well as non-specific peptide interactions on the surface of the organism. Chapter 2 focuses on utilizing the specific peptide interactions of the randomized library at pIII in order to discover peptides with high binding affinity for a variety of nanomaterials. Selection studies called biopanning are performed on a variety of nanomaterials such as CaMoO4, allotropes of Ni, Fe2O3 and Fe3O4, and Rh and Pt with the fcc type crystal structure. Similarities and differences between peptides discovered for these materials are discussed. Chapter 3 focuses on utilizing the non-specific peptide interactions on the long axis of M13 called pVIII. The pVIII region consists of 2700 copies of the same 50 amino acid protein which as a negatively charged domain which is exposed to solution. The pVIII region therefore provides the surface of

  16. Enhancement of (stereo)selectivity in dynamic kinetic resolution using a core-shell nanozeolite@enzyme as a bi-functional catalyst.

    PubMed

    Wang, Wanlu; Li, Xiang; Wang, Zhoujun; Tang, Yi; Zhang, Yahong

    2014-08-28

    A core-shell nanozeolite@enzyme bi-functional catalyst is constructed, which greatly improves selectivity and stereoselectivity of products in dynamic kinetic resolution of aromatic secondary alcohols compared with mixed catalysts, especially those involving small acyl donors.

  17. Cage-like bifunctional chelators, copper-64 radiopharmaceuticals and PET imaging using the same

    DOEpatents

    Conti, Peter S.; Cai, Hancheng; Li, Zibo; Liu, Shuanglong

    2016-08-02

    Disclosed is a class of versatile Sarcophagine based bifunctional chelators (BFCs) containing a hexa-aza cage for labeling with metals having either imaging, therapeutic or contrast applications radiolabeling and one or more linkers (A) and (B). The compounds have the general formula ##STR00001## where A is a functional group selected from group consisting of an amine, a carboxylic acid, an ester, a carbonyl, a thiol, an azide and an alkene, and B is a functional group selected from the group consisting of hydrogen, an amine, a carboxylic acid, and ester, a carbonyl, a thiol, an azide and an alkene. Also disclosed are conjugate of the BFC and a targeting moiety, which may be a peptide or antibody. Also disclosed are metal complexes of the BFC/targeting moiety conjugates that are useful as radiopharmaceuticals, imaging agents or contrast agents.

  18. Quantification of noise in bifunctionality-induced post-translational modification

    NASA Astrophysics Data System (ADS)

    Maity, Alok Kumar; Bandyopadhyay, Arnab; Chattopadhyay, Sudip; Chaudhuri, Jyotipratim Ray; Metzler, Ralf; Chaudhury, Pinaki; Banik, Suman K.

    2013-09-01

    We present a generic analytical scheme for the quantification of fluctuations due to bifunctionality-induced signal transduction within the members of a bacterial two-component system. The proposed model takes into account post-translational modifications in terms of elementary phosphotransfer kinetics. Sources of fluctuations due to autophosphorylation, kinase, and phosphatase activity of the sensor kinase have been considered in the model via Langevin equations, which are then solved within the framework of linear noise approximation. The resultant analytical expression of phosphorylated response regulators are then used to quantify the noise profile of biologically motivated single and branched pathways. Enhancement and reduction of noise in terms of extra phosphate outflux and influx, respectively, have been analyzed for the branched system. Furthermore, the role of fluctuations of the network output in the regulation of a promoter with random activation-deactivation dynamics has been analyzed.

  19. Preparation of bifunctional mesoporous silica nanoparticles by orthogonal click reactions and their application in cooperative catalysis.

    PubMed

    Dickschat, Arne T; Behrends, Frederik; Bühner, Martin; Ren, Jinjun; Weiss, Mark; Eckert, Hellmut; Studer, Armido

    2012-12-21

    The synthesis of bifunctional mesoporous silica nanoparticles is described. Two chemically orthogonal functionalities are incorporated into mesoporous silica by co-condensation of tetraethoxysilane with two orthogonally functionalized triethoxyalkylsilanes. Post-functionalization is achieved by orthogonal surface chemistry. A thiol-ene reaction, Cu-catalyzed 1,3-dipolar alkyne/azide cycloaddition, and a radical nitroxide exchange reaction are used as orthogonal processes to install two functionalities at the surface that differ in reactivity. Preparation of mesoporous silica nanoparticles bearing acidic and basic sites by this approach is discussed. Particles are analyzed by solid state NMR spectroscopy, elemental analysis, infrared-spectroscopy, and scanning electron microscopy. As a first application, these particles are successfully used as cooperative catalysts in the Henry reaction.

  20. Mono- and bi-functional arenethiols as surfactants for gold nanoparticles: synthesis and characterization

    NASA Astrophysics Data System (ADS)

    Vitale, Floriana; Fratoddi, Ilaria; Battocchio, Chiara; Piscopiello, Emanuela; Tapfer, Leander; Russo, Maria Vittoria; Polzonetti, Giovanni; Giannini, Cinzia

    2011-12-01

    Stable gold nanoparticles stabilized by different mono and bi-functional arenethiols, namely, benzylthiol and 1,4-benzenedimethanethiol, have been prepared by using a modified Brust's two-phase synthesis. The size, shape, and crystalline structure of the gold nanoparticles have been determined by high-resolution electron microscopy and full-pattern X-ray powder diffraction analyses. Nanocrystals diameters have been tuned in the range 2 ÷ 9 nm by a proper variation of Au/S molar ratio. The chemical composition of gold nanoparticles and their interaction with thiols have been investigated by X-ray photoelectron spectroscopy. In particular, the formation of networks has been observed with interconnected gold nanoparticles containing 1,4-benzenedimethanethiol as ligand.

  1. Synthesis of acrylic and allylic bifunctional cross-linking monomers derived from PET waste

    NASA Astrophysics Data System (ADS)

    Cruz-Aguilar, A.; Herrera-González, A. M.; Vázquez-García, R. A.; Navarro-Rodríguez, D.; Coreño, J.

    2013-06-01

    An acrylic and two novel allylic monomers synthesized from bis (hydroxyethyl) terephthalate, BHET, are reported. This was obtained by glycolysis of post-consumer PET with boiling ethylene glycol. The bifunctional monomer bis(2-(acryloyloxy)ethyl) terephthalate was obtained from acryloyl chloride, while the allylic monomers 2-(((allyloxi)carbonyl)oxy) ethyl (2-hydroxyethyl) terephthalate and bis(2-(((allyloxi)carbonyl)oxy)ethyl) terephthalate, from allyl chloroformate. Cross-linking was studied in bulk polymerization using two different thermal initiators. Monomers were analyzed by means of 1H NMR and the cross-linked polymers by infrared spectroscopy. Gel content higher than 90% was obtained for the acrylic monomer. In the case of the mixture of the allylic monomers, the cross-linked polymer was 80 % using BPO initiator, being this mixture 24 times less reactive than the acrylic monomer.

  2. Organocatalyzed asymmetric Michael addition by an efficient bifunctional carbohydrate-thiourea hybrid with mechanistic DFT analysis.

    PubMed

    Azad, Chandra S; Khan, Imran A; Narula, Anudeep K

    2016-12-28

    A series of thiourea based bifunctional organocatalysts having d-glucose as a core scaffold were synthesized and examined as catalysts for the asymmetric Michael addition reaction of aryl/alkyl trans-β-nitrostyrenes over cyclohexanone and other Michael donors having active methylene. Excellent enantioselectivities (<95%), diastereoselectivities (<99%), and yields (<99%) were attained under solvent free conditions using 10 mol% of 1d0. The obtained results were explained through DFT calculations using the B3LYP/6-311G(d,p)//B3LYP/6-31G(d) basic set. The QM/MM calculations revealed the role of cyclohexanone as a solvent as well as reactant in the rate determining step imparting 31.91 kcal mol(-1) of energy towards the product formation.

  3. Mechanistic Insights into the Mode of Action of Bifunctional Pyrrolidine-Squaramide-Derived Organocatalysts.

    PubMed

    Roca-López, David; Uria, Uxue; Reyes, Efraim; Carrillo, Luisa; Jørgensen, Karl Anker; Vicario, Jose L; Merino, Pedro

    2016-01-18

    The catalytic modes of action of three squaramide-derived bifunctional organocatalysts have been investigated using DFT methods. The [5+2] cycloaddition between oxidopyrylium ylides and enals was used as the model reaction. Two primary modes were possible for the different catalysts studied. The preference for one mode over the other was due to the possibility of additional favorable π-π interactions between the hydrogen-bond activated pyrylium ylide and an electron-deficient aromatic ring bonded to the squaramide NH group. The model can be extended to other reactions catalyzed by the same catalysts, such as formal [2+2] cycloadditions between nitroalkenes and α,β-unsaturated aldehydes. The computational results were in excellent concurrence with the available experimental reports on the observed total enantioselectivity and differences in diastereoselectivity depending on the substrate and the reaction.

  4. Bifunctional Nanoparticle-SILP Catalysts (NPs@SILP) for the Selective Deoxygenation of Biomass Substrates

    SciTech Connect

    Luska, Kylie L.; Julis, Jennifer; Stavitski, Eli; Zakharov, Dmitri N.; Adams, Alina; Leitner, Walter

    2014-08-27

    We immobilized ruthenium nanoparticles onto an acidic supported ionic liquid phase (RuNPs@SILP) in the development of bifunctional catalysts for the selective deoxygenation of biomass substrates. RuNPs@SILPs possessed high catalytic activities, selectivities and recyclabilities in the hydrogenolytic deoxygenation and ring opening of C8- and C9-substrates derived from furfural or 5-hydroxymethylfurfural and acetone. When we tailor the acidity of the SILP through the ionic liquid loading provided a molecular parameter by which the catalytic activity and selectivity of the RuNPs@SILPs were controlled to provide a flexible catalyst system toward the formation of different classes of value-added products: cyclic ethers, primary alcohols or aliphatic ethers.

  5. The fabrication of a bifunctional oxygen electrode without carbon components for alkaline secondary batteries

    NASA Astrophysics Data System (ADS)

    Price, Stephen W. T.; Thompson, Stephen J.; Li, Xiaohong; Gorman, Scott F.; Pletcher, Derek; Russell, Andrea E.; Walsh, Frank C.; Wills, Richard G. A.

    2014-08-01

    The fabrication of a gas diffusion electrode (GDE) without carbon components is described. It is therefore suitable for use as a bifunctional oxygen electrode in alkaline secondary batteries. The electrode is fabricated in two stages (a) the formation of a PTFE-bonded nickel powder layer on a nickel foam substrate and (b) the deposition of a NiCo2O4 spinel electrocatalyst layer by dip coating in a nitrate solution and thermal decomposition. The influence of modifications to the procedure on the performance of the GDEs in 8 M NaOH at 333 K is described. The GDEs can support current densities up to 100 mA cm-2 with state-of-the-art overpotentials for both oxygen evolution and oxygen reduction. Stable performance during >50 successive, 1 h oxygen reduction/evolution cycles at a current density of 50 mA cm-2 has been achieved.

  6. A Bifunctional Electrocatalyst for Oxygen Evolution and Oxygen Reduction Reactions in Water

    PubMed Central

    Faschinger, Felix; Chattopadhyay, Samir; Bhakta, Snehadri; Mondal, Biswajit; Elemans, Johannes A. A. W.; Müllegger, Stefan; Tebi, Stefano; Koch, Reinhold; Klappenberger, Florian; Paszkiewicz, Mateusz; Barth, Johannes V.; Rauls, Eva; Aldahhak, Hazem; Schmidt, Wolf Gero

    2016-01-01

    Abstract Oxygen reduction and water oxidation are two key processes in fuel cell applications. The oxidation of water to dioxygen is a 4 H+/4 e− process, while oxygen can be fully reduced to water by a 4 e−/4 H+ process or partially reduced by fewer electrons to reactive oxygen species such as H2O2 and O2 −. We demonstrate that a novel manganese corrole complex behaves as a bifunctional catalyst for both the electrocatalytic generation of dioxygen as well as the reduction of dioxygen in aqueous media. Furthermore, our combined kinetic, spectroscopic, and electrochemical study of manganese corroles adsorbed on different electrode materials (down to a submolecular level) reveals mechanistic details of the oxygen evolution and reduction processes. PMID:26773287

  7. A Bifunctional Electrocatalyst for Oxygen Evolution and Oxygen Reduction Reactions in Water

    PubMed Central

    Faschinger, Felix; Chattopadhyay, Samir; Bhakta, Snehadri; Mondal, Biswajit; Elemans, Johannes A. A. W.; Müllegger, Stefan; Tebi, Stefano; Koch, Reinhold; Klappenberger, Florian; Paszkiewicz, Mateusz; Barth, Johannes V.; Rauls, Eva; Aldahhak, Hazem; Schmidt, Wolf Gero

    2016-01-01

    Abstract Oxygen reduction and water oxidation are two key processes in fuel cell applications. The oxidation of water to dioxygen is a 4 H+/4 e− process, while oxygen can be fully reduced to water by a 4 e−/4 H+ process or partially reduced by fewer electrons to reactive oxygen species such as H2O2 and O2 −. We demonstrate that a novel manganese corrole complex behaves as a bifunctional catalyst for both the electrocatalytic generation of dioxygen as well as the reduction of dioxygen in aqueous media. Furthermore, our combined kinetic, spectroscopic, and electrochemical study of manganese corroles adsorbed on different electrode materials (down to a submolecular level) reveals mechanistic details of the oxygen evolution and reduction processes. PMID:27478281

  8. Dyes as bifunctional markers of DNA hybridization on surfaces and mutation detection.

    PubMed

    García-Mendiola, Tania; Cerro, María Ramos; López-Moreno, José María; Pariente, Félix; Lorenzo, Encarnación

    2016-10-01

    The interaction of small molecules with DNA has found diagnostic and therapeutic applications. In this work, we propose the use of two different dyes, in particular Azure A and Safranine, as bifunctional markers of on-surface DNA hybridization and potent tools for screening of specific gene mutations directly in real DNA PCR amplicons extracted from blood cells. By combining spectroscopic and electrochemical methods we demonstrate that both dyes can interact with single and double stranded DNA to a different extent, allowing reliable hybridization detection. From these data, we have also elucidated the nature of the interaction. We conclude that the binding mode is fundamentally intercalative with an electrostatic component. The dye fluorescence allows their use as nucleic acid stains for the detection of on-surfaces DNA hybridization. Its redox activity is exploited in the development of selective electrochemical DNA biosensors. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Enhancing Electrocatalytic Performance of Bifunctional Cobalt-Manganese-Oxynitride Nanocatalysts on Graphene.

    PubMed

    Li, Yang; Kuttiyiel, Kurian A; Wu, Lijun; Zhu, Yimei; Fujita, Etsuko; Adzic, Radoslav R; Sasaki, Kotaro

    2017-01-10

    We report the synthesis and characterization of graphenesupported cobalt-manganese-oxynitride nanocatalysts (CoMnON/G) as bifunctional electrocatalysts for the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). A nitriding treatment of spinel compound CoMnO increased the ORR activity considerably, and the most active material catalyzed the ORR with only a 30 mV half-wave potential difference from the commercial carbon-supported platinum (Pt/C) in alkaline media. In addition to high activity, the catalyst also exhibited an intrinsic stability that outperformed Pt/C. An appropriately designed nitridation thus facilitates new directions for developing active and durable non-precious-metal oxynitride electocatalysts.

  10. A Cascade-Reaction Nanoreactor Composed of a Bifunctional Molecularly Imprinted Polymer that Contains Pt Nanoparticles.

    PubMed

    Wang, Jiao; Zhu, Maiyong; Shen, Xiaojuan; Li, Songjun

    2015-05-11

    This study was aimed at addressing the present challenge of cascade reactions, namely, how to furnish the catalysts with desired and hierarchical catalytic ability. This issue was addressed by constructing a cascade-reaction nanoreactor made of a bifunctional molecularly imprinted polymer containing acidic catalytic sites and Pt nanoparticles. The acidic catalytic sites within the imprinted polymer allowed one specified reaction, whereas the encapsulated Pt nanoparticles were responsible for another coupled reaction. To that end, the unique imprinted polymer was fabricated by using two well-coupled templates, that is, 4-nitrophenyl acetate and 4-nitrophenol. The catalytic hydrolysis of the former compound at the acidic catalytic sites led to the formation of the latter compound, which was further reduced by the encapsulated Pt nanoparticles to 4-aminophenol. Therefore, this nanoreactor demonstrated a catalytic-cascade ability. This protocol opens up the opportunity to develop functional catalysts for complicated chemical processes.

  11. Bifunctional nanoparticles for SERS monitoring and magnetic intervention of assembly and enzyme cutting of DNAs

    SciTech Connect

    Lin, Liqin; Crew, Elizabeth; Yan, Hong; Shan, Shiyao; Skeete, Zakiya; Mott, Derrick; Krentsel, Tatiana; Yin, Jun; Chernova, Natasha A.; Luo, Jin; Engelhard, Mark H.; Wang, Chong M.; Li, Qingbiao; Zhong, Chuan-Jian

    2013-07-27

    The ability to detect and intervene in DNA assembly, disassembly, and enzyme cutting processes in a solution phase requires effective signal transduction and stimulus response. This report demonstrates a novel bifunctional strategy for the creation of this ability using gold- and silver-coated MnZn ferrite nanoparticles (MZF@Au or MZF@Ag) that impart magnetic and surfaceenhanced Raman scattering (SERS) functionalities to these processes. The double-stranded DNA linkage of labeled gold nanoparticles with MZF@Au (or MZF@Ag) produces interparticle "hot-spots" for real-time SERS monitoring of the DNA assembly, disassembly, or enzyme cutting processes, during which the magnetic component provides an effective means for intervention in the solution. The unique combination of the nanoprobes functionalities serves a new paradigm for the design of functional nanoprobes in biomolecular recognition and intervention.

  12. Bifunctional hairy silica nanoparticles as high-performance additives for lubricant

    PubMed Central

    Sui, Tianyi; Song, Baoyu; Wen, Yu-ho; Zhang, Feng

    2016-01-01

    Bifunctional hairy silica nanoparticles (BHSNs), which are silica nanoparticles covered with alkyl and amino organic chains, were prepared as high-performance additives for lubricants. Compared with hairy silica nanoparticles covered by a single type of organic chain, binary hairy silica nanoparticles exhibit the advantages of both types of organic chains, which exhibit excellent compatibility with lubricants and adsorbability to metal surfaces. Nanoparticles with different ratios of amino and alkyl ligands were investigated. In comparison to an untreated lubricant, BHSNs reduce the friction coefficient and wear scar diameter by 40% and 60%, respectively. The wear mechanism of BHSNs was investigated, and the protective and filling effect of the nanoparticles improved because of collaboration of amino and alkyl ligands. PMID:26936117

  13. Synthesis of bifunctional receptor for fluoride and cadmium based on calix[4]arene with thiourea moieties

    NASA Astrophysics Data System (ADS)

    Quiroga-Campano, C.; Gómez-Machuca, H.; Moris, S.; Jara, P.; De la Fuente, J. R.; Pessoa-Mahana, H.; Jullian, C.; Saitz, C.

    2017-08-01

    A new calix[4]arene thiourea derivative bearing a benzothiazolyl moiety (L) was synthetized and characterized by single crystal X-ray, NMR and ESI-TOF. The binding ability of the bifunctional receptor towards several ions was investigated in acetonitrile by means of UV-Visible and NMR spectroscopy. The UV-Vis studies of receptor L demonstrated a stoichiometry of 1:1 for all ions studied. Also, recognize selectively F- and Cd2+ with a detection limit of 97 and 37 μM, respectively. Also, 1H NMR titration of receptor L indicated that both thiourea bridge and phenolic hydroxyl functional groups played a critical role in the binding of F- and Cd2+ ions. 1H NMR spectrum showed that receptor L has a flattened-cone conformation in solution that changes to a cone conformation in the presence of fluoride while cadmium maintained the initial conformation.

  14. Bifunctional Catalyst Promotes Highly Enantioselective Bromolactonizations to Generate Stereogenic C–Br Bonds

    PubMed Central

    Paull, Daniel H.; Fang, Chao; Donald, James R.; Pansick, Andrew D.; Martin, Stephen F.

    2012-01-01

    A novel bifunctional catalyst derived from BINOL has been developed that promotes the highly enantioselective bromolactonizations of a number of structurally distinct unsaturated acids. Like some known catalysts, this catalyst promotes highly enantioselective bromolactonizations of 4- and 5-aryl-4-pentenoic acids, but it also catalyzes the highly enantioselective bromolactonizations of 5-alkyl-4(Z)-pentenoic acids. These reactions represent the first catalytic bromolactonizations of alkyl-substituted olefinic acids that proceed via 5-exo mode cyclizations to give lactones in which new carbon–bromine bonds are formed at a stereogenic center with high enantioselectivity. We also disclose the first catalytic desymmetrization of a prochiral dienoic acid by enantioselective bromolactonization. PMID:22726214

  15. Enhancing Electrocatalytic Performance of Bifunctional Cobalt–Manganese-Oxynitride Nanocatalysts on Graphene

    SciTech Connect

    Li, Yang; Kuttiyiel, Kurian A.; Wu, Lijun; Zhu, Yimei; Fujita, Etsuko; Adzic, Radoslav R.; Sasaki, Kotaro

    2016-11-21

    In this paper, we report the synthesis and characterization of graphenesupported cobalt–manganese-oxynitride nanocatalysts (CoMnON/G) as bifunctional electrocatalysts for the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). A nitriding treatment of spinel compound CoMnO increased the ORR activity considerably, and the most active material catalyzed the ORR with only a 30 mV half-wave potential difference from the commercial carbon-supported platinum (Pt/C) in alkaline media. In addition to high activity, the catalyst also exhibited an intrinsic stability that outperformed Pt/C. Finally, an appropriately designed nitridation thus facilitates new directions for developing active and durable non-precious-metal oxynitride electocatalysts.

