Pechsiri, Joseph S; Thomas, Jean-Baptiste E; Risén, Emma; Ribeiro, Mauricio S; Malmström, Maria E; Nylund, Göran M; Jansson, Anette; Welander, Ulrika; Pavia, Henrik; Gröndahl, Fredrik
2016-12-15
The cultivation of seaweed as a feedstock for third generation biofuels is gathering interest in Europe, however, many questions remain unanswered in practise, notably regarding scales of operation, energy returns on investment (EROI) and greenhouse gas (GHG) emissions, all of which are crucial to determine commercial viability. This study performed an energy and GHG emissions analysis, using EROI and GHG savings potential respectively, as indicators of commercial viability for two systems: the Swedish Seafarm project's seaweed cultivation (0.5ha), biogas and fertilizer biorefinery, and an estimation of the same system scaled up and adjusted to a cultivation of 10ha. Based on a conservative estimate of biogas yield, neither the 0.5ha case nor the up-scaled 10ha estimates met the (commercial viability) target EROI of 3, nor the European Union Renewable Energy Directive GHG savings target of 60% for biofuels, however the potential for commercial viability was substantially improved by scaling up operations: GHG emissions and energy demand, per unit of biogas, was almost halved by scaling operations up by a factor of twenty, thereby approaching the EROI and GHG savings targets set, under beneficial biogas production conditions. Further analysis identified processes whose optimisations would have a large impact on energy use and emissions (such as anaerobic digestion) as well as others embodying potential for further economies of scale (such as harvesting), both of which would be of interest for future developments of kelp to biogas and fertilizer biorefineries. Copyright © 2016. Published by Elsevier B.V.
Autonomous taxis could greatly reduce greenhouse-gas emissions of US light-duty vehicles
NASA Astrophysics Data System (ADS)
Greenblatt, Jeffery B.; Saxena, Samveg
2015-09-01
Autonomous vehicles (AVs) are conveyances to move passengers or freight without human intervention. AVs are potentially disruptive both technologically and socially, with claimed benefits including increased safety, road utilization, driver productivity and energy savings. Here we estimate 2014 and 2030 greenhouse-gas (GHG) emissions and costs of autonomous taxis (ATs), a class of fully autonomous shared AVs likely to gain rapid early market share, through three synergistic effects: (1) future decreases in electricity GHG emissions intensity, (2) smaller vehicle sizes resulting from trip-specific AT deployment, and (3) higher annual vehicle-miles travelled (VMT), increasing high-efficiency (especially battery-electric) vehicle cost-effectiveness. Combined, these factors could result in decreased US per-mile GHG emissions in 2030 per AT deployed of 87-94% below current conventionally driven vehicles (CDVs), and 63-82% below projected 2030 hybrid vehicles, without including other energy-saving benefits of AVs. With these substantial GHG savings, ATs could enable GHG reductions even if total VMT, average speed and vehicle size increased substantially. Oil consumption would also be reduced by nearly 100%.
Transit Greenhouse Gas Management Compendium
DOT National Transportation Integrated Search
2011-01-12
This Compendium provides a framework for identifying greenhouse gas (GHG) reduction opportunities while highlighting specific examples of effective GHG reduction practices. The GHG savings benefits of public transit are first described. GHG saving op...
Wastewater treatment process impact on energy savings and greenhouse gas emissions.
Mamais, D; Noutsopoulos, C; Dimopoulou, A; Stasinakis, A; Lekkas, T D
2015-01-01
The objective of this research was to assess the energy consumption of wastewater treatment plants (WWTPs), to apply a mathematical model to evaluate their carbon footprint, and to propose energy saving strategies that can be implemented to reduce both energy consumption and greenhouse gas (GHG) emissions in Greece. The survey was focused on 10 WWTPs in Greece with a treatment capacity ranging from 10,000 to 4,000,000 population equivalents (PE). Based on the results, annual specific energy consumption ranged from 15 to 86 kWh/PE. The highest energy consumer in all the WWTPs was aeration, accounting for 40-75% of total energy requirements. The annual GHG emissions varied significantly according to the treatment schemes employed and ranged between 61 and 161 kgCO₂e/PE. The highest values of CO₂emissions were obtained in extended aeration systems and the lowest in conventional activated sludge systems. Key strategies that the wastewater industry could adopt to mitigate GHG emissions are identified and discussed. A case study is presented to demonstrate potential strategies for energy savings and GHG emission reduction. Given the results, it is postulated that the reduction of dissolved oxygen (DO) set points and sludge retention time can provide significant energy savings and decrease GHG emissions.
Merrild, Hanna; Christensen, Thomas H
2009-11-01
The greenhouse gas (GHG) emissions related to the recycling of wood waste have been assessed with the purpose to provide useful data that can be used in accounting of greenhouse gas emissions. Here we present data related to the activities in a material recovery facility (MRF) where wood waste is shredded and foreign objects are removed in order to produce wood chips for use in the production of particleboard. The data are presented in accordance with the UOD (upstream, operational, downstream) framework presented in Gentil et al. (Waste Management & Research, 27, 2009). The GHG accounting shows that the emissions related to upstream activities (5 to 41 kg CO(2)-equivalents tonne( -1) wood waste) and to activities at the MRF (approximately 5 kg CO(2)-equivalents tonne(-1) wood waste) are negligible compared to the downstream processing (-560 to -120 kg CO(2)equivalents tonne(-1) wood waste). The magnitude of the savings in GHG emissions downstream are mainly related to savings in energy consumption for drying of fresh wood for particleboard production. However, the GHG account highly depends on the choices made in the modelling of the downstream system. The inclusion of saved electricity from avoided chipping of virgin wood does not change the results radically (-665 to -125 kg CO(2)-equivalents tonne(- 1) wood waste). However, if in addition it is assumed that the GHG emissions from combustion of wood has no global warming potential (GWP) and that the energy produced from excess wood due to recycling substitutes energy from fossil fuels, here assumed to be coal, potentially large downstream GHG emissions savings can be achieved by recycling of waste wood (-1.9 to -1.3 tonnes CO(2)-equivalents tonne(- 1) wood waste). As the data ranges are broad, it is necessary to carefully evaluate the feasibility of the data in the specific system which the GHG accounting is to be applied to.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen Xudong, E-mail: chen.xudong@nies.go.jp; National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506; Graduate School of Environmental Studies, Nagoya University, Furo-cho, Chikusa-ku, Nagoya City 464-8601
Research highlights: {yields} Urban symbiosis creates compatibility of industrial development and waste management. {yields} Mechanical technology leads to more CO{sub 2} emission reduction. {yields} Energy recovery technology leads to more fossil fuel saving. {yields} Clean energy makes recycling technologies cleaner. {yields} Demand management is crucial for realizing potential environmental gains of recycling. - Abstract: With the increasing attention on developing a low-carbon economy, it is necessary to seek appropriate ways on reducing greenhouse gas (GHG) emissions through innovative municipal solid waste management (MSWM), such as urban symbiosis. However, quantitative assessments on the environmental benefits of urban symbiosis, especially in developingmore » countries, are limited because only a limited number of planned synergistic activities have been successful and it is difficult to acquire detailed inventory data from private companies. This paper modifies and applies a two-step simulation system and used it to assess the potential environmental benefits, including the reduction of GHG emissions and saving of fossil fuels, by employing various Japanese plastics recycling/energy-recovery technologies in Shenyang, China. The results showed that among various recycling/energy-recovery technologies, the mechanical waste plastics recycling technology, which produces concrete formwork boards (NF boards), has the greatest potential in terms of reducing GHG emissions (1.66 kg CO{sub 2}e/kg plastics), whereas the technology for the production of refuse plastic fuel (RPF) has the greatest potential on saving fossil fuel consumption (0.77 kgce/kg-plastics). Additional benefits can be gained by applying combined technologies that cascade the utilization of waste plastics. Moreover, the development of clean energy in conjunction with the promotion of new waste plastics recycling programs could contribute to additional reductions in GHG emissions and fossil fuel consumption.« less
Chen, Xudong; Xi, Fengming; Geng, Yong; Fujita, Tsuyoshi
2011-01-01
With the increasing attention on developing a low-carbon economy, it is necessary to seek appropriate ways on reducing greenhouse gas (GHG) emissions through innovative municipal solid waste management (MSWM), such as urban symbiosis. However, quantitative assessments on the environmental benefits of urban symbiosis, especially in developing countries, are limited because only a limited number of planned synergistic activities have been successful and it is difficult to acquire detailed inventory data from private companies. This paper modifies and applies a two-step simulation system and used it to assess the potential environmental benefits, including the reduction of GHG emissions and saving of fossil fuels, by employing various Japanese plastics recycling/energy-recovery technologies in Shenyang, China. The results showed that among various recycling/energy-recovery technologies, the mechanical waste plastics recycling technology, which produces concrete formwork boards (NF boards), has the greatest potential in terms of reducing GHG emissions (1.66 kg CO(2)e/kg plastics), whereas the technology for the production of refuse plastic fuel (RPF) has the greatest potential on saving fossil fuel consumption (0.77 kg ce/kg-plastics). Additional benefits can be gained by applying combined technologies that cascade the utilization of waste plastics. Moreover, the development of clean energy in conjunction with the promotion of new waste plastics recycling programs could contribute to additional reductions in GHG emissions and fossil fuel consumption. Copyright © 2010 Elsevier Ltd. All rights reserved.
Rana, Roberto; Ingrao, Carlo; Lombardi, Mariarosaria; Tricase, Caterina
2016-04-15
Agro-biogas from energy crops and by-products is a renewable energy carrier that can potentially contribute to climate change mitigation. In this context, application of the methodology defined by the Renewable Energy Directive 2009/28/EC (RED) was performed in order to estimate the 100-year Global Warming Potential (GWP100) associated with an agro-biogas supply chain (SC) in Southern Italy. Doing so enabled calculation of Greenhouse Gas (GHG) emission saving in order to verify if it is at least equal to 35% compared to the fossil fuel reference system, as specified by the RED. For the assessment, an attributional Life Cycle Assessment (LCA) approach (International Organization for Standardization (ISO), 2006a,b) was integrated with the RED methodology applied following the guidelines reported in COM(2010)11 and updated by SWD(2014)259 and Report EUR 27215 EN (2015). Moreover, primary data were collected with secondary data extrapolated from the Ecoinvent database system. Results showed that the GWP100 associated with electricity production through the biogas plant investigated was equal to 111.58gCO2eqMJe(-1) and so a 40.01% GHG-emission saving was recorded compared to the RED reference. The highest contribution comes from biomass production and, in particular, from crop cultivation due to production of ammonium nitrate in the overall amount used for crop cultivation. Based upon the findings of the study, the GHG saving calculated slightly exceeds the related minimum proposed by the RED: therefore, improvements are needed anyway. In particular, the authors documented that through replacement of ammonium nitrate with urea the GHG-emission saving would increase to almost 68%, thus largely satisfying the RED limit. In addition, the study highlighted that conservation practices, such as NT, can significantly enable reduction of the GHG-emissions coming from agricultural activities. Therefore, those practices should be increasingly adopted for cultivation of energy crops, because the latter significantly contribute to biogas production yield enhancement. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Spang, Edward S.; Holguin, Andrew J.; Loge, Frank J.
2018-01-01
In April 2015, the Governor of California mandated a 25% statewide reduction in water consumption (relative to 2013 levels) by urban water suppliers. The more than 400 public water agencies affected by the regulation were also required to report monthly progress towards the conservation goal to the State Water Resources Control Board. This paper uses the reported data to assess how the water utilities have responded to this mandate and to estimate the electricity savings and greenhouse gas (GHG) emissions reductions associated with reduced operation of urban water infrastructure systems. The results show that California succeeded in saving 524 000 million gallons (MG) of water (a 24.5% decrease relative to the 2013 baseline) over the mandate period, which translates into 1830 GWh total electricity savings, and a GHG emissions reduction of 521 000 metric tonnes of carbon dioxide equivalents (MT CO2e). For comparison, the total electricity savings linked to water conservation are approximately 11% greater than the savings achieved by the investor-owned electricity utilities’ efficiency programs for roughly the same time period, and the GHG savings represent the equivalent of taking about 111 000 cars off the road for a year. These indirect, large-scale electricity and GHG savings were achieved at costs that were competitive with existing programs that target electricity and GHG savings directly and independently. Finally, given the breadth of the results produced, we built a companion website, called ‘H2Open’ (https://cwee.shinyapps.io/greengov/), to this research effort that allows users to view and explore the data and results across scales, from individual water utilities to the statewide summary.
A meta-analysis of the greenhouse gas abatement of bioenergy factoring in land use changes.
El Akkari, M; Réchauchère, O; Bispo, A; Gabrielle, B; Makowski, D
2018-06-04
Non-food biomass production is developing rapidly to fuel the bioenergy sector and substitute dwindling fossil resources, which is likely to impact land-use patterns worldwide. Recent publications attempting to factor this effect into the climate mitigation potential of bioenergy chains have come to widely variable conclusions depending on their scope, data sources or methodology. Here, we conducted a first of its kind, systematic review of scientific literature on this topic and derived quantitative trends through a meta-analysis. We showed that second-generation biofuels and bioelectricity have a larger greenhouse gas (GHG) abatement potential than first generation biofuels, and stand the best chances (with a 80 to 90% probability range) of achieving a 50% reduction compared to fossil fuels. Conversely, directly converting forest ecosystems to produce bioenergy feedstock appeared as the worst-case scenario, systematically leading to negative GHG savings. On the other hand, converting grassland appeared to be a better option and entailed a 60% chance of halving GHG emissions compared to fossil energy sources. Since most climate mitigation scenarios assume still larger savings, it is critical to gain better insight into land-use change effects to provide a more realistic estimate of the mitigation potential associated with bioenergy.
Energy-efficient drinking water disinfection for greenhouse gas mitigation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gadgil, A.J.; Greene, D.M.; Rosenfeld, A.
Anecdotal evidence suggests that approximately one billion people worldwide use cookstoves to boil their drinking water. About half of this population is in China. Some populations (e.g. Jakarta) spend 1% of their GDP on boiling drinking water. Impoverished and/or ignorant populations not yet boiling their drinking water will do so when they can both afford it and understand the risks of unsafe drinking water. A recently developed water disinfection technology (UV Waterworks) can produce safe drinking water while earning tradable carbon credits (or credit as a clean development mechanism) when implemented as part of national energy, health, and carbon emissionsmore » trading policy, UV Waterworks uses approximately 6,000 times less energy than boiling over a biomass cookstove. Each unit that replaces boiling may save up to 175 or 300 tons/year of carbon-equivalent GHG emissions, depending on if it replaces sustainably harvested biomass (SHB) or non-SHB. For the approximately 500M Chinese boiling their drinking water over biomass (assumed SHB), this suggests a technical potential (that is, potential under the limiting case of 100% market adoption) of saving 87M tons/year of carbon-equivalent non-CO{sub 2} GHG emissions. The energy savings and corresponding emissions reductions will vary with cookstove fuels and stove efficiency: non-SHB and kerosene represent the most and least GHG-producing cookstove fuels, respectively, among those readily available to the populations of interest. The authors bracket the global technical potential for carbon emission reductions resulting from implementation of UV Waterworks, and estimate the value of tradable carbon credits earned from these reductions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Runze; Riddle, Matthew; Graziano, Diane
Additive manufacturing (AM) holds great potential for improving materials efficiency, reducing life-cycle impacts, and enabling greater engineering functionality compared to conventional manufacturing (CM), and AM has been increasingly adopted by aircraft component manufacturers for lightweight, cost-effective designs. This study estimates the net changes in life-cycle primary energy and greenhouse gas emissions associated with AM technologies for lightweight metallic aircraft components through the year 2050, to shed light on the environmental benefits of a shift from CM to AM processes in the U.S. aircraft industry. A systems modeling framework is presented, with integrates engineering criteria, life-cycle environmental data, aircraft fleet stockmore » and fuel use models under different AM adoption scenarios. Estimated fleet-wide life-cycle primary energy savings at most reach 70-173 million GJ/year in 2050, with cumulative savings of 1.2–2.8 billion GJ. Associated cumulative GHG emission reductions were estimated at 92.1–215.0 million metric tons. In addition, thousands of tons of aluminum, titanium and nickel alloys could be potentially saved per year in 2050. The results indicate a significant role of AM technologies in helping society meet its long-term energy use and GHG emissions reduction goals, and highlight barriers and opportunities for AM adoption for the aircraft industry.« less
Research and Development Opportunities for Joining Technologies in HVAC&R
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goetzler, William; Guernsey, Matt; Young, Jim
The Building Technologies Office (BTO) works with researchers and industry partners to develop and deploy technologies that can substantially reduce energy consumption and greenhouse gas (GHG) emissions in residential and commercial buildings. This opportunity assessment aims to advance BTO’s energy savings, GHG reduction, and other program goals by identifying research and development (R&D) initiatives for joining technologies in heating, ventilation, air-conditioning, and refrigeration (HVAC&R) systems. Improving joining technologies for HVAC&R equipment has the potential to increase lifetime equipment operating efficiency, decrease equipment and project cost, and most importantly reduce hydroflourocarbon (HFC) refrigerant leakage to support HFC phasedown and GHG reductionmore » goals.« less
Landfilling of waste: accounting of greenhouse gases and global warming contributions.
Manfredi, Simone; Tonini, Davide; Christensen, Thomas H; Scharff, Heijo
2009-11-01
Accounting of greenhouse gas (GHG) emissions from waste landfilling is summarized with the focus on processes and technical data for a number of different landfilling technologies: open dump (which was included as the worst-case-scenario), conventional landfills with flares and with energy recovery, and landfills receiving low-organic-carbon waste. The results showed that direct emissions of GHG from the landfill systems (primarily dispersive release of methane) are the major contributions to the GHG accounting, up to about 1000 kg CO(2)-eq. tonne( -1) for the open dump, 300 kg CO(2)-eq. tonne( -1) for conventional landfilling of mixed waste and 70 kg CO(2)-eq. tonne(-1) for low-organic-carbon waste landfills. The load caused by indirect, upstream emissions from provision of energy and materials to the landfill was low, here estimated to be up to 16 kg CO(2)-eq. tonne(-1). On the other hand, utilization of landfill gas for electricity generation contributed to major savings, in most cases, corresponding to about half of the load caused by direct GHG emission from the landfill. However, this saving can vary significantly depending on what the generated electricity substitutes for. Significant amounts of biogenic carbon may still be stored within the landfill body after 100 years, which here is counted as a saved GHG emission. With respect to landfilling of mixed waste with energy recovery, the net, average GHG accounting ranged from about -70 to 30 kg CO(2)-eq. tonne(- 1), obtained by summing the direct and indirect (upstream and downstream) emissions and accounting for stored biogenic carbon as a saving. However, if binding of biogenic carbon was not accounted for, the overall GHG load would be in the range of 60 to 300 kg CO(2)-eq. tonne( -1). This paper clearly shows that electricity generation as well as accounting of stored biogenic carbon are crucial to the accounting of GHG of waste landfilling.
Luk, Jason M; Kim, Hyung Chul; De Kleine, Robert; Wallington, Timothy J; MacLean, Heather L
2017-08-01
The literature analyzing the fuel saving, life cycle greenhouse gas (GHG) emission, and ownership cost impacts of lightweighting vehicles with different powertrains is reviewed. Vehicles with lower powertrain efficiencies have higher fuel consumption. Thus, fuel savings from lightweighting internal combustion engine vehicles can be higher than those of hybrid electric and battery electric vehicles. However, the impact of fuel savings on life cycle costs and GHG emissions depends on fuel prices, fuel carbon intensities and fuel storage requirements. Battery electric vehicle fuel savings enable reduction of battery size without sacrificing driving range. This reduces the battery production cost and mass, the latter results in further fuel savings. The carbon intensity of electricity varies widely and is a major source of uncertainty when evaluating the benefits of fuel savings. Hybrid electric vehicles use gasoline more efficiently than internal combustion engine vehicles and do not require large plug-in batteries. Therefore, the benefits of lightweighting depend on the vehicle powertrain. We discuss the value proposition of the use of lightweight materials and alternative powertrains. Future assessments of the benefits of vehicle lightweighting should capture the unique characteristics of emerging vehicle powertrains.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shah, Nihar; Wei, Max; Letschert, Virginie
2015-10-01
Hydrofluorocarbons (HFCs) emitted from uses such as refrigerants and thermal insulating foam, are now the fastest growing greenhouse gases (GHGs), with global warming potentials (GWP) thousands of times higher than carbon dioxide (CO2). Because of the short lifetime of these molecules in the atmosphere, mitigating the amount of these short-lived climate pollutants (SLCPs) provides a faster path to climate change mitigation than control of CO2 alone. This has led to proposals from Africa, Europe, India, Island States, and North America to amend the Montreal Protocol on Substances that Deplete the Ozone Layer (Montreal Protocol) to phase-down high-GWP HFCs. Simultaneously, energymore » efficiency market transformation programs such as standards, labeling and incentive programs are endeavoring to improve the energy efficiency for refrigeration and air conditioning equipment to provide life cycle cost, energy, GHG, and peak load savings. In this paper we provide an estimate of the magnitude of such GHG and peak electric load savings potential, for room air conditioning, if the refrigerant transition and energy efficiency improvement policies are implemented either separately or in parallel. We find that implementing HFC refrigerant transition and energy efficiency improvement policies in parallel for room air conditioning, roughly doubles the benefit of either policy implemented separately. We estimate that shifting the 2030 world stock of room air conditioners from the low efficiency technology using high-GWP refrigerants to higher efficiency technology and low-GWP refrigerants in parallel would save between 340-790 gigawatts (GW) of peak load globally, which is roughly equivalent to avoiding 680-1550 peak power plants of 500MW each. This would save 0.85 GT/year annually in China equivalent to over 8 Three Gorges dams and over 0.32 GT/year annually in India equivalent to roughly twice India’s 100GW solar mission target. While there is some uncertainty associated with emissions and growth projections, moving to efficient room air conditioning (~30% more efficient than current technology) in parallel with low-GWP refrigerants in room air conditioning could avoid up to ~25 billion tonnes of CO2 in 2030, ~33 billion in 2040, and ~40 billion in 2050, i.e. cumulative savings up to 98 billion tonnes of CO2 by 2050. Therefore, superefficient room ACs using low-GWP refrigerants merit serious consideration to maximize peak load reduction and GHG savings.« less
Stokes, Jennifer R; Hendrickson, Thomas P; Horvath, Arpad
2014-12-02
The water-energy nexus is of growing interest for researchers and policy makers because the two critical resources are interdependent. Their provision and consumption contribute to climate change through the release of greenhouse gases (GHGs). This research considers the potential for conserving both energy and water resources by measuring the life-cycle economic efficiency of greenhouse gas reductions through the water loss control technologies of pressure management and leak management. These costs are compared to other GHG abatement technologies: lighting, building insulation, electricity generation, and passenger transportation. Each cost is calculated using a bottom-up approach where regional and temporal variations for three different California water utilities are applied to all alternatives. The costs and abatement potential for each technology are displayed on an environmental abatement cost curve. The results reveal that water loss control can reduce GHGs at lower cost than other technologies and well below California's expected carbon trading price floor. One utility with an energy-intensive water supply could abate 135,000 Mg of GHGs between 2014 and 2035 and save--rather than spend--more than $130/Mg using the water loss control strategies evaluated. Water loss control technologies therefore should be considered in GHG abatement portfolios for utilities and policy makers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shah, Nihar K.; Wei, Max; Letschert, Virginie
Hydrofluorocarbons (HFCs) emitted from uses such as refrigerants and thermal insulating foam, are now the fastest growing greenhouse gases (GHGs), with global warming potentials (GWP) thousands of times higher than carbon dioxide (CO2). Because of the short lifetime of these molecules in the atmosphere,1 mitigating the amount of these short-lived climate pollutants (SLCPs) provides a faster path to climate change mitigation than control of CO2 alone. This has led to proposals from Africa, Europe, India, Island States, and North America to amend the Montreal Protocol on Substances that Deplete the Ozone Layer (Montreal Protocol) to phase-down high-GWP HFCs. Simultaneously, energymore » efficiency market transformation programs such as standards, labeling and incentive programs are endeavoring to improve the energy efficiency for refrigeration and air conditioning equipment to provide life cycle cost, energy, GHG, and peak load savings. In this paper we provide an estimate of the magnitude of such GHG and peak electric load savings potential, for room air conditioning, if the refrigerant transition and energy efficiency improvement policies are implemented either separately or in parallel.« less
Life cycle implications of urban green infrastructure.
Spatari, Sabrina; Yu, Ziwen; Montalto, Franco A
2011-01-01
Low Impact Development (LID) is part of a new paradigm in urban water management that aims to decentralize water storage and movement functions within urban watersheds. LID strategies can restore ecosystem functions and reduce runoff loadings to municipal water pollution control facilities (WPCF). This research examines the avoided energy and greenhouse gas (GHG) emissions of select LID strategies using life cycle assessment (LCA) and a stochastic urban watershed model. We estimate annual energy savings and avoided GHG emissions of 7.3 GJ and 0.4 metric tons, respectively, for a LID strategy implemented in a neighborhood in New York City. Annual savings are small compared to the energy and GHG intensity of the LID materials, resulting in slow environmental payback times. This preliminary analysis suggests that if implemented throughout an urban watershed, LID strategies may have important energy cost savings to WPCF, and can make progress towards reducing their carbon footprint. Copyright © 2011 Elsevier Ltd. All rights reserved.
Hansen, Sune Balle; Olsen, Stig Irving; Ujang, Zaini
2012-01-01
This study identifies the potential greenhouse gas (GHG) reductions, which can be achieved by optimizing the use of residues in the life cycle of palm oil derived biodiesel. This is done through compilation of data on existing and prospective treatment technologies as well as practical experiments on methane potentials from empty fruit bunches. Methane capture from the anaerobic digestion of palm oil mill effluent was found to result in the highest GHG reductions. Among the solid residues, energy extraction from shells was found to constitute the biggest GHG savings per ton of residue, whereas energy extraction from empty fruit bunches was found to be the most significant in the biodiesel production life cycle. All the studied waste treatment technologies performed significantly better than the conventional practices and with dedicated efforts of optimized use in the palm oil industry, the production of palm oil derived biodiesel can be almost carbon neutral. Copyright © 2011 Elsevier Ltd. All rights reserved.
Dong, Jun; Ni, Mingjiang; Chi, Yong; Zou, Daoan; Fu, Chao
2013-08-01
In China, the continuously increasing amount of municipal solid waste (MSW) has resulted in an urgent need for changing the current municipal solid waste management (MSWM) system based on mixed collection. A pilot program focusing on source-separated MSW collection was thus launched (2010) in Hangzhou, China, to lessen the related environmental loads. And greenhouse gas (GHG) emissions (Kyoto Protocol) are singled out in particular. This paper uses life cycle assessment modeling to evaluate the potential environmental improvement with regard to GHG emissions. The pre-existing MSWM system is assessed as baseline, while the source separation scenario is compared internally. Results show that 23 % GHG emissions can be decreased by source-separated collection compared with the base scenario. In addition, the use of composting and anaerobic digestion (AD) is suggested for further optimizing the management of food waste. 260.79, 82.21, and -86.21 thousand tonnes of GHG emissions are emitted from food waste landfill, composting, and AD, respectively, proving the emission reduction potential brought by advanced food waste treatment technologies. Realizing the fact, a modified MSWM system is proposed by taking AD as food waste substitution option, with additional 44 % GHG emissions saved than current source separation scenario. Moreover, a preliminary economic assessment is implemented. It is demonstrated that both source separation scenarios have a good cost reduction potential than mixed collection, with the proposed new system the most cost-effective one.
Assessing the environmental sustainability of ethanol from integrated biorefineries
Falano, Temitope; Jeswani, Harish K; Azapagic, Adisa
2014-01-01
This paper considers the life cycle environmental sustainability of ethanol produced in integrated biorefineries together with chemicals and energy. Four types of second-generation feedstocks are considered: wheat straw, forest residue, poplar, and miscanthus. Seven out of 11 environmental impacts from ethanol are negative, including greenhouse gas (GHG) emissions, when the system is credited for the co-products, indicating environmental savings. Ethanol from poplar is the best and straw the worst option for most impacts. Land use change from forest to miscanthus increases the GHG emissions several-fold. For poplar, the effect is opposite: converting grassland to forest reduces the emissions by three-fold. Compared to fossil and first-generation ethanol, ethanol from integrated biorefineries is more sustainable for most impacts, with the exception of wheat straw. Pure ethanol saves up to 87% of GHG emissions compared to petrol per MJ of fuel. However, for the current 5% ethanol–petrol blends, the savings are much smaller (<3%). Therefore, unless much higher blends become widespread, the contribution of ethanol from integrated biorefineries to the reduction of GHG emissions will be insignificant. Yet, higher ethanol blends would lead to an increase in some impacts, notably terrestrial and freshwater toxicity as well as eutrophication for some feedstocks. PMID:24478110
Tabata, Tomohiro
2013-11-01
Municipal solid waste (MSW) incineration is a greenhouse gas (GHG) emitter; however, if GHG reductions, achieved by accounting for waste-to-energy, exceed GHG emissions, incineration can be considered as a net GHG reducer. In Japan, only 24.5% of MSW incineration plants perform energy recovery despite 80% of MSW being incinerated; therefore, there is great potential to extract more energy from MSW. In this study, the factors that should be considered to achieve net GHG reductions from incineration were analysed from a life cycle perspective. These considerations were then applied to the energy supply requirements in seven Japanese metropolises. Firstly, the carbon footprints of approximately 1500 incineration plants in Japan were calculated. Then, the incineration plants with negative carbon footprint values were classified as net GHG reducers. Next, the processes that contribute to the carbon footprint were evaluated, and two processes-plastic burning and electricity savings-were found to have the greatest influence. Based on the results, the energy supply requirements were analysed and discussed for seven metropolises (Sapporo, Tokyo, Nagoya, Osaka, Kobe, Takamatsu and Fukuoka) taking into account the energy demands of households. In Kobe, 16.2% of the electricity demand and 25.0% of the hot water demand could be satisfied by incineration to realise a net GHG reducer, although urban design for energy utilisation would be required.
Consensus, uncertainties and challenges for perennial bioenergy crops and land use.
Whitaker, Jeanette; Field, John L; Bernacchi, Carl J; Cerri, Carlos E P; Ceulemans, Reinhart; Davies, Christian A; DeLucia, Evan H; Donnison, Iain S; McCalmont, Jon P; Paustian, Keith; Rowe, Rebecca L; Smith, Pete; Thornley, Patricia; McNamara, Niall P
2018-03-01
Perennial bioenergy crops have significant potential to reduce greenhouse gas (GHG) emissions and contribute to climate change mitigation by substituting for fossil fuels; yet delivering significant GHG savings will require substantial land-use change, globally. Over the last decade, research has delivered improved understanding of the environmental benefits and risks of this transition to perennial bioenergy crops, addressing concerns that the impacts of land conversion to perennial bioenergy crops could result in increased rather than decreased GHG emissions. For policymakers to assess the most cost-effective and sustainable options for deployment and climate change mitigation, synthesis of these studies is needed to support evidence-based decision making. In 2015, a workshop was convened with researchers, policymakers and industry/business representatives from the UK, EU and internationally. Outcomes from global research on bioenergy land-use change were compared to identify areas of consensus, key uncertainties, and research priorities. Here, we discuss the strength of evidence for and against six consensus statements summarising the effects of land-use change to perennial bioenergy crops on the cycling of carbon, nitrogen and water, in the context of the whole life-cycle of bioenergy production. Our analysis suggests that the direct impacts of dedicated perennial bioenergy crops on soil carbon and nitrous oxide are increasingly well understood and are often consistent with significant life cycle GHG mitigation from bioenergy relative to conventional energy sources. We conclude that the GHG balance of perennial bioenergy crop cultivation will often be favourable, with maximum GHG savings achieved where crops are grown on soils with low carbon stocks and conservative nutrient application, accruing additional environmental benefits such as improved water quality. The analysis reported here demonstrates there is a mature and increasingly comprehensive evidence base on the environmental benefits and risks of bioenergy cultivation which can support the development of a sustainable bioenergy industry.
Health effects of adopting low greenhouse gas emission diets in the UK
Milner, James; Green, Rosemary; Dangour, Alan D; Haines, Andy; Chalabi, Zaid; Spadaro, Joseph; Markandya, Anil; Wilkinson, Paul
2015-01-01
Objective Dietary changes which improve health are also likely to be beneficial for the environment by reducing emissions of greenhouse gases (GHG). However, previous analyses have not accounted for the potential acceptability of low GHG diets to the general public. This study attempted to quantify the health effects associated with adopting low GHG emission diets in the UK. Design Epidemiological modelling study. Setting UK. Participants UK population. Intervention Adoption of diets optimised to achieve the WHO nutritional recommendations and reduce GHG emissions while remaining as close as possible to existing dietary patterns. Main outcome Changes in years of life lost due to coronary heart disease, stroke, several cancers and type II diabetes, quantified using life tables. Results If the average UK dietary intake were optimised to comply with the WHO recommendations, we estimate an incidental reduction of 17% in GHG emissions. Such a dietary pattern would be broadly similar to the current UK average. Our model suggests that it would save almost 7 million years of life lost prematurely in the UK over the next 30 years and increase average life expectancy by over 8 months. Diets that result in additional GHG emission reductions could achieve further net health benefits. For emission reductions greater than 40%, improvements in some health outcomes may decrease and acceptability will diminish. Conclusions There are large potential benefits to health from adopting diets with lower associated GHG emissions in the UK. Most of these benefits can be achieved without drastic changes to existing dietary patterns. However, to reduce emissions by more than 40%, major dietary changes that limit both acceptability and the benefits to health are required. PMID:25929258
Khanna, Madhu; Crago, Christine L.; Black, Mairi
2011-01-01
Biofuels have gained increasing attention as an alternative to fossil fuels for several reasons, one of which is their potential to reduce the greenhouse gas (GHG) emissions from the transportation sector. Recent studies have questioned the validity of claims about the potential of biofuels to reduce GHG emissions relative to the liquid fossil fuels they are replacing when emissions owing to direct (DLUC) and indirect land use changes (ILUC) that accompany biofuels are included in the life cycle GHG intensity of biofuels. Studies estimate that the GHG emissions released from ILUC could more than offset the direct GHG savings by producing biofuels and replacing liquid fossil fuels and create a ‘carbon debt’ with a long payback period. The estimates of this payback period, however, vary widely across biofuels from different feedstocks and even for a single biofuel across different modelling assumptions. In the case of corn ethanol, this payback period is found to range from 15 to 200 years. We discuss the challenges in estimating the ILUC effect of a biofuel and differences across biofuels, and its sensitivity to the assumptions and policy scenarios considered by different economic models. We also discuss the implications of ILUC for designing policies that promote biofuels and seek to reduce GHG emissions. In a first-best setting, a global carbon tax is needed to set both DLUC and ILUC emissions to their optimal levels. However, it is unclear whether unilateral GHG mitigation policies, even if they penalize the ILUC-related emissions, would increase social welfare and lead to optimal emission levels. In the absence of a global carbon tax, incentivizing sustainable land use practices through certification standards, government regulations and market-based pressures may be a viable option for reducing ILUC. PMID:22482030
Khanna, Madhu; Crago, Christine L; Black, Mairi
2011-04-06
Biofuels have gained increasing attention as an alternative to fossil fuels for several reasons, one of which is their potential to reduce the greenhouse gas (GHG) emissions from the transportation sector. Recent studies have questioned the validity of claims about the potential of biofuels to reduce GHG emissions relative to the liquid fossil fuels they are replacing when emissions owing to direct (DLUC) and indirect land use changes (ILUC) that accompany biofuels are included in the life cycle GHG intensity of biofuels. Studies estimate that the GHG emissions released from ILUC could more than offset the direct GHG savings by producing biofuels and replacing liquid fossil fuels and create a 'carbon debt' with a long payback period. The estimates of this payback period, however, vary widely across biofuels from different feedstocks and even for a single biofuel across different modelling assumptions. In the case of corn ethanol, this payback period is found to range from 15 to 200 years. We discuss the challenges in estimating the ILUC effect of a biofuel and differences across biofuels, and its sensitivity to the assumptions and policy scenarios considered by different economic models. We also discuss the implications of ILUC for designing policies that promote biofuels and seek to reduce GHG emissions. In a first-best setting, a global carbon tax is needed to set both DLUC and ILUC emissions to their optimal levels. However, it is unclear whether unilateral GHG mitigation policies, even if they penalize the ILUC-related emissions, would increase social welfare and lead to optimal emission levels. In the absence of a global carbon tax, incentivizing sustainable land use practices through certification standards, government regulations and market-based pressures may be a viable option for reducing ILUC.
Health effects of adopting low greenhouse gas emission diets in the UK.
Milner, James; Green, Rosemary; Dangour, Alan D; Haines, Andy; Chalabi, Zaid; Spadaro, Joseph; Markandya, Anil; Wilkinson, Paul
2015-04-30
Dietary changes which improve health are also likely to be beneficial for the environment by reducing emissions of greenhouse gases (GHG). However, previous analyses have not accounted for the potential acceptability of low GHG diets to the general public. This study attempted to quantify the health effects associated with adopting low GHG emission diets in the UK. Epidemiological modelling study. UK. UK population. Adoption of diets optimised to achieve the WHO nutritional recommendations and reduce GHG emissions while remaining as close as possible to existing dietary patterns. Changes in years of life lost due to coronary heart disease, stroke, several cancers and type II diabetes, quantified using life tables. If the average UK dietary intake were optimised to comply with the WHO recommendations, we estimate an incidental reduction of 17% in GHG emissions. Such a dietary pattern would be broadly similar to the current UK average. Our model suggests that it would save almost 7 million years of life lost prematurely in the UK over the next 30 years and increase average life expectancy by over 8 months. Diets that result in additional GHG emission reductions could achieve further net health benefits. For emission reductions greater than 40%, improvements in some health outcomes may decrease and acceptability will diminish. There are large potential benefits to health from adopting diets with lower associated GHG emissions in the UK. Most of these benefits can be achieved without drastic changes to existing dietary patterns. However, to reduce emissions by more than 40%, major dietary changes that limit both acceptability and the benefits to health are required. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Shen, Wei; Han, Weijian; Wallington, Timothy J
2014-06-17
China's oil imports and greenhouse gas (GHG) emissions have grown rapidly over the past decade. Addressing energy security and GHG emissions is a national priority. Replacing conventional vehicles with electric vehicles (EVs) offers a potential solution to both issues. While the reduction in petroleum use and hence the energy security benefits of switching to EVs are obvious, the GHG benefits are less obvious. We examine the current Chinese electric grid and its evolution and discuss the implications for EVs. China's electric grid will be dominated by coal for the next few decades. In 2015 in Beijing, Shanghai, and Guangzhou, EVs will need to use less than 14, 19, and 23 kWh/100 km, respectively, to match the 183 gCO2/km WTW emissions for energy saving vehicles. In 2020, in Beijing, Shanghai, and Guangzhou EVs will need to use less than 13, 18, and 20 kWh/100 km, respectively, to match the 137 gCO2/km WTW emissions for energy saving vehicles. EVs currently demonstrated in China use 24-32 kWh/100 km. Electrification will reduce petroleum imports; however, it will be very challenging for EVs to contribute to government targets for GHGs emissions reduction.
Xu, Ying; Ge, Junzhu; Tian, Shaoyang; Li, Shuya; Nguy-Robertson, Anthony L; Zhan, Ming; Cao, Cougui
2015-02-01
As pressure on water resources increases, alternative practices to conserve water in paddies have been developed. Few studies have simultaneously examined the effectiveness of different water regimes on conserving water, mitigating greenhouse gases (GHG), and maintaining yields in rice production. This study, which was conducted during the drought of 2013, examined all three factors using a split-plot experiment with two rice varieties in a no-till paddy managed under three different water regimes: 1) continuous flooding (CF), 2) flooded and wet intermittent irrigation (FWI), and 3) flooded and dry intermittent irrigation (FDI). The Methane (CH₄) and nitrous oxide (N₂O) emissions were measured using static chamber-gas measurements, and the carbon dioxide (CO₂) emissions were monitored using a soil CO₂ flux system (LI-8100). Compared with CF, FWI and FDI irrigation strategies reduced CH₄ emissions by 60% and 83%, respectively. In contrast, CO₂ and N₂O fluxes increased by 65% and 9%, respectively, under FWI watering regime and by 104% and 11%, respectively, under FDI managed plots. Although CO₂ and N₂O emissions increased, the global warming potential (GWP) and greenhouse gas intensity (GHGI) of all three GHG decreased by up to 25% and 29% (p<0.01), respectively, using water-saving irrigation strategies. The rice variety also affected yields and GHG emissions in response to different water regimes. The drought-resistance rice variety (HY3) was observed to maintain yields, conserve water, and reduce GHG under the FWI irrigation management compared with the typical variety (FYY299) planted in the region. The FYY299 only had significantly lower GWP and GHGI when the yield was reduced under FDI water regime. In conclusion, FWI irrigation strategy could be an effective option for simultaneously saving water and mitigating GWP without reducing rice yields using drought-resistant rice varieties, such as HY3. Copyright © 2014 Elsevier B.V. All rights reserved.
Parametric assessment of climate change impacts of automotive material substitution.
Geyer, Roland
2008-09-15
Quantifying the net climate change impact of automotive material substitution is not a trivial task. It requires the assessment of the mass reduction potential of automotive materials, the greenhouse gas (GHG) emissions from their production and recycling, and their impact on GHG emissions from vehicle use. The model presented in this paper is based on life cycle assessment (LCA) and completely parameterized, i.e., its computational structure is separated from the required input data, which is not traditionally done in LCAs. The parameterization increases scientific rigor and transparency of the assessment methodology, facilitates sensitivity and uncertainty analysis of the results, and also makes it possible to compare different studies and explain their disparities. The state of the art of the modeling methodology is reviewed and advanced. Assessment of the GHG emission impacts of material recycling through consequential system expansion shows that our understanding of this issue is still incomplete. This is a critical knowledge gap since a case study shows thatfor materials such as aluminum, the GHG emission impacts of material production and recycling are both of the same size as the use phase savings from vehicle mass reduction.
Targeting water and energy conservation using big data
NASA Astrophysics Data System (ADS)
Escriva-Bou, A.; Pulido-Velazquez, M.; Lund, J. R.
2016-12-01
Water conservation is often the most cost effective source of additional water supply for water stressed regions to maintain supply reliability with increasing population and/or demands, or shorter-term droughts. In previous research we demonstrated how including energy savings of conserved water can increase willingness to adopt conservation measures, at the same time that increases energy and GHG emissions savings. But the capacity to save water, energy and GHG emissions depends fundamentally in the economic benefits for customers and utilities. Utilities have traditionally used rebates, subsidies or incentives to enhance water conservation. But the economic benefits originated by these rebates depend on the actual savings of the water, energy and GHG emissions. A crucial issue that is not considered in the financial analysis of these rebates is the heterogeneity in water consumption, resulting in rebating households that actually do not need improvements in certain appliances. Smart meters with end-use disaggregation allow to consider this heterogeneity and to target rebates. By using an optimization approach that minimizes water and energy residential costs—accounting for retrofit costs and individual benefits according to previous levels of consumption—we are able to assess economically optimal rebate programs both for customers and utilities. Three programs are considered: first, same economic incentives are provided to all households and then they do their optimal decisions; second, traditional appliance-focused rebates are assessed; and third, utilities provide only rebates to those households that maximize water, energy or GHG emissions savings. Results show that the most economically efficient options for households are not the best options for utilities, and that traditional appliance-focused rebates are much less optimal than targeted rebates.
Freight on a Low-Carbon Diet: Accessibility, Freightsheds, and Commodities.
Taptich, Michael N; Horvath, Arpad
2015-10-06
The freight infrastructure network (e.g., roads, railways, waterways, etc.) is the backbone of nearly all trade partnerships in the United States and abroad. The manner in which the individual portions of its constituent parts are interrelated or arranged plays an important role for determining the environmental footprint of goods moved within the network. Herein, we compare the spatial distribution of potential consumer-producer exchanges (i.e., accessibility) under varying greenhouse gas (GHG) budgets or preferences for minimal transportation-related GHG emissions. We conduct case studies using two freight modes (truck and intermodal rail) for two representative commodities: meat/seafood and paper articles. Results across all counties in the United States indicate that the geographic area in which trade is possible, given a GHG budget, varies by transportation mode, location, and commodity. Our results suggest that intermodal terminal availability is an important determinant of low-GHG accessibility. Since only a fraction of road-to-rail terminals accommodate meat/seafood (4.9%) and paper (0.7%), the United States could increase its expected GHG savings associated with truck-to-rail mode-switching policies by 70% (+20 kg CO2,e/ton for meat/seafood) and 310% (+30 kg CO2,e/ton for paper) by upgrading current terminals to allow the exchange of all types of goods.
Tian, Wang; Liao, Cuiping; Li, Li; Zhao, Daiqing
2011-03-01
Life Cycle Assessment (LCA) is the only standardized tool currently used to assess environmental loads of products and processes. The life cycle analysis, as a part of LCA, is a useful and powerful methodology for studying life cycle energy efficiency and life cycle GHG emission. To quantitatively explain the potential of energy saving and greenhouse gas (GHG) emissions reduction of corn stover-based ethanol, we analyzed life cycle energy consumption and GHG emissions of corn stover-based ethanol by the method of life cycle analysis. The processes are dilute acid prehydrolysis and enzymatic hydrolysis. The functional unit was defined as 1 km distance driven by the vehicle. Results indicated: compared with gasoline, the corn stover-based E100 (100% ethanol) and E10 (a blend of 10% ethanol and 90% gasoline by volume) could reduce life cycle fossil energy consumption by 79.63% and 6.25% respectively, as well as GHG emissions by 53.98% and 6.69%; the fossil energy consumed by biomass stage was 68.3% of total fossil energy input, N-fertilizer and diesel were the main factors which contributed 45.78% and 33.26% to biomass stage; electricity production process contributed 42.06% to the net GHG emissions, the improvement of technology might reduce emissions markedly.
Recycling of metals: accounting of greenhouse gases and global warming contributions.
Damgaard, Anders; Larsen, Anna W; Christensen, Thomas H
2009-11-01
Greenhouse gas (GHG) emissions related to recycling of metals in post-consumer waste are assessed from a waste management perspective; here the material recovery facility (MRF), for the sorting of the recovered metal. The GHG accounting includes indirect upstream emissions, direct activities at the MRF as well as indirect downstream activities in terms of reprocessing of the metal scrap and savings in terms of avoided production of virgin metal. The global warming factor (GWF) shows that upstream activities and the MRF causes negligible GHG emissions (12.8 to 52.6 kg CO(2)-equivalents tonne(-1) recovered metal) compared to the reprocessing of the metal itself (360-1260 kg CO(2)-equivalents tonne(-1) of recovered aluminium and 400- 1020 kg CO(2)-equivalents tonne(- 1) of recovered steel).The reprocessing is however counterbalanced by large savings of avoided virgin production of steel and aluminium. The net downstream savings were found to be 5040-19 340 kg CO(2)-equivalents tonne(-1) of treated aluminium and 560-2360 kg CO(2)-equivalents tonne(-1) of treated steel. Due to the huge differences in reported data it is hard to compare general data on the recovery of metal scrap as they are very dependent on the technology and data choices. Furthermore, the energy used in both the recovery process as well as the avoided primary production is crucial. The range of avoided impact shows that recovery of metals will always be beneficial over primary production, due to the high energy savings, and that the GHG emissions associated with the sorting of metals are negligible.
Waste biorefineries: Enabling circular economies in developing countries.
Nizami, A S; Rehan, M; Waqas, M; Naqvi, M; Ouda, O K M; Shahzad, K; Miandad, R; Khan, M Z; Syamsiro, M; Ismail, I M I; Pant, Deepak
2017-10-01
This paper aims to examine the potential of waste biorefineries in developing countries as a solution to current waste disposal problems and as facilities to produce fuels, power, heat, and value-added products. The waste in developing countries represents a significant source of biomass, recycled materials, chemicals, energy, and revenue if wisely managed and used as a potential feedstock in various biorefinery technologies such as fermentation, anaerobic digestion (AD), pyrolysis, incineration, and gasification. However, the selection or integration of biorefinery technologies in any developing country should be based on its waste characterization. Waste biorefineries if developed in developing countries could provide energy generation, land savings, new businesses and consequent job creation, savings of landfills costs, GHG emissions reduction, and savings of natural resources of land, soil, and groundwater. The challenges in route to successful implementation of biorefinery concept in the developing countries are also presented using life cycle assessment (LCA) studies. Copyright © 2017 Elsevier Ltd. All rights reserved.
Xie, Yuan-bo; Li, Wei
2013-05-01
It is one of the common targets and important tasks for energy management and environmental control of Beijing to improve urban air quality while reducing the emissions of greenhouse gases (GHG). Here, based on the interim and long term developmental planning and energy structure of the city, three energy consumption scenarios in low, moderate and high restrictions were designed by taking the potential energy saving policies and environmental targets into account. The long-range energy alternatives planning (LEAP) model was employed to predict and evaluate reduction effects of the chief air pollutants and GHG during 2010 to 2020 under the three given scenarios. The results showed that if urban energy consumption system was optimized or adjusted by exercising energy saving and emission reduction and pollution control measures, the predicted energy uses will be reduced by 10 to 30 million tons of coal equivalents by 2020. Under the two energy scenarios with moderate and high restrictions, the anticipated emissions of SO2, NOx, PM10, PM2.5, VOC and GHG will be respectively reduced to 71 to 100.2, 159.2 to 218.7, 89.8 to 133.8, 51.4 to 96.0, 56.4 to 74.8 and 148 200 to 164 700 thousand tons. Correspondingly, when compared with the low-restriction scenario, the reducing rate will be 53% to 67% , 50% to 64% , 33% to 55% , 25% to 60% , 41% to 55% and 26% to 34% respectively. Furthermore, based on a study of synergistic emission reduction of the air pollutants and GHG, it was proposed that the adjustment and control of energy consumptions shall be intensively developed in the three sectors of industry, transportation and services. In this way the synergistic reduction of the emissions of chief air pollutants and GHG will be achieved; meanwhile the pressures of energy demands may be deliberately relieved.
NASA Astrophysics Data System (ADS)
Warner, E. S.; Zhang, Y.; Newmark, R. L.
2012-12-01
Biofuels represent an opportunity for domestic fuel production from renewable energy sources with potential environmental and social benefits such as reducing greenhouse gas (GHG) and promoting rural development. However, as demand for biofuel continues to increase worldwide, concerns about land competition between food and fuel, excessive water usage and other unintended environmental consequences have grown. Through a comparative study between US corn ethanol and Brazilian sugarcane ethanol, we examine the energy, land, water and GHG performance of the two largest industrial fuel ethanol production systems in the world. Our comparisons include current and potential future systems with improved agronomic practices, crop yields, ethanol conversion processes, and utilization of agricultural residues. Our results suggest that the average water footprints of US corn ethanol and Brazilian sugarcane ethanol are fairly close (108 and 110 m3/GJ of ethanol, respectively) while the variations can range from 50 to 250 m3/GJ for sugarcane ethanol and 50 to380 m3/GJ for corn ethanol. Results emphasize the need to examine the water footprint within the context of local and regional climatic variability, water availability, competing uses (e.g. agricultural, industrial, and municipal water needs) and other ecosystem constraints. Research is under way (at the National Renewable Energy Laboratory and other institutions) to develop models to analyze water supply and demand at the watershed-scale for current and future biomass production, and to understand the tradeoffs among water supply, demand and quality due to more intensive agricultural practices and expansion of biofuels. Land use efficiency metrics, with regards to life cycle GHG emissions (without land use change) savings through gasoline displacement with ethanol, illustrate the progression of the biofuel industry and the importance of maximizing bioenergy production by utilizing both the crops and the residues. A recent average sugarcane ethanol system producing ethanol and electricity can save about 13 Mg CO2eq/ha of land compared to 12 in the early 2000s, while a recent average corn ethanol system saves about 6.2 Mg CO2eq/ha compared to near zero GHG savings in the early 2000s. The net energy balance (i.e., energy produced minus energy consumed) per ha for a recent average sugarcane ethanol system producing both ethanol and electricity is about 160 GJ/ha compared to 140 GJ/ha in early 2000s, while the recent average corn ethanol system achieves a net energy production of about 90 GJ/ha compares to only 30 GJ/ha in the early 2000s. The land use efficiency of corn and sugarcane ethanol systems, especially future systems, can vary depending on factors such as the assumed technologies, the suite of co-products produced, field practices, and technological learning. For example, projected future (2020) advanced sugarcane ethanol systems could save 22 Mg CO2eq/ha while an advanced corn ethanol system using integrated gasification of corn stover for electricity production could save 9.3Mg CO2eq/ha. Future advanced sugarcane ethanol systems could produce 210 GJ of net energy/ha while an advanced corn ethanol system using integrated gasification of corn stover for electricity production could achieve 110 GJ/ha.
Land clearing and the biofuel carbon debt.
Fargione, Joseph; Hill, Jason; Tilman, David; Polasky, Stephen; Hawthorne, Peter
2008-02-29
Increasing energy use, climate change, and carbon dioxide (CO2) emissions from fossil fuels make switching to low-carbon fuels a high priority. Biofuels are a potential low-carbon energy source, but whether biofuels offer carbon savings depends on how they are produced. Converting rainforests, peatlands, savannas, or grasslands to produce food crop-based biofuels in Brazil, Southeast Asia, and the United States creates a "biofuel carbon debt" by releasing 17 to 420 times more CO2 than the annual greenhouse gas (GHG) reductions that these biofuels would provide by displacing fossil fuels. In contrast, biofuels made from waste biomass or from biomass grown on degraded and abandoned agricultural lands planted with perennials incur little or no carbon debt and can offer immediate and sustained GHG advantages.
Land Clearing and the Biofuel Carbon Debt
NASA Astrophysics Data System (ADS)
Fargione, Joseph; Hill, Jason; Tilman, David; Polasky, Stephen; Hawthorne, Peter
2008-02-01
Increasing energy use, climate change, and carbon dioxide (CO2) emissions from fossil fuels make switching to low-carbon fuels a high priority. Biofuels are a potential low-carbon energy source, but whether biofuels offer carbon savings depends on how they are produced. Converting rainforests, peatlands, savannas, or grasslands to produce food crop based biofuels in Brazil, Southeast Asia, and the United States creates a “biofuel carbon debt” by releasing 17 to 420 times more CO2 than the annual greenhouse gas (GHG) reductions that these biofuels would provide by displacing fossil fuels. In contrast, biofuels made from waste biomass or from biomass grown on degraded and abandoned agricultural lands planted with perennials incur little or no carbon debt and can offer immediate and sustained GHG advantages.
Composting and compost utilization: accounting of greenhouse gases and global warming contributions.
Boldrin, Alessio; Andersen, Jacob K; Møller, Jacob; Christensen, Thomas H; Favoino, Enzo
2009-11-01
Greenhouse gas (GHG) emissions related to composting of organic waste and the use of compost were assessed from a waste management perspective. The GHG accounting for composting includes use of electricity and fuels, emissions of methane and nitrous oxide from the composting process, and savings obtained by the use of the compost. The GHG account depends on waste type and composition (kitchen organics, garden waste), technology type (open systems, closed systems, home composting), the efficiency of off-gas cleaning at enclosed composting systems, and the use of the compost. The latter is an important issue and is related to the long-term binding of carbon in the soil, to related effects in terms of soil improvement and to what the compost substitutes; this could be fertilizer and peat for soil improvement or for growth media production. The overall global warming factor (GWF) for composting therefore varies between significant savings (-900 kg CO(2)-equivalents tonne(-1) wet waste (ww)) and a net load (300 kg CO(2)-equivalents tonne( -1) ww). The major savings are obtained by use of compost as a substitute for peat in the production of growth media. However, it may be difficult for a specific composting plant to document how the compost is used and what it actually substitutes for. Two cases representing various technologies were assessed showing how GHG accounting can be done when specific information and data are available.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Friedrich, Elena, E-mail: Friedriche@ukzn.ac.za; Trois, Cristina
2013-11-15
Highlights: • GHG emission factors for local recycling of municipal waste are presented. • GHG emission factors for two composting technologies for garden waste are included. • Local GHG emission factors were compared to international ones and discussed. • Uncertainties and limitations are presented and areas for new research highlighted. - Abstract: GHG (greenhouse gas) emission factors for waste management are increasingly used, but such factors are very scarce for developing countries. This paper shows how such factors have been developed for the recycling of glass, metals (Al and Fe), plastics and paper from municipal solid waste, as well asmore » for the composting of garden refuse in South Africa. The emission factors developed for the different recyclables in the country show savings varying from −290 kg CO{sub 2} e (glass) to −19 111 kg CO{sub 2} e (metals – Al) per tonne of recyclable. They also show that there is variability, with energy intensive materials like metals having higher GHG savings in South Africa as compared to other countries. This underlines the interrelation of the waste management system of a country/region with other systems, in particular with energy generation, which in South Africa, is heavily reliant on coal. This study also shows that composting of garden waste is a net GHG emitter, releasing 172 and 186 kg CO{sub 2} e per tonne of wet garden waste for aerated dome composting and turned windrow composting, respectively. The paper concludes that these emission factors are facilitating GHG emissions modelling for waste management in South Africa and enabling local municipalities to identify best practice in this regard.« less
Application of food industry waste to agricultural soils mitigates green house gas emissions.
Rashid, M T; Voroney, R P; Khalid, M
2010-01-01
Application of organic waste materials such as food processing and serving industry cooking oil waste (OFW) can recycle soil nitrate nitrogen (NO(3)-N), which is otherwise prone to leaching after the harvest of crop. Nitrogen (N) recycling will not only reduce the amount of N fertilizer application for corn crop production but is also expected to mitigate green house gas (GHG) emissions by saving energy to be used for the production of the same amount of industrial fertilizer N required for the growth of corn crop. Application of OFW at 10Mg solid ha(-1)y(-1) conserved 68 kg N ha(-1)y(-1) which ultimately saved 134 L diesel ha(-1)y(-1), which would otherwise be used for the production of fertilizer N as urea. Average fossil energy substitution value (FESV) of N conserved/recycled was calculated to be 93 US$ ha(-1)y(-1), which is about 13 million US$y(-1). Potential amount of GHG mitigation through the application of OFW to agricultural soils in Canada is estimated to be 57 Gg CO(2)Eq y(-1).
NASA Astrophysics Data System (ADS)
Bowen, E.; Martin, P. A.; Eshel, G.
2008-12-01
The adverse environmental effects, especially energy use and resultant GHG emissions, of food production and consumption are becoming more widely appreciated and increasingly well documented. Our insights into the thorny problem of how to mitigate some of those effects, however, are far less evolved. Two of the most commonly advocated strategies are "organic" and "local", referring, respectively, to growing food without major inputs of fossil fuel based synthetic fertilizers and pesticides and to food consumption near its agricultural origin. Indeed, both agrochemical manufacture and transportation of produce to market make up a significant percentage of energy use in agriculture. While there can be unique environmental benefits to each strategy, "organic" and "local" each may potentially result in energy and emissions savings relative to conventionally grown produce. Here, we quantify the potential energy and greenhouse gas emissions savings associated with "organic" and "local". We take note of energy use and actual GHG costs of the major synthetic fertilizers and transportation by various modes routinely employed in agricultural distribution chains, and compare them for ~35 frequently consumed nutritional mainstays. We present new, current, lower-bound energy and greenhouse gas efficiency estimates for these items and compare energy consumption and GHG emissions incurred during producing those food items to consumption and emissions resulting from transporting them, considering travel distances ranging from local to continental and transportation modes ranging from (most efficient) rail to (least efficient) air. In performing those calculations, we demonstrate the environmental superiority of either local or organic over conventional foods, and illuminate the complexities involved in entertaining the timely yet currently unanswered, and previously unanswerable, question of "Which is Environmentally Superior, Organic or Local?". More broadly, we put forth a database that amounts to a general blueprint for rigorous comparative evaluation of any competing diets.
Assessing the environmental sustainability of ethanol from integrated biorefineries.
Falano, Temitope; Jeswani, Harish K; Azapagic, Adisa
2014-06-01
This paper considers the life cycle environmental sustainability of ethanol produced in integrated biorefineries together with chemicals and energy. Four types of second-generation feedstocks are considered: wheat straw, forest residue, poplar, and miscanthus. Seven out of 11 environmental impacts from ethanol are negative, including greenhouse gas (GHG) emissions, when the system is credited for the co-products, indicating environmental savings. Ethanol from poplar is the best and straw the worst option for most impacts. Land use change from forest to miscanthus increases the GHG emissions several-fold. For poplar, the effect is opposite: converting grassland to forest reduces the emissions by three-fold. Compared to fossil and first-generation ethanol, ethanol from integrated biorefineries is more sustainable for most impacts, with the exception of wheat straw. Pure ethanol saves up to 87% of GHG emissions compared to petrol per MJ of fuel. However, for the current 5% ethanol-petrol blends, the savings are much smaller (<3%). Therefore, unless much higher blends become widespread, the contribution of ethanol from integrated biorefineries to the reduction of GHG emissions will be insignificant. Yet, higher ethanol blends would lead to an increase in some impacts, notably terrestrial and freshwater toxicity as well as eutrophication for some feedstocks. © 2014 The Authors. Biotechnology Journal published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yao, Yuan; Graziano, Diane; Riddle, Matthew
The chemical industry is poised for significant growth and investment, which presents an opportunity for adoption of greener chemical technologies. This article reviews available and emerging technologies for reducing the fossil fuel demand associated with the ammonia, ethylene, methanol, propylene, and benzene, toluene, and xylenes (BTX) industries. These few energy-intensive commodity chemicals (EICCs) account for around half of the energy use and greenhouse gas (GHG) emissions of the global chemical industry. Available data are harmonized to characterize potential energy use and GHG emissions savings, while technical and economic barriers to adoption are discussed. This information sheds light on the statusmore » of future technological options for reducing the impacts of the chemicals industry, and provides quantitative data to industry analysts and policy makers seeking a greater understanding of such options for EICCs.« less
Abrahams, Leslie S; Samaras, Constantine; Griffin, W Michael; Matthews, H Scott
2015-03-03
This study analyzes how incremental U.S. liquefied natural gas (LNG) exports affect global greenhouse gas (GHG) emissions. We find that exported U.S. LNG has mean precombustion emissions of 37 g CO2-equiv/MJ when regasified in Europe and Asia. Shipping emissions of LNG exported from U.S. ports to Asian and European markets account for only 3.5-5.5% of precombustion life cycle emissions, hence shipping distance is not a major driver of GHGs. A scenario-based analysis addressing how potential end uses (electricity and industrial heating) and displacement of existing fuels (coal and Russian natural gas) affect GHG emissions shows the mean emissions for electricity generation using U.S. exported LNG were 655 g CO2-equiv/kWh (with a 90% confidence interval of 562-770), an 11% increase over U.S. natural gas electricity generation. Mean emissions from industrial heating were 104 g CO2-equiv/MJ (90% CI: 87-123). By displacing coal, LNG saves 550 g CO2-equiv per kWh of electricity and 20 g per MJ of heat. LNG saves GHGs under upstream fugitive emissions rates up to 9% and 5% for electricity and heating, respectively. GHG reductions were found if Russian pipeline natural gas was displaced for electricity and heating use regardless of GWP, as long as U.S. fugitive emission rates remain below the estimated 5-7% rate of Russian gas. However, from a country specific carbon accounting perspective, there is an imbalance in accrued social costs and benefits. Assuming a mean social cost of carbon of $49/metric ton, mean global savings from U.S. LNG displacement of coal for electricity generation are $1.50 per thousand cubic feet (Mcf) of gaseous natural gas exported as LNG ($.028/kWh). Conversely, the U.S. carbon cost of exporting the LNG is $1.80/Mcf ($.013/kWh), or $0.50-$5.50/Mcf across the range of potential discount rates. This spatial shift in embodied carbon emissions is important to consider in national interest estimates for LNG exports.
Chen, Ying-Chu
2016-12-01
Energy recovery and greenhouse gas (GHG) emissions from wastes are getting noticed in recent years. This study evaluated the potential for energy recovery and GHG mitigation from municipal solid waste (MSW) with a waste-to-material (WTM) approach. Waste generated in Taiwan contains a large amount of paper, food waste, and plastics, which previously were mostly sent to waste-to-energy (WTE) plants for incineration. However, the mitigation of GHGs by the WTM approach has been especially successful in the recycling of metals (averaging 1.83×10 6 kgCO 2 -eq/year) and paper (averaging 7.38×10 5 kgCO 2 -eq/year). In addition, the recycling of paper (1.33×10 10 kWh) and plastics (1.26×10 10 kWh) has contributed greatly to energy saving. Both metal and glass are not suitable for incineration due to their low energy content. The volumes of paper and food waste contained in the MSW are positively related to the carbon concentration, which may contribute to increased GHGs during incineration. Therefore, the recycling of paper, metals, and food waste is beneficial for GHG mitigation. Measures to reduce GHGs were also suggested in this study. The development of the WTM approach may be helpful for the proper management of MSW with regards to GHG mitigation. The results of this study can be a successful example for other nations. Copyright © 2016 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, T.; Slaa, J.W.; Sathaye, J.
2010-12-15
Implementation and adoption of efficient end-use technologies have proven to be one of the key measures for reducing greenhouse gas (GHG) emissions throughout the industries. In many cases, implementing energy efficiency measures is among one of the most cost effective investments that the industry could make in improving efficiency and productivity while reducing CO2 emissions. Over the years, there have been incentives to use resources and energy in a cleaner and more efficient way to create industries that are sustainable and more productive. With the working of energy programs and policies on GHG inventory and regulation, understanding and managing themore » costs associated with mitigation measures for GHG reductions is very important for the industry and policy makers around the world. Successful implementation of emerging technologies not only can help advance productivities and competitiveness but also can play a significant role in mitigation efforts by saving energy. Providing evaluation and estimation of the costs and energy savings potential of emerging technologies is the focus of our work in this project. The overall goal of the project is to identify and select emerging and under-utilized energy-efficient technologies and practices as they are important to reduce energy consumption in industry while maintaining economic growth. This report contains the results from performing Task 2"Technology evaluation" for the project titled"Research Opportunities in Emerging and Under-Utilized Energy-Efficient Industrial Technologies," which was sponsored by California Energy Commission and managed by CIEE. The project purpose is to analyze market status, market potential, and economic viability of selected technologies applicable to the U.S. In this report, LBNL first performed re-assessments of all of the 33 emerging energy-efficient industrial technologies, including re-evaluation of the 26 technologies that were previously identified by Martin et al. (2000) and their potential significance to energy use in the industries, and new evaluation of additional seven technologies. The re-assessments were essentially updated with recent information that we searched and collected from literature to the extent possible. The progress of selected technologies as they diffused into the marketplace from 2000 to 2010 was then discussed in this report. The report also includes updated detailed characterizations of 15 technologies studied in 2000, with comparisons noted.« less
Estimation of GHG Emissions from Water Reclamation Plants in Beijing.
Fan, Yupeng; Bai, Yanying; Jiao, Wentao
A procedure for estimating Greenhouse gas (GHG) emissions from a wastewater reclamation plant in Beijing was developed based on the process chain model. GHG emissions under two typical water reclamation treatment processes, the coagulation-sedimentation-filtration traditional process and advanced biological treatment process, were examined. The total on-site GHG emissions were estimated to be 0.0056 kg/m 3 and 0.6765 kg/m 3 respectively, while total off-site GHG emissions were estimated to be 0.3699 kg/m 3 and 0.4816 kg/m 3 . The overall GHG emissions were 0.3755 kg/m 3 under the type 1 treatment, which is much lower than that under the type 2 of 1.1581 kg/m 3 . Emissions from both processes were lower than that from the tap water production. Wastewater reclamation and reuse should be promoted as it not only saves the water resources but also can reduce the GHG emissions. Energy consumption was the most significant source of GHG emissions. Biogas recovery should be employed as it can significantly reduce the GHG emissions, especially under the type 2 treatment process. Considering the wastewater treatment and reclamation process as a whole, the type 2 treatment process has advantages in reducing the GHG emissions per unit of pollutant. This paper provides scientific basis for decision making.
NASA Astrophysics Data System (ADS)
Reger, Darren; Madanat, Samer; Horvath, Arpad
2015-11-01
Transportation agencies are being urged to reduce their greenhouse gas (GHG) emissions. One possible solution within their scope is to alter their pavement management system to include environmental impacts. Managing pavement assets is important because poor road conditions lead to increased fuel consumption of vehicles. Rehabilitation activities improve pavement condition, but require materials and construction equipment, which produce GHG emissions as well. The agency’s role is to decide when to rehabilitate the road segments in the network. In previous work, we sought to minimize total societal costs (user and agency costs combined) subject to an emissions constraint for a road network, and demonstrated that there exists a range of potentially optimal solutions (a Pareto frontier) with tradeoffs between costs and GHG emissions. However, we did not account for the case where the available financial budget to the agency is binding. This letter considers an agency whose main goal is to reduce its carbon footprint while operating under a constrained financial budget. A Lagrangian dual solution methodology is applied, which selects the optimal timing and optimal action from a set of alternatives for each segment. This formulation quantifies GHG emission savings per additional dollar of agency budget spent, which can be used in a cap-and-trade system or to make budget decisions. We discuss the importance of communication between agencies and their legislature that sets the financial budgets to implement sustainable policies. We show that for a case study of Californian roads, it is optimal to apply frequent, thin overlays as opposed to the less frequent, thick overlays recommended in the literature if the objective is to minimize GHG emissions. A promising new technology, warm-mix asphalt, will have a negligible effect on reducing GHG emissions for road resurfacing under constrained budgets.
NASA Astrophysics Data System (ADS)
DiMola, Ashley M.
Buildings account for over 18% of the world's anthropogenic Greenhouse Gas (GHG) emissions. As a result, a technology that can offset GHG emissions associated with buildings has the potential to save over 9 Giga-tons of GHG emissions per year. High temperature fuel cell and absorption chiller (HTFC/AC) technology offers a relatively low-carbon option for meeting cooling and electric loads for buildings while producing almost no criteria pollutants. GHG emissions in the state of California would decrease by 7.48 million metric tons per year if every commercial building in the State used HTFC/AC technology to meet its power and cooling requirements. In order to realize the benefits of HTFC/AC technology on a wide scale, the distributed generation market needs to be exposed to the technology and informed of its economic viability and real-world potential. This work characterizes the economics associated with HTFC/AC technology using select scenarios that are representative of realistic applications. The financial impacts of various input factors are evaluated and the HTFC/AC simulations are compared to the economics of traditional building utilities. It is shown that, in addition to the emissions reductions derived from the systems, HTFC/AC technology is financially preferable in all of the scenarios evaluated. This work also presents the design of a showcase environment, centered on a beta-test application, that presents (1) system operating data gathered using a custom data acquisition module, and (2) HTFC/AC technology in a clear and approachable manner in order to serve the target audience of market stakeholders.
Bioenergy Ecosystem Land-Use Modelling and Field Flux Trial
NASA Astrophysics Data System (ADS)
McNamara, Niall; Bottoms, Emily; Donnison, Iain; Dondini, Marta; Farrar, Kerrie; Finch, Jon; Harris, Zoe; Ineson, Phil; Keane, Ben; Massey, Alice; McCalmont, Jon; Morison, James; Perks, Mike; Pogson, Mark; Rowe, Rebecca; Smith, Pete; Sohi, Saran; Tallis, Mat; Taylor, Gail; Yamulki, Sirwan
2013-04-01
Climate change impacts resulting from fossil fuel combustion and concerns about the diversity of energy supply are driving interest to find low-carbon energy alternatives. As a result bioenergy is receiving widespread scientific, political and media attention for its potential role in both supplying energy and mitigating greenhouse (GHG) emissions. It is estimated that the bioenergy contribution to EU 2020 renewable energy targets could require up to 17-21 million hectares of additional land in Europe (Don et al., 2012). There are increasing concerns that some transitions into bioenergy may not be as sustainable as first thought when GHG emissions from the crop growth and management cycle are factored into any GHG life cycle assessment (LCA). Bioenergy is complex and encapsulates a wide range of crops, varying from food crop based biofuels to dedicated second generation perennial energy crops and forestry products. The decision on the choice of crop for energy production significantly influences the GHG mitigation potential. It is recognised that GHG savings or losses are in part a function of the original land-use that has undergone change and the management intensity for the energy crop. There is therefore an urgent need to better quantify both crop and site-specific effects associated with the production of conventional and dedicated energy crops on the GHG balance. Currently, there is scarcity of GHG balance data with respect to second generation crops meaning that process based models and LCAs of GHG balances are weakly underpinned. Therefore, robust, models based on real data are urgently required. In the UK we have recently embarked on a detailed program of work to address this challenge by combining a large number of field studies with state-of-the-art process models. Through six detailed experiments, we are calculating the annual GHG balances of land use transitions into energy crops across the UK. Further, we are quantifying the total soil carbon gain or loss after land use change at 100 fieldsites which encapsulate a range of UK climates and soil types. Our overall objective is to use our measured data to parameterise and validate the models that we will use to predict the implications of bioenergy crop deployment in the UK up to 2050. The resultant output will be a meta-model which will help facilitate decision making on the sustainable development of bioenergy in the UK, with potential deployment in other temperate climates around the world. Here we report on the outcome of the first of three years of work. This work is based on the Ecosystem Land Use Modelling & Soil Carbon GHG Flux Trial (ELUM) project, which was commissioned and funded by the Energy Technologies Institute (ETI). Don et al. (2012) Land-use change to bioenergy production in Europe: implications for the greenhouse gas balance and soil carbon. GCB Bioenergy 4, 372-379.
Briggs, Adam D M; Kehlbacher, Ariane; Tiffin, Richard; Garnett, Tara; Rayner, Mike; Scarborough, Peter
2013-01-01
Objectives To model the impact on chronic disease of a tax on UK food and drink that internalises the wider costs to society of greenhouse gas (GHG) emissions and to estimate the potential revenue. Design An econometric and comparative risk assessment modelling study. Setting The UK. Participants The UK adult population. Interventions Two tax scenarios are modelled: (A) a tax of £2.72/tonne carbon dioxide equivalents (tCO2e)/100 g product applied to all food and drink groups with above average GHG emissions. (B) As with scenario (A) but food groups with emissions below average are subsidised to create a tax neutral scenario. Outcome measures Primary outcomes are change in UK population mortality from chronic diseases following the implementation of each taxation strategy, the change in the UK GHG emissions and the predicted revenue. Secondary outcomes are the changes to the micronutrient composition of the UK diet. Results Scenario (A) results in 7770 (95% credible intervals 7150 to 8390) deaths averted and a reduction in GHG emissions of 18 683 (14 665to 22 889) ktCO2e/year. Estimated annual revenue is £2.02 (£1.98 to £2.06) billion. Scenario (B) results in 2685 (1966 to 3402) extra deaths and a reduction in GHG emissions of 15 228 (11 245to 19 492) ktCO2e/year. Conclusions Incorporating the societal cost of GHG into the price of foods could save 7770 lives in the UK each year, reduce food-related GHG emissions and generate substantial tax revenue. The revenue neutral scenario (B) demonstrates that sustainability and health goals are not always aligned. Future work should focus on investigating the health impact by population subgroup and on designing fiscal strategies to promote both sustainable and healthy diets. PMID:24154517
Liu, Huacai; Yin, Xiuli; Wu, Chuangzhi
2014-01-01
There has been a rapid growth in using agricultural residues as an energy source to generate electricity in China. Biomass power generation (BPG) systems may vary significantly in technology, scale, and feedstock and consequently in their performances. A comparative evaluation of five typical BPG systems has been conducted in this study through a hybrid life cycle inventory (LCI) approach. Results show that requirements of fossil energy savings, and greenhouse gas (GHG) emission reductions, as well as emission reductions of SO2 and NOx, can be best met by the BPG systems. The cofiring systems were found to behave better than the biomass-only fired system and the biomass gasification systems in terms of energy savings and GHG emission reductions. Comparing with results of conventional process-base LCI, an important aspect to note is the significant contribution of infrastructure, equipment, and maintenance of the plant, which require the input of various types of materials, fuels, services, and the consequent GHG emissions. The results demonstrate characteristics and differences of BPG systems and help identify critical opportunities for biomass power development in China. PMID:25383383
Liu, Huacai; Yin, Xiuli; Wu, Chuangzhi
2014-01-01
There has been a rapid growth in using agricultural residues as an energy source to generate electricity in China. Biomass power generation (BPG) systems may vary significantly in technology, scale, and feedstock and consequently in their performances. A comparative evaluation of five typical BPG systems has been conducted in this study through a hybrid life cycle inventory (LCI) approach. Results show that requirements of fossil energy savings, and greenhouse gas (GHG) emission reductions, as well as emission reductions of SO2 and NOx, can be best met by the BPG systems. The cofiring systems were found to behave better than the biomass-only fired system and the biomass gasification systems in terms of energy savings and GHG emission reductions. Comparing with results of conventional process-base LCI, an important aspect to note is the significant contribution of infrastructure, equipment, and maintenance of the plant, which require the input of various types of materials, fuels, services, and the consequent GHG emissions. The results demonstrate characteristics and differences of BPG systems and help identify critical opportunities for biomass power development in China.
Energy Saving and GHG Emission Reduction in a Micro-CCHP System by Use of Solar Energy
NASA Astrophysics Data System (ADS)
Ion, Ion V.; Ciocea, Gheorghe; Popescu, Florin
2012-12-01
In this work, the reduction of greenhouse gas emission, and the energy saving by integrating solar collectors and photovoltaic panels in a Stirling engine based microcombined cooling, heating and power (mCCHP) system are studied. The mCCHP system consists of a natural gas Stirling CHP and an adsorber chiller. When the thermal outputs of the Stirling CHP and solar collectors are not sufficient to cover the heat demand for domestic hot water (DHW), heating/cooling, an auxiliary heating boiler starts to operate. The energy saving by using solar energy varies from 13.35% in December to 59.62% in April, in the case of solar collectors usage and from 7.47% in December to 28.27% in July, in the case of photovoltaic panels usage. By using solar energy the annual GHG emission decreases by 31.98% and the fuel cost reduction varies from 12.73% in December to 49.78% in June.
EPA serves as a technical clearinghouse on responsible appliance disposal program development and implementation; calculates annual and cumulative program benefits in terms of ODS and GHG emission savings and equivalents, etc.
Recycling of glass: accounting of greenhouse gases and global warming contributions.
Larsen, Anna W; Merrild, Hanna; Christensen, Thomas H
2009-11-01
Greenhouse gas (GHG) emissions related to recycling of glass waste were assessed from a waste management perspective. Focus was on the material recovery facility (MRF) where the initial sorting of glass waste takes place. The MRF delivers products like cullet and whole bottles to other industries. Two possible uses of reprocessed glass waste were considered: (i) remelting of cullet added to glass production; and (ii) re-use of whole bottles. The GHG emission accounting included indirect upstream emissions (provision of energy, fuels and auxiliaries), direct activities at the MRF and bottle-wash facility (combustion of fuels) as well as indirect downstream activities in terms of using the recovered glass waste in other industries and, thereby, avoiding emissions from conventional production. The GHG accounting was presented as aggregated global warming factors (GWFs) for the direct and indirect upstream and downstream processes, respectively. The range of GWFs was estimated to 0-70 kg CO(2)eq. tonne( -1) of glass waste for the upstream activities and the direct emissions from the waste management system. The GWF for the downstream effect showed some significant variation between the two cases. It was estimated to approximately -500 kg CO(2)-eq. tonne(- 1) of glass waste for the remelting technology and -1500 to -600 kg CO(2)-eq. tonne(-1) of glass waste for bottle re-use. Including the downstream process, large savings of GHG emissions can be attributed to the waste management system. The results showed that, in GHG emission accounting, attention should be drawn to thorough analysis of energy sources, especially electricity, and the downstream savings caused by material substitution.
Monsivais, Pablo; Jones, Nicholas RV; Brand, Christian; Woodcock, James
2017-01-01
Objective To quantify changes in mortality, greenhouse gas (GHG) emissions and consumer costs for physical activity and diet scenarios. Design For the physical activity scenarios, all car trips from <1 to <8 miles long were progressively replaced with cycling. For the diet scenarios, the study population was assumed to increase fruit and vegetable (F&V) consumption by 1–5 portions of F&V per day, or to eat at least 5 portions per day. Health effects were modelled with the comparative risk assessment method. Consumer costs were based on fuel cost savings and average costs of F&V, and GHG emissions to fuel usage and F&V production. Setting Working age population for England. Participants Data from the Health Survey for England, National Travel Survey and National Diet and Nutrition Survey. Primary outcomes measured Changes in premature deaths, consumer costs and GHG emissions stratified by age, gender and socioeconomic status (SES). Results Premature deaths were reduced by between 75 and 7648 cases per year for the physical activity scenarios, and 3255 and 6187 cases per year for the diet scenarios. Mortality reductions were greater among people of medium and high SES in the physical activity scenarios, whereas people with lower SES benefited more in the diet scenarios. Similarly, transport fuel costs fell more for people of high SES, whereas diet costs increased most for the lowest SES group. Net GHG emissions decreased by between 0.2 and 10.6 million tons of carbon dioxide equivalent (MtCO2e) per year for the physical activity scenarios and increased by between 1.3 and 6.3 MtCO2e/year for the diet scenarios. Conclusions Increasing F&V consumption offers the potential for large health benefits and reduces health inequalities. Replacing short car trips with cycling offers the potential for net benefits for health, GHG emissions and consumer costs. PMID:28399514
Qin, Zhangcai; Zhuang, Qianlai; Cai, Ximing
2014-06-16
Growing biomass feedstocks from marginal lands is becoming an increasingly attractive choice for producing biofuel as an alternative energy to fossil fuels. Here, we used a biogeochemical model at ecosystem scale to estimate crop productivity and greenhouse gas (GHG) emissions from bioenergy crops grown on marginal lands in the United States. Two broadly tested cellulosic crops, switchgrass, and Miscanthus, were assumed to be grown on the abandoned land and mixed crop–vegetation land with marginal productivity. Production of biomass and biofuel as well as net carbon exchange and nitrous oxide emissions were estimated in a spatially explicit manner. We found that,more » cellulosic crops, especially Miscanthus could produce a considerable amount of biomass, and the effective ethanol yield is high on these marginal lands. For every hectare of marginal land, switchgrass and Miscanthus could produce 1.0–2.3 kl and 2.9–6.9 kl ethanol, respectively, depending on nitrogen fertilization rate and biofuel conversion efficiency. Nationally, both crop systems act as net GHG sources. Switchgrass has high global warming intensity (100–390 g CO 2eq l –1 ethanol), in terms of GHG emissions per unit ethanol produced. Miscanthus, however, emits only 21–36 g CO 2eq to produce every liter of ethanol. To reach the mandated cellulosic ethanol target in the United States, growing Miscanthus on the marginal lands could potentially save land and reduce GHG emissions in comparison to growing switchgrass. Furthermore, the ecosystem modeling is still limited by data availability and model deficiencies, further efforts should be made to classify crop–specific marginal land availability, improve model structure, and better integrate ecosystem modeling into life cycle assessment.« less
NASA Astrophysics Data System (ADS)
Miller-Robbie, Leslie; Ramaswami, Anu; Amerasinghe, Priyanie
2017-07-01
Nutrients and water found in domestic treated wastewater are valuable and can be reutilized in urban agriculture as a potential strategy to provide communities with access to fresh produce. In this paper, this proposition is examined by conducting a field study in the rapidly developing city of Hyderabad, India. Urban agriculture trade-offs in water use, energy use and GHG emissions, nutrient uptake, and crop pathogen quality are evaluated, and irrigation waters of varying qualities (treated wastewater, versus untreated water and groundwater) are compared. The results are counter-intuitive, and illustrate potential synergies and key constraints relating to the food-energy-water-health (FEW-health) nexus in developing cities. First, when the impact of GHG emissions from untreated wastewater diluted in surface streams is compared with the life cycle assessment of wastewater treatment with reuse in agriculture, the treatment-plus-reuse case yields a 33% reduction in life cycle system-wide GHG emissions. Second, despite water cycling benefits in urban agriculture, only <1% of the nutrients are able to be captured in urban agriculture, limited by the small proportion of effluent divertible to urban agriculture due to land constraints. Thus, water treatment plus reuse in urban farms can enhance GHG mitigation and also directly save groundwater; however, very large amounts of land are needed to extract nutrients from dilute effluents. Third, although energy use for wastewater treatment results in pathogen indicator organism concentrations in irrigation water to be reduced by 99.9% (three orders of magnitude) compared to the untreated case, crop pathogen content was reduced by much less, largely due to environmental contamination and farmer behavior and harvesting practices. The study uncovers key physical, environmental, and behavioral factors that constrain benefits achievable at the FEW-health nexus in urban areas.
