Whole farm quantification of GHG emissions within smallholder farms in developing countries
NASA Astrophysics Data System (ADS)
Seebauer, Matthias
2014-03-01
The IPCC has compiled the best available scientific methods into published guidelines for estimating greenhouse gas emissions and emission removals from the land-use sector. In order to evaluate existing GHG quantification tools to comprehensively quantify GHG emissions and removals in smallholder conditions, farm scale quantification was tested with farm data from Western Kenya. After conducting a cluster analysis to identify different farm typologies GHG quantification was exercised using the VCS SALM methodology complemented with IPCC livestock emission factors and the cool farm tool. The emission profiles of four farm clusters representing the baseline conditions in the year 2009 are compared with 2011 where farmers adopted sustainable land management practices (SALM). The results demonstrate the variation in both the magnitude of the estimated GHG emissions per ha between different smallholder farm typologies and the emissions estimated by applying two different accounting tools. The farm scale quantification further shows that the adoption of SALM has a significant impact on emission reduction and removals and the mitigation benefits range between 4 and 6.5 tCO2 ha-1 yr-1 with significantly different mitigation benefits depending on typologies of the crop-livestock systems, their different agricultural practices, as well as adoption rates of improved practices. However, the inherent uncertainty related to the emission factors applied by accounting tools has substantial implications for reported agricultural emissions. With regard to uncertainty related to activity data, the assessment confirms the high variability within different farm types as well as between different parameters surveyed to comprehensively quantify GHG emissions within smallholder farms.
USDA-ARS?s Scientific Manuscript database
In the carbon market, greenhouse gas (GHG) offset protocols need to ensure that emission reductions are of high quality, quantifiable and real. However, lack of consistency across protocols for quantifying emission reductions compromise the credibility of offsets generated. Thus, protocol quantifica...
NASA Astrophysics Data System (ADS)
Roed-Larsen, Trygve; Flach, Todd
The purpose of this chapter is to provide a review of existing national and international requirements for verification of greenhouse gas reductions and associated accreditation of independent verifiers. The credibility of results claimed to reduce or remove anthropogenic emissions of greenhouse gases (GHG) is of utmost importance for the success of emerging schemes to reduce such emissions. Requirements include transparency, accuracy, consistency, and completeness of the GHG data. The many independent verification processes that have developed recently now make up a quite elaborate tool kit for best practices. The UN Framework Convention for Climate Change and the Kyoto Protocol specifications for project mechanisms initiated this work, but other national and international actors also work intensely with these issues. One initiative gaining wide application is that taken by the World Business Council for Sustainable Development with the World Resources Institute to develop a "GHG Protocol" to assist companies in arranging for auditable monitoring and reporting processes of their GHG activities. A set of new international standards developed by the International Organization for Standardization (ISO) provides specifications for the quantification, monitoring, and reporting of company entity and project-based activities. The ISO is also developing specifications for recognizing independent GHG verifiers. This chapter covers this background with intent of providing a common understanding of all efforts undertaken in different parts of the world to secure the reliability of GHG emission reduction and removal activities. These verification schemes may provide valuable input to current efforts of securing a comprehensive, trustworthy, and robust framework for verification activities of CO2 capture, transport, and storage.
NASA Astrophysics Data System (ADS)
Tonitto, C.; Gurwick, N. P.
2012-12-01
Policy initiatives to reduce greenhouse gas emissions (GHG) have promoted the development of agricultural management protocols to increase SOC storage and reduce GHG emissions. We review approaches for quantifying N2O flux from agricultural landscapes. We summarize the temporal and spatial extent of observations across representative soil classes, climate zones, cropping systems, and management scenarios. We review applications of simulation and empirical modeling approaches and compare validation outcomes across modeling tools. Subsequently, we review current model application in agricultural management protocols. In particular, we compare approaches adapted for compliance with the California Global Warming Solutions Act, the Alberta Climate Change and Emissions Management Act, and by the American Carbon Registry. In the absence of regional data to drive model development, policies that require GHG quantification often use simple empirical models based on highly aggregated data of N2O flux as a function of applied N - Tier 1 models according to IPCC categorization. As participants in development of protocols that could be used in carbon offset markets, we observed that stakeholders outside of the biogeochemistry community favored outcomes from simulation modeling (Tier 3) rather than empirical modeling (Tier 2). In contrast, scientific advisors were more accepting of outcomes based on statistical approaches that rely on local observations, and their views sometimes swayed policy practitioners over the course of policy development. Both Tier 2 and Tier 3 approaches have been implemented in current policy development, and it is important that the strengths and limitations of both approaches, in the face of available data, be well-understood by those drafting and adopting policies and protocols. The reliability of all models is contingent on sufficient observations for model development and validation. Simulation models applied without site-calibration generally result in poor validation results, and this point particularly needs to be emphasized during policy development. For cases where sufficient calibration data are available, simulation models have demonstrated the ability to capture seasonal patterns of N2O flux. The reliability of statistical models likewise depends on data availability. Because soil moisture is a significant driver of N2O flux, the best outcomes occur when empirical models are applied to systems with relevant soil classification and climate. The structure of current carbon offset protocols is not well-aligned with a budgetary approach to GHG accounting. Current protocols credit field-scale reduction in N2O flux as a result of reduced fertilizer use. Protocols do not award farmers credit for reductions in CO2 emissions resulting from reduced production of synthetic N fertilizer. To achieve the greatest GHG emission reductions through reduced synthetic N production and reduced landscape N saturation requires a re-envisioning of the agricultural landscape to include cropping systems with legume and manure N sources. The current focus on on-farm GHG sources focuses credits on simple reductions of N applied in conventional systems rather than on developing cropping systems which promote higher recycling and retention of N.
USDA-ARS?s Scientific Manuscript database
Quantification of regional greenhouse gas (GHG) fluxes is essential for establishing mitigation strategies and evaluating their effectiveness. Here, we used multiple top-down approaches and multiple trace gas observations at a tall tower to estimate GHG regional fluxes and evaluate the GHG fluxes de...
Monitoring environmental burden reduction from household waste prevention.
Matsuda, Takeshi; Hirai, Yasuhiro; Asari, Misuzu; Yano, Junya; Miura, Takahiro; Ii, Ryota; Sakai, Shin-Ichi
2018-01-01
In this study, the amount of prevented household waste in Kyoto city was quantified using three methods. Subsequently, the greenhouse gas (GHG) emission reduction by waste prevention was calculated in order to monitor the impact of waste prevention. The methods of quantification were "relative change from baseline year (a)," "absolute change from potential waste generation (b)," and "absolute amount of activities (c)." Method (a) was popular for measuring waste prevention, but method (b) was the original approach to determine the absolute amount of waste prevention by estimating the potential waste generation. Method (c) also provided the absolute value utilizing the information of activities. Methods (b) and (c) enable the evaluation of the waste prevention activities with a similar baseline for recycling. Methods (b) and (c) gave significantly higher GHG reductions than method (a) because of the difference in baseline between them. Therefore, setting a baseline is very important for evaluating waste prevention. In practice, when focusing on the monitoring of a specific policy or campaign, method (a) is an appropriate option. On the other hand, when comparing the total impact of waste prevention to that of recycling, methods (b) and (c) should be applied. Copyright © 2017 Elsevier Ltd. All rights reserved.
Transit Greenhouse Gas Management Compendium
DOT National Transportation Integrated Search
2011-01-12
This Compendium provides a framework for identifying greenhouse gas (GHG) reduction opportunities while highlighting specific examples of effective GHG reduction practices. The GHG savings benefits of public transit are first described. GHG saving op...
NASA Astrophysics Data System (ADS)
Kritee, K.; Tiwari, R.; Nair, D.; Loecke, T. D.; Adhya, T. K.; Rudek, J.; Ahuja, R.; Hamburg, S.
2013-12-01
At Environmental Defense Fund (EDF), we recognize that any intervention to mitigate greenhouse gas (GHG) emissions should meet the interests of small scale farmers and low-carbon farming (LCF) is an integral component of our work on international climate. As a part of our Emissions Measurement and Methodology Development (EMD) Project, a joint undertaking with Indian NGO partners of the Fair Climate Network (FCN), five GHG measurement laboratories were set up across three states in peninsular (south) India. These labs represent different agro-ecological zones within the dryland agriculture belt in South India for which no reliable datasets on GHG emission have been available. Our approach for collecting gas samples was based on the Gracenet protocol. Sampling for nitrous oxide and methane emissions were made on approximately 50% of the total number of days in a growing season and once a week during fallow periods. In order to capture the peak emissions of nitrous oxide, samples were collected for 3-4 consecutive days after critical events like tillage, weeding, fertilization, and rainfall/irrigation. The research team collected field data at the time of sampling (temperature of the soil, water and air; and water levels). We also recorded parameters (e.g. water, fertilizer, labor and energy use; and yields) which were necessary for calculating farm profitability. Our data from 2012-2013 suggest that, for peninsular India, low-carbon rice cultivation techniques offer very large emission reduction potential (2-5 metric tons CO2e per acre per year), with smaller reductions from peanut and millet (0.15-0.5 metric ton CO2e per acre per season). The Tier 1 IPCC emissions factors 1) grossly underestimate both the amount of nitrous oxide emission from conventional rice cultivation practices, and the extent to which it can be reduced through better fertilizer management and 2) overestimate the methane emission reduction possible due to water management for rice paddies by a small but significant amount. It is crucial to customize fertilizer and water management to each agro-ecological zone such that net GHG emission reduction is maximized. Further comprehensive measurements over next 2-3 growing seasons will make Indian GHG emissions calculations from peninsular region more accurate. Even more importantly, these measurements will enable the region to more effectively reduce emissions from rice cultivation. Our preliminary assessments also show that LCF practices also have the potential to decrease water use by 10-30%, reduce total nitrogen loading in local water bodies by 20-40%, and improve long term soil health by optimizing organic matter and increasing water-holding capacity. Thus, we demonstrate immediate benefits of LCF practices in reducing input costs as well as lay the path for methodology development for better quantification of GHG emission reductions. Monetization of these reductions can provide an additional income stream to small scale farms, thereby helping incentivize adoption of LCF practices. The central payoff is a 'triple win' for society: increased long-term food security (including through enhanced yields), rural economic development (through improved farm profitability and adaptation to climate change), and lower environmental impacts (including lower GHG emissions).
Development and testing of a European Union-wide farm-level carbon calculator.
Tuomisto, Hanna L; De Camillis, Camillo; Leip, Adrian; Nisini, Luigi; Pelletier, Nathan; Haastrup, Palle
2015-07-01
Direct greenhouse gas (GHG) emissions from agriculture accounted for approximately 10% of total European Union (EU) emissions in 2010. To reduce farming-related GHG emissions, appropriate policy measures and supporting tools for promoting low-C farming practices may be efficacious. This article presents the methodology and testing results of a new EU-wide, farm-level C footprint calculator. The Carbon Calculator quantifies GHG emissions based on international standards and technical specifications on Life Cycle Assessment (LCA) and C footprinting. The tool delivers its results both at the farm level and as allocated to up to 5 main products of the farm. In addition to the quantification of GHG emissions, the calculator proposes mitigation options and sequestration actions that may be suitable for individual farms. The results obtained during a survey made on 54 farms from 8 EU Member States are presented. These farms were selected in view of representing the diversity of farm types across different environmental zones in the EU. The results of the C footprint of products in the data set show wide range of variation between minimum and maximum values. The results of the mitigation actions showed that the tool can help identify practices that can lead to substantial emission reductions. To avoid burden-shifting from climate change to other environmental issues, the future improvements of the tool should include incorporation of other environmental impact categories in place of solely focusing on GHG emissions. © 2015 The Authors. Integrated Environmental Assessment and Management Published by Wiley Periodicals, Inc. on behalf of SETAC.
NASA Astrophysics Data System (ADS)
Mueller, K. L.; Callahan, W.; Davis, K. J.; Dickerson, R. R.; Duren, R. M.; Gurney, K. R.; Karion, A.; Keeling, R. F.; Kim, J.; Lauvaux, T.; Miller, C. E.; Shepson, P. B.; Turnbull, J. C.; Weiss, R. F.; Whetstone, J. R.
2017-12-01
City and State governments are increasingly interested in mitigating greenhouse gas (GHG) emissions to improve sustainability within their jurisdictions. Estimation of urban GHG emissions remains an active research area with many sources of uncertainty. To support the effort of improving measurement of trace gas emissions in city environments, several federal agencies along with academic, research, and private entities have been working within a handful of domestic metropolitan areas to improve both (1) the assessment of GHG emissions accuracy using a variety of measurement technologies, and (2) the tools that can better assess GHG inventory data at urban mitigation scales based upon these measurements. The National Institute of Standards and Technology (NIST) activities have focused on three areas, or testbeds: Indianapolis (INFLUX experiment), Los Angeles (the LA Megacities project), and the Northeastern Corridor areas encompassing Washington and Baltimore (the NEC/BW GHG Measurements project). These cities represent diverse meteorological, terrain, demographic, and emissions characteristics having a broad range of complexities. To date this research has involved multiple measurement systems and integrated observing approaches, all aimed at advancing development of a robust, science-base upon which higher accuracy quantification approaches can rest. Progress toward such scientifically robust, widely-accepted emissions quantification methods will rely upon continuous performance assessment. Such assessment is challenged by the complexities of cities themselves (e.g., population, urban form) along with the many variables impacting a city's technological ability to estimate its GHG emissions (e.g., meteorology, density of observations). We present the different NIST testbeds and a proposal to initiate conceptual development of a reference framework supporting the comparison of multi-city GHG emissions estimates. Such a reference framework has potential to provide the basis for city governments to choose the measurements and methods that can quantify their GHG and related trace gas emissions at levels commensurate with their needs.
Kaewmai, Roihatai; H-Kittikun, Aran; Suksaroj, Chaisri; Musikavong, Charongpun
2013-01-01
Alternative methodologies for the reduction of greenhouse gas (GHG) emissions from crude palm oil (CPO) production by a wet extraction mill in Thailand were developed. The production of 1 t of CPO from mills with biogas capture (four mills) and without biogas capture (two mills) in 2010 produced GHG emissions of 935 kg carbon dioxide equivalent (CO2eq), on average. Wastewater treatment plants with and without biogas capture produced GHG emissions of 64 and 47% of total GHG emission, respectively. The rest of the emissions mostly originated from the acquisition of fresh fruit bunches. The establishment of a biogas recovery system must be the first step in the reduction of GHG emissions. It could reduce GHG emissions by 373 kgCO2eq/t of CPO. The main source of GHG emission of 163 kgCO2eq/t of CPO from the mills with biogas capture was the open pond used for cooling of wastewater before it enters the biogas recovery system. The reduction of GHG emissions could be accomplished by (i) using a wastewater-dispersed unit for cooling, (ii) using a covered pond, (iii) enhancing the performance of the biogas recovery system, and (iv) changing the stabilization pond to an aerated lagoon. By using options i-iv, reductions of GHG emissions of 216, 208, 92.2, and 87.6 kgCO2eq/t of CPO, respectively, can be achieved.
Potentials for sustainable transportation in cities to alleviate climate change impacts.
Mashayekh, Yeganeh; Jaramillo, Paulina; Samaras, Constantine; Hendrickson, Chris T; Blackhurst, Michael; MacLean, Heather L; Matthews, H Scott
2012-03-06
Reducing greenhouse gas emissions (GHG) is an important social goal to mitigate climate change. A common mitigation paradigm is to consider strategy "wedges" that can be applied to different activities to achieve desired GHG reductions. In this policy analysis piece, we consider a wide range of possible strategies to reduce light-duty vehicle GHG emissions, including fuel and vehicle options, low carbon and renewable power, travel demand management and land use changes. We conclude that no one strategy will be sufficient to meet GHG emissions reduction goals to avoid climate change. However, many of these changes have positive combinatorial effects, so the best strategy is to pursue combinations of transportation GHG reduction strategies to meet reduction goals. Agencies need to broaden their agendas to incorporate such combination in their planning.
Development and testing of a European Union-wide farm-level carbon calculator
Tuomisto, Hanna L; De Camillis, Camillo; Leip, Adrian; Nisini, Luigi; Pelletier, Nathan; Haastrup, Palle
2015-01-01
Direct greenhouse gas (GHG) emissions from agriculture accounted for approximately 10% of total European Union (EU) emissions in 2010. To reduce farming-related GHG emissions, appropriate policy measures and supporting tools for promoting low-C farming practices may be efficacious. This article presents the methodology and testing results of a new EU-wide, farm-level C footprint calculator. The Carbon Calculator quantifies GHG emissions based on international standards and technical specifications on Life Cycle Assessment (LCA) and C footprinting. The tool delivers its results both at the farm level and as allocated to up to 5 main products of the farm. In addition to the quantification of GHG emissions, the calculator proposes mitigation options and sequestration actions that may be suitable for individual farms. The results obtained during a survey made on 54 farms from 8 EU Member States are presented. These farms were selected in view of representing the diversity of farm types across different environmental zones in the EU. The results of the C footprint of products in the data set show wide range of variation between minimum and maximum values. The results of the mitigation actions showed that the tool can help identify practices that can lead to substantial emission reductions. To avoid burden-shifting from climate change to other environmental issues, the future improvements of the tool should include incorporation of other environmental impact categories in place of solely focusing on GHG emissions. Integr Environ Assess Manag 2015;11:404–416. © 2015 The Authors. Published by Wiley Periodicals, Inc. on behalf of SETAC. Key Points The methodology and testing results of a new European Union-wide, farm-level carbon calculator are presented. The Carbon Calculator reports life cycle assessment-based greenhouse gas emissions at farm and product levels and recommends farm- specific mitigation actions. Based on the results obtained from testing the tool in 54 farms in 8 European countries, it was found that the product-level carbon footprint results are comparable with those of other studies focusing on similar products. The results of the mitigation actions showed that the tool can help identify practices that can lead to substantial emission reductions. PMID:25655187
Nguyen, Lan Huong; Mohan, Geetha; Jian, Pu; Takemoto, Kazuhiko; Fukushi, Kensuke
2016-01-01
Currently in many cities and rural areas of Vietnam, wastewater is discharged to the environment without any treatment, which emits considerable amount of greenhouse gas (GHG), particularly methane. In this study, four GHG emission scenarios were examined, as well as the baseline scenario, in order to verify the potential of GHG reduction from domestic wastewater with adequate treatment facilities. The ArcGIS and ArcHydro tools were employed to visualize and analyze GHG emissions resulting from discharge of untreated wastewater, in rural areas of Vu Gia Thu Bon river basin, Vietnam. By applying the current IPCC guidelines for GHG emissions, we found that a reduction of GHG emissions can be achieved through treatment of domestic wastewater in the studied area. Compared with baseline scenario, a maximum 16% of total GHG emissions can be reduced, in which 30% of households existing latrines are substituted by Japanese Johkasou technology and other 20% of domestic wastewater is treated by conventional activated sludge.
Mohan, Geetha; Jian, Pu; Takemoto, Kazuhiko; Fukushi, Kensuke
2016-01-01
Currently in many cities and rural areas of Vietnam, wastewater is discharged to the environment without any treatment, which emits considerable amount of greenhouse gas (GHG), particularly methane. In this study, four GHG emission scenarios were examined, as well as the baseline scenario, in order to verify the potential of GHG reduction from domestic wastewater with adequate treatment facilities. The ArcGIS and ArcHydro tools were employed to visualize and analyze GHG emissions resulting from discharge of untreated wastewater, in rural areas of Vu Gia Thu Bon river basin, Vietnam. By applying the current IPCC guidelines for GHG emissions, we found that a reduction of GHG emissions can be achieved through treatment of domestic wastewater in the studied area. Compared with baseline scenario, a maximum 16% of total GHG emissions can be reduced, in which 30% of households existing latrines are substituted by Japanese Johkasou technology and other 20% of domestic wastewater is treated by conventional activated sludge. PMID:27699202
Liu, Yong-Hong; Liao, Wen-Yuan; Lin, Xiao-Fang; Li, Li; Zeng, Xue-Lan
2017-04-01
Vehicle emissions have become one of the key factors affecting the urban air quality and climate change in the Pearl River Delta (PRD) region, so it is important to design policies of emission reduction based on quantitative Co-benefits for air pollutants and greenhouse gas (GHG). Emissions of air pollutants and GHG by 2020 was predicted firstly based on the no-control scenario, and five vehicle emissions reduction scenarios were designed in view of the economy, technology and policy, whose emissions reduction were calculated. Then Co-benefits between air pollutants and GHG were quantitatively analyzed by the methods of coordinate system and cross-elasticity. Results show that the emissions reduction effects and the Co-benefits of different measures vary greatly in 2015-2020. If no control scheme was applied, most air pollutants and GHG would increase substantially by 20-64% by 2020, with the exception of CO, VOC and PM 2.5 . Different control measures had different reduction effects for single air pollutant and GHG. The worst reduction measure was Eliminating Motorcycles with average reducing rate 0.09% for air pollutants and GHG, while the rate from Updated Emission Standard was 41.74%. Eliminating Yellow-label Vehicle scenario had an obvious reduction effect for every single pollutant in the earlier years, but Co-benefits would descent to zero in later by 2020. From the perspective of emission reductions and co-control effect, Updated Emission Standard scenario was best for reducing air pollutants and GHG substantially (tanα=1.43 and Els=1.77). Copyright © 2016 Elsevier Ltd. All rights reserved.
Introduction of Energy and Climate Mitigation Policy Issues in Energy - Environment Model of Latvia
NASA Astrophysics Data System (ADS)
Klavs, G.; Rekis, J.
2016-12-01
The present research is aimed at contributing to the Latvian national climate policy development by projecting total GHG emissions up to 2030, by evaluating the GHG emission reduction path in the non-ETS sector at different targets set for emissions reduction and by evaluating the obtained results within the context of the obligations defined by the EU 2030 policy framework for climate and energy. The method used in the research was bottom-up, linear programming optimisation model MARKAL code adapted as the MARKAL-Latvia model with improvements for perfecting the integrated assessment of climate policy. The modelling results in the baseline scenario, reflecting national economic development forecasts and comprising the existing GHG emissions reduction policies and measures, show that in 2030 emissions will increase by 19.1 % compared to 2005. GHG emissions stabilisation and reduction in 2030, compared to 2005, were researched in respective alternative scenarios. Detailed modelling and analysis of the Latvian situation according to the scenario of non-ETS sector GHG emissions stabilisation and reduction in 2030 compared to 2005 have revealed that to implement a cost effective strategy of GHG emissions reduction first of all a policy should be developed that ensures effective absorption of the available energy efficiency potential in all consumer sectors. The next group of emissions reduction measures includes all non-ETS sectors (industry, services, agriculture, transport, and waste management).
Electrification of the transportation sector offers limited country-wide greenhouse gas reductions
NASA Astrophysics Data System (ADS)
Meinrenken, Christoph J.; Lackner, Klaus S.
2014-03-01
Compared with conventional propulsion, plugin and hybrid vehicles may offer reductions in greenhouse gas (GHG) emissions, regional air/noise pollution, petroleum dependence, and ownership cost. Comparing only plugins and hybrids amongst themselves, and focusing on GHG, relative merits of different options have been shown to be more nuanced, depending on grid-carbon-intensity, range and thus battery manufacturing and weight, and trip patterns. We present a life-cycle framework to compare GHG emissions for three drivetrains (plugin-electricity-only, gasoline-only-hybrid, and plugin-hybrid) across driving ranges and grid-carbon-intensities, for passenger cars, vans, buses, or trucks (well-to-wheel plus storage manufacturing). Parameter and model uncertainties are quantified via sensitivity analyses. We find that owing to the interplay of range, GHG/km, and portions of country-wide kms accessible to electrification, GHG reductions achievable from plugins (whether electricity-only or hybrids) are limited even when assuming low-carbon future grids. Furthermore, for policy makers considering GHG from electricity and transportation sectors combined, plugin technology may in fact increase GHG compared to gasoline-only-hybrids, regardless of grid-carbon-intensity.
Role of waste management with regard to climate protection: a case study.
Hackl, Albert; Mauschitz, Gerd
2008-02-01
According to the Kyoto Protocol and the burden-sharing agreement of the European Union, Austria is required to cut greenhouse gas (GHG) emissions during the years 2008 to 2012 in order to achieve an average reduction of 13%, based on the level of emissions for the year 1990. The present contribution gives an overview of the history of GHG emission regulation in Austria and identifies the progress made towards the realization of the national climate strategy to attain the GHG emission targets. The contribution uses Austria as an example of the way in which proper waste management can help to reduce GHG emissions. The GHG inventories show that everything must be done to minimize the carbon input due to waste deposition at landfill sites. The incineration of waste is particularly helpful in reducing GHG emissions. The waste-to-energy by incineration plants and recovery of energy yield an ecologically proper treatment of waste using state-of-the-art techniques of a very high standard. The potential for GHG reduction of conventional waste treatment technologies has been estimated by the authors. A growing number of waste incinerators and intensified co-incineration of waste in Austrian industry will both help to reduce national GHG emissions substantially. By increasing the number and capacity of plants for thermal treatment of waste the contribution of proper waste management to the national target for reduction of GHG emissions will be in the range of 8 to 14%. The GHG inventories also indicate that a potential CO2 reduction of about 500 000 t year(-1) is achievable by co-incineration of waste in Austrian industry.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Yuqiang; Smith, Steven J.; Bowden, Jared H.
Policies to reduce greenhouse gas (GHG) emissions can bring ancillary benefits of improved air quality and reduced premature mortality, in addition to slowing climate change. Here we study the co-benefits of global and domestic GHG mitigation on US air quality and human health in 2050 at fine resolution using dynamical downscaling, and quantify for the first time the co-benefits from foreign GHG mitigation. Relative to a reference scenario, global GHG reductions in RCP4.5 avoid 16000 PM2.5-related all-cause deaths yr-1 (90% confidence interval, 11700-20300), and 8000 (3600-12400) O3-related respiratory deaths yr-1 in the US in 2050. Foreign GHG mitigation avoids 15%more » and 62% of PM2.5- and O3-related total avoided deaths, highlighting the importance of foreign GHG mitigation on US human health benefits. GHG mitigation in the US residential sector brings the largest co-benefits for PM2.5-related deaths (21% of total domestic co-benefits), and industry for O3 (17%). Monetized benefits, for avoided deaths from ozone, PM2.5, and heat stress from a related study, are $148 ($96-201) per ton CO2 at high valuation and $49 ($32-67) at low valuation, of which 36% are from foreign GHG reductions. These benefits likely exceed the marginal cost of GHG reductions in 2050. The US gains significantly greater co-benefits when coordinating GHG reductions with foreign countries. Similarly, previous studies estimating co-benefits locally or regionally may greatly underestimate the full co-benefits of coordinated global actions.« less
Reducing greenhouse gas emissions for climate stabilization: framing regional options.
Olabisi, Laura Schmitt; Reich, Peter B; Johnson, Kris A; Kapuscinski, Anne R; Su, Sangwon H; Wilson, Elizabeth J
2009-03-15
The Intergovernmental Panel on Climate Change (IPCC) has stated that stabilizing atmospheric CO2 concentrations will require reduction of global greenhouse gas (GHG) emissions by as much as 80% by 2050. Subnational efforts to cut emissions will inform policy development nationally and globally. We projected GHG mitigation strategies for Minnesota, which has adopted a strategic goal of 80% emissions reduction by 2050. A portfolio of conservation strategies, including electricity conservation, increased vehicle fleet fuel efficiency, and reduced vehicle miles traveled, is likely the most cost-effective option for Minnesota and could reduce emissions by 18% below 2005 levels. An 80% GHG reduction would require complete decarbonization of the electricity and transportation sectors, combined with carbon capture and sequestration at power plants, or deep cuts in other relatively more intransigent GHG-emitting sectors. In order to achieve ambitious GHG reduction goals, policymakers should promote aggressive conservation efforts, which would probably have negative net costs, while phasing in alternative fuels to replace coal and motor gasoline over the long-term.
To help solid waste planners and organizations track/report GHG emissions reductions from various waste management practices. To assist in calculating GHG emissions of baseline and alternative waste management practices and provide the history of WARM.
NASA Astrophysics Data System (ADS)
Cook, G. D.; Liedloff, A. C.; Richards, A. E.; Meyer, M.
2016-12-01
Australia is the only OECD country with a significant area of tropical savannas within it borders. Approximately 220 000 km2 of these savannas burn every year releasing 2 to 4 % of Australia's accountable greenhouse gas emissions. Reduction in uncertainty in the quantification of these emissions of methane and nitrous has been fundamental to improving both the national GHG inventory and developing approaches to better manage land to reduce these emissions. Projects to reduce pyrogenic emissions have been adopted across 30% of Australia's high rainfall savannas. Recent work has focussed on quantifying the additional benefit of increased carbon stocks in fine fuel and coarse woody debris (CWD) resulting from improvements in fire management. An integrated set of equations have been developed to enable seemless quantification of emissions and sequestration in these frequently burnt savannas. These show that increases in carbon stored in fine fuel and CWD comprises about 3 times the emissions abatement from improvements in fire management that have been achieved in a project area of 28 000 km2. Future work is focussing on improving the understanding of spatial and temporal variation in fire behaviour across Australia's savanna biome, improvements in quantification of carbon dynamics of CWD and improved quantification of the effects of fire on carbon dynamics in soils of the savannas.
Greenhouse gas reduction through state and local transportation
DOT National Transportation Integrated Search
2003-09-01
This report will improve understanding of how states and localities might contribute to greenhouse gas (GHG) emissions : reduction through transportation planning. Transportation is a major contributor to GHG emissions. State and local transportation...
NASA Astrophysics Data System (ADS)
Rosenstock, T. S.; Rufino, M. C.; Butterbach-Bahl, K.; Wollenberg, E.
2013-06-01
Globally, agriculture is directly responsible for 14% of annual greenhouse gas (GHG) emissions and induces an additional 17% through land use change, mostly in developing countries (Vermeulen et al 2012). Agricultural intensification and expansion in these regions is expected to catalyze the most significant relative increases in agricultural GHG emissions over the next decade (Smith et al 2008, Tilman et al 2011). Farms in the developing countries of sub-Saharan Africa and Asia are predominately managed by smallholders, with 80% of land holdings smaller than ten hectares (FAO 2012). One can therefore posit that smallholder farming significantly impacts the GHG balance of these regions today and will continue to do so in the near future. However, our understanding of the effect smallholder farming has on the Earth's climate system is remarkably limited. Data quantifying existing and reduced GHG emissions and removals of smallholder production systems are available for only a handful of crops, livestock, and agroecosystems (Herrero et al 2008, Verchot et al 2008, Palm et al 2010). For example, fewer than fifteen studies of nitrous oxide emissions from soils have taken place in sub-Saharan Africa, leaving the rate of emissions virtually undocumented. Due to a scarcity of data on GHG sources and sinks, most developing countries currently quantify agricultural emissions and reductions using IPCC Tier 1 emissions factors. However, current Tier 1 emissions factors are either calibrated to data primarily derived from developed countries, where agricultural production conditions are dissimilar to that in which the majority of smallholders operate, or from data that are sparse or of mixed quality in developing countries (IPCC 2006). For the most part, there are insufficient emissions data characterizing smallholder agriculture to evaluate the level of accuracy or inaccuracy of current emissions estimates. Consequentially, there is no reliable information on the agricultural GHG budgets for developing economies. This dearth of information constrains the capacity to transition to low-carbon agricultural development, opportunities for smallholders to capitalize on carbon markets, and the negotiating position of developing countries in global climate policy discourse. Concerns over the poor state of information, in terms of data availability and representation, have fueled appeals for new approaches to quantifying GHG emissions and removals from smallholder agriculture, for both existing conditions and mitigation interventions (Berry and Ryan 2013, Olander et al 2013). Considering the dependence of quantification approaches on data and the current data deficit for smallholder systems, it is clear that in situ measurements must be a core part of initial and future strategies to improve GHG inventories and develop mitigation measures for smallholder agriculture. Once more data are available, especially for farming systems of high priority (e.g., those identified through global and regional rankings of emission hotspots or mitigation leverage points), better cumulative estimates and targeted actions will become possible. Greenhouse gas measurements in agriculture are expensive, time consuming, and error prone. These challenges are exacerbated by the heterogeneity of smallholder systems and landscapes and the diversity of methods used. Concerns over methodological rigor, measurement costs, and the diversity of approaches, coupled with the demand for robust information suggest it is germane for the scientific community to establish standards of measurements—'a protocol'—for quantifying GHG emissions from smallholder agriculture. A standard protocol for use by scientists and development organizations will help generate consistent, comparable, and reliable data on emissions baselines and allow rigorous comparisons of mitigation options. Besides enhancing data utility, a protocol serves as a benchmark for non-experts to easily assess data quality. Obviously many such protocols already exist (e.g., GraceNet, Parkin and Venterea 2010). None, however, account for the diversity and complexity of smallholder agriculture, quantify emissions and removals from crops, livestock, and biomass together to calculate the net balance, or are adapted for the research environment of developing countries; conditions that warrant developing specific methods. Here we summarize an approach being developed by the Consultative Group on International Agricultural Research's (CGIAR) Climate Change, Agriculture, and Food Security Program (CCAFS) and partners. The CGIAR-CCAFS smallholder GHG quantification protocol aims to improve quantification of baseline emission levels and support mitigation decisions. The protocol introduces five novel quantification elements relevant for smallholder agriculture (figure 1). First, it stresses the systematic collection of 'activity data' to describe the type, distribution, and extent of land management activities in landscapes cultivated by smallholder. Second, it advocates an informed sampling approach that concentrates measurement activities on emission hotspots and leverage points to capture heterogeneity and account for the diversity and complexity of farming activities. Third, it quantifies emissions at multiple spatial scales, whole-farm and landscape, to provide information targeted to household and communities decisions. Fourth, it encourages GHG research to document farm productivity and economics in addition to emissions, in recognition of the importance of agriculture to livelihoods. Fifth, it develops cost-differentiated measurement solutions that optimize the relationships among scale, cost, and accuracy. Each of the five innovations is further described below. Figure 1. Figure 1. The quantification approach. The protocol includes comparative evaluation of various methodologies for each element (e.g., biophysical context, profitability evaluation, etc), recommend methods specific for end users objectives and constraints, and field manuals for implementation of recommended methods. Items with an asterisk indicate novel aspects of this protocol by comparison to others. Systematizing collection of activity data . Data describing smallholder farming systems, their relative distribution in space and time, and typical management practices are largely unavailable for smallholder agriculture in developing counties. That is significant because empirical or process based models rely on information on the nature and extent of production systems, so called 'activity data'. Without it, it is not possible to run models, scale flux data to larger spatial extents, or target measurements with any certainty. In some cases, uncertainty in the extent and management for farming activities may be equivalent or greater to the uncertainty associated with the GHG fluxes themselves. The CGIAR-CCAFS protocol therefore provides guidelines for using remote sensing, targeted social and soil surveys, and proxies that correlate with socio-ecological condition and farm management to improve the quantity and quality of activity data available. Informed sampling . Smallholder agriculture typically involves multiple farming activities taking place in a field, nested within higher levels of organization (e.g., farm or landscape), each having interactive impacts on the cumulative GHG balance. To understand the net effect, attention must be paid to the full range of sources and sinks. Yet it is generally too resource intensive to measure them all. The CGIAR-CCAFS protocol deconstructs what is already known about nutrient stock changes and GHG fluxes to guide measurements toward emission hotspots or leverage points (e.g., methane emissions from cows in crop-livestock systems) within complex agroecosystems and landscapes. The premise underlying this approach is that information from other systems can be used to match the intensity of quantification effort with the predicted intensity of the source or sink. By reducing the uncertainty of the largest fluxes, using an informed sampling approach will hypothetically yield a more accurate and more precise estimate of the total systems' GHG balance. Multi-scale . Farming activities take place at the field level, but climate impacts and decision-making of smallholders extend to larger spatial scales. Households frequently manage farming activities across several fields, while institutions at the village or higher levels can determine land use practices across entire landscapes, as is the case of communal grazing lands or woodlands. Decisions by households and social organizations unite climate impacts across space. It is therefore important to consider spatial scales greater than the farming activity or field to understand GHG impacts and mitigation opportunities. Therefore, the CGIAR-CCAFS protocol targets quantification and mitigation efforts at the whole-farm and landscape levels to align data describing emissions and removals with the decision units of households and communities. Linking productivity and emissions . Smallholder farmers depend on farm production for food and income, and farm productivity is inextricably linked to food security. The importance of productivity must be taken into account in mitigation decision-making and the GHG research agenda supporting those decisions. So far, livelihood benefits and farmers' own priorities or other social benefits have been mostly ignored in GHG research. Quantification of GHG reductions from mitigation options is arguably irrelevant if the livelihood effects of those mitigation options are ignored, and scaling GHG emissions per unit area is agronomically meaningless if yields are not considered (Linquist et al 2012). Therefore, the CGIAR-CCAFS protocol recommends that future GHG quantification efforts for assessing mitigation options adopt a multi-criteria approach to include data on indicators of household benefits (e.g. productivity and nutrition). In that way, the research captures the balance of benefits between the private landholder and the global public good. Joint assessment of food production and emissions may produce optimal management strategies that balance the competing demands of food production and climate stabilization. For example, nitrous oxide emissions per unit of product are lowest at intermediate (not the lowest) fertilization rates (Van Groenigen et al 2010) which differs from the optimal strategy for reducing emissions per unit area. Costs associated with collecting the additional data are likely to be small relative to the operational budget for GHG field research and could viably become standard practice. Cost-differentiated measurements . Potential end users of the protocol are diverse in their purpose, resources available, and capacity to carry out research. For example, development organizations may want to determine the relative difference in emission impacts between mitigation options while governments may be interested in quantification of impacts across landscapes to develop Nationally Appropriate Mitigation Actions. The most useful approach to quantification therefore lies at the nexus among key constraints: objectives, resources, and capacity. The protocol develops a system of 'tiered' entry points for greenhouse gas accounting, with explicit attention directed toward the uncertainty induced from the various measurement selections. The protocol will include decision pathways to help users quickly determine the quantification options suitable for their goals and constraints to optimize the relationship among accuracy, costs, and scale. The CCAFS-CGIAR protocol is being developed and field-tested in mixed crop-livestock systems of Kenya and intensive rice production in the Philippines, with plans to expand to other sites and agroecosystems in the next year. These initial pilot projects provide a trial of the approach and methods, highlighting technical gaps and promising directions, while generating valuable emissions data. The role smallholder farming plays in Earth's climate system is uncertain due to lack of data. Better information is needed to calibrate the research, policy, and development communities' thinking on the importance of this issue. Generating the high value information that policy makers, development organizations, and farmers demand however pivots on creating accurate, useful, consistent, and meaningful data. The CCAFS-CGIAR protocol will help advance the scientific community's ability to provide such information by using standard methods of measurement in ways that recognize the data needs and the priorities of smallholder farmers. Acknowledgments We thank participants of the October 2012 Protocol Development workshop in Garmisch-Partenkirchen, Germany for their previous and ongoing contributions. We also thank CCAFS, Environment Canada, and the Mitigation of Climate Change in Agriculture (MICCA) Program of the United Nations Food and Agriculture Organization for their support of this initiative. References Berry N J and Ryan C M 2013 Overcoming the risk of inaction from emissions uncertainty in smallholder agriculture Environ. Res. Lett. 8 011003 FAO 2012 Smallholders and Family Farmers (Rome: FAO) (www.fao.org/fileadmin/templates/nr/sustainability_pathways/docs/Factsheet_SMALLHOLDERS.pdf, accessed 19 March 2013) Herrero M, Thornton P K, Kruska R and Reid R S 2008 Systems dynamics and the spatial distribution of methane emissions from African domestic ruminants to 2030 Agric. Ecosyst. Environ. 126 122-37 IPCC 2006 2006 IPCC Guidelines for National Greenhouse Gas Inventories ed H S Eggleston, L Buendia, K Miwa, T Ngara and K Tanabe (Hayama: IGES) Linquist B, Van Groenigen K J, Adviento-Borbe M A, Pittelkow C and Van Kessel C 2012 An agronomic assessment of greenhouse gas emissions from major cereal crops Glob. Change Biol. 18 194-209 Olander L, Wollenberg L, Tubiello F and Herald M 2013 Advancing agricultural greenhouse gas quantification Environ. Res. Lett. 8 011002 Palm C A, Smukler S M, Sullivan C C, Mutuo P K, Nyadzi G I and Walsh M G 2010 Identifying potential synergies and trade-offs for meeting food security and climate change objectives in sub-Saharan Africa Proc. Natl Acad. Sci. 107 19661-6 Parkin T B and Venterea R T 2010 Chamber-based trace gas flux measurements Sampling Protocols ed R F Follett chapter 3, pp 3-1-3-39 (available at: www.ars.usda.gov/research/GRACEnet) Smith P et al 2008 Greenhouse gas mitigation in agriculture Phil. Trans. R. Soc. B 363 789-813 Tilman D, Balzer C, Hill J and Befort B 2011 Global food demand and the sustainable intensification of agriculture Proc. Natl Acad. Sci. 108 20260-4 Van Groenigen J W, Velthof G L, Oeneme O, Van Groenigen K J and Van Kessel C 2010 Towards an agronomic assessment of N2O emissions: a case study for arable crops Eur. J. Soil Sci. 61 903-13 Verchot L V, Brienzajunior S, Deoliveira V, Mutegi J, Cattânio J H and Davidson E A 2008 Fluxes of CH4, CO2, NO, and N2O in an improved fallow agroforestry system in eastern Amazonia Agric. Ecosyst. Environ. 126 113-21 Vermeulen S J, Campbell B M and Ingram J S I 2012 Climate change and food systems Annu. Rev. Environ. Resour. 37 195-222
Jiang, Dong; Hao, Mengmeng; Wang, Qiao; Huang, Yaohuan; Fu, Xinyu
2014-01-01
The main purpose for developing biofuel is to reduce GHG (greenhouse gas) emissions, but the comprehensive environmental impact of such fuels is not clear. Life cycle analysis (LCA), as a complete comprehensive analysis method, has been widely used in bioenergy assessment studies. Great efforts have been directed toward establishing an efficient method for comprehensively estimating the greenhouse gas (GHG) emission reduction potential from the large-scale cultivation of energy plants by combining LCA with ecosystem/biogeochemical process models. LCA presents a general framework for evaluating the energy consumption and GHG emission from energy crop planting, yield acquisition, production, product use, and postprocessing. Meanwhile, ecosystem/biogeochemical process models are adopted to simulate the fluxes and storage of energy, water, carbon, and nitrogen in the soil-plant (energy crops) soil continuum. Although clear progress has been made in recent years, some problems still exist in current studies and should be addressed. This paper reviews the state-of-the-art method for estimating GHG emission reduction through developing energy crops and introduces in detail a new approach for assessing GHG emission reduction by combining LCA with biogeochemical process models. The main achievements of this study along with the problems in current studies are described and discussed. PMID:25045736
Influences on Adoption of Greenhouse Gas Reduction Targets among US States, 1998-2008
Cale, Tabitha M.; Reams, Margaret A.
2016-01-01
While the United States has not established federal regulations for greenhouse gas (GHG) reduction targets, many US states have adopted their own standards and guidelines. In this study we examine state adoption of targets for GHG reductions during the ten-year period of 1998–2008, and identify factors that explain variation in target adoption. Potential influences are drawn from research from the public policy formulation and diffusion literature, and from studies specific to climate policy adoption. Potential influences on GHG reduction efforts among US states include socioeconomic attributes of residents, political and ideological orientations of citizens and state government, interest group activities, environmental pressures, and proximity to other states that have adopted GHG reduction targets. The findings of the multinomial logistic regression analysis indicate that states are more likely to adopt GHG reduction targets if they share a border with another state with a similar climate program and if their citizens are more ideologically liberal. Other factors including socioeconomic resources and interest group activities were not found to be associated with policy adoption. The findings yield insights into the conditions under which states are more likely to take action to reduce GHG’s, and are relevant both to state policy makers and residents with an interest in climate planning, and for researchers attempting to estimate future greenhouse gas reduction scenarios. PMID:27471657
Deep carbon reductions in California require electrification and integration across economic sectors
NASA Astrophysics Data System (ADS)
Wei, Max; Nelson, James H.; Greenblatt, Jeffery B.; Mileva, Ana; Johnston, Josiah; Ting, Michael; Yang, Christopher; Jones, Chris; McMahon, James E.; Kammen, Daniel M.
2013-03-01
Meeting a greenhouse gas (GHG) reduction target of 80% below 1990 levels in the year 2050 requires detailed long-term planning due to complexity, inertia, and path dependency in the energy system. A detailed investigation of supply and demand alternatives is conducted to assess requirements for future California energy systems that can meet the 2050 GHG target. Two components are developed here that build novel analytic capacity and extend previous studies: (1) detailed bottom-up projections of energy demand across the building, industry and transportation sectors; and (2) a high-resolution variable renewable resource capacity planning model (SWITCH) that minimizes the cost of electricity while meeting GHG policy goals in the 2050 timeframe. Multiple pathways exist to a low-GHG future, all involving increased efficiency, electrification, and a dramatic shift from fossil fuels to low-GHG energy. The electricity system is found to have a diverse, cost-effective set of options that meet aggressive GHG reduction targets. This conclusion holds even with increased demand from transportation and heating, but the optimal levels of wind and solar deployment depend on the temporal characteristics of the resulting load profile. Long-term policy support is found to be a key missing element for the successful attainment of the 2050 GHG target in California.
Clarifying uncertainty in biogeochemical response to land management
NASA Astrophysics Data System (ADS)
Tonitto, C.; Gurwick, N. P.; Woodbury, P. B.
2013-12-01
We examined the ability of contemporary simulation and empirical modeling tools to describe net greenhouse gas (GHG) emissions as a result of agricultural and forest ecosystem land management, and we looked at how key policy institutions use these tools. We focused on quantification of nitrous oxide (N2O) emissions from agricultural systems, as agriculture is the dominant source of anthropogenic N2O emissions. Agricultural management impact on N2O emissions is especially challenging because controls on N2O emissions (soil aerobic status, inorganic N availability, and C substrate availability) vary as a function of site soil type, climate, and cropping system; available measurements do not cover all relevant combinations of these controlling system features. Furthermore, N2O emissions are highly non-linear, and threshold values of controlling soil environmental conditions are not defined across most agricultural site properties. We also examined the multi-faceted challenges regarding the quantification of increased soil organic carbon (SOC) storage as a result of land management in both agricultural and forest systems. Quantifying changes in SOC resulting from land management is difficult because mechanisms of SOC stabilization are not fully understood, SOC measurements have been concentrated in the upper 30cm of soil, erosion is often ignored when estimating SOC, and few long-term studies exist to track system response to diverse management practices. Furthermore, the permanence of SOC accumulating management practices is not easily established. For instance, under the Regional Greenhouse Gas Initiative (RGGI), forest land managed for SOC accumulation must remain under permanent conservation easement to ensure that SOC accumulation is not reversed due to changes in land cover. For agricultural protocols, given that many farmers rent land and that agriculture is driven by an annual management time scale, the ability to ensure SOC-accumulating land management would be maintained indefinitely has delayed the implementation of SOC accumulating practices for compliance with the California Global Warming Solutions Act (AB 32). GHG accounting tools are increasingly applied to implement GHG reduction policies. In this policy context, data limitation has impacted the implementation of GHG accounting strategies. For example, protocol design in support of AB 32 initially sought to apply simulation models to determine N2O emissions across all major U.S. agricultural landscapes. After discussion with ecosystem scientists, the lack of observations and model validation in most U.S. arable landscapes led to protocol definition based on simple empirical models and limited to corn management in 12 states. The distribution of protocol participants is also a potential source of inaccuracy in GHG accounting. Land management protocols are often structured assuming that in the aggregate policy achieves an average improvement by promoting specific management. However it is unclear that current policy incentives promote participation from a truly random distribution of landscapes. Participation in policy development to support improved land management challenges ecosystem scientists with making recommendations based on best-available information while acknowledging that uncertainty limits accurate quantification of impacts via analysis using either observations or simulation modeling.
Improvements to coal power plant technology and the co-fired combustion of biomass promise direct greenhouse gas (GHG) reductions for existing coal-fired power plants. Questions remain as to what the reduction potentials are from a life cycle perspective and if it will result in ...
Samaras, Constantine; Meisterling, Kyle
2008-05-01
Plug-in hybrid electric vehicles (PHEVs), which use electricity from the grid to power a portion of travel, could play a role in reducing greenhouse gas (GHG) emissions from the transport sector. However, meaningful GHG emissions reductions with PHEVs are conditional on low-carbon electricity sources. We assess life cycle GHG emissions from PHEVs and find that they reduce GHG emissions by 32% compared to conventional vehicles, but have small reductions compared to traditional hybrids. Batteries are an important component of PHEVs, and GHGs associated with lithium-ion battery materials and production account for 2-5% of life cycle emissions from PHEVs. We consider cellulosic ethanol use and various carbon intensities of electricity. The reduced liquid fuel requirements of PHEVs could leverage limited cellulosic ethanol resources. Electricity generation infrastructure is long-lived, and technology decisions within the next decade about electricity supplies in the power sector will affectthe potential for large GHG emissions reductions with PHEVs for several decades.
Center for Corporate Climate Leadership GHG Inventory Guidance for Low Emitters
Tools and guidance for low emitters and small businesses to develop an organization-wide GHG inventory and establish a plan to ensure GHG emissions data consistency for tracking progress towards reaching an emissions reduction goal.
NASA Astrophysics Data System (ADS)
Johnson, Derek; Heltzel, Robert
2016-11-01
Greenhouse Gas (GHG) emissions are a growing problem in the United States (US). Methane (CH4) is a potent GHG produced by several stages of the natural gas sector. Current scrutiny focuses on the natural gas boom associated with unconventional shale gas; however, focus should still be given to conventional wells and outdated equipment. In an attempt to quantify these emissions, researchers modified an off-road utility terrain vehicle (UTV) to include a Full Flow Sampling system (FFS) for methane quantification. GHG emissions were measured from non-producing and remote low throughput natural gas components in the Marcellus region. Site audits were conducted at eleven locations and leaks were identified and quantified at seven locations including at a low throughput conventional gas and oil well, two out-of-service gathering compressors, a conventional natural gas well, a coalbed methane well, and two conventional and operating gathering compressors. No leaks were detected at the four remaining sites, all of which were coal bed methane wells. The total methane emissions rate from all sources measured was 5.3 ± 0.23 kg/hr, at a minimum.
Waste-to-energy sector and the mitigation of greenhouse gas emissions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fotis, S.C.; Sussman, D.
The waste-to-energy sector provides one important avenue for the United States to reduce greenhouse gas (GHG) emissions. The purpose of this paper is to highlight the significant GHG reductions capable of being achieved by the waste-to-energy (WTE) sector through avoided fossil generation and reduced municipal landfills. The paper begins with a review of the current voluntary reporting mechanism for {open_quotes}registering{close_quotes} GHG reduction credits under section 1605(b) of the Energy Policy Act of 1992. The paper then provides an overview of possible emerging international and domestic trends that could ultimately lead to mandatory targets and timetables for GHG mitigation in themore » United States and other countries. The paper ends with an analysis of the GHG benefits achievable by the WTE sector, based on the section 1605(b) report filed by the Integrated Waste Services Association IWSA on the GHG emissions avoided for year 1995.« less
Aerosol reductions could dominate regional climate responses in low GHG emission scenarios
NASA Astrophysics Data System (ADS)
Samset, B. H.; Sand, M.; Smith, C. J.; Bauer, S.; Forster, P.; Fuglestvedt, J. S.; Osprey, S. M.; Schleussner, C. F.
2017-12-01
Limiting global warming to current political goals requires strong, rapid mitigation of anthropogenic greenhouse gas (GHG) emissions. Concurrently, emissions of anthropogenic aerosols will decline sharply, due to co-emission with greenhouse gases, and future measures to improve air quality. As the net climate effect of GHG and aerosol emissions over the industrial era is poorly constrained, predicting the impact of strong aerosol emission reductions remains challenging. Here we investigate the isolated and compound climate impacts from removing present day anthropogenic emissions of black carbon (BC), organic carbon (OC) and SO2, and moderate, near term GHG dominated global warming, using four coupled climate models. As the dominating effect of aerosol emission reduction is a removal of cooling from sulphur, the resulting climate impacts amplify those of GHG induced warming. BC emissions contribute little to reducing surface warming, but have stronger regional impacts. For the major aerosol emission regions, extreme weather indices are more sensitive to aerosol removal than to GHG increases, per degree of surface warming. East Asia in particular stands out, mainly due to the high present regional aerosol emissions. We show how present climate models indicate that future regional climate change will depend strongly on changes in loading and distribution of aerosols in the atmosphere, in addition to surface temperature change.
Kelly, Jarod C; Sullivan, John L; Burnham, Andrew; Elgowainy, Amgad
2015-10-20
This study examines the vehicle-cycle and vehicle total life-cycle impacts of substituting lightweight materials into vehicles. We determine part-based greenhouse gas (GHG) emission ratios by collecting material substitution data and evaluating that alongside known mass-based GHG ratios (using and updating Argonne National Laboratory's GREET model) associated with material pair substitutions. Several vehicle parts are lightweighted via material substitution, using substitution ratios from a U.S. Department of Energy report, to determine GHG emissions. We then examine fuel-cycle GHG reductions from lightweighting. The fuel reduction value methodology is applied using FRV estimates of 0.15-0.25, and 0.25-0.5 L/(100km·100 kg), with and without powertrain adjustments, respectively. GHG breakeven values are derived for both driving distance and material substitution ratio. While material substitution can reduce vehicle weight, it often increases vehicle-cycle GHGs. It is likely that replacing steel (the dominant vehicle material) with wrought aluminum, carbon fiber reinforced plastic (CRFP), or magnesium will increase vehicle-cycle GHGs. However, lifetime fuel economy benefits often outweigh the vehicle-cycle, resulting in a net total life-cycle GHG benefit. This is the case for steel replaced by wrought aluminum in all assumed cases, and for CFRP and magnesium except for high substitution ratio and low FRV.
NASA Astrophysics Data System (ADS)
Hammac, W. A.; Pan, W.; Koenig, R. T.; McCracken, V.
2012-12-01
The Environmental Protection Agency (EPA) has mandated through the second renewable fuel standard (RFS2) that biodiesel meet a minimum threshold requirement (50% reduction) for greenhouse gas (GHG) emission reduction compared to fossil diesel. This designation is determined by life cycle assessment (LCA) and carries with it potential for monetary incentives for biodiesel feedstock growers (Biomass Crop Assistance Program) and biodiesel processors (Renewable Identification Numbers). A national LCA was carried out for canola (Brassica napus) biodiesel feedstock by the EPA and it did meet the minimum threshold requirement. However, EPA's national LCA does not provide insight into regional variation in GHG mitigation. The authors propose for full GHG reduction potential of biofuels to be realized, LCA results must have regional specificity and should inform incentives for growers and processors on a regional basis. The objectives of this work were to determine (1) variation in biofuel feedstock production related GHG emissions between three agroecological zones (AEZs) in eastern Washington State (2) the impact of nitrogen use efficiency (NUE) on GHG mitigation potential for each AEZ and (3) the impact of incentives on adoption of oilseed production. Results from objective (1) revealed there is wide variability in range for GHG estimates both across and within AEZs based on variation in farming practices and environment. It is expected that results for objective (2) will show further GHG mitigation potential due to minimizing N use and therefore fertilizer transport and soil related GHG emission while potentially increasing biodiesel production per hectare. Regional based incentives may allow more timely achievement of goals for bio-based fuels production. Additionally, incentives may further increase GHG offsetting by promoting nitrogen conserving best management practices implementation. This research highlights the need for regional assessment/incentive based strategies for maximizing GHG mitigation potential of biofuel feedstocks.
Previous studies have shown that mitigating climate change through curbing greenhouse gas (GHG) emissions can bring about substantial environmental co-benefits, such as for air quality and reductions in energy-related water demand. A variety of pathways are available for reducing...
Voluntary GHG reduction of industrial sectors in Taiwan.
Chen, Liang-Tung; Hu, Allen H
2012-08-01
The present paper describes the voluntary greenhouse gas (GHG) reduction agreements of six different industrial sectors in Taiwan, as well as the fluorinated gases (F-gas) reduction agreement of the semiconductor and Liquid Crystal Display (LCD) industries. The operating mechanisms, GHG reduction methods, capital investment, and investment effectiveness are also discussed. A total of 182 plants participated in the voluntary energy saving and GHG reduction in six industrial sectors (iron and steel, petrochemical, cement, paper, synthetic fiber, and textile printing and dyeing), with 5.35 Mt reduction from 2004 to 2008, or 33% higher than the target goal (4.02 Mt). The reduction accounts for 1.6% annual emission or 7.8% during the 5-yr span. The petrochemical industry accounts for 49% of the reduction, followed by the cement sector (21%) and the iron and steel industry (13%). The total investment amounted to approximately USD 716 million, in which, the majority of the investment went to the modification of the manufacturing process (89%). The benefit was valued at around USD 472 million with an average payback period of 1.5 yr. Moreover, related energy saving was achieved through different approaches, e.g., via electricity (iron and steel), steam and oil consumption (petrochemical) and coal usage (cement). The cost for unit CO(2) reduction varies per industry, with the steel and iron industrial sector having the highest cost (USD 346 t(-1) CO(2)) compared with the average cost of the six industrial sectors (USD 134 t(-1) CO(2)). For the semiconductor and Thin-Film Transistor LCD industries, F-gas emissions were reduced from approximately 4.1 to about 1.7 Mt CO(2)-eq, and from 2.2 to about 1.1 Mt CO(2)-eq, respectively. Incentive mechanisms for participation in GHG reduction are also further discussed. Copyright © 2012 Elsevier Ltd. All rights reserved.
Chapter 8: Uncertainty assessment for quantifying greenhouse gas sources and sinks
Jay Breidt; Stephen M. Ogle; Wendy Powers; Coeli Hoover
2014-01-01
Quantifying the uncertainty of greenhouse gas (GHG) emissions and reductions from agriculture and forestry practices is an important aspect of decision�]making for farmers, ranchers and forest landowners as the uncertainty range for each GHG estimate communicates our level of confidence that the estimate reflects the actual balance of GHG exchange between...
specified volumes of renewable fuels according to the categories below. EISA established life cycle GHG demonstrate a 20% reduction in life cycle GHG emissions. Advanced Biofuel: Any fuel derived from cellulosic or categories may be used to meet this category. Fuels in this category must demonstrate a life cycle GHG
Estimating Greenhouse Gas (GHG) Emissions in 2050 from New Buildings in California
NASA Astrophysics Data System (ADS)
Beardsley, K.; Thorne, J. H.; Quinn, J. F.
2009-12-01
A major contributor to global warming is Greenhouse Gas (GHG) emissions, with carbon dioxide (CO2) as the lead constituent. While the United States has failed to take a leadership role in worldwide efforts to reduce global warming, California has implemented some of the strictest reduction goals in the country. Recent legislation in California requires significant GHG emission reductions in the coming decades to meet state-mandated targets. To better understand the relative contribution of urban growth to these emissions, we applied an Energy and GHG Impacts Calculator (referred to as “GHG Calculator”) to estimate GHG contributions for two statewide population growth scenarios for the year 2050. Implemented as part of the UPlan urban growth model, the GHG Calculator allows users to predict and compare GHG output from new development. In this paper, two scenarios, differing only in the spatial allocation of housing among zoning categories, are developed and tested for the year 2050 in California. The difference in total GHG emissions between these scenarios was less than 1%. Thus, while “smart growth” may be desirable for a variety of other reasons, the policy impact of the sprawl footprint per se on fixed-source GHG emissions is likely to be far less than effects from other factors, such as insulation and household energy efficiency. The GHG Calculator allows alternative emission-reducing measures to be tested, including modified energy mixes (e.g. a greater percent of renewable sources and lower carbon-based fuels) and conservation measures. The goal is to approximate 2050 emissions and determine what measures are needed to achieve the 2050 goal set by the Governor of California to help decrease the State’s overall contribution to global warming.
Yang, Na; Zhang, Hua; Chen, Miao; Shao, Li-Ming; He, Pin-Jing
2012-12-01
Determination of the amount of greenhouse gas (GHG) emitted during municipal solid waste incineration (MSWI) is complex because both contributions and savings of GHGs exist in the process. To identify the critical factors influencing GHG emissions from MSWI in China, a GHG accounting model was established and applied to six Chinese cities located in different regions. The results showed that MSWI in most of the cities was the source of GHGs, with emissions of 25-207 kg CO(2)-eq t(-1) rw. Within all process stages, the emission of fossil CO(2) from the combustion of MSW was the main contributor (111-254 kg CO(2)-eq t(-1) rw), while the substitution of electricity reduced the GHG emissions by 150-247 kg CO(2)-eq t(-1) rw. By affecting the fossil carbon content and the lower heating value of the waste, the contents of plastic and food waste in the MSW were the critical factors influencing GHG emissions of MSWI. Decreasing food waste content in MSW by half will significantly reduce the GHG emissions from MSWI, and such a reduction will convert MSWI in Urumqi and Tianjin from GHG sources to GHG sinks. Comparison of the GHG emissions in the six Chinese cities with those in European countries revealed that higher energy recovery efficiency in Europe induced much greater reductions in GHG emissions. Recovering the excess heat after generation of electricity would be a good measure to convert MSWI in all the six cities evaluated herein into sinks of GHGs. Copyright © 2012 Elsevier Ltd. All rights reserved.
Liu, Hong-Tao; Wang, Yan-Wen; Liu, Xiao-Jie; Gao, Ding; Zheng, Guo-di; Lei, Mei; Guo, Guang-Hui; Zheng, Hai-Xia; Kong, Xiang-Juan
2017-02-01
Sludge is an important source of greenhouse gas (GHG) emissions, both in the form of direct process emissions and as a result of indirect carbon-derived energy consumption during processing. In this study, the carbon budgets of two sludge disposal processes at two well-known sludge disposal sites in China (for biodrying and heat-drying pretreatments, both followed by mono-incineration) were quantified and compared. Total GHG emissions from heat drying combined with mono-incineration was 0.1731 tCO 2 e t -1 , while 0.0882 tCO 2 e t -1 was emitted from biodrying combined with mono-incineration. Based on these findings, a significant reduction (approximately 50%) in total GHG emissions was obtained by biodrying instead of heat drying prior to sludge incineration. Sludge treatment results in direct and indirect greenhouse gas (GHG) emissions. Moisture reduction followed by incineration is commonly used to dispose of sludge in China; however, few studies have compared the effects of different drying pretreatment options on GHG emissions during such processes. Therefore, in this study, the carbon budgets of sludge incineration were analyzed and compared following different pretreatment drying technologies (biodrying and heat drying). The results indicate that biodrying combined with incineration generated approximately half of the GHG emissions compared to heat drying followed by incineration. Accordingly, biodrying may represent a more environment-friendly sludge pretreatment prior to incineration.
Contribution of plastic waste recovery to greenhouse gas (GHG) savings in Spain.
Sevigné-Itoiz, Eva; Gasol, Carles M; Rieradevall, Joan; Gabarrell, Xavier
2015-12-01
This paper concentrates on the quantification of greenhouse gas (GHG) emissions of post-consumer plastic waste recovery (material or energy) by considering the influence of the plastic waste quality (high or low), the recycled plastic applications (virgin plastic substitution or non-plastic substitution) and the markets of recovered plastic (regional or global). The aim is to quantify the environmental consequences of different alternatives in order to evaluate opportunities and limitations to select the best and most feasible plastic waste recovery option to decrease the GHG emissions. The methodologies of material flow analysis (MFA) for a time period of thirteen years and consequential life cycle assessment (CLCA) have been integrated. The study focuses on Spain as a representative country for Europe. The results show that to improve resource efficiency and avoid more GHG emissions, the options for plastic waste management are dependent on the quality of the recovered plastic. The results also show that there is an increasing trend of exporting plastic waste for recycling, mainly to China, that reduces the GHG benefits from recycling, suggesting that a new focus should be introduced to take into account the split between local recycling and exporting. Copyright © 2015 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
2013-03-01
This fact sheet summarizes actions in the areas of light-duty vehicle, non-light-duty vehicle, fuel, and transportation demand that show promise for deep reductions in energy use. Energy efficient transportation strategies have the potential to simultaneously reduce oil consumption and greenhouse gas (GHG) emissions. The Transportation Energy Futures (TEF) project examined how the combination of multiple strategies could achieve deep reductions in GHG emissions and petroleum use on the order of 80%. Led by NREL, in collaboration with Argonne National Laboratory, the project's primary goal was to help inform domestic decisions about transportation energy strategies, priorities, and investments, with an emphasismore » on underexplored opportunities. TEF findings reveal three strategies with the potential to displace most transportation-related petroleum use and GHG emissions: 1) Stabilizing energy use in the transportation sector through efficiency and demand-side approaches. 2) Using additional advanced biofuels. 3) Expanding electric drivetrain technologies.« less
Summary of Fast Pyrolysis and Upgrading GHG Analyses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Snowden-Swan, Lesley J.; Male, Jonathan L.
2012-12-07
The Energy Independence and Security Act (EISA) of 2007 established new renewable fuel categories and eligibility requirements (EPA 2010). A significant aspect of the National Renewable Fuel Standard 2 (RFS2) program is the requirement that the life cycle greenhouse gas (GHG) emissions of a qualifying renewable fuel be less than the life cycle GHG emissions of the 2005 baseline average gasoline or diesel fuel that it replaces. Four levels of reduction are required for the four renewable fuel standards. Table 1 lists these life cycle performance improvement thresholds. Table 1. Life Cycle GHG Thresholds Specified in EISA Fuel Type Percentmore » Reduction from 2005 Baseline Renewable fuel 20% Advanced biofuel 50% Biomass-based diesel 50% Cellulosic biofuel 60% Notably, there is a specialized subset of advanced biofuels that are the cellulosic biofuels. The cellulosic biofuels are incentivized by the Cellulosic Biofuel Producer Tax Credit (26 USC 40) to stimulate market adoption of these fuels. EISA defines a cellulosic biofuel as follows (42 USC 7545(o)(1)(E)): The term “cellulosic biofuel” means renewable fuel derived from any cellulose, hemicellulose, or lignin that is derived from renewable biomass and that has lifecycle greenhouse gas emissions, as determined by the Administrator, that are at least 60 percent less than the baseline lifecycle greenhouse gas emissions. As indicated, the Environmental Protection Agency (EPA) has sole responsibility for conducting the life cycle analysis (LCA) and making the final determination of whether a given fuel qualifies under these biofuel definitions. However, there appears to be a need within the LCA community to discuss and eventually reach consensus on discerning a 50–59 % GHG reduction from a ≥ 60% GHG reduction for policy, market, and technology development. The level of specificity and agreement will require additional development of capabilities and time for the sustainability and analysis community, as illustrated by the rich dialogue and convergence around the energy content and GHG reduction of cellulosic ethanol (an example of these discussions can be found in Wang 2011). GHG analyses of fast pyrolysis technology routes are being developed and will require significant work to reach the levels of development and maturity of cellulosic ethanol models. This summary provides some of the first fast pyrolysis analyses and clarifies some of the reasons for differing results in an effort to begin the convergence on assumptions, discussion of quality of models, and harmonization.« less
NASA Astrophysics Data System (ADS)
Sanna, Laura; Ferrara, Roberto; Zara, Pierpaolo; Duce, Pierpaolo
2014-05-01
The European Union has set as priorities the fight against climate change related to greenhouse gas releases. The largest source of these emissions comes from human activities in urban areas that account for more than 70% of the world's emissions and several local governments intend to support the European strategic policies in understanding which crucial sectors drive GHG emissions in their city. Planning for mitigation actions at the community scale starts with the compilation of a GHG inventories that, among a wide range of measurement tools, provide information on the current status of GHG emissions across a specific jurisdiction. In the framework of a regional project for quantitative estimate of the net exchange of CO2 (emissions and sinks) at the municipal level in Sardinia, the town of Sassari represents a pilot site where a spatial and temporal high resolution GHG emissions inventory is built in line with European and international standard protocols to establish a baseline for tracking emission trends. The specific purpose of this accurate accounting is to obtain an appropriate allocation of CO2 and other GHG emissions at the fine building and hourly scale. The aim is to test the direct measurements needed to enable the construction of future scenarios of these emissions and for assessing possible strategies to reduce their impact. The key element of the methodologies used to construct this GHG emissions inventory is the Global Protocol for Community-Scale Greenhouse Gas Emissions (GPC) (March 2012) that identifies four main types of emission sources: (i) Stationary Units, (ii) Mobile Units, (iii) Waste, and (iv) Industrial Process and Product Use Emissions. The development of the GHG emissions account in Sassari consists in the collection of a range of alternative data sources (primary data, IPCC emission factors, national and local statistic, etc.) selected on the base on relevance and completeness criteria performed for 2010, as baseline year, using top-down, bottom-up or mixed approaches. GPC protocol also defines three standard scopes for downscaling emissions from the national to the community level, that allow to handle the attribution of releases that occur outside the community boundary as a result of activity or consumption within it. The procedures for data processing have simple and concise structure, applicable in different communities that led to the possibility to compare the results with other national contexts. An appropriate GHG emissions allocation over detailed spatial and temporal scales has been achieved on the basis of specific indicators (population, industrial employees, amount of product, etc.) and of geo-location and size of all buildings, using appropriate models, that enable to properly georeference them respect to their uses. The main advantage of neighborhood-level quantification consists in the identification of the main productive sources and emissive activities within the urban boundaries that mostly contribute to the current GHG emissions and then focus the efforts on possible mitigation.
Co-control of urban air pollutants and greenhouse gases in Mexico City.
West, J Jason; Osnaya, Patricia; Laguna, Israel; Martínez, Julia; Fernández, Adrián
2004-07-01
This study addresses the synergies of mitigation measures to control urban air pollutant and greenhouse gas (GHG) emissions, in developing integrated "co-control" strategies for Mexico City. First, existing studies of emissions reduction measures--PROAIRE (the air quality plan for Mexico City) and separate GHG studies--are used to construct a harmonized database of options. Second, linear programming (LP) is developed and applied as a decision-support tool to analyze least-cost strategies for meeting co-control targets for multiple pollutants. We estimate that implementing PROAIRE measures as planned will reduce 3.1% of the 2010 metropolitan CO2 emissions, in addition to substantial local air pollutant reductions. Applying the LP, PROAIRE emissions reductions can be met at a 20% lower cost, using only the PROAIRE measures, by adjusting investments toward the more cost-effective measures; lower net costs are possible by including cost-saving GHG mitigation measures, but with increased investment. When CO2 emission reduction targets are added to PROAIRE targets, the most cost-effective solutions use PROAIRE measures for the majority of local pollutant reductions, and GHG measures for additional CO2 control. Because of synergies, the integrated planning of urban-global co-control can be beneficial, but we estimate that for Mexico City these benefits are often small.
Climate Leadership Award for Excellence in GHG Management (Goal Setting Certificate)
Apply to the Climate Leadership Award for Excellence in GHG Management (Goal Achievement Award), which publicly recognizes organizations that achieve publicly-set aggressive greenhouse gas emissions reduction goals.
Climate Leadership Award for Excellence in GHG Management (Goal Achievement Award)
Apply to the Climate Leadership Award for Excellence in GHG Management (Goal Achievement Award), which publicly recognizes organizations that achieve publicly-set aggressive greenhouse gas emissions reduction goals.
About the Center for Corporate Climate Leadership
EPA's Center for Corporate Climate Leadership encourages organizations with emerging climate objectives to identify and achieve cost-effective GHG emission reductions, while helping more advanced organizations drive innovations in reducing GHG impacts.
Reducing GHG emissions in the United States' transportation sector
DOE Office of Scientific and Technical Information (OSTI.GOV)
Das, Sujit; Andress, David A; Nguyen, Tien
Reducing GHG emissions in the U.S. transportation sector requires both the use of highly efficient propulsion systems and low carbon fuels. This study compares reduction potentials that might be achieved in 2060 for several advanced options including biofuels, hybrid electric vehicles (HEV), plug-in hybrid electric vehicles (PHEV), and fuel cell electric vehicles (FCEV), assuming that technical and cost reduction targets are met and necessary fueling infrastructures are built. The study quantifies the extent of the reductions that can be achieved through increasing engine efficiency and transitioning to low-carbon fuels separately. Decarbonizing the fuels is essential for achieving large reductions inmore » GHG emissions, and the study quantifies the reductions that can be achieved over a range of fuel carbon intensities. Although renewables will play a vital role, some combination of coal gasification with carbon capture and sequestration, and/or nuclear energy will likely be needed to enable very large reductions in carbon intensities for hydrogen and electricity. Biomass supply constraints do not allow major carbon emission reductions from biofuels alone; the value of biomass is that it can be combined with other solutions to help achieve significant results. Compared with gasoline, natural gas provides 20% reduction in GHG emissions in internal combustion engines and up to 50% reduction when used as a feedstock for producing hydrogen or electricity, making it a good transition fuel for electric propulsion drive trains. The material in this paper can be useful information to many other countries, including developing countries because of a common factor: the difficulty of finding sustainable, low-carbon, cost-competitive substitutes for petroleum fuels.« less
Gao, Jinghong; Hou, Hongli; Zhai, Yunkai; Woodward, Alistair; Vardoulakis, Sotiris; Kovats, Sari; Wilkinson, Paul; Li, Liping; Song, Xiaoqin; Xu, Lei; Meng, Bohan; Liu, Xiaobo; Wang, Jun; Zhao, Jie; Liu, Qiyong
2018-09-01
To date, greenhouse gas (GHG) emissions, mitigation strategies and the accompanying health co-benefits in different economic sectors have not been fully investigated. The purpose of this paper is to review comprehensively the evidence on GHG mitigation measures and the related health co-benefits, identify knowledge gaps, and provide recommendations to promote further development and implementation of climate change response policies. Evidence on GHG emissions, abatement measures and related health co-benefits has been observed at regional, national and global levels, involving both low- and high-income societies. GHG mitigation actions have mainly been taken in five sectors: energy generation, transport, food and agriculture, household and industry, consistent with the main sources of GHG emissions. GHGs and air pollutants to a large extent stem from the same sources and are inseparable in terms of their atmospheric evolution and effects on ecosystem; thus, GHG reductions are usually, although not always, estimated to have cost effective co-benefits for public health. Some integrated mitigation strategies involving multiple sectors, which tend to create greater health benefits. The pros and cons of different mitigation measures, issues with existing knowledge, priorities for research, and potential policy implications were also discussed. Findings from this study can play a role not only in motivating large GHG emitters to make decisive changes in GHG emissions, but also in facilitating cooperation at international, national and regional levels, to promote GHG mitigation policies that protect public health from climate change and air pollution simultaneously. Copyright © 2018 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kelly, Jarod C.; Sullivan, John L.; Burnham, Andrew
This study examines the vehicle-cycle impacts associated with substituting lightweight materials for those currently found in light-duty passenger vehicles. We determine part-based energy use and greenhouse gas (GHG) emission ratios by collecting material substitution data from both the literature and automotive experts and evaluating that alongside known mass-based energy use and GHG emission ratios associated with material pair substitutions. Several vehicle parts, along with full vehicle systems, are examined for lightweighting via material substitution to observe the associated impact on GHG emissions. Results are contextualized by additionally examining fuel-cycle GHG reductions associated with mass reductions relative to the baseline vehiclemore » during the use phase and also determining material pair breakeven driving distances for GHG emissions. The findings show that, while material substitution is useful in reducing vehicle weight, it often increases vehicle-cycle GHGs depending upon the material substitution pair. However, for a vehicle’s total life cycle, fuel economy benefits are greater than the increased burdens associated with the vehicle manufacturing cycle, resulting in a net total life-cycle GHG benefit. The vehicle cycle will become increasingly important in total vehicle life-cycle GHGs, since fuel-cycle GHGs will be gradually reduced as automakers ramp up vehicle efficiency to meet fuel economy standards.« less
Cai, Hao; Dunn, Jennifer B; Wang, Zhichao; Han, Jeongwoo; Wang, Michael Q
2013-10-02
The availability of feedstock options is a key to meeting the volumetric requirement of 136.3 billion liters of renewable fuels per year beginning in 2022, as required in the US 2007 Energy Independence and Security Act. Life-cycle greenhouse gas (GHG) emissions of sorghum-based ethanol need to be assessed for sorghum to play a role in meeting that requirement. Multiple sorghum-based ethanol production pathways show diverse well-to-wheels (WTW) energy use and GHG emissions due to differences in energy use and fertilizer use intensity associated with sorghum growth and differences in the ethanol conversion processes. All sorghum-based ethanol pathways can achieve significant fossil energy savings. Relative to GHG emissions from conventional gasoline, grain sorghum-based ethanol can reduce WTW GHG emissions by 35% or 23%, respectively, when wet or dried distillers grains with solubles (DGS) is the co-product and fossil natural gas (FNG) is consumed as the process fuel. The reduction increased to 56% or 55%, respectively, for wet or dried DGS co-production when renewable natural gas (RNG) from anaerobic digestion of animal waste is used as the process fuel. These results do not include land-use change (LUC) GHG emissions, which we take as negligible. If LUC GHG emissions for grain sorghum ethanol as estimated by the US Environmental Protection Agency (EPA) are included (26 g CO2e/MJ), these reductions when wet DGS is co-produced decrease to 7% or 29% when FNG or RNG is used as the process fuel. Sweet sorghum-based ethanol can reduce GHG emissions by 71% or 72% without or with use of co-produced vinasse as farm fertilizer, respectively, in ethanol plants using only sugar juice to produce ethanol. If both sugar and cellulosic bagasse were used in the future for ethanol production, an ethanol plant with a combined heat and power (CHP) system that supplies all process energy can achieve a GHG emission reduction of 70% or 72%, respectively, without or with vinasse fertigation. Forage sorghum-based ethanol can achieve a 49% WTW GHG emission reduction when ethanol plants meet process energy demands with CHP. In the case of forage sorghum and an integrated sweet sorghum pathway, the use of a portion of feedstock to fuel CHP systems significantly reduces fossil fuel consumption and GHG emissions. This study provides new insight into life-cycle energy use and GHG emissions of multiple sorghum-based ethanol production pathways in the US. Our results show that adding sorghum feedstocks to the existing options for ethanol production could help in meeting the requirements for volumes of renewable, advanced and cellulosic bioethanol production in the US required by the EPA's Renewable Fuel Standard program.
2013-01-01
Background The availability of feedstock options is a key to meeting the volumetric requirement of 136.3 billion liters of renewable fuels per year beginning in 2022, as required in the US 2007 Energy Independence and Security Act. Life-cycle greenhouse gas (GHG) emissions of sorghum-based ethanol need to be assessed for sorghum to play a role in meeting that requirement. Results Multiple sorghum-based ethanol production pathways show diverse well-to-wheels (WTW) energy use and GHG emissions due to differences in energy use and fertilizer use intensity associated with sorghum growth and differences in the ethanol conversion processes. All sorghum-based ethanol pathways can achieve significant fossil energy savings. Relative to GHG emissions from conventional gasoline, grain sorghum-based ethanol can reduce WTW GHG emissions by 35% or 23%, respectively, when wet or dried distillers grains with solubles (DGS) is the co-product and fossil natural gas (FNG) is consumed as the process fuel. The reduction increased to 56% or 55%, respectively, for wet or dried DGS co-production when renewable natural gas (RNG) from anaerobic digestion of animal waste is used as the process fuel. These results do not include land-use change (LUC) GHG emissions, which we take as negligible. If LUC GHG emissions for grain sorghum ethanol as estimated by the US Environmental Protection Agency (EPA) are included (26 g CO2e/MJ), these reductions when wet DGS is co-produced decrease to 7% or 29% when FNG or RNG is used as the process fuel. Sweet sorghum-based ethanol can reduce GHG emissions by 71% or 72% without or with use of co-produced vinasse as farm fertilizer, respectively, in ethanol plants using only sugar juice to produce ethanol. If both sugar and cellulosic bagasse were used in the future for ethanol production, an ethanol plant with a combined heat and power (CHP) system that supplies all process energy can achieve a GHG emission reduction of 70% or 72%, respectively, without or with vinasse fertigation. Forage sorghum-based ethanol can achieve a 49% WTW GHG emission reduction when ethanol plants meet process energy demands with CHP. In the case of forage sorghum and an integrated sweet sorghum pathway, the use of a portion of feedstock to fuel CHP systems significantly reduces fossil fuel consumption and GHG emissions. Conclusions This study provides new insight into life-cycle energy use and GHG emissions of multiple sorghum-based ethanol production pathways in the US. Our results show that adding sorghum feedstocks to the existing options for ethanol production could help in meeting the requirements for volumes of renewable, advanced and cellulosic bioethanol production in the US required by the EPA’s Renewable Fuel Standard program. PMID:24088388
Health effects of adopting low greenhouse gas emission diets in the UK
Milner, James; Green, Rosemary; Dangour, Alan D; Haines, Andy; Chalabi, Zaid; Spadaro, Joseph; Markandya, Anil; Wilkinson, Paul
2015-01-01
Objective Dietary changes which improve health are also likely to be beneficial for the environment by reducing emissions of greenhouse gases (GHG). However, previous analyses have not accounted for the potential acceptability of low GHG diets to the general public. This study attempted to quantify the health effects associated with adopting low GHG emission diets in the UK. Design Epidemiological modelling study. Setting UK. Participants UK population. Intervention Adoption of diets optimised to achieve the WHO nutritional recommendations and reduce GHG emissions while remaining as close as possible to existing dietary patterns. Main outcome Changes in years of life lost due to coronary heart disease, stroke, several cancers and type II diabetes, quantified using life tables. Results If the average UK dietary intake were optimised to comply with the WHO recommendations, we estimate an incidental reduction of 17% in GHG emissions. Such a dietary pattern would be broadly similar to the current UK average. Our model suggests that it would save almost 7 million years of life lost prematurely in the UK over the next 30 years and increase average life expectancy by over 8 months. Diets that result in additional GHG emission reductions could achieve further net health benefits. For emission reductions greater than 40%, improvements in some health outcomes may decrease and acceptability will diminish. Conclusions There are large potential benefits to health from adopting diets with lower associated GHG emissions in the UK. Most of these benefits can be achieved without drastic changes to existing dietary patterns. However, to reduce emissions by more than 40%, major dietary changes that limit both acceptability and the benefits to health are required. PMID:25929258
Health effects of adopting low greenhouse gas emission diets in the UK.
Milner, James; Green, Rosemary; Dangour, Alan D; Haines, Andy; Chalabi, Zaid; Spadaro, Joseph; Markandya, Anil; Wilkinson, Paul
2015-04-30
Dietary changes which improve health are also likely to be beneficial for the environment by reducing emissions of greenhouse gases (GHG). However, previous analyses have not accounted for the potential acceptability of low GHG diets to the general public. This study attempted to quantify the health effects associated with adopting low GHG emission diets in the UK. Epidemiological modelling study. UK. UK population. Adoption of diets optimised to achieve the WHO nutritional recommendations and reduce GHG emissions while remaining as close as possible to existing dietary patterns. Changes in years of life lost due to coronary heart disease, stroke, several cancers and type II diabetes, quantified using life tables. If the average UK dietary intake were optimised to comply with the WHO recommendations, we estimate an incidental reduction of 17% in GHG emissions. Such a dietary pattern would be broadly similar to the current UK average. Our model suggests that it would save almost 7 million years of life lost prematurely in the UK over the next 30 years and increase average life expectancy by over 8 months. Diets that result in additional GHG emission reductions could achieve further net health benefits. For emission reductions greater than 40%, improvements in some health outcomes may decrease and acceptability will diminish. There are large potential benefits to health from adopting diets with lower associated GHG emissions in the UK. Most of these benefits can be achieved without drastic changes to existing dietary patterns. However, to reduce emissions by more than 40%, major dietary changes that limit both acceptability and the benefits to health are required. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
DOT National Transportation Integrated Search
2017-08-01
The State of California has enacted ambitious policies that aim to reduce the states greenhouse gas (GHG) emissions. Some of these policies focus on reducing the amount of driving throughout the state, measured in vehicle miles traveled (VMT), giv...
Tabata, Tomohiro
2013-11-01
Municipal solid waste (MSW) incineration is a greenhouse gas (GHG) emitter; however, if GHG reductions, achieved by accounting for waste-to-energy, exceed GHG emissions, incineration can be considered as a net GHG reducer. In Japan, only 24.5% of MSW incineration plants perform energy recovery despite 80% of MSW being incinerated; therefore, there is great potential to extract more energy from MSW. In this study, the factors that should be considered to achieve net GHG reductions from incineration were analysed from a life cycle perspective. These considerations were then applied to the energy supply requirements in seven Japanese metropolises. Firstly, the carbon footprints of approximately 1500 incineration plants in Japan were calculated. Then, the incineration plants with negative carbon footprint values were classified as net GHG reducers. Next, the processes that contribute to the carbon footprint were evaluated, and two processes-plastic burning and electricity savings-were found to have the greatest influence. Based on the results, the energy supply requirements were analysed and discussed for seven metropolises (Sapporo, Tokyo, Nagoya, Osaka, Kobe, Takamatsu and Fukuoka) taking into account the energy demands of households. In Kobe, 16.2% of the electricity demand and 25.0% of the hot water demand could be satisfied by incineration to realise a net GHG reducer, although urban design for energy utilisation would be required.
O'Brien, D; Shalloo, L; Patton, J; Buckley, F; Grainger, C; Wallace, M
2012-09-01
Life cycle assessment (LCA) and the Intergovernmental Panel on Climate Change (IPCC) guideline methodology, which are the principal greenhouse gas (GHG) quantification methods, were evaluated in this study using a dairy farm GHG model. The model was applied to estimate GHG emissions from two contrasting dairy systems: a seasonal calving pasture-based dairy farm and a total confinement dairy system. Data used to quantify emissions from these systems originated from a research study carried out over a 1-year period in Ireland. The genetic merit of cows modelled was similar for both systems. Total mixed ration was fed in the Confinement system, whereas grazed grass was mainly fed in the grass-based system. GHG emissions from these systems were quantified per unit of product and area. The results of both methods showed that the dairy system that emitted the lowest GHG emissions per unit area did not necessarily emit the lowest GHG emissions possible for a given level of product. Consequently, a recommendation from this study is that GHG emissions be evaluated per unit of product given the growing affluent human population and increasing demand for dairy products. The IPCC and LCA methods ranked dairy systems' GHG emissions differently. For instance, the IPCC method quantified that the Confinement system reduced GHG emissions per unit of product by 8% compared with the grass-based system, but the LCA approach calculated that the Confinement system increased emissions by 16% when off-farm emissions associated with primary dairy production were included. Thus, GHG emissions should be quantified using approaches that quantify the total GHG emissions associated with the production system, so as to determine whether the dairy system was causing emissions displacement. The IPCC and LCA methods were also used in this study to simulate, through a dairy farm GHG model, what effect management changes within both production systems have on GHG emissions. The findings suggest that single changes have a small mitigating effect on GHG emissions (<5%), except for strategies used to control emissions from manure storage in the Confinement system (14% to 24%). However, when several management strategies were combined, GHG emissions per unit of product could be reduced significantly (15% to 30%). The LCA method was identified as the preferred approach to assess the effect of management changes on GHG emissions, but the analysis indicated that further standardisation of the approach is needed given the sensitivity of the approach to allocation decisions regarding milk and meat.
Assessment of technologies to meet a low carbon fuel standard.
Yeh, Sonia; Lutsey, Nicholas P; Parker, Nathan C
2009-09-15
California's low carbon fuel standard (LCFS) was designed to incentivize a diverse array of available strategies for reducing transportation greenhouse gas (GHG) emissions. It provides strong incentives for fuels with lower GHG emissions, while explicitly requiring a 10% reduction in California's transportation fuel GHG intensity by 2020. This paper investigates the potential for cost-effective GHG reductions from electrification and expanded use of biofuels. The analysis indicates that fuel providers could meetthe standard using a portfolio approach that employs both biofuels and electricity, which would reduce the risks and uncertainties associated with the progress of cellulosic and battery technologies, feedstock prices, land availability, and the sustainability of the various compliance approaches. Our analysis is based on the details of California's development of an LCFS; however, this research approach could be generalizable to a national U.S. standard and to similar programs in Europe and Canada.
Dietary greenhouse gas emissions of meat-eaters, fish-eaters, vegetarians and vegans in the UK.
Scarborough, Peter; Appleby, Paul N; Mizdrak, Anja; Briggs, Adam D M; Travis, Ruth C; Bradbury, Kathryn E; Key, Timothy J
The production of animal-based foods is associated with higher greenhouse gas (GHG) emissions than plant-based foods. The objective of this study was to estimate the difference in dietary GHG emissions between self-selected meat-eaters, fish-eaters, vegetarians and vegans in the UK. Subjects were participants in the EPIC-Oxford cohort study. The diets of 2,041 vegans, 15,751 vegetarians, 8,123 fish-eaters and 29,589 meat-eaters aged 20-79 were assessed using a validated food frequency questionnaire. Comparable GHG emissions parameters were developed for the underlying food codes using a dataset of GHG emissions for 94 food commodities in the UK, with a weighting for the global warming potential of each component gas. The average GHG emissions associated with a standard 2,000 kcal diet were estimated for all subjects. ANOVA was used to estimate average dietary GHG emissions by diet group adjusted for sex and age. The age-and-sex-adjusted mean (95 % confidence interval) GHG emissions in kilograms of carbon dioxide equivalents per day (kgCO 2 e/day) were 7.19 (7.16, 7.22) for high meat-eaters ( > = 100 g/d), 5.63 (5.61, 5.65) for medium meat-eaters (50-99 g/d), 4.67 (4.65, 4.70) for low meat-eaters ( < 50 g/d), 3.91 (3.88, 3.94) for fish-eaters, 3.81 (3.79, 3.83) for vegetarians and 2.89 (2.83, 2.94) for vegans. In conclusion, dietary GHG emissions in self-selected meat-eaters are approximately twice as high as those in vegans. It is likely that reductions in meat consumption would lead to reductions in dietary GHG emissions.
Duthu, Ray C.