  16. Bi-Functional Biobased Packing of the Cassava Starch, Glycerol, Licuri Nanocellulose and Red Propolis

    PubMed Central

    Costa, Samantha Serra; Druzian, Janice Izabel; Machado, Bruna Aparecida Souza; de Souza, Carolina Oliveira; Guimarães, Alaíse Gil

    2014-01-01

    The aim of this study was to characterize and determine the bi-functional efficacy of active packaging films produced with starch (4%) and glycerol (1.0%), reinforced with cellulose nanocrystals (0–1%) and activated with alcoholic extracts of red propolis (0.4 to 1.0%). The cellulose nanocrystals used in this study were extracted from licuri leaves. The films were characterized using moisture, water-activity analyses and water vapor-permeability tests and were tested regarding their total phenolic compounds and mechanical properties. The antimicrobial and antioxidant efficacy of the films were evaluated by monitoring the use of the active films for packaging cheese curds and butter, respectively. The cellulose nanocrystals increased the mechanical strength of the films and reduced the water permeability and water activity. The active film had an antimicrobial effect on coagulase-positive staphylococci in cheese curds and reduced the oxidation of butter during storage. PMID:25383783

  17. Bifunctional Brønsted Base Catalyzes Direct Asymmetric Aldol Reaction of α-Keto Amides.

    PubMed

    Echave, Haizea; López, Rosa; Palomo, Claudio

    2016-03-01

    The first enantioselective direct cross-aldol reaction of α-keto amides with aldehydes, mediated by a bifunctional ureidopeptide-based Brønsted base catalyst, is described. The appropriate combination of a tertiary amine base and an aminal, and urea hydrogen-bond donor groups in the catalyst structure promoted the exclusive generation of the α-keto amide enolate which reacted with either non-enolizable or enolizable aldehydes to produce highly enantioenriched polyoxygenated aldol adducts without side-products resulting from dehydration, α-keto amide self-condensation, aldehyde enolization, and isotetronic acid formation. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Rare earth modified silica-aluminas as supports for bifunctional catalysis

    SciTech Connect

    Soled, S.L.; McVicker, G.; Miseo, S.

    1996-12-31

    We have explored rare earth oxide-modified amorphous silica-aluminas as {open_quotes}permanent{close_quotes} intermediate strength acids used as supports for bifunctional catalysts. The addition of well dispersed weakly basic rare earth oxides {open_quotes}titrates{close_quotes} the stronger acid sites of amorphous silica-alumina and lowers the acid strength to the level shown by halided aluminas. Physical and chemical probes, as well as model olefin and paraffin isomerization reactions show that acid strength can be adjusted close to that of chlorided and fluorided aluminas. Metal activity is inhibited relative to halided alumina catalysts, which limits the direct metal-catalyzed dehydrocyclization reactions during paraffin reforming but does not interfere with hydroisomerization reactions.

  19. Aldo-X Bifunctional Building Blocks for the Synthesis of Heterocycles.

    PubMed

    Ravichandiran, Palanisamy; Lai, Bingbing; Gu, Yanlong

    2017-02-01

    Compounds containing oxygen, nitrogen, or sulfur atoms inside the rings are attracting much attention and interest due to their biological importance. In recent years, several methods for the synthesis of such molecules have been reported by using aldo-X bifunctional building blocks (AXB3 s) as substrates; these are a wide class of organic molecules that contain at least two reactive sites, among them, one aldehyde, acetal, or semiacetal group was involved. Because of the multiple reactivities, AXB3 s are widely used in the one-pot synthesis of biologically important heterocycles. This review summarizes the synthesis of important heterocycles by using AXB3 s as pivotal components in establishing multicomponent reactions, tandem reactions, and so forth. In many cases, the established reaction systems with AXB3 s were characterized by some green properties, such as easy access to the substrate, mild and environmentally benign conditions, and wide scope of the substrate.

  20. Bi-functional biobased packing of the cassava starch, glycerol, licuri nanocellulose and red propolis.

    PubMed

    Costa, Samantha Serra; Druzian, Janice Izabel; Machado, Bruna Aparecida Souza; de Souza, Carolina Oliveira; Guimarães, Alaíse Gil

    2014-01-01

    The aim of this study was to characterize and determine the bi-functional efficacy of active packaging films produced with starch (4%) and glycerol (1.0%), reinforced with cellulose nanocrystals (0-1%) and activated with alcoholic extracts of red propolis (0.4 to 1.0%). The cellulose nanocrystals used in this study were extracted from licuri leaves. The films were characterized using moisture, water-activity analyses and water vapor-permeability tests and were tested regarding their total phenolic compounds and mechanical properties. The antimicrobial and antioxidant efficacy of the films were evaluated by monitoring the use of the active films for packaging cheese curds and butter, respectively. The cellulose nanocrystals increased the mechanical strength of the films and reduced the water permeability and water activity. The active film had an antimicrobial effect on coagulase-positive staphylococci in cheese curds and reduced the oxidation of butter during storage.

  1. Bifunctional hairy silica nanoparticles as high-performance additives for lubricant

    NASA Astrophysics Data System (ADS)

    Sui, Tianyi; Song, Baoyu; Wen, Yu-Ho; Zhang, Feng

    2016-03-01

    Bifunctional hairy silica nanoparticles (BHSNs), which are silica nanoparticles covered with alkyl and amino organic chains, were prepared as high-performance additives for lubricants. Compared with hairy silica nanoparticles covered by a single type of organic chain, binary hairy silica nanoparticles exhibit the advantages of both types of organic chains, which exhibit excellent compatibility with lubricants and adsorbability to metal surfaces. Nanoparticles with different ratios of amino and alkyl ligands were investigated. In comparison to an untreated lubricant, BHSNs reduce the friction coefficient and wear scar diameter by 40% and 60%, respectively. The wear mechanism of BHSNs was investigated, and the protective and filling effect of the nanoparticles improved because of collaboration of amino and alkyl ligands.

  2. Polarization holograms in a bifunctional amorphous polymer exhibiting equal values of photoinduced linear and circular birefringences.

    PubMed

    Provenzano, Clementina; Pagliusi, Pasquale; Cipparrone, Gabriella; Royes, Jorge; Piñol, Milagros; Oriol, Luis

    2014-10-09

    Light-controlled molecular alignment is a flexible and useful strategy introducing novelty in the fields of mechanics, self-organized structuring, mass transport, optics, and photonics and addressing the development of smart optical devices. Azobenzene-containing polymers are well-known photocontrollable materials with large and reversible photoinduced optical anisotropies. The vectorial holography applied to these materials enables peculiar optical devices whose properties strongly depend on the relative values of the photoinduced birefringences. Here is reported a polarization holographic recording based on the interference of two waves with orthogonal linear polarization on a bifunctional amorphous polymer that, exceptionally, exhibits equal values of linear and circular birefringence. The peculiar photoresponse of the material coupled with the holographic technique demonstrates an optical device capable of decomposing the light into a set of orthogonally polarized linear components. The holographic structures are theoretically described by the Jones matrices method and experimentally investigated.

  3. Improving battery safety by early detection of internal shorting with a bifunctional separator

    NASA Astrophysics Data System (ADS)

    Wu, Hui; Zhuo, Denys; Kong, Desheng; Cui, Yi

    2014-10-01

    Lithium-based rechargeable batteries have been widely used in portable electronics and show great promise for emerging applications in transportation and wind-solar-grid energy storage, although their safety remains a practical concern. Failures in the form of fire and explosion can be initiated by internal short circuits associated with lithium dendrite formation during cycling. Here we report a new strategy for improving safety by designing a smart battery that allows internal battery health to be monitored in situ. Specifically, we achieve early detection of lithium dendrites inside batteries through a bifunctional separator, which offers a third sensing terminal in addition to the cathode and anode. The sensing terminal provides unique signals in the form of a pronounced voltage change, indicating imminent penetration of dendrites through the separator. This detection mechanism is highly sensitive, accurate and activated well in advance of shorting and can be applied to many types of batteries for improved safety.

  4. Octameric structure of the human bifunctional enzyme PAICS in purine biosynthesis.

    PubMed

    Li, Shu-Xing; Tong, Yong-Ping; Xie, Xiao-Cong; Wang, Qi-Hai; Zhou, Hui-Na; Han, Yi; Zhang, Zhan-Yu; Gao, Wei; Li, Sheng-Guang; Zhang, Xuejun C; Bi, Ru-Chang

    2007-03-09

    Phosphoribosylaminoimidazole carboxylase/phosphoribosylaminoimidazole succinocarboxamide synthetase (PAICS) is an important bifunctional enzyme in de novo purine biosynthesis in vertebrate with both 5-aminoimidazole ribonucleotide carboxylase (AIRc) and 4-(N-succinylcarboxamide)-5-aminoimidazole ribonucleotide synthetase (SAICARs) activities. It becomes an attractive target for rational anticancer drug design, since rapidly dividing cancer cells rely heavily on the purine de novo pathway for synthesis of adenine and guanine, whereas normal cells favor the salvage pathway. Here, we report the crystal structure of human PAICS, the first in the entire PAICS family, at 2.8 A resolution. It revealed that eight PAICS subunits, each composed of distinct AIRc and SAICARs domains, assemble a compact homo-octamer with an octameric-carboxylase core and four symmetric periphery dimers formed by synthetase domains. Based on structural comparison and functional complementation analyses, the active sites of SAICARs and AIRc were identified, including a putative substrate CO(2)-binding site. Furthermore, four symmetry-related, separate tunnel systems in the PAICS octamer were found that connect the active sites of AIRc and SAICARs. This study illustrated the octameric nature of the bifunctional enzyme. Each carboxylase active site is formed by structural elements from three AIRc domains, demonstrating that the octamer structure is essential for the carboxylation activity. Furthermore, the existence of the tunnel system implies a mechanism of intermediate channeling and suggests that the quaternary structure arrangement is crucial for effectively executing the sequential reactions. In addition, this study provides essential structural information for designing PAICS-specific inhibitors for use in cancer chemotherapy.

  5. VTC4 is a bifunctional enzyme that affects myoinositol and ascorbate biosynthesis in plants.

    PubMed

    Torabinejad, Javad; Donahue, Janet L; Gunesekera, Bhadra N; Allen-Daniels, Matthew J; Gillaspy, Glenda E

    2009-06-01

    Myoinositol synthesis and catabolism are crucial in many multiceullar eukaryotes for the production of phosphatidylinositol signaling molecules, glycerophosphoinositide membrane anchors, cell wall pectic noncellulosic polysaccharides, and several other molecules including ascorbate. Myoinositol monophosphatase (IMP) is a major enzyme required for the synthesis of myoinositol and the breakdown of myoinositol (1,4,5)trisphosphate, a potent second messenger involved in many biological activities. It has been shown that the VTC4 enzyme from kiwifruit (Actinidia deliciosa) has similarity to IMP and can hydrolyze l-galactose 1-phosphate (l-Gal 1-P), suggesting that this enzyme may be bifunctional and linked with two potential pathways of plant ascorbate synthesis. We describe here the kinetic comparison of the Arabidopsis (Arabidopsis thaliana) recombinant VTC4 with d-myoinositol 3-phosphate (d-Ins 3-P) and l-Gal 1-P. Purified VTC4 has only a small difference in the V(max)/K(m) for l-Gal 1-P as compared with d-Ins 3-P and can utilize other related substrates. Inhibition by either Ca(2+) or Li(+), known to disrupt cell signaling, was the same with both l-Gal 1-P and d-Ins 3-P. To determine whether the VTC4 gene impacts myoinositol synthesis in Arabidopsis, we isolated T-DNA knockout lines of VTC4 that exhibit small perturbations in abscisic acid, salt, and cold responses. Analysis of metabolite levels in vtc4 mutants showed that less myoinositol and ascorbate accumulate in these mutants. Therefore, VTC4 is a bifunctional enzyme that impacts both myoinositol and ascorbate synthesis pathways.

  6. MANOTA: a promising bifunctional chelating agent for copper-64 immunoPET.

    PubMed

    Moreau, M; Poty, S; Vrigneaud, J-M; Walker, P; Guillemin, M; Raguin, O; Oudot, A; Bernhard, C; Goze, C; Boschetti, F; Collin, B; Brunotte, F; Denat, F

    2017-09-01

    Improved bifunctional chelating agents (BFC) are required for copper-64 radiolabelling of monoclonal antibodies (mAbs) under mild conditions to yield stable, target-specific imaging agents. Four different bifunctional chelating agents (BFC) were evaluated for Fab (Fragment antigen binding) conjugation and radiolabelling with copper-64. Two DOTA- (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid) and two NOTA- (1,4,7-triazacyclononane-1,4,7-triacetic acid) derivatives bearing a p-benzyl-isothiocyanate group were conjugated to Fab-trastuzumab - which targets the HER2/neu receptor - and the average number of chelators attached ranged from 2.4 to 4.3 macrocycles per Fab. Labelling of the immunoconjugate with copper-64 was achieved in high radiochemical yields after 45 min at 37 °C, and the radiochemical purity of each (64)Cu-BFC-Fab-trastuzumab reached 97% after purification. The affinity of each (64)Cu-BFC-Fab-trastuzumab ranged between 10 and 50 nM as evaluated by in vitro saturation assays using the HCC1954 breast cancer cell line. PET-MR imaging and biodistribution studies were performed in mice bearing breast cancer BT-474 xenografts. BT-474 tumours were clearly visualized on PET images at 4 and 24 hours post-injection. The tumour uptake of (64)Cu-BFC-Fab-trastuzumab reached 8.9 to 12.8% ID g(-1) 24 hours post-injection and significant differences in non-specific liver uptake were observed depending on the BFC conjugated, the lowest being observed with MANOTA. These results show that MANOTA is a valuable tool for copper-64 radiolabelling.

  7. Novel 16-substituted bifunctional derivatives of huperzine B: multifunctional cholinesterase inhibitors

    PubMed Central

    Shi, Yu-fang; Zhang, Hai-yan; Wang, Wei; Fu, Yan; Xia, Yu; Tang, Xi-can; Bai, Dong-lu; He, Xu-chang

    2009-01-01

    Aim: To design novel bifunctional derivatives of huperzine B (HupB) based on the concept of dual binding site of acetylcholinesterase (AChE) and evaluate their pharmacological activities for seeking new drug candidates against Alzheimer's disease (AD). Methods: Novel 16-substituted bifunctional derivatives of HupB were synthesized through chemical reactions. The inhibitory activities of the derivatives toward AChE and butyrylcholinesterase (BuChE) were determined in vitro by modified Ellman's method. Cell viability was quantified by the reduction of MTT. Results: A new preparative method was developed for the generation of 16-substituted derivatives of HupB, and pharmacological trials indicated that the derivatives were multifunctional cholinesterase inhibitors targeting both AChE and BuChE. Among the derivatives tested, 9c, 9e, 9f, and 9i were 480 to 1360 times more potent as AChE inhibitors and 370 to 1560 times more potent as BuChE inhibitors than the parent HupB. Further preliminary pharmacological trials of derivatives 9c and 9i were performed, including examining the mechanism of AChE inhibition, the substrate kinetics of the enzyme inhibition, and protection against hydrogen peroxide (H2O2)-induced cytotoxicity in PC12 cells. Conclusion: Preliminary pharmacological evaluation indicated that 16-substituted derivatives of HupB, particularly 9c and 9i, would be potentially valuable new drug candidates for AD therapy, and further exploration is needed to evaluate their pharmacological and clinical efficacies. PMID:19578388

  8. p-SCN-Bn-HOPO: A Superior Bifunctional Chelator for (89)Zr ImmunoPET.

    PubMed

    Deri, Melissa A; Ponnala, Shashikanth; Kozlowski, Paul; Burton-Pye, Benjamin P; Cicek, Huseyin T; Hu, Chunhua; Lewis, Jason S; Francesconi, Lynn C

    2015-12-16

    Zirconium-89 has an ideal half-life for use in antibody-based PET imaging; however, when used with the chelator DFO, there is an accumulation of radioactivity in the bone, suggesting that the (89)Zr(4+) cation is being released in vivo. Therefore, a more robust chelator for (89)Zr could reduce the in vivo release and the dose to nontarget tissues. Evaluation of the ligand 3,4,3-(LI-1,2-HOPO) demonstrated efficient binding of (89)Zr(4+) and high stability; therefore, we developed a bifunctional derivative, p-SCN-Bn-HOPO, for conjugation to an antibody. A Zr-HOPO crystal structure was obtained showing that the Zr is fully coordinated by the octadentate HOPO ligand, as expected, forming a stable complex. p-SCN-Bn-HOPO was synthesized through a novel pathway. Both p-SCN-Bn-HOPO and p-SCN-Bn-DFO were conjugated to trastuzumab and radiolabeled with (89)Zr. Both complexes labeled efficiently and achieved specific activities of approximately 2 mCi/mg. PET imaging studies in nude mice with BT474 tumors (n = 4) showed good tumor uptake for both compounds, but with a marked decrease in bone uptake for the (89)Zr-HOPO-trastuzumab images. Biodistribution data confirmed the lower bone activity, measuring 17.0%ID/g in the bone at 336 h for (89)Zr-DFO-trastuzumab while (89)Zr-HOPO-trastuzumab only had 2.4%ID/g. We successfully synthesized p-SCN-Bn-HOPO, a bifunctional derivative of 3,4,3-(LI-1,2-HOPO) as a potential chelator for (89)Zr. In vivo studies demonstrate the successful use of (89)Zr-HOPO-trastuzumab to image BT474 breast cancer with low background, good tumor to organ contrast, and, importantly, very low bone uptake. The reduced bone uptake seen with (89)Zr-HOPO-trastuzumab suggests superior stability of the (89)Zr-HOPO complex.

  9. Defective DNA cross-link removal in Chinese hamster cell mutants hypersensitive to bifunctional alkylating agents

    SciTech Connect

    Hoy, C.A.; Thompson, L.H.; Mooney, C.L.; Salazar, E.P.

    1985-04-01

    DNA repair-deficient mutants from five genetic complementation groups isolated previously from Chinese hamster cells were assayed for survival after exposure to the bifunctional alkylating agents mitomycin C or diepoxybutane. Groups 1, 3, and 5 exhibited 1.6- to 3-fold hypersensitivity compared to the wild-type cells, whereas Groups 2 and 4 exhibited extraordinary hypersensitivity. Mutants from Groups 1 and 2 were exposed to 22 other bifunctional alkylating agents in a rapid assay that compared cytotoxicity of the mutants to the wild-type parental strain, AA8. With all but two of the compounds, the Group 2 mutant (UV4) was 15- to 60-fold more sensitive than AA8 or the Group 1 mutant (UV5). UV4 showed only 6-fold hypersensitivity to quinacrine mustard. Alkaline elution measurements showed that this compound produced few DNA interstrand cross-links but numerous strand breaks. Therefore, the extreme hypersensitivity of mutants from Groups 2 and 4 appeared specific for compounds the main cytotoxic lesions of which were DNA cross-links. Mutant UV5 was only 1- to 4-fold hypersensitive to all the compounds. Although the initial number of cross-links was similar for the three cell lines, the efficiency of removal of cross-links was lowest in UV4 and intermediate in UV5. These results suggest that the different levels of sensitivity are specifically related to different efficiencies of DNA cross-link removal. The phenotype of hypersensitivity to both UV radiation and cross-link damage exhibited by the mutants in Groups 2 and 4 appears to differ from those of the known human DNA repair syndromes.

  10. Mitigation of nitrogen mustard mediated skin injury by a novel indomethacin bifunctional prodrug.

    PubMed

    Composto, Gabriella M; Laskin, Jeffrey D; Laskin, Debra L; Gerecke, Donald R; Casillas, Robert P; Heindel, Ned D; Joseph, Laurie B; Heck, Diane E

    2016-06-01

    Nitrogen mustard (NM) is a bifunctional alkylating agent that is highly reactive in the skin causing extensive tissue damage and blistering. In the present studies, a modified cutaneous murine patch model was developed to characterize NM-induced injury and to evaluate the efficacy of an indomethacin pro-drug in mitigating toxicity. NM (20μmol) or vehicle control was applied onto 6mm glass microfiber filters affixed to the shaved dorsal skin of CD-1 mice for 6min. This resulted in absorption of approximately 4μmol of NM. NM caused localized skin damage within 1 d, progressing to an eschar within 2-3 d, followed by wound healing after 4-5 d. NM-induced injury was associated with increases in skin thickness, inflammatory cell infiltration, reduced numbers of sebocytes, basal keratinocyte double stranded DNA breaks, as measured by phospho-histone 2A.X expression, mast cell degranulation and increases in inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). Wound healing was characterized by epidermal hyperplasia and marked increases in basal cells expressing proliferating cell nuclear antigen. A novel indomethacin-anticholinergic prodrug (4338) designed to target cyclooxygenases and acetylcholinesterase (AChE), was found to markedly suppress NM toxicity, decreasing wound thickness and eschar formation. The prodrug also inhibited mast cell degranulation, suppressed keratinocyte expression of iNOS and COX-2, as well as markers of epidermal proliferation. These findings indicate that a novel bifunctional pro-drug is effective in limiting NM mediated dermal injury. Moreover, our newly developed cutaneous patch model is a sensitive and reproducible method to assess the mechanism of action of countermeasures. Copyright © 2016. Published by Elsevier Inc.