Yang, Na; Zhang, Hua; Chen, Miao; Shao, Li-Ming; He, Pin-Jing
2012-12-01
Determination of the amount of greenhouse gas (GHG) emitted during municipal solid waste incineration (MSWI) is complex because both contributions and savings of GHGs exist in the process. To identify the critical factors influencing GHG emissions from MSWI in China, a GHG accounting model was established and applied to six Chinese cities located in different regions. The results showed that MSWI in most of the cities was the source of GHGs, with emissions of 25-207 kg CO(2)-eq t(-1) rw. Within all process stages, the emission of fossil CO(2) from the combustion of MSW was the main contributor (111-254 kg CO(2)-eq t(-1) rw), while the substitution of electricity reduced the GHG emissions by 150-247 kg CO(2)-eq t(-1) rw. By affecting the fossil carbon content and the lower heating value of the waste, the contents of plastic and food waste in the MSW were the critical factors influencing GHG emissions of MSWI. Decreasing food waste content in MSW by half will significantly reduce the GHG emissions from MSWI, and such a reduction will convert MSWI in Urumqi and Tianjin from GHG sources to GHG sinks. Comparison of the GHG emissions in the six Chinese cities with those in European countries revealed that higher energy recovery efficiency in Europe induced much greater reductions in GHG emissions. Recovering the excess heat after generation of electricity would be a good measure to convert MSWI in all the six cities evaluated herein into sinks of GHGs. Copyright © 2012 Elsevier Ltd. All rights reserved.
Meier, Elizabeth A; Thorburn, Peter J
2016-01-01
The warming of world climate systems is driving interest in the mitigation of greenhouse gas (GHG) emissions. In the agricultural sector, practices that mitigate GHG emissions include those that (1) reduce emissions [e.g., those that reduce nitrous oxide (N2O) emissions by avoiding excess nitrogen (N) fertilizer application], and (2) increase soil organic carbon (SOC) stocks (e.g., by retaining instead of burning crop residues). Sugarcane is a globally important crop that can have substantial inputs of N fertilizer and which produces large amounts of crop residues ('trash'). Management of N fertilizer and trash affects soil carbon and nitrogen cycling, and hence GHG emissions. Trash has historically been burned at harvest, but increasingly is being retained on the soil surface as a 'trash blanket' in many countries. The potential for trash retention to alter N fertilizer requirements and sequester SOC was investigated in this study. The APSIM model was calibrated with data from field and laboratory studies of trash decomposition in the wet tropics of northern Australia. APSIM was then validated against four independent data sets, before simulating location × soil × fertilizer × trash management scenarios. Soil carbon increased in trash blanketed soils relative to SOC in soils with burnt trash. However, further increases in SOC for the study region may be limited because the SOC in trash blanketed soils could be approaching equilibrium; future GHG mitigation efforts in this region should therefore focus on N fertilizer management. Simulated N fertilizer rates were able to be reduced from conventional rates regardless of trash management, because of low yield potential in the wet tropics. For crops subjected to continuous trash blanketing, there was substantial immobilization of N in decomposing trash so conventional N fertilizer rates were required for up to 24 years after trash blanketing commenced. After this period, there was potential to reduce N fertilizer rates for crops when trash was retained (≤20 kg N ha(-1) per plant or ratoon crop) while maintaining ≥95% of maximum yields. While these savings in N fertilizer use were modest at the field scale, they were potentially important when aggregated at the regional level.
Pyrolysis and gasification of meat-and-bone-meal: Energy balance and GHG accounting
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cascarosa, Esther; Boldrin, Alessio, E-mail: aleb@env.dtu.dk; Astrup, Thomas
Highlights: • GHG savings are in the order of 600–1000 kg CO{sub 2}-eq. per Mg of MBM treated. • Energy recovery differed in terms of energy products and efficiencies. • The results were largely determined by use of the products for energy purposes. - Abstract: Meat-and-bone-meal (MBM) produced from animal waste has become an increasingly important residual fraction needing management. As biodegradable waste is routed away from landfills, thermo-chemical treatments of MBM are considered promising solution for the future. Pyrolysis and gasification of MBM were assessed based on data from three experimental lab and pilot-scale plants. Energy balances were establishedmore » for the three technologies, providing different outcomes for energy recovery: bio-oil was the main product for the pyrolysis system, while syngas and a solid fraction of biochar were the main products in the gasification system. These products can be used – eventually after upgrading – for energy production, thereby offsetting energy production elsewhere in the system. Greenhouse gases (GHG) accounting of the technologies showed that all three options provided overall GHG savings in the order of 600–1000 kg CO{sub 2}-eq. per Mg of MBM treated, mainly as a consequence of avoided fossil fuel consumption in the energy sector. Local conditions influencing the environmental performance of the three systems were identified, together with critical factors to be considered during decision-making regarding MBM management.« less
Huang, Runze; Riddle, Matthew; Graziano, Diane; ...
2015-05-08
Additive manufacturing (AM) holds great potential for improving materials efficiency, reducing life-cycle impacts, and enabling greater engineering functionality compared to conventional manufacturing (CM) processes. For these reasons, AM has been adopted by a growing number of aircraft component manufacturers to achieve more lightweight, cost-effective designs. This study estimates the net changes in life-cycle primary energy and greenhouse gas emissions associated with AM technologies for lightweight metallic aircraft components through the year 2050, to shed light on the environmental benefits of a shift from CM to AM processes in the U.S. aircraft industry. A systems modeling framework is presented, with integratesmore » engineering criteria, life-cycle environmental data, and aircraft fleet stock and fuel use models under different AM adoption scenarios. Estimated fleetwide life-cycle primary energy savings in a rapid adoption scenario reach 70-174 million GJ/year in 2050, with cumulative savings of 1.2-2.8 billion GJ. Associated cumulative emission reduction potentials of CO2e were estimated at 92.8-217.4 million metric tons. About 95% of the savings is attributed to airplane fuel consumption reductions due to lightweighting. In addition, about 4050 tons aluminum, 7600 tons titanium and 8100 tons of nickel alloys could be saved per year in 2050. The results indicate a significant role of AM technologies in helping society meet its long-term energy use and GHG emissions reduction goals, and highlight barriers and opportunities for AM adoption for the aircraft industry.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Runze; Riddle, Matthew; Graziano, Diane
Additive manufacturing (AM) holds great potential for improving materials efficiency, reducing life-cycle impacts, and enabling greater engineering functionality compared to conventional manufacturing (CM) processes. For these reasons, AM has been adopted by a growing number of aircraft component manufacturers to achieve more lightweight, cost-effective designs. This study estimates the net changes in life-cycle primary energy and greenhouse gas emissions associated with AM technologies for lightweight metallic aircraft components through the year 2050, to shed light on the environmental benefits of a shift from CM to AM processes in the U.S. aircraft industry. A systems modeling framework is presented, with integratesmore » engineering criteria, life-cycle environmental data, and aircraft fleet stock and fuel use models under different AM adoption scenarios. Estimated fleetwide life-cycle primary energy savings in a rapid adoption scenario reach 70-174 million GJ/year in 2050, with cumulative savings of 1.2-2.8 billion GJ. Associated cumulative emission reduction potentials of CO2e were estimated at 92.8-217.4 million metric tons. About 95% of the savings is attributed to airplane fuel consumption reductions due to lightweighting. In addition, about 4050 tons aluminum, 7600 tons titanium and 8100 tons of nickel alloys could be saved per year in 2050. The results indicate a significant role of AM technologies in helping society meet its long-term energy use and GHG emissions reduction goals, and highlight barriers and opportunities for AM adoption for the aircraft industry.« less
NASA Astrophysics Data System (ADS)
Mullins, Damien
Global warming is one of the most discussed global environmental issues in the world today. Global warming is driven by fossil fuel combustion emissions known as Green-house Gases (GHG). One of the major contributors to GHG emissions is the transport sector, emitting approximately 30% of total U.S. CO 2 emissions in 2010. Air travel contributed approximately 3.5% of total U.S. CO2 in 2008. High-speed Rail (HSR) is often touted as cleaner, more sustainable mode of transport than air travel. HSR is one of few modes of transport capable of competing with air travel for short to medium-haul distances. There has been considerable study of GHG emissions of each independently. Research has also been carried out into the economics and competition of these transport modes. However, there has been very limited study of the comparative emissions of each, apart from one study in Europe (Givoni, 2007). The current study was undertaken with the goal of quantifying potential emission savings due to mode substitution from air travel to HSR in the Los Angeles to Las Vegas corridor. This study only considered the emissions which occurred from the combustion of the relevant fuels, either in power plants or the engines of an aircraft. Emissions from fuel production/refining or transport of fuels were not considered. Another issue compared was Local Area Pollution (LAP), which is a measure of the severity of emissions effect on the environment. This was examined because all emissions from HSR occur close to the surface of the earth, and hence effect the local environment, while only a portion of aircraft emissions do. This study was carried out using internationally recognized emission inventory methodologies. For the air travel emission estimate methodologies and data published by the Intergovernmental Panel on Climate Change (IPCC) and the International Civil Aviation Organization (ICAO) were used. The HSR energy use was estimated from energy use data from currently running HSR programs, in France, UK and Spain (Alvarez, 2007; Kemp, 2007). The emissions were then estimated using an adjusted tier 3 method. For aviation emissions a tier three method was also used. The findings of this research are mixed. HSR would emit 66% less GHG emissions using today's energy mixes for California and Nevada. Using California's 2020 target energy mix HSR would emit 80% less GHG emissions. However, using today's energy mix HSR would cause 33% more LAP than air travel. Using California's 2020 mix the HSR would cause 22% less LAP the air travel. However this 20% improvement would likely be eroded by aircraft emissions improvement between now and 2020. To conclude, this research found that HSR does offer significant GHG emission reductions, when compared to air travel between Los Angeles and Las Vegas. However is less clear regarding LAP, though HSR has the potential to create savings here in the future as well. For other corridors around the U.S.A., earmarked for HSR, similar studies should be carried out to examine the benefits of such mode transfer.
A holistic approach to the environmental evaluation of food waste prevention.
Salemdeeb, Ramy; Font Vivanco, David; Al-Tabbaa, Abir; Zu Ermgassen, Erasmus K H J
2017-01-01
The environmental evaluation of food waste prevention is considered a challenging task due to the globalised nature of the food supply chain and the limitations of existing evaluation tools. The most significant of these is the rebound effect: the associated environmental burdens of substitutive consumption that arises as a result of economic savings made from food waste prevention. This study introduces a holistic approach to addressing these challenges, with a focus on greenhouse gas (GHG) emissions from household food waste in the UK. It uses a hybrid life-cycle assessment model coupled with a highly detailed multi-regional environmentally extended input output analysis to capture environmental impacts across the global food supply chain. The study also takes into consideration the rebound effect, which was modelled using a linear specification of an almost ideal demand system. The study finds that food waste prevention could lead to substantial reductions in GHG emissions in the order of 706-896kg CO 2 -eq. per tonne of food waste, with most of these savings (78%) occurring as a result of avoided food production overseas. The rebound effect may however reduce such GHG savings by up to 60%. These findings provide a deeper insight into our understanding of the environmental impacts of food waste prevention: the study demonstrates the need to adopt a holistic approach when developing food waste prevention policies in order to mitigate the rebound effect and highlight the importance of increasing efficiency across the global food supply chain, particularly in developing countries. Copyright © 2016 Elsevier Ltd. All rights reserved.
Net global warming potential and greenhouse gas intensity
USDA-ARS?s Scientific Manuscript database
Various methods exist to calculate global warming potential (GWP) and greenhouse gas intensity (GHG) as measures of net greenhouse gas (GHG) emissions from agroecosystems. Little is, however, known about net GWP and GHGI that account for all sources and sinks of GHG emissions. Sources of GHG include...
Tainio, Marko; Monsivais, Pablo; Jones, Nicholas Rv; Brand, Christian; Woodcock, James
2017-02-22
To quantify changes in mortality, greenhouse gas (GHG) emissions and consumer costs for physical activity and diet scenarios. For the physical activity scenarios, all car trips from <1 to <8 miles long were progressively replaced with cycling. For the diet scenarios, the study population was assumed to increase fruit and vegetable (F&V) consumption by 1-5 portions of F&V per day, or to eat at least 5 portions per day. Health effects were modelled with the comparative risk assessment method. Consumer costs were based on fuel cost savings and average costs of F&V, and GHG emissions to fuel usage and F&V production. Working age population for England. Data from the Health Survey for England, National Travel Survey and National Diet and Nutrition Survey. Changes in premature deaths, consumer costs and GHG emissions stratified by age, gender and socioeconomic status (SES). Premature deaths were reduced by between 75 and 7648 cases per year for the physical activity scenarios, and 3255 and 6187 cases per year for the diet scenarios. Mortality reductions were greater among people of medium and high SES in the physical activity scenarios, whereas people with lower SES benefited more in the diet scenarios. Similarly, transport fuel costs fell more for people of high SES, whereas diet costs increased most for the lowest SES group. Net GHG emissions decreased by between 0.2 and 10.6 million tons of carbon dioxide equivalent (MtCO 2 e) per year for the physical activity scenarios and increased by between 1.3 and 6.3 MtCO 2 e/year for the diet scenarios. Increasing F&V consumption offers the potential for large health benefits and reduces health inequalities. Replacing short car trips with cycling offers the potential for net benefits for health, GHG emissions and consumer costs. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
NASA Astrophysics Data System (ADS)
Valin, H.; Havlík, P.; Mosnier, A.; Herrero, M.; Schmid, E.; Obersteiner, M.
2013-09-01
In this letter, we investigate the effects of crop yield and livestock feed efficiency scenarios on greenhouse gas (GHG) emissions from agriculture and land use change in developing countries. We analyze mitigation associated with different productivity pathways using the global partial equilibrium model GLOBIOM. Our results confirm that yield increase could mitigate some agriculture-related emissions growth over the next decades. Closing yield gaps by 50% for crops and 25% for livestock by 2050 would decrease agriculture and land use change emissions by 8% overall, and by 12% per calorie produced. However, the outcome is sensitive to the technological path and which factor benefits from productivity gains: sustainable land intensification would increase GHG savings by one-third when compared with a fertilizer intensive pathway. Reaching higher yield through total factor productivity gains would be more efficient on the food supply side but halve emissions savings due to a strong rebound effect on the demand side. Improvement in the crop or livestock sector would have different implications: crop yield increase would bring the largest food provision benefits, whereas livestock productivity gains would allow the greatest reductions in GHG emission. Combining productivity increases in the two sectors appears to be the most efficient way to exploit mitigation and food security co-benefits.
Contribution of plastic waste recovery to greenhouse gas (GHG) savings in Spain.
Sevigné-Itoiz, Eva; Gasol, Carles M; Rieradevall, Joan; Gabarrell, Xavier
2015-12-01
This paper concentrates on the quantification of greenhouse gas (GHG) emissions of post-consumer plastic waste recovery (material or energy) by considering the influence of the plastic waste quality (high or low), the recycled plastic applications (virgin plastic substitution or non-plastic substitution) and the markets of recovered plastic (regional or global). The aim is to quantify the environmental consequences of different alternatives in order to evaluate opportunities and limitations to select the best and most feasible plastic waste recovery option to decrease the GHG emissions. The methodologies of material flow analysis (MFA) for a time period of thirteen years and consequential life cycle assessment (CLCA) have been integrated. The study focuses on Spain as a representative country for Europe. The results show that to improve resource efficiency and avoid more GHG emissions, the options for plastic waste management are dependent on the quality of the recovered plastic. The results also show that there is an increasing trend of exporting plastic waste for recycling, mainly to China, that reduces the GHG benefits from recycling, suggesting that a new focus should be introduced to take into account the split between local recycling and exporting. Copyright © 2015 Elsevier Ltd. All rights reserved.
CO2 abatement costs of greenhouse gas (GHG) mitigation by different biogas conversion pathways.
Rehl, T; Müller, J
2013-01-15
Biogas will be of increasing importance in the future as a factor in reducing greenhouse gas emissions cost-efficiently by the optimal use of available resources and technologies. The goal of this study was to identify the most ecological and economical use of a given resource (organic waste from residential, commercial and industry sectors) using one specific treatment technology (anaerobic digestion) but applying different energy conversion technologies. Average and marginal abatement costs were calculated based on Life Cycle Cost (LCC) and Life Cycle Assessment (LCA) methodologies. Eight new biogas systems producing electricity, heat, gas or automotive fuel were analyzed in order to identify the most cost-efficient way of reducing GHG emissions. A system using a combined heat and power station (which is connected to waste treatment and digestion operation facilities and located nearby potential residential, commercial or industrial heat users) was found to be the most cost-efficient biogas technology for reducing GHG emissions. Up to € 198 per tonne of CO(2) equivalents can be saved by replacing the "business as usual" systems based on fossil resources with ones based on biogas. Limited gas injection (desulfurized and dried biogas, without compression and upgrading) into the gas grid can also be a viable option with an abatement cost saving of € 72 per tonne of CO(2) equivalents, while a heating plant with a district heating grid or a system based on biogas results in higher abatement costs (€ 267 and € 270 per tonne CO(2) eq). Results from all systems are significantly influenced by whether average or marginal data are used as a reference. Beside that energy efficiency, the reference system that was replaced and the by-products as well as feedstock and investment costs were identified to be parameters with major impacts on abatement costs. The quantitative analysis was completed by a discussion of the role that abatement cost methodology can play in decision-making. Copyright © 2012 Elsevier Ltd. All rights reserved.
Greenhouse-gas Consequences of US Corn-based Ethanol in a Flat World
NASA Astrophysics Data System (ADS)
Davidson, E. A.; Coe, M. T.; Nepstad, D. C.; Donner, S. D.; Bustamante, M. M.; Neill, C.
2008-12-01
Competition for arable land is now occurring among food, fiber, and fuel production sectors. In the USA, increased corn production for ethanol has come primarily at the expense of reduced soybean production. Only a few countries, mainly Brazil, have appropriate soils, climate, and infrastructure needed for large absolute increases in cropped area in the next decade that could make up the lost US soybean production. Our objective is to improve estimates of the potential net greenhouse gas (GHG) consequences, both domestically and in Brazil, of meeting the new goals established by the US Congress for expansion of corn- based ethanol in the USA. To meet this goal of 57 billion liters per year of corn-based ethanol production, an additional 1-7 million hectares will need to be planted in corn, depending upon assumptions regarding future increases in corn yield. Net GHG emissions saved in the USA by substituting ethanol for gasoline are estimated at 14 Tg CO2-equivalents once the production goal of 57 million L/yr is reached. If reduced US soybean production caused by this increase in US corn planting results in a compensatory increase in Brazilian production of soybeans in the Cerrado and Amazon regions, we estimate a potential net release of 1800 to 9100 Tg CO2-equivalents of GHG emissions due to land-use change. Many opportunities exist for agricultural intensification that would minimize new land clearing and its environmental impacts, but if Brazilian deforestation is held to only 15% of the area estimated here to compensate lost US soybean production, the GHG mitigation of US corn-based ethanol production during the next 15 years would be more than offset by emissions from Brazilian land-use change. Other motivations for advancing corn-based ethanol production in the USA, such as reduced reliance on foreign oil and increased prosperity for farming communities, must be considered separately, but the greenhouse-gas-mitigation rationale is clearly unsupportable.
Voluntary GHG reduction of industrial sectors in Taiwan.
Chen, Liang-Tung; Hu, Allen H
2012-08-01
The present paper describes the voluntary greenhouse gas (GHG) reduction agreements of six different industrial sectors in Taiwan, as well as the fluorinated gases (F-gas) reduction agreement of the semiconductor and Liquid Crystal Display (LCD) industries. The operating mechanisms, GHG reduction methods, capital investment, and investment effectiveness are also discussed. A total of 182 plants participated in the voluntary energy saving and GHG reduction in six industrial sectors (iron and steel, petrochemical, cement, paper, synthetic fiber, and textile printing and dyeing), with 5.35 Mt reduction from 2004 to 2008, or 33% higher than the target goal (4.02 Mt). The reduction accounts for 1.6% annual emission or 7.8% during the 5-yr span. The petrochemical industry accounts for 49% of the reduction, followed by the cement sector (21%) and the iron and steel industry (13%). The total investment amounted to approximately USD 716 million, in which, the majority of the investment went to the modification of the manufacturing process (89%). The benefit was valued at around USD 472 million with an average payback period of 1.5 yr. Moreover, related energy saving was achieved through different approaches, e.g., via electricity (iron and steel), steam and oil consumption (petrochemical) and coal usage (cement). The cost for unit CO(2) reduction varies per industry, with the steel and iron industrial sector having the highest cost (USD 346 t(-1) CO(2)) compared with the average cost of the six industrial sectors (USD 134 t(-1) CO(2)). For the semiconductor and Thin-Film Transistor LCD industries, F-gas emissions were reduced from approximately 4.1 to about 1.7 Mt CO(2)-eq, and from 2.2 to about 1.1 Mt CO(2)-eq, respectively. Incentive mechanisms for participation in GHG reduction are also further discussed. Copyright © 2012 Elsevier Ltd. All rights reserved.
Meier, Elizabeth A.; Thorburn, Peter J.
2016-01-01
The warming of world climate systems is driving interest in the mitigation of greenhouse gas (GHG) emissions. In the agricultural sector, practices that mitigate GHG emissions include those that (1) reduce emissions [e.g., those that reduce nitrous oxide (N2O) emissions by avoiding excess nitrogen (N) fertilizer application], and (2) increase soil organic carbon (SOC) stocks (e.g., by retaining instead of burning crop residues). Sugarcane is a globally important crop that can have substantial inputs of N fertilizer and which produces large amounts of crop residues (‘trash’). Management of N fertilizer and trash affects soil carbon and nitrogen cycling, and hence GHG emissions. Trash has historically been burned at harvest, but increasingly is being retained on the soil surface as a ‘trash blanket’ in many countries. The potential for trash retention to alter N fertilizer requirements and sequester SOC was investigated in this study. The APSIM model was calibrated with data from field and laboratory studies of trash decomposition in the wet tropics of northern Australia. APSIM was then validated against four independent data sets, before simulating location × soil × fertilizer × trash management scenarios. Soil carbon increased in trash blanketed soils relative to SOC in soils with burnt trash. However, further increases in SOC for the study region may be limited because the SOC in trash blanketed soils could be approaching equilibrium; future GHG mitigation efforts in this region should therefore focus on N fertilizer management. Simulated N fertilizer rates were able to be reduced from conventional rates regardless of trash management, because of low yield potential in the wet tropics. For crops subjected to continuous trash blanketing, there was substantial immobilization of N in decomposing trash so conventional N fertilizer rates were required for up to 24 years after trash blanketing commenced. After this period, there was potential to reduce N fertilizer rates for crops when trash was retained (≤20 kg N ha–1 per plant or ratoon crop) while maintaining ≥95% of maximum yields. While these savings in N fertilizer use were modest at the field scale, they were potentially important when aggregated at the regional level. PMID:27462340
Well-to-wheels analysis of fast pyrolysis pathways with the GREET model.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han, J.; Elgowainy, A.; Palou-Rivera, I.
The pyrolysis of biomass can help produce liquid transportation fuels with properties similar to those of petroleum gasoline and diesel fuel. Argonne National Laboratory conducted a life-cycle (i.e., well-to-wheels [WTW]) analysis of various pyrolysis pathways by expanding and employing the Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) model. The WTW energy use and greenhouse gas (GHG) emissions from the pyrolysis pathways were compared with those from the baseline petroleum gasoline and diesel pathways. Various pyrolysis pathway scenarios with a wide variety of possible hydrogen sources, liquid fuel yields, and co-product application and treatment methods were considered. Atmore » one extreme, when hydrogen is produced from natural gas and when bio-char is used for process energy needs, the pyrolysis-based liquid fuel yield is high (32% of the dry mass of biomass input). The reductions in WTW fossil energy use and GHG emissions relative to those that occur when baseline petroleum fuels are used, however, is modest, at 50% and 51%, respectively, on a per unit of fuel energy basis. At the other extreme, when hydrogen is produced internally via reforming of pyrolysis oil and when bio-char is sequestered in soil applications, the pyrolysis-based liquid fuel yield is low (15% of the dry mass of biomass input), but the reductions in WTW fossil energy use and GHG emissions are large, at 79% and 96%, respectively, relative to those that occur when baseline petroleum fuels are used. The petroleum energy use in all scenarios was restricted to biomass collection and transportation activities, which resulted in a reduction in WTW petroleum energy use of 92-95% relative to that found when baseline petroleum fuels are used. Internal hydrogen production (i.e., via reforming of pyrolysis oil) significantly reduces fossil fuel use and GHG emissions because the hydrogen from fuel gas or pyrolysis oil (renewable sources) displaces that from fossil fuel natural gas and the amount of fossil natural gas used for hydrogen production is reduced; however, internal hydrogen production also reduces the potential petroleum energy savings (per unit of biomass input basis) because the fuel yield declines dramatically. Typically, a process that has a greater liquid fuel yield results in larger petroleum savings per unit of biomass input but a smaller reduction in life-cycle GHG emissions. Sequestration of the large amount of bio-char co-product (e.g., in soil applications) provides a significant carbon dioxide credit, while electricity generation from bio-char combustion provides a large energy credit. The WTW energy and GHG emissions benefits observed when a pyrolysis oil refinery was integrated with a pyrolysis reactor were small when compared with those that occur when pyrolysis oil is distributed to a distant refinery, since the activities associated with transporting the oil between the pyrolysis reactors and refineries have a smaller energy and emissions footprint than do other activities in the pyrolysis pathway.« less
Friedrich, Elena; Trois, Cristina
2011-07-01
The amount of greenhouse gases (GHG) emitted due to waste management in the cities of developing countries is predicted to rise considerably in the near future; however, these countries have a series of problems in accounting and reporting these gases. Some of these problems are related to the status quo of waste management in the developing world and some to the lack of a coherent framework for accounting and reporting of greenhouse gases from waste at municipal level. This review summarizes and compares GHG emissions from individual waste management processes which make up a municipal waste management system, with an emphasis on developing countries and, in particular, Africa. It should be seen as a first step towards developing a more holistic GHG accounting model for municipalities. The comparison between these emissions from developed and developing countries at process level, reveals that there is agreement on the magnitude of the emissions expected from each process (generation of waste, collection and transport, disposal and recycling). The highest GHG savings are achieved through recycling, and these savings would be even higher in developing countries which rely on coal for energy production (e.g. South Africa, India and China) and where non-motorized collection and transport is used. The highest emissions are due to the methane released by dumpsites and landfills, and these emissions are predicted to increase significantly, unless more of the methane is captured and either flared or used for energy generation. The clean development mechanism (CDM) projects implemented in the developing world have made some progress in this field; however, African countries lag behind. Copyright © 2011 Elsevier Ltd. All rights reserved.
Recycling of paper: accounting of greenhouse gases and global warming contributions.
Merrild, Hanna; Damgaard, Anders; Christensen, Thomas H
2009-11-01
Greenhouse gas (GHG) emissions have been established for recycling of paper waste with focus on a material recovery facility (MRF). The MRF upgrades the paper and cardboard waste before it is delivered to other industries where new paper or board products are produced. The accounting showed that the GHG contributions from the upstream activities and operational activities, with global warming factors (GWFs) of respectively 1 to 29 and 3 to 9 kg CO(2)-eq. tonne(- 1) paper waste, were small in comparison wih the downstream activities. The GHG contributions from the downstream reprocessing of the paper waste ranged from approximately 490 to 1460 kg CO(2)-eq. tonne( -1) of paper waste. The system may be expanded to include crediting of avoided virgin paper production which would result in GHG contributions from -1270 to 390 kg CO(2)-eq. tonne(- 1) paper waste. It may also be assumed that the wood not used for virgin paper production instead is used for production of energy that in turn is assumed to substitute for fossil fuel energy. This would result in GHG contributions from -1850 to -4400 kg CO(2)-eq. tonne(- 1) of paper waste. These system expansions reveal very large GHG savings, suggesting that the indirect upstream and operational GHG contributions are negligible in comparison with the indirect downstream emissions. However, the data for reprocessing of paper waste and the data for virgin paper production are highly variable. These differences are mainly related to different energy sources for the mills, both in regards to energy form (heat or electricity) and fuel (biomass or fossil fuels).
Carbon savings with transatlantic trade in pellets: accounting for market-driven effects
NASA Astrophysics Data System (ADS)
Wang, Weiwei; Dwivedi, Puneet; Abt, Robert; Khanna, Madhu
2015-11-01
Exports of pellets from the United States (US) are growing significantly to meet the demand for renewable energy in the European Union. This transatlantic trade in pellets has raised questions about the greenhouse gas (GHG) intensity of these pellets and their effects on conventional forest product markets in the US. This paper examines the GHG intensity of pellets exported from the US using either forest biomass only or forest and agricultural biomass combined. We develop an integrated dynamic, price-endogenous, partial equilibrium model of the forestry, agricultural, and transportation sectors in the US to investigate not only the direct life-cycle GHG intensity of pellets but also the accompanying indirect market and land use effects induced by changes in prices of forest and agricultural products over the 2007-2032 period. Across different scenarios of high and low pellet demand that can be met with either forest biomass only or with forest and agricultural biomass, we find that the GHG intensity of pellet based electricity is 74% to 85% lower than that of coal-based electricity. We also find that the GHG intensity of pellets produced using agricultural and forest biomass is 28% to 34% lower than that of pellets produced using forest biomass only. GHG effects due to induced direct and indirect changes in forest carbon stock caused by changes in harvest rotations, changes in land use and in conventional wood production account for 11% to 26% of the overall GHG intensity of pellets produced from forest biomass only; these effects are negative with the use of forest and agricultural biomass.
76 FR 15249 - Deferral for CO2
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-21
... Agency FR Federal Register GHG Greenhouse gas GWP Global warming potential HFC Hydrofluorocarbon ICR... year, weighted by the global warming potential (GWP) of the particular GHG pollutant, normalized to the... global GHG. Carbon dioxide emissions from a subset of bioenergy sources are reported as information items...
NASA Astrophysics Data System (ADS)
Hammac, W. A.; Pan, W.; Koenig, R. T.; McCracken, V.
2012-12-01
The Environmental Protection Agency (EPA) has mandated through the second renewable fuel standard (RFS2) that biodiesel meet a minimum threshold requirement (50% reduction) for greenhouse gas (GHG) emission reduction compared to fossil diesel. This designation is determined by life cycle assessment (LCA) and carries with it potential for monetary incentives for biodiesel feedstock growers (Biomass Crop Assistance Program) and biodiesel processors (Renewable Identification Numbers). A national LCA was carried out for canola (Brassica napus) biodiesel feedstock by the EPA and it did meet the minimum threshold requirement. However, EPA's national LCA does not provide insight into regional variation in GHG mitigation. The authors propose for full GHG reduction potential of biofuels to be realized, LCA results must have regional specificity and should inform incentives for growers and processors on a regional basis. The objectives of this work were to determine (1) variation in biofuel feedstock production related GHG emissions between three agroecological zones (AEZs) in eastern Washington State (2) the impact of nitrogen use efficiency (NUE) on GHG mitigation potential for each AEZ and (3) the impact of incentives on adoption of oilseed production. Results from objective (1) revealed there is wide variability in range for GHG estimates both across and within AEZs based on variation in farming practices and environment. It is expected that results for objective (2) will show further GHG mitigation potential due to minimizing N use and therefore fertilizer transport and soil related GHG emission while potentially increasing biodiesel production per hectare. Regional based incentives may allow more timely achievement of goals for bio-based fuels production. Additionally, incentives may further increase GHG offsetting by promoting nitrogen conserving best management practices implementation. This research highlights the need for regional assessment/incentive based strategies for maximizing GHG mitigation potential of biofuel feedstocks.
Peer Review of March 2013 LDV Rebound Report By Small and Hymel
The regulatory option of encouraging the adoption of advanced technologies for improving vehicle efficiency can result in significant fuel savings and GHG emissions benefits. At the same time, it is possible that some of these benefits might be offset by additional driving that i...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wiser, Ryan; Mai, Trieu; Millstein, Dev
Compared with fossil fuel generators, photovoltaics (PV) and concentrating solar power (CSP) produce far lower lifecycle levels of greenhouse gas (GHG) emissions and harmful pollutants including fine particular matter (PM2.5), sulfur dioxide (SO 2), and nitrogen oxides (NO x). In this report, we monetize the emission reductions from achieving the U.S. Department of Energy's SunShot deployment goals: 14% of U.S. electricity demand met by solar in 2030 and 27% in 2050. We estimate that achieving these goals could reduce cumulative power-sector GHG emissions by 10% between 2015 and 2050, resulting in savings of $238-$252 billion. This is equivalent to 2.0-2.2more » cents per kilowatt-hour of solar installed (cents/kWh-solar). Similarly, realizing these levels of solar deployment could reduce cumulative power-sector emissions of PM2.5 by 8%, SO 2 by 9%, and NOx by 11% between 2015 and 2050. This could produce $167 billion in savings from lower future health and environmental damages, or 1.4 cents/kWh-solar--while also preventing 25,000-59,000 premature deaths. To put this in perspective, this estimated combined benefit of 3.5 cents/kWh-solar due to SunShot-level solar deployment is approximately equal to the additional levelized cost of electricity reduction needed to make unsubsidized utility-scale solar competitive with conventional generators today. In addition, the analysis shows that achieving the SunShot goals could save 4% of total power-sector water withdrawals and 9% of total power-sector water consumption over the 2015-2050 period--a particularly important consideration for arid states where substantial solar will be deployed. These results have potential implications for policy innovation and the economic competitiveness of solar and other generation technologies.« less
Jiang, Dong; Hao, Mengmeng; Fu, Jingying; Tian, Guangjin; Ding, Fangyu
2017-09-14
Global warming and increasing concentration of atmospheric greenhouse gas (GHG) have prompted considerable interest in the potential role of energy plant biomass. Cassava-based fuel ethanol is one of the most important bioenergy and has attracted much attention in both developed and developing countries. However, the development of cassava-based fuel ethanol is still faced with many uncertainties, including raw material supply, net energy potential, and carbon emission mitigation potential. Thus, an accurate estimation of these issues is urgently needed. This study provides an approach to estimate energy saving and carbon emission mitigation potentials of cassava-based fuel ethanol through LCA (life cycle assessment) coupled with a biogeochemical process model-GEPIC (GIS-based environmental policy integrated climate) model. The results indicate that the total potential of cassava yield on marginal land in China is 52.51 million t; the energy ratio value varies from 0.07 to 1.44, and the net energy surplus of cassava-based fuel ethanol in China is 92,920.58 million MJ. The total carbon emission mitigation from cassava-based fuel ethanol in China is 4593.89 million kgC. Guangxi, Guangdong, and Fujian are identified as target regions for large-scale development of cassava-based fuel ethanol industry. These results can provide an operational approach and fundamental data for scientific research and energy planning.
NASA Astrophysics Data System (ADS)
Jiang, Dong; Hao, Mengmeng; Fu, Jingying; Tian, Guangjin; Ding, Fangyu
2017-09-01
Global warming and increasing concentration of atmospheric greenhouse gas (GHG) have prompted considerable interest in the potential role of energy plant biomass. Cassava-based fuel ethanol is one of the most important bioenergy and has attracted much attention in both developed and developing countries. However, the development of cassava-based fuel ethanol is still faced with many uncertainties, including raw material supply, net energy potential, and carbon emission mitigation potential. Thus, an accurate estimation of these issues is urgently needed. This study provides an approach to estimate energy saving and carbon emission mitigation potentials of cassava-based fuel ethanol through LCA (life cycle assessment) coupled with a biogeochemical process model—GEPIC (GIS-based environmental policy integrated climate) model. The results indicate that the total potential of cassava yield on marginal land in China is 52.51 million t; the energy ratio value varies from 0.07 to 1.44, and the net energy surplus of cassava-based fuel ethanol in China is 92,920.58 million MJ. The total carbon emission mitigation from cassava-based fuel ethanol in China is 4593.89 million kgC. Guangxi, Guangdong, and Fujian are identified as target regions for large-scale development of cassava-based fuel ethanol industry. These results can provide an operational approach and fundamental data for scientific research and energy planning.
NASA Astrophysics Data System (ADS)
Grewer, Uwe; Nash, Julie; Gurwick, Noel; Bockel, Louis; Galford, Gillian; Richards, Meryl; Costa Junior, Ciniro; White, Julianna; Pirolli, Gillian; Wollenberg, Eva
2018-04-01
This article analyses the greenhouse gas (GHG) impact potential of improved management practices and technologies for smallholder agriculture promoted under a global food security development program. Under ‘business-as-usual’ development, global studies on the future of agriculture to 2050 project considerable increases in total food production and cultivated area. Conventional cropland intensification and conversion of natural vegetation typically result in increased GHG emissions and loss of carbon stocks. There is a strong need to understand the potential greenhouse gas impacts of agricultural development programs intended to achieve large-scale change, and to identify pathways of smallholder agricultural development that can achieve food security and agricultural production growth without drastic increases in GHG emissions. In an analysis of 134 crop and livestock production systems in 15 countries with reported impacts on 4.8 million ha, improved management practices and technologies by smallholder farmers significantly reduce GHG emission intensity of agricultural production, increase yields and reduce post-harvest losses, while either decreasing or only moderately increasing net GHG emissions per area. Investments in both production and post-harvest stages meaningfully reduced GHG emission intensity, contributing to low emission development. We present average impacts on net GHG emissions per hectare and GHG emission intensity, while not providing detailed statistics of GHG impacts at scale that are associated to additional uncertainties. While reported improvements in smallholder systems effectively reduce future GHG emissions compared to business-as-usual development, these contributions are insufficient to significantly reduce net GHG emission in agriculture beyond current levels, particularly if future agricultural production grows at projected rates.
GREENHOUSE GAS MITIGATION POTENTIAL IN U.S. FORESTRY AND AGRICULTURE
This report describes the FASOM-GHG model (Forestry and Agriculture Sector Optimization Model with Greenhouse Gases), the GHG mitigation scenarios for U.S. forestry and agriculture run through the FASOM-GHG model, and the results and insights that are generated. GHG mitigation po...
Islam, Syed Faiz-Ul; van Groenigen, Jan Willem; Jensen, Lars Stoumann; Sander, Bjoern Ole; de Neergaard, Andreas
2018-01-15
Global rice production systems face two opposing challenges: the need to increase production to accommodate the world's growing population while simultaneously reducing greenhouse gas (GHG) emissions. Adaptations to drainage regimes are one of the most promising options for methane mitigation in rice production. Whereas several studies have focused on mid-season drainage (MD) to mitigate GHG emissions, early-season drainage (ED) varying in timing and duration has not been extensively studied. However, such ED periods could potentially be very effective since initial available C levels (and thereby the potential for methanogenesis) can be very high in paddy systems with rice straw incorporation. This study tested the effectiveness of seven drainage regimes varying in their timing and duration (combinations of ED and MD) to mitigate CH 4 and N 2 O emissions in a 101-day growth chamber experiment. Emissions were considerably reduced by early-season drainage compared to both conventional continuous flooding (CF) and the MD drainage regime. The results suggest that ED+MD drainage may have the potential to reduce CH 4 emissions and yield-scaled GWP by 85-90% compared to CF and by 75-77% compared to MD only. A combination of (short or long) ED drainage and one MD drainage episode was found to be the most effective in mitigating CH 4 emissions without negatively affecting yield. In particular, compared with CF, the long early-season drainage treatments LE+SM and LE+LM significantly (p<0.01) decreased yield-scaled GWP by 85% and 87% respectively. This was associated with carbon being stabilised early in the season, thereby reducing available C for methanogenesis. Overall N 2 O emissions were small and not significantly affected by ED. It is concluded that ED+MD drainage might be an effective low-tech option for small-scale farmers to reduce GHG emissions and save water while maintaining yield. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Levis, James W; Barlaz, Morton A; Decarolis, Joseph F; Ranjithan, S Ranji
2014-04-01
Solid waste management (SWM) systems must proactively adapt to changing policy requirements, waste composition, and an evolving energy system to sustainably manage future solid waste. This study represents the first application of an optimizable dynamic life-cycle assessment framework capable of considering these future changes. The framework was used to draw insights by analyzing the SWM system of a hypothetical suburban U.S. city of 100 000 people over 30 years while considering changes to population, waste generation, and energy mix and costs. The SWM system included 3 waste generation sectors, 30 types of waste materials, and 9 processes for waste separation, treatment, and disposal. A business-as-usual scenario (BAU) was compared to three optimization scenarios that (1) minimized cost (Min Cost), (2) maximized diversion (Max Diversion), and (3) minimized greenhouse gas (GHG) emissions (Min GHG) from the system. The Min Cost scenario saved $7.2 million (12%) and reduced GHG emissions (3%) relative to the BAU scenario. Compared to the Max Diversion scenario, the Min GHG scenario cost approximately 27% less and more than doubled the net reduction in GHG emissions. The results illustrate how the timed-deployment of technologies in response to changes in waste composition and the energy system results in more efficient SWM system performance compared to what is possible from static analyses.
NASA Astrophysics Data System (ADS)
Arif, C.; Fauzan, M. I.; Satyanto, K. S.; Budi, I. S.; Masaru, M.
2018-05-01
Water table in rice fields play important role to mitigate greenhouse gas (GHG) emissions from paddy fields. Continuous flooding by maintenance water table 2-5 cm above soil surface is not effective and release more GHG emissions. System of Rice Intensification (SRI) as alternative rice farming apply intermittent irrigation by maintaining lower water table is proven can reduce GHG emissions reducing productivity significantly. The objectives of this study were to develop automatic water table control system for SRI application and then evaluate the performances. The control system was developed based on fuzzy logic algorithms using the mini PC of Raspberry Pi. Based on laboratory and field tests, the developed system was working well as indicated by lower MAPE (mean absolute percentage error) values. MAPE values for simulation and field tests were 16.88% and 15.80%, respectively. This system can save irrigation water up to 42.54% without reducing productivity significantly when compared to manual irrigation systems.
Life cycle analysis of fuel production from fast pyrolysis of biomass.
Han, Jeongwoo; Elgowainy, Amgad; Dunn, Jennifer B; Wang, Michael Q
2013-04-01
A well-to-wheels (WTW) analysis of pyrolysis-based gasoline was conducted and compared with petroleum gasoline. To address the variation and uncertainty in the pyrolysis pathways, probability distributions for key parameters were developed with data from literature. The impacts of two different hydrogen sources for pyrolysis oil upgrading and of two bio-char co-product applications were investigated. Reforming fuel gas/natural gas for H2 reduces WTW GHG emissions by 60% (range of 55-64%) compared to the mean of petroleum fuels. Reforming pyrolysis oil for H2 increases the WTW GHG emissions reduction up to 112% (range of 97-126%), but reduces petroleum savings per unit of biomass used due to the dramatic decline in the liquid fuel yield. Thus, the hydrogen source causes a trade-off between GHG reduction per unit fuel output and petroleum displacement per unit biomass used. Soil application of biochar could provide significant carbon sequestration with large uncertainty. Copyright © 2013 Elsevier Ltd. All rights reserved.
Nguyen, Lan Huong; Mohan, Geetha; Jian, Pu; Takemoto, Kazuhiko; Fukushi, Kensuke
2016-01-01
Currently in many cities and rural areas of Vietnam, wastewater is discharged to the environment without any treatment, which emits considerable amount of greenhouse gas (GHG), particularly methane. In this study, four GHG emission scenarios were examined, as well as the baseline scenario, in order to verify the potential of GHG reduction from domestic wastewater with adequate treatment facilities. The ArcGIS and ArcHydro tools were employed to visualize and analyze GHG emissions resulting from discharge of untreated wastewater, in rural areas of Vu Gia Thu Bon river basin, Vietnam. By applying the current IPCC guidelines for GHG emissions, we found that a reduction of GHG emissions can be achieved through treatment of domestic wastewater in the studied area. Compared with baseline scenario, a maximum 16% of total GHG emissions can be reduced, in which 30% of households existing latrines are substituted by Japanese Johkasou technology and other 20% of domestic wastewater is treated by conventional activated sludge.
Mohan, Geetha; Jian, Pu; Takemoto, Kazuhiko; Fukushi, Kensuke
2016-01-01
Currently in many cities and rural areas of Vietnam, wastewater is discharged to the environment without any treatment, which emits considerable amount of greenhouse gas (GHG), particularly methane. In this study, four GHG emission scenarios were examined, as well as the baseline scenario, in order to verify the potential of GHG reduction from domestic wastewater with adequate treatment facilities. The ArcGIS and ArcHydro tools were employed to visualize and analyze GHG emissions resulting from discharge of untreated wastewater, in rural areas of Vu Gia Thu Bon river basin, Vietnam. By applying the current IPCC guidelines for GHG emissions, we found that a reduction of GHG emissions can be achieved through treatment of domestic wastewater in the studied area. Compared with baseline scenario, a maximum 16% of total GHG emissions can be reduced, in which 30% of households existing latrines are substituted by Japanese Johkasou technology and other 20% of domestic wastewater is treated by conventional activated sludge. PMID:27699202
NASA Astrophysics Data System (ADS)
Gabrielle, B.; Gagnaire, N.; Massad, R.; Prieur, V.; Python, Y.
2012-04-01
The potential greenhouse gas (GHG) savings resulting from the displacement of fossil energy sources by bioenergy mostly hinges on the uncertainty on the magnitude of nitrous oxide (N2O) emissions from arable soils occuring during feedstock production. These emissions are broadly related to fertilizer nitrogen input rates, but largely controlled by soil and climate factors which makes their estimation highly uncertain. Here, we set out to improve estimates of N2O emissions from bioenergy feedstocks by using ecosystem models and measurements and modeling of atmospheric N2O in the greater Paris (France) area. Ground fluxes were measured in two locations to assess the effect of soil type and management, crop type (including lignocellulosics such as triticale, switchgrass and miscanthus), and climate on N2O emission rates and dynamics. High-resolution maps of N2O emissions were generated over the Ile-de-France region (around Paris) with two ecosystem models using geographical databases on soils, weather data, land-use and crop management. The models were tested against ground flux measurements and the emission maps were fed into the atmospheric chemistry-transport model CHIMERE. The maps were tested by comparing the CHIMERE simulations with time series of N2O concentrations measured at various heights above the ground in two locations in 2007. The emissions of N2O, as integrated over the region, were used in a life-cycle assessment of representative biofuel pathways: bioethanol from wheat and sugar-beet (1st generation), and miscanthus (2nd generation chain); bio-diesel from oilseed rape. Effects related to direct and indirect land-use changes (in particular on soil carbon stocks) were also included in the assessment based on various land-use scenarios and literature references. The potential deployment of miscanthus was simulated by assuming it would be grown on the current sugar-beet growing area in Ile-de-France, or by converting land currently under permanent fallow. Compared to the standard methodology currently used in LCA, based on fixed emissions for N2O, the use of model-derived estimates leads to a 10 to 40% reduction in the overall life-cycle GHG emissions of biofuels. This emphasizes the importance of regional factors in the relationship between agricultural inputs and emissions (altogether with biomass yields) in the outcome of LCAs. When excluding indirect land-use change effects (iLUC), 1st generation pathways enabled GHG savings ranging from 50 to 73% compared to fossile-derived equivalents, while this figure reached 88% for 2nd generation bioethanol from miscanthus. Including iLUC reduced the savings to less than 5% for bio-diesel from rapeseed, 10 to 45% for 1st generation bioethanol and to 60% for miscanthus. These figures apply to the year 2007 and should be extended to a larger number of years, but the magnitude of N2O emissions was similar between 2007, 2008 and 2009 over the Ile de France region.
Helftewes, Markus; Flamme, Sabine; Nelles, Michael
2012-04-01
This article investigates greenhouse gas (GHG) emissions from commercial and industrial (C&I) waste treatment considering five sector-specific waste compositions and four different treatment scenarios in Germany. Results show that the highest share of CO₂-equivalent emissions can be avoided in each of the analysed industrial sectors if solid recovered fuel (SRF) is produced for co-incineration in cement kilns. Across all industries, emissions of approximately 680 kg CO₂-eq. Mg⁻¹ C&I waste can be avoided on average under this scenario. The combustion of C&I waste in waste incineration plants without any previous mechanical treatment generates the lowest potential to avoid GHG emissions with a value of approximately 50 kg CO₂-eq. Mg⁻¹ C&I waste on average in all industries. If recyclables are sorted, this can save emissions of approximately 280 kg CO₂-eq. Mg⁻¹ C&I waste while the treatment in SRF power plants amounts to savings of approximately 210 kg CO₂-eq. Mg⁻¹ C&I waste. A comparison of the treatment scenarios of the waste from these five sectors shows that waste treatment of the craft sector leads to the lowest CO₂-equivalent reduction rates of all scenarios. In contrast, the treatment of waste from catering sector leads to the highest CO₂-equivalent reduction rates except for direct incineration in waste incineration plants. The sensitivity analysis of the different scenarios for this paper shows that the efficiency and the substitution factor of energy have a relevant influence on the result. Changes in the substitution factor of 10% can result in changes in emissions of approximately 55 to 75 kg CO₂-eq. Mg⁻¹ in waste incineration plants and approximately 90 kg CO₂-eq. Mg⁻¹ in the case of cement kilns.
Recycling of plastic: accounting of greenhouse gases and global warming contributions.
Astrup, Thomas; Fruergaard, Thilde; Christensen, Thomas H
2009-11-01
Major greenhouse gas (GHG) emissions related to plastic waste recycling were evaluated with respect to three management alternatives: recycling of clean, single-type plastic, recycling of mixed/contaminated plastic, and use of plastic waste as fuel in industrial processes. Source-separated plastic waste was received at a material recovery facility (MRF) and processed for granulation and subsequent downstream use. In the three alternatives, plastic was assumed to be substituting virgin plastic in new products, wood in low-strength products (outdoor furniture, fences, etc.), and coal or fuel oil in the case of energy utilization. GHG accounting was organized in terms of indirect upstream emissions (e.g. provision of energy, fuels, and materials), direct emissions at the MRF (e.g. fuel combustion), and indirect downstream emissions (e.g. avoided emissions from production of virgin plastic, wood, or coal/oil). Combined, upstream and direct emissions were estimated to be roughly between 5 and 600 kg CO(2)-eq. tonne( -1) of plastic waste depending on treatment at the MRF and CO(2) emissions from electricity production. Potential downstream savings arising from substitution of virgin plastic, wood, and energy fuels were estimated to be around 60- 1600 kg CO(2)-eq. tonne( -1) of plastic waste depending on substitution ratios and CO(2) emissions from electricity production. Based on the reviewed data, it was concluded that substitution of virgin plastic should be preferred. If this is not viable due to a mixture of different plastic types and/or contamination, the plastic should be used for energy utilization. Recycling of plastic waste for substitution of other materials such as wood provided no savings with respect to global warming.
DSM Electricity Savings Potential in the Buildings Sector in APP Countries
DOE Office of Scientific and Technical Information (OSTI.GOV)
McNeil, MIchael; Letschert, Virginie; Shen, Bo
2011-01-12
The global economy has grown rapidly over the past decade with a commensurate growth in the demand for electricity services that has increased a country's vulnerability to energy supply disruptions. Increasing need of reliable and affordable electricity supply is a challenge which is before every Asia Pacific Partnership (APP) country. Collaboration between APP members has been extremely fruitful in identifying potential efficiency upgrades and implementing clean technology in the supply side of the power sector as well established the beginnings of collaboration. However, significantly more effort needs to be focused on demand side potential in each country. Demand side managementmore » or DSM in this case is a policy measure that promotes energy efficiency as an alternative to increasing electricity supply. It uses financial or other incentives to slow demand growth on condition that the incremental cost needed is less than the cost of increasing supply. Such DSM measures provide an alternative to building power supply capacity The type of financial incentives comprise of rebates (subsidies), tax exemptions, reduced interest loans, etc. Other approaches include the utilization of a cap and trade scheme to foster energy efficiency projects by creating a market where savings are valued. Under this scheme, greenhouse gas (GHG) emissions associated with the production of electricity are capped and electricity retailers are required to meet the target partially or entirely through energy efficiency activities. Implementation of DSM projects is very much in the early stages in several of the APP countries or localized to a regional part of the country. The purpose of this project is to review the different types of DSM programs experienced by APP countries and to estimate the overall future potential for cost-effective demand-side efficiency improvements in buildings sectors in the 7 APP countries through the year 2030. Overall, the savings potential is estimated to be 1.7 thousand TWh or 21percent of the 2030 projected base case electricity demand. Electricity savings potential ranges from a high of 38percent in India to a low of 9percent in Korea for the two sectors. Lighting, fans, and TV sets and lighting and refrigeration are the largest contributors to residential and commercial electricity savings respectively. This work presents a first estimates of the savings potential of DSM programs in APP countries. While the resulting estimates are based on detailed end-use data, it is worth keeping in mind that more work is needed to overcome limitation in data at this time of the project.« less
Direct nitrous oxide emissions from rapeseed in Germany
NASA Astrophysics Data System (ADS)
Fuß, Roland; Andres, Monique; Hegewald, Hannes; Kesenheimer, Katharina; Köbke, Sarah; Räbiger, Thomas; Suarez, Teresa; Stichnothe, Heinz; Flessa, Heiner
2014-05-01
The production of first generation biofuels has increased over the last decade in Germany. However, there is a strong public and scientific debate concerning ecological impact and sustainability of biofuel production. The EU Renewables Directive requires biofuels to save 35 % of GHG emissions compared to fossil fuels. Starting in 2017, 50 % mitigation of GHG emissions must be achieved. This presents challenges for production of biofuels from rapeseed, which is one of the major renewable resources used for fuel production. Field emissions of nitrous oxide (N2O) and GHG emissions during production of fertilizers contribute strongest to the GHG balance of rapeseed biofuel. Thus, the most promising GHG mitigation option is the optimization of nitrogen fertilization. Since 2012, field trials are conducted on five German research farms to quantify direct GHG emissions. The sites were selected to represent the main rapeseed production regions in Germany as well as climatic regions and soil types. Randomized plot designs were established, which allow monitoring (using manual chambers) impact of fertilization intensity on direct emissions and yield of the typical crop sequence (winter rape - winter wheat - winter barley). The effect of substituting mineral fertilizer with biogas digestate with and without addition of a nitrification inhibitor is also studied. Here we present results from the first cropping season. In 2013, annual direct N2O emissions as well as yield normalized N2O emissions from rape were low. This can be explained with the weather conditions as 2013 was characterized by a cold and long winter with snow until mid spring. As a result, emissions were smaller than predicted by the IPCC emission factors or by the Global Nitrous Oxide Calculator (GNOC). However, emissions still depend on nitrogen input.
NASA Astrophysics Data System (ADS)
Wang, Jihuan; Bogena, Heye; Brüggemann, Nicolas
2017-04-01
Soil greenhouse gas (GHG) emissions contribute to global warming. In order to support mitigation measures against global warming it is important to understand the controlling processes of GHG emissions. Previous studies focused mainly on the paddy rice fields or wetlands showed a strong relationship between soil redox potential and GHG emission (e.g. N2O). Recent sensor developments open the possibility for the long-term monitoring of field scale soil redox potential changes. Here, we performed laboratory lysimeter experiments to investigate how changes in the redox potential, induced by changes in the water level, affect GHG emissions from agricultural soil. Under our experimental conditions, we found that N2O emissions followed closely the changes in redox potential. The dynamics of redox potential were induced by changing the water-table depth in a laboratory lysimeter. During saturated conditions we found a clear negative correlation between redox potentials and N2O emission rates N2O. After switching from saturated to unsaturated conditions, N2O emission quickly decreased. In contrast, the emissions of CO2 increased with increasing soil redox potentials. The level of N2O emission also depended on the fertilization level of the soil. We propose that redox potential measurements are a viable method for better understanding of the controlling factors of GHG emission and the development agricultural management practices to reduce such emissions.
Co-control of urban air pollutants and greenhouse gases in Mexico City.
West, J Jason; Osnaya, Patricia; Laguna, Israel; Martínez, Julia; Fernández, Adrián
2004-07-01
This study addresses the synergies of mitigation measures to control urban air pollutant and greenhouse gas (GHG) emissions, in developing integrated "co-control" strategies for Mexico City. First, existing studies of emissions reduction measures--PROAIRE (the air quality plan for Mexico City) and separate GHG studies--are used to construct a harmonized database of options. Second, linear programming (LP) is developed and applied as a decision-support tool to analyze least-cost strategies for meeting co-control targets for multiple pollutants. We estimate that implementing PROAIRE measures as planned will reduce 3.1% of the 2010 metropolitan CO2 emissions, in addition to substantial local air pollutant reductions. Applying the LP, PROAIRE emissions reductions can be met at a 20% lower cost, using only the PROAIRE measures, by adjusting investments toward the more cost-effective measures; lower net costs are possible by including cost-saving GHG mitigation measures, but with increased investment. When CO2 emission reduction targets are added to PROAIRE targets, the most cost-effective solutions use PROAIRE measures for the majority of local pollutant reductions, and GHG measures for additional CO2 control. Because of synergies, the integrated planning of urban-global co-control can be beneficial, but we estimate that for Mexico City these benefits are often small.
Life cycle greenhouse gas emissions and freshwater consumption of Marcellus shale gas.
Laurenzi, Ian J; Jersey, Gilbert R
2013-05-07
We present results of a life cycle assessment (LCA) of Marcellus shale gas used for power generation. The analysis employs the most extensive data set of any LCA of shale gas to date, encompassing data from actual gas production and power generation operations. Results indicate that a typical Marcellus gas life cycle yields 466 kg CO2eq/MWh (80% confidence interval: 450-567 kg CO2eq/MWh) of greenhouse gas (GHG) emissions and 224 gal/MWh (80% CI: 185-305 gal/MWh) of freshwater consumption. Operations associated with hydraulic fracturing constitute only 1.2% of the life cycle GHG emissions, and 6.2% of the life cycle freshwater consumption. These results are influenced most strongly by the estimated ultimate recovery (EUR) of the well and the power plant efficiency: increase in either quantity will reduce both life cycle freshwater consumption and GHG emissions relative to power generated at the plant. We conclude by comparing the life cycle impacts of Marcellus gas and U.S. coal: The carbon footprint of Marcellus gas is 53% (80% CI: 44-61%) lower than coal, and its freshwater consumption is about 50% of coal. We conclude that substantial GHG reductions and freshwater savings may result from the replacement of coal-fired power generation with gas-fired power generation.
Comparing the greenhouse gas emissions from three alternative waste combustion concepts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vainikka, Pasi, E-mail: pasi.vainikka@vtt.fi; Tsupari, Eemeli; Sipilae, Kai
2012-03-15
Highlights: Black-Right-Pointing-Pointer Significant GHG reductions are possible by efficient WtE technologies. Black-Right-Pointing-Pointer CHP and high power-to-heat ratio provide significant GHG savings. Black-Right-Pointing-Pointer N{sub 2}O and coal mine type are important in LCA GHG emissions of FBC co-combustion. Black-Right-Pointing-Pointer Substituting coal and fuel oil by waste is beneficial in electricity and heat production. Black-Right-Pointing-Pointer Substituting natural gas by waste may not be reasonable in CHP generation. - Abstract: Three alternative condensing mode power and combined heat and power (CHP) waste-to-energy concepts were compared in terms of their impacts on the greenhouse gas (GHG) emissions from a heat and power generation system.more » The concepts included (i) grate, (ii) bubbling fluidised bed (BFB) and (iii) circulating fluidised bed (CFB) combustion of waste. The BFB and CFB take advantage of advanced combustion technology which enabled them to reach electric efficiency up to 35% and 41% in condensing mode, respectively, whereas 28% (based on the lower heating value) was applied for the grate fired unit. A simple energy system model was applied in calculating the GHG emissions in different scenarios where coal or natural gas was substituted in power generation and mix of fuel oil and natural gas in heat generation by waste combustion. Landfilling and waste transportation were not considered in the model. GHG emissions were reduced significantly in all of the considered scenarios where the waste combustion concepts substituted coal based power generation. With the exception of condensing mode grate incinerator the different waste combustion scenarios resulted approximately in 1 Mton of fossil CO{sub 2}-eq. emission reduction per 1 Mton of municipal solid waste (MSW) incinerated. When natural gas based power generation was substituted by electricity from the waste combustion significant GHG emission reductions were not achieved.« less
Carbon footprint of dairy production systems
USDA-ARS?s Scientific Manuscript database
Greenhouse gas (GHG) emissions and their potential impact on global warming has become an important national and international concern. Dairy production systems along with all other types of animal agriculture are recognized as a source of GHG. Although little information exists on the net GHG emiss...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andersen, J.K.; Boldrin, A.; Christensen, T.H.
2012-01-15
An environmental assessment of the management of organic household waste (OHW) was performed from a life cycle perspective by means of the waste-life cycle assessment (LCA) model EASEWASTE. The focus was on home composting of OHW in Denmark and six different home composting units (with different input and different mixing frequencies) were modelled. In addition, incineration and landfilling was modelled as alternatives to home composting. The most important processes contributing to the environmental impact of home composting were identified as greenhouse gas (GHG) emissions (load) and the avoided emissions in relation to the substitution of fertiliser and peat when compostmore » was used in hobby gardening (saving). The replacement of fertiliser and peat was also identified as one of the most sensible parameters, which could potentially have a significant environmental benefit. Many of the impact categories (especially human toxicity via water (HTw) and soil (HTs)) were affected by the heavy metal contents of the incoming OHW. The concentrations of heavy metals in the compost were below the threshold values for compost used on land and were thus not considered to constitute a problem. The GHG emissions were, on the other hand, dependent on the management of the composting units. The frequently mixed composting units had the highest GHG emissions. The environmental profiles of the home composting scenarios were in the order of -2 to 16 milli person equivalents (mPE) Mg{sup -1} wet waste (ww) for the non-toxic categories and -0.9 to 28 mPE Mg{sup -1} ww for the toxic categories. Home composting performed better than or as good as incineration and landfilling in several of the potential impact categories. One exception was the global warming (GW) category, in which incineration performed better due to the substitution of heat and electricity based on fossil fuels.« less
Co-benefits and trade-offs in the water-energy nexus of irrigation modernization in China
NASA Astrophysics Data System (ADS)
Cremades, Roger; Rothausen, Sabrina G. S. A.; Conway, Declan; Zou, Xiaoxia; Wang, Jinxia; Li, Yu'e.
2016-05-01
There are strong interdependencies between water use in agriculture and energy consumption as water saving technologies can require increased pumping and pressurizing. The Chinese Government includes water efficiency improvement and carbon intensity reduction targets in the 12th Five-Year Plan (5YP. 2011-2015), yet the links between energy use and irrigation modernization are not always addressed in policy targets. Here we build an original model of the energy embedded in water pumping for irrigated agriculture and its related processes. The model is based on the physical processes of irrigation schemes and the implication of technological developments, comprising all processes from extraction and conveyance of water to its application in the field. The model uses data from government sources to assess policy targets for deployment of irrigation technologies, which aim to reduce water application and contribute to adaptation of Chinese agriculture to climate change. The consequences of policy targets involve co-beneficial outcomes that achieve water and energy savings, or trade-offs in which reduced water application leads to increasing greenhouse gas (GHG) emissions. We analyze irrigation efficiency and energy use in four significant provinces and nationally, using scenarios based on the targets of the 12th 5YP. At the national scale, we find that expansion of sprinklers and micro-irrigation as outlined in the 5YP would increase GHG emissions from agricultural water use, however, emissions decrease in those provinces with predominant groundwater use and planned expansion of low-pressure pipes. We show that the most costly technologies relate to trade-offs, while co-benefits are generally achieved with less expensive technologies. The investment cost per area of irrigation technology expansion does not greatly affect the outcome in terms of water, but in terms of energy the most expensive technologies are more energy-intensive and produce more emissions. The results show that water supply configuration (proportion of surface to groundwater) largely determines the potential energy savings from reductions in water application. The paper examines the importance of fertigation and highlights briefly some policy implications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carrington, David Bradley; Waters, Jiajia
Research and development of KIVA-hpFE for turbulent reactive and multiphase flow particularly as related to engine modeling program has relevance to National energy security and climate change. Climate change is a source problem, and energy national security is consumption of petroleum products problem. Accurately predicting engine processes leads to, lower greenhouse gas (GHG) emission, where engines in the transportation sector currently account for 26% of the U.S. GHG emissions. Less dependence on petroleum products leads to greater energy security. By Environmental Protection Agency standards, some vehicles are now reaching 42 to the 50 mpg mark. These are conventional gasoline engines.more » Continued investment and research into new technical innovations, the potential exists to save more than 4 million barrels of oil per day or approximately $200 to $400 million per day. This would be a significant decrease in emission and use of petroleum and a very large economic stimulus too! It is estimated with further advancements in combustion, the current emissions can be reduced up to 40%. Enabling better understanding of fuel injection and fuel-air mixing, thermodynamic combustion losses, and combustion/emission formation processes enhances our ability to help solve both problems. To provide adequate capability for accurately simulating these processes, minimize time and labor for development of engine technology, are the goals of our KIVA development program.« less
Guo, Wei; Feng, Jinfei; Li, Lanhai; Yang, Haishui; Wang, Xiaohua; Bian, Xinmin
2014-01-01
Drip irrigation is broadly extended in order to save water in the arid cotton production region of China. Biochar is thought to be a useful soil amendment to reduce greenhouse gas (GHG) emissions. Here, a field study was conducted to compare the emissions of nitrous oxide (N2O) and methane (CH4) under different irrigation methods (drip irrigation (D) and furrow irrigation (F)) and fertilization regimes (conventional fertilization (C) and conventional fertilization + biochar (B)) during the cotton growth season. The accumulated N2O emissions were significantly lower with FB, DC, and DB than with FC by 28.8%, 36.1%, and 37.6%, while accumulated CH4 uptake was 264.5%, 226.7%, and 154.2% higher with DC, DB, and FC than that with FB, respectively. Irrigation methods showed a significant effect on total global warming potential (GWP) and yield-scaled GWP (P < 0.01). DC and DB showed higher cotton yield, water use efficiency (WUE), and lower yield-scaled GWP, as compared with FC and FB. This suggests that in northwestern China mulched-drip irrigation should be a better approach to increase cotton yield with depressed GHG. In addition, biochar addition increased CH4 emissions while it decreased N2O emissions. PMID:25133229
Guo, Yang; Tian, Jinping; Chertow, Marian; Chen, Lujun
2016-10-03
Mitigating greenhouse gas (GHG) emissions in China's industrial sector is crucial for addressing climate change. We developed a vintage stock model to quantify the GHG mitigation potential and cost effectiveness in Chinese eco-industrial parks by targeting energy infrastructure with five key measures. The model, integrating energy efficiency assessments, GHG emission accounting, cost-effectiveness analyses, and scenario analyses, was applied to 548 units of energy infrastructure in 106 parks. The results indicate that two measures (shifting coal-fired boilers to natural gas-fired boilers and replacing coal-fired units with natural gas combined cycle units) present a substantial potential to mitigate GHGs (42%-46%) compared with the baseline scenario. The other three measures (installation of municipal solid waste-to-energy units, replacement of small-capacity coal-fired units with large units, and implementation of turbine retrofitting) present potential mitigation values of 6.7%, 0.3%, and 2.1%, respectively. In most cases, substantial economic benefits also can be achieved by GHG emission mitigation. An uncertainty analysis showed that enhancing the annual working time or serviceable lifetime levels could strengthen the GHG mitigation potential at a lower cost for all of the measures.
Del Prado, A; Crosson, P; Olesen, J E; Rotz, C A
2013-06-01
The farm level is the most appropriate scale for evaluating options for mitigating greenhouse gas (GHG) emissions, because the farm represents the unit at which management decisions in livestock production are made. To date, a number of whole farm modelling approaches have been developed to quantify GHG emissions and explore climate change mitigation strategies for livestock systems. This paper analyses the limitations and strengths of the different existing approaches for modelling GHG mitigation by considering basic model structures, approaches for simulating GHG emissions from various farm components and the sensitivity of GHG outputs and mitigation measures to different approaches. Potential challenges for linking existing models with the simulation of impacts and adaptation measures under climate change are explored along with a brief discussion of the effects on other ecosystem services.
Logistics, Costs, and GHG Impacts of Utility-Scale Co-Firing with 20% Biomass
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nichol, Corrie Ian
This study analyzes the possibility that biopower in the U.S. is a cost-competitive option to significantly reduce greenhouse gas emissions. In 2009, net greenhouse gas (GHG) emitted in the United States was equivalent to 5,618 million metric tons CO 2, up 5.6% from 1990 (EPA 2011). Coal-fired power generation accounted for 1,748 million metric tons of this total. Intuitively, life-cycle CO 2 emissions in the power sector could be reduced by substituting renewable biomass for coal. If just 20% of the coal combusted in 2009 had been replaced with biomass, CO 2 emissions would have been reduced by 350 millionmore » metric tons, or about 6% of net annual GHG emission. This would have required approximately 225 million tons of dry biomass. Such an ambitious fuel substitution would require development of a biomass feedstock production and supply system tantamount to coal. This material would need to meet stringent specifications to ensure reliable conveyance to boiler burners, efficient combustion, and no adverse impact on heat transfer surfaces and flue gas cleanup operations. Therefore, this report addresses the potential cost/benefit tradeoffs of co-firing 20% specification-qualified biomass (on an energy content basis) in large U.S. coal-fired power plants. The dependence and sensitivity of feedstock cost on source of material, location, supply distance, and demand pressure was established. Subsequently, the dependence of levelized cost of electricity (LCOE) on feedstock costs, power plant feed system retrofit, and impact on boiler performance was determined. Overall life-cycle assessment (LCA) of greenhouse gas emissions saving were next evaluated and compared to wind and solar energy to benchmark the leading alternatives for meeting renewable portfolio standards (or RPS).« less
Greenhouse gas emissions from dairy manure management in a Mediterranean environment.
Owen, Justine J; Silver, Whendee L
2017-03-01
Livestock agriculture is a major source of anthropogenic greenhouse gas (GHG) emissions, with a substantial proportion of emissions derived from manure management. Accurate estimates of emissions related to management practices and climate are needed for identifying the best approaches to minimize, and potentially mitigate, GHG emissions. Current emissions models such as those of the IPCC, however, are based on emissions factors that have not been broadly tested against field-scale measurements, due to a lack of data. We used a diverse set of measurements over 22 months across a range of substrate conditions on a working dairy to determine patterns and controls on soil-based GHG fluxes. Although dairy soils and substrates differed by management unit, GHG fluxes were poorly predicted by these or climate variables. The manure pile had the greatest GHG emissions, and though temperature increased and O 2 concentration decreased following mixing, we detected almost no change in GHG fluxes due to mixing. Corral fluxes were characterized by hotspots and hot moments driven by patterns in deposition. Annual scraping kept the soil and accumulated manure pack thin, producing drier conditions, particularly in the warm dry season. Summed over area, corral fluxes had the greatest non-CO 2 global warming potential. The field had net CH 4 consumption, but CH 4 uptake was insufficient to offset N 2 O emissions on an area basis. All sites emitted N 2 O with a similar or greater climate impact than CH 4 . Our results highlight the importance of N 2 O emissions, a less commonly measured GHG, from manure management and present potential opportunities for GHG emissions reductions. © 2016 by the Ecological Society of America.
USDA-ARS?s Scientific Manuscript database
Greenhouse gas (GHG) emissions and their potential impact on the environment have become important national and international concerns. Dairy production, along with all other animal agriculture, is a recognized source of GHG emissions, but little information exists on the net emissions from our farm...
GHG emission mitigation measures and technologies in the Czech Republic
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tichy, M.
1996-12-31
The paper presents a short overview of main results in two fields: projection of GHG emission from energy sector in the Czech Republic and assessment of technologies and options for GHG mitigation. The last part presents an overview of measures that were prepared for potential inclusion to the Czech Climate Change Action Plan.
Role of waste management with regard to climate protection: a case study.
Hackl, Albert; Mauschitz, Gerd
2008-02-01
According to the Kyoto Protocol and the burden-sharing agreement of the European Union, Austria is required to cut greenhouse gas (GHG) emissions during the years 2008 to 2012 in order to achieve an average reduction of 13%, based on the level of emissions for the year 1990. The present contribution gives an overview of the history of GHG emission regulation in Austria and identifies the progress made towards the realization of the national climate strategy to attain the GHG emission targets. The contribution uses Austria as an example of the way in which proper waste management can help to reduce GHG emissions. The GHG inventories show that everything must be done to minimize the carbon input due to waste deposition at landfill sites. The incineration of waste is particularly helpful in reducing GHG emissions. The waste-to-energy by incineration plants and recovery of energy yield an ecologically proper treatment of waste using state-of-the-art techniques of a very high standard. The potential for GHG reduction of conventional waste treatment technologies has been estimated by the authors. A growing number of waste incinerators and intensified co-incineration of waste in Austrian industry will both help to reduce national GHG emissions substantially. By increasing the number and capacity of plants for thermal treatment of waste the contribution of proper waste management to the national target for reduction of GHG emissions will be in the range of 8 to 14%. The GHG inventories also indicate that a potential CO2 reduction of about 500 000 t year(-1) is achievable by co-incineration of waste in Austrian industry.
Cai, Hao; Dunn, Jennifer B; Wang, Zhichao; Han, Jeongwoo; Wang, Michael Q
2013-10-02
The availability of feedstock options is a key to meeting the volumetric requirement of 136.3 billion liters of renewable fuels per year beginning in 2022, as required in the US 2007 Energy Independence and Security Act. Life-cycle greenhouse gas (GHG) emissions of sorghum-based ethanol need to be assessed for sorghum to play a role in meeting that requirement. Multiple sorghum-based ethanol production pathways show diverse well-to-wheels (WTW) energy use and GHG emissions due to differences in energy use and fertilizer use intensity associated with sorghum growth and differences in the ethanol conversion processes. All sorghum-based ethanol pathways can achieve significant fossil energy savings. Relative to GHG emissions from conventional gasoline, grain sorghum-based ethanol can reduce WTW GHG emissions by 35% or 23%, respectively, when wet or dried distillers grains with solubles (DGS) is the co-product and fossil natural gas (FNG) is consumed as the process fuel. The reduction increased to 56% or 55%, respectively, for wet or dried DGS co-production when renewable natural gas (RNG) from anaerobic digestion of animal waste is used as the process fuel. These results do not include land-use change (LUC) GHG emissions, which we take as negligible. If LUC GHG emissions for grain sorghum ethanol as estimated by the US Environmental Protection Agency (EPA) are included (26 g CO2e/MJ), these reductions when wet DGS is co-produced decrease to 7% or 29% when FNG or RNG is used as the process fuel. Sweet sorghum-based ethanol can reduce GHG emissions by 71% or 72% without or with use of co-produced vinasse as farm fertilizer, respectively, in ethanol plants using only sugar juice to produce ethanol. If both sugar and cellulosic bagasse were used in the future for ethanol production, an ethanol plant with a combined heat and power (CHP) system that supplies all process energy can achieve a GHG emission reduction of 70% or 72%, respectively, without or with vinasse fertigation. Forage sorghum-based ethanol can achieve a 49% WTW GHG emission reduction when ethanol plants meet process energy demands with CHP. In the case of forage sorghum and an integrated sweet sorghum pathway, the use of a portion of feedstock to fuel CHP systems significantly reduces fossil fuel consumption and GHG emissions. This study provides new insight into life-cycle energy use and GHG emissions of multiple sorghum-based ethanol production pathways in the US. Our results show that adding sorghum feedstocks to the existing options for ethanol production could help in meeting the requirements for volumes of renewable, advanced and cellulosic bioethanol production in the US required by the EPA's Renewable Fuel Standard program.
2013-01-01
Background The availability of feedstock options is a key to meeting the volumetric requirement of 136.3 billion liters of renewable fuels per year beginning in 2022, as required in the US 2007 Energy Independence and Security Act. Life-cycle greenhouse gas (GHG) emissions of sorghum-based ethanol need to be assessed for sorghum to play a role in meeting that requirement. Results Multiple sorghum-based ethanol production pathways show diverse well-to-wheels (WTW) energy use and GHG emissions due to differences in energy use and fertilizer use intensity associated with sorghum growth and differences in the ethanol conversion processes. All sorghum-based ethanol pathways can achieve significant fossil energy savings. Relative to GHG emissions from conventional gasoline, grain sorghum-based ethanol can reduce WTW GHG emissions by 35% or 23%, respectively, when wet or dried distillers grains with solubles (DGS) is the co-product and fossil natural gas (FNG) is consumed as the process fuel. The reduction increased to 56% or 55%, respectively, for wet or dried DGS co-production when renewable natural gas (RNG) from anaerobic digestion of animal waste is used as the process fuel. These results do not include land-use change (LUC) GHG emissions, which we take as negligible. If LUC GHG emissions for grain sorghum ethanol as estimated by the US Environmental Protection Agency (EPA) are included (26 g CO2e/MJ), these reductions when wet DGS is co-produced decrease to 7% or 29% when FNG or RNG is used as the process fuel. Sweet sorghum-based ethanol can reduce GHG emissions by 71% or 72% without or with use of co-produced vinasse as farm fertilizer, respectively, in ethanol plants using only sugar juice to produce ethanol. If both sugar and cellulosic bagasse were used in the future for ethanol production, an ethanol plant with a combined heat and power (CHP) system that supplies all process energy can achieve a GHG emission reduction of 70% or 72%, respectively, without or with vinasse fertigation. Forage sorghum-based ethanol can achieve a 49% WTW GHG emission reduction when ethanol plants meet process energy demands with CHP. In the case of forage sorghum and an integrated sweet sorghum pathway, the use of a portion of feedstock to fuel CHP systems significantly reduces fossil fuel consumption and GHG emissions. Conclusions This study provides new insight into life-cycle energy use and GHG emissions of multiple sorghum-based ethanol production pathways in the US. Our results show that adding sorghum feedstocks to the existing options for ethanol production could help in meeting the requirements for volumes of renewable, advanced and cellulosic bioethanol production in the US required by the EPA’s Renewable Fuel Standard program. PMID:24088388
Designing advanced biochar products for maximizing greenhouse gas mitigation potential
USDA-ARS?s Scientific Manuscript database
Greenhouse gas (GHG) emissions from agricultural operations continue to increase. Carbon enriched char materials like biochar have been described as a mitigation strategy. Utilization of biochar material as a soil amendment has been demonstrated to provide potentially further soil GHG suppression du...
Olander, Lydia P; Cooley, David M; Galik, Christopher S
2012-03-01
Management of forests, rangelands, and wetlands on public lands, including the restoration of degraded lands, has the potential to increase carbon sequestration or reduce greenhouse gas (GHG) emissions beyond what is occurring today. In this paper we discuss several policy options for increasing GHG mitigation on public lands. These range from an extension of current policy by generating supplemental mitigation on public lands in an effort to meet national emissions reduction goals, to full participation in an offsets market by allowing GHG mitigation on public lands to be sold as offsets either by the overseeing agency or by private contractors. To help place these policy options in context, we briefly review the literature on GHG mitigation and public lands to examine the potential for enhanced mitigation on federal and state public lands in the United States. This potential will be tempered by consideration of the tradeoffs with other uses of public lands, the needs for climate change adaptation, and the effects on other ecosystem services.
NASA Astrophysics Data System (ADS)
Duggirala, Bhanu
This thesis explored the opportunities to reduce energy demand and renewable energy feasibility at an off-grid science "community" called the Experimental Lakes Area (ELA) in Ontario. Being off-grid, ELA is completely dependent on diesel and propane fuel supply for all its electrical and heating needs, which makes ELA vulnerable to fluctuating fuel prices. As a result ELA emits a large amount of greenhouse gases (GHG) for its size. Energy efficiency and renewable energy technologies can reduce energy consumption and consequently energy cost, as well as GHG. Energy efficiency was very important to ELA due to the elevated fuel costs at this remote location. Minor upgrades to lighting, equipment and building envelope were able to reduce energy costs and reduce load. Efficient energy saving measures were recommended that save on operating and maintenance costs, namely, changing to LED lights, replacing old equipment like refrigerators and downsizing of ice makers. This resulted in a 4.8% load reduction and subsequently reduced the initial capital cost for biomass by 27,000, by 49,500 for wind power and by 136,500 for solar power. Many alternative energies show promise as potential energy sources to reduce the diesel and propane consumption at ELA including wind energy, solar heating and biomass. A biomass based CHP system using the existing diesel generators as back-up has the shortest pay back period of the technologies modeled. The biomass based CHP system has a pay back period of 4.1 years at 0.80 per liter of diesel, as diesel price approaches $2.00 per liter the pay back period reduces to 0.9 years, 50% the generation cost compared to present generation costs. Biomass has been successfully tried and tested in many off-grid communities particularly in a small-scale off-grid setting in North America and internationally. Also, the site specific solar and wind data show that ELA has potential to harvest renewable resources and produce heat and power at competitive rates compared to diesel and propane.