2017-01-01
The process of hydraulic fracturing for recovery of oil and natural gas uses large amounts of fresh water and produces a comparable amount of wastewater, much of which is typically transported by truck. Truck transport of water is an expensive and energy-intensive process with significant external costs including roads damages, and pollution. The integrated development plan (IDP) is the industry nomenclature for an integrated oil and gas infrastructure system incorporating pipeline-based transport of water and wastewater, centralized water treatment, and high rates of wastewater recycling. These IDP have been proposed as an alternative to truck transport systems so as to mitigate many of the economic and environmental problems associated with natural gas production, but the economic and environmental performance of these systems have not been analyzed to date. This study presents a quantification of lifecycle greenhouse gas (GHG) emissions and road damages of a generic oil and gas field, and of an oil and gas development sited in the Denver-Julesburg basin in the northern Colorado region of the US. Results demonstrate that a reduction in economic and environmental externalities can be derived from the development of these IDP-based pipeline water transportation systems. IDPs have marginal utility in reducing GHG emissions and road damage when they are used to replace in-field water transport, but can reduce GHG emissions and road damage by factors of as much as 6 and 7 respectively, when used to replace fresh water transport and waste-disposal routes for exemplar Northern Colorado oil and gas fields. PMID:28686682
Duthu, Ray C; Bradley, Thomas H
2017-01-01
The process of hydraulic fracturing for recovery of oil and natural gas uses large amounts of fresh water and produces a comparable amount of wastewater, much of which is typically transported by truck. Truck transport of water is an expensive and energy-intensive process with significant external costs including roads damages, and pollution. The integrated development plan (IDP) is the industry nomenclature for an integrated oil and gas infrastructure system incorporating pipeline-based transport of water and wastewater, centralized water treatment, and high rates of wastewater recycling. These IDP have been proposed as an alternative to truck transport systems so as to mitigate many of the economic and environmental problems associated with natural gas production, but the economic and environmental performance of these systems have not been analyzed to date. This study presents a quantification of lifecycle greenhouse gas (GHG) emissions and road damages of a generic oil and gas field, and of an oil and gas development sited in the Denver-Julesburg basin in the northern Colorado region of the US. Results demonstrate that a reduction in economic and environmental externalities can be derived from the development of these IDP-based pipeline water transportation systems. IDPs have marginal utility in reducing GHG emissions and road damage when they are used to replace in-field water transport, but can reduce GHG emissions and road damage by factors of as much as 6 and 7 respectively, when used to replace fresh water transport and waste-disposal routes for exemplar Northern Colorado oil and gas fields.
NASA Astrophysics Data System (ADS)
Marvin, D.; Cameron, D. R.; Passero, M. C.; Remucal, J. M.
2017-12-01
California has been a global leader in climate change policy through its early adoption of ambitious GHG reduction goals, committing to steep reductions through 2030 and beyond. Modeling efforts focused on future greenhouse gas (GHG) emissions from energy and other sectors in California have shown varying capacity to meet the emissions reductions targets established by the state. These efforts have not included potential reductions from changes in ecosystem management, restoration, and conservation. This study simulates the future GHG reduction potential of these land-based activities (e.g., changes to forest management, avoided conversion of grasslands to agriculture) when applied to California lands at three plausible rates of policy implementation relative to current efforts. We then compare the reduction potential of the activities against "business-as-usual" (BAU) emissions projections for the California to highlight the contribution of the biosphere toward reaching the state's GHG 2030 and 2050 reduction targets. By 2030, an Ambitious land-based activity implementation scenario could contribute as much as 146.7 MMTCO2e or 17.4% of the cumulative reductions needed to meet the state's 2030 goal, greater than the individual contributions of four other economic sectors, including those from the Industrial and Agriculture sectors. On an annual basis, the Ambitious scenario could result in reductions as high as 17.93 MMTCO2e yr-1 or 13.4% of the state's 2030 reduction goal. Most reductions come from changes in forest management, such as extending rotation times for harvest and reducing stocking density, thereby promoting accelerated growth. Such changes comprise 59.8% to 67.4% of annual projected emissions reductions in 2050 for the Ambitious and Limited scenarios, respectively. Implementation of a range of land-based emissions reduction activities can materially contribute to one of the most ambitious mitigation targets globally. This study provides a flexible, dynamic framework for estimating the reductions achievable through land conservation, ecological restoration, and changes in management regimes that can account for new data and scientific understanding.
Co-benefits of global and regional greenhouse gas mitigation for US air quality in 2050
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Yuqiang; Bowden, Jared H.; Adelman, Zachariah
Policies to mitigate greenhouse gas (GHG) emissions will not only slow climate change but can also have ancillary benefits of improved air quality. Here we examine the co-benefits of both global and regional GHG mitigation for US air quality in 2050 at fine resolution, using dynamical downscaling methods, building on a previous global co-benefits study (West et al., 2013). The co-benefits for US air quality are quantified via two mechanisms: through reductions in co-emitted air pollutants from the same sources and by slowing climate change and its influence on air quality, following West et al. (2013). Additionally, we separate the totalmore » co-benefits into contributions from domestic GHG mitigation vs. mitigation in foreign countries. We use the Weather Research and Forecasting (WRF) model to dynamically downscale future global climate to the regional scale and the Sparse Matrix Operator Kernel Emissions (SMOKE) program to directly process global anthropogenic emissions to the regional domain, and we provide dynamical boundary conditions from global simulations to the regional Community Multi-scale Air Quality (CMAQ) model. The total co-benefits of global GHG mitigation from the RCP4.5 scenario compared with its reference are estimated to be higher in the eastern US (ranging from 0.6 to 1.0 µg m -3) than the west (0–0.4 µg m -3) for fine particulate matter (PM 2.5), with an average of 0.47 µg m -3 over the US; for O 3, the total co-benefits are more uniform at 2–5 ppb, with a US average of 3.55 ppb. Comparing the two mechanisms of co-benefits, we find that reductions in co-emitted air pollutants have a much greater influence on both PM 2.5 (96 % of the total co-benefits) and O 3 (89 % of the total) than the second co-benefits mechanism via slowing climate change, consistent with West et al. (2013). GHG mitigation from foreign countries contributes more to the US O 3 reduction (76 % of the total) than that from domestic GHG mitigation only (24 %), highlighting the importance of global methane reductions and the intercontinental transport of air pollutants. For PM 2.5, the benefits of domestic GHG control are greater (74 % of total). Since foreign contributions to co-benefits can be substantial, with foreign O 3 benefits much larger than those from domestic reductions, previous studies that focus on local or regional co-benefits may greatly underestimate the total co-benefits of global GHG reductions. We conclude that the US can gain significantly greater domestic air quality co-benefits by engaging with other nations to control GHGs.« less
Gao, Jinghong; Xu, Guozhang; Ma, Wenjun; Zhang, Yong; Woodward, Alistair; Vardoulakis, Sotiris; Kovats, Sari; Wilkinson, Paul; He, Tianfeng; Lin, Hualiang; Liu, Tao; Gu, Shaohua; Wang, Jun; Li, Jing; Yang, Jun; Liu, Xiaobo; Li, Jing; Wu, Haixia; Liu, Qiyong
2017-01-01
Limited information is available on the perceptions of stakeholders concerning the health co-benefits of greenhouse gas (GHG) emission reductions. The purpose of this study was to investigate the perceptions of urban residents on the health co-benefits involving GHG abatement and related influencing factors in three cities in China. Beijing, Ningbo and Guangzhou were selected for this survey. Participants were recruited from randomly chosen committees, following quotas for gender and age in proportion to the respective population shares. Chi-square or Fisher’s exact tests were employed to examine the associations between socio-demographic variables and individuals’ perceptions of the health co-benefits related to GHG mitigation. Unconditional logistic regression analysis was performed to investigate the influencing factors of respondents’ awareness about the health co-benefits. A total of 1159 participants were included in the final analysis, of which 15.9% reported that they were familiar with the health co-benefits of GHG emission reductions. Those who were younger, more educated, with higher family income, and with registered urban residence, were more likely to be aware of health co-benefits. Age, attitudes toward air pollution and governmental efforts to improve air quality, suffering from respiratory diseases, and following low carbon lifestyles are significant predictors of respondents’ perceptions on the health co-benefits. These findings may not only provide information to policy-makers to develop and implement public welcome policies of GHG mitigation, but also help to bridge the gap between GHG mitigation measures and public engagement as well as willingness to change health-related behaviors. PMID:28335404
Gao, Jinghong; Xu, Guozhang; Ma, Wenjun; Zhang, Yong; Woodward, Alistair; Vardoulakis, Sotiris; Kovats, Sari; Wilkinson, Paul; He, Tianfeng; Lin, Hualiang; Liu, Tao; Gu, Shaohua; Wang, Jun; Li, Jing; Yang, Jun; Liu, Xiaobo; Li, Jing; Wu, Haixia; Liu, Qiyong
2017-03-13
Limited information is available on the perceptions of stakeholders concerning the health co-benefits of greenhouse gas (GHG) emission reductions. The purpose of this study was to investigate the perceptions of urban residents on the health co-benefits involving GHG abatement and related influencing factors in three cities in China. Beijing, Ningbo and Guangzhou were selected for this survey. Participants were recruited from randomly chosen committees, following quotas for gender and age in proportion to the respective population shares. Chi-square or Fisher's exact tests were employed to examine the associations between socio-demographic variables and individuals' perceptions of the health co-benefits related to GHG mitigation. Unconditional logistic regression analysis was performed to investigate the influencing factors of respondents' awareness about the health co-benefits. A total of 1159 participants were included in the final analysis, of which 15.9% reported that they were familiar with the health co-benefits of GHG emission reductions. Those who were younger, more educated, with higher family income, and with registered urban residence, were more likely to be aware of health co-benefits. Age, attitudes toward air pollution and governmental efforts to improve air quality, suffering from respiratory diseases, and following low carbon lifestyles are significant predictors of respondents' perceptions on the health co-benefits. These findings may not only provide information to policy-makers to develop and implement public welcome policies of GHG mitigation, but also help to bridge the gap between GHG mitigation measures and public engagement as well as willingness to change health-related behaviors.
Center for Corporate Climate Leadership Why Engage Suppliers on GHG Emissions?
Organizations engage with suppliers on GHG emissions reductions to align supplier efforts with sustainability goals, insulate against spikes in energy and fuel prices, and respond to customer demand about the carbon footprint of products and services.
NASA Astrophysics Data System (ADS)
Lee, M.; Park, C.; Park, J. H.; Jung, T. Y.; Lee, D. K.
2015-12-01
The impacts of climate change, particularly that of rising temperatures, are being observed across the globe and are expected to further increase. To counter this phenomenon, numerous nations are focusing on the reduction of greenhouse gas (GHG) emissions. Because energy demand management is considered as a key factor in emissions reduction, it is necessary to estimate energy consumption and GHG emissions in relation to climate change. Further, because South Korea is the world's fastest nation to become aged, demographics have also become instrumental in the accurate estimation of energy demands and emissions. Therefore, the purpose of this study is to estimate energy consumption and GHG emissions in the residential sectors of South Korea with regard to climate change and aging to build more accurate strategies for energy demand management and emissions reduction goals. This study, which was stablished with 2010 and 2050 as the base and target years, respectively, was divided into a two-step process. The first step evaluated the effects of aging and climate change on energy demand, and the second estimated future energy use and GHG emissions through projected scenarios. First, aging characteristics and climate change factors were analyzed by using the logarithmic mean divisia index (LMDI) decomposition analysis and the application of historical data. In the analysis of changes in energy use, the effects of activity, structure, and intensity were considered; the degrees of contribution were derived from each effect in addition to their relations to energy demand. Second, two types of scenarios were stablished based on this analysis. The aging scenarios are business as usual and future characteristics scenarios, and were used in combination with Representative Concentration Pathway (RCP) 2.6 and 8.5. Finally, energy consumption and GHG emissions were estimated by using a combination of scenarios. The results of these scenarios show an increase in energy consumption and GHG emissions from 2010 to 2050. This growth is caused by increases in heating energy because the elderly generally spend more time at home, and cooling energy owing to rising temperatures. This study will be useful in the preparation of energy demand management policies and the establishment and attainability of GHG emissions reduction goals.
A project-based system for including farmers in the EU ETS.
Brandt, Urs Steiner; Svendsen, Gert Tinggaard
2011-04-01
Farmers in the EU do not trade greenhouse gases under the Kyoto agreement. This is an empirical puzzle because agriculture is a significant contributor of greenhouse gases (GHG) in the EU and may harvest private net gains from trade. Furthermore, the US has strongly advocated land-use practices as 'the missing link' in past climate negotiations. We argue that farmers have relatively low marginal reduction costs and that consequences in terms of the effect on permit price and technology are overall positive in the EU Emission Trading System (ETS). Thus, we propose a project-based system for including the farming practices in the EU ETS that reduces the uncertainty from measuring emission reduction in this sector. The system encourages GHG reduction either by introducing a new and less polluting practice or by reducing the polluting activity. When doing so, farmers will receive GHG permits corresponding to the amount of reduction which can be stored for later use or sold in the EU ETS. Copyright © 2010 Elsevier Ltd. All rights reserved.
Aligning California's Transportation Funding with Its Climate Policies
DOT National Transportation Integrated Search
2018-01-01
California has established itself as a leader in efforts to reduce greenhouse gas (GHG) emissions from transportation. At the same time, the state has not reflected its ambitious policies for GHG reduction and climate action in its practices for allo...
Advancing agricultural greenhouse gas quantification*
NASA Astrophysics Data System (ADS)
Olander, Lydia; Wollenberg, Eva; Tubiello, Francesco; Herold, Martin
2013-03-01
1. Introduction Better information on greenhouse gas (GHG) emissions and mitigation potential in the agricultural sector is necessary to manage these emissions and identify responses that are consistent with the food security and economic development priorities of countries. Critical activity data (what crops or livestock are managed in what way) are poor or lacking for many agricultural systems, especially in developing countries. In addition, the currently available methods for quantifying emissions and mitigation are often too expensive or complex or not sufficiently user friendly for widespread use. The purpose of this focus issue is to capture the state of the art in quantifying greenhouse gases from agricultural systems, with the goal of better understanding our current capabilities and near-term potential for improvement, with particular attention to quantification issues relevant to smallholders in developing countries. This work is timely in light of international discussions and negotiations around how agriculture should be included in efforts to reduce and adapt to climate change impacts, and considering that significant climate financing to developing countries in post-2012 agreements may be linked to their increased ability to identify and report GHG emissions (Murphy et al 2010, CCAFS 2011, FAO 2011). 2. Agriculture and climate change mitigation The main agricultural GHGs—methane and nitrous oxide—account for 10%-12% of anthropogenic emissions globally (Smith et al 2008), or around 50% and 60% of total anthropogenic methane and nitrous oxide emissions, respectively, in 2005. Net carbon dioxide fluxes between agricultural land and the atmosphere linked to food production are relatively small, although significant carbon emissions are associated with degradation of organic soils for plantations in tropical regions (Smith et al 2007, FAO 2012). Population growth and shifts in dietary patterns toward more meat and dairy consumption will lead to increased emissions unless we improve production efficiencies and management. Developing countries currently account for about three-quarters of direct emissions and are expected to be the most rapidly growing emission sources in the future (FAO 2011). Reducing agricultural emissions and increasing carbon sequestration in the soil and biomass has the potential to reduce agriculture's contribution to climate change by 5.5-6.0 gigatons (Gt) of carbon dioxide equivalent (CO2eq)/year. Economic potentials, which take into account costs of implementation, range from 1.5 to 4.3 GT CO2eq/year, depending on marginal abatement costs assumed and financial resources committed, with most of this potential in developing countries (Smith et al 2007). The opportunity for mitigation in agriculture is thus significant, and, if realized, would contribute to making this sector carbon neutral. Yet it is only through a robust and shared understanding of how much carbon can be stored or how much CO2 is reduced from mitigation practices that informed decisions can be made about how to identify, implement, and balance a suite of mitigation practices as diverse as enhancing soil organic matter, increasing the digestibility of feed for cattle, and increasing the efficiency of nitrogen fertilizer applications. Only by selecting a portfolio of options adapted to regional characteristics and goals can mitigation needs be best matched to also serve rural development goals, including food security and increased resilience to climate change. Expansion of agricultural land also remains a major contributor of greenhouse gases, with deforestation, largely linked to clearing of land for cultivation or pasture, generating 80% of emissions from developing countries (Hosonuma et al 2012). There are clear opportunities for these countries to address mitigation strategies from the forest and agriculture sector, recognizing that agriculture plays a large role in economic and development potential. In this context, multiple development goals can be reinforced by specific climate funding granted on the basis of multiple benefits and synergies, for instance through currently negotiated mechanisms such as Nationally Appropriate Mitigation Actions (NAMAs) (REDD+, Kissinger et al 2012). 3. Challenges to quantifying GHG information for the agricultural sector The quantification of GHG emissions from agriculture is fundamental to identifying mitigation solutions that are consistent with the goals of achieving greater resilience in production systems, food security, and rural welfare. GHG emissions data are already needed for such varied purposes as guiding national planning for low-emissions development, generating and trading carbon credits, certifying sustainable agriculture practices, informing consumers' choices with regard to reducing their carbon footprints, assessing product supply chains, and supporting farmers in adopting less carbon-intensive farming practices. Demonstrating the robustness, feasibility, and cost effectiveness of agricultural GHG inventories and monitoring is a necessary technical foundation for including agriculture in the international negotiations under the United Nations Framework Convention on Climate Change (UNFCCC), and is needed to provide robust data and methodology platforms for global corporate supply-chain initiatives (e.g., SAFA, FAO 2012). Given such varied drivers for GHG reductions, there are a number of uses for agricultural GHG information, including (1) reporting and accounting at the national or company level, (2) land-use planning and management to achieve specific objectives, (3) monitoring and evaluating impact of management, (4) developing a credible and thus tradable offset credit, and (5) research and capacity development. The information needs for these uses is likely to differ in the required level of certainty, scale of analysis, and need for comparability across systems or repeatability over time, and they may depend on whether descriptive trends are sufficient or an understanding of drivers and causes are needed. While there are certainly similar needs across uses and users, the necessary methods, data, and models for quantifying GHGs may vary. Common challenges for quantification noted in an informal survey of users of GHG information by Olander et al (2013) include the following. 3.1. Need for user-friendly methods that work across scales, regions, and systems Much of the data gathered and models developed by the research community provide high confidence in data or indicators computed at one place or for one issue, thus they are relevant for only specific uses, not transparent, or not comparable. These research approaches need to be translated to practitioners though the development of farmer friendly, transparent, comparable, and broadly applicable methods. Many users noted the need for quantification data and methods that work and are accurate across region and scales. One of the interviewed users, Charlotte Streck, summed it up nicely: 'A priority would be to produce comparable datasets for agricultural GHG emissions of particular agricultural practices for a broad set of countries ... with a gradual increase in accuracy'. 3.2. Need for lower cost, feasible approaches Concerns about cost and complexity of existing quantification methods were raised by a number of users interviewed in the survey. In the field it is difficult to measure changes in GHGs from agricultural management due to spatial and temporal variability, and the scale of the management-induced changes relative to background pools and fluxes. Many users noted data gaps and inconsistencies and insufficient technical capacity and infrastructure to generate necessary information, particularly in developing countries. The need for creative approaches for data collection and analysis, such as crowd sourcing and mobile technology, were noted. 3.3. Need for methods that can crosswalk between emission-reduction strategy and inventories or reporting A few users emphasized the need for information and quantification approaches that cannot only track GHGs but also help with strategic planning on what to grow where and when to maximize mitigation and adaptation benefits. Methods need to incorporate the quantification context, taking into account climate impacts, viability, and cost of management options. Thus, data and methods are needed that integrate climate impacts into models used to assess the potential and costs of GHG mitigation strategies. 3.4. Need for confidence thresholds and rules that are appropriate for use Users noted that national inventories through the UNFCCC or Intergovernmental Panel on Climate Change (IPCC) require 95% confidence, while some offset market standards leave confidence levels to the discretion of the developer, using discounts in value for greater uncertainty. Nonetheless, these standards tend to have expectations of 20% confidence or better. In fact, both regulatory and voluntary reporting suffer from large uncertainties in the underlying activity data as well as in emission factors. In some circumstances emissions factors may add as much as 50-150% uncertainty to GHG estimates (IPCC 2006). Uncertainty clearly needs to be assessed in implementing projects and programs. In some cases there are uncertainty thresholds, while in others uncertainty is assessed and used as part of the quantification process. What is not always clear is where uncertainty thresholds are necessary to maintain the usefulness of the information and where they are hindering early progress. 3.5. Easily understood and common metrics for policy and market users Inventories usually track tons of CO2 equivalents, while supply-chain and corporate reporting are more likely to track efficiency metrics, such as GHG emissions per unit of product; offsets protocols may combine both approaches. As demand for food rises, efficiency of production becomes an increasingly important metric, even if total CO2 equivalents need to be tracked in parallel to assess climate impacts. For livestock systems it is unclear which metrics are most important to track, GHGs per unit of meat or milk or perhaps per calorie? Different metrics are likely needed for different uses. 3.6. Capacity development in developing countries There is need to improve on the current lack of capacities to monitor land use and land-use change and their associated GHG emissions and removals for national inventories (UNFCCC 2008, Romijn et al 2012). Since there are ongoing efforts to improve, data, methods and capacities for monitoring forests in the context of REDD+ (Herold and Skutsch 2011), synergies should be sought to use and build upon joint data sources and approaches, such as remote sensing, field inventories, crowd sourcing. and human capacities to estimate and report on GHG balance in both forests and agriculture. A number of specific objectives to meet these challenges are discussed in this special issue. Improve the accuracy of emissions factors across regional differences. Improve national inventory data of management activities, crop type and variety, and livestock breeds. Use historical data and data collection over time to show trends. Test the extent of model applications through field validation (e.g., can they be used in regions with less data?). Enhance technical capacity and infrastructure for data acquisition and for application of mitigation strategies in field programs. Increase understanding of which mitigation practices result in more resilient systems. Improve understanding of the GHG tradeoffs of expanding fertilizer use. While data sources and methods are improving and research and operational monitoring are increasing, the international community can be strategic in targeting support for this work and coordinating data and information collection to move toward revised good practice guidelines that would address the particular circumstances and practices dominant in developing countries. 4. Current data infrastructure and systems supporting GHG quantification in the agricultural sector To understand the challenges facing GHG quantification it is helpful to understand the existing supporting infrastructure and systems for quantification. The existing and developing structures for national and local data acquisition and management are the foundation for the empirical and process-based models used by most countries and projects currently quantifying agricultural greenhouse gases. Direct measurement can be used to complement and supplement such models, but this is not yet sufficient by itself given costs, complexities, and uncertainties. One of the primary purposes of data acquisition and quantification is for national-level inventories and planning. For such efforts countries are conducting national-level collection of activity data (who is doing which agricultural practices where) and some are also developing national or regional-level emissions factors. Infrastructure that supports these efforts includes intergovernmental panels, global alliances, and data-sharing networks. Multilateral data sharing for applications, such as the FAO Statistical Database (FAOSTAT) (FAO 2012), the IPCC Emission Factor Database (IPCC 2012), and UNFCCC national inventories (UNFCCC 2012), are building greater consistency and standardization by using global standards such as the IPCC's Good Practice Guidance for Land Use, Land-Use Change and Forestry (e.g., IPCC 1996, 2003, 2006). There is also work on common quantification methods and accounting, for example agreed on global warming potentials for different contributing gases and GHG quantification methodologies for projects (e.g., the Verified Carbon Standard Sustainable Agricultural Land Management [SALM] protocol, VCS 2011). Other examples include the Global Research Alliance on Agricultural Greenhouse Gases (2012) and GRACEnet (Greenhouse gas Reduction through Agricultural Carbon Enhancement network) (USDA Agricultural Research Service 2011), which aim to improve consistency of field measurement and data collection for soil carbon sequestration and soil nitrous oxide fluxes. Often these national-level activity data and emissions factors are the basis for regional and smaller-scale applications. Such data are used for model-based estimates of changes in GHGs at a project or regional level (Olander et al 2011). To complement national data for regional-, landscape-, or field-level applications, new data are often collected through farmer knowledge or records and field sampling. Ideally such data could be collected in a standardized manner, perhaps through some type of crowd sourcing model to improve regional—and national—level data, as well as to improve consistency of locally collected data. Data can also be collected by companies working with agricultural suppliers and in country networks, within efforts aimed at understanding firm and product (supply-chain) sustainability and risks (FAO 2009). Such data may feed into various certification processes or reporting requirements from buyers. Unfortunately, this data is likely proprietary. A new process is needed to aggregate and share private data in a way that would not be a competitive concern so such data could complement or supplement national data and add value. A number of papers in this focus issue discuss issues surrounding quantification methods and systems at large scales, global and national levels, while others explore landscape- and field-scale approaches. A few explore the intersection of top-down and bottom-up data measurement and modeling approaches. 5. The agricultural greenhouse gas quantification project and ERL focus issue Important land management decisions are often made with poor or few data, especially in developing countries. Current systems for quantifying GHG emissions are inadequate in most low-income countries, due to a lack of funding, human resources, and infrastructure. Most non-Annex 1 countries reporting agricultural emissions to the UNFCCC have used only Tier I default emissions factors (Nihart 2012, unpublished data), yet default numbers are based on a very limited number of studies. Furthermore, most non-Annex I countries have reported their National Communications only one or two times in the period 1990-2010. China, for instance, has not submitted agricultural inventory data since 1994. As we move toward the next IPCC assessment report on climate change and while UNFCCC negotiations give greater attention to the role of agriculture within international agreements, it is valuable to understand our current and potential near-term capacity to quantify and track emissions and assess mitigation potential in the agriculture sector, providing countries—especially least developed countries (LDCs)—with the information they need to promote and implement actions that, while conducive to mitigation, are also consistent with their rural development and food security goals. The purpose of this focus issue is to improve the knowledge and practice of quantifying GHG emissions from agriculture around the globe. The issue discusses methodological, data, and capacity gaps and needs across scales of quantification, from global and national-scale inventories to landscape- and farm-scale measurement. The inherent features of agriculture and especially smallholder farming have made quantification expensive and complicated, as farming systems and farmers' practices are diverse and impermanent and exhibit high temporal and spatial variability. Quantifying the emissions of the complex crop livestock or diverse cropping systems that characterize smallholder systems presents particular challenges. New ideas, methods, and uses of technology are needed to address these challenges. Many papers in this special issue synthesize the state of the art in their respective fields, analyze gaps, identify innovations, and make recommendations for improving quantification. Special attention is given to methods appropriate to low-income countries, where strategies are needed for getting robust data with extremely limited resources in order to support national mitigation planning within widely accepted standards and thus provide access to essential international support, including climate funding. Managing agricultural emissions needs to occur in tandem with managing for agricultural productivity, resilience to climate change, and ecosystem impacts. Management decisions and priorities will require measures and information that identify GHG efficiencies in production and reduce inputs without reducing yields, while addressing climate resilience and maintaining other essential environmental services, such as water quality and support for pollinators. Another set of papers in this issue considers the critical synergies and tradeoffs possible between these multiple objectives of mitigation, resilience, and production efficiency to help us understand how we need to tackle these in our quantification systems. Significant capacity to quantify greenhouse gases is already built, and with some near-term strategic investment, could become an increasingly robust and useful tool for planning and development in the agricultural sector around the world. Acknowledgments The Climate Change Agriculture and Food Security Program of the Consultative Group on International Agricultural Research, the Technical Working Group on Agricultural Greenhouse Gases (T-AGG) at Duke University's Nicholas Institute for Environmental Policy Solutions, and the United Nations Food and Agriculture Organization (FAO) have come together to guide the development of this focus issue and associated activities and papers, given their common desire to improve our understanding of the state of agricultural greenhouse gas (GHG) quantification and to advance ideas for building data and methods that will help mitigation policy and programs move forward around the world. We thank the David and Lucile Packard Foundation for their support of this initiative. The project has been developed with guidance from an esteemed steering group of experts and users of mitigation information (http://nicholasinstitute.duke.edu/ecosystem/t-agg/international-project). Many of the papers in this issue were commissioned. Authors of each of the commissioned papers met with guest editors at FAO in Rome in April 2012 to further develop their ideas, synthesize state of the art knowledge and generate new ideas (http://nicholasinstitute.duke.edu/ecosystem/t-agg/events-and-presentations). Additional interesting and important research has come forward through the general call for papers and has been incorporated into this issue. References CCAFS (Climate Change, Agriculture and Food Security) 2011 Victories for food and farming in Durban climate deals Press Release 13 December 2011 (http://ccafs.cgiar.org/news/press-releases/victories-food-and-farming-durban-climate-deals) FAO (Food and Agriculture Organization of the United Nations) 2009 Expert consultation on GHG emissions and mitigation potentials in the agricultural, forestry and fisheries sectors (Rome: FAO) FAO 2011 Linking Sustainability and Climate Financing: Implications for Agriculture (Rome: FAO) FAO 2012 FAOSTAT online database (http://faostat.fao.org/) Global Research Alliance on Agricultural Greenhouse Gases 2012 www.globalresearchalliance.org/ Herold M and Skutsch M 2011 Monitoring, reporting and verification for national REDD+ programmes: two proposals Environ. Res. Lett. 6 014002 Hosonuma N, Herold M, De Sy V, De Fries R S, Brockhaus M, Verchot L, Angelsen A and Romijn E 2012 An assessment of deforestation and forest degradation drivers in developing countries Environ. Res. Lett. 7 044009 IPCC (Intergovernmental Panel on Climate Change) 1996 Guidelines for National Greenhouse Gas Inventories (Paris: Organisation for Economic Co-operation and Development) IPCC 2003 Good Practice Guidance for Land Use, Land-Use Change and Forestry (Hayama: IPCC National Greenhouse Gas Inventories Programme) IPCC 2006 Guidelines for National Greenhouse Gas Inventories. Prepared by the National Greenhouse Gas Inventories Programme ed H S Eggleston et al (Hayama: IGES) IPCC 2012 IPCC Emission Factor Database (EFDB) (www.ipcc-nggip.iges.or.jp/EFDB/main.php) Kissinger G, Herold M and De Sy V 2012 Drivers of Deforestation and Forest Degradation: A Synthesis Report for REDD+ Policymakers (Vancouver: Lexeme Consulting) (www.decc.gov.uk/assets/decc/11/tackling-climate-change/international-climate-change/6316-drivers-deforestation-report.pdf) Murphy D, McCandless M and Drexhage J 2010 Expanding Agriculture's Role in the International Climate Change Regime: Capturing the Opportunities (Winnipeg: International Institute for Sustainable Development) Nihart A 2012 unpublished data Olander L, Wollenberg L and Van de Bogert A 2013 Understanding the users and uses of agricultural greenhouse gas information CCAFS/NI T-AGG Report (in progress) Olander L P and Haugen-Kozyra K with contributions from Del Grosso S, Izaurralde C, Malin D, Paustian K and Salas W 2011 Using Biogeochemical Process Models to Quantify Greenhouse Gas Mitigation from Agricultural Management Projects (Durham, NC: Nicholas Institute for Environmental Policy Solutions, Duke University) (http://nicholasinstitute.duke.edu/ecosystem/t-agg/using-biogeochemical-process) Romijn J E, Herold M, Kooistra L, Murdiyarso D and Verchot L 2012 Assessing capacities of non-Annex I countries for national forest monitoring in the context of REDD+ Environ. Sci. Policy 20 33-48 Smith P et al 2007 Agriculture Climate Change 2007: Mitigation. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change ed B Metz, O R Davidson, P R Bosch, R Dave and L A Meyer (Cambridge: Cambridge University Press) Smith P et al 2008 Greenhouse gas mitigation in agriculture Phil. Trans. R. Soc. B 363 789-813 UNFCCC (United Nations Framework Convention on Climate Change) 2008 Financial support provided by the Global Environment Facility for the preparation of National Communications from Parties not included in Annex I to the Convention FCCC/SBI/2008/INF.10 (http://unfccc.int/resource/docs/2008/sbi/eng/inf10.pdf) UNFCCC 2012 GHG Data from UNFCCC (http://unfccc.int/ghg_data/ghg_data_unfccc/items/4146.php) USDA (US Department of Agriculture) 2011 Agricultural Research Service (www.ars.usda.gov/research/programs/programs.htm?np_code=204&docid=17271) VCS (Verified Carbon Standard) 2011 New Methodology: VM0017 Sustainable Agricultural Land Management (http://v-c-s.org/SALM_methodology_approved) * We dedicate this special issue to the memory of Daniel Martino, a generous leader in greenhouse gas quantification and accounting from agriculture, land-use change, and forestry.
NASA Astrophysics Data System (ADS)
Gonzi, Siegfried; Palmer, Paul; O'Doherty, Simon; Young, Dickon; Stanley, Kieran; Stavert, Ann; Grant, Aoife; Helfter, Carole; Mullinger, Neil; Nemitz, Eiko; Allen, Grant; Pitt, Joseph; Le Breton, Michael; Bösch, Hartmut; Sembhi, Harjinder; Sonderfeld, Hannah; Parker, Robert; Bauguitte, Stephane
2016-04-01
Robust quantification of emissions of greenhouse gases (GHG) is central to the success of ongoing international efforts to slow current emissions and mitigate future climate change. The Greenhouse gAs Uk and Global Emissions (GAUGE) project aims to quantify the magnitude and uncertainty of country-scale emissions of carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) using concentration measurements from a network of tall towers and mobile platforms (aircraft and ferry) distributed across the UK. The GAUGE measurement programme includes: (a) GHG measurements on a regular ferry route down the North Sea aimed at sampling UK outflow; (b) campaign deployment of the UK BAe-146 research aircraft to provide vertical profile measurements of GHG over and around the UK; (c) a high-density GHG measurement network over East Anglia that is primarily focused on the agricultural sector; and (d) regular measurements of CO2 and CH4 isotopologues used for GHG source attribution. We also use satellite observations from the Japanese Greenhouse gases Observing SATellite (GOSAT) to provide continental-scale constraints on GHG flux estimates. We present CO2 flux estimates for the UK inferred from GAUGE measurements using a nested, high-resolution (25 km) version of the GEOS-Chem global atmospheric chemistry and transport model and an ensemble Kalman filter. We will present our current best estimate for CO2 fluxes and a preliminary assessment of the efficacy of individual GAUGE data sources to spatially resolve CO2 flux estimates over the UK. We will also discuss how flux estimates inferred from the different models used within GAUGE can help to assess the role of transport model error and to determine an ensemble CO2 flux estimate for the UK.
From California dreaming to California data: Challenging historic models for landfill CH4 emissions
USDA-ARS?s Scientific Manuscript database
Improved quantification of diverse CH4 sources at the urban scale is needed to guide local greenhouse gas (GHG) mitigation strategies in the Anthropocene. Herein, we focus on landfill CH4 emissions in California, challenging the current IPCC methodology which focuses on a climate dependency for land...
Drivers of potential GHG fluxes under bioenergy land use change in the UK
NASA Astrophysics Data System (ADS)
Parmar, Kim; Keith, Aidan M.; Perks, Mike; Rowe, Rebecca; Sohi, Saran; McNamara, Niall
2013-04-01
The greatest contributors to global greenhouse gases (GHG's) are CO2 emissions from fossil fuel use and following land use change (LUC). Globally, soils contain three times more carbon than the atmosphere and have the potential to act as GHG sources or sinks. A significant amount of land may be converted to bioenergy production to help meet UK 2050 renewable energy and GHG emissions reduction targets. This raises considerable sustainability concerns with respect to the effects of LUC on soil carbon (C) conservation and GHG emissions. Forests are a key component in the global C cycle and when managed effectively can reduce atmospheric GHG concentrations. Together with other dedicated bioenergy crops, Short Rotation Forestry (SRF) could be used to meet biomass requirements. SRF is defined as high density plantations of fastgrowing tree species grown on short rotational lengths (8-20 years) for biomass (McKay 2011). As SRF is likely to be an important domestic source of biomass for energy it is imperative that we gain an understanding of the implications for large-scale commercial application on soil C and the GHG balance. We utilized a paired-site approach to investigate how LUC to SRF could potentially alter the underlying processes of soil GHG production and consumption. This work was linked to a wider soil C stock inventory for bioenergy LUC, so our major focus was on changes to soil respiration. Specifically, we examined the relative importance of litter, soil, and microbial properties in determining potential soil respiration, and whether these relationships were consistent at different soil temperatures (10 ° C and 20 ° C). Soils were sampled to a depth of 30 cm from 30 LUC transitions across the UK and incubated under controlled laboratory conditions, with gas samples taken over a seven day enclosure period. CO2, N2O and CH4 gas fluxes were measured by gas chromatography and were examined together with other soil properties measured in the field and laboratory. LUC to SRF resulted in a significant reduction in CO2 fluxes overall at 0-15 cm (on both a soil mass and carbon mass basis). Furthermore, this response of CO2 flux to LUC was similar at both 10 ° C and 20 ° C. Reductions in CO2 flux at 0-15 cm are significantly related to decreased bacterial biomass, as measured by Phospholipid Fatty Acids (PLFA), soil pH and bulk density. These patterns suggest that changes in the quality and quantity of organic inputs under SRF may drive a reduction in soil respiration. While changes in soil C were limited, reduced respiration was supported by the increase in litter C stock under SRF. These findings indicate that LUC to SRF can strengthen the soils potential as a C sink whilst contributing successfully towards meeting GHG emissions reduction targets. This work is based on the Ecosystem Land Use Modelling & Soil Carbon GHG Flux Trial (ELUM) project, which was commissioned and funded by the Energy Technologies Institute (ETI)
Bolanča, Tomislav; Strahovnik, Tomislav; Ukić, Šime; Stankov, Mirjana Novak; Rogošić, Marko
2017-07-01
This study describes the development of tool for testing different policies for reduction of greenhouse gas (GHG) emissions in energy sector using artificial neural networks (ANNs). The case study of Croatia was elaborated. Two different energy consumption scenarios were used as a base for calculations and predictions of GHG emissions: the business as usual (BAU) scenario and sustainable scenario. Both of them are based on predicted energy consumption using different growth rates; the growth rates within the second scenario resulted from the implementation of corresponding energy efficiency measures in final energy consumption and increasing share of renewable energy sources. Both ANN architecture and training methodology were optimized to produce network that was able to successfully describe the existing data and to achieve reliable prediction of emissions in a forward time sense. The BAU scenario was found to produce continuously increasing emissions of all GHGs. The sustainable scenario was found to decrease the GHG emission levels of all gases with respect to BAU. The observed decrease was attributed to the group of measures termed the reduction of final energy consumption through energy efficiency measures.
F‐GHG Emissions Reduction Efforts: FY2015 Supplier Profiles
The Supplier Profiles outlined in this document detail the efforts of large‐area flat panel suppliers to reduce their F‐GHG emissions in manufacturing facilities that make today’s large‐area panels used for products such as TVs and computer monitors.
F‐GHG Emissions Reduction Efforts: FY2016 Supplier Profiles
The Supplier Profiles outlined in this document detail the efforts of large‐area flat panel suppliers to reduce their F‐GHG emissions in manufacturing facilities that make today’s large‐area panels used for products such as TVs and computer monitors.
Comparing the greenhouse gas emissions from three alternative waste combustion concepts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vainikka, Pasi, E-mail: pasi.vainikka@vtt.fi; Tsupari, Eemeli; Sipilae, Kai
2012-03-15
Highlights: Black-Right-Pointing-Pointer Significant GHG reductions are possible by efficient WtE technologies. Black-Right-Pointing-Pointer CHP and high power-to-heat ratio provide significant GHG savings. Black-Right-Pointing-Pointer N{sub 2}O and coal mine type are important in LCA GHG emissions of FBC co-combustion. Black-Right-Pointing-Pointer Substituting coal and fuel oil by waste is beneficial in electricity and heat production. Black-Right-Pointing-Pointer Substituting natural gas by waste may not be reasonable in CHP generation. - Abstract: Three alternative condensing mode power and combined heat and power (CHP) waste-to-energy concepts were compared in terms of their impacts on the greenhouse gas (GHG) emissions from a heat and power generation system.more » The concepts included (i) grate, (ii) bubbling fluidised bed (BFB) and (iii) circulating fluidised bed (CFB) combustion of waste. The BFB and CFB take advantage of advanced combustion technology which enabled them to reach electric efficiency up to 35% and 41% in condensing mode, respectively, whereas 28% (based on the lower heating value) was applied for the grate fired unit. A simple energy system model was applied in calculating the GHG emissions in different scenarios where coal or natural gas was substituted in power generation and mix of fuel oil and natural gas in heat generation by waste combustion. Landfilling and waste transportation were not considered in the model. GHG emissions were reduced significantly in all of the considered scenarios where the waste combustion concepts substituted coal based power generation. With the exception of condensing mode grate incinerator the different waste combustion scenarios resulted approximately in 1 Mton of fossil CO{sub 2}-eq. emission reduction per 1 Mton of municipal solid waste (MSW) incinerated. When natural gas based power generation was substituted by electricity from the waste combustion significant GHG emission reductions were not achieved.« less
Options to reduce greenhouse gas emissions during wastewater treatment for agricultural use.
Fine, Pinchas; Hadas, Efrat
2012-02-01
Treatment of primarily-domestic sewage wastewater involves on-site greenhouse gas (GHG) emissions due to energy inputs, organic matter degradation and biological nutrient removal (BNR). BNR causes both direct emissions and loss of fertilizer value, thus eliminating possible reduction of emissions caused by fertilizer manufacture. In this study, we estimated on-site GHG emissions under different treatment scenarios, and present options for emission reduction by changing treatment methods, avoiding BNR and by recovering energy from biogas. Given a typical Israeli wastewater strength (1050mg CODl(-1)), the direct on-site GHG emissions due to energy use were estimated at 1618 and 2102g CO(2)-eq m(-3), respectively, at intermediate and tertiary treatment levels. A potential reduction of approximately 23-55% in GHG emissions could be achieved by fertilizer preservation and VS conversion to biogas. Wastewater fertilizers constituted a GHG abatement potential of 342g CO(2)-eq m(-3). The residual component that remained in the wastewater effluent following intermediate (oxidation ponds) and enhanced (mechanical-biological) treatments was 304-254g CO(2)-eq m(-3) and 65-34g CO(2)-eq m(-3), respectively. Raw sludge constituted approximately 47% of the overall wastewater fertilizers load with an abatement potential of 150g CO(2)-eq m(-3) (385kg CO(2)-eq dry tonne(-1)). Inasmuch as anaerobic digestion reduced it to 63g CO(2)-eq m(-3) (261kg CO(2)-eq dry tonne(-1)), the GHG abatement gained through renewable biogas energy (approx. 428g CO(2)-eq m(-3)) favored digestion. However, sludge composting reduced the fertilizer value to 17g CO(2)-eq m(-3) (121kg CO(2)-eq dry tonne(-1)) or less (if emissions, off-site inputs and actual phytoavailability were considered). Taking Israel as an example, fully exploiting the wastewater derived GHG abatement potential could reduce the State overall GHG emissions by almost 1%. This demonstrates the possibility of optional carbon credits which might be exploited in the construction of new wastewater treatment facilities, especially in developing countries. Copyright © 2011 Elsevier B.V. All rights reserved.
van de Kamp, Mirjam E; van Dooren, Corné; Hollander, Anne; Geurts, Marjolein; Brink, Elizabeth J; van Rossum, Caroline; Biesbroek, Sander; de Valk, Elias; Toxopeus, Ido B; Temme, Elisabeth H M
2018-02-01
To determine the differences in environmental impact and nutrient content of the current Dutch diet and four healthy diets aimed at lowering greenhouse gas (GHG) emissions. GHG emissions (as proxy for environmental impact) and nutrient content of the current Dutch diet and four diets adhering to the Dutch food based dietary guidelines (Wheel of Five), were compared in a scenario study. Scenarios included a healthy diet with or without meat, and the same diets in which only foods with relatively low GHG emissions are chosen. For the current diet, data from the Dutch National Food Consumption Survey 2007-2010 were used. GHG emissions (in kg CO 2 -equivalents) were based on life cycle assessments. Results are reported for men and women aged 19-30years and 31-50years. The effect on GHG emissions of changing the current Dutch diet to a diet according to the Wheel of Five (corresponding with the current diet as close as possible), ranged from -13% for men aged 31-50years to +5% for women aged 19-30years. Replacing meat in this diet and/or consuming only foods with relatively low GHG emissions resulted in average GHG emission reductions varying from 28-46%. In the scenarios in which only foods with relatively low GHG emissions are consumed, fewer dietary reference intakes (DRIs) were met than in the other healthy diet scenarios. However, in all healthy diet scenarios the number of DRIs being met was equal to or higher than that in the current diet. Diets adhering to food based dietary guidelines did not substantially reduce GHG emissions compared to the current Dutch diet, when these diets stayed as close to the current diet as possible. Omitting meat from these healthy diets or consuming only foods with relatively low associated GHG emissions both resulted in GHG emission reductions of around a third. These findings may be used to expand food based dietary guidelines with information on how to reduce the environmental impact of healthy diets. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Venkatesh, Aranya; Jaramillo, Paulina; Griffin, W Michael; Matthews, H Scott
2011-10-01
Increasing concerns about greenhouse gas (GHG) emissions in the United States have spurred interest in alternate low carbon fuel sources, such as natural gas. Life cycle assessment (LCA) methods can be used to estimate potential emissions reductions through the use of such fuels. Some recent policies have used the results of LCAs to encourage the use of low carbon fuels to meet future energy demands in the U.S., without, however, acknowledging and addressing the uncertainty and variability prevalent in LCA. Natural gas is a particularly interesting fuel since it can be used to meet various energy demands, for example, as a transportation fuel or in power generation. Estimating the magnitudes and likelihoods of achieving emissions reductions from competing end-uses of natural gas using LCA offers one way to examine optimal strategies of natural gas resource allocation, given that its availability is likely to be limited in the future. In this study, the uncertainty in life cycle GHG emissions of natural gas (domestic and imported) consumed in the U.S. was estimated using probabilistic modeling methods. Monte Carlo simulations are performed to obtain sample distributions representing life cycle GHG emissions from the use of 1 MJ of domestic natural gas and imported LNG. Life cycle GHG emissions per energy unit of average natural gas consumed in the U.S were found to range between -8 and 9% of the mean value of 66 g CO(2)e/MJ. The probabilities of achieving emissions reductions by using natural gas for transportation and power generation, as a substitute for incumbent fuels such as gasoline, diesel, and coal were estimated. The use of natural gas for power generation instead of coal was found to have the highest and most likely emissions reductions (almost a 100% probability of achieving reductions of 60 g CO(2)e/MJ of natural gas used), while there is a 10-35% probability of the emissions from natural gas being higher than the incumbent if it were used as a transportation fuel. This likelihood of an increase in GHG emissions is indicative of the potential failure of a climate policy targeting reductions in GHG emissions.
Vilaysouk, Xaysackda; Babel, Sandhya
2017-07-01
Climate change is a consequence of greenhouse gas emissions. Greenhouse gas (GHG) emissions from the waste sector contribute to 3% of total anthropogenic emissions. In this study, applicable solutions for municipal solid waste (MSW) management in Luangprabang (LPB) and Laos were examined. Material flow analysis of MSW was performed to estimate the amount of MSW generated in 2015. Approximately 29,419 tonnes of MSW is estimated for 2015. Unmanaged landfilling was the main disposal method, while MSW open burning was also practiced to some extent. The International Panel on Climate Change 2006 model and the Atmospheric Brown Clouds Emission Inventory Manual were used to estimate GHG emissions from existing MSW management, and total emissions are 33,889 tonnes/year carbon dioxide-equivalents (CO 2 -eq). Three scenarios were developed in order to reduce GHG emissions and environmental problems. Improvement of the MSW management by expanding MSW collection services, introducing composting and recycling, and avoiding open burning, can be considered as solutions to overcome the problems for LPB. The lowest GHG emissions are achieved in the scenario where composting and recycling are proposed, with the total GHG emissions reduction by 18,264 tonnes/year CO 2 -eq.
Research to Support California Greenhouse Gas Reduction Programs
NASA Astrophysics Data System (ADS)
Croes, B. E.; Charrier-Klobas, J. G.; Chen, Y.; Duren, R. M.; Falk, M.; Franco, G.; Gallagher, G.; Huang, A.; Kuwayama, T.; Motallebi, N.; Vijayan, A.; Whetstone, J. R.
2016-12-01
Since the passage of the California Global Warming Solutions Act in 2006, California state agencies have developed comprehensive programs to reduce both long-lived and short-lived climate pollutants. California is already close to achieving its goal of reducing greenhouse (GHG) emissions to 1990 levels by 2020, about a 30% reduction from business as usual. In addition, California has developed strategies to reduce GHG emissions another 40% by 2030, which will put the State on a path to meeting its 2050 goal of an 80% reduction. To support these emission reduction goals, the California Air Resources Board (CARB) and the California Energy Commission have partnered with NASA's Carbon Monitoring System (CMS) program on a comprehensive research program to identify and quantify the various GHG emission source sectors in the state. These include California-specific emission studies and inventories for carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) emission sources; a Statewide GHG Monitoring Network for these pollutants integrated with the Los Angeles Megacities Carbon Project funded by several federal agencies; efforts to verify emission inventories using inversion modeling and other techniques; mobile measurement platforms and flux chambers to measure local and source-specific emissions; and a large-scale statewide methane survey using a tiered monitoring and measurement program, which will include satellite, airborne, and ground-level measurements of the various regions and source sectors in the State. In addition, there are parallel activities focused on black carbon (BC) and fluorinated gases (F-gases) by CARB. This presentation will provide an overview of results from inventory, monitoring, data analysis, and other research efforts on Statewide, regional, and local sources of GHG emissions in California.
Boyer, Dana; Ramaswami, Anu
2017-10-17
This paper develops a methodology for individual cities to use to analyze the in- and trans-boundary water, greenhouse gas (GHG), and land impacts of city-scale food system actions. Applied to Delhi, India, the analysis demonstrates that city-scale action can rival typical food policy interventions that occur at larger scales, although no single city-scale action can rival in all three environmental impacts. In particular, improved food-waste management within the city (7% system-wide GHG reduction) matches the GHG impact of preconsumer trans-boundary food waste reduction. The systems approach is particularly useful in illustrating key trade-offs and co-benefits. For instance, multiple diet shifts that can reduce GHG emissions have trade-offs that increase water and land impacts. Vertical farming technology (VFT) with current applications for fruits and vegetables can provide modest system-wide water (4%) and land reductions (3%), although implementation within the city itself may raise questions of constraints in water-stressed cities, with such a shift in Delhi increasing community-wide direct water use by 16%. Improving the nutrition status for the bottom 50% of the population to the median diet is accompanied by proportionally smaller increases of water, GHG, and land impacts (4%, 9%, and 8%, systemwide): increases that can be offset through simultaneous city-scale actions, e.g., improved food-waste management and VFT.
Del Prado, A; Mas, K; Pardo, G; Gallejones, P
2013-11-01
There is world-wide concern for the contribution of dairy farming to global warming. However, there is still a need to improve the quantification of the C-footprint of dairy farming systems under different production systems and locations since most of the studies (e.g. at farm-scale or using LCA) have been carried out using too simplistic and generalised approaches. A modelling approach integrating existing and new sub-models has been developed and used to simulate the C and N flows and to predict the GHG burden of milk production (from the cradle to the farm gate) from 17 commercial confinement dairy farms in the Basque Country (northern Spain). We studied the relationship between their GHG emissions, and their management and economic performance. Additionally, we explored some of the effects on the GHG results of the modelling methodology choice. The GHG burden values resulting from this study (0.84-2.07 kg CO2-eq kg(-l) milk ECM), although variable, were within the range of values of existing studies. It was evidenced, however, that the methodology choice used for prediction had a large effect on the results. Methane from the rumen and manures, and N2O emissions from soils comprised most of the GHG emissions for milk production. Diet was the strongest factor explaining differences in GHG emissions from milk production. Moreover, the proportion of feed from the total cattle diet that could have directly been used to feed humans (e.g. cereals) was a good indicator to predict the C-footprint of milk. Not only were some other indicators, such as those in relation with farm N use efficiency, good proxies to estimate GHG emissions per ha or per kg milk ECM (C-footprint of milk) but they were also positively linked with farm economic performance. Copyright © 2013 Elsevier B.V. All rights reserved.
Changing the renewable fuel standard to a renewable material standard: bioethylene case study.
Posen, I Daniel; Griffin, W Michael; Matthews, H Scott; Azevedo, Inês L
2015-01-06
The narrow scope of the U.S. renewable fuel standard (RFS2) is a missed opportunity to spur a wider range of biomass use. This is especially relevant as RFS2 targets are being missed due to demand-side limitations for ethanol consumption. This paper examines the greenhouse gas (GHG) implications of a more flexible policy based on RFS2, which includes credits for chemical use of bioethanol (to produce bioethylene). A Monte Carlo simulation is employed to estimate the life-cycle GHG emissions of conventional low-density polyethylene (LDPE), made from natural gas derived ethane (mean: 1.8 kg CO2e/kg LDPE). The life-cycle GHG emissions from bioethanol and bio-LDPE are examined for three biomass feedstocks: U.S. corn (mean: 97g CO2e/MJ and 2.6 kg CO2e/kg LDPE), U.S. switchgrass (mean: -18g CO2e/MJ and -2.9 kg CO2e/kg LDPE), and Brazilian sugar cane (mean: 33g CO2e/MJ and -1.3 kg CO2e/kg LDPE); bioproduct and fossil-product emissions are compared. Results suggest that neither corn product (bioethanol or bio-LDPE) can meet regulatory GHG targets, while switchgrass and sugar cane ethanol and bio-LDPE likely do. For U.S. production, bioethanol achieves slightly greater GHG reductions than bio-LDPE. For imported Brazilian products, bio-LDPE achieves greater GHG reductions than bioethanol. An expanded policy that includes bio-LDPE provides added flexibility without compromising GHG targets.
DOT National Transportation Integrated Search
2011-04-01
In the last several years, Washington State has adopted a series of policy goals intended to : reduce greenhouse gases (GHGs). Because transportation is one of the states largest sources of : GHG emissions, the Washington State Department of Trans...
Xie, Yuan-bo; Li, Wei
2013-05-01
It is one of the common targets and important tasks for energy management and environmental control of Beijing to improve urban air quality while reducing the emissions of greenhouse gases (GHG). Here, based on the interim and long term developmental planning and energy structure of the city, three energy consumption scenarios in low, moderate and high restrictions were designed by taking the potential energy saving policies and environmental targets into account. The long-range energy alternatives planning (LEAP) model was employed to predict and evaluate reduction effects of the chief air pollutants and GHG during 2010 to 2020 under the three given scenarios. The results showed that if urban energy consumption system was optimized or adjusted by exercising energy saving and emission reduction and pollution control measures, the predicted energy uses will be reduced by 10 to 30 million tons of coal equivalents by 2020. Under the two energy scenarios with moderate and high restrictions, the anticipated emissions of SO2, NOx, PM10, PM2.5, VOC and GHG will be respectively reduced to 71 to 100.2, 159.2 to 218.7, 89.8 to 133.8, 51.4 to 96.0, 56.4 to 74.8 and 148 200 to 164 700 thousand tons. Correspondingly, when compared with the low-restriction scenario, the reducing rate will be 53% to 67% , 50% to 64% , 33% to 55% , 25% to 60% , 41% to 55% and 26% to 34% respectively. Furthermore, based on a study of synergistic emission reduction of the air pollutants and GHG, it was proposed that the adjustment and control of energy consumptions shall be intensively developed in the three sectors of industry, transportation and services. In this way the synergistic reduction of the emissions of chief air pollutants and GHG will be achieved; meanwhile the pressures of energy demands may be deliberately relieved.
Sahle, Mesfin; Saito, Osamu; Fürst, Christine; Yeshitela, Kumelachew
2018-05-15
In this study, the supply of and demand for carbon storage and sequestration of woody biomass in the socio-ecological environment of the Wabe River catchment in Gurage Mountains, Ethiopia, were estimated. This information was subsequently integrated into a map that showed the balance between supply capacities and demand in a spatially explicit manner to inform planners and decision makers on methods used to manage local climate change. Field data for wood biomass and soil were collected, satellite images for land use and land cover (LULC) were classified, and secondary data from statistics and studies for estimation were obtained. Carbon storage, the rate of carbon sequestration and the rate of greenhouse gas (GHG) emissions from diverse sources at different LULCs, was estimated accordingly by several methods. Even though a large amount of carbon was stored in the catchment, the current yearly sequestration was less than the CO 2 -eq. GHG emissions. Forest and Enset-based agroforestry emissions exhibited the highest amount of woody biomass, and cereal crop and wetland exhibited the highest decrease in soil carbon sequestration. CO 2 -eq. GHG emissions are mainly caused by livestock, nitrogenous fertilizer consumption, and urban activities. The net negative emissions were estimated for the LULC classes of cereal crop, grazing land, and urban areas. In conclusion, without any high-emission industries, GHG emissions can be greater than the regulatory capacity of ecosystems in the socio-ecological environment. This quantification approach can provide information to policy and decision makers to enable them to tackle climate change at the root level. Thus, measures to decrease emission levels and enhance the sequestration capacity are crucial to mitigate the globally delivered service in a specific area. Further studies on the effects of land use alternatives on net emissions are recommended to obtain in-depth knowledge on sustainable land use planning. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Sweeney, J. F.; Davis, S. J.
2007-12-01
Established protocols allow entity-level accounting of greenhouse gas (GHG) emissions. The information contained within GHG inventories is used by entities to manage their carbon footprint and to anticipate future exposure to compulsory GHG markets or taxes. The efficacy of such inventories, as experienced by the consumer, can be improved upon by product-level GHG inventories applying the methods of traditional life cycle analysis (LCA). A voluntary product-level assessment of this type, coupled with an eco-label, would 1) empower consumers with information about the total embodied GHG content of a product, 2) allow companies to understand and manage GHG emissions outside the narrow scope of their entities, and 3) drive reduction of GHG emissions throughout product value chains. The Climate Conservancy (TCC) is a non-profit organization founded to help companies calculate their GHG emissions at the level of individual product units, and to inform consumers about the GHG intensity of the products they choose to purchase. With the assistance of economists, policy experts and scientists, TCC has developed a useful metric for reporting product-level GHG emissions that allows for a normalized comparison of a product's GHG intensity irrespective of industry sector or competitors, where GHG data are often unavailable or incomplete. Using this metric, we envision our Climate Conscious label becoming an important arbiter of choice for consumers seeking ways to mitigate their climate impacts without the need for governmental regulation.
Climate change air toxic co-reduction in the context of macroeconomic modelling.
Crawford-Brown, Douglas; Chen, Pi-Cheng; Shi, Hsiu-Ching; Chao, Chia-Wei
2013-08-15
This paper examines the health implications of global PM reduction accompanying greenhouse gas emissions reductions in the 180 national economies of the global macroeconomy. A human health effects module based on empirical data on GHG emissions, PM emissions, background PM concentrations, source apportionment and human health risk coefficients is used to estimate reductions in morbidity and mortality from PM exposures globally as co-reduction of GHG reductions. These results are compared against the "fuzzy bright line" that often underlies regulatory decisions for environmental toxics, and demonstrate that the risk reduction through PM reduction would usually be considered justified in traditional risk-based decisions for environmental toxics. It is shown that this risk reduction can be on the order of more than 4 × 10(-3) excess lifetime mortality risk, with global annual cost savings of slightly more than $10B, when uniform GHG reduction measures across all sectors of the economy form the basis for climate policy ($2.2B if only Annex I nations reduce). Consideration of co-reduction of PM-10 within a climate policy framework harmonized with other environmental policies can therefore be an effective driver of climate policy. An error analysis comparing results of the current model against those of significantly more spatially resolved models at city and national scales indicates errors caused by the low spatial resolution of the global model used here may be on the order of a factor of 2. Copyright © 2013 Elsevier Ltd. All rights reserved.
Ebner, Jacqueline H; Labatut, Rodrigo A; Rankin, Matthew J; Pronto, Jennifer L; Gooch, Curt A; Williamson, Anahita A; Trabold, Thomas A
2015-09-15
Anaerobic codigestion (AcoD) can address food waste disposal and manure management issues while delivering clean, renewable energy. Quantifying greenhouse gas (GHG) emissions due to implementation of AcoD is important to achieve this goal. A lifecycle analysis was performed on the basis of data from an on-farm AcoD in New York, resulting in a 71% reduction in GHG, or net reduction of 37.5 kg CO2e/t influent relative to conventional treatment of manure and food waste. Displacement of grid electricity provided the largest reduction, followed by avoidance of alternative food waste disposal options and reduced impacts associated with storage of digestate vs undigested manure. These reductions offset digester emissions and the net increase in emissions associated with land application in the AcoD case relative to the reference case. Sensitivity analysis showed that using feedstock diverted from high impact disposal pathways, control of digester emissions, and managing digestate storage emissions were opportunities to improve the AcoD GHG benefits. Regional and parametrized emissions factors for the storage emissions and land application phases would reduce uncertainty.
Center for Corporate Climate Leadership Goal Setting
EPA provides tools and recognition for companies setting aggressive GHG reduction goals, which can galvanize reduction efforts at a company and often leads to the identification of many additional reduction opportunities.
Implications of driving patterns on well-to-wheel performance of plug-in hybrid electric vehicles.
Raykin, Leon; MacLean, Heather L; Roorda, Matthew J
2012-06-05
This study examines how driving patterns (distance and conditions) and the electricity generation supply interact to impact well-to-wheel (WTW) energy use and greenhouse gas (GHG) emissions of plug-in hybrid electric vehicles (PHEVs). The WTW performance of a PHEV is compared with that of a similar (nonplug-in) gasoline hybrid electric vehicle and internal combustion engine vehicle (ICEV). Driving PHEVs for short distances between recharging generally results in lower WTW total and fossil energy use and GHG emissions per kilometer compared to driving long distances, but the extent of the reductions depends on the electricity supply. For example, the shortest driving pattern in this study with hydroelectricity uses 81% less fossil energy than the longest driving pattern. However, the shortest driving pattern with coal-based electricity uses only 28% less fossil energy. Similar trends are observed in reductions relative to the nonplug-in vehicles. Irrespective of the electricity supply, PHEVs result in greater reductions in WTW energy use and GHG emissions relative to ICEVs for city than highway driving conditions. PHEVs charging from coal facilities only reduce WTW energy use and GHG emissions relative to ICEVs for certain favorable driving conditions. The study results have implications for environmentally beneficial PHEV adoption and usage patterns.
Measuring Greenhouse Gas Emissions and Sinks Across California Land Cover
NASA Astrophysics Data System (ADS)
Fischer, M. L.
2017-12-01
Significant reductions in greenhouse gas (GHG) emissions are needed to limit rising planetary temperatures that will otherwise limit Earth's capacity to support life, introducing geopolitical instability. To help mitigate this threat, California has legislated landmark reductions in state-level greenhouse gas (GHG) emissions that set an example for broader action. Beginning with relatively assured reduction of current emissions to 1990 levels by 2020, future goals are much more challenging with 40% and 80% reductions below 1990 emissions by 2030 and 2050, respectively. While the majority of the reductions must focus on fossil fuels, inventory estimates of non-CO2 GHG emissions (i.e., CH4, N2O, and industrial compounds) constitute 15% of the total, suggesting reductions are required across multiple land use sectors. However, recent atmospheric inversion studies show methane and nitrous oxide (CH4 & N2O) emissions exceed current inventory estimates by factors of 1.2-1.8 and 1.6-2.6 (at 95% confidence), respectively, perhaps constituting up to 30% of State total emissions. The discrepancy is likely because current bottom-up models used for inventories do not accurately capture important management or biophysical factors. In the near term, process level experiments and sector-specific inversions are being planned to quantify the factors controlling non-CO2 GHG emissions for several of the dominant emission sectors. For biosphere carbon, California forests lands, which also depend on the combination of management, climate, and weather, lost above ground carbon from 2001-2010, and may be expected to lose soil and root carbon as a longer-term result. Here, it is important to identify and apply the best principles in forestry and agriculture to increase carbon stocks in depleted forest and agricultural areas, focusing on approaches that provide resilience to future climate and weather variations. Taken together, improved atmospheric, plant, and soil observations, together with empirical and/or process-level models should be developed to quantify current trajectories of both biological CO2 exchange and non-CO2 GHG emissions, identify knowledge gaps, and guide mitigation policies.
Hansen, Sune Balle; Olsen, Stig Irving; Ujang, Zaini
2012-01-01
This study identifies the potential greenhouse gas (GHG) reductions, which can be achieved by optimizing the use of residues in the life cycle of palm oil derived biodiesel. This is done through compilation of data on existing and prospective treatment technologies as well as practical experiments on methane potentials from empty fruit bunches. Methane capture from the anaerobic digestion of palm oil mill effluent was found to result in the highest GHG reductions. Among the solid residues, energy extraction from shells was found to constitute the biggest GHG savings per ton of residue, whereas energy extraction from empty fruit bunches was found to be the most significant in the biodiesel production life cycle. All the studied waste treatment technologies performed significantly better than the conventional practices and with dedicated efforts of optimized use in the palm oil industry, the production of palm oil derived biodiesel can be almost carbon neutral. Copyright © 2011 Elsevier Ltd. All rights reserved.
Wastewater treatment process impact on energy savings and greenhouse gas emissions.
Mamais, D; Noutsopoulos, C; Dimopoulou, A; Stasinakis, A; Lekkas, T D
2015-01-01
The objective of this research was to assess the energy consumption of wastewater treatment plants (WWTPs), to apply a mathematical model to evaluate their carbon footprint, and to propose energy saving strategies that can be implemented to reduce both energy consumption and greenhouse gas (GHG) emissions in Greece. The survey was focused on 10 WWTPs in Greece with a treatment capacity ranging from 10,000 to 4,000,000 population equivalents (PE). Based on the results, annual specific energy consumption ranged from 15 to 86 kWh/PE. The highest energy consumer in all the WWTPs was aeration, accounting for 40-75% of total energy requirements. The annual GHG emissions varied significantly according to the treatment schemes employed and ranged between 61 and 161 kgCO₂e/PE. The highest values of CO₂emissions were obtained in extended aeration systems and the lowest in conventional activated sludge systems. Key strategies that the wastewater industry could adopt to mitigate GHG emissions are identified and discussed. A case study is presented to demonstrate potential strategies for energy savings and GHG emission reduction. Given the results, it is postulated that the reduction of dissolved oxygen (DO) set points and sludge retention time can provide significant energy savings and decrease GHG emissions.
Jeong, Seung Tak; Kim, Gil Won; Hwang, Hyun Young; Kim, Pil Joo; Kim, Sang Yoon
2018-02-01
Livestock manure application can stimulate greenhouse gas (GHG) emissions, especially methane (CH 4 ) in rice paddy. The stabilized organic matter (OM) is recommended to suppress CH 4 emission without counting the additional GHG emission during the composting process. To evaluate the effect of compost utilization on the net global warming potential (GWP) of a rice cropping system, the fluxes of GHGs from composting to land application were calculated by a life cycle assessment (LCA) method. The model framework was composed of GHG fluxes from industrial activities and biogenic GHG fluxes from the composting and rice cultivation processes. Fresh manure emitted 30MgCO 2 -eq.ha -1 , 90% and 10% of which were contributed by CH 4 and nitrous oxide (N 2 O) fluxes, respectively, during rice cultivation. Compost utilization decreased net GWP by 25% over that of the fresh manure during the whole process. The composting process increased the GWP of the industrial processes by 35%, but the 60% reduction in CH 4 emissions from the rice paddy mainly influenced the reduction of GWP during the overall process. Therefore, compost application could be a good management strategy to reduce GHG emissions from rice paddy systems. Copyright © 2017 Elsevier B.V. All rights reserved.
Cities’ Role in Mitigating United States Food System Greenhouse Gas Emissions
2018-01-01
Current trends of urbanization, population growth, and economic development have made cities a focal point for mitigating global greenhouse gas (GHG) emissions. The substantial contribution of food consumption to climate change necessitates urban action to reduce the carbon intensity of the food system. While food system GHG mitigation strategies often focus on production, we argue that urban influence dominates this sector’s emissions and that consumers in cities must be the primary drivers of mitigation. We quantify life cycle GHG emissions of the United States food system through data collected from literature and government sources producing an estimated total of 3800 kg CO2e/capita in 2010, with cities directly influencing approximately two-thirds of food sector GHG emissions. We then assess the potential for cities to reduce emissions through selected measures; examples include up-scaling urban agriculture and home delivery of grocery options, which each may achieve emissions reductions on the order of 0.4 and ∼1% of this total, respectively. Meanwhile, changes in waste management practices and reduction of postdistribution food waste by 50% reduce total food sector emissions by 5 and 11%, respectively. Consideration of the scale of benefits achievable through policy goals can enable cities to formulate strategies that will assist in achieving deep long-term GHG emissions targets. PMID:29717606
Mitigating Greenhouse Gas and Ammonia Emissions from Swine Manure Management: A System Analysis.
Wang, Yue; Dong, Hongmin; Zhu, Zhiping; Gerber, Pierre J; Xin, Hongwei; Smith, Pete; Opio, Carolyn; Steinfeld, Henning; Chadwick, Dave
2017-04-18
Gaseous emissions from animal manure are considerable contributor to global ammonia (NH 3 ) and agriculture greenhouse gas (GHG) emissions. Given the demand to promote mitigation of GHGs while fostering sustainable development of the Paris Agreement, an improvement of management systems is urgently needed to help mitigate climate change and to improve atmospheric air quality. This study presents a meta-analysis and an integrated assessment of gaseous emissions and mitigation potentials for NH 3 , methane (CH 4 ), and nitrous oxide (N 2 O) (direct and indirect) losses from four typical swine manure management systems (MMSs). The resultant emission factors and mitigation efficiencies allow GHG and NH 3 emissions to be estimated, as well as mitigation potentials for different stages of swine operation. In particular, changing swine manure management from liquid systems to solid-liquid separation systems, coupled with mitigation measures, could simultaneously reduce GHG emissions by 65% and NH 3 emissions by 78%. The resultant potential reduction in GHG emissions from China's pig production alone is greater than the entire GHG emissions from agricultural sector of France, Australia, or Germany, while the reduction in NH 3 emissions is equivalent to 40% of the total NH 3 emissions from the European Union. Thus, improved swine manure management could have a significant impact on global environment issues.
Cities' Role in Mitigating United States Food System Greenhouse Gas Emissions.
Mohareb, Eugene A; Heller, Martin C; Guthrie, Peter M
2018-05-15
Current trends of urbanization, population growth, and economic development have made cities a focal point for mitigating global greenhouse gas (GHG) emissions. The substantial contribution of food consumption to climate change necessitates urban action to reduce the carbon intensity of the food system. While food system GHG mitigation strategies often focus on production, we argue that urban influence dominates this sector's emissions and that consumers in cities must be the primary drivers of mitigation. We quantify life cycle GHG emissions of the United States food system through data collected from literature and government sources producing an estimated total of 3800 kg CO 2 e/capita in 2010, with cities directly influencing approximately two-thirds of food sector GHG emissions. We then assess the potential for cities to reduce emissions through selected measures; examples include up-scaling urban agriculture and home delivery of grocery options, which each may achieve emissions reductions on the order of 0.4 and ∼1% of this total, respectively. Meanwhile, changes in waste management practices and reduction of postdistribution food waste by 50% reduce total food sector emissions by 5 and 11%, respectively. Consideration of the scale of benefits achievable through policy goals can enable cities to formulate strategies that will assist in achieving deep long-term GHG emissions targets.
Life-cycle analysis of greenhouse gas emissions from renewable jet fuel production.
de Jong, Sierk; Antonissen, Kay; Hoefnagels, Ric; Lonza, Laura; Wang, Michael; Faaij, André; Junginger, Martin
2017-01-01
The introduction of renewable jet fuel (RJF) is considered an important emission mitigation measure for the aviation industry. This study compares the well-to-wake (WtWa) greenhouse gas (GHG) emission performance of multiple RJF conversion pathways and explores the impact of different co-product allocation methods. The insights obtained in this study are of particular importance if RJF is included as an emission mitigation instrument in the global Carbon Offsetting and Reduction Scheme for International Aviation (CORSIA). Fischer-Tropsch pathways yield the highest GHG emission reduction compared to fossil jet fuel (86-104%) of the pathways in scope, followed by Hydrothermal Liquefaction (77-80%) and sugarcane- (71-75%) and corn stover-based Alcohol-to-Jet (60-75%). Feedstock cultivation, hydrogen and conversion inputs were shown to be major contributors to the overall WtWa GHG emission performance. The choice of allocation method mainly affects pathways yielding high shares of co-products or producing co-products which effectively displace carbon intensive products (e.g., electricity). Renewable jet fuel can contribute to significant reduction of aviation-related GHG emissions, provided the right feedstock and conversion technology are used. The GHG emission performance of RJF may be further improved by using sustainable hydrogen sources or applying carbon capture and storage. Based on the character and impact of different co-product allocation methods, we recommend using energy and economic allocation (for non-energy co-products) at a global level, as it leverages the universal character of energy allocation while adequately valuing non-energy co-products.
Life cycle greenhouse gas impacts of ethanol, biomethane and limonene production from citrus waste
NASA Astrophysics Data System (ADS)
Pourbafrani, Mohammad; McKechnie, Jon; MacLean, Heather L.; Saville, Bradley A.
2013-03-01
The production of biofuel from cellulosic residues can have both environmental and financial benefits. A particular benefit is that it can alleviate competition for land conventionally used for food and feed production. In this research, we investigate greenhouse gas (GHG) emissions associated with the production of ethanol, biomethane, limonene and digestate from citrus waste, a byproduct of the citrus processing industry. The study represents the first life cycle-based evaluations of citrus waste biorefineries. Two biorefinery configurations are studied—a large biorefinery that converts citrus waste into ethanol, biomethane, limonene and digestate, and a small biorefinery that converts citrus waste into biomethane, limonene and digestate. Ethanol is assumed to be used as E85, displacing gasoline as a light-duty vehicle fuel; biomethane displaces natural gas for electricity generation, limonene displaces acetone in solvents, and digestate from the anaerobic digestion process displaces synthetic fertilizer. System expansion and two allocation methods (energy, market value) are considered to determine emissions of co-products. Considerable GHG reductions would be achieved by producing and utilizing the citrus waste-based products in place of the petroleum-based or other non-renewable products. For the large biorefinery, ethanol used as E85 in light-duty vehicles results in a 134% reduction in GHG emissions compared to gasoline-fueled vehicles when applying a system expansion approach. For the small biorefinery, when electricity is generated from biomethane rather than natural gas, GHG emissions are reduced by 77% when applying system expansion. The life cycle GHG emissions vary substantially depending upon biomethane leakage rate, feedstock GHG emissions and the method to determine emissions assigned to co-products. Among the process design parameters, the biomethane leakage rate is critical, and the ethanol produced in the large biorefinery would not meet EISA’s requirements for cellulosic biofuel if the leakage rate is higher than 9.7%. For the small biorefinery, there are no GHG emission benefits in the production of biomethane if the leakage rate is higher than 11.5%. Compared to system expansion, the use of energy and market value allocation methods generally results in higher estimates of GHG emissions for the primary biorefinery products (i.e., smaller reductions in emissions compared to reference systems).
Quantifying and managing regional greenhouse gas emissions: waste sector of Daejeon, Korea.
Yi, Sora; Yang, Heewon; Lee, Seung Hoon; An, Kyoung-Jin
2014-06-01
A credible accounting of national and regional inventories for the greenhouse gas (GHG) reduction has emerged as one of the most significant current discussions. This article assessed the regional GHG emissions by three categories of the waste sector in Daejeon Metropolitan City (DMC), Korea, examined the potential for DMC to reduce GHG emission, and discussed the methodology modified from Intergovernmental Panel on Climate Change and Korea national guidelines. During the last five years, DMC's overall GHG emissions were 239 thousand tons CO2 eq./year from eleven public environmental infrastructure facilities, with a population of 1.52 million. Of the three categories, solid waste treatment/disposal contributes 68%, whilst wastewater treatment and others contribute 22% and 10% respectively. Among GHG unit emissions per ton of waste treatment, the biggest contributor was waste incineration of 694 kg CO2 eq./ton, followed by waste disposal of 483 kg CO2 eq./ton, biological treatment of solid waste of 209 kg CO2 eq./ton, wastewater treatment of 0.241 kg CO2 eq./m(3), and public water supplies of 0.067 kg CO2 eq./m(3). Furthermore, it is suggested that the potential in reducing GHG emissions from landfill process can be as high as 47.5% by increasing landfill gas recovery up to 50%. Therefore, it is apparent that reduction strategies for the main contributors of GHG emissions should take precedence over minor contributors and lead to the best practice for managing GHGs abatement. Copyright © 2014 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.
EPA identified the best, or most efficient, engines, transmissions and vehicle technologies, and then used ALPHA to predict the GHG emissions would be from a midsized car incorporating the best combination of these technologies.
75 FR 49913 - Draft Guidance, “Federal Greenhouse Gas Accounting and Reporting”
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-16
... an integrated strategy toward sustainability in the Federal Government and to make reduction of... agencies to measure, report, and reduce their GHG emissions. Section 9(a) of E.O. 13514 directed the... accurately account for and report GHG emissions. In particular, while a detailed approach to accepted and...
A variety of technological pathways lead to reduced greenhouse gas (GHG) emissions. However, different pathways can have substantially different impacts on other environmental endpoints, such as air quality and energy-related water demand. In this study we use the Global Change ...
Parametric assessment of climate change impacts of automotive material substitution.
Geyer, Roland
2008-09-15
Quantifying the net climate change impact of automotive material substitution is not a trivial task. It requires the assessment of the mass reduction potential of automotive materials, the greenhouse gas (GHG) emissions from their production and recycling, and their impact on GHG emissions from vehicle use. The model presented in this paper is based on life cycle assessment (LCA) and completely parameterized, i.e., its computational structure is separated from the required input data, which is not traditionally done in LCAs. The parameterization increases scientific rigor and transparency of the assessment methodology, facilitates sensitivity and uncertainty analysis of the results, and also makes it possible to compare different studies and explain their disparities. The state of the art of the modeling methodology is reviewed and advanced. Assessment of the GHG emission impacts of material recycling through consequential system expansion shows that our understanding of this issue is still incomplete. This is a critical knowledge gap since a case study shows thatfor materials such as aluminum, the GHG emission impacts of material production and recycling are both of the same size as the use phase savings from vehicle mass reduction.
Vergé, Xavier P.C.; Dyer, James A.; Worth, Devon E.; Smith, Ward N.; Desjardins, Raymond L.; McConkey, Brian G.
2012-01-01
Simple Summary We developed a model to estimate the carbon footprint of Canadian livestock production. To include long term soil carbon storage and loss potential we introduced a payback period concept. The model was tested by reallocating 10% only of the protein production from a ruminant to a non ruminant source to minimize the risk of including rangeland or marginal lands. This displacement generated residual land which was found to play a major role in the potential mitigation of GHG emissions. The model will allow land use policies aimed at reducing the agricultural GHG emissions to be assessed. Abstract To assess tradeoffs between environmental sustainability and changes in food production on agricultural land in Canada the Unified Livestock Industry and Crop Emissions Estimation System (ULICEES) was developed. It incorporates four livestock specific GHG assessments in a single model. To demonstrate the application of ULICEES, 10% of beef cattle protein production was assumed to be displaced with an equivalent amount of pork protein. Without accounting for the loss of soil carbon, this 10% shift reduced GHG emissions by 2.5 TgCO2e y−1. The payback period was defined as the number of years required for a GHG reduction to equal soil carbon lost from the associated land use shift. A payback period that is shorter than 40 years represents a net long term decrease in GHG emissions. Displacing beef cattle with hogs resulted in a surplus area of forage. When this residual land was left in ungrazed perennial forage, the payback periods were less than 4 years and when it was reseeded to annual crops, they were equal to or less than 40 years. They were generally greater than 40 years when this land was used to raise cattle. Agricultural GHG mitigation policies will inevitably involve a trade-off between production, land use and GHG emission reduction. ULICEES is a model that can objectively assess these trade-offs for Canadian agriculture. PMID:26487032
Nie, Yuhao; Bi, Xiaotao
2018-01-01
Biofuels from hydrothermal liquefaction (HTL) of abundantly available forest residues in British Columbia (BC) can potentially make great contributions to reduce the greenhouse gas (GHG) emissions from the transportation sector. A life-cycle assessment was conducted to quantify the GHG emissions of a hypothetic 100 million liters per year HTL biofuel system in the Coast Region of BC. Three scenarios were defined and investigated, namely, supply of bulky forest residues for conversion in a central integrated refinery (Fr-CIR), HTL of forest residues to bio-oil in distributed biorefineries and subsequent upgrading in a central oil refinery (Bo-DBR), and densification of forest residues in distributed pellet plants and conversion in a central integrated refinery (Wp-CIR). The life-cycle GHG emissions of HTL biofuels is 20.5, 17.0, and 19.5 g CO 2 -eq/MJ for Fr-CIR, Bo-DBR, and Wp-CIR scenarios, respectively, corresponding to 78-82% reduction compared with petroleum fuels. The conversion stage dominates the total GHG emissions, making up more than 50%. The process emitting most GHGs over the life cycle of HTL biofuels is HTL buffer production. Transportation emission, accounting for 25% of Fr-CIR, can be lowered by 83% if forest residues are converted to bio-oil before transportation. When the credit from biochar applied for soil amendment is considered, a further reduction of 6.8 g CO 2 -eq/MJ can be achieved. Converting forest residues to bio-oil and wood pellets before transportation can significantly lower the transportation emission and contribute to a considerable reduction of the life-cycle GHG emissions. Process performance parameters (e.g., HTL energy requirement and biofuel yield) and the location specific parameter (e.g., electricity mix) have significant influence on the GHG emissions of HTL biofuels. Besides, the recycling of the HTL buffer needs to be investigated to further improve the environmental performance of HTL biofuels.
NASA Astrophysics Data System (ADS)
Virto, Inigo; Antón, Rodrigo; Arias, Nerea; Orcaray, Luis; Enrique, Alberto; Bescansa, Paloma
2016-04-01
In a context of global change and increasing food demand, agriculture faces the challenge of ensuring food security making a sustainable use of resources, especially arable land and water. This implies in many areas a transition towards agricultural systems with increased and stable productivity and a more efficient use of inputs. The introduction of irrigation is, within this framework, a widespread strategy. However, the C cycle and the net GHG emissions can be significantly affected by irrigation. The net effect of this change needs to be quantified at a regional scale. In the region of Navarra (NE Spain) more than 22,300 ha of rainfed agricultural land have been converted to irrigation in the last years, adding to the previous existing irrigated area of 70,000 ha. In this framework the project Life+ Regadiox (LIFE12 ENV/ES/000426, http://life-regadiox.es/) has the objective of evaluating the net GHG balances and atmospheric CO2 fixation rates of different management strategies in irrigated agriculture in the region. The project involved the identification of areas representative of the different pedocllimatic conditions in the region. This required soil and climate characterizations, and the design of a network of agricultural fields representative of the most common dryland and irrigation managements in these areas. This was done from available public datasets on climate and soil, and from soil pits especially sampled for this study. Two areas were then delimited, mostly based on their degree of aridity. Within each of those areas, fields were selected to allow for comparisons at three levels: (i) dryland vs irrigation, (ii) soil and crop management systems for non-permanent crops, and (iii) soil management strategies for permanent crops (namely olive orchards and vineyards). In a second step, the objective of this work was to quantify net SOC variations and GHG balances corresponding to the different managements identified in the previous step. These quantifications will allow for evaluating the most suitable strategies for developing sustainable irrigation agrosystems in the region. The quantification of SOC stocks was done within equivalent soil units in each area, and for each level of comparison. Soil organic C stocks were quantified using the area-frame randomized soil sampling protocol (Stolbovoy et al., 2007), in the tilled layer (0-30 cm). GHG balances were calculated from inputs information obtained from farmers, using tools developed by the regional agricultural research institute (INTIA), adapted to the local characteristics of agriculture. The results corresponding to the comparison between dryland and irrigated agrosystems showed differences both in terms of SOC storage and GHG balances in the two studied areas. Irrigated fields had significantly greater stocks of SOC on average, although net organic C storage was significantly affected by soil and crop type. Also, organic fertilization in dryland resulted in significantly more SOC stored in the soil. Net GHG balances were greatly affected by the type of crops and their management, in particular fertilization strategies. As a result, net balances in terms of GHG emissions and mitigation varied greatly among irrigated systems, and in comparison to dryland systems.
Climate Impacts From a Removal of Anthropogenic Aerosol Emissions
NASA Astrophysics Data System (ADS)
Samset, B. H.; Sand, M.; Smith, C. J.; Bauer, S. E.; Forster, P. M.; Fuglestvedt, J. S.; Osprey, S.; Schleussner, C.-F.
2018-01-01
Limiting global warming to 1.5 or 2.0°C requires strong mitigation of anthropogenic greenhouse gas (GHG) emissions. Concurrently, emissions of anthropogenic aerosols will decline, due to coemission with GHG, and measures to improve air quality. However, the combined climate effect of GHG and aerosol emissions over the industrial era is poorly constrained. Here we show the climate impacts from removing present-day anthropogenic aerosol emissions and compare them to the impacts from moderate GHG-dominated global warming. Removing aerosols induces a global mean surface heating of 0.5-1.1°C, and precipitation increase of 2.0-4.6%. Extreme weather indices also increase. We find a higher sensitivity of extreme events to aerosol reductions, per degree of surface warming, in particular over the major aerosol emission regions. Under near-term warming, we find that regional climate change will depend strongly on the balance between aerosol and GHG forcing.
Assessing the greenhouse gas emissions of Brazilian soybean biodiesel production.
Cerri, Carlos Eduardo Pellegrino; You, Xin; Cherubin, Maurício Roberto; Moreira, Cindy Silva; Raucci, Guilherme Silva; Castigioni, Bruno de Almeida; Alves, Priscila Aparecida; Cerri, Domingos Guilherme Pellegrino; Mello, Francisco Fujita de Castro; Cerri, Carlos Clemente
2017-01-01
Soybean biodiesel (B100) has been playing an important role in Brazilian energy matrix towards the national bio-based economy. Greenhouse gas (GHG) emissions is the most widely used indicator for assessing the environmental sustainability of biodiesels and received particular attention among decision makers in business and politics, as well as consumers. Former studies have been mainly focused on the GHG emissions from the soybean cultivation, excluding other stages of the biodiesel production. Here, we present a holistic view of the total GHG emissions in four life cycle stages for soybean biodiesel. The aim of this study was to assess the GHG emissions of Brazilian soybean biodiesel production system with an integrated life cycle approach of four stages: agriculture, extraction, production and distribution. Allocation of mass and energy was applied and special attention was paid to the integrated and non-integrated industrial production chain. The results indicated that the largest source of GHG emissions, among four life cycle stages, is the agricultural stage (42-51%) for B100 produced in integrated systems and the production stage (46-52%) for B100 produced in non-integrated systems. Integration of industrial units resulted in significant reduction in life cycle GHG emissions. Without the consideration of LUC and assuming biogenic CO2 emissions is carbon neutral in our study, the calculated life cycle GHG emissions for domestic soybean biodiesel varied from 23.1 to 25.8 gCO2eq. MJ-1 B100 and those for soybean biodiesel exported to EU ranged from 26.5 to 29.2 gCO2eq. MJ-1 B100, which represent reductions by 65% up to 72% (depending on the delivery route) of GHG emissions compared with the EU benchmark for diesel fuel. Our findings from a life cycle perspective contributed to identify the major GHG sources in Brazilian soybean biodiesel production system and they can be used to guide mitigation priority for policy and decision-making. Projected scenarios in this study would be taken as references for accounting the environmental sustainability of soybean biodiesel within a domestic and global level.
Assessing the greenhouse gas emissions of Brazilian soybean biodiesel production
You, Xin; Cherubin, Maurício Roberto; Moreira, Cindy Silva; Raucci, Guilherme Silva; Castigioni, Bruno de Almeida; Alves, Priscila Aparecida; Cerri, Domingos Guilherme Pellegrino; Mello, Francisco Fujita de Castro; Cerri, Carlos Clemente
2017-01-01
Soybean biodiesel (B100) has been playing an important role in Brazilian energy matrix towards the national bio-based economy. Greenhouse gas (GHG) emissions is the most widely used indicator for assessing the environmental sustainability of biodiesels and received particular attention among decision makers in business and politics, as well as consumers. Former studies have been mainly focused on the GHG emissions from the soybean cultivation, excluding other stages of the biodiesel production. Here, we present a holistic view of the total GHG emissions in four life cycle stages for soybean biodiesel. The aim of this study was to assess the GHG emissions of Brazilian soybean biodiesel production system with an integrated life cycle approach of four stages: agriculture, extraction, production and distribution. Allocation of mass and energy was applied and special attention was paid to the integrated and non-integrated industrial production chain. The results indicated that the largest source of GHG emissions, among four life cycle stages, is the agricultural stage (42–51%) for B100 produced in integrated systems and the production stage (46–52%) for B100 produced in non-integrated systems. Integration of industrial units resulted in significant reduction in life cycle GHG emissions. Without the consideration of LUC and assuming biogenic CO2 emissions is carbon neutral in our study, the calculated life cycle GHG emissions for domestic soybean biodiesel varied from 23.1 to 25.8 gCO2eq. MJ-1 B100 and those for soybean biodiesel exported to EU ranged from 26.5 to 29.2 gCO2eq. MJ-1 B100, which represent reductions by 65% up to 72% (depending on the delivery route) of GHG emissions compared with the EU benchmark for diesel fuel. Our findings from a life cycle perspective contributed to identify the major GHG sources in Brazilian soybean biodiesel production system and they can be used to guide mitigation priority for policy and decision-making. Projected scenarios in this study would be taken as references for accounting the environmental sustainability of soybean biodiesel within a domestic and global level. PMID:28493965
NASA Astrophysics Data System (ADS)
Lau, W. K. M.; Kim, K. M.