  11. Purification and characterization of a bifunctional alginate lyase from Pseudoalteromonas sp. SM0524.

    PubMed

    Li, Jian-Wei; Dong, Sheng; Song, Jie; Li, Chun-Bo; Chen, Xiu-Lan; Xie, Bin-Bin; Zhang, Yu-Zhong

    2011-01-21

    An alginate lyase-producing bacterial strain, Pseudoalteromonas sp. SM0524, was screened from marine rotten kelp. In an optimized condition, the production of alginate lyase from Pseudoalteromonas sp. SM0524 reached 62.6 U/mL, suggesting that strain SM0524 is a good producer of alginate lyases. The bifunctional alginate lyase aly-SJ02 secreted by strain SM0524 was purified. Aly-SJ02 had an apparent molecular mass of 32 kDa. The optimal temperature and pH of aly-SJ02 toward sodium alginate was 50 °C and 8.5, respectively. The half life period of aly-SJ02 was 41 min at 40 °C and 20 min at 50 °C. Aly-SJ02 was most stable at pH 8.0. N-terminal sequence analysis suggested that aly-SJ02 may be an alginate lyase of polysaccharide lyase family 18. Aly-SJ02 showed activities toward both polyG (α-l-guluronic acid) and polyM (β-D-mannuronic acid), indicating that it is a bifunctional alginate lyase. Aly-SJ02 had lower K(m) toward polyG than toward polyM and sodium alginate. Thin layer chromatography and ESI-MS analyses showed that aly-SJ02 mainly released dimers and trimers from polyM and alginate, and trimers and tetramers from polyG, which suggests that aly-SJ02 may be a good tool to produce dimers and trimers from alginate.

  12. Synthesis and Evaluation of New Generation Cross-Bridged Bifunctional Chelator for (64)Cu Radiotracers.

    PubMed

    Dale, Ajit V; An, Gwang Il; Pandya, Darpan N; Ha, Yeong Su; Bhatt, Nikunj; Soni, Nisarg; Lee, Hochun; Ahn, Heesu; Sarkar, Swarbhanu; Lee, Woonghee; Huynh, Phuong Tu; Kim, Jung Young; Gwon, Mi-Ri; Kim, Sung Hong; Park, Jae Gyu; Yoon, Young-Ran; Yoo, Jeongsoo

    2015-09-08

    Bifunctional chelators have been successfully used to construct (64)Cu-labeled radiopharmaceuticals. Previously reported chelators with cross-bridged cyclam backbones have various essential features such as high stability of the copper(II) complex, high efficiency of radiolabeling at room temperature, and good biological inertness of the radiolabeled complex, along with rapid body clearance. Here, we report a new generation propylene-cross-bridged chelator with hybrid acetate/phosphonate pendant groups (PCB-TE1A1P) developed with the aim of combining these key properties in a single chelator. The PCB-TE1A1P was synthesized from cyclam with good overall yield. The Cu(II) complex of our chelator showed good robustness in kinetic stability evaluation experiments, such as acidic decomplexation and cyclic voltammetry studies. The Cu(II) complex of PCB-TE1A1P remained intact under highly acidic conditions (12 M HCl, 90 °C) for 8 d and showed quasi-reversible reduction/oxidation peaks at -0.77 V in electrochemical studies. PCB-TE1A1P was successfully radiolabeled with (64)Cu ions in an acetate buffer at 60 °C within 60 min. The electrophoresis study revealed that the (64)Cu-PCB-TE1A1P complex has net negative charge in aqueous solution. The biodistribution and in vivo stability study profiles of (64)Cu-PCB-TE1A1P indicated that the radioactive complex was stable under physiological conditions and cleared rapidly from the body. A whole body positron emission tomography (PET) imaging study further confirmed high in vivo stability and fast clearance of the complex in mouse models. In conclusion, PCB-TE1A1P has good potential as a bifunctional chelator for (64)Cu-based radiopharmaceuticals, especially those involving peptides.

  13. Boosting Bifunctional Oxygen Electrolysis for N-Doped Carbon via Bimetal Addition.

    PubMed

    Wang, Jian; Ciucci, Francesco

    2017-02-15

    The addition of transition metals, even in a trace amount, into heteroatom-doped carbon (M-N/C) is intensively investigated to further enhance oxygen reduction reaction (ORR) activity. However, the influence of metal decoration on the electrolysis of the reverse reaction of ORR, that is, oxygen evolution reaction (OER), is seldom reported. Moreover, further improving the bifunctional activity and corrosion tolerance for carbon-based materials remains a big challenge, especially in OER potential regions. Here, bimetal-decorated, pyridinic N-dominated large-size carbon tubes (MM'-N/C) are proposed for the first time as highly efficient and durable ORR and OER catalysts. FeFe-N/C, CoCo-N/C, NiNi-N/C, MnMn-N/C, FeCo-N/C, NiFe-N/C, FeMn-N/C, CoNi-N/C, MnCo-N/C, and NiMn-N/C are systematically investigated in terms of their structure, composition, morphology, surface area, and active site densities. In contrast to conventional monometal and N-decorated carbon, small amounts of bimetal (≈2 at%) added during the one-step template-free synthesis contribute to increased pyridinic N content, much longer and more robust carbon tubes, reduced metal particle size, and stronger coupling between the encapsulated metals and carbon support. The synergy of those factors accounts for the dramatically improved ORR and OER activity and stability. By comparison, NiFe-N/C and MnCo-N/C stand out and achieve superior bifunctional oxygen catalytic performance, exceeding most of state-of-the-art catalysts.

  14. Paenibacillus sp. Strain E18 Bifunctional Xylanase-Glucanase with a Single Catalytic Domain▿

    PubMed Central

    Shi, Pengjun; Tian, Jian; Yuan, Tiezheng; Liu, Xin; Huang, Huoqing; Bai, Yingguo; Yang, Peilong; Chen, Xiaoyan; Wu, Ningfeng; Yao, Bin

    2010-01-01

    Xylanases are utilized in a variety of industries for the breakdown of plant materials. Most native and engineered bifunctional/multifunctional xylanases have separate catalytic domains within the same polypeptide chain. Here we report a new bifunctional xylanase (XynBE18) produced by Paenibacillus sp. E18 with xylanase and β-1,3-1,4-glucanase activities derived from the same active center by substrate competition assays and site-directed mutagenesis of xylanase catalytic Glu residues (E129A and E236A). The gene consists of 981 bp, encodes 327 amino acids, and comprises only one catalytic domain that is highly homologous to the glycoside hydrolase family 10 xylanase catalytic domain. Recombinant XynBE18 purified from Escherichia coli BL21(DE3) showed specificity toward oat spelt xylan and birchwood xylan and β-1,3-1,4-glucan (barley β-glucan and lichenin). Homology modeling and molecular dynamic simulation were used to explore structure differences between XynBE18 and the monofunctional xylanase XynE2, which has enzymatic properties similar to those of XynBE18 but does not hydrolyze β-1,3-1,4-glucan. The cleft containing the active site of XynBE18 is larger than that of XynE2, suggesting that XynBE18 is able to bind larger substrates such as barley β-glucan and lichenin. Further molecular docking studies revealed that XynBE18 can accommodate xylan and β-1,3-1,4-glucan, but XynE2 is only accessible to xylan. These results indicate a previously unidentified structure-function relationship for substrate specificities among family 10 xylanases. PMID:20382811

  15. Electrochemical formation of transparent nanostructured TiO2 film as an effective bifunctional layer for dye-sensitized solar cells.

    PubMed

    Wu, Mao-Sung; Tsai, Chen-Hsiu; Wei, Tzu-Chien

    2011-03-14

    A bifunctional TiO(2) layer having an inner compact layer and an outer anchoring layer coated on fluorine-doped tin oxide (FTO) glass could reduce the charge recombination and interfacial contact resistance between FTO and the main TiO(2) layer; photoelectron conversion efficiency of cell was increased from 7.31 to 8.04% by incorporating the bifunctional layer.

  16. Single-chain bifunctional vascular endothelial growth factor (VEGF)-follicle-stimulating hormone (FSH)-C-terminal peptide (CTP) is superior to the combination therapy of recombinant VEGF plus FSH-CTP in stimulating angiogenesis during ovarian folliculogenesis.

    PubMed

    Trousdale, Rhonda K; Pollak, Susan V; Klein, Jeffrey; Lobel, Leslie; Funahashi, Yasuhiro; Feirt, Nikki; Lustbader, Joyce W

    2007-03-01

    Infertility technologies often employ exogenous gonadotropin therapy to increase antral follicle production. In an effort to enhance ovarian response, several long-acting FSH therapies have been developed including an FSH-C-terminal peptide (CTP), where the FSH subunits are linked by the CTP moiety from human chorionic gonadotropin, which is responsible for the increased half-life of human chorionic gonadotropin. We found that administration of FSH-CTP for ovarian hyperstimulation in rats blunted ovarian follicle vascular development. In women, reduced ovarian vasculature has been associated with lower pregnancy rates. We were interested in determining whether vascular endothelial growth factor (VEGF) therapy could enhance ovarian angiogenesis in FSH-CTP-treated rats. Coadministration of systemic FSH-CTP plus recombinant VEGF was compared with treatment with a novel, single-chain bifunctional VEGF-FSH-CTP (VFC) analog. For VFC, the FSH portion targets the protein to the ovary and stimulates follicle growth, whereas VEGF enhances local vascular development. Both in vitro and in vivo studies confirm the dual FSH and VEGF action of the VFC protein. Evaluation of ovarian follicle development demonstrates that administration of combination therapy using VEGF and FSH-CTP failed to increase follicle vasculature above levels seen with FSH-CTP monotherapy. However, treatment with VFC significantly increased follicle vascular development while concurrently increasing the number of large antral follicles produced. In conclusion, we report the production and characterization of a long-acting, bifunctional VEGF-FSH-CTP protein that is superior to combination therapy for enhancing VEGF activity in the ovary and stimulating follicular angiogenesis in rats.

  17. Cloning and analysis of a bifunctional methyltransferase/restriction endonuclease TspGWI, the prototype of a Thermus sp. enzyme family

    PubMed Central

    Zylicz-Stachula, Agnieszka; Bujnicki, Janusz M; Skowron, Piotr M

    2009-01-01

    Background Restriction-modification systems are a diverse class of enzymes. They are classified into four major types: I, II, III and IV. We have previously proposed the existence of a Thermus sp. enzyme family, which belongs to type II restriction endonucleases (REases), however, it features also some characteristics of types I and III. Members include related thermophilic endonucleases: TspGWI, TaqII, TspDTI, and Tth111II. Results Here we describe cloning, mutagenesis and analysis of the prototype TspGWI enzyme that recognises the 5'-ACGGA-3' site and cleaves 11/9 nt downstream. We cloned, expressed, and mutagenised the tspgwi gene and investigated the properties of its product, the bifunctional TspGWI restriction/modification enzyme. Since TspGWI does not cleave DNA completely, a cloning method was devised, based on amino acid sequencing of internal proteolytic fragments. The deduced amino acid sequence of the enzyme shares significant sequence similarity with another representative of the Thermus sp. family – TaqII. Interestingly, these enzymes recognise similar, yet different sequences in the DNA. Both enzymes cleave DNA at the same distance, but differ in their ability to cleave single sites and in the requirement of S-adenosylmethionine as an allosteric activator for cleavage. Both the restriction endonuclease (REase) and methyltransferase (MTase) activities of wild type (wt) TspGWI (either recombinant or isolated from Thermus sp.) are dependent on the presence of divalent cations. Conclusion TspGWI is a bifunctional protein comprising a tandem arrangement of Type I-like domains; particularly noticeable is the central HsdM-like module comprising a helical domain and a highly conserved S-adenosylmethionine-binding/catalytic MTase domain, containing DPAVGTG and NPPY motifs. TspGWI also possesses an N-terminal PD-(D/E)XK nuclease domain related to the corresponding domains in HsdR subunits, but lacks the ATP-dependent translocase module of the HsdR subunit

  18. Imaging Cancer Using PET – the Effect of the Bifunctional Chelator on the Biodistribution of a 64Cu-Labeled Antibody

    PubMed Central

    Dearling, Jason L.J.; Voss, Stephan D.; Dunning, Patricia; Snay, Erin; Fahey, Frederic; Smith, Suzanne V.; Huston, James S.; Meares, Claude F.; Treves, S. Ted; Packard, Alan B.

    2010-01-01

    Introduction Use of copper radioisotopes in antibody radiolabeling is challenged by reported loss of the radionuclide from the bifunctional chelator used to label the protein. The objective of this study was to investigate the relationship between the thermodynamic stability of the 64Cu-complexes of five commonly used bifunctional chelators (BFCs) and the biodistribution of an antibody labeled with 64Cu using these chelators in tumor-bearing mice. Methods The chelators (p-NH2-Bn-NOTA, BAT-6, p-NH2-Bn-DOTA, DOTA, and SarAr) were conjugated to the anti-GD2 antibody ch14.18, and the conjugated antibody was labeled with 64Cu and injected into mice bearing subcutaneous human melanoma tumors (M21) (n = 3-5 for each study). Biodistribution data were obtained from PET images acquired at 1, 24 and 48 hours post-injection, and at 48 hours post-injection a full ex vivo biodistribution study was carried out. Results The biodistribution, including tumor targeting, was similar for all the radioimmunoconjugates. At 48 h post-injection, the only statistically significant differences in radionuclide uptake (p < 0.05) were between blood, liver, spleen and kidney. For example, liver uptake of [64Cu]ch14.18-p-NH2-Bn-NOTA was 4.74 ± 0.77 per cent of the injected dose per gram of tissue (%ID/g), and for [64Cu]ch14.18-SarAr was 8.06 ± 0.77 %ID/g. Differences in tumor targeting correlated with variations in tumor size rather than which BFC was used. Conclusions The results of this study indicate that differences in the thermodynamic stability of these chelator-Cu(II) complexes were not associated with significant differences in uptake of the tracer by the tumor. However, there were significant differences in tracer concentration in other tissues, including those involved in clearance of the radioimmunoconjugate (e.g., liver and spleen). PMID:21220127

  19. A novel bifunctional GH51 exo-α-l-arabinofuranosidase/endo-xylanase from Alicyclobacillus sp. A4 with significant biomass-degrading capacity.

    PubMed

    Yang, Wenxia; Bai, Yingguo; Yang, Peilong; Luo, Huiying; Huang, Huoqing; Meng, Kun; Shi, Pengjun; Wang, Yaru; Yao, Bin

    2015-01-01

    Improving the hydrolytic performance of xylanolytic enzymes on arabinoxylan is of importance in the ethanol fermentation industry. Supplementation of debranching (arabinofuranosidase) and depolymerizing (xylanase) enzymes is a way to address the problem. In the present study, we identified a bifunctional α-l-arabinofuranosidase/endo-xylanase (Ac-Abf51A) of glycoside hydrolase family 51 in Alicyclobacillus sp. strain A4. Its biochemical stability and great hydrolysis efficiency against complex biomass make it a potential candidate for the production of biofuels. The gene encoding Ac-Abf51A was cloned. The comparison of its sequence with reference proteins having resolved 3D-structures revealed nine key residues involved in catalysis and substrate-binding interaction. Recombinant Ac-Abf51A produced in Escherichia coli showed optimal activity at pH 6.0 and 60 °C with 4-nitrophenyl-α-l-arabinofuranoside as the substrate. The enzyme exhibited an exo-type mode of action on polyarabinosides by catalyzing the cleavage of α-1,2- and α-1,3-linked arabinofuranose side chains in sugar beet arabinan and water-soluble wheat arabinoxylan and α-1,5-linked arabinofuranosidic bonds in debranched sugar beet arabinan. Surprisingly, it had capacity to release xylobiose and xylotriose from wheat arabinoxylan and was active on xylooligosaccharides (xylohexaose 1.2/mM/min, xylopentaose 6.9/mM/min, and xylotetraose 19.7/mM/min), however a lower level of activity. Moreover, Ac-Abf51A showed greater synergistic effect in combination with xylanase (2.92-fold) on wheat arabinoxylan degradation than other reported enzymes, for the amounts of arabinose, xylose, and xylobiose were all increased in comparison to that by the enzymes acting individually. This study for the first time reports a GH51 enzyme with both exo-α-l-arabinofuranosidase and endo-xylanase activities. It was stable over a broad pH range and at high temperature, and showed greater synergistic effect with xylanase on the

  20. Mesoporous amorphous binary Ru–Ti oxides as bifunctional catalysts for non-aqueous Li–O2 batteries

    NASA Astrophysics Data System (ADS)

    Kim, Jisu; Jo, HeeGoo; Wu, Mihye; Yoon, Dae-Ho; Kang, Yongku; Jung, Ha-Kyun

    2017-04-01

    Mesoporous amorphous binary Ru–Ti oxides were prepared as bifunctional catalysts for non-aqueous Li–O2 batteries, and their electrochemical performance was investigated for the first time. A Li–O2 battery with mesoporous amorphous binary Ru–Ti oxides exhibited a remarkably high capacity of 27100 mAh g‑1 as well as a reduced overpotential. A GITT analysis suggested that the introduction of amorphous TiO2 to amorphous RuO2 was responsible for the enhanced kinetics toward both the oxygen reduction reaction and oxygen evolution reaction. Excellent cyclic stability up to 230 cycles was achieved, confirming the applicability of the new bifunctional catalyst in non-aqueous Li–O2 batteries.

  1. Purification, crystallization and preliminary X-ray crystallographic analysis of rice bifunctional α-amylase/subtilisin inhibitor from Oryza sativa

    SciTech Connect

    Lin, Yi-Hung; Peng, Wen-Yan; Huang, Yen-Chieh; Guan, Hong-Hsiang; Hsieh, Ying-Cheng; Liu, Ming-Yih; Chang, Tschining; Chen, Chun-Jung

    2006-08-01

    The crystallization of rice α-amylase/subtilisin bifunctional inhibitor is reported. Rice bifunctional α-amylase/subtilisin inhibitor (RASI) can inhibit both α-amylase from larvae of the red flour beetle (Tribolium castaneum) and subtilisin from Bacillus subtilis. The synthesis of RASI is up-regulated during the late milky stage in developing seeds. The 8.9 kDa molecular-weight RASI from rice has been crystallized using the hanging-drop vapour-diffusion method. According to 1.81 Å resolution X-ray diffraction data from rice RASI crystals, the crystal belongs to space group P2{sub 1}2{sub 1}2, with unit-cell parameters a = 79.99, b = 62.95, c = 66.70 Å. Preliminary analysis indicates two RASI molecules in an asymmetric unit with a solvent content of 44%.

  2. Mesoporous amorphous binary Ru-Ti oxides as bifunctional catalysts for non-aqueous Li-O2 batteries.

    PubMed

    Kim, Jisu; Jo, HeeGoo; Wu, Mihye; Yoon, Dae-Ho; Kang, Yongku; Jung, Ha-Kyun

    2017-04-07

    Mesoporous amorphous binary Ru-Ti oxides were prepared as bifunctional catalysts for non-aqueous Li-O2 batteries, and their electrochemical performance was investigated for the first time. A Li-O2 battery with mesoporous amorphous binary Ru-Ti oxides exhibited a remarkably high capacity of 27100 mAh g(-1) as well as a reduced overpotential. A GITT analysis suggested that the introduction of amorphous TiO2 to amorphous RuO2 was responsible for the enhanced kinetics toward both the oxygen reduction reaction and oxygen evolution reaction. Excellent cyclic stability up to 230 cycles was achieved, confirming the applicability of the new bifunctional catalyst in non-aqueous Li-O2 batteries.

  3. Comparing kinetic profiles between bifunctional and binary type of Zn(salen)-based catalysts for organic carbonate formation

    PubMed Central

    Martín, Carmen

    2014-01-01

    Summary Zn(salen) complexes have been employed as active catalysts for the formation of cyclic carbonates from epoxides and CO2. A series of kinetic experiments was carried out to obtain information about the mechanism for this process catalyzed by these complexes and in particular about the order-dependence in catalyst. A comparative analysis was done between the binary catalyst system Zn(salphen)/NBu4I and a bifunctional system Zn(salpyr)·MeI with a built-in nucleophile. The latter system demonstrates an apparent second-order dependence on the bifunctional catalyst concentration and thus follows a different, bimetallic mechanism as opposed to the binary catalyst that is connected with a first-order dependence on the catalyst concentration and a monometallic mechanism. PMID:25161742

  4. Comparing kinetic profiles between bifunctional and binary type of Zn(salen)-based catalysts for organic carbonate formation.

    PubMed

    Martín, Carmen; Kleij, Arjan W

    2014-01-01

    Zn(salen) complexes have been employed as active catalysts for the formation of cyclic carbonates from epoxides and CO2. A series of kinetic experiments was carried out to obtain information about the mechanism for this process catalyzed by these complexes and in particular about the order-dependence in catalyst. A comparative analysis was done between the binary catalyst system Zn(salphen)/NBu4I and a bifunctional system Zn(salpyr)·MeI with a built-in nucleophile. The latter system demonstrates an apparent second-order dependence on the bifunctional catalyst concentration and thus follows a different, bimetallic mechanism as opposed to the binary catalyst that is connected with a first-order dependence on the catalyst concentration and a monometallic mechanism.