NASA Astrophysics Data System (ADS)
Hassan, Mohd Nor Azman
Malaysia's transportation sector accounts for 48% of the country's total energy use. The country is expected to become a net oil importer by the year 2011. To encourage renewable energy development and relieve the country's emerging oil dependence, in 2006 the government mandated blending 5% palm-oil biodiesel in petroleum diesel. Malaysia produced 16 million tonnes of palm oil in 2007, mainly for food use. This study addresses maximizing bioenergy use from oil-palm to support Malaysia's energy initiative while minimizing greenhouse gas emissions from land use change. When converting primary and secondary forests to oil-palm plantations between 270 - 530 g and 120 -190 g CO2 equivalent (CO2-eq) per MJ of biodiesel produced, respectively, is released. However, converting degraded lands results in the capture of between 23 to 85 g CO2-eq per MJ of biodiesel produced. Using various combinations of land types, Malaysia could meet the 5% biodiesel target with a net GHG savings of about 1.03 million tonnes (4.9% of the transportation sector's diesel emissions) when accounting for the emissions savings from the diesel fuel displaced. Fossil fuels contributed about 93% to Malaysia's electricity generation mix and emit about 65 million tonnes (Mt) or 36% of the country's 2010 Greenhouse Gas (GHG) emissions. The government has set a target to install 330 MW biomass electricity by 2015, which is hoped to avoid 1.3 Mt of GHG emissions annually. The availability of seven types of biomass residues in Peninsular Malaysia is estimated based on residues-to-product ratio, recoverability and accessibility factor and other competing uses. It was found that there are approximately 12.2 Mt/yr of residues. Oil-palm residues contribute about 77% to the total availability with rice and forestry residues at 17%. Electricity from biomass can be produced via direct combustion in dedicated power plants or co-fired with coal. The co-firing of the residues at four existing coal plants in Peninsular Malaysia was modeled to minimize cost or GHG emissions. It is found that Malaysia can meet the 330 MW biomass electricity target via co-firing with a cost reduction of about 24 million compared to 100% coal. Optimal GHG reduction for co-firing was found to be 17 Mt lower than 100% coal at a cost of carbon mitigation (COM) of about 22.50/t CO2-eq mitigated. This COM is lower than an implied COM under the newly introduced levy on heavy electricity users in Malaysia. Gasoline consumed roughly 370 PJ of energy in Malaysia's transportation sector in 2009. Ethanol can be blended with gasoline up to 10% by volume in most vehicles. Peninsular Malaysia's 12.2 Mt/yr of agro-forestry residues can be used for potentially producing 3.8 billion liters ethanol annually. Using a large scale mixed-integer linear optimization, it is found that if Malaysia introduces a 10% ethanol-gasoline blend (E10), approximately 2.9 Mt (24%) of the residues would be used at 5.4 million more cost compared to 100% gasoline (reference case) estimated at 5.2 billion/yr. In the E10 scenario, all cities receive 10% ethanol altogether producing 900 million liters of ethanol. The GHG emissions for 100% gasoline is estimated at 26.4 Mt/yr. The minimum GHG emissions if E10 is implemented in Peninsular Malaysia was found to be 24.5 Mt, 2.0 Mt lower than 100% gasoline, which implies a 4.70/t CO2-eq cost of carbon mitigation (COM). Since only 24% of the available residues are used to produce the E10, the possibility of producing the E10 and electricity via co-firing with coal simultaneously was investigated. This is done by combining the fuel (gasoline/E10) model with the electricity (coal-only/co-firing) model. The costs of the reference case combined scenario (100% gasoline and 100% coal) is estimated at 6.3 billion/yr and emits 63 Mt/yr of GHG emissions. The minimum cost for producing the E10 and co-firing is found to be 30 million lower than the combined reference case. This is achieved by using 5.9 Mt of residues. The miniμm GHG emissions level obtained is 17 Mt lower implying a COM of 19.00/t CO2-eq mitigated. The findings in this research are used to recommend policies for mitigating GHG emissions impacts from the growth of palm oil use in the transportation sector. Policy recommendations are also discussed to ensure a successful implementation of co-firing of biomass and the production of E10 by ensuring a guaranteed supply of residues and financing the high capital cost of the renewable energy program.
Alternative Fuels Data Center: Petroleum Reduction Planning Tool
alternative fuel. Values found in Table 1. Fuel Cost Fuel_cost_current Fuel_cost_alt_new Fuel_cost_alt Fuel cost for old vehicle. Fuel cost for new vehicle using conventional vehicle Fuel cost for new vehicle *(Alt_GGE_factor_conv/Alt_GGE_factor)*Alt_GGE_factor*GHG_alt)] Yearly fuel cost savings resulting from fuel and vehicle
Pishgar-Komleh, Seyyed Hassan; Akram, Asadollah; Keyhani, Alireza; van Zelm, Rosalie
2017-07-01
In order to achieve sustainable development in agriculture, it is necessary to quantify and compare the energy, economic, and environmental aspects of products. This paper studied the energy, economic, and greenhouse gas (GHG) emission patterns in broiler chicken farms in the Alborz province of Iran. We studied the effect of the broiler farm size as different production systems on the energy, economic, and environmental indices. Energy use efficiency (EUE) and benefit-cost ratio (BCR) were 0.16 and 1.11, respectively. Diesel fuel and feed contributed the most in total energy inputs, while feed and chicks were the most important inputs in economic analysis. GHG emission calculations showed that production of 1000 birds produces 19.13 t CO 2-eq and feed had the highest share in total GHG emission. Total GHG emissions based on different functional units were 8.5 t CO 2-eq per t of carcass and 6.83 kg CO 2-eq per kg live weight. Results of farm size effect on EUE revealed that large farms had better energy management. For BCR, there was no significant difference between farms. Lower total GHG emissions were reported for large farms, caused by better management of inputs and fewer bird losses. Large farms with more investment had more efficient equipment, resulting in a decrease of the input consumption. In view of our study, it is recommended to support the small-scale broiler industry by providing subsidies to promote the use of high-efficiency equipment. To decrease the amount of energy usage and GHG emissions, replacing heaters (which use diesel fuel) with natural gas heaters can be considered. In addition to the above recommendations, the use of energy saving light bulbs may reduce broiler farm electricity consumption.
Ma, Ding; Chen, Wenying; Xu, Tengfang
2015-08-21
As one of the most energy-, emission- and pollution-intensive industries, iron and steel production is responsible for significant emissions of greenhouse gas (GHG) and air pollutants. Although many energy-efficiency measures have been proposed by the Chinese government to mitigate GHG emissions and to improve air quality, lacking full understanding of the costs and benefits has created barriers against implementing these measures widely. This paper sets out to advance the understanding by addressing the knowledge gap in costs, benefits, and cost-effectiveness of energy-efficiency measures in iron and steel production. Specifically, we build a new evaluation framework to quantify energy benefits andmore » environmental benefits (i.e., CO 2 emission reduction, air-pollutants emission reduction and water savings) associated with 36 energy-efficiency measures. Results show that inclusion of benefits from CO 2 and air-pollutants emission reduction affects the cost-effectiveness of energy-efficiency measures significantly, while impacts from water-savings benefits are moderate but notable when compared to the effects by considering energy benefits alone. The new information resulted from this study should be used to augment future programs and efforts in reducing energy use and environmental impacts associated with steel production.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, Ding; Chen, Wenying; Xu, Tengfang
As one of the most energy-, emission- and pollution-intensive industries, iron and steel production is responsible for significant emissions of greenhouse gas (GHG) and air pollutants. Although many energy-efficiency measures have been proposed by the Chinese government to mitigate GHG emissions and to improve air quality, lacking full understanding of the costs and benefits has created barriers against implementing these measures widely. This paper sets out to advance the understanding by addressing the knowledge gap in costs, benefits, and cost-effectiveness of energy-efficiency measures in iron and steel production. Specifically, we build a new evaluation framework to quantify energy benefits andmore » environmental benefits (i.e., CO 2 emission reduction, air-pollutants emission reduction and water savings) associated with 36 energy-efficiency measures. Results show that inclusion of benefits from CO 2 and air-pollutants emission reduction affects the cost-effectiveness of energy-efficiency measures significantly, while impacts from water-savings benefits are moderate but notable when compared to the effects by considering energy benefits alone. The new information resulted from this study should be used to augment future programs and efforts in reducing energy use and environmental impacts associated with steel production.« less
Battini, F; Agostini, A; Boulamanti, A K; Giuntoli, J; Amaducci, S
2014-05-15
This work analyzes the environmental impacts of milk production in an intensive dairy farm situated in the Northern Italy region of the Po Valley. Three manure management scenarios are compared: in Scenario 1 the animal slurry is stored in an open tank and then used as fertilizer. In scenario 2 the manure is processed in an anaerobic digestion plant and the biogas produced is combusted in an internal combustion engine to produce heat (required by the digester) and electricity (exported). Scenario 3 is similar to scenario 2 but the digestate is stored in a gas-tight tank. In scenario 1 the GHG emissions are estimated to be equal to 1.21 kg CO2 eq.kg(-1) Fat and Protein Corrected Milk (FPCM) without allocation of the environmental burden to the by-product meat. With mass allocation, the GHG emissions associated to the milk are reduced to 1.18 kg CO2 eq.kg(-1) FPCM. Using an economic allocation approach the GHG emissions allocated to the milk are 1.13 kg CO2 eq.kg(-1) FPCM. In scenarios 2 and 3, without allocation, the GHG emissions are reduced respectively to 0.92 (-23.7%) and 0.77 (-36.5%) kg CO2 eq.kg(-1) FPCM. If land use change due to soybean production is accounted for, an additional emission of 0.53 kg CO2 eq. should be added, raising the GHG emissions to 1.74, 1.45 and 1.30 kg CO2 eq kg(-1) FPCM in scenarios 1, 2 and 3, respectively. Primary energy from non-renewable resources decreases by 36.2% and 40.6% in scenarios 2 and 3, respectively, with the valorization of the manure in the biogas plant. The other environmental impact mitigated is marine eutrophication that decreases by 8.1% in both scenarios 2 and 3, mostly because of the lower field emissions. There is, however, a trade-off between non-renewable energy and GHG savings and other environmental impacts: acidification (+6.1% and +5.5% in scenarios 2 and 3, respectively), particulate matter emissions (+1.4% and +0.7%) and photochemical ozone formation potential (+41.6% and +42.3%) increase with the adoption of a biogas plant. The cause of the increase is mostly emissions from the CHP engine. These impacts can be tackled by improving biogas combustion technologies to reduce methane and NOx emissions. Freshwater eutrophication slightly increases (+0.8% in both scenarios 2 and 3) because of the additional infrastructures needed. In conclusion, on-farm manure anaerobic digestion with the production of electricity is an effective technology to significantly reduce global environmental impacts of dairy farms (GHG emissions and non-renewable energy consumption), however local impacts may increase as a consequence (especially photochemical ozone formation). Copyright © 2014 Elsevier B.V. All rights reserved.
Energy Feedback at the City-Wide Scale A comparison to building scale studies
NASA Astrophysics Data System (ADS)
Carter, Richard Allan
Climate change is a growing concern throughout the world. In the United States, leadership has so far failed to establish targeted reductions and agreement on mitigation strategies. Despite this, many large cities are taking on the challenge of measuring their emissions, establishing targeted reductions, and defining strategies for mitigation in the form of Climate Action Plans. Reporting of greenhouse gas (GHG) emissions by these cities is usually based on a one-time, annual calculation. Many studies have been conducted on the impact of providing energy use data or feedback to households, and in some cases, institutional or commercial businesses. In most of those studies, the act of providing feedback has resulted in a reduction of energy use, ranging from 2% to 15%, depending upon the features of the feedback. Many of these studies included only electric use. Studies where all energy use was reported are more accurate representations of GHG emissions. GHG emissions and energy use are not the same, depending on the fuel source and in the case of this paper, the focus is on reducing energy use. This research documents the characteristics of the feedback provided in those studies in order to determine which are most effective and should be considered for application to the community-wide scale. Eleven studies, including five primary and six secondary research papers, were reviewed and analyzed for the features of the feedback. Trends were established and evaluated with respect to their effectiveness and potential for use at the community-wide scale. This paper concludes that additional research is required to determine if the use of energy feedback at the city scale could result in savings similar to those observed at the household scale. This additional research could take advantage of the features assessed here in order to be more effective and to implement the features that are best able to scale up. Further research is needed to determine whether combining city-wide feedback with feedback for individual energy users within the city, both residential and commercial, has an even greater impact on reducing energy use and lowering GHG emissions.
NASA Astrophysics Data System (ADS)
Begum, Khadiza; Kuhnert, Matthias; Yeluripati, Jagadeesh; Smith, Pete; Ogle, Stephen; Parton, William; Kader, Abdul; Sleutel, Steven
2017-04-01
Agriculture is one of the main contributors to greenhouse gas (GHG) emissions in Bangladesh and rice production is one of the largest sources of GHG emissions. This study considers measurements from two test sites, situated in Mymensingh (Bangladesh), to calibrate and validate the biogeochemical model DailyDayCent and estimate the mitigation potential of alternative management practices at the sites. There are two different N application treatments on the two test sites, which are on the first site a control with no N application and a mineral fertilizer application (120 kg N ha-1) and on the second site only a mineral fertilizer application (110 kg N ha-1). For mitigation, the water management is modified in a modelling approach to estimate the mitigation potential for reducing GHG emissions. The model shows partial agreement with the observations. The modifications to the water management, by changing from permanent wetting to alternate wetting, shows a decrease in GHG emissions of up to 46 % and 37 % for the two test sites, respectively. These tests enable an optimization of the management options to reduce the GHG emissions while maintaining yields.
Pyrolysis and gasification of meat-and-bone-meal: energy balance and GHG accounting.
Cascarosa, Esther; Boldrin, Alessio; Astrup, Thomas
2013-11-01
Meat-and-bone-meal (MBM) produced from animal waste has become an increasingly important residual fraction needing management. As biodegradable waste is routed away from landfills, thermo-chemical treatments of MBM are considered promising solution for the future. Pyrolysis and gasification of MBM were assessed based on data from three experimental lab and pilot-scale plants. Energy balances were established for the three technologies, providing different outcomes for energy recovery: bio-oil was the main product for the pyrolysis system, while syngas and a solid fraction of biochar were the main products in the gasification system. These products can be used - eventually after upgrading - for energy production, thereby offsetting energy production elsewhere in the system. Greenhouse gases (GHG) accounting of the technologies showed that all three options provided overall GHG savings in the order of 600-1000kg CO2-eq. per Mg of MBM treated, mainly as a consequence of avoided fossil fuel consumption in the energy sector. Local conditions influencing the environmental performance of the three systems were identified, together with critical factors to be considered during decision-making regarding MBM management. Copyright © 2013 Elsevier Ltd. All rights reserved.
Potentials for Platooning in U.S. Highway Freight Transport: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muratori, Matteo; Holden, Jacob; Lammert, Michael
2017-03-15
Smart technologies enabling connection among vehicles and between vehicles and infrastructure as well as vehicle automation to assist human operators are receiving significant attention as means for improving road transportation systems by reducing fuel consumption - and related emissions - while also providing additional benefits through improving overall traffic safety and efficiency. For truck applications, currently responsible for nearly three-quarters of the total U.S. freight energy use and greenhouse gas (GHG) emissions, platooning has been identified as an early feature for connected and automated vehicles (CAVs) that could provide significant fuel savings and improved traffic safety and efficiency without radicalmore » design or technology changes compared to existing vehicles. A statistical analysis was performed based on a large collection of real-world U.S. truck usage data to estimate the fraction of total miles that are technically suitable for platooning. In particular, our analysis focuses on estimating 'platoonable' mileage based on overall highway vehicle use and prolonged high-velocity traveling, establishing that about 65% of the total miles driven by combination trucks could be driven in platoon formation, leading to a 4% reduction in total truck fuel consumption. This technical potential for 'platoonable' miles in the U.S. provides an upper bound for scenario analysis considering fleet willingness to platoon as an estimate of overall benefits of early adoption of CAV technologies. A benefit analysis is proposed to assess the overall potential for energy savings and emissions mitigation by widespread implementation of highway platooning for trucks.« less
Kung, Chih-Chun; McCarl, Bruce A.; Chen, Chi-Chung
2014-01-01
Taiwan suffers from energy insecurity and the threat of potential damage from global climate changes. Finding ways to alleviate these forces is the key to Taiwan’s future social and economic development. This study examines the economic and environmental impacts when ethanol, conventional electricity and pyrolysis-based electricity are available alternatives. Biochar, as one of the most important by-product from pyrolysis, has the potential to provide significant environmental benefits. Therefore, alternative uses of biochar are also examined in this study. In addition, because planting energy crops would change the current land use pattern, resulting in significant land greenhouse gases (GHG) emissions, this important factor is also incorporated. Results show that bioenergy production can satisfy part of Taiwan’s energy demand, but net GHG emissions offset declines if ethanol is chosen. Moreover, at high GHG price conventional electricity and ethanol will be driven out and pyrolysis will be a dominant technology. Fast pyrolysis dominates when ethanol and GHG prices are low, but slow pyrolysis is dominant at high GHG price, especially when land GHG emissions are endogenously incorporated. The results indicate that when land GHG emission is incorporated, up to 3.8 billion kWh electricity can be produced from fast pyrolysis, while up to 2.2 million tons of CO2 equivalent can be offset if slow pyrolysis is applied. PMID:24619159
Kung, Chih-Chun; McCarl, Bruce A; Chen, Chi-Chung
2014-03-11
Taiwan suffers from energy insecurity and the threat of potential damage from global climate changes. Finding ways to alleviate these forces is the key to Taiwan's future social and economic development. This study examines the economic and environmental impacts when ethanol, conventional electricity and pyrolysis-based electricity are available alternatives. Biochar, as one of the most important by-product from pyrolysis, has the potential to provide significant environmental benefits. Therefore, alternative uses of biochar are also examined in this study. In addition, because planting energy crops would change the current land use pattern, resulting in significant land greenhouse gases (GHG) emissions, this important factor is also incorporated. Results show that bioenergy production can satisfy part of Taiwan's energy demand, but net GHG emissions offset declines if ethanol is chosen. Moreover, at high GHG price conventional electricity and ethanol will be driven out and pyrolysis will be a dominant technology. Fast pyrolysis dominates when ethanol and GHG prices are low, but slow pyrolysis is dominant at high GHG price, especially when land GHG emissions are endogenously incorporated. The results indicate that when land GHG emission is incorporated, up to 3.8 billion kWh electricity can be produced from fast pyrolysis, while up to 2.2 million tons of CO2 equivalent can be offset if slow pyrolysis is applied.
Options to reduce greenhouse gas emissions during wastewater treatment for agricultural use.
Fine, Pinchas; Hadas, Efrat
2012-02-01
Treatment of primarily-domestic sewage wastewater involves on-site greenhouse gas (GHG) emissions due to energy inputs, organic matter degradation and biological nutrient removal (BNR). BNR causes both direct emissions and loss of fertilizer value, thus eliminating possible reduction of emissions caused by fertilizer manufacture. In this study, we estimated on-site GHG emissions under different treatment scenarios, and present options for emission reduction by changing treatment methods, avoiding BNR and by recovering energy from biogas. Given a typical Israeli wastewater strength (1050mg CODl(-1)), the direct on-site GHG emissions due to energy use were estimated at 1618 and 2102g CO(2)-eq m(-3), respectively, at intermediate and tertiary treatment levels. A potential reduction of approximately 23-55% in GHG emissions could be achieved by fertilizer preservation and VS conversion to biogas. Wastewater fertilizers constituted a GHG abatement potential of 342g CO(2)-eq m(-3). The residual component that remained in the wastewater effluent following intermediate (oxidation ponds) and enhanced (mechanical-biological) treatments was 304-254g CO(2)-eq m(-3) and 65-34g CO(2)-eq m(-3), respectively. Raw sludge constituted approximately 47% of the overall wastewater fertilizers load with an abatement potential of 150g CO(2)-eq m(-3) (385kg CO(2)-eq dry tonne(-1)). Inasmuch as anaerobic digestion reduced it to 63g CO(2)-eq m(-3) (261kg CO(2)-eq dry tonne(-1)), the GHG abatement gained through renewable biogas energy (approx. 428g CO(2)-eq m(-3)) favored digestion. However, sludge composting reduced the fertilizer value to 17g CO(2)-eq m(-3) (121kg CO(2)-eq dry tonne(-1)) or less (if emissions, off-site inputs and actual phytoavailability were considered). Taking Israel as an example, fully exploiting the wastewater derived GHG abatement potential could reduce the State overall GHG emissions by almost 1%. This demonstrates the possibility of optional carbon credits which might be exploited in the construction of new wastewater treatment facilities, especially in developing countries. Copyright © 2011 Elsevier B.V. All rights reserved.
Assessment of GHG mitigation and CDM technology in urban transport sector of Chandigarh, India.
Bhargava, Nitin; Gurjar, Bhola Ram; Mor, Suman; Ravindra, Khaiwal
2018-01-01
The increase in number of vehicles in metropolitan cities has resulted in increase of greenhouse gas (GHG) emissions in urban environment. In this study, emission load of GHGs (CO, N 2 O, CO 2 ) from Chandigarh road transport sector has been estimated using Vehicular Air Pollution Inventory (VAPI) model, which uses emission factors prevalent in Indian cities. Contribution of 2-wheelers (2-w), 3-wheelers (3-w), cars, buses, and heavy commercial vehicles (HCVs) to CO, N 2 O, CO 2 , and total GHG emissions was calculated. Potential for GHG mitigation through clean development mechanism (CDM) in transport sector of Chandigarh under two scenarios, i.e., business as usual (BAU) and best estimate scenario (BES) using VAPI model, has been explored. A major contribution of GHG load (~ 50%) in Chandigarh was from four-wheelers until 2011; however, it shows a declining trend after 2011 until 2020. The estimated GHG emission from motor vehicles in Chandigarh has increased more than two times from 1065 Gg in 2005 to 2486 Gg by 2011 and is expected to increase to 4014 Gg by 2020 under BAU scenario. Under BES scenario, 30% of private transport has been transformed to public transport; GHG load was possibly reduced by 520 Gg. An increase of 173 Gg in GHGs load is projected from additional scenario (ADS) in Chandigarh city if all the diesel buses are transformed to CNG buses by 2020. Current study also offers potential for other cities to plan better GHG reduction strategies in transport sector to reduce their climate change impacts.
Model-data frameworks for determining greenhouse gas implications of bioenergy landscapes in the US
NASA Astrophysics Data System (ADS)
Hudiburg, T. W.; Kent, J.; DeLucia, E. H.; Law, B. E.
2017-12-01
A sustainable, carbon-negative, bio-based portion of the energy sector may require considerable changes in land use. Perennial grasses have been proposed because of their potential to yield substantial biomass on marginal lands without displacing food and reduce GHG emissions by storing soil carbon. Woody biomass from harvest residues and forest health thinning operations have also been proposed, however the GHG mitigation potential is less clear. Through integration of observations, ecosystem, and economic models we have assessed the potential for a US Renewable Fuel Standard (RFS) to displace gasoline and reduce GHG emissions from the transportation sector, through the use of cellulosic biofuels (e.g. perennial grasses). We found that 2022 US transportation sector GHG emissions are decreased by 7.0 ± 2.5%; an estimate that is 50% less than those unconstrained by economic feasibility. Also, through integration of observations, ecosystem modeling, and life cycle assessment, we investigated potential carbon mitigation by replacing an Oregon coal plant with wood (bio-coal) from harvest residues and thinning operations in forests vulnerable to drought and fire. We found that carbon emissions varied from no change to moderate increases compared to the current emissions from the coal plant depending on transportation distance, energy inputs for conversion to bio-coal, and avoided emissions from fire and drought. Our work indicates that integrated assessment using ecosystem and economic models that are constrained by observations is required to evaluate potential GHG and carbon mitigation scenarios from varied feedstock sources.
van Middelaar, C E; Berentsen, P B M; Dijkstra, J; van Arendonk, J A M; de Boer, I J M
2014-01-01
Current decisions on breeding in dairy farming are mainly based on economic values of heritable traits, as earning an income is a primary objective of farmers. Recent literature, however, shows that breeding also has potential to reduce greenhouse gas (GHG) emissions. The objective of this paper was to compare 2 methods to determine GHG values of genetic traits. Method 1 calculates GHG values using the current strategy (i.e., maximizing labor income), whereas method 2 is based on minimizing GHG per kilogram of milk and shows what can be achieved if the breeding results are fully directed at minimizing GHG emissions. A whole-farm optimization model was used to determine results before and after 1 genetic standard deviation improvement (i.e., unit change) of milk yield and longevity. The objective function of the model differed between method 1 and 2. Method 1 maximizes labor income; method 2 minimizes GHG emissions per kilogram of milk while maintaining labor income and total milk production at least at the level before the change in trait. Results show that the full potential of the traits to reduce GHG emissions given the boundaries that were set for income and milk production (453 and 441kg of CO2 equivalents/unit change per cow per year for milk yield and longevity, respectively) is about twice as high as the reduction based on maximizing labor income (247 and 210kg of CO2 equivalents/unit change per cow per year for milk yield and longevity, respectively). The GHG value of milk yield is higher than that of longevity, especially when the focus is on maximizing labor income. Based on a sensitivity analysis, it was shown that including emissions from land use change and using different methods for handling the interaction between milk and meat production can change results, generally in favor of milk yield. Results can be used by breeding organizations that want to include GHG values in their breeding goal. To verify GHG values, the effect of prices and emissions factors should be considered, as well as the potential effect of variation between farm types. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
KIVA-hpFE. Predictive turbulent reactive and multiphase flow in engines - An Overview
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carrington, David Bradley
2016-05-23
Research and development of KIVA-hpFE for turbulent reactive and multiphase flow particularly as related to engine modeling program has relevance to National energy security and climate change. Climate change is a source problem, and energy national security is consumption of petroleum products problem. Accurately predicting engine processes leads to, lower greenhouse gas (GHG) emission, where engines in the transportation sector currently account for 26% of the U.S. GHG emissions. Less dependence on petroleum products leads to greater energy security. By Environmental Protection Agency standards, some vehicles are now reaching 42 to the 50 mpg mark. These are conventional gasoline engines.more » Continued investment and research into new technical innovations, the potential exists to save more than 4 million barrels of oil per day or approximately $200 to $400 million per day. This would be a significant decrease in emission and use of petroleum and a very large economic stimulus too! It is estimated with further advancements in combustion, the current emissions can be reduced up to 40%. Enabling better understanding of fuel injection and fuel-air mixing, thermodynamic combustion losses, and combustion/emission formation processes enhances our ability to help solve both problems. To provide adequate capability for accurately simulating these processes, minimize time and labor for development of engine technology, are the goals of our KIVA development program.« less
Air Permitting Streamlining Techniques and Approaches for Greenhouse Gases, 2012
This report presents potential GHG permit streamlining options and observations developed by the Clean Air Act Advisory Committee (CAAAC): Permits, New Source Review and Toxics Subcommittee GHG Permit Streamlining Workgroup
Environmental assessment of biofuel pathways in Ile de France based on ecosystem modeling.
Gabrielle, Benoît; Gagnaire, Nathalie; Massad, Raia Silvia; Dufossé, Karine; Bessou, Cécile
2014-01-01
The objective of the work reported here was to reduce the uncertainty on the greenhouse gas balances of biofuels using agro-ecosystem modeling at a high resolution over the Ile-de-France region in Northern France. The emissions simulated during the feedstock production stage were input to a life-cycle assessment of candidate biofuel pathways: bioethanol from wheat, sugar-beet and miscanthus, and biodiesel from oilseed rape. Compared to the widely-used methodology based on fixed emission factors, ecosystem modeling lead to 55-70% lower estimates for N2O emissions, emphasizing the importance of regional factors. The life-cycle GHG emissions of first-generation biofuels were 50-70% lower than fossil-based equivalents, and 85% lower for cellulosic ethanol. When including indirect land-use change effects, GHG savings became marginal for biodiesel and wheat ethanol, but were positive due to direct effects for cellulosic ethanol. Copyright © 2013 Elsevier Ltd. All rights reserved.
Lu, Fei; Wang, Xiaoke; Han, Bing; Ouyang, Zhiyun; Duan, Xiaonan; Zheng, Hua
2010-04-01
Based on the carbon-nitrogen cycles and greenhouse gas (GHG) mitigation and emission processes related to straw return and burning, a compound greenhouse gas budget model, the "Straw Return and Burning Model" (SRBM), was constructed to estimate the net mitigation potential of straw return to the soil in China. As a full GHG budget model, the SRBM addressed the following five processes: (1) soil carbon sequestration, (2) mitigation of synthetic N fertilizer substitution, (3) methane emission from rice paddies, (4) additional fossil fuel use for straw return, and (5) CH4 and N2O emissions from straw burning in the fields. Two comparable scenarios were created to reflect different degrees of implementation for straw return and straw burning. With GHG emissions and mitigation effects of the five processes converted into global warming potential (GWP), the net GHG mitigation was estimated. We concluded that (1) when the full greenhouse gas budget is considered, the net mitigation potential of straw return differs from that when soil carbon sequestration is considered alone; (2) implementation of straw return across a larger area of cropland in 10 provinces (i.e., Shanghai, Jiangsu, Zhejiang, Fujian, Jiangxi, Hubei, Hunan, Guangdong, Guangxi, and Hainan) will increase net GHG emission; (3) if straw return is promoted as a feasible mitigation measure in the remaining provinces, the total net mitigation potential before soil organic carbon (SOC) saturation will be 71.89 Tg CO2 equivalent (eqv)/yr, which is equivalent to 1.733% of the annual carbon emission from fossil fuel use in China in 2003; (4) after SOC saturation, only 13 of 21 provinces retain a relatively small but permanent net mitigation potential, while in the others the net GHG mitigation potential will gradually diminish; and (5) the major obstacle to the feasibility or permanence of straw return as a mitigation measure is the increased CH4 emission from rice paddies. The paper also suggests that comparable scenarios in which all the related carbon-nitrogen cycles are taken into account be created to estimate the mitigation potentials of organic wastes in different utilizations and treatments.
Mitigating Greenhouse Gas and Ammonia Emissions from Swine Manure Management: A System Analysis.
Wang, Yue; Dong, Hongmin; Zhu, Zhiping; Gerber, Pierre J; Xin, Hongwei; Smith, Pete; Opio, Carolyn; Steinfeld, Henning; Chadwick, Dave
2017-04-18
Gaseous emissions from animal manure are considerable contributor to global ammonia (NH 3 ) and agriculture greenhouse gas (GHG) emissions. Given the demand to promote mitigation of GHGs while fostering sustainable development of the Paris Agreement, an improvement of management systems is urgently needed to help mitigate climate change and to improve atmospheric air quality. This study presents a meta-analysis and an integrated assessment of gaseous emissions and mitigation potentials for NH 3 , methane (CH 4 ), and nitrous oxide (N 2 O) (direct and indirect) losses from four typical swine manure management systems (MMSs). The resultant emission factors and mitigation efficiencies allow GHG and NH 3 emissions to be estimated, as well as mitigation potentials for different stages of swine operation. In particular, changing swine manure management from liquid systems to solid-liquid separation systems, coupled with mitigation measures, could simultaneously reduce GHG emissions by 65% and NH 3 emissions by 78%. The resultant potential reduction in GHG emissions from China's pig production alone is greater than the entire GHG emissions from agricultural sector of France, Australia, or Germany, while the reduction in NH 3 emissions is equivalent to 40% of the total NH 3 emissions from the European Union. Thus, improved swine manure management could have a significant impact on global environment issues.
Jiang, Dong; Hao, Mengmeng; Wang, Qiao; Huang, Yaohuan; Fu, Xinyu
2014-01-01
The main purpose for developing biofuel is to reduce GHG (greenhouse gas) emissions, but the comprehensive environmental impact of such fuels is not clear. Life cycle analysis (LCA), as a complete comprehensive analysis method, has been widely used in bioenergy assessment studies. Great efforts have been directed toward establishing an efficient method for comprehensively estimating the greenhouse gas (GHG) emission reduction potential from the large-scale cultivation of energy plants by combining LCA with ecosystem/biogeochemical process models. LCA presents a general framework for evaluating the energy consumption and GHG emission from energy crop planting, yield acquisition, production, product use, and postprocessing. Meanwhile, ecosystem/biogeochemical process models are adopted to simulate the fluxes and storage of energy, water, carbon, and nitrogen in the soil-plant (energy crops) soil continuum. Although clear progress has been made in recent years, some problems still exist in current studies and should be addressed. This paper reviews the state-of-the-art method for estimating GHG emission reduction through developing energy crops and introduces in detail a new approach for assessing GHG emission reduction by combining LCA with biogeochemical process models. The main achievements of this study along with the problems in current studies are described and discussed. PMID:25045736
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Yan; Vyas, Anant D.; Guo, Zhaomiao
This report summarizes our evaluation of the potential energy-use and GHG-emissions reduction achieved by shifting freight from truck to rail under a most-likely scenario. A sensitivity analysis is also included. The sensitivity analysis shows changes in energy use and GHG emissions when key parameters are varied. The major contribution and distinction from previous studies is that this study considers the rail level of service (LOS) and commodity movements at the origin-destination (O-D) level. In addition, this study considers the fragility and time sensitivity of each commodity type.
Modaresi, Roja; Pauliuk, Stefan; Løvik, Amund N; Müller, Daniel B
2014-09-16
Light-weighting of passenger cars using high-strength steel or aluminum is a common emissions mitigation strategy. We provide a first estimate of the global impact of light-weighting by material substitution on GHG emissions from passenger cars and the steel and aluminum industries until 2050. We develop a dynamic stock model of the global car fleet and combine it with a dynamic MFA of the associated steel, aluminum, and energy supply industries. We propose four scenarios for substitution of conventional steel with high-strength steel and aluminum at different rates over the period 2010-2050. We show that light-weighting of passenger cars can become a "gigaton solution": Between 2010 and 2050, persistent light-weighting of passenger cars can, under optimal conditions, lead to cumulative GHG emissions savings of 9-18 gigatons CO2-eq compared to development business-as-usual. Annual savings can be up to 1 gigaton per year. After 2030, enhanced material recycling can lead to further reductions: closed-loop metal recycling in the automotive sector may reduce cumulative emissions by another 4-6 gigatons CO2-eq. The effectiveness of emissions mitigation by material substitution significantly depends on how the recycling system evolves. At present, policies focusing on tailpipe emissions and life cycle assessments of individual cars do not consider this important effect.
Potentials for sustainable transportation in cities to alleviate climate change impacts.
Mashayekh, Yeganeh; Jaramillo, Paulina; Samaras, Constantine; Hendrickson, Chris T; Blackhurst, Michael; MacLean, Heather L; Matthews, H Scott
2012-03-06
Reducing greenhouse gas emissions (GHG) is an important social goal to mitigate climate change. A common mitigation paradigm is to consider strategy "wedges" that can be applied to different activities to achieve desired GHG reductions. In this policy analysis piece, we consider a wide range of possible strategies to reduce light-duty vehicle GHG emissions, including fuel and vehicle options, low carbon and renewable power, travel demand management and land use changes. We conclude that no one strategy will be sufficient to meet GHG emissions reduction goals to avoid climate change. However, many of these changes have positive combinatorial effects, so the best strategy is to pursue combinations of transportation GHG reduction strategies to meet reduction goals. Agencies need to broaden their agendas to incorporate such combination in their planning.
GHG emissions and mitigation potential in Indian agriculture
NASA Astrophysics Data System (ADS)
Vetter, Sylvia; Feliciano, Diana; Sapkota, Tek; Hillier, Jon; Smith, Pete; Stirling, Clare
2016-04-01
India is one of the world's largest greenhouse gas (GHG) emitter, accounting for about 5% of global emissions with further increases expected in the future. The Government of India aims to reduce emission intensities by 20-25% by 2020 compared with the 2005 level. In a recent departure from past practice the reconvened Council on Climate Change stated that climate change in agriculture would include a component that would focus on reducing emissions in agriculture, particularly methane and nitrous oxide emissions. To develop recommendations for mitigation in agriculture in India, a baseline study is presented to analyse the GHG emissions from agriculture for current management (Directorate of Economics and Statistics of the government of India). This analysis is done for the two states Bihar and Haryana, which differ in their management and practises based on different climate and policies. This first analysis shows were the highest GHG emissions in agriculture is produced and were the highest mitigation potential might be. The GHG emissions and mitigation potential are calculated using the CCAFS Mitigation Option Tool (CCAFS-MOT) (https://ccafs.cgiar.org/mitigation-option-tool-agriculture#.VpTnWL826d4) with modifications for the special modelling. In a second step, stakeholder meetings provided a wide range of possible and definite scenarios (management, policy, technology, costs, etc.) for the future to mitigate emissions in agriculture as well as how to increase productivity. These information were used to create scenarios to give estimates for the mitigation potential in agriculture for India in 2020.
Crowd-Sourcing Management Activity Data to Drive GHG Emission Inventories in the Land Use Sector
NASA Astrophysics Data System (ADS)
Paustian, K.; Herrick, J.
2015-12-01
Greenhouse gas (GHG) emissions from the land use sector constitute the largest source category for many countries in Africa. Enhancing C sequestration and reducing GHG emissions on managed lands in Africa has to potential to attract C financing to support adoption of more sustainable land management practices that, in addition to GHG mitigation, can provide co-benefits of more productive and climate-resilient agroecosystems. However, robust systems to measure and monitor C sequestration/GHG reductions are currently a significant barrier to attracting more C financing to land use-related mitigation efforts.Anthropogenic GHG emissions are driven by a variety of environmental factors, including climate and soil attributes, as well as human-activities in the form of land use and management practices. GHG emission inventories typically use empirical or process-based models of emission rates that are driven by environmental and management variables. While a lack of field-based flux and C stock measurements are a limiting factor for GHG estimation, we argue that an even greater limitation may be availabiity of data on the management activities that influence flux rates, particularly in developing countries in Africa. In most developed countries there is a well-developed infrastructure of agricultural statistics and practice surveys that can be used to drive model-based GHG emission estimations. However, this infrastructure is largely lacking in developing countries in Africa. While some activity data (e.g. land cover change) can be derived from remote sensing, many key data (e.g., N fertilizer practices, residue management, manuring) require input from the farmers themselves. The explosive growth in cellular technology, even in many of the poorest parts of Africa, suggests the potential for a new crowd-sourcing approach and direct engagement with farmers to 'leap-frog' the land resource information model of developed countries. Among the many benefits of this approach would be high resolution management data to support GHG inventories at multiple scales. We present an overall conceptual model for this approach and examples from on-going projects in Africa employing direct farmer engagement, cellular technology and apps to develop this information resource.
Poulsen, Tjalfe G; Hansen, Jens Aage
2009-11-01
Historical data on organic waste and wastewater treatment during the period of 1970-2020 were used to assess the impact of treatment on energy and greenhouse gas (GHG) balances. The assessment included the waste fractions: Sewage sludge, food waste, yard waste and other organic waste (paper, plastic, etc.). Data were collected from Aalborg, a municipality located in Northern Denmark. During the period from 1970-2005, Aalborg Municipality has changed its waste treatment strategy from landfilling of all wastes toward composting of yard waste and incineration with combined heat and power production from the remaining organic municipal waste. Wastewater treatment has changed from direct discharge of untreated wastewater to full organic matter and nutrient (N, P) removal combined with anaerobic digestion of the sludge for biogas production with power and heat generation. These changes in treatment technology have resulted in the waste and wastewater treatment systems in Aalborg progressing from being net consumers of energy and net emitters of GHG, to becoming net producers of energy and net savers of GHG emissions (due to substitution of fossil fuels elsewhere). If it is assumed that the organic waste quantity and composition is the same in 1970 and 2005, the technology change over this time period has resulted in a progression from a net annual GHG emission of 200 kg CO( 2)-eq. capita(-1) in 1970 to a net saving of 170 kg CO(2)-eq. capita(-1) in 2005 for management of urban organic wastes.
Møller, Jacob; Boldrin, Alessio; Christensen, Thomas H
2009-11-01
Anaerobic digestion (AD) of source-separated municipal solid waste (MSW) and use of the digestate is presented from a global warming (GW) point of view by providing ranges of greenhouse gas (GHG) emissions that are useful for calculation of global warming factors (GWFs), i.e. the contribution to GW measured in CO(2)-equivalents per tonne of wet waste. The GHG accounting was done by distinguishing between direct contributions at the AD facility and indirect upstream or downstream contributions. GHG accounting for a generic AD facility with either biogas utilization at the facility or upgrading of the gas for vehicle fuel resulted in a GWF from -375 (a saving) to 111 (a load) kg CO(2)-eq. tonne(-1) wet waste. In both cases the digestate was used for fertilizer substitution. This large range was a result of the variation found for a number of key parameters: energy substitution by biogas, N(2)O-emission from digestate in soil, fugitive emission of CH( 4), unburned CH(4), carbon bound in soil and fertilizer substitution. GWF for a specific type of AD facility was in the range -95 to -4 kg CO(2)-eq. tonne(-1) wet waste. The ranges of uncertainty, especially of fugitive losses of CH(4) and carbon sequestration highly influenced the result. In comparison with the few published GWFs for AD, the range of our data was much larger demonstrating the need to use a consistent and robust approach to GHG accounting and simultaneously accept that some key parameters are highly uncertain.
NASA Astrophysics Data System (ADS)
Liu, Yang; Yan, Caiyu; Matthew, Cory; Wood, Brennon; Hou, Fujiang
2017-01-01
Greenhouse gas (GHG) emissions from livestock grazing systems are contributing to global warming. To examine the influence of yak grazing systems on GHG fluxes and relationships between GHG fluxes and environmental factors, we measured carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) fluxes over three key seasons in 2012 and 2013 from a range of potential sources, including: alpine meadows, dung patches, manure heaps and yak night pens, on the Qinghai-Tibetan Plateau. We also estimated the total annual global warming potential (GWP, CO2-equivalents) from family farm grazing yaks using our measured results and other published data. In this study, GHG fluxes per unit area from night pens and composting manure heaps were higher than from dung patches and alpine meadows. Increased moisture content and surface temperature of soil and manure were major factors increasing CO2 and CH4 fluxes. High contributions of CH4 and N2O (21.1% and 44.8%, respectively) to the annual total GWP budget (334.2 tonnes) strongly suggest these GHG other than CO2 should not be ignored when estimating GWP from the family farm grazing yaks on the Qinghai-Tibetan Plateau for the purposes of determining national and regional land use policies or compiling global GHG inventories.
Liu, Yang; Yan, Caiyu; Matthew, Cory; Wood, Brennon; Hou, Fujiang
2017-01-01
Greenhouse gas (GHG) emissions from livestock grazing systems are contributing to global warming. To examine the influence of yak grazing systems on GHG fluxes and relationships between GHG fluxes and environmental factors, we measured carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) fluxes over three key seasons in 2012 and 2013 from a range of potential sources, including: alpine meadows, dung patches, manure heaps and yak night pens, on the Qinghai-Tibetan Plateau. We also estimated the total annual global warming potential (GWP, CO2-equivalents) from family farm grazing yaks using our measured results and other published data. In this study, GHG fluxes per unit area from night pens and composting manure heaps were higher than from dung patches and alpine meadows. Increased moisture content and surface temperature of soil and manure were major factors increasing CO2 and CH4 fluxes. High contributions of CH4 and N2O (21.1% and 44.8%, respectively) to the annual total GWP budget (334.2 tonnes) strongly suggest these GHG other than CO2 should not be ignored when estimating GWP from the family farm grazing yaks on the Qinghai-Tibetan Plateau for the purposes of determining national and regional land use policies or compiling global GHG inventories. PMID:28106070
Liu, Yang; Yan, Caiyu; Matthew, Cory; Wood, Brennon; Hou, Fujiang
2017-01-20
Greenhouse gas (GHG) emissions from livestock grazing systems are contributing to global warming. To examine the influence of yak grazing systems on GHG fluxes and relationships between GHG fluxes and environmental factors, we measured carbon dioxide (CO 2 ), methane (CH 4 ) and nitrous oxide (N 2 O) fluxes over three key seasons in 2012 and 2013 from a range of potential sources, including: alpine meadows, dung patches, manure heaps and yak night pens, on the Qinghai-Tibetan Plateau. We also estimated the total annual global warming potential (GWP, CO 2 -equivalents) from family farm grazing yaks using our measured results and other published data. In this study, GHG fluxes per unit area from night pens and composting manure heaps were higher than from dung patches and alpine meadows. Increased moisture content and surface temperature of soil and manure were major factors increasing CO 2 and CH 4 fluxes. High contributions of CH 4 and N 2 O (21.1% and 44.8%, respectively) to the annual total GWP budget (334.2 tonnes) strongly suggest these GHG other than CO 2 should not be ignored when estimating GWP from the family farm grazing yaks on the Qinghai-Tibetan Plateau for the purposes of determining national and regional land use policies or compiling global GHG inventories.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Penev, Michael; Melaina, Marc; Bush, Brian
This report improves on the understanding of the long-term technology potential of low-carbon natural gas (LCNG) supply pathways by exploring transportation market adoption potential through 2035 in California. Techno-economic assessments of each pathway are developed to compare the capacity, cost, and greenhouse gas (GHG) emissions of select LCNG production pathways. The study analyzes the use of fuel from these pathways in light-, medium-, and heavy-duty vehicle applications. Economic and life-cycle GHG emissions analysis suggest that landfill gas resources are an attractive and relatively abundant resource in terms of cost and GHG reduction potential, followed by waste water treatment plants andmore » biomass with gasification and methanation. Total LCNG production potential is on the order of total natural gas demand anticipated in a success scenario for future natural gas vehicle adoption by 2035 across light-, medium-, and heavy-duty vehicle markets (110 trillion Btu/year).« less
Liu, Gang; Yu, Haiyang; Zhang, Guangbin; Xu, Hua; Ma, Jing
2016-09-01
To conserve water resources and guarantee food security, a new technology termed as "wet irrigation" is developed and practiced in rice fields; thus, its impact on radiative forcing derived from nitrous oxide (N2O) and methane (CH4) emissions merits serious attention. Dicyandiamide (DCD), a kind of nitrification inhibitor, is proposed as a viable means to mitigate greenhouse gas (GHG) emission while enhancing crop productivity. However, little is known about the response of GHG emission and grain yield to DCD application in a rice system under wet irrigation. In these regard, effects of water regime and DCD application on CH4 and N2O emissions, grain yield, global warming potential (GWP), and greenhouse gas intensity (GHGI) from rice fields were studied. For this study, a field experiment, designed: Treatment II (intermittent irrigation), Treatment WI (wet irrigation), Treatment IID (II plus DCD), and Treatment WID (WI plus DCD), was conducted in Jurong, Jiangsu Province, China, from 2011 to 2012. Relative to Treatment II, Treatment WI decreased CH4 emission significantly by 49-71 % while increasing N2O emission by 33-72 %. By integrating CH4 and N2O emissions and grain yield, Treatment WI was 20-28 and 11-15 % lower than Treatment II in GWP and GHGI, respectively. The use of DCD under wet irrigation reduced N2O emission significantly by 25-38 % (p < 0.05) and CH4 emission by 7-8 %, relative to Treatment WI, resulting in a decline of 18-30 % in GWP. Due to the increase in N use efficiency, maximal grain yield (6-7 %) and minimal GHGI (22-34 %) was observed in Treatment WID. These findings indicate that combined application of N fertilizer and DCD is a win-win strategy in water-saving high-yield rice production with less GHG emission.
Potentials for Platooning in U.S. Highway Freight Transport
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muratori, Matteo; Holden, Jacob; Lammert, Michael
2017-03-28
Smart technologies enabling connection among vehicles and between vehicles and infrastructure as well as vehicle automation to assist human operators are receiving significant attention as a means for improving road transportation systems by reducing fuel consumption - and related emissions - while also providing additional benefits through improving overall traffic safety and efficiency. For truck applications, which are currently responsible for nearly three-quarters of the total U.S. freight energy use and greenhouse gas (GHG) emissions, platooning has been identified as an early feature for connected and automated vehicles (CAVs) that could provide significant fuel savings and improved traffic safety andmore » efficiency without radical design or technology changes compared to existing vehicles. A statistical analysis was performed based on a large collection of real-world U.S. truck usage data to estimate the fraction of total miles that are technically suitable for platooning. In particular, our analysis focuses on estimating 'platoonable' mileage based on overall highway vehicle use and prolonged high-velocity traveling, and established that about 65% of the total miles driven by combination trucks from this data sample could be driven in platoon formation, leading to a 4% reduction in total truck fuel consumption. This technical potential for 'platoonable' miles in the United States provides an upper bound for scenario analysis considering fleet willingness and convenience to platoon as an estimate of overall benefits of early adoption of connected and automated vehicle technologies. A benefit analysis is proposed to assess the overall potential for energy savings and emissions mitigation by widespread implementation of highway platooning for trucks.« less
Studies on the role of goat heart galectin-1 as an erythrocyte membrane perturbing agent.
Ashraf, Ghulam Md; Perveen, Asma; Zaidi, Syed Kashif; Tabrez, Shams; Kamal, Mohammad A; Banu, Naheed
2015-01-01
Galectins are β-galactoside binding lectins with a potential hemolytic role on erythrocyte membrane integrity and permeability. In the present study, goat heart galectin-1 (GHG-1) was purified and investigated for its hemolytic actions on erythrocyte membrane. When exposed to various saccharides, lactose and sucrose provided maximum protection against hemolysis, while glucose and galactose provided lesser protection against hemolysis. GHG-1 agglutinated erythrocytes were found to be significantly hemolyzed in comparison with unagglutinated erythrocytes. A concentration dependent rise in the hemolysis of trypsinized rabbit erythrocytes was observed in the presence of GHG-1. Similarly, a temperature dependent gradual increase in percent hemolysis was observed in GHG-1 agglutinated erythrocytes as compared to negligible hemolysis in unagglutinated cells. The hemolysis of GHG-1 treated erythrocytes showed a sharp rise with the increasing pH up to 7.5 which became constant till pH 9.5. The extent of erythrocyte hemolysis increased with the increase in the incubation period, with maximum hemolysis after 5 h of incubation. The results of this study establish the ability of galectins as a potential hemolytic agent of erythrocyte membrane, which in turn opens an interesting avenue in the field of proteomics and glycobiology.
NASA Astrophysics Data System (ADS)
Sahajpal, R.
2015-12-01
The development of renewable energy sources is an integral step towards mitigating the carbon dioxide induced component of climate change. One important renewable source is plant biomass, comprising both food crops such as corn (Zea mays) and cellulosic biomass from short-rotation woody crops (SRWC) such as hybrid-poplar (Populus spp.) and Willow (Salix spp.). Due to their market acceptability and excellent energy balance, cellulosic feedstocks represent an abundant and if managed properly, a carbon-neutral and environmentally beneficial resource. We evaluate how site variability impacts the greenhouse-gas (GHG) benefits of SRWC plantations on lands potentially suited for bioenergy feedstock production in the Lake States (Minnesota, Wisconsin, Michigan). We combine high-resolution, spatially-explicit estimates of biomass, soil organic carbon and nitrous oxide emissions for SRWC plantations from the Environmental Policy Integrated Climate (EPIC) model along with life cycle analysis results from the GREET model to determine the greenhouse-gas payback time (GPBT) or the time needed before the GHG savings due to displacement of fossil fuels exceeds the initial losses from plantation establishment. We calibrate our models using unique yield and N2O emission data from sites across the Lake states that have been converted from pasture and hayfields to SRWC plantations. Our results show a reduction of 800,000 ha in non-agricultural open land availability for biomass production, a loss of nearly 37% (see attached figure). Overall, GPBTs range between 1 and 38 years, with the longest GPBTs occurring in the northern Lake states. Initial soil nitrate levels and site drainage potential explain more than half of the variation in GPBTs. Our results indicate a rapidly closing window of opportunity to establish a sustainable cellulosic feedstock economy in the Lake States.
Garg, A; Smith, R; Hill, D; Longhurst, P J; Pollard, S J T; Simms, N J
2009-08-01
This paper reports an integrated appraisal of options for utilising solid recovered fuels (SRF) (derived from municipal solid waste, MSW) in energy intensive industries within the United Kingdom (UK). Four potential co-combustion scenarios have been identified following discussions with industry stakeholders. These scenarios have been evaluated using (a) an existing energy and mass flow framework model, (b) a semi-quantitative risk analysis, (c) an environmental assessment and (d) a financial assessment. A summary of results from these evaluations for the four different scenarios is presented. For the given ranges of assumptions; SRF co-combustion with coal in cement kilns was found to be the optimal scenario followed by co-combustion of SRF in coal-fired power plants. The biogenic fraction in SRF (ca. 70%) reduces greenhouse gas (GHG) emissions significantly ( approximately 2500 g CO(2) eqvt./kg DS SRF in co-fired cement kilns and approximately 1500 g CO(2) eqvt./kg DS SRF in co-fired power plants). Potential reductions in electricity or heat production occurred through using a lower calorific value (CV) fuel. This could be compensated for by savings in fuel costs (from SRF having a gate fee) and grants aimed at reducing GHG emission to encourage the use of fuels with high biomass fractions. Total revenues generated from coal-fired power plants appear to be the highest ( 95 pounds/t SRF) from the four scenarios. However overall, cement kilns appear to be the best option due to the low technological risks, environmental emissions and fuel cost. Additionally, cement kiln operators have good experience of handling waste derived fuels. The scenarios involving co-combustion of SRF with MSW and biomass were less favourable due to higher environmental risks and technical issues.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, M.; Wang, M.; Liu, J.
2008-01-01
Since advances in the ABE (acetone-butanol-ethanol) fermentation process in recent years have led to significant increases in its productivity and yields, the production of butanol and its use in motor vehicles have become an option worth evaluating. This study estimates the potential life-cycle energy and emission effects associated with using bio-butanol as a transportation fuel. It employs a well-to-wheels (WTW) analysis tool: the Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) model. The estimates of life-cycle energy use and greenhouse gas (GHG) emissions are based on an Aspen Plus(reg. sign) simulation for a corn-to-butanol production process, which describesmore » grain processing, fermentation, and product separation. Bio-butanol-related WTW activities include corn farming, corn transportation, butanol production, butanol transportation, and vehicle operation. In this study, we also analyzed the bio-acetone that is coproduced with bio-butanol as an alternative to petroleum-based acetone. We then compared the results for bio-butanol with those of conventional gasoline. Our study shows that driving vehicles fueled with corn-based butanol produced by the current ABE fermentation process could result in substantial fossil energy savings (39%-56%) and avoid large percentage of the GHG emission burden, yielding a 32%-48% reduction relative to using conventional gasoline. On energy basis, a bushel of corn produces less liquid fuel from the ABE process than that from the corn ethanol dry mill process. The coproduction of a significant portion of acetone from the current ABE fermentation presents a challenge. A market analysis of acetone, as well as research and development on robust alternative technologies and processes that minimize acetone while increase the butanol yield, should be conducted.« less
Wu, May; Wang, Michael; Liu, Jiahong; Huo, Hong
2008-01-01
Since advances in the ABE (acetone-butanol-ethanol) fermentation process in recent years have led to significant increases in its productivity and yields, the production of butanol and its use in motor vehicles have become an option worth evaluating. This study estimates the potential life-cycle energy and emission effects associated with using bio-butanol as a transportation fuel. It employs a well-to-wheels (WTW) analysis tool: the Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) model. The estimates of life-cycle energy use and greenhouse gas (GHG) emissions are based on an Aspen Plus(R) simulation for a corn-to-butanol production process, which describes grain processing, fermentation, and product separation. Bio-butanol-related WTW activities include corn farming, corn transportation, butanol production, butanol transportation, and vehicle operation. In this study, we also analyzed the bio-acetone that is coproduced with bio-butanol as an alternative to petroleum-based acetone. We then compared the results for bio-butanol with those of conventional gasoline. Our study shows that driving vehicles fueled with corn-based butanol produced by the current ABE fermentation process could result in substantial fossil energy savings (39%-56%) and avoid large percentage of the GHG emission burden, yielding a 32%-48% reduction relative to using conventional gasoline. On energy basis, a bushel of corn produces less liquid fuel from the ABE process than that from the corn ethanol dry mill process. The coproduction of a significant portion of acetone from the current ABE fermentation presents a challenge. A market analysis of acetone, as well as research and development on robust alternative technologies and processes that minimize acetone while increase the butanol yield, should be conducted.
Drivers of potential GHG fluxes under bioenergy land use change in the UK
NASA Astrophysics Data System (ADS)
Parmar, Kim; Keith, Aidan M.; Perks, Mike; Rowe, Rebecca; Sohi, Saran; McNamara, Niall
2013-04-01
The greatest contributors to global greenhouse gases (GHG's) are CO2 emissions from fossil fuel use and following land use change (LUC). Globally, soils contain three times more carbon than the atmosphere and have the potential to act as GHG sources or sinks. A significant amount of land may be converted to bioenergy production to help meet UK 2050 renewable energy and GHG emissions reduction targets. This raises considerable sustainability concerns with respect to the effects of LUC on soil carbon (C) conservation and GHG emissions. Forests are a key component in the global C cycle and when managed effectively can reduce atmospheric GHG concentrations. Together with other dedicated bioenergy crops, Short Rotation Forestry (SRF) could be used to meet biomass requirements. SRF is defined as high density plantations of fastgrowing tree species grown on short rotational lengths (8-20 years) for biomass (McKay 2011). As SRF is likely to be an important domestic source of biomass for energy it is imperative that we gain an understanding of the implications for large-scale commercial application on soil C and the GHG balance. We utilized a paired-site approach to investigate how LUC to SRF could potentially alter the underlying processes of soil GHG production and consumption. This work was linked to a wider soil C stock inventory for bioenergy LUC, so our major focus was on changes to soil respiration. Specifically, we examined the relative importance of litter, soil, and microbial properties in determining potential soil respiration, and whether these relationships were consistent at different soil temperatures (10 ° C and 20 ° C). Soils were sampled to a depth of 30 cm from 30 LUC transitions across the UK and incubated under controlled laboratory conditions, with gas samples taken over a seven day enclosure period. CO2, N2O and CH4 gas fluxes were measured by gas chromatography and were examined together with other soil properties measured in the field and laboratory. LUC to SRF resulted in a significant reduction in CO2 fluxes overall at 0-15 cm (on both a soil mass and carbon mass basis). Furthermore, this response of CO2 flux to LUC was similar at both 10 ° C and 20 ° C. Reductions in CO2 flux at 0-15 cm are significantly related to decreased bacterial biomass, as measured by Phospholipid Fatty Acids (PLFA), soil pH and bulk density. These patterns suggest that changes in the quality and quantity of organic inputs under SRF may drive a reduction in soil respiration. While changes in soil C were limited, reduced respiration was supported by the increase in litter C stock under SRF. These findings indicate that LUC to SRF can strengthen the soils potential as a C sink whilst contributing successfully towards meeting GHG emissions reduction targets. This work is based on the Ecosystem Land Use Modelling & Soil Carbon GHG Flux Trial (ELUM) project, which was commissioned and funded by the Energy Technologies Institute (ETI)
Trade-offs between high yields and greenhouse gas emissions in irrigation wheat cropland in China
NASA Astrophysics Data System (ADS)
Cui, Z. L.; Wu, L.; Ye, Y. L.; Ma, W. Q.; Chen, X. P.; Zhang, F. S.
2014-04-01
Although the concept of producing higher yields with reduced greenhouse gas (GHG) emissions is a goal that attracts increasing public and scientific attention, the trade-off between high yields and GHG emissions in intensive agricultural production is not well understood. Here, we hypothesize that there exists a mechanistic relationship between wheat grain yield and GHG emission, and that could be transformed into better agronomic management. A total 33 sites of on-farm experiments were investigated to evaluate the relationship between grain yield and GHG emissions using two systems (conventional practice, CP; high-yielding systems, HY) of intensive winter wheat (Triticum aestivum L.) in China. Furthermore, we discussed the potential to produce higher yields with lower GHG emissions based on a survey of 2938 farmers. Compared to the CP system, grain yield was 39% (2352 kg ha-1) higher in the HY system, while GHG emissions increased by only 10%, and GHG emission intensity was reduced by 21%. The current intensive winter wheat system with farmers' practice had a median yield and maximum GHG emission rate of 6050 kg ha-1 and 4783 kg CO2 eq ha-1, respectively; however, this system can be transformed to maintain yields while reducing GHG emissions by 26% (6077 kg ha-1, and 3555 kg CO2 eq ha-1). Further, the HY system was found to increase grain yield by 39% with a simultaneous reduction in GHG emissions by 18% (8429 kg ha-1, and 3905 kg CO2 eq ha-1, respectively). In the future, we suggest moving the trade-off relationships and calculations from grain yield and GHG emissions to new measures of productivity and environmental protection using innovative management technologies.
Marañón, E; Salter, A M; Castrillón, L; Heaven, S; Fernández-Nava, Y
2011-08-01
Four dairy cattle farms considered representative of Northern Spain milk production were studied. Cattle waste was characterised and energy consumption in the farms was inventoried. Methane emissions due to slurry/manure management and fuel consumption on the farms were calculated. The possibility of applying anaerobic digestion to the slurry to minimise emissions and of using the biogas produced to replace fossil fuels on the farm was considered. Methane emissions due to slurry management (storage and use as fertiliser) ranged from 34 to 66kg CH(4)cow(-1)year(-1) for dairy cows and from 13 to 25kg CH(4)cow(-1)year(-1) for suckler calves. Cattle on these farms are housed for most of the year, and the contribution from emissions from manure dropped in pastures is insignificant due to the very low methane conversion factors. If anaerobic digestion were implemented on the farms, the potential GHG emissions savings per livestock unit would range from 978 to 1776kg CO(2)eq year(-1), with the main savings due to avoided methane emissions during slurry management. The methane produced would be sufficient to supply digester heating needs (35-55% of the total methane produced) and on-farm fuel energy requirements. Copyright © 2011 Elsevier Ltd. All rights reserved.
The Role of Industrial Parks in Mitigating Greenhouse Gas Emissions from China.
Guo, Yang; Tian, Jinping; Zang, Na; Gao, Yang; Chen, Lujun
2018-06-14
This study uncovered the direct and indirect energy-related GHG emissions of 213 Chinese national-level industrial parks, providing 11% of China's GDP, from a life-cycle perspective. Direct emissions are sourced from fuel combustion, and indirect emissions are embodied in energy production. The results indicated that in 2015, the direct and indirect GHG emissions of the parks were 1042 and 181 million tonne CO2 eq., respectively, totally accounting for 11% of national GHG emissions. The total energy consumption of the parks accounted for 10% of national energy consumption. Coal constituted 74% of total energy consumption in these parks. Baseline and low-carbon scenarios are established for 2030, and five GHG mitigation measures targeting energy consumption are modeled. The GHG mitigation potential for these parks in 2030 is quantified as 116 million tonne, equivalent to 9.5% of the parks' total emission in 2015. The measures that increase the share of natural gas consumption, reduce the GHG emission factor of electricity grid, and improve the average efficiency of industrial coal-fired boilers, will totally contribute 94% and 98% in direct and indirect GHG emissions reductions, respectively. These findings will provide a solid foundation for the low-carbon development of Chinese industrial parks.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
2013-03-01
This fact sheet summarizes actions in the areas of light-duty vehicle, non-light-duty vehicle, fuel, and transportation demand that show promise for deep reductions in energy use. Energy efficient transportation strategies have the potential to simultaneously reduce oil consumption and greenhouse gas (GHG) emissions. The Transportation Energy Futures (TEF) project examined how the combination of multiple strategies could achieve deep reductions in GHG emissions and petroleum use on the order of 80%. Led by NREL, in collaboration with Argonne National Laboratory, the project's primary goal was to help inform domestic decisions about transportation energy strategies, priorities, and investments, with an emphasismore » on underexplored opportunities. TEF findings reveal three strategies with the potential to displace most transportation-related petroleum use and GHG emissions: 1) Stabilizing energy use in the transportation sector through efficiency and demand-side approaches. 2) Using additional advanced biofuels. 3) Expanding electric drivetrain technologies.« less
NASA Astrophysics Data System (ADS)
Pratibha, G.; Srinivas, I.; Rao, K. V.; Shanker, Arun K.; Raju, B. M. K.; Choudhary, Deepak K.; Srinivas Rao, K.; Srinivasarao, Ch.; Maheswari, M.
2016-11-01
Agriculture has been considered as one of the contributors to greenhouse gas (GHG) emissions and it continues to increase with increase in crop production. Hence development of sustainable agro techniques with maximum crop production, and low global warming potential is need of the hour. Quantifying net global warming potential (NGWP) and greenhouse gas intensity (GHGI) of an agricultural activity is a method to assess the mitigation potential of the activity. But there is dearth of information on NGWP of conservation agriculture under rainfed conditions. Hence in this study two methods such as crop based (NGWPcrop) and soil based (NGWPsoil) were estimated from the data of the experiment initiated in 2009 in rainfed semiarid regions of Hyderabad, India with different tillage practices like conventional tillage (CT), reduced tillage (RT), zero tillage (ZT) and residue retention levels by harvesting at different heights which includes 0, 10 and 30 cm anchored residue in pigeonpea-castor systems. The results of the study revealed that under rainfed conditions CT recorded 24% higher yields over ZT, but CT and RT were on par with each other. However, the yield gap between the tillage treatments is narrowing down over 5 years of study. ZT and RT recorded 26 and 11% lower indirect GHG emissions (emissions from farm operations and input use) over CT, respectively. The percent contribution of CO2 eq. N2O emission is higher to total GHG emissions in both the crops. Both NGWPcrop, NGWPsoil, GHGIcrop, and GHGIsoil based were influenced by tillage and residue treatments. Further, castor grown on pigeonpea residue recorded 20% higher GHG emissions over pigeonpea grown on castor residues. The fuel consumption in ZT was reduced by 58% and 81% as compared to CT in pigeonpea and castor, respectively. Lower NGWP and GHGI based on crop and soil was observed with increase in crop residues and decrease in tillage intensity in both the crops. The results of the study indicate that, there is scope to reduce the NGWP emissions by reducing one tillage operation as in RT and increase in crop residue by harvesting at 10 and 30 cm height with minimal impact on the crop yields. However, the trade-off between higher yield and soil health versus GHG emissions should be considered while promoting conservation agriculture. The NGWPcrop estimation method indicated considerable benefits of residues to the soil and higher potential of GHG mitigation than by the NGWPsoil method and may overestimate the potential of GHG mitigation in agriculture system.
The influence of catalysts on biofuel life cycle analysis (LCA)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Benavides, Pahola Thathiana; Cronauer, Donald C.; Adom, Felix K.
Catalysts play an important role in biofuel production but are rarely included in biofuel life cycle analysis (LCA). In this work, we estimate the cradle-to-gate energy consumption and greenhouse gas (GHG) emissions of Pt/γ-Al 2O 3, CoMo/γ-Al 2O 3, and ZSM-5, catalysts that could be used in processes to convert biomass to biofuels. We also consider the potential impacts of catalyst recovery and recycling. Integrating the energy and environmental impacts of CoMo/γ-Al 2O 3 and ZSM-5 into an LCA of renewable gasoline produced via in-situ and ex-situ fast pyrolysis of a blended woody feedstock revealed that the ZSM-5, with cradle-to-gatemore » GHG emissions of 7.7 kg CO 2e/kg, could influence net life-cycle GHG emissions of the renewable gasoline (1.7 gCO 2e/MJ for the in-situ process, 1.2 gCO 2e/MJ for the ex-situ process) by up to 14% depending on the loading rate. CoMo/γ-Al 2O 3 had a greater GHG intensity (9.6 kg CO 2e/kg) than ZSM-5, however, it contributed approximately only 1% to the life-cycle GHG emissions of the renewable gasoline because of the small amount of this catalyst needed per kg of biofuel produced. As a result, given that catalysts can contribute significantly to biofuel life-cycle GHG emissions depending on the GHG intensity of their production and their consumption rates, biofuel LCAs should consider the potential influence of catalysts on LCA results.« less
The influence of catalysts on biofuel life cycle analysis (LCA)
Benavides, Pahola Thathiana; Cronauer, Donald C.; Adom, Felix K.; ...
2017-01-21
Catalysts play an important role in biofuel production but are rarely included in biofuel life cycle analysis (LCA). In this work, we estimate the cradle-to-gate energy consumption and greenhouse gas (GHG) emissions of Pt/γ-Al 2O 3, CoMo/γ-Al 2O 3, and ZSM-5, catalysts that could be used in processes to convert biomass to biofuels. We also consider the potential impacts of catalyst recovery and recycling. Integrating the energy and environmental impacts of CoMo/γ-Al 2O 3 and ZSM-5 into an LCA of renewable gasoline produced via in-situ and ex-situ fast pyrolysis of a blended woody feedstock revealed that the ZSM-5, with cradle-to-gatemore » GHG emissions of 7.7 kg CO 2e/kg, could influence net life-cycle GHG emissions of the renewable gasoline (1.7 gCO 2e/MJ for the in-situ process, 1.2 gCO 2e/MJ for the ex-situ process) by up to 14% depending on the loading rate. CoMo/γ-Al 2O 3 had a greater GHG intensity (9.6 kg CO 2e/kg) than ZSM-5, however, it contributed approximately only 1% to the life-cycle GHG emissions of the renewable gasoline because of the small amount of this catalyst needed per kg of biofuel produced. As a result, given that catalysts can contribute significantly to biofuel life-cycle GHG emissions depending on the GHG intensity of their production and their consumption rates, biofuel LCAs should consider the potential influence of catalysts on LCA results.« less
Quantifying and managing regional greenhouse gas emissions: waste sector of Daejeon, Korea.
Yi, Sora; Yang, Heewon; Lee, Seung Hoon; An, Kyoung-Jin
2014-06-01
A credible accounting of national and regional inventories for the greenhouse gas (GHG) reduction has emerged as one of the most significant current discussions. This article assessed the regional GHG emissions by three categories of the waste sector in Daejeon Metropolitan City (DMC), Korea, examined the potential for DMC to reduce GHG emission, and discussed the methodology modified from Intergovernmental Panel on Climate Change and Korea national guidelines. During the last five years, DMC's overall GHG emissions were 239 thousand tons CO2 eq./year from eleven public environmental infrastructure facilities, with a population of 1.52 million. Of the three categories, solid waste treatment/disposal contributes 68%, whilst wastewater treatment and others contribute 22% and 10% respectively. Among GHG unit emissions per ton of waste treatment, the biggest contributor was waste incineration of 694 kg CO2 eq./ton, followed by waste disposal of 483 kg CO2 eq./ton, biological treatment of solid waste of 209 kg CO2 eq./ton, wastewater treatment of 0.241 kg CO2 eq./m(3), and public water supplies of 0.067 kg CO2 eq./m(3). Furthermore, it is suggested that the potential in reducing GHG emissions from landfill process can be as high as 47.5% by increasing landfill gas recovery up to 50%. Therefore, it is apparent that reduction strategies for the main contributors of GHG emissions should take precedence over minor contributors and lead to the best practice for managing GHGs abatement. Copyright © 2014 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.
The global economic long-term potential of modern biomass in a climate-constrained world
NASA Astrophysics Data System (ADS)
Klein, David; Humpenöder, Florian; Bauer, Nico; Dietrich, Jan Philipp; Popp, Alexander; Bodirsky, Benjamin Leon; Bonsch, Markus; Lotze-Campen, Hermann
2014-07-01
Low-stabilization scenarios consistent with the 2 °C target project large-scale deployment of purpose-grown lignocellulosic biomass. In case a GHG price regime integrates emissions from energy conversion and from land-use/land-use change, the strong demand for bioenergy and the pricing of terrestrial emissions are likely to coincide. We explore the global potential of purpose-grown lignocellulosic biomass and ask the question how the supply prices of biomass depend on prices for greenhouse gas (GHG) emissions from the land-use sector. Using the spatially explicit global land-use optimization model MAgPIE, we construct bioenergy supply curves for ten world regions and a global aggregate in two scenarios, with and without a GHG tax. We find that the implementation of GHG taxes is crucial for the slope of the supply function and the GHG emissions from the land-use sector. Global supply prices start at 5 GJ-1 and increase almost linearly, doubling at 150 EJ (in 2055 and 2095). The GHG tax increases bioenergy prices by 5 GJ-1 in 2055 and by 10 GJ-1 in 2095, since it effectively stops deforestation and thus excludes large amounts of high-productivity land. Prices additionally increase due to costs for N2O emissions from fertilizer use. The GHG tax decreases global land-use change emissions by one-third. However, the carbon emissions due to bioenergy production increase by more than 50% from conversion of land that is not under emission control. Average yields required to produce 240 EJ in 2095 are roughly 600 GJ ha-1 yr-1 with and without tax.
Vergé, Xavier P.C.; Dyer, James A.; Worth, Devon E.; Smith, Ward N.; Desjardins, Raymond L.; McConkey, Brian G.
2012-01-01
Simple Summary We developed a model to estimate the carbon footprint of Canadian livestock production. To include long term soil carbon storage and loss potential we introduced a payback period concept. The model was tested by reallocating 10% only of the protein production from a ruminant to a non ruminant source to minimize the risk of including rangeland or marginal lands. This displacement generated residual land which was found to play a major role in the potential mitigation of GHG emissions. The model will allow land use policies aimed at reducing the agricultural GHG emissions to be assessed. Abstract To assess tradeoffs between environmental sustainability and changes in food production on agricultural land in Canada the Unified Livestock Industry and Crop Emissions Estimation System (ULICEES) was developed. It incorporates four livestock specific GHG assessments in a single model. To demonstrate the application of ULICEES, 10% of beef cattle protein production was assumed to be displaced with an equivalent amount of pork protein. Without accounting for the loss of soil carbon, this 10% shift reduced GHG emissions by 2.5 TgCO2e y−1. The payback period was defined as the number of years required for a GHG reduction to equal soil carbon lost from the associated land use shift. A payback period that is shorter than 40 years represents a net long term decrease in GHG emissions. Displacing beef cattle with hogs resulted in a surplus area of forage. When this residual land was left in ungrazed perennial forage, the payback periods were less than 4 years and when it was reseeded to annual crops, they were equal to or less than 40 years. They were generally greater than 40 years when this land was used to raise cattle. Agricultural GHG mitigation policies will inevitably involve a trade-off between production, land use and GHG emission reduction. ULICEES is a model that can objectively assess these trade-offs for Canadian agriculture. PMID:26487032
NASA Astrophysics Data System (ADS)
Zervas, G.; Tsiplakou, E.
2012-03-01
Greenhouse gas (GHG) emissions are expected to cause global warming which results in extreme weather changes that could affect crop yields and productivity, food supplies and food prices. It is also expected that climate change will have an impact on animal metabolism and health, reproduction and productivity. On the other hand, the expected increased demand of animal origin products in the coming years will increase the reared animal numbers and consequently GHG emissions. This paper outlines the main GHGs emitted from livestock which are CO2, CH4 and N2O, coming from respiration, enteric fermentation and manure management respectively, with CH4 and N2O having the highest global warming potential. Ruminant livestock has the highest contribution to these GHG emissions with small ruminants share being 12.25% of the total GHG emissions from livestock's enteric and manure CH4, and manure N2O in CO2 equivalent, producing 9.45 kg CO2 equivalent per kg body weight with the respective values for cattle, pigs and poultry being 5.45, 3.97 and 3.25. Since the production systems significantly affect the GHG emissions, the grazing, livestock crop complex, and intensive ones account for 30.5%, 67.29% and 5.51% for total CH4 emission (from enteric fermentation and manure management) and 24.32%, 68.11% and 7.57% for N2O respectively. Taking into account the positive and negative impacts of small ruminant livestock production systems to the environmental aspects in general, it is recommended that a number of potentially effective measures should be taken and the appropriate mitigation technologies should be applied in order to reduce effectively and essentially the GHG emissions to the atmosphere, with no adverse effects on intensification and increased productivity of small ruminants production systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wiser, Ryan; Mai, Trieu; Millstein, Dev
Monetizing the environmental health benefits of solar could add ~3.5¢/kWh to the value of solar energy (see Wiser et al. 2016). The monetary impacts due to environmental degradation and public health impacts seem far removed from the apparent “sticker price” of electricity. Yet quantifying these impacts is essential to understanding the true costs and benefits of solar and conventional generating technologies. Compared with fossil fuel generators, PV and CSP produce far lower lifecycle levels of greenhouse gas (GHG) emissions and harmful pollutants including fine particular matter (PM2.5), sulfur dioxide (SO2), and nitrogen oxides (NOx). Achieving the SunShot-level solar deployment targets—14%more » of U.S. electricity demand met by solar in 2030 and 27% in 2050—could reduce cumulative power-sector GHG emissions by 10% between 2015 and 2050, resulting in savings of $238–$252 billion. This is equivalent to 2.0–2.2 cents per kilowatt-hour of solar installed (¢/kWh-solar). Similarly, realizing these levels of solar deployment could reduce cumulative power-sector emissions of PM2.5 by 8%, SO2 by 9%, and NOx by 11% between 2015 and 2050. This could produce $167 billion in savings from lower future health and environmental damages, or 1.4¢/kWh-solar—while also preventing 25,000–59,000 premature deaths. To put this in perspective, the estimated 3.5¢/kWh-solar in benefits due to SunShot-level solar deployment is approximately equal to the additional LCOE reduction needed to make unsubsidized utility-scale solar competitive with conventional generators today. In addition, water savings from achieving the SunShot goals, could result in the 2015–2050 cumulative savings of 4% of total power-sector withdrawals and 9% of total power-sector consumption—a particularly important consideration for arid states where substantial solar will be deployed. Improving public health and the environment is but one aspect of solar’s many costs and benefits. Clearly, however, the assignment of value« less
Effects of media and species on soil CO2 efflux in the landscape
USDA-ARS?s Scientific Manuscript database
Increasing concentrations of greenhouse gases (GHG) including carbon dioxide, methane, and nitrous oxide are widely believed to be the main contributing factors leading to global climate change. The horticulture industry has the potential to improve GHG conditions through sequestering carbon (C) in ...
Biotechnologies for greenhouse gases (CH₄, N₂O, and CO₂) abatement: state of the art and challenges.
López, Juan C; Quijano, Guillermo; Souza, Theo S O; Estrada, José M; Lebrero, Raquel; Muñoz, Raúl
2013-03-01
Today, methane (CH4), nitrous oxide (N2O), and carbon dioxide (CO2) emissions represent approximately 98 % of the total greenhouse gas (GHG) inventory worldwide, and their share is expected to increase significantly in this twenty-first century. CO2 represents the most important GHG with approximately 77 % of the total GHG emissions (considering its global warming potential) worldwide, while CH4 and N2O are emitted to a lesser extent (14 and 8 %, respectively) but exhibit global warming potentials 23 and 298 times higher than that of CO2, respectively. Most members of the United Nations, based on the urgent need to maintain the global average temperature 2 °C above preindustrial levels, have committed themselves to significantly reduce their GHG emissions. In this context, an active abatement of these emissions will help to achieve these target emission cuts without compromising industrial growth. Nowadays, there are sufficient empirical evidence to support that biological technologies can become, if properly tailored, a low-cost and environmentally friendly alternative to physical/chemical methods for the abatement of GHGs. This study constitutes a state-of-the-art review of the microbiology (biochemistry, kinetics, and waste-to-value processes) and bioreactor technology of CH4, N2O, and CO2 abatement. The potential and limitations of biological GHG degradation processes are critically discussed, and the current knowledge gaps and technology niches in the field are identified.
NASA Astrophysics Data System (ADS)
Woldeyesus, Tibebe Argaw
Water supply constraints can significantly restrict electric power generation, and such constraints are expected to worsen with future climate change. The overarching goal of this thesis is to incorporate stochastic water-climate interactions into electricity portfolio models and evaluate various pathways for water savings in co-managed water-electric utilities. Colorado Springs Utilities (CSU) is used as a case study to explore the above issues. The thesis consists of three objectives: Characterize seasonality of water withdrawal intensity factors (WWIF) for electric power generation and develop a risk assessment framework due to water shortages; Incorporate water constraints into electricity portfolio models and evaluate the impact of varying capital investments (both power generation and cooling technologies) on water use and greenhouse gas emissions; Compare the unit cost and overall water savings from both water and electric sectors in co-managed utilities to facilitate overall water management. This thesis provided the first discovery and characterization of seasonality of WWIF with distinct summertime and wintertime variations of +/-17% compared to the power plant average (0.64gal/kwh) which itself is found to be significantly higher than the literature average (0.53gal/kwh). Both the streamflow and WWIF are found to be highly correlated with monthly average temperature (r-sq = 89%) and monthly precipitation (r-sq of 38%) enabling stochastic simulation of future WWIF under moderate climate change scenario. Future risk to electric power generation also showed the risk to be underestimated significantly when using either the literature average or the power plant average WWIF. Seasonal variation in WWIF along with seasonality in streamflow, electricity demand and other municipal water demands along with storage are shown to be important factors for more realistic risk estimation. The unlimited investment in power generation and/or cooling technologies is also found to save water and GHG emissions by 68% and 75% respectively at a marginal levelized cost increase of 12%. In contrast, the zero investment scenarios (which optimizes exiting technologies to address water scarcity constraints on power generation) shows 50% water savings and 23% GHG emissions reduction at a relatively high marginal levelized cost increase of 37%. Water saving strategies in electric sector show very high cost of water savings (48,000 and 200,000)/Mgal-year under unlimited investment and zero investment scenarios respectively, but they have greater water saving impacts of 6% to CSU municipal water demand; while the individual water saving strategies from water sector have low cost of water savings ranging from (37-1,500)/Mgal-year but with less than 0.5% water reduction impact to CSU due to their low penetration. On the other hand, use of reclaimed water for power plant cooling systems have shown great water savings of up to 92% against the BAU and cost of water saving from (0-73,000)/Mgal-year when integrated with unlimited investment and zero investment water minimizing scenarios respectively in the electric sector. Overall, cities need to focus primarily on use of reclaimed water and in new generation technologies' investment including cooling system retrofits while focusing on expanding the penetration rate of individual water saving strategies in the water sector.
2014-06-01
impacts to air quality. The potential effects of GHG emissions from the Proposed Action are by nature global. Substantial temperature increases...air quality. The potential effects of GHG emissions from the Proposed Action are by nature global. Substantial temperature increases attributable...human health or \\Velfare, including but not lin1ited to effects on 1nunicipal \\vater supplies, plankton, fish , shellfish, wildlife. and special
Studies on the role of goat heart galectin-1 as an erythrocyte membrane perturbing agent
Ashraf, Ghulam Md; Perveen, Asma; Zaidi, Syed Kashif; Tabrez, Shams; Kamal, Mohammad A.; Banu, Naheed
2014-01-01
Galectins are β-galactoside binding lectins with a potential hemolytic role on erythrocyte membrane integrity and permeability. In the present study, goat heart galectin-1 (GHG-1) was purified and investigated for its hemolytic actions on erythrocyte membrane. When exposed to various saccharides, lactose and sucrose provided maximum protection against hemolysis, while glucose and galactose provided lesser protection against hemolysis. GHG-1 agglutinated erythrocytes were found to be significantly hemolyzed in comparison with unagglutinated erythrocytes. A concentration dependent rise in the hemolysis of trypsinized rabbit erythrocytes was observed in the presence of GHG-1. Similarly, a temperature dependent gradual increase in percent hemolysis was observed in GHG-1 agglutinated erythrocytes as compared to negligible hemolysis in unagglutinated cells. The hemolysis of GHG-1 treated erythrocytes showed a sharp rise with the increasing pH up to 7.5 which became constant till pH 9.5. The extent of erythrocyte hemolysis increased with the increase in the incubation period, with maximum hemolysis after 5 h of incubation. The results of this study establish the ability of galectins as a potential hemolytic agent of erythrocyte membrane, which in turn opens an interesting avenue in the field of proteomics and glycobiology. PMID:25561893
Determining media and species effects on soil carbon dynamics in the landscape
USDA-ARS?s Scientific Manuscript database
Increased atmospheric carbon dioxide (CO2) concentration is an important factor in global change research. While agriculture is a major contributor to greenhouse gas (GHG) emissions, it has great potential to offset emissions by altering management practices. Much of the work on reducing GHG emissio...
The Carbon Footprint of Dairy Production Systems through Partial Life Cycle Assessment
USDA-ARS?s Scientific Manuscript database
Greenhouse gas (GHG) emissions and their potential impact on the environment has become an important national and international concern. Dairy production, along with all other types of animal agriculture, is a recognized source of GHG emissions, but little information exists on the net emissions fro...
Control of GHG emission at the microbial community level.