2016-12-01
In this study, we investigate the relative roles of greenhouse gas (GHG) warming and aerosol forcing on the Asian monsoon. A baseline for global warming response is established from analysis of the multi-model mean (MMM) of 33 CMIP5 models based on a 140-year integration of 1% per year CO2 experiment. The relative roles of GHG warming and aerosol forcing on Asian monsoon precipitation changes are then assessed based on the 20th century historical runs, under a) all-forcing including GHG and aerosols, and b) GHG only. Results show that under CO2 warming, the Asian monsoon atmosphere can get wetter, no change, or drier regionally, depending on changes in moisture availability, atmospheric moist static stability, and topography. Rainfall is generally increased over the Asian monsoon tropical land and adjacent oceanic regions. However, in subtropical and extratropical land region over East Asia, monsoon rainfall increase is minimal, unchanged, or even suppressed. This is due to increased subsidence, and reduction of mid-tropopsheric relative humidity from an enhanced Hadley circulation, which weakens the monsoon meridional overturning circulation. These create the apparent paradox of a monsoon with increased rainfall, but weakened monsoon circulation under GHG warming. The monsoon response to GHG-only forcing in the historical run is similar to the baseline. On the other hand, as inferred from the difference of the all-forcing and the GHG-only runs, aerosols through solar dimming (SDM) and semi-direct effects suppress monsoon precipitation, causing a further weakening of the Asian monsoon. A scale analysis of precipitation shows that under a hypothetical GHG-only forcing in the past century, the "effective precipitation efficiency" (EPE) would have to be strongly reduced in order to achieve water balance between dynamics and thermodynamics. Under all-forcing (including aerosol), the reduction in EPE is much smaller. Here, the weaker monsoon circulation needed for water balance can be achieved via the aerosol semi-direct effect in increased atmospheric stability, and aerosol solar dimming effect in lessening the GHG induced land-sea thermal contrast between Eurasia and the surrounding oceans.
Meier, Paul J; Cronin, Keith R; Frost, Ethan A; Runge, Troy M; Dale, Bruce E; Reinemann, Douglas J; Detlor, Jennifer
2015-07-21
To examine the national fuel and emissions impacts from increasingly electrified light-duty transportation, we reconstructed the vehicle technology portfolios from two national vehicle studies. Using these vehicle portfolios, we normalized assumptions and examined sensitivity around the rates of electrified vehicle penetration, travel demand growth, and electricity decarbonization. We further examined the impact of substituting low-carbon advanced cellulosic biofuels in place of petroleum. Twenty-seven scenarios were benchmarked against a 50% petroleum-reduction target and an 80% GHG-reduction target. We found that with high rates of electrification (40% of miles traveled) the petroleum-reduction benchmark could be satisfied, even with high travel demand growth. The same highly electrified scenarios, however, could not satisfy 80% GHG-reduction targets, even assuming 80% decarbonized electricity and no growth in travel demand. Regardless of precise consumer vehicle preferences, emissions are a function of the total reliance on electricity versus liquid fuels and the corresponding greenhouse gas intensities of both. We found that at a relatively high rate of electrification (40% of miles and 26% by fuel), an 80% GHG reduction could only be achieved with significant quantities of low-carbon liquid fuel in cases with low or moderate travel demand growth.
NASA Astrophysics Data System (ADS)
Samaras, Constantine
In order to mitigate the most severe effects of climate change, large global reductions in the current levels of anthropogenic greenhouse gas (GHG) emissions are required in this century to stabilize atmospheric carbon dioxide (CO2) concentrations at less than double pre-industrial levels. The Intergovernmental Panel on Climate Change (IPCC) fourth assessment report states that GHG emissions should be reduced to 50-80% of 2000 levels by 2050 to increase the likelihood of stabilizing atmospheric CO2 concentrations. In order to achieve the large GHG reductions by 2050 recommended by the IPCC, a fundamental shift and evolution will be required in the energy system. Because the electric power and transportation sectors represent the largest GHG emissions sources in the United States, a unique opportunity for coupling these systems via electrified transportation could achieve synergistic environmental (GHG emissions reductions) and energy security (petroleum displacement) benefits. Plug-in hybrid electric vehicles (PHEVs), which use electricity from the grid to power a portion of travel, could play a major role in reducing greenhouse gas emissions from the transport sector. However, this thesis finds that life cycle GHG emissions from PHEVs depend on the electricity source that is used to charge the battery, so meaningful GHG emissions reductions with PHEVs are conditional on low-carbon electricity sources. Power plants and their associated GHGs are long-lived, and this work argues that decisions made regarding new electricity supplies within the next ten years will affect the potential of PHEVs to play a role in a low-carbon future in the coming decades. This thesis investigates the life cycle engineering, economic, and policy decisions involved in transitioning to PHEVs and low-carbon electricity. The government has a vast array of policy options to promote low-carbon technologies, some of which have proven to be more successful than others. This thesis uses life cycle assessment to evaluate options and opportunities for large GHG reductions from plug-in hybrids. After the options and uncertainties are framed, engineering economic analysis is used to evaluate the policy actions required for adoption of PHEVs at scale and the implications for low-carbon electricity investments. A logistic PHEV adoption model is constructed to parameterize implications for low-carbon electricity infrastructure investments and climate policy. This thesis concludes with an examination of what lessons can be learned for climate, innovation, and low-carbon energy policies from the evolution of wind power from an emerging alternative energy technology to a utility-scale power source. Policies to promote PHEVs and other emerging energy technologies can take lessons learned from the successes and challenges of wind power's development to optimize low-carbon energy policy and R&D programs going forward. The need for integrated climate policy, energy policy, sustainability, and urban mobility solutions will accelerate in the next two decades as concerns regarding GHG emissions and petroleum resources continue to be environmental and economic priorities. To assist in informing the discussions on climate policy and low-carbon energy R&D, this research and its methods will provide stakeholders in government and industry with plug-in hybrid and energy policy choices based on life cycle assessment, engineering economics, and systems analysis.
The Role of Industrial Parks in Mitigating Greenhouse Gas Emissions from China.
Guo, Yang; Tian, Jinping; Zang, Na; Gao, Yang; Chen, Lujun
2018-06-14
This study uncovered the direct and indirect energy-related GHG emissions of 213 Chinese national-level industrial parks, providing 11% of China's GDP, from a life-cycle perspective. Direct emissions are sourced from fuel combustion, and indirect emissions are embodied in energy production. The results indicated that in 2015, the direct and indirect GHG emissions of the parks were 1042 and 181 million tonne CO2 eq., respectively, totally accounting for 11% of national GHG emissions. The total energy consumption of the parks accounted for 10% of national energy consumption. Coal constituted 74% of total energy consumption in these parks. Baseline and low-carbon scenarios are established for 2030, and five GHG mitigation measures targeting energy consumption are modeled. The GHG mitigation potential for these parks in 2030 is quantified as 116 million tonne, equivalent to 9.5% of the parks' total emission in 2015. The measures that increase the share of natural gas consumption, reduce the GHG emission factor of electricity grid, and improve the average efficiency of industrial coal-fired boilers, will totally contribute 94% and 98% in direct and indirect GHG emissions reductions, respectively. These findings will provide a solid foundation for the low-carbon development of Chinese industrial parks.
Air quality co-benefits of subnational carbon policies
Thompson, Tammy M.; Rausch, Sebastian; Saari, Rebecca K.; ...
2016-05-18
To mitigate climate change, governments ranging from city to multi-national have adopted greenhouse gas (GHG) emissions reduction targets. While the location of GHG reductions does not affect their climate benefits, it can impact human health benefits associated with co-emitted pollutants. Here, an advanced modeling framework is used to explore how subnational level GHG targets influence air pollutant co-benefits from ground level ozone and fine particulate matter. Two carbon policy scenarios are analyzed, each reducing the same total amount of GHG emissions in the Northeast US: an economy-wide Cap and Trade (CAT) program reducing emissions from all sectors of the economy,more » and a Clean Energy Standard (CES) reducing emissions from the electricity sector only. Results suggest that a regional CES policy will cost about 10 times more than a CAT policy. Despite having the same regional targets in the Northeast, carbon leakage to non-capped regions varies between policies. Consequently, a regional CAT policy will result in national carbon reductions that are over six times greater than the carbon reduced by the CES in 2030. Monetized regional human health benefits of the CAT and CES policies are 844% and 185% of the costs of each policy, respectively. Benefits for both policies are thus estimated to exceed their costs in the Northeast US. The estimated value of human health co-benefits associated with air pollution reductions for the CES scenario is two times that of the CAT scenario. Implications: In this research, an advanced modeling framework is used to determine the potential impacts of regional carbon policies on air pollution co-benefits associated with ground level ozone and fine particulate matter. Study results show that spatially heterogeneous GHG policies have the potential to create areas of air pollution dis-benefit. It is also shown that monetized human health benefits within the area covered by policy may be larger than the model estimated cost of the policy. These findings are of particular interest both as U.S. states work to develop plans to meet state-level carbon emissions reduction targets set by the EPA through the Clean Power Plan, and in the absence of comprehensive national carbon policy.« less
NASA Astrophysics Data System (ADS)
Zhang, Y.; Bowden, J. H.; Adelman, Z.; Naik, V.; Horowitz, L. W.; Smith, S.; West, J. J.
2014-12-01
Reducing greenhouse gases (GHGs) not only slows climate change, but can also have co-benefits for improved air quality. In this study, we examine the co-benefits of global and regional GHG mitigation on US air quality at fine resolution through dynamical downscaling, using the latest Community Multi-scale Air Quality (CMAQ) model. We will investigate the co-benefits on US air quality due to domestic GHG mitigation alone, and due to mitigation outside of the US. We also quantity the co-benefits resulting from reductions in co-emitted air pollutants versus slowing climate change and its effects on air quality. Projected climate in the 2050s from the IPCC RCP4.5 and RCP8.5 scenarios is dynamically downscaled with the Weather Research and Forecasting model (WRF). Anthropogenic emissions projections from the RCP4.5 scenario and its reference (REF), are directly processed in SMOKE to provide temporally- and spatially-resolved CMAQ emission input files. Chemical boundary conditions (BCs) are obtained from West et al. (2013), who studied the co-benefits of global GHG reductions on global air quality and human health. Our preliminary results show that the global GHG reduction (RCP4.5 relative to REF) reduces the 1hr daily maximum ozone by 3.3 ppbv annually over entire US, as high as 6 ppbv in September. The west coast of California and the Northeast US are the regions that benefit most. By comparing different scenarios, we find that foreign countries' GHGs mitigation has a larger influence on the US ozone decreases (accounting for 77% of the total decrease), compared with 23% from domestic GHG mitigation only, highlighting the importance of methane reductions and the intercontinental transport of air pollutants. The reduction of global co-emitted air pollutants has a more pronounced effect on ozone decreasing, relative to the effect from slowing climate and its effects on air quality. We also plan to report co-benefits for PM2.5 in the US.
Air quality co-benefits of subnational carbon policies.
Thompson, Tammy M; Rausch, Sebastian; Saari, Rebecca K; Selin, Noelle E
2016-10-01
To mitigate climate change, governments ranging from city to multi-national have adopted greenhouse gas (GHG) emissions reduction targets. While the location of GHG reductions does not affect their climate benefits, it can impact human health benefits associated with co-emitted pollutants. Here, an advanced modeling framework is used to explore how subnational level GHG targets influence air pollutant co-benefits from ground level ozone and fine particulate matter. Two carbon policy scenarios are analyzed, each reducing the same total amount of GHG emissions in the Northeast US: an economy-wide Cap and Trade (CAT) program reducing emissions from all sectors of the economy, and a Clean Energy Standard (CES) reducing emissions from the electricity sector only. Results suggest that a regional CES policy will cost about 10 times more than a CAT policy. Despite having the same regional targets in the Northeast, carbon leakage to non-capped regions varies between policies. Consequently, a regional CAT policy will result in national carbon reductions that are over six times greater than the carbon reduced by the CES in 2030. Monetized regional human health benefits of the CAT and CES policies are 844% and 185% of the costs of each policy, respectively. Benefits for both policies are thus estimated to exceed their costs in the Northeast US. The estimated value of human health co-benefits associated with air pollution reductions for the CES scenario is two times that of the CAT scenario. In this research, an advanced modeling framework is used to determine the potential impacts of regional carbon policies on air pollution co-benefits associated with ground level ozone and fine particulate matter. Study results show that spatially heterogeneous GHG policies have the potential to create areas of air pollution dis-benefit. It is also shown that monetized human health benefits within the area covered by policy may be larger than the model estimated cost of the policy. These findings are of particular interest both as U.S. states work to develop plans to meet state-level carbon emissions reduction targets set by the EPA through the Clean Power Plan, and in the absence of comprehensive national carbon policy.
NASA Astrophysics Data System (ADS)
Spang, Edward S.; Holguin, Andrew J.; Loge, Frank J.
2018-01-01
In April 2015, the Governor of California mandated a 25% statewide reduction in water consumption (relative to 2013 levels) by urban water suppliers. The more than 400 public water agencies affected by the regulation were also required to report monthly progress towards the conservation goal to the State Water Resources Control Board. This paper uses the reported data to assess how the water utilities have responded to this mandate and to estimate the electricity savings and greenhouse gas (GHG) emissions reductions associated with reduced operation of urban water infrastructure systems. The results show that California succeeded in saving 524 000 million gallons (MG) of water (a 24.5% decrease relative to the 2013 baseline) over the mandate period, which translates into 1830 GWh total electricity savings, and a GHG emissions reduction of 521 000 metric tonnes of carbon dioxide equivalents (MT CO2e). For comparison, the total electricity savings linked to water conservation are approximately 11% greater than the savings achieved by the investor-owned electricity utilities’ efficiency programs for roughly the same time period, and the GHG savings represent the equivalent of taking about 111 000 cars off the road for a year. These indirect, large-scale electricity and GHG savings were achieved at costs that were competitive with existing programs that target electricity and GHG savings directly and independently. Finally, given the breadth of the results produced, we built a companion website, called ‘H2Open’ (https://cwee.shinyapps.io/greengov/), to this research effort that allows users to view and explore the data and results across scales, from individual water utilities to the statewide summary.
Pérez-Camacho, María Natividad; Curry, Robin; Cromie, Thomas
2018-03-01
In this study, life cycle assessment has been used to evaluate life cycle environmental impacts of substituting traditional anaerobic digestion (AD) feedstocks with food wastes. The results have demonstrated the avoided GHG emissions from substituting traditional AD feedstocks with food waste (avoided GHG-eq emissions of 163.33 CO 2 -eq). Additionally, the analysis has included environmental benefits of avoided landfilling of food wastes and digestate use as a substitute for synthetic fertilisers. The analysis of the GHG mitigation benefits of resource management/circular economy policies, namely, the mandating of a ban on the landfilling of food wastes, has demonstrated the very substantial GHG emission reduction that can be achieved by these policy options - 2151.04 kg CO 2 eq per MWh relative to UK Grid. In addition to the reduction in GHG emission, the utilization of food waste for AD instead of landfilling can manage the leakage of nutrients to water resources and eliminate eutrophication impacts which occur, typically as the result of field application. The results emphasise the benefits of using life-cycle thinking to underpin policy development and the implications for this are discussed with a particular focus on the analysis of policy development across the climate, renewable energy, resource management and bioeconomy nexus and recommendations made for future research priorities. Copyright © 2017 Elsevier Ltd. All rights reserved.
Climate balance of biogas upgrading systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pertl, A., E-mail: andreas.pertl@boku.ac.a; Mostbauer, P.; Obersteiner, G.
2010-01-15
One of the numerous applications of renewable energy is represented by the use of upgraded biogas where needed by feeding into the gas grid. The aim of the present study was to identify an upgrading scenario featuring minimum overall GHG emissions. The study was based on a life-cycle approach taking into account also GHG emissions resulting from plant cultivation to the process of energy conversion. For anaerobic digestion two substrates have been taken into account: (1) agricultural resources and (2) municipal organic waste. The study provides results for four different upgrading technologies including the BABIU (Bottom Ash for Biogas Upgrading)more » method. As the transport of bottom ash is a critical factor implicated in the BABIU-method, different transport distances and means of conveyance (lorry, train) have been considered. Furthermore, aspects including biogas compression and energy conversion in a combined heat and power plant were assessed. GHG emissions from a conventional energy supply system (natural gas) have been estimated as reference scenario. The main findings obtained underlined how the overall reduction of GHG emissions may be rather limited, for example for an agricultural context in which PSA-scenarios emit only 10% less greenhouse gases than the reference scenario. The BABIU-method constitutes an efficient upgrading method capable of attaining a high reduction of GHG emission by sequestration of CO{sub 2}.« less
The role of dung beetles in reducing greenhouse gas emissions from cattle farming
Slade, Eleanor M.; Riutta, Terhi; Roslin, Tomas; Tuomisto, Hanna L.
2016-01-01
Agriculture is one of the largest anthropogenic sources of greenhouse gases (GHGs), with dairy and beef production accounting for nearly two-thirds of emissions. Several recent papers suggest that dung beetles may affect fluxes of GHGs from cattle farming. Here, we put these previous findings into context. Using Finland as an example, we assessed GHG emissions at three scales: the dung pat, pasture ecosystem, and whole lifecycle of milk or beef production. At the first two levels, dung beetles reduced GHG emissions by up to 7% and 12% respectively, mainly through large reductions in methane (CH4) emissions. However, at the lifecycle level, dung beetles accounted for only a 0.05–0.13% reduction of overall GHG emissions. This mismatch derives from the fact that in intensive production systems, only a limited fraction of all cow pats end up on pastures, offering limited scope for dung beetle mitigation of GHG fluxes. In contrast, we suggest that the effects of dung beetles may be accentuated in tropical countries, where more manure is left on pastures, and dung beetles remove and aerate dung faster, and that this is thus a key area for future research. These considerations give a new perspective on previous results perspective, and suggest that studies of biotic effects on GHG emissions from dung pats on a global scale are a priority for current research. PMID:26728164
The role of dung beetles in reducing greenhouse gas emissions from cattle farming
NASA Astrophysics Data System (ADS)
Slade, Eleanor M.; Riutta, Terhi; Roslin, Tomas; Tuomisto, Hanna L.
2016-01-01
Agriculture is one of the largest anthropogenic sources of greenhouse gases (GHGs), with dairy and beef production accounting for nearly two-thirds of emissions. Several recent papers suggest that dung beetles may affect fluxes of GHGs from cattle farming. Here, we put these previous findings into context. Using Finland as an example, we assessed GHG emissions at three scales: the dung pat, pasture ecosystem, and whole lifecycle of milk or beef production. At the first two levels, dung beetles reduced GHG emissions by up to 7% and 12% respectively, mainly through large reductions in methane (CH4) emissions. However, at the lifecycle level, dung beetles accounted for only a 0.05-0.13% reduction of overall GHG emissions. This mismatch derives from the fact that in intensive production systems, only a limited fraction of all cow pats end up on pastures, offering limited scope for dung beetle mitigation of GHG fluxes. In contrast, we suggest that the effects of dung beetles may be accentuated in tropical countries, where more manure is left on pastures, and dung beetles remove and aerate dung faster, and that this is thus a key area for future research. These considerations give a new perspective on previous results perspective, and suggest that studies of biotic effects on GHG emissions from dung pats on a global scale are a priority for current research.
The role of dung beetles in reducing greenhouse gas emissions from cattle farming.
Slade, Eleanor M; Riutta, Terhi; Roslin, Tomas; Tuomisto, Hanna L
2016-01-05
Agriculture is one of the largest anthropogenic sources of greenhouse gases (GHGs), with dairy and beef production accounting for nearly two-thirds of emissions. Several recent papers suggest that dung beetles may affect fluxes of GHGs from cattle farming. Here, we put these previous findings into context. Using Finland as an example, we assessed GHG emissions at three scales: the dung pat, pasture ecosystem, and whole lifecycle of milk or beef production. At the first two levels, dung beetles reduced GHG emissions by up to 7% and 12% respectively, mainly through large reductions in methane (CH4) emissions. However, at the lifecycle level, dung beetles accounted for only a 0.05-0.13% reduction of overall GHG emissions. This mismatch derives from the fact that in intensive production systems, only a limited fraction of all cow pats end up on pastures, offering limited scope for dung beetle mitigation of GHG fluxes. In contrast, we suggest that the effects of dung beetles may be accentuated in tropical countries, where more manure is left on pastures, and dung beetles remove and aerate dung faster, and that this is thus a key area for future research. These considerations give a new perspective on previous results, [corrected] and suggest that studies of biotic effects on GHG emissions from dung pats on a global scale are a priority for current research.
Does consideration of GHG reductions change local decision making? A Case Study in Chile
NASA Astrophysics Data System (ADS)
Cifuentes, L. A.; Blumel, G.
2003-12-01
While local air pollution has been a public concern in developing countries for some time, climate change is looked upon as a non-urgent, developed world problem. In this work we present a case study of the interaction of measures to abate air pollution and measures to mitigate GHG emissions in Santiago, Chile, with the purpose of determining if the consideration of reductions in GHG affects the decisions taken to mitigate local air pollution. The emissions reductions of both GHG and local air pollutants were estimated from emission factors (some derived locally) and changes in activity levels. Health benefits due to air pollution abatement were computed using figures derived previously for the cost benefit analysis of Santiago's Decontamination Plan, transferred to the different cities taking into consideration local demographic and income data. The Santiago estimates were obtained using the damage function approach, based on some local epidemiological studies, and on local health and demographic data. Unit social values for the effects were estimated locally (for cost of treatment and lost productivity values) or extrapolated from US values (mainly for WTP values) using the ratio of per-capita income and an income elasticity of 1. The average benefits of emission abatement (in 1997 US\\ per ton) are 1,800 (1,200-2300) for NOx, 3,000 (2,100-3900) for SO2, 31,900 (21,900 - 41,900) for PM, and 630 (430 - 830) for resuspended dust. Economic benefits due to carbon reduction were considered at 3.5, 10 and 20 UStCO2. Marginal abatement cost curves were constructed considering private and net costs (private less the potential sales of carbon credits) Due to the bottom-up approach to constructing the marginal cost curve, many abatement measures (like congestion tolls and CNG instead of diesel buses) amounting to 8% reduction of PM2.5 concentration, exhibit a negative private cost. If the health benefits are considered for the decision, a maximum reduction of 22% in PM2.5 levels is obtained. Although many measures have associated reductions in GHG, due to the relatively low price considered for carbon reductions, when the potential benefits of CO2 sales are considered, this number does not increases. Therefore, consideration of the CO2 benefits did not change the decision for any of the 36 measures analyzed. This confirms that the main driver for air pollution policy is likely to continue to be local concerns, like public health issues.
Understanding Farmer Perspectives on Climate Change Adaptation and Mitigation
Morton, Lois Wright; Hobbs, Jon
2015-01-01
Agriculture is vulnerable to climate change and a source of greenhouse gases (GHGs). Farmers face pressures to adjust agricultural systems to make them more resilient in the face of increasingly variable weather (adaptation) and reduce GHG production (mitigation). This research examines relationships between Iowa farmers’ trust in environmental or agricultural interest groups as sources of climate information, climate change beliefs, perceived climate risks to agriculture, and support for adaptation and mitigation responses. Results indicate that beliefs varied with trust, and beliefs in turn had a significant direct effect on perceived risks from climate change. Support for adaptation varied with perceived risks, while attitudes toward GHG reduction (mitigation) were associated predominantly with variation in beliefs. Most farmers were supportive of adaptation responses, but few endorsed GHG reduction, suggesting that outreach should focus on interventions that have adaptive and mitigative properties (e.g., reduced tillage, improved fertilizer management). PMID:25983336
Schivley, Greg; Ingwersen, Wesley W; Marriott, Joe; Hawkins, Troy R; Skone, Timothy J
2015-07-07
Improvements to coal power plant technology and the cofired combustion of biomass promise direct greenhouse gas (GHG) reductions for existing coal-fired power plants. Questions remain as to what the reduction potentials are from a life cycle perspective and if it will result in unintended increases in impacts to air and water quality and human health. This study provides a unique analysis of the potential environmental impact reductions from upgrading existing subcritical pulverized coal power plants to increase their efficiency, improving environmental controls, cofiring biomass, and exporting steam for industrial use. The climate impacts are examined in both a traditional-100 year GWP-method and a time series analysis that accounts for emission and uptake timing over the life of the power plant. Compared to fleet average pulverized bed boilers (33% efficiency), we find that circulating fluidized bed boilers (39% efficiency) may provide GHG reductions of about 13% when using 100% coal and reductions of about 20-37% when cofiring with 30% biomass. Additional greenhouse gas reductions from combined heat and power are minimal if the steam coproduct displaces steam from an efficient natural gas boiler. These upgrades and cofiring biomass can also reduce other life cycle impacts, although there may be increased impacts to water quality (eutrophication) when using biomass from an intensely cultivated source. Climate change impacts are sensitive to the timing of emissions and carbon sequestration as well as the time horizon over which impacts are considered, particularly for long growth woody biomass.
Liu, Huacai; Yin, Xiuli; Wu, Chuangzhi
2014-01-01
There has been a rapid growth in using agricultural residues as an energy source to generate electricity in China. Biomass power generation (BPG) systems may vary significantly in technology, scale, and feedstock and consequently in their performances. A comparative evaluation of five typical BPG systems has been conducted in this study through a hybrid life cycle inventory (LCI) approach. Results show that requirements of fossil energy savings, and greenhouse gas (GHG) emission reductions, as well as emission reductions of SO2 and NOx, can be best met by the BPG systems. The cofiring systems were found to behave better than the biomass-only fired system and the biomass gasification systems in terms of energy savings and GHG emission reductions. Comparing with results of conventional process-base LCI, an important aspect to note is the significant contribution of infrastructure, equipment, and maintenance of the plant, which require the input of various types of materials, fuels, services, and the consequent GHG emissions. The results demonstrate characteristics and differences of BPG systems and help identify critical opportunities for biomass power development in China. PMID:25383383
Liu, Huacai; Yin, Xiuli; Wu, Chuangzhi
2014-01-01
There has been a rapid growth in using agricultural residues as an energy source to generate electricity in China. Biomass power generation (BPG) systems may vary significantly in technology, scale, and feedstock and consequently in their performances. A comparative evaluation of five typical BPG systems has been conducted in this study through a hybrid life cycle inventory (LCI) approach. Results show that requirements of fossil energy savings, and greenhouse gas (GHG) emission reductions, as well as emission reductions of SO2 and NOx, can be best met by the BPG systems. The cofiring systems were found to behave better than the biomass-only fired system and the biomass gasification systems in terms of energy savings and GHG emission reductions. Comparing with results of conventional process-base LCI, an important aspect to note is the significant contribution of infrastructure, equipment, and maintenance of the plant, which require the input of various types of materials, fuels, services, and the consequent GHG emissions. The results demonstrate characteristics and differences of BPG systems and help identify critical opportunities for biomass power development in China.
Biodiversity Conservation in the REDD
2010-01-01
Deforestation and forest degradation in the tropics is a major source of global greenhouse gas (GHG) emissions. The tropics also harbour more than half the world's threatened species, raising the possibility that reducing GHG emissions by curtailing tropical deforestation could provide substantial co-benefits for biodiversity conservation. Here we explore the potential for such co-benefits in Indonesia, a leading source of GHG emissions from land cover and land use change, and among the most species-rich countries in the world. We show that focal ecosystems for interventions to reduce emissions from deforestation and forest degradation in Indonesia do not coincide with areas supporting the most species-rich communities or highest concentration of threatened species. We argue that inherent trade-offs among ecosystems in emission reduction potential, opportunity cost of foregone development and biodiversity values will require a regulatory framework to balance emission reduction interventions with biodiversity co-benefit targets. We discuss how such a regulatory framework might function, and caution that pursuing emission reduction strategies without such a framework may undermine, not enhance, long-term prospects for biodiversity conservation in the tropics. PMID:21092321
Environmental management system for transportation maintenance operations.
DOT National Transportation Integrated Search
2014-05-01
The New Jersey's Global Warming Response Act, enacted in 2007, mandates reductions in greenhouse gas (GHG) : emissions to 1990 levels by 2020, approximately a 20 percent reduction, followed by a further reduction of emissions to : 80% below 2006 leve...
Trade-offs between high yields and greenhouse gas emissions in irrigation wheat cropland in China
NASA Astrophysics Data System (ADS)
Cui, Z. L.; Wu, L.; Ye, Y. L.; Ma, W. Q.; Chen, X. P.; Zhang, F. S.
2014-04-01
Although the concept of producing higher yields with reduced greenhouse gas (GHG) emissions is a goal that attracts increasing public and scientific attention, the trade-off between high yields and GHG emissions in intensive agricultural production is not well understood. Here, we hypothesize that there exists a mechanistic relationship between wheat grain yield and GHG emission, and that could be transformed into better agronomic management. A total 33 sites of on-farm experiments were investigated to evaluate the relationship between grain yield and GHG emissions using two systems (conventional practice, CP; high-yielding systems, HY) of intensive winter wheat (Triticum aestivum L.) in China. Furthermore, we discussed the potential to produce higher yields with lower GHG emissions based on a survey of 2938 farmers. Compared to the CP system, grain yield was 39% (2352 kg ha-1) higher in the HY system, while GHG emissions increased by only 10%, and GHG emission intensity was reduced by 21%. The current intensive winter wheat system with farmers' practice had a median yield and maximum GHG emission rate of 6050 kg ha-1 and 4783 kg CO2 eq ha-1, respectively; however, this system can be transformed to maintain yields while reducing GHG emissions by 26% (6077 kg ha-1, and 3555 kg CO2 eq ha-1). Further, the HY system was found to increase grain yield by 39% with a simultaneous reduction in GHG emissions by 18% (8429 kg ha-1, and 3905 kg CO2 eq ha-1, respectively). In the future, we suggest moving the trade-off relationships and calculations from grain yield and GHG emissions to new measures of productivity and environmental protection using innovative management technologies.
Khan, Muhammad Tariq Iqbal; Yaseen, Muhammad Rizwan; Ali, Qamar
2018-06-08
This study explored the long-run association among greenhouse gases (GHGs), financial development, forest area, improved sanitation, renewable energy, urbanization, and trade in 24 lower middle-income countries from Asia, Europe, Africa, and America (South and North) by using panel data from 1990 to 2015. Granger causality was tested by Toda and Yamamoto approach. The bi-directional causality was established among urbanization and GHGs (Asia), financial development and forest (Asia), energy use and renewable energy (Asia), renewable energy and forest (Asia), improved sanitation and forest (Asia, Africa, America), urbanization and forest (Asia), and improved sanitation and financial development (Europe). The GHG emission also shows one-way causality is running from financial development to GHG (America), energy to GHG (Asia), renewable energy to GHG (America), forest area to GHG (America), trade openness to GHG (Africa), urbanization to GHG (Europe), GHG to financial development (Europe), GHG to energy use (Europe, Africa, and America), and GHG to trade openness (Asia). On the basis of fully modified ordinary least square and generalized method of moment, the reciprocal relationship of GHGs was observed due to financial development in Asia and Africa; renewable energy in all panels; forest area in Asia, Europe, and America; improved sanitation in Asia, Africa, and America; trade openness in Africa; and urbanization in Europe and America. Policymakers should concentrate on these variables for the reduction in GHGs. The annual convergence towards long-run equilibrium was 50.5, 31.9, and 20.9% for America, Asia, and Africa, respectively.
Stratton, Russell W; Wolfe, Philip J; Hileman, James I
2011-12-15
Alternative fuels represent a potential option for reducing the climate impacts of the aviation sector. The climate impacts of alternatives fuel are traditionally considered as a ratio of life cycle greenhouse gas (GHG) emissions to those of the displaced petroleum product; however, this ignores the climate impacts of the non-CO(2) combustion effects from aircraft in the upper atmosphere. The results of this study show that including non-CO(2) combustion emissions and effects in the life cycle of a Synthetic Paraffinic Kerosene (SPK) fuel can lead to a decrease in the relative merit of the SPK fuel relative to conventional jet fuel. For example, an SPK fuel option with zero life cycle GHG emissions would offer a 100% reduction in GHG emissions but only a 48% reduction in actual climate impact using a 100-year time window and the nominal climate modeling assumption set outlined herein. Therefore, climate change mitigation policies for aviation that rely exclusively on relative well-to-wake life cycle GHG emissions as a proxy for aviation climate impact may overestimate the benefit of alternative fuel use on the global climate system.
Briggs, Adam D M; Kehlbacher, Ariane; Tiffin, Richard; Garnett, Tara; Rayner, Mike; Scarborough, Peter
2013-01-01
Objectives To model the impact on chronic disease of a tax on UK food and drink that internalises the wider costs to society of greenhouse gas (GHG) emissions and to estimate the potential revenue. Design An econometric and comparative risk assessment modelling study. Setting The UK. Participants The UK adult population. Interventions Two tax scenarios are modelled: (A) a tax of £2.72/tonne carbon dioxide equivalents (tCO2e)/100 g product applied to all food and drink groups with above average GHG emissions. (B) As with scenario (A) but food groups with emissions below average are subsidised to create a tax neutral scenario. Outcome measures Primary outcomes are change in UK population mortality from chronic diseases following the implementation of each taxation strategy, the change in the UK GHG emissions and the predicted revenue. Secondary outcomes are the changes to the micronutrient composition of the UK diet. Results Scenario (A) results in 7770 (95% credible intervals 7150 to 8390) deaths averted and a reduction in GHG emissions of 18 683 (14 665to 22 889) ktCO2e/year. Estimated annual revenue is £2.02 (£1.98 to £2.06) billion. Scenario (B) results in 2685 (1966 to 3402) extra deaths and a reduction in GHG emissions of 15 228 (11 245to 19 492) ktCO2e/year. Conclusions Incorporating the societal cost of GHG into the price of foods could save 7770 lives in the UK each year, reduce food-related GHG emissions and generate substantial tax revenue. The revenue neutral scenario (B) demonstrates that sustainability and health goals are not always aligned. Future work should focus on investigating the health impact by population subgroup and on designing fiscal strategies to promote both sustainable and healthy diets. PMID:24154517
NASA Astrophysics Data System (ADS)
Avilova, I. P.; Krutilova, M. O.
2018-01-01
Economic growth is the main determinant of the trend to increased greenhouse gas (GHG) emission. Therefore, the reduction of emission and stabilization of GHG levels in the atmosphere become an urgent task to avoid the worst predicted consequences of climate change. GHG emissions in construction industry take a significant part of industrial GHG emission and are expected to consistently increase. The problem could be successfully solved with a help of both economical and organizational restrictions, based on enhanced algorithms of calculation and amercement of environmental harm in building industry. This study aims to quantify of GHG emission caused by different constructive schemes of RC framework in concrete casting. The result shows that proposed methodology allows to make a comparative analysis of alternative projects in residential housing, taking into account an environmental damage, caused by construction process. The study was carried out in the framework of the Program of flagship university development on the base of Belgorod State Technological University named after V.G. Shoukhov
Sandulescu, Elena
2004-12-01
Waste management is a key process to protect the environment and conserve resources. The contribution of appropriate waste management measures to the reduction of greenhouse gas (GHG) emissions from the city of Bucharest was studied. An analysis of the distribution of waste flows into various treatment options was conducted using the material flows and stocks analysis (MFSA). An optimum scenario (i.e. municipal solid waste stream managed as: recycling of recoverable materials, 8%; incineration of combustibles, 60%; landfilling of non-combustibles, 32%) was modelled to represent the future waste management in Bucharest with regard to its relevance towards the potential for GHG reduction. The results indicate that it can contribute by 5.5% to the reduction of the total amount of GHGs emitted from Bucharest.
Life cycle assessment of biofuels: energy and greenhouse gas balances.
Gnansounou, E; Dauriat, A; Villegas, J; Panichelli, L
2009-11-01
The promotion of biofuels as energy for transportation in the industrialized countries is mainly driven by the perspective of oil depletion, the concerns about energy security and global warming. However due to sustainability constraints, biofuels will replace only 10 to 15% of fossil liquid fuels in the transport sector. Several governments have defined a minimum target of GHG emissions reduction for those biofuels that will be eligible to public incentives, for example a 35% emissions reduction in case of biofuels in Members States of the European Union. This article points out the significant biases in estimating GHG balances of biofuels stemming from modelling choices about system definition and boundaries, functional unit, reference systems and allocation methods. The extent to which these choices influence the results is investigated. After performing a comparison and constructive criticism of various modelling choices, the LCA of wheat-to-bioethanol is used as an illustrative case where bioethanol is blended with gasoline at various percentages (E5, E10 and E85). The performance of these substitution options is evaluated as well. The results show a large difference in the reduction of the GHG emissions with a high sensitivity to the following factors: the method used to allocate the impacts between the co-products, the type of reference systems, the choice of the functional unit and the type of blend. The authors come out with some recommendations for basing the estimation of energy and GHG balances of biofuels on principles such as transparency, consistency and accuracy.
NASA Astrophysics Data System (ADS)
Chen, H.; Yu, C.; Li, C.
2015-12-01
Sustainable agricultural intensification demand optimum resource managements of agro-ecosystems. Detailed information on the impacts of water use and nutrient application on agro-ecosystem services including crop yields, greenhouse gas (GHG) emissions and nitrogen (N) loss is the key to guide field managements. In this study, we use the DeNitrification-DeComposition (DNDC) model to simulate the biogeochemical processes for rice rotated cropping systems in China. We set varied scenarios of water use in more than 1600 counties, and derived optimal rates of N application for each county in accordance to water use scenarios. Our results suggest that 0.88 ± 0.33 Tg per year (mean ± standard deviation) of synthetic N could be reduced without reducing rice yields, which accounts for 15.7 ± 5.9% of current N application in China. Field managements with shallow flooding and optimal N applications could enhance ecosystem services on a national scale, leading to 34.3% reduction of GHG emissions (CH4, N2O, and CO2), 2.8% reduction of overall N loss (NH3 volatilization, denitrification and N leaching) and 1.7% increase of rice yields, as compared to current management conditions. Among provinces with major rice production, Jiangsu, Yunnan, Guizhou, and Hubei could achieve more than 40% reduction of GHG emissions under appropriate water managements, while Zhejiang, Guangdong, and Fujian could reduce more than 30% N loss with optimal N applications. Our modeling efforts suggest that China is likely to benefit from reforming water and fertilization managements for rice rotated cropping system in terms of sustainable crop yields, GHG emission mitigation and N loss reduction, and the reformation should be prioritized in the above-mentioned provinces. Keywords: water regime, nitrogen fertilization, sustainable management, ecological modeling, DNDC
Aston, Louise M; Smith, James N; Powles, John W
2012-01-01
Consumption of red and processed meat (RPM) is a leading contributor to greenhouse gas (GHG) emissions, and high intakes of these foods increase the risks of several leading chronic diseases. The aim of this study was to use newly derived estimates of habitual meat intakes in UK adults to assess potential co-benefits to health and the environment from reduced RPM consumption. Modelling study using dietary intake data from the National Diet and Nutrition Survey of British Adults. British general population. Respondents were divided into fifths by energy-adjusted RPM intakes, with vegetarians constituting a sixth stratum. GHG emitted in supplying the diets of each stratum was estimated using data from life-cycle analyses. A feasible counterfactual UK population was specified, in which the proportion of vegetarians measured in the survey population doubled, and the remainder adopted the dietary pattern of the lowest fifth of RPM consumers. Reductions in risks of coronary heart disease, diabetes and colorectal cancer, and GHG emissions, under the counterfactual. Habitual RPM intakes were 2.5 times higher in the top compared with the bottom fifth of consumers. Under the counterfactual, statistically significant reductions in population aggregate risks ranged from 3.2% (95% CI 1.9 to 4.7) for diabetes in women to 12.2% (6.4 to 18.0) for colorectal cancer in men, with those moving from the highest to lowest consumption levels gaining about twice these averages. The expected reduction in GHG emissions was 0.45 tonnes CO(2) equivalent/person/year, about 3% of the current total, giving a reduction across the UK population of 27.8 million tonnes/year. Reduced consumption of RPM would bring multiple benefits to health and environment.
Stephens-Romero, Shane; Carreras-Sospedra, Marc; Brouwer, Jacob; Dabdub, Donald; Samuelsen, Scott
2009-12-01
Adoption of hydrogen infrastructure and hydrogen fuel cell vehicles (HFCVs) to replace gasoline internal combustion engine (ICE) vehicles has been proposed as a strategy to reduce criteria pollutant and greenhouse gas (GHG) emissions from the transportation sector and transition to fuel independence. However, it is uncertain (1) to what degree the reduction in criteria pollutants will impact urban air quality, and (2) how the reductions in pollutant emissions and concomitant urban air quality impacts compare to ultralow emission gasoline-powered vehicles projected for a future year (e.g., 2060). To address these questions, the present study introduces a "spatially and temporally resolved energy and environment tool" (STREET) to characterize the pollutant and GHG emissions associated with a comprehensive hydrogen supply infrastructure and HFCVs at a high level of geographic and temporal resolution. To demonstrate the utility of STREET, two spatially and temporally resolved scenarios for hydrogen infrastructure are evaluated in a prototypical urban airshed (the South Coast Air Basin of California) using geographic information systems (GIS) data. The well-to-wheels (WTW) GHG emissions are quantified and the air quality is established using a detailed atmospheric chemistry and transport model followed by a comparison to a future gasoline scenario comprised of advanced ICE vehicles. One hydrogen scenario includes more renewable primary energy sources for hydrogen generation and the other includes more fossil fuel sources. The two scenarios encompass a variety of hydrogen generation, distribution, and fueling strategies. GHG emissions reductions range from 61 to 68% for both hydrogen scenarios in parallel with substantial improvements in urban air quality (e.g., reductions of 10 ppb in peak 8-h-averaged ozone and 6 mug/m(3) in 24-h-averaged particulate matter concentrations, particularly in regions of the airshed where concentrations are highest for the gasoline scenario).
NASA Astrophysics Data System (ADS)
Benveniste, Hélène; Boucher, Olivier; Guivarch, Céline; Le Treut, Hervé; Criqui, Patrick
2018-01-01
Nationally Determined Contributions (NDCs), submitted by Parties to the United Nations Framework Convention on Climate Change before and after the 21st Conference of Parties, summarize domestic objectives for greenhouse gas (GHG) emissions reductions for the 2025-2030 time horizon. In the absence, for now, of detailed guidelines for the format of NDCs, ancillary data are needed to interpret some NDCs and project GHG emissions in 2030. Here, we provide an analysis of uncertainty sources and their impacts on 2030 global GHG emissions based on the sole and full achievement of the NDCs. We estimate that NDCs project into 56.8-66.5 Gt CO2eq yr-1 emissions in 2030 (90% confidence interval), which is higher than previous estimates, and with a larger uncertainty range. Despite these uncertainties, NDCs robustly shift GHG emissions towards emerging and developing countries and reduce international inequalities in per capita GHG emissions. Finally, we stress that current NDCs imply larger emissions reduction rates after 2030 than during the 2010-2030 period if long-term temperature goals are to be fulfilled. Our results highlight four requirements for the forthcoming ‘climate regime’: a clearer framework regarding future NDCs’ design, an increasing participation of emerging and developing countries in the global mitigation effort, an ambitious update mechanism in order to avoid hardly feasible decarbonization rates after 2030 and an anticipation of steep decreases in global emissions after 2030.
Dong, Jun; Ni, Mingjiang; Chi, Yong; Zou, Daoan; Fu, Chao
2013-08-01
In China, the continuously increasing amount of municipal solid waste (MSW) has resulted in an urgent need for changing the current municipal solid waste management (MSWM) system based on mixed collection. A pilot program focusing on source-separated MSW collection was thus launched (2010) in Hangzhou, China, to lessen the related environmental loads. And greenhouse gas (GHG) emissions (Kyoto Protocol) are singled out in particular. This paper uses life cycle assessment modeling to evaluate the potential environmental improvement with regard to GHG emissions. The pre-existing MSWM system is assessed as baseline, while the source separation scenario is compared internally. Results show that 23 % GHG emissions can be decreased by source-separated collection compared with the base scenario. In addition, the use of composting and anaerobic digestion (AD) is suggested for further optimizing the management of food waste. 260.79, 82.21, and -86.21 thousand tonnes of GHG emissions are emitted from food waste landfill, composting, and AD, respectively, proving the emission reduction potential brought by advanced food waste treatment technologies. Realizing the fact, a modified MSWM system is proposed by taking AD as food waste substitution option, with additional 44 % GHG emissions saved than current source separation scenario. Moreover, a preliminary economic assessment is implemented. It is demonstrated that both source separation scenarios have a good cost reduction potential than mixed collection, with the proposed new system the most cost-effective one.
Jamie Lydersen; Brandon M. Collins; Carol Ewell; Alicia Reiner; Jo Ann Fites; Christopher Dow; Patrick Gonzalez; David Saah; John Battles
2014-01-01
Inventories of greenhouse gas (GHG) emissions from wildfire provide essential information to the state of California, USA, and other governments that have enacted emission reductions. Wildfires can release a substantial amount of GHGs and other compounds to the atmosphere, so recent increases in fire activity may be increasing GHG emissions. Quantifying wildfire...
NASA Astrophysics Data System (ADS)
Zapata, Christina B.; Yang, Chris; Yeh, Sonia; Ogden, Joan; Kleeman, Michael J.
2018-04-01
The California Regional Multisector Air Quality Emissions (CA-REMARQUE) model is developed to predict changes to criteria pollutant emissions inventories in California in response to sophisticated emissions control programs implemented to achieve deep greenhouse gas (GHG) emissions reductions. Two scenarios for the year 2050 act as the starting point for calculations: a business-as-usual (BAU) scenario and an 80 % GHG reduction (GHG-Step) scenario. Each of these scenarios was developed with an energy economic model to optimize costs across the entire California economy and so they include changes in activity, fuels, and technology across economic sectors. Separate algorithms are developed to estimate emissions of criteria pollutants (or their precursors) that are consistent with the future GHG scenarios for the following economic sectors: (i) on-road, (ii) rail and off-road, (iii) marine and aviation, (iv) residential and commercial, (v) electricity generation, and (vi) biorefineries. Properly accounting for new technologies involving electrification, biofuels, and hydrogen plays a central role in these calculations. Critically, criteria pollutant emissions do not decrease uniformly across all sectors of the economy. Emissions of certain criteria pollutants (or their precursors) increase in some sectors as part of the overall optimization within each of the scenarios. This produces nonuniform changes to criteria pollutant emissions in close proximity to heavily populated regions when viewed at 4 km spatial resolution with implications for exposure to air pollution for those populations. As a further complication, changing fuels and technology also modify the composition of reactive organic gas emissions and the size and composition of particulate matter emissions. This is most notably apparent through a comparison of emissions reductions for different size fractions of primary particulate matter. Primary PM2.5 emissions decrease by 4 % in the GHG-Step scenario vs. the BAU scenario while corresponding primary PM0.1 emissions decrease by 36 %. Ultrafine particles (PM0.1) are an emerging pollutant of concern expected to impact public health in future scenarios. The complexity of this situation illustrates the need for realistic treatment of criteria pollutant emissions inventories linked to GHG emissions policies designed for fully developed countries and states with strict existing environmental regulations.
NASA Astrophysics Data System (ADS)
Di Vittorio, A. V.; Simmonds, M.; Nico, P. S.
2017-12-01
Land-based carbon sequestration and GreenHouse Gas (GHG) reduction strategies are often implemented in small patches and evaluated independently from each other, which poses several challenges to determining their potential benefits at the regional scales at which carbon/GHG targets are defined. These challenges include inconsistent methods, uncertain scalability to larger areas, and lack of constraints such as land ownership and competition among multiple strategies. To address such challenges we have developed an integrated carbon and GHG budget model of California's entire landscape, delineated by geographic region, land type, and ownership. This empirical model has annual time steps and includes net ecosystem carbon exchange, wildfire, multiple forest management practices including wood and bioenergy production, cropland and rangeland soil management, various land type restoration activities, and land cover change. While the absolute estimates vary considerably due to uncertainties in initial carbon densities and ecosystem carbon exchange rates, the estimated effects of particular management activities with respect to baseline are robust across these uncertainties. Uncertainty in land use/cover change data is also critical, as different rates of shrubland to grassland conversion can switch the system from a carbon source to a sink. The results indicate that reducing urban area expansion has substantial and consistent benefits, while the effects of direct land management practices vary and depend largely on the available management area. Increasing forest fuel reduction extent over the baseline contributes to annual GHG costs during increased management, and annual benefits after increased management ceases. Cumulatively, it could take decades to recover the cost of 14 years of increased fuel reduction. However, forest carbon losses can be completely offset within 20 years through increases in urban forest fraction and marsh restoration. Additionally, highly uncertain black carbon estimates dominate the overall GHG budget due to wildfire, forest management, and bioenergy production. Overall, this tool is well suited for exploring suites of management options and extents throughout California in order to quantify potential regional carbon sequestration and GHG emission benefits.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Yan; Vyas, Anant D.; Guo, Zhaomiao
This report summarizes our evaluation of the potential energy-use and GHG-emissions reduction achieved by shifting freight from truck to rail under a most-likely scenario. A sensitivity analysis is also included. The sensitivity analysis shows changes in energy use and GHG emissions when key parameters are varied. The major contribution and distinction from previous studies is that this study considers the rail level of service (LOS) and commodity movements at the origin-destination (O-D) level. In addition, this study considers the fragility and time sensitivity of each commodity type.
Greenhouse Gas Emissions from Reservoir Water Surfaces: A ...
Collectively, reservoirs are an important anthropogenic source of greenhouse gases (GHGs) to the atmosphere. Attempts to model reservoir GHG fluxes, however, have been limited by inconsistencies in methodological approaches and data availability. An increase in the number of published reservoir GHG flux estimates during the last 15 years warrants a comprehensive analysis of the magnitude and potential controls on these fluxes. Here we synthesize worldwide reservoir CH4, CO2, and N2O emission data and estimate that GHG emissions from reservoirs account for 80.2 Tmol CO2 equivalents yr-1, thus constituting approximately 5% of anthropogenic radiative forcing. The majority (93%) of these emissions are from CH4, and mainly in the form of bubbles. While age and latitude have historically been linked to reservoir GHG emissions, we found that factors related to reservoir nutrient status and rainfall were better predictors. In particular, nutrient-rich eutrophic reservoirs were found to have an order of magnitude higher per-area CH4 fluxes, on average, than their nutrient-poor oligotrophic counterparts. Therefore, management measures to reduce reservoir eutrophication may result in an important co-benefit, the reduction of GHG emissions to the atmosphere. Greenhouse gas emissions (GHG)
Will Transition of Staple Food Strategy in China Really Mitigate Global Climate Change?
NASA Astrophysics Data System (ADS)
Liu, B.; Zhao, D.
2017-12-01
With the increase in agricultural demand, reducing greenhouse gas (GHG) emissions is a vital challenge in mitigating climate change. Potato staple food strategy in China introduced by Ministry of Agriculture in 2015 is to gradually adjust staple food structure, which provides an opportunity to meet with the challenge. Apart from staple food structure, difference on energy, material input, geography, and crop management are essential to determine agriculture's contribution to climate change. In this study, we conduct a life cycle analysis of four staple foods in China, namely rice, wheat, maize, and potato, to develop crop-specific estimates of GHG emissions and GHG intensity by using `Production intensity' (carbon dioxide equivalent emissions per kilocalorie produced), to help us understand potential synergies and frictions between food producing and climate mitigation. Data used in this study is on city / province levels if city level is unavailable in 2015. First, we evaluate GHG reductions due to transition of staple food structure in China. Staple food GHG emissions in China are 546.90 Tg CO2e yr-1 in 2015, with 47.6%, 21.9%, 27.3% and 3.2% from rice, wheat, maize and potato. Mean production intensity of staple food is 0.45 Mg CO2e M kcal-1 in 2015. Maize leads the intensity with 0.77 Mg CO2e M kcal-1, followed by rice (0.49 Mg CO2e M kcal-1), wheat (0.28 Mg CO2e M kcal-1) and potato (0.24 Mg CO2e M kcal-1). After staple food structure adjustment, 25 Tg CO2e yr-1 (4.2%) reduction will be accomplished in 2020 without any crop management improvement. Further reduction (33.3% - 40.4%) could be achieved with crop management improvement. In addition, because of staple food structure switching, native rice production will decline, which might lead to more export from countries with higher production intensity. Estimated emission leakage from rice import is 30.10 Tg CO2e yr-1, exceeds emission reduction in native China. Therefore, potato staple food strategy could meet the demand for food in China, but it increases risk of global climate change.
Improving the environmental profile of wood panels via co-production of ethanol and acetic acid.
Earles, J Mason; Halog, Anthony; Shaler, Stephen
2011-11-15
The oriented strand board (OSB) biorefinery is an emerging technology that could improve the building, transportation, and chemical sectors' environmental profiles. By adding a hot water extraction stage to conventional OSB panel manufacturing, hemicellulose polysaccharides can be extracted from wood strands and converted to renewably sourced ethanol and acetic acid. Replacing fossil-based gasoline and acetic acid has the potential to reduce greenhouse gas (GHG) emissions, among other possible impacts. At the same time, hemicellulose extraction could improve the environmental profile of OSB panels by reducing the level of volatile organic compounds (VOCs) emitted during manufacturing. In this study, the life cycle significance of such GHG, VOC, and other emission reductions was investigated. A process model was developed based on a mix of laboratory and industrial-level mass and energy flow data. Using these data a life cycle assessment (LCA) model was built. Sensitive process parameters were identified and used to develop a target production scenario for the OSB biorefinery. The findings suggest that the OSB biorefinery's deployment could substantially improve human and ecosystem health via reduction of select VOCs compared to conventionally produced OSB, gasoline, and acetic acid. Technological advancements are needed, however, to achieve desirable GHG reductions.
Reducing transit bus emissions: Alternative fuels or traffic operations?
NASA Astrophysics Data System (ADS)
Alam, Ahsan; Hatzopoulou, Marianne
2014-06-01
In this study, we simulated the operations and greenhouse gas (GHG) emissions of transit buses along a busy corridor and quantified the effects of two different fuels (conventional diesel and compressed natural gas) as well as a set of driving conditions on emissions. Results indicate that compressed natural gas (CNG) reduces GHG emissions by 8-12% compared to conventional diesel, this reduction could increase to 16% with high levels of traffic congestion. However, the benefits of switching from conventional diesel to CNG are less apparent when the road network is uncongested. We also investigated the effects of bus operations on emissions by applying several strategies such as transit signal priority (TSP), queue jumper lanes, and relocation of bus stops. Results show that in congested conditions, TSP alone can reduce GHG emissions by 14% and when combined with improved technology; a reduction of 23% is achieved. The reduction benefits are even more apparent when other transit operational improvements are combined with TSP. Finally a sensitivity analysis was performed to investigate the effect of operational improvements on emissions under varying levels of network congestion. We observe that under “extreme congestion”, the benefits of TSP decrease.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Rui; Qin, Zhangcai; Han, Jeongwoo
This study conducted the updated simulations to depict a life cycle analysis (LCA) of the biodiesel production from soybeans and other feedstocks in the U.S. It addressed in details the interaction between LCA and induced land use change (ILUC) for biodiesel. Relative to the conventional petroleum diesel, soy biodiesel could achieve 76% reduction in GHG emissions without considering ILUC, or 66-72% reduction in overall GHG emissions when various ILUC cases were considered. Soy biodiesel’s fossil fuel consumption rate was also 80% lower than its petroleum counterpart. Furthermore, this study examined the cause and the implication of each key parameter affectingmore » biodiesel LCA results using a sensitivity analysis, which identified the hot spots for fossil fuel consumption and GHG emissions of biodiesel so that future efforts can be made accordingly. Finally, biodiesel produced from other feedstocks (canola oil and tallow) were also investigated to contrast with soy biodiesel and petroleum diesel« less
Effectiveness of state climate and energy policies in reducing power-sector CO2 emissions
NASA Astrophysics Data System (ADS)
Martin, Geoff; Saikawa, Eri
2017-12-01
States have historically been the primary drivers of climate change policy in the US, particularly with regard to emissions from power plants. States have implemented policies designed either to directly curb greenhouse gas (GHG) emissions from power plants, or to encourage energy efficiency and renewable energy growth. With the federal government withdrawing from the global climate agreement, understanding which state-level policies have successfully mitigated power-plant emissions is urgent. Past research has assessed policy effectiveness using data for periods before the adoption of many policies. We assess 17 policies using the latest data on state-level power-sector CO2 emissions. We find that policies with mandatory compliance are reducing power-plant emissions, while voluntary policies are not. Electric decoupling, mandatory GHG registry/reporting and public benefit funds are associated with the largest reduction in emissions. Mandatory GHG registry/reporting and public benefit funds are also associated with a large reduction in emissions intensity.
Alternative energy balances for Bulgaria to mitigate climate change
NASA Astrophysics Data System (ADS)
Christov, Christo
1996-01-01
Alternative energy balances aimed to mitigate greenhouse gas (GHG) emissions are developed as alternatives to the baseline energy balance. The section of mitigation options is based on the results of the GHG emission inventory for the 1987 1992 period. The energy sector is the main contributor to the total CO2 emissions of Bulgaria. Stationary combustion for heat and electricity production as well as direct end-use combustion amounts to 80% of the total emissions. The parts of the energy network that could have the biggest influence on GHG emission reduction are identified. The potential effects of the following mitigation measures are discussed: rehabilitation of the combustion facilities currently in operation; repowering to natural gas; reduction of losses in thermal and electrical transmission and distribution networks; penetration of new combustion technologies; tariff structure improvement; renewable sources for electricity and heat production; wasteheat utilization; and supply of households with natural gas to substitute for electricity in space heating and cooking. The total available and the achievable potentials are estimated and the implementation barriers are discussed.
Dalgaard, T; Olesen, J E; Petersen, S O; Petersen, B M; Jørgensen, U; Kristensen, T; Hutchings, N J; Gyldenkærne, S; Hermansen, J E
2011-11-01
Greenhouse gas (GHG) emissions from agriculture are a significant contributor to total Danish emissions. Consequently, much effort is currently given to the exploration of potential strategies to reduce agricultural emissions. This paper presents results from a study estimating agricultural GHG emissions in the form of methane, nitrous oxide and carbon dioxide (including carbon sources and sinks, and the impact of energy consumption/bioenergy production) from Danish agriculture in the years 1990-2010. An analysis of possible measures to reduce the GHG emissions indicated that a 50-70% reduction of agricultural emissions by 2050 relative to 1990 is achievable, including mitigation measures in relation to the handling of manure and fertilisers, optimization of animal feeding, cropping practices, and land use changes with more organic farming, afforestation and energy crops. In addition, the bioenergy production may be increased significantly without reducing the food production, whereby Danish agriculture could achieve a positive energy balance. Copyright © 2011 Elsevier Ltd. All rights reserved.
Life cycle analysis of fuel production from fast pyrolysis of biomass.
Han, Jeongwoo; Elgowainy, Amgad; Dunn, Jennifer B; Wang, Michael Q
2013-04-01
A well-to-wheels (WTW) analysis of pyrolysis-based gasoline was conducted and compared with petroleum gasoline. To address the variation and uncertainty in the pyrolysis pathways, probability distributions for key parameters were developed with data from literature. The impacts of two different hydrogen sources for pyrolysis oil upgrading and of two bio-char co-product applications were investigated. Reforming fuel gas/natural gas for H2 reduces WTW GHG emissions by 60% (range of 55-64%) compared to the mean of petroleum fuels. Reforming pyrolysis oil for H2 increases the WTW GHG emissions reduction up to 112% (range of 97-126%), but reduces petroleum savings per unit of biomass used due to the dramatic decline in the liquid fuel yield. Thus, the hydrogen source causes a trade-off between GHG reduction per unit fuel output and petroleum displacement per unit biomass used. Soil application of biochar could provide significant carbon sequestration with large uncertainty. Copyright © 2013 Elsevier Ltd. All rights reserved.
Arbuckle, J Gordon; Morton, Lois Wright; Hobbs, Jon
2015-02-01
Agriculture is vulnerable to climate change and a source of greenhouse gases (GHGs). Farmers face pressures to adjust agricultural systems to make them more resilient in the face of increasingly variable weather (adaptation) and reduce GHG production (mitigation). This research examines relationships between Iowa farmers' trust in environmental or agricultural interest groups as sources of climate information, climate change beliefs, perceived climate risks to agriculture, and support for adaptation and mitigation responses. Results indicate that beliefs varied with trust, and beliefs in turn had a significant direct effect on perceived risks from climate change. Support for adaptation varied with perceived risks, while attitudes toward GHG reduction (mitigation) were associated predominantly with variation in beliefs. Most farmers were supportive of adaptation responses, but few endorsed GHG reduction, suggesting that outreach should focus on interventions that have adaptive and mitigative properties (e.g., reduced tillage, improved fertilizer management).
Fuel switching in the electricity sector under the EU ETS: Review and prospective
DOE Office of Scientific and Technical Information (OSTI.GOV)
Delarue, E.; Voorspools, K.; D'haeseleer, W.
2008-06-15
The European Union has implemented the European Union emission trading scheme (EU ETS) as an instrument to facilitate greenhouse gas (GHG) emission abatement stipulated in the Kyoto protocol. Empirical data show that in the early stages of the EU ETS, the value of a ton of CO{sub 2} has already led to emission abatement through switching from coal to gas in the European electric power sector. In the second part of this paper, an electricity generation simulation model is used to perform simulations on the switching behavior in both the first and the second trading periods of the EU ETS.more » In 2005, the reduction in GHG emissions in the electric power sector due to EU ETS is estimated close to 88 Mton. For the second trading period, a European Union allowance (EUA) price dependent GHG reduction curve has been determined. The obtained switching potential turns out to be significant, up to 300 Mton/year, at sufficiently high EUA prices.« less
INTRODUCTION OF BIOMASS AS RENEWABLE ENERGY COMPONENT OF FUTURE TRANSPORTATION FUELS
The long-term objectives of new vehicle/fuel systems require the reduction of petroleum use, reduction of air pollution emissions, and reduction of greenhouse gas (GHG) emissions. In the near term, a major advancement toward these objectives will be made possible by the improved ...
DHINGRA, RADHIKA; CHRISTENSEN, ERICK R.; LIU, YANG; ZHONG, BO; WU, CHANG-FU; YOST, MICHAEL G.; REMAIS, JUSTIN V.
2013-01-01
Anaerobic digesters provide clean, renewable energy (biogas) by converting organic waste to methane, and are a key part of China's comprehensive rural energy plan. Here, experimental and modeling results are used to quantify the net greenhouse gas (GHG) reduction from substituting a household anaerobic digester for traditional energy sources in Sichuan, China. Tunable diode laser absorption spectroscopy and radial plume mapping were used to estimate the mass flux of fugitive methane emissions from active digesters. Using household energy budgets, the net improvement in GHG emissions associated with biogas installation was estimated using global warming commitment (GWC) as a consolidated measure of the warming effects of GHG emissions from cooking. In all scenarios biogas households had lower GWC than non-biogas households, by as much as 54%. Even biogas households with methane leakage exhibited lower GWC than non-biogas households, by as much as 48%. Based only on the averted GHG emissions over 10 years, the monetary value of a biogas installation was conservatively estimated at US$28.30 ($16.07 ton−1 CO2-eq.), which is available to partly offset construction costs. The interaction of biogas installation programs with policies supporting improved stoves, renewable harvesting of biomass, and energy interventions with substantial health co-benefits, are discussed. PMID:21348471
Keshavarzmohammadian, Azadeh; Henze, Daven K; Milford, Jana B
2017-06-20
This study investigates emission impacts of introducing inexpensive and efficient electric vehicles into the US light duty vehicle (LDV) sector. Scenarios are explored using the ANSWER-MARKAL model with a modified version of the Environmental Protection Agency's (EPA) 9-region database. Modified cost and performance projections for LDV technologies are adapted from the National Research Council (2013) optimistic case. Under our optimistic scenario (OPT) we find 15% and 47% adoption of battery electric vehicles (BEVs) in 2030 and 2050, respectively. In contrast, gasoline vehicles (ICEVs) remain dominant through 2050 in the EPA reference case (BAU). Compared to BAU, OPT gives 16% and 36% reductions in LDV greenhouse gas (GHG) emissions for 2030 and 2050, respectively, corresponding to 5% and 9% reductions in economy-wide emissions. Total nitrogen oxides, volatile organic compounds, and SO 2 emissions are similar in the two scenarios due to intersectoral shifts. Moderate, economy-wide GHG fees have little effect on GHG emissions from the LDV sector but are more effective in the electricity sector. In the OPT scenario, estimated well-to-wheels GHG emissions from full-size BEVs with 100-mile range are 62 gCO 2 -e mi -1 in 2050, while those from full-size ICEVs are 121 gCO 2 -e mi -1 .
Greenhouse gas implications of a 32 billion gallon bioenergy landscape in the US
NASA Astrophysics Data System (ADS)
DeLucia, E. H.; Hudiburg, T. W.; Wang, W.; Khanna, M.; Long, S.; Dwivedi, P.; Parton, W. J.; Hartman, M. D.
2015-12-01
Sustainable bioenergy for transportation fuel and greenhouse gas (GHGs) reductions may require considerable changes in land use. Perennial grasses have been proposed because of their potential to yield substantial biomass on marginal lands without displacing food and reduce GHG emissions by storing soil carbon. Here, we implemented an integrated approach to planning bioenergy landscapes by combining spatially-explicit ecosystem and economic models to predict a least-cost land allocation for a 32 billion gallon (121 billion liter) renewable fuel mandate in the US. We find that 2022 GHG transportation emissions are decreased by 7% when 3.9 million hectares of eastern US land are converted to perennial grasses supplemented with corn residue to meet cellulosic ethanol requirements, largely because of gasoline displacement and soil carbon storage. If renewable fuel production is accompanied by a cellulosic biofuel tax credit, CO2 equivalent emissions could be reduced by 12%, because it induces more cellulosic biofuel and land under perennial grasses (10 million hectares) than under the mandate alone. While GHG reducing bioenergy landscapes that meet RFS requirements and do not displace food are possible, the reductions in GHG emissions are 50% less compared to previous estimates that did not account for economically feasible land allocation.
Dhingra, Radhika; Christensen, Erick R; Liu, Yang; Zhong, Bo; Wu, Chang-Fu; Yost, Michael G; Remais, Justin V
2011-03-15
Anaerobic digesters provide clean, renewable energy (biogas) by converting organic waste to methane, and are a key part of China's comprehensive rural energy plan. Here, experimental and modeling results are used to quantify the net greenhouse gas (GHG) reduction from substituting a household anaerobic digester for traditional energy sources in Sichuan, China. Tunable diode laser absorption spectroscopy and radial plume mapping were used to estimate the mass flux of fugitive methane emissions from active digesters. Using household energy budgets, the net improvement in GHG emissions associated with biogas installation was estimated using global warming commitment (GWC) as a consolidated measure of the warming effects of GHG emissions from cooking. In all scenarios biogas households had lower GWC than nonbiogas households, by as much as 54%. Even biogas households with methane leakage exhibited lower GWC than nonbiogas households, by as much as 48%. Based only on the averted GHG emissions over 10 years, the monetary value of a biogas installation was conservatively estimated at US$28.30 ($16.07 ton(-1) CO(2)-eq), which is available to partly offset construction costs. The interaction of biogas installation programs with policies supporting improved stoves, renewable harvesting of biomass, and energy interventions with substantial health cobenefits are discussed.
NASA Astrophysics Data System (ADS)
Cui, Z. L.; Ye, Y. L.; Ma, W. Q.; Chen, X. P.; Zhang, F. S.
2013-10-01
Although the concept of producing higher yields with reduced greenhouse gas (GHG) emissions is a goal that attracts increasing public and scientific attention, the tradeoff between crop productivity and GHG emissions in intensive agricultural production is not well understood. In this study, we investigated 33 sites of on-farm experiments to evaluate the tradeoff between grain yield and GHG emissions using two systems (conventional practice, CP; high-yielding systems, HY) of intensive irrigation wheat (Triticum aestivum L.) in China. Furthermore, we discussed the potential to produce higher yields with lower GHG emissions based on a survey of 2938 farmers. However, in both the HY and CP systems, wheat grain yield response to GHG emissions fit a linear-plateau model, whereas the curve for grain yield from the HY system was always higher than that from the CP system. Compared to the CP system, grain yield was 44% (2.6 Mg ha-1) higher in the HY system, while GHG emissions increased by only 2.5%, and GHG emission intensity was reduced by 29%. The current intensive irrigation wheat system with farmers' practice had a median yield and maximum GHG emission rate of 6.05 Mg ha-1 and 4783 kg CO2 eq ha-1, respectively; however, this system can be transformed to maintain yields while reducing GHG emissions by 40% (5.96 Mg ha-1, and 2890 kg CO2 eq ha-1). Further, the HY system was found to increase grain yield by 41% with a simultaneous reduction in GHG emissions by 38% (8.55 Mg ha-1, and 2961 kg CO2 eq ha-1, respectively). In the future, we suggest moving the tradeoff relationships and calculations from grain yield and GHG emissions, to new measures of productivity and environmental protection using innovative management technologies. This shift in focus is critical to achieve food and environmental security.
Agriculture, forestry, and other land-use emissions in Latin America
Calvin, Katherine V.; Beach, Robert; Gurgel, Angelo; ...
2016-04-07
Nearly 40% of greenhouse gas (GHG) emissions in Latin America were from agriculture, forestry, and other land use (AFOLU) in 2008, more than double the global fraction of AFOLU emissions. In this paper, we investigate the future trajectory of AFOLU GHG emissions in Latin America, with and without efforts to mitigate, using a multi-model comparison approach. We find significant uncertainty in future emissions with and without climate policy. This uncertainty is due to differences in a variety of assumptions including (1) the role of bioenergy, (2) where and how bioenergy is produced, (3) the availability of afforestation options in climatemore » mitigation policy, and (4) N 2O and CH 4 emissions intensity. With climate policy, these differences in assumptions can lead to significant variance in mitigation potential, with three models indicating reductions in AFOLU GHG emissions and one model indicating modest increases in AFOLU GHG emissions.« less
Agriculture, forestry, and other land-use emissions in Latin America
DOE Office of Scientific and Technical Information (OSTI.GOV)
Calvin, Katherine V.; Beach, Robert; Gurgel, Angelo
Nearly 40% of greenhouse gas (GHG) emissions in Latin America were from agriculture, forestry, and other land use (AFOLU) in 2008, more than double the global fraction of AFOLU emissions. In this paper, we investigate the future trajectory of AFOLU GHG emissions in Latin America, with and without efforts to mitigate, using a multi-model comparison approach. We find significant uncertainty in future emissions with and without climate policy. This uncertainty is due to differences in a variety of assumptions including (1) the role of bioenergy, (2) where and how bioenergy is produced, (3) the availability of afforestation options in climatemore » mitigation policy, and (4) N 2O and CH 4 emissions intensity. With climate policy, these differences in assumptions can lead to significant variance in mitigation potential, with three models indicating reductions in AFOLU GHG emissions and one model indicating modest increases in AFOLU GHG emissions.« less
Dynamic Geospatial Modeling of the Building Stock to Project Urban Energy Demand.
Breunig, Hanna Marie; Huntington, Tyler; Jin, Ling; Robinson, Alastair; Scown, Corinne Donahue
2018-06-26
In the United States, buildings account for more than 40 percent of total energy consumption, and the evolution of the urban form will impact the effectiveness of strategies to reduce energy use and mitigate emissions. This paper presents a broadly applicable approach for modeling future commercial, residential, and industrial floorspace, thermal consumption (heating and cooling), and associated GHG emissions at the tax assessor land parcel level. The approach accounts for changing building standards and retrofitting, climate change, and trends in housing and industry. We demonstrate the automated workflow for California, and project building stock, thermal energy consumption, and associated GHG emissions out to 2050. Our results suggest that if buildings in California have long lifespans, and minimal energy efficiency improvements compared to building codes reflective of 2008, then the state will face a 20% or higher increase in thermal energy consumption by 2050. Baseline annual GHG emissions associated with thermal energy consumption in the modeled building stock in 2016 is 34% below 1990 levels (110 Mt CO2eq/y).While the 2020 targets for the reduction of GHG emissions set by the California Senate Bill 350 have already been met, none of our scenarios achieve >80% reduction from 1990 levels by 2050, despite assuming an 86% reduction in electricity carbon intensity in our "Low Carbon" scenario. The results highlight the challenge California faces in meeting its new energy efficiency targets unless the State's building stock undergoes timely and strategic turnover, paired with deep retrofitting of existing buildings and natural gas equipment.
Feliciano, Diana; Hunter, Colin; Slee, Bill; Smith, Pete
2013-05-15
The Climate Change (Scotland) Act 2009 commits Scotland to reduce GHG emissions by at least 42% by 2020 and 80% by 2050, from 1990 levels. According to the Climate Change Delivery Plan, the desired emission reduction for the rural land use sector (agriculture and other land uses) is 21% compared to 1990, or 10% compared to 2006 levels. In 2006, in North East Scotland, gross greenhouse gas (GHG) emissions from rural land uses were about 1599 ktCO2e. Thus, to achieve a 10% reduction in 2020 relative to 2006, emissions would have to decrease to about 1440 ktCO2e. This study developed a methodology to help selecting land-based practices to mitigate GHG emissions at the regional level. The main criterion used was the "full" mitigation potential of each practice. A mix of methods was used to undertake this study, namely a literature review and quantitative estimates. The mitigation practice that offered greatest "full" mitigation potential (≈66% reduction by 2020 relative to 2006) was woodland planting with Sitka spruce. Several barriers, such as economic, social, political and institutional, affect the uptake of mitigation practices in the region. Consequently the achieved mitigation potential of a practice may be lower than its "full" mitigation potential. Surveys and focus groups, with relevant stakeholders, need to be undertaken to assess the real area where mitigation practices can be implemented and the best way to overcome the barriers for their implementation. Copyright © 2013 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tu, Qingshi; Zhu, Chao; McAvoy, Drew C., E-mail: mcavoydm@ucmail.uc.edu
Highlights: • A case study to show the benefits of waste-to-energy projects at a university. • Evaluated the technical and economic feasibilities as well as GHG reduction. • A tool for other universities/communities to evaluate waste-to-energy projects. - Abstract: This paper evaluates the implementation of three waste-to-energy projects at the University of Cincinnati: waste cooking oil-to-biodiesel, waste paper-to-fuel pellets and food waste-to-biogas, respectively. The implementation of these waste-to-energy (WTE) projects would lead to the improvement of campus sustainability by minimizing waste management efforts and reducing GHG emissions via the displacement of fossil fuel usage. Technical and economic aspects of theirmore » implementation were assessed and the corresponding GHG reduction was estimated. Results showed that on-site implementation of these projects would: (1) divert 3682 L (974 gallons) of waste cooking oil to 3712 L (982 gallons) of biodiesel; (2) produce 138 tonnes of fuel pellets from 133 tonnes of waste paper (with the addition of 20.75 tonnes of plastics) to replace121 tonnes of coal; and (3) produce biogas that would be enough to replace 12,767 m{sup 3} natural gas every year from 146 tonnes of food waste. The economic analysis determined that the payback periods for the three projects would be 16 months for the biodiesel, 155 months for the fuel pellet, and 74 months for the biogas projects. The reduction of GHG emission from the implementation of the three WTE projects was determined to be 9.37 (biodiesel), 260.49 (fuel pellets), and 11.36 (biogas) tonnes of CO{sub 2}-eq per year, respectively.« less
Amazon peatlands: quantifying ecosytem's stocks, GHG fluxes and their microbial connections
NASA Astrophysics Data System (ADS)
Cadillo-Quiroz, Hinsby; Lähteenoja, Outi; Buessecker, Steffen; van Haren, Joost
2017-04-01
Reports of hundreds of peatlands across basins in the West and Central Amazon suggest they play an important, previously not considered regional role in organic carbon (OC) and GHG dynamics. Amazon peatlands store ˜3-6 Gt of OC in their waterlogged soils with strong potential for conversion and release of GHG, in fact our recent, and others', efforts have confirmed variable levels of GHG emissions (CO2, N2O, CH4), as well as variable microbial communities across rich to poor soil peatlands. Here, we report early results of quantification of different components making up the aboveground C stocks, the rates and paths for GHG release, and microbial organisms occurring in three ecologically distinct peatland types in the Pastaza-Marañon region of the Peruvian Amazon. Evaluations were done in duplicated continuous monitoring plots established since 2015 at a "palm swamp" (PS), poor "pole forest" (pPF) and a rich "forested" (rF) peatlands. Although overall vegetation "structure" with a few dominant plus several low frequency species was common across the three sites, their botanical composition and tree density was highly contrasting. Aboveground C stocks content showed the following order among sites: rF>PS>pPF, and hence we tested whether this differences can have a direct effect on CH4 emissions rates. CH4 emissions rates from soils were observed in average at 11, 6, and 0.8 mg-C m-2 h-1for rF, PS, and pPF respectively. However, these estimated fluxes needed to be revised when we develop quantifications of CH4 emissions from tree stems. Tree stem fluxes were detected showing a broad variation with nearly nill emissions in some species all the way to maximum fluxes near to ˜90 mg-C m-2 h-1 in other species. Mauritia flexuosa, a highly dominant palm species in PS and ubiquitous to the region, showed the highest ranges of CH4 flux. In the PS site, overall CH4 flux estimate increased by ˜50% when including stem emission weighted by trees' species, density and heights. Flux estimates in p PF did not had a significant change. Analysis across species in the study sites, plus other satellite sites, suggest that in sites stem flux emissions might be conserved with some genera in the Aracaceae, Euphorbiaceae, and Sapotaceae families showing a large emitters capacity. Further characterization also showed that CH4 flux emission from the stems decreases generally with height, suggesting a diffusion constrained stem flux, which seems limited by soil CH4 concentration and wood density. Finally, microbial community composition and methanogenic activity also showed contrasting patterns across sites, with pH being one of the major determinants. GHG producing organisms were detected in different proportions and types across study sites, and importantly methanogenic Archaea closely tracked observed differences of CH4 flux among sites. Nevertheless, the link between vegetation type and density still remain under assessment in our efforts
Review of Mitigation Costs for Stabilizing Greenhouse Gas Concentrations
NASA Astrophysics Data System (ADS)
van Ruijven, B. J.; O'Neill, B. C.
2014-12-01
Mitigation of greenhouse gas emissions to avoid future climate change comes at a cost, because low-emission technologies are more expensive than GHG-emitting technology options. The increase in mitigation cost is not linearly related to the stabilization level, though: the first emission reductions are relatively cheap, but deeper emission reductions become more expensive. Therefore, emission reduction to medium levels of GHG concentrations , such as 4.5 or 6 W/m2, is considerably cheaper than emission reduction to low levels of GHG concentrations, such as 2.6 or 3.7 W/m2. Moreover, mitigation costs are influenced by many other aspects than the targeted mitigation level alone, such as whether or not certain technologies are available or societally acceptable (Kriegler et al., 2014); the rate of technological progress and cost reduction of low-emission technologies; the level of final energy demand (Riahi et al., 2011), and the level of global cooperation and trade in emission allowances (den Elzen and Höhne, 2010). This paper reviews the existing literature on greenhouse gas mitigation costs. We analyze the available data on mitigation costs and draw conclusions on how these change for different stabilization levels of GHG concentrations. We will take into account the aspects of technology, energy demand, and cooperation in distinguishing differences between scenarios and stabilization levels. References: den Elzen, M., Höhne, N., 2010. Sharing the reduction effort to limit global warming to 2C. Climate Policy 10, 247-260. Kriegler, E., Weyant, J., Blanford, G., Krey, V., Clarke, L., Edmonds, J., Fawcett, A., Luderer, G., Riahi, K., Richels, R., Rose, S., Tavoni, M., Vuuren, D., 2014. The role of technology for achieving climate policy objectives: overview of the EMF 27 study on global technology and climate policy strategies. Climatic Change, 1-15. Riahi, K., Dentener, F., Gielen, D., Grubler, A., Jewell, J., Klimont, Z., Krey, V., McCollum, D., Pachauri, S., Rao, S., van Ruijven, B., van Vuuren, D.P., Wilson, C., 2011. Energy Pathways for Sustainable Development, The Global Energy Assessment: Toward a More Sustainable Future. IIASA, Laxenburg, Austria and Cambridge University Press, Cambridge, UK.
Kiefer, Lukas; Menzel, Friederike; Bahrs, Enno
2014-12-01
The reduction of product-related greenhouse gas (GHG) emissions in milk production appears to be necessary. The reduction of emissions on an individual farm might be highly accepted by farm owners if it were accompanied by an increase in profitability. Using life cycle assessments to determine the product carbon footprints (PCF) and farm-level evaluations to record profitability, we explored opportunities for optimization based on analysis of 81 organic and conventional pasture-based dairy farms in southern Germany. The objective of the present study was to detect common determining factors for low PCF and high management incomes (MI) to achieve GHG reductions at the lowest possible operational cost. In our sample, organic farms, which performed economically better than conventional farms, produced PCF that were significantly higher than those produced by conventional farms [1.61 ± 0.29 vs. 1.45 ± 0.28 kg of CO₂ equivalents (CO₂eq) per kg of milk; means ± SD)]. A multiple linear regression analysis of the sample demonstrated that low feed demand per kilogram of milk, high grassland yield, and low forage area requirements per cow are the main factors that decrease PCF. These factors are also useful for improving a farm's profitability in principle. For organic farms, a reduction of feed demand of 100 g/kg of milk resulted in a PCF reduction of 105 g of CO₂eq/kg of milk and an increase in MI of approximately 2.1 euro cents (c)/kg of milk. For conventional farms, a decrease of feed demand of 100 g/kg of milk corresponded to a reduction in PCF of 117 g of CO₂eq/kg of milk and an increase in MI of approximately 3.1 c/kg of milk. Accordingly, farmers could achieve higher profits while reducing GHG emissions. Improved education and training of farmers and consultants regarding GHG mitigation and farm profitability appear to be the best methods of improving efficiency under traditional and organic farming practices.
Effect of aeration interval on oxygen consumption and GHG emission during pig manure composting.
Zeng, Jianfei; Yin, Hongjie; Shen, Xiuli; Liu, Ning; Ge, Jinyi; Han, Lujia; Huang, Guangqun
2018-02-01
To verify the optimal aeration interval for oxygen supply and consumption and investigate the effect of aeration interval on GHG emission, reactor-scale composting was conducted with different aeration intervals (0, 10, 30 and 50 min). Although O 2 was sufficiently supplied during aeration period, it could be consumed to <10 vol% only when the aeration interval was 50 min, indicating that an aeration interval more than 50 min would be inadvisable. Compared to continuous aeration, reductions of the total CH 4 and N 2 O emissions as well as the total GHG emission equivalent by 22.26-61.36%, 8.24-49.80% and 12.36-53.20%, respectively, was achieved through intermittent aeration. Specifically, both the total CH 4 and N 2 O emissions as well as the total GHG emission equivalent were inversely proportional to the duration of aeration interval (R 2 > 0.902), suggesting that lengthening the duration of aeration interval to some extent could effectively reduce GHG emission. Copyright © 2017 Elsevier Ltd. All rights reserved.
Autonomous taxis could greatly reduce greenhouse-gas emissions of US light-duty vehicles
NASA Astrophysics Data System (ADS)
Greenblatt, Jeffery B.; Saxena, Samveg
2015-09-01
Autonomous vehicles (AVs) are conveyances to move passengers or freight without human intervention. AVs are potentially disruptive both technologically and socially, with claimed benefits including increased safety, road utilization, driver productivity and energy savings. Here we estimate 2014 and 2030 greenhouse-gas (GHG) emissions and costs of autonomous taxis (ATs), a class of fully autonomous shared AVs likely to gain rapid early market share, through three synergistic effects: (1) future decreases in electricity GHG emissions intensity, (2) smaller vehicle sizes resulting from trip-specific AT deployment, and (3) higher annual vehicle-miles travelled (VMT), increasing high-efficiency (especially battery-electric) vehicle cost-effectiveness. Combined, these factors could result in decreased US per-mile GHG emissions in 2030 per AT deployed of 87-94% below current conventionally driven vehicles (CDVs), and 63-82% below projected 2030 hybrid vehicles, without including other energy-saving benefits of AVs. With these substantial GHG savings, ATs could enable GHG reductions even if total VMT, average speed and vehicle size increased substantially. Oil consumption would also be reduced by nearly 100%.
Research and Development Opportunities for Joining Technologies in HVAC&R
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goetzler, William; Guernsey, Matt; Young, Jim
The Building Technologies Office (BTO) works with researchers and industry partners to develop and deploy technologies that can substantially reduce energy consumption and greenhouse gas (GHG) emissions in residential and commercial buildings. This opportunity assessment aims to advance BTO’s energy savings, GHG reduction, and other program goals by identifying research and development (R&D) initiatives for joining technologies in heating, ventilation, air-conditioning, and refrigeration (HVAC&R) systems. Improving joining technologies for HVAC&R equipment has the potential to increase lifetime equipment operating efficiency, decrease equipment and project cost, and most importantly reduce hydroflourocarbon (HFC) refrigerant leakage to support HFC phasedown and GHG reductionmore » goals.« less
Assessment of GHG mitigation and CDM technology in urban transport sector of Chandigarh, India.
Bhargava, Nitin; Gurjar, Bhola Ram; Mor, Suman; Ravindra, Khaiwal
2018-01-01
The increase in number of vehicles in metropolitan cities has resulted in increase of greenhouse gas (GHG) emissions in urban environment. In this study, emission load of GHGs (CO, N 2 O, CO 2 ) from Chandigarh road transport sector has been estimated using Vehicular Air Pollution Inventory (VAPI) model, which uses emission factors prevalent in Indian cities. Contribution of 2-wheelers (2-w), 3-wheelers (3-w), cars, buses, and heavy commercial vehicles (HCVs) to CO, N 2 O, CO 2 , and total GHG emissions was calculated. Potential for GHG mitigation through clean development mechanism (CDM) in transport sector of Chandigarh under two scenarios, i.e., business as usual (BAU) and best estimate scenario (BES) using VAPI model, has been explored. A major contribution of GHG load (~ 50%) in Chandigarh was from four-wheelers until 2011; however, it shows a declining trend after 2011 until 2020. The estimated GHG emission from motor vehicles in Chandigarh has increased more than two times from 1065 Gg in 2005 to 2486 Gg by 2011 and is expected to increase to 4014 Gg by 2020 under BAU scenario. Under BES scenario, 30% of private transport has been transformed to public transport; GHG load was possibly reduced by 520 Gg. An increase of 173 Gg in GHGs load is projected from additional scenario (ADS) in Chandigarh city if all the diesel buses are transformed to CNG buses by 2020. Current study also offers potential for other cities to plan better GHG reduction strategies in transport sector to reduce their climate change impacts.
Lifecycle greenhouse gas implications of US national scenarios for cellulosic ethanol production
NASA Astrophysics Data System (ADS)
Scown, Corinne D.; Nazaroff, William W.; Mishra, Umakant; Strogen, Bret; Lobscheid, Agnes B.; Masanet, Eric; Santero, Nicholas J.; Horvath, Arpad; McKone, Thomas E.
2012-03-01
The Energy Independence and Security Act of 2007 set an annual US national production goal of 39.7 billion l of cellulosic ethanol by 2020. This paper explores the possibility of meeting that target by growing and processing Miscanthus × giganteus. We define and assess six production scenarios in which active cropland and/or Conservation Reserve Program land are used to grow to Miscanthus. The crop and biorefinery locations are chosen with consideration of economic, land-use, water management and greenhouse gas (GHG) emissions reduction objectives. Using lifecycle assessment, the net GHG footprint of each scenario is evaluated, providing insight into the climate costs and benefits associated with each scenario’s objectives. Assuming that indirect land-use change is successfully minimized or mitigated, the results suggest two major drivers for overall GHG impact of cellulosic ethanol from Miscanthus: (a) net soil carbon sequestration or emissions during Miscanthus cultivation and (b) GHG offset credits for electricity exported by biorefineries to the grid. Without these factors, the GHG intensity of bioethanol from Miscanthus is calculated to be 11-13 g CO2-equivalent per MJ of fuel, which is 80-90% lower than gasoline. Including soil carbon sequestration and the power-offset credit results in net GHG sequestration up to 26 g CO2-equivalent per MJ of fuel.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Izursa, Jose-Luis; Hanlon, Edward; Amponsah, Nana
2013-02-15
The agriculture sector is in a growing need to develop greenhouse gas (GHG) mitigation techniques to reduce the enhanced greenhouse effect. The challenge to the sector is not only to reduce net emissions but also increase production to meet growing demands for food, fiber, and biofuel. This study focuses on the changes in the GHG balance of three biofuel feedstock (biofuel sugarcane, energy-cane and sweet sorghum) considering changes caused by the adoption of conservationist practices such as reduced tillage, use of controlled-release fertilizers or when cultivation areas are converted from burned harvest to green harvest. Based on the Intergovernmental Panelmore » on Climate Change (IPCC) (2006) balance and the Tools for the Reduction and Assessment of Chemical and Other Environmental Impacts (TRACI) characterization factors published by the EPA, the annual emission balance includes use energy (diesel and electricity), equipment, and ancillary materials, according to the mean annual consumption of supplies per hectare. The total amounts of GWP were 2740, 1791, and 1910 kg CO2e ha-1 y-1 for biofuel sugarcane, energy-cane and sweet sorghum, respectively, when produced with conventional tillage and sugarcane was burned prior to harvesting. Applying reduced tillage practices, the GHG emissions reduced to 13% for biofuel sugarcane, 23% for energy-cane and 8% for sweet sorghum. A similar decrease occurs when a controlled-release fertilizer practice is adopted, which helps reduce the total emission balance in 5%, 12% and 19% for biofuel sugarcane, energy-cane and sweet sorghum, respectively and a 31% average reduction in eutrophication potential. Moreover, the GHG emissions for biofuel sugarcane, with the adoption of green harvest, would result in a smaller GHG balance of 1924 kg CO2e ha-1 y-1, providing an effect strategy for GHG mitigation while still providing a profitable yield in Florida.« less
McLeod, Jeffrey D; Brinkman, Gregory L; Milford, Jana B
2014-11-18
Enhanced prospects for natural gas production raise questions about the balance of impacts on air quality, as increased emissions from production activities are considered alongside the reductions expected when natural gas is burned in place of other fossil fuels. This study explores how trends in natural gas production over the coming decades might affect emissions of greenhouse gases (GHG), volatile organic compounds (VOCs) and nitrogen oxides (NOx) for the United States and its Rocky Mountain region. The MARKAL (MARKet ALlocation) energy system optimization model is used with the U.S. Environmental Protection Agency's nine-region database to compare scenarios for natural gas supply and demand, constraints on the electricity generation mix, and GHG emissions fees. Through 2050, total energy system GHG emissions show little response to natural gas supply assumptions, due to offsetting changes across sectors. Policy-driven constraints or emissions fees are needed to achieve net reductions. In most scenarios, wind is a less expensive source of new electricity supplies in the Rocky Mountain region than natural gas. U.S. NOx emissions decline in all the scenarios considered. Increased VOC emissions from natural gas production offset part of the anticipated reductions from the transportation sector, especially in the Rocky Mountain region.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Veysey, Jason; Octaviano, Claudia; Calvin, Katherine
Mexico’s climate policy sets ambitious national greenhouse gas (GHG) emission reduction targets—30% versus a business-as-usual baseline by 2020, 50% versus 2000 by 2050. However, these goals are at odds with recent energy and emission trends in the country. Both energy use and GHG emissions in Mexico have grown substantially over the last two decades. Here, we investigate how Mexico might reverse current trends and reach its mitigation targets by exploring results from energy system and economic models involved in the CLIMACAP-LAMP project. To meet Mexico’s emission reduction targets, all modeling groups agree that decarbonization of electricity is needed, along withmore » changes in the transport sector, either to more efficient vehicles or a combination of more efficient vehicles and lower carbon fuels. These measures reduce GHG emissions as well as emissions of other air pollutants. The models find different energy supply pathways, with some solutions based on renewable energy and others relying on biomass or fossil fuels with carbon capture and storage. The economy-wide costs of deep mitigation could range from 2% to 4% of GDP in 2030, and from 7% to 15% of GDP in 2050. Our results suggest that Mexico has some flexibility in designing deep mitigation strategies, and that technological options could allow Mexico to achieve its emission reduction targets, albeit at a cost to the country.« less
NASA Astrophysics Data System (ADS)
Davis, K. J.; Keller, K.; Ogle, S. M.; Smith, S.