  5. Post-modified acid-base bifunctional MIL-101(Cr) for one-pot deacetalization-Knoevenagel reaction

    NASA Astrophysics Data System (ADS)

    Mu, Manman; Yan, Xilong; Li, Yang; Chen, Ligong

    2017-04-01

    A novel and convenient approach for the construction of the bifunctional MIL-101 material bearing sulfonic acid and amino groups was established via the post-synthetic modification. This material possesses high BET surface area (1446 m2/g) and large pore volume (0.77 cm3/g). Significantly, this material could serve as a bifunctional heterogeneous catalyst and was initially employed for one-pot deacetalization-Knoevenagel reaction, exhibiting excellent catalytic performance (yield 99.74%). More importantly, it can be easily recovered and reused at least three times. Finally, our proposed catalytic mechanism indicated that amino and the sulfonic acid groups played a synergistic effect on this one-pot deacetalization-Knoevenagel reaction.

  6. "Bis-Click" Ligation of DNA: Template-Controlled Assembly, Circularisation and Functionalisation with Bifunctional and Trifunctional Azides.

    PubMed

    Yang, Haozhe; Seela, Frank

    2017-03-08

    Ligation and circularisation of oligonucleotides containing terminal triple bonds was performed with bifunctional or trifunctional azides. Both reactions are high yielding. Template-assisted bis-click ligation of two individual non-complementary oligonucleotide strands was accomplished to yield heterodimers exclusively. In this context, the template fulfils two functions: it accelerates the ligation reaction and controls product assembly (heterodimer vs. homodimer formation). Intermolecular bis-click circularisation of one oligonucleotide strand took place without template assistance. For construction of oligonucleotides with terminal triple bonds in the nucleobase side chain, 7- or 5-functionalised 7-deaza-dA and dU residues were used. These oligonucleotides are directly accessible by solid-phase synthesis. When trifunctional azides were employed instead of bifunctional linkers, functionalisation of the remaining azido group was performed with small molecules such as 1-ethynyl pyrene, biotin propargyl amide or with ethynylated oligonucleotides. By this means, branched DNA was constructed.

  7. Self -organization of Au-CdSe hybrid nanoflowers at different length scales via bi-functional diamine linkers

    NASA Astrophysics Data System (ADS)

    AbouZeid, Khaled Mohamed; Mohamed, Mona Bakr; El-Shall, M. Samy

    2016-01-01

    This work introduces a series of molecular bridging bi-functional linkers to produce laterally self-assembled nanostructures of the Au-CdSe nanoflowers on different length scales ranging from 10 nm to 100 microns. Assembly of Au nanocrystals within amorphous CdSe rods is found in the early stages of the growth of the Au-CdSe nanoflowers. The Au-CdSe nanoflowers are formed through a one-pot low temperature (150 °C) process where CdSe clusters are adsorbed on the surface of the Au cores, and they then start to form multiple arms and branches resulting in flower-shaped hybrid nanostructures. More complex assembly at a micron length scale can be achieved by means of bi-functional capping agents with appropriate alkyl chain lengths, such as 1,12-diaminododecane.

  8. N,P-Codoped Carbon Networks as Efficient Metal-free Bifunctional Catalysts for Oxygen Reduction and Hydrogen Evolution Reactions.

    PubMed

    Zhang, Jintao; Qu, Liangti; Shi, Gaoquan; Liu, Jiangyong; Chen, Jianfeng; Dai, Liming

    2016-02-05

    The high cost and scarcity of noble metal catalysts, such as Pt, have hindered the hydrogen production from electrochemical water splitting, the oxygen reduction in fuel cells and batteries. Herein, we developed a simple template-free approach to three-dimensional porous carbon networks codoped with nitrogen and phosphorus by pyrolysis of a supermolecular aggregate of self-assembled melamine, phytic acid, and graphene oxide (MPSA/GO). The pyrolyzed MPSA/GO acted as the first metal-free bifunctional catalyst with high activities for both oxygen reduction and hydrogen evolution. Zn-air batteries with the pyrolyzed MPSA/GO air electrode showed a high peak power density (310 W g(-1) ) and an excellent durability. Thus, the pyrolyzed MPSA/GO is a promising bifunctional catalyst for renewable energy technologies, particularly regenerative fuel cells.

  9. Catalytic Behavior Study of Bifunctional Hydrogen-Bonding Catalysts Guided by Free Energy Relationship Analyses of Steric Parameters.

    PubMed

    Li, Xin; Yang, Chen; Wang, Jie; Liu, Yang; Ni, Xiang; Cheng, JinPei

    2017-02-28

    Free energy relationship (FER) studies to correlate steric parameters against enantiocatalytic performance of bifunctional tertiary-amine hydrogen-bonding type catalysts, including (S, S)-cyclohexane-1, 2-diamine derived thioureas, Cinchona alkaloid derived thioureas and (S, S)-cyclohexane-1, 2-diamine derived squaramides, for Michael reactions revealed that the Michael reactions are much favored by catalysts with less bulky N-substituents. The observed FERs are independent of chiral scaffold and hydrogen-bond donors, deepening the understanding of current bifunctional hydrogen-bonding catalysts. Moreover, DFT calculations were performed to interpret the observed high reactivities of thioureas with less bulky substituents. Especially, the computations demonstrated the advantage of benzyl thiourea catalyst, in which extra CH-π interaction of hydrogen bond between catalyst and substrate should be the key point.

  10. Peroxisomal. beta. -oxidation enzyme proteins in adrenoleukodystrophy: distinction between x-linked adrenoleukodystrophy and neonatal adrenoleukodystrophy

    SciTech Connect

    Chen, W.W.; Watkins, P.A.; Osumi, T.; Hashimoto, T.; Moser, H.W.

    1987-03-01

    Very long chain fatty acids, which accumulate in plasma and tissues in x-linked adrenoleukodystrophy (ALD), neonatal ALD, and the Zellweger cerebrohepatorenal syndrome, are degraded by the peroxisomal ..beta..-oxidation pathway, consisting of acyl-CoA oxidase, the bifunctional enoyl-CoA hydratase/3-hydroxyacyl-CoA dehydrogenase, and ..beta..-ketothiolase. A marked deficiency of all three enzyme proteins was reported in livers from patients with the Zellweger syndrome, a disorder in which peroxisomes are decreased or absent. Peroxisomes are not as markedly decreased in neonatal ALD and appear normal in x-linked ALD. Immunoblot analysis of the peroxisomal ..beta..-oxidation enzymes revealed an almost complete lack of the bifunctional enzymes in neonatal ALD liver, similar to the finding in Zellweger tissues. In contrast, acyl-CoA oxidase and ..beta..-ketothiolase were present in neonatal ALD liver, although the thiolase appeared to be in precursor form (2-3 kDa larger than the mature enzyme) in neonatal ALD. Unlike either neonatal ALD or Zellweger syndrome, all three peroxisomal ..beta..-oxidation enzymes were present in x-linked ALD liver. Despite the absence in neonatal ALD liver of bifunctional enzyme protein, its mRNA was detected by RNA blot analysis in fibroblasts from these patients. These observations suggest that lack of bifunctional enzyme protein in neonatal ALD results from either abnormal translation of the mRNA or degradation of the enzyme prior to its entry into peroxisomes.

  11. Bifunctional recombinant cellulase-xylanase (rBhcell-xyl) from the polyextremophilic bacterium Bacillus halodurans TSLV1 and its utility in valorization of renewable agro-residues.

    PubMed

    Rattu, Gurdeep; Joshi, Swati; Satyanarayana, T

    2016-11-01

    The thermostable bifunctional CMCase and xylanase encoding gene (rBhcell-xyl) from Bacillus halodurans TSLV1 has been expressed in Escherichia coli. The recombinant E. coli produced rBhcell-xyl (CMCase 2272 and 910 U L(-1) xylanase). The rBhcell-xyl is a ~62-kDa monomeric protein with temperature and pH optima of 60 °C and 6.0 with T1/2 of 7.0 and 3.5 h at 80 °C for CMCase and xylanase, respectively. The apparent K m values (CMC and Birchwood xylan) are 3.8 and 3.2 mg mL(-1). The catalytic efficiency (k cat/K m ) values of xylanase and CMCase are 657 and 171 mL mg(-1) min(-1), respectively. End-product analysis confirmed that rBhcell-xyl is a unique endo-acting enzyme with exoglucanase activity. The rBhcell-xyl is a GH5 family enzyme possessing single catalytic module and carbohydrate binding module. The action of rBhcell-xyl on corn cobs and wheat bran liberated reducing sugars, which can be fermented to bioethanol and fine biochemicals.

  12. Ent-kaurene synthase from the fungus Phaeosphaeria sp. L487. cDNA isolation, characterization, and bacterial expression of a bifunctional diterpene cyclase in fungal gibberellin biosynthesis.

    PubMed

    Kawaide, H; Imai, R; Sassa, T; Kamiya, Y

    1997-08-29

    ent-Kaurene is the first cyclic diterpene intermediate of gibberellin biosynthesis in both plants and fungi. In plants, ent-kaurene is synthesized from geranylgeranyl diphosphate via copalyl diphosphate in a two-step cyclization catalyzed by copalyl diphosphate synthase and ent-kaurene synthase. A cell-free system of the fungus Phaeosphaeria sp. L487 converted labeled geranylgeranyl diphosphate to ent-kaurene. A cDNA fragment, which possibly encodes copalyl diphosphate synthase, was isolated by reverse transcription-polymerase chain reaction using degenerate primers based on the consensus motifs of plant enzymes. Translation of a full-length cDNA sequence isolated from the fungal cDNA library revealed an open reading frame for a 106-kDa polypeptide. The deduced amino acid sequence shared 24 and 21% identity with maize copalyl diphosphate synthase and pumpkin ent-kaurene synthase, respectively. A fusion protein produced by expression of the cDNA in Escherichia coli catalyzed the two-step cyclization of geranylgeranyl diphosphate to ent-kaurene. Amo-1618 completely inhibited the copalyl diphosphate synthase activity of the enzyme at 10(-6) M, whereas it did not inhibit the ent-kaurene synthase activity even at 10(-4) M. These results indicate that the fungus has a bifunctional diterpene cyclase that can convert geranylgeranyl diphosphate into ent-kaurene. They may be separate catalytic sites for the two cyclization reactions.

  13. Highly active and durable core-corona structured bifunctional catalyst for rechargeable metal-air battery application.

    PubMed

    Chen, Zhu; Yu, Aiping; Higgins, Drew; Li, Hui; Wang, Haijiang; Chen, Zhongwei

    2012-04-11

    A new class of core-corona structured bifunctional catalyst (CCBC) consisting of lanthanum nickelate centers supporting nitrogen-doped carbon nanotubes (NCNT) has been developed for rechargeable metal-air battery application. The nanostructured design of the catalyst allows the core and corona to catalyze the oxygen evolution reaction (OER) and oxygen reduction reaction (ORR), respectively. These materials displayed exemplary OER and ORR activity through half-cell testing, comparable to state of the art commercial lanthanum nickelate (LaNiO(3)) and carbon-supported platinum (Pt/C), with added bifunctional capabilities allowing metal-air battery rechargeability. LaNiO(3) and Pt/C are currently the most accepted benchmark electrocatalyst materials for the OER and ORR, respectively; thus with comparable activity toward both of these reactions, CCBC are presented as a novel, inexpensive catalyst component for the cathode of rechargeable metal-air batteries. Moreover, after full-range degradation testing (FDT) CCBC retained excellent activity, retaining 3 and 13 times greater ORR and OER current upon comparison to state of the art Pt/C. Zinc-air battery performances of CCBC is in good agreement with the half-cell experiments with this bifunctional electrocatalyst displaying high activity and stability during battery discharge, charge, and cycling processes. Owing to its outstanding performance toward both the OER and ORR, comparable with the highest performing commercial catalysts to date for each of the respective reaction, coupled with high stability and rechargeability, CCBC is presented as a novel class of bifunctional catalyst material that is very applicable to future generation rechargeable metal-air batteries.

  14. Synergistic bifunctional catalyst design based on perovskite oxide nanoparticles and intertwined carbon nanotubes for rechargeable zinc-air battery applications.

    PubMed

    Lee, Dong Un; Park, Hey Woong; Park, Moon Gyu; Ismayilov, Vugar; Chen, Zhongwei

    2015-01-14

    Advanced morphology of intertwined core-corona structured bifunctional catalyst (IT-CCBC) is introduced where perovskite lanthanum nickel oxide nanoparticles (LaNiO3 NP) are encapsulated by high surface area network of nitrogen-doped carbon nanotubes (NCNT) to produce highly active and durable bifunctional catalyst for rechargeable metal-air battery applications. The unique composite morphology of IT-CCBC not only enhances the charge transport property by providing rapid electron-conduction pathway but also facilitates in diffusion of hydroxyl and oxygen reactants through the highly porous framework. Confirmed by electrochemical half-cell testing, IT-CCBC in fact exhibits very strong synergy between LaNiO3 NP and NCNT demonstrating bifunctionality with significantly improved catalytic activities of oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). Furthermore, when compared to the state-of-art catalysts, IT-CCBC outperforms Pt/C and Ir/C in terms of ORR and OER, respectively, and shows improved electrochemical stability compared to them after cycle degradation testing. The practicality of the catalyst is corroborated by testing in a realistic rechargeable zinc-air battery utilizing atmospheric air in ambient conditions, where IT-CCBC demonstrates superior charge and discharge voltages and long-term cycle stability with virtually no battery voltage fading. These improved electrochemical properties of the catalyst are attributed to the nanosized dimensions of LaNiO3 NP controlled by simple hydrothermal technique, which enables prolific growth of and encapsulation by highly porous NCNT network. The excellent electrochemical results presented in this study highlight IT-CCBC as highly efficient and commercially viable bifunctional catalyst for rechargeable metal-air battery applications.

  15. 6,6'-Dihydroxy terpyridine: a proton-responsive bifunctional ligand and its application in catalytic transfer hydrogenation of ketones.

    PubMed

    Moore, Cameron M; Szymczak, Nathaniel K

    2013-01-14

    The ligand 6,6'-dihydroxy terpyridine (dhtp) is presented as a bifunctional ligand capable of directing proton transfer events with metal-coordinated substrates. Solid-state analysis of a Ru(II)-dhtp complex reveals directed hydrogen-bonding interactions of the hydroxyl groups of dhtp with a Ru-bound chloride ligand. The utility of dhtp was demonstrated by chemoselective transfer hydrogenation of ketones.

  16. Engineering a trifunctional proline utilization A chimaera by fusing a DNA-binding domain to a bifunctional PutA

    PubMed Central

    Arentson, Benjamin W.; Hayes, Erin L.; Zhu, Weidong; Singh, Harkewal; Tanner, John J.; Becker, Donald F.

    2016-01-01

    Proline utilization A (PutA) is a bifunctional flavoenzyme with proline dehydrogenase (PRODH) and Δ1-pyrroline-5-carboxylate (P5C) dehydrogenase (P5CDH) domains that catalyses the two-step oxidation of proline to glutamate. Trifunctional PutAs also have an N-terminal ribbon–helix–helix (RHH) DNA-binding domain and moonlight as autogenous transcriptional repressors of the put regulon. A unique property of trifunctional PutA is the ability to switch functions from DNA-bound repressor to membrane-associated enzyme in response to cellular nutritional needs and proline availability. In the present study, we attempt to construct a trifunctional PutA by fusing the RHH domain of Escherichia coli PutA (EcRHH) to the bifunctional Rhodobacter capsulatus PutA (RcPutA) in order to explore the modular design of functional switching in trifunctional PutAs. The EcRHH–RcPutA chimaera retains the catalytic properties of RcPutA while acquiring the oligomeric state, quaternary structure and DNA-binding properties of EcPutA. Furthermore, the EcRHH–RcPutA chimaera exhibits proline-induced lipid association, which is a fundamental characteristic of functional switching. Unexpectedly, RcPutA lipid binding is also activated by proline, which shows for the first time that bifunctional PutAs exhibit a limited form of functional switching. Altogether, these results suggest that the C-terminal domain (CTD), which is conserved by trifunctional PutAs and certain bifunctional PutAs, is essential for functional switching in trifunctional PutAs. PMID:27742866

  17. Engineering a trifunctional proline utilization A chimaera by fusing a DNA-binding domain to a bifunctional PutA.

    PubMed

    Arentson, Benjamin W; Hayes, Erin L; Zhu, Weidong; Singh, Harkewal; Tanner, John J; Becker, Donald F

    2016-12-01

    Proline utilization A (PutA) is a bifunctional flavoenzyme with proline dehydrogenase (PRODH) and Δ(1)-pyrroline-5-carboxylate (P5C) dehydrogenase (P5CDH) domains that catalyses the two-step oxidation of proline to glutamate. Trifunctional PutAs also have an N-terminal ribbon-helix-helix (RHH) DNA-binding domain and moonlight as autogenous transcriptional repressors of the put regulon. A unique property of trifunctional PutA is the ability to switch functions from DNA-bound repressor to membrane-associated enzyme in response to cellular nutritional needs and proline availability. In the present study, we attempt to construct a trifunctional PutA by fusing the RHH domain of Escherichia coli PutA (EcRHH) to the bifunctional Rhodobacter capsulatus PutA (RcPutA) in order to explore the modular design of functional switching in trifunctional PutAs. The EcRHH-RcPutA chimaera retains the catalytic properties of RcPutA while acquiring the oligomeric state, quaternary structure and DNA-binding properties of EcPutA. Furthermore, the EcRHH-RcPutA chimaera exhibits proline-induced lipid association, which is a fundamental characteristic of functional switching. Unexpectedly, RcPutA lipid binding is also activated by proline, which shows for the first time that bifunctional PutAs exhibit a limited form of functional switching. Altogether, these results suggest that the C-terminal domain (CTD), which is conserved by trifunctional PutAs and certain bifunctional PutAs, is essential for functional switching in trifunctional PutAs. © 2016 The Author(s).

  18. Rare-earth-doped bifunctional alkaline-earth metal fluoride nanocrystals via a facile microwave-assisted process.

    PubMed

    Pang, Min; Liu, Dapeng; Lei, Yongqian; Song, Shuyan; Feng, Jing; Fan, Weiqiang; Zhang, Hongjie

    2011-06-20

    Rare-earth-doped magnetic-optic bifunctional alkaline-earth metal fluoride nanocrystals have been successfully synthesized via a facile microwave-assisted process. The as-prepared nanocrystals were monodisperse and could form stable colloidal solutions in polar solvents, such as water and ethanol. They show bright-green fluorescence emisson. Furthermore, Gd(3+)-doped ones exhibit paramagnetic behavior at room temperature and superparamagnetic behavior at 2 K.

  19. Vanadium nanobelts coated nickel foam 3D bifunctional electrode with excellent catalytic activity and stability for water electrolysis

    NASA Astrophysics Data System (ADS)

    Yu, Yu; Li, Pei; Wang, Xiaofang; Gao, Wenyu; Shen, Zongxu; Zhu, Yanan; Yang, Shuliang; Song, Weiguo; Ding, Kejian

    2016-05-01

    Pursuit of highly active, stable and low-cost electrocatalysts for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) is the key point for large-scale water splitting. A vanadium nanobelts coating on a nickel foam (V/NF) is proposed as an excellent 3D bifunctional electrode for water electrolysis here, which exhibits high activities with overpotentials of 292 and 176 mV at 10 mA cm-2 for OER and HER, respectively. When employed as a bifunctional electrocatalyst in an alkaline water electrolyzer, a cell voltage of 1.80 V was required to achieve 20 mA cm-2 with a slight increase during a 24 h durability test. The existence of the appropriate amount of nitrogen and oxygen elements in the surface region of vanadium nanobelts is regarded to be responsible for the electrocatalytic activity.Pursuit of highly active, stable and low-cost electrocatalysts for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) is the key point for large-scale water splitting. A vanadium nanobelts coating on a nickel foam (V/NF) is proposed as an excellent 3D bifunctional electrode for water electrolysis here, which exhibits high activities with overpotentials of 292 and 176 mV at 10 mA cm-2 for OER and HER, respectively. When employed as a bifunctional electrocatalyst in an alkaline water electrolyzer, a cell voltage of 1.80 V was required to achieve 20 mA cm-2 with a slight increase during a 24 h durability test. The existence of the appropriate amount of nitrogen and oxygen elements in the surface region of vanadium nanobelts is regarded to be responsible for the electrocatalytic activity. Electronic supplementary information (ESI) available: More SEM, TEM images, XRD patterns, LSV curves, XPS spectra. See DOI: 10.1039/c6nr02395a

  20. Cooperation of two bifunctional enzymes in the biosynthesis and attachment of deoxysugars of the antitumor antibiotic mithramycin.

    PubMed

    Wang, Guojun; Pahari, Pallab; Kharel, Madan K; Chen, Jing; Zhu, Haining; Van Lanen, Steven G; Rohr, Jürgen

    2012-10-15

    Two bifunctional enzymes cooperate in the assembly and the positioning of two sugars, D-olivose and D-mycarose, of the anticancer antibiotic mithramycin. MtmC finishes the biosynthesis of both sugar building blocks depending on which MtmGIV activity is supported. MtmGIV transfers these two sugars onto two structurally distinct acceptor substrates. The dual function of these enzymes explains two essential but previously unidentified activities.