Insam, H; Wett, B
2008-01-01
All organic material eventually is decomposed by microorganisms, and considerable amounts of C and N end up as gaseous metabolites. The emissions of greenhouse relevant gases like carbon dioxide, methane and nitrous oxides largely depend on physico-chemical conditions like substrate quality or the redox potential of the habitat. Manipulating these conditions has a great potential for reducing greenhouse gas emissions. Such options are known from farm and waste management, as well as from wastewater treatment. In this paper examples are given how greenhouse gas production might be reduced by regulating microbial processes. Biogas production from manure, organic wastes, and landfills are given as examples how methanisation may be used to save fossil fuel. Methane oxidation, on the other hand, might alleviate the problem of methane already produced, or the conversion of aerobic wastewater treatment to anaerobic nitrogen elimination through the anaerobic ammonium oxidation process might reduce N2O release to the atmosphere. Changing the diet of ruminants, altering soil water potentials or a change of waste collection systems are other measures that affect microbial activities and that might contribute to a reduction of carbon dioxide equivalents being emitted to the atmosphere.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Selkowitz, Stephen; Selkowitz, Stephen; Granderson, Jessica
2008-06-16
It is widely accepted that if the United States is to reduce greenhouse gas emissions it must aggressively address energy end use in the building sector. While there have been some notable but modest successes with mandatory and voluntary programs, there have also been puzzling failures to achieve expected savings. Collectively, these programs have not yet reached the majority of the building stock, nor have they yet routinely produced very large savings in individual buildings. Several trends that have the potential to change this are noteworthy: (1) the growing market interest in 'green buildings' and 'sustainable design', (2) the majormore » professional societies (e.g. AIA, ASHRAE) have more aggressively adopted significant improvements in energy efficiency as strategic goals, e.g. targeting 'zero energy', carbon-neutral buildings by 2030. While this vision is widely accepted as desirable, unless there are significant changes to the way buildings are routinely designed, delivered and operated, zero energy buildings will remain a niche phenomenon rather than a sector-wide reality. Toward that end, a public/private coalition including the Alliance to Save Energy, LBNL, AIA, ASHRAE, USGBC and the World Business Council for Sustainable Development (WBCSD) are developing an 'action plan' for moving the U.S. commercial building sector towards zero energy performance. It addresses regional action in a national framework; integrated deployment, demonstration and R&D threads; and would focus on measurable, visible performance indicators. This paper outlines this action plan, focusing on the challenge, the key themes, and the strategies and actions leading to substantial reductions in GHG emissions by 2030.« less
NASA Astrophysics Data System (ADS)
DeLonge, M. S.; Ryals, R.; Silver, W. L.
2011-12-01
Soil amendments, such as compost and manure, can be applied to grasslands to improve soil conditions and enhance aboveground net primary productivity. Applying such amendments can also lead to soil carbon (C) sequestration and, when materials are diverted from waste streams (e.g., landfills, manure lagoons), can offset greenhouse gas (GHG) emissions. However, amendment production and application is also associated with GHG emissions, and the net impact of these amendments remains unclear. To investigate the potential for soil amendments to reduce net GHG emissions, we developed a comprehensive, field-scale life cycle assessment (LCA) model. The LCA includes GHG (i.e., CO2, CH4, N2O) emissions of soil amendment production, application, and ecosystem response. Emissions avoided by diverting materials from landfills or manure management systems are also considered. We developed the model using field observations from grazed annual grassland in northern California (e.g., soil C; above- and belowground net primary productivity; C:N ratios; trace gas emissions from soils, manure piles, and composting), CENTURY model simulations (e.g., long-term soil C and trace gas emissions from soils under various land management strategies), and literature values (e.g., GHG emissions from transportation, inorganic fertilizer production, composting, and enteric fermentation). The LCA quantifies and contrasts the potential net GHG impacts of applying compost, manure, and commercial inorganic fertilizer to grazing lands. To estimate the LCA uncertainty, sensitivity tests were performed on the most widely ranging or highly uncertain parameters (e.g., compost materials, landfill emissions, manure management system emissions). Finally, our results are scaled-up to assess the feasibility and potential impacts of large-scale adoption of soil amendment application as a land-management strategy in California. Our base case results indicate that C sinks and emissions offsets associated with compost production and application can exceed life cycle emissions, potentially leading to a net reduction in GHG emissions of over 20 Mg CO2e per hectare of treated land. If similar results could be obtained in only 5% of California's 2,550,000 ha of rangeland, compost amendment application could offset the annual emissions of the California agriculture and forestry industries (> 28.25 million Mg CO2e, California Air Resources Board, 2008). Our findings indicate that application of compost amendments to grasslands may be an effective, beneficial, and relatively inexpensive strategy to contribute to climate change mitigation.
Gao, Jinghong; Hou, Hongli; Zhai, Yunkai; Woodward, Alistair; Vardoulakis, Sotiris; Kovats, Sari; Wilkinson, Paul; Li, Liping; Song, Xiaoqin; Xu, Lei; Meng, Bohan; Liu, Xiaobo; Wang, Jun; Zhao, Jie; Liu, Qiyong
2018-09-01
To date, greenhouse gas (GHG) emissions, mitigation strategies and the accompanying health co-benefits in different economic sectors have not been fully investigated. The purpose of this paper is to review comprehensively the evidence on GHG mitigation measures and the related health co-benefits, identify knowledge gaps, and provide recommendations to promote further development and implementation of climate change response policies. Evidence on GHG emissions, abatement measures and related health co-benefits has been observed at regional, national and global levels, involving both low- and high-income societies. GHG mitigation actions have mainly been taken in five sectors: energy generation, transport, food and agriculture, household and industry, consistent with the main sources of GHG emissions. GHGs and air pollutants to a large extent stem from the same sources and are inseparable in terms of their atmospheric evolution and effects on ecosystem; thus, GHG reductions are usually, although not always, estimated to have cost effective co-benefits for public health. Some integrated mitigation strategies involving multiple sectors, which tend to create greater health benefits. The pros and cons of different mitigation measures, issues with existing knowledge, priorities for research, and potential policy implications were also discussed. Findings from this study can play a role not only in motivating large GHG emitters to make decisive changes in GHG emissions, but also in facilitating cooperation at international, national and regional levels, to promote GHG mitigation policies that protect public health from climate change and air pollution simultaneously. Copyright © 2018 Elsevier Ltd. All rights reserved.
Replacement policy of residential lighting optimized for cost, energy, and greenhouse gas emissions
NASA Astrophysics Data System (ADS)
Liu, Lixi; Keoleian, Gregory A.; Saitou, Kazuhiro
2017-11-01
Accounting for 10% of the electricity consumption in the US, artificial lighting represents one of the easiest ways to cut household energy bills and greenhouse gas (GHG) emissions by upgrading to energy-efficient technologies such as compact fluorescent lamps (CFL) and light emitting diodes (LED). However, given the high initial cost and rapidly improving trajectory of solid-state lighting today, estimating the right time to switch over to LEDs from a cost, primary energy, and GHG emissions perspective is not a straightforward problem. This is an optimal replacement problem that depends on many determinants, including how often the lamp is used, the state of the initial lamp, and the trajectories of lighting technology and of electricity generation. In this paper, multiple replacement scenarios of a 60 watt-equivalent A19 lamp are analyzed and for each scenario, a few replacement policies are recommended. For example, at an average use of 3 hr day-1 (US average), it may be optimal both economically and energetically to delay the adoption of LEDs until 2020 with the use of CFLs, whereas purchasing LEDs today may be optimal in terms of GHG emissions. In contrast, incandescent and halogen lamps should be replaced immediately. Based on expected LED improvement, upgrading LED lamps before the end of their rated lifetime may provide cost and environmental savings over time by taking advantage of the higher energy efficiency of newer models.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stephens, T. S.; Taylor, C. H.; Moore, J. S.
Under a diverse set of programs, the Vehicle Technologies and Fuel Cell Technologies offices of DOE’s Office of Energy Efficiency and Renewable Energy invest in research, development, demonstration, and deployment of advanced vehicle, hydrogen production, delivery and storage, and fuel cell technologies. This report estimates the benefits of successfully developing and deploying these technologies (a “Program Success” case) relative to a base case (the “No Program” case). The Program Success case represents the future with completely successful deployment of Vehicle Technologies Office (VTO) and Fuel Cell Technologies Office (FCTO) technologies. The No Program case represents a future in which theremore » is no contribution after FY 2016 by the VTO or FCTO to these technologies. The benefits of advanced vehicle, hydrogen production, delivery and storage, and fuel cell technologies were estimated on the basis of differences in fuel use, primary energy use, and greenhouse gas (GHG) emissions from light-, medium- and heavy-duty vehicles, including energy and emissions from fuel production, between the base case and the Program Success case. Improvements in fuel economy of various vehicle types, growth in the stock of fuel cell vehicles and other advanced technology vehicles, and decreased GHG intensity of hydrogen production and delivery in the Program Success case over the No Program case were projected to result in savings in petroleum use and GHG emissions. Benefits were disaggregated by individual program technology areas, which included the FCTO program and the VTO subprograms of batteries and electric drives; advanced combustion engines; fuels and lubricants; materials (for reduction in vehicle mass, or “lightweighting”); and, for medium- and heavy-duty vehicles, reduction in rolling and aerodynamic resistance. Projections for the Program Success case indicate that by 2035, the average fuel economy of on-road, light-duty vehicle stock could be 47% to 76% higher than in the No Program case. On-road medium- and heavy-duty vehicle stock could be as much as 39% higher. The resulting petroleum savings in 2035 were estimated to be as high as 3.1 million barrels per day, and reductions in GHG emissions were estimated to be as high as 500 million metric tons of CO2 equivalent per year. The benefits of continuing to invest government resources in advanced vehicle and fuel cell technologies would have significant economic value in the U.S. transportation sector and reduce its dependency on oil and its vulnerability to oil price shocks.« less
NASA Astrophysics Data System (ADS)
Cui, Z. L.; Ye, Y. L.; Ma, W. Q.; Chen, X. P.; Zhang, F. S.
2013-10-01
Although the concept of producing higher yields with reduced greenhouse gas (GHG) emissions is a goal that attracts increasing public and scientific attention, the tradeoff between crop productivity and GHG emissions in intensive agricultural production is not well understood. In this study, we investigated 33 sites of on-farm experiments to evaluate the tradeoff between grain yield and GHG emissions using two systems (conventional practice, CP; high-yielding systems, HY) of intensive irrigation wheat (Triticum aestivum L.) in China. Furthermore, we discussed the potential to produce higher yields with lower GHG emissions based on a survey of 2938 farmers. However, in both the HY and CP systems, wheat grain yield response to GHG emissions fit a linear-plateau model, whereas the curve for grain yield from the HY system was always higher than that from the CP system. Compared to the CP system, grain yield was 44% (2.6 Mg ha-1) higher in the HY system, while GHG emissions increased by only 2.5%, and GHG emission intensity was reduced by 29%. The current intensive irrigation wheat system with farmers' practice had a median yield and maximum GHG emission rate of 6.05 Mg ha-1 and 4783 kg CO2 eq ha-1, respectively; however, this system can be transformed to maintain yields while reducing GHG emissions by 40% (5.96 Mg ha-1, and 2890 kg CO2 eq ha-1). Further, the HY system was found to increase grain yield by 41% with a simultaneous reduction in GHG emissions by 38% (8.55 Mg ha-1, and 2961 kg CO2 eq ha-1, respectively). In the future, we suggest moving the tradeoff relationships and calculations from grain yield and GHG emissions, to new measures of productivity and environmental protection using innovative management technologies. This shift in focus is critical to achieve food and environmental security.
van de Kamp, Mirjam E; Seves, S Marije; Temme, Elisabeth H M
2018-02-20
The typical Western diet is associated with high levels of greenhouse gas (GHG) emissions and with obesity and other diet-related diseases. This study aims to determine the impact of adjustments to the current diet at specific moments of food consumption, to lower GHG emissions and improve diet quality. Food consumption in the Netherlands was assessed by two non-consecutive 24-h recalls for adults aged 19-69 years (n = 2102). GHG emission of food consumption was evaluated with the use of life cycle assessments. The population was stratified by gender and according to tertiles of dietary GHG emission. Scenarios were developed to lower GHG emissions of people in the highest tertile of dietary GHG emission; 1) reducing red and processed meat consumed during dinner by 50% and 75%, 2) replacing 50% and 100% of alcoholic and soft drinks (including fruit and vegetable juice and mineral water) by tap water, 3) replacing cheese consumed in between meals by plant-based alternatives and 4) two combinations of these scenarios. Effects on GHG emission as well as nutrient content of the diet were assessed. The mean habitual daily dietary GHG emission in the highest tertile of dietary GHG emission was 6.7 kg CO 2 -equivalents for men and 5.1 kg CO 2 -equivalents for women. The scenarios with reduced meat consumption and/or replacement of all alcoholic and soft drinks were most successful in reducing dietary GHG emissions (ranging from - 15% to - 34%) and also reduced saturated fatty acid intake and/or sugar intake. Both types of scenarios lead to reduced energy and iron intakes. Protein intake remained adequate. Reducing the consumption of red and processed meat during dinner and of soft and alcoholic drinks throughout the day leads to significantly lower dietary GHG emissions of people in the Netherlands in the highest tertile of dietary GHG emissions, while also having health benefits. For subgroups of the population not meeting energy or iron requirements as a result of these dietary changes, low GHG emission and nutritious replacement foods might be needed in order to meet energy and iron requirements.
Degradation activities, drivers, and emissions: US Forest Service LEAF Country Assessments
Patricia Manley; Leif Mortenson; James Halperin; Rick Turner
2013-01-01
Degradation is emerging as a common outcome of forest activities, and associated greenhouse gas (GHG) emissions have the potential to be significant. Understanding the activities and drivers of degradation is central to the ability to effectively measure, monitor, and mitigate associated emissions. Current inventories of GHG emissions do not effectively account for...
USDA-ARS?s Scientific Manuscript database
In this study, we examined the various meteorological factors (i.e., air temperatures, solar radiation, and heat fluxes) that potentially affect greenhouse gas (GHG) emissions from swine waste lagoon. GHG concentrations (methane, carbon dioxide, and nitrous oxide) were monitored using a photoacous...
Improvements to coal power plant technology and the co-fired combustion of biomass promise direct greenhouse gas (GHG) reductions for existing coal-fired power plants. Questions remain as to what the reduction potentials are from a life cycle perspective and if it will result in ...
Diurnal variation in greenhouse fluxes from a feedyard pen surface
USDA-ARS?s Scientific Manuscript database
Accurate estimation of greenhouse gas (GHG) emissions, including nitrous oxide (N2O) and methane (CH4) from open-lot beef cattle feedlots is an increasing concern given the current and potential future reporting requirements for GHG emissions. Research concerning N2O and CH4 emission fluxes from the...
Greenhouse gas emissions for refrigerant choices in room air conditioner units.
Galka, Michael D; Lownsbury, James M; Blowers, Paul
2012-12-04
In this work, potential replacement refrigerants for window-mounted room air conditioners (RACs) in the U.S. have been evaluated using a greenhouse gas (GHG) emissions analysis. CO(2)-equivalent emissions for several hydrofluoroethers (HFEs) and other potential replacements were compared to the most widely used refrigerants today. Included in this comparison are pure refrigerants that make up a number of hydrofluorocarbon (HFC) mixtures, pure hydrocarbons, and historically used refrigerants such as propane and ammonia. GHG emissions from direct and indirect sources were considered in this thermodynamic analysis. Propylene, dimethyl ether, ammonia, R-152a, propane, and HFE-152a all performed effectively in a 1 ton window unit and produced slightly lower emissions than the currently used R-22 and R-134a. The results suggest that regulation of HFCs in this application would have some effect on reducing emissions since end-of-life emissions remain at 55% of total refrigerant charge despite EPA regulations that mandate 80% recovery. Even so, offsite emissions due to energy generation dominate over direct GHG emissions and all the refrigerants perform similarly in totals of indirect GHG emissions.
Samaras, Constantine; Meisterling, Kyle
2008-05-01
Plug-in hybrid electric vehicles (PHEVs), which use electricity from the grid to power a portion of travel, could play a role in reducing greenhouse gas (GHG) emissions from the transport sector. However, meaningful GHG emissions reductions with PHEVs are conditional on low-carbon electricity sources. We assess life cycle GHG emissions from PHEVs and find that they reduce GHG emissions by 32% compared to conventional vehicles, but have small reductions compared to traditional hybrids. Batteries are an important component of PHEVs, and GHGs associated with lithium-ion battery materials and production account for 2-5% of life cycle emissions from PHEVs. We consider cellulosic ethanol use and various carbon intensities of electricity. The reduced liquid fuel requirements of PHEVs could leverage limited cellulosic ethanol resources. Electricity generation infrastructure is long-lived, and technology decisions within the next decade about electricity supplies in the power sector will affectthe potential for large GHG emissions reductions with PHEVs for several decades.
Taş, Neslihan; Prestat, Emmanuel; McFarland, Jack W; Wickland, Kimberley P; Knight, Rob; Berhe, Asmeret Asefaw; Jorgenson, Torre; Waldrop, Mark P; Jansson, Janet K
2014-09-01
Permafrost soils are large reservoirs of potentially labile carbon (C). Understanding the dynamics of C release from these soils requires us to account for the impact of wildfires, which are increasing in frequency as the climate changes. Boreal wildfires contribute to global emission of greenhouse gases (GHG-CO2, CH4 and N2O) and indirectly result in the thawing of near-surface permafrost. In this study, we aimed to define the impact of fire on soil microbial communities and metabolic potential for GHG fluxes in samples collected up to 1 m depth from an upland black spruce forest near Nome Creek, Alaska. We measured geochemistry, GHG fluxes, potential soil enzyme activities and microbial community structure via 16SrRNA gene and metagenome sequencing. We found that soil moisture, C content and the potential for respiration were reduced by fire, as were microbial community diversity and metabolic potential. There were shifts in dominance of several microbial community members, including a higher abundance of candidate phylum AD3 after fire. The metagenome data showed that fire had a pervasive impact on genes involved in carbohydrate metabolism, methanogenesis and the nitrogen cycle. Although fire resulted in an immediate release of CO2 from surface soils, our results suggest that the potential for emission of GHG was ultimately reduced at all soil depths over the longer term. Because of the size of the permafrost C reservoir, these results are crucial for understanding whether fire produces a positive or negative feedback loop contributing to the global C cycle.
Sohl, Terry L.; Sleeter, Benjamin M.; Zhu, Zhiliang; Sayler, Kristi L.; Bennett, Stacie; Bouchard, Michelle; Reker, Ryan R.; Hawbaker, Todd J.; Wein, Anne M.; Liu, Shuguang; Kanengieter, Ronald L.; Acevedo, William
2012-01-01
Changes in land use, land cover, disturbance regimes, and land management have considerable influence on carbon and greenhouse gas (GHG) fluxes within ecosystems. Through targeted land-use and land-management activities, ecosystems can be managed to enhance carbon sequestration and mitigate fluxes of other GHGs. National-scale, comprehensive analyses of carbon sequestration potential by ecosystem are needed, with a consistent, nationally applicable land-use and land-cover (LULC) modeling framework a key component of such analyses. The U.S. Geological Survey has initiated a project to analyze current and projected future GHG fluxes by ecosystem and quantify potential mitigation strategies. We have developed a unique LULC modeling framework to support this work. Downscaled scenarios consistent with IPCC Special Report on Emissions Scenarios (SRES) were constructed for U.S. ecoregions, and the FORE-SCE model was used to spatially map the scenarios. Results for a prototype demonstrate our ability to model LULC change and inform a biogeochemical modeling framework for analysis of subsequent GHG fluxes. The methodology was then successfully used to model LULC change for four IPCC SRES scenarios for an ecoregion in the Great Plains. The scenario-based LULC projections are now being used to analyze potential GHG impacts of LULC change across the U.S.
Sohl, Terry L.; Sleeter, Benjamin M.; Zhu, Zhi-Liang; Sayler, Kristi L.; Bennett, Stacie; Bouchard, Michelle; Reker, Ryan R.; Hawbaker, Todd; Wein, Anne; Liu, Shu-Guang; Kanengleter, Ronald; Acevedo, William
2012-01-01
Changes in land use, land cover, disturbance regimes, and land management have considerable influence on carbon and greenhouse gas (GHG) fluxes within ecosystems. Through targeted land-use and landmanagement activities, ecosystems can be managed to enhance carbon sequestration and mitigate fluxes of other GHGs. National-scale, comprehensive analyses of carbon sequestration potential by ecosystem are needed, with a consistent, nationally applicable land-use and land-cover (LULC) modeling framework a key component of such analyses. The U.S. Geological Survey has initiated a project to analyze current and projected future GHG fluxes by ecosystem and quantify potential mitigation strategies. We have developed a unique LULC modeling framework to support this work. Downscaled scenarios consistent with IPCC Special Report on Emissions Scenarios (SRES) were constructed for U.S. ecoregions, and the FORE-SCE model was used to spatially map the scenarios. Results for a prototype demonstrate our ability to model LULC change and inform a biogeochemical modeling framework for analysis of subsequent GHG fluxes. The methodology was then successfully used to model LULC change for four IPCC SRES scenarios for an ecoregion in the Great Plains. The scenario-based LULC projections are now being used to analyze potential GHG impacts of LULC change across the U.S.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Izursa, Jose-Luis; Hanlon, Edward; Amponsah, Nana
2013-02-15
The agriculture sector is in a growing need to develop greenhouse gas (GHG) mitigation techniques to reduce the enhanced greenhouse effect. The challenge to the sector is not only to reduce net emissions but also increase production to meet growing demands for food, fiber, and biofuel. This study focuses on the changes in the GHG balance of three biofuel feedstock (biofuel sugarcane, energy-cane and sweet sorghum) considering changes caused by the adoption of conservationist practices such as reduced tillage, use of controlled-release fertilizers or when cultivation areas are converted from burned harvest to green harvest. Based on the Intergovernmental Panelmore » on Climate Change (IPCC) (2006) balance and the Tools for the Reduction and Assessment of Chemical and Other Environmental Impacts (TRACI) characterization factors published by the EPA, the annual emission balance includes use energy (diesel and electricity), equipment, and ancillary materials, according to the mean annual consumption of supplies per hectare. The total amounts of GWP were 2740, 1791, and 1910 kg CO2e ha-1 y-1 for biofuel sugarcane, energy-cane and sweet sorghum, respectively, when produced with conventional tillage and sugarcane was burned prior to harvesting. Applying reduced tillage practices, the GHG emissions reduced to 13% for biofuel sugarcane, 23% for energy-cane and 8% for sweet sorghum. A similar decrease occurs when a controlled-release fertilizer practice is adopted, which helps reduce the total emission balance in 5%, 12% and 19% for biofuel sugarcane, energy-cane and sweet sorghum, respectively and a 31% average reduction in eutrophication potential. Moreover, the GHG emissions for biofuel sugarcane, with the adoption of green harvest, would result in a smaller GHG balance of 1924 kg CO2e ha-1 y-1, providing an effect strategy for GHG mitigation while still providing a profitable yield in Florida.« less
Greenhouse Gas Emissions from Reservoir Water Surfaces: A ...
Collectively, reservoirs are an important anthropogenic source of greenhouse gases (GHGs) to the atmosphere. Attempts to model reservoir GHG fluxes, however, have been limited by inconsistencies in methodological approaches and data availability. An increase in the number of published reservoir GHG flux estimates during the last 15 years warrants a comprehensive analysis of the magnitude and potential controls on these fluxes. Here we synthesize worldwide reservoir CH4, CO2, and N2O emission data and estimate that GHG emissions from reservoirs account for 80.2 Tmol CO2 equivalents yr-1, thus constituting approximately 5% of anthropogenic radiative forcing. The majority (93%) of these emissions are from CH4, and mainly in the form of bubbles. While age and latitude have historically been linked to reservoir GHG emissions, we found that factors related to reservoir nutrient status and rainfall were better predictors. In particular, nutrient-rich eutrophic reservoirs were found to have an order of magnitude higher per-area CH4 fluxes, on average, than their nutrient-poor oligotrophic counterparts. Therefore, management measures to reduce reservoir eutrophication may result in an important co-benefit, the reduction of GHG emissions to the atmosphere. Greenhouse gas emissions (GHG)
Dietary greenhouse gas emissions of meat-eaters, fish-eaters, vegetarians and vegans in the UK.
Scarborough, Peter; Appleby, Paul N; Mizdrak, Anja; Briggs, Adam D M; Travis, Ruth C; Bradbury, Kathryn E; Key, Timothy J
The production of animal-based foods is associated with higher greenhouse gas (GHG) emissions than plant-based foods. The objective of this study was to estimate the difference in dietary GHG emissions between self-selected meat-eaters, fish-eaters, vegetarians and vegans in the UK. Subjects were participants in the EPIC-Oxford cohort study. The diets of 2,041 vegans, 15,751 vegetarians, 8,123 fish-eaters and 29,589 meat-eaters aged 20-79 were assessed using a validated food frequency questionnaire. Comparable GHG emissions parameters were developed for the underlying food codes using a dataset of GHG emissions for 94 food commodities in the UK, with a weighting for the global warming potential of each component gas. The average GHG emissions associated with a standard 2,000 kcal diet were estimated for all subjects. ANOVA was used to estimate average dietary GHG emissions by diet group adjusted for sex and age. The age-and-sex-adjusted mean (95 % confidence interval) GHG emissions in kilograms of carbon dioxide equivalents per day (kgCO 2 e/day) were 7.19 (7.16, 7.22) for high meat-eaters ( > = 100 g/d), 5.63 (5.61, 5.65) for medium meat-eaters (50-99 g/d), 4.67 (4.65, 4.70) for low meat-eaters ( < 50 g/d), 3.91 (3.88, 3.94) for fish-eaters, 3.81 (3.79, 3.83) for vegetarians and 2.89 (2.83, 2.94) for vegans. In conclusion, dietary GHG emissions in self-selected meat-eaters are approximately twice as high as those in vegans. It is likely that reductions in meat consumption would lead to reductions in dietary GHG emissions.
Rice management interventions to mitigate greenhouse gas emissions: a review.
Hussain, Saddam; Peng, Shaobing; Fahad, Shah; Khaliq, Abdul; Huang, Jianliang; Cui, Kehui; Nie, Lixiao
2015-03-01
Global warming is one of the gravest threats to crop production and environmental sustainability. Rice, the staple food of more than half of the world's population, is the most prominent cause of greenhouse gas (GHG) emissions in agriculture and gives way to global warming. The increasing demand for rice in the future has deployed tremendous concerns to reduce GHG emissions for minimizing the negative environmental impacts of rice cultivation. In this review, we presented a contemporary synthesis of existing data on how crop management practices influence emissions of GHGs in rice fields. We realized that modifications in traditional crop management regimes possess a huge potential to overcome GHG emissions. We examined and evaluated the different possible options and found that modifying tillage permutations and irrigation patterns, managing organic and fertilizer inputs, selecting suitable cultivar, and cropping regime can mitigate GHG emissions. Previously, many authors have discussed the feasibility principle and the influence of these practices on a single gas or, in particular, in the whole agricultural sector. Nonetheless, changes in management practices may influence more than one gas at the same time by different mechanisms or sometimes their effects may be antagonistic. Therefore, in the present attempt, we estimated the overall global warming potential of each approach to consider the magnitude of its effects on all gases and provided a comprehensive assessment of suitable crop management practices for reducing GHG emissions in rice culture.
Influences on Adoption of Greenhouse Gas Reduction Targets among US States, 1998-2008
Cale, Tabitha M.; Reams, Margaret A.
2016-01-01
While the United States has not established federal regulations for greenhouse gas (GHG) reduction targets, many US states have adopted their own standards and guidelines. In this study we examine state adoption of targets for GHG reductions during the ten-year period of 1998–2008, and identify factors that explain variation in target adoption. Potential influences are drawn from research from the public policy formulation and diffusion literature, and from studies specific to climate policy adoption. Potential influences on GHG reduction efforts among US states include socioeconomic attributes of residents, political and ideological orientations of citizens and state government, interest group activities, environmental pressures, and proximity to other states that have adopted GHG reduction targets. The findings of the multinomial logistic regression analysis indicate that states are more likely to adopt GHG reduction targets if they share a border with another state with a similar climate program and if their citizens are more ideologically liberal. Other factors including socioeconomic resources and interest group activities were not found to be associated with policy adoption. The findings yield insights into the conditions under which states are more likely to take action to reduce GHG’s, and are relevant both to state policy makers and residents with an interest in climate planning, and for researchers attempting to estimate future greenhouse gas reduction scenarios. PMID:27471657
Impacts of groundwater management on energy resources and greenhouse gas emissions in California.
Hendrickson, Thomas P; Bruguera, Maya
2018-09-15
California faces significant energy and water infrastructure planning challenges in response to a changing climate. Immediately following the most severe recorded drought, the state experienced one of its wettest water years in recorded history. Despite the recent severe wet weather, much of the state's critical groundwater systems have not recovered from the drought. The recent Sustainable Groundwater Management Act (SGMA) aims to eliminate future depletion risks, but may force California basins to seek alternative water sources by limiting groundwater withdrawals during droughts. These alternative water resources, such as recycled water or desalination, can have significantly higher energy demands in treatment and supply than local groundwater or surface water resources. This research developed potential scenarios of water supply sources for five overdrafted groundwater basins, and modeled the impacts of these scenarios on energy demands and greenhouse gas (GHG) emissions for water supply systems. Our results reveal that energy demands and GHG emissions in different water supply scenarios can vary substantially between basins, but could increase statewide energy consumption as much as 2% and GHG emissions by 0.5. These results highlight the need to integrate these energy and GHG impacts into water resource management. Better understanding these considerations enables water supply planners to avoid potential unintended consequences (i.e., increased energy demands and GHG emissions) of enhancing drought resilience. Copyright © 2018 Elsevier Ltd. All rights reserved.
Hydrologic Profiling for Greenhouse Gases from Prairie Potholes in Western Canada
NASA Astrophysics Data System (ADS)
Creed, I. F.; Aldred, D. A.; Bourbonniere, R. A.
2010-12-01
The Prairie Pothole Region is a unique physiographic region covering a large portion of the central Great Plains of North America that is populated by shallow depressions or “potholes” of varying size. Potholes typically fill with water after snowmelt, forming ephemeral or permanent ponds surrounded by concentric bands of soils with water contents. These ponds vary both in space and time, defining the “hydrologic profile” of the pothole. We tested the hypothesis that hydrologic profiles are important drivers of biogeochemical activity, including the transport of the greenhouse gas (GHG) precursors, which influence GHG exchanges from contributing source areas towards the ponds. Potholes at five study nodes along a N-S climatic gradient in south central Saskatchewan (with precipitation-potential evapotranspiration ranging from -520 mm/yr to -270 mm/yr) were selected for study. Topographic features representing positions along the hydrologic profile from dry to wet (crest, shoulder, backslope, footslope and toeslope) were derived through digital terrain analysis of LiDAR digital elevation models (DEMs) and were used as the basis for satellite (Radarsat-1) estimates of soil water content. The satellite derived soil water contents were then related to CO2, CH4 and N2O GHG effluxes during the growing season (May to September). Within potholes, nonlinear relationships between hydrological profiles and soil GHG effluxes were observed. In general, backslopes yielded the highest N2O fluxes, footslopes and toeslopes yielded the highest CO2, and inundated portions of the pothole yielded the highest CH4. However, the magnitude of GHG effluxes varied over the growing season, with peak magnitudes typically occurring in late summer. Among the study nodes, GHG global warming potential decreased from south (dry) to north (wet). These findings illustrate that static topographic features derived from LiDAR DEMs can be fused with dynamic soil water contents derived from radar satellite imagery to predict the changing nature of hydrologic controls on GHG dynamics in prairie pothole landscapes.
The carbon footprint of dairy production systems through partial life cycle assessment.
Rotz, C A; Montes, F; Chianese, D S
2010-03-01
Greenhouse gas (GHG) emissions and their potential effect on the environment has become an important national and international issue. Dairy production, along with all other types of animal agriculture, is a recognized source of GHG emissions, but little information exists on the net emissions from dairy farms. Component models for predicting all important sources and sinks of CH(4), N(2)O, and CO(2) from primary and secondary sources in dairy production were integrated in a software tool called the Dairy Greenhouse Gas model, or DairyGHG. This tool calculates the carbon footprint of a dairy production system as the net exchange of all GHG in CO(2) equivalent units per unit of energy-corrected milk produced. Primary emission sources include enteric fermentation, manure, cropland used in feed production, and the combustion of fuel in machinery used to produce feed and handle manure. Secondary emissions are those occurring during the production of resources used on the farm, which can include fuel, electricity, machinery, fertilizer, pesticides, plastic, and purchased replacement animals. A long-term C balance is assumed for the production system, which does not account for potential depletion or sequestration of soil carbon. An evaluation of dairy farms of various sizes and production strategies gave carbon footprints of 0.37 to 0.69kg of CO(2) equivalent units/kg of energy-corrected milk, depending upon milk production level and the feeding and manure handling strategies used. In a comparison with previous studies, DairyGHG predicted C footprints similar to those reported when similar assumptions were made for feeding strategy, milk production, allocation method between milk and animal coproducts, and sources of CO(2) and secondary emissions. DairyGHG provides a relatively simple tool for evaluating management effects on net GHG emissions and the overall carbon footprint of dairy production systems.
USDA-ARS?s Scientific Manuscript database
Greenhouse gas (GHG) emissions and their potential impact on the environment has become an important national and international concern. Animal agriculture is a recognized source of GHG emissions, but good information does not exist on the net emissions from our farms. A software tool called the Dai...
USDA-ARS?s Scientific Manuscript database
Replacing fossil fuel with biofuel is environmentally viable only if the net greenhouse gas (GHG) footprint of the system is reduced. The effects of replacing annual arable crops with perennial bioenergy feedstocks on net GHG production and soil carbon (C) stock are critical to the system-level bal...
USDA-ARS?s Scientific Manuscript database
Manure management at dairy production facilities, including anaerobic digestion (AD) and solid-liquid separation (SLS), has a strong potential for the abatement of greenhouse gas (GHG) and ammonia (NH3) emissions. This study evaluated the effects of AD, SLS, and AD+SLS on GHG and NH3 emissions durin...
NASA Astrophysics Data System (ADS)
Pereira, Engil; Suddick, Emma; Six, Johan
2015-04-01
By converting biomass residue to biochar, we can generate power cleanly and sequester carbon resulting in overall greenhouse gas (GHG) savings when compared to typical fossil fuel burning and waste disposal. This on-farm research study provides a long-term and high frequency assessment of GHG emissions from biochar amended-soils in an organic walnut orchard in the Central Valley of California, USA. We also estimated the GHG offsets from the conversion of walnut residue into energy through gasification at the on-site walnut processing plant. Soil fluxes of carbon dioxide (CO2) and nitrous oxide (N2O) were monitored over 29 months in a 3.6 ha walnut orchard following management and precipitation events. We compared four treatments: control, biochar, compost, and biochar combined with compost. Events involving resource inputs such as fertilization or cover crop mowing induced the largest N2O peaks with average 0.13 kg N2O-N ha-1 day-1, while precipitation events produced the highest CO2 fluxes in average 0.124 Mg CO2-C ha-1 day-1. Biochar alone decreased N2O fluxes in two out of 23 measured events, however, not with enough significant magnitude to modify annual or seasonal totals. This indicates that biochar-induced decreases in N2O fluxes may occasionally occur without significant changes in total emissions. Additionally, biochar alone or in combination with compost did not alter annual or seasonal cumulative CO2 emissions. For this particular study, the conversion of orchard waste into energy and C sequestration through biochar amendment offset 100.3 Mg CO2-Ceq year-1. Thus, given that biochar did not alter cumulative GHG emissions from soils, we conclude that, in the scenario of this study, the use of biochar as a strategy to decrease farm-level GHG emissions is obtained through the gasification of orchard residue into energy and through biochar C sequestration, and not as a tool to decrease soil CO2 and N2O emissions.
Methane and CO2 emissions from China's hydroelectric reservoirs: a new quantitative synthesis.
Li, Siyue; Zhang, Quanfa; Bush, Richard T; Sullivan, Leigh A
2015-04-01
Controversy surrounds the green credentials of hydroelectricity because of the potentially large emission of greenhouse gases (GHG) from associated reservoirs. However, limited and patchy data particularly for China is constraining the current global assessment of GHG releases from hydroelectric reservoirs. This study provides the first evaluation of the CO2 and CH4 emissions from China's hydroelectric reservoirs by considering the reservoir water surface and drawdown areas, and downstream sources (including spillways and turbines, as well as river downstream). The total emission of 29.6 Tg CO2/year and 0.47 Tg CH4/year from hydroelectric reservoirs in China, expressed as CO2 equivalents (eq), corresponds to 45.6 Tg CO2eq/year, which is 2-fold higher than the current GHG emission (ca. 23 Tg CO2eq/year) from global temperate hydropower reservoirs. China's average emission of 70 g CO2eq/kWh from hydropower amounts to 7% of the emissions from coal-fired plant alternatives. China's hydroelectric reservoirs thus currently mitigate GHG emission when compared to the main alternative source of electricity with potentially far great reductions in GHG emissions and benefits possible through relatively minor changes to reservoir management and design. On average, the sum of drawdown and downstream emission including river reaches below dams and turbines, which is overlooked by most studies, represents the equivalent of 42% of the CO2 and 92% of CH4 that emit from hydroelectric reservoirs in China. Main drivers on GHG emission rates are summarized and highlight that water depth and stratification control CH4 flux, and CO2 flux shows significant negative relationships with pH, DO, and Chl-a. Based on our finding, a substantial revision of the global carbon emissions from hydroelectric reservoirs is warranted.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akbari, Hashem; Xu, Tengfang; Taha, Haider
Cool roofs, cool pavements, and urban vegetation reduce energy use in buildings, lower local air pollutant concentrations, and decrease greenhouse gas emissions from urban areas. This report summarizes the results of a detailed monitoring project in India and related simulations of meteorology and air quality in three developing countries. The field results quantified direct energy savings from installation of cool roofs on individual commercial buildings. The measured annual energy savings potential from roof-whitening of previously black roofs ranged from 20-22 kWh/m2 of roof area, corresponding to an air-conditioning energy use reduction of 14-26% in commercial buildings. The study estimated thatmore » typical annual savings of 13-14 kWh/m2 of roof area could be achieved by applying white coating to uncoated concrete roofs on commercial buildings in the Metropolitan Hyderabad region, corresponding to cooling energy savings of 10-19%. With the assumption of an annual increase of 100,000 square meters of new roof construction for the next 10 years in the Metropolitan Hyderabad region, the annual cooling energy savings due to whitening concrete roof would be 13-14 GWh of electricity in year ten alone, with cumulative 10-year cooling energy savings of 73-79 GWh for the region. The estimated savings for the entire country would be at least 10 times the savings in Hyderabad, i.e., more than 730-790 GWh. We estimated that annual direct CO2 reduction associated with reduced energy use would be 11-12 kg CO2/m2 of flat concrete roof area whitened, and the cumulative 10-year CO2 reduction would be approximately 0.60-0.65 million tons in India. With the price of electricity estimated at seven Rupees per kWh, the annual electricity savings on air-conditioning would be approximately 93-101 Rupees per m2 of roof. This would translate into annual national savings of approximately one billion Rupees in year ten, and cumulative 10-year savings of over five billion Rupees for cooling energy in India. Meteorological simulations in this study indicated that a reduction of 2C in air temperature in the Hyderabad area would be likely if a combination of increased surface albedo and vegetative cover are used as urban heat-island control strategies. In addition, air-temperature reductions on the order of 2.5-3.5C could be achieved if moderate and aggressive heat-island mitigation measures are adopted, respectively. A large-scale deployment of mitigation measures can bring additional indirect benefit to the urban area. For example, cooling outside air can improve the efficiency of cooling systems, reduce smog and greenhouse gas (GHG) emissions, and indirectly reduce pollution from power plants - all improving environmental health quality. This study has demonstrated the effectiveness of cool-roof technology as one of the urban heat-island control strategies for the Indian industrial and scientific communities and has provided an estimate of the national energy savings potential of cool roofs in India. These outcomes can be used for developing cool-roof building standards and related policies in India. Additional field studies, built upon the successes and lessons learned from this project, may be helpful to further confirm the scale of potential energy savings from the application of cooler roofs in various regions of India. In the future, a more rigorous meteorological simulation using urbanized (meso-urban) meteorological models should be conducted, which may produce a more accurate estimate of the air-temperature reductions for the entire urban area.« less
Pawlowski, Meghan N; Crow, Susan E; Meki, Manyowa N; Kiniry, James R; Taylor, Andrew D; Ogoshi, Richard; Youkhana, Adel; Nakahata, Mae
2017-01-01
Replacing fossil fuel with biofuel is environmentally viable from a climate change perspective only if the net greenhouse gas (GHG) footprint of the system is reduced. The effects of replacing annual arable crops with perennial bioenergy feedstocks on net GHG production and soil carbon (C) stock are critical to the system-level balance. Here, we compared GHG flux, crop yield, root biomass, and soil C stock under two potential tropical, perennial grass biofuel feedstocks: conventional sugarcane and ratoon-harvested, zero-tillage napiergrass. Evaluations were conducted at two irrigation levels, 100% of plantation application and at a 50% deficit. Peaks and troughs of GHG emission followed agronomic events such as ratoon harvest of napiergrass and fertilization. Yet, net GHG flux was dominated by carbon dioxide (CO2), as methane was oxidized and nitrous oxide (N2O) emission was very low even following fertilization. High N2O fluxes that frequently negate other greenhouse gas benefits that come from replacing fossil fuels with agronomic forms of bioenergy were mitigated by efficient water and fertilizer management, including direct injection of fertilizer into buried irrigation lines. From soil intensively cultivated for a century in sugarcane, soil C stock and root biomass increased rapidly following cultivation in grasses selected for robust root systems and drought tolerance. The net soil C increase over the two-year crop cycle was three-fold greater than the annualized soil surface CO2 flux. Deficit irrigation reduced yield, but increased soil C accumulation as proportionately more photosynthetic resources were allocated belowground. In the first two years of cultivation napiergrass did not increase net greenhouse warming potential (GWP) compared to sugarcane, and has the advantage of multiple ratoon harvests per year and less negative effects of deficit irrigation to yield.
Meki, Manyowa N.; Kiniry, James R.; Taylor, Andrew D.; Ogoshi, Richard; Youkhana, Adel; Nakahata, Mae
2017-01-01
Replacing fossil fuel with biofuel is environmentally viable from a climate change perspective only if the net greenhouse gas (GHG) footprint of the system is reduced. The effects of replacing annual arable crops with perennial bioenergy feedstocks on net GHG production and soil carbon (C) stock are critical to the system-level balance. Here, we compared GHG flux, crop yield, root biomass, and soil C stock under two potential tropical, perennial grass biofuel feedstocks: conventional sugarcane and ratoon-harvested, zero-tillage napiergrass. Evaluations were conducted at two irrigation levels, 100% of plantation application and at a 50% deficit. Peaks and troughs of GHG emission followed agronomic events such as ratoon harvest of napiergrass and fertilization. Yet, net GHG flux was dominated by carbon dioxide (CO2), as methane was oxidized and nitrous oxide (N2O) emission was very low even following fertilization. High N2O fluxes that frequently negate other greenhouse gas benefits that come from replacing fossil fuels with agronomic forms of bioenergy were mitigated by efficient water and fertilizer management, including direct injection of fertilizer into buried irrigation lines. From soil intensively cultivated for a century in sugarcane, soil C stock and root biomass increased rapidly following cultivation in grasses selected for robust root systems and drought tolerance. The net soil C increase over the two-year crop cycle was three-fold greater than the annualized soil surface CO2 flux. Deficit irrigation reduced yield, but increased soil C accumulation as proportionately more photosynthetic resources were allocated belowground. In the first two years of cultivation napiergrass did not increase net greenhouse warming potential (GWP) compared to sugarcane, and has the advantage of multiple ratoon harvests per year and less negative effects of deficit irrigation to yield. PMID:28052075
Estimating customer electricity savings from projects installed by the U.S. ESCO industry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carvallo, Juan Pablo; Larsen, Peter H.; Goldman, Charles A.
The U.S. energy service company (ESCO) industry has a well-established track record of delivering substantial energy and dollar savings in the public and institutional facilities sector, typically through the use of energy savings performance contracts (ESPC) (Larsen et al. 2012; Goldman et al. 2005; Hopper et al. 2005, Stuart et al. 2013). This ~$6.4 billion industry, which is expected to grow significantly over the next five years, may play an important role in achieving demand-side energy efficiency under local/state/federal environmental policy goals. To date, there has been little or no research in the public domain to estimate electricity savings formore » the entire U.S. ESCO industry. Estimating these savings levels is a foundational step in order to determine total avoided greenhouse gas (GHG) emissions from demand-side energy efficiency measures installed by U.S. ESCOs. We introduce a method to estimate the total amount of electricity saved by projects implemented by the U.S. ESCO industry using the Lawrence Berkeley National Laboratory (LBNL) /National Association of Energy Service Companies (NAESCO) database of projects and LBNL’s biennial industry survey. We report two metrics: incremental electricity savings and savings from ESCO projects that are active in a given year (e.g., 2012). Overall, we estimate that in 2012 active U.S. ESCO industry projects generated about 34 TWh of electricity savings—15 TWh of these electricity savings were for MUSH market customers who did not rely on utility customer-funded energy efficiency programs (see Figure 1). This analysis shows that almost two-thirds of 2012 electricity savings in municipal, local and state government facilities, universities/colleges, K-12 schools, and healthcare facilities (i.e., the so-called “MUSH” market) were not supported by a utility customer-funded energy efficiency program.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kong, Lingbo; Hasanbeigi, Ali; Price, Lynn
2012-11-01
The pulp and paper industry ranks fourth in terms of energy consumption among industries worldwide. Globally, the pulp and paper industry accounted for approximately 5 percent of total world industrial final energy consumption in 2007, and contributed 2 percent of direct carbon dioxide (CO2) emissions from industry. Worldwide pulp and paper demand and production are projected to increase significantly by 2050, leading to an increase in this industry’s absolute energy use and greenhouse gas (GHG) emissions. Development of new energy-efficiency and GHG mitigation technologies and their deployment in the market will be crucial for the pulp and paper industry’s mid-more » and long-term climate change mitigation strategies. This report describes the industry’s processes and compiles available information on the energy savings, environmental and other benefits, costs, commercialization status, and references for 36 emerging technologies to reduce the industry’s energy use and GHG emissions. Although studies from around the world identify a variety of sector-specific and cross-cutting energy-efficiency technologies that have already been commercialized for the pulp and paper industry, information is scarce and/or scattered regarding emerging or advanced energy-efficiency and low-carbon technologies that are not yet commercialized. The purpose of this report is to provide engineers, researchers, investors, paper companies, policy makers, and other interested parties with easy access to a well-structured resource of information on these technologies.« less
Climate change air toxic co-reduction in the context of macroeconomic modelling.
Crawford-Brown, Douglas; Chen, Pi-Cheng; Shi, Hsiu-Ching; Chao, Chia-Wei
2013-08-15
This paper examines the health implications of global PM reduction accompanying greenhouse gas emissions reductions in the 180 national economies of the global macroeconomy. A human health effects module based on empirical data on GHG emissions, PM emissions, background PM concentrations, source apportionment and human health risk coefficients is used to estimate reductions in morbidity and mortality from PM exposures globally as co-reduction of GHG reductions. These results are compared against the "fuzzy bright line" that often underlies regulatory decisions for environmental toxics, and demonstrate that the risk reduction through PM reduction would usually be considered justified in traditional risk-based decisions for environmental toxics. It is shown that this risk reduction can be on the order of more than 4 × 10(-3) excess lifetime mortality risk, with global annual cost savings of slightly more than $10B, when uniform GHG reduction measures across all sectors of the economy form the basis for climate policy ($2.2B if only Annex I nations reduce). Consideration of co-reduction of PM-10 within a climate policy framework harmonized with other environmental policies can therefore be an effective driver of climate policy. An error analysis comparing results of the current model against those of significantly more spatially resolved models at city and national scales indicates errors caused by the low spatial resolution of the global model used here may be on the order of a factor of 2. Copyright © 2013 Elsevier Ltd. All rights reserved.
Brooks M. Depro; Brian C. Murray; Ralph J. Alig; Alyssa Shanks
2008-01-01
Scientists and policymakers have long recognized the role that forests can play in countering the atmospheric buildup of carbon dioxide (C02), a greenhouse gas (GHG). In the United States, terrestrial carbon sequestration in private and public forests offsets approximately 11 percent of all GHG emissions from all sectors of the economy annually....
Microbial diversity and carbon cycling in San Francisco Bay wetlands
DOE Office of Scientific and Technical Information (OSTI.GOV)
Theroux, Susanna; Hartman, Wyatt; He, Shaomei
Wetland restoration efforts in San Francisco Bay aim to rebuild habitat for endangered species and provide an effective carbon storage solution, reversing land subsidence caused by a century of industrial and agricultural development. However, the benefits of carbon sequestration may be negated by increased methane production in newly constructed wetlands, making these wetlands net greenhouse gas (GHG) sources to the atmosphere. We investigated the effects of wetland restoration on below-ground microbial communities responsible for GHG cycling in a suite of historic and restored wetlands in SF Bay. Using DNA and RNA sequencing, coupled with real-time GHG monitoring, we profiled themore » diversity and metabolic potential of wetland soil microbial communities. The wetland soils harbor diverse communities of bacteria and archaea whose membership varies with sampling location, proximity to plant roots and sampling depth. Our results also highlight the dramatic differences in GHG production between historic and restored wetlands and allow us to link microbial community composition and GHG cycling with key environmental variables including salinity, soil carbon and plant species.« less
Potential Cost-Effective Opportunities for Methane Emission Abatement
DOE Office of Scientific and Technical Information (OSTI.GOV)
Warner, Ethan; Steinberg, Daniel; Hodson, Elke
2015-08-01
The energy sector was responsible for approximately 84% of carbon dioxide equivalent (CO 2e) greenhouse gas (GHG) emissions in the U.S. in 2012 (EPA 2014a). Methane is the second most important GHG, contributing 9% of total U.S. CO 2e emissions. A large portion of those methane emissions result from energy production and use; the natural gas, coal, and oil industries produce approximately 39% of anthropogenic methane emissions in the U.S. As a result, fossil-fuel systems have been consistently identified as high priority sectors to contribute to U.S. GHG reduction goals (White House 2015). Only two studies have recently attempted tomore » quantify the abatement potential and cost associated with the breadth of opportunities to reduce GHG emissions within natural gas, oil, and coal supply chains in the United States, namely the U.S. Environmental Protection Agency (EPA) (2013a) and ICF (2014). EPA, in its 2013 analysis, estimated the marginal cost of abatement for non-CO 2 GHG emissions from the natural gas, oil, and coal supply chains for multiple regions globally, including the United States. Building on this work, ICF International (ICF) (2014) provided an update and re-analysis of the potential opportunities in U.S. natural gas and oil systems. In this report we synthesize these previously published estimates as well as incorporate additional data provided by ICF to provide a comprehensive national analysis of methane abatement opportunities and their associated costs across the natural gas, oil, and coal supply chains. Results are presented as a suite of marginal abatement cost curves (MACCs), which depict the total potential and cost of reducing emissions through different abatement measures. We report results by sector (natural gas, oil, and coal) and by supply chain segment - production, gathering and boosting, processing, transmission and storage, or distribution - to facilitate identification of which sectors and supply chain segments provide the greatest opportunities for low cost abatement.« less
Reduced greenhouse gas mitigation potential of no-tillage soils through earthworm activity
Lubbers, Ingrid M.; Jan van Groenigen, Kees; Brussaard, Lijbert; van Groenigen, Jan Willem
2015-01-01
Concerns about rising greenhouse gas (GHG) concentrations have spurred the promotion of no-tillage practices as a means to stimulate carbon storage and reduce CO2 emissions in agro-ecosystems. Recent research has ignited debate about the effect of earthworms on the GHG balance of soil. It is unclear how earthworms interact with soil management practices, making long-term predictions on their effect in agro-ecosystems problematic. Here we show, in a unique two-year experiment, that earthworm presence increases the combined cumulative emissions of CO2 and N2O from a simulated no-tillage (NT) system to the same level as a simulated conventional tillage (CT) system. We found no evidence for increased soil C storage in the presence of earthworms. Because NT agriculture stimulates earthworm presence, our results identify a possible biological pathway for the limited potential of no-tillage soils with respect to GHG mitigation. PMID:26337488
Gawron, James H; Keoleian, Gregory A; De Kleine, Robert D; Wallington, Timothy J; Kim, Hyung Chul
2018-03-06
Although recent studies of connected and automated vehicles (CAVs) have begun to explore the potential energy and greenhouse gas (GHG) emission impacts from an operational perspective, little is known about how the full life cycle of the vehicle will be impacted. We report the results of a life cycle assessment (LCA) of Level 4 CAV sensing and computing subsystems integrated into internal combustion engine vehicle (ICEV) and battery electric vehicle (BEV) platforms. The results indicate that CAV subsystems could increase vehicle primary energy use and GHG emissions by 3-20% due to increases in power consumption, weight, drag, and data transmission. However, when potential operational effects of CAVs are included (e.g., eco-driving, platooning, and intersection connectivity), the net result is up to a 9% reduction in energy and GHG emissions in the base case. Overall, this study highlights opportunities where CAVs can improve net energy and environmental performance.
Greenhouse gas accounting and waste management.
Gentil, Emmanuel; Christensen, Thomas H; Aoustin, Emmanuelle
2009-11-01
Accounting of emissions of greenhouse gas (GHG) is a major focus within waste management. This paper analyses and compares the four main types of GHG accounting in waste management including their special features and approaches: the national accounting, with reference to the Intergovernmental Panel on Climate Change (IPCC), the corporate level, as part of the annual reporting on environmental issues and social responsibility, life-cycle assessment (LCA), as an environmental basis for assessing waste management systems and technologies, and finally, the carbon trading methodology, and more specifically, the clean development mechanism (CDM) methodology, introduced to support cost-effective reduction in GHG emissions. These types of GHG accounting, in principle, have a common starting point in technical data on GHG emissions from specific waste technologies and plants, but the limited availability of data and, moreover, the different scopes of the accounting lead to many ways of quantifying emissions and producing the accounts. The importance of transparency in GHG accounting is emphasised regarding waste type, waste composition, time period considered, GHGs included, global warming potential (GWP) assigned to the GHGs, counting of biogenic carbon dioxide, choice of system boundaries, interactions with the energy system, and generic emissions factors. In order to enhance transparency and consistency, a format called the upstream-operating-downstream framework (UOD) is proposed for reporting basic technology-related data regarding GHG issues including a clear distinction between direct emissions from waste management technologies, indirect upstream (use of energy and materials) and indirect downstream (production of energy, delivery of secondary materials) activities.
Estimate of Fuel Consumption and GHG Emission Impact from an Automated Mobility District
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Yuche; Young, Stanley; Qi, Xuewei
2015-10-19
This study estimates the range of fuel and emissions impact of an automated-vehicle (AV) based transit system that services campus-based developments, termed an automated mobility district (AMD). The study develops a framework to quantify the fuel consumption and greenhouse gas (GHG) emission impacts of a transit system comprised of AVs, taking into consideration average vehicle fleet composition, fuel consumption/GHG emission of vehicles within specific speed bins, and the average occupancy of passenger vehicles and transit vehicles. The framework is exercised using a previous mobility analysis of a personal rapid transit (PRT) system, a system which shares many attributes with envisionedmore » AV-based transit systems. Total fuel consumption and GHG emissions with and without an AMD are estimated, providing a range of potential system impacts on sustainability. The results of a previous case study based of a proposed implementation of PRT on the Kansas State University (KSU) campus in Manhattan, Kansas, serves as the basis to estimate personal miles traveled supplanted by an AMD at varying levels of service. The results show that an AMD has the potential to reduce total system fuel consumption and GHG emissions, but the amount is largely dependent on operating and ridership assumptions. The study points to the need to better understand ride-sharing scenarios and calls for future research on sustainability benefits of an AMD system at both vehicle and system levels.« less
Global land-use and market interactions between climate and bioenergy policies
NASA Astrophysics Data System (ADS)
Golub, A.; Hertel, T. W.; Rose, S. K.
2011-12-01
Over the past few years, interest in bioenergy has boomed with higher oil prices and concerns about energy security, farm incomes, and mitigation of climate change. Large-scale commercial bioenergy production could have far reaching implications for regional and global land use and output markets associated with food, forestry, chemical, and energy sectors, as well as household welfare. Similarly, there is significant interest in international agricultural and forestry based carbon sequestration and greenhouse gas (GHG) mitigation policies, which could also provide revenue to developing countries and farmers in exchange for modifying land management practices. However, bioenergy and climate policies are being formulated largely independent of one another. Understanding the interaction between these potentially competing policy objectives is important for identifying possible constraints that one policy might place on the other, potential complementarities that could be exploited in policy design, and net land-use change and management implications over time. This study develops a new dynamic global computable general equilibrium (CGE) model GDyn-E-AEZ to assess the interaction between biofuels production and climate mitigation policies. The model is built on several existing CGE platforms, including 1) GTAP-AEZ-GHG model (Golub et al., 2009), 2) GTAP-BIO (Birur et al., 2008; Taheripour and Tyner, 2011), and 3) GDyn framework (Ianchovichina and McDougall, 2001) extended to investigate the role of population and per capita income growth, changing consumption patterns, and global economic integration in determining long-run patterns of land-use change. The new model is used to assess the effects of domestic and global bioenergy expansion on future land use, as well as sectoral, regional and global GHG emissions mitigation potential. Do bioenergy programs facilitate or constrain GHG mitigation opportunities? For instance, Golub et al. (2009) estimate substantial GHG mitigation potential in non-US forests (8.9 GtCO2yr-1 at $27/tCO2eq). Furthermore, a carbon tax could lead to input substitution in agricultural production away from land and fertilizer (e.g., in China, an approximate 20% reduction in paddy rice acreage and 10% reduction in crop production fertilizer use at the same GHG price). Both results run counter to the changes in land-use induced by biofuels. However, given the energy security benefits for bioenergy, this study also evaluate whether a land GHG policy could manage international indirect land-use leakage concerns for bioenergy. In addition to a global perspective, a US perspective is taken to evaluate the implications of joint and separate bioenergy and climate policies on domestic offset and bioenergy supplies. Preliminary results indicate that US biofuels mandate reduces the global abatement potential for agriculture and forestry and thereby imposes an additional cost on society. There are regional comparative advantages in biofuels production (as well as non-biofuels crops and timber production). There are also regional comparative advantages in land-based GHG mitigation. By modeling bioenergy and climate policies separately and simultaneously, this study assess the net comparative advantage regions have in meeting these two sets of goals.
Assessment of technologies to meet a low carbon fuel standard.
Yeh, Sonia; Lutsey, Nicholas P; Parker, Nathan C
2009-09-15
California's low carbon fuel standard (LCFS) was designed to incentivize a diverse array of available strategies for reducing transportation greenhouse gas (GHG) emissions. It provides strong incentives for fuels with lower GHG emissions, while explicitly requiring a 10% reduction in California's transportation fuel GHG intensity by 2020. This paper investigates the potential for cost-effective GHG reductions from electrification and expanded use of biofuels. The analysis indicates that fuel providers could meetthe standard using a portfolio approach that employs both biofuels and electricity, which would reduce the risks and uncertainties associated with the progress of cellulosic and battery technologies, feedstock prices, land availability, and the sustainability of the various compliance approaches. Our analysis is based on the details of California's development of an LCFS; however, this research approach could be generalizable to a national U.S. standard and to similar programs in Europe and Canada.
Agriculture, forestry, and other land-use emissions in Latin America
Calvin, Katherine V.; Beach, Robert; Gurgel, Angelo; ...
2016-04-07
Nearly 40% of greenhouse gas (GHG) emissions in Latin America were from agriculture, forestry, and other land use (AFOLU) in 2008, more than double the global fraction of AFOLU emissions. In this paper, we investigate the future trajectory of AFOLU GHG emissions in Latin America, with and without efforts to mitigate, using a multi-model comparison approach. We find significant uncertainty in future emissions with and without climate policy. This uncertainty is due to differences in a variety of assumptions including (1) the role of bioenergy, (2) where and how bioenergy is produced, (3) the availability of afforestation options in climatemore » mitigation policy, and (4) N 2O and CH 4 emissions intensity. With climate policy, these differences in assumptions can lead to significant variance in mitigation potential, with three models indicating reductions in AFOLU GHG emissions and one model indicating modest increases in AFOLU GHG emissions.« less
Agriculture, forestry, and other land-use emissions in Latin America
DOE Office of Scientific and Technical Information (OSTI.GOV)
Calvin, Katherine V.; Beach, Robert; Gurgel, Angelo
Nearly 40% of greenhouse gas (GHG) emissions in Latin America were from agriculture, forestry, and other land use (AFOLU) in 2008, more than double the global fraction of AFOLU emissions. In this paper, we investigate the future trajectory of AFOLU GHG emissions in Latin America, with and without efforts to mitigate, using a multi-model comparison approach. We find significant uncertainty in future emissions with and without climate policy. This uncertainty is due to differences in a variety of assumptions including (1) the role of bioenergy, (2) where and how bioenergy is produced, (3) the availability of afforestation options in climatemore » mitigation policy, and (4) N 2O and CH 4 emissions intensity. With climate policy, these differences in assumptions can lead to significant variance in mitigation potential, with three models indicating reductions in AFOLU GHG emissions and one model indicating modest increases in AFOLU GHG emissions.« less
Phenological mismatch in coastal western Alaska may increase summer season greenhouse gas uptake
NASA Astrophysics Data System (ADS)
Kelsey, Katharine C.; Leffler, A. Joshua; Beard, Karen H.; Choi, Ryan T.; Schmutz, Joel A.; Welker, Jeffery M.
2018-04-01
High latitude ecosystems are prone to phenological mismatches due to climate change- driven advances in the growing season and changing arrival times of migratory herbivores. These changes have the potential to alter biogeochemical cycling and contribute to feedbacks on climate change by altering greenhouse gas (GHG) emissions of carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) through large regions of the Arctic. Yet the effects of phenological mismatches on gas fluxes are currently unexplored. We used a three-year field experiment that altered the start of the growing season and timing of grazing to investigate how phenological mismatch affects GHG exchange. We found early grazing increased mean GHG emission to the atmosphere despite lower CH4 emissions due to grazing-induced changes in vegetation structure that increased uptake of CO2. In contrast, late grazing reduced GHG emissions because greater plant productivity led to an increase in CO2 uptake that overcame the increase in CH4 emission. Timing of grazing was an important control on both CO2 and CH4 emissions, and net GHG exchange was the result of opposing fluxes of CO2 and CH4. N2O played a negligible role in GHG flux. Advancing the growing season had a smaller effect on GHG emissions than changes to timing of grazing in this study. Our results suggest that a phenological mismatch that delays timing of grazing relative to the growing season, a change which is already developing along in western coastal Alaska, will reduce GHG emissions to the atmosphere through increased CO2 uptake despite greater CH4 emissions.
Phenological mismatch in coastal western Alaska may increase summer season greenhouse gas uptake
Kelsey, Katharine C.; Leffler, A. Joshua; Beard, Karen H.; Choi, Ryan T.; Schmutz, Joel A.; Welker, Jeffery M.
2018-01-01
High latitude ecosystems are prone to phenological mismatches due to climate change- driven advances in the growing season and changing arrival times of migratory herbivores. These changes have the potential to alter biogeochemical cycling and contribute to feedbacks on climate change by altering greenhouse gas (GHG) emissions of carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) through large regions of the Arctic. Yet the effects of phenological mismatches on gas fluxes are currently unexplored. We used a three-year field experiment that altered the start of the growing season and timing of grazing to investigate how phenological mismatch affects GHG exchange. We found early grazing increased mean GHG emission to the atmosphere despite lower CH4 emissions due to grazing-induced changes in vegetation structure that increased uptake of CO2. In contrast, late grazing reduced GHG emissions because greater plant productivity led to an increase in CO2 uptake that overcame the increase in CH4 emission. Timing of grazing was an important control on both CO2 and CH4 emissions, and net GHG exchange was the result of opposing fluxes of CO2 and CH4. N2O played a negligible role in GHG flux. Advancing the growing season had a smaller effect on GHG emissions than changes to timing of grazing in this study. Our results suggest that a phenological mismatch that delays timing of grazing relative to the growing season, a change which is already developing along in western coastal Alaska, will reduce GHG emissions to the atmosphere through increased CO2 uptake despite greater CH4 emissions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garg, A.; Smith, R.; Hill, D.
2009-08-15
This paper reports an integrated appraisal of options for utilising solid recovered fuels (SRF) (derived from municipal solid waste, MSW) in energy intensive industries within the United Kingdom (UK). Four potential co-combustion scenarios have been identified following discussions with industry stakeholders. These scenarios have been evaluated using (a) an existing energy and mass flow framework model, (b) a semi-quantitative risk analysis, (c) an environmental assessment and (d) a financial assessment. A summary of results from these evaluations for the four different scenarios is presented. For the given ranges of assumptions; SRF co-combustion with coal in cement kilns was found tomore » be the optimal scenario followed by co-combustion of SRF in coal-fired power plants. The biogenic fraction in SRF (ca. 70%) reduces greenhouse gas (GHG) emissions significantly ({approx}2500 g CO{sub 2} eqvt./kg DS SRF in co-fired cement kilns and {approx}1500 g CO{sub 2} eqvt./kg DS SRF in co-fired power plants). Potential reductions in electricity or heat production occurred through using a lower calorific value (CV) fuel. This could be compensated for by savings in fuel costs (from SRF having a gate fee) and grants aimed at reducing GHG emission to encourage the use of fuels with high biomass fractions. Total revenues generated from coal-fired power plants appear to be the highest ( Pounds 95/t SRF) from the four scenarios. However overall, cement kilns appear to be the best option due to the low technological risks, environmental emissions and fuel cost. Additionally, cement kiln operators have good experience of handling waste derived fuels. The scenarios involving co-combustion of SRF with MSW and biomass were less favourable due to higher environmental risks and technical issues.« less
Biodiesel production potential from fat fraction of municipal waste in Makkah
2017-01-01
In the Kingdom of Saudi Arabia (KSA), millions of Muslims come to perform Pilgrimage every year. Around one million ton of municipal solid waste (MSW) is generated in Makkah city annually. The collected MSW is disposed of in the landfills without any treatment or energy recovery. As a result, greenhouse gas (GHG) emissions and contamination of the soil and water bodies along with leachate and odors are occurring in waste disposal vicinities. The composition of MSW shows that food waste is the largest waste stream (up to 51%) of the total generated MSW. About 13% of the food waste consists of fat content that is equivalent to about 64 thousand tons per year. This study aims to estimate the production potential of biodiesel first time in Makkah city from fat/oil fractions of MSW and highlight its economic and environmental benefits. It has been estimated that 62.53, 117.15 and 6.38 thousand tons of biodiesel, meat and bone meal (MBM) and glycerol respectively could be produced in 2014. A total electricity potential of 852 Gigawatt hour (GWh) from all three sources based on their energy contents, Higher Heating Value (HHV) of 40.17, 18.33 and 19 MJ/kg, was estimated for 2014 that will increase up to 1777 GWh in 2050. The cumulative net savings from landfill waste diversion (256 to 533 million Saudi Riyal (SAR)), carbon credits (46 to 96 million SAR), fuel savings (146 to 303 million SAR) and electricity generation (273 to 569 million SAR) have a potential to add a total net revenue of 611 to 1274 million SAR every year to the Saudi economy, from 2014 to 2050 respectively. However, further studies including real-time data about annual slaughtering activities and the amount of waste generation and its management are critical to decide optimum waste management practices based on life cycle assessment (LCA) and life cycle costing (LCC) methodologies. PMID:28207856
Yang, Na; Zhang, Hua; Shao, Li-Ming; Lü, Fan; He, Pin-Jing
2013-11-15
Reducing greenhouse gas (GHG) emissions from municipal solid waste (MSW) treatment can be highly cost-effective in terms of GHG mitigation. This study investigated GHG emissions during MSW landfilling in China under four existing scenarios and in terms of seven different categories: waste collection and transportation, landfill management, leachate treatment, fugitive CH4 (FM) emissions, substitution of electricity production, carbon sequestration and N2O and CO emissions. GHG emissions from simple sanitary landfilling technology where no landfill gas (LFG) extraction took place (Scenario 1) were higher (641-998 kg CO2-eq·t(-1)ww) than those from open dump (Scenario 0, 480-734 kg CO2-eq·t(-1)ww). This was due to the strictly anaerobic conditions in Scenario 1. LFG collection and treatment reduced GHG emissions to 448-684 kg CO2-eq·t(-1)ww in Scenario 2 (with LFG flare) and 214-277 kg CO2-eq·t(-1)ww in Scenario 3 (using LFG for electricity production). Amongst the seven categories, FM was the predominant contributor to GHG emissions. Global sensitivity analysis demonstrated that the parameters associated with waste characteristics (i.e. CH4 potential and carbon sequestered faction) and LFG management (i.e. LFG collection efficiency and CH4 oxidation efficiency) were of great importance. A further learning on the MSW in China indicated that water content and dry matter content of food waste were the basic factors affecting GHG emissions. Source separation of food waste, as well as increasing the incineration ratio of mixed collected MSW, could effectively mitigate the overall GHG emissions from landfilling in a specific city. To increase the LFG collection and CH4 oxidation efficiencies could considerably reduce GHG emissions on the landfill site level. While, the improvement in the LFG utilization measures had an insignificant impact as long as the LFG is recovered for energy generation. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Mueller, K. L.; Callahan, W.; Davis, K. J.; Dickerson, R. R.; Duren, R. M.; Gurney, K. R.; Karion, A.; Keeling, R. F.; Kim, J.; Lauvaux, T.; Miller, C. E.; Shepson, P. B.; Turnbull, J. C.; Weiss, R. F.; Whetstone, J. R.
2017-12-01
City and State governments are increasingly interested in mitigating greenhouse gas (GHG) emissions to improve sustainability within their jurisdictions. Estimation of urban GHG emissions remains an active research area with many sources of uncertainty. To support the effort of improving measurement of trace gas emissions in city environments, several federal agencies along with academic, research, and private entities have been working within a handful of domestic metropolitan areas to improve both (1) the assessment of GHG emissions accuracy using a variety of measurement technologies, and (2) the tools that can better assess GHG inventory data at urban mitigation scales based upon these measurements. The National Institute of Standards and Technology (NIST) activities have focused on three areas, or testbeds: Indianapolis (INFLUX experiment), Los Angeles (the LA Megacities project), and the Northeastern Corridor areas encompassing Washington and Baltimore (the NEC/BW GHG Measurements project). These cities represent diverse meteorological, terrain, demographic, and emissions characteristics having a broad range of complexities. To date this research has involved multiple measurement systems and integrated observing approaches, all aimed at advancing development of a robust, science-base upon which higher accuracy quantification approaches can rest. Progress toward such scientifically robust, widely-accepted emissions quantification methods will rely upon continuous performance assessment. Such assessment is challenged by the complexities of cities themselves (e.g., population, urban form) along with the many variables impacting a city's technological ability to estimate its GHG emissions (e.g., meteorology, density of observations). We present the different NIST testbeds and a proposal to initiate conceptual development of a reference framework supporting the comparison of multi-city GHG emissions estimates. Such a reference framework has potential to provide the basis for city governments to choose the measurements and methods that can quantify their GHG and related trace gas emissions at levels commensurate with their needs.
Land use of drained peatlands: Greenhouse gas fluxes, plant production, and economics.
Kasimir, Åsa; He, Hongxing; Coria, Jessica; Nordén, Anna
2017-10-10
Drained peatlands are hotspots for greenhouse gas (GHG) emissions, which could be mitigated by rewetting and land use change. We performed an ecological/economic analysis of rewetting drained fertile peatlands in a hemiboreal climate using different land use strategies over 80 years. Vegetation, soil processes, and total GHG emissions were modeled using the CoupModel for four scenarios: (1) business as usual-Norway spruce with average soil water table of -40 cm; (2) willow with groundwater at -20 cm; (3) reed canary grass with groundwater at -10 cm; and (4) a fully rewetted peatland. The predictions were based on previous model calibrations with several high-resolution datasets consisting of water, heat, carbon, and nitrogen cycling. Spruce growth was calibrated by tree-ring data that extended the time period covered. The GHG balance of four scenarios, including vegetation and soil, were 4.7, 7.1, 9.1, and 6.2 Mg CO 2 eq ha -1 year -1 , respectively. The total soil emissions (including litter and peat respiration CO 2 + N 2 O + CH 4 ) were 33.1, 19.3, 15.3, and 11.0 Mg CO 2 eq ha -1 year -1 , respectively, of which the peat loss contributed 35%, 24%, and 7% of the soil emissions for the three drained scenarios, respectively. No peat was lost for the wet peatland. It was also found that draining increases vegetation growth, but not as drastically as peat respiration does. The cost-benefit analysis (CBA) is sensitive to time frame, discount rate, and carbon price. Our results indicate that the net benefit was greater with a somewhat higher soil water table and when the peatland was vegetated with willow and reed canary grass (Scenarios 2 and 3). We conclude that saving peat and avoiding methane release using fairly wet conditions can significantly reduce GHG emissions, and that this strategy should be considered for land use planning and policy-making. © 2017 John Wiley & Sons Ltd.
Achieving Realistic Energy and Greenhouse Gas Emission Reductions in U.S. Cities
NASA Astrophysics Data System (ADS)
Blackhurst, Michael F.
2011-12-01
In recognizing that energy markets and greenhouse gas emissions are significantly influences by local factors, this research examines opportunities for achieving realistic energy greenhouse gas emissions from U.S. cities through provisions of more sustainable infrastructure. Greenhouse gas reduction opportunities are examined through the lens of a public program administrator charged with reducing emissions given realistic financial constraints and authority over emissions reductions and energy use. Opportunities are evaluated with respect to traditional public policy metrics, such as benefit-cost analysis, net benefit analysis, and cost-effectiveness. Section 2 summarizes current practices used to estimate greenhouse gas emissions from communities. I identify improved and alternative emissions inventory techniques such as disaggregating the sectors reported, reporting inventory uncertainty, and aligning inventories with local organizations that could facilitate emissions mitigation. The potential advantages and challenges of supplementing inventories with comparative benchmarks are also discussed. Finally, I highlight the need to integrate growth (population and economic) and business as usual implications (such as changes to electricity supply grids) into climate action planning. I demonstrate how these techniques could improve decision making when planning reductions, help communities set meaningful emission reduction targets, and facilitate CAP implementation and progress monitoring. Section 3 evaluates the costs and benefits of building energy efficiency are estimated as a means of reducing greenhouse gas emissions in Pittsburgh, PA and Austin, TX. Two policy objectives were evaluated: maximize GHG reductions given initial budget constraints or maximize social savings given target GHG reductions. This approach explicitly evaluates the trade-offs between three primary and often conflicting program design parameters: initial capital constraints, social savings, and GHG reductions. Results suggest uncertainty in local stocks, demands, and efficiency significantly impacts anticipated outcomes. Annual greenhouse gas reductions of 1 ton CO2 eq/capita/yr in Pittsburgh could cost near nothing or over $20 per capita annually. Capital-constrained policies generate slightly less social savings (a present value of a few hundred dollars per capita) than policies that maximize social savings. However, sectors, technologies, and end uses targeted for intervention vary depending on policy objectives and constraints. The optimal efficiency investment strategy for some end uses varies significantly (in excess of 100%) between Pittsburgh and Austin, suggesting that resources and guidance conducted at the national scale may mislead state and local decision-makers. Section 3 then evaluates the impact of rebound effects on modeled efficiency program outcomes. Differential rebound effects across end-uses can change the optimal program design strategy, i.e., the end-uses and technologies targeted for intervention. The rebound effect results suggest that rebound should be integral to effective efficiency program design. Section 4 evaluates the life cycle assessment costs and benefits of the widespread retrofit of green roofs in a typical urban mixed-use neighborhood. Shadow-cost analysis was used to evaluate the cost-effectiveness of green roofs' many benefits. Results suggest green roofs are currently not cost effective on a private cost basis, but multi-family and commercial building green roofs are competitive when social benefits are included. Multifamily and commercial green roofs are also competitive alternatives for reducing greenhouse gases and storm water run-off. However, green roofs are not competitive energy conservation techniques. GHG impacts are dominated by the material production and use phases. Energy impacts are dominated by the use phase, with urban heat island (UHI) impacts being an order of magnitude higher than direct building impacts. Results highlight the importance of clarifying sustainable infrastructure costs and benefits across many public and private organizations (e.g., private building owners, storm water agencies, efficiency stakeholders, and roofing contractors) to identify appropriate incentives and effective program design strategies. Section 5 synthesizes the work and provides guidance for local and state sustainability program administrators. Section 5 highlights the unrealized social benefits associated with sustainability and reflects upon the role of local and state governments in overcoming barriers to achieving more sustainable infrastructure. Section 5 encourages program administrators to consider their local markets for sustainability as influences by resource pricing, weather, infrastructure condition, jurisdiction, and other factors. The differences between sustainability programming and traditional municipal programming are highlighted, namely that sustainability programming often requires self-selection for participation and is subject to new sources of uncertain regarding user behavior, technology breadth and change, and the scope of costs and benefits. These characteristic issues of sustainable infrastructure opportunities provide new challenges to program administrators, requiring new paradigms and support resources. (Abstract shortened by UMI.)
Feliciano, Diana; Hunter, Colin; Slee, Bill; Smith, Pete
2013-05-15
The Climate Change (Scotland) Act 2009 commits Scotland to reduce GHG emissions by at least 42% by 2020 and 80% by 2050, from 1990 levels. According to the Climate Change Delivery Plan, the desired emission reduction for the rural land use sector (agriculture and other land uses) is 21% compared to 1990, or 10% compared to 2006 levels. In 2006, in North East Scotland, gross greenhouse gas (GHG) emissions from rural land uses were about 1599 ktCO2e. Thus, to achieve a 10% reduction in 2020 relative to 2006, emissions would have to decrease to about 1440 ktCO2e. This study developed a methodology to help selecting land-based practices to mitigate GHG emissions at the regional level. The main criterion used was the "full" mitigation potential of each practice. A mix of methods was used to undertake this study, namely a literature review and quantitative estimates. The mitigation practice that offered greatest "full" mitigation potential (≈66% reduction by 2020 relative to 2006) was woodland planting with Sitka spruce. Several barriers, such as economic, social, political and institutional, affect the uptake of mitigation practices in the region. Consequently the achieved mitigation potential of a practice may be lower than its "full" mitigation potential. Surveys and focus groups, with relevant stakeholders, need to be undertaken to assess the real area where mitigation practices can be implemented and the best way to overcome the barriers for their implementation. Copyright © 2013 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Price, Lynn; Murtishaw, Scott; Worrell, Ernst
2003-06-01
Executive Summary: The California Climate Action Registry, which was initially established in 2000 and began operation in Fall 2002, is a voluntary registry for recording annual greenhouse gas (GHG) emissions. The purpose of the Registry is to assist California businesses and organizations in their efforts to inventory and document emissions in order to establish a baseline and to document early actions to increase energy efficiency and decrease GHG emissions. The State of California has committed to use its ''best efforts'' to ensure that entities that establish GHG emissions baselines and register their emissions will receive ''appropriate consideration under any futuremore » international, federal, or state regulatory scheme relating to greenhouse gas emissions.'' Reporting of GHG emissions involves documentation of both ''direct'' emissions from sources that are under the entity's control and indirect emissions controlled by others. Electricity generated by an off-site power source is consider ed to be an indirect GHG emission and is required to be included in the entity's report. Registry participants include businesses, non-profit organizations, municipalities, state agencies, and other entities. Participants are required to register the GHG emissions of all operations in California, and are encouraged to report nationwide. For the first three years of participation, the Registry only requires the reporting of carbon dioxide (CO2) emissions, although participants are encouraged to report the remaining five Kyoto Protocol GHGs (CH4, N2O, HFCs, PFCs, and SF6). After three years, reporting of all six Kyoto GHG emissions is required. The enabling legislation for the Registry (SB 527) requires total GHG emissions to be registered and requires reporting of ''industry-specific metrics'' once such metrics have been adopted by the Registry. The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab) was asked to provide technical assistance to the California Energy Commission (Energy Commission) related to the Registry in three areas: (1) assessing the availability and usefulness of industry-specific metrics, (2) evaluating various methods for establishing baselines for calculating GHG emissions reductions related to specific actions taken by Registry participants, and (3) establishing methods for calculating electricity CO2 emission factors. The third area of research was completed in 2002 and is documented in Estimating Carbon Dioxide Emissions Factors for the California Electric Power Sector (Marnay et al., 2002). This report documents our findings related to the first areas of research. For the first area of research, the overall objective was to evaluate the metrics, such as emissions per economic unit or emissions per unit of production that can be used to report GHG emissions trends for potential Registry participants. This research began with an effort to identify methodologies, benchmarking programs, inventories, protocols, and registries that u se industry-specific metrics to track trends in energy use or GHG emissions in order to determine what types of metrics have already been developed. The next step in developing industry-specific metrics was to assess the availability of data needed to determine metric development priorities. Berkeley Lab also determined the relative importance of different potential Registry participant categories in order to asses s the availability of sectoral or industry-specific metrics and then identified industry-specific metrics in use around the world. While a plethora of metrics was identified, no one metric that adequately tracks trends in GHG emissions while maintaining confidentiality of data was identified. As a result of this review, Berkeley Lab recommends the development of a GHG intensity index as a new metric for reporting and tracking GHG emissions trends.Such an index could provide an industry-specific metric for reporting and tracking GHG emissions trends to accurately reflect year to year changes while protecting proprietary data. This GHG intensity index changes while protecting proprietary data. This GHG intensity index would provide Registry participants with a means for demonstrating improvements in their energy and GHG emissions per unit of production without divulging specific values. For the second research area, Berkeley Lab evaluated various methods used to calculate baselines for documentation of energy consumption or GHG emissions reductions, noting those that use industry-specific metrics. Accounting for actions to reduce GHGs can be done on a project-by-project basis or on an entity basis. Establishing project-related baselines for mitigation efforts has been widely discussed in the context of two of the so-called ''flexible mechanisms'' of the Kyoto Protocol to the United Nations Framework Convention on Climate Change (Kyoto Protocol) Joint Implementation (JI) and the Clean Development Mechanism (CDM).« less
Using biochar in animal farming to recycle nutrients and reduce greenhouse gas emissions
NASA Astrophysics Data System (ADS)
Schmidt, Hans-Peter; Wilson, Kelpie; Kammann, Claudia
2017-04-01
Charcoal has been used to treat digestive disorder in animals since several thousand years. But only since about 2010 biochar has increasingly been used as regular feed additive in animal farming usually mixed with standard feed at approximately 1% of the daily feed intake. The use of biochar as feed additive has the potential to improve animal health, feed efficiency and the animal-stable environment; to reduce nutrient losses and GHG emissions; and to increase soil organic mater and thus soil fertility. The evaluation of more than 150 scientific papers on feeding (activated) biochar showed in most of the studies and for all investigated livestock species positive effects on parameters like toxin adsorption, digestion, blood values, feed use efficiency and livestock weight gain, meat quality and GHG emissions. The facilitation of direct electron transfers between different species of bacteria or microbial consortia via the biochar mediator in the animal digestion tract is hypothesized to be the main reason for a more energy efficient digestion and thus higher feed efficiency, for its selective probiotic effect, for reduced N-losses and eventually for less GHG emissions. While chicken, pigs, fish and other omnivore animals provoke GHG-emissions (mainly NH3, CH4, N2O) when their liquid and solid excretions decompose anaerobically, ruminants cause direct methane emissions through flatulence and burps (eructation). Preliminary studies demonstrated that feeding high temperature biochars might reduce ruminant CH4 emissions though more systematic research is needed. It is likely that microbial decomposition of manure containing digested biochar produces less ammonia, less methane and thus retain more nitrogen, as seen when manure was composted with and without biochar or when biochar is used as bedding or manure treatment additive. Laboratory adsorption trials estimated that using biochar for liquid manure treatment could safe 57,000 t NH4 and 4,600 t P2O5 fertilizer per year in California alone. It was further shown that feeding 0.3 to 1% biochar could replace antibiotic treatment in chicken and ducks, respectively. Feeding biochar could thus have an indirect effect on GHG emissions when it is able to replace regular antibiotic "feeding" that produces high indirect GHG emissions after soil application of antibiotic contaminated manure. Moreover, it was demonstrated that feeding biochar to grazing cows had positive secondary effects on soil fertility and fertilizer efficiency reducing mineral N-fertilizing requirements which could be another indirect biochar GHG mitigation effect. Considering an average C-content of fed biochar of 80% and produced at recommended temperatures above 500°C resulting in H/Corg ratios below 0.4, at least 56% of the dry weight of the fed and manure-applied biochar would persist as stable carbon in soil for at least 100 years. If the global livestock would receive 1% of their feed in form of such a biochar, a total of about 400 Mt of CO2eq or 1.2 % of the global CO2 emissions could be compensated. The apparent potential for improving animal health and nutrient efficiency, for reducing enteric methane emissions as well as GHG emissions from manure management and for sequestering carbon with soil fertility improvements makes it compelling to increase the scientific effort to investigate, measure and optimize the GHG reduction potential of biochar use in animal farming systems. The main results from literature and own experiments will be presented to illustrate and calculate this potential.