2014-12-01
Changes in the sources and sinks of greenhouse gases (GHGs) are key drivers of anthropogenic climate change. It is hence not surprising that current and emerging U.S. governmental science priorities and programs focused on climate change (e.g. a U.S. Carbon Cycle Science Plan; the U.S. Carbon Cycle Science Program, the U.S. Global Change Research Program, Executive Order 13653 'Preparing the U.S. for the Impacts of Climate Change') all call for an improved understanding of these sources and sinks.. Measurements of the total atmospheric burden of these gases are well established, but measurements of their sources and sinks are difficult to make over spatial and temporal scales that are relevant for scientific and decisionmaking needs. Quantifying the uncertainty in these measurements is particularly challenging. This talk reviews the intersection of the state of knowledge of GHG sources and sinks, focusing in particular on CO2 and CH4, and science and decision-making needs for this information. Different science and decision-making needs require differing levels of uncertainty. A number of high-priority needs (early detection of changes in the Earth system, projections of future climate, support of markets or regulations) often require a high degree of accuracy and/or precision. We will critically evaluate current U.S. planning to documents to infer current perceived needs for GHG source/sink quantification, attempting to translate these needs into quantitative uncertainty metrics. We will compare these perceived needs with the current state of the art of GHG source/sink quantification, including the apparent pattern of systematic differences between so-called "top down" and "bottom-up" flux estimates. This comparison will enable us to identify where needs can be readily satisfied, and where gaps in technology exist. Finally, we will examine what steps could be taken to close existing gaps.
NASA Astrophysics Data System (ADS)
Kritee, K.; Tiwari, R.; Nair, D.; Adhya, T. K.; Rudek, J.
2014-12-01
As a part of a joint undertaking by Environmental Defense Fund and the Fair Climate Network, we have measured reduction in methane and nitrous oxide emissions due to alternate "low carbon" rice cultivation practices for three ago-ecological zones in India for the past two years. Sampling for nitrous oxide and methane emissions was done on approximately 60-80% of the total number of days in a growing season and was based on modified GRACEnet protocol. In recognition of farmer's economic interest and global food security demands, we also measured the effect of rice cultivation practices on farm economics and yields. Our data from three agro-ecological zones for 2012-2014 suggest that, for semi-arid peninsular India, low-carbon rice cultivation practices offer large range of emission reduction potential (0.5-5 metric tons CO2e/acre/year). The regions with sandy soils (Alfisols) had high rates of nitrous oxide emissions even under baseline "flooded" rice cultivation regimes and, thus, the Tier 1 IPCC emissions factors grossly underestimate both the amount of nitrous oxide emission from conventional rice cultivation practices, and the extent to which it can be reduced through better fertilizer management. Also, the IPCC factors overestimate the methane emission reduction possible due to water management for rice paddies. Therefore, it is crucial to customize N and water management to each region such that yields and net GHG emission reduction are maximized. These practices also have the potential to decrease water use by 10-30% and improve long term soil health by optimizing organic matter and increasing water-holding capacity. In addition, through GPS based demarcation of farmer plots, recording baseline practices through extensive surveys, documenting the parameters required to aggregate and prove implementation of low carbon rice farming practices, and to model the GHG emission reduction over large scales, we have put forward a path for better monetization of GHG emission reductions which will incentivize adoption of such practices. The payoff is a "triple win" including increased long-term food security (through enhanced yields), rural economic development (through improved farm profitability and adaptation), and lower environmental impacts (including lower GHG emissions).
Greenhouse gas accounting and waste management.
Gentil, Emmanuel; Christensen, Thomas H; Aoustin, Emmanuelle
2009-11-01
Accounting of emissions of greenhouse gas (GHG) is a major focus within waste management. This paper analyses and compares the four main types of GHG accounting in waste management including their special features and approaches: the national accounting, with reference to the Intergovernmental Panel on Climate Change (IPCC), the corporate level, as part of the annual reporting on environmental issues and social responsibility, life-cycle assessment (LCA), as an environmental basis for assessing waste management systems and technologies, and finally, the carbon trading methodology, and more specifically, the clean development mechanism (CDM) methodology, introduced to support cost-effective reduction in GHG emissions. These types of GHG accounting, in principle, have a common starting point in technical data on GHG emissions from specific waste technologies and plants, but the limited availability of data and, moreover, the different scopes of the accounting lead to many ways of quantifying emissions and producing the accounts. The importance of transparency in GHG accounting is emphasised regarding waste type, waste composition, time period considered, GHGs included, global warming potential (GWP) assigned to the GHGs, counting of biogenic carbon dioxide, choice of system boundaries, interactions with the energy system, and generic emissions factors. In order to enhance transparency and consistency, a format called the upstream-operating-downstream framework (UOD) is proposed for reporting basic technology-related data regarding GHG issues including a clear distinction between direct emissions from waste management technologies, indirect upstream (use of energy and materials) and indirect downstream (production of energy, delivery of secondary materials) activities.
Greenhouse gas emission reduction: A case study of Sri Lanka
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meier, P.; Munasinghe, M.
1995-12-31
In this paper we describe a case study for Sri Lanka that explores a wide range of options for reducing greenhouse gas (GHG) emissions. Options range from renewable technologies to carbon taxes and transportation sector initiatives. We find that setting electricity prices to reflect long-run marginal cost has a significant beneficial impact on the environment, and the expected benefits predicted on theoretical grounds are confirmed by the empirical results. Pricing reform also has a much broader impact than physical approaches to demand side management, although several options such as compact fluorescent lighting appear to have great potential. Options to reducemore » GHG emissions are limited as Sri Lanka lacks natural gas, and nuclear power is not practical until the system reaches a much larger size. Building the few remaining large hydro facilities would significantly reduce GHG emissions, but these would require costly resettlement programs. Given the inevitability for fossil-fuel base load generation, both clean coal technologies such as pressurized fluidized bed combustion, as well as steam-cycle residual oil fueled plants merit consideration as alternatives to the conventional pulverized coal-fired plants currently being considered. Transportation sector measures necessary to ameliorate local urban air pollution problems, such as vehicle inspection and maintenance programs, also bring about significant reductions of GHG emissions. 51 refs., 10 figs., 3 tabs.« less
Comparing the greenhouse gas emissions from three alternative waste combustion concepts.
Vainikka, Pasi; Tsupari, Eemeli; Sipilä, Kai; Hupa, Mikko
2012-03-01
Three alternative condensing mode power and combined heat and power (CHP) waste-to-energy concepts were compared in terms of their impacts on the greenhouse gas (GHG) emissions from a heat and power generation system. The concepts included (i) grate, (ii) bubbling fluidised bed (BFB) and (iii) circulating fluidised bed (CFB) combustion of waste. The BFB and CFB take advantage of advanced combustion technology which enabled them to reach electric efficiency up to 35% and 41% in condensing mode, respectively, whereas 28% (based on the lower heating value) was applied for the grate fired unit. A simple energy system model was applied in calculating the GHG emissions in different scenarios where coal or natural gas was substituted in power generation and mix of fuel oil and natural gas in heat generation by waste combustion. Landfilling and waste transportation were not considered in the model. GHG emissions were reduced significantly in all of the considered scenarios where the waste combustion concepts substituted coal based power generation. With the exception of condensing mode grate incinerator the different waste combustion scenarios resulted approximately in 1 Mton of fossil CO(2)-eq. emission reduction per 1 Mton of municipal solid waste (MSW) incinerated. When natural gas based power generation was substituted by electricity from the waste combustion significant GHG emission reductions were not achieved. Copyright © 2011 Elsevier Ltd. All rights reserved.
Impact of policy on greenhouse gas emissions and economics of biodiesel production.
Olivetti, Elsa; Gülşen, Ece; Malça, João; Castanheira, Erica; Freire, Fausto; Dias, Luis; Kirchain, Randolph
2014-07-01
As an alternative transportation fuel to petrodiesel, biodiesel has been promoted within national energy portfolio targets across the world. Early estimations of low lifecycle greenhouse gas (GHG) emissions of biodiesel were a driver behind extensive government support in the form of financial incentives for the industry. However, studies consistently report a high degree of uncertainty in these emissions estimates, raising questions concerning the carbon benefits of biodiesel. Furthermore, the implications of feedstock blending on GHG emissions uncertainty have not been explicitly addressed despite broad practice by the industry to meet fuel quality standards and to control costs. This work investigated the impact of feedstock blending on the characteristics of biodiesel by using a chance-constrained (CC) blend optimization method. The objective of the optimization is minimization of feedstock costs subject to fuel standards and emissions constraints. Results indicate that blending can be used to manage GHG emissions uncertainty characteristics of biodiesel, and to achieve cost reductions through feedstock diversification. Simulations suggest that emissions control policies that restrict the use of certain feedstocks based on their GHG estimates overlook blending practices and benefits, increasing the cost of biodiesel. In contrast, emissions control policies which recognize the multifeedstock nature of biodiesel provide producers with feedstock selection flexibility, enabling them to manage their blend portfolios cost effectively, potentially without compromising fuel quality or emissions reductions.
Accounting for Global Climate Model Projection Uncertainty in Modern Statistical Downscaling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johannesson, G
2010-03-17
Future climate change has emerged as a national and a global security threat. To carry out the needed adaptation and mitigation steps, a quantification of the expected level of climate change is needed, both at the global and the regional scale; in the end, the impact of climate change is felt at the local/regional level. An important part of such climate change assessment is uncertainty quantification. Decision and policy makers are not only interested in 'best guesses' of expected climate change, but rather probabilistic quantification (e.g., Rougier, 2007). For example, consider the following question: What is the probability that themore » average summer temperature will increase by at least 4 C in region R if global CO{sub 2} emission increases by P% from current levels by time T? It is a simple question, but one that remains very difficult to answer. It is answering these kind of questions that is the focus of this effort. The uncertainty associated with future climate change can be attributed to three major factors: (1) Uncertainty about future emission of green house gasses (GHG). (2) Given a future GHG emission scenario, what is its impact on the global climate? (3) Given a particular evolution of the global climate, what does it mean for a particular location/region? In what follows, we assume a particular GHG emission scenario has been selected. Given the GHG emission scenario, the current batch of the state-of-the-art global climate models (GCMs) is used to simulate future climate under this scenario, yielding an ensemble of future climate projections (which reflect, to some degree our uncertainty of being able to simulate future climate give a particular GHG scenario). Due to the coarse-resolution nature of the GCM projections, they need to be spatially downscaled for regional impact assessments. To downscale a given GCM projection, two methods have emerged: dynamical downscaling and statistical (empirical) downscaling (SDS). Dynamic downscaling involves configuring and running a regional climate model (RCM) nested within a given GCM projection (i.e., the GCM provides bounder conditions for the RCM). On the other hand, statistical downscaling aims at establishing a statistical relationship between observed local/regional climate variables of interest and synoptic (GCM-scale) climate predictors. The resulting empirical relationship is then applied to future GCM projections. A comparison of the pros and cons of dynamical versus statistical downscaling is outside the scope of this effort, but has been extensively studied and the reader is referred to Wilby et al. (1998); Murphy (1999); Wood et al. (2004); Benestad et al. (2007); Fowler et al. (2007), and references within those. The scope of this effort is to study methodology, a statistical framework, to propagate and account for GCM uncertainty in regional statistical downscaling assessment. In particular, we will explore how to leverage an ensemble of GCM projections to quantify the impact of the GCM uncertainty in such an assessment. There are three main component to this effort: (1) gather the necessary climate-related data for a regional SDS study, including multiple GCM projections, (2) carry out SDS, and (3) assess the uncertainty. The first step is carried out using tools written in the Python programming language, while analysis tools were developed in the statistical programming language R; see Figure 1.« less
NASA Astrophysics Data System (ADS)
Jaramillo, P.; Venkatesh, A.; Griffin, M.; Matthews, S.
2012-12-01
Increased production of unconventional natural gas resources in the U.S. has drastically reduced the price of natural gas. While in 2005 prices went above 10/MMBtu, since 2011 they have been below 3/MMBtu. These low prices have encouraged the increase of natural gas utilization in the United States electricity sector. Natural gas can offset coal for power generation, reducing emissions such as greenhouse gases, sulfur and nitrogen oxides. In quantifying the benefit of offsetting coal by using natural gas, life cycle assessment (LCA) studies have shown up to 50% reductions in life cycle greenhouse gas (GHG) emissions can be expected. However, these studies predominantly use limited system boundaries that contain single individual coal and natural gas power plants. They do not consider (regional) fleets of power plants that are dispatched on the basis of their short-run marginal costs. In this study, simplified economic dispatch models (representing existing power plants in a given region) are developed for three U.S. regions - ERCOT, MISO and PJM. These models, along with historical load data are used to determine how natural gas utilization will increase in the short-term due to changes in natural gas price. The associated changes in fuel mix and life cycle GHG emissions are estimated. Results indicate that life cycle GHG emissions may, at best, decrease by 5-15% as a result of low natural gas prices, compared to almost 50% reductions estimated by previous LCAs. This study thus provides more reasonable estimates of potential reductions in GHG emissions from using natural gas instead of coal in the electricity sector in the short-term.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen Xudong, E-mail: chen.xudong@nies.go.jp; National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506; Graduate School of Environmental Studies, Nagoya University, Furo-cho, Chikusa-ku, Nagoya City 464-8601
Research highlights: {yields} Urban symbiosis creates compatibility of industrial development and waste management. {yields} Mechanical technology leads to more CO{sub 2} emission reduction. {yields} Energy recovery technology leads to more fossil fuel saving. {yields} Clean energy makes recycling technologies cleaner. {yields} Demand management is crucial for realizing potential environmental gains of recycling. - Abstract: With the increasing attention on developing a low-carbon economy, it is necessary to seek appropriate ways on reducing greenhouse gas (GHG) emissions through innovative municipal solid waste management (MSWM), such as urban symbiosis. However, quantitative assessments on the environmental benefits of urban symbiosis, especially in developingmore » countries, are limited because only a limited number of planned synergistic activities have been successful and it is difficult to acquire detailed inventory data from private companies. This paper modifies and applies a two-step simulation system and used it to assess the potential environmental benefits, including the reduction of GHG emissions and saving of fossil fuels, by employing various Japanese plastics recycling/energy-recovery technologies in Shenyang, China. The results showed that among various recycling/energy-recovery technologies, the mechanical waste plastics recycling technology, which produces concrete formwork boards (NF boards), has the greatest potential in terms of reducing GHG emissions (1.66 kg CO{sub 2}e/kg plastics), whereas the technology for the production of refuse plastic fuel (RPF) has the greatest potential on saving fossil fuel consumption (0.77 kgce/kg-plastics). Additional benefits can be gained by applying combined technologies that cascade the utilization of waste plastics. Moreover, the development of clean energy in conjunction with the promotion of new waste plastics recycling programs could contribute to additional reductions in GHG emissions and fossil fuel consumption.« less
Potential Avenues for Significant Biofuels Penetration in the U.S. Aviation Market
DOE Office of Scientific and Technical Information (OSTI.GOV)
Newes, Emily; Han, Jeongwoo; Peterson, Steve
Industry associations have set goals to reduce greenhouse gas (GHG) emissions and increase fuel efficiency. One focal area for reducing GHG emissions is in the use of aviation biofuel. This study examines assumptions under which the United States could see large production in aviation biofuel. Our results suggest that a high penetration (6 billion gallons) of aviation biofuels by 2030 could be possible, but factors around policy design (in the absence of high oil prices) contribute to the timing and magnitude of aviation biofuels production: 1) Incentives targeted towards jet fuel production such as financial incentives (e.g., producer tax credit,more » carbon tax) can be sufficient; 2) Investment in pre-commercial cellulosic technologies is needed to reduce the cost of production through learning-by-doing; 3) Reduction of investment risk through loan guarantees may allow production to ramp up more quickly through accelerating industry learning. In cases with high levels of incentives and investment in aviation biofuels, there could be a 25 percent reduction in overall GHG emissions from the aviation sector.« less
Chen, Rui; Qin, Zhangcai; Han, Jeongwoo; Wang, Michael; Taheripour, Farzad; Tyner, Wallace; O'Connor, Don; Duffield, James
2018-03-01
This study conducted the updated simulations to depict a life cycle analysis (LCA) of the biodiesel production from soybeans and other feedstocks in the U.S. It addressed in details the interaction between LCA and induced land use change (ILUC) for biodiesel. Relative to the conventional petroleum diesel, soy biodiesel could achieve 76% reduction in GHG emissions without considering ILUC, or 66-72% reduction in overall GHG emissions when various ILUC cases were considered. Soy biodiesel's fossil fuel consumption rate was also 80% lower than its petroleum counterpart. Furthermore, this study examined the cause and the implication of each key parameter affecting biodiesel LCA results using a sensitivity analysis, which identified the hot spots for fossil fuel consumption and GHG emissions of biodiesel so that future efforts can be made accordingly. Finally, biodiesel produced from other feedstocks (canola oil and tallow) were also investigated to contrast with soy biodiesel and petroleum diesel. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Timilsina, Govinda R; Shrestha, Ram M
2006-09-01
The Clean Development Mechanism (CDM) under the Kyoto Protocol to the United Nations Framework Convention on Climate Change is considered a key instrument to encourage developing countries' participation in the mitigation of global climate change. Reduction of greenhouse gas (GHG) emissions through the energy supply and demand side activities are the main options to be implemented under the CDM. This paper analyses the general equilibrium effects of a supply side GHG mitigation option-the substitution of thermal power with hydropower--in Thailand under the CDM. A static multi-sector general equilibrium model has been developed for the purpose of this study. The key finding of the study is that the substitution of electricity generation from thermal power plants with that from hydropower plants would increase economic welfare in Thailand. The supply side option would, however, adversely affect the gross domestic product (GDP) and the trade balance. The percentage changes in economic welfare, GDP and trade balance increase with the level of substitution and the price of certified emission reduction (CER) units.
Reductions in greenhouse gas (GHG) generation and energy consumption in wastewater treatment plants.
Yerushalmi, L; Ashrafi, O; Haghighat, F
2013-01-01
Greenhouse gas (GHG) emission and energy consumption by on-site and off-site sources were estimated in two different wastewater treatment plants that used physical-chemical or biological processes for the removal of contaminants, and an anaerobic digester for sludge treatment. Physical-chemical treatment processes were used in the treatment plant of a locomotive repair factory that processed wastewater at 842 kg chemical oxygen demand per day. Approximately 80% of the total GHG emission was related to fossil fuel consumption for energy production. The emission of GHG was reduced by 14.5% with the recovery of biogas that was generated in the anaerobic digester and its further use as an energy source, replacing fossil fuels. The examined biological treatment system used three alternative process designs for the treatment of effluents from pulp and paper mills that processed wastewater at 2,000 kg biochemical oxygen demand per day. The three designs used aerobic, anaerobic, or hybrid aerobic/anaerobic biological processes for the removal of carbonaceous contaminants, and nitrification/denitrification processes for nitrogen removal. Without the recovery and use of biogas, the aerobic, anaerobic, and hybrid treatment systems generated 3,346, 6,554 and 7,056 kg CO(2)-equivalent/day, respectively, while the generated GHG was reduced to 3,152, 6,051, and 6,541 kg CO(2)-equivalent/day with biogas recovery. The recovery and use of biogas was shown to satisfy and exceed the energy needs of the three examined treatment plants. The reduction of operating temperature of the anaerobic digester and anaerobic reactor by 10°C reduced energy demands of the treatment plants by 35.1, 70.6 and 62.9% in the three examined treatment systems, respectively.
Berzosa, Álvaro; Barandica, Jesús M; Fernández-Sánchez, Gonzalo
2014-01-01
In recent years, several methodologies have been developed for the quantification of greenhouse gas (GHG) emissions. However, determining who is responsible for these emissions is also quite challenging. The most common approach is to assign emissions to the producer (based on the Kyoto Protocol), but proposals also exist for its allocation to the consumer (based on an ecological footprint perspective) and for a hybrid approach called shared responsibility. In this study, the existing proposals and standards regarding the allocation of GHG emissions responsibilities are analyzed, focusing on their main advantages and problems. A new model of shared responsibility that overcomes some of the existing problems is also proposed. This model is based on applying the best available technologies (BATs). This new approach allocates the responsibility between the producers and the final consumers based on the real capacity of each agent to reduce emissions. The proposed approach is demonstrated using a simple case study of a 4-step life cycle of ammonia nitrate (AN) fertilizer production. The proposed model has the characteristics that the standards and publications for assignment of GHG emissions responsibilities demand. This study presents a new way to assign responsibilities that pushes all the actors in the production chain, including consumers, to reduce pollution. © 2013 SETAC.
Greenhouse gas emissions from dairy manure management in a Mediterranean environment.
Owen, Justine J; Silver, Whendee L
2017-03-01
Livestock agriculture is a major source of anthropogenic greenhouse gas (GHG) emissions, with a substantial proportion of emissions derived from manure management. Accurate estimates of emissions related to management practices and climate are needed for identifying the best approaches to minimize, and potentially mitigate, GHG emissions. Current emissions models such as those of the IPCC, however, are based on emissions factors that have not been broadly tested against field-scale measurements, due to a lack of data. We used a diverse set of measurements over 22 months across a range of substrate conditions on a working dairy to determine patterns and controls on soil-based GHG fluxes. Although dairy soils and substrates differed by management unit, GHG fluxes were poorly predicted by these or climate variables. The manure pile had the greatest GHG emissions, and though temperature increased and O 2 concentration decreased following mixing, we detected almost no change in GHG fluxes due to mixing. Corral fluxes were characterized by hotspots and hot moments driven by patterns in deposition. Annual scraping kept the soil and accumulated manure pack thin, producing drier conditions, particularly in the warm dry season. Summed over area, corral fluxes had the greatest non-CO 2 global warming potential. The field had net CH 4 consumption, but CH 4 uptake was insufficient to offset N 2 O emissions on an area basis. All sites emitted N 2 O with a similar or greater climate impact than CH 4 . Our results highlight the importance of N 2 O emissions, a less commonly measured GHG, from manure management and present potential opportunities for GHG emissions reductions. © 2016 by the Ecological Society of America.
Global climate change: the quantifiable sustainability challenge.
Princiotta, Frank T; Loughlin, Daniel H
2014-09-01
Population growth and the pressures spawned by increasing demands for energy and resource-intensive goods, foods, and services are driving unsustainable growth in greenhouse gas (GHG) emissions. Recent GHG emission trends are consistent with worst-case scenarios of the previous decade. Dramatic and near-term emission reductions likely will be needed to ameliorate the potential deleterious impacts of climate change. To achieve such reductions, fundamental changes are required in the way that energy is generated and used. New technologies must be developed and deployed at a rapid rate. Advances in carbon capture and storage, renewable, nuclear and transportation technologies are particularly important; however, global research and development efforts related to these technologies currently appear to fall short relative to needs. Even with a proactive and international mitigation effort, humanity will need to adapt to climate change, but the adaptation needs and damages will be far greater if mitigation activities are not pursued in earnest. In this review, research is highlighted that indicates increasing global and regional temperatures and ties climate changes to increasing GHG emissions. GHG mitigation targets necessary for limiting future global temperature increases are discussed, including how factors such as population growth and the growing energy intensity of the developing world will make these reduction targets more challenging. Potential technological pathways for meeting emission reduction targets are examined, barriers are discussed, and global and US. modeling results are presented that suggest that the necessary pathways will require radically transformed electric and mobile sectors. While geoengineering options have been proposed to allow more time for serious emission reductions, these measures are at the conceptual stage with many unanswered cost, environmental, and political issues. Implications: This paper lays out the case that mitigating the potential for catastrophic climate change will be a monumental challenge, requiring the global community to transform its energy system in an aggressive, coordinated, and timely manner. If this challenge is to be met, new technologies will have to be developed and deployed at a rapid rate. Advances in carbon capture and storage, renewable, nuclear, and transportation technologies are particularly important. Even with an aggressive international mitigation effort, humanity will still need to adapt to significant climate change.
Measuring and mitigating agricultural greenhouse gas production in the US Great Plains, 1870-2000.
Parton, William J; Gutmann, Myron P; Merchant, Emily R; Hartman, Melannie D; Adler, Paul R; McNeal, Frederick M; Lutz, Susan M
2015-08-25
The Great Plains region of the United States is an agricultural production center for the global market and, as such, an important source of greenhouse gas (GHG) emissions. This article uses historical agricultural census data and ecosystem models to estimate the magnitude of annual GHG fluxes from all agricultural sources (e.g., cropping, livestock raising, irrigation, fertilizer production, tractor use) in the Great Plains from 1870 to 2000. Here, we show that carbon (C) released during the plow-out of native grasslands was the largest source of GHG emissions before 1930, whereas livestock production, direct energy use, and soil nitrous oxide emissions are currently the largest sources. Climatic factors mediate these emissions, with cool and wet weather promoting C sequestration and hot and dry weather increasing GHG release. This analysis demonstrates the long-term ecosystem consequences of both historical and current agricultural activities, but also indicates that adoption of available alternative management practices could substantially mitigate agricultural GHG fluxes, ranging from a 34% reduction with a 25% adoption rate to as much as complete elimination with possible net sequestration of C when a greater proportion of farmers adopt new agricultural practices.
Anaerobic digestion of agricultural and other substrates--implications for greenhouse gas emissions.
Pucker, J; Jungmeier, G; Siegl, S; Pötsch, E M
2013-06-01
The greenhouse gas (GHG) emissions, expressed in carbon dioxide equivalents (CO2-eq), of different Austrian biogas systems were analyzed and evaluated using life-cycle assessment (LCA) as part of a national project. Six commercial biogas plants were investigated and the analysis included the complete process chain: viz., the production and collection of substrates, the fermentation of the substrates in the biogas plant, the upgrading of biogas to biomethane (if applicable) and the use of the biogas or biomethane for heat and electricity or as transportation fuel. Furthermore, the LCA included the GHG emissions of construction, operation and dismantling of the major components involved in the process chain, as well as the use of by-products (e.g. fermentation residues used as fertilizers). All of the biogas systems reduced GHG emissions (in CO2-eq) compared with fossil reference systems. The potential for GHG reduction of the individual biogas systems varied between 60% and 100%. Type of feedstock and its reference use, agricultural practices, coverage of storage tanks for fermentation residues, methane leakage at the combined heat and power plant unit and the proportion of energy used as heat were identified as key factors influencing the GHG emissions of anaerobic digestion processes.
Kim, Hyung Chul; Wallington, Timothy J
2013-06-18
Replacing conventional materials (steel and iron) with lighter alternatives (e.g., aluminum, magnesium, and composites) decreases energy consumption and greenhouse gas (GHG) emissions during vehicle use but may increase energy consumption and GHG emissions during vehicle production. There have been many life cycle assessment (LCA) studies on the benefits of vehicle lightweighting, but the wide variety of assumptions used makes it difficult to compare results from the studies. To clarify the benefits of vehicle lightweighting we have reviewed the available literature (43 studies). The GHG emissions and primary energy results from 33 studies that passed a screening process were harmonized using a common set of assumptions (lifetime distance traveled, fuel-mass coefficient, secondary weight reduction factor, fuel consumption allocation, recycling rate, and energy intensity of materials). After harmonization, all studies indicate that using aluminum, glass-fiber reinforced plastic, and high strength steel to replace conventional steel decreases the vehicle life cycle energy use and GHG emissions. Given the flexibility in options implied by the variety of materials available and consensus that these materials have substantial energy and emissions benefits, it seems likely that lightweighting will be used increasingly to improve fuel economy and reduce life cycle GHG emissions from vehicles.
Measuring and mitigating agricultural greenhouse gas production in the US Great Plains, 1870–2000
Parton, William J.; Gutmann, Myron P.; Merchant, Emily R.; Hartman, Melannie D.; Adler, Paul R.; McNeal, Frederick M.; Lutz, Susan M.
2015-01-01
The Great Plains region of the United States is an agricultural production center for the global market and, as such, an important source of greenhouse gas (GHG) emissions. This article uses historical agricultural census data and ecosystem models to estimate the magnitude of annual GHG fluxes from all agricultural sources (e.g., cropping, livestock raising, irrigation, fertilizer production, tractor use) in the Great Plains from 1870 to 2000. Here, we show that carbon (C) released during the plow-out of native grasslands was the largest source of GHG emissions before 1930, whereas livestock production, direct energy use, and soil nitrous oxide emissions are currently the largest sources. Climatic factors mediate these emissions, with cool and wet weather promoting C sequestration and hot and dry weather increasing GHG release. This analysis demonstrates the long-term ecosystem consequences of both historical and current agricultural activities, but also indicates that adoption of available alternative management practices could substantially mitigate agricultural GHG fluxes, ranging from a 34% reduction with a 25% adoption rate to as much as complete elimination with possible net sequestration of C when a greater proportion of farmers adopt new agricultural practices. PMID:26240366
Relevance of emissions timing in biofuel greenhouse gases and climate impacts.
Schwietzke, Stefan; Griffin, W Michael; Matthews, H Scott
2011-10-01
Employing life cycle greenhouse gas (GHG) emissions as a key performance metric in energy and environmental policy may underestimate actual climate change impacts. Emissions released early in the life cycle cause greater cumulative radiative forcing (CRF) over the next decades than later emissions. Some indicate that ignoring emissions timing in traditional biofuel GHG accounting overestimates the effectiveness of policies supporting corn ethanol by 10-90% due to early land use change (LUC) induced GHGs. We use an IPCC climate model to (1) estimate absolute CRF from U.S. corn ethanol and (2) quantify an emissions timing factor (ETF), which is masked in the traditional GHG accounting. In contrast to earlier analyses, ETF is only 2% (5%) over 100 (50) years of impacts. Emissions uncertainty itself (LUC, fuel production period) is 1-2 orders of magnitude higher, which dwarfs the timing effect. From a GHG accounting perspective, emissions timing adds little to our understanding of the climate impacts of biofuels. However, policy makers should recognize that ETF could significantly decrease corn ethanol's probability of meeting the 20% GHG reduction target in the 2007 Energy Independence and Security Act. The added uncertainty of potentially employing more complex emissions metrics is yet to be quantified.
Ortiz-Gonzalo, Daniel; de Neergaard, Andreas; Vaast, Philippe; Suárez-Villanueva, Víctor; Oelofse, Myles; Rosenstock, Todd S
2018-06-01
Efforts have been made in recent years to improve knowledge about soil greenhouse gas (GHG) fluxes from sub-Saharan Africa. However, data on soil GHG emissions from smallholder coffee-dairy systems have not hitherto been measured experimentally. This study aimed to quantify soil GHG emissions at different spatial and temporal scales in smallholder coffee-dairy farms in Murang'a County, Central Kenya. GHG measurements were carried out for one year, comprising two cropping seasons, using vented static chambers and gas chromatography. Sixty rectangular frames were installed on two farms comprising the three main cropping systems found in the area: 1) coffee (Coffea arabica L.); 2) Napier grass (Pennisetum purpureum); and 3) maize intercropped with beans (Zea mays and Phaseolus vulgaris). Within these fields, chambers were allocated on fertilised and unfertilised locations to capture spatial variability. Cumulative annual fluxes in coffee plots ranged from 1 to 1.9kgN 2 O-Nha -1 , 6.5 to 7.6MgCO 2 -Cha -1 and - 3.4 to -2.2kgCH 4 -Cha -1 , with 66% to 94% of annual GHG fluxes occurring during rainy seasons. Across the farm plots, coffee received most of the N inputs and had 56% to 89% higher emissions of N 2 O than Napier grass, maize and beans. Within farm plots, two to six times higher emissions were found in fertilised hotspots - around the perimeter of coffee trees or within planted maize rows - than in unfertilised locations between trees, rows and planting holes. Background and induced soil N 2 O emissions from fertiliser and manure applications in the three cropping systems were lower than hypothesized from previous studies and empirical models. This study supplements methods and underlying data for the quantification of GHG emissions at multiple spatial and temporal scales in tropical, smallholder farming systems. Advances towards overcoming the dearth of data will facilitate the understanding of synergies and tradeoffs of climate-smart approaches for low emissions development. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
Cifuentes, L; Borja-Aburto, V H; Gouveia, N; Thurston, G; Davis, D L
2001-06-01
To investigate the potential local health benefits of adopting greenhouse gas (GHG) mitigation policies, we develop scenarios of GHG mitigation for México City, México; Santiago, Chile; São Paulo, Brazil; and New York, New York, USA using air pollution health impact factors appropriate to each city. We estimate that the adoption of readily available technologies to lessen fossil fuel emissions over the next two decades in these four cities alone will reduce particulate matter and ozone and avoid approximately 64,000 (95% confidence interval [CI] 18,000-116,000) premature deaths (including infant deaths), 65,000 (95% CI 22,000-108,000) chronic bronchitis cases, and 46 million (95% CI 35-58 million) person-days of work loss or other restricted activity. These findings illustrate that GHG mitigation can provide considerable local air pollution-related public health benefits to countries that choose to abate GHG emissions by reducing fossil fuel combustion.
Cifuentes, L; Borja-Aburto, V H; Gouveia, N; Thurston, G; Davis, D L
2001-01-01
To investigate the potential local health benefits of adopting greenhouse gas (GHG) mitigation policies, we develop scenarios of GHG mitigation for México City, México; Santiago, Chile; São Paulo, Brazil; and New York, New York, USA using air pollution health impact factors appropriate to each city. We estimate that the adoption of readily available technologies to lessen fossil fuel emissions over the next two decades in these four cities alone will reduce particulate matter and ozone and avoid approximately 64,000 (95% confidence interval [CI] 18,000-116,000) premature deaths (including infant deaths), 65,000 (95% CI 22,000-108,000) chronic bronchitis cases, and 46 million (95% CI 35-58 million) person-days of work loss or other restricted activity. These findings illustrate that GHG mitigation can provide considerable local air pollution-related public health benefits to countries that choose to abate GHG emissions by reducing fossil fuel combustion. PMID:11427391
Olander, Lydia P; Cooley, David M; Galik, Christopher S
2012-03-01
Management of forests, rangelands, and wetlands on public lands, including the restoration of degraded lands, has the potential to increase carbon sequestration or reduce greenhouse gas (GHG) emissions beyond what is occurring today. In this paper we discuss several policy options for increasing GHG mitigation on public lands. These range from an extension of current policy by generating supplemental mitigation on public lands in an effort to meet national emissions reduction goals, to full participation in an offsets market by allowing GHG mitigation on public lands to be sold as offsets either by the overseeing agency or by private contractors. To help place these policy options in context, we briefly review the literature on GHG mitigation and public lands to examine the potential for enhanced mitigation on federal and state public lands in the United States. This potential will be tempered by consideration of the tradeoffs with other uses of public lands, the needs for climate change adaptation, and the effects on other ecosystem services.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Uisung; Han, Jeongwoo; Wang, Michael
Various waste-to-energy (WTE) conversion technologies can generate energy products from municipal solid waste (MSW). Accurately evaluating landfill gas (LFG, mainly methane) emissions from base case landfills is critical to conducting a WTE life-cycle analysis (LCA) of their greenhouse gas (GHG) emissions. To reduce uncertainties in estimating LFG, this study investigated key parameters for its generation, based on updated experimental results. These results showed that the updated parameters changed the calculated GHG emissions from landfills significantly depending on waste stream; they resulted in a 65% reduction for wood (from 2412 to 848 t CO 2e/dry t) to a 4% increase formore » food waste (from 2603 to 2708 t CO 2e/dry t). Landfill GHG emissions also vary significantly based on LFG management practices and climate. In LCAs of WTE conversion, generating electricity from LFG helps reduce GHG emissions indirectly by displacing regional electricity. When both active LFG collection and power generation are considered, GHG emissions are 44% less for food waste (from 2708 to 1524 t CO 2e/dry t), relative to conventional MSW landfilling. The method developed and data collected in this study can help improve the assessment of GHG impacts from landfills, which supports transparent decision-making regarding the sustainable treatment, management, and utilization of MSW.« less
Lee, Uisung; Han, Jeongwoo; Wang, Michael
2017-08-05
Various waste-to-energy (WTE) conversion technologies can generate energy products from municipal solid waste (MSW). Accurately evaluating landfill gas (LFG, mainly methane) emissions from base case landfills is critical to conducting a WTE life-cycle analysis (LCA) of their greenhouse gas (GHG) emissions. To reduce uncertainties in estimating LFG, this study investigated key parameters for its generation, based on updated experimental results. These results showed that the updated parameters changed the calculated GHG emissions from landfills significantly depending on waste stream; they resulted in a 65% reduction for wood (from 2412 to 848 t CO 2e/dry t) to a 4% increase formore » food waste (from 2603 to 2708 t CO 2e/dry t). Landfill GHG emissions also vary significantly based on LFG management practices and climate. In LCAs of WTE conversion, generating electricity from LFG helps reduce GHG emissions indirectly by displacing regional electricity. When both active LFG collection and power generation are considered, GHG emissions are 44% less for food waste (from 2708 to 1524 t CO 2e/dry t), relative to conventional MSW landfilling. The method developed and data collected in this study can help improve the assessment of GHG impacts from landfills, which supports transparent decision-making regarding the sustainable treatment, management, and utilization of MSW.« less
Global climate targets and future consumption level: an evaluation of the required GHG intensity
NASA Astrophysics Data System (ADS)
Girod, Bastien; van Vuuren, Detlef Peter; Hertwich, Edgar G.
2013-03-01
Discussion and analysis on international climate policy often focuses on the rather abstract level of total national and regional greenhouse gas (GHG) emissions. At some point, however, emission reductions need to be translated to consumption level. In this article, we evaluate the implications of the strictest IPCC representative concentration pathway for key consumption categories (food, travel, shelter, goods, services). We use IPAT style identities to account for possible growth in global consumption levels and indicate the required change in GHG emission intensity for each category (i.e. GHG emission per calorie, person kilometer, square meter, kilogram, US dollar). The proposed concept provides guidance for product developers, consumers and policymakers. To reach the 2 °C climate target (2.1 tCO2-eq. per capita in 2050), the GHG emission intensity of consumption has to be reduced by a factor of 5 in 2050. The climate targets on consumption level allow discussion of the feasibility of this climate target at product and consumption level. In most consumption categories products in line with this climate target are available. For animal food and air travel, reaching the GHG intensity targets with product modifications alone will be challenging and therefore structural changes in consumption patterns might be needed. The concept opens up possibilities for further research on potential solutions on the consumption and product level to global climate mitigation.
Transportation futures : policy scenarios for achieving greenhouse gas reduction targets.
DOT National Transportation Integrated Search
2014-03-01
It is well established that GHG emissions must be reduced by 50% to 80% by 2050 in order to limit global temperature increase : to 2C. Achieving reductions of this magnitude in the transportation sector is a challenge and requires a multitude of po...
NASA Astrophysics Data System (ADS)
Voigt, Carolina; Lamprecht, Richard E.; Marushchak, Maija E.; Biasi, Christina; Martikainen, Pertti J.
2014-05-01
Peatlands, especially those located in the highly sensitive arctic and subarctic latitudes, are known to play a major role in the global carbon cycle. Predicted climatic changes - entailing an increase in near-surface temperature and a change in precipitation patterns - will most likely have a serious yet uncertain impact on the greenhouse gas (GHG) balance of these ecosystems. Microbial processes are enhanced by warmer temperatures which may lead to increased trace gas fluxes to the atmosphere. However, the response of ecosystem processes and related GHG fluxes may differ largely across the landscape depending on soil type, vegetation cover, and moisture conditions. In this study we investigate how temperature increase potentially reflects on GHG fluxes (CO2, CH4 and N2O) from various tundra surfaces in the Russian Arctic. These surfaces include raised peat plateau complexes, mineral tundra soils, bare surfaces affected by frost action such as peat circles and thermokarst lake walls, as well as wetlands. Predicted temperature increase and climate change effects are simulated by means of open top chambers (OTCs), which are placed on different soil types for the whole snow-free period. GHG fluxes, gas and nutrient concentrations in the soil profile, as well as supporting environmental parameters are monitored for the full growing season. Aim of the study is not only the quantification of aboveground GHG fluxes from the study area, but the linking of those to underlying biogeochemical processes in permafrost soils. Special emphasis is placed on the interface between active layer and old permafrost and its response to warming, since little is known about the lability of old carbon stocks made available through an increase in active layer depth. Overall goal of the study is to gain a better understanding of C and N cycling in subarctic tundra soils and to deepen knowledge in respect to carbon-permafrost feedbacks in respect to climate.
NASA Astrophysics Data System (ADS)
Schuetze, C.; Barth, M.; Hehn, M.; Ziemann, A.
2016-12-01
The eddy-covariance (EC) method can provide information about turbulent fluxes of energy and greenhouse gases (GHG) accurately if all necessary corrections and conversions are applied to the measured raw data and all boundary conditions for the method are satisfied. Nevertheless and even in flat terrain, advection can occur leading to a closing gap of energy and matter balances. Without accounting for advection, annual estimates of CO2 sink strength are overestimated, because advection usually results in underestimation of nocturnal CO2 flux. Advection is produced by low-frequent exchange processes, which can occur due to the surface heterogeneity. To measure advective fluxes there is still and strongly a need for ground-based remote sensing techniques which provide the relevant GHG concentration together with wind components spatially resolved within the same voxel structure. The SQuAd-approach applies an integrated method combination of acoustic tomography and open-path optical remote sensing based on infrared spectroscopy with the aim to obtain spatially and temporally resolved information about wind components and GHG concentration. The monitoring approach focuses on the validation of the joint application of the two independent, non-intrusive methods concerning the ability to close the existent gap in GHG balance. The innovative combination of acoustic travel-time tomography (A-TOM) and open-path Fourier transform infrared spectroscopy (OP-FTIR) together with atmospheric modelling will enable an upscaling and enhancement of EC measurements. OP-FTIR instrumentation has the significant advantage of real-time simultaneous measurements of line-averaged concentrations for CO2 and other GHG with high precision. A-TOM is a scalable method to remotely resolve 3D wind and temperature fields. The presentation will give an overview about the proposed method combination and results of experimental validation tests at an ICOS site (flat grassland) in Eastern Germany.
White, R R; Brady, M; Capper, J L; McNamara, J P; Johnson, K A
2015-06-01
Optimizing efficiency in the cow-calf sector is an important step toward improving beef sustainability. The objective of the study was to use a model to identify the relative roles of reproductive, genetic, and nutritional management in minimizing beef production systems' environmental impact in an economically viable, socially acceptable manner. An economic and environmental diet optimizer was used to identify ideal nutritional management of beef production systems varying in genetic and reproductive technology use. Eight management scenarios were compared to a least cost baseline: average U.S. production practices (CON), CON with variable nutritional management (NUT), twinning cattle (TWN), early weaning (EW), sire selection by EPD using either on-farm bulls (EPD-B) or AI (EPD-AI), decreasing the calving window (CW), or selecting bulls by EPD and reducing the calving window (EPD-CW). Diets to minimize land use, water use, and/or greenhouse gas (GHG) emissions were optimized under each scenario. Increases in diet cost attributable to reducing environmental impact were constrained to less than stakeholder willingness to pay for improved efficiency and reduced environmental impact. Baseline land use, water use, and GHG emissions were 188 m, 712 L, and 21.9 kg/kg HCW beef. The NUT scenario, which assessed opportunities to improve sustainability by altering nutritional management alone, resulted in a simultaneous 1.5% reduction in land use, water use, and GHG emissions. The CW scenario improved calf uniformity and simultaneously decreased land use, water use, and GHG emissions by 3.2%. Twinning resulted in a 9.2% reduction in the 3 environmental impact metrics. The EW scenario allowed for an 8.5% reduction in the 3 metrics. The EPD-AI scenario resulted in an 11.1% reduction, which was comparable to the 11.3% reduction achieved by EPD-B in the 3 metrics. Improving genetic selection by using AI or by purchasing on-farm bulls based on their superior EPD demonstrated clear opportunity to improve sustainability. When genetic and reproductive technologies were adopted, up to a 12.4% reduction in environmental impact was achievable. Given the modeling assumptions used in this study, optimizing nutritional management while concurrently improving genetic and reproductive efficiency may be promising avenues to improve productivity and sustainability of U.S. beef systems.
Mitigating greenhouse gas emissions in China's agriculture: from farm production to food consumption
NASA Astrophysics Data System (ADS)
Yue, Qian; Cheng, Kun; Pan, Genxing
2016-04-01
Greenhouse gas (GHG) emissions from agriculture could be mitigated from both supple side and demand side. Assessing carbon footprint (CF) of agricultural production and food consumption could provide insights into the contribution of agriculture to climate change and help to identify possible GHG mitigation options. In the present study, CF of China's agricultural production was firstly assessed from site scale to national scale, and from crop production to livestock production. Data for the crop and livestock production were collected from field survey and national statistical archive, and both life cycle assessment and input-output method were employed in the estimations. In general, CF of crop production was lower than that of livestock production on average. Rice production ranked the highest CF in crop production, and the highest CFs of livestock production were observed in mutton and beef production. Methane emissions from rice paddy, emissions from fertilizer application and water irrigation exerted the largest contribution of more than 50% for CF of crop production; however, emissions from forage feeding, enteric fermentation and manure treatment made the most proportion of more than 90 % for CF of livestock production. In China, carbon efficiency was shown in a decreasing trend in recent years. According to the present study, overuse of nitrogen fertilizer caused no yield effect but significant emissions in some sites and regions of China, and aggregated farms lowered the CFs of crop production and livestock production by 3% to 25% and 6% to 60% respectively compared to household farms. Given these, improving farming management efficiency and farm intensive development is the key strategy to mitigate climate change from supply side. However, changes in food consumption may reduce GHG emissions in the production chain through a switch to the consumption of food with higher GHG emissions in the production process to food with lower GHG emissions. Thus, CFs of different food consumption were also assessed. As indicated in this study, as large as one half of GHG emissions reduction could be gained if the current dietary habit is turned into suggested reasonable dietary. The current work highlights opportunities to gain GHG emission reduction from both supply side and demand side with good management and reasonable consumption in China.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Price, Lynn; Murtishaw, Scott; Worrell, Ernst
2003-06-01
Executive Summary: The California Climate Action Registry, which was initially established in 2000 and began operation in Fall 2002, is a voluntary registry for recording annual greenhouse gas (GHG) emissions. The purpose of the Registry is to assist California businesses and organizations in their efforts to inventory and document emissions in order to establish a baseline and to document early actions to increase energy efficiency and decrease GHG emissions. The State of California has committed to use its ''best efforts'' to ensure that entities that establish GHG emissions baselines and register their emissions will receive ''appropriate consideration under any futuremore » international, federal, or state regulatory scheme relating to greenhouse gas emissions.'' Reporting of GHG emissions involves documentation of both ''direct'' emissions from sources that are under the entity's control and indirect emissions controlled by others. Electricity generated by an off-site power source is consider ed to be an indirect GHG emission and is required to be included in the entity's report. Registry participants include businesses, non-profit organizations, municipalities, state agencies, and other entities. Participants are required to register the GHG emissions of all operations in California, and are encouraged to report nationwide. For the first three years of participation, the Registry only requires the reporting of carbon dioxide (CO2) emissions, although participants are encouraged to report the remaining five Kyoto Protocol GHGs (CH4, N2O, HFCs, PFCs, and SF6). After three years, reporting of all six Kyoto GHG emissions is required. The enabling legislation for the Registry (SB 527) requires total GHG emissions to be registered and requires reporting of ''industry-specific metrics'' once such metrics have been adopted by the Registry. The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab) was asked to provide technical assistance to the California Energy Commission (Energy Commission) related to the Registry in three areas: (1) assessing the availability and usefulness of industry-specific metrics, (2) evaluating various methods for establishing baselines for calculating GHG emissions reductions related to specific actions taken by Registry participants, and (3) establishing methods for calculating electricity CO2 emission factors. The third area of research was completed in 2002 and is documented in Estimating Carbon Dioxide Emissions Factors for the California Electric Power Sector (Marnay et al., 2002). This report documents our findings related to the first areas of research. For the first area of research, the overall objective was to evaluate the metrics, such as emissions per economic unit or emissions per unit of production that can be used to report GHG emissions trends for potential Registry participants. This research began with an effort to identify methodologies, benchmarking programs, inventories, protocols, and registries that u se industry-specific metrics to track trends in energy use or GHG emissions in order to determine what types of metrics have already been developed. The next step in developing industry-specific metrics was to assess the availability of data needed to determine metric development priorities. Berkeley Lab also determined the relative importance of different potential Registry participant categories in order to asses s the availability of sectoral or industry-specific metrics and then identified industry-specific metrics in use around the world. While a plethora of metrics was identified, no one metric that adequately tracks trends in GHG emissions while maintaining confidentiality of data was identified. As a result of this review, Berkeley Lab recommends the development of a GHG intensity index as a new metric for reporting and tracking GHG emissions trends.Such an index could provide an industry-specific metric for reporting and tracking GHG emissions trends to accurately reflect year to year changes while protecting proprietary data. This GHG intensity index changes while protecting proprietary data. This GHG intensity index would provide Registry participants with a means for demonstrating improvements in their energy and GHG emissions per unit of production without divulging specific values. For the second research area, Berkeley Lab evaluated various methods used to calculate baselines for documentation of energy consumption or GHG emissions reductions, noting those that use industry-specific metrics. Accounting for actions to reduce GHGs can be done on a project-by-project basis or on an entity basis. Establishing project-related baselines for mitigation efforts has been widely discussed in the context of two of the so-called ''flexible mechanisms'' of the Kyoto Protocol to the United Nations Framework Convention on Climate Change (Kyoto Protocol) Joint Implementation (JI) and the Clean Development Mechanism (CDM).« less
Crowd-Sourcing Management Activity Data to Drive GHG Emission Inventories in the Land Use Sector
NASA Astrophysics Data System (ADS)
Paustian, K.; Herrick, J.
2015-12-01
Greenhouse gas (GHG) emissions from the land use sector constitute the largest source category for many countries in Africa. Enhancing C sequestration and reducing GHG emissions on managed lands in Africa has to potential to attract C financing to support adoption of more sustainable land management practices that, in addition to GHG mitigation, can provide co-benefits of more productive and climate-resilient agroecosystems. However, robust systems to measure and monitor C sequestration/GHG reductions are currently a significant barrier to attracting more C financing to land use-related mitigation efforts.Anthropogenic GHG emissions are driven by a variety of environmental factors, including climate and soil attributes, as well as human-activities in the form of land use and management practices. GHG emission inventories typically use empirical or process-based models of emission rates that are driven by environmental and management variables. While a lack of field-based flux and C stock measurements are a limiting factor for GHG estimation, we argue that an even greater limitation may be availabiity of data on the management activities that influence flux rates, particularly in developing countries in Africa. In most developed countries there is a well-developed infrastructure of agricultural statistics and practice surveys that can be used to drive model-based GHG emission estimations. However, this infrastructure is largely lacking in developing countries in Africa. While some activity data (e.g. land cover change) can be derived from remote sensing, many key data (e.g., N fertilizer practices, residue management, manuring) require input from the farmers themselves. The explosive growth in cellular technology, even in many of the poorest parts of Africa, suggests the potential for a new crowd-sourcing approach and direct engagement with farmers to 'leap-frog' the land resource information model of developed countries. Among the many benefits of this approach would be high resolution management data to support GHG inventories at multiple scales. We present an overall conceptual model for this approach and examples from on-going projects in Africa employing direct farmer engagement, cellular technology and apps to develop this information resource.
Pathways to Mexico’s climate change mitigation targets: A multi-model analysis
Veysey, Jason; Octaviano, Claudia; Calvin, Katherine; ...
2015-04-25
Mexico’s climate policy sets ambitious national greenhouse gas (GHG) emission reduction targets—30% versus a business-as-usual baseline by 2020, 50% versus 2000 by 2050. However, these goals are at odds with recent energy and emission trends in the country. Both energy use and GHG emissions in Mexico have grown substantially over the last two decades. Here, we investigate how Mexico might reverse current trends and reach its mitigation targets by exploring results from energy system and economic models involved in the CLIMACAP-LAMP project. To meet Mexico’s emission reduction targets, all modeling groups agree that decarbonization of electricity is needed, along withmore » changes in the transport sector, either to more efficient vehicles or a combination of more efficient vehicles and lower carbon fuels. These measures reduce GHG emissions as well as emissions of other air pollutants. The models find different energy supply pathways, with some solutions based on renewable energy and others relying on biomass or fossil fuels with carbon capture and storage. The economy-wide costs of deep mitigation could range from 2% to 4% of GDP in 2030, and from 7% to 15% of GDP in 2050. Our results suggest that Mexico has some flexibility in designing deep mitigation strategies, and that technological options could allow Mexico to achieve its emission reduction targets, albeit at a cost to the country.« less
Chen, Xudong; Xi, Fengming; Geng, Yong; Fujita, Tsuyoshi
2011-01-01
With the increasing attention on developing a low-carbon economy, it is necessary to seek appropriate ways on reducing greenhouse gas (GHG) emissions through innovative municipal solid waste management (MSWM), such as urban symbiosis. However, quantitative assessments on the environmental benefits of urban symbiosis, especially in developing countries, are limited because only a limited number of planned synergistic activities have been successful and it is difficult to acquire detailed inventory data from private companies. This paper modifies and applies a two-step simulation system and used it to assess the potential environmental benefits, including the reduction of GHG emissions and saving of fossil fuels, by employing various Japanese plastics recycling/energy-recovery technologies in Shenyang, China. The results showed that among various recycling/energy-recovery technologies, the mechanical waste plastics recycling technology, which produces concrete formwork boards (NF boards), has the greatest potential in terms of reducing GHG emissions (1.66 kg CO(2)e/kg plastics), whereas the technology for the production of refuse plastic fuel (RPF) has the greatest potential on saving fossil fuel consumption (0.77 kg ce/kg-plastics). Additional benefits can be gained by applying combined technologies that cascade the utilization of waste plastics. Moreover, the development of clean energy in conjunction with the promotion of new waste plastics recycling programs could contribute to additional reductions in GHG emissions and fossil fuel consumption. Copyright © 2010 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wei, Max; Greenblatt, Jeffrey; Donovan, Sally
2014-06-01
This study provides an updated analysis of long-term energy system scenarios for California consistent with the State meeting its 2050 climate goal, including detailed analysis and assessment of electricity system build-out, operation, and costs across the Western Electricity Coordinating Council (WECC) region. Four key elements are found to be critical for the State to achieve its 2050 goal of 80 percent greenhouse (GHG) reductions from the 1990 level: aggressive energy efficiency; clean electricity; widespread electrification of passenger vehicles, building heating, and industry heating; and large-scale production of low-carbon footprint biofuels to largely replace petroleum-based liquid fuels. The approach taken heremore » is that technically achievable energy efficiency measures are assumed to be achieved by 2050 and aggregated with the other key elements mentioned above to estimate resultant emissions in 2050. The energy and non-energy sectors are each assumed to have the objective of meeting an 80 percent reduction from their respective 1990 GHG levels for the purposes of analysis. A different partitioning of energy and non-energy sector GHG greenhouse reductions is allowed if emission reductions in one sector are more economic or technically achievable than in the other. Similarly, within the energy or non-energy sectors, greater or less than 80 percent reduction from 1990 is allowed for sub-sectors within the energy or non-energy sectors as long as the overall target is achieved. Overall emissions for the key economy-wide scenarios are considered in this report. All scenarios are compliant or nearly compliant with the 2050 goal. This finding suggests that multiple technical pathways exist to achieve the target with aggressive policy support and continued technology development of largely existing technologies.« less
Farchi, Sara; Lapucci, Enrica; Michelozzi, Paola
2015-01-01
the reduction in red meat consumption has been proposed as one of the climate change mitigation policies associated to health benefits. In the developed world, red meat consumption is above the recommended intake level. the aim is to evaluate health benefits, in term of mortality decline, associated to different bovine meat consumption reduction scenarios and the potential reduction in greenhouse gas (GHG) emissions. meat consumption in Italy has been estimated using the Italian National Food Consumption Survey INRAN-SCAI (2005-2006) and the Multipurpose survey on household (2012) of the Italian National Institute for Statistics. Colorectal cancer and stoke mortality data are derived from the national survey on causes of death in 2012. Bovine meat consumption risk function has been retrieved from systematic literature reviews. Mean meat consumption in Italy is equal to 770 grams/week; gender and geographical variations exist: 69 per cent of the adult population are habitual bovine meat consumers; males have an average intake of over 400 grams/week in all areas of Italy (with the exception of the South), while females have lower intakes (360 grams per week), with higher consumption in the North-West (427 gr) and lower in the South of Italy. Four scenarios of reduction of bovine meat consumption (20%, 40%, 50% e 70%, respectively) have been evaluated and the number of avoidable deaths by gender and area of residence have been estimated. GHG emissions attributed to bovine meat adult consumption have been estimated to be to 10 gigagrams CO2-eq. from low to high reduction scenario, the percentage of avoidable deaths ranged from 2.1% to 6.5% for colorectal cancer and from 1.6% to 5.6% for stroke. Health benefits were greatest for males and for people living in the North-Western regions of Italy. in Italy, in order to adhere to bovine meat consumption recommendations and to respect EU GHG emission reduction targets, scenarios between 50% and 70% need to be adopted.
Low-carbon energy generates public health savings in California
NASA Astrophysics Data System (ADS)
Zapata, Christina B.; Yang, Chris; Yeh, Sonia; Ogden, Joan; Kleeman, Michael J.
2018-04-01
California's goal to reduce greenhouse gas (GHG) emissions to a level that is 80 % below 1990 levels by the year 2050 will require adoption of low-carbon energy sources across all economic sectors. In addition to reducing GHG emissions, shifting to fuels with lower carbon intensity will change concentrations of short-lived conventional air pollutants, including airborne particles with a diameter of less than 2.5 µm (PM2.5) and ozone (O3). Here we evaluate how business-as-usual (BAU) air pollution and public health in California will be transformed in the year 2050 through the adoption of low-carbon technologies, expanded electrification, and modified activity patterns within a low-carbon energy scenario (GHG-Step). Both the BAU and GHG-Step statewide emission scenarios were constructed using the energy-economic optimization model, CA-TIMES, that calculates the multi-sector energy portfolio that meets projected energy supply and demand at the lowest cost, while also satisfying scenario-specific GHG emissions constraints. Corresponding criteria pollutant emissions for each scenario were then spatially allocated at 4 km resolution to support air quality analysis in different regions of the state. Meteorological inputs for the year 2054 were generated under a Representative Concentration Pathway (RCP) 8.5 future climate. Annual-average PM2.5 and O3 concentrations were predicted using the modified emissions and meteorology inputs with a regional chemical transport model. In the final phase of the analysis, mortality (total deaths) and mortality rate (deaths per 100 000) were calculated using established exposure-response relationships from air pollution epidemiology combined with simulated annual-average PM2.5 and O3 exposure. Net emissions reductions across all sectors are -36 % for PM0.1 mass, -3.6 % for PM2.5 mass, -10.6 % for PM2.5 elemental carbon, -13.3 % for PM2.5 organic carbon, -13.7 % for NOx, and -27.5 % for NH3. Predicted deaths associated with air pollution in 2050 dropped by 24-26 % in California (1537-2758 avoided deaths yr-1) in the climate-friendly
2050 GHG-Step scenario, which is equivalent to a 54-56 % reduction in the air pollution mortality rate (deaths per 100 000) relative to 2010 levels. These avoided deaths have an estimated value of USD 11.4-20.4 billion yr-1 based on the present-day value of a statistical life (VSL) equal to USD 7.6 million. The costs for reducing California GHG emissions 80 % below 1990 levels by the year 2050 depend strongly on numerous external factors such as the global price of oil. Best estimates suggest that meeting an intermediate target (40 % reduction in GHG emissions by the year 2030) using a non-optimized scenario would reduce personal income by USD 4.95 billion yr-1 (-0.15 %) and lower overall state gross domestic product by USD 16.1 billion yr-1 (-0.45 %). The public health benefits described here are comparable to these cost estimates, making a compelling argument for the adoption of low-carbon energy in California, with implications for other regions in the United States and across the world.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Uisung; Han, Jeongwoo; Urgun Demirtas, Meltem
Wastewater treatment plants (WWTPs) produce sludge as a byproduct when they treat wastewater. In the United States, over 8 million dry tons of sludge are produced annually just from publicly owned WWTPs. Sludge is commonly treated in anaerobic digesters, which generate biogas; the biogas is then largely flared to reduce emissions of methane, a potent greenhouse gas. Because sludge is quite homogeneous and has a high energy content, it is a good potential feedstock for other conversion processes that make biofuels, bioproducts, and power. For example, biogas from anaerobic digesters can be used to generate renewable natural gas (RNG), whichmore » can be further processed to produce compressed natural gas (CNG) and liquefied natural gas (LNG). Sludge can be directly converted into hydrocarbon liquid fuels via thermochemical processes such as hydrothermal liquefaction (HTL). Currently, the environmental impacts of converting sludge into energy are largely unknown, and only a few studies have focused on the environmental impacts of RNG produced from existing anaerobic digesters. As biofuels from sludge generate high interest, however, existing anaerobic digesters could be upgraded to technology with more economic potential and more environmental benefits. The environmental impacts of using a different anaerobic digestion (AD) technology to convert sludge into energy have yet to be analyzed. In addition, no studies are available about the direct conversion of sludge into liquid fuels. In order to estimate the energy consumption and greenhouse gas (GHG) emissions impacts of these alternative pathways (sludge-to-RNG and sludge-to-liquid), this study performed a lifecycle analysis (LCA) using the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET®) model. The energy uses and GHG emissions associated with the RNG and hydrocarbon liquid are analyzed relative to the current typical sludge management case, which consists of a single-stage mesophilic digester with biogas flaring. Along with the alternative HTL process, four types of AD technologies with fuel production—single-stage mesophilic, mesophilic 2-stage, single-stage mesophilic with thermohydrolysis treatment, and mesophilicmesophilic acid/gas phase—are studied. Results show that the sludge-to-CNG pathway via AD and the sludge-to-liquid pathway via HTL reduce GHG emissions consumptions significantly. When we compare the GHG emissions of the alternative fuel production pathways to that of the counterfactual case in terms of the amount of sludge treated, reductions in GHG emissions are 39%–80% and 87% for alternative AD and HTL, respectively. Compared to petroleum gasoline and diesel GHG emission results in terms of MJ, the renewable CNG production pathway via AD and the renewable diesel production pathway via HTL reduce GHG emissions by 193% and 46%, respectively. These large reductions are mainly due to GHG credits from avoiding GHGs under the counterfactual scenario, and/or fertilizer displacement credits. Similarly, reductions in fossil fuel use for sludge-based fuels are huge. However, well-defined counterfactual scenarios are needed because the results of the study depend on the counterfactual scenario, which might vary over time.« less
Rebolledo-Leiva, Ricardo; Angulo-Meza, Lidia; Iriarte, Alfredo; González-Araya, Marcela C
2017-09-01
Operations management tools are critical in the process of evaluating and implementing action towards a low carbon production. Currently, a sustainable production implies both an efficient resource use and the obligation to meet targets for reducing greenhouse gas (GHG) emissions. The carbon footprint (CF) tool allows estimating the overall amount of GHG emissions associated with a product or activity throughout its life cycle. In this paper, we propose a four-step method for a joint use of CF assessment and Data Envelopment Analysis (DEA). Following the eco-efficiency definition, which is the delivery of goods using fewer resources and with decreasing environmental impact, we use an output oriented DEA model to maximize production and reduce CF, taking into account simultaneously the economic and ecological perspectives. In another step, we stablish targets for the contributing CF factors in order to achieve CF reduction. The proposed method was applied to assess the eco-efficiency of five organic blueberry orchards throughout three growing seasons. The results show that this method is a practical tool for determining eco-efficiency and reducing GHG emissions. Copyright © 2017 Elsevier B.V. All rights reserved.
Green, Rosemary; Joy, Edward J. M.; Smith, Pete; Haines, Andy
2016-01-01
Food production is a major driver of greenhouse gas (GHG) emissions, water and land use, and dietary risk factors are contributors to non-communicable diseases. Shifts in dietary patterns can therefore potentially provide benefits for both the environment and health. However, there is uncertainty about the magnitude of these impacts, and the dietary changes necessary to achieve them. We systematically review the evidence on changes in GHG emissions, land use, and water use, from shifting current dietary intakes to environmentally sustainable dietary patterns. We find 14 common sustainable dietary patterns across reviewed studies, with reductions as high as 70–80% of GHG emissions and land use, and 50% of water use (with medians of about 20–30% for these indicators across all studies) possible by adopting sustainable dietary patterns. Reductions in environmental footprints were generally proportional to the magnitude of animal-based food restriction. Dietary shifts also yielded modest benefits in all-cause mortality risk. Our review reveals that environmental and health benefits are possible by shifting current Western diets to a variety of more sustainable dietary patterns. PMID:27812156
Accounting for climate and air quality damages in future U.S. electricity generation scenarios.
Brown, Kristen E; Henze, Daven K; Milford, Jana B
2013-04-02
The EPA-MARKAL model of the U.S. electricity sector is used to examine how imposing emissions fees based on estimated health and environmental damages might change electricity generation. Fees are imposed on life-cycle emissions of SO(2), nitrogen oxides (NO(x)), particulate matter, and greenhouse gases (GHG) from 2015 through 2055. Changes in electricity production, fuel type, emissions controls, and emissions produced under various fees are examined. A shift in fuels used for electricity production results from $30/ton CO(2)-equivalent GHG fees or from criteria pollutant fees set at the higher-end of the range of published damage estimates, but not from criteria pollutant fees based on low or midrange damage estimates. With midrange criteria pollutant fees assessed, SO(2) and NOx emissions are lower than the business as usual case (by 52% and 10%, respectively), with larger differences in the western U.S. than in the eastern U.S. GHG emissions are not significantly impacted by midrange criteria pollutant fees alone; conversely, with only GHG fees, NO(x) emissions are reduced by up to 11%, yet SO(2) emissions are slightly higher than in the business as usual case. Therefore, fees on both GHG and criteria pollutants may be needed to achieve significant reductions in both sets of pollutants.
Fruergaard, Thilde; Astrup, Tomas; Ekvall, Thomas
2009-11-01
The energy system plays an essential role in accounting of greenhouse gas (GHG) emissions from waste management systems and waste technologies. This paper focuses on energy use and energy recovery in waste management and outlines how these aspects should be addressed consistently in a GHG perspective. Essential GHG emission data for the most common fuels, electricity and heat are provided. Average data on electricity provision show large variations from country to country due to different fuels being used and different efficiencies for electricity production in the individual countries (0.007-1.13 kg CO(2)-eq. kWh(-1)). Marginal data on electricity provision show even larger variations (0.004-3 kg CO(2)-eq. kWh( -1)). Somewhat less variation in GHG emissions is being found for heat production (0.01-0.69 kg CO(2)-eq. kWh( -1)). The paper further addresses allocation principles and the importance of applying either average or marginal energy data, and it discusses the consequences of introducing reduction targets on CO( 2) emissions. All discussed aspects were found to significantly affect the outcome of GHG accounts suggesting transparent reporting to be critical. Recommendations for use of average/marginal energy data are provided.
Greenhouse gas emissions and carbon sequestration by agroforestry systems in southeastern Brazil.
Torres, Carlos Moreira Miquelino Eleto; Jacovine, Laércio Antônio Gonçalves; Nolasco de Olivera Neto, Sílvio; Fraisse, Clyde William; Soares, Carlos Pedro Boechat; de Castro Neto, Fernando; Ferreira, Lino Roberto; Zanuncio, José Cola; Lemes, Pedro Guilherme
2017-12-01
Agrosilvopastoral and silvopastoral systems can increase carbon sequestration, offset greenhouse gas (GHG) emissions and reduce the carbon footprint generated by animal production. The objective of this study was to estimate GHG emissions, the tree and grass aboveground biomass production and carbon storage in different agrosilvopastoral and silvopastoral systems in southeastern Brazil. The number of trees required to offset these emissions were also estimated. The GHG emissions were calculated based on pre-farm (e.g. agrochemical production, storage, and transportation), and on-farm activities (e.g. fertilization and machinery operation). Aboveground tree grass biomass and carbon storage in all systems was estimated with allometric equations. GHG emissions from the agroforestry systems ranged from 2.81 to 7.98 t CO 2 e ha -1 . Carbon storage in the aboveground trees and grass biomass were 54.6, 11.4, 25.7 and 5.9 t C ha -1 , and 3.3, 3.6, 3.8 and 3.3 t C ha -1 for systems 1, 2, 3 and 4, respectively. The number of trees necessary to offset the emissions ranged from 17 to 44 trees ha -1 , which was lower than the total planted in the systems. Agroforestry systems sequester CO 2 from the atmosphere and can help the GHG emission-reduction policy of the Brazilian government.
Tian, Wang; Liao, Cuiping; Li, Li; Zhao, Daiqing
2011-03-01
Life Cycle Assessment (LCA) is the only standardized tool currently used to assess environmental loads of products and processes. The life cycle analysis, as a part of LCA, is a useful and powerful methodology for studying life cycle energy efficiency and life cycle GHG emission. To quantitatively explain the potential of energy saving and greenhouse gas (GHG) emissions reduction of corn stover-based ethanol, we analyzed life cycle energy consumption and GHG emissions of corn stover-based ethanol by the method of life cycle analysis. The processes are dilute acid prehydrolysis and enzymatic hydrolysis. The functional unit was defined as 1 km distance driven by the vehicle. Results indicated: compared with gasoline, the corn stover-based E100 (100% ethanol) and E10 (a blend of 10% ethanol and 90% gasoline by volume) could reduce life cycle fossil energy consumption by 79.63% and 6.25% respectively, as well as GHG emissions by 53.98% and 6.69%; the fossil energy consumed by biomass stage was 68.3% of total fossil energy input, N-fertilizer and diesel were the main factors which contributed 45.78% and 33.26% to biomass stage; electricity production process contributed 42.06% to the net GHG emissions, the improvement of technology might reduce emissions markedly.
Transportation Energy Pathways LDRD.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barter, Garrett.; Reichmuth, David.; Westbrook, Jessica
2012-09-01
This report presents a system dynamics based model of the supply-demand interactions between the US light-duty vehicle (LDV) fleet, its fuels, and the corresponding primary energy sources through the year 2050. An important capability of our model is the ability to conduct parametric analyses. Others have relied upon scenario-based analysis, where one discrete set of values is assigned to the input variables and used to generate one possible realization of the future. While these scenarios can be illustrative of dominant trends and tradeoffs under certain circumstances, changes in input values or assumptions can have a significant impact on results, especiallymore » when output metrics are associated with projections far into the future. This type of uncertainty can be addressed by using a parametric study to examine a range of values for the input variables, offering a richer source of data to an analyst.The parametric analysis featured here focuses on a trade space exploration, with emphasis on factors that influence the adoption rates of electric vehicles (EVs), the reduction of GHG emissions, and the reduction of petroleum consumption within the US LDV fleet. The underlying model emphasizes competition between 13 different types of powertrains, including conventional internal combustion engine (ICE) vehicles, flex-fuel vehicles (FFVs), conventional hybrids(HEVs), plug-in hybrids (PHEVs), and battery electric vehicles(BEVs).We find that many factors contribute to the adoption rates of EVs. These include the pace of technological development for the electric powertrain, battery performance, as well as the efficiency improvements in conventional vehicles. Policy initiatives can also have a dramatic impact on the degree of EV adoption. The consumer effective payback period, in particular, can significantly increase the market penetration rates if extended towards the vehicle lifetime.Widespread EV adoption can have noticeable impact on petroleum consumption and greenhouse gas(GHG) emission by the LDV fleet. However, EVs alone cannot drive compliance with the most aggressive GHG emission reduction targets, even as the current electricity source mix shifts away from coal and towards natural gas. Since ICEs will comprise the majority of the LDV fleet for up to forty years, conventional vehicle efficiency improvements have the greatest potential for reductions in LDV GHG emissions over this time.These findings seem robust even if global oil prices rise to two to three times current projections. Thus,investment in improving the internal combustion engine might be the cheapest, lowest risk avenue towards meeting ambitious GHG emission and petroleum consumption reduction targets out to 2050.3 Acknowledgment The authors would like to thank Dr. Andrew Lutz, Dr. Benjamin Wu, Prof. Joan Ogden and Dr. Christopher Yang for their suggestions over the course of this project. This work was funded by the Laboratory Directed Research and Development program at Sandia National Laboratories.« less
Beyond the conventional life cycle inventory in wastewater treatment plants.
Lorenzo-Toja, Yago; Alfonsín, Carolina; Amores, María José; Aldea, Xavier; Marin, Desirée; Moreira, María Teresa; Feijoo, Gumersindo
2016-05-15
The conventional approach for the environmental assessment of wastewater treatment plants (WWTPs) is typically based on the removal efficiency of organic load and nutrients as well as the quantification of energy and chemicals consumption. Current wastewater treatment research entails the monitoring of direct emissions of greenhouse gases (GHG) and emerging pollutants such as pharmaceutical and personal care products (PPCPs), which have been rarely considered in the environmental assessment of a wastewater treatment facility by life cycle assessment (LCA) methodology. As a result of that, the real environmental impacts of a WWTP may be underestimated. In this study, two WWTPs located in different climatic regions (Atlantic and Mediterranean) of Spain were evaluated in extensive sampling campaigns that included not only conventional water quality parameters but also direct GHG emissions and PPCPs in water and sludge lines. Regarding the GHG monitoring campaign, on-site measurements of methane (CH4) and nitrous oxide (N2O) were performed and emission factors were calculated for both WWTPs. GHG direct emissions accounted for 62% of the total global warming potential (GWP), much more relevant than indirect CO2 emissions associated with electricity use. Regarding PPCPs, 19 compounds were measured in the main streams: influent, effluent and sludge, to perform the evaluation of the toxicity impact categories. Although the presence of heavy metals in the effluent and the sludge as well as the toxicity linked to the electricity production may shade the toxicity impacts linked to PPCPs in some impact categories, the latter showed a notable influence on freshwater ecotoxicity potential (FETP). For this impact category, the removal of PPCPs within the wastewater treatment was remarkably important and arose as an environmental benefit in comparison with the non-treatment scenario. Copyright © 2016 Elsevier B.V. All rights reserved.
Friedrich, Elena; Trois, Cristina
2011-07-01
The amount of greenhouse gases (GHG) emitted due to waste management in the cities of developing countries is predicted to rise considerably in the near future; however, these countries have a series of problems in accounting and reporting these gases. Some of these problems are related to the status quo of waste management in the developing world and some to the lack of a coherent framework for accounting and reporting of greenhouse gases from waste at municipal level. This review summarizes and compares GHG emissions from individual waste management processes which make up a municipal waste management system, with an emphasis on developing countries and, in particular, Africa. It should be seen as a first step towards developing a more holistic GHG accounting model for municipalities. The comparison between these emissions from developed and developing countries at process level, reveals that there is agreement on the magnitude of the emissions expected from each process (generation of waste, collection and transport, disposal and recycling). The highest GHG savings are achieved through recycling, and these savings would be even higher in developing countries which rely on coal for energy production (e.g. South Africa, India and China) and where non-motorized collection and transport is used. The highest emissions are due to the methane released by dumpsites and landfills, and these emissions are predicted to increase significantly, unless more of the methane is captured and either flared or used for energy generation. The clean development mechanism (CDM) projects implemented in the developing world have made some progress in this field; however, African countries lag behind. Copyright © 2011 Elsevier Ltd. All rights reserved.
Tilche, Andrea; Galatola, Michele
2008-01-01
Anaerobic digestion is a well known process that (while still capable of showing new features) has experienced several waves of technological development. It was "born" as a wastewater treatment system, in the 1970s showed promise as an alternative energy source (in particular from animal waste), in the 1980s and later it became a standard for treating organic-matter-rich industrial wastewater, and more recently returned to the market for its energy recovery potential, making use of different biomasses, including energy crops. With the growing concern around global warming, this paper looks at the potential of anaerobic digestion in terms of reduction of greenhouse gas (GHG) emissions. The potential contribution of anaerobic digestion to GHG reduction has been computed for the 27 EU countries on the basis of their 2005 Kyoto declarations and using life cycle data. The theoretical potential contribution of anaerobic digestion to Kyoto and EU post-Kyoto targets has been calculated. Two different possible biogas applications have been considered: electricity production from manure waste, and upgraded methane production for light goods vehicles (from landfill biogas and municipal and industrial wastewater treatment sludges). The useful heat that can be produced as by-product from biogas conversion into electricity has not been taken into consideration, as its real exploitation depends on local conditions. Moreover the amount of biogas already produced via dedicated anaerobic digestion processes has also not been included in the calculations. Therefore the overall gains achievable would be even higher than those reported here. This exercise shows that biogas may considerably contribute to GHG emission reductions in particular if used as a biofuel. Results also show that its use as a biofuel may allow for true negative GHG emissions, showing a net advantage with respect to other biofuels. Considering also energy crops that will become available in the next few years as a result of Common Agricultural Policy (CAP) reform, this study shows that biogas has the potential of covering almost 50% of the 2020 biofuel target of 10% of all automotive transport fuels, without implying a change in land use. Moreover, considering the achievable GHG reductions, a very large carbon emission trading "value" could support the investment needs.However, those results were obtained through a "qualitative" assessment. In order to produce robust data for decision makers, a quantitative sustainability assessment should be carried out, integrating different methodologies within a life cycle framework. The identification of the most appropriate policy for promoting the best set of options is then discussed.
Transportation and Greenhouse Gas Emissions Trading. Final Technical Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steve Winkelman; Tim Hargrave; Christine Vanderlan
1999-10-01
The authors conclude in this report that an upstream system would ensure complete regulatory coverage of transportation sector emissions in an efficient and feasible manner, and as such represents a key component of a national least-cost GHG emissions abatement strategy. The broad coverage provided by an upstream system recommends this approach over vehicle-maker based approaches, which would not cover emissions from heavy-duty vehicles and the aviation, marine and off-road sub-sectors. The on-road fleet approach unfairly and inefficiently burdens vehicle manufacturers with responsibility for emissions that they cannot control. A new vehicles approach would exclude emissions from vehicles on the roadmore » prior to program inception. The hybrid approach faces significant technical and political complications, and it is not clear that the approach would actually change behavior among vehicle makers and users, which is its main purpose. They also note that a trading system would fail to encourage many land use and infrastructure measures that affect VMT growth and GHG emissions. They recommend that this market failure be addressed by complementing the trading system with a program specifically targeting land use- and infrastructure-related activities. A key issue that must be addressed in designing a national GHG control strategy is whether or not it is necessary to guarantee GHG reductions from the transport sector. Neither an upstream system nor a downstream approach would do so, since both would direct capital to the least-cost abatement opportunities wherever they were found. They review two reasons why it may be desirable to force transportation sector reductions: first, that the long-term response to climate change will require reductions in all sectors; and second, the many ancillary benefits associated with transportation-related, and especially VMT-related, emissions reduction activities. If policy makers find it desirable to establish transportation-specific policies, they recommend (in addition to the land use policies mentioned above), that they combine an upstream trading system with a carbon efficiency standard similar to the current CAFE standard. Under this approach a fuel price signal would be complemented by incentives for manufacturers to produce more carbon efficient vehicles. To prevent vehicle manufacturers from being forced to pay more than other sectors for reducing GHG emissions, they recommend that the vehicle makers be allowed to pay a cash penalty equal to the market price of allowances in lieu of meeting carbon efficiency requirements.« less
VEHICLE MASS REDUCTION STUDY | Science Inventory ...
Analysis of the potential to reduce light-duty vehicle mass through the application of low density or high strength materials, component consolidation, and changes to vehicle architecture. Find a holistic vehicle design approach that establishes a potential path for future feasible vehicle mass reduction in light-duty vehicles to meet more stringent GHG and Fuel Economy Standards.
Internal combustion engine run on biogas is a potential solution to meet Indonesia emission target
NASA Astrophysics Data System (ADS)
Ambarita, Himsar
2017-09-01
Indonesia has released two different Greenhouse Gas (GHG) emissions reduction targets. The first target, released in 2009, is reduction GHG emissions 26% from Business-as-Usual (BAU) level using own budget and up 41% if supported international aids by 2020. The second target is reduction 29% and 41% from BAU by 2030 using own budget and with international support, respectively. In this paper, the BAU emissions and emissions reduction target of these two targets are elaborated. In addition, the characteristics of emissions from transportation sector are discussed. One of the potential mitigation actions is switching fuel in transportation sector. The results the most promising mitigation action in the transportation is switching oil fuel with biofuel. The Government of Indonesia (GoI) focuses on using biodiesel and bioethanol to run internal combustion engine in transportation sector and biogas is aimed to fuel power plant unit. However, there is very limited of success stories on using biogas in the power plant. The barriers and challenges will be discussed here. It is suggested to run internal combustion engine with biogas.
An assessment of individual foodprints attributed to diets and food waste in the United States
NASA Astrophysics Data System (ADS)
Birney, Catherine I.; Franklin, Katy F.; Davidson, F. Todd; Webber, Michael E.
2017-10-01
This paper assesses the environmental impacts of the average American’s diet and food loss and waste (FLW) habits through an analysis of energy, water, land, and fertilizer requirements (inputs) and greenhouse gas (GHG) emissions (outputs). We synthesized existing datasets to determine the ramifications of the typical American adult’s food habits, as well as the environmental impact associated with shifting diets to meet the US Department of Agriculture (USDA) dietary guideline recommendations. In 2010, FLW accounted for 35% of energy use, 34% of blue water use, 34% of GHG emissions, 31% of land use, and 35% of fertilizer use related to an individual’s food-related resource consumption, i.e. their foodprint. A shift in consumption towards a healthier diet, combined with meeting the USDA and Environmental Protection Agency’s 2030 food loss and waste reduction goal could increase per capita food related energy use 12%, decrease blue water consumption 4%, decrease green water use 23%, decrease GHG emissions from food production 11%, decrease GHG emissions from landfills 20%, decrease land use 32%, and increase fertilizer use 12%.
Maranduba, Henrique Leonardo; Robra, Sabine; Nascimento, Iracema Andrade; da Cruz, Rosenira Serpa; Rodrigues, Luciano Brito; de Almeida Neto, José Adolfo
2015-10-01
Despite environmental benefits of algal-biofuels, the energy-intensive systems for producing microalgae-feedstock may result in high GHG emissions. Trying to overcome energy-costs, this research analyzed the biodiesel production system via dry-route, based on Chlorella vulgaris cultivated in raceways, by comparing the GHG-footprints of diverse microalgae-biodiesel scenarios. These involved: the single system of biomass production (C0); the application of pyrolysis on the residual microalgal biomass (cake) from the oil extraction process (C1); the same as C0, with anaerobic cake co-digested with cattle manure (C2); the same conditions as in C1 and C2, by integrating in both cases (respectively C3 and C4), the microalgae cultivation with an autonomous ethanol distillery. The reduction of GHG emissions in scenarios with no such integration (C1 and C2), compared to CO, was insignificant (0.53% and 4.67%, respectively), whereas in the scenarios with integration with ethanol production system, the improvements were 53.57% for C3 and 63.84% for C4. Copyright © 2015 Elsevier Ltd. All rights reserved.
Zhu, Zhi-Liang; Stackpoole, Sarah
2011-01-01
The Energy Independence and Security Act of 2007 (EISA) requires the U.S. Department of the Interior (DOI) to develop a methodology and conduct an assessment of carbon storage, carbon sequestration, and greenhouse-gas (GHG) fluxes in the Nation's ecosystems. The U.S. Geological Survey (USGS) has developed and published the methodology (U.S. Geological Survey Scientific Investigations Report 2010-5233) and has assembled an interdisciplinary team of scientists to conduct the assessment over the next three to four years, commencing in October 2010. The assessment will fulfill specific requirements of the EISA by (1) quantifying, measuring, and monitoring carbon sequestration and GHG fluxes using national datasets and science tools such as remote sensing, and biogeochemical and hydrological models, (2) evaluating a range of management and restoration activities for their effects on carbon-sequestration capacity and the reduction of GHG fluxes, and (3) assessing effects of climate change and other controlling processes (including wildland fires) on carbon uptake and GHG emissions from ecosystems.
76 FR 82027 - Shipping Coordinating Committee; Notice of Committee Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-29
...; --Development of guidelines for use of fiber reinforced plastic (FRP) within ship structures; --Revision of... ships; --Air pollution and energy efficiency; --Reduction of GHG emissions from ships; --Consideration...
Well-to-wheels analysis of fast pyrolysis pathways with the GREET model.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han, J.; Elgowainy, A.; Palou-Rivera, I.
The pyrolysis of biomass can help produce liquid transportation fuels with properties similar to those of petroleum gasoline and diesel fuel. Argonne National Laboratory conducted a life-cycle (i.e., well-to-wheels [WTW]) analysis of various pyrolysis pathways by expanding and employing the Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) model. The WTW energy use and greenhouse gas (GHG) emissions from the pyrolysis pathways were compared with those from the baseline petroleum gasoline and diesel pathways. Various pyrolysis pathway scenarios with a wide variety of possible hydrogen sources, liquid fuel yields, and co-product application and treatment methods were considered. Atmore » one extreme, when hydrogen is produced from natural gas and when bio-char is used for process energy needs, the pyrolysis-based liquid fuel yield is high (32% of the dry mass of biomass input). The reductions in WTW fossil energy use and GHG emissions relative to those that occur when baseline petroleum fuels are used, however, is modest, at 50% and 51%, respectively, on a per unit of fuel energy basis. At the other extreme, when hydrogen is produced internally via reforming of pyrolysis oil and when bio-char is sequestered in soil applications, the pyrolysis-based liquid fuel yield is low (15% of the dry mass of biomass input), but the reductions in WTW fossil energy use and GHG emissions are large, at 79% and 96%, respectively, relative to those that occur when baseline petroleum fuels are used. The petroleum energy use in all scenarios was restricted to biomass collection and transportation activities, which resulted in a reduction in WTW petroleum energy use of 92-95% relative to that found when baseline petroleum fuels are used. Internal hydrogen production (i.e., via reforming of pyrolysis oil) significantly reduces fossil fuel use and GHG emissions because the hydrogen from fuel gas or pyrolysis oil (renewable sources) displaces that from fossil fuel natural gas and the amount of fossil natural gas used for hydrogen production is reduced; however, internal hydrogen production also reduces the potential petroleum energy savings (per unit of biomass input basis) because the fuel yield declines dramatically. Typically, a process that has a greater liquid fuel yield results in larger petroleum savings per unit of biomass input but a smaller reduction in life-cycle GHG emissions. Sequestration of the large amount of bio-char co-product (e.g., in soil applications) provides a significant carbon dioxide credit, while electricity generation from bio-char combustion provides a large energy credit. The WTW energy and GHG emissions benefits observed when a pyrolysis oil refinery was integrated with a pyrolysis reactor were small when compared with those that occur when pyrolysis oil is distributed to a distant refinery, since the activities associated with transporting the oil between the pyrolysis reactors and refineries have a smaller energy and emissions footprint than do other activities in the pyrolysis pathway.« less
Energy Saving and GHG Emission Reduction in a Micro-CCHP System by Use of Solar Energy
NASA Astrophysics Data System (ADS)
Ion, Ion V.; Ciocea, Gheorghe; Popescu, Florin
2012-12-01
In this work, the reduction of greenhouse gas emission, and the energy saving by integrating solar collectors and photovoltaic panels in a Stirling engine based microcombined cooling, heating and power (mCCHP) system are studied. The mCCHP system consists of a natural gas Stirling CHP and an adsorber chiller. When the thermal outputs of the Stirling CHP and solar collectors are not sufficient to cover the heat demand for domestic hot water (DHW), heating/cooling, an auxiliary heating boiler starts to operate. The energy saving by using solar energy varies from 13.35% in December to 59.62% in April, in the case of solar collectors usage and from 7.47% in December to 28.27% in July, in the case of photovoltaic panels usage. By using solar energy the annual GHG emission decreases by 31.98% and the fuel cost reduction varies from 12.73% in December to 49.78% in June.
Assessment of the potential REDD+ as a new international support measure for GHG reduction
NASA Astrophysics Data System (ADS)
Kim, Y.; Ahn, J.; Kim, H.