  1. Watt-Level Continuous-Wave Emission from a Bi-Functional Quantum Cascade Laser/Detector

    DTIC Science & Technology

    2017-04-18

    seas.harvard.edu Abstract Bi-functional active regions , capable of light generation and detection at the same wavelength, allow a straightforward realization of...to build lasers, detectors as well as modulators. Moving to longer wavelength, e.g. the mid-infrared ngerprint region , active optical components...such as lasers and detectors, are increasingly dicult to realize, especially when aiming for room-temperature operation The mid-infrared region is

  2. Molecular and biochemical characterization of bifunctional pyruvate decarboxylases and pyruvate ferredoxin oxidoreductases from Thermotoga maritima and Thermotoga hypogea.

    PubMed

    Eram, Mohammad S; Wong, Alton; Oduaran, Erica; Ma, Kesen

    2015-12-01

    Hyperthermophilic bacteria Thermotoga maritima and Thermotoga hypogea produce ethanol as a metabolic end product, which is resulted from acetaldehyde reduction catalysed by an alcohol dehydrogenase (ADH). However, the enzyme that is involved in the production of acetaldehyde from pyruvate is not well characterized. An oxygen sensitive and coenzyme A-dependent pyruvate decarboxylase (PDC) activity was found to be present in cell free extracts of T. maritima and T. hypogea. Both enzymes were purified and found to have pyruvate ferredoxin oxidoreductase (POR) activity, indicating their bifunctionality. Both PDC and POR activities from each of the purified enzymes were characterized in regards to their optimal assay conditions including pH dependency, oxygen sensitivity, thermal stability, temperature dependency and kinetic parameters. The close relatedness of the PORs that was shown by sequence analysis could be an indication of the presence of such bifunctionality in other hyperthermophilic bacteria. This is the first report of a bifunctional PDC/POR enzyme in hyperthermophilic bacteria. The PDC and the previously reported ADHs are most likely the key enzymes catalysing the production of ethanol from pyruvate in bacterial hyperthermophiles.

  3. Activity modulation of core and shell in nanozeolite@enzyme bi-functional catalyst for dynamic kinetic resolution.

    PubMed

    Li, Xiang; Yan, Yueer; Wang, Wanlu; Zhang, Yahong; Tang, Yi

    2015-01-15

    A core-shell nanozeolite@enzyme bi-functional catalyst is prepared by using nanozeolite β as acidic core and immobilized Candida antarctica lipase B (CALB) as enzyme shell for the purpose of dynamic kinetic resolution (DKR), and polydiallyldimethylammonium chloride (PDDA) is used as interlayer to compart core and shell. The activities of core and shell in bi-functional catalyst are modulated to achieve the matching between racemization and kinetic resolution (KR) rates in DKR, i.e., a slow racemization rate on core while a fast KR rate on shell. Nanozeolite β with intermediate SiO2/Al2O3 ratio provides proper acid amount for racemization step. A relatively thick layer of PDDA not only improves the activity of CALB by its coverage for surface acidic sites but also limits the accessibility and diffusion of substrate towards the acidic core. The CALB shell with larger immobilized amount and higher enzyme activity offers enhanced driving force of DKR process, leading to higher conversion, selectivity and yield. The preparation and activity modulation of core-shell catalyst provide an ideal method to improve the catalytic performance of bi-functional catalyst. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Theoretical Study on Highly Active Bifunctional Metalloporphyrin Catalysts for the Coupling Reaction of Epoxides with Carbon Dioxide.

    PubMed

    Hasegawa, Jun-Ya; Miyazaki, Ray; Maeda, Chihiro; Ema, Tadashi

    2016-10-01

    Highly active bifunctional metalloporphyrin catalysts were developed for the coupling reaction of epoxides with CO2 to produce cyclic carbonates. The bifunctional catalysts have both quaternary ammonium halide groups and a metal center. To elucidate the roles of these catalytic groups, DFT calculations were performed. Control reactions using tetrabutylammonium halide as a catalyst were also investigated for comparison. In the present article, the results of our computational studies are overviewed. The computational results are consistent with the experimental data and are useful for elucidating the structure-activity relationship. The key features responsible for the high catalytic activity of the bifunctional catalysts are as follows: 1) the cooperative action of the halide anion (nucleophile) and the metal center (Lewis acid); 2) the near-attack conformation, leading to the efficient opening of the epoxide ring in the rate-determining step; and 3) the conformational change of the quaternary ammonium cation to stabilize various anionic species generated during catalysis, in addition to the robustness (thermostability) of the catalysts.

  5. Bi-functional air electrodes for metal-air batteries. Final report, September 15, 1993--December 14, 1994

    SciTech Connect

    Swette, L.L.; Manoukian, M.; LaConti, A.B.

    1995-12-01

    The program was directed to the need for development of bifunctional air electrodes for Zn-Air batteries for the consumer market. The Zn-Air system, widely used as a primary cell for hearing-aid batteries and as a remote-site power source in industrial applications, has the advantage of high energy density, since it consumes oxygen from the ambient air utilizing a thin, efficient fuel-cell-type gas-diffusion electrode, and is comparatively low in cost. The disadvantages of the current technology are a relatively low rate capability, and the lack of simple reversibility. {open_quotes}Secondary{close_quotes} Zn-Air cells require a third electrode for oxygen evolution or mechanical replacement of the Zinc anodes; thus the development of a bifunctional air electrode (i.e., an electrode that can alternately consume and evolve oxygen) would be a significant advance in Zn-Air cell technology. Evaluations of two carbon-free non-noble metal perovskite-type catalyst systems, La{sub 1-x}CA{sub x}CoO{sub 3} as bifunctional catalysts for potential application in Zn-air batteries were carried out. The technical objectives were to develop higher-surface-area materials and to fabricate reversible electrodes by modifying the hydrophobic/hydrophilic balance of the catalyst-binder structures.

  6. Structure of the Bifunctional Acyltransferase/Decarboxylase LnmK from the Leinamycin Biosynthetic Pathway Revealing Novel Activity for a Double-Hot-Dog Fold

    SciTech Connect

    Lohman, Jeremy R.; Bingman, Craig A.; George N. Phillips Jr.; Shen, Ben

    2013-01-15

    The β-branched C3 unit in leinamycin biosynthesis is installed by a set of four proteins, LnmFKLM. In vitro biochemical investigation confirmed that LnmK is a bifunctional acyltransferase/decarboxylase (AT/DC) that catalyzes first self-acylation using methylmalonyl-CoA as a substrate and subsequently transacylation of the methylmalonyl group to the phosphopantetheinyl group of the LnmL acyl carrier protein [Liu, T., Huang, Y., and Shen, B. (2009) J. Am. Chem. Soc. 131, 6900–6901]. LnmK shows no sequence homology to proteins of known function, representing a new family of AT/DC enzymes. Here we report the X-ray structure of LnmK. LnmK is homodimer with each of the monomers adopting a double-hot-dog fold. Cocrystallization of LnmK with methylmalonyl-CoA revealed an active site tunnel terminated by residues from the dimer interface. But, to canonical AT and ketosynthase enzymes that employ Ser or Cys as an active site residue, none of these residues are found in the vicinity of the LnmK active site. Instead, three tyrosines were identified, one of which, Tyr62, was established, by site-directed mutagenesis, to be the most likely active site residue for the AT activity of LnmK. Moreover, LnmK represents the first AT enzyme that employs a Tyr as an active site residue and the first member of the family of double-hot-dog fold enzymes that displays an AT activity known to date. The LnmK structure sets the stage for probing of the DC activity of LnmK through site-directed mutagenesis. These findings highlight natural product biosynthetic machinery as a rich source of novel enzyme activities, mechanisms, and structures.

  7. Synthesis of the Arabidopsis Bifunctional Lysine-Ketoglutarate Reductase/Saccharopine Dehydrogenase Enzyme of Lysine Catabolism Is Concertedly Regulated by Metabolic and Stress-Associated Signals1

    PubMed Central

    Stepansky, Asya; Galili, Gad

    2003-01-01

    In plants, excess cellular lysine (Lys) is catabolized into glutamic acid and acetyl-coenzyme A; yet, it is still not clear whether this pathway has other functions in addition to balancing Lys levels. To address this issue, we examined the effects of stress-related hormones, abscisic acid (ABA), and jasmonate, as well as various metabolic signals on the production of the mRNA and polypeptide of the bifunctional Lys-ketoglutarate reductase (LKR)/saccharopine dehydrogenase (SDH) enzyme, which contains the first two linked enzymes of Lys catabolism. The level of LKR/SDH was strongly enhanced by ABA, jasmonate, and sugar starvation, whereas excess sugars and nitrogen starvation reduced its level; thus this pathway appears to fulfill multiple functions in stress-related and carbon/nitrogen metabolism. Treatments with combination of hormones and/or metabolites, as well as use of ABA mutants in conjunction with the tester sugars mannose and 3-O-methyl-glucose further supported the idea that the hormonal and metabolic signals apparently operate through different signal transduction cascades. The stimulation of LKR/SDH protein expression by ABA is regulated by a signal transduction cascade that contains the ABI1-1 and ABI2-1 protein phosphatases. By contrast, the stimulation of LKR/SDH protein expression by sugar starvation is regulated by the hexokinase-signaling cascade in a similar manner to the repression of many photosynthetic genes by sugars. These findings suggest a metabolic and mechanistic link between Lys catabolism and photosynthesis-related metabolism in the regulation of carbon/nitrogen partitioning. PMID:14576281

  8. A bifunctional delta-fatty acyl acetylenase/desaturase from the moss Ceratodon purpureus. A new member of the cytochrome b5 superfamily.

    PubMed

    Sperling, P; Lee, M; Girke, T; Zähringer, U; Stymne, S; Heinz, E

    2000-06-01

    Many plant genes have been cloned that encode regioselective desaturases catalyzing the formation of cis-unsaturated fatty acids. However, very few genes have been cloned that encode enzymes catalyzing the formation of the functional groups found in unusual fatty acids (e.g. hydroxy, epoxy or acetylenic fatty acids). Here, we describe the characterization of an acetylenase from the moss Ceratodon purpureus with a regioselectivity differing from the previously described Delta12-acetylenase. The gene encoding this protein, together with a Delta6-desaturase, was cloned by a PCR-based approach with primers derived from conserved regions in Delta5-, Delta6-fatty-acid desaturases and Delta8-sphingolipid desaturases. The proteins that are encoded by the two cloned cDNAs are likely to consist of a N-terminal extension of unknown function, a cytochrome b5-domain, and a C-terminal domain that is similar to acyl lipid desaturases with characteristic histidine boxes. The proteins were highly homologous in sequence to the Delta6-desaturase from the moss Physcomitrella patens. When these two cDNAs were expressed in Saccharomyces cerevisiae, both transgenic yeast cultures desaturated Delta9-unsaturated C16- and C18-fatty acids by inserting an additional Delta6cis-double bond. One of these transgenic yeast clones was also able to introduce a Delta6-triple bond into gamma-linolenic and stearidonic acid. This resulted in the formation of 9,12,15-(Z,Z,Z)-octadecatrien-6-ynoic acid, the main fatty acid found in C. pupureus. These results demonstrate that the Delta6-acetylenase from C. pupureus is a bifunctional enzyme, which can introduce a Delta6cis-double bond into 9,12,(15)-C18-polyenoic acids as well as converting a Delta6cis-double bond to a Delta6-triple bond.

  9. Pharmacological characterization of the bifunctional opioid ligand H-Dmt-Tic-Gly-NH-Bzl (UFP-505).

    PubMed

    Dietis, N; McDonald, J; Molinari, S; Calo, G; Guerrini, R; Rowbotham, D J; Lambert, D G

    2012-02-01

    While producing good-quality analgesia, µ-opioid (MOP) receptor activation produces a number of side-effects including tolerance. Simultaneous blockade of δ-opioid (DOP) receptors has been shown to reduce tolerance to morphine. Here, we characterize a prototype bifunctional opioid H-Dmt-Tic-Gly-NH-Bzl (UFP-505). We measured receptor binding affinity in Chinese hamster ovary (CHO) cells expressing recombinant human MOP, DOP, k-opioid (KOP), nociceptin/orphanin (NOP) receptors. For activation, we measured the binding of GTPγ(35)S to membranes from CHO(hMOP), CHO(hDOP), rat cerebrocortex, and rat spinal cord. In addition, we assessed 'end organ' responses in the guinea pig ileum and mouse vas deferens. UFP-505 bound to CHO(hMOP) and CHO(hDOP) with (binding affinity) pK(i) values of 7.79 and 9.82, respectively. There was a weak interaction at KOP and NOP (pK(i) 6.29 and 5.86). At CHO(hMOP), UFP-505 stimulated GTPγ(35)S binding with potency (pEC(50)) of 6.37 and in CHO(hDOP) reversed the effects of a DOP agonist with affinity (pK(b)) of 9.81 (in agreement with pK(i) at DOP). UFP-505 also stimulated GTPγ(35)S binding in rat cerebrocortex and spinal cord with pEC(50) values of 6.11-6.53. In the guinea pig ileum (MOP-rich preparation), UFP-505 inhibited contractility with pEC(50) of 7.50 and in the vas deferens (DOP-rich preparation) reversed the effects of a DOP agonist with an affinity (pA(2)) of 9.15. We have shown in a range of preparations and assays that UFP-505 behaves as a potent MOP agonist and DOP antagonist; a MOP/DOP bifunctional opioid. Further studies in dual expression systems and whole animals with this prototype are warranted.

  10. Hexadentate bispidine derivatives as versatile bifunctional chelate agents for copper(II) radioisotopes.

    PubMed

    Juran, Stefanie; Walther, Martin; Stephan, Holger; Bergmann, Ralf; Steinbach, Jörg; Kraus, Werner; Emmerling, Franziska; Comba, Peter

    2009-02-01

    The preparation and use of bispidine derivatives (3,7-diazabicyclo[3.3.1]nonane) as chelate ligands for radioactive copper isotopes for diagnosis (64Cu) or therapy (67Cu) are reported. Starting from the hexadentate bispidine-based bis(amine)tetrakis(pyridine) ligand 1 with a keto and two ester substituents, the corresponding mono-ol 2 and two dicarboxylic acid derivatives 3 and 5 have been synthesized. A range of techniques, including single-crystal X-ray structure analysis, UV/vis spectroscopy, cyclic voltammetry, thin-layer- (TLC), and high-performance liquid chromatography (HPLC), have been used to characterize the structure and stability of the copper(II)-bispidine complexes. A rapid formation (within 1 min) of stable copper(II)-bispidine complexes under mild conditions (ambient temperature, aqueous solution) has been observed. Challenge experiments of these complexes in the presence of a high excess of competing ligands, such as glutathione, cyclam, or superoxide dismutase (SOD), as well as in rat plasma, gave no evidence of demetalation or transchelation. The bifunctional bispidine derivative 5 can be readily functionalized with biologically active molecules at the pendant carboxylate groups. The coupling of a bombesin analogue betahomo-Glu-betaAla-betaAla-[Cha(13),Nle(14)]BBN(7-14), by condensation of a carboxylate of the bispidine backbone with the N-terminus of the peptide produced the bifunctional ligand 6. The radiocopper(II) complex of this bombesin-bispidine conjugate has a considerable hydrophilicity (log D(o/w) < -2.4), and this leads to a very fast blood clearance (blood: 0.28 +/- 0.02 SUV, 1 h p.i.), low liver tissue accumulation (liver: 1.20 +/- 0.27 SUV, 1 h p.i.), and rapid renal-urinary excretion (kidneys: 6.06 +/- 2.96 SUV, 1 h p.i.) as shown by biodistribution studies of 64Cu-6 in Wistar rats. Preliminary in vivo studies of 64Cu-6 in NMRI nu/nu mice, bearing the human prostate tumor PC-3 showed an accumulation of the conjugate in the tumor (2

  11. Evolution of the Bifunctional Lead μ Agonist / δ Antagonist Containing the Dmt-Tic Opioid Pharmacophore.

    PubMed

    Balboni, Gianfranco; Salvadori, Severo; Trapella, Claudio; Knapp, Brian I; Bidlack, Jean M; Lazarus, Lawrence H; Peng, Xuemei; Neumeyer, John L

    2010-02-17

    Based on a renewed importance recently attributed to bi- or multifunctional opioids, we report the synthesis and pharmacological evaluation of some analogues derived from our lead μ agonist / δ antagonist, H-Dmt-Tic-Gly-NH-Bzl. Our previous studies focused on the importance of the C-teminal benzyl function in the induction of such bifunctional activity. The introduction of some substituents in the para position of the phenyl ring (-Cl, -CH(3), partially -NO(2), inactive -NH(2)) was found to give a more potent μ agonist / antagonist effect associated with a relatively unmodified δ antagonist activity (pA(2) = 8.28-9.02). Increasing the steric hindrance of the benzyl group (using diphenylmethyl and tetrahydroisoquinoline functionalities) substantially maintained the μ agonist and δ antagonist activities of the lead compound. Finally and quite unexpectedly D-Tic2, considered as a wrong opioid message now; inserted into the reference compound in lieu of L-Tic, provided a μ agonist / δ agonist better than our reference ligand (H-Dmt-Tic-Gly-NH-Ph) and was endowed with the same pharmacological profile.

  12. Cu/Ag-based bifunctional nanoparticles obtained by one-pot laser-assisted galvanic replacement

    NASA Astrophysics Data System (ADS)

    Giorgetti, Emilia; Marsili, Paolo; Canton, Patrizia; Muniz-Miranda, Maurizio; Caporali, Stefano; Giammanco, Francesco

    2013-01-01

    We have prepared, for the first time, stable and uncapped Ag/Cu-based bifunctional nanoparticles (NPs) (BFNPs) in water, by combining ps laser ablation in liquid environment and galvanic replacement. The particles were obtained in a single step by 1,064 nm irradiation of a Cu target in water solutions of AgNO3 or AgNO2. Under proper salt concentration and irradiation conditions, the laser beam activates formation of deep orange colloids, which are positively charged and stable for weeks. High resolution transmission electron microscopy (HRTEM) analysis showed a predominance of composite crystalline nanostructures with size in the 1-15 nm range and consisting of fcc Ag and fcc Cu (or its oxides). While CuO tenorite crystalline phase was detected by HRTEM, X-ray photoelectron spectroscopy analysis permitted to observe also the Cu(I) oxidation state of Cu, being the Cu(I)/Cu(II) ratio different in the samples obtained in AgNO3 or AgNO2 baths. Functionalization with organic ligands and subsequent Raman tests demonstrated the SERS activity of the BFNPs and the existence of different complexing surface sites.

  13. New bifunctional antioxidant/σ1 agonist ligands: Preliminary chemico-physical and biological evaluation.

    PubMed

    Arena, Emanuela; Cacciatore, Ivana; Cerasa, Laura S; Turkez, Hasan; Pittalà, Valeria; Pasquinucci, Lorella; Marrazzo, Agostino; Parenti, Carmela; Di Stefano, Antonio; Prezzavento, Orazio

    2016-07-15

    We previously reported bifunctional sigma-1 (σ1) ligands endowed with antioxidant activity (1 and 2). In the present paper, pure enantiomers (R)-1 and (R)-2 along with the corresponding p-methoxy (6, 11), p-fluoro derivatives (7, 12) were synthesized. σ1 and σ2 affinities, antioxidant properties, and chemico-physical profiles were evaluated. Para derivatives, while maintaining strong σ1 affinity, displayed improved σ1 selectivity compared to the parent compounds 1 and 2. In vivo evaluation of compounds 1, 2, (R)-1, 7, and 12 showed σ1 agonist pharmacological profile. Chemico-physical studies revealed that amides 2, 11 and 12 were more stable than corresponding esters 1, 6 and 7 under our experimental conditions. Antioxidant properties were exhibited by fluoro derivatives 7 and 12 being able to increase total antioxidant capacity (TAC). Our results underline that p-substituents have an important role on σ1 selectivity, TAC, chemical and enzymatic stabilities. In particular, our data suggest that new very selective compounds 7 and 12 could be promising tools to investigate the disorders in which σ1 receptor dysfunction and oxidative stress are contemporarily involved.

  14. Highly Active and Durable Nanocrystal-Decorated Bifunctional Electrocatalyst for Rechargeable Zinc-Air Batteries.

    PubMed

    Lee, Dong Un; Park, Moon Gyu; Park, Hey Woong; Seo, Min Ho; Wang, Xiaolei; Chen, Zhongwei

    2015-09-21

    A highly active and durable bifunctional electrocatalyst that consists of cobalt oxide nanocrystals (Co3 O4 NC) decorated on the surface of N-doped carbon nanotubes (N-CNT) is introduced as effective electrode material for electrically rechargeable zinc-air batteries. This active hybrid catalyst is synthesized by a facile surfactant-assisted method to produce Co3 O4 NC that are then decorated on the surface of N-CNT through hydrophobic attraction. Confirmed by half-cell testing, Co3 O4 NC/N-CNT demonstrates superior oxygen reduction and oxygen evolution catalytic activities and has a superior electrochemical stability compared to Pt/C and Ir/C. Furthermore, rechargeable zinc-air battery testing of Co3 O4 NC/N-CNT reveals superior galvanodynamic charge and discharge voltages with a significantly extended cycle life of over 100 h, which suggests its potential as a replacement for precious-metal-based catalysts for electric vehicles and grid energy storage applications.