NASA Astrophysics Data System (ADS)
Barbieri, L.; Adair, C.; Galford, G. L.; Wyngaard, J.
2017-12-01
We present on a full season of low-cost sUAS agricultural monitoring for improved GHG emissions accounting and mitigation. Agriculture contributes 10-12% of global anthropogenic GHG emissions, and roughly half are from agricultural soils. A variety of land management strategies can be implemented to reduce GHG emissions, but agricultural lands are complex and heterogenous. Nutrient cycling processes that ultimately regulate GHG emission rates are affected by environmental and management dynamics that vary spatially and temporally (e.g. soil properties, manure spreading). Thus, GHG mitigation potential is also variable, and determining best practices for mitigation is challenging, especially considering potential conflicting pressure to manage agricultural lands for other objectives (e.g. decrease agricultural runoff). Monitoring complexity from agricultural lands is critical for regional GHG accounting and decision making, but current methods (e.g., static chambers) are time intensive, expensive, and use in-situ equipment. These methods lack the spatio-temporal flexibility necessary to reduce the high uncertainty in regional emissions estimates, while traditional remote sensing methods often do not provide adequate spatio-temporal resolution for robust field-level monitoring. Small Unmanned Aerial Systems (sUAS) provide the range and the rapid response data collection needed to monitor key variables on the landscape (imagery) and from the atmosphere (CO2 concentrations), and can provide ways to bridge between in-situ and remote sensing data. Initial results show good agreement between sUAS CO2 sensors with more traditional equipment, and at a fraction of the cost. We present results from test flights over managed agricultural landscapes in Vermont, showcasing capabilities from both sUAS imagery and atmospheric data collected from on-board sensors (CO2, PTH). We then compare results from two different in-flight data collection methods: Vertical Profile and Horizontal Surveys. We conclude with results from the integration of these sUAS data with concurrently collected in-field measurements from static chambers and Landsat imagery, demonstrating enhanced understanding of agricultural landscapes and improved GHG emissions monitoring with the addition of sUAS collected data.
Framing global health: the governance challenge.
McInnes, Colin; Kamradt-Scott, Adam; Lee, Kelley; Reubi, David; Roemer-Mahler, Anne; Rushton, Simon; Williams, Owain David; Woodling, Marie
2012-01-01
With the emergence of global health comes governance challenges which are equally global in nature. This article identifies some of the initial limitations in analyses of global health governance (GHG) before discussing the focus of this special supplement: the framing of global health issues and the manner in which this impacts upon GHG. Whilst not denying the importance of material factors (such as resources and institutional competencies), the article identifies how issues can be framed in different ways, thereby creating particular pathways of response which in turn affect the potential for and nature of GHG. It also identifies and discusses the key frames operating in global health: evidence-based medicine, human rights, security, economics and development.
Methods for Analysis of Urban Energy Systems: A New York City Case Study
NASA Astrophysics Data System (ADS)
Howard, Bianca
This dissertation describes methods developed for analysis of the New York City energy system. The analysis specifically aims to consider the built environment and its' impacts on greenhouse gas (GHG) emissions. Several contributions to the urban energy systems literature were made. First, estimates of annual energy intensities of the New York building stock were derived using a statistical analysis that leveraged energy consumption and tax assessor data collected by the Office of the Mayor. These estimates provided the basis for an assessment of the spatial distribution of building energy consumption. The energy consumption estimates were then leveraged to estimate the potential for combined heat and power (CHP) systems in New York City at both the building and microgrid scales. In aggregate, given the 2009 non-baseload GHG emissions factors for electricity production, these systems could reduce citywide GHG emissions by 10%. The operational characteristics of CHP systems were explored further considering different prime movers, climates, and GHG emissions factors. A combination of mixed integer linear programing and controlled random search algorithms were the methods used to determine the optimal capacity and operating strategies for the CHP systems under the various scenarios. Lastly a multi-regional unit commitment model of electricity and GHG emissions production for New York State was developed using data collected from several publicly available sources. The model was used to estimate average and marginal GHG emissions factors for New York State and New York City. The analysis found that marginal GHG emissions factors could reduce by 30% to 370 g CO2e/kWh in the next 10 years.
Short-term spatial and temporal variability in greenhouse gas fluxes in riparian zones.
Vidon, P; Marchese, S; Welsh, M; McMillan, S
2015-08-01
Recent research indicates that riparian zones have the potential to contribute significant amounts of greenhouse gases (GHG: N2O, CO2, CH4) to the atmosphere. Yet, the short-term spatial and temporal variability in GHG emission in these systems is poorly understood. Using two transects of three static chambers at two North Carolina agricultural riparian zones (one restored, one unrestored), we show that estimates of the average GHG flux at the site scale can vary by one order of magnitude depending on whether the mean or the median is used as a measure of central tendency. Because the median tends to mute the effect of outlier points (hot spots and hot moments), we propose that both must be reported or that other more advanced spatial averaging techniques (e.g., kriging, area-weighted average) should be used to estimate GHG fluxes at the site scale. Results also indicate that short-term temporal variability in GHG fluxes (a few days) under seemingly constant temperature and hydrological conditions can be as large as spatial variability at the site scale, suggesting that the scientific community should rethink sampling protocols for GHG at the soil-atmosphere interface to include repeated measures over short periods of time at select chambers to estimate GHG emissions in the field. Although recent advances in technology provide tools to address these challenges, their cost is often too high for widespread implementation. Until technology improves, sampling design strategies will need to be carefully considered to balance cost, time, and spatial and temporal representativeness of measurements.
Global climate targets and future consumption level: an evaluation of the required GHG intensity
NASA Astrophysics Data System (ADS)
Girod, Bastien; van Vuuren, Detlef Peter; Hertwich, Edgar G.
2013-03-01
Discussion and analysis on international climate policy often focuses on the rather abstract level of total national and regional greenhouse gas (GHG) emissions. At some point, however, emission reductions need to be translated to consumption level. In this article, we evaluate the implications of the strictest IPCC representative concentration pathway for key consumption categories (food, travel, shelter, goods, services). We use IPAT style identities to account for possible growth in global consumption levels and indicate the required change in GHG emission intensity for each category (i.e. GHG emission per calorie, person kilometer, square meter, kilogram, US dollar). The proposed concept provides guidance for product developers, consumers and policymakers. To reach the 2 °C climate target (2.1 tCO2-eq. per capita in 2050), the GHG emission intensity of consumption has to be reduced by a factor of 5 in 2050. The climate targets on consumption level allow discussion of the feasibility of this climate target at product and consumption level. In most consumption categories products in line with this climate target are available. For animal food and air travel, reaching the GHG intensity targets with product modifications alone will be challenging and therefore structural changes in consumption patterns might be needed. The concept opens up possibilities for further research on potential solutions on the consumption and product level to global climate mitigation.
Introduction of Energy and Climate Mitigation Policy Issues in Energy - Environment Model of Latvia
NASA Astrophysics Data System (ADS)
Klavs, G.; Rekis, J.
2016-12-01
The present research is aimed at contributing to the Latvian national climate policy development by projecting total GHG emissions up to 2030, by evaluating the GHG emission reduction path in the non-ETS sector at different targets set for emissions reduction and by evaluating the obtained results within the context of the obligations defined by the EU 2030 policy framework for climate and energy. The method used in the research was bottom-up, linear programming optimisation model MARKAL code adapted as the MARKAL-Latvia model with improvements for perfecting the integrated assessment of climate policy. The modelling results in the baseline scenario, reflecting national economic development forecasts and comprising the existing GHG emissions reduction policies and measures, show that in 2030 emissions will increase by 19.1 % compared to 2005. GHG emissions stabilisation and reduction in 2030, compared to 2005, were researched in respective alternative scenarios. Detailed modelling and analysis of the Latvian situation according to the scenario of non-ETS sector GHG emissions stabilisation and reduction in 2030 compared to 2005 have revealed that to implement a cost effective strategy of GHG emissions reduction first of all a policy should be developed that ensures effective absorption of the available energy efficiency potential in all consumer sectors. The next group of emissions reduction measures includes all non-ETS sectors (industry, services, agriculture, transport, and waste management).
NASA Astrophysics Data System (ADS)
Vinson, Ted S.; Kolchugina, Tatyana P.; Andrasko, Kenneth A.
1996-01-01
Greenhouse gas (GHG) mitigation options in the Russian forest sector include: afforestation and reforestation of unforested/degraded land area; enhanced forest productivity; incorporation of nondestructive methods of wood harvesting in the forest industry; establishment of land protective forest stands; increase in stand age of final harvest in the European part of Russia; increased fire control; increased disease and pest control; and preservation of old growth forests in the Russian Far-East, which are presently threatened. Considering the implementation of all of the options presented, the GHG mitigation potential within the forest and agroforestry sectors of Russia is approximately 0.6 0.7 Pg C/yr or one half of the industrial carbon emissions of the United States. The difference between the GHG mitigation potential and the actual level of GHGs mitigated in the Russian forest sector will depend to a great degree on external financing that may be available. One possibility for external financing is through joint implementation (JI). However, under the JI process, each project will be evaluated by considering a number of criteria including also the difference between the carbon emissions or sequestration for the baseline (or reference) and the project case, the permanence of the project, and leakage. Consequently, a project level assessment must appreciate the near-term constraints that will face practitioners who attempt to realize the GHG mitigation potential in the forest and agroforestry sectors of their countries.
Low-carbon energy generates public health savings in California
NASA Astrophysics Data System (ADS)
Zapata, Christina B.; Yang, Chris; Yeh, Sonia; Ogden, Joan; Kleeman, Michael J.
2018-04-01
California's goal to reduce greenhouse gas (GHG) emissions to a level that is 80 % below 1990 levels by the year 2050 will require adoption of low-carbon energy sources across all economic sectors. In addition to reducing GHG emissions, shifting to fuels with lower carbon intensity will change concentrations of short-lived conventional air pollutants, including airborne particles with a diameter of less than 2.5 µm (PM2.5) and ozone (O3). Here we evaluate how business-as-usual (BAU) air pollution and public health in California will be transformed in the year 2050 through the adoption of low-carbon technologies, expanded electrification, and modified activity patterns within a low-carbon energy scenario (GHG-Step). Both the BAU and GHG-Step statewide emission scenarios were constructed using the energy-economic optimization model, CA-TIMES, that calculates the multi-sector energy portfolio that meets projected energy supply and demand at the lowest cost, while also satisfying scenario-specific GHG emissions constraints. Corresponding criteria pollutant emissions for each scenario were then spatially allocated at 4 km resolution to support air quality analysis in different regions of the state. Meteorological inputs for the year 2054 were generated under a Representative Concentration Pathway (RCP) 8.5 future climate. Annual-average PM2.5 and O3 concentrations were predicted using the modified emissions and meteorology inputs with a regional chemical transport model. In the final phase of the analysis, mortality (total deaths) and mortality rate (deaths per 100 000) were calculated using established exposure-response relationships from air pollution epidemiology combined with simulated annual-average PM2.5 and O3 exposure. Net emissions reductions across all sectors are -36 % for PM0.1 mass, -3.6 % for PM2.5 mass, -10.6 % for PM2.5 elemental carbon, -13.3 % for PM2.5 organic carbon, -13.7 % for NOx, and -27.5 % for NH3. Predicted deaths associated with air pollution in 2050 dropped by 24-26 % in California (1537-2758 avoided deaths yr-1) in the climate-friendly
2050 GHG-Step scenario, which is equivalent to a 54-56 % reduction in the air pollution mortality rate (deaths per 100 000) relative to 2010 levels. These avoided deaths have an estimated value of USD 11.4-20.4 billion yr-1 based on the present-day value of a statistical life (VSL) equal to USD 7.6 million. The costs for reducing California GHG emissions 80 % below 1990 levels by the year 2050 depend strongly on numerous external factors such as the global price of oil. Best estimates suggest that meeting an intermediate target (40 % reduction in GHG emissions by the year 2030) using a non-optimized scenario would reduce personal income by USD 4.95 billion yr-1 (-0.15 %) and lower overall state gross domestic product by USD 16.1 billion yr-1 (-0.45 %). The public health benefits described here are comparable to these cost estimates, making a compelling argument for the adoption of low-carbon energy in California, with implications for other regions in the United States and across the world.
Strengthening community participation in reducing GHG emission from forest and peatland fire
NASA Astrophysics Data System (ADS)
Thoha, A. S.; Saharjo, B. H.; Boer, R.; Ardiansyah, M.
2018-02-01
Strengthening community participation is needed to find solutions to encourage community more participate in reducing Green House Gas (GHG) from forest and peatland fire. This research aimed to identify stakeholders that have the role in forest and peatland fire control and to formulate strengthening model of community participation through community-based early warning fire. Stakeholder mapping and action research were used to determine stakeholders that had potential influence and interest and to formulate strengthening model of community participation in reducing GHG from forest and peatland fire. There was found that position of key players in the mapping of stakeholders came from the government institution. The existence of community-based fire control group can strengthen government institution through collaborating with stakeholders having strong interest and influence. Moreover, it was found several local knowledge in Kapuas District about how communities predict drought that have potential value for developing the community-based early warning fire system. Formulated institutional model in this research also can be further developed as a model institution in the preservation of natural resources based on local knowledge. In conclusion, local knowledge and community-based fire groups can be integrated within strengthening model of community participation in reducing GHG from forest and peatland fire.
Préndez, Margarita; Lara-González, Scarlette
2008-09-01
Greenhouse gases (GHG), basically methane (CH(4)), carbon dioxide (CO(2)) and nitrous oxide (N(2)O), occur at atmospheric concentrations of ppbv to ppmv under natural conditions. GHG have long mean lifetimes and are an important factor for the mean temperature of the Earth. However, increasing anthropogenic emissions could produce a scenario of progressive and cumulative effects over time, causing a potential "global climate change". Biological degradation of the organic matter present in wastewater is considered one of the anthropogenic sources of GHG. In this study, GHG emissions for the period 1990-2027 were estimated considering the sanitation process and the official domestic wastewater treatment startup schedule approved for the Metropolitan Region (MR) of Santiago, Chile. The methodology considers selected models proposed by the Intergovernmental Panel on Climate Change (IPCC) and some others published by different authors; these were modified according to national conditions and different sanitation and temporal scenarios. For the end of the modeled period (2027), results show emissions of about 65 Tg CO(2) equiv./year (as global warming potential), which represent around 50% of national emissions. These values could be reduced if certain sanitation management strategies were introduced in the environmental management by the sanitation company in charge of wastewater treatment.
Anaerobic digestion of agricultural and other substrates--implications for greenhouse gas emissions.
Pucker, J; Jungmeier, G; Siegl, S; Pötsch, E M
2013-06-01
The greenhouse gas (GHG) emissions, expressed in carbon dioxide equivalents (CO2-eq), of different Austrian biogas systems were analyzed and evaluated using life-cycle assessment (LCA) as part of a national project. Six commercial biogas plants were investigated and the analysis included the complete process chain: viz., the production and collection of substrates, the fermentation of the substrates in the biogas plant, the upgrading of biogas to biomethane (if applicable) and the use of the biogas or biomethane for heat and electricity or as transportation fuel. Furthermore, the LCA included the GHG emissions of construction, operation and dismantling of the major components involved in the process chain, as well as the use of by-products (e.g. fermentation residues used as fertilizers). All of the biogas systems reduced GHG emissions (in CO2-eq) compared with fossil reference systems. The potential for GHG reduction of the individual biogas systems varied between 60% and 100%. Type of feedstock and its reference use, agricultural practices, coverage of storage tanks for fermentation residues, methane leakage at the combined heat and power plant unit and the proportion of energy used as heat were identified as key factors influencing the GHG emissions of anaerobic digestion processes.
Greenhouse gas emissions from reservoir water surfaces: A ...
Collectively, reservoirs created by dams are thought to be an important source ofgreenhouse gases (GHGs) to the atmosphere. So far, efforts to quantify, model, andmanage these emissions have been limited by data availability and inconsistenciesin methodological approach. Here we synthesize worldwide reservoir methane,carbon dioxide, and nitrous oxide emission data with three main objectives: (1) togenerate a global estimate of GHG emissions from reservoirs, (2) to identify the bestpredictors of these emissions, and (3) to consider the effect of methodology onemission estimates. We estimate that GHG emission from reservoir water surfacesaccount for 0.8 (0.5-1.2) Pg CO2-equivalents per year, equal to ~1.3 % of allanthropogenic GHG emissions, with the majority (79%) of this forcing due tomethane. We also discuss the potential for several alternative pathways such as damdegassing and downstream emissions to contribute significantly to overall GHGemissions. Although prior studies have linked reservoir GHG emissions to systemage and latitude, we find that factors related to reservoir productivity are betterpredictors of emission. Finally, as methane contributed the most to total reservoirGHG emissions, it is important that future monitoring campaigns incorporatemethane emission pathways, especially ebullition. To inform the public.
Relevance of emissions timing in biofuel greenhouse gases and climate impacts.
Schwietzke, Stefan; Griffin, W Michael; Matthews, H Scott
2011-10-01
Employing life cycle greenhouse gas (GHG) emissions as a key performance metric in energy and environmental policy may underestimate actual climate change impacts. Emissions released early in the life cycle cause greater cumulative radiative forcing (CRF) over the next decades than later emissions. Some indicate that ignoring emissions timing in traditional biofuel GHG accounting overestimates the effectiveness of policies supporting corn ethanol by 10-90% due to early land use change (LUC) induced GHGs. We use an IPCC climate model to (1) estimate absolute CRF from U.S. corn ethanol and (2) quantify an emissions timing factor (ETF), which is masked in the traditional GHG accounting. In contrast to earlier analyses, ETF is only 2% (5%) over 100 (50) years of impacts. Emissions uncertainty itself (LUC, fuel production period) is 1-2 orders of magnitude higher, which dwarfs the timing effect. From a GHG accounting perspective, emissions timing adds little to our understanding of the climate impacts of biofuels. However, policy makers should recognize that ETF could significantly decrease corn ethanol's probability of meeting the 20% GHG reduction target in the 2007 Energy Independence and Security Act. The added uncertainty of potentially employing more complex emissions metrics is yet to be quantified.
Chan, Yiu C; Sinha, Rajiv K; Weijin Wang
2011-05-01
This study investigated greenhouse gas (GHG) emissions from three different home waste treatment methods in Brisbane, Australia. Gas samples were taken monthly from 34 backyard composting bins from January to April 2009. Averaged over the study period, the aerobic composting bins released lower amounts of CH(4) (2.2 mg m(- 2) h(-1)) than the anaerobic digestion bins (9.5 mg m(-2) h(-1)) and the vermicomposting bins (4.8 mg m(-2) h( -1)). The vermicomposting bins had lower N(2)O emission rates (1.2 mg m(-2) h(- 1)) than the others (1.5-1.6 mg m(-2) h( -1)). Total GHG emissions including both N(2)O and CH(4) were 463, 504 and 694 mg CO(2)-e m(- 2) h(-1) for vermicomposting, aerobic composting and anaerobic digestion, respectively, with N(2)O contributing >80% in the total budget. The GHG emissions varied substantially with time and were regulated by temperature, moisture content and the waste properties, indicating the potential to mitigate GHG emission through proper management of the composting systems. In comparison with other mainstream municipal waste management options including centralized composting and anaerobic digestion facilities, landfilling and incineration, home composting has the potential to reduce GHG emissions through both lower on-site emissions and the minimal need for transportation and processing. On account of the lower cost, the present results suggest that home composting provides an effective and feasible supplementary waste management method to a centralized facility in particular for cities with lower population density such as the Australian cities.
Polylactic acid trays for fresh-food packaging: A Carbon Footprint assessment.
Ingrao, Carlo; Tricase, Caterina; Cholewa-Wójcik, Agnieszka; Kawecka, Agnieszka; Rana, Roberto; Siracusa, Valentina
2015-12-15
This paper discusses application of Carbon Footprint (CF) for quantification of the 100-year Global Warming Potential (GWP100) associated with the life cycle of polylactic acid (PLA) trays for packaging of fresh foods. A comparison with polystyrene (PS)-based trays was done considering two different transport system scenarios for PLA-granule supply to the tray production firm: a transoceanic freight vessel and an intercontinental freight aircraft. Doing so enabled estimation of the influence of the transportation phase on the GHG-emission rate associated with the PLA-trays' life cycle. From the assessment, the GWP100 resulted to be mainly due to PLA-granulate production and to its transportation to the tray manufacturing facility. Also, the study documented that, depending upon the transport system considered, the CF associated with the life cycle of the PLA trays can worsen so much that the latter are no longer GHG-emission saving as they are expected to be compared to the PS ones. Therefore, based upon the findings of the study, it was possible for the authors to understand the importance and the need of accounting for the transport-related issues in the design of PLA-based products, thus preserving their environmental soundness compared to traditional petroleum-based products. In this context, the study could be used as the base to reconsider the merits of PLA usage for product manufacturing, especially when high distances are implied, as in this analysed case. So, the authors believe that new research and policy frameworks should be designed and implemented for both development and promotion of more globally sustainable options. Copyright © 2015 Elsevier B.V. All rights reserved.
Efficient Use of Cogeneration and Fuel Diversification
NASA Astrophysics Data System (ADS)
Kunickis, M.; Balodis, M.; Sarma, U.; Cers, A.; Linkevics, O.
2015-12-01
Energy policy of the European Community is implemented by setting various goals in directives and developing support mechanisms to achieve them. However, very often these policies and legislation come into contradiction with each other, for example Directive 2009/28/EC on the promotion of the use of energy from renewable sources and Directive 2012/27/EU on energy efficiency, repealing Directive 2004/8/EC on the promotion of cogeneration based on a useful heat demand. In this paper, the authors attempt to assess the potential conflicts between policy political objectives to increase the share of high-efficiency co-generation and renewable energy sources (RES), based on the example of Riga district heating system (DHS). If a new heat source using biomass is built on the right bank of Riga DHS to increase the share of RES, the society could overpay for additional heat production capacities, such as a decrease in the loading of existing generating units, thereby contributing to an inefficient use of existing capacity. As a result, the following negative consequences may arise: 1) a decrease in primary energy savings (PES) from high-efficiency cogeneration in Riga DHS, 2) an increase in greenhouse gas (GHG) emissions in the Baltic region, 3) the worsening security situation of electricity supply in the Latvian power system, 4) an increase in the electricity market price in the Lithuanian and Latvian price areas of Nord Pool power exchange. Within the framework of the research, calculations of PES and GHG emission volumes have been performed for the existing situation and for the situation with heat source, using biomass. The effect of construction of biomass heat source on power capacity balances and Nord Pool electricity prices has been evaluated.
Kusin, Faradiella Mohd; Akhir, Nurul Izzati Mat; Mohamat-Yusuff, Ferdaus; Awang, Muhamad
2017-02-01
The environmental impacts with regard to agro-based biofuel production have been associated with the impact of greenhouse gas (GHG) emissions. In this study, field GHG emissions during plantation stage of palm oil-based biofuel production associated with land use changes for oil palm plantation development have been evaluated. Three different sites of different land use changes prior to oil palm plantation were chosen; converted land-use (large and small-scales) and logged-over forest. Field sampling for determination of soil N-mineralisation and soil organic carbon (SOC) was undertaken at the sites according to the age of palm, i.e. <5 years (immature), 5-20 and >21 years (mature oil palms). The field data were incorporated into the estimation of nitrous oxide (N 2 O) and the resulting CO 2 -eq emissions as well as for estimation of carbon stock changes. Irrespective of the land conversion scenarios, the nitrous oxide emissions were found in the range of 6.47-7.78 kg N 2 O-N/ha resulting in 498-590 kg CO 2 -eq/ha. On the other hand, the conversion of tropical forest into oil palm plantation has resulted in relatively higher GHG emissions (i.e. four times higher and carbon stock reduction by >50%) compared to converted land use (converted rubber plantation) for oil palm development. The conversion from previously rubber plantation into oil palm plantation would increase the carbon savings (20% in increase) thus sustaining the environmental benefits from the palm oil-based biofuel production.
Landscape topography structures the soil microbiome in arctic polygonal tundra
Taş, Neslihan; Prestat, Emmanuel; Wang, Shi; ...
2018-02-22
Global temperature increases are resulting in thaw of permafrost soil in the arctic with increased emission of greenhouse gases (GHGs). Soil microorganisms are responsible for degradation of the trapped organic carbon (C) in permafrost and emission of GHG as it thaws. However, environmental factors governing microbial degradation of soil C and GHG emissions are poorly understood. Here we determined the functional potential of soil microbiomes in arctic tundra across a cryoperturbed polygonal landscape in Barrow, Alaska. Using a combination of metagenome sequencing and gas flux measurements, we found that the soil microbiome composition, diversity and functional potential varied across themore » polygon transect and that specific microbes and functional genes were correlated to GHG measurements. Several draft genomes of novel species were obtained with genes encoding enzymes involved in cycling of complex organic compounds. These results have larger implications for prediction of the influence of the soil microbiome on soil C flux from arctic regions undergoing environmental change.« less
Landscape topography structures the soil microbiome in arctic polygonal tundra
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taş, Neslihan; Prestat, Emmanuel; Wang, Shi
Global temperature increases are resulting in thaw of permafrost soil in the arctic with increased emission of greenhouse gases (GHGs). Soil microorganisms are responsible for degradation of the trapped organic carbon (C) in permafrost and emission of GHG as it thaws. However, environmental factors governing microbial degradation of soil C and GHG emissions are poorly understood. Here we determined the functional potential of soil microbiomes in arctic tundra across a cryoperturbed polygonal landscape in Barrow, Alaska. Using a combination of metagenome sequencing and gas flux measurements, we found that the soil microbiome composition, diversity and functional potential varied across themore » polygon transect and that specific microbes and functional genes were correlated to GHG measurements. Several draft genomes of novel species were obtained with genes encoding enzymes involved in cycling of complex organic compounds. These results have larger implications for prediction of the influence of the soil microbiome on soil C flux from arctic regions undergoing environmental change.« less
Alternative energy balances for Bulgaria to mitigate climate change
NASA Astrophysics Data System (ADS)
Christov, Christo
1996-01-01
Alternative energy balances aimed to mitigate greenhouse gas (GHG) emissions are developed as alternatives to the baseline energy balance. The section of mitigation options is based on the results of the GHG emission inventory for the 1987 1992 period. The energy sector is the main contributor to the total CO2 emissions of Bulgaria. Stationary combustion for heat and electricity production as well as direct end-use combustion amounts to 80% of the total emissions. The parts of the energy network that could have the biggest influence on GHG emission reduction are identified. The potential effects of the following mitigation measures are discussed: rehabilitation of the combustion facilities currently in operation; repowering to natural gas; reduction of losses in thermal and electrical transmission and distribution networks; penetration of new combustion technologies; tariff structure improvement; renewable sources for electricity and heat production; wasteheat utilization; and supply of households with natural gas to substitute for electricity in space heating and cooking. The total available and the achievable potentials are estimated and the implementation barriers are discussed.
Cifuentes, L; Borja-Aburto, V H; Gouveia, N; Thurston, G; Davis, D L
2001-06-01
To investigate the potential local health benefits of adopting greenhouse gas (GHG) mitigation policies, we develop scenarios of GHG mitigation for México City, México; Santiago, Chile; São Paulo, Brazil; and New York, New York, USA using air pollution health impact factors appropriate to each city. We estimate that the adoption of readily available technologies to lessen fossil fuel emissions over the next two decades in these four cities alone will reduce particulate matter and ozone and avoid approximately 64,000 (95% confidence interval [CI] 18,000-116,000) premature deaths (including infant deaths), 65,000 (95% CI 22,000-108,000) chronic bronchitis cases, and 46 million (95% CI 35-58 million) person-days of work loss or other restricted activity. These findings illustrate that GHG mitigation can provide considerable local air pollution-related public health benefits to countries that choose to abate GHG emissions by reducing fossil fuel combustion.
Cifuentes, L; Borja-Aburto, V H; Gouveia, N; Thurston, G; Davis, D L
2001-01-01
To investigate the potential local health benefits of adopting greenhouse gas (GHG) mitigation policies, we develop scenarios of GHG mitigation for México City, México; Santiago, Chile; São Paulo, Brazil; and New York, New York, USA using air pollution health impact factors appropriate to each city. We estimate that the adoption of readily available technologies to lessen fossil fuel emissions over the next two decades in these four cities alone will reduce particulate matter and ozone and avoid approximately 64,000 (95% confidence interval [CI] 18,000-116,000) premature deaths (including infant deaths), 65,000 (95% CI 22,000-108,000) chronic bronchitis cases, and 46 million (95% CI 35-58 million) person-days of work loss or other restricted activity. These findings illustrate that GHG mitigation can provide considerable local air pollution-related public health benefits to countries that choose to abate GHG emissions by reducing fossil fuel combustion. PMID:11427391
Assessment of the potential REDD+ as a new international support measure for GHG reduction
NASA Astrophysics Data System (ADS)
Kim, Y.; Ahn, J.; Kim, H.
2016-12-01
As part of the Paris Agreement, the mechanism for reducing emissions from deforestation and forest degradation in developing countries (REDD+) has high potential to simultaneously contribute to greenhouse gas (GHG) mitigation through forest conservation and poverty alleviation. Some of 162 Intended Nationally Determined Contributions (INDCs) submitted by 189 countries representing approximately 98.8% of global GHG emissions include not only unconditional mitigation goals but also conditional goals based on the condition of the provision of international support such as finance, technology transfer and capacity building. Considering REDD+ as one of the main mechanisms to support such work, this study selected ten countries from among Korea's 24 ODA priority partners, taking into consideration their conditional INDC targets alongside sectoral quantified targets such as land use, land-use change and forestry (LULUCF). The ten selected countries are Indonesia, Cambodia, Vietnam, Bangladesh, Sri Lanka, Ghana, Senegal, Colombia, Peru and Paraguay. Of these countries, most REDD+ projects have been conducted in Indonesia mainly due to the fact that 85% of the country's total GHG emissions are caused by forest conversion and peatland degradation. Therefore, GHG reduction rates and associated projected costs of the Indonesia's REDD+ projects were analyzed in order to offer guidance on the potential of REDD+ to contribute to other INDCs' conditional goals. The result showed that about 0.9 t CO2 ha-1 could be reduced at a cost of USD 23 per year. Applying this estimation to the Cambodian case, which has submitted a conditional INDC target of increasing its forest coverage by 60% (currently 57%) by 2030, suggests that financial support of USD 12.8 million would reduce CO2 emissions by about 5.1 million tones by increasing forest coverage. As there is currently no consideration of LULUCF in Cambodia's INDC, this result represents the opportunity for an additional contribution to achieving the country's conditional mitigation goals.
Grandl, F; Furger, M; Kreuzer, M; Zehetmeier, M
2018-05-29
Dairy production systems are often criticized as being major emitters of greenhouse gases (GHG). In this context, the extension of the length of the productive life of dairy cows is gaining interest as a potential GHG mitigation option. In the present study, we investigated cow and system GHG emission intensity and profitability based on data from 30 dairy cows of different productive lifetime fed either no or limited amounts of concentrate. Detailed information concerning productivity, feeding and individual enteric methane emissions of the individuals was available from a controlled experiment and herd book databases. A simplified GHG balance was calculated for each animal based on the milk produced at the time of the experiment and for their entire lifetime milk production. For the lifetime production, we also included the emissions arising from potential beef produced by fattening the offspring of the dairy cows. This accounted for the effect that changes in the length of productive life will affect the replacement rate and thus the number of calves that can be used for beef production. Profitability was assessed by calculating revenues and full economic costs for the cows in the data set. Both emission intensity and profitability were most favourable in cows with long productive life, whereas cows that had not finished their first lactation performed particularly unfavourably with regard to their emissions per unit of product and rearing costs were mostly not repaid. Including the potential beef production, GHG emissions in relation to total production of animal protein also decreased with age, but the overall variability was greater, as the individual cow history (lifetime milk yield, twin births, stillbirths, etc.) added further sources of variation. The present results show that increasing the length of productive life of dairy cows is a viable way to reduce the climate impact and to improve profitability of dairy production.
Global Warming Potential from early phase decomposition of soil organic matter amendments
NASA Astrophysics Data System (ADS)
Mayer, A.; Silver, W. L.
2015-12-01
Organic matter amendments to soil are widely used as a method of enhancing nutrient availability for crops or grassland. Amendments such as composted manure or greenwaste also have the co-benefits of potentially increasing soil carbon (C) stocks (DeLonge et al., 2013) and diverting organic waste from landfills or manure lagoons. However, application of organic matter amendments can also stimulate emissions of greenhouse gases (GHGs). In this study we determined how the chemical quality of organic matter amendments affected soil C and N content and GHG emissions during early stage decomposition. California grassland soils were amended with six different amendments of varying C and N content including three composts and three feedstocks (goat and horse bedding and cattle manure). Amendments and soils were incubated in the laboratory for 7 weeks; GHG fluxes were measured weekly. The three feedstocks emitted significantly more GHGs than the composted materials. With the exception of cow manure, N content of the amendment was linearly correlated with global warming potential emitted (R2= 0.66, P <0.0001). C:N ratios were not a significant predictor of GHG emissions. Cow manure stimulated a net loss of C (or C equivalents) in the mineral soil, as expected. However, greenwaste compost also surprisingly resulted in net C losses, while goat bedding, horse bedding, and the other compost were either C neutral or a slight net C sink at the end of the incubation. Ongoing analyses are examining the fate of the C incorporated from the amendment to the soil as occluded or free light fraction, as well as N mineralization rates. Our data suggest that N content of organic matter amendments is a good predictor of initial GHG emissions. The study also indicates that composting greenwaste with N-rich bedding and manure can result in lower GHG emissions and C sequestration compared to the individual uncomposted components.
NASA Astrophysics Data System (ADS)
He, Hongxing; Jansson, Per-Erik; Svensson, Magnus; Björklund, Jesper; Tarvainen, Lasse; Klemedtsson, Leif; Kasimir, Åsa
2016-04-01
The CoupModel was used to simulate a Norway Spruce forest on fertile drained peat over 60 years, from planting in 1951 until 2011, describing abiotic, biotic and greenhouse gas (GHG) emissions (CO2 and N2O). By calibrating the model against tree ring derived biomass data and measured 6 year abiotic data we obtained a "reference" model by which we were able to describe the GHG fluxes and controlling factors over the 60 years. The GHG fluxes are composed of two important quantities, the forest carbon (C) uptake, 405 g C m-2 yr-1 and the decomposition of peat soil, 396 g C m-2 yr-1. N2O emissions contribute to the GHG emissions by 0.5 g N m-2 yr-1, corresponding to 56.8 g C m-2 yr-1. The 60-year-old Spruce forest has an accumulated biomass of 164 Mg C ha-1. However, over this period 208 Mg C ha-1 GHG has been added to the atmosphere, which means a net addition of GHG emissions. The main losses are from the peat soil and, indirectly, from forest thinning products, which we assume have a short lifetime. Model sensitivity analysis by changing initial soil C, drainage depth and initial soil C/N ratio also confirms that forests on drained agricultural peatland are a GHG source. We conclude that after harvest at an age of 80 years, most of the stored biomass carbon is liable to be released, the system having captured C only temporarily and with a cost of disappeared peat, adding both CO2 and N2O to the atmosphere.
Case Study - Propane School Bus Fleets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Laughlin, M; Burnham, A.
As part of the U.S. Department of Energy’s (DOE’s) effort to deploy transportation technologies that reduce U.S. dependence on imported petroleum, this study examines five school districts, one in Virginia and four in Texas, successful use of propane school buses. These school districts used school buses equipped with the newly developed liquid propane injection system that improves vehicle performance. Some of the school districts in this study saved nearly 50% on a cost per mile basis for fuel and maintenance relative to diesel. Using Argonne National Laboratory’s Alternative Fuel Life-Cycle Environmental and Economic Transportation (AFLEET) Tool developed for the DOE’smore » Clean Cities program to help Clean Cities stakeholders estimate petroleum use, greenhouse gas (GHG) emissions, air pollutant emissions and cost of ownership of light-duty and heavy-duty vehicles, the results showed payback period ranges from 3—8 years, recouping the incremental cost of the vehicles and infrastructure. Overall, fuel economy for these propane vehicles is close to that of displaced diesel vehicles, on an energy-equivalent basis. In addition, the 110 propane buses examined demonstrated petroleum displacement, 212,000 diesel gallon equivalents per year, and GHG benefits of 770 tons per year.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Couth, R.; Trois, C., E-mail: troisc@ukzn.ac.za
Highlights: Black-Right-Pointing-Pointer This is a compendium on GHG reductions via improved waste strategies in Africa. Black-Right-Pointing-Pointer This note provides a strategic framework for Local Authorities in Africa. Black-Right-Pointing-Pointer Assists LAs to select Zero Waste scenarios and achieve sustained GHG reduction. - Abstract: Only few Clean Development Mechanism (CDM) projects (traditionally focussed on landfill gas combustion) have been registered in Africa if compared to similar developing countries. The waste hierarchy adopted by many African countries clearly shows that waste recycling and composting projects are generally the most sustainable. This paper undertakes a sustainability assessment for practical waste treatment and disposal scenariosmore » for Africa and makes recommendations for consideration. The appraisal in this paper demonstrates that mechanical biological treatment of waste becomes more financially attractive if established through the CDM process. Waste will continue to be dumped in Africa with increasing greenhouse gas emissions produced, unless industrialised countries (Annex 1) fund carbon emission reduction schemes through a replacement to the Kyoto Protocol. Such a replacement should calculate all of the direct and indirect carbon emission savings and seek to promote public-private partnerships through a concerted support of the informal sector.« less
Bergamaschi, Brian A.; Bernknopf, Richard; Clow, David; Dye, Dennis; Faulkner, Stephen; Forney, William; Gleason, Robert; Hawbaker, Todd; Liu, Jinxun; Liu, Shu-Guang; Prisley, Stephen; Reed, Bradley; Reeves, Matthew; Rollins, Matthew; Sleeter, Benjamin; Sohl, Terry; Stackpoole, Sarah; Stehman, Stephen; Striegl, Robert G.; Wein, Anne; Zhu, Zhi-Liang; Zhu, Zhi-Liang
2010-01-01
he Energy Independence and Security Act of 2007 (EISA), Section 712, mandates the U.S. Department of the Interior to develop a methodology and conduct an assessment of the Nation’s ecosystems, focusing on carbon stocks, carbon sequestration, and emissions of three greenhouse gases (GHGs): carbon dioxide, methane, and nitrous oxide. The major requirements include (1) an assessment of all ecosystems (terrestrial systems, such as forests, croplands, wetlands, grasslands/shrublands; and aquatic ecosystems, such as rivers, lakes, and estuaries); (2) an estimate of the annual potential capacities of ecosystems to increase carbon sequestration and reduce net GHG emissions in the context of mitigation strategies (including management and restoration activities); and (3) an evaluation of the effects of controlling processes, such as climate change, land-use and land-cover change, and disturbances such as wildfires.The concepts of ecosystems, carbon pools, and GHG fluxes follow conventional definitions in use by major national and international assessment or inventory efforts. In order to estimate current ecosystem carbon stocks and GHG fluxes and to understand the potential capacity and effects of mitigation strategies, the method will use two time periods for the assessment: 2001 through 2010, which establishes a current ecosystem carbon and GHG baseline and will be used to validate the models; and 2011 through 2050, which will be used to assess potential capacities based on a set of scenarios. The scenario framework will be constructed using storylines of the Intergovernmental Panel on Climate Change (IPCC) Special Report on Emission Scenarios (SRES), along with both reference and enhanced land-use and land-cover (LULC) and land-management parameters. Additional LULC and land-management mitigation scenarios will be constructed for each storyline to increase carbon sequestration and reduce GHG fluxes in ecosystems. Input from regional experts and stakeholders will be solicited to construct these scenarios.The methods for mapping the current LULC and ecosystem disturbances will require the extensive use of both remote-sensing data and field-survey data (for example, forest inventories) to capture and characterize landscape-changing events. For potential LULC changes and ecosystem disturbances, key drivers such as socioeconomic and climate changes will be used in addition to the biophysical data. The result of these analyses will be a series of maps for each future year for each scenario. These annual maps will form the basis for estimating carbon storage and GHG emissions. For terrestrial ecosystems, carbon storage, carbon-sequestration capacities, and GHG emissions under the present conditions and future scenarios will be assessed using the LULC-change and ecosystem-disturbance estimates in map format with a spatially explicit biogeochemical ensemble modeling system that incorporates properties of management activities (such as tillage or harvesting) and properties of individual ecosystems (such as energy exchange, vegetation characteristics, hydrological cycling, and soil attributes). For aquatic ecosystems, carbon burial in sediments and fluxes of GHG are functions of the present and future potential stream flow and sediment transport and will be assessed using empirical hydrological modeling methods. Validation and uncertainty analysis methods described in the methodology will follow established guidelines to assess the quality of the assessment results.The U.S. Environmental Protection Agency’s Level II ecoregions map will be the practical instrument for developing and delivering assessment results. Consequently, the ecoregion (there are 22 modified ecoregions) will be the reporting unit of the assessment because the scenarios, assessment results, validation, and uncertainty analysis will be produced at that scale. The implementation of these methods will require collaborations among various Federal agencies, State agencies, nongovernmental organizations, and the science community. Using the method described in this document, the assessment can be completed in approximately 3 to 4 years. The primary deliverables will be assessment reports containing tables, charts, and maps that will present the estimated GHG parameters annually for 2001 through 2050 by ecosystem, pool, and scenario. The results will permit the evaluation of a range of policies, mitigation options, and research topics, such as the demographic, LULC-change, or climate-change effects on carbon stocks, carbon sequestration, and GHG fluxes in ecosystems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
2014-12-01
While energy efficient transportation strategies have the potential to simultaneously slash oil consumption and reduce greenhouse gas (GHG) emissions, a truly sustainable solution will require more than just putting drivers behind the wheels of new fuel-efficient cars. As the only national laboratory dedicated 100% to renewable energy and energy efficiency, the National Renewable Energy Laboratory (NREL) accelerates widespread adoption of high-performance, low-emission, energy-efficient passenger and freight vehicles, as well as alternative fuels and related infrastructure. Researchers collaborate closely with industry, government, and research partners, using a whole-systems approach to design better batteries, drivetrains, and engines, as well as thermal management,more » energy storage, power electronic, climate control, alternative fuel, combustion, and emission systems. NREL's sustainable transportation research, development, and deployment (RD&D) efforts are not limited to vehicles, roads, and fueling stations. The lab also explores ways to save energy and reduce GHGs by integrating transportation technology advancements with renewable energy generation, power grids and building systems, urban planning and policy, and fleet operations.« less
Comparative Analysis of Modeling Studies on China's Future Energy and Emissions Outlook
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheng, Nina; Zhou, Nan; Fridley, David
The past decade has seen the development of various scenarios describing long-term patterns of future Greenhouse Gas (GHG) emissions, with each new approach adding insights to our understanding of the changing dynamics of energy consumption and aggregate future energy trends. With the recent growing focus on China's energy use and emission mitigation potential, a range of Chinese outlook models have been developed across different institutions including in China's Energy Research Institute's 2050 China Energy and CO2 Emissions Report, McKinsey & Co's China's Green Revolution report, the UK Sussex Energy Group and Tyndall Centre's China's Energy Transition report, and the China-specificmore » section of the IEA World Energy Outlook 2009. At the same time, the China Energy Group at Lawrence Berkeley National Laboratory (LBNL) has developed a bottom-up, end-use energy model for China with scenario analysis of energy and emission pathways out to 2050. A robust and credible energy and emission model will play a key role in informing policymakers by assessing efficiency policy impacts and understanding the dynamics of future energy consumption and energy saving and emission reduction potential. This is especially true for developing countries such as China, where uncertainties are greater while the economy continues to undergo rapid growth and industrialization. A slightly different assumption or storyline could result in significant discrepancies among different model results. Therefore, it is necessary to understand the key models in terms of their scope, methodologies, key driver assumptions and the associated findings. A comparative analysis of LBNL's energy end-use model scenarios with the five above studies was thus conducted to examine similarities and divergences in methodologies, scenario storylines, macroeconomic drivers and assumptions as well as aggregate energy and emission scenario results. Besides directly tracing different energy and CO{sub 2} savings potential back to the underlying strategies and combination of efficiency and abatement policy instruments represented by each scenario, this analysis also had other important but often overlooked findings.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steinberg, Daniel C.; Boyd, Erin
2015-08-28
In this report, we examine and compare how tradable mass-based polices and tradable rate-based policies create different incentives for energy efficiency investments. Through a generalized demonstration and set of examples, we show that as a result of the output subsidy they create, traditional rate-based policies, those that do not credit energy savings from efficiency measures, reduce the incentive for investment in energy efficiency measures relative to an optimally designed mass-based policy or equivalent carbon tax. We then show that this reduced incentive can be partially addressed by modifying the rate-based policy such that electricity savings from energy efficiency measures aremore » treated as a source of zero-carbon generation within the framework of the standard, or equivalently, by assigning avoided emissions credit to the electricity savings at the rate of the intensity target. These approaches result in an extension of the output subsidy to efficiency measures and eliminate the distortion between supply-side and demand-side options for GHG emissions reduction. However, these approaches do not address electricity price distortions resulting from the output subsidy that also impact the value of efficiency measures. Next, we assess alternative approaches for crediting energy efficiency savings within the framework of a rate-based policy. Finally, we identify a number of challenges that arise in implementing a rate-based policy with efficiency crediting, including the requirement to develop robust estimates of electricity savings in order to assess compliance, and the requirement to track the regionality of the generation impacts of efficiency measures to account for their interstate effects.« less
Molina, Verónica; Eissler, Yoanna; Cornejo, Marcela; Galand, Pierre E; Dorador, Cristina; Hengst, Martha; Fernandez, Camila; Francois, Jean Pierre
2018-04-06
Northern Chile harbors different bioclimatic zones including hyper-arid and arid ecosystems and hotspots of microbial life, such as high altitude wetlands, which may contribute differentially to greenhouse gases (GHG) such as carbon dioxide (CO 2 ), methane (CH 4 ) and nitrous oxide (N 2 O). In this study, we explored ground level GHG distribution and the potential role of a wetland situated at 3800 m.a.s.l, and characterized by high solar radiation < 1600 W m -2 , extreme temperature ranges (-12 to 24 °C) and wind stress (< 17 m s -1 ). The water source of the wetland is mainly groundwater springs, which generates streams and ponds surrounded by peatlands. These sites support a rich microbial aquatic life including diverse bacteria and archaea communities, which transiently form more complex structures, such as microbial mats. In this study, GHG were measured in the water and above ground level air at the wetland site and along an elevation gradient in different bioclimatic areas from arid to hyper-arid zones. The microbiome from the water and sediments was described by high-throughput sequencing 16S rRNA and rDNA genes. The results indicate that GHG at ground level were variable along the elevation gradient potentially associated with different bioclimatic zones, reaching high values at the high Andean steppe and variable but lower values in the Atacama Desert and at the wetland. The water areas of the wetland presented high concentrations of CH 4 and CO 2 , particularly at the spring areas and in air bubbles below microbial mats. The microbial community was rich (> 40 phyla), including archaea and bacteria potentially active in the different matrices studied (water, sediments and mats). Functional microbial groups associated with GHG recycling were detected at low frequency, i.e., < 2.5% of total sequences. Our results indicate that hyper-arid and arid areas of northern Chile are sites of GHG exchange associated with various bioclimatic zones and particularly in aquatic areas of the wetland where this ecosystem could represent a net sink of N 2 O and a source for CH 4 and CO 2 .
Alam, Syed Ashraful; Starr, Mike
2009-01-01
The study focuses on the role of the fired clay brick making industry (BMI) on deforestation and greenhouse gas (GHG) emissions in Sudan. The BMI is based on numerous kilns that use biomass fuel, mainly wood which is largely harvested unsustainably. This results in potential deforestation and land degradation. Fuelwood consumption data was collected using interviews and questionnaires from 25 BMI enterprises in three administrative regions, namely Khartoum, Kassala and Gezira. Annual fuelwood consumption data (t dm yr(-1)) was converted into harvested biomass (m(3)) using a wood density value of 0.65 t dm m(-3). For annual GHG estimations, the methodological approach outlined by the Intergovernmental Panel on Climate Change (IPCC) was used. According to our results, the annual deforestation associated with the BMI for the whole of Sudan is 508.4x10(3) m(3) of wood biomass, including 267.6x10(3) m(3) round wood and 240.8x10(3) m(3) branches and small trees. Total GHG emissions from the Sudanese BMI are estimated at 378028 t CO(2), 15554 t CO, 1778 t CH(4), 442 t NO(X), 288 t NO and 12 t N(2)O per annum. The combined CO(2)-equivalent (global warming potential for 100-year time horizon) of the GHG emissions (excluding NO(X) and NO) is 455666 t yr(-1). While these emissions form only a small part of Sudan's total GHG emissions, the associated deforestation and land degradation is of concern and effort should be made for greater use of sustainable forest resources and management.
Impact of non-petroleum vehicle fuel economy on GHG mitigation potential
NASA Astrophysics Data System (ADS)
Luk, Jason M.; Saville, Bradley A.; MacLean, Heather L.
2016-04-01
The fuel economy of gasoline vehicles will increase to meet 2025 corporate average fuel economy standards (CAFE). However, dedicated compressed natural gas (CNG) and battery electric vehicles (BEV) already exceed future CAFE fuel economy targets because only 15% of non-petroleum energy use is accounted for when determining compliance. This study aims to inform stakeholders about the potential impact of CAFE on life cycle greenhouse gas (GHG) emissions, should non-petroleum fuel vehicles displace increasingly fuel efficient petroleum vehicles. The well-to-wheel GHG emissions of a set of hypothetical model year 2025 light-duty vehicles are estimated. A reference gasoline vehicle is designed to meet the 2025 fuel economy target within CAFE, and is compared to a set of dedicated CNG vehicles and BEVs with different fuel economy ratings, but all vehicles meet or exceed the fuel economy target due to the policy’s dedicated non-petroleum fuel vehicle incentives. Ownership costs and BEV driving ranges are estimated to provide context, as these can influence automaker and consumer decisions. The results show that CNG vehicles that have lower ownership costs than gasoline vehicles and BEVs with long distance driving ranges can exceed the 2025 CAFE fuel economy target. However, this could lead to lower efficiency CNG vehicles and heavier BEVs that have higher well-to-wheel GHG emissions than gasoline vehicles on a per km basis, even if the non-petroleum energy source is less carbon intensive on an energy equivalent basis. These changes could influence the effectiveness of low carbon fuel standards and are not precluded by the light-duty vehicle GHG emissions standards, which regulate tailpipe but not fuel production emissions.
Predicting the global warming potential of agro-ecosystems
NASA Astrophysics Data System (ADS)
Lehuger, S.; Gabrielle, B.; Larmanou, E.; Laville, P.; Cellier, P.; Loubet, B.
2007-04-01
Nitrous oxide, carbon dioxide and methane are the main biogenic greenhouse gases (GHG) contributing to the global warming potential (GWP) of agro-ecosystems. Evaluating the impact of agriculture on climate thus requires a capacity to predict the net exchanges of these gases in an integrated manner, as related to environmental conditions and crop management. Here, we used two year-round data sets from two intensively-monitored cropping systems in northern France to test the ability of the biophysical crop model CERES-EGC to simulate GHG exchanges at the plot-scale. The experiments involved maize and rapeseed crops on a loam and rendzina soils, respectively. The model was subsequently extrapolated to predict CO2 and N2O fluxes over an entire crop rotation. Indirect emissions (IE) arising from the production of agricultural inputs and from cropping operations were also added to the final GWP. One experimental site (involving a wheat-maize-barley rotation on a loamy soil) was a net source of GHG with a GWP of 350 kg CO2-C eq ha-1 yr-1, of which 75% were due to IE and 25% to direct N2O emissions. The other site (involving an oilseed rape-wheat-barley rotation on a rendzina) was a net sink of GHG for -250 kg CO2-C eq ha-1 yr-1, mainly due to a higher predicted C sequestration potential and C return from crops. Such modelling approach makes it possible to test various agronomic management scenarios, in order to design productive agro-ecosystems with low global warming impact.
Jeong, Seung Tak; Kim, Gil Won; Hwang, Hyun Young; Kim, Pil Joo; Kim, Sang Yoon
2018-02-01
Livestock manure application can stimulate greenhouse gas (GHG) emissions, especially methane (CH 4 ) in rice paddy. The stabilized organic matter (OM) is recommended to suppress CH 4 emission without counting the additional GHG emission during the composting process. To evaluate the effect of compost utilization on the net global warming potential (GWP) of a rice cropping system, the fluxes of GHGs from composting to land application were calculated by a life cycle assessment (LCA) method. The model framework was composed of GHG fluxes from industrial activities and biogenic GHG fluxes from the composting and rice cultivation processes. Fresh manure emitted 30MgCO 2 -eq.ha -1 , 90% and 10% of which were contributed by CH 4 and nitrous oxide (N 2 O) fluxes, respectively, during rice cultivation. Compost utilization decreased net GWP by 25% over that of the fresh manure during the whole process. The composting process increased the GWP of the industrial processes by 35%, but the 60% reduction in CH 4 emissions from the rice paddy mainly influenced the reduction of GWP during the overall process. Therefore, compost application could be a good management strategy to reduce GHG emissions from rice paddy systems. Copyright © 2017 Elsevier B.V. All rights reserved.
Cities’ Role in Mitigating United States Food System Greenhouse Gas Emissions
2018-01-01
Current trends of urbanization, population growth, and economic development have made cities a focal point for mitigating global greenhouse gas (GHG) emissions. The substantial contribution of food consumption to climate change necessitates urban action to reduce the carbon intensity of the food system. While food system GHG mitigation strategies often focus on production, we argue that urban influence dominates this sector’s emissions and that consumers in cities must be the primary drivers of mitigation. We quantify life cycle GHG emissions of the United States food system through data collected from literature and government sources producing an estimated total of 3800 kg CO2e/capita in 2010, with cities directly influencing approximately two-thirds of food sector GHG emissions. We then assess the potential for cities to reduce emissions through selected measures; examples include up-scaling urban agriculture and home delivery of grocery options, which each may achieve emissions reductions on the order of 0.4 and ∼1% of this total, respectively. Meanwhile, changes in waste management practices and reduction of postdistribution food waste by 50% reduce total food sector emissions by 5 and 11%, respectively. Consideration of the scale of benefits achievable through policy goals can enable cities to formulate strategies that will assist in achieving deep long-term GHG emissions targets. PMID:29717606
Cities' Role in Mitigating United States Food System Greenhouse Gas Emissions.
Mohareb, Eugene A; Heller, Martin C; Guthrie, Peter M
2018-05-15
Current trends of urbanization, population growth, and economic development have made cities a focal point for mitigating global greenhouse gas (GHG) emissions. The substantial contribution of food consumption to climate change necessitates urban action to reduce the carbon intensity of the food system. While food system GHG mitigation strategies often focus on production, we argue that urban influence dominates this sector's emissions and that consumers in cities must be the primary drivers of mitigation. We quantify life cycle GHG emissions of the United States food system through data collected from literature and government sources producing an estimated total of 3800 kg CO 2 e/capita in 2010, with cities directly influencing approximately two-thirds of food sector GHG emissions. We then assess the potential for cities to reduce emissions through selected measures; examples include up-scaling urban agriculture and home delivery of grocery options, which each may achieve emissions reductions on the order of 0.4 and ∼1% of this total, respectively. Meanwhile, changes in waste management practices and reduction of postdistribution food waste by 50% reduce total food sector emissions by 5 and 11%, respectively. Consideration of the scale of benefits achievable through policy goals can enable cities to formulate strategies that will assist in achieving deep long-term GHG emissions targets.
Prediction of Greenhouse Gas (GHG) Fluxes from Coastal Salt Marshes using Artificial Neural Network
NASA Astrophysics Data System (ADS)
Ishtiaq, K. S.; Abdul-Aziz, O. I.
2017-12-01
Coastal salt marshes are among the most productive ecosystems on earth. Given the complex interactions between ambient environment and ecosystem biological exchanges, it is difficult to predict the salt marsh greenhouse gas (GHG) fluxes (CO2 and CH4) from their environmental drivers. In this study, we developed an artificial neural network (ANN) model to robustly predict the salt marsh GHG fluxes using a limited number of input variables (photosynthetically active radiation, soil temperature and porewater salinity). The ANN parameterization involved an optimized 3-layer feed forward Levenberg-Marquardt training algorithm. Four tidal salt marshes of Waquoit Bay, MA — incorporating a gradient in land-use, salinity and hydrology — were considered as the case study sites. The wetlands were dominated by native Spartina Alterniflora, and characterized by high salinity and frequent flooding. The developed ANN model showed a good performance (training R2 = 0.87 - 0.96; testing R2 = 0.84 - 0.88) in predicting the fluxes across the case study sites. The model can be used to estimate wetland GHG fluxes and potential carbon balance under different IPCC climate change and sea level rise scenarios. The model can also aid the development of GHG offset protocols to set monitoring guidelines for restoration of coastal salt marshes.
He, Hong; Cheng, Xiao; Li, Xianglan; Zhu, Renbin; Hui, Fengming; Wu, Wenhui; Zhao, Tiancheng; Kang, Jing; Tang, Jianwu
2017-10-11
Penguin guano provides favorable conditions for production and emission of greenhouse gases (GHGs). Many studies have been conducted to determine the GHG fluxes from penguin colonies, however, at regional scale, there is still no accurate estimation of total GHG emissions. We used object-based image analysis (OBIA) method to estimate the Adélie penguin (Pygoscelis adeliae) population based on aerial photography data. A model was developed to estimate total GHG emission potential from Adélie penguin colonies during breeding seasons in 1983 and 2012, respectively. Results indicated that OBIA method was effective for extracting penguin information from aerial photographs. There were 17,120 and 21,183 Adélie penguin breeding pairs on Inexpressible Island in 1983 and 2012, respectively, with overall accuracy of the estimation of 76.8%. The main reasons for the increase in Adélie penguin populations were attributed to increase in temperature, sea ice and phytoplankton. The average estimated CH 4 and N 2 O emissions tended to be increasing during the period from 1983 to 2012 and CH 4 was the main GHG emitted from penguin colonies. Total global warming potential (GWP) of CH 4 and N 2 O emissions was 5303 kg CO 2 -eq in 1983 and 6561 kg CO 2 -eq in 2012, respectively.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Yuche; Young, Stanley; Gonder, Jeff
This study estimates the range of fuel and emissions impact of an automated-vehicle (AV) based transit system that services campus-based developments, termed an automated mobility district (AMD). The study develops a framework to quantify the fuel consumption and greenhouse gas (GHG) emission impacts of a transit system comprised of AVs, taking into consideration average vehicle fleet composition, fuel consumption/GHG emission of vehicles within specific speed bins, and the average occupancy of passenger vehicles and transit vehicles. The framework is exercised using a previous mobility analysis of a personal rapid transit (PRT) system, a system which shares many attributes with envisionedmore » AV-based transit systems. Total fuel consumption and GHG emissions with and without an AMD are estimated, providing a range of potential system impacts on sustainability. The results of a previous case study based of a proposed implementation of PRT on the Kansas State University (KSU) campus in Manhattan, Kansas, serves as the basis to estimate personal miles traveled supplanted by an AMD at varying levels of service. The results show that an AMD has the potential to reduce total system fuel consumption and GHG emissions, but the amount is largely dependent on operating and ridership assumptions. The study points to the need to better understand ride-sharing scenarios and calls for future research on sustainability benefits of an AMD system at both vehicle and system levels.« less
Ahmed Bhuiyan, Miraj; Rashid Khan, Haroon Ur; Zaman, Khalid; Hishan, Sanil S
2018-01-01
The aim of this study is to examine the impact of air pollutants, including mono-nitrogen oxides (NOx), nitrous oxide (N 2 O), sulfur dioxide (SO 2 ), carbon dioxide emissions (CO 2 ), and greenhouse gas (GHG) emissions on ecological footprint, habitat area, food supply, and biodiversity in a panel of thirty-four developed and developing countries, over the period of 1995-2014. The results reveal that NOx and SO 2 emissions both have a negative relationship with ecological footprints, while N 2 O emission and real GDP per capita have a direct relationship with ecological footprints. NOx has a positive relationship with forest area, per capita food supply and biological diversity while CO 2 emission and GHG emission have a negative impact on food production. N 2 O has a positive impact on forest area and biodiversity, while SO 2 emissions have a negative relationship with them. SO 2 emission has a direct relationship with per capita food production, while GDP per capita significantly affected per capita food production and food supply variability across countries. The overall results reveal that SO 2 , CO 2 , and GHG emissions affected potential habitat area, while SO 2 and GHG emissions affected the biodiversity index. Trade liberalization policies considerably affected the potential habitat area and biological diversity in a panel of countries. Copyright © 2017 Elsevier Inc. All rights reserved.
Soils as a Solution: The Potential of Rangelands to Contribute to Climate Change Mitigation
NASA Astrophysics Data System (ADS)
Silver, W. L.; Ryals, R.; DeLonge, M. S.; Owen, J. J.
2015-12-01
The majority of soil-related climate change research has focused on describing the problem - estimating rates of carbon (C) losses and greenhouse gas (GHG) emissions from natural and managed ecosystems. More research is needed to explore potential solutions to climate change through mitigation and adaptation. Here we report on an integrated set of studies aimed at critically evaluating the biogeochemical potential of rangeland soils to help mitigate climate change, while improving the sustainability and productivity of food production systems. We explored direct effects through enhanced net primary production (NPP) and soil C sequestration, and indirect effects through diversion of high emitting sources to lower emitting organic matter dynamics. We used a combination of long- and short-term field experiments, modeling, laboratory assays, life cycle assessment (LCA), and meta-analyses in consultation with a diverse group of stakeholders from both the private and public sectors. We found that organic matter amendments held particularly strong potential. Compost amendments increased soil C storage by 0.5-1.0 Mg C ha-1 y-1 in surface soils over 5 y, and increased NPP and water holding capacity. We measured 1.0 Mg of new C ha-1 y-1 over 3 y. Long-term amendment of cattle manure increased surface soil C by 19.0±7.3 Mg C ha-1 relative to unmanured fields. However, field and modeling experiments suggested that manure amendments lead to large nitrous oxide emissions that eventually eliminated CO2e benefits, whereas compost amendments continued to benefit climate for decades longer. An LCA identified a broader range of climate impacts. When scaled to an area of 25% of California's rangelands, new C sequestered following compost amendments (21 million Mg CO2e) exceeded emissions from cattle (15 million Mg CO2e); diverting organics from waste streams to amendments led to additional GHG savings. In collaboration with our partners, our research contributed to the development of a protocol for compost amendments, which is being used by stakeholders in C markets and by government agencies in climate action planning. In summary, we hope that our research and related activities will serve as a "call to arms" to the scientific community by highlighting a new and much needed arena for rigorous scientific research.
Van Middelaar, C E; Berentsen, P B M; Dijkstra, J; Van Arendonk, J A M; De Boer, I J M
2015-07-01
Breeding has the potential to reduce greenhouse gas (GHG) emissions from dairy farming. Evaluating the effect of a 1-unit change (i.e., 1 genetic standard deviation improvement) in genetic traits on GHG emissions along the chain provides insight into the relative importance of genetic traits to reduce GHG emissions. Relative GHG values of genetic traits, however, might depend on feed-related farm characteristics. The objective of this study was to evaluate the effect of feed-related farm characteristics on GHG values by comparing the values of milk yield and longevity for an efficient farm and a less efficient farm. The less efficient farm did not apply precision feeding and had lower feed production per hectare than the efficient farm. Greenhouse gas values of milk yield and longevity were calculated by using a whole-farm model and 2 different optimization methods. Method 1 optimized farm management before and after a change in genetic trait by maximizing labor income; the effect on GHG emissions (i.e., from production of farm inputs up to the farm gate) was considered a side effect. Method 2 optimized farm management after a change in genetic trait by minimizing GHG emissions per kilogram of milk while maintaining labor income and milk production at least at the level before the change in trait; the effect on labor income was considered a side effect. Based on maximizing labor income (method 1), GHG values of milk yield and longevity were, respectively, 279 and 143kg of CO2 equivalents (CO2e)/unit change per cow per year on the less efficient farm, and 247 and 210kg of CO2e/unit change per cow per year on the efficient farm. Based on minimizing GHG emissions (method 2), GHG values of milk yield and longevity were, respectively, 538 and 563kg of CO2e/unit change per cow per year on the less efficient farm, and 453 and 441kg of CO2e/unit change per cow per year on the efficient farm. Sensitivity analysis showed that, for both methods, the absolute effect of a change in genetic trait depends on model inputs, including prices and emission factors. Substantial changes in relative importance between traits due to a change in model inputs occurred only in case of maximizing labor income. We concluded that assumptions regarding feed-related farm characteristics affect the absolute level of GHG values, as well as the relative importance of traits to reduce emissions when using a method based on maximizing labor income. This is because optimizing farm management based on maximizing labor income does not give any incentive for lowering GHG emissions. When using a method based on minimizing GHG emissions, feed-related farm characteristics affected the absolute level of the GHG values, but the relative importance of the traits scarcely changed: at each level of efficiency, milk yield and longevity were equally important. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Co-development of climate smart flooded rice farming systems
NASA Astrophysics Data System (ADS)
de Neergaard, Andreas; Stoumann Jensen, Lars; Ly, Proyuth; Pandey, Arjun; Duong Vu, Quynh; Tariq, Azeem; Islam, Syed; van Groenigen, Jan Willem; Sander, Bjoern Ole; de Tourdonnet, Stephane; Van Mai, Trinh; Wassmann, Reiner
2017-04-01
Mid-season drainage in flooded rice is known to reduce CH4 emission, while effects on N2O emission are more variable. Banning of crop-residue burning, and growing markets for organically fertilized rice, are resulting in systems with larger reactive C input, and potentially larger methane emissions. Tight farming systems with 2 or 3 annual crops are effective in mitigating emissions, in that the land sparing value is high, but put serious constraints on mitigation options under increased C input scenarios. In a series of field (Cambodia, Philippines and Vietnam) and greenhouse experiments, we investigated the effect of a variety of organic amendments and wetting and drying cycles on yield and GHG emissions. Specifically we have tested the effect of inserting very early, or even-pre-planting drainage, as a means to accelerate turnover of straw or other C sources, and reduce methane emission later in the season. Overall, our results showed that drying periods had minimal impact on yields, while reducing overall GHG emission. Methane emission was strongly controlled by C availability in the substrate (on equal total C-input basis), increasing in the order: biochar-composts-animal manure-fresh material. Nitrous oxide emissions generally increased with draining cycles, but did not lead to overall increase in GHG emissions as its contribution was balanced by lowered CH4 emissions. Growth chamber experiments showed that methane emission was significantly reduced for extended periods after re-flooding, hence the idea of early drainage was developed. Meanwhile, Cambodian farmers expressed concerns over re-supply of water after drainage. In response to that, we tested if early-season drainage could replace mid-season drainage. With addition of labile carbon substrates (straw) duration of early season drainage was more important for reducing GHG emissions, than duration of mid-season drainage, and had the highest potential for total emission reduction. In a farmers-field trial in Vietnam, pre-planting and early season drainage was tested in spring and summer rice, under individual and community water management regimes, and at 2 straw application levels. Pre-season drainage was difficult for farmers to implement, due to the short duration of fallow between cropping seasons. Early season drainage was most effective in lowering methane emissions at both straw application levels. Unsurprisingly, the well-managed drainage control (community system) was significantly more effective in mitigating emissions, than the individually water management. Surveys among farming communities in Philippines, subject to agricultural campaigns on alternate-wetting-and-drying showed higher adoption among farmers who actively pumped water to their fields, compared to gravity-fed water supply, due to the direct savings experienced by farmers pumping water. Several other factors positively influenced adoption of mitigation techniques, including education level, access to extension services, wealth and farm size, and age of farmer (negatively correlated to adoption rate). In conclusion, drainage periods are even more important to mitigate emissions when including organic manures or residues in flooded rice, and early-season drainage should be further explored as a more safe and convenient option for smallholders. Participatory development of climate smart prototypes will be essential, and a model for such is presented.
Assessment of Clmate Change Mitigation Strategies for the Road Transport Sector of India
NASA Astrophysics Data System (ADS)
Singh, N.; Mishra, T.; Banerjee, R.
2017-12-01
India is one of the fastest growing major economies of the world. It imports three quarters of its oil demand, making transport sector major contributor of greenhouse gas (GHG) emissions. 40% of oil consumption in India comes from transport sector and over 90% of energy demand is from road transport sector. This has led to serious increase in CO2 emission and concentration of air pollutants in India. According to Intergovernmental Panel on Climate Change (IPCC), transport can play a crucial role for mitigation of global greenhouse gas emissions. Therefore, assessment of appropriate mitigation policies is required for emission reduction and cost benefit potential. The present study aims to estimate CO2, SO2, PM and NOx emissions from the road transport sector for the base year (2014) and target year (2030) by applying bottom up emission inventory model. Effectiveness of different mitigation strategies like inclusion of natural gas as alternate fuel, penetration of electric vehicle as alternate vehicle, improvement of fuel efficiency and increase share of public transport is evaluated for the target year. Emission reduction achieved from each mitigation strategies in the target year (2030) is compared with the business as usual scenario for the same year. To obtain cost benefit analysis, marginal abatement cost for each mitigation strategy is estimated. The study evaluates mitigation strategies not only on the basis of emission reduction potential but also on their cost saving potential.
Papageorgiou, A; Barton, J R; Karagiannidis, A
2009-07-01
Waste management activities contribute to global greenhouse gas emissions approximately by 4%. In particular the disposal of waste in landfills generates methane that has high global warming potential. Effective mitigation of greenhouse gas emissions is important and could provide environmental benefits and sustainable development, as well as reduce adverse impacts on public health. The European and UK waste policy force sustainable waste management and especially diversion from landfill, through reduction, reuse, recycling and composting, and recovery of value from waste. Energy from waste is a waste management option that could provide diversion from landfill and at the same time save a significant amount of greenhouse gas emissions, since it recovers energy from waste which usually replaces an equivalent amount of energy generated from fossil fuels. Energy from waste is a wide definition and includes technologies such as incineration of waste with energy recovery, or combustion of waste-derived fuels for energy production or advanced thermal treatment of waste with technologies such as gasification and pyrolysis, with energy recovery. The present study assessed the greenhouse gas emission impacts of three technologies that could be used for the treatment of Municipal Solid Waste in order to recover energy from it. These technologies are Mass Burn Incineration with energy recovery, Mechanical Biological Treatment via bio-drying and Mechanical Heat Treatment, which is a relatively new and uninvestigated method, compared to the other two. Mechanical Biological Treatment and Mechanical Heat Treatment can turn Municipal Solid Waste into Solid Recovered Fuel that could be combusted for energy production or replace other fuels in various industrial processes. The analysis showed that performance of these two technologies depends strongly on the final use of the produced fuel and they could produce GHG emissions savings only when there is end market for the fuel. On the other hand Mass Burn Incineration generates greenhouse gas emission savings when it recovers electricity and heat. Moreover the study found that the expected increase on the amount of Municipal Solid Waste treated for energy recovery in England by 2020 could save greenhouse gas emission, if certain Energy from Waste technologies would be applied, under certain conditions.
Valuing Non-CO2 GHG Emission Changes in Benefit-Cost ...
The climate impacts of greenhouse gas (GHG) emissions impose social costs on society. To date, EPA has not had an approach to estimate the economic benefits of reducing emissions of non-CO2 GHGs (or the costs of increasing them) that is consistent with the methodology underlying the U.S. Government’s current estimates of the social cost of carbon (SCC). A recently published paper presents estimates of the social cost of methane that are consistent with the SCC estimates. The Agency is seeking review of the potential application of these new benefit estimates to benefit cost analysis in relation to current practice in this area. The goal of this project is to improve upon the current treatment of non-CO2 GHG emission impacts in benefit-cost analysis.
Tilche, Andrea; Galatola, Michele
2008-01-01
Anaerobic digestion is a well known process that (while still capable of showing new features) has experienced several waves of technological development. It was "born" as a wastewater treatment system, in the 1970s showed promise as an alternative energy source (in particular from animal waste), in the 1980s and later it became a standard for treating organic-matter-rich industrial wastewater, and more recently returned to the market for its energy recovery potential, making use of different biomasses, including energy crops. With the growing concern around global warming, this paper looks at the potential of anaerobic digestion in terms of reduction of greenhouse gas (GHG) emissions. The potential contribution of anaerobic digestion to GHG reduction has been computed for the 27 EU countries on the basis of their 2005 Kyoto declarations and using life cycle data. The theoretical potential contribution of anaerobic digestion to Kyoto and EU post-Kyoto targets has been calculated. Two different possible biogas applications have been considered: electricity production from manure waste, and upgraded methane production for light goods vehicles (from landfill biogas and municipal and industrial wastewater treatment sludges). The useful heat that can be produced as by-product from biogas conversion into electricity has not been taken into consideration, as its real exploitation depends on local conditions. Moreover the amount of biogas already produced via dedicated anaerobic digestion processes has also not been included in the calculations. Therefore the overall gains achievable would be even higher than those reported here. This exercise shows that biogas may considerably contribute to GHG emission reductions in particular if used as a biofuel. Results also show that its use as a biofuel may allow for true negative GHG emissions, showing a net advantage with respect to other biofuels. Considering also energy crops that will become available in the next few years as a result of Common Agricultural Policy (CAP) reform, this study shows that biogas has the potential of covering almost 50% of the 2020 biofuel target of 10% of all automotive transport fuels, without implying a change in land use. Moreover, considering the achievable GHG reductions, a very large carbon emission trading "value" could support the investment needs.However, those results were obtained through a "qualitative" assessment. In order to produce robust data for decision makers, a quantitative sustainability assessment should be carried out, integrating different methodologies within a life cycle framework. The identification of the most appropriate policy for promoting the best set of options is then discussed.
Emissions from U.S. waste collection vehicles.
Maimoun, Mousa A; Reinhart, Debra R; Gammoh, Fatina T; McCauley Bush, Pamela
2013-05-01
This research is an in-depth environmental analysis of potential alternative fuel technologies for waste collection vehicles. Life-cycle emissions, cost, fuel and energy consumption were evaluated for a wide range of fossil and bio-fuel technologies. Emission factors were calculated for a typical waste collection driving cycle as well as constant speed. In brief, natural gas waste collection vehicles (compressed and liquid) fueled with North-American natural gas had 6-10% higher well-to-wheel (WTW) greenhouse gas (GHG) emissions relative to diesel-fueled vehicles; however the pump-to-wheel (PTW) GHG emissions of natural gas waste collection vehicles averaged 6% less than diesel-fueled vehicles. Landfill gas had about 80% lower WTW GHG emissions relative to diesel. Biodiesel waste collection vehicles had between 12% and 75% lower WTW GHG emissions relative to diesel depending on the fuel source and the blend. In 2011, natural gas waste collection vehicles had the lowest fuel cost per collection vehicle kilometer travel. Finally, the actual driving cycle of waste collection vehicles consists of repetitive stops and starts during waste collection; this generates more emissions than constant speed driving. Published by Elsevier Ltd.
Ashrafi, Omid; Yerushalmi, Laleh; Haghighat, Fariborz
2015-08-01
Pulp-and-paper mills produce various types of contaminants and a significant amount of wastewater depending on the type of processes used in the plant. Since the generated wastewaters can be potentially polluting and very dangerous, they should be treated in wastewater treatment plants before being released to the environment. This paper reviews different wastewater treatment processes used in the pulp-and-paper industry and compares them with respect to their contaminant removal efficiencies and the extent of greenhouse gas (GHG) emission. It also evaluates the impact of operating parameters on the performance of different treatment processes. Two mathematical models were used to estimate GHG emission in common biological treatment processes used in the pulp-and-paper industry. Nutrient removal processes and sludge treatment are discussed and their associated GHG emissions are calculated. Although both aerobic and anaerobic biological processes are appropriate for wastewater treatment, their combination known as hybrid processes showed a better contaminant removal capacity at higher efficiencies under optimized operating conditions with reduced GHG emission and energy costs. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Larsen, Søren; Bentsen, Niclas S.; Dalgaard, Tommy; Jørgensen, Uffe; Olesen, Jørgen E.; Felby, Claus
2017-11-01
To mitigate climate change it is necessary to further increase the deployment of renewable energy, including bioenergy. This analysis shows how this can be achieved in Danish agriculture and forestry before 2020. The key is a sustainable intensification and we show through three scenarios how it is possible to increase production while at the same time decreasing environmental impact and with only minor consequences on food and feed production. An additional ~10 Tg biomass can be available in 2020 for the Danish energy sector. By converting the biomass in a biorefinery concept it is possible to supply relevant, domestically produced energy carriers that amounts to ~5%-13% of 2020 Danish energy consumption. This has the potential to reduce the GHG emissions with 13%-21% of 2020 emissions. These results are possible because Danish net primary production and the human appropriation hereof can be increased. We show that biomass for bioenergy has a large near-term potential to supply relevant energy carriers to the society while at the same time achieving significant GHG emission mitigation.
Biodiversity Conservation in the REDD
2010-01-01
Deforestation and forest degradation in the tropics is a major source of global greenhouse gas (GHG) emissions. The tropics also harbour more than half the world's threatened species, raising the possibility that reducing GHG emissions by curtailing tropical deforestation could provide substantial co-benefits for biodiversity conservation. Here we explore the potential for such co-benefits in Indonesia, a leading source of GHG emissions from land cover and land use change, and among the most species-rich countries in the world. We show that focal ecosystems for interventions to reduce emissions from deforestation and forest degradation in Indonesia do not coincide with areas supporting the most species-rich communities or highest concentration of threatened species. We argue that inherent trade-offs among ecosystems in emission reduction potential, opportunity cost of foregone development and biodiversity values will require a regulatory framework to balance emission reduction interventions with biodiversity co-benefit targets. We discuss how such a regulatory framework might function, and caution that pursuing emission reduction strategies without such a framework may undermine, not enhance, long-term prospects for biodiversity conservation in the tropics. PMID:21092321
NASA Astrophysics Data System (ADS)
Di Vittorio, A. V.; Simmonds, M.; Nico, P. S.
2017-12-01
Land-based carbon sequestration and GreenHouse Gas (GHG) reduction strategies are often implemented in small patches and evaluated independently from each other, which poses several challenges to determining their potential benefits at the regional scales at which carbon/GHG targets are defined. These challenges include inconsistent methods, uncertain scalability to larger areas, and lack of constraints such as land ownership and competition among multiple strategies. To address such challenges we have developed an integrated carbon and GHG budget model of California's entire landscape, delineated by geographic region, land type, and ownership. This empirical model has annual time steps and includes net ecosystem carbon exchange, wildfire, multiple forest management practices including wood and bioenergy production, cropland and rangeland soil management, various land type restoration activities, and land cover change. While the absolute estimates vary considerably due to uncertainties in initial carbon densities and ecosystem carbon exchange rates, the estimated effects of particular management activities with respect to baseline are robust across these uncertainties. Uncertainty in land use/cover change data is also critical, as different rates of shrubland to grassland conversion can switch the system from a carbon source to a sink. The results indicate that reducing urban area expansion has substantial and consistent benefits, while the effects of direct land management practices vary and depend largely on the available management area. Increasing forest fuel reduction extent over the baseline contributes to annual GHG costs during increased management, and annual benefits after increased management ceases. Cumulatively, it could take decades to recover the cost of 14 years of increased fuel reduction. However, forest carbon losses can be completely offset within 20 years through increases in urban forest fraction and marsh restoration. Additionally, highly uncertain black carbon estimates dominate the overall GHG budget due to wildfire, forest management, and bioenergy production. Overall, this tool is well suited for exploring suites of management options and extents throughout California in order to quantify potential regional carbon sequestration and GHG emission benefits.
Help or hindrance? The travel, energy and carbon impacts of highly automated vehicles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wadud, Zia; MacKenzie, Don; Leiby, Paul
In 5-10 years, experts predict that new automobiles will be capable of driving themselves under limited conditions and under most conditions within 10–20 years. Automation may affect road vehicle energy consumption and greenhouse gas (GHG) emissions in a host of ways, positive and negative, by causing changes in travel demand, vehicle design, vehicle operating profiles, and choices of fuels. In this paper, we identify specific mechanisms through which automation may affect travel and energy demand and resulting GHG emissions and bring them together using a coherent energy decomposition framework. Here, we review the literature for estimates of the energy impactsmore » of each mechanism and, where the literature is lacking, develop our own estimates using engineering and economic analysis. We consider how widely applicable each mechanism is, and quantify the potential impact of each mechanism on a common basis: the percentage change it is expected to cause in total GHG emissions from light-duty or heavy-duty vehicles in the U.S. Our primary focus is travel related energy consumption and emissions, since potential lifecycle impacts are generally smaller in magnitude. We also explore the net effects of automation on emissions through several illustrative scenarios, finding that automation might plausibly reduce road transport GHG emissions and energy use by nearly half – or nearly double them – depending on which effects come to dominate. We also find that many potential energy-reduction benefits may be realized through partial automation, while the major energy/emission downside risks appear more likely at full automation. Finally, we present some implications for policymakers and identifying priority areas for further research.« less
Help or hindrance? The travel, energy and carbon impacts of highly automated vehicles
Wadud, Zia; MacKenzie, Don; Leiby, Paul
2016-02-26
In 5-10 years, experts predict that new automobiles will be capable of driving themselves under limited conditions and under most conditions within 10–20 years. Automation may affect road vehicle energy consumption and greenhouse gas (GHG) emissions in a host of ways, positive and negative, by causing changes in travel demand, vehicle design, vehicle operating profiles, and choices of fuels. In this paper, we identify specific mechanisms through which automation may affect travel and energy demand and resulting GHG emissions and bring them together using a coherent energy decomposition framework. Here, we review the literature for estimates of the energy impactsmore » of each mechanism and, where the literature is lacking, develop our own estimates using engineering and economic analysis. We consider how widely applicable each mechanism is, and quantify the potential impact of each mechanism on a common basis: the percentage change it is expected to cause in total GHG emissions from light-duty or heavy-duty vehicles in the U.S. Our primary focus is travel related energy consumption and emissions, since potential lifecycle impacts are generally smaller in magnitude. We also explore the net effects of automation on emissions through several illustrative scenarios, finding that automation might plausibly reduce road transport GHG emissions and energy use by nearly half – or nearly double them – depending on which effects come to dominate. We also find that many potential energy-reduction benefits may be realized through partial automation, while the major energy/emission downside risks appear more likely at full automation. Finally, we present some implications for policymakers and identifying priority areas for further research.« less
Meat consumption reduction in Italian regions: Health co-benefits and decreases in GHG emissions.