2016-12-01
As part of the Paris Agreement, the mechanism for reducing emissions from deforestation and forest degradation in developing countries (REDD+) has high potential to simultaneously contribute to greenhouse gas (GHG) mitigation through forest conservation and poverty alleviation. Some of 162 Intended Nationally Determined Contributions (INDCs) submitted by 189 countries representing approximately 98.8% of global GHG emissions include not only unconditional mitigation goals but also conditional goals based on the condition of the provision of international support such as finance, technology transfer and capacity building. Considering REDD+ as one of the main mechanisms to support such work, this study selected ten countries from among Korea's 24 ODA priority partners, taking into consideration their conditional INDC targets alongside sectoral quantified targets such as land use, land-use change and forestry (LULUCF). The ten selected countries are Indonesia, Cambodia, Vietnam, Bangladesh, Sri Lanka, Ghana, Senegal, Colombia, Peru and Paraguay. Of these countries, most REDD+ projects have been conducted in Indonesia mainly due to the fact that 85% of the country's total GHG emissions are caused by forest conversion and peatland degradation. Therefore, GHG reduction rates and associated projected costs of the Indonesia's REDD+ projects were analyzed in order to offer guidance on the potential of REDD+ to contribute to other INDCs' conditional goals. The result showed that about 0.9 t CO2 ha-1 could be reduced at a cost of USD 23 per year. Applying this estimation to the Cambodian case, which has submitted a conditional INDC target of increasing its forest coverage by 60% (currently 57%) by 2030, suggests that financial support of USD 12.8 million would reduce CO2 emissions by about 5.1 million tones by increasing forest coverage. As there is currently no consideration of LULUCF in Cambodia's INDC, this result represents the opportunity for an additional contribution to achieving the country's conditional mitigation goals.
NASA Astrophysics Data System (ADS)
Saah, D. S.; Moritz, M.; Ganz, D. J.; Stine, P. A.; Moody, T.
2010-12-01
Years of successful fire suppression activities have left forests unnaturally dense, overstocked, and with high hazardous fuel loads. Wildfires, particularly those of high severity, may dramatically reduce carbon stocks and convert forested lands from carbon sinks to decades-long carbon sources . Forest resource managers are currently pursuing fuels reduction and mitigation strategies to reduce wildfire risk and maintain carbon stocks. These projects include selective thinning and removal of trees and brush to return forest ecosystems to more natural stocking levels, resulting in a more fire-resilient forest that in theory would retain higher carry capacity for standing above ground carbon. Resource managers are exploring the possibility of supporting these local forest management projects by offering greenhouse gas (GHG) offsets to project developers that require GHG emissions mitigation. Using robust field data, this research project modeled three types of carbon benefits that could be realized from forest management: 1. Fuels treatments in the study area were shown to reduce the GHG and Criteria Air Pollutant emissions from wildfires by decreasing the probability, extent, and severity of fires and the corresponding loss in forest carbon stocks; 2. Biomass utilization from fuel treatment was shown to reduce GHG and Criteria Air Pollutant emissions over the duration of the fuels treatment project compared to fossil fuel energy. 3. Management and thinning of forests in order to stimulate growth, resulting in more rapid uptake of atmospheric carbon and approaching a carbon carrying capacity stored in a forest ecosystem under prevailing environmental conditions and natural disturbance regimes.
Carbon accounting in the United Kingdom water sector: a review.
Prescott, C
2009-01-01
The UK is committed to greenhouse gas (GHG) emission reduction targets and has introduced a number of initiatives to achieve these. Until recently, these targeted energy-intensive industries and, thus, the water sector was not significantly affected. However, from 2010, UK water companies will need to report their emissions under the Carbon Reduction Commitment (CRC). Both Ofwat (the economic regulator for water companies in England and Wales) and the Northern Ireland Authority for Utility Regulation (NIAUR) now require annual reporting of GHG emissions in accordance with both Defra Guidelines and the CRC. Also, carbon impacts must now be factored into all water industry investment planning in England and Wales. Building on existing approaches, the industry has developed standardised carbon accounting methodologies to meet both of these requirements. This process has highlighted gaps in knowledge where further research is needed.
Pathways to Deep Decarbonization in the United States
NASA Astrophysics Data System (ADS)
Torn, M. S.; Williams, J.
2015-12-01
Limiting anthropogenic warming to less than 2°C will require a reduction in global net greenhouse gas (GHG) emissions on the order of 80% below 1990 levels by 2050. Thus, there is a growing need to understand what would be required to achieve deep decarbonization (DD) in different economies. We examined the technical and economic feasibility of such a transition in the United States, evaluating the infrastructure and technology changes required to reduce U.S. GHG emissions in 2050 by 80% below 1990 levels. Using the PATHWAYS and GCAM models, we found that this level of decarbonization in the U.S. can be accomplished with existing commercial or near-commercial technologies, while providing the same level of energy services and economic growth as a reference case based on the U.S. DOE Annual Energy Outlook. Reductions are achieved through high levels of energy efficiency, decarbonization of electric generation, electrification of most end uses, and switching the remaining end uses to lower carbon fuels. Incremental energy system cost would be equivalent to roughly 1% of gross domestic product, not including potential non-energy benefits such as avoided human and infrastructure costs of climate change. Starting now on the deep decarbonization path would allow infrastructure stock turnover to follow natural replacement rates, which reduces costs, eases demand on manufacturing, and allows gradual consumer adoption. Energy system changes must be accompanied by reductions in non-energy and non-CO2 GHG emissions.
GHG emissions inventory for on-road transportation in the town of Sassari (Sardinia, Italy)
NASA Astrophysics Data System (ADS)
Sanna, Laura; Ferrara, Roberto; Zara, Pierpaolo; Duce, Pierpaolo
2016-04-01
The IPCC Fifth Assessment Report (AR5) accounts an increase of the total annual anthropogenic GHG emissions between 2000 and 2010 that directly came from the transport sector. In 2010, 14% of GHG emissions were released by transport and fossil-fuel-related CO2 emissions reached about 32 GtCO2 per year. The report also considers adaptation and mitigation as complementary strategies for reducing the risks of climate change for sustainable development of urban areas. This paper describes the on-road traffic emission estimated in the framework of a Sardinian regional project [1] for the town of Sassari (Sardinia, Italy), one of the Sardinian areas where the fuel consumption for on-road transportation purposes is higher [2]. The GHG emissions have been accounted (a) by a calculation-based methodology founded on a linear relationship between source activity and emission, and (b) by the COPERT IV methodology through the EMITRA (EMIssions from road TRAnsport) software tool [3]. Inventory data for annual fossil fuel consumption associated with on-road transportation (diesel, gasoline, gas) have been collected through the Dogane service, the ATP and ARST public transport services and vehicle fleet data are available from the Public Vehicle Database (PRA), using 2010 as baseline year. During this period, the estimated CO2 emissions accounts for more than 180,000 tCO2. The calculation of emissions due to on-road transport quantitatively estimates CO2 and other GHG emissions and represents a useful baseline to identify possible adaptation and mitigation strategies to face the climate change risks at municipal level. Acknowledgements This research was funded by the Sardinian Regional Project "Development, functional checking and setup of an integrated system for the quantification of CO2 net exchange and for the evaluation of mitigation strategies at urban and territorial scale", (Legge Regionale 7 agosto 2007, No. 7). References [1] Sanna L., Ferrara R., Zara P. & Duce P. (2014), GHG emissions inventory at urban scale: the Sassari case study, Energy Procedia, No. 59, pp. 344 - 350. [2] Bellasio R, Bianconi R, Corda G, Cucca P. (2007), Emission inventory for the road transport sector in Sardinia (Italy), Atmospheric Environment, No. 41, pp. 677-691. [3] Gkatzoflias D., Kouridis C., Ntziachristos L. & Samaras Z. (2012), COPERT 4, Computer programme to calculate emissions from road transport, User manual (version 9.0), Emisia.
NASA Astrophysics Data System (ADS)
Crooks, S.; Wirth, T. C.; Herold, N.; Bernal, B.; Holmquist, J. R.; Troxler, T.; Megonigal, P.; Sutton-Grier, A.; Muth, M.; Emmett-Mattox, S.
2016-12-01
The Inventory of U.S. GHG Emissions and Sinks' (Inventory) chapter on Land Use, Land Use Change and Forestry (LULUCF) reports C stock changes and emissions of CH4 and N2O from forest management, and other land-use/land-use change activities. With the release of the 2013 Supplement to the 2006 IPCC Guidelines for National GHG Inventories: Wetlands (Wetlands Supplement) the United States has begun working to include emissions and removals from management activities on coastal wetlands, and is responding to a request by the United Nations Framework Convention on Climate Change (UNFCCC) for Parties to report back in March 2017 on their country's experience in applying the Wetlands Supplement. To support the EPA, NOAA has formed an interagency and science community group i.e., Coastal Wetland Carbon Working Group (CWCWG). The task of the CWCWG is to conduct an initial IPCC Tier 1-2 baseline assessment of GHG emissions and removals associated with coastal wetlands using the methodologies described in the recently released IPCC Wetlands Supplement for inclusion in the Inventory submitted to the UNFCCC in April 2017. The 5 million ha coastal land area of the conterminous United States has been delineated based upon tide stations and LIDAR derived digital elevation model. Land use change within the coastal land area has been calculated from NOAA Coastal Change Analysis Program (C-CAP), Forest Inventory and National Resource Inventory (NRI). Tier 2 (i.e., country-specific) subnational / climate zone estimates of carbon stocks (including soils), along with carbon sequestration rates and methane emissions rates have been developed from literature. Future opportunities to improve the coastal wetland estimates include: refined quantification of methane emissions from wetlands across the salinity gradient (including mapping of this gradient) and from impounded waters; quantification of impacts of forestry activities on wetland soils; emissions and removals on forested tidally influenced and palustrine wetlands on coastal land areas; the fate of carbon released from eroded wetlands; and the extent of seagrass along with the emissions and removals associated with anthropogenic impacts to them.
van Middelaar, C E; Berentsen, P B M; Dijkstra, J; van Arendonk, J A M; de Boer, I J M
2014-01-01
Current decisions on breeding in dairy farming are mainly based on economic values of heritable traits, as earning an income is a primary objective of farmers. Recent literature, however, shows that breeding also has potential to reduce greenhouse gas (GHG) emissions. The objective of this paper was to compare 2 methods to determine GHG values of genetic traits. Method 1 calculates GHG values using the current strategy (i.e., maximizing labor income), whereas method 2 is based on minimizing GHG per kilogram of milk and shows what can be achieved if the breeding results are fully directed at minimizing GHG emissions. A whole-farm optimization model was used to determine results before and after 1 genetic standard deviation improvement (i.e., unit change) of milk yield and longevity. The objective function of the model differed between method 1 and 2. Method 1 maximizes labor income; method 2 minimizes GHG emissions per kilogram of milk while maintaining labor income and total milk production at least at the level before the change in trait. Results show that the full potential of the traits to reduce GHG emissions given the boundaries that were set for income and milk production (453 and 441kg of CO2 equivalents/unit change per cow per year for milk yield and longevity, respectively) is about twice as high as the reduction based on maximizing labor income (247 and 210kg of CO2 equivalents/unit change per cow per year for milk yield and longevity, respectively). The GHG value of milk yield is higher than that of longevity, especially when the focus is on maximizing labor income. Based on a sensitivity analysis, it was shown that including emissions from land use change and using different methods for handling the interaction between milk and meat production can change results, generally in favor of milk yield. Results can be used by breeding organizations that want to include GHG values in their breeding goal. To verify GHG values, the effect of prices and emissions factors should be considered, as well as the potential effect of variation between farm types. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Ginting, N.
2017-05-01
Indonesia committed to reduce its greenhouse gas (GHG) by 26% in 2020. At the UNFCCC (Conference of the United Nation Framework Convention on Climate Change) held in Paris in December 2015 Indonesia committed to reduce GHG; one way by promoting clean energy use for example biogas. Agricultural industry produces organic waste which contributes to global warming and climate change. In Karo District, mostly the people were farmers, either horticulture or fruit and produces massive organic waste. Biogas research was conducted in Karo District in May until July 2016 used 5 biodigesters. The purpose was to determine benefits of using biogas technology in order to reduct GHG emissions. The used design was Completely Randomized Design (CRD) with treatments: T1 (100% cow feces), T2 (75% cow feces + 25% horticultural waste), T3 (50% cow feces + 50% horticultural waste), T4 (25% cow feces + 75% horticultural waste) and T5 (100% horticultural waste). Parameter research were gas production, pH and temperature. The research result showed that T1 produced the highest methane ( P<0.05) compared to other treatments while T2 produced methane higher (P<0.05) compared to T4 or T5. There was no difference on methane production between T4 and T5. As conclusion application of biogas on agricultural waste supported local action plan for greenhouse gas emission reduction of North Sumatera Province 2010-2020. From horticultural waste, there were 2.1 × 106 ton CO2 eq in 2014 which were not calculated in RAD GRK (Regional Action Plan for Greenhouse Gas Emissions Reduction).
Liu, Yili; Sun, Weixin; Liu, Jianguo
2017-10-01
Waste management is a major source of global greenhouse gas (GHG) emissions and many opportunities exist to reduce these emissions. To identify the GHG emissions from waste management in China, the characteristics of MSW and the current and future treatment management strategies, five typical management scenarios were modeled by EaseTech software following the principles of life cycle inventory and analyzed based on the carbon and energy flows. Due to the high organic fraction (50-70%) and moisture content (>50%) of Chinese municipal solid waste (MSW), the net GHG emissions in waste management had a significant difference from the developed countries. It was found that the poor landfill gas (LFG) collection efficiency and low carbon storage resulted landfilling with flaring and landfilling with biogas recovery scenarios were the largest GHG emissions (192 and 117 kgCO 2 -Eq/t, respectively). In contrast, incineration had the best energy recovery rate (19%), and, by grid emissions substitution, led to a substantial decrease in net GHG emissions (-124 kgCO 2 -Eq/t). Due to the high energy consumption in operation, the unavoidable leakage of CH 4 and N 2 O in treatment, and the further release of CH 4 in disposing of the digested residue or composted product, the scenarios with biological treatment of the organic fractions after sorting, such as composting or anaerobic digestion (AD), did not lead to the outstanding GHG reductions (emissions of 32 and -36 kgCO 2 -Eq/t, respectively) as expected. Copyright © 2017. Published by Elsevier Ltd.
GRACEnet: addressing policy needs through coordinated cross-location research
Jawson, Michael D.; Walthall, Charles W.; Shafer, Steven R.; Liebig, Mark; Franzluebbers, Alan J.; Follett, Ronald F.
2012-01-01
GRACEnet (Greenhouse gas Reduction through Agricultural Carbon Enhancement network) was conceived to build upon ongoing USDA Agricultural Research Service (ARS) research to improve soil productivity, while addressing the challenges and opportunities of interest in C sequestration from a climate change perspective. The vision for GRACEnet was and remains: Knowledge and information used to implement scientifically based agricultural management practices from the field to national policy scales on C sequestration, greenhouse gas (GHG) emissions, and environmental benefits. The national focus of GRACEnet uses a standardized approach by ARS laboratories and university and land manager (e.g. farmer and rancher) cooperators to assess C sequestration and GHG emission from different crop and grassland systems. Since 2002, GRACEnet has significantly expanded GHG mitigation science and delivered usable information to agricultural research and policy organizations. Recent developments suggest GRACEnet will have international impact by contributing leadership and technical guidance for the Global Research Alliance on Agricultural Greenhouse Gases.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Penev, Michael; Melaina, Marc; Bush, Brian
This report improves on the understanding of the long-term technology potential of low-carbon natural gas (LCNG) supply pathways by exploring transportation market adoption potential through 2035 in California. Techno-economic assessments of each pathway are developed to compare the capacity, cost, and greenhouse gas (GHG) emissions of select LCNG production pathways. The study analyzes the use of fuel from these pathways in light-, medium-, and heavy-duty vehicle applications. Economic and life-cycle GHG emissions analysis suggest that landfill gas resources are an attractive and relatively abundant resource in terms of cost and GHG reduction potential, followed by waste water treatment plants andmore » biomass with gasification and methanation. Total LCNG production potential is on the order of total natural gas demand anticipated in a success scenario for future natural gas vehicle adoption by 2035 across light-, medium-, and heavy-duty vehicle markets (110 trillion Btu/year).« less
Gawron, James H; Keoleian, Gregory A; De Kleine, Robert D; Wallington, Timothy J; Kim, Hyung Chul
2018-03-06
Although recent studies of connected and automated vehicles (CAVs) have begun to explore the potential energy and greenhouse gas (GHG) emission impacts from an operational perspective, little is known about how the full life cycle of the vehicle will be impacted. We report the results of a life cycle assessment (LCA) of Level 4 CAV sensing and computing subsystems integrated into internal combustion engine vehicle (ICEV) and battery electric vehicle (BEV) platforms. The results indicate that CAV subsystems could increase vehicle primary energy use and GHG emissions by 3-20% due to increases in power consumption, weight, drag, and data transmission. However, when potential operational effects of CAVs are included (e.g., eco-driving, platooning, and intersection connectivity), the net result is up to a 9% reduction in energy and GHG emissions in the base case. Overall, this study highlights opportunities where CAVs can improve net energy and environmental performance.
Levis, James W; Barlaz, Morton A; Decarolis, Joseph F; Ranjithan, S Ranji
2014-04-01
Solid waste management (SWM) systems must proactively adapt to changing policy requirements, waste composition, and an evolving energy system to sustainably manage future solid waste. This study represents the first application of an optimizable dynamic life-cycle assessment framework capable of considering these future changes. The framework was used to draw insights by analyzing the SWM system of a hypothetical suburban U.S. city of 100 000 people over 30 years while considering changes to population, waste generation, and energy mix and costs. The SWM system included 3 waste generation sectors, 30 types of waste materials, and 9 processes for waste separation, treatment, and disposal. A business-as-usual scenario (BAU) was compared to three optimization scenarios that (1) minimized cost (Min Cost), (2) maximized diversion (Max Diversion), and (3) minimized greenhouse gas (GHG) emissions (Min GHG) from the system. The Min Cost scenario saved $7.2 million (12%) and reduced GHG emissions (3%) relative to the BAU scenario. Compared to the Max Diversion scenario, the Min GHG scenario cost approximately 27% less and more than doubled the net reduction in GHG emissions. The results illustrate how the timed-deployment of technologies in response to changes in waste composition and the energy system results in more efficient SWM system performance compared to what is possible from static analyses.
Climate Leadership webinar on Greenhouse Gas Management Resources for Small Businesses
Small businesses can calculate their carbon footprint and construct a greenhouse gas inventory to help track progress towards reaching emissions reduction goals. One strategy for this is EPA's Simplified GHG Emissions Calculator.
77 FR 52105 - Shipping Coordinating Committee; Notice of Committee Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-28
... Building, 2100 Second Street SW., Washington, DC, 20593. The primary purpose of the meeting is to prepare... organisms in ballast water; --Recycling of ships; --Air pollution and energy efficiency; --Reduction of GHG...
77 FR 54648 - Shipping Coordinating Committee; Notice of Committee Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-05
... Building, 2100 Second Street SW., Washington, DC 20593. The primary purpose of the meeting is to prepare... organisms in ballast water; --Recycling of ships; --Air pollution and energy efficiency; --Reduction of GHG...
78 FR 14400 - Shipping Coordinating Committee; Notice of Committee Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-05
..., 2100 Second Street SW., Washington, DC, 20593. The primary purpose of the meeting is to prepare for the... ballast water; --Recycling of ships; --Air pollution and energy efficiency; --Reduction of GHG emissions...
Can Switching from Coal to Shale Gas Bring Net Carbon Reductions to China?
Qin, Yue; Edwards, Ryan; Tong, Fan; Mauzerall, Denise L
2017-03-07
To increase energy security and reduce emissions of air pollutants and CO 2 from coal use, China is attempting to duplicate the rapid development of shale gas that has taken place in the United States. This work builds a framework to estimate the lifecycle greenhouse gas (GHG) emissions from China's shale gas system and compares them with GHG emissions from coal used in the power, residential, and industrial sectors. We find the mean lifecycle carbon footprint of shale gas is about 30-50% lower than that of coal in all sectors under both 20 year and 100 year global warming potentials (GWP 20 and GWP 100 ). However, primarily due to large uncertainties in methane leakage, the upper bound estimate of the lifecycle carbon footprint of shale gas in China could be approximately 15-60% higher than that of coal across sectors under GWP 20 . To ensure net GHG emission reductions when switching from coal to shale gas, we estimate the breakeven methane leakage rates to be approximately 6.0%, 7.7%, and 4.2% in the power, residential, and industrial sectors, respectively, under GWP 20 . We find shale gas in China has a good chance of delivering air quality and climate cobenefits, particularly when used in the residential sector, with proper methane leakage control.
Life cycle assessment of potential biojet fuel production in the United States.
Agusdinata, Datu B; Zhao, Fu; Ileleji, Klein; DeLaurentis, Dan
2011-11-01
The objective of this paper is to reveal to what degree biobased jet fuels (biojet) can reduce greenhouse gas (GHG) emissions from the U.S. aviation sector. A model of the supply and demand chain of biojet involving farmers, biorefineries, airlines, and policymakers is developed by considering factors that drive the decisions of actors (i.e., decision-makers and stakeholders) in the life cycle stages. Two kinds of feedstock are considered: oil-producing feedstock (i.e., camelina and algae) and lignocellulosic biomass (i.e., corn stover, switchgrass, and short rotation woody crops). By factoring in farmer/feedstock producer and biorefinery profitability requirements and risk attitudes, land availability and suitability, as well as a time delay and technological learning factor, a more realistic estimate of the level of biojet supply and emissions reduction can be developed under different oil price assumptions. Factors that drive biojet GHG emissions and unit production costs from each feedstock are identified and quantified. Overall, this study finds that at likely adoption rates biojet alone would not be sufficient to achieve the aviation emissions reduction target. In 2050, under high oil price scenario assumption, GHG emissions can be reduced to a level ranging from 55 to 92%, with a median value of 74%, compared to the 2005 baseline level.
Shen, Wei; Han, Weijian; Wallington, Timothy J
2014-06-17
China's oil imports and greenhouse gas (GHG) emissions have grown rapidly over the past decade. Addressing energy security and GHG emissions is a national priority. Replacing conventional vehicles with electric vehicles (EVs) offers a potential solution to both issues. While the reduction in petroleum use and hence the energy security benefits of switching to EVs are obvious, the GHG benefits are less obvious. We examine the current Chinese electric grid and its evolution and discuss the implications for EVs. China's electric grid will be dominated by coal for the next few decades. In 2015 in Beijing, Shanghai, and Guangzhou, EVs will need to use less than 14, 19, and 23 kWh/100 km, respectively, to match the 183 gCO2/km WTW emissions for energy saving vehicles. In 2020, in Beijing, Shanghai, and Guangzhou EVs will need to use less than 13, 18, and 20 kWh/100 km, respectively, to match the 137 gCO2/km WTW emissions for energy saving vehicles. EVs currently demonstrated in China use 24-32 kWh/100 km. Electrification will reduce petroleum imports; however, it will be very challenging for EVs to contribute to government targets for GHGs emissions reduction.
Zaimes, George G; Soratana, Kullapa; Harden, Cheyenne L; Landis, Amy E; Khanna, Vikas
2015-08-18
A well-to-wheel (WTW) life cycle assessment (LCA) model is developed to evaluate the environmental profile of producing liquid transportation fuels via fast pyrolysis of perennial grasses: switchgrass and miscanthus. The framework established in this study consists of (1) an agricultural model used to determine biomass growth rates, agrochemical application rates, and other key parameters in the production of miscanthus and switchgrass biofeedstock; (2) an ASPEN model utilized to simulate thermochemical conversion via fast pyrolysis and catalytic upgrading of bio-oil to renewable transportation fuel. Monte Carlo analysis is performed to determine statistical bounds for key sustainability and performance measures including life cycle greenhouse gas (GHG) emissions and Energy Return on Investment (EROI). The results of this work reveal that the EROI and GHG emissions (gCO2e/MJ-fuel) for fast pyrolysis derived fuels range from 1.52 to 2.56 and 22.5 to 61.0 respectively, over the host of scenarios evaluated. Further analysis reveals that the energetic performance and GHG reduction potential of fast pyrolysis-derived fuels are highly sensitive to the choice of coproduct scenario and LCA allocation scheme, and in select cases can change the life cycle carbon balance from meeting to exceeding the renewable fuel standard emissions reduction threshold for cellulosic biofuels.
NASA Astrophysics Data System (ADS)
Kawa, S. R.; Baker, D. F.; Chatterjee, A.; Crowell, S.
2016-12-01
The measurement of atmospheric greenhouse gases (GHG), principally CO2 and CH4, from space using active (lidar) sensing techniques has several potentially significant advantages in comparison to missions using passive instrument approaches. A great deal of progress has been made in development of the active methods since the US National Academy of Sciences (NAS) 2007 Decadal Survey recommended the ASCENDS mission (Active Sensing of Carbon Emissions, Nights, Days, and Seasons) for NASA's next generation CO2 observing system. Active GHG missions remain in consideration by the current NAS Decadal Survey for Earth Science 2017. In this presentation, we update the measurement characteristics expected for active GHG sensing, test how these measurements will enhance our ability to quantify GHG surface fluxes, and examine the potential role of active sensing to address carbon cycle issues as required for confident projection of carbon-climate interactions. Over the past decade, laser CO2 instrument concepts, retrieval approaches, and measurement techniques have matured significantly, driven by technology advances and by analysis of data from airborne simulators. Performance simulations updated to match the latest developments show substantially lower random errors, better spatial resolution, and more information content for global XCO2 data than just a few years ago. Observing System Simulation Experiments using global flux inversion models show corresponding improvements in resolving surface fluxes and reducing flux uncertainties for the expected lidar data. Simulations including prospective systematic (bias) errors, which are expected to be lesser for the lidar system compared to passive measurements, provide guidance for instrument design requirements. We will comment on the impact of errors in knowledge of the atmospheric state including the need for coincident measurements of O2 column in order to normalize the column abundances to dry air mole fraction. We will also comment on the potential impact of future active missions for CH4. The results indicate that active systems will provide GHG measurements of high quality and spatial sampling that will contribute substantially to knowledge of carbon flux distributions and their dependence on underlying physical processes in critical regions.
Assessing the environmental sustainability of ethanol from integrated biorefineries
Falano, Temitope; Jeswani, Harish K; Azapagic, Adisa
2014-01-01
This paper considers the life cycle environmental sustainability of ethanol produced in integrated biorefineries together with chemicals and energy. Four types of second-generation feedstocks are considered: wheat straw, forest residue, poplar, and miscanthus. Seven out of 11 environmental impacts from ethanol are negative, including greenhouse gas (GHG) emissions, when the system is credited for the co-products, indicating environmental savings. Ethanol from poplar is the best and straw the worst option for most impacts. Land use change from forest to miscanthus increases the GHG emissions several-fold. For poplar, the effect is opposite: converting grassland to forest reduces the emissions by three-fold. Compared to fossil and first-generation ethanol, ethanol from integrated biorefineries is more sustainable for most impacts, with the exception of wheat straw. Pure ethanol saves up to 87% of GHG emissions compared to petrol per MJ of fuel. However, for the current 5% ethanol–petrol blends, the savings are much smaller (<3%). Therefore, unless much higher blends become widespread, the contribution of ethanol from integrated biorefineries to the reduction of GHG emissions will be insignificant. Yet, higher ethanol blends would lead to an increase in some impacts, notably terrestrial and freshwater toxicity as well as eutrophication for some feedstocks. PMID:24478110
What is Climate Leadership: Examples and Lessons Learned in Organizational Leadership Webinar
Organizations discuss creating comprehensive GHG inventories and aggressive emissions reduction goals, as well as leadership in their internal response to climate change, through engaging partners and addressing climate risk in their enterprise strategies.
Potential Greenhouse Gas Emissions Reductions from Optimizing Urban Transit Networks
DOT National Transportation Integrated Search
2016-05-01
Public transit systems with efficient designs and operating plans can reduce greenhouse gas (GHG) emissions relative to low-occupancy transportation modes, but many current transit systems have not been designed to reduce environmental impacts. This ...
Transportation impacts of smart growth development in Maine.
DOT National Transportation Integrated Search
2009-08-01
This study evaluates the reductions in average trip lengths, daily vehicle miles traveled : (VMT), and daily greenhouse gas (GHG) emissions from on-road automobiles due to smart : growth development strategies in two Maine towns, Lisbon in Androscogg...
Advancing Development and Greenhouse Gas Reductions in Vietnam's Wind Sector
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bilello, D.; Katz, J.; Esterly, S.
2014-09-01
Clean energy development is a key component of Vietnam's Green Growth Strategy, which establishes a target to reduce greenhouse gas (GHG) emissions from domestic energy activities by 20-30 percent by 2030 relative to a business-as-usual scenario. Vietnam has significant wind energy resources, which, if developed, could help the country reach this target while providing ancillary economic, social, and environmental benefits. Given Vietnam's ambitious clean energy goals and the relatively nascent state of wind energy development in the country, this paper seeks to fulfill two primary objectives: to distill timely and useful information to provincial-level planners, analysts, and project developers asmore » they evaluate opportunities to develop local wind resources; and, to provide insights to policymakers on how coordinated efforts may help advance large-scale wind development, deliver near-term GHG emission reductions, and promote national objectives in the context of a low emission development framework.« less
U.S. Forest Greenhouse Gas Impacts of a continued Expansion of E.U. Wood Pellet Demand
NASA Astrophysics Data System (ADS)
Latta, G.; Baker, J.; Ohrel, S. B.
2016-12-01
The United States has ambitious goals of greenhouse gas (GHG) reductions. A portion of these reductions are based on expected contributions from land use, land use change, and forestry (LULUCF). The European Union has similar goals which have resulted in a doubling of wood pellets exported from US ports destined for EU power plants over the last few years. There are potential conflicts between the GHG consequences of this pellet supply and the LULUCF contribution to US GHG goals. This study seeks to inform the discussion by modeling US forest GHG accounts using data measured on a grid of over 150,000 USDA Forest Service, Forest Inventory and Analysis (FIA) forestland plots across the conterminous United States. Empirical yield functions are estimate from plot log volume, biomass and carbon and provide the basis for changes in forest characteristics over time. Demand data based on a spatial database of over 2,000 forest product manufacturing facilities representing 11 intermediate and 13 final solid and pulpwood products. Manufacturing and logging costs are specific to slope, log size, and volume removed along with transportation costs based on fuel prices, FIA plot, and milling locations. The resulting partial spatial equilibrium model of the US forest sector is solved annually for the period 2010 - 2030 with demand shifted by energy prices and macroeconomic indicators from the US EIA's Annual Energy Outlook for a series of potential wood pellet export targets. For each wood pellet export level simulated, figures showing historic and scenario-specific forest products production are generated. Maps of the spatial allocation of both forest harvesting and carbon fluxes are presented at the National level and detail is given in both the US North and Southeast.
Climate change affects winter chill for temperate fruit and nut trees.
Luedeling, Eike; Girvetz, Evan H; Semenov, Mikhail A; Brown, Patrick H
2011-01-01
Temperate fruit and nut trees require adequate winter chill to produce economically viable yields. Global warming has the potential to reduce available winter chill and greatly impact crop yields. We estimated winter chill for two past (1975 and 2000) and 18 future scenarios (mid and end 21st century; 3 Global Climate Models [GCMs]; 3 greenhouse gas emissions [GHG] scenarios). For 4,293 weather stations around the world and GCM projections, Safe Winter Chill (SWC), the amount of winter chill that is exceeded in 90% of all years, was estimated for all scenarios using the "Dynamic Model" and interpolated globally. We found that SWC ranged between 0 and about 170 Chill Portions (CP) for all climate scenarios, but that the global distribution varied across scenarios. Warm regions are likely to experience severe reductions in available winter chill, potentially threatening production there. In contrast, SWC in most temperate growing regions is likely to remain relatively unchanged, and cold regions may even see an increase in SWC. Climate change impacts on SWC differed quantitatively among GCMs and GHG scenarios, with the highest GHG leading to losses up to 40 CP in warm regions, compared to 20 CP for the lowest GHG. The extent of projected changes in winter chill in many major growing regions of fruits and nuts indicates that growers of these commodities will likely experience problems in the future. Mitigation of climate change through reductions in greenhouse gas emissions can help reduce the impacts, however, adaption to changes will have to occur. To better prepare for likely impacts of climate change, efforts should be undertaken to breed tree cultivars for lower chilling requirements, to develop tools to cope with insufficient winter chill, and to better understand the temperature responses of tree crops.
Reducing Greenhouse Gas Emissions from Agricultural Wetlands in Borneo
NASA Astrophysics Data System (ADS)
Abdul, H.; Fatah, L.; Nursyamsi, D.; Kazuyuki, I.
2011-12-01
At the forum G20 meeting in 2009, Indonesian President delivered Indonesia's commitment to reduce national greenhouse gas (GHG) emissions by 26% in 2020 by unilateral action and by 41% with support of other countries. To achieve the target, Indonesian government has put forestry, agriculture (including peatlands), energy, industry and transportation as main responsible sectors. Development of crop with low GHG emissions, increasing C sequestration and the use of organic fertilizers are among the activities to be carried out in 2010-2020 period to minimize GHG emissions from agricultural sectors. Three experiments have been carried out to elucidate the reflectivity of crop selection, soil ameliorants and organic fertilizers on GHG emissions from agricultural wetlands in Borneo. Firstly, gas samples were collected in weekly basis from oil palm, paddy, and vegetables fields and analyzed for methane (CH4) and nitrous oxide (N2O) concentrations by a gas chromatography. Secondly, coal fly ash, dolomite and ZnSO4 were incorporated into a pot containing peat and/or alluvial soils taken from wetlands in South Kalimantan. The air samples were taken and analyzed for CH4 by a gas chromatography. Finally, microbial consortium are isolated from soil, sediment and cow dung. The microbes were then propagated and used in a rice straw composting processes. The CO2, CH4 and N2O emissions from composting vessel were measured at one, two and four weeks of composting processes. The results showed that shifting the use of peatlands for oil palm to vegetable field reduced the GHG emissions by about 74% and that to paddy field reduce the GHG emissions by about 82%. The CH4 emissions from paddy field can be further reduced by applying dolomite. However, the use of coal fly ash and ZnSO4 increased CH4 emissions from peat soil cultivated to rice. The use of microbe isolated from saline soil could reduce GHG emissions during the composting of rice straw. The social aspect of GHG reduction in Borneo will also be discussed.
Energy-efficient drinking water disinfection for greenhouse gas mitigation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gadgil, A.J.; Greene, D.M.; Rosenfeld, A.
Anecdotal evidence suggests that approximately one billion people worldwide use cookstoves to boil their drinking water. About half of this population is in China. Some populations (e.g. Jakarta) spend 1% of their GDP on boiling drinking water. Impoverished and/or ignorant populations not yet boiling their drinking water will do so when they can both afford it and understand the risks of unsafe drinking water. A recently developed water disinfection technology (UV Waterworks) can produce safe drinking water while earning tradable carbon credits (or credit as a clean development mechanism) when implemented as part of national energy, health, and carbon emissionsmore » trading policy, UV Waterworks uses approximately 6,000 times less energy than boiling over a biomass cookstove. Each unit that replaces boiling may save up to 175 or 300 tons/year of carbon-equivalent GHG emissions, depending on if it replaces sustainably harvested biomass (SHB) or non-SHB. For the approximately 500M Chinese boiling their drinking water over biomass (assumed SHB), this suggests a technical potential (that is, potential under the limiting case of 100% market adoption) of saving 87M tons/year of carbon-equivalent non-CO{sub 2} GHG emissions. The energy savings and corresponding emissions reductions will vary with cookstove fuels and stove efficiency: non-SHB and kerosene represent the most and least GHG-producing cookstove fuels, respectively, among those readily available to the populations of interest. The authors bracket the global technical potential for carbon emission reductions resulting from implementation of UV Waterworks, and estimate the value of tradable carbon credits earned from these reductions.« less
Methane and CO2 emissions from China's hydroelectric reservoirs: a new quantitative synthesis.
Li, Siyue; Zhang, Quanfa; Bush, Richard T; Sullivan, Leigh A
2015-04-01
Controversy surrounds the green credentials of hydroelectricity because of the potentially large emission of greenhouse gases (GHG) from associated reservoirs. However, limited and patchy data particularly for China is constraining the current global assessment of GHG releases from hydroelectric reservoirs. This study provides the first evaluation of the CO2 and CH4 emissions from China's hydroelectric reservoirs by considering the reservoir water surface and drawdown areas, and downstream sources (including spillways and turbines, as well as river downstream). The total emission of 29.6 Tg CO2/year and 0.47 Tg CH4/year from hydroelectric reservoirs in China, expressed as CO2 equivalents (eq), corresponds to 45.6 Tg CO2eq/year, which is 2-fold higher than the current GHG emission (ca. 23 Tg CO2eq/year) from global temperate hydropower reservoirs. China's average emission of 70 g CO2eq/kWh from hydropower amounts to 7% of the emissions from coal-fired plant alternatives. China's hydroelectric reservoirs thus currently mitigate GHG emission when compared to the main alternative source of electricity with potentially far great reductions in GHG emissions and benefits possible through relatively minor changes to reservoir management and design. On average, the sum of drawdown and downstream emission including river reaches below dams and turbines, which is overlooked by most studies, represents the equivalent of 42% of the CO2 and 92% of CH4 that emit from hydroelectric reservoirs in China. Main drivers on GHG emission rates are summarized and highlight that water depth and stratification control CH4 flux, and CO2 flux shows significant negative relationships with pH, DO, and Chl-a. Based on our finding, a substantial revision of the global carbon emissions from hydroelectric reservoirs is warranted.
Greenhouse gas emissions from municipal solid waste management in Vientiane, Lao PDR.
Babel, Sandhya; Vilaysouk, Xaysackda
2016-01-01
Municipal solid waste (MSW) is one of the major environmental problems throughout the world including in Lao PDR. In Vientiane, due to the lack of a collection service, open burning and illegal dumping are commonly practised. This study aims to estimate the greenhouse gas (GHG) emission from the current situation of MSW management (MSWM) in Vientiane and proposes an alternative solution to reduce the GHG emission and environmental impacts. The 2006 Intergovernmental Panel on Climate Change (IPCC) Guidelines for National Greenhouse Gas Inventories (IPCC 2006 model) are used for the estimation of GHG emission from landfill and composting. For the estimation of GHG emission from open burning, the Atmospheric Brown Clouds Emission Inventory Manual (ABC EIM) is used. In Vientiane, a total of 232, 505 tonnes year(-1) of MSW was generated in 2011. Waste generation in Vientiane is 0.69 kg per capita per day, and about 31% of the total MSW generated was directly sent to landfill (71,162 tonnes year(-1)). The total potential GHG emission from the baseline scenario in 2011 was 110,182 tonnes year(-1) CO2-eq, which is 0.15 tonne year(-1) CO2-eq per capita. From the three MSWM scenarios proposed, scenario S3, which includes recycling, composting and landfilling, seems to be an effective solution for dealing with MSW in Vientiane with less air pollution, and is environmentally friendly. The total GHG emission in scenario S3 is reduced to 91,920 tonnes year(-1) CO2-eq (47% reduction), compared with the S1 scenario where all uncollected waste is diverted to landfill. © The Author(s) 2015.
Implications of Sustainability for the United States Light-Duty Transportation Sector
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gearhart, Chris
Climate change is a problem that must be solved. The primary cause of this problem is burning of fossil fuels to generate energy. A dramatic reduction in carbon emissions must happen soon, and a significant fraction of this reduction must come from the transportation sector. This paper reviews existing literature to assess the consensus of the scientific and engineering communities concerning the potential for the United States' light-duty transportation sector to meet a goal of 80 percent reduction in vehicle emissions and examine what it will take to meet this target. It is unlikely that reducing energy consumption in justmore » vehicles with gasoline-based internal combustion drivetrains will be sufficient to meet GHG emission-reduction targets. This paper explores what additional benefits are possible through the adoption of alternative energy sources, looking at three possible on-vehicle energy carriers: carbon-based fuels, hydrogen, and batteries. potential for the United States' light-duty transportation sector to meet a goal of 80 percent reduction in vehicle emissions and examine what it will take to meet this target. It is unlikely that reducing energy consumption in just vehicles with gasoline-based internal combustion drivetrains will be sufficient to meet GHG emission-reduction targets. This paper explores what additional benefits are possible through the adoption of alternative energy sources, looking at three possible on-vehicle energy carriers: carbon-based fuels, hydrogen, and batteries.« less
Agricultural peat lands; towards a greenhouse gas sink - a synthesis of a Dutch landscape study
NASA Astrophysics Data System (ADS)
Schrier-Uijl, A. P.; Kroon, P. S.; Hendriks, D. M. D.; Hensen, A.; Van Huissteden, J. C.; Leffelaar, P. A.; Berendse, F.; Veenendaal, E. M.
2013-06-01
It is generally known that managed, drained peatlands act as carbon sources. In this study we examined how mitigation through the reduction of management and through rewetting may affect the greenhouse gas (GHG) emission and the carbon balance of intensively managed, drained, agricultural peatlands. Carbon and GHG balances were determined for three peatlands in the western part of the Netherlands from 2005 to 2008 by considering spatial and temporal variability of emissions (CO2, CH4 and N2O). One area (Oukoop) is an intensively managed grass-on-peatland, including a dairy farm, with the ground water level at an average annual depth of 0.55 m below the soil surface. The second area (Stein) is an extensively managed grass-on-peatland, formerly intensively managed, with a dynamic ground water level at an average annual depth of 0.45 m below the soil surface. The third area is an (since 1998) rewetted former agricultural peatland (Horstermeer), close to Oukoop and Stein, with the average annual ground water level at a depth of 0.2 m below the soil surface. During the measurement campaigns we found that both agriculturally managed sites acted as carbon and GHG sources but the rewetted agricultural peatland acted as a carbon and GHG sink. The terrestrial GHG source strength was 1.4 kg CO2-eq m-2 yr-1 for the intensively managed area and 1.0 kg CO2-eq m-2 yr-1 for the extensively managed area; the unmanaged area acted as a GHG sink of 0.7 kg CO2-eq m-2 yr-1. Water bodies contributed significantly to the terrestrial GHG balance because of a high release of CH4 and the loss of DOC only played a minor role. Adding the farm-based CO2 and CH4 emissions increased the source strength for the managed sites to 2.7 kg CO2-eq m-2 yr-1 for Oukoop and 2.1 kg CO2-eq m-2 yr-1 for Stein. Shifting from intensively managed to extensively managed grass-on-peat reduced GHG emissions mainly because N2O emission and farm-based CH4 emissions decreased. Overall, this study suggests that managed peatlands are large sources of GHG and carbon, but, if appropriate measures are taken they can be turned back into GHG and carbon sinks within 15 yr of abandonment and rewetting.
NASA Astrophysics Data System (ADS)
Lau, William Ka-Ming; Kim, Kyu-Myong
2017-05-01
In this paper, we have compared and contrasted competing influences of greenhouse gases (GHG) warming and aerosol forcing on Asian summer monsoon circulation and rainfall based on CMIP5 historical simulations. Under GHG-only forcing, the land warms much faster than the ocean, magnifying the pre-industrial climatological land-ocean thermal contrast and hemispheric asymmetry, i.e., warmer northern than southern hemisphere. A steady increasing warm-ocean-warmer-land (WOWL) trend has been in effect since the 1950's substantially increasing moisture transport from adjacent oceans, and enhancing rainfall over the Asian monsoon regions. However, under GHG warming, increased atmospheric stability due to strong reduction in mid-tropospheric and near surface relative humidity coupled to an expanding subsidence areas, associated with the Deep Tropical Squeeze (DTS, Lau and Kim, 2015b) strongly suppress monsoon convection and rainfall over subtropical and extratropical land, leading to a weakening of the Asian monsoon meridional circulation. Increased anthropogenic aerosol emission strongly masks WOWL, by over 60% over the northern hemisphere, negating to a large extent the rainfall increase due to GHG warming, and leading to a further weakening of the monsoon circulation, through increasing atmospheric stability, most likely associated with aerosol solar dimming and semi-direct effects. Overall, we find that GHG exerts stronger positive rainfall sensitivity, but less negative circulation sensitivity in SASM compared to EASM. In contrast, aerosols exert stronger negative impacts on rainfall, but less negative impacts on circulation in EASM compared to SASM.
Rena, Y G; Wang, J H; Li, H F; Zhang, J; Qi, P Y; Hu, Z
2013-01-01
Nitrous oxide (N2O) and methane (CH4) are two important greenhouse gases (GHG) emitted from biological nutrient removal (BNR) processes in municipal wastewater treatment plants (WWTP). In this study, three typical biological wastewater treatment processes were studied in WWTP of Northern China: pre-anaerobic carrousel oxidation ditch (A+OD) process, pre-anoxic anaerobic-anoxic-oxic (A-A/ A/O) process and reverse anaerobic-anoxic-oxic (r-A/ A/O) process. The N2O and CH4 emissions from these three different processes were measured in every processing unit of each WWTP. Results showed that N2O and CH4 were mainly discharged during the nitrification/denitrification process and the anaerobic/anoxic treatment process, respectively and the amounts of their formation and release were significantly influenced by different BNR processes implemented in these WWTP. The N2O conversion ratio of r-A/ A/O process was the lowest among the three WWTP, which were 10.9% and 18.6% lower than that of A-A/A/O process and A+OD process, respectively. Similarly, the CH4 conversion ratio of r-A/ A/O process was the lowest among the three WWTP, which were 89. I% and 80.8% lower than that of A-A/ A/O process and A+OD process, respectively. The factors influencing N2O and CH4 formation and emission in the three WWTP were investigated to explain the difference between these processes. The nitrite concentration and oxidation-reduction potential (ORP) value were found to be the dominant influencing factors affecting N2O and CH4 production, respectively. The flow-based emission factors of N2O and CH4 of the WWTP were figured out for better quantification of GHG emissions and further technical assessments of mitigation options.
Aguirre-Villegas, H A; Passos-Fonseca, T H; Reinemann, D J; Armentano, L E; Wattiaux, M A; Cabrera, V E; Norman, J M; Larson, R
2015-03-01
The objective of this study was to evaluate the effect of integrating dairy and bioenergy systems on land use, net energy intensity (NEI), and greenhouse gas (GHG) emissions. A reference dairy farm system representative of Wisconsin was compared with a system that produces dairy and bioenergy products. This integrated system investigates the effects at the farm level when the cow diet and manure management practices are varied. The diets evaluated were supplemented with varying amounts of dry distillers grains with solubles and soybean meal and were balanced with different types of forages. The manure-management scenarios included manure land application, which is the most common manure disposal method in Wisconsin, and manure anaerobic digestion (AD) to produce biogas. A partial life cycle assessment from cradle to farm gate was conducted, where the system boundaries were expanded to include the production of biofuels in the analysis and the environmental burdens between milk and bioenergy products were partitioned by system expansion. Milk was considered the primary product and the functional unit, with ethanol, biodiesel, and biogas considered co-products. The production of the co-products was scaled according to milk production to meet the dietary requirements of each selected dairy ration. Results indicated that land use was 1.6 m2, NEI was 3.86 MJ, and GHG emissions were 1.02 kg of CO2-equivalents per kilogram of fat- and protein-corrected milk (FPCM) for the reference system. Within the integrated dairy and bioenergy system, diet scenarios that maximize dry distillers grains with solubles and implement AD had the largest reduction of GHG emissions and NEI, but the greatest increase in land use compared with the reference system. Average land use ranged from 1.68 to 2.01 m2/kg of FPCM; NEI ranged from -5.62 to -0.73 MJ/kg of FPCM; and GHG emissions ranged from 0.63 to 0.77 kg of CO2-equivalents/kg of FPCM. The AD contributed 65% of the NEI and 77% of the GHG emission reductions. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Greenhouse gas (GHG) emissions are projected for various scenarios and the most appropriate approaches and technologies for mitigation are identified by NRMRL's Air Pollution Prevention and Control Division's Atmospheric Protection Branch (APB). These methods contribute to reduct...
Modeling travel choices to assess potential greenhouse gas emissions reductions.
DOT National Transportation Integrated Search
2015-06-01
The transportation sector is the source of approximately 27% of total U.S. greenhouse gas : (GHG) emissions (EPA, 2015), and these emissions are projected to increase in the future : (NHTSA, 2011). Given the potentially severe impacts of climate chan...
This rule finalizes the determination that canola oil biodiesel meets the lifecycle greenhouse gas (GHG) emission reduction threshold of 50 required by the Energy Independence and Security Act of 2007 (EISA).
NASA Astrophysics Data System (ADS)
Kroeger, K. D.; Crooks, S.; Moseman-Valtierra, S.; Tang, J.
2016-12-01
To date, activity related to carbon (C) management in coastal marine ecosystems (sometimes referred to as "Blue Carbon") has been concerned primarily with preserving existing C stocks or creating new wetlands to increase CO2 uptake and sequestration. Here we show that the globally-widespread occurrence of hydrologically-altered, degraded wetlands, and associated enhanced GHG emissions, presents an opportunity to reduce an anthropogenic GHG emission through restoration. We model the climatic forcing associated with carbon sinks in natural wetlands and with GHG emissions in altered and degraded wetlands, as well as compile geographic data on tidal restrictions to show that substantial methane (CH4) and CO2 emission reductions can be achieved through restoration of saline tidal flows in diked, impounded and tidally-restricted coastal wetlands. Despite high rates of carbon storage in coastal ecosystems, tidal restoration has dramatically greater potential per unit area as a climate intervention than most other ecosystem management actions. We argue that such emissions reductions represent avoided anthropogenic emissions, equivalent in concept to reduced fossil fuel emissions. Once the emissions have been avoided, the benefit of that action cannot be eliminated, even if emissions resume in the future due to degradation of the ecosystem. The avoided emissions therefore have inherent "permanence", obviating concerns associated with vulnerability of C stocks in land-use based interventions that enhance C sequestration in wood or soil. Further, emissions reductions are likely to be rapid, and given the high radiative efficiency of avoided CH4, wetland tidal restorations can provide near-term climate benefit. The U.S. has recently initiated an effort to include coastal wetlands in the Inventory of U.S. Greenhouse Gas Emissions and Sinks, and the analysis presented here indicates that tidally restricted wetlands meet the primary criteria for inventoried ecosystems in that they are managed landscapes, with substantial emissions and sinks. If other countries ultimately follow suit, then inclusion of these emissions in the U.S. Inventory will promote widespread recognition and management of the issue, and justify development of CH4 EF for tidal restrictions in IPCC guidance for GHG inventories.
Energy Feedback at the City-Wide Scale A comparison to building scale studies
NASA Astrophysics Data System (ADS)
Carter, Richard Allan
Climate change is a growing concern throughout the world. In the United States, leadership has so far failed to establish targeted reductions and agreement on mitigation strategies. Despite this, many large cities are taking on the challenge of measuring their emissions, establishing targeted reductions, and defining strategies for mitigation in the form of Climate Action Plans. Reporting of greenhouse gas (GHG) emissions by these cities is usually based on a one-time, annual calculation. Many studies have been conducted on the impact of providing energy use data or feedback to households, and in some cases, institutional or commercial businesses. In most of those studies, the act of providing feedback has resulted in a reduction of energy use, ranging from 2% to 15%, depending upon the features of the feedback. Many of these studies included only electric use. Studies where all energy use was reported are more accurate representations of GHG emissions. GHG emissions and energy use are not the same, depending on the fuel source and in the case of this paper, the focus is on reducing energy use. This research documents the characteristics of the feedback provided in those studies in order to determine which are most effective and should be considered for application to the community-wide scale. Eleven studies, including five primary and six secondary research papers, were reviewed and analyzed for the features of the feedback. Trends were established and evaluated with respect to their effectiveness and potential for use at the community-wide scale. This paper concludes that additional research is required to determine if the use of energy feedback at the city scale could result in savings similar to those observed at the household scale. This additional research could take advantage of the features assessed here in order to be more effective and to implement the features that are best able to scale up. Further research is needed to determine whether combining city-wide feedback with feedback for individual energy users within the city, both residential and commercial, has an even greater impact on reducing energy use and lowering GHG emissions.
NASA Astrophysics Data System (ADS)
Bowen, E. E.; Martin, P. A.; Schuble, T. J.
2009-12-01
Nationwide, cities are increasingly developing policies aimed at greater sustainability, particularly focusing on reducing environmental impact. Such policies commonly emphasize more efficiently using energy to decrease the greenhouse gas (GHG) footprint of the city. However, most plans ignore the food system as a factor in regional energy use and GHG emissions. Yet, the food system in the United States accounts for ~20% of per capita greenhouse gas emissions. Local, sustainable food production is cited as one strategy for mitigating GHG emissions of large metropolitan areas. “Sustainable” for regional agriculture is often identified as small-scale, diversified food crop production using best practices management. Localized food production (termed “foodshed”) using sustainable agriculture could mitigate climate change in multiple ways: (1) energy and therefore CO2-intensive portions of the conventional food system might be replaced by local, lower-input food production resulting in carbon offsets; (2) increased regional carbon storage might result from well-managed food crop production vs. commodity crop production; and (3) averted N2O emissions might result from closing nutrient cycles on agricultural lands following changes in management practices. The broader implications for environmental impact of widespread conversion to sustainable food crop agriculture, however, remain largely unknown. We examine the Chicago metropolitan region to quantify the impact of increased local food production on regional energy efficiency and GHG emissions. Geospatial analysis is used to quantify the resource potential for establishing a Chicago metropolitan foodshed. A regional foodshed is defined by minimizing cost through transportation mode (road, rail, or water) and maximizing the production potential of different soil types. Simple biogeochemical modeling is used to predict changes in N2O emissions and nutrient flows following changes in land management practices. Ultimately, quantification of impacts from changes in regional land use can inform regional planning for climate change mitigation strategies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wiser, Ryan; Millstein, Dev; Mai, Trieu
We estimate the environmental and public health benefits that may be realized if solar energy cost reductions continue until solar power is competitive across the U.S. without subsidies. Specifically, we model, from 2015 to 2050, solar power-induced reductions to greenhouse gas (GHG) emissions, air pollutant emissions, and water usage. To find the incremental benefits of new solar deployment, we compare the difference between two scenarios, one where solar costs have fallen such that solar supplies 14% of the nation's electricity by 2030 and 27% by 2050, and a baseline scenario in which no solar is added after 2014. We monetizemore » benefits, where credible methods exist to do so. We find that under these scenarios, solar power reduces GHG and air pollutants by ~10%, from 2015 to 2050, providing a discounted present value of $56-$789 billion (central value of ~$250 billion, equivalent to ~2 cents/kWh-solar) in climate benefits and $77-$298 billion (central value of $167 billion, or ~1.4 cents/kWh-solar) in air quality and public health benefits. The ranges reflect uncertainty within the literature about the marginal impact of emissions of GHG and air pollutants. Solar power is also found to reduce water withdrawals and consumption by 4% and 9%, respectively, including in many drought-prone states.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huo, Hong; Cai, Hao; Zhang, Qiang
We evaluated the fuel-cycle emissions of greenhouse gases (GHGs) and air pollutants (NOx, SO2, PM10, and PM2.5) of electric vehicles (EVs) in China and the United States (U.S.), two of the largest potential markets for EVs in the world. Six of the most economically developed and populated regions in China and the U.S. were selected. The results showed that EV fuel-cycle emissions depend substantially on the carbon intensity and cleanness of the electricity mix, and vary significantly across the regions studied. In those regions with a low share of coal-based electricity (e.g., California), EVs can reduce GHG and air pollutantmore » emissions (except for PM) significantly compared with conventional vehicles. However, in the Chinese regions and selected U.S. Midwestern states where coal dominates in the generation mix, EVs can reduce GHG emissions but increase the total and urban emissions of air pollutants. In 2025, EVs will offer greater reductions in GHG and air pollutant emissions because emissions from power plants will be better controlled; EVs in the Chinese regions examined, however, may still increase SO2 and PM emissions. Reductions of 60–85% in GHGs and air pollutants could be achieved were EVs charged with 80% renewable electricity or the electricity generated from the best available technologies of coal-fired power plants, which are futuristic power generation scenarios.« less
Life-cycle analysis of bio-based aviation fuels.
Han, Jeongwoo; Elgowainy, Amgad; Cai, Hao; Wang, Michael Q
2013-12-01
Well-to-wake (WTWa) analysis of bio-based aviation fuels, including hydroprocessed renewable jet (HRJ) from various oil seeds, Fischer-Tropsch jet (FTJ) from corn-stover and co-feeding of coal and corn-stover, and pyrolysis jet from corn stover, is conducted and compared with petroleum jet. WTWa GHG emission reductions relative to petroleum jet can be 41-63% for HRJ, 68-76% for pyrolysis jet and 89% for FTJ from corn stover. The HRJ production stage dominates WTWa GHG emissions from HRJ pathways. The differences in GHG emissions from HRJ production stage among considered feedstocks are much smaller than those from fertilizer use and N2O emissions related to feedstock collection stage. Sensitivity analyses on FTJ production from coal and corn-stover are also conducted, showing the importance of biomass share in the feedstock, carbon capture and sequestration options, and overall efficiency. For both HRJ and FTJ, co-product handling methods have significant impacts on WTWa results. Copyright © 2013 Elsevier Ltd. All rights reserved.
Co-benefits of mitigating global greenhouse gas emissions for future air quality and human health
DOE Office of Scientific and Technical Information (OSTI.GOV)
West, Jason; Smith, Steven J.; Silva, Raquel
2013-10-01
Reducing greenhouse gas (GHG) emissions also influences air quality. We simulate the co-benefits of global GHG reductions on air quality and human health via two mechanisms: a) reducing co-emitted air pollutants, and b) slowing climate change and its effect on air quality. Relative to a reference scenario, global GHG mitigation in the RCP4.5 scenario avoids 0.5±0.2, 1.3±0.6, and 2.2±1.6 million premature deaths in 2030, 2050, and 2100, from changes in fine particulate matter and ozone. Global average marginal co-benefits of avoided mortality are $40-400 (ton CO2)-1, exceeding marginal abatement costs in 2030 and 2050, and within the low range ofmore » costs in 2100. East Asian co-benefits are 10-80 times the marginal cost in 2030. These results indicate that transitioning to a low-carbon future might be justified by air quality and health co-benefits.« less
Energy transition in transport sector from energy substitution perspective
NASA Astrophysics Data System (ADS)
Sun, Wangmin; Yang, Xiaoguang; Han, Song; Sun, Xiaoyang
2017-10-01
Power and heating generation sector and transport sector contribute a highest GHG emissions and even air pollutions. This paper seeks to investigate life cycle costs and emissions in both the power sector and transport sector, and evaluate the cost-emission efficient (costs for one unit GHG emissions) of the substitution between new energy vehicles and conventional gasoline based vehicles under two electricity mix scenarios. In power sector, wind power and PV power will be cost comparative in 2030 forecasted with learning curve method. With high subsidies, new energy cars could be comparative now, but it still has high costs to lower GHG emissions. When the government subsidy policy is reversible, the emission reduction cost for new energy vehicle consumer will be 900/ton. According to the sensitive analysis, the paper suggests that the government implement policies that allocate the cost to the whole life cycle of energy production and consumption related to transport sector energy transition and policies that are in favor of new energy vehicle consumers but not the new energy car producers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
The U.S. Department of Energy (DOE) and U.S. General Services Administration (GSA) are issuing comprehensive guidance on the federal fleet requirements of Executive Order (E.O.) 13693, Planning for Federal Sustainability in the Next Decade (E.O. 13693), to help federal agencies subject to the executive order develop an overall approach for reducing total fleet greenhouse gas (GHG) emissions and fleet-wide per-mile GHG emissions, and ensure the approach helps these agencies meet their requirements. Three key GHG emissions reduction strategies - right-sizing fleets to mission, increasing fleet fuel efficiency, and displacing petroleum with alternative fuel use - are essential to meeting themore » requirements and are discussed further in this document. This guidance document is intended to help agency Chief Sustainability Officers (CSOs) and headquarters fleet managers craft tailored executable plans that achieve the purpose of E.O. 13693. The guidance will assist agencies in completing the first phase of a comprehensive fleet management framework by identifying the strategies each agency will then implement to meet or exceed its requirements.« less
Impact of public electric vehicle charging infrastructure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Levinson, Rebecca S.; West, Todd H.
Our work uses market analysis and simulation to explore the potential of public charging infrastructure to spur US battery electric vehicle (BEV) sales, increase national electrified mileage, and lower greenhouse gas (GHG) emissions. By employing both scenario and parametric analysis for policy driven injection of public charging stations we find the following: (1) For large deployments of public chargers, DC fast chargers are more effective than level 2 chargers at increasing BEV sales, increasing electrified mileage, and lowering GHG emissions, even if only one DC fast charging station can be built for every ten level 2 charging stations. (2) Amore » national initiative to build DC fast charging infrastructure will see diminishing returns on investment at approximately 30,000 stations. (3) Some infrastructure deployment costs can be defrayed by passing them back to electric vehicle consumers, but once those costs to the consumer reach the equivalent of approximately 12¢/kWh for all miles driven, almost all gains to BEV sales and GHG emissions reductions from infrastructure construction are lost.« less
Impact of public electric vehicle charging infrastructure
Levinson, Rebecca S.; West, Todd H.
2017-10-16
Our work uses market analysis and simulation to explore the potential of public charging infrastructure to spur US battery electric vehicle (BEV) sales, increase national electrified mileage, and lower greenhouse gas (GHG) emissions. By employing both scenario and parametric analysis for policy driven injection of public charging stations we find the following: (1) For large deployments of public chargers, DC fast chargers are more effective than level 2 chargers at increasing BEV sales, increasing electrified mileage, and lowering GHG emissions, even if only one DC fast charging station can be built for every ten level 2 charging stations. (2) Amore » national initiative to build DC fast charging infrastructure will see diminishing returns on investment at approximately 30,000 stations. (3) Some infrastructure deployment costs can be defrayed by passing them back to electric vehicle consumers, but once those costs to the consumer reach the equivalent of approximately 12¢/kWh for all miles driven, almost all gains to BEV sales and GHG emissions reductions from infrastructure construction are lost.« less
Life cycle greenhouse gas emissions and freshwater consumption of Marcellus shale gas.
Laurenzi, Ian J; Jersey, Gilbert R
2013-05-07
We present results of a life cycle assessment (LCA) of Marcellus shale gas used for power generation. The analysis employs the most extensive data set of any LCA of shale gas to date, encompassing data from actual gas production and power generation operations. Results indicate that a typical Marcellus gas life cycle yields 466 kg CO2eq/MWh (80% confidence interval: 450-567 kg CO2eq/MWh) of greenhouse gas (GHG) emissions and 224 gal/MWh (80% CI: 185-305 gal/MWh) of freshwater consumption. Operations associated with hydraulic fracturing constitute only 1.2% of the life cycle GHG emissions, and 6.2% of the life cycle freshwater consumption. These results are influenced most strongly by the estimated ultimate recovery (EUR) of the well and the power plant efficiency: increase in either quantity will reduce both life cycle freshwater consumption and GHG emissions relative to power generated at the plant. We conclude by comparing the life cycle impacts of Marcellus gas and U.S. coal: The carbon footprint of Marcellus gas is 53% (80% CI: 44-61%) lower than coal, and its freshwater consumption is about 50% of coal. We conclude that substantial GHG reductions and freshwater savings may result from the replacement of coal-fired power generation with gas-fired power generation.
Yano, Junya; Hirai, Yasuhiro; Sakai, Shin-ichi; Tsubota, Jun
2014-04-01
The purpose of this study was to quantify the life-cycle greenhouse gas (GHG) emissions reduction that could be achieved by replacement of fossil-derived materials with biodegradable, biomass-based materials for household plastic containers and packaging, considering a variety of their treatment options. The biomass-based materials were 100% polylactide or a combination of polybutylene succinate adipate and polylactide. A scenario analysis was conducted considering alternative recycling methods. Five scenarios were considered: two for existing fossil-derived materials (the current approach in Japan) and the three for biomass-based materials. Production and waste disposal of 1 m(3) of plastic containers and packaging from households was defined as the functional unit. The results showed that replacement of fossil-derived materials with biomass-based materials could reduce life-cycle GHG emissions by 14-20%. Source separation and recycling should be promoted. When the separate collection ratio reached 100%, replacement with biomass-based materials could potentially reduce GHG emissions by 31.9%. Food containers are a priority for replacement, because they alone could reduce GHG emissions by 10%. A recycling system for biomass-based plastics must be carefully designed, considering aspects such as the transition period from fossil-derived plastics to biomass-based plastics.
Implications of shale gas development for climate change.
Newell, Richard G; Raimi, Daniel
2014-01-01
Advances in technologies for extracting oil and gas from shale formations have dramatically increased U.S. production of natural gas. As production expands domestically and abroad, natural gas prices will be lower than without shale gas. Lower prices have two main effects: increasing overall energy consumption, and encouraging substitution away from sources such as coal, nuclear, renewables, and electricity. We examine the evidence and analyze modeling projections to understand how these two dynamics affect greenhouse gas emissions. Most evidence indicates that natural gas as a substitute for coal in electricity production, gasoline in transport, and electricity in buildings decreases greenhouse gases, although as an electricity substitute this depends on the electricity mix displaced. Modeling suggests that absent substantial policy changes, increased natural gas production slightly increases overall energy use, more substantially encourages fuel-switching, and that the combined effect slightly alters economy wide GHG emissions; whether the net effect is a slight decrease or increase depends on modeling assumptions including upstream methane emissions. Our main conclusions are that natural gas can help reduce GHG emissions, but in the absence of targeted climate policy measures, it will not substantially change the course of global GHG concentrations. Abundant natural gas can, however, help reduce the costs of achieving GHG reduction goals.
Toward accurate and valid estimates of greenhouse gas reductions from bikeway projects.
DOT National Transportation Integrated Search
2016-07-31
We sought to accurately and validly model emissions generating and activities, including changes in traveler behavior and thus GHG : emissions in the wake of bikeway projects. We wanted the results to be applicable to practice and policy in Californi...
DOT National Transportation Integrated Search
2010-09-01
Tools are proposed for carbon footprint estimation of transportation construction projects and decision support : for construction firms that must make equipment choice and usage decisions that affect profits, project duration : and greenhouse gas em...
Greenhouse gas emissions from aviation and marine transportation : mitigation potential and policies
DOT National Transportation Integrated Search
2009-12-01
This paper provides an overview of greenhouse gas (GHG) emissions : from aviation and marine transportation and the various mitigation options to reduce these emissions. Reducing global emissions by 50 to 80 percent below 1990 levels by 2050reduct...
DOT National Transportation Integrated Search
2012-01-01
Floridas remarkable transportation infrastructure is a key to its economic vitality, but transportation is also the single largest contributor to air pollution. Pollutants such as greenhouse gases (GHG) degrade air quality and contribute to climat...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singer, M.; Daley, R.
This report focuses on the National Renewable Energy Laboratory's (NREL) fiscal year (FY) 2012 effort that used the NREL Optimal Vehicle Acquisition (NOVA) analysis to identify optimal vehicle acquisition recommendations for eleven diverse federal agencies. Results of the study show that by following a vehicle acquisition plan that maximizes the reduction in greenhouse gas (GHG) emissions, significant progress is also made toward the mandated complementary goals of acquiring alternative fuel vehicles, petroleum use reduction, and alternative fuel use increase.
Energy demand for materials in an international context.
Worrell, Ernst; Carreon, Jesus Rosales
2017-06-13
Materials are everywhere and have determined society. The rapid increase in consumption of materials has led to an increase in the use of energy and release of greenhouse gas (GHG) emissions. Reducing emissions in material-producing industries is a key challenge. If all of industry switched to current best practices, the energy-efficiency improvement potential would be between 20% and 35% for most sectors. While these are considerable potentials, especially for sectors that have historically paid a lot of attention to energy-efficiency improvement, realization of these potentials under current 'business as usual' conditions is slow due to a large variety of barriers and limited efforts by industry and governments around the world. Importantly, the potentials are not sufficient to achieve the deep reductions in carbon emissions that will be necessary to stay within the climate boundaries as agreed in the 2015 Paris Conference of Parties. Other opportunities need to be included in the menu of options to mitigate GHG emissions. It is essential to develop integrated policies combining energy efficiency, renewable energy and material efficiency and material demand reduction, offering the most economically attractive way to realize deep reductions in carbon emissions.This article is part of the themed issue 'Material demand reduction'. © 2017 The Author(s).
NASA Astrophysics Data System (ADS)
Tang, Guoping; Zheng, Jianqiu; Yang, Ziming; Graham, David; Gu, Baohua; Mayes, Melanie; Painter, Scott; Thornton, Peter
2016-04-01
Among the coupled thermal, hydrological, geochemical, and biological processes, redox processes play major roles in carbon and nutrient cycling and greenhouse gas (GHG) emission. Increasingly, mechanistic representation of redox processes is acknowledged as necessary for accurate prediction of GHG emission in the assessment of land-atmosphere interactions. Simple organic substrates, Fe reduction, microbial reactions, and the Windermere Humic Aqueous Model (WHAM) were added to a reaction network used in the land component of an Earth system model. In conjunction with this amended reaction network, various temperature response functions used in ecosystem models were assessed for their ability to describe experimental observations from incubation tests with arctic soils. Incorporation of Fe reduction reactions improves the prediction of the lag time between CO2 and CH4 accumulation. The inclusion of the WHAM model enables us to approximately simulate the initial pH drop due to organic acid accumulation and then a pH increase due to Fe reduction without parameter adjustment. The CLM4.0, CENTURY, and Ratkowsky temperature response functions better described the observations than the Q10 method, Arrhenius equation, and ROTH-C. As electron acceptors between O2 and CO2 (e.g., Fe(III), SO42-) are often involved, our results support inclusion of these redox reactions for accurate prediction of CH4 production and consumption. Ongoing work includes improving the parameterization of organic matter decomposition to produce simple organic substrates, examining the influence of redox potential on methanogenesis under thermodynamically favorable conditions, and refining temperature response representation near the freezing point by additional model-experiment iterations. We will use the model to describe observed GHG emission at arctic and tropical sites.
Jensen, Henning Tarp; Keogh-Brown, Marcus R; Smith, Richard D; Chalabi, Zaid; Dangour, Alan D; Davies, Mike; Edwards, Phil; Garnett, Tara; Givoni, Moshe; Griffiths, Ulla; Hamilton, Ian; Jarrett, James; Roberts, Ian; Wilkinson, Paul; Woodcock, James; Haines, Andy
We employ a single-country dynamically-recursive Computable General Equilibrium model to make health-focussed macroeconomic assessments of three contingent UK Greenhouse Gas (GHG) mitigation strategies, designed to achieve 2030 emission targets as suggested by the UK Committee on Climate Change. In contrast to previous assessment studies, our main focus is on health co-benefits additional to those from reduced local air pollution. We employ a conservative cost-effectiveness methodology with a zero net cost threshold. Our urban transport strategy (with cleaner vehicles and increased active travel) brings important health co-benefits and is likely to be strongly cost-effective; our food and agriculture strategy (based on abatement technologies and reduction in livestock production) brings worthwhile health co-benefits, but is unlikely to eliminate net costs unless new technological measures are included; our household energy efficiency strategy is likely to breakeven only over the long term after the investment programme has ceased (beyond our 20 year time horizon). We conclude that UK policy makers will, most likely, have to adopt elements which involve initial net societal costs in order to achieve future emission targets and longer-term benefits from GHG reduction. Cost-effectiveness of GHG strategies is likely to require technological mitigation interventions and/or demand-constraining interventions with important health co-benefits and other efficiency-enhancing policies that promote internalization of externalities. Health co-benefits can play a crucial role in bringing down net costs, but our results also suggest the need for adopting holistic assessment methodologies which give proper consideration to welfare-improving health co-benefits with potentially negative economic repercussions (such as increased longevity).
Özkan Gülzari, Şeyda; Vosough Ahmadi, Bouda; Stott, Alistair W
2018-02-01
Impaired animal health causes both productivity and profitability losses on dairy farms, resulting in inefficient use of inputs and increase in greenhouse gas (GHG) emissions produced per unit of product (i.e. emissions intensity). Here, we used subclinical mastitis as an exemplar to benchmark alternative scenarios against an economic optimum and adjusted herd structure to estimate the GHG emissions intensity associated with varying levels of disease. Five levels of somatic cell count (SCC) classes were considered namely 50,000 (i.e. SCC50), 200,000, 400,000, 600,000 and 800,000cells/mL (milliliter) of milk. The effects of varying levels of SCC on milk yield reduction and consequential milk price penalties were used in a dynamic programming (DP) model that maximizes the profit per cow, represented as expected net present value, by choosing optimal animal replacement rates. The GHG emissions intensities associated with different levels of SCC were then computed using a farm-scale model (HolosNor). The total culling rates of both primiparous (PP) and multiparous (MP) cows for the five levels of SCC scenarios estimated by the model varied from a minimum of 30.9% to a maximum of 43.7%. The expected profit was the highest for cows with SCC200 due to declining margin over feed, which influenced the DP model to cull and replace more animals and generate higher profit under this scenario compared to SCC50. The GHG emission intensities for the PP and MP cows with SCC50 were 1.01kg (kilogram) and 0.95kg carbon dioxide equivalents (CO 2 e) per kg fat and protein corrected milk (FPCM), respectively, with the lowest emissions being achieved in SCC50. Our results show that there is a potential to reduce the farm GHG emissions intensity by 3.7% if the milk production was improved through reducing the level of SCC to 50,000cells/mL in relation to SCC level 800,000cells/mL. It was concluded that preventing and/or controlling subclinical mastitis consequently reduces the GHG emissions per unit of product on farm that results in improved profits for the farmers through reductions in milk losses, optimum culling rate and reduced feed and other variable costs. We suggest that further studies exploring the impact of a combination of diseases on emissions intensity are warranted. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Arnieri, Fabrizio; Caprio, Enrico; Nervo, Beatrice; Pelissetti, Simone; Palestrini, Claudia; Roslin, Tomas; Rolando, Antonio
2017-01-01
Cattle farming is a major source of greenhouse gases (GHGs). Recent research suggests that GHG fluxes from dung pats could be affected by biotic interactions involving dung beetles. Whether and how these effects vary among beetle species and with assemblage composition is yet to be established. To examine the link between GHGs and different dung beetle species assemblages, we used a closed chamber system to measure fluxes of carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) from cattle dung pats. Targeting a total of four dung beetle species (a pat-dwelling species, a roller of dung balls, a large and a small tunnelling species), we ran six experimental treatments (four monospecific and two mixed) and two controls (one with dung but without beetles, and one with neither dung nor beetles). In this setting, the overall presence of beetles significantly affected the gas fluxes, but different species contributed unequally to GHG emissions. When compared to the control with dung, we detected an overall reduction in the total cumulative CO2 flux from all treatments with beetles and a reduction in N2O flux from the treatments with the three most abundant dung beetle species. These reductions can be seen as beneficial ecosystem services. Nonetheless, we also observed a disservice provided by the large tunneler, Copris lunaris, which significantly increased the CH4 flux–an effect potentially traceable to the species’ nesting strategy involving the construction of large brood balls. When fluxes were summed into CO2-equivalents across individual GHG compounds, dung with beetles proved to emit less GHGs than did beetle-free dung, with the mix of the three most abundant species providing the highest reduction (-32%). As the mix of multiple species proved the most effective in reducing CO2-equivalents, the conservation of diverse assemblages of dung beetles emerges as a priority in agro-pastoral ecosystems. PMID:28700590
Global land-use and market interactions between climate and bioenergy policies
NASA Astrophysics Data System (ADS)
Golub, A.; Hertel, T. W.; Rose, S. K.
2011-12-01
Over the past few years, interest in bioenergy has boomed with higher oil prices and concerns about energy security, farm incomes, and mitigation of climate change. Large-scale commercial bioenergy production could have far reaching implications for regional and global land use and output markets associated with food, forestry, chemical, and energy sectors, as well as household welfare. Similarly, there is significant interest in international agricultural and forestry based carbon sequestration and greenhouse gas (GHG) mitigation policies, which could also provide revenue to developing countries and farmers in exchange for modifying land management practices. However, bioenergy and climate policies are being formulated largely independent of one another. Understanding the interaction between these potentially competing policy objectives is important for identifying possible constraints that one policy might place on the other, potential complementarities that could be exploited in policy design, and net land-use change and management implications over time. This study develops a new dynamic global computable general equilibrium (CGE) model GDyn-E-AEZ to assess the interaction between biofuels production and climate mitigation policies. The model is built on several existing CGE platforms, including 1) GTAP-AEZ-GHG model (Golub et al., 2009), 2) GTAP-BIO (Birur et al., 2008; Taheripour and Tyner, 2011), and 3) GDyn framework (Ianchovichina and McDougall, 2001) extended to investigate the role of population and per capita income growth, changing consumption patterns, and global economic integration in determining long-run patterns of land-use change. The new model is used to assess the effects of domestic and global bioenergy expansion on future land use, as well as sectoral, regional and global GHG emissions mitigation potential. Do bioenergy programs facilitate or constrain GHG mitigation opportunities? For instance, Golub et al. (2009) estimate substantial GHG mitigation potential in non-US forests (8.9 GtCO2yr-1 at $27/tCO2eq). Furthermore, a carbon tax could lead to input substitution in agricultural production away from land and fertilizer (e.g., in China, an approximate 20% reduction in paddy rice acreage and 10% reduction in crop production fertilizer use at the same GHG price). Both results run counter to the changes in land-use induced by biofuels. However, given the energy security benefits for bioenergy, this study also evaluate whether a land GHG policy could manage international indirect land-use leakage concerns for bioenergy. In addition to a global perspective, a US perspective is taken to evaluate the implications of joint and separate bioenergy and climate policies on domestic offset and bioenergy supplies. Preliminary results indicate that US biofuels mandate reduces the global abatement potential for agriculture and forestry and thereby imposes an additional cost on society. There are regional comparative advantages in biofuels production (as well as non-biofuels crops and timber production). There are also regional comparative advantages in land-based GHG mitigation. By modeling bioenergy and climate policies separately and simultaneously, this study assess the net comparative advantage regions have in meeting these two sets of goals.
Progress toward an Integrated Global GHG Information System (IG3IS)
NASA Astrophysics Data System (ADS)
DeCola, Philip
2016-04-01
Accurate and precise atmospheric measurements of greenhouse gas (GHG) concentrations have shown the inexorable rise of global GHG concentrations due to human socioeconomic activity. Scientific observations also show a resulting rise in global temperatures and evidence of negative impacts on society. In response to this amassing evidence, nations, states, cities and private enterprises are accelerating efforts to reduce emissions of GHGs, and the UNFCCC process recently forged the Paris Agreement. Emission reduction strategies will vary by nation, region, and economic sector (e.g., INDCs), but regardless of the strategies and mechanisms applied, the ability to implement policies and manage them effectively over time will require consistent, reliable and timely information. A number of studies [e.g., Verifying Greenhouse Gas Emissions: Methods to Support International Climate Agreements (2010); GEO Carbon Strategy (2010); IPCC Task Force on National GHG Inventories: Expert Meeting Report on Uncertainty and Validation of Emission Inventories (2010)] have reported on the state of carbon cycle research, observations and models and the ability of these atmospheric observations and models to independently validate and improve the accuracy of self-reported emission inventories based on fossil fuel usage and land use activities. These studies concluded that by enhancing our in situ and remote-sensing observations and atmospheric data assimilation modeling capabilities, a GHG information system could be achieved in the coming decade to serve the needs of policies and actions to reduce GHG emissions. Atmospheric measurements and models are already being used to provide emissions information on a global and continental scale through existing networks, but these efforts currently provide insufficient information at the human-dimensions where nations, states, cities, and private enterprises can take valuable, and additional action that can reduce emissions for a specific GHG from a specific human activity. Based upon the recent advances in GHG observation technologies, new data-mining tools for acquiring socioeconomic activity data, and enhancements to the computational models used to merge this data, WMO and its partners are developing a plan for an Integrated Global GHG Information System (IG3IS) able to evaluate the efficacy of policy, reduce emission inventory uncertainty, and inform additional mitigation actions. The presentation will cover the principles and objectives of IG3IS, as well as progress toward answering the questions: What research capabilities are ready and able to deliver useful information for whom? What decisions will be informed? What valuable and additional outcomes will result?
Greenhouse gas emissions from production chain of a cigarette manufacturing industry in Pakistan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hussain, Majid, E-mail: majid_qau86@yahoo.com; Department of Forestry and Wildlife Management, University of Haripur, Hattar Road, Khyber Pakhtunkhwa, Haripur 22620; Zaidi, Syed Mujtaba Hasnian
This study quantified greenhouse gas (GHG) emissions from the Pakistan Tobacco Company (PTC) production using a life cycle approach. The PTC production chain comprises of two phases: agricultural activities (Phase I) and industrial activities (Phase II). Data related to agricultural and industrial activities of PTC production chain were collected through questionnaire survey from tobacco growers and records from PTC manufacturing units. The results showed that total GHG emissions from PTC production chain were 44,965, 42,875, and 43,839 tCO{sub 2}e respectively in 2009, 2010, and 2011. Among the agricultural activities, firewood burning for tobacco curing accounted for about 3117, 3565, andmore » 3264 tCO{sub 2}e, fertilizer application accounted for 754, 3251, and 4761 tCO{sub 2}e in 2009, 2010, and 2011, respectively. Among the industrial activities, fossil fuels consumption in stationary sources accounted for 15,582, 12,733, and 13,203 tCO{sub 2}e, fossil fuels used in mobile sources contributed to 2693, 3038, and 3260 tCO{sub 2}e, and purchased electricity consumed resulted in 15,177, 13,556, and 11,380 tCO{sub 2}e in 2009, 2010, and 2011, respectively. The GHG emissions related to the transportation of raw materials and processed tobacco amounted to 6800, 6301, and 7317 respectively in 2009, 2010, and 2011. GHG emissions from energy use in the industrial activities constituted the largest emissions (i.e., over 80%) of GHG emissions as PTC relies on fossil fuels and fossil fuel based electrical power in industrial processes. The total emissions of carbon footprint (CFP) from PTC production were 0.647 tCO{sub 2}e per million cigarettes produced in 2009, 0.675 tCO{sub 2}e per million cigarettes in 2010 and 0.59 tCO{sub 2}e per million cigarettes in 2011. Potential strategies for GHG emissions reductions for PTC production chain include energy efficiency, reducing reliance on fossil fuels in non-mobile sources, adoption of renewable fuels including solar energy, energy from crop residues, and promotion of organic fertilizers. - Highlights: • We quantified greenhouse gas (GHG) emissions from the Pakistan Tobacco Company (PTC). • PTC production chain comprises of two phases: agricultural and industrial activities. • GHG emissions accounts to 44,965, 42,875 and 43,839 tCO{sub 2}e in 2009, 2010, and 2011, respectively. • GHG emissions from energy use in the industrial activities constituted the largest emissions i.e. 80%. • Implications for GHG emissions mitigation strategies for PTC are also discussed in detail.« less
Larrea-Gallegos, Gustavo; Villanueva-Rey, Pedro; Gilardino, Alessandro
2017-01-01
Food consumption accounts for an important proportion of the world GHG emissions per capita. Previous studies have delved into the nature of dietary patterns, showing that GHG reductions can be achieved in diets if certain foods are consumed rather than other, more GHG intensive products. For instance, vegetarian and low-meat diets have proved to be less carbon intensive than diets that are based on ruminant meat. These environmental patterns, increasingly analyzed in developed nations, are yet to be assessed in countries liked Peru where food purchase represents a relatively high percentage of the average household expenditure, ranging from 38% to 51% of the same. Therefore, food consumption can be identified as a potential way to reduce GHG emissions in Peru. However, the Peruvian government lacks a specific strategy to mitigate emissions in this sector, despite the recent ratification of the Paris Accord. In view of this, the main objective of this study is to analyze the environmental impacts of a set of 47 Peruvian food diet profiles, including geographical and socioeconomic scenarios. In order to do this, Life Cycle Assessment was used as the methodological framework to obtain the overall impacts of the components in the dietary patterns observed and primary data linked to the composition of diets were collected from the Peruvian National Institute for Statistics (INEI). Life cycle inventories for the different products that are part of the Peruvian diet were obtained from a set of previous scientific articles and reports regarding food production. Results were computed using the IPCC 2013 assessment method to estimate GHG emissions. Despite variations in GHG emissions from a geographical perspective, no significant differences were observed between cities located in the three Peruvian natural regions (i.e., coast, Andes and Amazon basin). In contrast, there appears to be a strong, positive correlation between GHG emissions and social expenditure or academic status. When compared to GHG emissions computed in the literature for developed nations, where the average caloric intake is substantially higher, diet-related emissions in Peru were in the low range. Our results could be used as a baseline for policy support to align nutritional and health policies in Peru with the need to reduce the environmental impacts linked to food production. PMID:29145461
Vázquez-Rowe, Ian; Larrea-Gallegos, Gustavo; Villanueva-Rey, Pedro; Gilardino, Alessandro
2017-01-01
Food consumption accounts for an important proportion of the world GHG emissions per capita. Previous studies have delved into the nature of dietary patterns, showing that GHG reductions can be achieved in diets if certain foods are consumed rather than other, more GHG intensive products. For instance, vegetarian and low-meat diets have proved to be less carbon intensive than diets that are based on ruminant meat. These environmental patterns, increasingly analyzed in developed nations, are yet to be assessed in countries liked Peru where food purchase represents a relatively high percentage of the average household expenditure, ranging from 38% to 51% of the same. Therefore, food consumption can be identified as a potential way to reduce GHG emissions in Peru. However, the Peruvian government lacks a specific strategy to mitigate emissions in this sector, despite the recent ratification of the Paris Accord. In view of this, the main objective of this study is to analyze the environmental impacts of a set of 47 Peruvian food diet profiles, including geographical and socioeconomic scenarios. In order to do this, Life Cycle Assessment was used as the methodological framework to obtain the overall impacts of the components in the dietary patterns observed and primary data linked to the composition of diets were collected from the Peruvian National Institute for Statistics (INEI). Life cycle inventories for the different products that are part of the Peruvian diet were obtained from a set of previous scientific articles and reports regarding food production. Results were computed using the IPCC 2013 assessment method to estimate GHG emissions. Despite variations in GHG emissions from a geographical perspective, no significant differences were observed between cities located in the three Peruvian natural regions (i.e., coast, Andes and Amazon basin). In contrast, there appears to be a strong, positive correlation between GHG emissions and social expenditure or academic status. When compared to GHG emissions computed in the literature for developed nations, where the average caloric intake is substantially higher, diet-related emissions in Peru were in the low range. Our results could be used as a baseline for policy support to align nutritional and health policies in Peru with the need to reduce the environmental impacts linked to food production.
Optimizing Resource and Energy Recovery for Municipal Solid Waste Management
Significant reductions of carbon emissions and air quality impacts can be achieved by optimizing municipal solid waste (MSW) as a resource. Materials and discards management were found to contribute ~40% of overall U.S. GHG emissions as a result of materials extraction, transpo...
Carbon offsets from improved swine manure management using aerobic treatment technology
USDA-ARS?s Scientific Manuscript database
Aerobic treatment of manure is an accepted manure management system under protocols adopted through the United Nations Framework Convention on Climate Change (UNFCCC). Our objectives were to determine greenhouse gas (GHG) emission reductions from replacement of anaerobic lagoons with aerobic treatme...
Performance of biofuel processes utilising separate lignin and carbohydrate processing.