  15. Structure of the E. Coli Bifunctional GlmU Acetyltransferase Active Site with Substrates and Products

    SciTech Connect

    Olsen,L.; Vetting, M.; Roderick, S.

    2007-01-01

    The biosynthesis of UDP-GlcNAc in bacteria is carried out by GlmU, an essential bifunctional uridyltransferase that catalyzes the CoA-dependent acetylation of GlcN-1-PO{sub 4} to form GlcNAc-1-PO{sub 4} and its subsequent condensation with UTP to form pyrophosphate and UDP-GlcNAc. As a metabolite, UDP-GlcNAc is situated at a branch point leading to the biosynthesis of lipopolysaccharide and peptidoglycan. Consequently, GlmU is regarded as an important target for potential antibacterial agents. The crystal structure of the Escherichia coli GlmU acetyltransferase active site has been determined in complexes with acetyl-CoA, CoA/GlcN-1-PO{sub 4}, and desulpho-CoA/GlcNAc-1-PO{sub 4}. These structures reveal the enzyme groups responsible for binding the substrates. A superposition of these complex structures suggests that the 2-amino group of GlcN-1-PO{sub 4} is positioned in proximity to the acetyl-CoA to facilitate direct attack on its thioester by a ternary complex mechanism.

  16. The trimer interface in the quaternary structure of the bifunctional prokaryotic FAD synthetase from Corynebacterium ammoniagenes.

    PubMed

    Serrano, Ana; Sebastián, María; Arilla-Luna, Sonia; Baquedano, Silvia; Herguedas, Beatriz; Velázquez-Campoy, Adrián; Martínez-Júlvez, Marta; Medina, Milagros

    2017-03-24

    Bifunctional FAD synthetases (FADSs) fold in two independent modules; The C-terminal riboflavin kinase (RFK) catalyzes the RFK activity, while the N-terminal FMN-adenylyltransferase (FMNAT) exhibits the FMNAT activity. The search for macromolecular interfaces in the Corynebacterium ammoniagenes FADS (CaFADS) crystal structure predicts a dimer of trimers organization. Within each trimer, a head-to-tail arrangement causes the RFK and FMNAT catalytic sites of the two neighboring protomers to approach, in agreement with active site residues of one module influencing the activity at the other. We analyze the relevance of the CaFADS head-to-tail macromolecular interfaces to stabilization of assemblies, catalysis and ligand binding. With this aim, we evaluate the effect of point mutations in loop L1c-FlapI, loop L6c, and helix α1c of the RFK module (positions K202, E203, F206, D298, V300, E301 and L304), regions at the macromolecular interface between two protomers within the trimer. Although none of the studied residues is critical in the formation and dissociation of assemblies, residues at L1c-FlapI and helix α1c particularly modulate quaternary architecture, as well as ligand binding and kinetic parameters involved with RFK and FMNAT activities. These data support the influence of transient oligomeric structures on substrate accommodation and catalysis at both CaFADS active sites.

  17. Bifunctional Coupling Agents for Radiolabeling of Biomolecules and Target-Specific Delivery of Metallic Radionuclides

    PubMed Central

    Liu, Shuang

    2008-01-01

    Receptor-based radiopharmaceuticals are of great current interest in early molecular imaging and radiotherapy of cancers, and provide a unique tool for target-specific delivery of radionuclides to the diseased tissues. In general, a target-specific radiopharmaceutical can be divided into four parts: targeting biomolecule (BM), pharmacokinetic modifying (PKM) linker, bifunctional coupling or chelating agent (BFC), and radionuclide. The targeting biomolecule serves as a “carrier” for specific delivery of the radionuclide. PKM linkers are used to modify radiotracer excretion kinetics. BFC is needed for radiolabeling of biomolecules with a metallic radionuclide. Different radiometals have significant difference in their coordination chemistry, and require BFCs with different donor atoms and chelator frameworks. Since the radiometal chelate can have a significant impact on physical and biological properties of the target-specific radiopharmaceutical, its excretion kinetics can be altered by modifying the coordination environment with various chelators or coligand, if needed. This review will focus on the design of BFCs and their coordination chemistry with technetium, copper, gallium, indium, yttrium and lanthanide radiometals. PMID:18538888

  18. Charge migration in the bifunctional PENNA cation induced and probed by ultrafast ionization: a dynamical study

    NASA Astrophysics Data System (ADS)

    Mignolet, B.; Levine, R. D.; Remacle, F.

    2014-06-01

    A full dynamical simulation shows that the charge transfer between the amine and the phenyl moieties of the cation of the bifunctional molecule 2-phenylethyl-N,N-dimethylamine can be induced and subsequently probed by two ultrashort photoionizations. The first ionization of the pump-probe scheme is by a 1.5 fs UV or 6 fs IR pulse that ionizes the neutral. The pump pulse can be tailored to produce a coherent superposition of the electronic states of the cation that differ in their energy and spatial localization of their electron density. The time-dependent amplitudes of the states of the superposition means that the state of the cation is not stationary and we show that it is beating between the two ends of the molecule. This beating is next probed by a second attosecond XUV pulse. The ultrafast photoionization of the cation to the dication probes the spatial charge reorganization in the cation. We use the computed time-dependent molecular frame photoelectron angular distributions as a quantitative measure of the charge migration. The computation of the dynamics are carried out by a coupled equation scheme that includes an electronic manifold for the three charge states: neutral, cation and dication, the coupling to the ionization continua of the cation and the dication and the dynamics induced by the pump and the probe pulses.

  19. Cobalt phosphide based nanostructures as bifunctional electrocatalysts for low temperature alkaline water splitting

    SciTech Connect

    Lambert, Timothy N.; Vigil, Julian A.; Christensen, Ben

    2016-08-22

    Cobalt phosphide based thin films and nanoparticles were prepared by the thermal phosphidation of spinel Co3O4 precursor films and nanoparticles, respectively. CoP films were prepared with overall retention of the Co3O4 nanoplatelet morphology while the spherical/cubic Co3O4 and Ni0.15Co2.85O4 nanoparticles were converted to nanorods or nanoparticles, respectively. The inclusion of nickel in the nanoparticles resulted in a 2.5 fold higher surface area leading to higher gravimetric performance. In each case high surface area structures were obtained with CoP as the primary phase. All materials were found to act as effective bifunctional electrocatalysts for both the HER and the OER and compared well to commercial precious metal benchmark materials in alkaline electrolyte. As a result, a symmetrical water electrolysis cell prepared from the CoP-based film operated at a low overpotential of 0.41-0.51 V.

  20. Cobalt phosphide based nanostructures as bifunctional electrocatalysts for low temperature alkaline water splitting

    DOE PAGES

    Lambert, Timothy N.; Vigil, Julian A.; Christensen, Ben

    2016-08-22

    Cobalt phosphide based thin films and nanoparticles were prepared by the thermal phosphidation of spinel Co3O4 precursor films and nanoparticles, respectively. CoP films were prepared with overall retention of the Co3O4 nanoplatelet morphology while the spherical/cubic Co3O4 and Ni0.15Co2.85O4 nanoparticles were converted to nanorods or nanoparticles, respectively. The inclusion of nickel in the nanoparticles resulted in a 2.5 fold higher surface area leading to higher gravimetric performance. In each case high surface area structures were obtained with CoP as the primary phase. All materials were found to act as effective bifunctional electrocatalysts for both the HER and the OER andmore » compared well to commercial precious metal benchmark materials in alkaline electrolyte. As a result, a symmetrical water electrolysis cell prepared from the CoP-based film operated at a low overpotential of 0.41-0.51 V.« less

  1. Bifunctional Luminomagnetic Rare-Earth Nanorods for High-Contrast Bioimaging Nanoprobes

    PubMed Central

    Gupta, Bipin Kumar; Singh, Satbir; Kumar, Pawan; Lee, Yean; Kedawat, Garima; Narayanan, Tharangattu N.; Vithayathil, Sajna Antony; Ge, Liehui; Zhan, Xiaobo; Gupta, Sarika; Martí, Angel A.; Vajtai, Robert; Ajayan, Pulickel M.; Kaipparettu, Benny Abraham

    2016-01-01

    Nanoparticles exhibiting both magnetic and luminescent properties are need of the hour for many biological applications. A single compound exhibiting this combination of properties is uncommon. Herein, we report a strategy to synthesize a bifunctional luminomagnetic Gd2−xEuxO3 (x = 0.05 to 0.5) nanorod, with a diameter of ~20 nm and length in ~0.6 μm, using hydrothermal method. Gd2O3:Eu3+ nanorods have been characterized by studying its structural, optical and magnetic properties. The advantage offered by photoluminescent imaging with Gd2O3:Eu3+ nanorods is that this ultrafine nanorod material exhibits hypersensitive intense red emission (610 nm) with good brightness (quantum yield more than 90%), which is an essential parameter for high-contrast bioimaging, especially for overcoming auto fluorescent background. The utility of luminomagnetic nanorods for biological applications in high-contrast cell imaging capability and cell toxicity to image two human breast cancer cell lines T47D and MDA-MB-231 are also evaluated. Additionally, to understand the significance of shape of the nanostructure, the photoluminescence and paramagnetic characteristic of Gd2O3:Eu3+ nanorods were compared with the spherical nanoparticles of Gd2O3:Eu3+. PMID:27585638

  2. Chromium(VI) removal via reduction-sorption on bi-functional silica adsorbents.

    PubMed

    Zaitseva, Nataliya; Zaitsev, Vladimir; Walcarius, Alain

    2013-04-15

    Organically-modified silica gels bearing mercaptopropyl and ethylenediaminetriacetate groups (SiO2-SH/ED3A) have been used for reduction and subsequent sequestration of Cr(VI) species. The uptake mechanism involves Cr(VI) reduction by thiol groups (SH) and further immobilization of the so-generated Cr(III) species via complexation to the ethylenediaminetriacetate moieties (ED3A). The most appropriate pH range (1-3) for complete Cr(VI) reduction-sorption by SiO2-SH/ED3A originates from the balance between full reduction of Cr(VI) by SH, requiring low pH values, and quantitative complexation of Cr(III) by ED3A, which is favored in less acidic media. Such bi-functional adsorbents are considerably more effective at removal of Cr(VI) than those simply modified with thiol groups alone. The whole reduction-sorption process was characterized by fast kinetics, thus permitting efficient use of the SiO2-SH/ED3A adsorbent in dynamic conditions (column experiments). Monitoring the amount of immobilized chromium species on the solid was achieved using X-ray fluorescence spectroscopy and UV-vis spectroscopy. Studying the influence of ionic strength and presence of heavy metals revealed few interference on Cr(VI) removal.

  3. Redirection of genetically engineered CAR-T cells using bifunctional small molecules.

    PubMed

    Kim, Min Soo; Ma, Jennifer S Y; Yun, Hwayoung; Cao, Yu; Kim, Ji Young; Chi, Victor; Wang, Danling; Woods, Ashley; Sherwood, Lance; Caballero, Dawna; Gonzalez, Jose; Schultz, Peter G; Young, Travis S; Kim, Chan Hyuk

    2015-03-04

    Chimeric antigen receptor (CAR)-engineered T cells (CAR-Ts) provide a potent antitumor response and have become a promising treatment option for cancer. However, despite their efficacy, CAR-T cells are associated with significant safety challenges related to the inability to control their activation and expansion and terminate their response. Herein, we demonstrate that a bifunctional small molecule "switch" consisting of folate conjugated to fluorescein isothiocyanate (folate-FITC) can redirect and regulate FITC-specific CAR-T cell activity toward folate receptor (FR)-overexpressing tumor cells. This system was shown to be highly cytotoxic to FR-positive cells with no activity against FR-negative cells, demonstrating the specificity of redirection by folate-FITC. Anti-FITC-CAR-T cell activation and proliferation was strictly dependent on the presence of both folate-FITC and FR-positive cells and was dose titratable with folate-FITC switch. This novel treatment paradigm may ultimately lead to increased safety for CAR-T cell immunotherapy.

  4. Colorimetric and luminescent bifunctional iridium(III) complexes for the sensitive recognition of cyanide ions

    NASA Astrophysics Data System (ADS)

    Chen, Xiudan; Wang, Huili; Li, Jing; Hu, Wenqin; Li, Mei-Jin

    2017-02-01

    Two new cyclometalated iridium(III) complexes [(ppy)2Irppz]Cl (1) and [(ppy)2Irbppz]Cl (2) (where ppy = 2-phenylpyridine, ppz = 4,7-phenanthrolino-5,6:5,6-pyrazine, bppz = 2.3-di-2-pyridylpyrazine), were designed and synthesized. The structure of [(ppy)2Irppz]Cl was determined by single crystal X-ray diffraction. Their photophysical properties were also studied. This kind of complexes could coordinate with Cu2 +, the photoluminescence (PL) of the complex was quenched, and the color changed from orange-red to green. The forming M-Cu (M: complexes 1 and 2) ensemble could be further utilized as a colorimetric and emission "turn-on" bifunctional detection for CN-, especially for complex 1-Cu2 + showed a high sensitivity toward CN- with a limit of diction is 97 nM. Importantly, this kind of iridium(III) complexes shows a unique recognition of cyanide ions over other anions which makes it an eligible sensing probe for cyanide ions.

  5. The determination of the rate of conjugation immunoglobuline with bifunctional chelator

    NASA Astrophysics Data System (ADS)

    Málek, Z.; Miler, V.; Budský, F.

    2006-01-01

    The work was performed under the GACR project: "Technology of preparation of radionuclides and their labelled compounds for nuclear medicine and pharmacy with the use of the reactor LVR-15" reg. no. 104/03/0499. Imaging of cell’s antigens with the use of labelled immunoglobulines allows imaging of specific receptors on cell membrane and specific tumours. It is necessary to carry out the labelling of the immunoglobulines with radionuclides of suitable physical properties, which form cations (e.g., 111In, 90Y, 177Lu) that form very strong chelates of sufficiently high stability constant preventing the dissociation of complexes or the radionuclide under “in-vivo” conditions. The immunoglobuline must be conjugated with the bifunctional chelator (BCH), which contains both chelating unit and reactive group for binding to the immunoglobuline. In our laboratory we have conjugated human IgG and monoclonal antibody CD20 with diethylenetriamine pentaacetic acid dianhydride (cDTPAA). Radionuclides 90Y and 177Lu prepared on the LVR-15 reactor in NRI Rez were used for labelling. After conjugation and labelling the yields in relation to the amount of isotopic carrier have been determined.

  6. Direct conversion of CO2 into liquid fuels with high selectivity over a bifunctional catalyst

    NASA Astrophysics Data System (ADS)

    Gao, Peng; Li, Shenggang; Bu, Xianni; Dang, Shanshan; Liu, Ziyu; Wang, Hui; Zhong, Liangshu; Qiu, Minghuang; Yang, Chengguang; Cai, Jun; Wei, Wei; Sun, Yuhan

    2017-10-01

    Although considerable progress has been made in carbon dioxide (CO2) hydrogenation to various C1 chemicals, it is still a great challenge to synthesize value-added products with two or more carbons, such as gasoline, directly from CO2 because of the extreme inertness of CO2 and a high C-C coupling barrier. Here we present a bifunctional catalyst composed of reducible indium oxides (In2O3) and zeolites that yields a high selectivity to gasoline-range hydrocarbons (78.6%) with a very low methane selectivity (1%). The oxygen vacancies on the In2O3 surfaces activate CO2 and hydrogen to form methanol, and C‑C coupling subsequently occurs inside zeolite pores to produce gasoline-range hydrocarbons with a high octane number. The proximity of these two components plays a crucial role in suppressing the undesired reverse water gas shift reaction and giving a high selectivity for gasoline-range hydrocarbons. Moreover, the pellet catalyst exhibits a much better performance during an industry-relevant test, which suggests promising prospects for industrial applications.

  7. BIFUNCTIONAL CATALYSTS FOR THE SELECTIVE CATALYTIC REDUCTION OF NO BY HYDROCARBONS

    SciTech Connect

    Neylon, M; Castagnola, M; Kropf, A.; Marshall, C

    2003-08-24

    Novel bifunctional catalysts combining two active phases, typically Cu-ZSM-5 and a modifier, were prepared and tested for the selective catalytic reduction of nitrogen oxides using propylene in order to overcome the hindering effects of water typically seen for single-phase catalysts such as Cu-ZSM-5. The catalysts were made by typical preparation techniques, but parameters could be varied to influence the catalyst. The physical characterization of the materials showed that the modification phase was added strictly to the external surface of the zeolite without hindering any internal surface area. Chemical characterization by temperature programmed reactions, DRIFTS and x-ray absorption spectroscopy indicated strong interaction between the two phases, primarily producing materials that exhibited lower reduction temperatures. Two improvements in NOx reduction activity (1000 ppm NO, 1000 ppm C3H6, 2% O2, 30,000 hr-1 GHSV) were seen for these catalysts compared with Cu- ZSM-5: a lower temperature of maximum NOx conversion activity (as low at 250 C), and an enhancement of activity when water was present in the system. The use of a second phase provides a way to further tune the properties of the catalyst in order to achieve mechanistic conditions necessary to maximize NOx remediation.

  8. Enhanced phytoremediation of toxic metals by inoculating endophytic Enterobacter sp. CBSB1 expressing bifunctional glutathione synthase.

    PubMed

    Qiu, Zhiqi; Tan, Hongming; Zhou, Shining; Cao, Lixiang

    2014-02-28

    To engineer plant-bacteria symbionts for remediating complex sites contaminated with multiple metals, the bifunctional glutathione (GSH) synthase gene gcsgs was introduced into endophytic Enterobacter sp. CBSB1 to improve phytoremediation efficiency of host plant Brassica juncea. The GSH contents of shoots inoculated with CBSB1 is 0.4μMg(-1) fresh weight. However, the GSH concentration of shoots with engineered CBSB1-GCSGS increased to 0.7μMg(-1) fresh weight. The shoot length, fresh weight and dry weight of seedlings inoculated with CBSB1-GCSGS increased 67%, 123%, and 160%, compared with seedlings without inoculation, respectively. The Cd and Pb concentration in shoots with CBSB1-GCSGS increased 48% and 59% compared with seedlings without inoculation, respectively. The inoculation of CBSB1 and CBSB1-GCSGS could increase the Cd and Pb extraction amounts of seedlings significantly compared with those without inoculation (P<0.05), the seedlings inoculated with CBSB1-GCSGS showed the highest Cd and Pb extraction amounts. It was concluded that the gcsgs gene introduced into Enterobacter sp. CBSB1 upgraded the phytoremediation efficacy of B. juncea. So the engineered Enterobacter sp. CBSB1-GCSGS showed potentials in remediation sites contaminated with complex contaminants by inoculating into remediating plants. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Exploring Bacterial Carboxylate Reductases for the Reduction of Bifunctional Carboxylic Acids.

    PubMed

    Khusnutdinova, Anna N; Flick, Robert; Popovic, Ana; Brown, Greg; Tchigvintsev, Anatoli; Nocek, Boguslaw; Correia, Kevin; Joo, Jeong C; Mahadevan, Radhakrishnan; Yakunin, Alexander F

    2017-08-01

    Carboxylic acid reductases (CARs) selectively reduce carboxylic acids to aldehydes using ATP and NADPH as cofactors under mild conditions. Although CARs attracts significant interest, only a few enzymes have been characterized to date, whereas the vast majority of CARs have yet to be examined. Herein the authors report that 12 bacterial CARs reduces a broad range of bifunctional carboxylic acids containing oxo-, hydroxy-, amino-, or second carboxyl groups with several enzymes showing activity toward 4-hydroxybutanoic (4-HB) and adipic acids. These CARs exhibits significant reductase activity against substrates whose second functional group is separated from the carboxylate by at least three carbons with both carboxylate groups being reduced in dicarboxylic acids. Purified CARs supplemented with cofactor regenerating systems (for ATP and NADPH), an inorganic pyrophosphatase, and an aldo-keto reductase catalyzes a high conversion (50-76%) of 4-HB to 1,4-butanediol (1,4-BDO) and adipic acid to 1,6-hexanediol (1,6-HDO). Likewise, Escherichia coli strains expressing eight different CARs efficiently reduces 4-HB to 1,4-BDO with 50-95% conversion, whereas adipic acid is reduced to a mixture of 6-hydroxyhexanoic acid (6-HHA) and 1,6-HDO. Thus, our results illustrate the broad biochemical diversity of bacterial CARs and their compatibility with other enzymes for applications in biocatalysis. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Bifunctional designed peptides induce mineralization and binding to TiO2.

    PubMed

    Gitelman, Anna; Rapaport, Hanna

    2014-04-29

    A limitation of titanium implants is the rather poor bonding between the metal and the surrounding tissue. In this research, we aimed at developing functional peptides in the form of monomolecular coatings intended to improve adhesion between the native oxide of the metal (TiO2) and the calcium-phosphate mineralization layer with which it is in contact. Accordingly, a bifunctional peptide with a β-strand motif assumed to strongly bind to the oxide through two phosphorylated serine residues, both situated on the same face of the strand, was designed. The β-strand motif was extended by a mineralization "tail" composed of consecutive acidic amino acids capable of adsorbing calcium ions. This peptide was studied together with two additional control peptides, one serving to elucidate the role of the β-strand in stabilizing bonding with the oxide and the other demonstrating the ability of the tail to induce mineralization. The strong adsorption of the three peptides to the oxide surface was revealed by HPLC. That peptide presenting the mineralization tail showed the highest levels of adsorbed calcium and phosphate ions, as well as the largest area of cellular adherence, demonstrating its potential advantages for use with titanium implants in bone tissue.