Farchi, Sara; De Sario, Manuela; Lapucci, Enrica; Davoli, Marina; Michelozzi, Paola
2017-01-01
Animal agriculture has exponentially grown in recent decades in response to the rise in global demand for meat, even in countries like Italy that traditionally eat a Mediterranean, plant-based diet. Globalization related dietary changes are contributing to the epidemic of non-communicable diseases and to the global climate crisis, and are associated with huge carbon and water footprints. The objective of the study is to assess inequalities in health impacts and in attributable greenhouse gases-GHG emissions in Italy by hypothesizing different scenarios of reduction in red and processed meat consumption towards healthier consumption patterns more compliant with the recommendations of the Mediterranean food pyramid. We used demographic and food consumption patterns from national surveys and risk relationships between meat intake and cardiovascular and colorectal cancer mortality from IARC and other meta-analyses. From the baseline data (year 2005-2006, average 406 gr/week beef and 245 gr/week processed meat), we considered hypothetical meat reduction scenarios according to international dietary guidelines such as the Mediterranean pyramid targets. For each geographical area (Northwest, Northeast, Centre, and South) and gender, we calculated the number of avoidable deaths from colorectal cancer, and cardiovascular disease among the adult population. Moreover, years of life gained by the adult population from 2012 to 2030 and changes in life expectancy of the 2012 birth cohort were quantified using gender-specific life tables. GHG emission reductions under Mediterranean scenario were estimated only for beef by applying the Global Warming Potential (GWP) coefficient to total consumption and to a low carbon food substitution in adult diet. The deaths avoidable (as percentage change compared to baseline) according to the three reduction scenarios for beef consumption were between 2.3% and 4.5% for colorectal cancer, and between 2.1% and 4.0% for cardiovascular disease; higher benefits would be observed in Northwestern areas and among males. In parallel, 5% and 6.4% of colorectal cancer and CVD deaths would be avoided if the Italian population ate the advised quantity of processed meat. Life table analysis suggests that the scenario that is fully compliant with the Mediterranean diet model would save 5 million years of life lost prematurely among men and women over the next 18 years and would increase average life expectancy of future generations by over 7 months. Considering the environmental impact, emissions associated with the actual total intake of beef range from 12,900 to 21,800 Gg CO2 eq; emissions saved according to the Mediterranean scenario are in the range 8000-14000 Gg CO2 eq per year. The per capita reduction is 263 KgCO2eq/year/person with higher reductions in Northwestern and Central areas. In Italy, scenarios for reducing beef consumption are consistent with significant health and environmental co-benefits on current and future generations. Results support introducing policies to promote healthier behavior towards red and processed meat in the adult population within an overall balanced and healthy dietary pattern. Interventions should address gender, vulnerable population groups, and geographical differences in order to be more effective.
Meat consumption reduction in Italian regions: Health co-benefits and decreases in GHG emissions
Farchi, Sara; De Sario, Manuela; Lapucci, Enrica; Davoli, Marina; Michelozzi, Paola
2017-01-01
Introduction Animal agriculture has exponentially grown in recent decades in response to the rise in global demand for meat, even in countries like Italy that traditionally eat a Mediterranean, plant-based diet. Globalization related dietary changes are contributing to the epidemic of non-communicable diseases and to the global climate crisis, and are associated with huge carbon and water footprints. The objective of the study is to assess inequalities in health impacts and in attributable greenhouse gases-GHG emissions in Italy by hypothesizing different scenarios of reduction in red and processed meat consumption towards healthier consumption patterns more compliant with the recommendations of the Mediterranean food pyramid. Methods We used demographic and food consumption patterns from national surveys and risk relationships between meat intake and cardiovascular and colorectal cancer mortality from IARC and other meta-analyses. From the baseline data (year 2005–2006, average 406 gr/week beef and 245 gr/week processed meat), we considered hypothetical meat reduction scenarios according to international dietary guidelines such as the Mediterranean pyramid targets. For each geographical area (Northwest, Northeast, Centre, and South) and gender, we calculated the number of avoidable deaths from colorectal cancer, and cardiovascular disease among the adult population. Moreover, years of life gained by the adult population from 2012 to 2030 and changes in life expectancy of the 2012 birth cohort were quantified using gender-specific life tables. GHG emission reductions under Mediterranean scenario were estimated only for beef by applying the Global Warming Potential (GWP) coefficient to total consumption and to a low carbon food substitution in adult diet. Results The deaths avoidable (as percentage change compared to baseline) according to the three reduction scenarios for beef consumption were between 2.3% and 4.5% for colorectal cancer, and between 2.1% and 4.0% for cardiovascular disease; higher benefits would be observed in Northwestern areas and among males. In parallel, 5% and 6.4% of colorectal cancer and CVD deaths would be avoided if the Italian population ate the advised quantity of processed meat. Life table analysis suggests that the scenario that is fully compliant with the Mediterranean diet model would save 5 million years of life lost prematurely among men and women over the next 18 years and would increase average life expectancy of future generations by over 7 months. Considering the environmental impact, emissions associated with the actual total intake of beef range from 12,900 to 21,800 Gg CO2 eq; emissions saved according to the Mediterranean scenario are in the range 8000–14000 Gg CO2 eq per year. The per capita reduction is 263 KgCO2eq/year/person with higher reductions in Northwestern and Central areas. Conclusions In Italy, scenarios for reducing beef consumption are consistent with significant health and environmental co-benefits on current and future generations. Results support introducing policies to promote healthier behavior towards red and processed meat in the adult population within an overall balanced and healthy dietary pattern. Interventions should address gender, vulnerable population groups, and geographical differences in order to be more effective. PMID:28813467
Well-to-wake analysis of ethanol-to-jet and sugar-to-jet pathways
Han, Jeongwoo; Tao, Ling; Wang, Michael
2017-01-24
To reduce the environmental impacts of the aviation sector as air traffic grows steadily, the aviation industry has paid increasing attention to bio-based alternative jet fuels (AJFs), which may provide lower life-cycle petroleum consumption and greenhouse gas (GHG) emissions than petroleum jet fuel. Here, this study presents well-to-wake (WTWa) results for four emerging AJFs: ethanol-to-jet (ETJ) from corn and corn stover, and sugar-to-jet (STJ) from corn stover via both biological and catalytic conversion. For the ETJ pathways, two plant designs were examined: integrated (processing corn or corn stover as feedstock) and distributed (processing ethanol as feedstock). Also, three H 2more » options for STJ via catalytic conversion are investigated: external H 2 from natural gas (NG) steam methane reforming (SMR), in situ H 2, and H 2 from biomass gasification. Results demonstrate that the feedstock is a key factor in the WTWa GHG emissions of ETJ: corn- and corn stover-based ETJ are estimated to produce WTWa GHG emissions that are 16 and 73%, respectively, less than those of petroleum jet. As for the STJ pathways, this study shows that STJ via biological conversion could generate WTWa GHG emissions 59% below those of petroleum jet. STJ via catalytic conversion could reduce the WTWa GHG emissions by 28% with H 2 from NG SMR or 71% with H 2 from biomass gasification than those of petroleum jet. This study also examines the impacts of co-product handling methods, and shows that the WTWa GHG emissions of corn stover-based ETJ, when estimated with a displacement method, are lower by 11 g CO 2e/MJ than those estimated with an energy allocation method. Corn- and corn stover-based ETJ as well as corn stover-based STJ show potentials to reduce WTWa GHG emissions compared to petroleum jet. Particularly, WTWa GHG emissions of STJ via catalytic conversion depend highly on the hydrogen source. On the other hand, ETJ offers unique opportunities to exploit extensive existing corn ethanol plants and infrastructure, and to provide a boost to staggering ethanol demand, which is largely being used as gasoline blendstock.« less
Well-to-wake analysis of ethanol-to-jet and sugar-to-jet pathways
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han, Jeongwoo; Tao, Ling; Wang, Michael
To reduce the environmental impacts of the aviation sector as air traffic grows steadily, the aviation industry has paid increasing attention to bio-based alternative jet fuels (AJFs), which may provide lower life-cycle petroleum consumption and greenhouse gas (GHG) emissions than petroleum jet fuel. Here, this study presents well-to-wake (WTWa) results for four emerging AJFs: ethanol-to-jet (ETJ) from corn and corn stover, and sugar-to-jet (STJ) from corn stover via both biological and catalytic conversion. For the ETJ pathways, two plant designs were examined: integrated (processing corn or corn stover as feedstock) and distributed (processing ethanol as feedstock). Also, three H 2more » options for STJ via catalytic conversion are investigated: external H 2 from natural gas (NG) steam methane reforming (SMR), in situ H 2, and H 2 from biomass gasification. Results demonstrate that the feedstock is a key factor in the WTWa GHG emissions of ETJ: corn- and corn stover-based ETJ are estimated to produce WTWa GHG emissions that are 16 and 73%, respectively, less than those of petroleum jet. As for the STJ pathways, this study shows that STJ via biological conversion could generate WTWa GHG emissions 59% below those of petroleum jet. STJ via catalytic conversion could reduce the WTWa GHG emissions by 28% with H 2 from NG SMR or 71% with H 2 from biomass gasification than those of petroleum jet. This study also examines the impacts of co-product handling methods, and shows that the WTWa GHG emissions of corn stover-based ETJ, when estimated with a displacement method, are lower by 11 g CO 2e/MJ than those estimated with an energy allocation method. Corn- and corn stover-based ETJ as well as corn stover-based STJ show potentials to reduce WTWa GHG emissions compared to petroleum jet. Particularly, WTWa GHG emissions of STJ via catalytic conversion depend highly on the hydrogen source. On the other hand, ETJ offers unique opportunities to exploit extensive existing corn ethanol plants and infrastructure, and to provide a boost to staggering ethanol demand, which is largely being used as gasoline blendstock.« less
Well-to-wake analysis of ethanol-to-jet and sugar-to-jet pathways.
Han, Jeongwoo; Tao, Ling; Wang, Michael
2017-01-01
To reduce the environmental impacts of the aviation sector as air traffic grows steadily, the aviation industry has paid increasing attention to bio-based alternative jet fuels (AJFs), which may provide lower life-cycle petroleum consumption and greenhouse gas (GHG) emissions than petroleum jet fuel. This study presents well-to-wake (WTWa) results for four emerging AJFs: ethanol-to-jet (ETJ) from corn and corn stover, and sugar-to-jet (STJ) from corn stover via both biological and catalytic conversion. For the ETJ pathways, two plant designs were examined: integrated (processing corn or corn stover as feedstock) and distributed (processing ethanol as feedstock). Also, three H 2 options for STJ via catalytic conversion are investigated: external H 2 from natural gas (NG) steam methane reforming (SMR), in situ H 2 , and H 2 from biomass gasification. Results demonstrate that the feedstock is a key factor in the WTWa GHG emissions of ETJ: corn- and corn stover-based ETJ are estimated to produce WTWa GHG emissions that are 16 and 73%, respectively, less than those of petroleum jet. As for the STJ pathways, this study shows that STJ via biological conversion could generate WTWa GHG emissions 59% below those of petroleum jet. STJ via catalytic conversion could reduce the WTWa GHG emissions by 28% with H 2 from NG SMR or 71% with H 2 from biomass gasification than those of petroleum jet. This study also examines the impacts of co-product handling methods, and shows that the WTWa GHG emissions of corn stover-based ETJ, when estimated with a displacement method, are lower by 11 g CO 2 e/MJ than those estimated with an energy allocation method. Corn- and corn stover-based ETJ as well as corn stover-based STJ show potentials to reduce WTWa GHG emissions compared to petroleum jet. Particularly, WTWa GHG emissions of STJ via catalytic conversion depend highly on the hydrogen source. On the other hand, ETJ offers unique opportunities to exploit extensive existing corn ethanol plants and infrastructure, and to provide a boost to staggering ethanol demand, which is largely being used as gasoline blendstock.
NASA Astrophysics Data System (ADS)
Kawa, S. R.; Baker, D. F.; Chatterjee, A.; Crowell, S.
2016-12-01
The measurement of atmospheric greenhouse gases (GHG), principally CO2 and CH4, from space using active (lidar) sensing techniques has several potentially significant advantages in comparison to missions using passive instrument approaches. A great deal of progress has been made in development of the active methods since the US National Academy of Sciences (NAS) 2007 Decadal Survey recommended the ASCENDS mission (Active Sensing of Carbon Emissions, Nights, Days, and Seasons) for NASA's next generation CO2 observing system. Active GHG missions remain in consideration by the current NAS Decadal Survey for Earth Science 2017. In this presentation, we update the measurement characteristics expected for active GHG sensing, test how these measurements will enhance our ability to quantify GHG surface fluxes, and examine the potential role of active sensing to address carbon cycle issues as required for confident projection of carbon-climate interactions. Over the past decade, laser CO2 instrument concepts, retrieval approaches, and measurement techniques have matured significantly, driven by technology advances and by analysis of data from airborne simulators. Performance simulations updated to match the latest developments show substantially lower random errors, better spatial resolution, and more information content for global XCO2 data than just a few years ago. Observing System Simulation Experiments using global flux inversion models show corresponding improvements in resolving surface fluxes and reducing flux uncertainties for the expected lidar data. Simulations including prospective systematic (bias) errors, which are expected to be lesser for the lidar system compared to passive measurements, provide guidance for instrument design requirements. We will comment on the impact of errors in knowledge of the atmospheric state including the need for coincident measurements of O2 column in order to normalize the column abundances to dry air mole fraction. We will also comment on the potential impact of future active missions for CH4. The results indicate that active systems will provide GHG measurements of high quality and spatial sampling that will contribute substantially to knowledge of carbon flux distributions and their dependence on underlying physical processes in critical regions.
CO2 Emissions from Direct Energy Use of Urban Households in India.
Ahmad, Sohail; Baiocchi, Giovanni; Creutzig, Felix
2015-10-06
India hosts the world's second largest population and offers the world's largest potential for urbanization. India's urbanization trajectory will have crucial implications on its future GHG emission levels. Using household microdata from India's 60 largest cities, this study maps GHG emissions patterns and its determinants. It also ranks the cities with respect to their household actual and "counter-factual" GHG emissions from direct energy use. We find that household GHG emissions from direct energy use correlate strongly with income and household size; population density, basic urban services (municipal water, electricity, and modern cooking-fuels access) and cultural, religious, and social factors explain more detailed emission patterns. We find that the "greenest" cities (on the basis of household GHG emissions) are Bareilly and Allahabad, while the "dirtiest" cities are Chennai and Delhi; however, when we control for socioeconomic variables, the ranking changes drastically. In the control case, we find that smaller lower-income cities emit more than expected, and larger high-income cities emit less than expected in terms of counter-factual emissions. Emissions from India's cities are similar in magnitude to China's cities but typically much lower than those of comparable U.S. cities. Our results indicate that reducing urban heat-island effects and the associated cooling degree days by greening, switching to modern nonsolid cooking fuels, and anticipatory transport infrastructure investments are key policies for the low-carbon and inclusive development of Indian cities.
Cradle-to-Gate Emissions from a Commercial Electric Vehicle Li-Ion Battery: A Comparative Analysis.
Kim, Hyung Chul; Wallington, Timothy J; Arsenault, Renata; Bae, Chulheung; Ahn, Suckwon; Lee, Jaeran
2016-07-19
We report the first cradle-to-gate emissions assessment for a mass-produced battery in a commercial battery electric vehicle (BEV); the lithium-ion battery pack used in the Ford Focus BEV. The assessment was based on the bill of materials and primary data from the battery industry, that is, energy and materials input data from the battery cell and pack supplier. Cradle-to-gate greenhouse gas (GHG) emissions for the 24 kWh Ford Focus lithium-ion battery are 3.4 metric tonnes of CO2-eq (140 kg CO2-eq per kWh or 11 kg CO2-eq per kg of battery). Cell manufacturing is the key contributor accounting for 45% of the GHG emissions. We review published studies of GHG emissions associated with battery production to compare and contrast with our results. Extending the system boundary to include the entire vehicle we estimate a 39% increase in the cradle-to-gate GHG emissions of the Focus BEV compared to the Focus internal combustion engine vehicle (ICEV), which falls within the range of literature estimates of 27-63% increases for hypothetical nonproduction BEVs. Our results reduce the uncertainties associated with assessment of BEV battery production, serve to identify opportunities to reduce emissions, and confirm previous assessments that BEVs have great potential to reduce GHG emissions over the full life cycle and provide local emission free mobility.
NASA Astrophysics Data System (ADS)
Abdul-Aziz, O. I.; Ishtiaq, K. S.
2015-12-01
We present a user-friendly modeling tool on MS Excel to predict the greenhouse gas (GHG) fluxes and estimate potential carbon sequestration from the coastal wetlands. The dominant controls of wetland GHG fluxes and their relative mechanistic linkages with various hydro-climatic, sea level, biogeochemical and ecological drivers were first determined by employing a systematic data-analytics method, including Pearson correlation matrix, principal component and factor analyses, and exploratory partial least squares regressions. The mechanistic knowledge and understanding was then utilized to develop parsimonious non-linear (power-law) models to predict wetland carbon dioxide (CO2) and methane (CH4) fluxes based on a sub-set of climatic, hydrologic and environmental drivers such as the photosynthetically active radiation, soil temperature, water depth, and soil salinity. The models were tested with field data for multiple sites and seasons (2012-13) collected from the Waquoit Bay, MA. The model estimated the annual wetland carbon storage by up-scaling the instantaneous predicted fluxes to an extended growing season (e.g., May-October) and by accounting for the net annual lateral carbon fluxes between the wetlands and estuary. The Excel Spreadsheet model is a simple ecological engineering tool for coastal carbon management and their incorporation into a potential carbon market under a changing climate, sea level and environment. Specifically, the model can help to determine appropriate GHG offset protocols and monitoring plans for projects that focus on tidal wetland restoration and maintenance.
NASA Astrophysics Data System (ADS)
Dorich, C.; Contosta, A.; Li, C.; Brito, A.; Varner, R. K.
2013-12-01
Agriculture contributes 20 to 25 % of the total anthropogenic greenhouse gas (GHG) emissions globally. These agricultural emissions are primarily in the form of methane (CH4) and nitrous oxide (N2O) with these GHG accounting for roughly 40 and 80 % of the total anthropogenic emissions of CH4 and N2O, respectively. Due to varied management and the complexities of agricultural ecosystems, it is difficult to estimate these CH4 and N2O emissions. The IPCC emission factors can be used to yield rough estimates of CH4 and N2O emissions but they are often based on limited data. Accurate modeling validated by measurements is needed in order to identify potential mitigation areas, reduce GHG emissions from agriculture, and improve sustainability of farming practices. The biogeochemical model Manure DNDC was validated using measurements from two dairy farms in New Hampshire, USA in order to quantify GHG emissions under different management systems. One organic and one conventional dairy farm operated by the University of New Hampshire's Agriculture Experiment Station were utilized as the study sites for validation of Manure DNDC. Compilation of management records started in 2011 to provide model inputs. Model results were then compared to field collected samples of soil carbon and nitrogen, above-ground biomass, and GHG fluxes. Fluxes were measured in crop, animal, housing, and waste management sites on the farms in order to examine the entire farm ecosystem and test the validity of the model. Fluxes were measured by static flux chambers, with enteric fermentation measurements being conducted by the SF6 tracer test as well as a new method called Greenfeeder. Our preliminary GHG flux analysis suggests higher emissions than predicted by IPCC emission factors and equations. Results suggest that emissions from manure management is a key concern at the conventional dairy farm while bedded housing at the organic dairy produced large quantities of GHG.
NASA Astrophysics Data System (ADS)
Odeh, I. A.; Zou, X. L.
2015-12-01
In terms of total terrestrial sequestered carbon, the global soils and forests are recognized as the predominant C sinks. Even though urban forests stored a relatively small proportion of the total terrestrial C, they also provide other important ecosystem services such as improving air quality, cooling effect in buildings and aesthetics. Thus in view of these environmental services the quantification of urban tree is increasingly viewed as essential to the understanding of how these ecosystem services can be optimized. The aims of this paper are to: i) quantify the spatial-temporal distribution of urban forests in Northwest Sydney using remote sensing techniques; ii) determine the total urban C-storage over many decades; iii) apply UFORE model to estimate air pollutant removal ability of urban forest. The results revealed the estimated total trees in Northwest Sydney in 2011was approximately 2.3 million. These urban forests potentially store an estimated 1.3 million tons of carbon in various forms such as biomass, soil carbon, etc. The relative carbon sequestration rate of these trees was estimated to be about 20,500 tC/yr (equivalent to AUD 467,000/year). Furthermore, the results show that trees near buildings can potentially avoid AUD 12.9 million of energy cost every year and 70000 tons of carbon emission, the latter which is equivalent to additional savings of nearly AUD 1.6 million per year. We also estimated that urban forests in the study area could potentially remove about 44,600 tons of pollutants (mainly greenhouse gases) annually equivalent to a saving of about AUD 409 million per year. Thus the results reveal the spatial-temporal variation of urban vegetation in the last twenty year between 1991 and 2011. The study has showcased the importance and potential role of urban forests in preserving carbon and thus reducing GHG emissions into atmosphere. Furthermore, these results highlight the significant value of urban forests in term of pollutant removal. The significance of these outcomes, if extrapolated to other cities of Australia and the world, is huge.
Taş, Neslihan; Prestat, Emmanuel; McFarland, Jack W; Wickland, Kimberley P; Knight, Rob; Berhe, Asmeret Asefaw; Jorgenson, Torre; Waldrop, Mark P; Jansson, Janet K
2014-01-01
Permafrost soils are large reservoirs of potentially labile carbon (C). Understanding the dynamics of C release from these soils requires us to account for the impact of wildfires, which are increasing in frequency as the climate changes. Boreal wildfires contribute to global emission of greenhouse gases (GHG—CO2, CH4 and N2O) and indirectly result in the thawing of near-surface permafrost. In this study, we aimed to define the impact of fire on soil microbial communities and metabolic potential for GHG fluxes in samples collected up to 1 m depth from an upland black spruce forest near Nome Creek, Alaska. We measured geochemistry, GHG fluxes, potential soil enzyme activities and microbial community structure via 16SrRNA gene and metagenome sequencing. We found that soil moisture, C content and the potential for respiration were reduced by fire, as were microbial community diversity and metabolic potential. There were shifts in dominance of several microbial community members, including a higher abundance of candidate phylum AD3 after fire. The metagenome data showed that fire had a pervasive impact on genes involved in carbohydrate metabolism, methanogenesis and the nitrogen cycle. Although fire resulted in an immediate release of CO2 from surface soils, our results suggest that the potential for emission of GHG was ultimately reduced at all soil depths over the longer term. Because of the size of the permafrost C reservoir, these results are crucial for understanding whether fire produces a positive or negative feedback loop contributing to the global C cycle. PMID:24722629
Water management reduces greenhouse gas emissions in a Mediterranean rice paddy field
NASA Astrophysics Data System (ADS)
Gruening, Carsten; Meijide, Ana; Manca, Giovanni; Goded, Ignacio; Seufert, Guenther; Cescatti, Alessandro
2016-04-01
Rice paddy fields are one of the biggest anthropogenic sources of methane (CH4), the second most important greenhouse gas (GHG) after carbon dioxide (CO2). Therefore most studies on greenhouse gases (GHG) in these agricultural systems focus on the evaluation of CH4 production. However, there are other GHGs such as CO2 and nitrous oxide (N2O) also exchanged within the atmosphere. Since each of the GHGs has its own radiative forcing effect, the total GHG budget of rice cultivation and its global warming potential (GWP) must be assessed. For this purpose a field experiment was carried out in a Mediterranean rice paddy field in the Po Valley (Italy), the largest rice producing region in Europe. Ecosystem CO2 and CH4 fluxes were assessed using the eddy covariance technique, while soil respiration and soil CH4 and N2O fluxes were measured with closed chambers for two complete years. Combining all GHGs measured, the rice paddy field acted as a sink of -368 and -828 g CO2 eq m-2 year-1 in the first and second years respectively. Both years, it was a CO2 sink and a CH4 source, while the N2O contribution to the GWP was relatively small. Differences in the GHG budget between the two years of measurements were mainly caused by the greater CH4 emissions in the first year (37.4 g CH4 m-2 compared to 21.03 g CH4 m-2 in the second year), probably as a consequence of the drainage of the water table in the middle of the growing season during the second year, which resulted in lower CH4 emissions without significant increases of N2O and CO2 fluxes. However, midseason drainage also resulted in small decreases of yield, indicating that GHG budget studies from agricultural systems should consider carbon exports through the harvest. The balance between net GWP and carbon yield indicated a loss of carbon equivalents from the system, which was more than 30-fold higher in the first year. Our results therefore suggest that an adequate management of the water table has the potential to be an effective GHG mitigation strategy to increase the carbon sequestration capacity of rice paddy fields and confirm that GHG budgets should be assessed in combination with yield in order to develop and evaluate mitigation strategies.
Greenhouse gas emissions from a created brackish marsh in eastern North Carolina
Shiau, Yo-Jin; Burchell, Michael R.; Krauss, Ken W.; Birgand, François; Broome, Stephen W.
2016-01-01
Tidal marsh creation helps remediate global warming because tidal wetlands are especially proficient at sequestering carbon (C) in soils. However, greenhouse gas (GHG) losses can offset the climatic benefits gained from C storage depending on how these tidal marshes are constructed and managed. This study attempts to determine the GHG emissions from a 4–6 year old created brackish marsh, what environmental factors governed these emissions, and how the magnitude of the fluxes relates to other wetland ecosystems. The static flux chamber method was used to measure GHG fluxes across three distinct plant zones segregated by elevation. The major of soil GHG fluxes from the marsh were from CO2 (−48–192 mg C m-2 h-1), although it was near the lower end of values reported from other wetland types having lower salinities, and would mostly be offset by photosynthetic uptake in this created brackish marsh. Methane flux was also low (−0.33–0.86 mg C m-2 h-1), likely inhibited by the high soil SO42−and soil redox potentials poised above −150 mV in this in this created brackish marsh environment. Low N2O flux (−0.11–0.10 mg N m-2 h-1) was due to low soil NO3− and soil redox conditions favoring complete denitrification. GHG fluxes from this created brackish marsh were generally lower than those recorded from natural marshes, suggesting that C sequestration may not be offset by the radiative forcing from soil GHG emissions if projects are designed properly.
NASA Astrophysics Data System (ADS)
He, H.; Jansson, P.-E.; Svensson, M.; Björklund, J.; Tarvainen, L.; Klemedtsson, L.; Kasimir, Å.
2015-12-01
The CoupModel was used to simulate a Norway Spruce forest on fertile drained peat over 60 years, from planting in 1951 until 2011, describing abiotic, biotic and greenhouse gas (GHG) emissions (CO2 and N2O). By calibrating the model against tree ring data we obtained a "reference" model by which we were able to describe the fluxes and controlling factors over the 60 years. We discuss some conceptual issues relevant to improving the model in order to better understand peat soil simulations. However, the present model was able to describe the most important ecosystem dynamics such as the plant biomass development and GHG emissions. The GHG fluxes are composed of two important quantities, the forest carbon (C) uptake, 405 g C m-2 yr-1 and the decomposition of peat soil, 396 g C m-2 yr-1. N2O emissions contribute to the GHG emissions by 0.5 g N m-2 yr-1, corresponding to 56.8 g C m-2 yr-1. The 60-year-old Spruce forest has an accumulated biomass of 164 Mg C ha-1. However, over this period 208 Mg C ha-1 GHG has been added to the atmosphere, which means a net addition of GHG emissions. The main losses are from the peat soil and, indirectly, from forest thinning products, which we assume have a short lifetime. We conclude that after harvest at an age of 80 years, most of the stored biomass carbon is liable to be released, the system having captured C only temporarily and with a cost of disappeared peat, adding CO2 to the atmosphere.
Gomez, Joshua; Vidon, Philippe; Gross, Jordan; Beier, Colin; Caputo, Jesse; Mitchell, Myron
2016-05-01
Although anthropogenic emissions of greenhouse gases (GHG: CO2, CH4, N2O) are unequivocally tied to climate change, natural systems such as forests have the potential to affect GHG concentration in the atmosphere. Our study reports GHG emissions as CO2, CH4, N2O, and CO2eq fluxes across a range of landscape hydrogeomorphic classes (wetlands, riparian areas, lower hillslopes, upper hillslopes) in a forested watershed of the Northeastern USA and assesses the usability of the topographic wetness index (TWI) as a tool to identify distinct landscape geomorphic classes to aid in the development of GHG budgets at the soil atmosphere interface at the watershed scale. Wetlands were hot spots of GHG production (in CO2eq) in the landscape owing to large CH4 emission. However, on an areal basis, the lower hillslope class had the greatest influence on the net watershed CO2eq efflux, mainly because it encompassed the largest proportion of the study watershed (54 %) and had high CO2 fluxes relative to other land classes. On an annual basis, summer, fall, winter, and spring accounted for 40, 27, 9, and 24 % of total CO2eq emissions, respectively. When compared to other approaches (e.g., random or systematic sampling design), the TWI landscape classification method was successful in identifying dominant landscape hydrogeomorphic classes and offered the possibility of systematically accounting for small areas of the watershed (e.g., wetlands) that have a disproportionate effect on total GHG emissions. Overall, results indicate that soil CO2eq efflux in the Archer Creek Watershed may exceed C uptake by live trees under current conditions.
Greenhouse gas emissions from municipal solid waste management in Vientiane, Lao PDR.
Babel, Sandhya; Vilaysouk, Xaysackda
2016-01-01
Municipal solid waste (MSW) is one of the major environmental problems throughout the world including in Lao PDR. In Vientiane, due to the lack of a collection service, open burning and illegal dumping are commonly practised. This study aims to estimate the greenhouse gas (GHG) emission from the current situation of MSW management (MSWM) in Vientiane and proposes an alternative solution to reduce the GHG emission and environmental impacts. The 2006 Intergovernmental Panel on Climate Change (IPCC) Guidelines for National Greenhouse Gas Inventories (IPCC 2006 model) are used for the estimation of GHG emission from landfill and composting. For the estimation of GHG emission from open burning, the Atmospheric Brown Clouds Emission Inventory Manual (ABC EIM) is used. In Vientiane, a total of 232, 505 tonnes year(-1) of MSW was generated in 2011. Waste generation in Vientiane is 0.69 kg per capita per day, and about 31% of the total MSW generated was directly sent to landfill (71,162 tonnes year(-1)). The total potential GHG emission from the baseline scenario in 2011 was 110,182 tonnes year(-1) CO2-eq, which is 0.15 tonne year(-1) CO2-eq per capita. From the three MSWM scenarios proposed, scenario S3, which includes recycling, composting and landfilling, seems to be an effective solution for dealing with MSW in Vientiane with less air pollution, and is environmentally friendly. The total GHG emission in scenario S3 is reduced to 91,920 tonnes year(-1) CO2-eq (47% reduction), compared with the S1 scenario where all uncollected waste is diverted to landfill. © The Author(s) 2015.
Peer Review of March 2013 LDV Rebound Report By Small ...
The regulatory option of encouraging the adoption of advanced technologies for improving vehicle efficiency can result in significant fuel savings and GHG emissions benefits. At the same time, it is possible that some of these benefits might be offset by additional driving that is encouraged by the reduced costs of operating more efficient vehicles. This so called “rebound effect”, the increased driving that results from an improvement in the energy efficiency of a vehicle, must be determined in order to reliably estimate the overall benefits of GHG regulations for light-duty vehicles. Dr. Ken Small, an Economist at the Department of Economics, University of California at Irvine, with contributions by Dr. Kent Hymel, Department of Economics, California State University at Northridge, have developed a methodology to estimate the rebound effect for light-duty vehicles in the U.S. Specifically, rebound is estimated as the change in vehicle miles traveled (VMT) with respect to the change in per mile fuel costs that can occur, for example, when vehicle operating efficiency is improved. The model analyzes aggregate personal motor-vehicle travel within a simultaneous model of aggregate VMT, fleet size, fuel efficiency, and congestion formation. To use the peer review process to help assure that the methodologies considered by the U.S. EPA for estimating VMT rebound have been thoroughly examined.
Achieving waste to energy through sewage sludge gasification using hot slags: syngas production
Sun, Yongqi; Nakano, Jinichiro; Liu, Lili; Wang, Xidong; Zhang, Zuotai
2015-01-01
To relieve the environmental issues of sewage sludge (SS) disposal and greenhouse gas (GHG) emission in China, we proposed an integrated method for the first time to simultaneously deal with these two problems. The hot slags below 920 °C could act as a good heat carrier for sludge gasification and the increasing CO2 concentration in CO2/O2 atmospheres enhanced the production of CO and H2 at 400–800 °C. Three stages of syngas release were clearly identified by Gaussian fittings, i.e., volatile release, char transformation and fixed carbon reaction. Additionally, the effect of sulfur retention of slags and the synergy effect of the stabilization of toxic elements in the solid residuals were discovered in this study. Furthermore, a novel prototype of multiple industrial and urban systems was put forward, in which the produced CO + H2 could be utilized for direct reduced iron (DRI) production and the solid residuals of sludge ash and glassy slags would be applied as cementitious materials. For a steel plant with an annual production of crude steel of 10 million tons in China, the total annual energy saving and GHG emission reduction achieved are 3.31*105 tons of standard coal and 1.74*106 tons of CO2, respectively. PMID:26074060
Achieving waste to energy through sewage sludge gasification using hot slags: syngas production.
Sun, Yongqi; Nakano, Jinichiro; Liu, Lili; Wang, Xidong; Zhang, Zuotai
2015-06-15
To relieve the environmental issues of sewage sludge (SS) disposal and greenhouse gas (GHG) emission in China, we proposed an integrated method for the first time to simultaneously deal with these two problems. The hot slags below 920 °C could act as a good heat carrier for sludge gasification and the increasing CO2 concentration in CO2/O2 atmospheres enhanced the production of CO and H2 at 400-800 °C. Three stages of syngas release were clearly identified by Gaussian fittings, i.e., volatile release, char transformation and fixed carbon reaction. Additionally, the effect of sulfur retention of slags and the synergy effect of the stabilization of toxic elements in the solid residuals were discovered in this study. Furthermore, a novel prototype of multiple industrial and urban systems was put forward, in which the produced CO + H2 could be utilized for direct reduced iron (DRI) production and the solid residuals of sludge ash and glassy slags would be applied as cementitious materials. For a steel plant with an annual production of crude steel of 10 million tons in China, the total annual energy saving and GHG emission reduction achieved are 3.31*10(5) tons of standard coal and 1.74*10(6) tons of CO2, respectively.
Achieving waste to energy through sewage sludge gasification using hot slags: syngas production
NASA Astrophysics Data System (ADS)
Sun, Yongqi; Nakano, Jinichiro; Liu, Lili; Wang, Xidong; Zhang, Zuotai
2015-06-01
To relieve the environmental issues of sewage sludge (SS) disposal and greenhouse gas (GHG) emission in China, we proposed an integrated method for the first time to simultaneously deal with these two problems. The hot slags below 920 °C could act as a good heat carrier for sludge gasification and the increasing CO2 concentration in CO2/O2 atmospheres enhanced the production of CO and H2 at 400-800 °C. Three stages of syngas release were clearly identified by Gaussian fittings, i.e., volatile release, char transformation and fixed carbon reaction. Additionally, the effect of sulfur retention of slags and the synergy effect of the stabilization of toxic elements in the solid residuals were discovered in this study. Furthermore, a novel prototype of multiple industrial and urban systems was put forward, in which the produced CO + H2 could be utilized for direct reduced iron (DRI) production and the solid residuals of sludge ash and glassy slags would be applied as cementitious materials. For a steel plant with an annual production of crude steel of 10 million tons in China, the total annual energy saving and GHG emission reduction achieved are 3.31*105 tons of standard coal and 1.74*106 tons of CO2, respectively.
Menikpura, S N M; Sang-Arun, Janya; Bengtsson, Magnus
2013-10-01
Landfilling is the most common and cost-effective waste disposal method, and it is widely applied throughout the world. In developing countries in Asia there is currently a trend towards constructing sanitary landfills with gas recovery systems, not only as a solution to the waste problem and the associated local environmental pollution, but also to generate revenues through carbon markets and from the sale of electricity. This article presents a quantitative assessment of climate co-benefits from landfill gas (LFG) to energy projects, based on the case of Bangkok Metropolitan Administration, Thailand. Life cycle assessment was used for estimating net greenhouse gas (GHG) emissions, considering the whole lifespan of the landfill. The assessment found that the total GHG mitigation of the Bangkok project would be 471,763 tonnes (t) of carbon dioxide (CO(2))-equivalents (eq) over its 10-year LFG recovery period.This amount is equivalent to only 12% of the methane (CH(4)) generated over the whole lifespan of the landfill. An alternative scenario was devised to analyse possible improvement options for GHG mitigation through LFG-to-energy recovery projects. This scenario assumes that LFG recovery would commence in the second year of landfill operation and gas extraction continues throughout the 20-year peak production period. In this scenario, GHG mitigation potential amounted to 1,639,450 tCO(2)-eq during the 20-year project period, which is equivalent to 43% of the CH(4) generated throughout the life cycle. The results indicate that with careful planning, there is a high potential for improving the efficiency of existing LFG recovery projects which would enhance climate co-benefits, as well as economic benefits. However, the study also shows that even improved gas recovery systems have fairly low recovery rates and, in consequence, that emissions of GHG from such landfills sites are still considerable.
NASA Astrophysics Data System (ADS)
Arora, B.; Wainwright, H. M.; Vaughn, L. S.; Curtis, J. B.; Torn, M. S.; Dafflon, B.; Hubbard, S. S.
2017-12-01
Greenhouse gas (GHG) flux variations in Arctic tundra environments are important to understand because of the vast amount of soil carbon stored in these regions and the potential of these regions to convert from a global carbon sink to a source under warmer conditions. Multiple factors potentially contribute to GHG flux variations observed in these environments, including snowmelt timing, growing season length, active layer thickness, water table variations, and temperature fluctuations. The objectives of this study are to investigate temporal variability in CO2 and CH4 fluxes at Barrow, AK over three successive growing seasons (2012-14) and to determine the factors influencing this variability using a novel entropy-based classification scheme. We analyzed soil, vegetation, and climate parameters as well as GHG fluxes at multiple locations within low-, flat- and high-centered polygons at Barrow, AK as part of the Next Generation Ecosystem Experiment (NGEE) Arctic project. Entropy results indicate that different environmental factors govern variability in GHG fluxes under different spatiotemporal settings. In particular, flat-centered polygons are more likely to become significant sources of CO2 during warm and dry years as opposed to high-centered polygons that contribute considerably to CO2 emissions during cold and wet years. In contrast, the highest CH4 emissions were always associated with low-centered polygons. Temporal variability in CO2 fluxes was primarily associated with factors affecting soil temperature and/or vegetation dynamics during early and late season periods. Temporal variability in CH4 fluxes was primarily associated with changes in vegetation cover and its covariability with primary controls such as seasonal thaw—rather than direct response to changes in soil moisture. Overall, entropy results document which factors became important under different spatiotemporal settings, thus providing clues concerning the manner in which ecosystem properties may be altered regionally in a future climate.
NASA Astrophysics Data System (ADS)
Polishchuk, Y. M.; Bogdanov, A. N.; Muratov, I. N.; Polishchuk, V. Y.; Lim, A.; Manasypov, R. M.; Shirokova, L. S.; Pokrovsky, O. S.
2018-04-01
Despite the potential importance of small (< 1000 m2) thaw ponds and thermokarst lakes in greenhouse gas (GHG) emissions from inland waters of high latitude and boreal regions, these features have not been fully inventoried and the volume of GHG and carbon in thermokarst lakes remains poorly constrained. This is especially true for the vast Western Siberia Lowland (WSL) which is subject to strong thermokarst activity. We assessed the number of thermokarst lakes and their size distribution for the permafrost-affected WSL territory based on a combination of medium-resolution Landsat-8 images and high-resolution Kanopus-V scenes on 78 test sites across the WSL in a wide range of lake sizes (from 20 to 2 × 108 m2). The results were in fair agreement with other published data for world lakes including those in circum-polar regions. Based on available measurements of CH4, CO2, and dissolved organic carbon (DOC) in thermokarst lakes and thaw ponds of the permafrost-affected part of the WSL, we found an inverse relationship between lake size and concentration, with concentrations of GHGs and DOC being highest in small thaw ponds. However, since these small ponds represent only a tiny fraction of the landscape (i.e. ~1.5% of the total lake area), their contribution to the total pool of GHG and DOC in inland lentic water of the permafrost-affected part of the WSL is less than 2%. As such, despite high concentrations of DOC and GHG in small ponds, their role in overall C storage can be negated. Ongoing lake drainage due to climate warming and permafrost thaw in the WSL may lead to a decrease in GHG emission potential from inland waters and DOC release from lakes to rivers.
Bamminger, Chris; Poll, Christian; Marhan, Sven
2018-01-01
Global warming will likely enhance greenhouse gas (GHG) emissions from soils. Due to its slow decomposability, biochar is widely recognized as effective in long-term soil carbon (C) sequestration and in mitigation of soil GHG emissions. In a long-term soil warming experiment (+2.5 °C, since July 2008) we studied the effect of applying high-temperature Miscanthus biochar (0, 30 t/ha, since August 2013) on GHG emissions and their global warming potential (GWP) during 2 years in a temperate agroecosystem. Crop growth, physical and chemical soil properties, temperature sensitivity of soil respiration (R s ), and metabolic quotient (qCO 2 ) were investigated to yield further information about single effects of soil warming and biochar as well as on their interactions. Soil warming increased total CO 2 emissions by 28% over 2 years. The effect of warming on soil respiration did not level off as has often been observed in less intensively managed ecosystems. However, the temperature sensitivity of soil respiration was not affected by warming. Overall, biochar had no effect on most of the measured parameters, suggesting its high degradation stability and its low influence on microbial C cycling even under elevated soil temperatures. In contrast, biochar × warming interactions led to higher total N 2 O emissions, possibly due to accelerated N-cycling at elevated soil temperature and to biochar-induced changes in soil properties and environmental conditions. Methane uptake was not affected by soil warming or biochar. The incorporation of biochar-C into soil was estimated to offset warming-induced elevated GHG emissions for 25 years. Our results highlight the suitability of biochar for C sequestration in cultivated temperate agricultural soil under a future elevated temperature. However, the increased N 2 O emissions under warming limit the GHG mitigation potential of biochar. © 2017 John Wiley & Sons Ltd.
Does manure management affect the latent greenhouse gas emitting potential of livestock manures?
Pratt, Chris; Redding, Matthew; Hill, Jaye; Jensen, Paul D
2015-12-01
With livestock manures being increasingly sought as alternatives to costly synthetic fertilisers, it is imperative that we understand and manage their associated greenhouse gas (GHG) emissions. Here we provide the first dedicated assessment into how the GHG emitting potential of various manures responds to the different stages of the manure management continuum (e.g., from feed pen surface vs stockpiled). The research is important from the perspective of manure application to agricultural soils. Manures studied included: manure from beef feedpen surfaces and stockpiles; poultry broiler litter (8-week batch); fresh and composted egg layer litter; and fresh and composted piggery litter. Gases assessed were methane (CH4) and nitrous oxide (N2O), the two principal agricultural GHGs. We employed proven protocols to determine the manures' ultimate CH4 producing potential. We also devised a novel incubation experiment to elucidate their N2O emitting potential; a measure for which no established methods exist. We found lower CH4 potentials in manures from later stages in their management sequence compared with earlier stages, but only by a factor of 0.65×. Moreover, for the beef manures this decrease was not significant (P<0.05). Nitrous oxide emission potential was significantly positively (P<0.05) correlated with C/N ratios yet showed no obvious relationship with manure management stage. Indeed, N2O emissions from the composted egg manure were considerably (13×) and significantly (P<0.05) higher than that of the fresh egg manure. Our study demonstrates that manures from all stages of the manure management continuum potentially entail significant GHG risk when applied to arable landscapes. Efforts to harness manure resources need to account for this. Copyright © 2015 Elsevier Ltd. All rights reserved.
Stratton, Russell W; Wolfe, Philip J; Hileman, James I
2011-12-15
Alternative fuels represent a potential option for reducing the climate impacts of the aviation sector. The climate impacts of alternatives fuel are traditionally considered as a ratio of life cycle greenhouse gas (GHG) emissions to those of the displaced petroleum product; however, this ignores the climate impacts of the non-CO(2) combustion effects from aircraft in the upper atmosphere. The results of this study show that including non-CO(2) combustion emissions and effects in the life cycle of a Synthetic Paraffinic Kerosene (SPK) fuel can lead to a decrease in the relative merit of the SPK fuel relative to conventional jet fuel. For example, an SPK fuel option with zero life cycle GHG emissions would offer a 100% reduction in GHG emissions but only a 48% reduction in actual climate impact using a 100-year time window and the nominal climate modeling assumption set outlined herein. Therefore, climate change mitigation policies for aviation that rely exclusively on relative well-to-wake life cycle GHG emissions as a proxy for aviation climate impact may overestimate the benefit of alternative fuel use on the global climate system.
Mortality and greenhouse gas impacts of biomass and petroleum energy futures in Africa.
Bailis, Robert; Ezzati, Majid; Kammen, Daniel M
2005-04-01
We analyzed the mortality impacts and greenhouse gas (GHG) emissions produced by household energy use in Africa. Under a business-as-usual (BAU) scenario, household indoor air pollution will cause an estimated 9.8 million premature deaths by the year 2030. Gradual and rapid transitions to charcoal would delay 1.0 million and 2.8 million deaths, respectively; similar transitions to petroleum fuels would delay 1.3 million and 3.7 million deaths. Cumulative BAU GHG emissions will be 6.7 billion tons of carbon by 2050, which is 5.6% of Africa's total emissions. Large shifts to the use of fossil fuels would reduce GHG emissions by 1 to 10%. Charcoal-intensive future scenarios using current practices increase emissions by 140 to 190%; the increase can be reduced to 5 to 36% using currently available technologies for sustainable production or potentially reduced even more with investment in technological innovation.
Modeling travel choices to assess potential greenhouse gas emissions reductions.
DOT National Transportation Integrated Search
2015-06-01
The transportation sector is the source of approximately 27% of total U.S. greenhouse gas : (GHG) emissions (EPA, 2015), and these emissions are projected to increase in the future : (NHTSA, 2011). Given the potentially severe impacts of climate chan...
Greenhouse gas emissions from production chain of a cigarette manufacturing industry in Pakistan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hussain, Majid, E-mail: majid_qau86@yahoo.com; Department of Forestry and Wildlife Management, University of Haripur, Hattar Road, Khyber Pakhtunkhwa, Haripur 22620; Zaidi, Syed Mujtaba Hasnian
This study quantified greenhouse gas (GHG) emissions from the Pakistan Tobacco Company (PTC) production using a life cycle approach. The PTC production chain comprises of two phases: agricultural activities (Phase I) and industrial activities (Phase II). Data related to agricultural and industrial activities of PTC production chain were collected through questionnaire survey from tobacco growers and records from PTC manufacturing units. The results showed that total GHG emissions from PTC production chain were 44,965, 42,875, and 43,839 tCO{sub 2}e respectively in 2009, 2010, and 2011. Among the agricultural activities, firewood burning for tobacco curing accounted for about 3117, 3565, andmore » 3264 tCO{sub 2}e, fertilizer application accounted for 754, 3251, and 4761 tCO{sub 2}e in 2009, 2010, and 2011, respectively. Among the industrial activities, fossil fuels consumption in stationary sources accounted for 15,582, 12,733, and 13,203 tCO{sub 2}e, fossil fuels used in mobile sources contributed to 2693, 3038, and 3260 tCO{sub 2}e, and purchased electricity consumed resulted in 15,177, 13,556, and 11,380 tCO{sub 2}e in 2009, 2010, and 2011, respectively. The GHG emissions related to the transportation of raw materials and processed tobacco amounted to 6800, 6301, and 7317 respectively in 2009, 2010, and 2011. GHG emissions from energy use in the industrial activities constituted the largest emissions (i.e., over 80%) of GHG emissions as PTC relies on fossil fuels and fossil fuel based electrical power in industrial processes. The total emissions of carbon footprint (CFP) from PTC production were 0.647 tCO{sub 2}e per million cigarettes produced in 2009, 0.675 tCO{sub 2}e per million cigarettes in 2010 and 0.59 tCO{sub 2}e per million cigarettes in 2011. Potential strategies for GHG emissions reductions for PTC production chain include energy efficiency, reducing reliance on fossil fuels in non-mobile sources, adoption of renewable fuels including solar energy, energy from crop residues, and promotion of organic fertilizers. - Highlights: • We quantified greenhouse gas (GHG) emissions from the Pakistan Tobacco Company (PTC). • PTC production chain comprises of two phases: agricultural and industrial activities. • GHG emissions accounts to 44,965, 42,875 and 43,839 tCO{sub 2}e in 2009, 2010, and 2011, respectively. • GHG emissions from energy use in the industrial activities constituted the largest emissions i.e. 80%. • Implications for GHG emissions mitigation strategies for PTC are also discussed in detail.« less
Wang, Hao; Yu, Lingfei; Zhang, Zhenhua; Liu, Wei; Chen, Litong; Cao, Guangmin; Yue, Haowei; Zhou, Jizhong; Yang, Yunfeng; Tang, Yanhong; He, Jin-Sheng
2017-02-01
Rapid climate change and intensified human activities have resulted in water table lowering (WTL) and enhanced nitrogen (N) deposition in Tibetan alpine wetlands. These changes may alter the magnitude and direction of greenhouse gas (GHG) emissions, affecting the climate impact of these fragile ecosystems. We conducted a mesocosm experiment combined with a metagenomics approach (GeoChip 5.0) to elucidate the effects of WTL (-20 cm relative to control) and N deposition (30 kg N ha -1 yr -1 ) on carbon dioxide (CO 2 ), methane (CH 4 ) and nitrous oxide (N 2 O) fluxes as well as the underlying mechanisms. Our results showed that WTL reduced CH 4 emissions by 57.4% averaged over three growing seasons compared with no-WTL plots, but had no significant effect on net CO 2 uptake or N 2 O flux. N deposition increased net CO 2 uptake by 25.2% in comparison with no-N deposition plots and turned the mesocosms from N 2 O sinks to N 2 O sources, but had little influence on CH 4 emissions. The interactions between WTL and N deposition were not detected in all GHG emissions. As a result, WTL and N deposition both reduced the global warming potential (GWP) of growing season GHG budgets on a 100-year time horizon, but via different mechanisms. WTL reduced GWP from 337.3 to -480.1 g CO 2 -eq m -2 mostly because of decreased CH 4 emissions, while N deposition reduced GWP from 21.0 to -163.8 g CO 2 -eq m -2 , mainly owing to increased net CO 2 uptake. GeoChip analysis revealed that decreased CH 4 production potential, rather than increased CH 4 oxidation potential, may lead to the reduction in net CH 4 emissions, and decreased nitrification potential and increased denitrification potential affected N 2 O fluxes under WTL conditions. Our study highlights the importance of microbial mechanisms in regulating ecosystem-scale GHG responses to environmental changes. © 2016 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Begum, Shahida; P, Kumaran; M, Jayakumar
2013-06-01
One of the most efficient and effective solutions for sustainable energy supply to supplement the increasing energy demand and reducing environment pollution is renewable energy resources. Malaysia is currently the world's second largest producer and exporter of palm oil and 47% of the world's supply of palm oil is produced by this country. Nearly 80 million tonnes of Fresh Fruit Bunches (FFB) are processed annually in 406 palm oil mills and are generating approximately 54 million tonnes of palm oil mill effluent (POME), known to generate biogas consisting of methane - a Green House Gas (GHG) identifiable to cause global warming. This is 21 times more potent GHG than CO2. These two major oil palm wastes are a viable renewable energy (RE) source for production of electricity. If the two sources are used in harnessing the renewable energy potential the pollution intensity from usage of non-renewable sources can also be reduced significantly. This study focused on the pollution mitigation potential of biogas as biogas is a renewable energy. Utilization of this renewable source for the production of electricity is believed to reduce GHG emissions to the atmosphere.
Non-CO2 Greenhouse Gas Emissions in China 2012: Inventory and Supply Chain Analysis
NASA Astrophysics Data System (ADS)
Zhang, Bo; Zhang, Yaowen; Zhao, Xueli; Meng, Jing
2018-01-01
Reliable inventory information is critical in informing emission mitigation efforts. Using the latest officially released emission data, which is production based, we take a consumption perspective to estimate the non-CO2 greenhouse gas (GHG) emissions for China in 2012. The non-CO2 GHG emissions, which cover CH4, N2O, HFCs, PFCs, and SF6, amounted to 2003.0 Mt. CO2-eq (including 1871.9 Mt. CO2-eq from economic activities), much larger than the total CO2 emissions in some developed countries. Urban consumption (30.1%), capital formation (28.2%), and exports (20.6%) derived approximately four fifths of the total embodied emissions in final demand. Furthermore, the results from structural path analysis help identify critical embodied emission paths and key economic sectors in supply chains for mitigating non-CO2 GHG emissions in Chinese economic systems. The top 20 paths were responsible for half of the national total embodied emissions. Several industrial sectors such as
NASA Astrophysics Data System (ADS)
Chamberlain, S.; Groffman, P. M.; Boughton, E.; Gomez-Casanovas, N.; DeLucia, E. H.; Bernacchi, C.; Sparks, J. P.
2016-12-01
Pastures are an extensive land cover type, however patterns in pasture greenhouse gas (GHG) exchange vary widely depending on climate and land management. Understanding this variation is important, as pastures may be a net GHG source or sink depending on these factors. We quantified carbon dioxide (CO2) and methane (CH4) fluxes from subtropical pastures in south Florida for three years using eddy covariance, and estimated annual budgets of CO2, CH4, and GHG equivalent emissions. We also explored the influence of water retention practices on pasture GHG budgets by combining data from a multi-year pasture water retention experiment with CH4 flux data from our eddy covariance tower to 1) estimate the influence of water retention on surface soil flooding, and 2) estimate the influence of extended surface soil flooding on CH4 emissions. These findings were then used to assess the impact of CH4 emissions on stakeholder payments for water retention services in a carbon market framework. The pastures were net CO2 sinks sequestering up to 163 ± 54 g CO2-C m-2 yr-1, but were also strong CH4 sources emitting up to 23.5 ± 2.1 g CH4-C m-2 yr-1. Accounting for the global warming potential of CH4, the pastures were strong GHG sources emitting up to 584 ± 78 g CO2 eq. m-2 yr-1. Our analysis suggests CH4 emissions due to increased flooding from water management practices is a small component of the pasture GHG budget, and water retention likely contributes 2-11% of pasture GHG emissions. These emissions could reduce water retention payments by up to 12% if stakeholders were required to pay for current GHG emissions in a carbon market. It would require at least 93.7 kg CH4-C emissions per acre-foot water storage for carbon market costs to exceed water retention payments, and this scenario is highly unlikely as we estimate current practices are responsible for 11.3 ± 7.2 kg CH4-C emissions per acre-foot of water storage. Our results demonstrate that water retention practices aimed at reducing nutrient loading to the Everglades are likely responsible for only a minor increase in pasture GHG emissions and would have a small economic consequence in a carbon market.
Sarigiannis, D A; Kontoroupis, P; Nikolaki, S; Gotti, A; Chapizanis, D; Karakitsios, S
2017-02-01
Climate change is a major environmental threat of our time. Cities have a significant impact on greenhouse gas emissions as most of the traffic, industry, commerce and more than 50% of world population is situated in urban areas. Southern Europe is a region that faces financial turmoil, enhanced migratory fluxes and climate change pressure. The case study of Thessaloniki is presented, one of the only two cities in Greece with established climate change action plans. The effects of feasible traffic policies in year 2020 are assessed and their potential health impact is compared to a business as usual scenario. Two types of measures are investigated: operation of underground rail in the city centre and changes in fleet composition. Potential co-benefits from reduced greenhouse gas emissions on public health by the year 2020 are computed utilizing state-of-the-art concentration response functions for PM x , NO 2 and C 6 H 6 . Results show significant environmental health and monetary co-benefits when the city metro is coupled with appropriate changes in the traffic composition. Monetary savings due to avoided mortality or leukaemia incidence corresponding to the reduction in PM 10 , PM 2.5, NO 2 and C 6 H 6 exposure will be 56.6, 45, 37.7 and 1.0 million Euros respectively. Promotion of 'green' transportation in the city (i.e. the wide use of electric vehicles), will provide monetary savings from the reduction in PM 10 , PM 2.5 , NO 2 and C 6 H 6 exposure up to 60.4, 49.1, 41.2 and 1.08 million Euros. Overall, it was shown that the respective GHG emission reduction policies resulted in clear co-benefits in terms of air quality improvement, public health protection and monetary loss mitigation. Copyright © 2016 Elsevier B.V. All rights reserved.
Venkatesh, Aranya; Jaramillo, Paulina; Griffin, W Michael; Matthews, H Scott
2011-10-01
Increasing concerns about greenhouse gas (GHG) emissions in the United States have spurred interest in alternate low carbon fuel sources, such as natural gas. Life cycle assessment (LCA) methods can be used to estimate potential emissions reductions through the use of such fuels. Some recent policies have used the results of LCAs to encourage the use of low carbon fuels to meet future energy demands in the U.S., without, however, acknowledging and addressing the uncertainty and variability prevalent in LCA. Natural gas is a particularly interesting fuel since it can be used to meet various energy demands, for example, as a transportation fuel or in power generation. Estimating the magnitudes and likelihoods of achieving emissions reductions from competing end-uses of natural gas using LCA offers one way to examine optimal strategies of natural gas resource allocation, given that its availability is likely to be limited in the future. In this study, the uncertainty in life cycle GHG emissions of natural gas (domestic and imported) consumed in the U.S. was estimated using probabilistic modeling methods. Monte Carlo simulations are performed to obtain sample distributions representing life cycle GHG emissions from the use of 1 MJ of domestic natural gas and imported LNG. Life cycle GHG emissions per energy unit of average natural gas consumed in the U.S were found to range between -8 and 9% of the mean value of 66 g CO(2)e/MJ. The probabilities of achieving emissions reductions by using natural gas for transportation and power generation, as a substitute for incumbent fuels such as gasoline, diesel, and coal were estimated. The use of natural gas for power generation instead of coal was found to have the highest and most likely emissions reductions (almost a 100% probability of achieving reductions of 60 g CO(2)e/MJ of natural gas used), while there is a 10-35% probability of the emissions from natural gas being higher than the incumbent if it were used as a transportation fuel. This likelihood of an increase in GHG emissions is indicative of the potential failure of a climate policy targeting reductions in GHG emissions.
Petersen, Abdul M; Haigh, Kate; Görgens, Johann F
2014-01-01
Flow sheet options for integrating ethanol production from spent sulfite liquor (SSL) into the acid-based sulfite pulping process at the Sappi Saiccor mill (Umkomaas, South Africa) were investigated, including options for generation of thermal and electrical energy from onsite bio-wastes, such as bark. Processes were simulated with Aspen Plus® for mass- and energy-balances, followed by an estimation of the economic viability and environmental impacts. Various concentration levels of the total dissolved solids in magnesium oxide-based SSL, which currently fuels a recovery boiler, prior to fermentation was considered, together with return of the fermentation residues (distillation bottoms) to the recovery boiler after ethanol separation. The generation of renewable thermal and electrical energy from onsite bio-wastes were also included in the energy balance of the combined pulping-ethanol process, in order to partially replace coal consumption. The bio-energy supplementations included the combustion of bark for heat and electricity generation and the bio-digestion of the calcium oxide SSL to produce methane as additional energy source. Ethanol production from SSL at the highest substrate concentration was the most economically feasible when coal was used for process energy. However this solution did not provide any savings in greenhouse gas (GHG) emissions for the concentration-fermentation-distillation process. Maximizing the use of renewable energy sources to partially replace coal consumption yielded a satisfactory economic performance, with a minimum ethanol selling price of 0.83 US$/l , and a drastic reduction in the overall greenhouse gas emissions for the entire facility. High substrate concentrations and conventional distillation should be used when considering integrating ethanol production at sulfite pulping mills. Bio-wastes generated onsite should be utilized at their maximum potential for energy generation in order to maximize the GHG emissions reduction.
Larrea-Gallegos, Gustavo; Villanueva-Rey, Pedro; Gilardino, Alessandro
2017-01-01
Food consumption accounts for an important proportion of the world GHG emissions per capita. Previous studies have delved into the nature of dietary patterns, showing that GHG reductions can be achieved in diets if certain foods are consumed rather than other, more GHG intensive products. For instance, vegetarian and low-meat diets have proved to be less carbon intensive than diets that are based on ruminant meat. These environmental patterns, increasingly analyzed in developed nations, are yet to be assessed in countries liked Peru where food purchase represents a relatively high percentage of the average household expenditure, ranging from 38% to 51% of the same. Therefore, food consumption can be identified as a potential way to reduce GHG emissions in Peru. However, the Peruvian government lacks a specific strategy to mitigate emissions in this sector, despite the recent ratification of the Paris Accord. In view of this, the main objective of this study is to analyze the environmental impacts of a set of 47 Peruvian food diet profiles, including geographical and socioeconomic scenarios. In order to do this, Life Cycle Assessment was used as the methodological framework to obtain the overall impacts of the components in the dietary patterns observed and primary data linked to the composition of diets were collected from the Peruvian National Institute for Statistics (INEI). Life cycle inventories for the different products that are part of the Peruvian diet were obtained from a set of previous scientific articles and reports regarding food production. Results were computed using the IPCC 2013 assessment method to estimate GHG emissions. Despite variations in GHG emissions from a geographical perspective, no significant differences were observed between cities located in the three Peruvian natural regions (i.e., coast, Andes and Amazon basin). In contrast, there appears to be a strong, positive correlation between GHG emissions and social expenditure or academic status. When compared to GHG emissions computed in the literature for developed nations, where the average caloric intake is substantially higher, diet-related emissions in Peru were in the low range. Our results could be used as a baseline for policy support to align nutritional and health policies in Peru with the need to reduce the environmental impacts linked to food production. PMID:29145461
Vázquez-Rowe, Ian; Larrea-Gallegos, Gustavo; Villanueva-Rey, Pedro; Gilardino, Alessandro
2017-01-01
Food consumption accounts for an important proportion of the world GHG emissions per capita. Previous studies have delved into the nature of dietary patterns, showing that GHG reductions can be achieved in diets if certain foods are consumed rather than other, more GHG intensive products. For instance, vegetarian and low-meat diets have proved to be less carbon intensive than diets that are based on ruminant meat. These environmental patterns, increasingly analyzed in developed nations, are yet to be assessed in countries liked Peru where food purchase represents a relatively high percentage of the average household expenditure, ranging from 38% to 51% of the same. Therefore, food consumption can be identified as a potential way to reduce GHG emissions in Peru. However, the Peruvian government lacks a specific strategy to mitigate emissions in this sector, despite the recent ratification of the Paris Accord. In view of this, the main objective of this study is to analyze the environmental impacts of a set of 47 Peruvian food diet profiles, including geographical and socioeconomic scenarios. In order to do this, Life Cycle Assessment was used as the methodological framework to obtain the overall impacts of the components in the dietary patterns observed and primary data linked to the composition of diets were collected from the Peruvian National Institute for Statistics (INEI). Life cycle inventories for the different products that are part of the Peruvian diet were obtained from a set of previous scientific articles and reports regarding food production. Results were computed using the IPCC 2013 assessment method to estimate GHG emissions. Despite variations in GHG emissions from a geographical perspective, no significant differences were observed between cities located in the three Peruvian natural regions (i.e., coast, Andes and Amazon basin). In contrast, there appears to be a strong, positive correlation between GHG emissions and social expenditure or academic status. When compared to GHG emissions computed in the literature for developed nations, where the average caloric intake is substantially higher, diet-related emissions in Peru were in the low range. Our results could be used as a baseline for policy support to align nutritional and health policies in Peru with the need to reduce the environmental impacts linked to food production.
Bergamaschi, Brian A.; Bernknopf, Richard; Clow, David; Dye, Dennis; Faulkner, Stephen; Forney, William; Gleason, Robert; Hawbaker, Todd; Liu, Jinxun; Liu, Shu-Guang; Prisley, Stephen; Reed, Bradley; Reeves, Matthew; Rollins, Matthew; Sleeter, Benjamin; Sohl, Terry; Stackpoole, Sarah; Stehman, Stephen; Striegl, Robert G.; Wein, Anne; Zhu, Zhi-Liang; Zhu, Zhi-Liang
2010-01-01
The Energy Independence and Security Act of 2007 (EISA), Section 712, authorizes the U.S. Department of the Interior to develop a methodology and conduct an assessment of the Nation's ecosystems focusing on carbon stocks, carbon sequestration, and emissions of three greenhouse gases (GHGs): carbon dioxide, methane, and nitrous oxide. The major requirements include (1) an assessment of all ecosystems (terrestrial systems, such as forests, croplands, wetlands, shrub and grasslands; and aquatic ecosystems, such as rivers, lakes, and estuaries), (2) an estimation of annual potential capacities of ecosystems to increase carbon sequestration and reduce net GHG emissions in the context of mitigation strategies (including management and restoration activities), and (3) an evaluation of the effects of controlling processes, such as climate change, land use and land cover, and wildlfires. The purpose of this draft methodology for public review is to propose a technical plan to conduct the assessment. Within the methodology, the concepts of ecosystems, carbon pools, and GHG fluxes used for the assessment follow conventional definitions in use by major national and international assessment or inventory efforts. In order to estimate current ecosystem carbon stocks and GHG fluxes and to understand the potential capacity and effects of mitigation strategies, the method will use two time periods for the assessment: 2001 through 2010, which establishes a current ecosystem GHG baseline and will be used to validate the models; and 2011 through 2050, which will be used to assess future potential conditions based on a set of projected scenarios. The scenario framework is constructed using storylines of the Intergovernmental Panel on Climate Change (IPCC) Special Report Emission Scenarios (SRES), along with initial reference land-use and land-cover (LULC) and land-management scenarios. An additional three LULC and land-management mitigation scenarios will be constructed for each storyline to enhance carbon sequestration and reduce GHG fluxes in ecosystems. Input from regional experts and stakeholders will be solicited to construct realistic and meaningful scenarios. The methods for mapping the current LULC and ecosystem disturbances will require the extensive use of both remote-sensing data and in-situ (for example, forest inventory data) to capture and characterize landscape-change events. For future potential LULC and ecosystem disturbances, key drivers such as socioeconomic, policy, and climate assumptions will be used in addition to biophysical data. The product of these analyses will be a series of maps for each future year for each scenario. These annual maps will form the basis for estimating carbon storage and GHG emissions. For terrestrial ecosystems, carbon storage, carbon-sequestration capacities, and GHG emissions under the current and projected future conditions will be assessed using the LULC and ecosystem-disturbance estimates in map format with a spatially explicit biogeochemical ensemble modeling system that incorporates properties of management activities (such as tillage or harvesting) and properties of individual ecosystems (such as elevation, vegetation characteristics, and soil attributes). For aquatic ecosystems, carbon burial in sediments and GHG fluxes are functions of the current and projected future stream flow and sediment transports, and therefore will be assessed using empirical modeling methods. Validation and uncertainty analysis methods described in the methodology will follow established guidelines to assess the quality of the assessment results. The U.S. Environmental Protection Agency's Level II ecoregions map (which delineates 24 ecoregions for the Nation) will be the practical instrument for developing and delivering assessment results. Consequently, the ecoregion will be the reporting unit of the assessment because the mitigation scenarios, assessment results, validation, and uncertainty analysis will be
NASA Astrophysics Data System (ADS)
Knox, S. H.; Sturtevant, C. S.; Oikawa, P. Y.; Matthes, J. H.; Dronova, I.; Anderson, F. E.; Verfaillie, J. G.; Baldocchi, D. D.
2015-12-01
Wetlands can be effective carbon sinks due to limited decomposition rates in anaerobic soil. As such there is a growing interest in the use of restored wetlands as biological carbon sequestration projects for greenhouse gas (GHG) emission reduction programs. However, using wetlands to offset emissions requires accurate accounting of both carbon dioxide (CO2) and methane (CH4) exchange since wetlands are also sources of CH4. To date few studies have quantified CO2 and CH4 exchange from restored wetlands or assessed how these fluxes vary during ecosystem development. In this study, we report on multiple years of eddy covariance measurements of CO2 and CH4 fluxes from two restored freshwater marshes of differing ages (one restored in 1997 and the other in 2010) in the Sacramento-San Joaquin Delta, CA. Measurements at the younger restored wetland started in October 2010 and began in April 2011 at the older site. The younger restored wetland showed considerable year-to-year variability in the first 4 years following restoration, with CO2 uptake ranging from 12 to 420 g C-CO2 m-2 yr-1. Net CO2 uptake at the older wetland was overall greater than at the younger site, ranging from 292 to 585 g C-CO2 m-2 yr-1. Methane emissions were on average higher at the younger wetland (46 g C-CH4 m-2 yr-1) relative to the older one (33 g C-CH4 m-2 yr-1). In terms of the GHG budgets (assuming a global warming potential of 34), the younger wetland was consistently a GHG source, emitting on average 1439 g CO2 eq m-2 yr-1, while the older wetland was a GHG sink in two of the years of measurement (sequestering 651 and 780 g CO2 eq m-2 yr-1 in 2012 and 2013, respectively) and a source of 750 g CO2 eq m-2 yr-1 in 2014. This study highlights how dynamic CO2 and CH4 fluxes are in the first years following wetland restoration and suggests that restored wetlands have the potential to act as GHG sinks but this may depend on time since restoration.
NASA Astrophysics Data System (ADS)
Sweeney, J. F.; Davis, S. J.
2007-12-01
Established protocols allow entity-level accounting of greenhouse gas (GHG) emissions. The information contained within GHG inventories is used by entities to manage their carbon footprint and to anticipate future exposure to compulsory GHG markets or taxes. The efficacy of such inventories, as experienced by the consumer, can be improved upon by product-level GHG inventories applying the methods of traditional life cycle analysis (LCA). A voluntary product-level assessment of this type, coupled with an eco-label, would 1) empower consumers with information about the total embodied GHG content of a product, 2) allow companies to understand and manage GHG emissions outside the narrow scope of their entities, and 3) drive reduction of GHG emissions throughout product value chains. The Climate Conservancy (TCC) is a non-profit organization founded to help companies calculate their GHG emissions at the level of individual product units, and to inform consumers about the GHG intensity of the products they choose to purchase. With the assistance of economists, policy experts and scientists, TCC has developed a useful metric for reporting product-level GHG emissions that allows for a normalized comparison of a product's GHG intensity irrespective of industry sector or competitors, where GHG data are often unavailable or incomplete. Using this metric, we envision our Climate Conscious label becoming an important arbiter of choice for consumers seeking ways to mitigate their climate impacts without the need for governmental regulation.
Strategies to improve industrial energy efficiency
NASA Astrophysics Data System (ADS)
O'Rielly, Kristine M.
A lack of technical expertise, fueled by a lack of positive examples, can lead to companies opting not to implement energy reduction projects unless mandated by legislation. As a result, companies are missing out on exceptional opportunities to improve not only their environmental record but also save considerably on fuel costs. This study investigates the broad topic of energy efficiency within the context of the industrial sector by means of a thorough review of existing energy reduction strategies and a demonstration of their successful implementation. The study begins by discussing current industrial energy consumption trends around the globe and within the Canadian manufacturing sector. This is followed by a literature review which outlines 3 prominent energy efficiency improvement strategies currently available to companies: 1) Waste heat recovery, 2) Idle power loss reduction and production rate optimization, and lastly 3) Auxiliary equipment operational performance. Next, a broad overview of the resources and tools available to organizations looking to improve their industrial energy efficiency is provided. Following this, several case studies are presented which demonstrate the potential benefits that are available to Canadian organizations looking to improve their energy efficiency. Lastly, a discussion of a number of issues and barriers pertaining to the wide-scale implementation of industrial efficiency strategies is presented. It discusses a number of potential roadblocks, including a lack of energy consumption monitoring and data transparency. While this topic has been well researched in the past in terms of the losses encountered during various general manufacturing process streams, practically no literature exists which attempts to provide real data from companies who have implemented energy efficiency strategies. By obtaining original data directly from companies, this thesis demonstrates the potential for companies to save money and reduce GHG (greenhouse gas) emissions through the implementation of energy efficiency projects and publishes numbers which are almost impossible to find directly. By publishing success stories, it is hoped that other companies, especially SMEs (small and medium enterprises) will be able to learn from these case studies and be inspired to embark on energy efficiency projects of their own.
Lin, Tao; Yu, Yunjun; Bai, Xuemei; Feng, Ling; Wang, Jin
2013-01-01
Devising policies for a low carbon city requires a careful understanding of the characteristics of urban residential lifestyle and consumption. The production-based accounting approach based on top-down statistical data has a limited ability to reflect the total greenhouse gas (GHG) emissions from residential consumption. In this paper, we present a survey-based GHG emissions accounting methodology for urban residential consumption, and apply it in Xiamen City, a rapidly urbanizing coastal city in southeast China. Based on this, the main influencing factors determining residential GHG emissions at the household and community scale are identified, and the typical profiles of low, medium and high GHG emission households and communities are identified. Up to 70% of household GHG emissions are from regional and national activities that support household consumption including the supply of energy and building materials, while 17% are from urban level basic services and supplies such as sewage treatment and solid waste management, and only 13% are direct emissions from household consumption. Housing area and household size are the two main factors determining GHG emissions from residential consumption at the household scale, while average housing area and building height were the main factors at the community scale. Our results show a large disparity in GHG emissions profiles among different households, with high GHG emissions households emitting about five times more than low GHG emissions households. Emissions from high GHG emissions communities are about twice as high as from low GHG emissions communities. Our findings can contribute to better tailored and targeted policies aimed at reducing household GHG emissions, and developing low GHG emissions residential communities in China.
Lin, Tao; Yu, Yunjun; Bai, Xuemei; Feng, Ling; Wang, Jin
2013-01-01
Devising policies for a low carbon city requires a careful understanding of the characteristics of urban residential lifestyle and consumption. The production-based accounting approach based on top-down statistical data has a limited ability to reflect the total greenhouse gas (GHG) emissions from residential consumption. In this paper, we present a survey-based GHG emissions accounting methodology for urban residential consumption, and apply it in Xiamen City, a rapidly urbanizing coastal city in southeast China. Based on this, the main influencing factors determining residential GHG emissions at the household and community scale are identified, and the typical profiles of low, medium and high GHG emission households and communities are identified. Up to 70% of household GHG emissions are from regional and national activities that support household consumption including the supply of energy and building materials, while 17% are from urban level basic services and supplies such as sewage treatment and solid waste management, and only 13% are direct emissions from household consumption. Housing area and household size are the two main factors determining GHG emissions from residential consumption at the household scale, while average housing area and building height were the main factors at the community scale. Our results show a large disparity in GHG emissions profiles among different households, with high GHG emissions households emitting about five times more than low GHG emissions households. Emissions from high GHG emissions communities are about twice as high as from low GHG emissions communities. Our findings can contribute to better tailored and targeted policies aimed at reducing household GHG emissions, and developing low GHG emissions residential communities in China. PMID:23405187
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pawlowski, Meghan N.; Crow, Susan E.; Meki, Manyowa N.
Replacing fossil fuel with biofuel is environmentally viable from a climate change perspective only if the net greenhouse gas (GHG) footprint of the system is reduced. The effects of replacing annual arable crops with perennial bioenergy feedstocks on net GHG production and soil carbon (C) stock are critical to the system-level balance. Here, we compared GHG flux, crop yield, root biomass, and soil C stock under two potential tropical, perennial grass biofuel feedstocks: conventional sugarcane and ratoon-harvested, zero-tillage napiergrass. Evaluations were conducted at two irrigation levels, 100% of plantation application and at a 50% deficit. Peaks and troughs of GHGmore » emission followed agronomic events such as ratoon harvest of napiergrass and fertilization. Yet, net GHG flux was dominated by carbon dioxide (CO 2), as methane was oxidized and nitrous oxide (N 2O) emission was very low even following fertilization. High N 2O fluxes that frequently negate other greenhouse gas benefits that come from replacing fossil fuels with agronomic forms of bioenergy were mitigated by efficient water and fertilizer management, including direct injection of fertilizer into buried irrigation lines. From soil intensively cultivated for a century in sugarcane, soil C stock and root biomass increased rapidly following cultivation in grasses selected for robust root systems and drought tolerance. The net soil C increase over the two-year crop cycle was three-fold greater than the annualized soil surface CO 2 flux. Furthermore, deficit irrigation reduced yield, but increased soil C accumulation as proportionately more photosynthetic resources were allocated below ground. In the first two years of cultivation napier grass did not increase net greenhouse warming potential (GWP) compared to sugarcane, and has the advantage of multiple ratoon harvests per year and less negative effects of deficit irrigation to yield.« less
NASA Astrophysics Data System (ADS)
Gourdji, S. M.; Yadav, V.; Karion, A.; Mueller, K. L.; Conley, S.; Ryerson, T.; Nehrkorn, T.; Kort, E. A.
2018-04-01
Urban greenhouse gas (GHG) flux estimation with atmospheric measurements and modeling, i.e. the ‘top-down’ approach, can potentially support GHG emission reduction policies by assessing trends in surface fluxes and detecting anomalies from bottom-up inventories. Aircraft-collected GHG observations also have the potential to help quantify point-source emissions that may not be adequately sampled by fixed surface tower-based atmospheric observing systems. Here, we estimate CH4 emissions from a known point source, the Aliso Canyon natural gas leak in Los Angeles, CA from October 2015–February 2016, using atmospheric inverse models with airborne CH4 observations from twelve flights ≈4 km downwind of the leak and surface sensitivities from a mesoscale atmospheric transport model. This leak event has been well-quantified previously using various methods by the California Air Resources Board, thereby providing high confidence in the mass-balance leak rate estimates of (Conley et al 2016), used here for comparison to inversion results. Inversions with an optimal setup are shown to provide estimates of the leak magnitude, on average, within a third of the mass balance values, with remaining errors in estimated leak rates predominantly explained by modeled wind speed errors of up to 10 m s‑1, quantified by comparing airborne meteorological observations with modeled values along the flight track. An inversion setup using scaled observational wind speed errors in the model-data mismatch covariance matrix is shown to significantly reduce the influence of transport model errors on spatial patterns and estimated leak rates from the inversions. In sum, this study takes advantage of a natural tracer release experiment (i.e. the Aliso Canyon natural gas leak) to identify effective approaches for reducing the influence of transport model error on atmospheric inversions of point-source emissions, while suggesting future potential for integrating surface tower and aircraft atmospheric GHG observations in top-down urban emission monitoring systems.
NASA Astrophysics Data System (ADS)
Marvin, D.; Cameron, D. R.; Passero, M. C.; Remucal, J. M.
2017-12-01
California has been a global leader in climate change policy through its early adoption of ambitious GHG reduction goals, committing to steep reductions through 2030 and beyond. Modeling efforts focused on future greenhouse gas (GHG) emissions from energy and other sectors in California have shown varying capacity to meet the emissions reductions targets established by the state. These efforts have not included potential reductions from changes in ecosystem management, restoration, and conservation. This study simulates the future GHG reduction potential of these land-based activities (e.g., changes to forest management, avoided conversion of grasslands to agriculture) when applied to California lands at three plausible rates of policy implementation relative to current efforts. We then compare the reduction potential of the activities against "business-as-usual" (BAU) emissions projections for the California to highlight the contribution of the biosphere toward reaching the state's GHG 2030 and 2050 reduction targets. By 2030, an Ambitious land-based activity implementation scenario could contribute as much as 146.7 MMTCO2e or 17.4% of the cumulative reductions needed to meet the state's 2030 goal, greater than the individual contributions of four other economic sectors, including those from the Industrial and Agriculture sectors. On an annual basis, the Ambitious scenario could result in reductions as high as 17.93 MMTCO2e yr-1 or 13.4% of the state's 2030 reduction goal. Most reductions come from changes in forest management, such as extending rotation times for harvest and reducing stocking density, thereby promoting accelerated growth. Such changes comprise 59.8% to 67.4% of annual projected emissions reductions in 2050 for the Ambitious and Limited scenarios, respectively. Implementation of a range of land-based emissions reduction activities can materially contribute to one of the most ambitious mitigation targets globally. This study provides a flexible, dynamic framework for estimating the reductions achievable through land conservation, ecological restoration, and changes in management regimes that can account for new data and scientific understanding.
NASA Astrophysics Data System (ADS)
Ishtiaq, K. S.; Abdul-Aziz, O. I.
2015-12-01
We developed user-friendly empirical models to predict instantaneous fluxes of CO2 and CH4 from coastal wetlands based on a small set of dominant hydro-climatic and environmental drivers (e.g., photosynthetically active radiation, soil temperature, water depth, and soil salinity). The dominant predictor variables were systematically identified by applying a robust data-analytics framework on a wide range of possible environmental variables driving wetland greenhouse gas (GHG) fluxes. The method comprised of a multi-layered data-analytics framework, including Pearson correlation analysis, explanatory principal component and factor analyses, and partial least squares regression modeling. The identified dominant predictors were finally utilized to develop power-law based non-linear regression models to predict CO2 and CH4 fluxes under different climatic, land use (nitrogen gradient), tidal hydrology and salinity conditions. Four different tidal wetlands of Waquoit Bay, MA were considered as the case study sites to identify the dominant drivers and evaluate model performance. The study sites were dominated by native Spartina Alterniflora and characterized by frequent flooding and high saline conditions. The model estimated the potential net ecosystem carbon balance (NECB) both in gC/m2 and metric tonC/hectare by up-scaling the instantaneous predicted fluxes to the growing season and accounting for the lateral C flux exchanges between the wetlands and estuary. The entire model was presented in a single Excel spreadsheet as a user-friendly ecological engineering tool. The model can aid the development of appropriate GHG offset protocols for setting monitoring plans for tidal wetland restoration and maintenance projects. The model can also be used to estimate wetland GHG fluxes and potential carbon storage under various IPCC climate change and sea level rise scenarios; facilitating an appropriate management of carbon stocks in tidal wetlands and their incorporation into a potential carbon market.
Pawlowski, Meghan N.; Crow, Susan E.; Meki, Manyowa N.; ...
2017-01-04
Replacing fossil fuel with biofuel is environmentally viable from a climate change perspective only if the net greenhouse gas (GHG) footprint of the system is reduced. The effects of replacing annual arable crops with perennial bioenergy feedstocks on net GHG production and soil carbon (C) stock are critical to the system-level balance. Here, we compared GHG flux, crop yield, root biomass, and soil C stock under two potential tropical, perennial grass biofuel feedstocks: conventional sugarcane and ratoon-harvested, zero-tillage napiergrass. Evaluations were conducted at two irrigation levels, 100% of plantation application and at a 50% deficit. Peaks and troughs of GHGmore » emission followed agronomic events such as ratoon harvest of napiergrass and fertilization. Yet, net GHG flux was dominated by carbon dioxide (CO 2), as methane was oxidized and nitrous oxide (N 2O) emission was very low even following fertilization. High N 2O fluxes that frequently negate other greenhouse gas benefits that come from replacing fossil fuels with agronomic forms of bioenergy were mitigated by efficient water and fertilizer management, including direct injection of fertilizer into buried irrigation lines. From soil intensively cultivated for a century in sugarcane, soil C stock and root biomass increased rapidly following cultivation in grasses selected for robust root systems and drought tolerance. The net soil C increase over the two-year crop cycle was three-fold greater than the annualized soil surface CO 2 flux. Furthermore, deficit irrigation reduced yield, but increased soil C accumulation as proportionately more photosynthetic resources were allocated below ground. In the first two years of cultivation napier grass did not increase net greenhouse warming potential (GWP) compared to sugarcane, and has the advantage of multiple ratoon harvests per year and less negative effects of deficit irrigation to yield.« less
NASA Astrophysics Data System (ADS)
Bowen, E. E.; Martin, P. A.; Schuble, T. J.