Melin, Kristian; Kohl, Thomas; Koskinen, Jukka; Hurme, Markku
2015-09-01
Novel biofuel pathways with increased product yields are evaluated against conventional lignocellulosic biofuel production processes: methanol or methane production via gasification and ethanol production via steam-explosion pre-treatment. The novel processes studied are ethanol production combined with methanol production by gasification, hydrocarbon fuel production with additional hydrogen produced from lignin residue gasification, methanol or methane synthesis using synthesis gas from lignin residue gasification and additional hydrogen obtained by aqueous phase reforming in synthesis gas production. The material and energy balances of the processes were calculated by Aspen flow sheet models and add on excel calculations applicable at the conceptual design stage to evaluate the pre-feasibility of the alternatives. The processes were compared using the following criteria: energy efficiency from biomass to products, primary energy efficiency, GHG reduction potential and economy (expressed as net present value: NPV). Several novel biorefinery concepts gave higher energy yields, GHG reduction potential and NPV. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Heinonen, Jukka; Jalas, Mikko; Juntunen, Jouni K.; Ala-Mantila, Sanna; Junnila, Seppo
2013-06-01
An extensive body of literature demonstrates how higher density leads to more efficient energy use and lower greenhouse gas (GHG) emissions from transport and housing. However, our current understanding seems to be limited on the relationships between the urban form and the GHG emissions, namely how the urban form affects the lifestyles and thus the GHGs on a much wider scale than traditionally assumed. The urban form affects housing types, commuting distances, availability of different goods and services, social contacts and emulation, and the alternatives for pastimes, meaning that lifestyles are actually situated instead of personal projects. As almost all consumption, be it services or products, involves GHG emissions, looking at the emissions from transport and housing may not be sufficient to define whether one form would be more desirable than another. In the paper we analyze the urban form-lifestyle relationships in Finland together with the resulting GHG implications, employing both monetary expenditure and time use data to portray lifestyles in different basic urban forms: metropolitan, urban, semi-urban and rural. The GHG implications are assessed with a life cycle assessment (LCA) method that takes into account the GHG emissions embedded in different goods and services. The paper depicts that, while the direct emissions from transportation and housing energy slightly decrease with higher density, the reductions can be easily overridden by sources of indirect emissions. We also highlight that the indirect emissions actually seem to have strong structural determinants, often undermined in studies concerning sustainable urban forms. Further, we introduce a concept of ‘parallel consumption’ to explain how the lifestyles especially in more urbanized areas lead to multiplication of consumption outside of the limits of time budget and the living environment. This is also part I of a two-stage study. In part II we will depict how various other contextual and socioeconomic variables are actually also very important to take into account, and how diverse GHG mitigation strategies would be needed for different types of area in different locations towards a low-carbon future.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balbus, John M.; Greenblatt, Jeffery B.; Chari, Ramya
While it has been recognized that actions reducing greenhouse gas (GHG) emissions can have significant positive and negative impacts on human health through reductions in ambient fine particulate matter (PM2.5) concentrations, these impacts are rarely taken into account when analyzing specific policies. This study presents a new framework for estimating the change in health outcomes resulting from implementation of specific carbon dioxide (CO 2) reduction activities, allowing comparison of different sectors and options for climate mitigation activities. Our estimates suggest that in the year 2020, the reductions in adverse health outcomes from lessened exposure to PM2.5 would yield economic benefitsmore » in the range of $6 to $14 billion (in 2008 USD), depending on the specific activity. This equates to between $40 and $93 per metric ton of CO 2 in health benefits. Specific climate interventions will vary in the health co-benefits they provide as well as in potential harms that may result from their implementation. Rigorous assessment of these health impacts is essential for guiding policy decisions as efforts to reduce GHG emissions increase in scope and intensity.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Couth, R.; Trois, C., E-mail: troisc@ukzn.ac.za
Highlights: Black-Right-Pointing-Pointer This is a compendium on GHG reductions via improved waste strategies in Africa. Black-Right-Pointing-Pointer This note provides a strategic framework for Local Authorities in Africa. Black-Right-Pointing-Pointer Assists LAs to select Zero Waste scenarios and achieve sustained GHG reduction. - Abstract: Only few Clean Development Mechanism (CDM) projects (traditionally focussed on landfill gas combustion) have been registered in Africa if compared to similar developing countries. The waste hierarchy adopted by many African countries clearly shows that waste recycling and composting projects are generally the most sustainable. This paper undertakes a sustainability assessment for practical waste treatment and disposal scenariosmore » for Africa and makes recommendations for consideration. The appraisal in this paper demonstrates that mechanical biological treatment of waste becomes more financially attractive if established through the CDM process. Waste will continue to be dumped in Africa with increasing greenhouse gas emissions produced, unless industrialised countries (Annex 1) fund carbon emission reduction schemes through a replacement to the Kyoto Protocol. Such a replacement should calculate all of the direct and indirect carbon emission savings and seek to promote public-private partnerships through a concerted support of the informal sector.« less
NASA Astrophysics Data System (ADS)
Campos, Jorge; Barbado, Elena; Maldonado, Mariano; Andreu, Gemma; López de Fuentes, Pilar
2016-04-01
As it well-known, agricultural soil fertilization increases the rate of greenhouse gas (GHG) emission production such as CO2, CH4 and N2O. Participation share of this activity on the climate change is currently under study, as well as the mitigation possibilities. In this context, we considered that it would be interesting to know how this share is in the case of organic farming. In relation to this, a field experiment was carried out at the organic garden of the School of Agricultural, Food and Biosystems Engineering (ETSIAAB) in the Technical University of Madrid (UPM). The orchard included different management growing areas, corresponding to different schools of organic farming. Soil and gas samples were taken from these different sites. Gas samples were collected throughout the growing season from an accumulated atmosphere inside static chambers inserted into the soil. Then, these samples were carried to the laboratory and there analyzed. The results obtained allow knowing approximately how ecological fertilization contributes to air pollution due to greenhouse gases.
NASA Astrophysics Data System (ADS)
Delre, Antonio; Mønster, Jacob; Scheutz, Charlotte
2016-04-01
The direct release of nitrous oxide (N2O) and methane (CH4) from wastewater treatment plants (WWTP) is important because it contributes to the global greenhouse gases (GHGs) release and strongly effects the WWTP carbon footprint. Biological nitrogen removal technologies could increase the direct emission of N2O (IPCC, 2006), while CH4 losses are of environmental, economic and safety concern. Currently, reporting of N2O and CH4 emissions from WWTPs are performed mainly using methods suggested by IPCC which are not site specific (IPCC, 2006). The dynamic tracer dispersion method (TDM), a ground based remote sensing approach implemented at DTU Environment, was demonstrated to be a novel and successful tool for full-scale CH4 and N2O quantification from WWTPs. The method combines a controlled release of tracer gas from the facility with concentration measurements downwind of the plant (Mønster et al., 2014; Yoshida et al., 2014). TDM in general is based on the assumption that a tracer gas released at an emission source, in this case a WWTP, disperses into the atmosphere in the same way as the GHG emitted from process units. Since the ratio of their concentrations remains constant along their atmospheric dispersion, the GHG emission rate can be calculated using the following expression when the tracer gas release rate is known: EGHG=Qtr*(CGHG/Ctr)*(MWGHG/MWtr) EGHG is the GHG emission in mass per time, Qtr is the tracer release in mass per time, CGHG and Ctr are the concentrations measured downwind in parts per billion subtracted of their background values and integrated over the whole plume, and MWGHG and MWtr are the molar weights of GHG and tracer gas respectively (Mønster et al. 2014). In this study, acetylene (C2H2) was used as tracer. Downwind plume concentrations were measured driving along transects with two cavity ring down spectrometers (Yoshida et al., 2014). TDM was successfully applied in different seasons at several Scandinavian WWTPs characterized by different capacity, process unit technologies and locations. The method was applied at plants with different combination of nitrogen removal technologies and sewage sludge treatment. According to the plant capacity and technologies, quantified emissions ranged in the following intervals: from 0.7 to 3.4 kg N2O/h and from 1.1 to 17.6 kg CH4/h. In addition to quantifying the whole emission from the facilities, main sources in the plants were identified. While CH4 was generally emitted from sludge treatment areas, N2O was detected from nitrogen removal technologies both in the main stream and in the side treatment. Process units like biosolids storage and aeration tanks were the only units releasing both GHGs, although in different magnitude. References IPCC, 2006. Guidelines for National Greenhouse Gas Inventories, Volume 5 - Waste. Mønster, J., Samuelsson, J., Kjeldsen, P., Rella, C.W., Scheutz, C., 2014. Quantifying methane emission from fugitive sources by combining tracer release and downwind measurements - a sensitivity analysis based on multiple field surveys. Waste Manag. 34, 1416-28. doi:10.1016/j.wasman.2014.03.025 Yoshida, H., Mønster, J., Scheutz, C., 2014. Plant-integrated measurement of greenhouse gas emissions from a municipal wastewater treatment plant. Water Res. 1, 108-118. doi:10.1016/j.watres.2014.05.014
Solar Air Heating Metal Roofing for Reroofing, New Construction, and Retrofit
2013-06-01
Fahrenheit ft2 square foot FY fiscal year GHG greenhouse gas HGL HydroGeoLogic, Inc. HVAC heating, ventilation and air-conditioning LPG Liquefied...the greenhouse gas emission reductions; and 6. Document the performance of the solar roof as it compares to a reflective “Cool Roof.” Among the...Orders, and Agency implementing directives and instructions require the reduction of energy use and greenhouse gas emissions, increased use of renewable
NASA Astrophysics Data System (ADS)
Olguin-Alvarez, M. I.; Kurz, W. A.; Wayson, C.; Birdsey, R.; Richardson, K.; Angeles, G.; Vargas, B.; Corral, J.; Magnan, M.; Fellows, M.; Morken, S.; Maldonado, V.; Mascorro, V.; Meneses, C.; Galicia, G.; Serrano, E.
2016-12-01
The Government of Mexico has recently designed a system of measurement, reporting and verification (MRV) to account for the emissions and removals of greenhouse gases (GHG) associated with the country's forest sector. This system reports national-scale GHG emissions based on the "stock-difference" approach combining information from two sets of measurements from the national forest inventory and remote sensing data. However, consistent with the commitments made by the country to the United Nations Framework Convention on Climate Change (UNFCCC), the MRV system must strive to reduce, as far as practicable, the uncertainties associated with national estimates on GHG fluxes. Since 2012, the Mexican government through its National Forestry Commission, with support from the North America Commission of Environmental Cooperation, the Forest Services of Canada and USA, the SilvaCarbon Program and research institutes in Mexico, has made progress towards the use of carbon dynamics models ("gain-loss" approach) to reduce uncertainty of the GHG estimates in strategic landscapes. In Mexico, most of the forests are under social tenure where management includes a wide array of activities (e.g. selective harvesting, firewood collection). Altering these diverse management activities (REDD+ strategies as well as harvested wood products), can augment their mitigation potential. Here we present the main steps conducted to compile and integrate information from forest inventories, remote sensing, disturbance data and ecosystem carbon transfers to generate inputs required to calibrate these models and validate their outputs. The analyses are supported by the use of the CBM-CFS3 model with the appropriate modification of the model parameters and input data according to the 2006 guidelines of the Intergovernmental Panel on Climate Change (IPCC) for preparing Tier 3-GHG inventories. The ultimate goal of this tri-national effort is to show how the data and tools developed for carbon assessment in strategic landscapes in North America can help estimate the impact of several mitigation options consistent with national goals of GHG emission reductions.
Roibás, Laura; Loiseau, Eléonore; Hospido, Almudena
2017-08-01
Galicia is an Autonomous Community located in the north-west of Spain. As a starting point to implement mitigation and adaptation measures to climate change, a regional greenhouse gas (GHG) inventory is needed. So far, the only regional GHG inventories available are limited to the territorial emissions of those production activities which are expected to cause major environmental degradation. An alternative approach has been followed here to quantify all the on-site (direct) and embodied (indirect) GHG emissions related to all Galician production and consumption activities. The carbon footprint (CF) was calculated following the territorial life cycle assessment (LCA) methodology for data collection, that combines bottom-up and top-down approaches. The most up-to-date statistical data and life cycle inventories available were used to compute all GHG emissions. This case study represents a leap of scale when compared to existing studies, thus addressing the issue of double counting, which arises when considering all the production activities of a large region. The CF of the consumption activities in Galicia is 17.8 ktCO 2 e/year, with 88% allocated to Galician inhabitants and 12% to tourist consumption. The proposed methodology also identifies the main important contributors to GHG emissions and shows where regional reduction efforts should be made. The major contributor to the CF of inhabitants is housing (32%), followed by food consumption (29%). Within the CF of tourist consumption, the share of transport is highest (59%), followed by housing (26%). The CF of Galician production reaches 34.9 MtCO 2 e/y, and its major contributor is electricity production (21%), followed by food manufacturing (19%). Our results have been compared to those reported for other regions, actions aimed at reducing GHG emissions have been proposed, and data gaps and limitations identified. Copyright © 2017 Elsevier Ltd. All rights reserved.
Kaspersen, Bjarke Stoltze; Christensen, Thomas Budde; Fredenslund, Anders Michael; Møller, Henrik Bjarne; Butts, Michael Brian; Jensen, Niels H; Kjaer, Tyge
2016-01-15
The interest in sustainable bioenergy solutions has gained great importance in Europe due to the need to reduce GHG emissions and to meet environmental policy targets, not least for the protection of groundwater and surface water quality. In the Municipality of Solrød in Denmark, a novel bioenergy concept for anaerobic co-digestion of food industry residues, manure and beach-cast seaweed has been developed and tested in order to quantify the potential for synergies between climate change mitigation and coastal eutrophication management in the Køge Bay catchment. The biogas plant, currently under construction, was designed to handle an annual input of up to 200,000 t of biomass based on four main fractions: pectin wastes, carrageenan wastes, manure and beach-cast seaweed. This paper describes how this bioenergy concept can contribute to strengthening the linkages between climate change mitigation strategies and Water Framework Directive (WFD) action planning. Our assessments of the projected biogas plant indicate an annual reduction of GHG emissions of approx. 40,000 t CO2 equivalents, corresponding to approx. 1/3 of current total GHG emissions in the Municipality of Solrød. In addition, nitrogen and phosphorous loads to Køge Bay are estimated to be reduced by approx. 63 t yr.(-1) and 9 tyr.(-1), respectively, contributing to the achievement of more than 70% of the nutrient reduction target set for Køge Bay in the first WFD river basin management plan. This study shows that anaerobic co-digestion of the specific food industry residues, pig manure and beach-cast seaweed is feasible and that there is a very significant, cost-effective GHG and nutrient loading mitigation potential for this bioenergy concept. Our research demonstrates how an integrated planning process where considerations about the total environment are integrated into the design and decision processes can support the development of this kind of holistic bioenergy solutions. Copyright © 2015 Elsevier B.V. All rights reserved.
Environmental and economic evaluation of bioenergy in Ontario, Canada.
Zhang, Yimin; Habibi, Shiva; MacLean, Heather L
2007-08-01
We examined life cycle environmental and economic implications of two near-term scenarios for converting cellulosic biomass to energy, generating electricity from cofiring biomass in existing coal power plants, and producing ethanol from biomass in stand-alone facilities in Ontario, Canada. The study inventories near-term biomass supply in the province, quantifies environmental metrics associated with the use of agricultural residues for producing electricity and ethanol, determines the incremental costs of switching from fossil fuels to biomass, and compares the cost-effectiveness of greenhouse gas (GHG) and air pollutant emissions abatement achieved through the use of the bioenergy. Implementing a biomass cofiring rate of 10% in existing coal-fired power plants would reduce annual GHG emissions by 2.3 million metric tons (t) of CO2 equivalent (7% of the province's coal power plant emissions). The substitution of gasoline with ethanol/gasoline blends would reduce annual provincial lightduty vehicle fleet emissions between 1.3 and 2.5 million t of CO2 equivalent (3.5-7% of fleet emissions). If biomass sources other than agricultural residues were used, additional emissions reductions could be realized. At current crude oil prices ($70/barrel) and levels of technology development of the bioenergy alternatives, the biomass electricity cofiring scenario analyzed is more cost-effective for mitigating GHG emissions ($22/t of CO2 equivalent for a 10% cofiring rate) than the stand-alone ethanol production scenario ($92/t of CO2 equivalent). The economics of biomass cofiring benefits from existing capital, whereas the cellulosic ethanol scenario does not. Notwithstanding this result, there are several factors that increase the attractiveness of ethanol. These include uncertainty in crude oil prices, potential for marked improvements in cellulosic ethanol technology and economics, the province's commitment to 5% ethanol content in gasoline, the possibility of ethanol production benefiting from existing capital, and there being few alternatives for moderate-to-large-scale GHG emissions reductions in the transportation sector.
Progress toward an Integrated Global Greenhouse Gas Information System (IG3IS)
NASA Astrophysics Data System (ADS)
DeCola, P.; Butler, J. H.; Stanitski, D.; Tarasova, O. A.; Terblanche, D. E.; Duren, R. M.; Gurney, K. R.; Manning, A.; Reimann, S.; Ciais, P.; Arnold, T.; Burston, J.; Rayner, P. J.; Wofsy, S. C.; Hamburg, S.; Zavala-Araiza, D.; Miller, J. B.; Gerbig, C.; Vogel, F. R.; Canadell, J.
2016-12-01
Accurate and precise atmospheric long-term measurements of greenhouse gas (GHG) concentrations have revealed the rapid and unceasing rise of global GHG concentrations due to human socioeconomic activity. Long-term observations also show a resulting rise in global temperatures and evidence of negative impacts on society. In response to this mounting evidence, nations, sub-national governments, private enterprises and individuals are establishing and accelerating efforts to reduce GHG emissions while meeting the needs for global development and increasing energy access. With this motivation, WMO and its partners have called for an Integrated Global Greenhouse Information System (IG3IS). The IG3IS will serve as an international coordinating mechanism to establish and propagate consistent methods and standards to help assess emission-reduction actions. For the IG3IS initiative to succeed the end users must understand, trust, and recognize the value of the information they receive, and act more effectively in response. Over time, the IG3IS framework will be capable of promoting and accepting advancing technical capabilities (e.g., new satellite observations), continually improving the quality of and confidence in such information. By combining accurate atmospheric measurements with enhanced socioeconomic activity data and model analyses we can meet the overarching goals of IG3IS to: Reduce uncertainty of emission inventory reporting, Locate, quantify and prioritize previously unknown emission reduction opportunities, and Provide national and sub-national governments with timely and quantified information to support their assessment of progress towards their mitigation goals. An effective IG3IS will provide on-going, observation-based information on the relative success of GHG management efforts on policy-relevant scales and the response of the global carbon cycle to a warming world. The presentation will cover the principles and objectives of IG3IS, as well as progress toward answering the questions: What research capabilities are ready and able to deliver useful information and for whom? What decisions will be informed? What valuable and additional outcomes will result?
Climate Change Affects Winter Chill for Temperate Fruit and Nut Trees
Luedeling, Eike; Girvetz, Evan H.; Semenov, Mikhail A.; Brown, Patrick H.
2011-01-01
Background Temperate fruit and nut trees require adequate winter chill to produce economically viable yields. Global warming has the potential to reduce available winter chill and greatly impact crop yields. Methodology/Principal Findings We estimated winter chill for two past (1975 and 2000) and 18 future scenarios (mid and end 21st century; 3 Global Climate Models [GCMs]; 3 greenhouse gas emissions [GHG] scenarios). For 4,293 weather stations around the world and GCM projections, Safe Winter Chill (SWC), the amount of winter chill that is exceeded in 90% of all years, was estimated for all scenarios using the “Dynamic Model” and interpolated globally. We found that SWC ranged between 0 and about 170 Chill Portions (CP) for all climate scenarios, but that the global distribution varied across scenarios. Warm regions are likely to experience severe reductions in available winter chill, potentially threatening production there. In contrast, SWC in most temperate growing regions is likely to remain relatively unchanged, and cold regions may even see an increase in SWC. Climate change impacts on SWC differed quantitatively among GCMs and GHG scenarios, with the highest GHG leading to losses up to 40 CP in warm regions, compared to 20 CP for the lowest GHG. Conclusions/Significance The extent of projected changes in winter chill in many major growing regions of fruits and nuts indicates that growers of these commodities will likely experience problems in the future. Mitigation of climate change through reductions in greenhouse gas emissions can help reduce the impacts, however, adaption to changes will have to occur. To better prepare for likely impacts of climate change, efforts should be undertaken to breed tree cultivars for lower chilling requirements, to develop tools to cope with insufficient winter chill, and to better understand the temperature responses of tree crops. PMID:21629649
NASA Astrophysics Data System (ADS)
Huo, Hong; Cai, Hao; Zhang, Qiang; Liu, Fei; He, Kebin
2015-05-01
We evaluated the fuel-cycle emissions of greenhouse gases (GHGs) and air pollutants (NOx, SO2, PM10, and PM2.5) of electric vehicles (EVs) in China and the United States (U.S.), two of the largest potential markets for EVs in the world. Six of the most economically developed and populated regions in China and the U.S. were selected. The results showed that EV fuel-cycle emissions depend substantially on the carbon intensity and cleanness of the electricity mix, and vary significantly across the regions studied. In those regions with a low share of coal-based electricity (e.g., California), EVs can reduce GHG and air pollutant emissions (except for PM) significantly compared with conventional vehicles. However, in the Chinese regions and selected U.S. Midwestern states where coal dominates in the generation mix, EVs can reduce GHG emissions but increase the total and urban emissions of air pollutants. In 2025, EVs will offer greater reductions in GHG and air pollutant emissions because emissions from power plants will be better controlled; EVs in the Chinese regions examined, however, may still increase SO2 and PM emissions. Reductions of 60-85% in GHGs and air pollutants could be achieved were EVs charged with 80% renewable electricity or the electricity generated from the best available technologies of coal-fired power plants, which are futuristic power generation scenarios.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Loureiro, S.M., E-mail: saulo@lima.coppe.ufrj.br; Rovere, E.L.L., E-mail: emilio@ppe.ufrj.br; Mahler, C.F., E-mail: mahler0503@yahoo.com
2013-05-15
Highlights: ► We constructed future scenarios of emissions of greenhouse gases in waste. ► Was used the IPCC methodology for calculating emission inventories. ► We calculated the costs of abatement for emissions reduction in landfill waste. ► The results were compared to Brazil, state and city of Rio de Janeiro. ► The higher the environmental passive, the greater the possibility of use of biogas. - Abstract: This paper examines potential changes in solid waste policies for the reduction in GHG for the country of Brazil and one of its major states and cities, Rio de Janeiro, from 2005 to 2030.more » To examine these policy options, trends in solid waste quantities and associated GHG emissions are derived. Three alternative policy scenarios are evaluated in terms of effectiveness, technology, and economics and conclusions posited regarding optimal strategies for Brazil to implement. These scenarios are been building on the guidelines for national inventories of GHG emissions (IPCC, 2006) and adapted to Brazilian states and municipalities’ boundaries. Based on the results, it is possible to say that the potential revenue from products of solid waste management is more than sufficient to transform the current scenario in this country into one of financial and environmental gains, where the negative impacts of climate change have created a huge opportunity to expand infrastructure for waste management.« less
Converting campus waste into renewable energy - a case study for the University of Cincinnati.
Tu, Qingshi; Zhu, Chao; McAvoy, Drew C
2015-05-01
This paper evaluates the implementation of three waste-to-energy projects at the University of Cincinnati: waste cooking oil-to-biodiesel, waste paper-to-fuel pellets and food waste-to-biogas, respectively. The implementation of these waste-to-energy (WTE) projects would lead to the improvement of campus sustainability by minimizing waste management efforts and reducing GHG emissions via the displacement of fossil fuel usage. Technical and economic aspects of their implementation were assessed and the corresponding GHG reduction was estimated. Results showed that on-site implementation of these projects would: (1) divert 3682L (974 gallons) of waste cooking oil to 3712L (982 gallons) of biodiesel; (2) produce 138tonnes of fuel pellets from 133tonnes of waste paper (with the addition of 20.75tonnes of plastics) to replace121tonnes of coal; and (3) produce biogas that would be enough to replace 12,767m(3) natural gas every year from 146tonnes of food waste. The economic analysis determined that the payback periods for the three projects would be 16months for the biodiesel, 155months for the fuel pellet, and 74months for the biogas projects. The reduction of GHG emission from the implementation of the three WTE projects was determined to be 9.37 (biodiesel), 260.49 (fuel pellets), and 11.36 (biogas) tonnes of CO2-eq per year, respectively. Copyright © 2015 Elsevier Ltd. All rights reserved.
Domingos, Hélde Araujo; De Melo Faria, Alexandre Magno; Fuinhas, José Alberto; Marques, António Cardoso
2017-08-01
In the last two decades, there has been a rich debate about the environmental degradation that results from exposure to solid urban waste. Growing public concern with environmental issues has led to the implementation of various strategic plans for waste management in several developed countries, especially in the European Union. In this paper, the relationships were assessed between economic growth, renewable energy extraction and greenhouse gas (GHG) emissions in the waste sector. The Environmental Kuznets Curve hypothesis was analysed for the member states of the European Union, in the presence of electricity generation, landfill and GHG emissions for the period 1995 to 2012. The results revealed that there is no inverted-U-shaped relationship between income and GHG emissions in European Union countries. The renewable fuel extracted from waste contributes to a reduction in GHG, and although the electricity produced also increases emissions somewhat, they would be far greater if the waste-based generation of renewable energy did not take place. The waste sector needs to strengthen its political, economic, institutional and social communication instruments to meet its aims for mitigating the levels of pollutants generated by European economies. To achieve the objectives of the Horizon 2020 programme, currently in force in the countries of the European Union, it will be necessary to increase the share of renewable energy in the energy mix.
Protecting terrestrial ecosystems and the climate through a global carbon market.
Bonnie, Robert; Carey, Melissa; Petsonk, Annie
2002-08-15
Protecting terrestrial ecosystems through international environmental laws requires the development of economic mechanisms that value the Earth's natural systems. The major international treaties to address ecosystem protection lack meaningful binding obligations and the requisite financial instruments to affect large-scale conservation. The Kyoto Protocol's emissions-trading framework creates economic incentives for nations to reduce greenhouse-gas (GHG) emissions cost effectively. Incorporating GHG impacts from land-use activities into this system would create a market for an important ecosystem service provided by forests and agricultural lands: sequestration of atmospheric carbon. This would spur conservation efforts while reducing the 20% of anthropogenic CO(2) emissions produced by land-use change, particularly tropical deforestation. The Kyoto negotiations surrounding land-use activities have been hampered by a lack of robust carbon inventory data. Moreover, the Protocol's provisions agreed to in Kyoto made it difficult to incorporate carbon-sequestering land-use activities into the emissions-trading framework without undermining the atmospheric GHG reductions contemplated in the treaty. Subsequent negotiations since 1997 failed to produce a crediting system that provides meaningful incentives for enhanced carbon sequestration. Notably, credit for reducing rates of tropical deforestation was explicitly excluded from the Protocol. Ultimately, an effective GHG emissions-trading framework will require full carbon accounting for all emissions and sequestration from terrestrial ecosystems. Improved inventory systems and capacity building for developing nations will, therefore, be necessary.
Global environmental costs of China's thirst for milk.
Bai, Zhaohai; Lee, Michael R F; Ma, Lin; Ledgard, Stewart; Oenema, Oene; Velthof, Gerard L; Ma, Wenqi; Guo, Mengchu; Zhao, Zhanqing; Wei, Sha; Li, Shengli; Liu, Xia; Havlík, Petr; Luo, Jiafa; Hu, Chunsheng; Zhang, Fusuo
2018-05-01
China has an ever-increasing thirst for milk, with a predicted 3.2-fold increase in demand by 2050 compared to the production level in 2010. What are the environmental implications of meeting this demand, and what is the preferred pathway? We addressed these questions by using a nexus approach, to examine the interdependencies of increasing milk consumption in China by 2050 and its global impacts, under different scenarios of domestic milk production and importation. Meeting China's milk demand in a business as usual scenario will increase global dairy-related (China and the leading milk exporting regions) greenhouse gas (GHG) emissions by 35% (from 565 to 764 Tg CO 2eq ) and land use for dairy feed production by 32% (from 84 to 111 million ha) compared to 2010, while reactive nitrogen losses from the dairy sector will increase by 48% (from 3.6 to 5.4 Tg nitrogen). Producing all additional milk in China with current technology will greatly increase animal feed import; from 1.9 to 8.5 Tg for concentrates and from 1.0 to 6.2 Tg for forage (alfalfa). In addition, it will increase domestic dairy related GHG emissions by 2.2 times compared to 2010 levels. Importing the extra milk will transfer the environmental burden from China to milk exporting countries; current dairy exporting countries may be unable to produce all additional milk due to physical limitations or environmental preferences/legislation. For example, the farmland area for cattle-feed production in New Zealand would have to increase by more than 57% (1.3 million ha) and that in Europe by more than 39% (15 million ha), while GHG emissions and nitrogen losses would increase roughly proportionally with the increase of farmland in both regions. We propose that a more sustainable dairy future will rely on high milk demanding regions (such as China) improving their domestic milk and feed production efficiencies up to the level of leading milk producing countries. This will decrease the global dairy related GHG emissions and land use by 12% (90 Tg CO 2eq reduction) and 30% (34 million ha land reduction) compared to the business as usual scenario, respectively. However, this still represents an increase in total GHG emissions of 19% whereas land use will decrease by 8% when compared with 2010 levels, respectively. © 2018 John Wiley & Sons Ltd.
40 CFR 98.173 - Calculating GHG emissions.
Code of Federal Regulations, 2010 CFR
2010-07-01
... associated requirements for Tier 4 in subpart C of this part (General Stationary Fuel Combustion Sources). (b..., dry basis (% CO2). Q = Hourly stack gas volumetric flow rate (scfh). %H2O = Hourly moisture percentage... reduction furnace are vented through the same stack as any combustion unit or process equipment that reports...
Trace gas flux from container production of woody landscape plants
USDA-ARS?s Scientific Manuscript database
The agriculture industry is a large source of greenhouse gas (GHG) emissions which are widely believed to be causing increased global temperatures. Reduction of these emissions has been heavily researched, with most of the work focusing on row crop and animal production sectors. Little attention has...
DOT National Transportation Integrated Search
2015-10-01
It is widely recognized that new vehicle and fuel technology is necessary, but not sufficient, to meet deep greenhouse gas (GHG) : reductions goals for both the U.S. and the state of California. Demand management strategies (such as land use, transit...
DOT National Transportation Integrated Search
2017-03-01
Traditional evaluation of the transportation system focuses on automobile traffic flow and : congestion reduction. However, this paradigm is shifting. In an effort to combat global warming : and reduce greenhouse gas (GHG) emissions, a number of citi...
DOT National Transportation Integrated Search
2011-06-01
To achieve the greenhouse gas (GHG) reduction targets that are required by Californias global warming legislation (AB32), the state of California has determined that recent growth trends in vehicle miles traveled (VMT) must be curtailed. In recogn...
Modeling urban building energy use: A review of modeling approaches and procedures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Wenliang; Zhou, Yuyu; Cetin, Kristen
With rapid urbanization and economic development, the world has been experiencing an unprecedented increase in energy consumption and greenhouse gas (GHG) emissions. While reducing energy consumption and GHG emissions is a common interest shared by major developed and developing countries, actions to enable these global reductions are generally implemented at the city scale. This is because baseline information from individual cities plays an important role in identifying economical options for improving building energy efficiency and reducing GHG emissions. Numerous approaches have been proposed for modeling urban building energy use in the past decades. This paper aims to provide an up-to-datemore » review of the broad categories of energy models for urban buildings and describes the basic workflow of physics-based, bottom-up models and their applications in simulating urban-scale building energy use. Because there are significant differences across models with varied potential for application, strengths and weaknesses of the reviewed models are also presented. This is followed by a discussion of challenging issues associated with model preparation and calibration.« less
Modeling urban building energy use: A review of modeling approaches and procedures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Wenliang; Zhou, Yuyu; Cetin, Kristen
With rapid urbanization and economic development, the world has been experiencing an unprecedented increase in energy consumption and greenhouse gas (GHG) emissions. While reducing energy consumption and GHG emissions is a common interest shared by major developed and developing countries, actions to enable these global reductions are generally implemented at the city scale. This is because baseline information from individual cities plays an important role in identifying economical options for improving building energy efficiency and reducing GHG emissions. Numerous approaches have been proposed for modeling urban building energy use in the past decades. Our paper aims to provide an up-to-datemore » review of the broad categories of energy models for urban buildings and describes the basic workflow of physics-based, bottom-up models and their applications in simulating urban-scale building energy use. Because there are significant differences across models with varied potential for application, strengths and weaknesses of the reviewed models are also presented. We then follow this with a discussion of challenging issues associated with model preparation and calibration.« less
Modeling urban building energy use: A review of modeling approaches and procedures
Li, Wenliang; Zhou, Yuyu; Cetin, Kristen; ...
2017-11-13
With rapid urbanization and economic development, the world has been experiencing an unprecedented increase in energy consumption and greenhouse gas (GHG) emissions. While reducing energy consumption and GHG emissions is a common interest shared by major developed and developing countries, actions to enable these global reductions are generally implemented at the city scale. This is because baseline information from individual cities plays an important role in identifying economical options for improving building energy efficiency and reducing GHG emissions. Numerous approaches have been proposed for modeling urban building energy use in the past decades. Our paper aims to provide an up-to-datemore » review of the broad categories of energy models for urban buildings and describes the basic workflow of physics-based, bottom-up models and their applications in simulating urban-scale building energy use. Because there are significant differences across models with varied potential for application, strengths and weaknesses of the reviewed models are also presented. We then follow this with a discussion of challenging issues associated with model preparation and calibration.« less
Carbon Footprint Analysis for a GRAPE Production Case Study
NASA Astrophysics Data System (ADS)
Sirca, C.; Marras, S.; Masia, S.; Duce, P.; Zara, P.; Spano, D.
2013-12-01
Agriculture activities can play a double role in emitting or sequestering carbon from the atmosphere. Mitigation of greenhouse gas (GHG) emissions in agriculture is one of the most urgent research subjects in the framework of enhancing environmental stewardship. However, little is known about the role of the agriculture in the global carbon balance, since most of the studies applied the Eddy Covariance technique in natural or semi-natural ecosystems to investigate their role in mitigate the anthropogenic carbon release. The application of the Eddy Covariance technique in agricultural systems could greatly improve our knowledge about their role on the global carbon budget and help in modeling the related processes. In addition, there is a growing request from producers, trade companies, and customers on the assessment of the environmental impact of a production process related to agricultural high quality products. In recent years, particular attention was put on the estimation of GHG emissions deriving from productive processes. In this context, a useful tool is the Life Cycle Assessment (LCA), which represents a methodology to estimate GHG emissions related to the entire life cycle of a product. The Carbon Footprint (CF) analysis represents a subset of the LCA, which only considers CO2 emissions with an impact on climate change. With respect to the wine industry, most of studies focused on the CF analysis related to the wine making process in the cellar, while a few studies analyzed the GHG emissions related to the grape production. The aim of this work was to quantify the CO2 emissions due to the grape production and emphasize the double role of a vineyard as a carbon sink or source. An Eddy Covariance station was set up in a representative vineyard located in the Mediterranean Basin (Sardinia, Italy) to measure the net carbon exchange between the surface and the atmosphere. The CF analysis was also conducted to compute the carbon balance of the grape production process in terms of CO2-equivalent emissions by following the International Wine Carbon Protocol (IWCP). Additional terms (e.g. emissions due to fossil fuel combustion, fertilizers, soil tillage) were also quantified. Results showed that the vineyard is able to store net amounts of carbon both in biomass and soil. Human added inputs for the vineyard management practices (e.g. soil tillage) are responsible for the release of significant quantities of GHG in the atmosphere. Results also showed that data obtained from the EC measurements could allow for a direct quantification of part of the terms involved in the grape production process, but the assessment of the carbon sequestration capacity in agricultural sites requires to account for GHG emissions from additional anthropogenic inputs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Couth, R.; Trois, C., E-mail: troisc@ukzn.ac.za
Highlights: Black-Right-Pointing-Pointer The financial/social/institutional sustainability of waste management in Africa is analysed. Black-Right-Pointing-Pointer This note is a compendium of a study on the potential for GHG control via improved zero waste in Africa. Black-Right-Pointing-Pointer This study provides the framework for Local Authorities for realizing sustained GHG reductions. - Abstract: Greenhouse gas (GHG) emissions per person from urban waste management activities are greater in sub-Saharan African countries than in other developing countries, and are increasing as the population becomes more urbanised. Waste from urban areas across Africa is essentially dumped on the ground and there is little control over the resultingmore » gas emissions. The clean development mechanism (CDM), from the 1997 Kyoto Protocol has been the vehicle to initiate projects to control GHG emissions in Africa. However, very few of these projects have been implemented and properly registered. A much more efficient and cost effective way to control GHG emissions from waste is to stabilise the waste via composting and to use the composted material as a soil improver/organic fertiliser or as a component of growing media. Compost can be produced by open windrow or in-vessel composting plants. This paper shows that passively aerated open windrows constitute an appropriate low-cost option for African countries. However, to provide an usable compost material it is recommended that waste is processed through a materials recovery facility (MRF) before being composted. The paper demonstrates that material and biological treatment (MBT) are viable in Africa where they are funded, e.g. CDM. However, they are unlikely to be instigated unless there is a replacement to the Kyoto Protocol, which ceases for Registration in December 2012.« less
Jiang, Tao; Li, Guoxue; Tang, Qiong; Ma, Xuguang; Wang, Gang; Schuchardt, Frank
2015-05-01
The aim of this study was to uncover ways to mitigate greenhouse gas (GHG) emissions and reduce energy consumption during the composting process. We assessed the effects of different aeration rates (0, 0.18, 0.36, and 0.54 L/(kg dry matter (dm)·min)) and methods (continuous and intermittent) on GHG emissions. Pig feces and corn stalks were mixed at a ratio of 7:1. The composting process lasted for 10 weeks, and the compost was turned approximately every 2 weeks. Results showed that both aeration rate and method significantly affected GHG emissions. Higher aeration rates increased NH3 and N2O losses, but reduced CH4 emissions. The exception is that the CH4 emission of the passive aeration treatment was lower than that of the low aeration rate treatment. Without forced aeration, the CH4 diffusion rates in the center of the piles were very low and part of the CH4 was oxidized in the surface layer. Intermittent aeration reduced NH3 and CH4 losses, but significantly increased N2O production during the maturing periods. Intermittent aeration increased the nitrification/denitrification alternation and thus enhanced the N2O production. Forced aeration treatments had higher GHG emission rates than the passive aeration treatment. Forced aeration accelerated the maturing process, but could not improve the quality of the end product. Compared with continuous aeration, intermittent aeration could increase the O2 supply efficiency and reduced the total GHG emission by 17.8%, and this reduction increased to 47.4% when composting was ended after 36 days. Copyright © 2015. Published by Elsevier B.V.
Land clearing and the biofuel carbon debt.
Fargione, Joseph; Hill, Jason; Tilman, David; Polasky, Stephen; Hawthorne, Peter
2008-02-29
Increasing energy use, climate change, and carbon dioxide (CO2) emissions from fossil fuels make switching to low-carbon fuels a high priority. Biofuels are a potential low-carbon energy source, but whether biofuels offer carbon savings depends on how they are produced. Converting rainforests, peatlands, savannas, or grasslands to produce food crop-based biofuels in Brazil, Southeast Asia, and the United States creates a "biofuel carbon debt" by releasing 17 to 420 times more CO2 than the annual greenhouse gas (GHG) reductions that these biofuels would provide by displacing fossil fuels. In contrast, biofuels made from waste biomass or from biomass grown on degraded and abandoned agricultural lands planted with perennials incur little or no carbon debt and can offer immediate and sustained GHG advantages.
Land Clearing and the Biofuel Carbon Debt
NASA Astrophysics Data System (ADS)
Fargione, Joseph; Hill, Jason; Tilman, David; Polasky, Stephen; Hawthorne, Peter
2008-02-01
Increasing energy use, climate change, and carbon dioxide (CO2) emissions from fossil fuels make switching to low-carbon fuels a high priority. Biofuels are a potential low-carbon energy source, but whether biofuels offer carbon savings depends on how they are produced. Converting rainforests, peatlands, savannas, or grasslands to produce food crop based biofuels in Brazil, Southeast Asia, and the United States creates a “biofuel carbon debt” by releasing 17 to 420 times more CO2 than the annual greenhouse gas (GHG) reductions that these biofuels would provide by displacing fossil fuels. In contrast, biofuels made from waste biomass or from biomass grown on degraded and abandoned agricultural lands planted with perennials incur little or no carbon debt and can offer immediate and sustained GHG advantages.
Environmental implications of carbon limits on market ...
Combined heat and power (CHP) is promoted as an economical, energy-efficient option for combating climate change. To fully examine the viability of CHP as a clean-technology solution, its market potential and impacts need to be analyzed as part of scenarios of the future energy system, particularly those with policies limiting greenhouse gas (GHG) emissions. This paper develops and analyzes scenarios using a bottom-up, technology rich optimization model of the U.S. energy system. Two distinct carbon reduction goals were set up for analysis. In Target 1, carbon emission reduction goals were only included for the electric sector. In Target 2, carbon emission reduction goals were set across the entire energy system with the target patterned after the U.S.’s commitment to reducing GHG emissions as part of the Paris Agreement reached at the COP21 summit. From a system-wide carbon reduction standpoint, Target 2 is significantly more stringent. In addition, these scenarios examine the implications of various CHP capacity expansion and contraction assumptions and energy prices. The largest CHP capacity expansion are observed in scenarios that included Target 1, but investments were scaled back in scenarios that incorporated Target 2. The latter scenario spurred rapid development of zero-emissions technologies within the electric sector, and purchased electricity increased dramatically in many end-use sectors. The results suggest that CHP may play a role in a carbon-c
Agricultural peatlands: towards a greenhouse gas sink - a synthesis of a Dutch landscape study
NASA Astrophysics Data System (ADS)
Schrier-Uijl, A. P.; Kroon, P. S.; Hendriks, D. M. D.; Hensen, A.; Van Huissteden, J.; Berendse, F.; Veenendaal, E. M.
2014-08-01
It is generally known that managed, drained peatlands act as carbon (C) sources. In this study we examined how mitigation through the reduction of the intensity of land management and through rewetting may affect the greenhouse gas (GHG) emission and the C balance of intensively managed, drained, agricultural peatlands. Carbon and GHG balances were determined for three peatlands in the western part of the Netherlands from 2005 to 2008 by considering spatial and temporal variability of emissions (CO2, CH4 and N2O). One area (Oukoop) is an intensively managed grass-on-peatland area, including a dairy farm, with the ground water level at an average annual depth of 0.55 (±0.37) m below the soil surface. The second area (Stein) is an extensively managed grass-on-peatland area, formerly intensively managed, with a dynamic ground water level at an average annual depth of 0.45 (±0.35) m below the soil surface. The third area is a (since 1998) rewetted former agricultural peatland (Horstermeer), close to Oukoop and Stein, with the average annual ground water level at a depth of 0.2 (±0.20) m below the soil surface. During the measurement campaigns we found that both agriculturally managed sites acted as C and GHG sources and the rewetted former agricultural peatland acted as a C and GHG sink. The ecosystem (fields and ditches) total GHG balance, including CO2, CH4 and N2O, amounted to 3.9 (±0.4), 1.3 (±0.5) and -1.7 (±1.8) g CO2-eq m-2 d-1 for Oukoop, Stein and Horstermeer, respectively. Adding the farm-based emissions to Oukoop and Stein resulted in a total GHG emission of 8.3 (±1.0) and 6.6 (±1.3) g CO2-eq m-2 d-1, respectively. For Horstermeer the GHG balance remained the same since no farm-based emissions exist. Considering the C balance (uncertainty range 40-60%), the total C release in Oukoop and Stein is 5270 and 6258 kg C ha-1 yr-1, respectively (including ecosystem and management fluxes), and the total C uptake in Horstermeer is 3538 kg C ha-1 yr-1. Water bodies contributed significantly to the terrestrial GHG balance because of a high release of CH4. Overall, this study suggests that managed peatlands are large sources of GHGs and C, but, if appropriate measures are taken, they can be turned back into GHG and C sinks within 15 years of abandonment and rewetting. The shift from an intensively managed grass-on-peat area (Oukoop) to an extensively managed one (Stein) reduced the GHG emissions mainly because N2O emission and farm-based CH4 emissions decreased.
NASA Astrophysics Data System (ADS)
Werner, C.; Kraus, D.; Mai, T. V.; Butterbach-Bahl, K.
2016-12-01
Agriculture is the economic backbone for over two thirds of Vietnam's population, providing food security, employment and income. However, agriculture in Vietnam is challenged by climate change and climate extremes and at the same time, agriculture remains a key source of greenhouse gas (GHG) emissions. The first bi-annual update report (BUR1), published in 2014 indicated that while the proportion of GHG emissions from agriculture had fallen from 43.1% to 33.2% from 2000 to 2010, the emission total increased from 65.1 mio to 88.4 mio t CO2e. Reducing GHG emissions from agriculture has thus become a key issue within the national strategy of GHG emission management. Here we present first data using IPCC Tier 3 modeling for quantifying the source strength of rice based crop systems for CH4 and N2O. We used LandscapeDNDC and linked it to a newly developed spatial landuse and land management database (climate, soil properties, and detailed field management data). Site application showed good agreement of simulated biomass, yield and GHG emissions with field observations, providing confidence for model use at national scale. Our results also show good agreement with national yield data and total annual emissions of the simulated period (2006-2015) ranged from 1060 - 1502 kt CH4 and 6.2 - 7.7 kt N2O, respectively. The dominating emission hotspot for CH4 is the Mekong Delta region with its double and triple rice cropping systems (819 kt CH4/yr, Fig. 1). With regard to N2O, emission hotspots have been identified to be closely related to regions with high fertilizer use and single to double rice cropping systems (Fig. 1). Though, our emission estimates are likely representing the best of current knowledge on national GHG emissions from rice based systems in Vietnam, the uncertainty is significant as information on rice system management remains vague. Sensitivity studies show that changes in field management affecting the soil organic carbon dynamics (duration of flooding, stubble amounts and fraction tilled or manure application) can lead to substantial differences in emission rates. In a next step we plan to explore mitigation options such as Alternative Wetting and Drying for reducing national GHG emissions from the agricultural sector and to identify regions which are most suitable and most promising in terms of GHG reduction.
NASA Astrophysics Data System (ADS)
Guha, A.; Bower, J. P.; Martien, P. T.; Randall, S.; Young, A.; Hilken, H.; Stevenson, E.
2015-12-01
The Bay Area Air Quality Management District (hence the Air District) is the greater San Francisco Bay metropolitan region's chief air quality regulatory agency. Aligning itself with Executive Order S-3-05, the Air District has set a goal to reduce the region's GHG emissions by 80% below 1990 levels by the year 2050. The Air District's 10-point Climate Action Work Program lays out the agency's priorities, actions and coordination with regional stakeholders. The Program has three core objectives: (1) to develop a technical and monitoring program to document the region's GHG sources and related emissions, (2) to implement a policy and rule-based approach to control and regulate GHG emissions, and finally, (3) to utilize local governance, incentives and partnerships to encourage GHG emissions reductions.As part of the technical program, the Air District has set up a long term, ambient GHG monitoring network at four sites. The first site is located north and upwind of the urban core at Bodega Bay by the Pacific Coast. It mostly receives clean marine inflow and serves as the regional background site. The other three sites are strategically located at regional exit points for Bay Area plumes that presumably contain GHG enhancements from local sources. These stations are at San Martin, located south of the San Jose metropolitan area; at Patterson Pass at the cross section with California's Central Valley; and at Bethel Island at the mouth of the Sacramento-San Joaquin Delta. At all sites, carbon dioxide (CO2) and methane (CH4) are being measured continuously, along with combustion tracer CO and other air pollutants. The GHG measurements are performed with high precision and fast laser instruments (Picarro Inc). In the longer term, the network will allow the Air District to monitor ambient concentrations of GHGs and thus evaluate the effectiveness of its policy, regulation and enforcement efforts. We present data from the sites in their first few months of operation and demonstrate the efficacy and utility of this monitoring network. We also present our progress on the design and fabrication of a dedicated mobile GHG measurement platform (a research van) equipped with state of the art analyzers capable of measuring isotopic methane (13C - CH4), CH4, CO2 and also nitrous oxide (N2O) in ambient air at fast temporal rates.
The impact of aerosol emissions on the 1.5 °C pathways
NASA Astrophysics Data System (ADS)
Hienola, Anca; Partanen, Antti-Ilari; Pietikäinen, Joni-Pekka; O’Donnell, Declan; Korhonen, Hannele; Damon Matthews, H.; Laaksonen, Ari
2018-04-01
To assess the impact of anthropogenic aerosol emission reduction on limiting global temperature increase to 1.5 °C or 2 °C above pre-industrial levels, two climate modeling approaches have been used (MAGICC6, and a combination of ECHAM-HAMMOZ and the UVic ESCM), with two aerosol control pathways under two greenhouse gas (GHG) reduction scenarios. We found that aerosol emission reductions associated with CO2 co-emissions had a significant warming effect during the first half of the century and that the near-term warming is dependent on the pace of aerosol emission reduction. The modeling results show that these aerosol emission reductions account for about 0.5 °C warming relative to 2015, on top of the 1 °C above pre-industrial levels that were already reached in 2015. We found also that the decreases in aerosol emissions lead to different decreases in the magnitude of the aerosol radiative forcing in the two models. By 2100, the aerosol forcing is projected by ECHAM–UVic to diminish in magnitude by 0.96 W m‑2 and by MAGICC6 by 0.76 W m‑2 relative to 2000. Despite this discrepancy, the climate responses in terms of temperature are similar. Aggressive aerosol control due to air quality legislation affects the peak temperature, which is 0.2 °C–0.3 °C above the 1.5 °C limit even within the most ambitious CO2/GHG reduction scenario. At the end of the century, the temperature differences between aerosol reduction scenarios in the context of ambitious CO2 mitigation are negligible.
An evaluation of commercial NDIR sensors for a potential use in future urban GHG monitoring systems
NASA Astrophysics Data System (ADS)
Arzoumanian, E.; Bastos, A.; Gaynullin, B.; Martin, H.; Hjern, L.; Laurent, O.; Vogel, F. R.
2016-12-01
Cities are a key contributor to climate change, as urban activities are major sources of GHG emissions. It is clear that accurate estimates of the magnitude of anthropogenic and natural urban emissions are needed to assess their influence on the carbon balance. Recently Wu et al. (2016) suggested that a denser ground-based GHG monitoring network in Paris would have the potential allow retrieving sector specific GHG emission estimates (and potentially in certain other cities) when combined with an atmospheric inversion framework using reasonably accurate observations (ca. 1 ppm for hourly means). One major barrier for such denser observations can be the high cost of high-precision instruments or high calibration cost of cheaper, unstable instrumentation. Within a recent climate KIC project, LSCE and SenseAir AB have worked on novel inexpensive NDIR sensors for CO2 measurements for site and city-scale applications that fulfil typical repeatability and reproducibility requirements necessary for this task. We conducted laboratory tests on six prototypes and determined the sensitivity of the sensors to multiple parameters, e.g. changing pressure, temperature and water vapor. Also, we developed a correction and calibration strategy for our NDIR sensors. Furthermore, we fully integrated these NDIR sensors in a platform containing the CO2sensor, pressure and temperature sensors, gas supply pump and a fully automated data acquisition unit. This platform was deployed in parallel to Picarro G2401 instruments in the urban network of LSCE. In this field experiment, using weekly calibration, we find a root-mean-square difference of less than 1 ppm for hourly mean concentrations at the semi-urban site in Saclay and the urban site of Jussieu, Paris, France. Our recent results concerning sensor testing and CO2monitoring from the two sites sited above also guide our recommendations for a low cost urban environmental monitoring system based on open source hardware (Raspberry Pi) and software. Wu, L., Broquet, G., Ciais, P., Bellassen, V., Vogel, F., Chevallier, F., Xueref-Remy, I. and Wang, Y., 2015. Atmospheric inversion for cost effective quantification of city CO 2 emissions. Atmospheric Chemistry and Physics Discussions, 15(21), pp.30693-30756, accepted for publication in AMT.
Airborne Quantification of Methane Emissions in the San Francisco Bay Area of California
NASA Astrophysics Data System (ADS)
Guha, A.; Newman, S.; Martien, P. T.; Young, A.; Hilken, H.; Faloona, I. C.; Conley, S.
2017-12-01
The Bay Area Air Quality Management District, the San Francisco Bay Area's air quality regulatory agency, has set a goal to reduce the region's greenhouse gas (GHG) emissions 80% below 1990 levels by 2050, consistent with the State of California's climate protection goal. The Air District maintains a regional GHG emissions inventory that includes emissions estimates and projections which influence the agency's programs and regulatory activities. The Air District is currently working to better characterize methane emissions in the GHG inventory through source-specific measurements, to resolve differences between top-down regional estimates (Fairley and Fischer, 2015; Jeong et al., 2016) and the bottom-up inventory. The Air District funded and participated in a study in Fall 2016 to quantify methane emissions from a variety of sources from an instrumented Mooney aircraft. This study included 40 hours of cylindrical vertical profile flights that combined methane and wind measurements to derive mass emission rates. Simultaneous measurements of ethane provided source-apportionment between fossil-based and biological methane sources. The facilities sampled included all five refineries in the region, five landfills, two dairy farms and three wastewater treatment plants. The calculated mass emission rates were compared to bottom-up rates generated by the Air District and to those from facility reports to the US EPA as part of the mandatory GHG reporting program. Carbon dioxide emission rates from refineries are found to be similar to bottom-up estimates for all sources, supporting the efficacy of the airborne measurement methodology. However, methane emission estimates from the airborne method showed significant differences for some source categories. For example, methane emission estimates based on airborne measurements were up to an order of magnitude higher for refineries, and up to five times higher for landfills compared to bottom-up methods, suggesting significant underestimation in the inventories and self-reported estimates. Future measurements over the same facilities will reveal if we have seasonal and process-dependent trends in emissions. This will provide a basis for rule making and for designing mitigation and control actions.
Ma, Ding; Chen, Wenying; Xu, Tengfang
2015-08-21
As one of the most energy-, emission- and pollution-intensive industries, iron and steel production is responsible for significant emissions of greenhouse gas (GHG) and air pollutants. Although many energy-efficiency measures have been proposed by the Chinese government to mitigate GHG emissions and to improve air quality, lacking full understanding of the costs and benefits has created barriers against implementing these measures widely. This paper sets out to advance the understanding by addressing the knowledge gap in costs, benefits, and cost-effectiveness of energy-efficiency measures in iron and steel production. Specifically, we build a new evaluation framework to quantify energy benefits andmore » environmental benefits (i.e., CO 2 emission reduction, air-pollutants emission reduction and water savings) associated with 36 energy-efficiency measures. Results show that inclusion of benefits from CO 2 and air-pollutants emission reduction affects the cost-effectiveness of energy-efficiency measures significantly, while impacts from water-savings benefits are moderate but notable when compared to the effects by considering energy benefits alone. The new information resulted from this study should be used to augment future programs and efforts in reducing energy use and environmental impacts associated with steel production.« less
Clean Cities 2015 Annual Metrics Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Caley; Singer, Mark
2016-12-01
The U.S. Department of Energy's (DOE's) Clean Cities program advances the nation's economic, environmental, and energy security by supporting local actions to cut petroleum use and greenhouse gas (GHG) emissions in transportation. A national network of nearly 100 Clean Cities coalitions, whose territory covers 80% of the U.S. population, brings together stakeholders in the public and private sectors to deploy alternative and renewable fuels, idle-reduction (IR) measures, fuel economy improvements, and new transportation technologies as they emerge. Each year, DOE asks Clean Cities coordinators to submit annual reports of their activities and accomplishments for the previous calendar year. Progress reportsmore » and information are submitted online as a function of the Alternative Fuels Data Center (AFDC) at the National Renewable Energy Laboratory (NREL). Coordinators report a range of information that characterize the membership, funding, projects, and activities of their coalitions. They also document activities in their region related to the development of refueling/charging infrastructure, sales of alternative fuels; deployment of alternative fuel vehicles (AFVs), plug-in electric vehicles (PEVs), hybrid electric vehicles (HEVs), and plug-in hybrid electric vehicles (PHEVs); idle reduction initiatives; fuel economy improvement activities; and programs to reduce vehicle miles traveled (VMT). NREL analyzes the data and translates them into petroleum-use and GHG emission reduction impacts, which are summarized in this report.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, Ding; Chen, Wenying; Xu, Tengfang
As one of the most energy-, emission- and pollution-intensive industries, iron and steel production is responsible for significant emissions of greenhouse gas (GHG) and air pollutants. Although many energy-efficiency measures have been proposed by the Chinese government to mitigate GHG emissions and to improve air quality, lacking full understanding of the costs and benefits has created barriers against implementing these measures widely. This paper sets out to advance the understanding by addressing the knowledge gap in costs, benefits, and cost-effectiveness of energy-efficiency measures in iron and steel production. Specifically, we build a new evaluation framework to quantify energy benefits andmore » environmental benefits (i.e., CO 2 emission reduction, air-pollutants emission reduction and water savings) associated with 36 energy-efficiency measures. Results show that inclusion of benefits from CO 2 and air-pollutants emission reduction affects the cost-effectiveness of energy-efficiency measures significantly, while impacts from water-savings benefits are moderate but notable when compared to the effects by considering energy benefits alone. The new information resulted from this study should be used to augment future programs and efforts in reducing energy use and environmental impacts associated with steel production.« less
One of the major contributions of Greenhouse Gas (GHG) emissions from water resource recovery facilities results from the energy used by the pumping regime of the lift stations. This project demonstrated an energy-efficient control method of lift station system operation that uti...
University Leadership in Island Climate Change Mitigation
ERIC Educational Resources Information Center
Coffman, Makena
2009-01-01
Purpose: The purpose of this paper is to present the University of Hawaii at Manoa's (UHM's) initiatives in achieving greenhouse gas (GHG) emissions reductions on campus and at the state level. Design/methodology/approach: UHM has taken a "lead by example" approach to climate change mitigation in terms of working to meet the American…
For Frank Princiotta’s book, Global Climate Change—The Technology Challenge Carbon dioxide (CO2) accounts for more than 90% of worldwide CO2-eq green-house gas (GHG) emissions from industrial sectors other than power generation. Amongst these sectors, the cement industry is one ...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-08
... all technologies. Nearly every OEM stressed that the agencies' costs estimates for lithium-ion batteries for HEVs/ PHEVs/EVs and mass reduction in particular were significantly too low compared to their... vehicles, hybrid-electric vehicles, plug-in hybrid electric vehicles, and battery-electric vehicles, during...
NASA Astrophysics Data System (ADS)
Matthiesen, Stephan; Palmer, Paul; Watson, Andrew; Williams, Mathew
2016-04-01
We give an overview over the structure, objectives, and methods of the UK-based Greenhouse Gases Emissions and Feedback Programme. The overarching objective of this research programme is to deliver improved GHG inventories and predictions for the UK, and for the globe at a regional scale. To address this objective, the Programme has developed a comprehensive, multi-year and interlinked measurement and data analysis programme, focussing on the major GHGs carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O). The Programme integrates three UK research consortia with complementary objectives, focussing on observation and modelling in the atmosphere, the oceans, and the terrestrial biosphere: GAUGE (Greenhouse gAs Uk and Global Emissions) will produce robust estimates of the UK GHG budget, using new and existing atmospheric measurement networks and modelling activities at a range of scales. It integrates inter-calibrated information from ground-based, airborne, ferry-borne, balloon-borne, and space-borne sensors, including new sensor technology. The GREENHOUSE (Generating Regional Emissions Estimates with a Novel Hierarchy of Observations and Upscaled Simulation Experiments) project aims to understand the spatio-temporal patterns of biogenic GHG emissions in the UK's landscape of managed and semi-managed ecosystems. It uses existing UK field data and several targeted new measurement campaigns to build regional GHG inventories and improve the capabilities of land surface models. RAGNARoCC (Radiatively active gases from the North Atlantic Region and Climate Change) is an oceanographic project to investigate the air-sea fluxes of GHGs in the North Atlantic region. Through dedicated research cruises as well as data collection from ships of opportunity, it develops a comprehensive budget of natural and anthropogenic components of the carbon cycle in the North Atlantic and a better understanding of why the air-sea fluxes of CO2 vary regionally, seasonally and multi-annually. Integration activities link these three projects to foster knowledge exchange across different scales, methods and sub-disciplines, both within the Programme and with the wider research community. The three projects are integrated to improve our understanding of greenhouse gases across domains and scales. The observational components lay the foundation of new measurement infrastructure that will deliver beyond the lifetime of this Programme. Through the development of robust methods to reduce uncertainties in GHG emissions estimates, the Programme supports regulatory efforts to monitor emissions trends and the efficacy of reduction strategies.
NASA Astrophysics Data System (ADS)
DeLonge, M. S.; Ryals, R.; Silver, W. L.
2011-12-01
Soil amendments, such as compost and manure, can be applied to grasslands to improve soil conditions and enhance aboveground net primary productivity. Applying such amendments can also lead to soil carbon (C) sequestration and, when materials are diverted from waste streams (e.g., landfills, manure lagoons), can offset greenhouse gas (GHG) emissions. However, amendment production and application is also associated with GHG emissions, and the net impact of these amendments remains unclear. To investigate the potential for soil amendments to reduce net GHG emissions, we developed a comprehensive, field-scale life cycle assessment (LCA) model. The LCA includes GHG (i.e., CO2, CH4, N2O) emissions of soil amendment production, application, and ecosystem response. Emissions avoided by diverting materials from landfills or manure management systems are also considered. We developed the model using field observations from grazed annual grassland in northern California (e.g., soil C; above- and belowground net primary productivity; C:N ratios; trace gas emissions from soils, manure piles, and composting), CENTURY model simulations (e.g., long-term soil C and trace gas emissions from soils under various land management strategies), and literature values (e.g., GHG emissions from transportation, inorganic fertilizer production, composting, and enteric fermentation). The LCA quantifies and contrasts the potential net GHG impacts of applying compost, manure, and commercial inorganic fertilizer to grazing lands. To estimate the LCA uncertainty, sensitivity tests were performed on the most widely ranging or highly uncertain parameters (e.g., compost materials, landfill emissions, manure management system emissions). Finally, our results are scaled-up to assess the feasibility and potential impacts of large-scale adoption of soil amendment application as a land-management strategy in California. Our base case results indicate that C sinks and emissions offsets associated with compost production and application can exceed life cycle emissions, potentially leading to a net reduction in GHG emissions of over 20 Mg CO2e per hectare of treated land. If similar results could be obtained in only 5% of California's 2,550,000 ha of rangeland, compost amendment application could offset the annual emissions of the California agriculture and forestry industries (> 28.25 million Mg CO2e, California Air Resources Board, 2008). Our findings indicate that application of compost amendments to grasslands may be an effective, beneficial, and relatively inexpensive strategy to contribute to climate change mitigation.
NASA Astrophysics Data System (ADS)
Woolf, Dominic; Lehmann, Johannes
2014-05-01
With CO2 emissions still tracking the upper bounds of projected emissions scenarios, it is becoming increasingly urgent to reduce net greenhouse gas (GHG) emissions, and increasingly likely that restricting future atmospheric GHG concentrations to within safe limits will require an eventual transition towards net negative GHG emissions. Few measures capable of providing negative emissions at a globally-significant scale are currently known. Two that are most often considered include carbon sequestration in biomass and soil, and biomass energy with carbon capture and storage (BECCS). In common with these two approaches, biochar also relies on the use of photosynthetically-bound carbon in biomass. But, because biomass and land are limited, it is critical that these resources are efficiently allocated between biomass/soil sequestration, bioenergy, BECCS, biochar, and other competing uses such as food, fiber and biodiversity. In many situations, biochar can offer advantages that may make it the preferred use of a limited biomass supply. These advantages include that: 1) Biochar can provide valuable benefits to agriculture by improving soil fertility and crop production, and reducing fertlizer and irrigation requirements. 2) Biochar is significantly more stable than biomass or other forms of soil carbon, thus lowering the risk of future losses compared to sequestration in biomass or soil organic carbon. 3) Gases and volatiles produced by pyrolysis can be combusted for energy (which may offset fossil fuel emissions). 4) Biochar can further lower GHG emissions by reducing nitrous oxide emissions from soil and by enhancing net primary production. Determining the optimal use of biomass requires that we are able to model not only the climate-change mitigation impact of each option, but also their economic and wider environmental impacts. Thus, what is required is a systems modelling approach that integrates components representing soil biogeochemistry, hydrology, crop production, land use, thermochemical conversion (to both biochar and energy products), climate, economics, and also the interactions between these components. Early efforts to model the life-cycle impacts of biochar systems have typically used simple empirical estimates of the strength of various feedback mechanisms, such as the impact of biochar on crop-growth, soil GHG fluxes, and native soil organic carbon. However, an environmental management perspective demands consideration of impacts over a longer time-scale and in broader agroecological situations than can be reliably extrapolated from simple empirical relationships derived from trials and experiments of inevitably limited scope and duration. Therefore, reliable quantification of long-term and large-scale impacts demands an understanding of the fundamental underlying mechanisms. Here, a systems-modelling approach that incorporates mechanistic assumptions will be described, and used to examine how uncertainties in the biogeochemical processes which drive the biochar-plant-soil interactions (particularly those responsible for priming, crop-growth and soil GHG emissions) translate into sensitivities of large scale and long-term impacts. This approach elucidates the aspects of process-level biochar biogeochemistry most critical to determining the large-scale GHG and economic impacts, and thus provides a useful guide to future model-led research.
A measurement system for continuous observations of CO2, CH4, H2O and CO onboard passenger aircraft
NASA Astrophysics Data System (ADS)
Gerbig, Christoph; Filges, Annette; Franke, Harald; Klaus, Christoph; Chen, Huilin
2013-04-01
Improved quantification and understanding of surface-atmosphere exchange fluxes of greenhouse gases (GHGs) caused by natural as well as anthropogenic processes is of paramount importance in a world of a changing climate and ever increasing emissions. Top-down estimation of GHG fluxes is traditionally done by inverse transport modeling, using GHG observations from a global network of stations. Uncertainties in modeled vertical transport rates (moist convection, turbulent mixing, stratosphere-troposphere exchange) however greatly affect the quality of flux estimates. More recently, remote sensing of vertical column mole fractions of GHGs have become available for inverse modeling, reducing the impact of vertical transport uncertainties to first order. However, those need validation against in-situ observations. A strategy for regular, global in-situ atmospheric profiling of GHGs, covering at least the troposphere, is thus needed to provide validation of remote sensing and of forward transport modeling of GHGs, to serve as input for inverse modeling, and to reduce the impact of transport uncertainties. IAGOS-ERI (In-service Aircraft for a Global Observing System - European Research Infrastructure) exploits the synergy between globally operating civil aviation and the need for long-term monitoring of atmospheric composition. Within the framework of IAGOS-ERI a cavity ring-down spectroscopy (CRDS) based measurement system for greenhouse gases was designed, tested, and qualified for deployment on commercial airliners. The design meets requirements regarding physical dimensions (size, weight), performance (long-term stability, low maintenance, robustness, full automation) and safety issues (fire prevention regulations, airworthiness). The system uses components of a commercially available CRDS instrument (G2401-m, Picarro Inc.) mounted into a frame suitable for integration in the avionics bay of the Airbus A-340. The first of the IAGOS GHG packages is scheduled for integration in mid 2013. The aim is to have seven systems operational within four years, providing for long-term GHG observations with near-global coverage. To enable robust and automated operation of the IAGOS GHG package over six-month deployment periods, numerous technical issues had to be addressed. An inlet system, designed as virtual impactor to eliminate sampling of larger aerosols, ice particles, and water droplets, provides additional positive ram-pressure to ensure operation without an upstream sampling pump. Furthermore, no sample drying is required, as the simultaneously measured water vapor mole fraction is used to correct for dilution and spectroscopic effects. This also enables the collection of science-quality water vapor measurements throughout the atmosphere. To allow for trace gas measurements to be fully traceable to WMO scales, a two-standard calibration system has been designed and tested that periodically provides calibration gas to the instrument during flight and on ground for each six-month deployment period. We present results from recent test flights and laboratory tests that document the performance for GHG and water vapor measurements. Furthermore, future applications of the IAGOS-GHG data stream, provided in near-real-time via SatCom to the weather prediction centres, will be discussed.
NASA Astrophysics Data System (ADS)
Keane, James Benjamin; Ineson, Phil; Toet, Sylvia; Stockdale, James; Vallack, Harry; Blei, Emanuel; Bentley, Mark; Howarth, Steve
2016-04-01
With combustion of fossil fuels driving anthropogenic climate change, allied to a diminishing global reserve of these resources it is vital for alternative sources of energy production to be investigated. One alternative is biomass; ethanol fermented from corn (Zea mays) or sugar cane (Saccharum spp.) has long been used as a petroleum substitute, and oilseed rape (OSR, Brassica napus) is the principal feedstock for biodiesel production in Germany, the third biggest producer of this fuel globally. Diverting food crops into energy production would seem counter-productive, given there exists genuine concern regarding our ability to meet future global food demand, thus attention has turned to utilising lignocellulosic material: woody tissue and non-food crop by-products such as corn stover. For this reason species such as the perennial grass Miscanthus (Miscanthus x giganteus) are being cultivated for energy production, and these are referred to as second generation energy crops. They are attractive since they do not deplete food supplies, have high yields, require less fertiliser input than annual arable crops, and can be grown on marginal agricultural land. To assess the effectiveness of a crop for bioenergy production, it is vital that accurate quantification of greenhouse gas (GHG) fluxes is obtained for their cultivation in the field. We will present data from a series of studies investigating the GHG fluxes from the energy crops OSR and Miscanthus under various nutrient additions in a comparison with conventional arable cropping at the same site in the United Kingdom (UK). A combination of methods were employed to measure fluxes of CO2, CH4 and N2O from both soil and vegetation, at various temporal and spatial scales. Conventional manual chambers were deployed on a monthly regime to quantify soil GHG fluxes, and were supplemented with automated soil flux chambers measuring soil respiration at an hourly frequency. Additionally, two novel automated chamber systems allowed, for the first time, continuous ecosystem exchange of all three biogenic GHGs to be measured from OSR and Miscanthus at high spatial resolution (< 1 m2). Highest GHG emissions were seen from arable crops, but despite low fertiliser input, tillage caused Miscanthus to be a net carbon source, and compost addition increased N2O emissions. OSR represented a net carbon sink during its growth, but N2O emissions resulting from application of mineral nitrogen fertiliser reduced this sink by 50%. Automated measurements revealed a hitherto unreported temperature-independent diurnal pattern in soil respiration under Miscanthus, which was in stark contrast to an adjacent barley (Hordeum vulgare) crop. Consequently, the time of day at which any comparison of soil respiration between these two crops is made strongly biases the findings. Our data highlight the delicate balance which energy crops must maintain in order to ensure carbon-neutrality, and suggest that crops requiring fertiliser input will potentially become a net GHG source once indirect emissions (e.g. from fertiliser production) are accounted for. Furthermore, diurnal patterns of GHG flux should be assessed and used to guide suitable future manual measurement regimes.
Operationalizing clean development mechanism baselines: A case study of China's electrical sector
NASA Astrophysics Data System (ADS)
Steenhof, Paul A.
The global carbon market is rapidly developing as the first commitment period of the Kyoto Protocol draws closer and Parties to the Protocol with greenhouse gas (GHG) emission reduction targets seek alternative ways to reduce their emissions. The Protocol includes the Clean Development Mechanism (CDM), a tool that encourages project-based investments to be made in developing nations that will lead to an additional reduction in emissions. Due to China's economic size and rate of growth, technological characteristics, and its reliance on coal, it contains a large proportion of the global CDM potential. As China's economy modernizes, more technologies and processes are requiring electricity and demand for this energy source is accelerating rapidly. Relatively inefficient technology to generate electricity in China thereby results in the electrical sector having substantial GHG emission reduction opportunities as related to the CDM. In order to ensure the credibility of the CDM in leading to a reduction in GHG emissions, it is important that the baseline method used in the CDM approval process is scientifically sound and accessible for both others to use and for evaluation purposes. Three different methods for assessing CDM baselines and environmental additionality are investigated in the context of China's electrical sector: a method based on a historical perspective of the electrical sector (factor decomposition), a method structured upon a current perspective (operating and build margins), and a simulation of the future (dispatch analysis). Assessing future emission levels for China's electrical sector is a very challenging task given the complexity of the system, its dynamics, and that it is heavily influenced by internal and external forces, but of the different baseline methods investigated, dispatch modelling is best suited for the Chinese context as it is able to consider the important regional and temporal dimensions of its economy and its future development. For China, the most promising options for promoting sustainable development, one of the goals of the Kyoto Protocol, appear to be tied to increasing electrical end-use and generation efficiency, particularly clean coal technology for electricity generation since coal will likely continue to be a dominant primary fuel.
Analysis of Carbon Policies for Electricity Networks with High Penetration of Green Generation
NASA Astrophysics Data System (ADS)
Feijoo, Felipe A.
In recent decades, climate change has become one of the most crucial challenges for humanity. Climate change has a direct correlation with global warming, caused mainly by the green house gas emissions (GHG). The Environmental Protection Agency in the U.S. (EPA) attributes carbon dioxide to account for approximately 82% of the GHG emissions. Unfortunately, the energy sector is the main producer of carbon dioxide, with China and the U.S. as the highest emitters. Therefore, there is a strong (positive) correlation between energy production, global warming, and climate change. Stringent carbon emissions reduction targets have been established in order to reduce the impacts of GHG. Achieving these emissions reduction goals will require implementation of policies like as cap-and-trade and carbon taxes, together with transformation of the electricity grid into a smarter system with high green energy penetration. However, the consideration of policies solely in view of carbon emissions reduction may adversely impact other market outcomes such as electricity prices and consumption. In this dissertation, a two-layer mathematical-statistical framework is presented, that serves to develop carbon policies to reduce emissions level while minimizing the negative impacts on other market outcomes. The bottom layer of the two layer model comprises a bi-level optimization problem. The top layer comprises a statistical model and a Pareto analysis. Two related but different problems are studied under this methodology. The first problem looks into the design of cap-and-trade policies for deregulated electricity markets that satisfy the interest of different market constituents. Via the second problem, it is demonstrated how the framework can be used to obtain levels of carbon emissions reduction while minimizing the negative impact on electricity demand and maximizing green penetration from microgrids. In the aforementioned studies, forecasts for electricity prices and production cost are considered. This, this dissertation also presents anew forecast model that can be easily integrated in the two-layer framework. It is demonstrated in this dissertation that the proposed framework can be utilized by policy-makers, power companies, consumers, and market regulators in developing emissions policy decisions, bidding strategies, market regulations, and electricity dispatch strategies.
Designing optimal greenhouse gas monitoring networks for Australia
NASA Astrophysics Data System (ADS)
Ziehn, T.; Law, R. M.; Rayner, P. J.; Roff, G.
2016-01-01
Atmospheric transport inversion is commonly used to infer greenhouse gas (GHG) flux estimates from concentration measurements. The optimal location of ground-based observing stations that supply these measurements can be determined by network design. Here, we use a Lagrangian particle dispersion model (LPDM) in reverse mode together with a Bayesian inverse modelling framework to derive optimal GHG observing networks for Australia. This extends the network design for carbon dioxide (CO2) performed by Ziehn et al. (2014) to also minimise the uncertainty on the flux estimates for methane (CH4) and nitrous oxide (N2O), both individually and in a combined network using multiple objectives. Optimal networks are generated by adding up to five new stations to the base network, which is defined as two existing stations, Cape Grim and Gunn Point, in southern and northern Australia respectively. The individual networks for CO2, CH4 and N2O and the combined observing network show large similarities because the flux uncertainties for each GHG are dominated by regions of biologically productive land. There is little penalty, in terms of flux uncertainty reduction, for the combined network compared to individually designed networks. The location of the stations in the combined network is sensitive to variations in the assumed data uncertainty across locations. A simple assessment of economic costs has been included in our network design approach, considering both establishment and maintenance costs. Our results suggest that, while site logistics change the optimal network, there is only a small impact on the flux uncertainty reductions achieved with increasing network size.
Climate, economic, and environmental impacts of producing wood for bioenergy
NASA Astrophysics Data System (ADS)
Birdsey, Richard; Duffy, Philip; Smyth, Carolyn; Kurz, Werner A.; Dugan, Alexa J.; Houghton, Richard
2018-05-01
Increasing combustion of woody biomass for electricity has raised concerns and produced conflicting statements about impacts on atmospheric greenhouse gas (GHG) concentrations, climate, and other forest values such as timber supply and biodiversity. The purposes of this concise review of current literature are to (1) examine impacts on net GHG emissions and climate from increasing bioenergy production from forests and exporting wood pellets to Europe from North America, (2) develop a set of science-based recommendations about the circumstances that would result in GHG reductions or increases in the atmosphere, and (3) identify economic and environmental impacts of increasing bioenergy use of forests. We find that increasing bioenergy production and pellet exports often increase net emissions of GHGs for decades or longer, depending on source of feedstock and its alternate fate, time horizon of analysis, energy emissions associated with the supply chain and fuel substitution, and impacts on carbon cycling of forest ecosystems. Alternative uses of roundwood often offer larger reductions in GHGs, in particular long-lived wood products that store carbon for longer periods of time and can achieve greater substitution benefits than bioenergy. Other effects of using wood for bioenergy may be considerable including induced land-use change, changes in supplies of wood and other materials for construction, albedo and non-radiative effects of land-cover change on climate, and long-term impacts on soil productivity. Changes in biodiversity and other ecosystem attributes may be strongly affected by increasing biofuel production, depending on source of material and the projected scale of biofuel production increases.
Assessing the environmental sustainability of ethanol from integrated biorefineries.
Falano, Temitope; Jeswani, Harish K; Azapagic, Adisa
2014-06-01
This paper considers the life cycle environmental sustainability of ethanol produced in integrated biorefineries together with chemicals and energy. Four types of second-generation feedstocks are considered: wheat straw, forest residue, poplar, and miscanthus. Seven out of 11 environmental impacts from ethanol are negative, including greenhouse gas (GHG) emissions, when the system is credited for the co-products, indicating environmental savings. Ethanol from poplar is the best and straw the worst option for most impacts. Land use change from forest to miscanthus increases the GHG emissions several-fold. For poplar, the effect is opposite: converting grassland to forest reduces the emissions by three-fold. Compared to fossil and first-generation ethanol, ethanol from integrated biorefineries is more sustainable for most impacts, with the exception of wheat straw. Pure ethanol saves up to 87% of GHG emissions compared to petrol per MJ of fuel. However, for the current 5% ethanol-petrol blends, the savings are much smaller (<3%). Therefore, unless much higher blends become widespread, the contribution of ethanol from integrated biorefineries to the reduction of GHG emissions will be insignificant. Yet, higher ethanol blends would lead to an increase in some impacts, notably terrestrial and freshwater toxicity as well as eutrophication for some feedstocks. © 2014 The Authors. Biotechnology Journal published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lau, William K. M.; Kim, Kyu-Myong; Ruby Leung, L.
Using model outputs from CMIP5 historical integrations, we have investigated the relative roles of anthropogenic emissions of greenhouse gases (GHG) and aerosols in changing the characteristics of the large-scale circulation and rainfall in Asian summer monsoon (ASM) regions. Under GHG warming, a strong positive trend in low-level moist static energy (MSE) is found over ASM regions, associated with increasing large-scale land–sea thermal contrast from 1870s to present. During the same period, a mid-tropospheric convective barrier (MCB) due to widespread reduction in relative humidity in the mid- and lower troposphere is strengthening over the ASM regions, in conjunction with expanding areasmore » of anomalous subsidence associated with the Deep Tropical Squeeze (Lau and Kim in Proc Natl Acad Sci 12:3630–3635, 2015). The opposing effects of MSE and MCB lead to enhanced total ASM rainfall, but only a partial strengthening of the southern portion of the monsoon meridional circulation, coupled to anomalous multi-cellular overturning motions over ASM land. Including anthropogenic aerosol emissions strongly masks MSE but enhances MCB via increased stability in the lower troposphere, resulting in an overall weakened ASM circulation with suppressed rainfall. Analyses of rainfall characteristics indicate that under GHG, overall precipitation efficiency over the ASM region is reduced, manifesting in less moderate but more extreme heavy rain events. Under combined effects of GHG and aerosols, precipitation efficiency is unchanged, with more moderate, but less extreme rainfall.« less
NASA Astrophysics Data System (ADS)
Cui, J. J.; Lai, D. Y. F.
2016-12-01
Forest soil has a great potential in affecting future climate change through biogeochemical cycling and exchanging greenhouse gases (GHGs) with the atmosphere. As a proxy of changing atmospheric CO2 concentration, enhanced litter production arising from CO2 fertilization can affect soil GHG fluxes and induce feedbacks to the climate system. However, these litter-soil- atmosphere interactions remain unclear, especially in subtropical forests. In this study, we carried out static chamber measurements and field manipulations in a subtropical secondary forest in Hong Kong over one year to investigate the temporal variations and controls, as well as the effects of changing litter amounts on soil-atmosphere GHG fluxes. Our results show distinct seasonal pattern of GHG fluxes and soil parameters over the study period. While CO2 flux did not respond significantly to litter manipulation, regression analysis indicates that CO2 flux was regulated by soil temperature and soil moisture. Litter reduction stimulated mean N2O emissions by 105%, and the positive effect was most pronounced during the hot-humid season from May to October. On the other hand, litter addition was found to reduce CH4 uptake by 32%. Our findings suggest that the presence of litter might serve a physical barrier for gas diffusion. It is suggested that the biogeochemical feedback arising from litterfall should be taken into account in simulating the response of forest GHG fluxes to future global change.
NASA Astrophysics Data System (ADS)
Lau, William K. M.; Kim, Kyu-Myong; Ruby Leung, L.
2017-12-01
Using model outputs from CMIP5 historical integrations, we have investigated the relative roles of anthropogenic emissions of greenhouse gases (GHG) and aerosols in changing the characteristics of the large-scale circulation and rainfall in Asian summer monsoon (ASM) regions. Under GHG warming, a strong positive trend in low-level moist static energy (MSE) is found over ASM regions, associated with increasing large-scale land-sea thermal contrast from 1870s to present. During the same period, a mid-tropospheric convective barrier (MCB) due to widespread reduction in relative humidity in the mid- and lower troposphere is strengthening over the ASM regions, in conjunction with expanding areas of anomalous subsidence associated with the Deep Tropical Squeeze (Lau and Kim in Proc Natl Acad Sci 12:3630-3635, 2015). The opposing effects of MSE and MCB lead to enhanced total ASM rainfall, but only a partial strengthening of the southern portion of the monsoon meridional circulation, coupled to anomalous multi-cellular overturning motions over ASM land. Including anthropogenic aerosol emissions strongly masks MSE but enhances MCB via increased stability in the lower troposphere, resulting in an overall weakened ASM circulation with suppressed rainfall. Analyses of rainfall characteristics indicate that under GHG, overall precipitation efficiency over the ASM region is reduced, manifesting in less moderate but more extreme heavy rain events. Under combined effects of GHG and aerosols, precipitation efficiency is unchanged, with more moderate, but less extreme rainfall.
Bazán, José; Rieradevall, Joan; Gabarrell, Xavier; Vázquez-Rowe, Ian
2018-05-01
Urban environments in Latin America must begin decarbonizing their activities to avoid increasing greenhouse gases (GHGs) emissions rates due to their reliance on fossil fuel-based energy to support economic growth. In this context, cities in Latin America have high potential to convert sunlight into energy. Hence, the main objective of this study was to determine the potential of electricity self-sufficiency production and mitigation of GHG emissions in three medium-sized cities in Peru through the revalorization of underutilized rooftop areas in urban environments. Each city represented a distinct natural area of Peru: Pacific coast, Andean region and Amazon basin. More specifically, photovoltaic solar systems were the technology selected for implementation in these rooftop areas. Data on incident solar energy, temperature and energy consumption were collected. Thereafter, ArcGis10.3 was used to quantify the total usable area in the cities. A series of correction factors, including tilt, orientation or roof profiles were applied to attain an accurate value of usable area. Finally, Life Cycle Assessment was the methodology chosen to calculate the reduction of environmental impacts as compared to the current context of using electricity from the regional grids. Results showed that the cities assessed have the potential to obtain their entire current electricity demand for residential, commercial and public lighting purposes, augmenting energy security and resilience to intermittent natural disasters, with the support of decentralized storage systems. This approach would also translate into substantial reductions in terms of GHG emissions. Annual reductions in GHG emissions ranged from 112ton CO 2 eq in the city of Ayacucho to over 523kton CO 2 eq in Pucallpa, showing that cities in the Amazon basin would be the ones that benefit the most in terms of climate change mitigation. Copyright © 2017 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaygusuz, K.; Bilgen, S.
There is increasing consensus in both the scientific and political communities that significant reductions in greenhouse gas (GHG) emissions are necessary to limit the magnitude and extent of climate change. Renewable energy systems already reduce GHG emissions from the energy sector, although on a modest scale. Turkey is heavily dependent on expensive imported energy resources (oil, gas, and coal) that place a big burden on the economy, and air pollution is becoming a great environmental concern in the country. In this regard, renewable energy resources appear to be one of the most efficient and effective solutions for clean and sustainablemore » energy development in Turkey. Turkey's geographical location has several advantages for extensive use of most of these renewable energy sources. This article presents a review of the energy related environmental policies in Turkey.« less
Sludge-Drying Lagoons: a Potential Significant Methane Source in Wastewater Treatment Plants.
Pan, Yuting; Ye, Liu; van den Akker, Ben; Ganigué Pagès, Ramon; Musenze, Ronald S; Yuan, Zhiguo
2016-02-02
"Sludge-drying lagoons" are a preferred sludge treatment and drying method in tropical and subtropical areas due to the low construction and operational costs. However, this method may be a potential significant source of methane (CH4) because some of the organic matter would be microbially metabolized under anaerobic conditions in the lagoon. The quantification of CH4 emissions from lagoons is difficult due to the expected temporal and spatial variations over a lagoon maturing cycle of several years. Sporadic ebullition of CH4, which cannot be easily quantified by conventional methods such as floating hoods, is also expected. In this study, a novel method based on mass balances was developed to estimate the CH4 emissions and was applied to a full-scale sludge-drying lagoon over a three year operational cycle. The results revealed that processes in a sludge-drying lagoon would emit 6.5 kg CO2-e per megaliter of treated sewage. This would represent a quarter to two-thirds of the overall greenhouse gas (GHG) emissions from wastewater-treatment plants (WWTPs). This work highlights the fact that sludge-drying lagoons are a significant source of CH4 that adds substantially to the overall GHG footprint of WWTPs despite being recognized as a cheap and energy-efficient means of drying sludge.
Life cycle GHG evaluation of organic rice production in northern Thailand.
Yodkhum, Sanwasan; Gheewala, Shabbir H; Sampattagul, Sate
2017-07-01
Greenhouse gas (GHG) emission is one of the serious international environmental issues that can lead to severe damages such as climate change, sea level rise, emerging disease and many other impacts. Rice cultivation is associated with emissions of potent GHGs such as methane and nitrous oxide. Thai rice has been massively exported worldwide however the markets are becoming more competitive than ever since the green market has been hugely promoted. In order to maintain the same level or enhance of competitiveness, Thai rice needs to be considered for environmentally conscious products to meet the international environmental standards. Therefore, it is necessary to evaluate the greenhouse gas emissions throughout the life cycle of rice production in order to identify the major emission sources and possible reduction strategies. In this research, the rice variety considered is Khao Dawk Mali 105 (KDML 105) cultivated by organic practices. The data sources were Don-Chiang Organic Agricultural Cooperative (DCOAC), Mae-teang district, Chiang Mai province, Thailand and the Office of Agricultural Economics (OAE) of Thailand with onsite records and interviews of farmers in 2013. The GHG emissions were calculated from cradle-to-farm by using the Life Cycle Assessment (LCA) approach and the 2006 IPCC Guideline for National Greenhouse Gas Inventories. The functional unit is defined as 1 kg of paddy rice at farm gate. Results showed that the total GHG emissions of organic rice production were 0.58 kg CO 2 -eq per kg of paddy rice. The major source of GHG emission was from the field emissions accounting for 0.48 kg CO 2 -eq per kg of paddy rice, about 83% of total, followed by land preparation, harvesting and other stages (planting, cultivation and transport of raw materials) were 9, 5 and 3% of total, respectively. The comparative results clearly showed that the GHG emissions of organic paddy rice were considerably lower than conventional rice production due to the advantages of using organic fertilisers. Copyright © 2017 Elsevier Ltd. All rights reserved.
High emissions of greenhouse gases from grasslands on peat and other organic soils.
Tiemeyer, Bärbel; Albiac Borraz, Elisa; Augustin, Jürgen; Bechtold, Michel; Beetz, Sascha; Beyer, Colja; Drösler, Matthias; Ebli, Martin; Eickenscheidt, Tim; Fiedler, Sabine; Förster, Christoph; Freibauer, Annette; Giebels, Michael; Glatzel, Stephan; Heinichen, Jan; Hoffmann, Mathias; Höper, Heinrich; Jurasinski, Gerald; Leiber-Sauheitl, Katharina; Peichl-Brak, Mandy; Roßkopf, Niko; Sommer, Michael; Zeitz, Jutta
2016-12-01
Drainage has turned peatlands from a carbon sink into one of the world's largest greenhouse gas (GHG) sources from cultivated soils. We analyzed a unique data set (12 peatlands, 48 sites and 122 annual budgets) of mainly unpublished GHG emissions from grasslands on bog and fen peat as well as other soils rich in soil organic carbon (SOC) in Germany. Emissions and environmental variables were measured with identical methods. Site-averaged GHG budgets were surprisingly variable (29.2 ± 17.4 t CO 2 -eq. ha -1 yr -1 ) and partially higher than all published data and the IPCC default emission factors for GHG inventories. Generally, CO 2 (27.7 ± 17.3 t CO 2 ha -1 yr -1 ) dominated the GHG budget. Nitrous oxide (2.3 ± 2.4 kg N 2 O-N ha -1 yr -1 ) and methane emissions (30.8 ± 69.8 kg CH 4 -C ha -1 yr -1 ) were lower than expected except for CH 4 emissions from nutrient-poor acidic sites. At single peatlands, CO 2 emissions clearly increased with deeper mean water table depth (WTD), but there was no general dependency of CO 2 on WTD for the complete data set. Thus, regionalization of CO 2 emissions by WTD only will remain uncertain. WTD dynamics explained some of the differences between peatlands as sites which became very dry during summer showed lower emissions. We introduced the aerated nitrogen stock (N air ) as a variable combining soil nitrogen stocks with WTD. CO 2 increased with N air across peatlands. Soils with comparatively low SOC concentrations showed as high CO 2 emissions as true peat soils because N air was similar. N 2 O emissions were controlled by the WTD dynamics and the nitrogen content of the topsoil. CH 4 emissions can be well described by WTD and ponding duration during summer. Our results can help both to improve GHG emission reporting and to prioritize and plan emission reduction measures for peat and similar soils at different scales. © 2016 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Harris, Z. M.; Alberti, G.; Bottoms, E.; Rowe, R.; Parmar, K.; Marshall, R.; Elias, D.; Smith, P.; Dondini, M.; Pogson, M.; Richards, M.; Finch, J.; Ineson, P.; Keane, B.; Perks, M.; Wilkinson, M.; Yamulki, S.; Donnison, I.; Farrar, K.; Massey, A.; McCalmont, J.; Drewer, J.; Sohi, S.; McNamara, N.; Taylor, G.
2014-12-01
Rising anthropogenic greenhouse gas (GHG) emissions coupled with an increasing need to address energy security are resulting in the development of cleaner, more sustainable alternatives to traditional fossil fuel sources. Bioenergy crops have been proposed to be able to mitigate the effects of climate change as well as provide increased energy security. The aim of this project is to assess the impact of land conversion to second generation non-food bioenergy crops on GHG balance for several land use transitions, including from arable, grassland and forest. A network of 6 sites was established across the UK to assess the processes underpinning GHG balance and to provide input data to a model being used to assess the sustainability of different land use transitions. Monthly analysis of soil GHGs shows that carbon dioxide contributes most to the global warming potential of these bioenergy crops, irrespective of transition. Nitrous oxide emissions were low for all crops except arable cropping and methane emissions were very low for all sites. Nearly all sites have shown a significant decrease in CO2 flux from the control land use. Eddy flux approaches, coupled with soil assessments show that for the transition from grassland to SRC willow there is a significant reduction in GHG emissions from soil and a negative net ecosystem exchange due to increased GPP and ecosystem respiration. These results suggest for this land use transition to bioenergy in a UK specific context, there may be a net benefit for ecosystem GHG exchange of transition to bioenergy Finally we are developing a meta-modelling tool to allow land use managers to make location-specific, informed decisions about land use change to bioenergy. This work is based on the Ecosystem Land Use Modelling & Soil Carbon GHG Flux Trial (ELUM) project, which was commissioned and funded by the Energy Technologies Institute (ETI). This project is co-ordinated by the Centre for Ecology & Hydrology (www.elum.ac.uk).