  11. The rigid bi-functional sail, new concept concerning the reduction of the drag of ships

    NASA Astrophysics Data System (ADS)

    Țicu, I.; Popa, I.; Ristea, M.

    2015-11-01

    The policy of the European Union in the energy field, for the period to follow until 2020, is based on three fundamental objectives: sustainability, competitiveness and safety in energy supply. The “Energy - Climate Changes” program sets out a number of objectives for the EU for the year 2020, known as the “20-20-20 objectives”, namely: the reduction of greenhouse gas emissions by at least 20% from the level of those of 1990, a 20% increase in the share of renewable energy sources out of the total energy consumption as well as a target of 10% biofuels in the transports energy consumption. In this context, in order to produce or save a part of the propulsive power produced by the main propulsion machinery, by burning fossil fuels, we suggest the equipping of vessels designed for maritime transport with a bi-functional rigid sail. We consider that this device may have both the role of trapping wind energy and the role of acting as a deflector for reducing the resistance of the vessel's proceeding through the water by conveniently using the bow air current, as a result of the vessel's heading through the water with significant advantage in reducing the energy consumption for propulsion insurance.

  12. Bifunctional Anti-Non-Amyloid Component α-Synuclein Nanobodies Are Protective In Situ

    PubMed Central

    Butler, David C.; Joshi, Shubhada N.; Genst, Erwin De; Baghel, Ankit S.; Dobson, Christopher M.; Messer, Anne

    2016-01-01

    Misfolding, abnormal accumulation, and secretion of α-Synuclein (α-Syn) are closely associated with synucleinopathies, including Parkinson’s disease (PD). VH14 is a human single domain intrabody selected against the non-amyloid component (NAC) hydrophobic interaction region of α-Syn, which is critical for initial aggregation. Using neuronal cell lines, we show that as a bifunctional nanobody fused to a proteasome targeting signal, VH14PEST can counteract heterologous proteostatic effects of mutant α-Syn on mutant huntingtin Exon1 and protect against α-Syn toxicity using propidium iodide or Annexin V readouts. We compared this anti-NAC candidate to NbSyn87, which binds to the C-terminus of α-Syn. NbSyn87PEST degrades α-Syn as well or better than VH14PEST. However, while both candidates reduced toxicity, VH14PEST appears more effective in both proteostatic stress and toxicity assays. These results show that the approach of reducing intracellular monomeric targets with novel antibody engineering technology should allow in vivo modulation of proteostatic pathologies. PMID:27824888

  13. Novel Hydrogel-Derived Bifunctional Oxygen Electrocatalyst for Rechargeable Air Cathodes.

    PubMed

    Fu, Gengtao; Chen, Yifan; Cui, Zhiming; Li, Yutao; Zhou, Weidong; Xin, Sen; Tang, Yawen; Goodenough, John B

    2016-10-12

    The commercialization of Zn-air batteries has been impeded by the lack of low-cost, highly active, and durable catalysts that act independently for oxygen electrochemical reduction and evolution. Here, we demonstrate excellent performance of NiCo nanoparticles anchored on porous fibrous carbon aerogels (NiCo/PFC aerogels) as bifunctional catalysts toward the Zn-air battery. This material is designed and synthesized by a novel K2Ni(CN)4/K3Co(CN)6-chitosan hydrogel-derived method. The outstanding performance of NiCo/PFC aerogels is confirmed as a superior air-cathode catalyst for a rechargeable Zn-air battery. At a discharge-charge current density of 10 mA cm(-2), the NiCo/PFC aerogels enable a Zn-air battery to cycle steadily up to 300 cycles for 600 h with only a small increase in the round-trip overpotential, notably outperforming the more costly Pt/C+IrO2 mixture catalysts (60 cycles for 120 h). With the simplicity of the synthetic method and the outstanding electrocatalytic performance, the NiCo/PFC aerogels are promising electrocatalysts for Zn-air batteries.

  14. Cobalt Phosphide Hollow Polyhedron as Efficient Bifunctional Electrocatalysts for the Evolution Reaction of Hydrogen and Oxygen.

    PubMed

    Liu, Mengjia; Li, Jinghong

    2016-01-27

    The development of efficient and low-cost hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) electrocatalysts for renewable-energy conversion techniques is highly desired. A kind of hollow polyhedral cobalt phosphide (CoP hollow polyhedron) is developed as efficient bifunctional electrocatalysts for HER and OER templated by Co-centered metal-organic frameworks. The as-prepared CoP hollow polyhedron, which have large specific surface area and high porosity providing rich catalytic active sites, show excellent electrocatalytic performances for both HER and OER in acidic and alkaline media, respectively, with onset overpotentials of 35 and 300 mV, Tafel slopes of 59 and 57 mV dec(-1), and a current density of 10 mA cm(-2) at overpotentials of 159 and 400 mV for HER and OER, respectively, which are remarkably superior to those of particulate CoP (CoP particles) and comparable to those of commercial noble-metal catalysts. In addition, the CoP hollow polyhedron also show good durability after long-term operations.

  15. Designing calcium phosphate-based bifunctional nanocapsules with bone-targeting properties

    NASA Astrophysics Data System (ADS)

    Khung, Yit-Lung; Bastari, Kelsen; Cho, Xing Ling; Yee, Wu Aik; Loo, Say Chye Joachim

    2012-06-01

    Using sodium dodecyl sulphate micelles as template, hollow-cored calcium phosphate nanocapsules were produced. The surfaces of the nanocapsule were subsequently silanised by a polyethylene glycol (PEG)-based silane with an N-hydroxysuccinimide ester end groups which permits for further attachment with bisphosphonates (BP). Characterisations of these nanocapsules were investigated using Field Emission Scanning Electron Microscopy (FESEM), Transmission Electron Microscopy, Fourier Transform Infra-Red Spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy and Dynamic Light Scattering. To further validate the bone-targeting potential, dentine discs were incubated with these functionalised nanocapsules. FESEM analysis showed that these surface-modified nanocapsules would bind strongly to dentine surfaces compared to non-functionalised nanocapsules. We envisage that respective components would give this construct a bifunctional attribute, whereby (1) the shell of the calcium phosphate nanocapsule would serve as biocompatible coating aiding in gradual osteoconduction, while (2) surface BP moieties, acting as targeting ligands, would provide the bone-targeting potential of these calcium phosphate nanocapsules.

  16. Specialized Subregions of the Bifunctional hisB Gene of Salmonella typhimurium

    PubMed Central

    Houston, L. L.

    1973-01-01

    Forty-three hisB mutants of Salmonella typhimurium have been screened to determine the molecular size of the resulting histidinol phosphate phosphatase activity, one of the activities of a bifunctional enzyme produced by this gene which also controls imidazole glycerol phosphate dehydrase activity. Mutation in hisB can lead to the loss of both phosphatase and dehydrase activities, or only of dehydrase activity. Through the use of nonsense mutants lacking dehydrase activity, a distinct point of transition was detected near the middle of hisB at which a dramatic change occurs in the size of the phosphatase enzyme that is synthesized. A missense mutant with a lesion in this region has a high-molecular-weight enzyme which is eluted in the void volume of a Sephadex G-200 column. The enzyme from nonsense mutants near the transition point have molecular weights near 40,000. Even though the buffer conditions are designed to favor the stabilization of the high-molecular-weight form, some mutants have both high- and low-molecular-weight forms. The polypeptide chain specified by the operator proximal part of hisB is sufficient to allow the expression of phosphatase activity. The synthesis of substantially less than the complete product of hisB resulted in association into a form similar to the native enzyme which was found in the void volume of a Sephadex G-200 column. PMID:4345922

  17. "Click" chemistry mildly stabilizes bifunctional gold nanoparticles for sensing and catalysis.

    PubMed

    Li, Na; Zhao, Pengxiang; Liu, Na; Echeverria, María; Moya, Sergio; Salmon, Lionel; Ruiz, Jaime; Astruc, Didier

    2014-07-01

    A large family of bifunctional 1,2,3-triazole derivatives that contain both a polyethylene glycol (PEG) chain and another functional fragment (e.g., a polymer, dendron, alcohol, carboxylic acid, allyl, fluorescence dye, redox-robust metal complex, or a β-cyclodextrin unit) has been synthesized by facile "click" chemistry and mildly coordinated to nanogold particles, thus providing stable water-soluble gold nanoparticles (AuNPs) in the size range 3.0-11.2 nm with various properties and applications. In particular, the sensing properties of these AuNPs are illustrated through the detection of an analogue of a warfare agent (i.e., sulfur mustard) by means of a fluorescence "turn-on" assay, and the catalytic activity of the smallest triazole-AuNPs (core of 3.0 nm) is excellent for the reduction of 4-nitrophenol in water. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Synthesis of Hetero-bifunctional, End-Capped Oligo-EDOT Derivatives.

    PubMed

    Spicer, Christopher D; Booth, Marsilea A; Mawad, Damia; Armgarth, Astrid; Nielsen, Christian B; Stevens, Molly M

    2017-01-12

    Conjugated oligomers of 3,4-ethylenedioxythiophene (EDOT) are attractive materials for tissue engineering applications and as model systems for studying the properties of the widely used polymer poly(3,4-ethylenedioxythiophene). We report here the facile synthesis of a series of keto-acid end-capped oligo-EDOT derivatives (n = 2-7) through a combination of a glyoxylation end-capping strategy and iterative direct arylation chain extension. Importantly, these structures not only represent the longest oligo-EDOTs reported but are also bench stable, in contrast to previous reports on such oligomers. The constructs reported here can undergo subsequent derivatization for integration into higher-order architectures, such as those required for tissue engineering applications. The synthesis of hetero-bifunctional constructs, as well as those containing mixed-monomer units, is also reported, allowing further complexity to be installed in a controlled manner. Finally, we describe the optical and electrochemical properties of these oligomers and demonstrate the importance of the keto-acid in determining their characteristics.

  19. Purification and characterisation of a bifunctional alginate lyase from novel Isoptericola halotolerans CGMCC 5336.

    PubMed

    Dou, Wenfang; Wei, Dan; Li, Hui; Li, Heng; Rahman, Muhammad Masfiqur; Shi, Jinsong; Xu, Zhenghong; Ma, Yanhe

    2013-11-06

    A novel halophilic alginate-degrading microorganism was isolated from rotten seaweed and identified as Isoptericola halotolerans CGMCC5336. The lyase from the strain was purified to homogeneity by combining of ammonium sulfate fractionation and anion-exchange chromatography with a specific activity of 8409.19 U/ml and a recovery of 25.07%. This enzyme was a monomer with a molecular mass of approximately 28 kDa. The optimal temperature and pH were 50 °C and pH 7.0, respectively. The lyase maintained stability at neutral pH (7.0-8.0) and temperatures below 50 °C. Metal ions including Na(+), Mg(2+), Mn(2+), and Ca(2+) notably increased the activity of the enzyme. With sodium alginate as the substrate, the Km and Vmax were 0.26 mg/ml and 1.31 mg/ml min, respectively. The alginate lyase had substrate specificity for polyguluronate and polymannuronate units in alginate molecules, indicating its bifunctionality. These excellent characteristics demonstrated the potential applications in alginate oligosaccharides production with low polymerisation degrees. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Impedimetric and amperometric bifunctional glucose biosensor based on hybrid organic-inorganic thin films.

    PubMed

    Wang, Huihui; Ohnuki, Hitoshi; Endo, Hideaki; Izumi, Mitsuru

    2015-02-01

    A novel glucose biosensor with an immobilized mediator was studied using electrochemical impedance spectroscopy (EIS) and amperometry measurements. The biosensor has a characteristic ultrathin form and is composed of a self-assembled monolayer anchoring glucose oxidase (GOx) covered with Langmuir-Blodgett (LB) films of Prussian blue (PB). The immobilized PB in the LB films acts as a mediator and enables the biosensor to work under a low potential (0.0V vs. Ag/AgCl). In the EIS measurements, a dramatic decrease in charge transfer resistance (Rct) was observed with sequential addition of glucose, which can be attributed to enzymatic activity. The linearity of the biosensor response was observed by the variation of the sensor response (1/Rct) as a function of glucose concentration in the range 0 to 25mM. The sensor also showed linear amperometric response below 130mM glucose. The organic-inorganic system of GOx and PB nanoclusters demonstrated bifunctional sensing action, both amperometry and EIS modes, as well as long sensing stability for 4 days.

  1. Facile Preparation of Bifunctional Monodisperse Nanospheres with Tunable Size and Luminescence.

    PubMed

    Ge, Yuqing; Wang, Ping; Mao, Hongju; Jin, Qinghui; Zhao, Jianlong

    2015-08-01

    Nanotechnology has found wide use in biomedical applications and the food and bioprocessing industry. In this light, we demonstrate a facile strategy to prepare bifunctional monodisperse silica nanospheres encapsulating chitosan-coated magnetic nanoparticles and CdTe quantum dots. The size of these composite spheres can be adjusted from 90 nm to 500 nm by varying the concentration of ammonia, water, tetraethyl orthosilicate, and the ratio of the chitosan-coated magnetic nanoparticles and CdTe quantum dots. The composite spheres are characterized using scanning electron microscope analyses, transmission electron microscope analyses, energy-dispersed spectrum studies, Malvern Zetasizer, vibrating sample magnetometer, and fluorescence microscopy. The spheres exhibit good monodispersion and favorable superparamagnetic and fluorescent properties. The luminescence of the spheres can be varied by using different types of coated quantum dots. Such composite spheres with tunable characteristics allow for external manipulation of research systems by magnetic fields together with the real-time fluorescent monitoring of multiple samples. The abovementioned properties can potentially be exploited for application in the biomedical and biosensing fields.

  2. Cobalt phosphide based nanostructures as bifunctional electrocatalysts for low temperature alkaline water splitting

    SciTech Connect

    Lambert, Timothy N.; Vigil, Julian A.; Christensen, Ben

    2016-08-22

    Cobalt phosphide based thin films and nanoparticles were prepared by the thermal phosphidation of spinel Co3O4 precursor films and nanoparticles, respectively. CoP films were prepared with overall retention of the Co3O4 nanoplatelet morphology while the spherical/cubic Co3O4 and Ni0.15Co2.85O4 nanoparticles were converted to nanorods or nanoparticles, respectively. The inclusion of nickel in the nanoparticles resulted in a 2.5 fold higher surface area leading to higher gravimetric performance. In each case high surface area structures were obtained with CoP as the primary phase. All materials were found to act as effective bifunctional electrocatalysts for both the HER and the OER and compared well to commercial precious metal benchmark materials in alkaline electrolyte. As a result, a symmetrical water electrolysis cell prepared from the CoP-based film operated at a low overpotential of 0.41-0.51 V.

  3. A self-cleaning Li-S battery enabled by a bifunctional redox mediator

    NASA Astrophysics Data System (ADS)

    Ren, Y. X.; Zhao, T. S.; Liu, M.; Zeng, Y. K.; Jiang, H. R.

    2017-09-01

    The polysulfide shuttle effect and lithium dendrite growth in lithium-sulfur (Li-S) batteries can repeatedly breach the anodic solid electrolyte interphase (SEI) over cycling. As a result, irreversible short-chain sulfide side products (Li2Sx, x = 1, 2) keep depositing on the Li anode, leading to the active material loss, increasing the Li+ transport resistance, and thereby reducing the cycle life. In this work, indium iodide (InI3) is investigated as a bifunctional electrolyte additive for Li-S batteries to protect the Li anode and decompose the side products spontaneously. On the one hand, Indium (In) is electrodeposited onto the Li anode prior to Li plating during the initial charging process, forming a chemically and mechanically stable SEI to prevent the Li anode from reacting with soluble polysulfide species to form Li2Sx (x = 1, 2) side products. On the other hand, by adequately overcharging the battery, the triiodide/iodide redox mediator is capable of chemically transforming side products deposited on the Li anode and separator into soluble polysulfides, which can be recycled by the cathode. It is shown that the battery with the InI3 additive exhibits a prolonged cycle life, and is capable of retrieving its capacity by a facile overcharging process.

  4. Bifunctional recombinant fusion enzyme between maltooligosyltrehalose synthase and maltooligosyltrehalose trehalohydrolase of thermophilic microorganism Metallosphaera hakonensis.

    PubMed

    Seo, Ju-Seok; An, Ju Hee; Cheong, Jong-Joo; Choi, Yang Do; Kim, Chung Ho

    2008-09-01

    MhMTS and MhMTH are trehalose (alpha-D-glucopyranosyl- [1,1]-alpha-D-glucopyranose) biosynthesis genes of the thermophilic microorganism Metallosphaera hakonensis, and encode a maltooligosyltrehalose synthase (MhMTS) and a maltooligosyltrehalose trehalohydrolase (MhMTH), respectively. In this study, the two genes were fused inframe in a recombinant DNA, and expressed in Escherichia coli to produce a bifunctional fusion enzyme, MhMTSH. Similar to the two-step reactions with MhMTS and MhMTH, the fusion enzyme catalyzed the sequential reactions on maltopentaose, maltotriosyltrehalose formation, and following hydrolysis, producing trehalose and maltotriose. Optimum conditions for the fusion enzyme-catalyzed trehalose synthesis were around 70 degrees and pH 5.0-6.0. The MhMTSH fusion enzyme exhibited a high degree of thermostability, retaining 80% of the activity when pre-incubated at 70 degrees for 48 h. The stability was gradually abolished by incubating the fusion enzyme at above 80 degrees . The MhMTSH fusion enzyme was active on various sizes of maltooligosaccharides, extending its substrate specificity to soluble starch, the most abundant natural source of trehalose production.

  5. The Golgi localized bifunctional UDP-rhamnose/UDP-galactose transporter family of Arabidopsis.

    PubMed

    Rautengarten, Carsten; Ebert, Berit; Moreno, Ignacio; Temple, Henry; Herter, Thomas; Link, Bruce; Doñas-Cofré, Daniela; Moreno, Adrián; Saéz-Aguayo, Susana; Blanco, Francisca; Mortimer, Jennifer C; Schultink, Alex; Reiter, Wolf-Dieter; Dupree, Paul; Pauly, Markus; Heazlewood, Joshua L; Scheller, Henrik V; Orellana, Ariel

    2014-08-05

    Plant cells are surrounded by a cell wall that plays a key role in plant growth, structural integrity, and defense. The cell wall is a complex and diverse structure that is mainly composed of polysaccharides. The majority of noncellulosic cell wall polysaccharides are produced in the Golgi apparatus from nucleotide sugars that are predominantly synthesized in the cytosol. The transport of these nucleotide sugars from the cytosol into the Golgi lumen is a critical process for cell wall biosynthesis and is mediated by a family of nucleotide sugar transporters (NSTs). Numerous studies have sought to characterize substrate-specific transport by NSTs; however, the availability of certain substrates and a lack of robust methods have proven problematic. Consequently, we have developed a novel approach that combines reconstitution of NSTs into liposomes and the subsequent assessment of nucleotide sugar uptake by mass spectrometry. To address the limitation of substrate availability, we also developed a two-step reaction for the enzymatic synthesis of UDP-l-rhamnose (Rha) by expressing the two active domains of the Arabidopsis UDP-l-Rha synthase. The liposome approach and the newly synthesized substrates were used to analyze a clade of Arabidopsis NSTs, resulting in the identification and characterization of six bifunctional UDP-l-Rha/UDP-d-galactose (Gal) transporters (URGTs). Further analysis of loss-of-function and overexpression plants for two of these URGTs supported their roles in the transport of UDP-l-Rha and UDP-d-Gal for matrix polysaccharide biosynthesis.