2009-12-01
Nationwide, cities are increasingly developing policies aimed at greater sustainability, particularly focusing on reducing environmental impact. Such policies commonly emphasize more efficiently using energy to decrease the greenhouse gas (GHG) footprint of the city. However, most plans ignore the food system as a factor in regional energy use and GHG emissions. Yet, the food system in the United States accounts for ~20% of per capita greenhouse gas emissions. Local, sustainable food production is cited as one strategy for mitigating GHG emissions of large metropolitan areas. “Sustainable” for regional agriculture is often identified as small-scale, diversified food crop production using best practices management. Localized food production (termed “foodshed”) using sustainable agriculture could mitigate climate change in multiple ways: (1) energy and therefore CO2-intensive portions of the conventional food system might be replaced by local, lower-input food production resulting in carbon offsets; (2) increased regional carbon storage might result from well-managed food crop production vs. commodity crop production; and (3) averted N2O emissions might result from closing nutrient cycles on agricultural lands following changes in management practices. The broader implications for environmental impact of widespread conversion to sustainable food crop agriculture, however, remain largely unknown. We examine the Chicago metropolitan region to quantify the impact of increased local food production on regional energy efficiency and GHG emissions. Geospatial analysis is used to quantify the resource potential for establishing a Chicago metropolitan foodshed. A regional foodshed is defined by minimizing cost through transportation mode (road, rail, or water) and maximizing the production potential of different soil types. Simple biogeochemical modeling is used to predict changes in N2O emissions and nutrient flows following changes in land management practices. Ultimately, quantification of impacts from changes in regional land use can inform regional planning for climate change mitigation strategies.
Energy Metrics for State Government Buildings
NASA Astrophysics Data System (ADS)
Michael, Trevor
Measuring true progress towards energy conservation goals requires the accurate reporting and accounting of energy consumption. An accurate energy metrics framework is also a critical element for verifiable Greenhouse Gas Inventories. Energy conservation in government can reduce expenditures on energy costs leaving more funds available for public services. In addition to monetary savings, conserving energy can help to promote energy security, air quality, and a reduction of carbon footprint. With energy consumption/GHG inventories recently produced at the Federal level, state and local governments are beginning to also produce their own energy metrics systems. In recent years, many states have passed laws and executive orders which require their agencies to reduce energy consumption. In June 2008, SC state government established a law to achieve a 20% energy usage reduction in state buildings by 2020. This study examines case studies from other states who have established similar goals to uncover the methods used to establish an energy metrics system. Direct energy consumption in state government primarily comes from buildings and mobile sources. This study will focus exclusively on measuring energy consumption in state buildings. The case studies reveal that many states including SC are having issues gathering the data needed to accurately measure energy consumption across all state buildings. Common problems found include a lack of enforcement and incentives that encourage state agencies to participate in any reporting system. The case studies are aimed at finding the leverage used to gather the needed data. The various approaches at coercing participation will hopefully reveal methods that SC can use to establish the accurate metrics system needed to measure progress towards its 20% by 2020 energy reduction goal. Among the strongest incentives found in the case studies is the potential for monetary savings through energy efficiency. Framing energy conservation as budget enhancement is found to be a particularly useful approach in political environments that are not always receptive to climate change oriented efforts. For example, the NC Utility Savings Initiative claims to have saved over $400 million in avoided tax costs. The case studies reveal a wide range of individual successes as a result of energy conservation efforts. Despite the successes found, results indicate that most states have not obtained or completely measured progress towards their energy reduction goals.
Upscaling of greenhouse gas emissions in upland forestry following clearfell
NASA Astrophysics Data System (ADS)
Toet, Sylvia; Keane, Ben; Yamulki, Sirwan; Blei, Emanuel; Gibson-Poole, Simon; Xenakis, Georgios; Perks, Mike; Morison, James; Ineson, Phil
2016-04-01
Data on greenhouse gas (GHG) emissions caused by forest management activities are limited. Management such as clearfelling may, however, have major impacts on the GHG balance of forests through effects of soil disturbance, increased water table, and brash and root inputs. Besides carbon dioxide (CO2), the biogenic GHGs nitrous oxide (N2O) and methane (CH4) may also contribute to GHG emissions from managed forests. Accurate flux estimates of all three GHGs are therefore necessary, but, since GHG emissions usually show large spatial and temporal variability, in particular CH4 and N2O fluxes, high-frequency GHG flux measurements and better understanding of their controls are central to improve process-based flux models and GHG budgets at multiple scales. In this study, we determined CO2, CH4 and N2O emissions following felling in a mature Sitka spruce (Picea sitchensis) stand in an upland forest in northern England. High-frequency measurements were made along a transect using a novel, automated GHG chamber flux system ('SkyLine') developed at the University of York. The replicated, linear experiment aimed (1) to quantify GHG emissions from three main topographical features at the clearfell site, i.e. the ridges on which trees had been planted, the hollows in between and the drainage ditches, and (2) to determine the effects of the green-needle component of the discarded brash. We also measured abiotic soil and climatic factors alongside the 'SkyLine' GHG flux measurements to identify drivers of the observed GHG emissions. All three topographic features were overall sources of GHG emissions (in CO2 equivalents), and, although drainage ditches are often not included in studies, GHG emissions per unit area were highest from ditches, followed by ridges and lowest in hollows. The CO2 emissions were most important in the GHG balance of ridges and hollows, but CH4 emissions were very high from the drainage ditches, contributing to over 50% of their overall net GHG emissions. Ridges usually emitted N2O, whilst N2O emissions from hollows and ditches were very low. As much as 25% of the total GHG flux resulted from large intermittent emissions from the ditches following rainfall. Addition of green needles from the brash immediately increased soil respiration and reduced CH4 emission in comparison to controls. To upscale our high-frequency 'SkyLine' GHG flux measurements at the different topographic features to the field scale, we collected high resolution imagery from unmanned aerial vehicle (UAV) flights. We will compare results using this upscaling technique to GHG emissions simultaneously measured by eddy covariance with the 'SkyLine' system in the predominant footprint. This detailed knowledge of the spatial and temporal distribution of GHG emissions in an upland forest after felling and their drivers, and development of robust upscaling techniques can provide important tools to improve GHG flux models and to design appropriate management practices in upland forestry to mitigate GHG emissions following clearfell.
LCA as a Tool to Evaluate Green Infrastructure's Environmental Performance
NASA Astrophysics Data System (ADS)
Catalano De Sousa, M.; Erispaha, A.; Spatari, S.; Montalto, F.
2011-12-01
Decentralized approaches to managing urban stormwater through use of green infrastructure (GI) often lead to system-wide efficiency gains within the urban watershed's energy supply system. These efficiencies lead to direct greenhouse gas (GHG) emissions savings, and also restore some ecosystem functions within the urban landscape. We developed a consequential life cycle assessment (LCA) model to estimate the life cycle energy, global warming potential (GWP), and payback times for each if GI were applied within a select neighborhood in New York City. We applied the SIMAPRO LCA software and the economic input-output LCA (EIO-LCA) tool developed by Carnegie Mellon University. The results showed that for a new intersection installation highlighted in this study a conventional infrastructure construction would emit and use approximately 3 times more for both CO2 and energy than a design using GI. Two GI benefits were analyzed with regards to retrofitting the existing intersection. The first was related to the savings in energy and CO2 at the Waste Water Treatment Plant via runoff reduction accrued from GI use. The second benefit was related to the avoided environmental costs associated with an additional new grey infrastructure installation needed to prevent CSO in case of no GI implementation. The first benefit indicated a high payback time for a GI installation in terms of CO2 and energy demand (80 and 90 years respectively) and suggest a slow energy and carbon recovery time. However, concerning to the second benefit, GI proved to be a sustainable alternative considering the high CO2 releases (429 MTE) and energy demand (5.5 TJ) associated with a grey infrastructure construction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williams, Christopher; Hasanbeigi, Ali; Price, Lynn
Improving the efficiency of energy production and consumption and switching to lower carbon energy sources can significantly decrease carbon dioxide (CO2) emissions and reduce climate change impacts. A growing body of research has found that these measures can also directly mitigate many non-climate change related human health hazards and environmental damage. Positive impacts of policies and programs that occur in addition to the intended primary policy goal are called co-benefits. Policy analysis relies on forecasting and comparing the costs of policy and program implementation and the benefits that accrue to society from implementation. GHG reduction and energy efficiency policies andmore » programs face political resistance in part because of the difficulty of quantifying their benefits. On the one hand, climate change mitigation policy benefits are often global, long-term, and subject to large uncertainties, and subsidized energy pricing can reduce the direct monetary benefits of energy efficiency policies to below their cost. On the other hand, the co-benefits that accrue from these efforts’ resultant reductions in conventional air pollution (such as improved health, agricultural productivity, reduced damage to infrastructure, and local ecosystem improvements) are generally near term, local, and more certain than climate change mitigation benefits and larger than the monetary value of energy savings. The incorporation of co-benefits into energy efficiency and climate mitigation policy and program analysis therefore might significantly increase the uptake of these policies. Faster policy uptake is especially important in developing countries because ongoing development efforts that do not consider co-benefits may lock in suboptimal technologies and infrastructure and result in high costs in future years. Over the past two decades, studies have repeatedly documented that non-climate change related benefits of energy efficiency and fuel conversion efforts, as a part of GHG mitigation strategies, can be from between 30% to over 100% of the costs of such policies and programs strategies. Policy makers around the world are increasingly interested in including both GHG and non-GHG impacts in analyses of energy efficiency and fuel switching policies and programs and a set of methodologies has matured from the efforts of early moving jurisdictions such as the European Union, the United States, and Japan.« less
NASA Astrophysics Data System (ADS)
Schaeffer, S. M.; Konkel, J. M.; Jin, V.
2017-12-01
Conservation practices such as no-tillage, cover crops, and reduced mineral fertilizer application are thought to help mitigate atmospheric greenhouse gas (GHG) concentrations through building soil organic matter. However, some studies have shown that both no-till and cover crops can increase GHG emissions, perhaps due to increased microbial activity. It is possible that these results are confounded by perturbations caused when management practices are newly implemented. There is a clear lack of data from long-term sites where experimental plots are well equilibrated to the management systems. Starting in 2016, we measured fluxes of nitrous oxide (N2O), methane (CH4) and carbon dioxide (CO2) in twelve combinations of tillage (disk, no-till), N fertilizer rate (0, 67 kg N ha-1), and winter cover crops (none, hairy vetch, winter wheat) under continuous cotton production for 35 years. During the cotton growing season, the largest daily fluxes of N2O (36.9±11.9 g N ha-1 d-1) occurred in tilled plots regardless of cover crop or fertilization rate. However, over the entire year, the largest fluxes were observed during winter cover crop growth (63.0±21.4 g N ha-1 d-1). Overall, N2O fluxes were lower in no-till compared to tilled soils, save those under hairy vetch, a nitrogen fixing cover crop. These results, combined with our observation of higher rates of microbial N mineralization and nitrification in no-till and vetch plots, suggest vetch cover crops may stimulate both GHG and inorganic N production. We observed seasonal patterns in CH4 flux with net CH4 production during Spring and early Summer (from 0.2±0.8 to 4.8±3.2 g C ha-1 d-1), switching to net CH4 consumption by late summer (from -6.3±3.4 to 0.8±0.5 g C ha-1 d-1). Cumulative CH4 fluxes suggest that reduced tillage and fertilization may change these agroecosystems from weak sources to weak sinks for CH4. Our results highlight the impact of nitrogen availability on GHG emissions, and the need for improved understanding of the soil microbial and physical processes driving coupled N and C transformations, as well as the interactive effect of conservation management practices.
Greenhouse gas implications of a 32 billion gallon bioenergy landscape in the US
NASA Astrophysics Data System (ADS)
DeLucia, E. H.; Hudiburg, T. W.; Wang, W.; Khanna, M.; Long, S.; Dwivedi, P.; Parton, W. J.; Hartman, M. D.
2015-12-01
Sustainable bioenergy for transportation fuel and greenhouse gas (GHGs) reductions may require considerable changes in land use. Perennial grasses have been proposed because of their potential to yield substantial biomass on marginal lands without displacing food and reduce GHG emissions by storing soil carbon. Here, we implemented an integrated approach to planning bioenergy landscapes by combining spatially-explicit ecosystem and economic models to predict a least-cost land allocation for a 32 billion gallon (121 billion liter) renewable fuel mandate in the US. We find that 2022 GHG transportation emissions are decreased by 7% when 3.9 million hectares of eastern US land are converted to perennial grasses supplemented with corn residue to meet cellulosic ethanol requirements, largely because of gasoline displacement and soil carbon storage. If renewable fuel production is accompanied by a cellulosic biofuel tax credit, CO2 equivalent emissions could be reduced by 12%, because it induces more cellulosic biofuel and land under perennial grasses (10 million hectares) than under the mandate alone. While GHG reducing bioenergy landscapes that meet RFS requirements and do not displace food are possible, the reductions in GHG emissions are 50% less compared to previous estimates that did not account for economically feasible land allocation.
Yano, Junya; Hirai, Yasuhiro; Sakai, Shin-ichi; Tsubota, Jun
2014-04-01
The purpose of this study was to quantify the life-cycle greenhouse gas (GHG) emissions reduction that could be achieved by replacement of fossil-derived materials with biodegradable, biomass-based materials for household plastic containers and packaging, considering a variety of their treatment options. The biomass-based materials were 100% polylactide or a combination of polybutylene succinate adipate and polylactide. A scenario analysis was conducted considering alternative recycling methods. Five scenarios were considered: two for existing fossil-derived materials (the current approach in Japan) and the three for biomass-based materials. Production and waste disposal of 1 m(3) of plastic containers and packaging from households was defined as the functional unit. The results showed that replacement of fossil-derived materials with biomass-based materials could reduce life-cycle GHG emissions by 14-20%. Source separation and recycling should be promoted. When the separate collection ratio reached 100%, replacement with biomass-based materials could potentially reduce GHG emissions by 31.9%. Food containers are a priority for replacement, because they alone could reduce GHG emissions by 10%. A recycling system for biomass-based plastics must be carefully designed, considering aspects such as the transition period from fossil-derived plastics to biomass-based plastics.
Nie, Yuhao; Bi, Xiaotao
2018-01-01
Biofuels from hydrothermal liquefaction (HTL) of abundantly available forest residues in British Columbia (BC) can potentially make great contributions to reduce the greenhouse gas (GHG) emissions from the transportation sector. A life-cycle assessment was conducted to quantify the GHG emissions of a hypothetic 100 million liters per year HTL biofuel system in the Coast Region of BC. Three scenarios were defined and investigated, namely, supply of bulky forest residues for conversion in a central integrated refinery (Fr-CIR), HTL of forest residues to bio-oil in distributed biorefineries and subsequent upgrading in a central oil refinery (Bo-DBR), and densification of forest residues in distributed pellet plants and conversion in a central integrated refinery (Wp-CIR). The life-cycle GHG emissions of HTL biofuels is 20.5, 17.0, and 19.5 g CO 2 -eq/MJ for Fr-CIR, Bo-DBR, and Wp-CIR scenarios, respectively, corresponding to 78-82% reduction compared with petroleum fuels. The conversion stage dominates the total GHG emissions, making up more than 50%. The process emitting most GHGs over the life cycle of HTL biofuels is HTL buffer production. Transportation emission, accounting for 25% of Fr-CIR, can be lowered by 83% if forest residues are converted to bio-oil before transportation. When the credit from biochar applied for soil amendment is considered, a further reduction of 6.8 g CO 2 -eq/MJ can be achieved. Converting forest residues to bio-oil and wood pellets before transportation can significantly lower the transportation emission and contribute to a considerable reduction of the life-cycle GHG emissions. Process performance parameters (e.g., HTL energy requirement and biofuel yield) and the location specific parameter (e.g., electricity mix) have significant influence on the GHG emissions of HTL biofuels. Besides, the recycling of the HTL buffer needs to be investigated to further improve the environmental performance of HTL biofuels.
Conversion of Grazed Pastures to Energy Cane as a Biofuel Feedstock Alters Soil GHG Fluxes
NASA Astrophysics Data System (ADS)
Gomez-Casanovas, N.; DeLucia, N.; Bernacchi, C.; DeLucia, E. H.
2013-12-01
Changes in land use profoundly affect climate through variations in soil Greenhouse Gas (GHG) exchange. The need for alternative energies is accelerating land use change as marginal land or managed ecosystems are being converted to highly productive second-generation bioenergy crops such as energy cane (Saccharum spp. L). Although the deployment of energy cane is a promising strategy to meet global bioenergy industry demands, few studies have investigated soil GHG fluxes in these crops and sub-tropical low-intensity grazing pasture (bahiagrass, Paspalum notatum L., as forage for cattle, Bos taurus L.) with which they are competing for land. Here, we showed that soil N2O fluxes in bioenergy crops were higher (>250%) than those observed in pastures following fertilization when soil moisture and temperature were high. In the absence of recent fertilization, the N2O source strength in energy cane and pasture sites was similar. Under drier and cooler soil conditions, both pastures and bioenergy crops were weak sources of N2O even when energy cane plots were recently fertilized. Soils on grazed pastures were sources of CH4 during the wet season but became sinks under drier, colder conditions. Energy cane plantations were weak sources of CH4 over a complete wet-dry seasonal cycle. The heterotrophic component of soil respiration was larger (139-155%) in pastures than in energy cane crops, suggesting lower decomposition of SOC in bioenergy crops. In terms of global warming potential, grazed pastures were stronger (120-150%) soil GHG emitters than energy cane crops over a complete wet-dry seasonal cycle. Moreover, pastures became a substantial source of GHG emitters when including estimates of CH4 flux from cattle. Our results suggest that the conversion of pasture to energy cane will be beneficial in relation to GHGs emitted from soils and cattle. Improved understanding of land use impact on soil GHG dynamics will provide valuable information for decision makers debating sustainable bioenergy policies.
NASA Astrophysics Data System (ADS)
Olguin-Alvarez, M. I.; Kurz, W. A.; Wayson, C.; Birdsey, R.; Richardson, K.; Angeles, G.; Vargas, B.; Corral, J.; Magnan, M.; Fellows, M.; Morken, S.; Maldonado, V.; Mascorro, V.; Meneses, C.; Galicia, G.; Serrano, E.
2016-12-01
The Government of Mexico has recently designed a system of measurement, reporting and verification (MRV) to account for the emissions and removals of greenhouse gases (GHG) associated with the country's forest sector. This system reports national-scale GHG emissions based on the "stock-difference" approach combining information from two sets of measurements from the national forest inventory and remote sensing data. However, consistent with the commitments made by the country to the United Nations Framework Convention on Climate Change (UNFCCC), the MRV system must strive to reduce, as far as practicable, the uncertainties associated with national estimates on GHG fluxes. Since 2012, the Mexican government through its National Forestry Commission, with support from the North America Commission of Environmental Cooperation, the Forest Services of Canada and USA, the SilvaCarbon Program and research institutes in Mexico, has made progress towards the use of carbon dynamics models ("gain-loss" approach) to reduce uncertainty of the GHG estimates in strategic landscapes. In Mexico, most of the forests are under social tenure where management includes a wide array of activities (e.g. selective harvesting, firewood collection). Altering these diverse management activities (REDD+ strategies as well as harvested wood products), can augment their mitigation potential. Here we present the main steps conducted to compile and integrate information from forest inventories, remote sensing, disturbance data and ecosystem carbon transfers to generate inputs required to calibrate these models and validate their outputs. The analyses are supported by the use of the CBM-CFS3 model with the appropriate modification of the model parameters and input data according to the 2006 guidelines of the Intergovernmental Panel on Climate Change (IPCC) for preparing Tier 3-GHG inventories. The ultimate goal of this tri-national effort is to show how the data and tools developed for carbon assessment in strategic landscapes in North America can help estimate the impact of several mitigation options consistent with national goals of GHG emission reductions.
U.S. Forest Greenhouse Gas Impacts of a continued Expansion of E.U. Wood Pellet Demand
NASA Astrophysics Data System (ADS)
Latta, G.; Baker, J.; Ohrel, S. B.
2016-12-01
The United States has ambitious goals of greenhouse gas (GHG) reductions. A portion of these reductions are based on expected contributions from land use, land use change, and forestry (LULUCF). The European Union has similar goals which have resulted in a doubling of wood pellets exported from US ports destined for EU power plants over the last few years. There are potential conflicts between the GHG consequences of this pellet supply and the LULUCF contribution to US GHG goals. This study seeks to inform the discussion by modeling US forest GHG accounts using data measured on a grid of over 150,000 USDA Forest Service, Forest Inventory and Analysis (FIA) forestland plots across the conterminous United States. Empirical yield functions are estimate from plot log volume, biomass and carbon and provide the basis for changes in forest characteristics over time. Demand data based on a spatial database of over 2,000 forest product manufacturing facilities representing 11 intermediate and 13 final solid and pulpwood products. Manufacturing and logging costs are specific to slope, log size, and volume removed along with transportation costs based on fuel prices, FIA plot, and milling locations. The resulting partial spatial equilibrium model of the US forest sector is solved annually for the period 2010 - 2030 with demand shifted by energy prices and macroeconomic indicators from the US EIA's Annual Energy Outlook for a series of potential wood pellet export targets. For each wood pellet export level simulated, figures showing historic and scenario-specific forest products production are generated. Maps of the spatial allocation of both forest harvesting and carbon fluxes are presented at the National level and detail is given in both the US North and Southeast.
NASA Astrophysics Data System (ADS)
Simmonds, M.; Anders, M. M.; Adviento-Borbe, M. A.; Van Kessel, C.; McClung, A.; Linquist, B.
2014-12-01
Understanding cultivar effects on field greenhouse gas (GHG) emissions in rice (Oryza sativa L.) systems is needed to improve the accuracy of predictive models used for estimating GHG emissions, and to determine to what extent choice of cultivar may have on GHG mitigation. We compared CH4 and N2O emissions, global warming potential (GWP = N2O + CH4), yield-scaled GWP (GWPY = GWP Mg-1 grain), and plant growth characteristics of 8 cultivars within 4 study sites in California and Arkansas. Seasonal CH4 emissions differed between cultivars by a factor of 2.1 and 1.3 at one California and one Arkansas site, respectively. Nitrous oxide emissions were negligible, comprised <10% of GWP, and were not different among cultivars. When sites and cultivars were pooled, and data were normalized to site averages, there was a positive correlation (r = 0.33) between root biomass at heading and seasonal CH4 emissions, but no correlation with shoot biomass at heading, or grain or straw biomass at maturity. Although differences in GWP and GWPY were observed, the consistency of some of the trends was variable across sites, indicating the importance of the genotype x environment interaction. While no high-yielding and low CH4-emitting cultivars were identified at the California sites, among the Southern varieties tested at the Arkansas site, the lowest emitting cultivar had the highest yield. This highlights the potential for breeding high-yielding varieties with low GWP, the ideal scenario to achieve low GWPY due to simultaneously mitigating GHG emissions and improving global food security.
Microalgal biomass production pathways: evaluation of life cycle environmental impacts.
Zaimes, George G; Khanna, Vikas
2013-06-20
Microalgae are touted as an attractive alternative to traditional forms of biomass for biofuel production, due to high productivity, ability to be cultivated on marginal lands, and potential to utilize carbon dioxide (CO2) from industrial flue gas. This work examines the fossil energy return on investment (EROIfossil), greenhouse gas (GHG) emissions, and direct Water Demands (WD) of producing dried algal biomass through the cultivation of microalgae in Open Raceway Ponds (ORP) for 21 geographic locations in the contiguous United States (U.S.). For each location, comprehensive life cycle assessment (LCA) is performed for multiple microalgal biomass production pathways, consisting of a combination of cultivation and harvesting options. Results indicate that the EROIfossil for microalgae biomass vary from 0.38 to 1.08 with life cycle GHG emissions of -46.2 to 48.9 (g CO2 eq/MJ-biomass) and direct WDs of 20.8 to 38.8 (Liters/MJ-biomass) over the range of scenarios analyzed. Further anaylsis reveals that the EROIfossil for production pathways is relatively location invariant, and that algae's life cycle energy balance and GHG impacts are highly dependent on cultivation and harvesting parameters. Contrarily, algae's direct water demands were found to be highly sensitive to geographic location, and thus may be a constraining factor in sustainable algal-derived biofuel production. Additionally, scenarios with promising EROIfossil and GHG emissions profiles are plagued with high technological uncertainty. Given the high variability in microalgae's energy and environmental performance, careful evaluation of the algae-to-fuel supply chain is necessary to ensure the long-term sustainability of emerging algal biofuel systems. Alternative production scenarios and technologies may have the potential to reduce the critical demands of biomass production, and should be considered to make algae a viable and more efficient biofuel alternative.
Resurgent beaver ponds in the northeastern United States: implications for greenhouse gas emissions.
Lazar, Julia G; Addy, Kelly; Welsh, Molly K; Gold, Arthur J; Groffman, Peter M
2014-11-01
Beaver ponds, a wetland type of increasing density in the northeastern United States, vary spatially and temporally, creating high uncertainty in their impact to greenhouse gas (GHG) emissions. We used floating static gas chambers to assess diffusive fluxes of methane (CH), carbon dioxide (CO), and nitrous oxide (NO) from the air-water interface of three beaver ponds (0.05-8 ha) in Rhode Island from fall 2012 to summer 2013. Gas flux was based on linear changes of gas concentrations in chambers over 1 h. Our results show that these beaver ponds generated considerable CH and CO emissions. Methane flux (18-556 mg m d) showed no significant seasonal differences, but the shallowest pond generated significantly higher CH flux than the other ponds. Carbon dioxide flux (0.5-22.0 g m d) was not significantly different between sites, but it was significantly higher in the fall, possibly due to the degradation of fresh leaves. Nitrous oxide flux was low (0-2.4 mg m d). Overall, CH and CO comprised most of the global warming potential, 61 and 38%, respectively. The shallowness of the beaver ponds may have limited the time needed for CH oxidation to CO before CH escaped to the atmosphere. Beaver dams also increase the aerial extent of hydric soils, which may transform riparian areas from upland GHG sinks to wetland GHG sources thereby changing the net global warming potential. Further studies tracking the pattern and conditions of beaver pond creation and abandonment will be essential to understanding their role as GHG sources. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
Beyond the conventional life cycle inventory in wastewater treatment plants.
Lorenzo-Toja, Yago; Alfonsín, Carolina; Amores, María José; Aldea, Xavier; Marin, Desirée; Moreira, María Teresa; Feijoo, Gumersindo
2016-05-15
The conventional approach for the environmental assessment of wastewater treatment plants (WWTPs) is typically based on the removal efficiency of organic load and nutrients as well as the quantification of energy and chemicals consumption. Current wastewater treatment research entails the monitoring of direct emissions of greenhouse gases (GHG) and emerging pollutants such as pharmaceutical and personal care products (PPCPs), which have been rarely considered in the environmental assessment of a wastewater treatment facility by life cycle assessment (LCA) methodology. As a result of that, the real environmental impacts of a WWTP may be underestimated. In this study, two WWTPs located in different climatic regions (Atlantic and Mediterranean) of Spain were evaluated in extensive sampling campaigns that included not only conventional water quality parameters but also direct GHG emissions and PPCPs in water and sludge lines. Regarding the GHG monitoring campaign, on-site measurements of methane (CH4) and nitrous oxide (N2O) were performed and emission factors were calculated for both WWTPs. GHG direct emissions accounted for 62% of the total global warming potential (GWP), much more relevant than indirect CO2 emissions associated with electricity use. Regarding PPCPs, 19 compounds were measured in the main streams: influent, effluent and sludge, to perform the evaluation of the toxicity impact categories. Although the presence of heavy metals in the effluent and the sludge as well as the toxicity linked to the electricity production may shade the toxicity impacts linked to PPCPs in some impact categories, the latter showed a notable influence on freshwater ecotoxicity potential (FETP). For this impact category, the removal of PPCPs within the wastewater treatment was remarkably important and arose as an environmental benefit in comparison with the non-treatment scenario. Copyright © 2016 Elsevier B.V. All rights reserved.
Climate change affects winter chill for temperate fruit and nut trees.
Luedeling, Eike; Girvetz, Evan H; Semenov, Mikhail A; Brown, Patrick H
2011-01-01
Temperate fruit and nut trees require adequate winter chill to produce economically viable yields. Global warming has the potential to reduce available winter chill and greatly impact crop yields. We estimated winter chill for two past (1975 and 2000) and 18 future scenarios (mid and end 21st century; 3 Global Climate Models [GCMs]; 3 greenhouse gas emissions [GHG] scenarios). For 4,293 weather stations around the world and GCM projections, Safe Winter Chill (SWC), the amount of winter chill that is exceeded in 90% of all years, was estimated for all scenarios using the "Dynamic Model" and interpolated globally. We found that SWC ranged between 0 and about 170 Chill Portions (CP) for all climate scenarios, but that the global distribution varied across scenarios. Warm regions are likely to experience severe reductions in available winter chill, potentially threatening production there. In contrast, SWC in most temperate growing regions is likely to remain relatively unchanged, and cold regions may even see an increase in SWC. Climate change impacts on SWC differed quantitatively among GCMs and GHG scenarios, with the highest GHG leading to losses up to 40 CP in warm regions, compared to 20 CP for the lowest GHG. The extent of projected changes in winter chill in many major growing regions of fruits and nuts indicates that growers of these commodities will likely experience problems in the future. Mitigation of climate change through reductions in greenhouse gas emissions can help reduce the impacts, however, adaption to changes will have to occur. To better prepare for likely impacts of climate change, efforts should be undertaken to breed tree cultivars for lower chilling requirements, to develop tools to cope with insufficient winter chill, and to better understand the temperature responses of tree crops.
Markewich, H.W.; Buell, G.R.
2001-01-01
Terrestrial carbon sequestration has a potential role in reducing the recent increase in atmospheric carbon dioxide (CO2) that is, in part, contributing to global warming. Because the most stable long-term surface reservoir for carbon is the soil, changes in agriculture and forestry can potentially reduce atmospheric CO2 through increased soil-carbon storage. If local governments and regional planning agencies are to effect changes in land-use management that could mitigate the impacts of increased greenhouse gas (GHG) emissions, it is essential to know how carbon is cycled and distributed on the landscape. Only then can a cost/benefit analysis be applied to carbon sequestration as a potential land-use management tool for mitigation of GHG emissions. For the past several years, the U.S. Geological Survey (USGS) has been researching the role of terrestrial carbon in the global carbon cycle. Data from these investigations now allow the USGS to begin to (1) 'map' carbon at national, regional, and local scales; (2) calculate present carbon storage at land surface; and (3) identify those areas having the greatest potential to sequester carbon.
Greenhouse Gas Emissions from Asphalt Pavement Construction: A Case Study in China
Ma, Feng; Sha, Aimin; Lin, Ruiyu; Huang, Yue; Wang, Chao
2016-01-01
In China, the construction of asphalt pavement has a significant impact on the environment, and energy use and greenhouse gas (GHG) emissions from asphalt pavement construction have been receiving increasing attention in recent years. At present, there is no universal criterion for the evaluation of GHG emissions in asphalt pavement construction. This paper proposes to define the system boundaries for GHG emissions from asphalt pavement by using a process-based life cycle assessment method. A method for evaluating GHG emissions from asphalt pavement construction is suggested. The paper reports a case study of GHG emissions from a typical asphalt pavement construction project in China. The results show that the greenhouse gas emissions from the mixture mixing phase are the highest, and account for about 54% of the total amount. The second highest GHG emission phase is the production of raw materials. For GHG emissions of cement stabilized base/subbase, the production of raw materials emits the most, about 98%. The GHG emission for cement production alone is about 92%. The results indicate that any measures to reduce GHG emissions from asphalt pavement construction should be focused on the raw materials manufacturing stage. If the raw materials production phase is excluded, the measures to reduce GHG emissions should be aimed at the mixture mixing phase. PMID:27011196
Greenhouse Gas Emissions from Asphalt Pavement Construction: A Case Study in China.
Ma, Feng; Sha, Aimin; Lin, Ruiyu; Huang, Yue; Wang, Chao
2016-03-22
In China, the construction of asphalt pavement has a significant impact on the environment, and energy use and greenhouse gas (GHG) emissions from asphalt pavement construction have been receiving increasing attention in recent years. At present, there is no universal criterion for the evaluation of GHG emissions in asphalt pavement construction. This paper proposes to define the system boundaries for GHG emissions from asphalt pavement by using a process-based life cycle assessment method. A method for evaluating GHG emissions from asphalt pavement construction is suggested. The paper reports a case study of GHG emissions from a typical asphalt pavement construction project in China. The results show that the greenhouse gas emissions from the mixture mixing phase are the highest, and account for about 54% of the total amount. The second highest GHG emission phase is the production of raw materials. For GHG emissions of cement stabilized base/subbase, the production of raw materials emits the most, about 98%. The GHG emission for cement production alone is about 92%. The results indicate that any measures to reduce GHG emissions from asphalt pavement construction should be focused on the raw materials manufacturing stage. If the raw materials production phase is excluded, the measures to reduce GHG emissions should be aimed at the mixture mixing phase.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Uisung; Han, Jeongwoo; Urgun Demirtas, Meltem
Wastewater treatment plants (WWTPs) produce sludge as a byproduct when they treat wastewater. In the United States, over 8 million dry tons of sludge are produced annually just from publicly owned WWTPs. Sludge is commonly treated in anaerobic digesters, which generate biogas; the biogas is then largely flared to reduce emissions of methane, a potent greenhouse gas. Because sludge is quite homogeneous and has a high energy content, it is a good potential feedstock for other conversion processes that make biofuels, bioproducts, and power. For example, biogas from anaerobic digesters can be used to generate renewable natural gas (RNG), whichmore » can be further processed to produce compressed natural gas (CNG) and liquefied natural gas (LNG). Sludge can be directly converted into hydrocarbon liquid fuels via thermochemical processes such as hydrothermal liquefaction (HTL). Currently, the environmental impacts of converting sludge into energy are largely unknown, and only a few studies have focused on the environmental impacts of RNG produced from existing anaerobic digesters. As biofuels from sludge generate high interest, however, existing anaerobic digesters could be upgraded to technology with more economic potential and more environmental benefits. The environmental impacts of using a different anaerobic digestion (AD) technology to convert sludge into energy have yet to be analyzed. In addition, no studies are available about the direct conversion of sludge into liquid fuels. In order to estimate the energy consumption and greenhouse gas (GHG) emissions impacts of these alternative pathways (sludge-to-RNG and sludge-to-liquid), this study performed a lifecycle analysis (LCA) using the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET®) model. The energy uses and GHG emissions associated with the RNG and hydrocarbon liquid are analyzed relative to the current typical sludge management case, which consists of a single-stage mesophilic digester with biogas flaring. Along with the alternative HTL process, four types of AD technologies with fuel production—single-stage mesophilic, mesophilic 2-stage, single-stage mesophilic with thermohydrolysis treatment, and mesophilicmesophilic acid/gas phase—are studied. Results show that the sludge-to-CNG pathway via AD and the sludge-to-liquid pathway via HTL reduce GHG emissions consumptions significantly. When we compare the GHG emissions of the alternative fuel production pathways to that of the counterfactual case in terms of the amount of sludge treated, reductions in GHG emissions are 39%–80% and 87% for alternative AD and HTL, respectively. Compared to petroleum gasoline and diesel GHG emission results in terms of MJ, the renewable CNG production pathway via AD and the renewable diesel production pathway via HTL reduce GHG emissions by 193% and 46%, respectively. These large reductions are mainly due to GHG credits from avoiding GHGs under the counterfactual scenario, and/or fertilizer displacement credits. Similarly, reductions in fossil fuel use for sludge-based fuels are huge. However, well-defined counterfactual scenarios are needed because the results of the study depend on the counterfactual scenario, which might vary over time.« less
NASA Astrophysics Data System (ADS)
Newman, J. P.; Dandy, G. C.; Maier, H. R.
2014-10-01
In many regions, conventional water supplies are unable to meet projected consumer demand. Consequently, interest has arisen in integrated urban water systems, which involve the reclamation or harvesting of alternative, localized water sources. However, this makes the planning and design of water infrastructure more difficult, as multiple objectives need to be considered, water sources need to be selected from a number of alternatives, and end uses of these sources need to be specified. In addition, the scale at which each treatment, collection, and distribution network should operate needs to be investigated. In order to deal with this complexity, a framework for planning and designing water infrastructure taking into account integrated urban water management principles is presented in this paper and applied to a rural greenfield development. Various options for water supply, and the scale at which they operate were investigated in order to determine the life-cycle trade-offs between water savings, cost, and GHG emissions as calculated from models calibrated using Australian data. The decision space includes the choice of water sources, storage tanks, treatment facilities, and pipes for water conveyance. For each water system analyzed, infrastructure components were sized using multiobjective genetic algorithms. The results indicate that local water sources are competitive in terms of cost and GHG emissions, and can reduce demand on the potable system by as much as 54%. Economies of scale in treatment dominated the diseconomies of scale in collection and distribution of water. Therefore, water systems that connect large clusters of households tend to be more cost efficient and have lower GHG emissions. In addition, water systems that recycle wastewater tended to perform better than systems that captured roof-runoff. Through these results, the framework was shown to be effective at identifying near optimal trade-offs between competing objectives, thereby enabling informed decisions to be made when planning water systems for greenfield developments.
Impact of public electric vehicle charging infrastructure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Levinson, Rebecca S.; West, Todd H.
Our work uses market analysis and simulation to explore the potential of public charging infrastructure to spur US battery electric vehicle (BEV) sales, increase national electrified mileage, and lower greenhouse gas (GHG) emissions. By employing both scenario and parametric analysis for policy driven injection of public charging stations we find the following: (1) For large deployments of public chargers, DC fast chargers are more effective than level 2 chargers at increasing BEV sales, increasing electrified mileage, and lowering GHG emissions, even if only one DC fast charging station can be built for every ten level 2 charging stations. (2) Amore » national initiative to build DC fast charging infrastructure will see diminishing returns on investment at approximately 30,000 stations. (3) Some infrastructure deployment costs can be defrayed by passing them back to electric vehicle consumers, but once those costs to the consumer reach the equivalent of approximately 12¢/kWh for all miles driven, almost all gains to BEV sales and GHG emissions reductions from infrastructure construction are lost.« less
Dalgaard, T; Olesen, J E; Petersen, S O; Petersen, B M; Jørgensen, U; Kristensen, T; Hutchings, N J; Gyldenkærne, S; Hermansen, J E
2011-11-01
Greenhouse gas (GHG) emissions from agriculture are a significant contributor to total Danish emissions. Consequently, much effort is currently given to the exploration of potential strategies to reduce agricultural emissions. This paper presents results from a study estimating agricultural GHG emissions in the form of methane, nitrous oxide and carbon dioxide (including carbon sources and sinks, and the impact of energy consumption/bioenergy production) from Danish agriculture in the years 1990-2010. An analysis of possible measures to reduce the GHG emissions indicated that a 50-70% reduction of agricultural emissions by 2050 relative to 1990 is achievable, including mitigation measures in relation to the handling of manure and fertilisers, optimization of animal feeding, cropping practices, and land use changes with more organic farming, afforestation and energy crops. In addition, the bioenergy production may be increased significantly without reducing the food production, whereby Danish agriculture could achieve a positive energy balance. Copyright © 2011 Elsevier Ltd. All rights reserved.
Impact of public electric vehicle charging infrastructure
Levinson, Rebecca S.; West, Todd H.
2017-10-16
Our work uses market analysis and simulation to explore the potential of public charging infrastructure to spur US battery electric vehicle (BEV) sales, increase national electrified mileage, and lower greenhouse gas (GHG) emissions. By employing both scenario and parametric analysis for policy driven injection of public charging stations we find the following: (1) For large deployments of public chargers, DC fast chargers are more effective than level 2 chargers at increasing BEV sales, increasing electrified mileage, and lowering GHG emissions, even if only one DC fast charging station can be built for every ten level 2 charging stations. (2) Amore » national initiative to build DC fast charging infrastructure will see diminishing returns on investment at approximately 30,000 stations. (3) Some infrastructure deployment costs can be defrayed by passing them back to electric vehicle consumers, but once those costs to the consumer reach the equivalent of approximately 12¢/kWh for all miles driven, almost all gains to BEV sales and GHG emissions reductions from infrastructure construction are lost.« less
Fuel switching in the electricity sector under the EU ETS: Review and prospective
DOE Office of Scientific and Technical Information (OSTI.GOV)
Delarue, E.; Voorspools, K.; D'haeseleer, W.
2008-06-15
The European Union has implemented the European Union emission trading scheme (EU ETS) as an instrument to facilitate greenhouse gas (GHG) emission abatement stipulated in the Kyoto protocol. Empirical data show that in the early stages of the EU ETS, the value of a ton of CO{sub 2} has already led to emission abatement through switching from coal to gas in the European electric power sector. In the second part of this paper, an electricity generation simulation model is used to perform simulations on the switching behavior in both the first and the second trading periods of the EU ETS.more » In 2005, the reduction in GHG emissions in the electric power sector due to EU ETS is estimated close to 88 Mton. For the second trading period, a European Union allowance (EUA) price dependent GHG reduction curve has been determined. The obtained switching potential turns out to be significant, up to 300 Mton/year, at sufficiently high EUA prices.« less
2009-05-06
GWP relative to CO2 • GWP is determined by stability of the chemical in the atmosphere and its capacity to influence global warming Global Warming Potential...GWP) Mr. Larry Webber/(410)436-1231/ Lawrence.webber.us.army.mil 06MAY2009 The Army’s Carbon Bootprint Greenhouse Gas (GHG) Global Warming Potential
Vulnerability of United States Bridges to Potential Increases in Flooding from Climate Change
This study assesses the potential impacts of increased river flooding from climate change on bridges in the continental United States. Daily precipitation statistics from four climate models and three greenhouse gas (GHG) emissions scenarios (A2, A1B, and B1) are used to capture ...
Air quality co-benefits of subnational carbon policies
Thompson, Tammy M.; Rausch, Sebastian; Saari, Rebecca K.; ...
2016-05-18
To mitigate climate change, governments ranging from city to multi-national have adopted greenhouse gas (GHG) emissions reduction targets. While the location of GHG reductions does not affect their climate benefits, it can impact human health benefits associated with co-emitted pollutants. Here, an advanced modeling framework is used to explore how subnational level GHG targets influence air pollutant co-benefits from ground level ozone and fine particulate matter. Two carbon policy scenarios are analyzed, each reducing the same total amount of GHG emissions in the Northeast US: an economy-wide Cap and Trade (CAT) program reducing emissions from all sectors of the economy,more » and a Clean Energy Standard (CES) reducing emissions from the electricity sector only. Results suggest that a regional CES policy will cost about 10 times more than a CAT policy. Despite having the same regional targets in the Northeast, carbon leakage to non-capped regions varies between policies. Consequently, a regional CAT policy will result in national carbon reductions that are over six times greater than the carbon reduced by the CES in 2030. Monetized regional human health benefits of the CAT and CES policies are 844% and 185% of the costs of each policy, respectively. Benefits for both policies are thus estimated to exceed their costs in the Northeast US. The estimated value of human health co-benefits associated with air pollution reductions for the CES scenario is two times that of the CAT scenario. Implications: In this research, an advanced modeling framework is used to determine the potential impacts of regional carbon policies on air pollution co-benefits associated with ground level ozone and fine particulate matter. Study results show that spatially heterogeneous GHG policies have the potential to create areas of air pollution dis-benefit. It is also shown that monetized human health benefits within the area covered by policy may be larger than the model estimated cost of the policy. These findings are of particular interest both as U.S. states work to develop plans to meet state-level carbon emissions reduction targets set by the EPA through the Clean Power Plan, and in the absence of comprehensive national carbon policy.« less
Nitrate loading and CH4 and N2O Flux from headwater streams
NASA Astrophysics Data System (ADS)
Sousa, C. H. R. D.; Hilker, T.; Hall, F. G.; Moura, Y. M.; McAdam, E.
2014-12-01
Freshwater ecosystems transport and process significant amounts of terrestrial carbon and can be considerable sources of CO2, CH4, and N2O. A great deal of uncertainty, however, remains in both global estimates and our understanding of drivers of freshwater greenhouse gas emissions. Furthermore, small headwater streams have received insufficient attention to date and may contribute disproportionately to global GHG flux. Our objective was to quantify GHG flux and assess the impact of changes in DOC and NO3 concentrations in surface and subsurface water on flux rates in three streams in the Lamprey River watershed in New Hampshire, USA, that contrast in surface water DOC:NO3. We measured DOC, NO3 and dissolved gas concentrations in surface waters of each stream monthly from May 2011 to April 2012. Empirical measurements of reaeration coefficients were used to convert dissolved gas concentrations to fluxes. We found higher GHG concentrations and fluxes in the two streams with high DOC concentrations, particularly gases produced by anaerobic metabolism (CH4, N2O from methanogenesis and denitrification, respectively). The stream with high DOC and high NO3 showed high N2O and low CH4 flux, while the high DOC, low NO3 stream showed high CH4 and low N2O flux. Our results are consistent with a model in which C inputs drive total GHG production, while NO3 input regulates the relative importance of CH4 and N2O by suppressing methanogenesis and stimulating denitrification. The magnitude of GHG fluxes suggests that streams in this region are likely to be small sources of CO2, but potentially important sources of CH4 and N2O. Since CH4 and N2O are many times more powerful than CO2 at trapping heat in the atmosphere, freshwater emissions of these gases have the potential to offset a significant proportion of the climate benefits of the terrestrial carbon sink, a possibility that has not been sufficiently incorporated into climate models.
Nitrate loading and CH4 and N2O Flux from headwater streams
NASA Astrophysics Data System (ADS)
Schade, J. D.; Bailio, J.; McDowell, W. H.
2015-12-01
Freshwater ecosystems transport and process significant amounts of terrestrial carbon and can be considerable sources of CO2, CH4, and N2O. A great deal of uncertainty, however, remains in both global estimates and our understanding of drivers of freshwater greenhouse gas emissions. Furthermore, small headwater streams have received insufficient attention to date and may contribute disproportionately to global GHG flux. Our objective was to quantify GHG flux and assess the impact of changes in DOC and NO3 concentrations in surface and subsurface water on flux rates in three streams in the Lamprey River watershed in New Hampshire, USA, that contrast in surface water DOC:NO3. We measured DOC, NO3 and dissolved gas concentrations in surface waters of each stream monthly from May 2011 to April 2012. Empirical measurements of reaeration coefficients were used to convert dissolved gas concentrations to fluxes. We found higher GHG concentrations and fluxes in the two streams with high DOC concentrations, particularly gases produced by anaerobic metabolism (CH4, N2O from methanogenesis and denitrification, respectively). The stream with high DOC and high NO3 showed high N2O and low CH4 flux, while the high DOC, low NO3 stream showed high CH4 and low N2O flux. Our results are consistent with a model in which C inputs drive total GHG production, while NO3 input regulates the relative importance of CH4 and N2O by suppressing methanogenesis and stimulating denitrification. The magnitude of GHG fluxes suggests that streams in this region are likely to be small sources of CO2, but potentially important sources of CH4 and N2O. Since CH4 and N2O are many times more powerful than CO2 at trapping heat in the atmosphere, freshwater emissions of these gases have the potential to offset a significant proportion of the climate benefits of the terrestrial carbon sink, a possibility that has not been sufficiently incorporated into climate models.
Air quality co-benefits of subnational carbon policies.
Thompson, Tammy M; Rausch, Sebastian; Saari, Rebecca K; Selin, Noelle E
2016-10-01
To mitigate climate change, governments ranging from city to multi-national have adopted greenhouse gas (GHG) emissions reduction targets. While the location of GHG reductions does not affect their climate benefits, it can impact human health benefits associated with co-emitted pollutants. Here, an advanced modeling framework is used to explore how subnational level GHG targets influence air pollutant co-benefits from ground level ozone and fine particulate matter. Two carbon policy scenarios are analyzed, each reducing the same total amount of GHG emissions in the Northeast US: an economy-wide Cap and Trade (CAT) program reducing emissions from all sectors of the economy, and a Clean Energy Standard (CES) reducing emissions from the electricity sector only. Results suggest that a regional CES policy will cost about 10 times more than a CAT policy. Despite having the same regional targets in the Northeast, carbon leakage to non-capped regions varies between policies. Consequently, a regional CAT policy will result in national carbon reductions that are over six times greater than the carbon reduced by the CES in 2030. Monetized regional human health benefits of the CAT and CES policies are 844% and 185% of the costs of each policy, respectively. Benefits for both policies are thus estimated to exceed their costs in the Northeast US. The estimated value of human health co-benefits associated with air pollution reductions for the CES scenario is two times that of the CAT scenario. In this research, an advanced modeling framework is used to determine the potential impacts of regional carbon policies on air pollution co-benefits associated with ground level ozone and fine particulate matter. Study results show that spatially heterogeneous GHG policies have the potential to create areas of air pollution dis-benefit. It is also shown that monetized human health benefits within the area covered by policy may be larger than the model estimated cost of the policy. These findings are of particular interest both as U.S. states work to develop plans to meet state-level carbon emissions reduction targets set by the EPA through the Clean Power Plan, and in the absence of comprehensive national carbon policy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Loureiro, S.M., E-mail: saulo@lima.coppe.ufrj.br; Rovere, E.L.L., E-mail: emilio@ppe.ufrj.br; Mahler, C.F., E-mail: mahler0503@yahoo.com
2013-05-15
Highlights: ► We constructed future scenarios of emissions of greenhouse gases in waste. ► Was used the IPCC methodology for calculating emission inventories. ► We calculated the costs of abatement for emissions reduction in landfill waste. ► The results were compared to Brazil, state and city of Rio de Janeiro. ► The higher the environmental passive, the greater the possibility of use of biogas. - Abstract: This paper examines potential changes in solid waste policies for the reduction in GHG for the country of Brazil and one of its major states and cities, Rio de Janeiro, from 2005 to 2030.more » To examine these policy options, trends in solid waste quantities and associated GHG emissions are derived. Three alternative policy scenarios are evaluated in terms of effectiveness, technology, and economics and conclusions posited regarding optimal strategies for Brazil to implement. These scenarios are been building on the guidelines for national inventories of GHG emissions (IPCC, 2006) and adapted to Brazilian states and municipalities’ boundaries. Based on the results, it is possible to say that the potential revenue from products of solid waste management is more than sufficient to transform the current scenario in this country into one of financial and environmental gains, where the negative impacts of climate change have created a huge opportunity to expand infrastructure for waste management.« less
Global Health Governance at a Crossroads.
Ng, Nora Y; Ruger, Jennifer Prah
2011-06-21
This review takes stock of the global health governance (GHG) literature. We address the transition from international health governance (IHG) to global health governance, identify major actors, and explain some challenges and successes in GHG. We analyze the framing of health as national security, human security, human rights, and global public good, and the implications of these various frames. We also establish and examine from the literature GHG's major themes and issues, which include: 1) persistent GHG problems; 2) different approaches to tackling health challenges (vertical, horizontal, and diagonal); 3) health's multisectoral connections; 4) neoliberalism and the global economy; 5) the framing of health (e.g. as a security issue, as a foreign policy issue, as a human rights issue, and as a global public good); 6) global health inequalities; 7) local and country ownership and capacity; 8) international law in GHG; and 9) research gaps in GHG. We find that decades-old challenges in GHG persist and GHG needs a new way forward. A framework called shared health governance offers promise.
Methane Emissions in the U.S. GHG Inventory
NASA Astrophysics Data System (ADS)
Weitz, M.
2017-12-01
Methane in the U.S. GHG Inventory The EPA's annual Inventory of U.S. Greenhouse Gas Emissions and Sinks (GHG Inventory) includes detailed national estimates of anthropogenic methane emissions. In recent years, new data have become available on methane emissions across a number of anthropogenic sources in the U.S. The GHG Inventory has incorporated newly available data and includes updated emissions estimates from a number of categories. This presentation will discuss the latest GHG Inventory results, including results for the oil and gas, waste, and agriculture sectors. The presentation will also discuss key areas for research, and processes for updating data in the GHG Inventory.
The paper discusses greenhouse gas (GHG) mitigation and monitoring technology performance activities of the GHG Technology Verification Center. The Center is a public/private partnership between Southern Research Institute and the U.S. EPA's Office of Research and Development. It...
Industry and electricity production facilities generate over 50 percent of greenhouse gas (GHG) emissions in the United States. There is a growing consensus among scientists that the primary cause of climate change is anthropogenic greenhouse gas (GHG) emissions. Reducing GHG emi...
Co-Optimization of Fuels and Engines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farrell, John
2016-03-24
The Co-Optimization of Fuels and Engines (Co-Optima) initiative is a new DOE initiative focused on accelerating the introduction of affordable, scalable, and sustainable biofuels and high-efficiency, low-emission vehicle engines. The simultaneous fuels and vehicles research and development (R&D) are designed to deliver maximum energy savings, emissions reduction, and on-road vehicle performance. The initiative's integrated approach combines the previously independent areas of biofuels and combustion R&D, bringing together two DOE Office of Energy Efficiency & Renewable Energy research offices, ten national laboratories, and numerous industry and academic partners to simultaneously tackle fuel and engine research and development (R&D) to maximize energymore » savings and on-road vehicle performance while dramatically reducing transportation-related petroleum consumption and greenhouse gas (GHG) emissions. This multi-year project will provide industry with the scientific underpinnings required to move new biofuels and advanced engine systems to market faster while identifying and addressing barriers to their commercialization. This project's ambitious, first-of-its-kind approach simultaneously tackles fuel and engine innovation to co-optimize performance of both elements and provide dramatic and rapid cuts in fuel use and emissions. This presentation provides an overview of the project.« less
O'Brien, D; Shalloo, L; Patton, J; Buckley, F; Grainger, C; Wallace, M
2012-09-01
Life cycle assessment (LCA) and the Intergovernmental Panel on Climate Change (IPCC) guideline methodology, which are the principal greenhouse gas (GHG) quantification methods, were evaluated in this study using a dairy farm GHG model. The model was applied to estimate GHG emissions from two contrasting dairy systems: a seasonal calving pasture-based dairy farm and a total confinement dairy system. Data used to quantify emissions from these systems originated from a research study carried out over a 1-year period in Ireland. The genetic merit of cows modelled was similar for both systems. Total mixed ration was fed in the Confinement system, whereas grazed grass was mainly fed in the grass-based system. GHG emissions from these systems were quantified per unit of product and area. The results of both methods showed that the dairy system that emitted the lowest GHG emissions per unit area did not necessarily emit the lowest GHG emissions possible for a given level of product. Consequently, a recommendation from this study is that GHG emissions be evaluated per unit of product given the growing affluent human population and increasing demand for dairy products. The IPCC and LCA methods ranked dairy systems' GHG emissions differently. For instance, the IPCC method quantified that the Confinement system reduced GHG emissions per unit of product by 8% compared with the grass-based system, but the LCA approach calculated that the Confinement system increased emissions by 16% when off-farm emissions associated with primary dairy production were included. Thus, GHG emissions should be quantified using approaches that quantify the total GHG emissions associated with the production system, so as to determine whether the dairy system was causing emissions displacement. The IPCC and LCA methods were also used in this study to simulate, through a dairy farm GHG model, what effect management changes within both production systems have on GHG emissions. The findings suggest that single changes have a small mitigating effect on GHG emissions (<5%), except for strategies used to control emissions from manure storage in the Confinement system (14% to 24%). However, when several management strategies were combined, GHG emissions per unit of product could be reduced significantly (15% to 30%). The LCA method was identified as the preferred approach to assess the effect of management changes on GHG emissions, but the analysis indicated that further standardisation of the approach is needed given the sensitivity of the approach to allocation decisions regarding milk and meat.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sabine Brueske, Caroline Kramer, Aaron Fisher
2015-06-01
Energy bandwidth studies of U.S. manufacturing sectors can serve as foundational references in framing the range (or bandwidth) of potential energy savings opportunities. This bandwidth study examines energy consumption and potential energy savings opportunities in U.S. pulp and paper manufacturing. The study relies on multiple sources to estimate the energy used in six individual process areas, representing 52% of sector-wide energy consumption. Energy savings opportunities for individual processes are based on technologies currently in use or under development; the potential savings are then extrapolated to estimate sector-wide energy savings opportunity
Bandwidth Study on Energy Use and Potential Energy Savings Opportunities in U.S. Petroleum Refining
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sabine Brueske, Caroline Kramer, Aaron Fisher
2015-06-01
Energy bandwidth studies of U.S. manufacturing sectors can serve as foundational references in framing the range (or bandwidth) of potential energy savings opportunities. This bandwidth study examines energy consumption and potential energy savings opportunities in U.S. petroleum refining. The study relies on multiple sources to estimate the energy used in nine individual process areas, representing 68% of sector-wide energy consumption. Energy savings opportunities for individual processes are based on technologies currently in use or under development; these potential savings are then extrapolated to estimate sector-wide energy savings opportunity.
Applying science and mathematics to big data for smarter buildings.
Lee, Young M; An, Lianjun; Liu, Fei; Horesh, Raya; Chae, Young Tae; Zhang, Rui
2013-08-01
Many buildings are now collecting a large amount of data on operations, energy consumption, and activities through systems such as a building management system (BMS), sensors, and meters (e.g., submeters and smart meters). However, the majority of data are not utilized and are thrown away. Science and mathematics can play an important role in utilizing these big data and accurately assessing how energy is consumed in buildings and what can be done to save energy, make buildings energy efficient, and reduce greenhouse gas (GHG) emissions. This paper discusses an analytical tool that has been developed to assist building owners, facility managers, operators, and tenants of buildings in assessing, benchmarking, diagnosing, tracking, forecasting, and simulating energy consumption in building portfolios. © 2013 New York Academy of Sciences.
Low carbon transition and sustainable development path of tourism industry
NASA Astrophysics Data System (ADS)
Zhu, Hongbing; Zhang, Jing; Zhao, Lei; Jin, Shenglang
2017-05-01
The low carbon transition is as much a transformative technology shift as it represents a response to global environment challenges. The low carbon paradigm presents a new direction of change for tourism industry. However, the lack of theoretical frameworks on low carbon transformation in tourism industry context provides a significant knowledge gap. This paper firstly investigates the relationships between low carbon and sustainable development, followed by exploring the existing challenges of tourism sustainable development. At last, this paper presents a sustainable development path framework for low carbon transition of tourism industry, which include accelerating deployment of renewable energy, energy-saving green building construction, improving green growth investment, and adopting a sustainable consumption and production system, in order to promote energy and water efficiency, waste management, GHG emissions mitigation and eventually enhance its sustainability.
Quiroz Arita, Carlos; Yilmaz, Özge; Barlak, Semin; Catton, Kimberly B; Quinn, Jason C; Bradley, Thomas H
2016-12-01
The microalgae biofuels life cycle assessments (LCA) present in the literature have excluded the effects of direct land use change (DLUC) from facility construction under the assumption that DLUC effects are negligible. This study seeks to model the greenhouse gas (GHG) emissions of microalgae biofuels including DLUC by quantifying the CO 2 equivalence of carbon released to the atmosphere through the construction of microalgae facilities. The locations and types of biomass and Soil Organic Carbon that are disturbed through microalgae cultivation facility construction are quantified using geographical models of microalgae productivity potential including consideration of land availability. The results of this study demonstrate that previous LCA of microalgae to biofuel processes have overestimated GHG benefits of microalgae-based biofuels production by failing to include the effect of DLUC. Previous estimations of microalgae biofuel production potential have correspondingly overestimated the volume of biofuels that can be produced in compliance with U.S. environmental goals. Copyright © 2016 Elsevier Ltd. All rights reserved.
Nutritional and greenhouse gas impacts of removing animals from US agriculture.
White, Robin R; Hall, Mary Beth
2017-11-28
As a major contributor to agricultural greenhouse gas (GHG) emissions, it has been suggested that reducing animal agriculture or consumption of animal-derived foods may reduce GHGs and enhance food security. Because the total removal of animals provides the extreme boundary to potential mitigation options and requires the fewest assumptions to model, the yearly nutritional and GHG impacts of eliminating animals from US agriculture were quantified. Animal-derived foods currently provide energy (24% of total), protein (48%), essential fatty acids (23-100%), and essential amino acids (34-67%) available for human consumption in the United States. The US livestock industry employs 1.6 × 10 6 people and accounts for $31.8 billion in exports. Livestock recycle more than 43.2 × 10 9 kg of human-inedible food and fiber processing byproducts, converting them into human-edible food, pet food, industrial products, and 4 × 10 9 kg of N fertilizer. Although modeled plants-only agriculture produced 23% more food, it met fewer of the US population's requirements for essential nutrients. When nutritional adequacy was evaluated by using least-cost diets produced from foods available, more nutrient deficiencies, a greater excess of energy, and a need to consume a greater amount of food solids were encountered in plants-only diets. In the simulated system with no animals, estimated agricultural GHG decreased (28%), but did not fully counterbalance the animal contribution of GHG (49% in this model). This assessment suggests that removing animals from US agriculture would reduce agricultural GHG emissions, but would also create a food supply incapable of supporting the US population's nutritional requirements. Copyright © 2017 the Author(s). Published by PNAS.
High-yield maize with large net energy yield and small global warming intensity
Grassini, Patricio; Cassman, Kenneth G.
2012-01-01
Addressing concerns about future food supply and climate change requires management practices that maximize productivity per unit of arable land while reducing negative environmental impact. On-farm data were evaluated to assess energy balance and greenhouse gas (GHG) emissions of irrigated maize in Nebraska that received large nitrogen (N) fertilizer (183 kg of N⋅ha−1) and irrigation water inputs (272 mm or 2,720 m3 ha−1). Although energy inputs (30 GJ⋅ha−1) were larger than those reported for US maize systems in previous studies, irrigated maize in central Nebraska achieved higher grain and net energy yields (13.2 Mg⋅ha−1 and 159 GJ⋅ha−1, respectively) and lower GHG-emission intensity (231 kg of CO2e⋅Mg−1 of grain). Greater input-use efficiencies, especially for N fertilizer, were responsible for better performance of these irrigated systems, compared with much lower-yielding, mostly rainfed maize systems in previous studies. Large variation in energy inputs and GHG emissions across irrigated fields in the present study resulted from differences in applied irrigation water amount and imbalances between applied N inputs and crop N demand, indicating potential to further improve environmental performance through better management of these inputs. Observed variation in N-use efficiency, at any level of applied N inputs, suggests that an N-balance approach may be more appropriate for estimating soil N2O emissions than the Intergovernmental Panel on Climate Change approach based on a fixed proportion of applied N. Negative correlation between GHG-emission intensity and net energy yield supports the proposition that achieving high yields, large positive energy balance, and low GHG emissions in intensive cropping systems are not conflicting goals. PMID:22232684
Llonch, P; Haskell, M J; Dewhurst, R J; Turner, S P
2017-02-01
Livestock production is a major contributor to greenhouse gas (GHG) emissions, so will play a significant role in the mitigation effort. Recent literature highlights different strategies to mitigate GHG emissions in the livestock sector. Animal welfare is a criterion of sustainability and any strategy designed to reduce the carbon footprint of livestock production should consider animal welfare amongst other sustainability metrics. We discuss and tabulate the likely relationships and trade-offs between the GHG mitigation potential of mitigation strategies and their welfare consequences, focusing on ruminant species and on cattle in particular. The major livestock GHG mitigation strategies were classified according to their mitigation approach as reducing total emissions (inhibiting methane production in the rumen), or reducing emissions intensity (Ei; reducing CH4 per output unit without directly targeting methanogenesis). Strategies classified as antimethanogenic included chemical inhibitors, electron acceptors (i.e. nitrates), ionophores (i.e. Monensin) and dietary lipids. Increasing diet digestibility, intensive housing, improving health and welfare, increasing reproductive efficiency and breeding for higher productivity were categorized as strategies that reduce Ei. Strategies that increase productivity are very promising ways to reduce the livestock carbon footprint, though in intensive systems this is likely to be achieved at the cost of welfare. Other strategies can effectively reduce GHG emissions whilst simultaneously improving animal welfare (e.g. feed supplementation or improving health). These win-win strategies should be strongly supported as they address both environmental and ethical sustainability. In order to identify the most cost-effective measures for improving environmental sustainability of livestock production, the consequences of current and future strategies for animal welfare must be scrutinized and contrasted against their effectiveness in mitigating climate change.
Nutritional and greenhouse gas impacts of removing animals from US agriculture
White, Robin R.; Hall, Mary Beth
2017-01-01
As a major contributor to agricultural greenhouse gas (GHG) emissions, it has been suggested that reducing animal agriculture or consumption of animal-derived foods may reduce GHGs and enhance food security. Because the total removal of animals provides the extreme boundary to potential mitigation options and requires the fewest assumptions to model, the yearly nutritional and GHG impacts of eliminating animals from US agriculture were quantified. Animal-derived foods currently provide energy (24% of total), protein (48%), essential fatty acids (23–100%), and essential amino acids (34–67%) available for human consumption in the United States. The US livestock industry employs 1.6 × 106 people and accounts for $31.8 billion in exports. Livestock recycle more than 43.2 × 109 kg of human-inedible food and fiber processing byproducts, converting them into human-edible food, pet food, industrial products, and 4 × 109 kg of N fertilizer. Although modeled plants-only agriculture produced 23% more food, it met fewer of the US population’s requirements for essential nutrients. When nutritional adequacy was evaluated by using least-cost diets produced from foods available, more nutrient deficiencies, a greater excess of energy, and a need to consume a greater amount of food solids were encountered in plants-only diets. In the simulated system with no animals, estimated agricultural GHG decreased (28%), but did not fully counterbalance the animal contribution of GHG (49% in this model). This assessment suggests that removing animals from US agriculture would reduce agricultural GHG emissions, but would also create a food supply incapable of supporting the US population’s nutritional requirements. PMID:29133422
Cui, Zhenling; Yue, Shanchao; Wang, Guiliang; Meng, Qingfeng; Wu, Liang; Yang, Zhiping; Zhang, Qiang; Li, Shiqing; Zhang, Fusuo; Chen, Xinping
2013-08-01
Although the goal of doubling food demand while simultaneously reducing agricultural environmental damage has become widely accepted, the dominant agricultural paradigm still considers high yields and reduced greenhouse gas (GHG) intensity to be in conflict with one another. Here, we achieved an increase in maize yield of 70% in on-farm experiments by closing the yield gap and evaluated the trade-off between grain yield, nitrogen (N) fertilizer use, and GHG emissions. Based on two groups of N application experiments in six locations for 16 on-farm site-years, an integrated soil-crop system (HY) approach achieved 93% of the yield potential and averaged 14.8 Mg ha(-1) maize grain yield at 15.5% moisture. This is 70% higher than current crop (CC) management. More importantly, the optimal N rate for the HY system was 250 kg N ha(-1) , which is only 38% more N fertilizer input than that applied in the CC system. Both the N2 O emission intensity and GHG intensity increased exponentially as the N application rate increased, and the response curve for the CC system was always higher than that for the HY system. Although the N application rate increased by 38%, N2 O emission intensity and the GHG intensity of the HY system were reduced by 12% and 19%, respectively. These on-farm observations indicate that closing the yield gap alongside efficient N management should therefore be prominent among a portfolio of strategies to meet food demand while reducing GHG intensity at the same time. © 2013 John Wiley & Sons Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Couth, R.; Trois, C., E-mail: troisc@ukzn.ac.za
Highlights: Black-Right-Pointing-Pointer The financial/social/institutional sustainability of waste management in Africa is analysed. Black-Right-Pointing-Pointer This note is a compendium of a study on the potential for GHG control via improved zero waste in Africa. Black-Right-Pointing-Pointer This study provides the framework for Local Authorities for realizing sustained GHG reductions. - Abstract: Greenhouse gas (GHG) emissions per person from urban waste management activities are greater in sub-Saharan African countries than in other developing countries, and are increasing as the population becomes more urbanised. Waste from urban areas across Africa is essentially dumped on the ground and there is little control over the resultingmore » gas emissions. The clean development mechanism (CDM), from the 1997 Kyoto Protocol has been the vehicle to initiate projects to control GHG emissions in Africa. However, very few of these projects have been implemented and properly registered. A much more efficient and cost effective way to control GHG emissions from waste is to stabilise the waste via composting and to use the composted material as a soil improver/organic fertiliser or as a component of growing media. Compost can be produced by open windrow or in-vessel composting plants. This paper shows that passively aerated open windrows constitute an appropriate low-cost option for African countries. However, to provide an usable compost material it is recommended that waste is processed through a materials recovery facility (MRF) before being composted. The paper demonstrates that material and biological treatment (MBT) are viable in Africa where they are funded, e.g. CDM. However, they are unlikely to be instigated unless there is a replacement to the Kyoto Protocol, which ceases for Registration in December 2012.« less
NASA Astrophysics Data System (ADS)
Guha, A.; Bower, J.; Martien, P. T.; Perkins, I.; Randall, S.; Stevenson, E.; Young, A.; Hilken, H.
2016-12-01
The Bay Area Air Quality Management District is the greater San Francisco Bay metropolitan area's chief air quality regulatory agency. Aligning itself with the Governor's Executive Order S-3-05, the Air District has set a goal to reduce the region's GHG emissions by 80% below 1990 levels by the year 2050. The Air District's 2016 Clean Air Plan will lay out the agency's vision and actions to put the region on a path forward towards achieving the 2050 goal while also reducing air pollution and related health impacts. The 2016 Plan has three overarching objectives: 1) develop a multi-pollutant emissions control strategy, (2) reduce population exposure to harmful air pollutants, especially in vulnerable communities, and (3) protect climate through a comprehensive Regional Climate Protection Strategy. To accomplish one of 2016 Plan's control measures (SL3 - Greenhouse Gas Monitoring and Measurement Network), the Air District has fabricated a mobile measurement platform i.e. a GHG research van to perform targeted CH4 emissions hotspot detection and source attribution. The van is equipped with analyzers capable of measuring CH4, CO2 and N2O in ambient plumes at fast sampling rates. The coincident measurement of source tracers like isotopic methane (13C - CH4), CO and ethane (C2H6) provide the capability to distinguish between biogenic, combustion-based and fossil-based fugitive methane sources, respectively. The GHG research van is a comprehensive mobile tool to perform tracer-based GHG source identification and apportionment. We report observation-based source-specific tracer-to-tracer emission ratios from a region-wide survey of well-known area sources like landfills, wastewater treatment facilities and dairies, and compare those with similar ratios in the Air District's GHG inventory. We also investigate plumes from potentially under-inventoried sources like anaerobic digesters, composting operations, active and plugged oil and gas wells, and a natural gas storage facility. Data from source-specific measurements will lead to an improved understanding of GHG emissions from well-known and lesser-known CH4 sources in the region, which is key in resolving the differences between top-down regional estimates (Fairley and Fischer, 2015; Jeong et al., in prep) and the regional bottom-up inventory.
Managing the water-energy-nutrient nexus for the built environment requires, in part, a full system analysis of energy consumption, global warming and eutrophication potentials of municipal water services. As an example, we evaluated the life cycle energy use, greenhouse gas (GHG...
VEHICLE MASS REDUCTION STUDY | Science Inventory ...
Analysis of the potential to reduce light-duty vehicle mass through the application of low density or high strength materials, component consolidation, and changes to vehicle architecture. Find a holistic vehicle design approach that establishes a potential path for future feasible vehicle mass reduction in light-duty vehicles to meet more stringent GHG and Fuel Economy Standards.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sabine Brueske, Caroline Kramer, Aaron Fisher
Energy bandwidth studies of U.S. manufacturing sectors can serve as foundational references in framing the range (or bandwidth) of potential energy savings opportunities. This bandwidth study examines energy consumption and potential energy savings opportunities in U.S. chemical manufacturing. The study relies on multiple sources to estimate the energy used in the production of 74 individual chemicals, representing 57% of sector-wide energy consumption. Energy savings opportunities for individual chemicals and for 15 subsectors of chemicals manufacturing are based on technologies currently in use or under development; these potential savings are then extrapolated to estimate sector-wide energy savings opportunity.
Tseng, Linda Y; Robinson, Alice K; Zhang, Xiaying; Xu, Xiaomei; Southon, John; Hamilton, Andrew J; Sobhani, Reza; Stenstrom, Michael K; Rosso, Diego
2016-11-15
The Intergovernmental Panel on Climate Change (IPCC) reported that all carbon dioxide (CO 2 ) emissions generated by water resource recovery facilities (WRRFs) during treatment are modern, based on available literature. Therefore, such emissions were omitted from IPCC's greenhouse gas (GHG) accounting procedures. However, a fraction of wastewater's carbon is fossil in origin. We hypothesized that since the fossil carbon entering municipal WRRFs is mostly from soaps and detergents as dissolved organic matter, its fate can be selectively determined during the universally applied separation treatment processes. Analyzing radiocarbon at different treatment points within municipal WRRFs, we verified that the fossil content could amount to 28% in primary influent and showed varying distribution leaving different unit operations. We recorded the highest proportion of fossil carbon leaving the secondary treatment as off-gas and as solid sludge (averaged 2.08 kg fossil-CO 2 -emission-potential m -3 wastewater treated). By including fossil CO 2 , total GHG emission in municipal WRRFs increased 13%, and 23% if an on-site energy recovery system exists although much of the postdigestion fossil carbon remained in biosolids rather than in biogas, offering yet another carbon sequestration opportunity during biosolids handling. In comparison, fossil carbon contribution to GHG emission can span from negligible to substantial in different types of industrial WRRFs. With such a considerable impact, CO 2 should be analyzed for each WRRF and not omitted from GHG accounting.
Greenhouse gas emission reduction: A case study of Sri Lanka
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meier, P.; Munasinghe, M.
1995-12-31
In this paper we describe a case study for Sri Lanka that explores a wide range of options for reducing greenhouse gas (GHG) emissions. Options range from renewable technologies to carbon taxes and transportation sector initiatives. We find that setting electricity prices to reflect long-run marginal cost has a significant beneficial impact on the environment, and the expected benefits predicted on theoretical grounds are confirmed by the empirical results. Pricing reform also has a much broader impact than physical approaches to demand side management, although several options such as compact fluorescent lighting appear to have great potential. Options to reducemore » GHG emissions are limited as Sri Lanka lacks natural gas, and nuclear power is not practical until the system reaches a much larger size. Building the few remaining large hydro facilities would significantly reduce GHG emissions, but these would require costly resettlement programs. Given the inevitability for fossil-fuel base load generation, both clean coal technologies such as pressurized fluidized bed combustion, as well as steam-cycle residual oil fueled plants merit consideration as alternatives to the conventional pulverized coal-fired plants currently being considered. Transportation sector measures necessary to ameliorate local urban air pollution problems, such as vehicle inspection and maintenance programs, also bring about significant reductions of GHG emissions. 51 refs., 10 figs., 3 tabs.« less
Cohn, Avery S.; Mosnier, Aline; Havlík, Petr; Valin, Hugo; Herrero, Mario; Schmid, Erwin; O’Hare, Michael; Obersteiner, Michael
2014-01-01
This study examines whether policies to encourage cattle ranching intensification in Brazil can abate global greenhouse gas (GHG) emissions by sparing land from deforestation. We use an economic model of global land use to investigate, from 2010 to 2030, the global agricultural outcomes, land use changes, and GHG abatement resulting from two potential Brazilian policies: a tax on cattle from conventional pasture and a subsidy for cattle from semi-intensive pasture. We find that under either policy, Brazil could achieve considerable sparing of forests and abatement of GHGs, in line with its national policy targets. The land spared, particularly under the tax, is far less than proportional to the productivity increased. However, the tax, despite prompting less adoption of semi-intensive ranching, delivers slightly more forest sparing and GHG abatement than the subsidy. This difference is explained by increased deforestation associated with increased beef consumption under the subsidy and reduced deforestation associated with reduced beef consumption under the tax. Complementary policies to directly limit deforestation could help limit these effects. GHG abatement from either the tax or subsidy appears inexpensive but, over time, the tax would become cheaper than the subsidy. A revenue-neutral combination of the policies could be an element of a sustainable development strategy for Brazil and other emerging economies seeking to balance agricultural development and forest protection. PMID:24778243
Life cycle assessment of switchgrass- and corn stover-derived ethanol-fueled automobiles.
Spatari, Sabrina; Zhang, Yimin; MacLean, Heather L
2005-12-15
Utilizing domestically produced cellulose-derived ethanol for the light-duty vehicle fleet can potentially improve the environmental performance and sustainability of the transport and energy sectors of the economy. A life cycle assessment model was developed to examine environmental implications of the production and use of ethanol in automobiles in Ontario, Canada. The results were compared to those of low-sulfur reformulated gasoline (RFG) in a functionally equivalent automobile. Two time frames were evaluated, one near-term (2010), which examines converting a dedicated energy crop (switchgrass) and an agricultural residue (corn stover) to ethanol; and one midterm (2020), which assumes technological improvements in the switchgrass-derived ethanol life cycle. Near-term results show that, compared to a RFG automobile, life cycle greenhouse gas (GHG) emissions are 57% lower for an E85-fueled automobile derived from switchgrass and 65% lower for ethanol from corn stover, on a grams of CO2 equivalent per kilometer basis. Corn stover ethanol exhibits slightly lower life cycle GHG emissions, primarily due to sharing emissions with grain production. Through projected improvements in crop and ethanol yields, results for the mid-term scenario show that GHG emissions could be 25-35% lower than those in 2010 and that, even with anticipated improvements in RFG automobiles, E85 automobiles could still achieve up to 70% lower GHG emissions across the life cycle.
Cohn, Avery S; Mosnier, Aline; Havlík, Petr; Valin, Hugo; Herrero, Mario; Schmid, Erwin; O'Hare, Michael; Obersteiner, Michael
2014-05-20
This study examines whether policies to encourage cattle ranching intensification in Brazil can abate global greenhouse gas (GHG) emissions by sparing land from deforestation. We use an economic model of global land use to investigate, from 2010 to 2030, the global agricultural outcomes, land use changes, and GHG abatement resulting from two potential Brazilian policies: a tax on cattle from conventional pasture and a subsidy for cattle from semi-intensive pasture. We find that under either policy, Brazil could achieve considerable sparing of forests and abatement of GHGs, in line with its national policy targets. The land spared, particularly under the tax, is far less than proportional to the productivity increased. However, the tax, despite prompting less adoption of semi-intensive ranching, delivers slightly more forest sparing and GHG abatement than the subsidy. This difference is explained by increased deforestation associated with increased beef consumption under the subsidy and reduced deforestation associated with reduced beef consumption under the tax. Complementary policies to directly limit deforestation could help limit these effects. GHG abatement from either the tax or subsidy appears inexpensive but, over time, the tax would become cheaper than the subsidy. A revenue-neutral combination of the policies could be an element of a sustainable development strategy for Brazil and other emerging economies seeking to balance agricultural development and forest protection.
Impact of policy on greenhouse gas emissions and economics of biodiesel production.
Olivetti, Elsa; Gülşen, Ece; Malça, João; Castanheira, Erica; Freire, Fausto; Dias, Luis; Kirchain, Randolph
2014-07-01
As an alternative transportation fuel to petrodiesel, biodiesel has been promoted within national energy portfolio targets across the world. Early estimations of low lifecycle greenhouse gas (GHG) emissions of biodiesel were a driver behind extensive government support in the form of financial incentives for the industry. However, studies consistently report a high degree of uncertainty in these emissions estimates, raising questions concerning the carbon benefits of biodiesel. Furthermore, the implications of feedstock blending on GHG emissions uncertainty have not been explicitly addressed despite broad practice by the industry to meet fuel quality standards and to control costs. This work investigated the impact of feedstock blending on the characteristics of biodiesel by using a chance-constrained (CC) blend optimization method. The objective of the optimization is minimization of feedstock costs subject to fuel standards and emissions constraints. Results indicate that blending can be used to manage GHG emissions uncertainty characteristics of biodiesel, and to achieve cost reductions through feedstock diversification. Simulations suggest that emissions control policies that restrict the use of certain feedstocks based on their GHG estimates overlook blending practices and benefits, increasing the cost of biodiesel. In contrast, emissions control policies which recognize the multifeedstock nature of biodiesel provide producers with feedstock selection flexibility, enabling them to manage their blend portfolios cost effectively, potentially without compromising fuel quality or emissions reductions.
Estimating Greenhouse Gas (GHG) Emissions in 2050 from New Buildings in California
NASA Astrophysics Data System (ADS)
Beardsley, K.; Thorne, J. H.; Quinn, J. F.
2009-12-01
A major contributor to global warming is Greenhouse Gas (GHG) emissions, with carbon dioxide (CO2) as the lead constituent. While the United States has failed to take a leadership role in worldwide efforts to reduce global warming, California has implemented some of the strictest reduction goals in the country. Recent legislation in California requires significant GHG emission reductions in the coming decades to meet state-mandated targets. To better understand the relative contribution of urban growth to these emissions, we applied an Energy and GHG Impacts Calculator (referred to as “GHG Calculator”) to estimate GHG contributions for two statewide population growth scenarios for the year 2050. Implemented as part of the UPlan urban growth model, the GHG Calculator allows users to predict and compare GHG output from new development. In this paper, two scenarios, differing only in the spatial allocation of housing among zoning categories, are developed and tested for the year 2050 in California. The difference in total GHG emissions between these scenarios was less than 1%. Thus, while “smart growth” may be desirable for a variety of other reasons, the policy impact of the sprawl footprint per se on fixed-source GHG emissions is likely to be far less than effects from other factors, such as insulation and household energy efficiency. The GHG Calculator allows alternative emission-reducing measures to be tested, including modified energy mixes (e.g. a greater percent of renewable sources and lower carbon-based fuels) and conservation measures. The goal is to approximate 2050 emissions and determine what measures are needed to achieve the 2050 goal set by the Governor of California to help decrease the State’s overall contribution to global warming.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hanssen, Steef V.; Duden, Anna S.; Junginger, Martin
Several EU countries import wood pellets from the south-eastern United States. The imported wood pellets are (co-)fired in power plants with the aim of reducing overall greenhouse gas (GHG) emissions from electricity and meeting EU renewable energy targets. To assess whether GHG emissions are reduced and on what timescale, we construct the GHG balance of wood-pellet electricity. This GHG balance consists of supply chain and combustion GHG emissions, carbon sequestration during biomass growth, and avoided GHG emissions through replacing fossil electricity. We investigate wood pellets from four softwood feedstock types: small roundwood, commercial thinnings, harvest residues, and mill residues. Permore » feedstock, the GHG balance of wood-pellet electricity is compared against those of alternative scenarios. Alternative scenarios are combinations of alternative fates of the feedstock material, such as in-forest decomposition, or the production of paper or wood panels like oriented strand board (OSB). Alternative scenario composition depends on feedstock type and local demand for this feedstock. Results indicate that the GHG balance of wood-pellet electricity equals that of alternative scenarios within 0 to 21 years (the GHG parity time), after which wood-pellet electricity has sustained climate benefits. Parity times increase by a maximum of twelve years when varying key variables (emissions associated with paper and panels, soil carbon increase via feedstock decomposition, wood-pellet electricity supply chain emissions) within maximum plausible ranges. Using commercial thinnings, harvest residues or mill residues as feedstock leads to the shortest GHG parity times (0-6 years) and fastest GHG benefits from wood-pellet electricity. Here, we find shorter GHG parity times than previous studies, for we use a novel approach that differentiates feedstocks and considers alternative scenarios based on (combinations of) alternative feedstock fates, rather than on alternative land-uses. This novel approach is relevant for bioenergy derived from low-value feedstocks.« less
Potential Greenhouse Gas Emissions Reductions from Optimizing Urban Transit Networks
DOT National Transportation Integrated Search
2016-05-01
Public transit systems with efficient designs and operating plans can reduce greenhouse gas (GHG) emissions relative to low-occupancy transportation modes, but many current transit systems have not been designed to reduce environmental impacts. This ...