Corominas, Lluís; Flores-Alsina, Xavier; Snip, Laura; Vanrolleghem, Peter A
2012-11-01
New tools are being developed to estimate greenhouse gas (GHG) emissions from wastewater treatment plants (WWTPs). There is a trend to move from empirical factors to simple comprehensive and more complex process-based models. Thus, the main objective of this study is to demonstrate the importance of using process-based dynamic models to better evaluate GHG emissions. This is tackled by defining a virtual case study based on the whole plant Benchmark Simulation Model Platform No. 2 (BSM2) and estimating GHG emissions using two approaches: (1) a combination of simple comprehensive models based on empirical assumptions and (2) a more sophisticated approach, which describes the mechanistic production of nitrous oxide (N(2) O) in the biological reactor (ASMN) and the generation of carbon dioxide (CO(2) ) and methane (CH(4) ) from the Anaerobic Digestion Model 1 (ADM1). Models already presented in literature are used, but modifications compared to the previously published ASMN model have been made. Also model interfaces between the ASMN and the ADM1 models have been developed. The results show that the use of the different approaches leads to significant differences in the N(2) O emissions (a factor of 3) but not in the CH(4) emissions (about 4%). Estimations of GHG emissions are also compared for steady-state and dynamic simulations. Averaged values for GHG emissions obtained with steady-state and dynamic simulations are rather similar. However, when looking at the dynamics of N(2) O emissions, large variability (3-6 ton CO(2) e day(-1) ) is observed due to changes in the influent wastewater C/N ratio and temperature which would not be captured by a steady-state analysis (4.4 ton CO(2) e day(-1) ). Finally, this study also shows the effect of changing the anaerobic digestion volume on the total GHG emissions. Decreasing the anaerobic digester volume resulted in a slight reduction in CH(4) emissions (about 5%), but significantly decreased N(2) O emissions in the water line (by 14%). Copyright © 2012 Wiley Periodicals, Inc.
Greenhouse gas emissions from production chain of a cigarette manufacturing industry in Pakistan.
Hussain, Majid; Zaidi, Syed Mujtaba Hasnian; Malik, Riffat Naseem; Sharma, Benktesh Dash
2014-10-01
This study quantified greenhouse gas (GHG) emissions from the Pakistan Tobacco Company (PTC) production using a life cycle approach. The PTC production chain comprises of two phases: agricultural activities (Phase I) and industrial activities (Phase II). Data related to agricultural and industrial activities of PTC production chain were collected through questionnaire survey from tobacco growers and records from PTC manufacturing units. The results showed that total GHG emissions from PTC production chain were 44,965, 42,875, and 43,839 tCO2e respectively in 2009, 2010, and 2011. Among the agricultural activities, firewood burning for tobacco curing accounted for about 3117, 3565, and 3264 tCO2e, fertilizer application accounted for 754, 3251, and 4761 tCO2e in 2009, 2010, and 2011, respectively. Among the industrial activities, fossil fuels consumption in stationary sources accounted for 15,582, 12,733, and 13,203 tCO2e, fossil fuels used in mobile sources contributed to 2693, 3038, and 3260 tCO2e, and purchased electricity consumed resulted in 15,177, 13,556, and 11,380 tCO2e in 2009, 2010, and 2011, respectively. The GHG emissions related to the transportation of raw materials and processed tobacco amounted to 6800, 6301, and 7317 respectively in 2009, 2010, and 2011. GHG emissions from energy use in the industrial activities constituted the largest emissions (i.e., over 80%) of GHG emissions as PTC relies on fossil fuels and fossil fuel based electrical power in industrial processes. The total emissions of carbon footprint (CFP) from PTC production were 0.647 tCO2e per million cigarettes produced in 2009, 0.675 tCO2e per million cigarettes in 2010 and 0.59 tCO2e per million cigarettes in 2011. Potential strategies for GHG emissions reductions for PTC production chain include energy efficiency, reducing reliance on fossil fuels in non-mobile sources, adoption of renewable fuels including solar energy, energy from crop residues, and promotion of organic fertilizers. Copyright © 2014 Elsevier Inc. All rights reserved.
Perez, L; Trüeb, S; Cowie, H; Keuken, M P; Mudu, P; Ragettli, M S; Sarigiannis, D A; Tobollik, M; Tuomisto, J; Vienneau, D; Sabel, C; Künzli, N
2015-12-01
Local strategies to reduce green-house gases (GHG) imply changes of non-climatic exposure patterns. To assess the health impacts of locally relevant transport-related climate change policies in Basel, Switzerland. We modelled change in mortality and morbidity for the year 2020 based on several locally relevant transport scenarios including all decided transport policies up to 2020, additional realistic and hypothesized traffic reductions, as well as ambitious diffusion levels of electric cars. The scenarios were compared to the reference condition in 2010 assumed as status quo. The changes in non-climatic population exposure included ambient air pollution, physical activity, and noise. As secondary outcome, changes in Disability-Adjusted Life Years (DALYs) were put into perspective with predicted changes of CO2 emissions and fuel consumption. Under the scenario that assumed a strict particle emissions standard in diesel cars and all planned transport measures, 3% of premature deaths could be prevented from projected PM2.5 exposure reduction. A traffic reduction scenario assuming more active trips provided only minor added health benefits for any of the changes in exposure considered. A hypothetical strong support to electric vehicles diffusion would have the largest health effectiveness given that the energy production in Basel comes from renewable sources. The planned local transport related GHG emission reduction policies in Basel are sensible for mitigating climate change and improving public health. In this context, the most effective policy remains increasing zero-emission vehicles. Copyright © 2015 Elsevier Ltd. All rights reserved.
Investigation of CO2 emission reduction strategy from in-use gasoline vehicle
NASA Astrophysics Data System (ADS)
Choudhary, Arti; Gokhale, Sharad
2016-04-01
On road transport emissions is kicking off in Indian cities due to high levels of urbanization and economic growth during the last decade in Indian subcontinent. In 1951, about 17% of India's population were living in urban areas that increased to 32% in 2011. Currently, India is fourth largest Green House Gas (GHG) emitter in the world, with its transport sector being the second largest contributor of CO2 emissions. For achieving prospective carbon reduction targets, substantial opportunity among in-use vehicle is necessary to quantify. Since, urban traffic flow and operating condition has significant impact on exhaust emission (Choudhary and Gokhale, 2016). This study examined the influence of vehicular operating kinetics on CO2 emission from predominant private transportation vehicles of Indian metropolitan city, Guwahati. On-board instantaneous data were used to quantify the impact of CO2 emission on different mileage passenger cars and auto-rickshaws at different times of the day. Further study investigates CO2 emission reduction strategies by using International Vehicle Emission (IVE) model to improve co-benefit in private transportation by integrated effort such as gradual phase-out of inefficient vehicle and low carbon fuel. The analysis suggests that fuel type, vehicles maintenance and traffic flow management have potential for reduction of urban sector GHG emissions. Keywords: private transportation, CO2, instantaneous emission, IVE model Reference Choudhary, A., Gokhale, S. (2016). Urban real-world driving traffic emissions during interruption and congestion. Transportation Research Part D: Transport and Environment 43: 59-70.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Iyer, Gokul C.; Clarke, Leon E.; Edmonds, James A.
The United States has articulated a deep decarbonization strategy for achieving a reduction in economy-wide greenhouse gas (GHG) emissions of 80% below 2005 levels by 2050. Achieving such deep emissions reductions will entail a major transformation of the energy system and of the electric power sector in particular. , This study uses a detailed state-level model of the U.S. energy system embedded within a global integrated assessment model (GCAM-USA) to demonstrate pathways for the evolution of the U.S. electric power sector that achieve 80% economy-wide reductions in GHG emissions by 2050. The pathways presented in this report are based onmore » feedback received during a workshop of experts organized by the U.S. Department of Energy’s Office of Energy Policy and Systems Analysis. Our analysis demonstrates that achieving deep decarbonization by 2050 will require substantial decarbonization of the electric power sector resulting in an increase in the deployment of zero-carbon and low-carbon technologies such as renewables and carbon capture utilization and storage. The present results also show that the degree to which the electric power sector will need to decarbonize and low-carbon technologies will need to deploy depends on the nature of technological advances in the energy sector, the ability of end-use sectors to electrify and level of electricity demand.« less
Yang, Fang; Lee, Xinqing; Theng, Benny K G; Wang, Bing; Cheng, Jianzhong; Wang, Qian
2017-06-01
Agricultural soils are an important source of greenhouse gases (GHG). Biochar application to such soils has the potential of mitigating global anthropogenic GHG emissions. Under irrigation, the topsoils in arid regions experience repeated drying and wetting during the crop growing season. Biochar incorporation into these soils would change the soil microbial environment and hence affect GHG emissions. Little information, however, is available regarding the effect of biochar addition on carbon dioxide (CO 2 ) and nitrous oxide (N 2 O) emissions from agricultural soils undergoing repeated drying and wetting. Here, we report the results of a 49-day aerobic incubation experiment, incorporating biochar into an anthropogenic alluvial soil in an arid region of Xinjiang Province, China, and measuring CO 2 and N 2 O emissions. Under both drying-wetting and constantly moist conditions, biochar amendment significantly increased cumulative CO 2 emission. At the same time, there was a significant reduction (up to ~20 %) in cumulative N 2 O emission, indicating that the addition of biochar to irrigated agricultural soils may effectively slow down global warming in arid regions of China.
NASA Astrophysics Data System (ADS)
Begum, Shahida; P, Kumaran; M, Jayakumar
2013-06-01
One of the most efficient and effective solutions for sustainable energy supply to supplement the increasing energy demand and reducing environment pollution is renewable energy resources. Malaysia is currently the world's second largest producer and exporter of palm oil and 47% of the world's supply of palm oil is produced by this country. Nearly 80 million tonnes of Fresh Fruit Bunches (FFB) are processed annually in 406 palm oil mills and are generating approximately 54 million tonnes of palm oil mill effluent (POME), known to generate biogas consisting of methane - a Green House Gas (GHG) identifiable to cause global warming. This is 21 times more potent GHG than CO2. These two major oil palm wastes are a viable renewable energy (RE) source for production of electricity. If the two sources are used in harnessing the renewable energy potential the pollution intensity from usage of non-renewable sources can also be reduced significantly. This study focused on the pollution mitigation potential of biogas as biogas is a renewable energy. Utilization of this renewable source for the production of electricity is believed to reduce GHG emissions to the atmosphere.
NASA Astrophysics Data System (ADS)
Field, John L.; Evans, Samuel G.; Marx, Ernie; Easter, Mark; Adler, Paul R.; Dinh, Thai; Willson, Bryan; Paustian, Keith
2018-03-01
Although dedicated energy crops will probably be an important feedstock for future cellulosic bioenergy production, it is unknown how they can best be integrated into existing agricultural systems. Here we use the DayCent ecosystem model to simulate various scenarios for growing switchgrass in the heterogeneous landscape that surrounds a commercial-scale cellulosic ethanol biorefinery in southwestern Kansas, and quantify the associated fuel production costs and lifecycle greenhouse gas (GHG) emissions. We show that the GHG footprint of ethanol production can be reduced by up to 22 g of CO2 equivalent per megajoule (CO2e MJ-1) through careful optimization of the soils cultivated and corresponding fertilizer application rates (the US Renewable Fuel Standard requires a 56 gCO2e MJ-1 lifecycle emissions reduction for `cellulosic' biofuels compared with conventional gasoline). This improved climate performance is realizable at modest additional costs, less than the current value of low-carbon fuel incentives. We also demonstrate that existing subsidized switchgrass plantings within this landscape probably achieve suboptimal GHG mitigation, as would landscape designs that strictly minimize the biomass collection radius or target certain marginal lands.
Luk, Jason M; Kim, Hyung Chul; De Kleine, Robert; Wallington, Timothy J; MacLean, Heather L
2017-08-01
The literature analyzing the fuel saving, life cycle greenhouse gas (GHG) emission, and ownership cost impacts of lightweighting vehicles with different powertrains is reviewed. Vehicles with lower powertrain efficiencies have higher fuel consumption. Thus, fuel savings from lightweighting internal combustion engine vehicles can be higher than those of hybrid electric and battery electric vehicles. However, the impact of fuel savings on life cycle costs and GHG emissions depends on fuel prices, fuel carbon intensities and fuel storage requirements. Battery electric vehicle fuel savings enable reduction of battery size without sacrificing driving range. This reduces the battery production cost and mass, the latter results in further fuel savings. The carbon intensity of electricity varies widely and is a major source of uncertainty when evaluating the benefits of fuel savings. Hybrid electric vehicles use gasoline more efficiently than internal combustion engine vehicles and do not require large plug-in batteries. Therefore, the benefits of lightweighting depend on the vehicle powertrain. We discuss the value proposition of the use of lightweight materials and alternative powertrains. Future assessments of the benefits of vehicle lightweighting should capture the unique characteristics of emerging vehicle powertrains.
A dual tracer ratio method for comparative emission measurements in an experimental dairy housing
NASA Astrophysics Data System (ADS)
Mohn, Joachim; Zeyer, Kerstin; Keck, Margret; Keller, Markus; Zähner, Michael; Poteko, Jernej; Emmenegger, Lukas; Schrade, Sabine
2018-04-01
Agriculture, and in particular dairy farming, is an important source of ammonia (NH3) and non-carbon dioxide greenhouse gas (GHG) emissions. This calls for the development and quantification of effective mitigation strategies. Our study presents the implementation of a dual tracer ratio method in a novel experimental dairy housing with two identical, but spatially separated housing areas. Modular design and flexible floor elements allow the assessment of structural, process engineering and organisational abatement measures at practical scale. Thereby, the emission reduction potential of specific abatement measures can be quantified in relation to a reference system. Emissions in the naturally ventilated housing are determined by continuous dosing of two artificial tracers (sulphur hexafluoride SF6, trifluoromethylsulphur pentafluoride SF5CF3) and their real-time detection in the ppt range with an optimized GC-ECD method. The two tracers are dosed into different experimental sections, which enables the independent assessment of both housing areas. Mass flow emissions of NH3 and GHGs are quantified by areal dosing of tracer gases and multipoint sampling as well as real-time analysis of both tracer and target gases. Validation experiments demonstrate that the technique is suitable for both areal and point emission sources and achieves an uncertainty of less than 10% for the mass emissions of NH3, methane (CH4) and carbon dioxide (CO2), which is superior to other currently available methods. Comparative emission measurements in this experimental dairy housing will provide reliable, currently unavailable information on emissions for Swiss dairy farming and demonstrate the reduction potential of mitigation measures for NH3, GHGs and potentially other pollutants.
Challenges and opportunities for animal conservation from renewable energy development
T.A. Katzner; J.A. Johnson; D.M. Evans; T.W.J. Garner; M.E. Gompper; R. Altwegg; T.A. Branch; I.J. Gordon; N. Pettorelli
2013-01-01
Global climate change is among the greatest threats confronting both human and natural systems (IPCC, 2007). A substantial component of greenhouse gas (GHG) emissions is from energy production, generated via the burning of fossil fuels, especially coal, natural gas and refined petroleum. Given that reduction in global energy consumption is unlikely over the next...
DOT National Transportation Integrated Search
2009-03-01
Climate change is likely to have more impact on the future of surface transportation than any other issue. The challenges and implications for surface transportation and for state DOTs include: the need to support major GHG reductions, the need to me...
DOT National Transportation Integrated Search
2017-03-01
The California Global Warming Solutions Act of 2006 (Assembly Bill 32) created a : comprehensive, multi-year program to reduce greenhouse gas (GHG) emissions in the state to : 80% below 1990 levels by 2050. With the recent passage of Senate Bill 32, ...
NASA Astrophysics Data System (ADS)
Rook, S. P.; Vidon, P.; Walter, M. T.
2011-12-01
The management of riparian buffer strips is often regarded as one of the most economical and sustainable methods of managing non-point source pollution and water quality. However, current riparian management often follows a 'one size fits all' design, which fails to recognize the complexity of the many biogeochemical processes that regulate pollutant transformation and retention in these systems. This study addresses two critical gaps in knowledge: (1) How carbon, nitrogen, phosphorous, and iron cycles interact with one another (rather than individually). (2) How stream channel geometry and evolution regulate these nutrient cycles and greenhouse gas (GHG) dynamics in the near stream zone. This project specifically explores the hydrological and biogeochemical functioning of riparian zones across a gradient of stream meander evolution stages, with the primary goal of understanding and predicting potential interactions between nutrient dynamics in these systems. Key research questions include: (1) How does stream meander curvature affect riparian zone hydrology? (2) How does stream meander curvature influence riparian zone biogeochemistry? (3) What relationships exist among N, P, Fe, and GHG dynamics? We instrumented three riparian sites near Ithaca, NY, with a dense network of wells, piezometers, and static chambers. These sites represent three riparian zones along three evolution stages of stream meanders: an inner meander, a straight stream section, and an outer bend of the stream with an oxbow lake formation. In spring through fall 2011, water samples and gas samples were collected at a tri-weekly bases at each of the three sites. Water samples were analyzed for oxidation-reduction potential, dissolved oxygen, temperature, FeII/FeIII, nutrients (NO3-, NH4+, PO43-) and dissolved organic carbon (DOC). GHG fluxes at the soil-atmosphere interface were measured for N2O, CO2, and CH4 gases. We predict that stream curvature will significantly affect groundwater flow direction in the riparian zones. Owing to more prolonged saturation, we expect that the oxbow setting will exhibit anoxic conditions, and associated biogeochemistry. Finally, we hypothesize clear relationships among N, P, Fe, and GHG dynamics. In areas of significant denitrification, we expect to see an increase in Fe reduction, PO43- release, N2O emission, and CH4 emission, and a decrease in CO2 emission. Quantifying these interactions will enhance our ability to model riparian biogeochemical processes, promote water quality, and comprehend to what extent the promotion of riparian zones for nitrate removal is done at the expense of air quality (with respect to GHG emissions) and/or water quality (with respect to P).
Emission of greenhouse gases from waste incineration in Korea.
Hwang, Kum-Lok; Choi, Sang-Min; Kim, Moon-Kyung; Heo, Jong-Bae; Zoh, Kyung-Duk
2017-07-01
Greenhouse gas (GHG) emission factors previously reported from various waste incineration plants have shown significant variations according to country-specific, plant-specific, and operational conditions. The purpose of this study is to estimate GHG emissions and emission factors at nine incineration facilities in Korea by measuring the GHG concentrations in the flue gas samples. The selected incineration plants had different operation systems (i.e., stoker, fluidized bed, moving grate, rotary kiln, and kiln & stoker), and different nitrogen oxide (NO x ) removal systems (i.e., selective catalytic reduction (SCR) and selective non-catalytic reduction (SNCR)) to treat municipal solid waste (MSW), commercial solid waste (CSW), and specified waste (SW). The total mean emission factors for A and B facilities for MSW incineration were found to be 134 ± 17 kg CO 2 ton -1 , 88 ± 36 g CH 4 ton -1 , and 69 ± 16 g N 2 O ton -1 , while those for CSW incineration were 22.56 g CH 4 ton -1 and 259.76 g N 2 O ton -1 , and for SW incineration emission factors were 2959 kg CO 2 ton -1 , 43.44 g CH 4 ton -1 and 401.21 g N 2 O ton -1 , respectively. Total emissions calculated using annual incineration for MSW were 3587 ton CO 2 -eq yr -1 for A facility and 11,082 ton CO 2 -eq yr -1 for B facility, while those of IPCC default values were 13,167 ton CO 2- eq yr -1 for A facility and 32,916 ton CO 2- eq yr -1 , indicating that the emissions of IPCC default values were estimated higher than those of the plant-specific emission factors. The emission of CSW for C facility was 1403 ton CO 2 -eq yr -1 , while those of SW for D to I facilities was 28,830 ton CO 2 -eq yr -1 . The sensitivity analysis using a Monte Carlo simulation for GHG emission factors in MSW showed that the GHG concentrations have a greater impact than the incineration amount and flow rate of flue gas. For MSW incineration plants using the same stoker type in operation, the estimated emissions and emission factors of CH 4 showed the opposite trend with those of NO 2 when the NO x removal system was used, whereas there was no difference in CO 2 emissions. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stephens, T. S.; Taylor, C. H.; Moore, J. S.
Under a diverse set of programs, the Vehicle Technologies and Fuel Cell Technologies offices of DOE’s Office of Energy Efficiency and Renewable Energy invest in research, development, demonstration, and deployment of advanced vehicle, hydrogen production, delivery and storage, and fuel cell technologies. This report estimates the benefits of successfully developing and deploying these technologies (a “Program Success” case) relative to a base case (the “No Program” case). The Program Success case represents the future with completely successful deployment of Vehicle Technologies Office (VTO) and Fuel Cell Technologies Office (FCTO) technologies. The No Program case represents a future in which theremore » is no contribution after FY 2016 by the VTO or FCTO to these technologies. The benefits of advanced vehicle, hydrogen production, delivery and storage, and fuel cell technologies were estimated on the basis of differences in fuel use, primary energy use, and greenhouse gas (GHG) emissions from light-, medium- and heavy-duty vehicles, including energy and emissions from fuel production, between the base case and the Program Success case. Improvements in fuel economy of various vehicle types, growth in the stock of fuel cell vehicles and other advanced technology vehicles, and decreased GHG intensity of hydrogen production and delivery in the Program Success case over the No Program case were projected to result in savings in petroleum use and GHG emissions. Benefits were disaggregated by individual program technology areas, which included the FCTO program and the VTO subprograms of batteries and electric drives; advanced combustion engines; fuels and lubricants; materials (for reduction in vehicle mass, or “lightweighting”); and, for medium- and heavy-duty vehicles, reduction in rolling and aerodynamic resistance. Projections for the Program Success case indicate that by 2035, the average fuel economy of on-road, light-duty vehicle stock could be 47% to 76% higher than in the No Program case. On-road medium- and heavy-duty vehicle stock could be as much as 39% higher. The resulting petroleum savings in 2035 were estimated to be as high as 3.1 million barrels per day, and reductions in GHG emissions were estimated to be as high as 500 million metric tons of CO2 equivalent per year. The benefits of continuing to invest government resources in advanced vehicle and fuel cell technologies would have significant economic value in the U.S. transportation sector and reduce its dependency on oil and its vulnerability to oil price shocks.« less
NASA Astrophysics Data System (ADS)
Garneau, M.; van Bellen, S.
2016-12-01
Based on various databases, carbon stocks of terrestrial ecosystems in the boreal and arctic biomes of Quebec were quantified as part of an evaluation of their capacity to mitigate anthropogenic greenhouse gas (GHG) emissions and estimate their vulnerability with respect to recent climate change and land use changes. The results of this project are contributing to the establishment of the Strategy for Climate Change Adaptation as well as the 2013-2020 Climate Change Action Plan of the Quebec Ministry of Environment, which aim to adapt the Quebec society to the effects of climate change and the reduction of GHG emissions. The total carbon stock of the soils of the forest and peatland ecosystems of Quebec was quantified at 18.00 Gt C or 66.0 Gt CO2-equivalent, of which 95% corresponds to the boreal and arctic regions. The mean carbon mass per unit area (kg C m-2) of peatlands is about nine times higher than that of forests, with values of 100,0 kg C m-2 for peatlands and 10,9 kg C m-2 for forest stands. In 2013, total anthropogenic emissions in Quebec were quantified at 82.6 Mt CO2-equivalent (Environment Canada, 2015), or 1.25‰ of the total Quebec ecosystem carbon stock. The total stock thus represents the equivalent of about 800 years of anthropogenic emissions at the current rate, divided between 478 years for peatlands and 321 years for forest soils. Future GHG mitigation policies and sustainable land-use planning should be supported by scientific data on terrestrial ecosystems carbon stocks. An increase in investments in peatland, wetland and forest conservation, management and rehabilitation may contribute to limit greenhouse gas emissions. It is therefore essential, that, following the objectives of multiple international organisations, the management of terrestrial carbon stocks becomes part of the national engagement to reduce GHG emissions.
Monsivais, Pablo; Jones, Nicholas RV; Brand, Christian; Woodcock, James
2017-01-01
Objective To quantify changes in mortality, greenhouse gas (GHG) emissions and consumer costs for physical activity and diet scenarios. Design For the physical activity scenarios, all car trips from <1 to <8 miles long were progressively replaced with cycling. For the diet scenarios, the study population was assumed to increase fruit and vegetable (F&V) consumption by 1–5 portions of F&V per day, or to eat at least 5 portions per day. Health effects were modelled with the comparative risk assessment method. Consumer costs were based on fuel cost savings and average costs of F&V, and GHG emissions to fuel usage and F&V production. Setting Working age population for England. Participants Data from the Health Survey for England, National Travel Survey and National Diet and Nutrition Survey. Primary outcomes measured Changes in premature deaths, consumer costs and GHG emissions stratified by age, gender and socioeconomic status (SES). Results Premature deaths were reduced by between 75 and 7648 cases per year for the physical activity scenarios, and 3255 and 6187 cases per year for the diet scenarios. Mortality reductions were greater among people of medium and high SES in the physical activity scenarios, whereas people with lower SES benefited more in the diet scenarios. Similarly, transport fuel costs fell more for people of high SES, whereas diet costs increased most for the lowest SES group. Net GHG emissions decreased by between 0.2 and 10.6 million tons of carbon dioxide equivalent (MtCO2e) per year for the physical activity scenarios and increased by between 1.3 and 6.3 MtCO2e/year for the diet scenarios. Conclusions Increasing F&V consumption offers the potential for large health benefits and reduces health inequalities. Replacing short car trips with cycling offers the potential for net benefits for health, GHG emissions and consumer costs. PMID:28399514
Potential Cost-Effective Opportunities for Methane Emission Abatement
DOE Office of Scientific and Technical Information (OSTI.GOV)
Warner, Ethan; Steinberg, Daniel; Hodson, Elke
2015-08-01
The energy sector was responsible for approximately 84% of carbon dioxide equivalent (CO 2e) greenhouse gas (GHG) emissions in the U.S. in 2012 (EPA 2014a). Methane is the second most important GHG, contributing 9% of total U.S. CO 2e emissions. A large portion of those methane emissions result from energy production and use; the natural gas, coal, and oil industries produce approximately 39% of anthropogenic methane emissions in the U.S. As a result, fossil-fuel systems have been consistently identified as high priority sectors to contribute to U.S. GHG reduction goals (White House 2015). Only two studies have recently attempted tomore » quantify the abatement potential and cost associated with the breadth of opportunities to reduce GHG emissions within natural gas, oil, and coal supply chains in the United States, namely the U.S. Environmental Protection Agency (EPA) (2013a) and ICF (2014). EPA, in its 2013 analysis, estimated the marginal cost of abatement for non-CO 2 GHG emissions from the natural gas, oil, and coal supply chains for multiple regions globally, including the United States. Building on this work, ICF International (ICF) (2014) provided an update and re-analysis of the potential opportunities in U.S. natural gas and oil systems. In this report we synthesize these previously published estimates as well as incorporate additional data provided by ICF to provide a comprehensive national analysis of methane abatement opportunities and their associated costs across the natural gas, oil, and coal supply chains. Results are presented as a suite of marginal abatement cost curves (MACCs), which depict the total potential and cost of reducing emissions through different abatement measures. We report results by sector (natural gas, oil, and coal) and by supply chain segment - production, gathering and boosting, processing, transmission and storage, or distribution - to facilitate identification of which sectors and supply chain segments provide the greatest opportunities for low cost abatement.« less
Bridging the data gap: engaging developing country farmers in greenhouse gas accounting
NASA Astrophysics Data System (ADS)
Paustian, Keith
2013-06-01
For many developing countries, the land use sector, particularly agriculture and forestry, represents a large proportion of their greenhouse gas (GHG) emissions, making this sector a priority for GHG mitigation activities. Previous global surveys (e.g., IPCC 2000) as well as the most recent IPCC assessment report clearly indicate that the greatest technical potential for carbon sequestration and reductions of non-CO2 GHG emissions from the land use sector is in developing countries. Estimates that consider economic feasibility suggest that agriculture and forestry together provide among the greatest opportunities for short-term and low-cost mitigation measures across all sectors of the global economy1 (IPCC 2007). In addition, it is widely recognized that the ecosystem changes entailed by most mitigation practices, i.e., building soil organic matter, reducing losses and tightening nutrient cycles, more efficient production systems and preserving native vegetation, are well aligned with goals of increasing food security and rural development as well as buffering land use systems against climate change (Lal 2004). Hence, there is growing interest in jump-starting the capacity for broad-based engagement in agriculturally-based GHG mitigation projects in developing countries. Against this favorable background, there are a number of significant challenges—in addition to the fundamental need for comprehensive mandatory reduction policies—to accelerating the involvement of agriculture in GHG mitigation. As detailed by articles in this special issue, quantifying emissions and emission reductions/sequestration of agricultural sources of CO2,N2O and CH4 is difficult. Emissions and C sequestration are distributed across the landscape, with high spatial and temporal variability and with multiple and interacting climate, soil and management factors that affect rates. In most cases, this makes instrument-based measurement of fluxes and C stock changes in agricultural environments difficult, expensive and impractical for routine project-scale deployment. However, there is growing acceptance in the use of models—ranging from simple empirical emission factors to dynamic process-based models—for quantifying emissions and stock changes at project scales2. This approach relies on the strategic use of direct instrument-based measurements carried out by university and government researchers (Jawson et al 2005, Skiba et al 2009) to calibrate and validate appropriate models, in which the models represent the relationship between key environmental variables (e.g., precipitation, temperature, soil texture and mineralogy, etc) and land management practices (e.g., fertilizer use, tillage, crop selection, residue management, land cover changes, etc) that determine anthropogenic GHG fluxes. National or regional scale monitoring networks can provide additional, independent measurements to estimate model-based uncertainties and to incrementally improve model performance (van Wesemael et al 2011). In many developing countries the information infrastructure to support model-based GHG estimates is just beginning to emerge; however initiatives such as the World Digital Soils Map project (Sanchez et al 2009) and growing availability of free or low-cost climate data sets and remote sensing data (e.g. land cover/land use, fire, vegetation condition, etc) suggest that our knowledge of many of the environmental variables controlling GHG emissions and C sequestration will increase greatly in the next few years. However, the other key ingredient to GHG quantification—knowing where and what land management activities are actually occurring on the landscape—will require its own technological breakthrough. In its most basic form, the emission rate of a greenhouse gas can be expressed as the product of an emission factor and a measure of the activity that is causing the emission. In this simplified depiction, the emission factor embodies the set of research-based measurements, environmental variables, process models and monitoring networks described above. The second part of the equation is generally referred to as activity data, which includes the type and amount of human-activities (i.e., management) responsible for the emissions. In most developed countries, there is a well-developed infrastructure to collect and analyze data on land use and management activities that are used for a variety of purposes, including greenhouse gas inventories. For example, the US Department of Agriculture's (USDA) National Agricultural Statistical Service (NASS) conducts a variety of surveys of farmers to collect information on management practices as well as economic and demographic data; other entities such as USDA National Resource Inventory use remote sensing and field visits to gather agricultural resource use data. These and other data sources are utilized for the national agricultural emissions inventory in the US (EPA 2012). However, even these well-established and resourced (e.g., 2011 NASS budget was 165 million) data collections lack some variables of interest for GHG estimates and more importantly tend to be available only as aggregated averages (e.g., state or county level) that do not fully capture the local interaction of environmental variables (e.g. climate and soil properties) and management practices that determine GHG emissions. In most developing countries, this type of agricultural activity data is much scarcer and most countries do not have the resources to collect extensive survey data on agricultural practices as in the developed world. Country-level statistics such as compiled in FAOSTAT provide a useful first-order estimate of agricultural activities that can be used in national and global GHG accounting (see Tubiello et al 2013), but are inadequate for finer scale and more accurate emissions estimates. Given financial and resource constraints, there is little expectation of dramatic near-term improvements in the availability of data on agricultural management practices in many developing countries using traditional top-down agency-directed surveys. So how do we overcome this critical data gap, which I would argue is a prerequisite for broad-based implementation of GHG mitigation policies and projects in the developing world. A potential answer—have the farmers tell us themselves! The explosive growth in mobile phone accessibility and use in developing countries has been widely noted and has begun to be exploited for a variety of purposes to support rural development (Qiang et al 2011). To date, applications have centered mainly on providing market information to farmers so that they can make more profitable decisions on where and when to market their products. Dissemination of advice, such as weather forecasts and management recommendations is another area of development. The use of mobile device technology for 'crowd-sourcing' of land management data to support local-scale greenhouse gas accounting is still very much 'on-the-drawing board' (Paustian 2012); however, several factors argue in favor of the viability of this type of approach. First, is the fact that many key variables driving agricultural emissions (e.g., fertilizer applications, manure management) cannot be obtained by means other than asking the farmers themselves—either by traditional survey methods or through self-reporting. Remote sensing can provide data on variables such as land cover and land cover change, as well as some 'within land cover' management variables such as crop species, crop residue coverage, extent and periodicity of flooding (e.g. for rice) (NAS 2010). However, these latter observations are still highly uncertain and particularly challenging in the heterogeneous, fine-grained, land use mosaics that are typical for small-holder agriculture in the tropics. Hence, most of the management information needed as activity data, e.g., land area farmed, amount, type and timing of fertilizer applied, tillage implements used, crops growth, etc, are best known by the land users themselves. At present, second generation (2G) mobile phones predominate in developing countries (Qiang et al 2011), but with the likely increase in future smart phone usage, the possibility for powerful applications for data collection as well as computation and reporting (e.g., for GHG mitigation project participants) is far-reaching. Capabilities include geo-referencing of locations, uploading photos for image analysis (e.g., crop species present, canopy density, surface coverage by crop residues) and wireless connection to remote sensing imagery, geospatial databases and cloud-computing. Sophisticated web-based applications for GHG accounting are becoming available in the US and Europe (Denef et al 2012, Paustian et al 2012) which opens the opportunity for similar deployments to support GHG mitigation projects in developing countries (Milne et al 2013). Incentivizing farmers to supply management information and ensuring timely and accurate reporting are two major challenges to a 'crowd-sourcing' system for activity data collection. A logical place to start might be with participants or field coordinators of GHG offset projects or other funded agricultural development projects, as they would have a direct incentive to provide data as a condition of project participation. However, a cost-effective means of collecting land use data might also be of interest to governmental and regulatory agencies, in which case direct financial incentives for reporting could be developed. Compensation such as awarding cell phone minutes would be an alternative that would entail minimal transaction costs. Data quality control would be an important component, requiring careful formulation of the data gathering procedures (i.e., the design of a mobile-app based survey) as well as data screening for outliers and independent resampling of a portion of the responses. However, QA/QC procedures for traditional self-reporting and polling methods (which face the same challenges) are well-developed and could be adapted to a mobile-app system. Finally, opportunities for incorporating graphics/pictures as a substitute or complement to text, as well as increasingly sophisticated voice recognition capabilities, could provide added benefits for working with populations having low literacy and education levels. Many issues remain to be resolved for improving our capabilities to quantify emissions and emission reductions from agriculture—both in developed and developing parts of the globe—including improvements in emission factors/models, better geospatial databases for soils and climate, and deployment of distributed monitoring networks. Similarly, a crowd-sourcing approach to compile activity data on agricultural management practices faces challenges such as making applications simple and locally relevant, literacy barriers, data quality control, and incentivizing the data providers. However, the growing use by developing country farmers of mobile apps for marketing, financing and extension services, suggests that engaging them directly, as the true experts of what is happening on the landscape, could be a key to bridging the data gap and realizing the potential for agricultural GHG mitigation. References Denef K, Paustian K, Archibeque S, Biggar S and Pape D 2012 Report of greenhouse gas accounting tools for agriculture and forestry sectors Interim Report to USDA Under Contract No GS23F8182H (www.usda.gov/oce/climate_change/techguide/Denef_et_al_2012_GHG_Accounting_Tools_v1.pdf (ver. 30/10/2012)) EPA 2012 Inventory of US Greenhouse Gas Emissions and Sinks: 1990-2010 (EPA 430-R-12-001) (Washington, DC: Office of Atmospheric Programs) (www.epa.gov/climatechange/ghgemissions/usinventoryreport/archive.html (ver. 23/03/2013)) IPCC 2000 Land Use, Land Use Change, and Forestry (Intergovernmental Panel on Climate Change Special Report) (Oxford: Oxford University Press) p 377 IPCC 2007 Agriculture Climate Change 2007: Mitigation. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change ed B Metz, O R Davidson, P R Bosch, R Dave and L A Meyer (Cambridge: Cambridge University Press) chapter 8, pp 498-540 Jawson M D, Shafer S R, Franzluebbers A J, Parkin T B and Follett R F 2005 GRACEnet: greenhouse gas reduction through agricultural carbon enhancement network Soil Tillage Res. 83 167-72 Lal R 2004 Soil carbon sequestration impacts on global climate change and food security Science 304 1623-7 Milne E et al 2013 Methods for the quantification of GHG emissions at the landscape level for developing countries in smallholder contexts Environ. Res. Lett. 8 015019 National Academy of Sciences 2010 Verifying Greenhouse Gas Emissions: Methods to Support International Climate Agreements (Committee: S Pacala, C Breidenich, P Brewer, I Fung, M Gunson, G Heddle, B Law, G Marland, K Paustian, M Prather, J Randerson, P Tans, S Wofsy) (Washington, DC: National Academies Press) p 110 Paustian K 2012 Agriculture, farmers and GHG mitigation: a new social network? Carbon Manag. 3 253-7 Paustian K et al 2012 COMET 2.0—decision support system for agricultural greenhouse gas accounting Managing Agricultural Greenhouse Gases: Coordinated Agricultural Research through GraceNet to Address Our Changing Climate ed M Liebig, A Franzluebbers and R Follett (San Diego, CA: Academic) pp 251-70 Qiang C Z, Kuek S C, Dymond A and Esselaar S 2011 Mobile Applications for Agriculture and Rural Development (Washington, DC: ICT Sector Unit, World Bank) (http://siteresources.worldbank.org/INFORMATIONANDCOMMUNICATIONANDTECHNOLOGIES/Resources/MobileApplications_for_ARD.pdf) Sanchez P A et al 2009 Digital soil map of the world Science 325 680-1 Skiba U et al 2009 Biosphere-atmosphere exchange of reactive nitrogen and greenhouse gases at the NitroEurope core flux measurement sites: measurement strategy and first data sets Agric. Ecosyst. Environ. 133 139-49 Tubiello F N et al 2013 The FAOSTAT database of greenhouse gas emissions from agriculture Environ. Res. Lett. 8 015009 van Wesemael B et al 2011 How can soil monitoring networks be used to improve predictions of organic carbon pool dynamics and CO2 fluxes in agricultural soils? Plant Soil 338 247-59 1 About 4.7 Pg CO2eq yr-1, at 50 tonne-1 CO2eq. 2 In practice, virtually all emission estimates in national GHG inventories rely fully or partially on model-based methods. At project scales, one of the few examples of direct instrument-based measurement approaches in agriculture is that of methane abatement from manure management, in which enclosed storage facilities allow gases to be collected and measured as a point source.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Melaina, W.; Heath, Garvin; Sandor, Debra
2013-04-01
The petroleum-based transportation fuel system is complex and highly developed, in contrast to the nascent low-petroleum, low-carbon alternative fuel system. This report examines how expansion of the low-carbon transportation fuel infrastructure could contribute to deep reductions in petroleum use and greenhouse gas (GHG) emissions across the U.S. transportation sector. Three low-carbon scenarios, each using a different combination of low-carbon fuels, were developed to explore infrastructure expansion trends consistent with a study goal of reducing transportation sector GHG emissions to 80% less than 2005 levels by 2050.These scenarios were compared to a business-as-usual (BAU) scenario and were evaluated with respect tomore » four criteria: fuel cost estimates, resource availability, fuel production capacity expansion, and retail infrastructure expansion.« less
Turrini, Enrico; Carnevale, Claudio; Finzi, Giovanna; Volta, Marialuisa
2018-04-15
This paper introduces the MAQ (Multi-dimensional Air Quality) model aimed at defining cost-effective air quality plans at different scales (urban to national) and assessing the co-benefits for GHG emissions. The model implements and solves a non-linear multi-objective, multi-pollutant decision problem where the decision variables are the application levels of emission abatement measures allowing the reduction of energy consumption, end-of pipe technologies and fuel switch options. The objectives of the decision problem are the minimization of tropospheric secondary pollution exposure and of internal costs. The model assesses CO 2 equivalent emissions in order to support decision makers in the selection of win-win policies. The methodology is tested on Lombardy region, a heavily polluted area in northern Italy. Copyright © 2017 Elsevier B.V. All rights reserved.
New technologies reduce greenhouse gas emissions from nitrogenous fertilizer in China
Dou, Zheng-xia; He, Pan; Ju, Xiao-Tang; Powlson, David; Chadwick, Dave; Norse, David; Lu, Yue-Lai; Zhang, Ying; Wu, Liang; Chen, Xin-Ping; Cassman, Kenneth G.; Zhang, Fu-Suo
2013-01-01
Synthetic nitrogen (N) fertilizer has played a key role in enhancing food production and keeping half of the world’s population adequately fed. However, decades of N fertilizer overuse in many parts of the world have contributed to soil, water, and air pollution; reducing excessive N losses and emissions is a central environmental challenge in the 21st century. China’s participation is essential to global efforts in reducing N-related greenhouse gas (GHG) emissions because China is the largest producer and consumer of fertilizer N. To evaluate the impact of China’s use of N fertilizer, we quantify the carbon footprint of China’s N fertilizer production and consumption chain using life cycle analysis. For every ton of N fertilizer manufactured and used, 13.5 tons of CO2-equivalent (eq) (t CO2-eq) is emitted, compared with 9.7 t CO2-eq in Europe. Emissions in China tripled from 1980 [131 terrogram (Tg) of CO2-eq (Tg CO2-eq)] to 2010 (452 Tg CO2-eq). N fertilizer-related emissions constitute about 7% of GHG emissions from the entire Chinese economy and exceed soil carbon gain resulting from N fertilizer use by several-fold. We identified potential emission reductions by comparing prevailing technologies and management practices in China with more advanced options worldwide. Mitigation opportunities include improving methane recovery during coal mining, enhancing energy efficiency in fertilizer manufacture, and minimizing N overuse in field-level crop production. We find that use of advanced technologies could cut N fertilizer-related emissions by 20–63%, amounting to 102–357 Tg CO2-eq annually. Such reduction would decrease China’s total GHG emissions by 2–6%, which is significant on a global scale. PMID:23671096
NASA Astrophysics Data System (ADS)
Hendrickson, Thomas P.; Kavvada, Olga; Shah, Nihar; Sathre, Roger; Scown, Corinne D.
2015-01-01
Plug-in electric vehicle (PEV) use in the United States (US) has doubled in recent years and is projected to continue increasing rapidly. This is especially true in California, which makes up nearly one-third of the current US PEV market. Planning and constructing the necessary infrastructure to support this projected increase requires insight into the optimal strategies for PEV battery recycling. Utilizing life-cycle perspectives in evaluating these supply chain networks is essential in fully understanding the environmental consequences of this infrastructure expansion. This study combined life-cycle assessment and geographic information systems (GIS) to analyze the energy, greenhouse gas (GHG), water use, and criteria air pollutant implications of end-of-life infrastructure networks for lithium-ion batteries (LIBs) in California. Multiple end-of-life scenarios were assessed, including hydrometallurgical and pyrometallurgical recycling processes. Using economic and environmental criteria, GIS modeling revealed optimal locations for battery dismantling and recycling facilities for in-state and out-of-state recycling scenarios. Results show that economic return on investment is likely to diminish if more than two in-state dismantling facilities are constructed. Using rail as well as truck transportation can substantially reduce transportation-related GHG emissions (23-45%) for both in-state and out-of-state recycling scenarios. The results revealed that material recovery from pyrometallurgy can offset environmental burdens associated with LIB production, namely a 6-56% reduction in primary energy demand and 23% reduction in GHG emissions, when compared to virgin production. Incorporating human health damages from air emissions into the model indicated that Los Angeles and Kern Counties are most at risk in the infrastructure scale-up for in-state recycling due to their population density and proximity to the optimal location.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elgowainy, Amgad; Han, Jeongwoo; Ward, Jacob
This article presents a cradle-to-grave (C2G) assessment of greenhouse gas (GHG) emissions and costs for current (2015) and future (2025-2030) light-duty vehicles. The analysis addressed both fuel cycle and vehicle manufacturing cycle for the following vehicle types: gasoline and diesel internal combustion engine vehicles (ICEVs), flex fuel vehicles, compressed natural gas (CNG) vehicles, hybrid electric vehicles (HEVs), hydrogen fuel cell electric vehicles (FCEVs), battery electric vehicles (BEVs), and plug-in hybrid electric vehicles (PHEVs). Gasoline ICEVs using current technology have C2G emissions of ~450 gCO2e/mi (grams of carbon dioxide equivalents per mile), while C2G emissions from HEVs, PHEVs, H2 FCEVs, andmore » BEVs range from 300-350 gCO2e/mi. Future vehicle efficiency gains are expected to reduce emissions to ~350 gCO2/mi for ICEVs and ~250 gCO2e/mi for HEVs, PHEVs, FCEVs, and BEVs. Utilizing low-carbon fuel pathways yields GHG reductions more than double those achieved by vehicle efficiency gains alone. Levelized costs of driving (LCDs) are in the range $0.25-$1.00/mi depending on time frame and vehicle-fuel technology. In all cases, vehicle cost represents the major (60-90%) contribution to LCDs. Currently, HEV and PHEV petroleum-fueled vehicles provide the most attractive cost in terms of avoided carbon emissions, although they offer lower potential GHG reductions. The ranges of LCD and cost of avoided carbon are narrower for the future technology pathways, reflecting the expected economic competitiveness of these alternative vehicles and fuels.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elgowainy, Amgad; Han, Jeongwoo; Ward, Jacob
This article presents a cradle-to-grave (C2G) assessment of greenhouse gas (GHG) emissions and costs for current (2015) and future (2025–2030) light-duty vehicles. The analysis addressed both fuel cycle and vehicle manufacturing cycle for the following vehicle types: gasoline and diesel internal combustion engine vehicles (ICEVs), flex fuel vehicles, compressed natural gas (CNG) vehicles, hybrid electric vehicles (HEVs), hydrogen fuel cell electric vehicles (FCEVs), battery electric vehicles (BEVs), and plug-in hybrid electric vehicles (PHEVs). Gasoline ICEVs using current technology have C2G emissions of ~450 gCO2e/mi (grams of carbon dioxide equivalents per mile), while C2G emissions from HEVs, PHEVs, H2 FCEVs, andmore » BEVs range from 300–350 gCO2e/mi. Future vehicle efficiency gains are expected to reduce emissions to ~350 gCO2/mi for ICEVs and ~250 gCO2e/mi for HEVs, PHEVs, FCEVs and BEVs. Utilizing low-carbon fuel pathways yields GHG reductions more than double those achieved by vehicle efficiency gains alone. Levelized costs of driving (LCDs) are in the range $0.25–$1.00/mi depending on timeframe and vehicle-fuel technology. In all cases, vehicle cost represents the major (60–90%) contribution to LCDs. Currently, HEV and PHEV petroleum-fueled vehicles provide the most attractive cost in terms of avoided carbon emissions, although they offer lower potential GHG reductions The ranges of LCD and cost of avoided carbon are narrower for the future technology pathways, reflecting the expected economic competitiveness of these alternative vehicles and fuels.« less
Greenhouse gas mitigation for U.S. plastics production: energy first, feedstocks later
NASA Astrophysics Data System (ADS)
Posen, I. Daniel; Jaramillo, Paulina; Landis, Amy E.; Griffin, W. Michael
2017-03-01
Plastics production is responsible for 1% and 3% of U.S. greenhouse gas (GHG) emissions and primary energy use, respectively. Replacing conventional plastics with bio-based plastics (made from renewable feedstocks) is frequently proposed as a way to mitigate these impacts. Comparatively little research has considered the potential for green energy to reduce emissions in this industry. This paper compares two strategies for reducing greenhouse gas emissions from U.S. plastics production: using renewable energy or switching to renewable feedstocks. Renewable energy pathways assume all process energy comes from wind power and renewable natural gas derived from landfill gas. Renewable feedstock pathways assume that all commodity thermoplastics will be replaced with polylactic acid (PLA) and bioethylene-based plastics, made using either corn or switchgrass, and powered using either conventional or renewable energy. Corn-based biopolymers produced with conventional energy are the dominant near-term biopolymer option, and can reduce industry-wide GHG emissions by 25%, or 16 million tonnes CO2e/year (mean value). In contrast, switching to renewable energy cuts GHG emissions by 50%-75% (a mean industry-wide reduction of 38 million tonnes CO2e/year). Both strategies increase industry costs—by up to 85/tonne plastic (mean result) for renewable energy, and up to 3000 tonne-1 plastic for renewable feedstocks. Overall, switching to renewable energy achieves greater emission reductions, with less uncertainty and lower costs than switching to corn-based biopolymers. In the long run, producing bio-based plastics from advanced feedstocks (e.g. switchgrass) and/or with renewable energy can further reduce emissions, to approximately 0 CO2e/year (mean value).
New technologies reduce greenhouse gas emissions from nitrogenous fertilizer in China.
Zhang, Wei-Feng; Dou, Zheng-Xia; He, Pan; Ju, Xiao-Tang; Powlson, David; Chadwick, Dave; Norse, David; Lu, Yue-Lai; Zhang, Ying; Wu, Liang; Chen, Xin-Ping; Cassman, Kenneth G; Zhang, Fu-Suo
2013-05-21
Synthetic nitrogen (N) fertilizer has played a key role in enhancing food production and keeping half of the world's population adequately fed. However, decades of N fertilizer overuse in many parts of the world have contributed to soil, water, and air pollution; reducing excessive N losses and emissions is a central environmental challenge in the 21st century. China's participation is essential to global efforts in reducing N-related greenhouse gas (GHG) emissions because China is the largest producer and consumer of fertilizer N. To evaluate the impact of China's use of N fertilizer, we quantify the carbon footprint of China's N fertilizer production and consumption chain using life cycle analysis. For every ton of N fertilizer manufactured and used, 13.5 tons of CO2-equivalent (eq) (t CO2-eq) is emitted, compared with 9.7 t CO2-eq in Europe. Emissions in China tripled from 1980 [131 terrogram (Tg) of CO2-eq (Tg CO2-eq)] to 2010 (452 Tg CO2-eq). N fertilizer-related emissions constitute about 7% of GHG emissions from the entire Chinese economy and exceed soil carbon gain resulting from N fertilizer use by several-fold. We identified potential emission reductions by comparing prevailing technologies and management practices in China with more advanced options worldwide. Mitigation opportunities include improving methane recovery during coal mining, enhancing energy efficiency in fertilizer manufacture, and minimizing N overuse in field-level crop production. We find that use of advanced technologies could cut N fertilizer-related emissions by 20-63%, amounting to 102-357 Tg CO2-eq annually. Such reduction would decrease China's total GHG emissions by 2-6%, which is significant on a global scale.
Elgowainy, Amgad; Han, Jeongwoo; Ward, Jacob; Joseck, Fred; Gohlke, David; Lindauer, Alicia; Ramsden, Todd; Biddy, Mary; Alexander, Mark; Barnhart, Steven; Sutherland, Ian; Verduzco, Laura; Wallington, Timothy J
2018-02-20
This article presents a cradle-to-grave (C2G) assessment of greenhouse gas (GHG) emissions and costs for current (2015) and future (2025-2030) light-duty vehicles. The analysis addressed both fuel cycle and vehicle manufacturing cycle for the following vehicle types: gasoline and diesel internal combustion engine vehicles (ICEVs), flex fuel vehicles, compressed natural gas (CNG) vehicles, hybrid electric vehicles (HEVs), hydrogen fuel cell electric vehicles (FCEVs), battery electric vehicles (BEVs), and plug-in hybrid electric vehicles (PHEVs). Gasoline ICEVs using current technology have C2G emissions of ∼450 gCO 2 e/mi (grams of carbon dioxide equivalents per mile), while C2G emissions from HEVs, PHEVs, H 2 FCEVs, and BEVs range from 300-350 gCO 2 e/mi. Future vehicle efficiency gains are expected to reduce emissions to ∼350 gCO 2 /mi for ICEVs and ∼250 gCO 2e /mi for HEVs, PHEVs, FCEVs, and BEVs. Utilizing low-carbon fuel pathways yields GHG reductions more than double those achieved by vehicle efficiency gains alone. Levelized costs of driving (LCDs) are in the range $0.25-$1.00/mi depending on time frame and vehicle-fuel technology. In all cases, vehicle cost represents the major (60-90%) contribution to LCDs. Currently, HEV and PHEV petroleum-fueled vehicles provide the most attractive cost in terms of avoided carbon emissions, although they offer lower potential GHG reductions. The ranges of LCD and cost of avoided carbon are narrower for the future technology pathways, reflecting the expected economic competitiveness of these alternative vehicles and fuels.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1996-01-01
The Polish Country Study Project was initiated in 1992 as a result of the US Country Study Initiative whose objective was to grant the countries -- signatories of the United Nations` Framework Convention on Climate Change -- assistance that will allow them to fulfill their obligations in terms of greenhouse gases (GHG`s) inventory, preparation of strategies for the reduction of their emission, and adapting their economies to the changed climatic conditions. In February 1993, in reply to the offer from the United States Government, the Polish Government expressed interest in participation in this program. The Study proposal, prepared by themore » Ministry of Environmental Protection, Natural Resources and Forestry was presented to the US partner. The program proposal assumed implementation of sixteen elements of the study, encompassing elaboration of scenarios for the strategy of mission reduction in energy sector, industry, municipal management, road transport, forestry, and agriculture, as well as adaptations to be introduced in agriculture, forestry, water management, and coastal management. The entire concept was incorporated in macroeconomic strategy scenarios. A complementary element was the elaboration of a proposal for economic and legal instruments to implement the proposed strategies. An additional element was proposed, namely the preparation of a scenario of adapting the society to the expected climate changes.« less
The advantage of calculating emission reduction with local emission factor in South Sumatera region
NASA Astrophysics Data System (ADS)
Buchari, Erika
2017-11-01
Green House Gases (GHG) which have different Global Warming Potential, usually expressed in CO2 equivalent. German has succeeded in emission reduction of CO2 in year 1990s, while Japan since 2001 increased load factor of public transports. Indonesia National Medium Term Development Plan, 2015-2019, has set up the target of minimum 26% and maximum 41% National Emission Reduction in 2019. Intergovernmental Panel on Climate Change (IPCC), defined three types of accuracy in counting emission of GHG, as tier 1, tier 2, and tier 3. In tier 1, calculation is based on fuel used and average emission (default), which is obtained from statistical data. While in tier 2, calculation is based fuel used and local emission factors. Tier 3 is more accurate from those in tier 1 and 2, and the calculation is based on fuel used from modelling method or from direct measurement. This paper is aimed to evaluate the calculation with tier 2 and tier 3 in South Sumatera region. In 2012, Regional Action Plan for Greenhouse Gases of South Sumatera for 2020 is about 6,569,000 ton per year and with tier 3 is about without mitigation and 6,229,858.468 ton per year. It was found that the calculation in tier 3 is more accurate in terms of fuel used of variation vehicles so that the actions of mitigation can be planned more realistically.
NASA Astrophysics Data System (ADS)
DiMola, Ashley M.
Buildings account for over 18% of the world's anthropogenic Greenhouse Gas (GHG) emissions. As a result, a technology that can offset GHG emissions associated with buildings has the potential to save over 9 Giga-tons of GHG emissions per year. High temperature fuel cell and absorption chiller (HTFC/AC) technology offers a relatively low-carbon option for meeting cooling and electric loads for buildings while producing almost no criteria pollutants. GHG emissions in the state of California would decrease by 7.48 million metric tons per year if every commercial building in the State used HTFC/AC technology to meet its power and cooling requirements. In order to realize the benefits of HTFC/AC technology on a wide scale, the distributed generation market needs to be exposed to the technology and informed of its economic viability and real-world potential. This work characterizes the economics associated with HTFC/AC technology using select scenarios that are representative of realistic applications. The financial impacts of various input factors are evaluated and the HTFC/AC simulations are compared to the economics of traditional building utilities. It is shown that, in addition to the emissions reductions derived from the systems, HTFC/AC technology is financially preferable in all of the scenarios evaluated. This work also presents the design of a showcase environment, centered on a beta-test application, that presents (1) system operating data gathered using a custom data acquisition module, and (2) HTFC/AC technology in a clear and approachable manner in order to serve the target audience of market stakeholders.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eberle, Annika; Heath, Garvin A
The generation capacity of small-scale (less than one megawatt) fossil-fueled electricity in the United States is anticipated to grow by threefold to twenty-fold from 2015 to 2040. However, in adherence with internationally agreed upon carbon accounting methods, the Environmental Protection Agency's (EPA's) U.S. Greenhouse Inventory (GHGI) does not currently attribute greenhouse gases (GHGs) from these small-scale distributed generation sources to the electric power sector and instead accounts for these emissions in the sector that uses the distributed generation (e.g., the commercial sector). In addition, no other federal electric-sector GHG emission data product produced by the EPA or the U.S. Energymore » Information Administration (EIA) can attribute these emissions to electricity. We reviewed the technical documentation for eight federal electric-sector GHG emission data products, interviewed the data product owners, collected their GHG emission estimates, and analyzed projections for growth in fossil-fueled distributed generation. We show that, by 2040, these small-scale generators could account for at least about 1%- 5% of total CO2 emissions from the U.S. electric power sector. If these emissions fall outside the electric power sector, the United States may not be able to completely and accurately track changes in electricity-related CO2 emissions, which could impact how the country sets GHG reduction targets and allocates mitigation resources. Because small-scale, fossil-fueled distributed generation is expected to grow in other countries as well, the results of this work also have implications for global carbon accounting.« less
Methods for ensuring compliance in an international greenhouse gas trading system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hargrave, T.; Helme, E.A.
1998-12-31
At the third Conference of the Parties to the UN Framework Convention on Climate Change held in December, 1997, the international community established binding greenhouse gas (GHG) emissions obligations for industrialized countries. The Parties to the new Kyoto Protocol also agreed on the use of a number of market-based mechanisms, including international GHG emissions trading. These market mechanisms were of critical to the importance because they have the potential to significantly reduce the costs of treaty compliance. In principle, an international cap-and-trade system appears to be one of the most cost-effective means of reducing GHG emissions. Maintaining the integrity ofmore » the trading system is of primary importance in ensuring that trading helps countries to meet their GHG commitments. This paper explores methods for ensuring compliance in an international greenhouse gas trading system, starting with a discussion of preconditions for participation in trading and then moving to features of an international compliance system. Achieving maximum compliance with international requirements may best be accomplished by limiting participation in trading to Annex I countries that maintain strong domestic compliance systems. Prior to the climate negotiations in Kyoto in December 1997, the US Administration proposed a number of preconditions for participation in trading, including the adoption of international measurement standards and the establishment of domestic compliance and enforcement programs. This paper explores these and other preconditions, including the establishment of tough domestic financial penalties on companies that exceed allowed emissions and seller responsibility for the delivery of real reductions. The paper also discusses several necessary features of the international compliance system.« less
43 CFR 11.71 - Quantification phase-service reduction quantification.
Code of Federal Regulations, 2011 CFR
2011-10-01
...-discharge-or-release condition. (c) Contents of the quantification. The following factors should be included...; and (6) Factors identified in the specific guidance in paragraphs (h), (i), (j), (k), and (l) of this section dealing with the different kinds of natural resources. (d) Selection of resources, services, and...
43 CFR 11.71 - Quantification phase-service reduction quantification.
Code of Federal Regulations, 2010 CFR
2010-10-01
...-discharge-or-release condition. (c) Contents of the quantification. The following factors should be included...; and (6) Factors identified in the specific guidance in paragraphs (h), (i), (j), (k), and (l) of this section dealing with the different kinds of natural resources. (d) Selection of resources, services, and...
Huntingford, Chris; Mercado, Lina M.
2016-01-01
The recent Paris UNFCCC climate meeting discussed the possibility of limiting global warming to 2 °C since pre-industrial times, or possibly even 1.5 °C, which would require major future emissions reductions. However, even if climate is stabilised at current atmospheric greenhouse gas (GHG) concentrations, those warming targets would almost certainly be surpassed in the context of mean temperature increases over land only. The reason for this is two-fold. First, current transient warming lags significantly below equilibrium or “committed” warming. Second, almost all climate models indicate warming rates over land are much higher than those for the oceans. We demonstrate this potential for high eventual temperatures over land, even for contemporary GHG levels, using a large set of climate models and for which climate sensitivities are known. Such additional land warming has implications for impacts on terrestrial ecosystems and human well-being. This suggests that even if massive and near-immediate emissions reductions occur such that atmospheric GHGs increase further by only small amounts, careful planning is needed by society to prepare for higher land temperatures in an eventual equilibrium climatic state. PMID:27461560
NASA Astrophysics Data System (ADS)
Huntingford, Chris; Mercado, Lina M.
2016-07-01
The recent Paris UNFCCC climate meeting discussed the possibility of limiting global warming to 2 °C since pre-industrial times, or possibly even 1.5 °C, which would require major future emissions reductions. However, even if climate is stabilised at current atmospheric greenhouse gas (GHG) concentrations, those warming targets would almost certainly be surpassed in the context of mean temperature increases over land only. The reason for this is two-fold. First, current transient warming lags significantly below equilibrium or “committed” warming. Second, almost all climate models indicate warming rates over land are much higher than those for the oceans. We demonstrate this potential for high eventual temperatures over land, even for contemporary GHG levels, using a large set of climate models and for which climate sensitivities are known. Such additional land warming has implications for impacts on terrestrial ecosystems and human well-being. This suggests that even if massive and near-immediate emissions reductions occur such that atmospheric GHGs increase further by only small amounts, careful planning is needed by society to prepare for higher land temperatures in an eventual equilibrium climatic state.
Huntingford, Chris; Mercado, Lina M
2016-07-27
The recent Paris UNFCCC climate meeting discussed the possibility of limiting global warming to 2 °C since pre-industrial times, or possibly even 1.5 °C, which would require major future emissions reductions. However, even if climate is stabilised at current atmospheric greenhouse gas (GHG) concentrations, those warming targets would almost certainly be surpassed in the context of mean temperature increases over land only. The reason for this is two-fold. First, current transient warming lags significantly below equilibrium or "committed" warming. Second, almost all climate models indicate warming rates over land are much higher than those for the oceans. We demonstrate this potential for high eventual temperatures over land, even for contemporary GHG levels, using a large set of climate models and for which climate sensitivities are known. Such additional land warming has implications for impacts on terrestrial ecosystems and human well-being. This suggests that even if massive and near-immediate emissions reductions occur such that atmospheric GHGs increase further by only small amounts, careful planning is needed by society to prepare for higher land temperatures in an eventual equilibrium climatic state.
NASA Astrophysics Data System (ADS)
Atta, Pascal Atta; N'guessan, Yao; Morin, Celine; Voirol, Anne Jaecker; Descombes, Georges
2017-02-01
The electricity in Côte d'Ivoire is mainly produced from fossil energy sources. This causes damages on environment due to greenhouse gas emissions (GHG). The aim of this paper is to calculate the greenhouse gas (GHG) emissions of jatropha oil and jatropha biodiesel as alternative fuels for electricity production in Côte d'Ivoire by using Life Cycle Assessment (LCA) methodology. The functional unit in this LCA is defined as 1 kWh of electricity produced by the combustion of jatropha oil or jatropha biodiesel in the engine of a generator. Two scenarios, called short chain and long chain, were examined in this LCA. The results show that 0.132 kg CO2 equivalent is emitted for the scenario 1 with jatropha oil as an alternative fuel against 0.6376 kg CO2 equivalent for the scenario 2 with jatropha biodiesel as an alternative fuel. An 87 % reduction of kg CO2 equivalent is observed in scenario 1 and a 37 % reduction of kg CO2 equivalent is observed in the scenario 2, when compared with a Diesel fuel.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Melaina, Marc; Warner, Ethan; Sun, Yongling
The Alternative and Renewable Fuel and Vehicle Technologies Program (ARFVTP) supports a wide range of alternative, low-carbon fuel and vehicle projects in California. This report focuses on two types of ARFVTP benefits. Expected benefits reflect successful deployment of vehicles and fuels supported through program projects. Market transformation benefits represent benefits resulting from project influences on future market conditions to accelerated technology adoption rates. Data collected directly from ARFVTP projects funded from 2009 to first quarter 2014 are used as inputs to the benefits analysis, where possible. Expected benefit estimation methods rely primarily upon project-level data and result in year single-pointmore » estimates within the 2011 to 2025 analysis period. Results suggest that the 178 projects evaluated for expected benefits, representing an investment of $351.3 million in ARFVTP funds, could result in a reduction in petroleum fuel use by 236 million gallons per year and greenhouse gases (GHGs) by 1.7 million metric tonnes carbon dioxide equivalent (MMTCO2e) per year by 2025. Market transformation benefits are described as accruing in addition to expected benefits. They are inherently more uncertain and theoretical than expected benefits, and are therefore reported as high and low ranges, with results suggesting reductions of 1.1 MMTCO2e to 2.5 MMTCO2e per year in GHG reductions and 102 million to 330 million gallons per year in petroleum fuel reductions by 2025. Taking both benefit types into account, results suggest that ARFVTP projects have the potential to make substantial progress toward meeting California's long-term GHG and petroleum fuel use reduction goals. As additional project data become available and market success with alternative and renewable fuels and vehicles grows, the analytic framework relied upon to develop these estimates will become more rigorous and will have a greater capacity to inform future ARFVTP activities.« less
NASA Astrophysics Data System (ADS)
Mülchi, Regula; Rössler, Ole; Romppainen-Martius, Olivia; Pall, Pardeep; Weingartner, Rolf
2017-04-01
Understanding the influence of anthropogenic greenhouse gas (GHG) emissions on climate and environmental variables is still a challenge in science. Many detection and attribution studies have been carried out focusing on global and regional scales or on single events. However, the influence of anthropogenic greenhouse gas emission on both, runoff regime and driving meteorological characteristics is still an open question. This study assesses the influence of anthropogenic GHG emissions on temperature, precipitation, and river runoff in a pre-Alpine catchment in Switzerland. For this purpose, thousands of one-year (April 2000-March 2001) simulations representing both, a present-day climate with actual anthropogenic GHG concentrations (A2000), and a climate with pre-industrial GHG concentrations (A2000N) were bias-corrected and used to analyze changes in temperature and precipitation. The two variables were then used to drive the hydrological model GR4J including the snow module Cemaneige for the river Thur (1700 km2). Comparing the runoff of the two scenarios and calculating the fraction of attributable risk (FAR) as well as the change in probability of occurrence (PR) for specific runoff thresholds enabled the assessment of the influence of anthropogenic GHG emissions. We found higher mean runoff in winter and spring in the A2000 scenario compared to the A2000N scenario. This is mainly caused by the combination of higher precipitation and higher temperatures in winter resulting in less snow accumulation in the A2000 scenario. Therefore, more liquid water is available in the hydrological model leading to enhanced runoff. In contrast, the A2000 simulations exhibit lower runoff in summer and autumn than the A2000N simulations. We relate this to higher temperatures in the A2000 scenario enhancing evapotranspiration and lower precipitation amounts. The calculation of FAR and PR for different runoff thresholds indicates that the FAR and PR increase with higher thresholds suggesting stronger influence of anthropogenic GHG emissions on the very high river flows. The bias-correction led to a reduction of FAR and PR and to an increase in the corresponding uncertainty ranges. This study demonstrates that temperature and precipitation in Switzerland as well as the runoff regime and runoff extremes have changed due to the emission of anthropogenic GHGs. It also highlights the influence of bias-correction on the estimation of FAR and PR.
Urban-Dome GHG Monitoring: Challenges and Perspectives from the INFLUX Project
NASA Astrophysics Data System (ADS)
Whetstone, J.; Shepson, P. B.; Davis, K. J.; Sweeney, C.; Gurney, K. R.; Miles, N. L.; Richardson, S.; Lauvaux, T.; Razlivanov, I.; Zhou, Y.; Song, Y.; Turnbull, J. C.; Karion, A.; Cambaliza, M. L.; Callahan, W.; Novakovskaia, E.; Crosson, E.; Rella, C.; Possolo, A.
2012-04-01
Quantification of carbon dynamics in urban areas using advanced and diverse observing systems enables the development of measurable, reportable, and verifiable (MRV) mitigation strategies as suggested in the Bali Action Plan, agreed upon at the 13th Conference of the Parties of the UNFCCC (COP 13, 2007). The National Institute of Standards and Technology (NIST), supports the Indianapolis Flux Experiment (INFLUX). INFLUX is focused on demonstrating the utility of dense, surface-based observing networks coupled with aircraft-based measurements, advanced atmospheric boundary layer observation and modeling to determine GHG emission source location and strength in urban areas. The ability to correctly model transport and mixing in the atmospheric boundary layer (ABL), responsible for carrying GHGs from their source to the point of measurement, is essential. The observing system design, using multiple instruments and observing methods, is intended to provide multi-scale measurements as a basis for mimicking the complex and evolving dynamics of a city. To better understand such a dynamic system, and incorporate this into models, reliable representations of horizontal and vertical transport, as well as ABL height, GHG mixing ratio measurements are planned for 11 tower locations, 2 are currently in operation with the remaining 9 planned for operational status in early to mid-2012. These observations are complimented by aircraft flights that measure mixing ratio as well as ABL parameters. Although measurements of ABL mixing heights and dynamics are presently only available intermittently, limiting efforts to evaluate ABL model performance and the uncertainties of GHG flux estimates, expansion of them is planned for the near future. INFLUX will significantly benefit from continuous, high resolution measurements of mixing depth, wind speed and direction, turbulence profiles in the boundary layer, as well as measurements of surface energy balance, momentum flux, and short and long wave radiation fluxes. NIST is working with partner institutions to develop the measurement science and measurement tools needed to improve the accuracy and comparability of surface-based measurement approaches for MRV purposes. The current project phase is focused on determination of emission source location with a spatial resolution of approximately 1 km2 and of sources strength to within 20% uncertainty, in part for comparison to inventories. Additionally, the demonstration of a robust, dense observing network methodology will provide a means to characterize urban GHG domes and provides a calibration method for remote sensing measurements whether taken by on-orbit, terrestrial, or airborne observations. The Indianapolis Flux experiment is the initial research effort to demonstrate this approach to emissions verification. Lessons learned in INFLUX are expected to be extensible to other urban and regional settings, suggesting further research to be conducted for areas having significantly different terrain and meteorology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tan, Eric C; Zhang, Yi Min; Cai, Hao
Biomass-derived hydrocarbon fuel technologies are being developed and pursued for better economy, environment, and society benefits underpinning the sustainability of transportation energy. Increasing availability and affordability of natural gas (NG) in the US can play an important role in assisting renewable fuel technology development, primarily in terms of economic feasibility. When a biorefinery is co-processing NG with biomass, the current low cost of NG coupled with the higher NG carbon conversion efficiency potentially allow for cost competitiveness of the fuel while achieving a minimum GHG emission reduction of 50 percent or higher compared to petroleum fuel. This study evaluates themore » relative sustainability of the production of high-octane gasoline blendstock via indirect liquefaction (IDL) of biomass (and with NG co-feed) through methanol/dimethyl ether intermediates. The sustainability metrics considered in this study include minimum fuel selling price (MFSP), carbon conversion efficiency, life cycle GHG emissions, life cycle water consumption, fossil energy return on investment (EROI), GHG emission avoidance cost, and job creation. Co-processing NG can evidently improve the MFSP. Evaluation of the relative sustainability can shed light on the biomass-NG synergistic impacts and sustainability trade-offs associated with the IDL as high-octane gasoline blendstock production.« less
Edelenbosch, O. Y.; Kermeli, K.; Crijns-Graus, W.; ...
2017-01-09
The industry sector consumes more energy and emits more greenhouse gas (GHG) emissions than any other end-use sector. Integrated assessment models (IAMs) and energy system models have been widely used to evaluate climate policy at a global level, and include a representation of industrial energy use. In this study, the projected industrial energy use and accompanying GHG emissions, as well as the model structure of multiple long-term energy models are compared. The models show varying degrees to which energy consumption is decoupled from GDP growth in the future. In all models, the sector remains mostly (>50%) reliant on fossil energymore » through 2100 in a reference scenario (i.e., absent emissions mitigation policies), though there is significant divergence in the projected ability to switch to alternative fuels to mitigate GHG emissions. Among the set analyzed here, the more technologically detailed models tend to have less capacity for switching from fossil fuels to electricity. This highlights the importance of understanding of economy-wide mitigation responses and costs as an area for future improvement. Analyzing industry subsector material and energy use details can improve the ability to interpret results, and provide insight in feasibility of how emissions reduction can be achieved.« less
A meta-analysis of the greenhouse gas abatement of bioenergy factoring in land use changes.
El Akkari, M; Réchauchère, O; Bispo, A; Gabrielle, B; Makowski, D
2018-06-04
Non-food biomass production is developing rapidly to fuel the bioenergy sector and substitute dwindling fossil resources, which is likely to impact land-use patterns worldwide. Recent publications attempting to factor this effect into the climate mitigation potential of bioenergy chains have come to widely variable conclusions depending on their scope, data sources or methodology. Here, we conducted a first of its kind, systematic review of scientific literature on this topic and derived quantitative trends through a meta-analysis. We showed that second-generation biofuels and bioelectricity have a larger greenhouse gas (GHG) abatement potential than first generation biofuels, and stand the best chances (with a 80 to 90% probability range) of achieving a 50% reduction compared to fossil fuels. Conversely, directly converting forest ecosystems to produce bioenergy feedstock appeared as the worst-case scenario, systematically leading to negative GHG savings. On the other hand, converting grassland appeared to be a better option and entailed a 60% chance of halving GHG emissions compared to fossil energy sources. Since most climate mitigation scenarios assume still larger savings, it is critical to gain better insight into land-use change effects to provide a more realistic estimate of the mitigation potential associated with bioenergy.
Quantifying Biodiversity Losses Due to Human Consumption: A Global-Scale Footprint Analysis.
Wilting, Harry C; Schipper, Aafke M; Bakkenes, Michel; Meijer, Johan R; Huijbregts, Mark A J
2017-03-21
It is increasingly recognized that human consumption leads to considerable losses of biodiversity. This study is the first to systematically quantify these losses in relation to land use and greenhouse gas (GHG) emissions associated with the production and consumption of (inter)nationally traded goods and services by presenting consumption-based biodiversity losses, in short biodiversity footprint, for 45 countries and world regions globally. Our results showed that (i) the biodiversity loss per citizen shows large variations among countries, with higher values when per-capita income increases; (ii) the share of biodiversity losses due to GHG emissions in the biodiversity footprint increases with income; (iii) food consumption is the most important driver of biodiversity loss in most of the countries and regions, with a global average of 40%; (iv) more than 50% of the biodiversity loss associated with consumption in developed economies occurs outside their territorial boundaries; and (v) the biodiversity footprint per dollar consumed is lower for wealthier countries. The insights provided by our analysis might support policymakers in developing adequate responses to avert further losses of biodiversity when population and incomes increase. Both the mitigation of GHG emissions and land use related reduction options in production and consumption should be considered in strategies to protect global biodiversity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Edelenbosch, O. Y.; Kermeli, K.; Crijns-Graus, W.
The industry sector consumes more energy and emits more greenhouse gas (GHG) emissions than any other end-use sector. Integrated assessment models (IAMs) and energy system models have been widely used to evaluate climate policy at a global level, and include a representation of industrial energy use. In this study, the projected industrial energy use and accompanying GHG emissions, as well as the model structure of multiple long-term energy models are compared. The models show varying degrees to which energy consumption is decoupled from GDP growth in the future. In all models, the sector remains mostly (>50%) reliant on fossil energymore » through 2100 in a reference scenario (i.e., absent emissions mitigation policies), though there is significant divergence in the projected ability to switch to alternative fuels to mitigate GHG emissions. Among the set analyzed here, the more technologically detailed models tend to have less capacity for switching from fossil fuels to electricity. This highlights the importance of understanding of economy-wide mitigation responses and costs as an area for future improvement. Analyzing industry subsector material and energy use details can improve the ability to interpret results, and provide insight in feasibility of how emissions reduction can be achieved.« less
NASA Astrophysics Data System (ADS)
Valin, H.; Havlík, P.; Mosnier, A.; Herrero, M.; Schmid, E.; Obersteiner, M.
2013-09-01
In this letter, we investigate the effects of crop yield and livestock feed efficiency scenarios on greenhouse gas (GHG) emissions from agriculture and land use change in developing countries. We analyze mitigation associated with different productivity pathways using the global partial equilibrium model GLOBIOM. Our results confirm that yield increase could mitigate some agriculture-related emissions growth over the next decades. Closing yield gaps by 50% for crops and 25% for livestock by 2050 would decrease agriculture and land use change emissions by 8% overall, and by 12% per calorie produced. However, the outcome is sensitive to the technological path and which factor benefits from productivity gains: sustainable land intensification would increase GHG savings by one-third when compared with a fertilizer intensive pathway. Reaching higher yield through total factor productivity gains would be more efficient on the food supply side but halve emissions savings due to a strong rebound effect on the demand side. Improvement in the crop or livestock sector would have different implications: crop yield increase would bring the largest food provision benefits, whereas livestock productivity gains would allow the greatest reductions in GHG emission. Combining productivity increases in the two sectors appears to be the most efficient way to exploit mitigation and food security co-benefits.
A new Masters program in Greenhouse Gas Management and Accounting at Colorado State University
NASA Astrophysics Data System (ADS)
Conant, R. T.; Ogle, S. M.
2015-12-01
Management guru Peter Drucker said that "what gets measured gets managed." But the unstated implication is that what doesn't get measured doesn't get managed. Accurate quantification of greenhouse gas mitigation efforts is central to the clean technology sector. Very soon professionals of all kinds (business people, accountants, lawyers) will need to understand carbon accounting and crediting. Over the next few decades food production is expected to double and energy production must triple in order to meet growing global demands; sustainable management of land use and agricultural systems will be critical. The food and energy supply challenges are inextricably linked to the challenge of limiting anthropogenic impacts on climate by reducing the concentration of greenhouse gases (GHG) in the atmosphere. To avoid serious disruption of the climate system and stabilize GHG concentrations, society must move aggressively to avoid emissions of CO2, CH4, and N2O and to actively draw down CO2 already in the atmosphere. A new cadre of technically adept professionals is needed to meet these challenges. We describe a new professional Masters degree in greenhouse gas management and accounting at Colorado State University. This effort leverages existing, internationally-recognized expertise from across campus and partners from agencies and industry, enabling students from diverse backgrounds to develop the skills needed to fill this emerging demand.
Pattara, Claudio; Russo, Carlo; Antrodicchia, Vittoria; Cichelli, Angelo
2017-01-01
The quantification of greenhouse gases (GHG) emissions represents a critical issue for the future development of agro-food produces. Consumers' behaviour could play an important role in requiring environmental performance as an essential element for food quality. Nowadays, the carbon footprint (CFP) is a tool used worldwide by agro-food industries to communicate environmental information. This paper aims to investigate the role that CFP could have in consumers' choices in three significant agro-food sectors in the Mediterranean area: wine, olive oil and cereals. A critical review about the use of CFP was carried out along the supply chain of these three sectors, in order to identify opportunities for enhancing food quality and environmental sustainability and highlighting how environmental information could influence consumers' preferences. The analysis of the state of the art shows a great variability of the results about GHG emissions referred to agricultural and industrial processes. In many cases, the main environmental criticisms are linked to the agricultural phase, but the other phases of the supply chain could also contribute to the increased CFP. However, despite the wide use of CFP by companies as a communication tool to help consumers' choices in agro-food products, some improvements are needed in order to provide clearer and more understandable information. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
Modelling carbon dioxide emissions from agricultural soils in Canada.
Yadav, Dhananjay; Wang, Junye
2017-11-01
Agricultural soils are a leading source of atmospheric greenhouse gas (GHG) emissions and are major contributors to global climate change. Carbon dioxide (CO 2 ) makes up 20% of the total GHG emitted from agricultural soil. Therefore, an evaluation of CO 2 emissions from agricultural soil is necessary in order to make mitigation strategies for environmental efficiency and economic planning possible. However, quantification of CO 2 emissions through experimental methods is constrained due to the large time and labour requirements for analysis. Therefore, a modelling approach is needed to achieve this objective. In this paper, the DeNitrification-DeComposition (DNDC), a process-based model, was modified to predict CO 2 emissions for Canada from regional conditions. The modified DNDC model was applied at three experimental sites in the province of Saskatchewan. The results indicate that the simulations of the modified DNDC model are in good agreement with observations. The agricultural management of fertilization and irrigation were evaluated using scenario analysis. The simulated total annual CO 2 flux changed on average by ±13% and ±1% following a ±50% variance of the total amount of N applied by fertilising and the total amount of water through irrigation applications, respectively. Therefore, careful management of irrigation and applications of fertiliser can help to reduce CO 2 emissions from the agricultural sector. Copyright © 2017 Elsevier Ltd. All rights reserved.
Pascale, Raffaella; Caivano, Marianna; Buchicchio, Alessandro; Mancini, Ignazio M; Bianco, Giuliana; Caniani, Donatella
2017-01-13
Wastewater treatment plants (WWTPs) emit CO 2 and N 2 O, which may lead to climate change and global warming. Over the last few years, awareness of greenhouse gas (GHG) emissions from WWTPs has increased. Moreover, the development of valid, reliable, and high-throughput analytical methods for simultaneous gas analysis is an essential requirement for environmental applications. In the present study, an analytical method based on a gas chromatograph (GC) equipped with a barrier ionization discharge (BID) detector was developed for the first time. This new method simultaneously analyses CO 2 and N 2 O and has a precision, measured in terms of relative standard of variation RSD%, equal to or less than 6.6% and 5.1%, respectively. The method's detection limits are 5.3ppm v for CO 2 and 62.0ppb v for N 2 O. The method's selectivity, linearity, accuracy, repeatability, intermediate precision, limit of detection and limit of quantification were good at trace concentration levels. After validation, the method was applied to a real case of N 2 O and CO 2 emissions from a WWTP, confirming its suitability as a standard procedure for simultaneous GHG analysis in environmental samples containing CO 2 levels less than 12,000mg/L. Copyright © 2016 Elsevier B.V. All rights reserved.
Energy [R]Evolution: Opportunities for Decarbonizing Canada
NASA Astrophysics Data System (ADS)
Byrne, J. M.
2016-12-01
The future of conventional energy in Canada is uncertain. World oil prices have suffered steep declines recently and there are no strong arguments for recovery in the foreseeable future. The country is now engaged in serious debates and discussions over the value of GHG emissions, pipelines, oil and gas operations, and renewable energy. Oilsands deposits in northern Alberta require long-term investment and decades of consistent sales to repay those investments. The election of more progressive governments in Alberta and Canada may provide the national and global credibility and opportunity to address the environmental problems caused by Oilsands and other fossil fuel developments. The discussion will focus on the possible ways forward for Canada to diversify the regional and national economy with renewable energy networks, thereby meeting our Paris GHG emission reduction commitments. The end goal of this work is to see the Canadian economy decarbonized within two decades.
Life cycle assessment of bioenergy systems: state of the art and future challenges.
Cherubini, Francesco; Strømman, Anders Hammer
2011-01-01
The use of different input data, functional units, allocation methods, reference systems and other assumptions complicates comparisons of LCA bioenergy studies. In addition, uncertainties and use of specific local factors for indirect effects (like land-use change and N-based soil emissions) may give rise to wide ranges of final results. In order to investigate how these key issues have been addressed so far, this work performs a review of the recent bioenergy LCA literature. The abundance of studies dealing with the different biomass resources, conversion technologies, products and environmental impact categories is summarized and discussed. Afterwards, a qualitative interpretation of the LCA results is depicted, focusing on energy balance, GHG balance and other impact categories. With the exception of a few studies, most LCAs found a significant net reduction in GHG emissions and fossil energy consumption when bioenergy replaces fossil energy. Copyright © 2010 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Melvin, A. M.; Larsen, P.; Boehlert, B.; Martinich, J.; Neumann, J.; Chinowsky, P.; Schweikert, A.; Strzepek, K.
2015-12-01
Climate change poses many risks and challenges for the Arctic and sub-Arctic, including threats to infrastructure. The safety and stability of infrastructure in this region can be impacted by many factors including increased thawing of permafrost soils, reduced coastline protection due to declining arctic sea ice, and changes in inland flooding. The U.S. Environmental Protection Agency (EPA) is coordinating an effort to quantify physical and economic impacts of climate change on public infrastructure across the state of Alaska and estimate how global greenhouse gas (GHG) mitigation may avoid or reduce these impacts. This research builds on the Climate Change Impacts and Risk Analysis (CIRA) project developed for the contiguous U.S., which is described in an EPA report released in June 2015. We are using a multi-model analysis focused primarily on the impacts of changing permafrost, coastal erosion, and inland flooding on a range of infrastructure types, including transportation (e.g. roads, airports), buildings and harbors, energy sources and transmission, sewer and water systems, and others. This analysis considers multiple global GHG emission scenarios ranging from a business as usual future to significant global action. These scenarios drive climate projections through 2100 spanning a range of outcomes to capture variability amongst climate models. Projections are being combined with a recently developed public infrastructure database and integrated into a version of the Infrastructure Planning Support System (IPSS) we are modifying for use in the Arctic and sub-Arctic region. The IPSS tool allows for consideration of both adaptation and reactive responses to climate change. Results of this work will address a gap in our understanding of climate change impacts in Alaska, provide estimates of the physical and economic damages we may expect with and without global GHG mitigation, and produce important insights about infrastructure vulnerabilities in response to warming at northern latitudes.
NASA Astrophysics Data System (ADS)
Ehret, G.; Amediek, A.; Wirth, M.; Fix, A.; Kiemle, C.; Quatrevalet, M.
2016-12-01
We report on a new method and on the first demonstration to quantify emission rates from strong greenhouse gas (GHG) point sources using airborne Integrated Path Differential Absorption (IPDA) Lidar measurements. In order to build trust in the self-reported emission rates by countries, verification against independent monitoring systems is a prerequisite to check the reported budget. A significant fraction of the total anthropogenic emission of CO2 and CH4 originates from localized strong point sources of large energy production sites or landfills. Both are not monitored with sufficiently accuracy by the current observation system. There is a debate whether airborne remote sensing could fill in the gap to infer those emission rates from budgeting or from Gaussian plume inversion approaches, whereby measurements of the GHG column abundance beneath the aircraft can be used to constrain inverse models. In contrast to passive sensors, the use of an active instrument like CHARM-F for such emission verification measurements is new. CHARM-F is a new airborne IPDA-Lidar devised for the German research aircraft HALO for the simultaneous measurement of the column-integrated dry-air mixing ratio of CO2 and CH4 commonly denoted as XCO2 und XCH4, respectively. It has successfully been tested in a serious of flights over Central Europe to assess its performance under various reflectivity conditions and in a strongly varying topography like the Alps. The analysis of a methane plume measured in crosswind direction of a coal mine ventilation shaft revealed an instantaneous emission rate of 9.9 ± 1.7 kt CH4 yr-1. We discuss the methodology of our point source estimation approach and give an outlook on the CoMet field experiment scheduled in 2017 for the measurement of anthropogenic and natural GHG emissions by a combination of active and passive remote sensing instruments on research aircraft.
Quantification of CO2 and CH4 megacity emissions using portable solar absorption spectrometers
NASA Astrophysics Data System (ADS)
Frey, Matthias; Hase, Frank; Blumenstock, Thomas; Morino, Isamu; Shiomi, Kei
2017-04-01
Urban areas already contribute to over 50% of the global population, additionally the percentage of the worldwide population living in Metropolitan areas is continuously growing. Thus, a precise knowledge of urban greenhouse gas (GHG) emissions is of utmost importance. Whereas, however, GHG emissions on a nationwide to continental scale can be relatively precisely estimated using satellite observations (and fossil fuel consumption statistics), reliable estimations for local to regional scale emissions pose a bigger problem due to lack of timely and spatially high resolved satellite data and possible biases of passive spectroscopic nadir observations (e.g. enhanced aerosol scattering in a city plume). Furthermore, emission inventories on the city scale might be missing contributions (e.g. methane leakage from gas pipes). Here, newly developed mobile low resolution Fourier Transform spectrometers (Bruker EM27/SUN) are utilized to quantify small scale emissions. This novel technique was successfully tested before by KIT and partners during campaigns in Berlin, Paris and Colorado for detecting emissions from various sources. We present results from a campaign carried out in February - April 2016 in the Tokyo bay area, one of the biggest Metropolitan areas worldwide. We positioned two EM27/SUN spectrometers on the outer perimeter of Tokyo along the prevailing wind axis upwind and downwind of the city source. Before and after the campaign, calibration measurements were performed in Tsukuba with a collocated high resolution FTIR spectrometer from the Total Carbon Column Observing Network (TCCON). During the campaign the observed XCO2 and XCH4 values vary significantly. Additionally, intraday variations are observed at both sites. Furthermore, an enhancement due to the Tokyo area GHG emissions is clearly visible for both XCO2 and XCH4. The observed signals are significantly higher compared to prior campaigns targeting other major cities. We perform a rough estimate of the source strength. Finally, a comparison with an observation from the OCO-2 satellite is shown.