  6. Bifunctional Cage-Type Cubic Mesoporous Silica SBA-1 Nanoparticles for Selective Adsorption of Dyes.

    PubMed

    Lin, Chien-Hua; Deka, Juti Rani; Wu, Cheng-En; Tsai, Cheng-Hsun; Saikia, Diganta; Yang, Yung-Chin; Kao, Hsien-Ming

    2017-06-19

    Bifunctional SBA-1 mesoporous silica nanoparticles (MSNs) with carboxylic acid and amino groups (denoted as CNS-10-10) have been successfully synthesized, characterized, and employed as adsorbents for dye removal. Adsorbent CNS-10-10 shows high affinity towards cationic and anionic dyes in a wide pH range, and exhibits selective dye removal of a two-dye mixture system of cationic methylene blue and anionic eosin Y. By changing the pH of the medium, the selectivity of the adsorption behavior can be easily modulated. For comparison purposes, the counterparts, that is, pure silica SBA-1 MSNs (CS-0) and those with either carboxylic acid or amino functional groups (denoted as CS-10 and NS-10, respectively) were also prepared to evaluate their dye-adsorption behaviors. As revealed by the zeta-potential measurements, the electrostatic interaction between the adsorbent surface and the dye molecule plays an important role in the adsorption mechanism. Adsorbent CNS-10-10 can be easily regenerated and reused, and maintains its adsorption efficiency up to 80 % after four cycles. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Novel Bifunctional Cyclic Chelator for 89Zr Labeling–Radiolabeling and Targeting Properties of RGD Conjugates

    PubMed Central

    2015-01-01

    Within the last years 89Zr has attracted considerable attention as long-lived radionuclide for positron emission tomography (PET) applications. So far desferrioxamine B (DFO) has been mainly used as bifunctional chelating system. Fusarinine C (FSC), having complexing properties comparable to DFO, was expected to be an alternative with potentially higher stability due to its cyclic structure. In this study, as proof of principle, various FSC-RGD conjugates targeting αvß3 integrins were synthesized using different conjugation strategies and labeled with 89Zr. In vitro stability, biodistribution, and microPET/CT imaging were evaluated using [89Zr]FSC-RGD conjugates or [89Zr]triacetylfusarinine C (TAFC). Quantitative 89Zr labeling was achieved within 90 min at room temperature. The distribution coefficients of the different radioligands indicate hydrophilic character. Compared to [89Zr]DFO, [89Zr]FSC derivatives showed excellent in vitro stability and resistance against transchelation in phosphate buffered saline (PBS), ethylenediaminetetraacetic acid solution (EDTA), and human serum for up to 7 days. Cell binding studies and biodistribution as well as microPET/CT imaging experiments showed efficient receptor-specific targeting of [89Zr]FSC-RGD conjugates. No bone uptake was observed analyzing PET images indicating high in vivo stability. These findings indicate that FSC is a highly promising chelator for the development of 89Zr-based PET imaging agents. PMID:25941834

  8. Bifunctional bisphosphonates for delivering PTH (1-34) to bone mineral with enhanced bioactivity.

    PubMed

    Yewle, Jivan N; Puleo, David A; Bachas, Leonidas G

    2013-04-01

    The objective of this work was to demonstrate the bioactivity of parathyroid hormone (1-34) (PTH) delivered through a single molecule of bisphosphonate to improve tissue/cell interactions. Bifunctional hydrazine-bisphosphonates (HBPs) with varying length and lipophilicity were used as a drug delivery vehicle. PTH was oxidized with periodate treatment to obtain an N-terminal aldehyde that was then conjugated to HBPs. The toxicity and apoptotic properties of HBPs and HBP-PTH conjugates were studied with macrophages (RAW 264.7). It was found that one of the HBPs had significant apoptotic characteristics similar to alendronate, which is a widely prescribed drug in the treatment of osteoporosis. The improved binding affinity of PTH following conjugation to HBP was determined using a hydroxyapatite binding assay. The amount of PTH delivered to bone through HBPs was not affected by the length or lipophilicity of the HBPs. Furthermore, the improved bioactivity of PTH delivered to bone through HBPs, in comparison to adsorbed PTH, was demonstrated by quantifying the cAMP produced by pre-osteoblastic (MC3T3-E1) cells in response to PTH. The delivery of bioactive PTH to bone tissue by HBP conjugation demonstrates the potential use of HBPs in delivering therapeutic macromolecules to bone for the treatment of several skeletal diseases. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. A bifunctional old yellow enzyme from Penicillium roqueforti is involved in ergot alkaloid biosynthesis.

    PubMed

    Gerhards, Nina; Li, Shu-Ming

    2017-09-13

    The blue cheese-making fungus Penicillium roqueforti produces isofumigaclavine A as the main ergot alkaloid. Recently, genome mining revealed the presence of two DNA loci bearing the genetic potential for its biosynthesis. In this study, a short-chain dehydrogenase/reductase (SDR) from one of the loci was proved to be responsible for the conversion of chanoclavine-I to its aldehyde. Furthermore, a putative gene coding for an enzyme with high homology to Old Yellow Enzymes (OYEs) involved in the ergot alkaloid biosynthesis was found outside the two clusters. Biochemical characterisation of this enzyme, named FgaOx3Pr3, showed that it can indeed catalyse the formation of festuclavine in the presence of a festuclavine synthase FgaFS, as had been observed for other OYEs in ergot alkaloid biosynthesis. Differing from other homologues, FgaOx3Pr3 does not convert chanoclavine-I aldehyde to its shunt products in the absence of FgaFS. Instead, it increases significantly the product yields of several SDRs for the conversion of chanoclavine-I to its aldehyde. Kinetic studies proved that overcoming the product inhibition is responsible for the observed enhancement. To the best of our knowledge, this is the first report on the bifunctionality of an OYE and its synergistic effect with SDRs.

  10. Target-specific delivery of siRNA into hepatoma cells' cytoplasm by bifunctional carrier peptide.

    PubMed

    Liu, Xiaoxuan; Zhu, Lin; Ma, Jingjing; Qiao, Xinxiao; Zhu, Dunwan; Liu, Lanxia; Leng, Xigang

    2017-02-01

    RNA interference (RNAi) is among the most potential approach for the therapy of hepatocellular carcinoma and the major barrier hindering siRNA therapeutics is the low efficiency of delivery to the desired cells. The current study aimed at developing a novel peptide for more efficient hepatoma targeted siRNA delivery, by combining luteinizing hormone-releasing hormone with hepatoma targeting specificity and MPG(△NLS) with cytoplasm-delivery tendency. The developed bifunctional peptide LHRH-MPG(△NLS) and siRNA were mixed together and resulted in LHRH-MPG(△NLS)/siRNA polyplexes through self-assembly. The polyplexes were characterized by agarose gel retardation and dynamic light scatting analysis. Hepatoma targeting specificity was analyzed with the GE IN Cell Analyzer 2000 High-Content Cellular Analysis System after cell transfection, and the effect of RNA interference was detected by RT-PCR. The results demonstrated that LHRH-MPG(△NLS) was able to assemble with siRNA to form stable and nano-sized peptide/siRNA polyplexes, which could inhibit the expression of the target gene and was essentially non-cytotoxic, as compared with the commercial transfection reagent lipofectamine 2000.

  11. A new bifunctional hybrid nanostructure as an active platform for photothermal therapy and MR imaging

    PubMed Central

    Khafaji, Mona; Vossoughi, Manouchehr; Hormozi-Nezhad, M. Reza; Dinarvand, Rassoul; Börrnert, Felix; Irajizad, Azam

    2016-01-01

    As a bi-functional cancer treatment agent, a new hybrid nanostructure is presented which can be used for photothermal therapy by exposure to one order of magnitude lower laser powers compared to similar nanostructures in addition to substantial enhancment in magnetic resonance imaging (MRI) contrast. This gold-iron oxide hybrid nanostructure (GIHN) is synthesized by a cost-effective and high yield water-based approach. The GIHN is sheilded by PEG. Therefore, it shows high hemo and biocompatibility and more than six month stability. Alongside earlier nanostructures, the heat generation rate of GIHN is compareable with surfactnat-capped gold nanorods (GNRs). Two reasons are behind this enhancement: Firstly the distance between GNRs and SPIONs is adjusted in a way that the surface plasmon resonance of the new nanostructure is similar to bare GNRs and secondly the fraction of GNRs is raised in the hybrid nanostructure. GIHN is then applied as a photothermal agent using laser irradiation with power as low as 0.5 W.cm−2 and only 32% of human breast adenocarcinoma cells could survive. The GIHN also acts as a dose-dependent transvers relaxation time (T2) MRI contrast agent. The results show that the GINH can be considered as a good candidate for multimodal photothermal therapy and MRI. PMID:27297588

  12. Gel electrophoresis of a charge-regulated, bi-functional particle.

    PubMed

    Hsu, Jyh-Ping; Huang, Chih-Hua; Tseng, Shiojenn

    2013-03-01

    Adopting a Brinkman fluid model, we analyzed the electrophoresis of a charged-regulated, bi-functional particle containing both acidic and basic functional groups in a gel solution. Both the long-range hydrodynamic effect arising from the liquid drag and the short-range steric effect from particle-polymer interaction are considered. The type of particle considered is capable of simulating both biocolloids such as microorganisms and cells, and particles with adsorbed polyelectrolyte or membrane layer. Our model describes successfully the experimental data in the literature. The presence of gel has the effect of reducing the particle mobility and alleviating double-layer polarization so that the particle behavior is less complicated than that in the case where gel is absent. On the other hand, both the quantitative and qualitative behaviors of a particle depend highly on solution pH and background salt concentration, yielding interesting and significant results. These results provide valuable information for both experimental data interpretation and electrophoresis devices design.

  13. Bifunctional Luminomagnetic Rare-Earth Nanorods for High-Contrast Bioimaging Nanoprobes

    NASA Astrophysics Data System (ADS)

    Gupta, Bipin Kumar; Singh, Satbir; Kumar, Pawan; Lee, Yean; Kedawat, Garima; Narayanan, Tharangattu N.; Vithayathil, Sajna Antony; Ge, Liehui; Zhan, Xiaobo; Gupta, Sarika; Martí, Angel A.; Vajtai, Robert; Ajayan, Pulickel M.; Kaipparettu, Benny Abraham

    2016-09-01

    Nanoparticles exhibiting both magnetic and luminescent properties are need of the hour for many biological applications. A single compound exhibiting this combination of properties is uncommon. Herein, we report a strategy to synthesize a bifunctional luminomagnetic Gd2‑xEuxO3 (x = 0.05 to 0.5) nanorod, with a diameter of ~20 nm and length in ~0.6 μm, using hydrothermal method. Gd2O3:Eu3+ nanorods have been characterized by studying its structural, optical and magnetic properties. The advantage offered by photoluminescent imaging with Gd2O3:Eu3+ nanorods is that this ultrafine nanorod material exhibits hypersensitive intense red emission (610 nm) with good brightness (quantum yield more than 90%), which is an essential parameter for high-contrast bioimaging, especially for overcoming auto fluorescent background. The utility of luminomagnetic nanorods for biological applications in high-contrast cell imaging capability and cell toxicity to image two human breast cancer cell lines T47D and MDA-MB-231 are also evaluated. Additionally, to understand the significance of shape of the nanostructure, the photoluminescence and paramagnetic characteristic of Gd2O3:Eu3+ nanorods were compared with the spherical nanoparticles of Gd2O3:Eu3+.

  14. Bifunctional Luminomagnetic Rare-Earth Nanorods for High-Contrast Bioimaging Nanoprobes.

    PubMed

    Gupta, Bipin Kumar; Singh, Satbir; Kumar, Pawan; Lee, Yean; Kedawat, Garima; Narayanan, Tharangattu N; Vithayathil, Sajna Antony; Ge, Liehui; Zhan, Xiaobo; Gupta, Sarika; Martí, Angel A; Vajtai, Robert; Ajayan, Pulickel M; Kaipparettu, Benny Abraham

    2016-09-02

    Nanoparticles exhibiting both magnetic and luminescent properties are need of the hour for many biological applications. A single compound exhibiting this combination of properties is uncommon. Herein, we report a strategy to synthesize a bifunctional luminomagnetic Gd2-xEuxO3 (x = 0.05 to 0.5) nanorod, with a diameter of ~20 nm and length in ~0.6 μm, using hydrothermal method. Gd2O3:Eu(3+) nanorods have been characterized by studying its structural, optical and magnetic properties. The advantage offered by photoluminescent imaging with Gd2O3:Eu(3+) nanorods is that this ultrafine nanorod material exhibits hypersensitive intense red emission (610 nm) with good brightness (quantum yield more than 90%), which is an essential parameter for high-contrast bioimaging, especially for overcoming auto fluorescent background. The utility of luminomagnetic nanorods for biological applications in high-contrast cell imaging capability and cell toxicity to image two human breast cancer cell lines T47D and MDA-MB-231 are also evaluated. Additionally, to understand the significance of shape of the nanostructure, the photoluminescence and paramagnetic characteristic of Gd2O3:Eu(3+) nanorods were compared with the spherical nanoparticles of Gd2O3:Eu(3+).

  15. Bifunctional nanoparticles for surface-enhanced Raman spectroscopy-based leukemia biomarker detection

    NASA Astrophysics Data System (ADS)

    Mehn, Dora; Morasso, Carlo; Vanna, Renzo; Schiumarini, Domitilla; Bedoni, Marzia; Ciceri, Fabio; Gramatica, Furio

    2014-03-01

    The Wilms tumor gene (WT1) is a biomarker overexpressed in more than 90% of acute myeloid leukemia patients. Fast and sensitive detection of the WT1 in blood samples would allow monitoring of the minimal residual disease during clinical remission and would permit early detection of a potential relapse in acute myeloid leukemia. In this work, Surface Enhanced Raman Spectroscopy (SERS) based detection of the WT1 sequence using bifunctional, magnetic core - gold shell nanoparticles is presented. The classical co-precipitation method was applied to generate magnetic nanoparticles which were coated with a gold shell after modification with aminopropyltriethoxy silane and subsequent deposition of gold nanoparticle seeds. Simple hydroquinone based reduction procedure was applied for the shell growing in water based reaction mixture at room temperature. Thiolated ssDNA probes of the WT1 sequence were immobilized as capture oligonucleotides on the gold surface. Malachite green was applied both for testing the amplification performance of the core-shell colloidal SERS substrate and also as label dye of the target DNA sequence. The SERS enhancer efficacy of the core-shell nanomaterial was compared with the efficacy of classical spherical gold particles produced using the conventional citrate reduction method. The core-shell particles were found not only to provide an opportunity for facile separation in a heterogeneous reaction system but also to be superior regarding robustness as SERS enhancers.

  16. Vital roles of an interhelical insertion in catalase-peroxidase bifunctionality.

    PubMed

    Li, Yongjiang; Goodwin, Douglas C

    2004-06-11

    The loop connecting the F and G helices of catalase-peroxidases contains a approximately 35 amino acid structure (the FG insertion) that is absent from monofunctional peroxidases. These two groups of enzymes share highly similar active sites, yet the monofunctional peroxidases lack appreciable catalase activity. Thus, the FG insertion may serve a role in catalase-peroxidase bifunctionality, despite its peripheral location relative to the active site. We produced a variant of Escherichia coli catalase-peroxidase (KatG) lacking its FG insertion (KatG(DeltaFG)). Absorption spectra indicated the heme environment of KatG(DeltaFG) was highly similar to wild-type KatG, but the variant retained only 0.2% catalase activity. In contrast, the deletion reduced peroxidase activity by only 50%. Kinetic parameters for the peroxidase and residual catalase activities of KatG(DeltaFG) as well as pH dependence studies suggested that the FG insertion supports hydrogen-bonded networks critical for reactions involving H2O2. The structure also appears to regulate access of electron donors to the active site.

  17. Recent progress on earth abundant hydrogen evolution reaction and oxygen evolution reaction bifunctional electrocatalyst for overall water splitting in alkaline media

    NASA Astrophysics Data System (ADS)

    Jamesh, Mohammed Ibrahim

    2016-11-01

    Electrochemical water-splitting is one of the promising ways for producing clean chemical fuel (Hydrogen) while cheap-earth-abundant-bifunctional-electrocatalyst is one of the possible way for improving the overall cost efficiency of water-splitting. This paper reviews the chemical state, hydrogen and oxygen evolution reaction activity in alkaline media, overall water-splitting performance in alkaline media, stability, and possible-factors for improving its efficiency of various kinds of recently reported electrocatalyst such as Ni-P, Co-P, Ni-Co-P, graphene-Co-P, O/N/C-Co/Ni, Ni-S, B-Ni/Co, Ni-Co, Mo, Se, Fe, Mn/Zn/Ti, and metal-free based earth-abundant-bifunctional-electrocatalyst. This paper also reviews and highlights the remarkable water splitting performance of the earth-abundant-bifunctional-electrocatalyst those exhibit better or well comparable with Pt/C//RuO2.

  18. Revisiting the nucleotide and aminoglycoside substrate specificity of the bifunctional aminoglycoside acetyltransferase(6')-Ie/aminoglycoside phosphotransferase(2'')-Ia enzyme.

    PubMed

    Frase, Hilary; Toth, Marta; Vakulenko, Sergei B

    2012-12-21

    The bifunctional aminoglycoside-modifying enzyme aminoglycoside acetyltransferase(6')-Ie/aminoglycoside phosphotransferase(2″)-Ia, or AAC(6')-Ie/APH(2″)-Ia, is the major source of aminoglycoside resistance in gram-positive bacterial pathogens. In previous studies, using ATP as the cosubstrate, it was reported that the APH(2″)-Ia domain of this enzyme is unique among aminoglycoside phosphotransferases, having the ability to inactivate an unusually broad spectrum of aminoglycosides, including 4,6- and 4,5-disubstituted and atypical. We recently demonstrated that GTP, and not ATP, is the preferred cosubstrate of this enzyme. We now show, using competition assays between ATP and GTP, that GTP is the exclusive phosphate donor at intracellular nucleotide levels. In light of these findings, we reevaluated the substrate profile of the phosphotransferase domain of this clinically important enzyme. Steady-state kinetic characterization using the phosphate donor GTP demonstrates that AAC(6')-Ie/APH(2″)-Ia phosphorylates 4,6-disubstituted aminoglycosides with high efficiency (k(cat)/K(m) = 10(5)-10(7) M(-1) s(-1)). Despite this proficiency, no resistance is conferred to some of these antibiotics by the enzyme in vivo. We now show that phosphorylation of 4,5-disubstituted and atypical aminoglycosides are negligible and thus these antibiotics are not substrates. Instead, these aminoglycosides tend to stimulate an intrinsic GTPase activity of the enzyme. Taken together, our data show that the bifunctional enzyme efficiently phosphorylates only 4,6-disubstituted antibiotics; however, phosphorylation does not necessarily result in bacterial resistance. Hence, the APH(2″)-Ia domain of the bifunctional AAC(6')-Ie/APH(2″)-Ia enzyme is a bona fide GTP-dependent kinase with a narrow substrate profile, including only 4,6-disubstituted aminoglycosides.

  19. Enzymatic (13)C labeling and multidimensional NMR analysis of miltiradiene synthesized by bifunctional diterpene cyclase in Selaginella moellendorffii.

    PubMed

    Sugai, Yoshinori; Ueno, Yohei; Hayashi, Ken-ichiro; Oogami, Shingo; Toyomasu, Tomonobu; Matsumoto, Sadamu; Natsume, Masahiro; Nozaki, Hiroshi; Kawaide, Hiroshi

    2011-12-16

    Diterpenes show diverse chemical structures and various physiological roles. The diversity of diterpene is primarily established by diterpene cyclases that catalyze a cyclization reaction to form the carbon skeleton of cyclic diterpene. Diterpene cyclases are divided into two types, monofunctional and bifunctional cyclases. Bifunctional diterpene cyclases (BDTCs) are involved in hormone and defense compound biosyntheses in bryophytes and gymnosperms, respectively. The BDTCs catalyze the successive two-step type-B (protonation-initiated cyclization) and type-A (ionization-initiated cyclization) reactions of geranylgeranyl diphosphate (GGDP). We found that the genome of a lycophyte, Selaginella moellendorffii, contains six BDTC genes with the majority being uncharacterized. The cDNA from S. moellendorffii encoding a BDTC-like enzyme, miltiradiene synthase (SmMDS), was cloned. The recombinant SmMDS converted GGDP to a diterpene hydrocarbon product with a molecular mass of 272 Da. Mutation in the type-B active motif of SmMDS abolished the cyclase activity, whereas (+)-copalyl diphosphate, the reaction intermediate from the conversion of GGDP to the hydrocarbon product, rescued the cyclase activity of the mutant to form a diterpene hydrocarbon. Another mutant lacking type-A activity accumulated copalyl diphosphate as the reaction intermediate. When the diterpene hydrocarbon was enzymatically synthesized from [U-(13)C(6)]mevalonate, all carbons were labeled with (13)C stable isotope (>99%). The fully (13)C-labeled product was subjected to (13)C-(13)C COSY NMR spectroscopic analyses. The direct carbon-carbon connectivities observed in the multidimensional NMR spectra demonstrated that the hydrocarbon product by SmMDS is miltiradiene, a putative biosynthetic precursor of tanshinone identified from the Chinese medicinal herb Salvia miltiorrhiza. Hence, SmMDS functions as a bifunctional miltiradiene synthase in S. moellendorffii. In this study, we demonstrate that one

  20. The preparation of a Eu3+-doped ZnO bi-functional layer and its application in organic photovoltaics

    NASA Astrophysics Data System (ADS)

    Wu, Na; Luo, Qun; Qiao, Xvsheng; Ma, Chang-Qi

    2015-12-01

    Recently, spectra conversion has been used to minimize energy loss in photovoltaic devices. In this work, we explore the development of a novel Eu3+-doped ZnO bi-functional layer for use in organic solar cells. The bi-functional layer acts as both a spectra conversion and an electron transporting layer. Compared to conventional spectra conversion layers, it has a simpler device structure, is easier to fabricate, and has a wider spectrum-sensitized region. A series of Eu3+-doped ZnO nanocrystals were synthesized using the simple solution route. X-ray powder diffraction patterns (XRD), transmission electron microscopy (TEM), and UV-visible absorbance spectra were used to characterize the obtained ZnO nanocrystals. The results reveal that the size and bandgap of ZnO nanocrystals can be controlled through regulation of the doping concentration of Eu3+ ions. The energy transfer of ZnO → Eu3+ is observed by photoluminescence (PL) spectra. At a bandgap excitation of around 300-400 nm, a typical emission band from the Eu3+ is obtained. By employing the Eu3+- doped ZnO nanocrystals as a buffer layer in a P3HT:PC61BM bulk heterojunction device, the obtained performance is similar to the undoped ZnO device, indicating that the electrical properties of ZnO are not affected by Eu3+ doping. Due to the down-conversion energy transfer between ZnO and Eu3+, the external quantum efficiency of the ZnO:Eu3+ device at 300-400 nm is higher than that of the pure ZnO device, which subsequently leads to an increase in short circuit current density (J SC). This work proves that it is possible to improve the solar spectrum response in the ultraviolet region of organic solar cells effectively by incorporating the bi-functional layer.