Demonstrating the Environmental & Economic Cost-Benefits of Reusing DoD’s Pre-World War II Buildings
2013-04-01
IV-1 Table IV-2: Summary Results PO1, NPV of Life Cycle Costs wirhout Factoring GHGs ......... IV...3 Table IV-3: Summary Results PO1, NPV of Life Cycle Costs with Monetized GHGs ............. IV-4 Table IV-4: Construction Cost Comparisons...IV-6 Table IV-6: Summary Results PO2, GHG Reductions in Metric Tons by Scope
NASA Astrophysics Data System (ADS)
Sobral Mourao, Zenaida; Konadu, Daniel Dennis; Damoah, Richard; Li, Pei-hao
2017-04-01
The UK has a binding obligation to reduce GHG emission by 80% (based on 1990 levels) by 2050. Meeting this target requires extensive decarbonisation of the UK energy system. Different pathways that achieve this target at the lowest system costs are being explored at different levels of policy and decisions on future energy infrastructure. Whilst benefits of decarbonisation are mainly focused on the impacts on climate change, there are other potential environmental and health impacts such as air-quality. In particular, a decrease in fossil fuel use by directly substituting current systems with low-carbon technologies could lead to significant reductions in the concentrations of SO2, NOX, CO and other atmospheric pollutants. So far, the proposed decarbonisation pathways tend to target the electricity sector first, followed by a transition in transport and heating technologies and use. However, the spatial dimension of where short term changes in the energy sector occur in relation to high density population areas is not taken into account when defining the energy transition strategies. This may lead to limited short-term improvements in air quality within urban areas, where use of fossil fuels for heating and transport is the main contribution to overall atmospheric pollutant levels. It is therefore imperative to explore decarbonisation strategies that prioritise transition in sectors of the energy system that produce immediate improvements in air quality in key regions of the UK. This study aims to use a combination of Remote Sensing observations and atmospheric chemistry/transport modelling approaches to estimate and map the impact on NOx of the traditional approach of decarbonising electricity first compared to a slower transition in the electricity sector, but faster change in the transport sector. This is done by generating a set of alternative energy system pathways with a higher share of zero emissions vehicles in 2030 than the energy system optimization model would choose if the only goal was the 80% GHG emissions reduction. Our overarching goal is to provide an additional standard to compare future energy system pathways beyond the traditional metrics of cost and GHG emissions reductions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stadler, Michael; Marnay, Chris; Lai, Judy
2010-06-01
The Ernest Orlando Lawrence Berkeley National Laboratory (LBNL) is working with the California Energy Commission (CEC) to determine the potential role of commercial-sector distributed energy resources (DER) with combined heat and power (CHP) in greenhouse gas emissions (GHG) reductions. Historically, relatively little attention has been paid to the potential of medium-sized commercial buildings with peak electric loads ranging from 100 kW to 5 MW. In our research, we examine how these medium-sized commercial buildings might implement DER and CHP. The buildings are able to adopt and operate various technologies, e.g., photovoltaics (PV), on-site thermal generation, heat exchangers, solar thermal collectors,more » absorption chillers, batteries and thermal storage systems. We apply the Distributed Energy Resources Customer Adoption Model (DER-CAM), which is a mixed-integer linear program (MILP) that minimizes a site?s annual energy costs and/or CO2 emissions. Using 138 representative mid-sized commercial sites in California, existing tariffs of major utilities, and expected performance data of available technologies in 2020, we find the GHG reduction potential for these buildings. We compare different policy instruments, e.g., a CO2 pricing scheme or a feed-in tariff (FiT), and show their contributions to the California Air Resources Board (CARB) goals of additional 4 GW CHP capacities and 6.7 Mt/a GHG reduction in California by 2020. By applying different price levels for CO2, we find that there is competition between fuel cells and PV/solar thermal. It is found that the PV/solar thermal adoption increases rapidly, but shows a saturation at high CO2 prices, partly due to limited space for PV and solar thermal. Additionally, we find that large office buildings are good hosts for CHP in general. However, most interesting is the fact that fossil-based CHP adoption also increases with increasing CO2 prices. We will show service territory specific results since the attractiveness of DER varies widely by climate zone and service territory.« less
Lin, Tao; Yu, Yunjun; Bai, Xuemei; Feng, Ling; Wang, Jin
2013-01-01
Devising policies for a low carbon city requires a careful understanding of the characteristics of urban residential lifestyle and consumption. The production-based accounting approach based on top-down statistical data has a limited ability to reflect the total greenhouse gas (GHG) emissions from residential consumption. In this paper, we present a survey-based GHG emissions accounting methodology for urban residential consumption, and apply it in Xiamen City, a rapidly urbanizing coastal city in southeast China. Based on this, the main influencing factors determining residential GHG emissions at the household and community scale are identified, and the typical profiles of low, medium and high GHG emission households and communities are identified. Up to 70% of household GHG emissions are from regional and national activities that support household consumption including the supply of energy and building materials, while 17% are from urban level basic services and supplies such as sewage treatment and solid waste management, and only 13% are direct emissions from household consumption. Housing area and household size are the two main factors determining GHG emissions from residential consumption at the household scale, while average housing area and building height were the main factors at the community scale. Our results show a large disparity in GHG emissions profiles among different households, with high GHG emissions households emitting about five times more than low GHG emissions households. Emissions from high GHG emissions communities are about twice as high as from low GHG emissions communities. Our findings can contribute to better tailored and targeted policies aimed at reducing household GHG emissions, and developing low GHG emissions residential communities in China.
Lin, Tao; Yu, Yunjun; Bai, Xuemei; Feng, Ling; Wang, Jin
2013-01-01
Devising policies for a low carbon city requires a careful understanding of the characteristics of urban residential lifestyle and consumption. The production-based accounting approach based on top-down statistical data has a limited ability to reflect the total greenhouse gas (GHG) emissions from residential consumption. In this paper, we present a survey-based GHG emissions accounting methodology for urban residential consumption, and apply it in Xiamen City, a rapidly urbanizing coastal city in southeast China. Based on this, the main influencing factors determining residential GHG emissions at the household and community scale are identified, and the typical profiles of low, medium and high GHG emission households and communities are identified. Up to 70% of household GHG emissions are from regional and national activities that support household consumption including the supply of energy and building materials, while 17% are from urban level basic services and supplies such as sewage treatment and solid waste management, and only 13% are direct emissions from household consumption. Housing area and household size are the two main factors determining GHG emissions from residential consumption at the household scale, while average housing area and building height were the main factors at the community scale. Our results show a large disparity in GHG emissions profiles among different households, with high GHG emissions households emitting about five times more than low GHG emissions households. Emissions from high GHG emissions communities are about twice as high as from low GHG emissions communities. Our findings can contribute to better tailored and targeted policies aimed at reducing household GHG emissions, and developing low GHG emissions residential communities in China. PMID:23405187
Upscaling of greenhouse gas emissions in upland forestry following clearfell
NASA Astrophysics Data System (ADS)
Toet, Sylvia; Keane, Ben; Yamulki, Sirwan; Blei, Emanuel; Gibson-Poole, Simon; Xenakis, Georgios; Perks, Mike; Morison, James; Ineson, Phil
2016-04-01
Data on greenhouse gas (GHG) emissions caused by forest management activities are limited. Management such as clearfelling may, however, have major impacts on the GHG balance of forests through effects of soil disturbance, increased water table, and brash and root inputs. Besides carbon dioxide (CO2), the biogenic GHGs nitrous oxide (N2O) and methane (CH4) may also contribute to GHG emissions from managed forests. Accurate flux estimates of all three GHGs are therefore necessary, but, since GHG emissions usually show large spatial and temporal variability, in particular CH4 and N2O fluxes, high-frequency GHG flux measurements and better understanding of their controls are central to improve process-based flux models and GHG budgets at multiple scales. In this study, we determined CO2, CH4 and N2O emissions following felling in a mature Sitka spruce (Picea sitchensis) stand in an upland forest in northern England. High-frequency measurements were made along a transect using a novel, automated GHG chamber flux system ('SkyLine') developed at the University of York. The replicated, linear experiment aimed (1) to quantify GHG emissions from three main topographical features at the clearfell site, i.e. the ridges on which trees had been planted, the hollows in between and the drainage ditches, and (2) to determine the effects of the green-needle component of the discarded brash. We also measured abiotic soil and climatic factors alongside the 'SkyLine' GHG flux measurements to identify drivers of the observed GHG emissions. All three topographic features were overall sources of GHG emissions (in CO2 equivalents), and, although drainage ditches are often not included in studies, GHG emissions per unit area were highest from ditches, followed by ridges and lowest in hollows. The CO2 emissions were most important in the GHG balance of ridges and hollows, but CH4 emissions were very high from the drainage ditches, contributing to over 50% of their overall net GHG emissions. Ridges usually emitted N2O, whilst N2O emissions from hollows and ditches were very low. As much as 25% of the total GHG flux resulted from large intermittent emissions from the ditches following rainfall. Addition of green needles from the brash immediately increased soil respiration and reduced CH4 emission in comparison to controls. To upscale our high-frequency 'SkyLine' GHG flux measurements at the different topographic features to the field scale, we collected high resolution imagery from unmanned aerial vehicle (UAV) flights. We will compare results using this upscaling technique to GHG emissions simultaneously measured by eddy covariance with the 'SkyLine' system in the predominant footprint. This detailed knowledge of the spatial and temporal distribution of GHG emissions in an upland forest after felling and their drivers, and development of robust upscaling techniques can provide important tools to improve GHG flux models and to design appropriate management practices in upland forestry to mitigate GHG emissions following clearfell.
Ku, Hyun-Hwoi; Hayashi, Keiichi; Agbisit, Ruth; Villegas-Pangga, Gina
2017-12-01
Intensively double cropping rice increases greenhouse gas (GHG) emission in tropical countries, and hence, finding better management practices is imperative for reducing global warming potential (GWP), while sustaining rice yield. This study demonstrated an efficient fertilizer and water management practice targeting seasonal weather conditions effects on rice productivity, nitrogen use efficiency (NUE), GWP, and GHG intensity (GHGI). Two-season experiments were conducted with two pot-scale experiments using urea and urea+cattle manure (CM) under continuous flooding (CF) during the wet season (2013WS), and urea with/without CaSiO 3 application under alternate wetting and drying (AWD) during the dry season (2014DS). In 2013WS, 120kgNha -1 of urea fertilizer resulted in lower CH 4 emission and similar rice production compared to urea+CM. In 2014DS, CaSiO 3 application showed no difference in yields and led to significant reduction of N 2 O emission, but increased CH 4 emission and GWP. Due to significant increases in GHG emissions in urea+CM and CaSiO 3 application, we compared a seasonal difference in a local rice cultivation to test two water management practices. CF was adopted during 2013WS while AWD was adopted during 2014DS. Greater grain yields and yield components and NUE were obtained in 2014DS than in 2013WS. Furthermore, higher grain yields contributed to similar values of GHGI although GWP of cumulative GHG emissions was increased in 2014DS. Thus, utilizing urea only application under AWD is a preferred practice to minimize GWP without yield decline for double cropping rice in tropical countries. Copyright © 2017. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Miller-Robbie, Leslie; Ramaswami, Anu; Amerasinghe, Priyanie
2017-07-01
Nutrients and water found in domestic treated wastewater are valuable and can be reutilized in urban agriculture as a potential strategy to provide communities with access to fresh produce. In this paper, this proposition is examined by conducting a field study in the rapidly developing city of Hyderabad, India. Urban agriculture trade-offs in water use, energy use and GHG emissions, nutrient uptake, and crop pathogen quality are evaluated, and irrigation waters of varying qualities (treated wastewater, versus untreated water and groundwater) are compared. The results are counter-intuitive, and illustrate potential synergies and key constraints relating to the food-energy-water-health (FEW-health) nexus in developing cities. First, when the impact of GHG emissions from untreated wastewater diluted in surface streams is compared with the life cycle assessment of wastewater treatment with reuse in agriculture, the treatment-plus-reuse case yields a 33% reduction in life cycle system-wide GHG emissions. Second, despite water cycling benefits in urban agriculture, only <1% of the nutrients are able to be captured in urban agriculture, limited by the small proportion of effluent divertible to urban agriculture due to land constraints. Thus, water treatment plus reuse in urban farms can enhance GHG mitigation and also directly save groundwater; however, very large amounts of land are needed to extract nutrients from dilute effluents. Third, although energy use for wastewater treatment results in pathogen indicator organism concentrations in irrigation water to be reduced by 99.9% (three orders of magnitude) compared to the untreated case, crop pathogen content was reduced by much less, largely due to environmental contamination and farmer behavior and harvesting practices. The study uncovers key physical, environmental, and behavioral factors that constrain benefits achievable at the FEW-health nexus in urban areas.
Help or hindrance? The travel, energy and carbon impacts of highly automated vehicles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wadud, Zia; MacKenzie, Don; Leiby, Paul
In 5-10 years, experts predict that new automobiles will be capable of driving themselves under limited conditions and under most conditions within 10–20 years. Automation may affect road vehicle energy consumption and greenhouse gas (GHG) emissions in a host of ways, positive and negative, by causing changes in travel demand, vehicle design, vehicle operating profiles, and choices of fuels. In this paper, we identify specific mechanisms through which automation may affect travel and energy demand and resulting GHG emissions and bring them together using a coherent energy decomposition framework. Here, we review the literature for estimates of the energy impactsmore » of each mechanism and, where the literature is lacking, develop our own estimates using engineering and economic analysis. We consider how widely applicable each mechanism is, and quantify the potential impact of each mechanism on a common basis: the percentage change it is expected to cause in total GHG emissions from light-duty or heavy-duty vehicles in the U.S. Our primary focus is travel related energy consumption and emissions, since potential lifecycle impacts are generally smaller in magnitude. We also explore the net effects of automation on emissions through several illustrative scenarios, finding that automation might plausibly reduce road transport GHG emissions and energy use by nearly half – or nearly double them – depending on which effects come to dominate. We also find that many potential energy-reduction benefits may be realized through partial automation, while the major energy/emission downside risks appear more likely at full automation. Finally, we present some implications for policymakers and identifying priority areas for further research.« less
Help or hindrance? The travel, energy and carbon impacts of highly automated vehicles
Wadud, Zia; MacKenzie, Don; Leiby, Paul
2016-02-26
In 5-10 years, experts predict that new automobiles will be capable of driving themselves under limited conditions and under most conditions within 10–20 years. Automation may affect road vehicle energy consumption and greenhouse gas (GHG) emissions in a host of ways, positive and negative, by causing changes in travel demand, vehicle design, vehicle operating profiles, and choices of fuels. In this paper, we identify specific mechanisms through which automation may affect travel and energy demand and resulting GHG emissions and bring them together using a coherent energy decomposition framework. Here, we review the literature for estimates of the energy impactsmore » of each mechanism and, where the literature is lacking, develop our own estimates using engineering and economic analysis. We consider how widely applicable each mechanism is, and quantify the potential impact of each mechanism on a common basis: the percentage change it is expected to cause in total GHG emissions from light-duty or heavy-duty vehicles in the U.S. Our primary focus is travel related energy consumption and emissions, since potential lifecycle impacts are generally smaller in magnitude. We also explore the net effects of automation on emissions through several illustrative scenarios, finding that automation might plausibly reduce road transport GHG emissions and energy use by nearly half – or nearly double them – depending on which effects come to dominate. We also find that many potential energy-reduction benefits may be realized through partial automation, while the major energy/emission downside risks appear more likely at full automation. Finally, we present some implications for policymakers and identifying priority areas for further research.« less
Zhong, Jia; Wei, Yuan-Song; Zhao, Zhen-Feng; Ying, Mei-Juan; Zhou, Guo-Sheng; Xiong, Jian-Jun; Liu, Pei-Cai; Ge, Zhen; Ding, Gang-Qiang
2013-11-01
There is a great uncertainty of greenhouse gas (GHG) reduction and nitrogen conservation from the full process of sludge composting and land application of compost in China due to the lack of emission data of GHG such as N2O and CH4 and ammonia (NH3). The purpose of this study is to get emission characteristics of GHGs and NH3 from the full process with on-site observation. Results showed that the total GHG emission factor from full process of the turning windrow (TW) system (eCO2/dry sludge, 196.21 kg x t(-1)) was 1.61 times higher of that from the ATP system. Among the full process, N2O was mostly from the land application of compost, whereas CH4 mainly resulted from the sludge composting. In the sludge composting of ATP, the GHG emission equivalence of the ATP (eCO2/dry sludge, 12.47 kg x t(-1) was much lower than that of the TW (eCO2/dry sludge, 86.84 kg x t(-1)). The total NH3 emission factor of the TW (NH3/dry sludge, 6.86 kg x t(-1)) was slightly higher than that of the ATP (NH3/dry sludge, 6.63 kg x t(-1)). NH3 was the major contributor of nitrogen loss in the full process. During the composting, the nitrogen loss as NH3 from both TW and ATP was nearly the same as 30% of TN loss from raw materials, and the N and C loss caused by N2O and CH4 were negligible. These results clearly showed that the ATP was a kind of environmentally friendly composting technology.
Jiang, Zaidi; Yin, Shan; Zhang, Xianxian; Li, Changsheng; Shen, Guangrong; Zhou, Pei; Liu, Chunjiang
2017-12-01
Appropriate agricultural practices for carbon sequestration and emission mitigation have a significant influence on global climate change. However, various agricultural practices on farmland carbon sequestration usually have a major impact on greenhouse gas (GHG) emissions. It is very important to accurately quantify the effect of agricultural practices. This study developed a platform-the Denitrification Decomposition (DNDC) online model-for simulating and evaluating the agricultural carbon sequestration and emission mitigation based on the scientific process of the DNDC model, which is widely used in the simulation of soil carbon and nitrogen dynamics. After testing the adaptability of the platform on two sampling fields, it turned out that the simulated values matched the measured values well for crop yields and GHG emissions. We used the platform to estimate the effect of three carbon sequestration practices in a sampling field: nitrogen fertilization reduction, straw residue and midseason drainage. The results indicated the following: (1) moderate decrement of the nitrogen fertilization in the sampling field was able to decrease the N₂O emission while maintaining the paddy rice yield; (2) ground straw residue had almost no influence on paddy rice yield, but the CH₄ emission and the surface SOC concentration increased along with the quantity of the straw residue; (3) compared to continuous flooding, midseason drainage would not decrease the paddy rice yield and could lead to a drop in CH₄ emission. Thus, this study established the DNDC online model, which is able to serve as a reference and support for the study and evaluation of the effects of agricultural practices on agricultural carbon sequestration and GHG emissions mitigation in China.
NASA Astrophysics Data System (ADS)
Sturtevant, C. S.; Ruddell, B. L.; Knox, S. H.; Verfaillie, J. G.; Matthes, J. H.; Oikawa, P. Y.; Baldocchi, D. D.
2014-12-01
Restoring agricultural areas to wetlands in the Sacramento-San Joaquin River Delta of California can help reverse subsidence and reduce greenhouse gas (GHG) emissions. Predicting outcomes and developing best practices of wetland management therefore requires a robust understanding of the sensitivity of GHG exchange in these ecosystems to factors such as management and meteorology. However, wetlands can exhibit complex, overlapping, and asynchronous couplings between site characteristics, environmental drivers and GHG exchange. In this research we demonstrate the use of wavelets and information theory (process networks) as sophisticated tools to disentangle and characterize ecosystem couplings to CO2 and CH4 exchange (measured by eddy covariance) in two restored Delta wetlands. Using wavelets we isolated processes acting at different time scales, then used process networks to determine the direction, strength, and lag properties of ecosystem couplings. We found that despite differences in age, architecture and management, CO2 exchange at both wetlands was most sensitive to similar meteorological factors such as radiation and temperature up to a time scale of several days. At the monthly timescale, however, the effect of a more variable water table management in one wetland became dominant, revealing a reduction in net CO2 uptake during long term water table drawdowns. The analysis of CH4 exchange in this wetland revealed a more sensitive and complex coupling with water table. CH4 exchange was sensitive to relatively small, multi-day shifts in water table and displayed a lagged response to larger, longer shifts. With these methods we were able to disentangle the effects of management from meteorology and better understand the sensitivities of GHG exchange. Our results provide important insights for modeling efforts and management practices.
The Benefits of Internalizing Air Quality and Greenhouse Gas Externalities in the US Energy System
NASA Astrophysics Data System (ADS)
Brown, Kristen E.
The emission of pollutants from energy use has effects on both local air quality and the global climate, but the price of energy does not reflect these externalities. This study aims to analyze the effect that internalizing these externalities in the cost of energy would have on the US energy system, emissions, and human health. In this study, we model different policy scenarios in which fees are added to emissions related to generation and use of energy. The fees are based on values of damages estimated in the literature and are applied to upstream and combustion emissions related to electricity generation, industrial energy use, transportation energy use, residential energy use, and commercial energy use. The energy sources and emissions are modeled through 2055 in five-year time steps. The emissions in 2045 are incorporated into a continental-scale atmospheric chemistry and transport model, CMAQ, to determine the change in air quality due to different emissions reduction scenarios. A benefit analysis tool, BenMAP, is used with the air quality results to determine the monetary benefit of emissions reductions related to the improved air quality. We apply fees to emissions associated with health impacts, climate change, and a combination of both. We find that the fees we consider lead to reductions in targeted emissions as well as co-reducing non-targeted emissions. For fees on the electric sector alone, health impacting pollutant (HIP) emissions reductions are achieved mainly through control devices while Greenhouse Gas (GHG) fees are addressed through changes in generation technologies. When sector specific fees are added, reductions come mainly from the industrial and electricity generation sectors, and are achieved through a mix of energy efficiency, increased use of renewables, and control devices. Air quality is improved in almost all areas of the country with fees, including when only GHG fees are applied. Air quality tends to improve more in regions with larger emissions reductions, especially for PM2.5.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williams, Christopher; Hasanbeigi, Ali; Price, Lynn
Improving the efficiency of energy production and consumption and switching to lower carbon energy sources can significantly decrease carbon dioxide (CO2) emissions and reduce climate change impacts. A growing body of research has found that these measures can also directly mitigate many non-climate change related human health hazards and environmental damage. Positive impacts of policies and programs that occur in addition to the intended primary policy goal are called co-benefits. Policy analysis relies on forecasting and comparing the costs of policy and program implementation and the benefits that accrue to society from implementation. GHG reduction and energy efficiency policies andmore » programs face political resistance in part because of the difficulty of quantifying their benefits. On the one hand, climate change mitigation policy benefits are often global, long-term, and subject to large uncertainties, and subsidized energy pricing can reduce the direct monetary benefits of energy efficiency policies to below their cost. On the other hand, the co-benefits that accrue from these efforts’ resultant reductions in conventional air pollution (such as improved health, agricultural productivity, reduced damage to infrastructure, and local ecosystem improvements) are generally near term, local, and more certain than climate change mitigation benefits and larger than the monetary value of energy savings. The incorporation of co-benefits into energy efficiency and climate mitigation policy and program analysis therefore might significantly increase the uptake of these policies. Faster policy uptake is especially important in developing countries because ongoing development efforts that do not consider co-benefits may lock in suboptimal technologies and infrastructure and result in high costs in future years. Over the past two decades, studies have repeatedly documented that non-climate change related benefits of energy efficiency and fuel conversion efforts, as a part of GHG mitigation strategies, can be from between 30% to over 100% of the costs of such policies and programs strategies. Policy makers around the world are increasingly interested in including both GHG and non-GHG impacts in analyses of energy efficiency and fuel switching policies and programs and a set of methodologies has matured from the efforts of early moving jurisdictions such as the European Union, the United States, and Japan.« less
NASA Astrophysics Data System (ADS)
Hassan, Mohd Nor Azman
Malaysia's transportation sector accounts for 48% of the country's total energy use. The country is expected to become a net oil importer by the year 2011. To encourage renewable energy development and relieve the country's emerging oil dependence, in 2006 the government mandated blending 5% palm-oil biodiesel in petroleum diesel. Malaysia produced 16 million tonnes of palm oil in 2007, mainly for food use. This study addresses maximizing bioenergy use from oil-palm to support Malaysia's energy initiative while minimizing greenhouse gas emissions from land use change. When converting primary and secondary forests to oil-palm plantations between 270 - 530 g and 120 -190 g CO2 equivalent (CO2-eq) per MJ of biodiesel produced, respectively, is released. However, converting degraded lands results in the capture of between 23 to 85 g CO2-eq per MJ of biodiesel produced. Using various combinations of land types, Malaysia could meet the 5% biodiesel target with a net GHG savings of about 1.03 million tonnes (4.9% of the transportation sector's diesel emissions) when accounting for the emissions savings from the diesel fuel displaced. Fossil fuels contributed about 93% to Malaysia's electricity generation mix and emit about 65 million tonnes (Mt) or 36% of the country's 2010 Greenhouse Gas (GHG) emissions. The government has set a target to install 330 MW biomass electricity by 2015, which is hoped to avoid 1.3 Mt of GHG emissions annually. The availability of seven types of biomass residues in Peninsular Malaysia is estimated based on residues-to-product ratio, recoverability and accessibility factor and other competing uses. It was found that there are approximately 12.2 Mt/yr of residues. Oil-palm residues contribute about 77% to the total availability with rice and forestry residues at 17%. Electricity from biomass can be produced via direct combustion in dedicated power plants or co-fired with coal. The co-firing of the residues at four existing coal plants in Peninsular Malaysia was modeled to minimize cost or GHG emissions. It is found that Malaysia can meet the 330 MW biomass electricity target via co-firing with a cost reduction of about 24 million compared to 100% coal. Optimal GHG reduction for co-firing was found to be 17 Mt lower than 100% coal at a cost of carbon mitigation (COM) of about 22.50/t CO2-eq mitigated. This COM is lower than an implied COM under the newly introduced levy on heavy electricity users in Malaysia. Gasoline consumed roughly 370 PJ of energy in Malaysia's transportation sector in 2009. Ethanol can be blended with gasoline up to 10% by volume in most vehicles. Peninsular Malaysia's 12.2 Mt/yr of agro-forestry residues can be used for potentially producing 3.8 billion liters ethanol annually. Using a large scale mixed-integer linear optimization, it is found that if Malaysia introduces a 10% ethanol-gasoline blend (E10), approximately 2.9 Mt (24%) of the residues would be used at 5.4 million more cost compared to 100% gasoline (reference case) estimated at 5.2 billion/yr. In the E10 scenario, all cities receive 10% ethanol altogether producing 900 million liters of ethanol. The GHG emissions for 100% gasoline is estimated at 26.4 Mt/yr. The minimum GHG emissions if E10 is implemented in Peninsular Malaysia was found to be 24.5 Mt, 2.0 Mt lower than 100% gasoline, which implies a 4.70/t CO2-eq cost of carbon mitigation (COM). Since only 24% of the available residues are used to produce the E10, the possibility of producing the E10 and electricity via co-firing with coal simultaneously was investigated. This is done by combining the fuel (gasoline/E10) model with the electricity (coal-only/co-firing) model. The costs of the reference case combined scenario (100% gasoline and 100% coal) is estimated at 6.3 billion/yr and emits 63 Mt/yr of GHG emissions. The minimum cost for producing the E10 and co-firing is found to be 30 million lower than the combined reference case. This is achieved by using 5.9 Mt of residues. The miniμm GHG emissions level obtained is 17 Mt lower implying a COM of 19.00/t CO2-eq mitigated. The findings in this research are used to recommend policies for mitigating GHG emissions impacts from the growth of palm oil use in the transportation sector. Policy recommendations are also discussed to ensure a successful implementation of co-firing of biomass and the production of E10 by ensuring a guaranteed supply of residues and financing the high capital cost of the renewable energy program.
Estimation of GHG Emissions from Water Reclamation Plants in Beijing.
Fan, Yupeng; Bai, Yanying; Jiao, Wentao
A procedure for estimating Greenhouse gas (GHG) emissions from a wastewater reclamation plant in Beijing was developed based on the process chain model. GHG emissions under two typical water reclamation treatment processes, the coagulation-sedimentation-filtration traditional process and advanced biological treatment process, were examined. The total on-site GHG emissions were estimated to be 0.0056 kg/m 3 and 0.6765 kg/m 3 respectively, while total off-site GHG emissions were estimated to be 0.3699 kg/m 3 and 0.4816 kg/m 3 . The overall GHG emissions were 0.3755 kg/m 3 under the type 1 treatment, which is much lower than that under the type 2 of 1.1581 kg/m 3 . Emissions from both processes were lower than that from the tap water production. Wastewater reclamation and reuse should be promoted as it not only saves the water resources but also can reduce the GHG emissions. Energy consumption was the most significant source of GHG emissions. Biogas recovery should be employed as it can significantly reduce the GHG emissions, especially under the type 2 treatment process. Considering the wastewater treatment and reclamation process as a whole, the type 2 treatment process has advantages in reducing the GHG emissions per unit of pollutant. This paper provides scientific basis for decision making.
Greenhouse Gas Emissions from Asphalt Pavement Construction: A Case Study in China
Ma, Feng; Sha, Aimin; Lin, Ruiyu; Huang, Yue; Wang, Chao
2016-01-01
In China, the construction of asphalt pavement has a significant impact on the environment, and energy use and greenhouse gas (GHG) emissions from asphalt pavement construction have been receiving increasing attention in recent years. At present, there is no universal criterion for the evaluation of GHG emissions in asphalt pavement construction. This paper proposes to define the system boundaries for GHG emissions from asphalt pavement by using a process-based life cycle assessment method. A method for evaluating GHG emissions from asphalt pavement construction is suggested. The paper reports a case study of GHG emissions from a typical asphalt pavement construction project in China. The results show that the greenhouse gas emissions from the mixture mixing phase are the highest, and account for about 54% of the total amount. The second highest GHG emission phase is the production of raw materials. For GHG emissions of cement stabilized base/subbase, the production of raw materials emits the most, about 98%. The GHG emission for cement production alone is about 92%. The results indicate that any measures to reduce GHG emissions from asphalt pavement construction should be focused on the raw materials manufacturing stage. If the raw materials production phase is excluded, the measures to reduce GHG emissions should be aimed at the mixture mixing phase. PMID:27011196
Greenhouse Gas Emissions from Asphalt Pavement Construction: A Case Study in China.
Ma, Feng; Sha, Aimin; Lin, Ruiyu; Huang, Yue; Wang, Chao
2016-03-22
In China, the construction of asphalt pavement has a significant impact on the environment, and energy use and greenhouse gas (GHG) emissions from asphalt pavement construction have been receiving increasing attention in recent years. At present, there is no universal criterion for the evaluation of GHG emissions in asphalt pavement construction. This paper proposes to define the system boundaries for GHG emissions from asphalt pavement by using a process-based life cycle assessment method. A method for evaluating GHG emissions from asphalt pavement construction is suggested. The paper reports a case study of GHG emissions from a typical asphalt pavement construction project in China. The results show that the greenhouse gas emissions from the mixture mixing phase are the highest, and account for about 54% of the total amount. The second highest GHG emission phase is the production of raw materials. For GHG emissions of cement stabilized base/subbase, the production of raw materials emits the most, about 98%. The GHG emission for cement production alone is about 92%. The results indicate that any measures to reduce GHG emissions from asphalt pavement construction should be focused on the raw materials manufacturing stage. If the raw materials production phase is excluded, the measures to reduce GHG emissions should be aimed at the mixture mixing phase.
Report of the Interagency Task Force on Carbon Capture and Storage
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2010-08-01
Carbon capture and storage (CCS) refers to a set of technologies that can greatly reduce carbon dioxide (CO{sub 2}) emissions from new and existing coal- and gas-fired power plants, industrial processes, and other stationary sources of CO{sub 2}. In its application to electricity generation, CCS could play an important role in achieving national and global greenhouse gas (GHG) reduction goals. However, widespread cost-effective deployment of CCS will occur only if the technology is commercially available and a supportive national policy framework is in place. In keeping with that objective, on February 3, 2010, President Obama established an Interagency Task Forcemore » on Carbon Capture and Storage composed of 14 Executive Departments and Federal Agencies. The Task Force, co-chaired by the Department of Energy (DOE) and the Environmental Protection Agency (EPA), was charged with proposing a plan to overcome the barriers to the widespread, cost-effective deployment of CCS within ten years, with a goal of bringing five to ten commercial demonstration projects online by 2016. Composed of more than 100 Federal employees, the Task Force examined challenges facing early CCS projects as well as factors that could inhibit widespread commercial deployment of CCS. In developing the findings and recommendations outlined in this report, the Task Force relied on published literature and individual input from more than 100 experts and stakeholders, as well as public comments submitted to the Task Force. The Task Force also held a large public meeting and several targeted stakeholder briefings. While CCS can be applied to a variety of stationary sources of CO{sub 2}, its application to coal-fired power plant emissions offers the greatest potential for GHG reductions. Coal has served as an important domestic source of reliable, affordable energy for decades, and the coal industry has provided stable and quality high-paying jobs for American workers. At the same time, coal-fired power plants are the largest contributor to U.S. greenhouse gas (GHG) emissions, and coal combustion accounts for 40 percent of global carbon dioxide (CO{sub 2}) emissions from the consumption of energy. EPA and Energy Information Administration (EIA) assessments of recent climate and energy legislative proposals show that, if available on a cost-effective basis, CCS can over time play a large role in reducing the overall cost of meeting domestic emissions reduction targets. By playing a leadership role in efforts to develop and deploy CCS technologies to reduce GHG emissions, the United States can preserve the option of using an affordable, abundant, and domestic energy resource, help improve national security, help to maximize production from existing oil fields through enhanced oil recovery (EOR), and assist in the creation of new technologies for export. While there are no insurmountable technological, legal, institutional, regulatory or other barriers that prevent CCS from playing a role in reducing GHG emissions, early CCS projects face economic challenges related to climate policy uncertainty, first-of-a-kind technology risks, and the current high cost of CCS relative to other technologies. Administration analyses of proposed climate change legislation suggest that CCS technologies will not be widely deployed in the next two decades absent financial incentives that supplement projected carbon prices. In addition to the challenges associated with cost, these projects will need to meet regulatory requirements that are currently under development. Long-standing regulatory programs are being adapted to meet the circumstances of CCS, but limited experience and institutional capacity at the Federal and State level may hinder implementation of CCS-specific requirements. Key legal issues, such as long-term liability and property rights, also need resolution. A climate policy designed to reduce our Nation's GHG emissions is the most important step for commercial deployment of low-carbon technologies such as CCS, because it will create a stable, long-term framework for private investments. A concerted effort to properly address financial, economic, technological, legal, institutional, and social barriers will enable CCS to be a viable climate change mitigation option that can over time play an important role in reducing the overall cost of meeting domestic and global emissions reduction targets. Federal and State agencies can use existing authorities and programs to begin addressing these barriers while ensuring appropriate safeguards are in place to protect the environment and public health and safety.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frerichs, Kimberly Irene
A greenhouse gas (GHG) inventory is a systematic approach to account for the production and release of certain gases generated by an institution from various emission sources. The gases of interest are those that climate science has identified as related to anthropogenic global climate change. This document presents an inventory of GHGs generated during Fiscal Year (FY) 2014 by Idaho National Laboratory (INL), a Department of Energy (DOE) sponsored entity, located in southeastern Idaho. In recent years, concern has grown about the environmental impact of GHGs. This, together with a desire to decrease harmful environmental impacts, would be enough tomore » encourage the calculation of an inventory of the total GHGs generated at INL. Additionally, INL has a desire to see how its emissions compare with similar institutions, including other DOE national laboratories. Executive Order 13514 requires that federal agencies and institutions document reductions in GHG emissions. INL’s GHG inventory was calculated according to methodologies identified in federal GHG guidance documents using operational control boundaries. It measures emissions generated in three scopes: (1) INL emissions produced directly by stationary or mobile combustion and by fugitive emissions, (2) the share of emissions generated by entities from which INL purchased electrical power, and (3) indirect or shared emissions generated by outsourced activities that benefit INL (occur outside INL’s organizational boundaries, but are a consequence of INL’s activities). This inventory found that INL generated 73,521 metric tons (MT) of CO2 equivalent (CO2e ) emissions during FY14. The following conclusions were made from looking at the results of the individual contributors to INL’s FY14 GHG inventory: • Electricity (including the associated transmission and distribution losses) is the largest contributor to INL’s GHG inventory, with over 50% of the CO2e emissions • Other sources with high emissions were stationary combustion (facility fuels), employee commuting, mobile combustion (fleet fuels), business air travel, and waste disposal (including fugitive emissions from the onsite landfill and contracted disposal) • Sources with low emissions were wastewater treatment (onsite and contracted), business ground travel (in personal and rental vehicles), and fugitive emissions from refrigerants. This report details the methods behind quantifying INL’s GHG inventory and discusses lessons learned on better practices by which information important to tracking GHGs can be tracked and recorded. It is important to note that because this report differentiates between those portions of INL that are managed and operated by Battelle Energy Alliance (BEA) and those managed by other contractors, it includes only the large proportion of Laboratory activities overseen by BEA. It is assumed that other contractors will provide similar reporting for those activities they manage, where appropriate.« less
Using biochar in animal farming to recycle nutrients and reduce greenhouse gas emissions
NASA Astrophysics Data System (ADS)
Schmidt, Hans-Peter; Wilson, Kelpie; Kammann, Claudia
2017-04-01
Charcoal has been used to treat digestive disorder in animals since several thousand years. But only since about 2010 biochar has increasingly been used as regular feed additive in animal farming usually mixed with standard feed at approximately 1% of the daily feed intake. The use of biochar as feed additive has the potential to improve animal health, feed efficiency and the animal-stable environment; to reduce nutrient losses and GHG emissions; and to increase soil organic mater and thus soil fertility. The evaluation of more than 150 scientific papers on feeding (activated) biochar showed in most of the studies and for all investigated livestock species positive effects on parameters like toxin adsorption, digestion, blood values, feed use efficiency and livestock weight gain, meat quality and GHG emissions. The facilitation of direct electron transfers between different species of bacteria or microbial consortia via the biochar mediator in the animal digestion tract is hypothesized to be the main reason for a more energy efficient digestion and thus higher feed efficiency, for its selective probiotic effect, for reduced N-losses and eventually for less GHG emissions. While chicken, pigs, fish and other omnivore animals provoke GHG-emissions (mainly NH3, CH4, N2O) when their liquid and solid excretions decompose anaerobically, ruminants cause direct methane emissions through flatulence and burps (eructation). Preliminary studies demonstrated that feeding high temperature biochars might reduce ruminant CH4 emissions though more systematic research is needed. It is likely that microbial decomposition of manure containing digested biochar produces less ammonia, less methane and thus retain more nitrogen, as seen when manure was composted with and without biochar or when biochar is used as bedding or manure treatment additive. Laboratory adsorption trials estimated that using biochar for liquid manure treatment could safe 57,000 t NH4 and 4,600 t P2O5 fertilizer per year in California alone. It was further shown that feeding 0.3 to 1% biochar could replace antibiotic treatment in chicken and ducks, respectively. Feeding biochar could thus have an indirect effect on GHG emissions when it is able to replace regular antibiotic "feeding" that produces high indirect GHG emissions after soil application of antibiotic contaminated manure. Moreover, it was demonstrated that feeding biochar to grazing cows had positive secondary effects on soil fertility and fertilizer efficiency reducing mineral N-fertilizing requirements which could be another indirect biochar GHG mitigation effect. Considering an average C-content of fed biochar of 80% and produced at recommended temperatures above 500°C resulting in H/Corg ratios below 0.4, at least 56% of the dry weight of the fed and manure-applied biochar would persist as stable carbon in soil for at least 100 years. If the global livestock would receive 1% of their feed in form of such a biochar, a total of about 400 Mt of CO2eq or 1.2 % of the global CO2 emissions could be compensated. The apparent potential for improving animal health and nutrient efficiency, for reducing enteric methane emissions as well as GHG emissions from manure management and for sequestering carbon with soil fertility improvements makes it compelling to increase the scientific effort to investigate, measure and optimize the GHG reduction potential of biochar use in animal farming systems. The main results from literature and own experiments will be presented to illustrate and calculate this potential.
GREENHOUSE GAS MITIGATION POTENTIAL IN U.S. FORESTRY AND AGRICULTURE
This report describes the FASOM-GHG model (Forestry and Agriculture Sector Optimization Model with Greenhouse Gases), the GHG mitigation scenarios for U.S. forestry and agriculture run through the FASOM-GHG model, and the results and insights that are generated. GHG mitigation po...
Global Health Governance at a Crossroads.
Ng, Nora Y; Ruger, Jennifer Prah
2011-06-21
This review takes stock of the global health governance (GHG) literature. We address the transition from international health governance (IHG) to global health governance, identify major actors, and explain some challenges and successes in GHG. We analyze the framing of health as national security, human security, human rights, and global public good, and the implications of these various frames. We also establish and examine from the literature GHG's major themes and issues, which include: 1) persistent GHG problems; 2) different approaches to tackling health challenges (vertical, horizontal, and diagonal); 3) health's multisectoral connections; 4) neoliberalism and the global economy; 5) the framing of health (e.g. as a security issue, as a foreign policy issue, as a human rights issue, and as a global public good); 6) global health inequalities; 7) local and country ownership and capacity; 8) international law in GHG; and 9) research gaps in GHG. We find that decades-old challenges in GHG persist and GHG needs a new way forward. A framework called shared health governance offers promise.
Rana, Roberto; Ingrao, Carlo; Lombardi, Mariarosaria; Tricase, Caterina
2016-04-15
Agro-biogas from energy crops and by-products is a renewable energy carrier that can potentially contribute to climate change mitigation. In this context, application of the methodology defined by the Renewable Energy Directive 2009/28/EC (RED) was performed in order to estimate the 100-year Global Warming Potential (GWP100) associated with an agro-biogas supply chain (SC) in Southern Italy. Doing so enabled calculation of Greenhouse Gas (GHG) emission saving in order to verify if it is at least equal to 35% compared to the fossil fuel reference system, as specified by the RED. For the assessment, an attributional Life Cycle Assessment (LCA) approach (International Organization for Standardization (ISO), 2006a,b) was integrated with the RED methodology applied following the guidelines reported in COM(2010)11 and updated by SWD(2014)259 and Report EUR 27215 EN (2015). Moreover, primary data were collected with secondary data extrapolated from the Ecoinvent database system. Results showed that the GWP100 associated with electricity production through the biogas plant investigated was equal to 111.58gCO2eqMJe(-1) and so a 40.01% GHG-emission saving was recorded compared to the RED reference. The highest contribution comes from biomass production and, in particular, from crop cultivation due to production of ammonium nitrate in the overall amount used for crop cultivation. Based upon the findings of the study, the GHG saving calculated slightly exceeds the related minimum proposed by the RED: therefore, improvements are needed anyway. In particular, the authors documented that through replacement of ammonium nitrate with urea the GHG-emission saving would increase to almost 68%, thus largely satisfying the RED limit. In addition, the study highlighted that conservation practices, such as NT, can significantly enable reduction of the GHG-emissions coming from agricultural activities. Therefore, those practices should be increasingly adopted for cultivation of energy crops, because the latter significantly contribute to biogas production yield enhancement. Copyright © 2016 Elsevier B.V. All rights reserved.
Tainio, Marko; Monsivais, Pablo; Jones, Nicholas Rv; Brand, Christian; Woodcock, James
2017-02-22
To quantify changes in mortality, greenhouse gas (GHG) emissions and consumer costs for physical activity and diet scenarios. For the physical activity scenarios, all car trips from <1 to <8 miles long were progressively replaced with cycling. For the diet scenarios, the study population was assumed to increase fruit and vegetable (F&V) consumption by 1-5 portions of F&V per day, or to eat at least 5 portions per day. Health effects were modelled with the comparative risk assessment method. Consumer costs were based on fuel cost savings and average costs of F&V, and GHG emissions to fuel usage and F&V production. Working age population for England. Data from the Health Survey for England, National Travel Survey and National Diet and Nutrition Survey. Changes in premature deaths, consumer costs and GHG emissions stratified by age, gender and socioeconomic status (SES). Premature deaths were reduced by between 75 and 7648 cases per year for the physical activity scenarios, and 3255 and 6187 cases per year for the diet scenarios. Mortality reductions were greater among people of medium and high SES in the physical activity scenarios, whereas people with lower SES benefited more in the diet scenarios. Similarly, transport fuel costs fell more for people of high SES, whereas diet costs increased most for the lowest SES group. Net GHG emissions decreased by between 0.2 and 10.6 million tons of carbon dioxide equivalent (MtCO 2 e) per year for the physical activity scenarios and increased by between 1.3 and 6.3 MtCO 2 e/year for the diet scenarios. Increasing F&V consumption offers the potential for large health benefits and reduces health inequalities. Replacing short car trips with cycling offers the potential for net benefits for health, GHG emissions and consumer costs. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
NASA Astrophysics Data System (ADS)
Martien, P. T.; Guha, A.; Newman, S.; Young, A.; Bower, J.; Perkins, I.; Randall, S.; Stevenson, E.; Hilken, H.
2017-12-01
The Bay Area Air Quality Management District, the San Francisco Bay Area's air quality regulatory agency, has set a goal to reduce the region's greenhouse gas (GHG) emissions 80% below 1990 levels by 2050, consistent with the State of California's climate goals. Recently, the Air District's governing board adopted a 2017 Clean Air Plan advancing the agency's vision and including actions to put the region on a path to achieving the 2050 goal while also reducing air pollution and related health impacts. The Plan includes GHG rule-making efforts, policy initiatives, local government partnerships, outreach, grants and incentives, encompassing over 250 specific implementation actions across all economic sectors to effect ambitious emission reductions in the region. To support the 2017 Plan, the Air District has built a mobile measurement platform (GHG research van) to perform targeted CH4 emissions hotspot detection and source attribution. Instruments in the van measure CH4, CO2 and N2O in ambient plumes. Coincident measurements of source tracers like isotopic methane (13C - CH4), CO and ethane (C2H6) provide the capability to distinguish between biogenic, combustion-based and fossil-based fugitive methane sources. We report observations of CH4 plumes from source-specific measurements in and around facilities including a wastewater treatment plant, a composting operation, a waste-to-energy anaerobic digestion plant and a few refineries. We performed leak surveys inside several electric utility-operated facilities including a power plant and an underground natural gas storage facility. We sampled exhaust from a roadway tunnel and computed fleet-averaged automobile-related CH4 and N2O emission factors. We used tracer-to-tracer emission ratios to create chemical signatures of emissions from each sampled source category. We compare measurement-based ratios with those used to derive the regional GHG inventory. Data from these and other sources will lead to an improved understanding of GHG emissions from well- and lesser-known CH4 sources in the region, key to resolving the differences between top-down estimates (Fairley and Fischer, 2015; Jeong et al., 2016) and the regional bottom-up inventory.
Ngnikam, Emmanuel; Tanawa, Emile; Rousseaux, Patrick; Riedacker, Arthur; Gourdon, Rémy
2002-12-01
The authors here analyse the emission of greenhouse gases (GHG) resulting from the various treatment of municipal solid waste found in the town of Yaounde. Four management systems have been taken as the basis for analyses. System 1 is the traditional collection and landfill disposal, while in system 2 the hiogas produced in the landfill is recuperated to produce electricity. In systems 3 and 4, in addition to the collection, we have introduced a centralised composting or biogas plant before the landfilling disposal of refuse. A Life Cycle Inventory (LCI) of the four systems was made; this enable us to quantify the flux of matter and of energy, consumed or produced by the systems. Following this, only the greenhouse effect was taken into account to evaluate the ecological consequences of the MSW management systems. The method used to evaluate this impact takes into consideration on the one hand, GHG emissions or avoided emission following the substitution of fuel with methane recovered from landfills or produced in the digesters, and on the other hand, sequestrated carbon in the soil following the regular deposit of compost. Landfilling without recuperation of methane is the most emitting solution for greenhouse gas: it leads to the emission of 1.7 ton of carbon dioxide equivalent (tCO2E) per ton of household waste. Composting and methanisation allow one to have a comparable level of emission reduction, either respectively 1.8 and 2 tCO2E/t of MSW. In order to reduce the emission of GHG in the waste management systems, it is advisable to avoid first of all the emissions of methane coming from the landfills. System 2 seems to be a solution that would reduce the emissions of GHG at low cost (2.2 to 4 $/tCO2E). System 2 is calculated as the most effective at the environmental and economic level in the context of Yaounde. Therefore traditional collection, landfill disposal and biogas recuperation to produce electricity is preferable in moist tropical climates.
NASA Astrophysics Data System (ADS)
Järveoja, Järvi; Peichl, Matthias; Maddison, Martin; Soosaar, Kaido; Vellak, Kai; Karofeld, Edgar; Teemusk, Alar; Mander, Ülo
2016-05-01
Peatland restoration may provide a potential after-use option to mitigate the negative climate impact of abandoned peat extraction areas; currently, however, knowledge about restoration effects on the annual balances of carbon (C) and greenhouse gas (GHG) exchanges is still limited. The aim of this study was to investigate the impact of contrasting mean water table levels (WTLs) on the annual C and GHG balances of restoration treatments with high (ResH) and low (ResL) WTL relative to an unrestored bare peat (BP) site. Measurements of carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) fluxes were conducted over a full year using the closed chamber method and complemented by measurements of abiotic controls and vegetation cover. Three years following restoration, the difference in the mean WTL resulted in higher bryophyte and lower vascular plant cover in ResH relative to ResL. Consequently, greater gross primary production and autotrophic respiration associated with greater vascular plant cover were observed in ResL compared to ResH. However, the means of the measured net ecosystem CO2 exchanges (NEE) were not significantly different between ResH and ResL. Similarly, no significant differences were observed in the respective means of CH4 and N2O exchanges. In comparison to the two restored sites, greater net CO2, similar CH4 and greater N2O emissions occurred in BP. On the annual scale, ResH, ResL and BP were C sources of 111, 103 and 268 g C m-2 yr-1 and had positive GHG balances of 4.1, 3.8 and 10.2 t CO2 eq ha-1 yr-1, respectively. Thus, the different WTLs had a limited impact on the C and GHG balances in the two restored treatments 3 years following restoration. However, the C and GHG balances in ResH and ResL were considerably lower than in BP due to the large reduction in CO2 emissions. This study therefore suggests that restoration may serve as an effective method to mitigate the negative climate impacts of abandoned peat extraction areas.
Hou, Yong; Velthof, Gerard L; Oenema, Oene
2015-03-01
Livestock manure contributes considerably to global emissions of ammonia (NH3 ) and greenhouse gases (GHG), especially methane (CH4 ) and nitrous oxide (N2 O). Various measures have been developed to mitigate these emissions, but most of these focus on one specific gas and/or emission source. Here, we present a meta-analysis and integrated assessment of the effects of mitigation measures on NH3 , CH4 and (direct and indirect) N2 O emissions from the whole manure management chain. We analysed the effects of mitigation technologies on NH3 , CH4 and N2 O emissions from individual sources statistically using results of 126 published studies. Whole-chain effects on NH3 and GHG emissions were assessed through scenario analysis. Significant NH3 reduction efficiencies were observed for (i) housing via lowering the dietary crude protein (CP) content (24-65%, compared to the reference situation), for (ii) external slurry storages via acidification (83%) and covers of straw (78%) or artificial films (98%), for (iii) solid manure storages via compaction and covering (61%, compared to composting), and for (iv) manure application through band spreading (55%, compared to surface application), incorporation (70%) and injection (80%). Acidification decreased CH4 emissions from stored slurry by 87%. Significant increases in N2 O emissions were found for straw-covered slurry storages (by two orders of magnitude) and manure injection (by 26-199%). These side-effects of straw covers and slurry injection on N2 O emission were relatively small when considering the total GHG emissions from the manure chain. Lowering the CP content of feed and acidifying slurry are strategies that consistently reduce NH3 and GHG emissions in the whole chain. Other strategies may reduce emissions of a specific gas or emissions source, by which there is a risk of unwanted trade-offs in the manure management chain. Proper farm-scale combinations of mitigation measures are important to minimize impacts of livestock production on global emissions of NH3 and GHG. © 2014 John Wiley & Sons Ltd.
The greenhouse gas balance of European grasslands.
Chang, Jinfeng; Ciais, Philippe; Viovy, Nicolas; Vuichard, Nicolas; Sultan, Benjamin; Soussana, Jean-François
2015-10-01
The greenhouse gas (GHG) balance of European grasslands (EU-28 plus Norway and Switzerland), including CO2 , CH4 and N2 O, is estimated using the new process-based biogeochemical model ORCHIDEE-GM over the period 1961-2010. The model includes the following: (1) a mechanistic representation of the spatial distribution of management practice; (2) management intensity, going from intensively to extensively managed; (3) gridded simulation of the carbon balance at ecosystem and farm scale; and (4) gridded simulation of N2 O and CH4 emissions by fertilized grassland soils and livestock. The external drivers of the model are changing animal numbers, nitrogen fertilization and deposition, land-use change, and variable CO2 and climate. The carbon balance of European grassland (NBP) is estimated to be a net sink of 15 ± 7 g C m(-2 ) year(-1) during 1961-2010, equivalent to a 50-year continental cumulative soil carbon sequestration of 1.0 ± 0.4 Pg C. At the farm scale, which includes both ecosystem CO2 fluxes and CO2 emissions from the digestion of harvested forage, the net C balance is roughly halved, down to a small sink, or nearly neutral flux of 8 g C m(-2 ) year(-1) . Adding CH4 and N2 O emissions to net ecosystem exchange to define the ecosystem-scale GHG balance, we found that grasslands remain a net GHG sink of 19 ± 10 g C-CO2 equiv. m(-2 ) year(-1) , because the CO2 sink offsets N2 O and grazing animal CH4 emissions. However, when considering the farm scale, the GHG balance (NGB) becomes a net GHG source of -50 g C-CO2 equiv. m(-2 ) year(-1) . ORCHIDEE-GM simulated an increase in European grassland NBP during the last five decades. This enhanced NBP reflects the combination of a positive trend of net primary production due to CO2 , climate and nitrogen fertilization and the diminishing requirement for grass forage due to the Europe-wide reduction in livestock numbers. © 2015 John Wiley & Sons Ltd.
Alternative Fuels Data Center: Petroleum Reduction Planning Tool
alternative fuel. Values found in Table 1. Fuel Cost Fuel_cost_current Fuel_cost_alt_new Fuel_cost_alt Fuel cost for old vehicle. Fuel cost for new vehicle using conventional vehicle Fuel cost for new vehicle *(Alt_GGE_factor_conv/Alt_GGE_factor)*Alt_GGE_factor*GHG_alt)] Yearly fuel cost savings resulting from fuel and vehicle
Stokes, Jennifer R; Hendrickson, Thomas P; Horvath, Arpad
2014-12-02
The water-energy nexus is of growing interest for researchers and policy makers because the two critical resources are interdependent. Their provision and consumption contribute to climate change through the release of greenhouse gases (GHGs). This research considers the potential for conserving both energy and water resources by measuring the life-cycle economic efficiency of greenhouse gas reductions through the water loss control technologies of pressure management and leak management. These costs are compared to other GHG abatement technologies: lighting, building insulation, electricity generation, and passenger transportation. Each cost is calculated using a bottom-up approach where regional and temporal variations for three different California water utilities are applied to all alternatives. The costs and abatement potential for each technology are displayed on an environmental abatement cost curve. The results reveal that water loss control can reduce GHGs at lower cost than other technologies and well below California's expected carbon trading price floor. One utility with an energy-intensive water supply could abate 135,000 Mg of GHGs between 2014 and 2035 and save--rather than spend--more than $130/Mg using the water loss control strategies evaluated. Water loss control technologies therefore should be considered in GHG abatement portfolios for utilities and policy makers.
Climate change and health costs of air emissions from biofuels and gasoline
Hill, Jason; Polasky, Stephen; Nelson, Erik; Tilman, David; Huo, Hong; Ludwig, Lindsay; Neumann, James; Zheng, Haochi; Bonta, Diego
2009-01-01
Environmental impacts of energy use can impose large costs on society. We quantify and monetize the life-cycle climate-change and health effects of greenhouse gas (GHG) and fine particulate matter (PM2.5) emissions from gasoline, corn ethanol, and cellulosic ethanol. For each billion ethanol-equivalent gallons of fuel produced and combusted in the US, the combined climate-change and health costs are $469 million for gasoline, $472–952 million for corn ethanol depending on biorefinery heat source (natural gas, corn stover, or coal) and technology, but only $123–208 million for cellulosic ethanol depending on feedstock (prairie biomass, Miscanthus, corn stover, or switchgrass). Moreover, a geographically explicit life-cycle analysis that tracks PM2.5 emissions and exposure relative to U.S. population shows regional shifts in health costs dependent on fuel production systems. Because cellulosic ethanol can offer health benefits from PM2.5 reduction that are of comparable importance to its climate-change benefits from GHG reduction, a shift from gasoline to cellulosic ethanol has greater advantages than previously recognized. These advantages are critically dependent on the source of land used to produce biomass for biofuels, on the magnitude of any indirect land use that may result, and on other as yet unmeasured environmental impacts of biofuels. PMID:19188587
Quantification of mitigation potentials of agricultural practices for Europe
NASA Astrophysics Data System (ADS)
Lesschen, J. P.; Kuikman, P. J.; Smith, P.; Schils, R. L.; Oudendag, D.
2009-04-01
Agriculture has a significant impact on climate, with a commonly estimated contribution of 9% of total greenhouse gases (GHG) emissions. Besides, agriculture is the main source of nitrous oxide and methane emissions to the atmosphere. On the other hand, there is a large potential for climate change mitigation in agriculture through carbon sequestration into soils. Within the framework of the PICCMAT project (Policy Incentives for Climate Change Mitigation Agricultural Techniques) we quantified the mitigation potential of 11 agricultural practices at regional level for the EU. The focus was on smaller-scale measures towards optimised land management that can be widely applied at individual farm level and which can have a positive climate change mitigating effect and be beneficial to soil conditions, e.g. cover crops and reduced tillage. The mitigation potentials were assessed with the MITERRA-Europe model, a deterministic and static N cycling model which calculates N emissions on an annual basis, using N emission factors and N leaching fractions. For the PICCMAT project the model was extended with a soil carbon module, to assess changes in soil organic carbon according to the IPCC Tier1 approach. The amount of soil organic carbon (SOC) is calculated by multiplying the soil reference carbon content, which depends on soil type and climate, by coefficients for land use, land management and input of organic matter. By adapting these coefficients changes in SOC as result of the measures were simulated. We considered both the extent of agricultural area across Europe on which a measure could realistically be applied (potential level of implementation), and the current level of implementation that has already been achieved . The results showed that zero tillage has the highest mitigation potential, followed by adding legumes, reduced tillage, residue management, rotation species, and catch crops. Optimising fertiliser application and fertiliser type are the measures with the largest positive effect on N2O emissions. Overall the results showed that the additional mitigation potential of each individual measure is limited, but taken together they have a significant mitigation potential of about 10 percent of the current GHG emissions from agriculture. Besides, most of the measures with high mitigation potentials are associated with no or low implementation costs. Although CH4 and N2O are the most important GHG emitted from agricultural activities, it is more difficult to mitigate these emissions than increasing soil organic carbon (SOC) stocks and thus compensate them through carbon sequestration. However, the effect on carbon is only temporary and sequestered SOC stocks can easily be lost again, while for N2O the emission reduction is permanent and non-saturating. Another important implication that follows from our results is the large regional difference with regard to mitigation potential and feasibility of implementation. Policy measures to support agricultural mitigation should therefore be adjusted to regional conditions.
Methane Emissions in the U.S. GHG Inventory
NASA Astrophysics Data System (ADS)
Weitz, M.
2017-12-01
Methane in the U.S. GHG Inventory The EPA's annual Inventory of U.S. Greenhouse Gas Emissions and Sinks (GHG Inventory) includes detailed national estimates of anthropogenic methane emissions. In recent years, new data have become available on methane emissions across a number of anthropogenic sources in the U.S. The GHG Inventory has incorporated newly available data and includes updated emissions estimates from a number of categories. This presentation will discuss the latest GHG Inventory results, including results for the oil and gas, waste, and agriculture sectors. The presentation will also discuss key areas for research, and processes for updating data in the GHG Inventory.
The paper discusses greenhouse gas (GHG) mitigation and monitoring technology performance activities of the GHG Technology Verification Center. The Center is a public/private partnership between Southern Research Institute and the U.S. EPA's Office of Research and Development. It...
Industry and electricity production facilities generate over 50 percent of greenhouse gas (GHG) emissions in the United States. There is a growing consensus among scientists that the primary cause of climate change is anthropogenic greenhouse gas (GHG) emissions. Reducing GHG emi...
Net global warming potential and greenhouse gas intensity
USDA-ARS?s Scientific Manuscript database
Various methods exist to calculate global warming potential (GWP) and greenhouse gas intensity (GHG) as measures of net greenhouse gas (GHG) emissions from agroecosystems. Little is, however, known about net GWP and GHGI that account for all sources and sinks of GHG emissions. Sources of GHG include...
NASA Astrophysics Data System (ADS)
Grewer, Uwe; Nash, Julie; Gurwick, Noel; Bockel, Louis; Galford, Gillian; Richards, Meryl; Costa Junior, Ciniro; White, Julianna; Pirolli, Gillian; Wollenberg, Eva
2018-04-01
This article analyses the greenhouse gas (GHG) impact potential of improved management practices and technologies for smallholder agriculture promoted under a global food security development program. Under ‘business-as-usual’ development, global studies on the future of agriculture to 2050 project considerable increases in total food production and cultivated area. Conventional cropland intensification and conversion of natural vegetation typically result in increased GHG emissions and loss of carbon stocks. There is a strong need to understand the potential greenhouse gas impacts of agricultural development programs intended to achieve large-scale change, and to identify pathways of smallholder agricultural development that can achieve food security and agricultural production growth without drastic increases in GHG emissions. In an analysis of 134 crop and livestock production systems in 15 countries with reported impacts on 4.8 million ha, improved management practices and technologies by smallholder farmers significantly reduce GHG emission intensity of agricultural production, increase yields and reduce post-harvest losses, while either decreasing or only moderately increasing net GHG emissions per area. Investments in both production and post-harvest stages meaningfully reduced GHG emission intensity, contributing to low emission development. We present average impacts on net GHG emissions per hectare and GHG emission intensity, while not providing detailed statistics of GHG impacts at scale that are associated to additional uncertainties. While reported improvements in smallholder systems effectively reduce future GHG emissions compared to business-as-usual development, these contributions are insufficient to significantly reduce net GHG emission in agriculture beyond current levels, particularly if future agricultural production grows at projected rates.
NASA Astrophysics Data System (ADS)
Dimassi, Bassem; Guenet, Bertrand; Mary, Bruno; Trochard, Robert; Bouthier, Alain; Duparque, Annie; Sagot, Stéphanie; Houot, Sabine; Morel, Christian; Martin, Manuel
2016-04-01
The land use, land-use change and forestry (LULUCF) activities and crop management (CM) in Europe could be an important carbon sink through soil organic carbon (SOC) sequestration. Recently, the (EU decision 529/2013) requires European Union's member states to assess modalities to include greenhouse gas (GHG) emissions and removals resulting from activities relating to LULUCF and CM into the Union's (GHG) emissions reduction commitment and their national inventories reports (NIR). Tier 1, the commonly used method to estimate emissions for NIR, provides a framework for measuring SOC stocks changes. However, estimations have high uncertainty, especially in response to crop management at regional and specific national contexts. Understanding and quantifying this uncertainty with accurate confidence interval is crucial for reliably reporting and support decision-making and policies that aims to mitigate greenhouse gases through soil C storage. Here, we used the Tier 3 method, consisting of process-based modelling, to address the issue of uncertainty quantification at national scale in France. Specifically, we used 20 Long-term croplands experiments (LTE) in France with more than 100 treatments taking into account different agricultural practices such as tillage, organic amendment, inorganic fertilization, cover crops, etc. These LTE were carefully selected because they are well characterized with periodic SOC stocks monitoring overtime and covered a wide range of pedo-climatic conditions. We applied linear mixed effect model to statistically model, as a function of soil, climate and cropping system characteristics, the uncertainty resulting from applying this Tier 3 approach. The model was fitted on the dataset yielded by comparing the simulated (with the Century model V 4.5) to the observed SOC changes on the LTE at hand. This mixed effect model will then be used to derive uncertainty related to the simulation of SOC stocks changes of the French Soil Monitoring Network (FSMN) where only one measurement is done in 16 Km regular grid. These simulations on the grid will be in turn used for NIR. Preliminary results suggest that the model do not adequately simulate SOC stocks levels but succeeds at capturing SOC changes due to management, despite the fact that the model does not explicitly simulate some management such as tillage. This is probably due to inappropriate model parametrization especially for crops and thus Cinput in the French context and/or model initialization.
Public health co-benefits of greenhouse gas emissions reduction: A systematic review.
Gao, Jinghong; Kovats, Sari; Vardoulakis, Sotiris; Wilkinson, Paul; Woodward, Alistair; Li, Jing; Gu, Shaohua; Liu, Xiaobo; Wu, Haixia; Wang, Jun; Song, Xiaoqin; Zhai, Yunkai; Zhao, Jie; Liu, Qiyong
2018-06-15
Public health co-benefits from curbing climate change can make greenhouse gas (GHG) mitigation strategies more attractive and increase their implementation. The purpose of this systematic review is to summarize the evidence of these health co-benefits to improve our understanding of the mitigation measures involved, potential mechanisms, and relevant uncertainties. A comprehensive search for peer-reviewed studies published in English was conducted using the primary electronic databases. Reference lists from these articles were reviewed and manual searches were performed to supplement relevant studies. The identified records were screened based on inclusion criteria. We extracted data from the final retrieved papers using a pre-designed data extraction form and a quality assessment was conducted. The studies were heterogeneities, so meta-analysis was not possible and instead evidence was synthesized using narrative summaries. Thirty-six studies were identified. We identified GHG mitigation strategies in five domains - energy generation, transportation, food and agriculture, households, and industry and economy - which usually, although not always, bring co-benefits for public health. These health gains are likely to be multiplied by comprehensive measures that include more than one sectors. GHG mitigation strategies can bring about substantial and possibly cost-effective public health co-benefits. These findings are highly relevant to policy makers and other stakeholders since they point to the compounding value of taking concerted action against climate change and air pollution. Copyright © 2018. Published by Elsevier B.V.
Co-benefits of mitigating global greenhouse gas emissions for future air quality and human health
NASA Astrophysics Data System (ADS)
West, J. Jason; Smith, Steven J.; Silva, Raquel A.; Naik, Vaishali; Zhang, Yuqiang; Adelman, Zachariah; Fry, Meridith M.; Anenberg, Susan; Horowitz, Larry W.; Lamarque, Jean-Francois
2013-10-01
Actions to reduce greenhouse gas (GHG) emissions often reduce co-emitted air pollutants, bringing co-benefits for air quality and human health. Past studies typically evaluated near-term and local co-benefits, neglecting the long-range transport of air pollutants, long-term demographic changes, and the influence of climate change on air quality. Here we simulate the co-benefits of global GHG reductions on air quality and human health using a global atmospheric model and consistent future scenarios, via two mechanisms: reducing co-emitted air pollutants, and slowing climate change and its effect on air quality. We use new relationships between chronic mortality and exposure to fine particulate matter and ozone, global modelling methods and new future scenarios. Relative to a reference scenario, global GHG mitigation avoids 0.5+/-0.2, 1.3+/-0.5 and 2.2+/-0.8 million premature deaths in 2030, 2050 and 2100. Global average marginal co-benefits of avoided mortality are US$50-380 per tonne of CO2, which exceed previous estimates, exceed marginal abatement costs in 2030 and 2050, and are within the low range of costs in 2100. East Asian co-benefits are 10-70 times the marginal cost in 2030. Air quality and health co-benefits, especially as they are mainly local and near-term, provide strong additional motivation for transitioning to a low-carbon future.
Balezentiene, Ligita; Kusta, Albinas
2012-01-01
N(2)O, CH(4), and CO(2) are potential greenhouse gas (GHG) contributing to climate change; therefore, solutions have to be sought to reduce their emission from agriculture. This work evaluates GHG emission from grasslands submitted to different mineral fertilizers during vegetation period (June-September) in two experimental sites, namely, seminatural grassland (8 treatments of mineral fertilizers) and cultural pasture (intensively managed) in the Training Farm of the Lithuanian University of Agriculture. Chamber method was applied for evaluation of GHG emissions on the field scale. As a result, soil chemical composition, compactness, temperature, and gravimetric moisture as well as biomass yield of fresh and dry biomass and botanical composition, were assessed during the research. Furthermore, a simulation of multi-criteria assessment of sustainable fertilizers management was carried out on a basis of ARAS method. The multicriteria analysis of different fertilizing regimes was based on a system of environmental and productivity indices. Consequently, agroecosystems of cultural pasture (N(180)P(120)K(150)) and seminatural grassland fertilizing rates N(180)P(120)K(150) and N(60)P(40)K(50) were evaluated as the most sustainable alternatives leading to reduction of emissions between biosphere-atmosphere and human-induced biogenic pollution in grassland ecosystems, thus contributing to improvement of countryside environment.
Remote sensing of methane and nitrous oxide fluxes from waste incineration.
Gålfalk, Magnus; Bastviken, David
2018-05-01
Incomplete combustion processes lead to the formation of many gaseous byproducts that can be challenging to monitor in flue gas released via chimneys. This study presents ground-based remote sensing approaches to make greenhouse gas (GHG) flux measurements of methane (CH 4 ) and nitrous oxide (N 2 O) from a waste incineration chimney at distances of 150-200 m. The study found emission of N 2 O (corresponding to 30-40 t yr -1 ), which is a consequence of adding the reduction agent urea to decrease NO X emissions due to NO X regulation; a procedure that instead increases N 2 O emissions (which is approximately 300 times more potent as a GHG than CO 2 on a 100-year time scale). CH 4 emissions of 7-11 t yr -1 was also detected from the studied chimney despite the usage of a high incineration temperature. For this particular plant, local knowledge is high and emission estimates at corresponding levels have been reported previously. However, emissions of CH 4 are often not included in GHG emission inventories for waste incineration. This study highlights the importance of monitoring combustion processes, and shows the possibility of surveying CH 4 and N 2 O emissions from waste incineration at distances of several hundred meters. Copyright © 2018 Elsevier Ltd. All rights reserved.
Balezentiene, Ligita; Kusta, Albinas
2012-01-01
N2O, CH4, and CO2 are potential greenhouse gas (GHG) contributing to climate change; therefore, solutions have to be sought to reduce their emission from agriculture. This work evaluates GHG emission from grasslands submitted to different mineral fertilizers during vegetation period (June–September) in two experimental sites, namely, seminatural grassland (8 treatments of mineral fertilizers) and cultural pasture (intensively managed) in the Training Farm of the Lithuanian University of Agriculture. Chamber method was applied for evaluation of GHG emissions on the field scale. As a result, soil chemical composition, compactness, temperature, and gravimetric moisture as well as biomass yield of fresh and dry biomass and botanical composition, were assessed during the research. Furthermore, a simulation of multi-criteria assessment of sustainable fertilizers management was carried out on a basis of ARAS method. The multicriteria analysis of different fertilizing regimes was based on a system of environmental and productivity indices. Consequently, agroecosystems of cultural pasture (N180P120K150) and seminatural grassland fertilizing rates N180P120K150 and N60P40K50 were evaluated as the most sustainable alternatives leading to reduction of emissions between biosphere-atmosphere and human-induced biogenic pollution in grassland ecosystems, thus contributing to improvement of countryside environment. PMID:22645463
How effective is greening policy in reducing GHG emissions from agriculture? Evidence from Italy.
Solazzo, Roberto; Donati, Michele; Tomasi, Licia; Arfini, Filippo
2016-12-15
Agriculture contributes significantly to greenhouse gas (GHG) emissions, accounting for more than 10% of total CO 2 emissions in the EU-28 area. The Common Agricultural Policy (CAP) plays an important role in promoting environmentally and climate friendly practices and needs to respond to the new environmental challenges by better integrating its objectives with other EU policies. In this respect, the recent CAP reform 2014-2020 made a further step, making a large part of direct payments conditional on new agricultural practices beneficial for the climate and the environment, i.e. "greening". In this study we estimate the potential environmental benefits from greening in terms of GHG emissions in four regions of Northern Italy, one of the major European agricultural areas in terms of emissions. The emissions were quantified and broken down into the three main GHGs (carbon dioxide, methane and nitrous oxide) per production process. This information was subsequently used in a Positive Mathematical Programming (PMP) farm-based model on more than 3,000 farms, to estimate the effects of greening on regional land use and its contribution in reducing the total emissions. The new agri-environmental constraints produce a modest abatement of total emissions of greenhouse gases (-1.5%) in the analyzed area. The model estimates a reduction in CO 2 emissions of about 2%. Emissions from nitrous oxide show a decrease of 2.1% and the reduction in the methane is about 0.4% compared to the observed scenario. The process of "lightening" that affected the greening during the CAP negotiation has inevitably resulted in missing an opportunity to introduce a significant positive change of behaviour into agriculture, in line with the expectations and needs of society for EU agriculture as a provider of public goods. Copyright © 2016 Elsevier B.V. All rights reserved.
Methane Leak Rates from Natural Gas Wells in Norther California
NASA Astrophysics Data System (ADS)
Cui, Y.; Yoon, S.; Chen, Y.; Falk, M.; Kuwayama, T.; Croes, B. E.; Herner, J.; Vijayan, A.
2017-12-01
Methane is a potent greenhouse gas (GHG) and is the second most prevalent GHG emitted in California from human activities. As part of a comprehensive effort to reduce GHG emissions and meet the statewide climate goals, California has proposed a Short Lived Climate Pollutant (SLCP) Strategy that includes a 40% reduction of methane emissions from 2013 levels by 2030, with goals to reduce oil and gas related emissions and capture methane emissions from dairy operations and organic waste. There is growing evidence in the recent scientific literature suggesting that methane emissions can come from every stage of the oil and gas supply chain. During oil and gas production operations, studies reported that a small number of oil and gas wells made up a large fraction of total methane emissions from the wells. In such a fat-tail distribution, the mean methane leak rate from wells is orders of magnitude larger than the median, which indicates the presence of super emitter sources. However, since the super emitters are often positioned as outliers in a fat-tail distribution and do not always behave consistently, measuring their leak rates is challenging, but critical to quantify their impacts and identify potential mitigation opportunities. This presentation will discuss of methane leak rates measured from natural gas wells in Northern California for different well operations: active, idle, and plugged. The leak rates demonstrated fat-tail distributions, and the mean leak rates for each well operation status were an order of magnitude higher than the median leak rates. It was also observed that roughly 20% of wells contributed more than 80% of methane emissions. Further data collection is needed with a larger number of samples to better understand the relationship between the leak rates and well operation status. Such measurements could help improve the estimate of methane emissions from natural gas wells and inform methane reduction policies and programs in California.
Pollutant in palm oil production process.
Hosseini, Seyed Ehsan; Abdul Wahid, Mazlan
2015-07-01
Palm oil mill effluent (POME) is a by-product of the palm industry and it releases large amounts of greenhouse gases (GHGs). Water systems are also contaminated by POME if it is released into nonstandard ponds or rivers where it endangers the lives of fish and water fowl. In this paper, the environmental bottlenecks faced by palm oil production were investigated by analyzing the data collected from wet extraction palm oil mills (POMs) located in Malaysia. Strategies for reducing pollution and technologies for GHG reduction from the wet extraction POMs were also proposed. Average GHG emissions produced from processing 1 ton of crude palm oil (CPO) was 1100 kg CO2eq. This amount can be reduced to 200 kg CO2eq by capturing biogases. The amount of GHG emissions from open ponds could be decreased from 225 to 25 kg CO2eq/MT CPO by covering the ponds. Installation of biogas capturing system can decrease the average of chemical oxygen demand (COD) to about 17,100 mg/L and stabilizing ponds in the final step could decrease COD to 5220 mg/L. Using a biogas capturing system allows for the reduction of COD by 80% and simultaneously using a biogas capturing system and by stabilizing ponds can mitigate COD by 96%. Other ways to reduce the pollution caused by POME, including the installation of wet scrubber vessels and increasing the performance of biogas recovery and biogas upgrading systems, are studied in this paper. Around 0.87 m3 POME is produced per 1 ton palm fruit milled. POME consists of around 2% oil, 2-4% suspended solid, 94-96% water. In palm oil mills, more than 90% of GHGs were emitted from POME. From 1 ton crude palm oil, 1100 kg CO2eq GHGs are generated, which can be reduced to 200 kg CO2eq by installation of biogas capturing equipment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hanssen, Steef V.; Duden, Anna S.; Junginger, Martin
Several EU countries import wood pellets from the south-eastern United States. The imported wood pellets are (co-)fired in power plants with the aim of reducing overall greenhouse gas (GHG) emissions from electricity and meeting EU renewable energy targets. To assess whether GHG emissions are reduced and on what timescale, we construct the GHG balance of wood-pellet electricity. This GHG balance consists of supply chain and combustion GHG emissions, carbon sequestration during biomass growth, and avoided GHG emissions through replacing fossil electricity. We investigate wood pellets from four softwood feedstock types: small roundwood, commercial thinnings, harvest residues, and mill residues. Permore » feedstock, the GHG balance of wood-pellet electricity is compared against those of alternative scenarios. Alternative scenarios are combinations of alternative fates of the feedstock material, such as in-forest decomposition, or the production of paper or wood panels like oriented strand board (OSB). Alternative scenario composition depends on feedstock type and local demand for this feedstock. Results indicate that the GHG balance of wood-pellet electricity equals that of alternative scenarios within 0 to 21 years (the GHG parity time), after which wood-pellet electricity has sustained climate benefits. Parity times increase by a maximum of twelve years when varying key variables (emissions associated with paper and panels, soil carbon increase via feedstock decomposition, wood-pellet electricity supply chain emissions) within maximum plausible ranges. Using commercial thinnings, harvest residues or mill residues as feedstock leads to the shortest GHG parity times (0-6 years) and fastest GHG benefits from wood-pellet electricity. Here, we find shorter GHG parity times than previous studies, for we use a novel approach that differentiates feedstocks and considers alternative scenarios based on (combinations of) alternative feedstock fates, rather than on alternative land-uses. This novel approach is relevant for bioenergy derived from low-value feedstocks.« less
van de Kamp, Mirjam E; Seves, S Marije; Temme, Elisabeth H M
2018-02-20
The typical Western diet is associated with high levels of greenhouse gas (GHG) emissions and with obesity and other diet-related diseases. This study aims to determine the impact of adjustments to the current diet at specific moments of food consumption, to lower GHG emissions and improve diet quality. Food consumption in the Netherlands was assessed by two non-consecutive 24-h recalls for adults aged 19-69 years (n = 2102). GHG emission of food consumption was evaluated with the use of life cycle assessments. The population was stratified by gender and according to tertiles of dietary GHG emission. Scenarios were developed to lower GHG emissions of people in the highest tertile of dietary GHG emission; 1) reducing red and processed meat consumed during dinner by 50% and 75%, 2) replacing 50% and 100% of alcoholic and soft drinks (including fruit and vegetable juice and mineral water) by tap water, 3) replacing cheese consumed in between meals by plant-based alternatives and 4) two combinations of these scenarios. Effects on GHG emission as well as nutrient content of the diet were assessed. The mean habitual daily dietary GHG emission in the highest tertile of dietary GHG emission was 6.7 kg CO 2 -equivalents for men and 5.1 kg CO 2 -equivalents for women. The scenarios with reduced meat consumption and/or replacement of all alcoholic and soft drinks were most successful in reducing dietary GHG emissions (ranging from - 15% to - 34%) and also reduced saturated fatty acid intake and/or sugar intake. Both types of scenarios lead to reduced energy and iron intakes. Protein intake remained adequate. Reducing the consumption of red and processed meat during dinner and of soft and alcoholic drinks throughout the day leads to significantly lower dietary GHG emissions of people in the Netherlands in the highest tertile of dietary GHG emissions, while also having health benefits. For subgroups of the population not meeting energy or iron requirements as a result of these dietary changes, low GHG emission and nutritious replacement foods might be needed in order to meet energy and iron requirements.
NASA Astrophysics Data System (ADS)
Rudek, J.; Van Sanh, N.; Tinh, T. K.; Tin, H. Q.; Thu Ha, T.; Pha, D. N.; Cui, T. Q.; Tin, N. H.; Son, N. N.; Thanh, H. H.; Kien, H. T.; Kritee, K.; Ahuja, R.
2014-12-01
The Vietnam Low-Carbon Rice Project (VLCRP) seeks to significantly reduce GHG emissions from rice cultivation, an activity responsible for more than 30% of Vietnam's overall GHG emissions, while improving livelihoods for the rice farmer community by decreasing costs and enhancing yield as well as providing supplemental farmer income through the sale of carbon credits. The Mekong Delta makes up 12% of Vietnam's land area, but produces more than 50% of the country's rice, including more than 90% of the rice for export. Rice cultivation is the main source of income for 80% of farmers in the Mekong Delta. VLCRP was launched in late 2012 in the Mekong Delta in two major rice production provinces, Kien Giang and An Giang. To date, VLCRP has completed 11 crop seasons (in Kien Giang and An Giang combined), training over 400 farmer households in applying VLCRP's package of practices (known as 1 Must - 6 Reductions) and building technical capacity to its key stakeholders and rice farmer community leaders. By adopting the 1 Must- 6 Reductions practices (including reduced seeding density, reduced fertilizer and pesticide application, and alternative wetting and drying water management), rice farmers reduce their input costs while maintaining or improving yields, and decreasing greenhouse gas emissions. The VLCRP package of practices also deliver other environmental and social co-benefits, such as reduced water pollution, improved habitat for fishery resources and reduced health risks for farmers through the reduction of agri-chemicals. VLCRP farmers use significantly less inputs (50% reduction in seed, 30% reduction in fertilizer, 40-50% reduction in water) while improving yields 5-10%, leading to an increase in profit from 10% to as high as 60% per hectare. Preliminary results indicate that the 1 Must- 6 Reductions practices have led to approximately 40-65% reductions in greenhouse gas emissions, equivalent to 4 tons of CO2e/ha/yr in An Giang and 35 tons of CO2e/ha/yr in KienGiang. The greenhouse gas reductions in Kien Giang are the highest reductions we have been able to find in the literature. Both methane and nitrous oxide emissions were measured using chambers, on a weekly basis for methane and for 5 or more days for nitrous oxide following critical events, such as fertilizer application or soil dry down periods.
Zhou, Chuanbin; Jiang, Daqian; Zhao, Zhilan
2017-01-03
Municipal solid waste (MSW) disposal represents one of the largest sources of anthropogenic greenhouse gas (GHG) emissions. However, the biogenic GHG emissions in the predisposal stage of MSW management (i.e., the time from waste being dropped off in community or household garbage bins to being transported to disposal sites) are excluded from the IPCC inventory methodology and rarely discussed in academic literature. Herein, we quantify the effluxes of carbon dioxide (CO 2 ), methane (CH 4 ), and nitrous oxide (N 2 O) from garbage bins in five communities along the urban-rural gradient in Beijing in four seasons. We find that the annual average CO 2 , CH 4 , and N 2 O effluxes in the predisposal stage were (1.6 ± 0.9)10 3 , 0.049 ± 0.016, and 0.94 ± 0.54 mg kg -1 h -1 (dry matter basis) and had significant seasonal differences (24- to 159-fold) that were strongly correlated with temperature. According to our estimate, the N 2 O emission in the MSW predisposal stage amounts to 20% of that in the disposal stage in Beijing, making the predisposal stage a nontrivial source of waste-induced N 2 O emissions. Furthermore, the CO 2 and CH 4 emissions in the MSW predisposal account for 5% (maximum 10% in summer) of the total carbon contents in a Beijing's household food waste stream, which has significance in the assessment of MSW-related renewable energy potential and urban carbon cycles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Melaina, Marc; Warner, Ethan; Sun, Yongling
The Alternative and Renewable Fuel and Vehicle Technologies Program (ARFVTP) supports a wide range of alternative, low-carbon fuel and vehicle projects in California. This report focuses on two types of ARFVTP benefits. Expected benefits reflect successful deployment of vehicles and fuels supported through program projects. Market transformation benefits represent benefits resulting from project influences on future market conditions to accelerated technology adoption rates. Data collected directly from ARFVTP projects funded from 2009 to first quarter 2014 are used as inputs to the benefits analysis, where possible. Expected benefit estimation methods rely primarily upon project-level data and result in year single-pointmore » estimates within the 2011 to 2025 analysis period. Results suggest that the 178 projects evaluated for expected benefits, representing an investment of $351.3 million in ARFVTP funds, could result in a reduction in petroleum fuel use by 236 million gallons per year and greenhouse gases (GHGs) by 1.7 million metric tonnes carbon dioxide equivalent (MMTCO2e) per year by 2025. Market transformation benefits are described as accruing in addition to expected benefits. They are inherently more uncertain and theoretical than expected benefits, and are therefore reported as high and low ranges, with results suggesting reductions of 1.1 MMTCO2e to 2.5 MMTCO2e per year in GHG reductions and 102 million to 330 million gallons per year in petroleum fuel reductions by 2025. Taking both benefit types into account, results suggest that ARFVTP projects have the potential to make substantial progress toward meeting California's long-term GHG and petroleum fuel use reduction goals. As additional project data become available and market success with alternative and renewable fuels and vehicles grows, the analytic framework relied upon to develop these estimates will become more rigorous and will have a greater capacity to inform future ARFVTP activities.« less
Nitrous Oxide Metabolism in Nitrate-Reducing Bacteria: Physiology and Regulatory Mechanisms.
Torres, M J; Simon, J; Rowley, G; Bedmar, E J; Richardson, D J; Gates, A J; Delgado, M J
2016-01-01
Nitrous oxide (N2O) is an important greenhouse gas (GHG) with substantial global warming potential and also contributes to ozone depletion through photochemical nitric oxide (NO) production in the stratosphere. The negative effects of N2O on climate and stratospheric ozone make N2O mitigation an international challenge. More than 60% of global N2O emissions are emitted from agricultural soils mainly due to the application of synthetic nitrogen-containing fertilizers. Thus, mitigation strategies must be developed which increase (or at least do not negatively impact) on agricultural efficiency whilst decrease the levels of N2O released. This aim is particularly important in the context of the ever expanding population and subsequent increased burden on the food chain. More than two-thirds of N2O emissions from soils can be attributed to bacterial and fungal denitrification and nitrification processes. In ammonia-oxidizing bacteria, N2O is formed through the oxidation of hydroxylamine to nitrite. In denitrifiers, nitrate is reduced to N2 via nitrite, NO and N2O production. In addition to denitrification, respiratory nitrate ammonification (also termed dissimilatory nitrate reduction to ammonium) is another important nitrate-reducing mechanism in soil, responsible for the loss of nitrate and production of N2O from reduction of NO that is formed as a by-product of the reduction process. This review will synthesize our current understanding of the environmental, regulatory and biochemical control of N2O emissions by nitrate-reducing bacteria and point to new solutions for agricultural GHG mitigation. © 2016 Elsevier Ltd. All rights reserved.
Yang, Dewei; Xu, Lingxing; Gao, Xueli; Guo, Qinghai; Huang, Ning
2018-06-01
Waste-related greenhouse gas (GHG) emissions have been recognized as one of the prominent contributors to global warming. Current urban waste regulations, however, face increasing challenges from stakeholders' trade-offs and hierarchic management. A combined method, i.e., life cycle inventories and scenario analysis, was employed to investigate waste-related GHG emissions during 1995-2015 and to project future scenarios of waste-driven carbon emissions by 2050 in a pilot low carbon city, Xiamen, China. The process-based carbon analysis of waste generation (prevention and separation), transportation (collection and transfer) and disposal (treatment and recycling) shows that the main contributors of carbon emissions are associated with waste disposal processes, solid waste, the municipal sector and Xiamen Mainland. Significant spatial differences of waste-related CO 2e emissions were observed between Xiamen Island and Xiamen Mainland using the carbon intensity and density indexes. An uptrend of waste-related CO 2e emissions from 2015 to 2050 is identified in the business as usual, waste disposal optimization, waste reduction and the integrated scenario, with mean annual growth rates of 8.86%, 8.42%, 6.90% and 6.61%, respectively. The scenario and sensitivity analysis imply that effective waste-related carbon reduction requires trade-offs among alternative strategies, actions and stakeholders in a feasible plan, and emphasize a priority of waste prevention and collection in Xiamen. Our results could benefit to the future modeling of urban multiple wastes and life-cycle carbon control in similar cities within and beyond China. Copyright © 2018 Elsevier B.V. All rights reserved.
Brancoli, Pedro; Ferreira, Jorge A; Bolton, Kim; Taherzadeh, Mohammad J
2018-02-01
Integrating the cultivation of edible filamentous fungi in the thin stillage from ethanol production is presently being considered. This integration can increase the ethanol yield while simultaneously producing a new value-added protein-rich biomass that can be used for animal feed. This study uses life cycle assessment to determine the change in greenhouse gas (GHG) emissions when integrating the cultivation of filamentous fungi in ethanol production. The result shows that the integration performs better than the current scenario when the fungal biomass is used as cattle feed for system expansion and when energy allocation is used. It performs worse if the biomass is used as fish feed. Hence, integrating the cultivation of filamentous fungi in 1st generation ethanol plants combined with proper use of the fungi can lead to a reduction of GHG emissions which, considering the number of existing ethanol plants, can have a significant global impact. Copyright © 2017 Elsevier Ltd. All rights reserved.
Sreekumar, Sanil; Balakrishnan, Madhesan; Goulas, Konstantinos; Gunbas, Gorkem; Gokhale, Amit A; Louie, Lin; Grippo, Adam; Scown, Corinne D; Bell, Alexis T; Toste, F Dean
2015-08-24
Life-cycle analysis (LCA) allows the scientific community to identify the sources of greenhouse gas (GHG) emissions of novel routes to produce renewable fuels. Herein, we integrate LCA into our investigations of a new route to produce drop-in diesel/jet fuel by combining furfural, obtained from the catalytic dehydration of lignocellulosic pentose sugars, with alcohols that can be derived from a variety of bio- or petroleum-based feedstocks. As a key innovation, we developed recyclable transition-metal-free hydrotalcite catalysts to promote the dehydrogenative cross-coupling reaction of furfural and alcohols to give high molecular weight adducts via a transfer hydrogenation-aldol condensation pathway. Subsequent hydrodeoxygenation of adducts over Pt/NbOPO4 yields alkanes. Implemented in a Brazilian sugarcane biorefinery such a process could result in a 53-79% reduction in life-cycle GHG emissions relative to conventional petroleum fuels and provide a sustainable source of low carbon diesel/jet fuel. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.