Mitigation options for the industrial sector in Egypt
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gelil, I.A.; El-Touny, S.; Korkor, H.
1996-12-31
Though its contribution to the global Greenhouse gases emission is relatively small, Egypt has signed and ratified the United Nations Framework Convention on Climate Change (UN FCCC) and has been playing an active role in the international efforts to deal with such environmental challenges. Energy efficiency has been one of the main strategies that Egypt has adopted to improve environmental quality and enhance economic competitiveness. This paper highlights three initiatives currently underway to improve energy efficiency of the Egyptian industry. The first is a project that has been recently completed by OECP to assess potential GHG mitigation options available inmore » Egypt`s oil refineries. The second initiative is an assessment of GHG mitigation potential in the Small and Medium size Enterprises (SME) in the Mediterranean city of Alexandria. The third one focuses on identifying demand side management options in some industrial electricity consumers in the same city.« less
NASA Astrophysics Data System (ADS)
Hawthorne, I.; Johnson, M. S.; Jassal, R. S.; Black, T. A.
2013-12-01
Rising atmospheric concentrations of greenhouse gases (GHGs), carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O), linked to current climate change has stimulated a scientific response to provide robust accounting of sources and sinks of these gases. There is an urgent need to increase awareness of land management impacts on GHG flux dynamics to facilitate the development of management strategies that minimize GHG emissions. Biochar (pyrolyzed organic matter) has been identified as a strategy to reduce net GHG fluxes from soils. This is due to its potential to sequester large amounts of carbon for significant time periods, as well as its modification of biotic and abiotic soil conditions, which in turn can alter the GHG balance. This study describes the effect of biochar and urea-N application on soil surface CO2, CH4 and N2O fluxes in a Pacific Northwest Douglas-fir forest on Vancouver Island, BC, Canada (49o 52' N, 125o 20' W). We used a randomized complete-block design with four replicates of the following treatments: i) control, ii) 5 Mg ha-1 biochar surface application, iii) 200 kg N ha-1 urea pellets surface application, and iv) 5 Mg ha-1 biochar plus 200 kg N ha-1 urea. Soil GHG flux measurements were made biweekly for two years beginning in September 2011 using a non-steady-state non-flow through chamber technique. Biochar was added in February 2012, with urea applied in March 2013. A collar made from 21-cm diameter x 11-cm long PVC piping was installed in each of the 16 plots between two large trees on the forest floor, penetrating the organic layer to the mineral soil at the 5-8 cm depth. A clear Plexiglas lid, equipped with a 10-cm long vent tube and 9-V fan, was placed on each collar when making measurements, with 20-mL samples of chamber headspace air collected at 0, 3, 6, 9 and 12 min using a medical syringe with 21-gauge needle inserted through a rubber septum in the chamber lid. Samples were injected into and transported in previously evacuated 12-mL vials and analyzed by gas chromatography. Chamber headspace GHG mixing ratios vs. time data were fit to linear and exponential models in R (Version 2.14.0) and fluxes were calculated. Results showed high variability in GHG fluxes over time in all treatments. Higher CO2 emissions were observed during early summer (119 μg CO2 m-2 s-1 in the control plots), decreasing with drought (19 μg CO2 m-2 s-1 in the control plots). CH4 uptake by soil increased during summer months from -0.004 μg CH4 m-2 s-1 to -0.089 μg CH4 m-2 s-1 in the control plots, in response to drying conditions in the upper soil profile. N2O was both consumed and emitted in all treatments, with fluxes ranging from -0.0009 to 0.0019 μg N2O m-2 s-1 in the control plots. Analysis of variance indicated that there were significant differences in GHG fluxes between treatments over time. We also investigated the potential effects of large volume headspace removal, and H2O vapour saturation leading to a dilution effect by using a closed-path infra-red gas analyzer with an inline humidity sensor.
NASA Astrophysics Data System (ADS)
Chentouf, M.; Allouch, M.
2018-05-01
Producing electricity at an affordable price while taking into account environmental concerns has become a major challenge in Morocco. Moreover, the technical and financial issues related to renewable electricity plants are still hindering their efficient integration in the country. In fact, the energy sector (both electricity and heat) accounted for more than half of all Greenhouse Gases (GHG) emissions in the kingdom due to the major reliance on fossil fuels for answering the growing local demand. The key strategies to alleviate this critical situation include the integration of more renewable energies in the total energy mix and the enhancement of energy efficiency measures in different sectors. This paper strives to (1) evaluate the potential of carbon dioxide mitigation in Moroccan electricity sector following the actual and projected strategies and (2) highlight the policy schemes to be taken in order to achieve the ambitious carbon dioxide mitigation targets in the mid-term. A system dynamics model was built in order to simulate different scenarios of carbon dioxide mitigation policies up to 2030. The results shows that the achievement of renewable energies projects by 2030 could save 228.143 MtCO2 between 2020 and 2030 and an additional 18.127 MtCO2 could be avoided in the same period by enhancing energy efficiency measures.
Air quality and climate impacts due to CNG conversion of motor vehicles in Dhaka, Bangladesh.
Wadud, Zia; Khan, Tanzila
2013-12-17
Dhaka had recently experienced rapid conversion of its motor vehicle fleet to run on compressed natural gas (CNG). This paper quantifies ex-post the air quality and climate benefits of the CNG conversion policy, including monetary valuations, through an impact pathway approach. Around 2045 (1665) avoided premature deaths in greater Dhaka (City Corporation) can be attributed to air quality improvements from the CNG conversion policy in 2010, resulting in a saving of around USD 400 million. Majority of these health benefits resulted from the conversion of high-emitting diesel vehicles. CNG conversion was clearly detrimental from climate change perspective using the changes in CO2 and CH4 only (CH4 emissions increased); however, after considering other global pollutants (especially black carbon), the climate impact was ambiguous. Uncertainty assessment using input distributions and Monte Carlo simulation along with a sensitivity analysis show that large uncertainties remain for climate impacts. For our most likely estimate, there were some climate costs, valued at USD 17.7 million, which is an order of magnitude smaller than the air quality benefits. This indicates that such policies can and should be undertaken on the grounds of improving local air pollution alone and that precautions should be taken to reduce the potentially unintended increases in GHG emissions or other unintended effects.
Methodology to model the energy and greenhouse gas emissions of electronic software distributions.
Williams, Daniel R; Tang, Yinshan
2012-01-17
A new electronic software distribution (ESD) life cycle analysis (LCA) methodology and model structure were constructed to calculate energy consumption and greenhouse gas (GHG) emissions. In order to counteract the use of high level, top-down modeling efforts, and to increase result accuracy, a focus upon device details and data routes was taken. In order to compare ESD to a relevant physical distribution alternative, physical model boundaries and variables were described. The methodology was compiled from the analysis and operational data of a major online store which provides ESD and physical distribution options. The ESD method included the calculation of power consumption of data center server and networking devices. An in-depth method to calculate server efficiency and utilization was also included to account for virtualization and server efficiency features. Internet transfer power consumption was analyzed taking into account the number of data hops and networking devices used. The power consumed by online browsing and downloading was also factored into the model. The embedded CO(2)e of server and networking devices was proportioned to each ESD process. Three U.K.-based ESD scenarios were analyzed using the model which revealed potential CO(2)e savings of 83% when ESD was used over physical distribution. Results also highlighted the importance of server efficiency and utilization methods.
Towards a Global Greenhouse Gas Information System (GHGIS)
NASA Astrophysics Data System (ADS)
Duren, Riley; Butler, James; Rotman, Doug; Miller, Charles; Decola, Phil; Sheffner, Edwin; Tucker, Compton; Mitchiner, John; Jonietz, Karl; Dimotakis, Paul
2010-05-01
Over the next few years, an increasing number of entities ranging from international, national, and regional governments, to businesses and private land-owners, are likely to become more involved in efforts to limit atmospheric concentrations of greenhouse gases. In such a world, geospatially resolved information about the location, amount, and rate of greenhouse gas (GHG) emissions will be needed, as well as the stocks and flows of all forms of carbon through terrestrial ecosystems and in the oceans. The ability to implement policies that limit GHG concentrations would be enhanced by a global, open, and transparent greenhouse gas information system (GHGIS). An operational and scientifically robust GHGIS would combine ground-based and space-based observations, carbon-cycle modeling, GHG inventories, meta-analysis, and an extensive data integration and distribution system, to provide information about sources, sinks, and fluxes of greenhouse gases at policy-relevant temporal and spatial scales. The GHGIS effort was initiated in 2008 as a grassroots inter-agency collaboration intended to rigorously identify the needs for such a system, assess the capabilities of current assets, and suggest priorities for future research and development. We will present a status of the GHGIS effort including our latest analysis and ideas for potential near-term pilot projects with potential relevance to European initiatives including the Global Monitoring for Environment and Security (GMES) and the Integrated Carbon Observing System (ICOS).
Christopher S. Galik; Brian C. Murray; D. Evan Mercer
2013-01-01
Uncertainty surrounding the future supply of timber in the southern United States prompted the question, âWhere is all the wood?â (Cubbage et al. 1995). We ask a similar question about the potential of southern forests to mitigate greenhouse gas (GHG) emissions by sequestering carbon. Because significant carbon sequestration potential occurs on individual nonindustrial...
Khan, Muhammad Tariq Iqbal; Yaseen, Muhammad Rizwan; Ali, Qamar
2018-06-08
This study explored the long-run association among greenhouse gases (GHGs), financial development, forest area, improved sanitation, renewable energy, urbanization, and trade in 24 lower middle-income countries from Asia, Europe, Africa, and America (South and North) by using panel data from 1990 to 2015. Granger causality was tested by Toda and Yamamoto approach. The bi-directional causality was established among urbanization and GHGs (Asia), financial development and forest (Asia), energy use and renewable energy (Asia), renewable energy and forest (Asia), improved sanitation and forest (Asia, Africa, America), urbanization and forest (Asia), and improved sanitation and financial development (Europe). The GHG emission also shows one-way causality is running from financial development to GHG (America), energy to GHG (Asia), renewable energy to GHG (America), forest area to GHG (America), trade openness to GHG (Africa), urbanization to GHG (Europe), GHG to financial development (Europe), GHG to energy use (Europe, Africa, and America), and GHG to trade openness (Asia). On the basis of fully modified ordinary least square and generalized method of moment, the reciprocal relationship of GHGs was observed due to financial development in Asia and Africa; renewable energy in all panels; forest area in Asia, Europe, and America; improved sanitation in Asia, Africa, and America; trade openness in Africa; and urbanization in Europe and America. Policymakers should concentrate on these variables for the reduction in GHGs. The annual convergence towards long-run equilibrium was 50.5, 31.9, and 20.9% for America, Asia, and Africa, respectively.
NASA Astrophysics Data System (ADS)
Zhong, Jia; Wei, Yuansong; Wan, Hefeng; Wu, Yulong; Zheng, Jiaxi; Han, Shenghui; Zheng, Bofu
2013-12-01
Greenhouse gas (GHG) emissions from animal manure management are of great concern in China. However, there are still great uncertainties about China's GHG inventory due to the GHG emission factors partly used default values from the Intergovernmental Panel of Climate Change (IPCC) guidelines. The purpose of this study was to use a case study in Beijing to determine the regional GHG emission factors based on the combination of swine manure composting and land application of the compost with both on-site examination and a life cycle assessment (LCA). The results showed that the total GHG emission factor was 240 kgCO2eq tDS-1 (dry solids), including the direct GHG emission factor of 115 kgCO2eq tDS-1 for swine manure composting and 48 kgCO2eq tDS-1 for land application of the compost. Among the total GHG emissions of 5.06 kgCH4 tDS-1 and 0.13 kgN2O tDS-1, the swine manure composting contributed approximately 89% to CH4 emissions while land application accounted for 92% of N2O emission. Meanwhile, the GHG emission profile from the full process in Beijing in 2015 and 2020 was predicted by the scenario analysis. The composting and land application is a cost-effective way for animal manure management in China considering GHG emissions.
Zhang, Xiaodong; Huang, Gordon
2014-03-15
Waste management activities can release greenhouse gases (GHGs) to the atmosphere, intensifying global climate change. Mitigation of the associated GHG emissions is vital and should be considered within integrated municipal solid waste (MSW) management planning. In this study, a fuzzy possibilistic integer programming (FPIM) model has been developed for waste management facility expansion and waste flow allocation planning with consideration of GHG emission trading in an MSW management system. It can address the interrelationships between MSW management planning and GHG emission control. The scenario of total system GHG emission control is analyzed for reflecting the feature that GHG emission credits may be tradable. An interactive solution algorithm is used to solve the FPIM model based on the uncertainty-averse preferences of decision makers in terms of p-necessity level, which represents the certainty degree of the imprecise objective. The FPIM model has been applied to a hypothetical MSW planning problem, where optimal decision schemes for facility expansion and waste flow allocation have been achieved with consideration of GHG emission control. The results indicate that GHG emission credit trading can decrease total system cost through re-allocation of GHG emission credits within the entire MSW management system. This will be helpful for decision makers to effectively determine the allowable GHG emission permits in practices. Copyright © 2014 Elsevier Ltd. All rights reserved.
Flores-Alsina, Xavier; Arnell, Magnus; Amerlinck, Youri; Corominas, Lluís; Gernaey, Krist V; Guo, Lisha; Lindblom, Erik; Nopens, Ingmar; Porro, Jose; Shaw, Andy; Snip, Laura; Vanrolleghem, Peter A; Jeppsson, Ulf
2014-01-01
The objective of this paper was to show the potential additional insight that result from adding greenhouse gas (GHG) emissions to plant performance evaluation criteria, such as effluent quality (EQI) and operational cost (OCI) indices, when evaluating (plant-wide) control/operational strategies in wastewater treatment plants (WWTPs). The proposed GHG evaluation is based on a set of comprehensive dynamic models that estimate the most significant potential on-site and off-site sources of CO₂, CH₄ and N₂O. The study calculates and discusses the changes in EQI, OCI and the emission of GHGs as a consequence of varying the following four process variables: (i) the set point of aeration control in the activated sludge section; (ii) the removal efficiency of total suspended solids (TSS) in the primary clarifier; (iii) the temperature in the anaerobic digester; and (iv) the control of the flow of anaerobic digester supernatants coming from sludge treatment. Based upon the assumptions built into the model structures, simulation results highlight the potential undesirable effects of increased GHG production when carrying out local energy optimization of the aeration system in the activated sludge section and energy recovery from the AD. Although off-site CO₂ emissions may decrease, the effect is counterbalanced by increased N₂O emissions, especially since N₂O has a 300-fold stronger greenhouse effect than CO₂. The reported results emphasize the importance and usefulness of using multiple evaluation criteria to compare and evaluate (plant-wide) control strategies in a WWTP for more informed operational decision making. © 2013.
An evaluation of commercial NDIR sensors for a potential use in future urban GHG monitoring systems
NASA Astrophysics Data System (ADS)
Arzoumanian, E.; Bastos, A.; Gaynullin, B.; Martin, H.; Hjern, L.; Laurent, O.; Vogel, F. R.
2016-12-01
Cities are a key contributor to climate change, as urban activities are major sources of GHG emissions. It is clear that accurate estimates of the magnitude of anthropogenic and natural urban emissions are needed to assess their influence on the carbon balance. Recently Wu et al. (2016) suggested that a denser ground-based GHG monitoring network in Paris would have the potential allow retrieving sector specific GHG emission estimates (and potentially in certain other cities) when combined with an atmospheric inversion framework using reasonably accurate observations (ca. 1 ppm for hourly means). One major barrier for such denser observations can be the high cost of high-precision instruments or high calibration cost of cheaper, unstable instrumentation. Within a recent climate KIC project, LSCE and SenseAir AB have worked on novel inexpensive NDIR sensors for CO2 measurements for site and city-scale applications that fulfil typical repeatability and reproducibility requirements necessary for this task. We conducted laboratory tests on six prototypes and determined the sensitivity of the sensors to multiple parameters, e.g. changing pressure, temperature and water vapor. Also, we developed a correction and calibration strategy for our NDIR sensors. Furthermore, we fully integrated these NDIR sensors in a platform containing the CO2sensor, pressure and temperature sensors, gas supply pump and a fully automated data acquisition unit. This platform was deployed in parallel to Picarro G2401 instruments in the urban network of LSCE. In this field experiment, using weekly calibration, we find a root-mean-square difference of less than 1 ppm for hourly mean concentrations at the semi-urban site in Saclay and the urban site of Jussieu, Paris, France. Our recent results concerning sensor testing and CO2monitoring from the two sites sited above also guide our recommendations for a low cost urban environmental monitoring system based on open source hardware (Raspberry Pi) and software. Wu, L., Broquet, G., Ciais, P., Bellassen, V., Vogel, F., Chevallier, F., Xueref-Remy, I. and Wang, Y., 2015. Atmospheric inversion for cost effective quantification of city CO 2 emissions. Atmospheric Chemistry and Physics Discussions, 15(21), pp.30693-30756, accepted for publication in AMT.
Global climate change: the quantifiable sustainability challenge.
Princiotta, Frank T; Loughlin, Daniel H
2014-09-01
Population growth and the pressures spawned by increasing demands for energy and resource-intensive goods, foods, and services are driving unsustainable growth in greenhouse gas (GHG) emissions. Recent GHG emission trends are consistent with worst-case scenarios of the previous decade. Dramatic and near-term emission reductions likely will be needed to ameliorate the potential deleterious impacts of climate change. To achieve such reductions, fundamental changes are required in the way that energy is generated and used. New technologies must be developed and deployed at a rapid rate. Advances in carbon capture and storage, renewable, nuclear and transportation technologies are particularly important; however, global research and development efforts related to these technologies currently appear to fall short relative to needs. Even with a proactive and international mitigation effort, humanity will need to adapt to climate change, but the adaptation needs and damages will be far greater if mitigation activities are not pursued in earnest. In this review, research is highlighted that indicates increasing global and regional temperatures and ties climate changes to increasing GHG emissions. GHG mitigation targets necessary for limiting future global temperature increases are discussed, including how factors such as population growth and the growing energy intensity of the developing world will make these reduction targets more challenging. Potential technological pathways for meeting emission reduction targets are examined, barriers are discussed, and global and US. modeling results are presented that suggest that the necessary pathways will require radically transformed electric and mobile sectors. While geoengineering options have been proposed to allow more time for serious emission reductions, these measures are at the conceptual stage with many unanswered cost, environmental, and political issues. Implications: This paper lays out the case that mitigating the potential for catastrophic climate change will be a monumental challenge, requiring the global community to transform its energy system in an aggressive, coordinated, and timely manner. If this challenge is to be met, new technologies will have to be developed and deployed at a rapid rate. Advances in carbon capture and storage, renewable, nuclear, and transportation technologies are particularly important. Even with an aggressive international mitigation effort, humanity will still need to adapt to significant climate change.
Cost-benefit analysis of using sewage sludge as alternative fuel in a cement plant: a case study.
Nadal, Martí; Schuhmacher, Marta; Domingo, José L
2009-05-01
To enforce the implementation of the Kyoto Protocol targets, a number of governmental/international institutions have launched emission trade schemes as an approach to specify CO(2) caps and to regulate the emission trade in recent years. These schemes have been basically applied for large industrial sectors, including energy producers and energy-intensive users. Among them, cement plants are included among the big greenhouse gas (GHG) emitters. The use of waste as secondary fuel in clinker kilns is currently an intensive practice worldwide. However, people living in the vicinity of cement plants, where alternative fuels are being used, are frequently concerned about the potential increase in health risks. In the present study, a cost-benefit analysis was applied after substituting classical fuel for sewage sludge as an alternative fuel in a clinker kiln in Catalonia, Spain. The economical benefits resulting in the reduction of CO(2) emissions were compared with the changes in human health risks due to exposure to polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) and carcinogenic metals (As, Cd, Co, and Cr) before and after using sewage sludge to generate 20% of the thermal energy needed for pyro-processing. The exposure to PCDD/Fs and metals through air inhalation, soil ingestion and dermal absorption was calculated according to the environmental levels in soil. The carcinogenic risks were assessed, and the associated cost for the population was estimated by considering the DG Environment's recommended value for preventing a statistical fatality (VPF). In turn, the amount of CO(2) emitted was calculated, and the economical saving, according to the market prices, was evaluated. The use of sewage sludge as a substitute of conventional energy meant a probability cancer decrease of 4.60 for metals and a cancer risk increase of 0.04 for PCDD/Fs. Overall, a net reduction of 4.56 cancers for one million people can be estimated. The associated economical evaluation due to the decreasing cancer for 60,000 people, the current population living near the cement plant, would be of 0.56 million euros (US$ 0.83 million). In turn, a reduction of 144,000 tons of CO(2) emitted between 2003 and 2006 was estimated. Considering a cost of 20 euros per ton of CO(2), the global saving would be 2.88 million euros (US$ 4.26 million). After the partial substitution of the fuel, the current environmental exposure to metals and PCDD/Fs would even mean a potential decrease of health risks for the individuals living in the vicinity of the cement plant. The total benefit of using sewage sludge as an alternative fuel was calculated in 3.44 million euros (US$ 5.09 million). Environmental economics is becoming an interesting research field to convert environmental benefits (i.e., reduction of health risks, emission of pollutants, etc.) into economical value. The results show, that while the use of sewage sludge as secondary fuel is beneficial for the reduction in GHG emissions, no additional health risks for the population derived from PCDD/F and metal emissions are estimated. Cost-benefit analysis seems to be a suitable tool to estimate the environmental damage and benefit associated to industrial processes. Therefore, this should become a generalized practice, mainly for those more impacting sectors such as power industries. On the other hand, the extension of the study could vastly be enlarged by taking into account other potentially emitted GHGs, such as CH(4) and N(2)O, as well as other carcinogenic and non-carcinogenic micropollutants.
Global Health Governance at a Crossroads
Ng, Nora Y.; Ruger, Jennifer Prah
2014-01-01
This review takes stock of the global health governance (GHG) literature. We address the transition from international health governance (IHG) to global health governance, identify major actors, and explain some challenges and successes in GHG. We analyze the framing of health as national security, human security, human rights, and global public good, and the implications of these various frames. We also establish and examine from the literature GHG’s major themes and issues, which include: 1) persistent GHG problems; 2) different approaches to tackling health challenges (vertical, horizontal, and diagonal); 3) health’s multisectoral connections; 4) neoliberalism and the global economy; 5) the framing of health (e.g. as a security issue, as a foreign policy issue, as a human rights issue, and as a global public good); 6) global health inequalities; 7) local and country ownership and capacity; 8) international law in GHG; and 9) research gaps in GHG. We find that decades-old challenges in GHG persist and GHG needs a new way forward. A framework called shared health governance offers promise. PMID:24729828
Xiao, Zhuang; Tian, Yixiang; Yuan, Zheng
2018-01-01
To establish a micro foundation to understand the impacts of greenhouse gas (GHG) emission regulations and financial development levels on firms’ GHG emissions, we build a two-stage dynamic game model to incorporate GHG emission regulations (in terms of an emission tax) and financial development (represented by the corresponding financing cost) into a two-echelon supply chain. With the subgame perfect equilibrium, we identify the conditions to determine whether an emission regulatory policy and/or financial development can affect GHG emissions in the supply chain. We also reveal the impacts of the strictness of GHG emission regulation, the financial development level, and the unit GHG emission rate on the operations of the supply chain and the corresponding profitability implications. Managerial insights are also discussed. PMID:29470451
Improving carbon monitoring and reporting in forests using spatially-explicit information.
Boisvenue, Céline; Smiley, Byron P; White, Joanne C; Kurz, Werner A; Wulder, Michael A
2016-12-01
Understanding and quantifying carbon (C) exchanges between the biosphere and the atmosphere-specifically the process of C removal from the atmosphere, and how this process is changing-is the basis for developing appropriate adaptation and mitigation strategies for climate change. Monitoring forest systems and reporting on greenhouse gas (GHG) emissions and removals are now required components of international efforts aimed at mitigating rising atmospheric GHG. Spatially-explicit information about forests can improve the estimates of GHG emissions and removals. However, at present, remotely-sensed information on forest change is not commonly integrated into GHG reporting systems. New, detailed (30-m spatial resolution) forest change products derived from satellite time series informing on location, magnitude, and type of change, at an annual time step, have recently become available. Here we estimate the forest GHG balance using these new Landsat-based change data, a spatial forest inventory, and develop yield curves as inputs to the Carbon Budget Model of the Canadian Forest Sector (CBM-CFS3) to estimate GHG emissions and removals at a 30 m resolution for a 13 Mha pilot area in Saskatchewan, Canada. Our results depict the forests as cumulative C sink (17.98 Tg C or 0.64 Tg C year -1 ) between 1984 and 2012 with an average C density of 206.5 (±0.6) Mg C ha -1 . Comparisons between our estimates and estimates from Canada's National Forest Carbon Monitoring, Accounting and Reporting System (NFCMARS) were possible only on a subset of our study area. In our simulations the area was a C sink, while the official reporting simulations, it was a C source. Forest area and overall C stock estimates also differ between the two simulated estimates. Both estimates have similar uncertainties, but the spatially-explicit results we present here better quantify the potential improvement brought on by spatially-explicit modelling. We discuss the source of the differences between these estimates. This study represents an important first step towards the integration of spatially-explicit information into Canada's NFCMARS.
NASA Astrophysics Data System (ADS)
Harris, Z. M.; Alberti, G.; Bottoms, E.; Rowe, R.; Parmar, K.; Marshall, R.; Elias, D.; Smith, P.; Dondini, M.; Pogson, M.; Richards, M.; Finch, J.; Ineson, P.; Keane, B.; Perks, M.; Wilkinson, M.; Yamulki, S.; Donnison, I.; Farrar, K.; Massey, A.; McCalmont, J.; Drewer, J.; Sohi, S.; McNamara, N.; Taylor, G.
2014-12-01
Rising anthropogenic greenhouse gas (GHG) emissions coupled with an increasing need to address energy security are resulting in the development of cleaner, more sustainable alternatives to traditional fossil fuel sources. Bioenergy crops have been proposed to be able to mitigate the effects of climate change as well as provide increased energy security. The aim of this project is to assess the impact of land conversion to second generation non-food bioenergy crops on GHG balance for several land use transitions, including from arable, grassland and forest. A network of 6 sites was established across the UK to assess the processes underpinning GHG balance and to provide input data to a model being used to assess the sustainability of different land use transitions. Monthly analysis of soil GHGs shows that carbon dioxide contributes most to the global warming potential of these bioenergy crops, irrespective of transition. Nitrous oxide emissions were low for all crops except arable cropping and methane emissions were very low for all sites. Nearly all sites have shown a significant decrease in CO2 flux from the control land use. Eddy flux approaches, coupled with soil assessments show that for the transition from grassland to SRC willow there is a significant reduction in GHG emissions from soil and a negative net ecosystem exchange due to increased GPP and ecosystem respiration. These results suggest for this land use transition to bioenergy in a UK specific context, there may be a net benefit for ecosystem GHG exchange of transition to bioenergy Finally we are developing a meta-modelling tool to allow land use managers to make location-specific, informed decisions about land use change to bioenergy. This work is based on the Ecosystem Land Use Modelling & Soil Carbon GHG Flux Trial (ELUM) project, which was commissioned and funded by the Energy Technologies Institute (ETI). This project is co-ordinated by the Centre for Ecology & Hydrology (www.elum.ac.uk).
NASA Astrophysics Data System (ADS)
Bechtold, M.; Tiemeyer, B.; Laggner, A.; Leppelt, T.; Frahm, E.; Belting, S.
2014-04-01
Fluxes of the three main greenhouse gases (GHG) CO2, CH4 and N2O from peat and other organic soils are strongly controlled by water table depth. Information about the spatial distribution of water level is thus a crucial input parameter when upscaling GHG emissions to large scales. Here, we investigate the potential of statistical modeling for the regionalization of water levels in organic soils when data covers only a small fraction of the peatlands of the final map. Our study area is Germany. Phreatic water level data from 53 peatlands in Germany were compiled in a new dataset comprising 1094 dip wells and 7155 years of data. For each dip well, numerous possible predictor variables were determined using nationally available data sources, which included information about land cover, ditch network, protected areas, topography, peatland characteristics and climatic boundary conditions. We applied boosted regression trees to identify dependencies between predictor variables and dip well specific long-term annual mean water level (WL) as well as a transformed form of it (WLt). The latter was obtained by assuming a hypothetical GHG transfer function and is linearly related to GHG emissions. Our results demonstrate that model calibration on WLt is superior. It increases the explained variance of the water level in the sensitive range for GHG emissions and avoids model bias in subsequent GHG upscaling. The final model explained 45% of WLt variance and was built on nine predictor variables that are based on information about land cover, peatland characteristics, drainage network, topography and climatic boundary conditions. Their individual effects on WLt and the observed parameter interactions provide insights into natural and anthropogenic boundary conditions that control water levels in organic soils. Our study also demonstrates that a large fraction of the observed WLt variance cannot be explained by nationally available predictor variables and that predictors with stronger WLt indication, relying e.g. on detailed water management maps and remote sensing products, are needed to substantially improve model predictive performance.
NASA Astrophysics Data System (ADS)
Bechtold, M.; Tiemeyer, B.; Laggner, A.; Leppelt, T.; Frahm, E.; Belting, S.
2014-09-01
Fluxes of the three main greenhouse gases (GHG) CO2, CH4 and N2O from peat and other soils with high organic carbon contents are strongly controlled by water table depth. Information about the spatial distribution of water level is thus a crucial input parameter when upscaling GHG emissions to large scales. Here, we investigate the potential of statistical modeling for the regionalization of water levels in organic soils when data covers only a small fraction of the peatlands of the final map. Our study area is Germany. Phreatic water level data from 53 peatlands in Germany were compiled in a new data set comprising 1094 dip wells and 7155 years of data. For each dip well, numerous possible predictor variables were determined using nationally available data sources, which included information about land cover, ditch network, protected areas, topography, peatland characteristics and climatic boundary conditions. We applied boosted regression trees to identify dependencies between predictor variables and dip-well-specific long-term annual mean water level (WL) as well as a transformed form (WLt). The latter was obtained by assuming a hypothetical GHG transfer function and is linearly related to GHG emissions. Our results demonstrate that model calibration on WLt is superior. It increases the explained variance of the water level in the sensitive range for GHG emissions and avoids model bias in subsequent GHG upscaling. The final model explained 45% of WLt variance and was built on nine predictor variables that are based on information about land cover, peatland characteristics, drainage network, topography and climatic boundary conditions. Their individual effects on WLt and the observed parameter interactions provide insight into natural and anthropogenic boundary conditions that control water levels in organic soils. Our study also demonstrates that a large fraction of the observed WLt variance cannot be explained by nationally available predictor variables and that predictors with stronger WLt indication, relying, for example, on detailed water management maps and remote sensing products, are needed to substantially improve model predictive performance.
Liao, Wenhua; Liu, Chunjing; Gao, Zhiling
2018-04-09
Patches of dung and urine are major contributors to the feedlot gas emissions. This study investigated the impacts of dung deposition frequency (partly reflecting animal stocking density of a feedlot), dairy feedlot floor conditions (old floor indicated with the presence of consolidated manure pad [CMP] vs. new floor with the absence of consolidated manure pad [CMPn]), and application of dicyandiamide (DCD) and hydroquinone (HQ) on nitrous oxide (N 2 O) and methane (CH 4 ) emissions from patches in the laboratory, and the integrative impacts were expressed in terms of global warming potential (CO 2 -equivalent). Dung deposition frequency, feedlot floor condition, and application of inhibitors showed inverse impacts on N 2 O and CH 4 emissions from patches. Greenhouse gas (GHG) emissions from the dung, urine, and dung+urine patches on the CMP feedlot surface were approximately 7.48, 87.35, and 7.10 times those on the CMPn feedlot surface (P < 0.05). Meanwhile, GHG emissions from CMP and CMPn feedlot surfaces under high deposition frequency condition were approximately 10 and 1.7 times those under low-frequency condition. Moreover, application of HQ slightly reduced the GHG emission from urine patches, by 14.9% (P > 0.05), while applying DCD or DCD+HQ significantly reduced the GHG, by 60.3% and 65.0%, respectively (P < 0.05). Overall, it is necessary to include feedlot management such as animal stocking density and feedlot floor condition to the process of determining emission factors for feedlots. In the future, field measurements to quantitatively evaluate the relative contribution of nitrification and denitrification to the N 2 O emissions of feedlot surfaces are highly required for effective N 2 O control. This study shows that feedlot CH 4 and N 2 O emissions inversely respond to the dicyandiamide (DCD) application. Applying DCD significantly reduces GHG emissions of feedlot urine patches. Feedlot floor condition and stocking density strongly impact feedlot GHG emissions. Including feedlot floor condition and stocking density in the feedlot EF determining process is necessary.
Greenhouse gas emissions from production chain of a cigarette manufacturing industry in Pakistan.
Hussain, Majid; Zaidi, Syed Mujtaba Hasnian; Malik, Riffat Naseem; Sharma, Benktesh Dash
2014-10-01
This study quantified greenhouse gas (GHG) emissions from the Pakistan Tobacco Company (PTC) production using a life cycle approach. The PTC production chain comprises of two phases: agricultural activities (Phase I) and industrial activities (Phase II). Data related to agricultural and industrial activities of PTC production chain were collected through questionnaire survey from tobacco growers and records from PTC manufacturing units. The results showed that total GHG emissions from PTC production chain were 44,965, 42,875, and 43,839 tCO2e respectively in 2009, 2010, and 2011. Among the agricultural activities, firewood burning for tobacco curing accounted for about 3117, 3565, and 3264 tCO2e, fertilizer application accounted for 754, 3251, and 4761 tCO2e in 2009, 2010, and 2011, respectively. Among the industrial activities, fossil fuels consumption in stationary sources accounted for 15,582, 12,733, and 13,203 tCO2e, fossil fuels used in mobile sources contributed to 2693, 3038, and 3260 tCO2e, and purchased electricity consumed resulted in 15,177, 13,556, and 11,380 tCO2e in 2009, 2010, and 2011, respectively. The GHG emissions related to the transportation of raw materials and processed tobacco amounted to 6800, 6301, and 7317 respectively in 2009, 2010, and 2011. GHG emissions from energy use in the industrial activities constituted the largest emissions (i.e., over 80%) of GHG emissions as PTC relies on fossil fuels and fossil fuel based electrical power in industrial processes. The total emissions of carbon footprint (CFP) from PTC production were 0.647 tCO2e per million cigarettes produced in 2009, 0.675 tCO2e per million cigarettes in 2010 and 0.59 tCO2e per million cigarettes in 2011. Potential strategies for GHG emissions reductions for PTC production chain include energy efficiency, reducing reliance on fossil fuels in non-mobile sources, adoption of renewable fuels including solar energy, energy from crop residues, and promotion of organic fertilizers. Copyright © 2014 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Chen, Xiaopeng; Wang, Genxu; Zhang, Tao; Mao, Tianxu; Wei, Da; Hu, Zhaoyong; Song, Chunlin
2017-05-01
The limited number of in situ measurements of greenhouse gas (GHG) flux during soil freeze-thaw cycles in permafrost regions limits our ability to accurately predict how the alpine ecosystem carbon sink or source function will vary under future warming and increased nitrogen (N) deposition. An alpine meadow in the permafrost region of the Qinghai-Tibet Plateau was selected, and a simulated warming with N fertilization experiment was carried out to investigate the key GHG fluxes (ecosystem respiration [Re], CH4 and N2O) in the early (EG), mid (MG) and late (LG) growing seasons. The results showed that: (i) warming (4.5 °C) increased the average seasonal Re, CH4 uptake and N2O emission by 73.5%, 65.9% and 431.6%, respectively. N fertilization (4 g N m-2) alone had no significant effect on GHG flux; the interaction of warming and N fertilization enhanced CH4 uptake by 10.3% and N2O emissions by 27.2% than warming, while there was no significant effect on the Re; (ii) the average seasonal fluxes of Re, CH4 and N2O were MG > LG > EG, and Re and CH4 uptake were most sensitive to the soil freezing process instead of soil thawing process; (iii) surface soil temperature was the main driving factor of the Re and CH4 fluxes, and the N2O flux was mainly affected by daily rainfall; (iv) in the growing season, warming increased greenhouse warming potential (GWP) of the alpine meadow by 74.5%, the N fertilization decreased GWP of the warming plots by 13.9% but it was not statistically significant. These results indicate that (i) relative to future climate warming (or permafrost thawing), there could be a hysteresis of GHG flux in the alpine meadow of permafrost region; (ii) under the scenario of climate warming, increasing N deposition has limited impacts on the feedback of GHG flux of the alpine meadow.
Remedial actions taken to clean up hazardous waste sites for environmental restoration and potential reuse are often sources of diesel and greenhouse gas (GHG) emissions. Many remediation systems, such as pump-and-treat (P&T), may operate for many years, demanding electricity fr...
NASA Astrophysics Data System (ADS)
Tiemeyer, Bärbel
2017-04-01
Drained organic soils are large sources of anthropogenic greenhouse gases (GHG) in many European and Asian countries including Germany. Therefore, they urgently need to be considered and adequately be accounted for when attempting to increase the carbon sequestration in agricultural soils. Here, we describe the methodology, data and results of the German detailed Tier 3 methodology for reporting anthropogenic GHG emissions from drained organic soils developed for, and applied in, the German GHG inventory under the UNFCCC and the Kyoto Protocol. The approach is based on national data and offers the potential for tracking changes in land-use and water management associated with intensification, peatland restoration or GHG mitigation measures in case time series of relevant activity data are available. Drained organic soils were defined as soils with a mean annual water level of -0.1 m below surface or drier. The organic soil area was considered constant, neglecting a certain gradual conversion of shallow organic soils into mineral soils by subsidence, peat loss or anthropogenic disturbance. Activity data comprise high resolution maps of climate, land-use, the type of organic soil and the mean annual groundwater level. The groundwater map was derived by a boosted regressions trees model from data from > 1000 dipwells. These maps were sampled by a nested 250 m raster where each raster corner is represented by four sample points, balancing between spatial representativeness and effort to track small-scale variability and land-use changes. Carbon dioxide and methane emissions were synthesized from a unique national data set comprising more than 200 GHG balances in most land-use categories and types of organic soils. The measurements were performed with fully harmonized protocols. Non-linear response functions describe the dependency of carbon dioxide and methane fluxes on the mean annual groundwater level, stratified by land-use and organic soil type where appropriate. Resulting "applied emission factors" for each land-use category take into account both the uncertainty of the response functions and the distribution of the groundwater levels within each land-use category. No functional relationships were found for nitrous oxide emissions. Emission factors for nitrous oxide were thus calculated as the mean observed flux by land-use category. IPCC default emission factors were used for minor GHG sources such as methane emissions from ditches and the losses of dissolved organic carbon (DOC). In Germany, drained organic soils annually emit nearly 50 million tons of GHGs, equivalent to 5% of the national GHG emissions. They are the largest GHG source from German agriculture and forestry. The described methodology is applicable as well to the project scale as to other countries where similar data is available.
Potential Avenues for Significant Biofuels Penetration in the U.S. Aviation Market
DOE Office of Scientific and Technical Information (OSTI.GOV)
Newes, Emily; Han, Jeongwoo; Peterson, Steve
Industry associations have set goals to reduce greenhouse gas (GHG) emissions and increase fuel efficiency. One focal area for reducing GHG emissions is in the use of aviation biofuel. This study examines assumptions under which the United States could see large production in aviation biofuel. Our results suggest that a high penetration (6 billion gallons) of aviation biofuels by 2030 could be possible, but factors around policy design (in the absence of high oil prices) contribute to the timing and magnitude of aviation biofuels production: 1) Incentives targeted towards jet fuel production such as financial incentives (e.g., producer tax credit,more » carbon tax) can be sufficient; 2) Investment in pre-commercial cellulosic technologies is needed to reduce the cost of production through learning-by-doing; 3) Reduction of investment risk through loan guarantees may allow production to ramp up more quickly through accelerating industry learning. In cases with high levels of incentives and investment in aviation biofuels, there could be a 25 percent reduction in overall GHG emissions from the aviation sector.« less
Modeling urban building energy use: A review of modeling approaches and procedures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Wenliang; Zhou, Yuyu; Cetin, Kristen
With rapid urbanization and economic development, the world has been experiencing an unprecedented increase in energy consumption and greenhouse gas (GHG) emissions. While reducing energy consumption and GHG emissions is a common interest shared by major developed and developing countries, actions to enable these global reductions are generally implemented at the city scale. This is because baseline information from individual cities plays an important role in identifying economical options for improving building energy efficiency and reducing GHG emissions. Numerous approaches have been proposed for modeling urban building energy use in the past decades. This paper aims to provide an up-to-datemore » review of the broad categories of energy models for urban buildings and describes the basic workflow of physics-based, bottom-up models and their applications in simulating urban-scale building energy use. Because there are significant differences across models with varied potential for application, strengths and weaknesses of the reviewed models are also presented. This is followed by a discussion of challenging issues associated with model preparation and calibration.« less
Modeling urban building energy use: A review of modeling approaches and procedures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Wenliang; Zhou, Yuyu; Cetin, Kristen
With rapid urbanization and economic development, the world has been experiencing an unprecedented increase in energy consumption and greenhouse gas (GHG) emissions. While reducing energy consumption and GHG emissions is a common interest shared by major developed and developing countries, actions to enable these global reductions are generally implemented at the city scale. This is because baseline information from individual cities plays an important role in identifying economical options for improving building energy efficiency and reducing GHG emissions. Numerous approaches have been proposed for modeling urban building energy use in the past decades. Our paper aims to provide an up-to-datemore » review of the broad categories of energy models for urban buildings and describes the basic workflow of physics-based, bottom-up models and their applications in simulating urban-scale building energy use. Because there are significant differences across models with varied potential for application, strengths and weaknesses of the reviewed models are also presented. We then follow this with a discussion of challenging issues associated with model preparation and calibration.« less
Modeling urban building energy use: A review of modeling approaches and procedures
Li, Wenliang; Zhou, Yuyu; Cetin, Kristen; ...
2017-11-13
With rapid urbanization and economic development, the world has been experiencing an unprecedented increase in energy consumption and greenhouse gas (GHG) emissions. While reducing energy consumption and GHG emissions is a common interest shared by major developed and developing countries, actions to enable these global reductions are generally implemented at the city scale. This is because baseline information from individual cities plays an important role in identifying economical options for improving building energy efficiency and reducing GHG emissions. Numerous approaches have been proposed for modeling urban building energy use in the past decades. Our paper aims to provide an up-to-datemore » review of the broad categories of energy models for urban buildings and describes the basic workflow of physics-based, bottom-up models and their applications in simulating urban-scale building energy use. Because there are significant differences across models with varied potential for application, strengths and weaknesses of the reviewed models are also presented. We then follow this with a discussion of challenging issues associated with model preparation and calibration.« less
USDA-ARS?s Scientific Manuscript database
Over the last 50 years, the most increase in cultivated land area globally has been due to a doubling of irrigated land. Long-term agronomic management impacts on soil organic carbon (SOC) stocks, soil greenhouse gas (GHG) emis-sions, and global warming potential (GWP) in irrigated systems, however,...
Hung, Mei-Chuan; Ekwueme, Donatus U; White, Arica; Rim, Sun Hee; King, Jessica B; Wang, Jung-Der; Chang, Su-Hsin
2018-01-01
This study aims to quantify the aggregate potential life-years (LYs) saved and healthcare cost-savings if the Healthy People 2020 objective were met to reduce invasive colorectal cancer (CRC) incidence by 15%. We identified patients (n=886,380) diagnosed with invasive CRC between 2001 and 2011 from a nationally representative cancer dataset. We stratified these patients by sex, race/ethnicity, and age. Using these data and data from the 2001-2011 U.S. life tables, we estimated a survival function for each CRC group and the corresponding reference group and computed per-person LYs saved. We estimated per-person annual healthcare cost-savings using the 2008-2012 Medical Expenditure Panel Survey. We calculated aggregate LYs saved and cost-savings by multiplying the reduced number of CRC patients by the per-person LYs saved and lifetime healthcare cost-savings, respectively. We estimated an aggregate of 84,569 and 64,924 LYs saved for men and women, respectively, accounting for healthcare cost-savings of $329.3 and $294.2 million (in 2013$), respectively. Per person, we estimated 6.3 potential LYs saved related to those who developed CRC for both men and women, and healthcare cost-savings of $24,000 for men and $28,000 for women. Non-Hispanic whites and those aged 60-64 had the highest aggregate potential LYs saved and cost-savings. Achieving the HP2020 objective of reducing invasive CRC incidence by 15% by year 2020 would potentially save nearly 150,000 life-years and $624 million on healthcare costs. Copyright © 2017. Published by Elsevier Inc.
Pires, Marcel Viana; da Cunha, Dênis Antônio; de Matos Carlos, Sabrina; Costa, Marcos Heil
2015-01-01
The agriculture sector has historically been a major source of greenhouse gas (GHG) emissions into the atmosphere. Although the use of synthetic fertilizers is one of the most common widespread agricultural practices, over-fertilization can lead to negative economic and environmental consequences, such as high production costs, depletion of energy resources, and increased GHG emissions. Here, we provide an analysis to understand the evolution of cereal production and consumption of nitrogen (N) fertilizers in Brazil and to correlate N use efficiency (NUE) with economic and environmental losses as N2O emissions. Our results show that the increased consumption of N fertilizers is associated with a large decrease in NUE in recent years. The CO2 eq. of N2O emissions originating from N fertilization for cereal production were approximately 12 times higher in 2011 than in 1970, indicating that the inefficient use of N fertilizers is directly related to environmental losses. The projected N fertilizer forecasts are 2.09 and 2.37 million ton for 2015 and 2023, respectively. An increase of 0.02% per year in the projected NUE was predicted for the same time period. However, decreases in the projected CO2 eq. emissions for future years were not predicted. In a hypothetical scenario, a 2.39% increase in cereal NUE would lead to $ 21 million savings in N fertilizer costs. Thus, increases in NUE rates would lead not only to agronomic and environmental benefits but also to economic improvement.
Pires, Marcel Viana; da Cunha, Dênis Antônio; de Matos Carlos, Sabrina; Costa, Marcos Heil
2015-01-01
The agriculture sector has historically been a major source of greenhouse gas (GHG) emissions into the atmosphere. Although the use of synthetic fertilizers is one of the most common widespread agricultural practices, over-fertilization can lead to negative economic and environmental consequences, such as high production costs, depletion of energy resources, and increased GHG emissions. Here, we provide an analysis to understand the evolution of cereal production and consumption of nitrogen (N) fertilizers in Brazil and to correlate N use efficiency (NUE) with economic and environmental losses as N2O emissions. Our results show that the increased consumption of N fertilizers is associated with a large decrease in NUE in recent years. The CO2 eq. of N2O emissions originating from N fertilization for cereal production were approximately 12 times higher in 2011 than in 1970, indicating that the inefficient use of N fertilizers is directly related to environmental losses. The projected N fertilizer forecasts are 2.09 and 2.37 million ton for 2015 and 2023, respectively. An increase of 0.02% per year in the projected NUE was predicted for the same time period. However, decreases in the projected CO2 eq. emissions for future years were not predicted. In a hypothetical scenario, a 2.39% increase in cereal NUE would lead to $ 21 million savings in N fertilizer costs. Thus, increases in NUE rates would lead not only to agronomic and environmental benefits but also to economic improvement. PMID:26252377
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Yuqiang; Smith, Steven J.; Bowden, Jared H.
Policies to reduce greenhouse gas (GHG) emissions can bring ancillary benefits of improved air quality and reduced premature mortality, in addition to slowing climate change. Here we study the co-benefits of global and domestic GHG mitigation on US air quality and human health in 2050 at fine resolution using dynamical downscaling, and quantify for the first time the co-benefits from foreign GHG mitigation. Relative to a reference scenario, global GHG reductions in RCP4.5 avoid 16000 PM2.5-related all-cause deaths yr-1 (90% confidence interval, 11700-20300), and 8000 (3600-12400) O3-related respiratory deaths yr-1 in the US in 2050. Foreign GHG mitigation avoids 15%more » and 62% of PM2.5- and O3-related total avoided deaths, highlighting the importance of foreign GHG mitigation on US human health benefits. GHG mitigation in the US residential sector brings the largest co-benefits for PM2.5-related deaths (21% of total domestic co-benefits), and industry for O3 (17%). Monetized benefits, for avoided deaths from ozone, PM2.5, and heat stress from a related study, are $148 ($96-201) per ton CO2 at high valuation and $49 ($32-67) at low valuation, of which 36% are from foreign GHG reductions. These benefits likely exceed the marginal cost of GHG reductions in 2050. The US gains significantly greater co-benefits when coordinating GHG reductions with foreign countries. Similarly, previous studies estimating co-benefits locally or regionally may greatly underestimate the full co-benefits of coordinated global actions.« less
The multiple meanings of global health governance: a call for conceptual clarity.
Lee, Kelley; Kamradt-Scott, Adam
2014-04-28
The term global health governance (GHG) is now widely used, with over one thousand works published in the scholarly literature, almost all since 2002. Amid this rapid growth there is considerable variation in how the term is defined and applied, generating confusion as to the boundaries of the subject, the perceived problems in practice, and the goals to be achieved through institutional reform. This paper is based on the results of a separate scoping study of peer reviewed GHG research from 1990 onwards which undertook keyword searches of public health and social science databases. Additional works, notably books, book chapters and scholarly articles, not currently indexed, were identified through Web of Science citation searches. After removing duplicates, book reviews, commentaries and editorials, we reviewed the remaining 250 scholarly works in terms of how the concept of GHG is applied. More specifically, we identify what is claimed as constituting GHG, how it is problematised, the institutional features of GHG, and what forms and functions are deemed ideal. After examining the broader notion of global governance and increasingly ubiquitous term "global health", the paper identifies three ontological variations in GHG scholarship - the scope of institutional arrangements, strengths and weaknesses of existing institutions, and the ideal form and function of GHG. This has produced three common, yet distinct, meanings of GHG that have emerged - globalisation and health governance, global governance and health, and governance for global health. There is a need to clarify ontological and definitional distinctions in GHG scholarship and practice, and be critically reflexive of their normative underpinnings. This will enable greater precision in describing existing institutional arrangements, as well as serve as a prerequisite for a fuller debate about the desired nature of GHG.
The multiple meanings of global health governance: a call for conceptual clarity
2014-01-01
Background The term global health governance (GHG) is now widely used, with over one thousand works published in the scholarly literature, almost all since 2002. Amid this rapid growth there is considerable variation in how the term is defined and applied, generating confusion as to the boundaries of the subject, the perceived problems in practice, and the goals to be achieved through institutional reform. Methodology This paper is based on the results of a separate scoping study of peer reviewed GHG research from 1990 onwards which undertook keyword searches of public health and social science databases. Additional works, notably books, book chapters and scholarly articles, not currently indexed, were identified through Web of Science citation searches. After removing duplicates, book reviews, commentaries and editorials, we reviewed the remaining 250 scholarly works in terms of how the concept of GHG is applied. More specifically, we identify what is claimed as constituting GHG, how it is problematised, the institutional features of GHG, and what forms and functions are deemed ideal. Results After examining the broader notion of global governance and increasingly ubiquitous term “global health”, the paper identifies three ontological variations in GHG scholarship - the scope of institutional arrangements, strengths and weaknesses of existing institutions, and the ideal form and function of GHG. This has produced three common, yet distinct, meanings of GHG that have emerged – globalisation and health governance, global governance and health, and governance for global health. Conclusions There is a need to clarify ontological and definitional distinctions in GHG scholarship and practice, and be critically reflexive of their normative underpinnings. This will enable greater precision in describing existing institutional arrangements, as well as serve as a prerequisite for a fuller debate about the desired nature of GHG. PMID:24775919
Surface greenhouse gas fluxes downwind of a penguin colony in the maritime sub-Antarctic
NASA Astrophysics Data System (ADS)
Drewer, Julia; Braban, Christine F.; Tang, Y. Sim; Anderson, Margaret; Skiba, Ute M.; Dragosits, Ulrike; Trathan, Phil
2015-12-01
The relationship between ammonia (NH3) concentrations downwind from a penguin colony and local surface greenhouse gas (GHG) fluxes was investigated on the remote sub-Antarctic Bird Island (54°00‧S, 38°03‧W) during summer 2010 (November and December). A Macaroni penguin (Eudyptes chrysolophus) colony (40,000 pairs) at Goldcrest Point is a large point source of NH3 on the island and a measurement transect of 23 m, 36 m, 70 m, 143 m and 338 m was set up downwind from the colony. Atmospheric NH3 concentrations measured by passive diffusion samplers declined from 23 μg m-3 close to the colony to less than 1 μg m-3 338 m downwind. As increased nitrogen (N) deposition can affect soil carbon (C) and N cycling, it can therefore potentially influence GHG and nitric oxide (NO) emission rates. However, in this study, a clear correlation between surface GHG fluxes and atmospheric NH3 concentrations could not be established. Average fluxes for nitrous oxide (N2O), methane (CH4) and carbon dioxide (CO2) over the entire transect and the eight week study period ranged from 7 to 23 μg N2O-N m-2 h-1, -5.5-245 μg CH4 m-2 h-1, and CO2 respiration rates averaged 2.2 μmol m-2 s-1. Laboratory studies using intact soil cores from the transect also did not show any significant correlation between atmospheric NH3 concentrations and N2O, NO, CH4 emissions or CO2 respiration rates. Overall, fluxes measured in the laboratory study reflected the high variability measured in the field. Large changes in soil depth along the transect, due to the topography of the island, possibly influenced fluxes more than NH3 concentration and seabirds appeared to have a more localised input (e.g. ground nesting birds). However, warmer temperatures might have a large potential to increase GHG fluxes in this ecosystem. This study confirms that GHG fluxes do occur in these ornithogenic ecosystems, however, the scale of the impact remains largely unquantified due to high uncertainties and high spatial variability.
Energy savings potential from improved building controls for the US commercial building sector
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fernandez, Nick; Katipamula, Srinivas; Wang, Weimin
The U.S. Department of Energy’s (DOE’s) Building Technologies Office (BTO) sponsored a study to determine the potential national savings achievable in the commercial building sector through widespread deployment of best practice controls, elimination of system and component faults, and use of better sensing. Detailed characterization of potential savings was one source of input to set research, development, and deployment (RD&D) goals in the field of building sensors and controls. DOE’s building energy simulation software, EnergyPlus, was employed to estimate the potential savings from 34 measures in 9 building types and across 16 climates representing almost 57% of commercial building sectormore » energy consumption. In addition to estimating savings from individual measures, three packages of measures were created to estimate savings from the packages. These packages represented an 1) efficient building, 2) typical building, and 3) inefficient building. To scale the results from individual measures or a package to the national scale, building weights by building type and climate locations from the Energy Information Administration’s 2012 Commercial Building Energy Consumption Survey (CBECS) were used. The results showed significant potential for energy savings across all building types and climates. The total site potential savings from individual measures by building type and climate location ranged between 0% and 25%. The total site potential savings by building type aggregated across all climates (using the CBECS building weights) for each measure varied between 0% and 16%. The total site potential savings aggregated across all building types and climates for each measure varied between 0% and 11%. Some individual measures had negative savings because correcting underlying operational problems (e.g., inadequate ventilation) resulted in increased energy consumption. When combined into packages, the overall national savings potential is estimated to be 29%; seven of the nine building types were in the range of 23 to 29% and two exceeded 40%. The total potential national site savings in for each building type ranged between 95x106 GJ (0.09 Quadrillion British thermal units [Quads]; Large Hotels) to 222x106 GJ (0.21 Quads; Large Office, Hospital Administrative areas, and College/University), resulting in total site savings of 1,393x106 GJ (1.32 Quads) when the three packages are applied to the U.S. commercial buildings stock. Using the source (or primary) energy conversion factors of 1.05 for natural gas and 3.14 for electricity resulted in an approximate potential primary energy savings of 2,912x106 GJ (2.76 Quads), which would be 15% of the sector’s 2015 use of approximately 18,991x106 GJ (18 Quads). Extrapolating the results for other building types not analyzed as part of this study, the primary energy savings could be in the range of 4,220x106 GJ to 5,275x106 GJ (4 to 5 Quads). If this savings potential is realized, it would be equivalent to not combusting 180 to 230 million tons of coal or reducing the energy impacts, at today’s energy intensities, of the per capita consumption of 12 to 15 million people in the U.S. To realize most of this potential savings, many gaps can be addressed through RD&D, as recommended in this paper.« less
Wastewater GHG Accounting Protocols as Compared to the State of GHG Science.
Willis, John L; Yuan, Zhiguo; Murthy, Sudhir
2016-08-01
Greenhouse gas (GHG) accounting protocols have addressed emissions from wastewater conveyance and treatment using a variety of simplifying methodologies. While these methodologies vary to some degree by protocol, within each protocol they provide consistent tools for organizational entities of varying size and scope to report and verify GHG emissions. Much of the science supporting these methodologies is either limited or the protocols have failed to keep abreast of developing GHG research. This state-of-the-art review summarizes the sources of direct GHG emissions (both those covered and not covered in current protocols) from wastewater handling; provides a review of the wastewater-related methodologies in a select group of popular protocols; and discusses where research has out-paced protocol methodologies and other areas where the supporting science is relatively weak and warrants further exploration.
Greenhouse gases from wastewater treatment - A review of modelling tools.
Mannina, Giorgio; Ekama, George; Caniani, Donatella; Cosenza, Alida; Esposito, Giovanni; Gori, Riccardo; Garrido-Baserba, Manel; Rosso, Diego; Olsson, Gustaf
2016-05-01
Nitrous oxide, carbon dioxide and methane are greenhouse gases (GHG) emitted from wastewater treatment that contribute to its carbon footprint. As a result of the increasing awareness of GHG emissions from wastewater treatment plants (WWTPs), new modelling, design, and operational tools have been developed to address and reduce GHG emissions at the plant-wide scale and beyond. This paper reviews the state-of-the-art and the recently developed tools used to understand and manage GHG emissions from WWTPs, and discusses open problems and research gaps. The literature review reveals that knowledge on the processes related to N2O formation, especially due to autotrophic biomass, is still incomplete. The literature review shows also that a plant-wide modelling approach that includes GHG is the best option for the understanding how to reduce the carbon footprint of WWTPs. Indeed, several studies have confirmed that a wide vision of the WWPTs has to be considered in order to make them more sustainable as possible. Mechanistic dynamic models were demonstrated as the most comprehensive and reliable tools for GHG assessment. Very few plant-wide GHG modelling studies have been applied to real WWTPs due to the huge difficulties related to data availability and the model complexity. For further improvement in GHG plant-wide modelling and to favour its use at large real scale, knowledge of the mechanisms involved in GHG formation and release, and data acquisition must be enhanced. Copyright © 2016 Elsevier B.V. All rights reserved.
Broadening GHG accounting with LCA: application to a waste management business unit.
Fallaha, Sophie; Martineau, Geneviève; Bécaert, Valérie; Margni, Manuele; Deschênes, Louise; Samson, Réjean; Aoustin, Emmanuelle
2009-11-01
In an effort to obtain the most accurate climate change impact assessment, greenhouse gas (GHG) accounting is evolving to include life-cycle thinking. This study (1) identifies similarities and key differences between GHG accounting and life-cycle assessment (LCA), (2) compares them on a consistent basis through a case study on a waste management business unit. First, GHG accounting is performed. According to the GHG Protocol, annual emissions are categorized into three scopes: direct GHG emissions (scope 1), indirect emissions related to electricity, heat and steam production (scope 2) and other indirect emissions (scope 3). The LCA is then structured into a comparable framework: each LCA process is disaggregated into these three scopes, the annual operating activities are assessed, and the environmental impacts are determined using the IMPACT2002+ method. By comparing these two approaches it is concluded that both LCA and GHG accounting provide similar climate change impact results as the same major GHG contributors are determined for scope 1 emissions. The emissions from scope 2 appear negligible whereas emissions from scope 3 cannot be neglected since they contribute to around 10% of the climate change impact of the waste management business unit. This statement is strengthened by the fact that scope 3 generates 75% of the resource use damage and 30% of the ecosystem quality damage categories. The study also shows that LCA can help in setting up the framework for a annual GHG accounting by determining the major climate change contributors.
Kaewmai, Roihatai; H-Kittikun, Aran; Suksaroj, Chaisri; Musikavong, Charongpun
2013-01-01
Alternative methodologies for the reduction of greenhouse gas (GHG) emissions from crude palm oil (CPO) production by a wet extraction mill in Thailand were developed. The production of 1 t of CPO from mills with biogas capture (four mills) and without biogas capture (two mills) in 2010 produced GHG emissions of 935 kg carbon dioxide equivalent (CO2eq), on average. Wastewater treatment plants with and without biogas capture produced GHG emissions of 64 and 47% of total GHG emission, respectively. The rest of the emissions mostly originated from the acquisition of fresh fruit bunches. The establishment of a biogas recovery system must be the first step in the reduction of GHG emissions. It could reduce GHG emissions by 373 kgCO2eq/t of CPO. The main source of GHG emission of 163 kgCO2eq/t of CPO from the mills with biogas capture was the open pond used for cooling of wastewater before it enters the biogas recovery system. The reduction of GHG emissions could be accomplished by (i) using a wastewater-dispersed unit for cooling, (ii) using a covered pond, (iii) enhancing the performance of the biogas recovery system, and (iv) changing the stabilization pond to an aerated lagoon. By using options i-iv, reductions of GHG emissions of 216, 208, 92.2, and 87.6 kgCO2eq/t of CPO, respectively, can be achieved.
Greenhouse Gas Mitigation Options Database and Tool - Data ...
Industry and electricity production facilities generate over 50 percent of greenhouse gas (GHG) emissions in the United States. There is a growing consensus among scientists that the primary cause of climate change is anthropogenic greenhouse gas (GHG) emissions. Reducing GHG emissions from these sources is a key part of the United States’ strategy to reduce the impacts of these global-warming emissions. As a result of the recent focus on GHG emissions, the U.S. Environmental Protection Agency (EPA) and state agencies are implementing policies and programs to quantify and regulate GHG emissions from key emitting sources in the United States. These policies and programs have generated a need for a reliable source of information regarding GHG mitigation options for both industry and regulators. In response to this need, EPA developed a comprehensive GHG mitigation options database (GMOD) that was compiled based on information from industry, government research agencies, and academia. The GMOD and Tool (GMODT) is a comprehensive data repository and analytical tool being developed by EPA to evaluate alternative GHG mitigation options for several high-emitting industry sectors, including electric power plants, cement plants, refineries, landfills and other industrial sources of GHGs. The data is collected from credible sources including peer-reviewed journals, reports, and others government and academia data sources which include performance, applicability, develop
Zhang, Hai-Lin; Bai, Xiao-Lin; Xue, Jian-Fu; Chen, Zhong-Du; Tang, Hai-Ming; Chen, Fu
2013-01-01
Understanding greenhouse gases (GHG) emissions is becoming increasingly important with the climate change. Most previous studies have focused on the assessment of soil organic carbon (SOC) sequestration potential and GHG emissions from agriculture. However, specific experiments assessing tillage impacts on GHG emission from double-cropped paddy fields in Southern China are relatively scarce. Therefore, the objective of this study was to assess the effects of tillage systems on methane (CH4) and nitrous oxide (N2O) emission in a double rice (Oryza sativa L.) cropping system. The experiment was established in 2005 in Hunan Province, China. Three tillage treatments were laid out in a randomized complete block design: conventional tillage (CT), rotary tillage (RT) and no-till (NT). Fluxes of CH4 from different tillage treatments followed a similar trend during the two years, with a single peak emission for the early rice season and a double peak emission for the late rice season. Compared with other treatments, NT significantly reduced CH4 emission among the rice growing seasons (P<0.05). However, much higher variations in N2O emission were observed across the rice growing seasons due to the vulnerability of N2O to external influences. The amount of CH4 emission in paddy fields was much higher relative to N2O emission. Conversion of CT to NT significantly reduced the cumulative CH4 emission for both rice seasons compared with other treatments (P<0.05). The mean value of global warming potentials (GWPs) of CH4 and N2O emissions over 100 years was in the order of NT
Microalgal biomass production pathways: evaluation of life cycle environmental impacts
2013-01-01
Background Microalgae are touted as an attractive alternative to traditional forms of biomass for biofuel production, due to high productivity, ability to be cultivated on marginal lands, and potential to utilize carbon dioxide (CO2) from industrial flue gas. This work examines the fossil energy return on investment (EROIfossil), greenhouse gas (GHG) emissions, and direct Water Demands (WD) of producing dried algal biomass through the cultivation of microalgae in Open Raceway Ponds (ORP) for 21 geographic locations in the contiguous United States (U.S.). For each location, comprehensive life cycle assessment (LCA) is performed for multiple microalgal biomass production pathways, consisting of a combination of cultivation and harvesting options. Results Results indicate that the EROIfossil for microalgae biomass vary from 0.38 to 1.08 with life cycle GHG emissions of −46.2 to 48.9 (g CO2 eq/MJ-biomass) and direct WDs of 20.8 to 38.8 (Liters/MJ-biomass) over the range of scenarios analyzed. Further anaylsis reveals that the EROIfossil for production pathways is relatively location invariant, and that algae’s life cycle energy balance and GHG impacts are highly dependent on cultivation and harvesting parameters. Contrarily, algae’s direct water demands were found to be highly sensitive to geographic location, and thus may be a constraining factor in sustainable algal-derived biofuel production. Additionally, scenarios with promising EROIfossil and GHG emissions profiles are plagued with high technological uncertainty. Conclusions Given the high variability in microalgae’s energy and environmental performance, careful evaluation of the algae-to-fuel supply chain is necessary to ensure the long-term sustainability of emerging algal biofuel systems. Alternative production scenarios and technologies may have the potential to reduce the critical demands of biomass production, and should be considered to make algae a viable and more efficient biofuel alternative. PMID:23786775
Kaspersen, Bjarke Stoltze; Christensen, Thomas Budde; Fredenslund, Anders Michael; Møller, Henrik Bjarne; Butts, Michael Brian; Jensen, Niels H; Kjaer, Tyge
2016-01-15
The interest in sustainable bioenergy solutions has gained great importance in Europe due to the need to reduce GHG emissions and to meet environmental policy targets, not least for the protection of groundwater and surface water quality. In the Municipality of Solrød in Denmark, a novel bioenergy concept for anaerobic co-digestion of food industry residues, manure and beach-cast seaweed has been developed and tested in order to quantify the potential for synergies between climate change mitigation and coastal eutrophication management in the Køge Bay catchment. The biogas plant, currently under construction, was designed to handle an annual input of up to 200,000 t of biomass based on four main fractions: pectin wastes, carrageenan wastes, manure and beach-cast seaweed. This paper describes how this bioenergy concept can contribute to strengthening the linkages between climate change mitigation strategies and Water Framework Directive (WFD) action planning. Our assessments of the projected biogas plant indicate an annual reduction of GHG emissions of approx. 40,000 t CO2 equivalents, corresponding to approx. 1/3 of current total GHG emissions in the Municipality of Solrød. In addition, nitrogen and phosphorous loads to Køge Bay are estimated to be reduced by approx. 63 t yr.(-1) and 9 tyr.(-1), respectively, contributing to the achievement of more than 70% of the nutrient reduction target set for Køge Bay in the first WFD river basin management plan. This study shows that anaerobic co-digestion of the specific food industry residues, pig manure and beach-cast seaweed is feasible and that there is a very significant, cost-effective GHG and nutrient loading mitigation potential for this bioenergy concept. Our research demonstrates how an integrated planning process where considerations about the total environment are integrated into the design and decision processes can support the development of this kind of holistic bioenergy solutions. Copyright © 2015 Elsevier B.V. All rights reserved.
Climate Change Affects Winter Chill for Temperate Fruit and Nut Trees
Luedeling, Eike; Girvetz, Evan H.; Semenov, Mikhail A.; Brown, Patrick H.
2011-01-01
Background Temperate fruit and nut trees require adequate winter chill to produce economically viable yields. Global warming has the potential to reduce available winter chill and greatly impact crop yields. Methodology/Principal Findings We estimated winter chill for two past (1975 and 2000) and 18 future scenarios (mid and end 21st century; 3 Global Climate Models [GCMs]; 3 greenhouse gas emissions [GHG] scenarios). For 4,293 weather stations around the world and GCM projections, Safe Winter Chill (SWC), the amount of winter chill that is exceeded in 90% of all years, was estimated for all scenarios using the “Dynamic Model” and interpolated globally. We found that SWC ranged between 0 and about 170 Chill Portions (CP) for all climate scenarios, but that the global distribution varied across scenarios. Warm regions are likely to experience severe reductions in available winter chill, potentially threatening production there. In contrast, SWC in most temperate growing regions is likely to remain relatively unchanged, and cold regions may even see an increase in SWC. Climate change impacts on SWC differed quantitatively among GCMs and GHG scenarios, with the highest GHG leading to losses up to 40 CP in warm regions, compared to 20 CP for the lowest GHG. Conclusions/Significance The extent of projected changes in winter chill in many major growing regions of fruits and nuts indicates that growers of these commodities will likely experience problems in the future. Mitigation of climate change through reductions in greenhouse gas emissions can help reduce the impacts, however, adaption to changes will have to occur. To better prepare for likely impacts of climate change, efforts should be undertaken to breed tree cultivars for lower chilling requirements, to develop tools to cope with insufficient winter chill, and to better understand the temperature responses of tree crops. PMID:21629649
Zhang, Hai-Lin; Bai, Xiao-Lin; Xue, Jian-Fu; Chen, Zhong-Du; Tang, Hai-Ming; Chen, Fu
2013-01-01
Understanding greenhouse gases (GHG) emissions is becoming increasingly important with the climate change. Most previous studies have focused on the assessment of soil organic carbon (SOC) sequestration potential and GHG emissions from agriculture. However, specific experiments assessing tillage impacts on GHG emission from double-cropped paddy fields in Southern China are relatively scarce. Therefore, the objective of this study was to assess the effects of tillage systems on methane (CH4) and nitrous oxide (N2O) emission in a double rice (Oryza sativa L.) cropping system. The experiment was established in 2005 in Hunan Province, China. Three tillage treatments were laid out in a randomized complete block design: conventional tillage (CT), rotary tillage (RT) and no-till (NT). Fluxes of CH4 from different tillage treatments followed a similar trend during the two years, with a single peak emission for the early rice season and a double peak emission for the late rice season. Compared with other treatments, NT significantly reduced CH4 emission among the rice growing seasons (P<0.05). However, much higher variations in N2O emission were observed across the rice growing seasons due to the vulnerability of N2O to external influences. The amount of CH4 emission in paddy fields was much higher relative to N2O emission. Conversion of CT to NT significantly reduced the cumulative CH4 emission for both rice seasons compared with other treatments (P<0.05). The mean value of global warming potentials (GWPs) of CH4 and N2O emissions over 100 years was in the order of NT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williams, Charles; Green, Andrew S.; Dahle, Douglas
2013-08-01
The findings of this study indicate that potential exists in non-building applications to save energy and costs. This potential could save billions of federal dollars, reduce reliance on fossil fuels, increase energy independence and security, and reduce greenhouse gas emissions. The Federal Government has nearly twenty years of experience with achieving similar energy cost reductions, and letting the energy costs savings pay for themselves, by applying energy savings performance contracts (ESPC) inits buildings. Currently, the application of ESPCs is limited by statute to federal buildings. This study indicates that ESPCs can be a compatible and effective contracting tool for achievingmore » savings in non-building applications.« less
Emergent constraints for aerosol indirect effects
NASA Astrophysics Data System (ADS)
Wang, M.; Zhang, S.; Gong, C.; Ghan, S. J.
2016-12-01
Methane in the U.S. GHG Inventory The EPA's annual Inventory of U.S. Greenhouse Gas Emissions and Sinks (GHG Inventory) includes detailed national estimates of anthropogenic methane emissions. In recent years, new data have become available on methane emissions across a number of anthropogenic sources in the U.S. The GHG Inventory has incorporated newly available data and includes updated emissions estimates from a number of categories. This presentation will discuss the latest GHG Inventory results, including results for the oil and gas, waste, and agriculture sectors. The presentation will also discuss key areas for research, and processes for updating data in the GHG Inventory.
The impact of municipal solid waste management on greenhouse gas emissions in the United States.
Weitz, Keith A; Thorneloe, Susan A; Nishtala, Subba R; Yarkosky, Sherry; Zannes, Maria
2002-09-01
Technological advancements, environmental regulations, and emphasis on resource conservation and recovery have greatly reduced the environmental impacts of municipal solid waste (MSW) management, including emissions of greenhouse gases (GHGs). This study was conducted using a life-cycle methodology to track changes in GHG emissions during the past 25 years from the management of MSW in the United States. For the baseline year of 1974, MSW management consisted of limited recycling, combustion without energy recovery, and landfilling without gas collection or control. This was compared with data for 1980, 1990, and 1997, accounting for changes in MSW quantity, composition, management practices, and technology. Over time, the United States has moved toward increased recycling, composting, combustion (with energy recovery) and landfilling with gas recovery, control, and utilization. These changes were accounted for with historical data on MSW composition, quantities, management practices, and technological changes. Included in the analysis were the benefits of materials recycling and energy recovery to the extent that these displace virgin raw materials and fossil fuel electricity production, respectively. Carbon sinks associated with MSW management also were addressed. The results indicate that the MSW management actions taken by U.S. communities have significantly reduced potential GHG emissions despite an almost 2-fold increase in waste generation. GHG emissions from MSW management were estimated to be 36 million metric tons carbon equivalents (MMTCE) in 1974 and 8 MMTCE in 1997. If MSW were being managed today as it was in 1974, GHG emissions would be approximately 60 MMTCE.
NASA Astrophysics Data System (ADS)
Cui, J. J.; Lai, D. Y. F.
2016-12-01
Forest soil has a great potential in affecting future climate change through biogeochemical cycling and exchanging greenhouse gases (GHGs) with the atmosphere. As a proxy of changing atmospheric CO2 concentration, enhanced litter production arising from CO2 fertilization can affect soil GHG fluxes and induce feedbacks to the climate system. However, these litter-soil- atmosphere interactions remain unclear, especially in subtropical forests. In this study, we carried out static chamber measurements and field manipulations in a subtropical secondary forest in Hong Kong over one year to investigate the temporal variations and controls, as well as the effects of changing litter amounts on soil-atmosphere GHG fluxes. Our results show distinct seasonal pattern of GHG fluxes and soil parameters over the study period. While CO2 flux did not respond significantly to litter manipulation, regression analysis indicates that CO2 flux was regulated by soil temperature and soil moisture. Litter reduction stimulated mean N2O emissions by 105%, and the positive effect was most pronounced during the hot-humid season from May to October. On the other hand, litter addition was found to reduce CH4 uptake by 32%. Our findings suggest that the presence of litter might serve a physical barrier for gas diffusion. It is suggested that the biogeochemical feedback arising from litterfall should be taken into account in simulating the response of forest GHG fluxes to future global change.
EPA Corporate GHG Goal Evaluation Model
The EPA Corporate GHG Goal Evaluation Model provides companies with a transparent and publicly available benchmarking resource to help evaluate and establish new or existing GHG goals that go beyond business as usual for their individual sectors.
Inventory and projection of greenhouse gases emissions for Sumatera Utara Province
NASA Astrophysics Data System (ADS)
Ambarita, H.; Soeharwinto; Ginting, N.; Basyuni, M.; Zen, Z.
2018-03-01
Greenhouse Gases (GHGs) emissions which result in global warming is a serious problem for the human being. Total globally anthropogenic GHG emissions were the highest in the history of the year 2000 to 2010 and reached 49 (4.5) Giga ton CO2eq per year in 2010. Many governments addressed their commitment to reducing GHG emission. The Government of Indonesia (GoI) has released a target in reducing its GHG emissions by 26% from level business as usual by 2020, and this target can be increased up to 41% by international aid. In this study, the GHG emissions for Sumatera Utara province are assessed and divided into six sectors. They are Agricultural, Land Use and Forestry, Energy, Transportation, Industrial, and Waste sectors. The results show that total GHG emissions for Sumatera Utara province in the baseline year 2010 is 191.4 million tons CO2eq. The business-as-usual projection of the GHG emission in 2020 is 354.5 million tons CO2eq. Mitigation actions will reduce GHG emissions up to 30.5% from business as usual emission in 2020.
The true cost of greenhouse gas emissions: analysis of 1,000 global companies.
Ishinabe, Nagisa; Fujii, Hidemichi; Managi, Shunsuke
2013-01-01
This study elucidated the shadow price of greenhouse gas (GHG) emissions for 1,024 international companies worldwide that were surveyed from 15 industries in 37 major countries. Our results indicate that the shadow price of GHG at the firm level is much higher than indicated in previous studies. The higher shadow price was found in this study as a result of the use of Scope 3 GHG emissions data. The results of this research indicate that a firm would carry a high cost of GHG emissions if Scope 3 GHG emissions were the focus of the discussion of corporate social responsibility. In addition, such shadow prices were determined to differ substantially among countries, among sectors, and within sectors. Although a number of studies have calculated the shadow price of GHG emissions, these studies have employed country-level or industry-level data or a small sample of firm-level data in one country. This new data from a worldwide firm analysis of the shadow price of GHG emissions can play an important role in developing climate policy and promoting sustainable development.
Electrification of the transportation sector offers limited country-wide greenhouse gas reductions
NASA Astrophysics Data System (ADS)
Meinrenken, Christoph J.; Lackner, Klaus S.
2014-03-01
Compared with conventional propulsion, plugin and hybrid vehicles may offer reductions in greenhouse gas (GHG) emissions, regional air/noise pollution, petroleum dependence, and ownership cost. Comparing only plugins and hybrids amongst themselves, and focusing on GHG, relative merits of different options have been shown to be more nuanced, depending on grid-carbon-intensity, range and thus battery manufacturing and weight, and trip patterns. We present a life-cycle framework to compare GHG emissions for three drivetrains (plugin-electricity-only, gasoline-only-hybrid, and plugin-hybrid) across driving ranges and grid-carbon-intensities, for passenger cars, vans, buses, or trucks (well-to-wheel plus storage manufacturing). Parameter and model uncertainties are quantified via sensitivity analyses. We find that owing to the interplay of range, GHG/km, and portions of country-wide kms accessible to electrification, GHG reductions achievable from plugins (whether electricity-only or hybrids) are limited even when assuming low-carbon future grids. Furthermore, for policy makers considering GHG from electricity and transportation sectors combined, plugin technology may in fact increase GHG compared to gasoline-only-hybrids, regardless of grid-carbon-intensity.
The True Cost of Greenhouse Gas Emissions: Analysis of 1,000 Global Companies
Ishinabe, Nagisa; Fujii, Hidemichi; Managi, Shunsuke
2013-01-01
This study elucidated the shadow price of greenhouse gas (GHG) emissions for 1,024 international companies worldwide that were surveyed from 15 industries in 37 major countries. Our results indicate that the shadow price of GHG at the firm level is much higher than indicated in previous studies. The higher shadow price was found in this study as a result of the use of Scope 3 GHG emissions data. The results of this research indicate that a firm would carry a high cost of GHG emissions if Scope 3 GHG emissions were the focus of the discussion of corporate social responsibility. In addition, such shadow prices were determined to differ substantially among countries, among sectors, and within sectors. Although a number of studies have calculated the shadow price of GHG emissions, these studies have employed country-level or industry-level data or a small sample of firm-level data in one country. This new data from a worldwide firm analysis of the shadow price of GHG emissions can play an important role in developing climate policy and promoting sustainable development. PMID:24265710
NASA Astrophysics Data System (ADS)
Kritee, K.; Tiwari, R.; Nair, D.; Loecke, T. D.; Adhya, T. K.; Rudek, J.; Ahuja, R.; Hamburg, S.
2013-12-01
At Environmental Defense Fund (EDF), we recognize that any intervention to mitigate greenhouse gas (GHG) emissions should meet the interests of small scale farmers and low-carbon farming (LCF) is an integral component of our work on international climate. As a part of our Emissions Measurement and Methodology Development (EMD) Project, a joint undertaking with Indian NGO partners of the Fair Climate Network (FCN), five GHG measurement laboratories were set up across three states in peninsular (south) India. These labs represent different agro-ecological zones within the dryland agriculture belt in South India for which no reliable datasets on GHG emission have been available. Our approach for collecting gas samples was based on the Gracenet protocol. Sampling for nitrous oxide and methane emissions were made on approximately 50% of the total number of days in a growing season and once a week during fallow periods. In order to capture the peak emissions of nitrous oxide, samples were collected for 3-4 consecutive days after critical events like tillage, weeding, fertilization, and rainfall/irrigation. The research team collected field data at the time of sampling (temperature of the soil, water and air; and water levels). We also recorded parameters (e.g. water, fertilizer, labor and energy use; and yields) which were necessary for calculating farm profitability. Our data from 2012-2013 suggest that, for peninsular India, low-carbon rice cultivation techniques offer very large emission reduction potential (2-5 metric tons CO2e per acre per year), with smaller reductions from peanut and millet (0.15-0.5 metric ton CO2e per acre per season). The Tier 1 IPCC emissions factors 1) grossly underestimate both the amount of nitrous oxide emission from conventional rice cultivation practices, and the extent to which it can be reduced through better fertilizer management and 2) overestimate the methane emission reduction possible due to water management for rice paddies by a small but significant amount. It is crucial to customize fertilizer and water management to each agro-ecological zone such that net GHG emission reduction is maximized. Further comprehensive measurements over next 2-3 growing seasons will make Indian GHG emissions calculations from peninsular region more accurate. Even more importantly, these measurements will enable the region to more effectively reduce emissions from rice cultivation. Our preliminary assessments also show that LCF practices also have the potential to decrease water use by 10-30%, reduce total nitrogen loading in local water bodies by 20-40%, and improve long term soil health by optimizing organic matter and increasing water-holding capacity. Thus, we demonstrate immediate benefits of LCF practices in reducing input costs as well as lay the path for methodology development for better quantification of GHG emission reductions. Monetization of these reductions can provide an additional income stream to small scale farms, thereby helping incentivize adoption of LCF practices. The central payoff is a 'triple win' for society: increased long-term food security (including through enhanced yields), rural economic development (through improved farm profitability and adaptation to climate change), and lower environmental impacts (including lower GHG emissions).
Climate, Agriculture, Energy and the Optimal Allocation of Global Land Use
NASA Astrophysics Data System (ADS)
Steinbuks, J.; Hertel, T. W.
2011-12-01
The allocation of the world's land resources over the course of the next century has become a pressing research question. Continuing population increases, improving, land-intensive diets amongst the poorest populations in the world, increasing production of biofuels and rapid urbanization in developing countries are all competing for land even as the world looks to land resources to supply more environmental services. The latter include biodiversity and natural lands, as well as forests and grasslands devoted to carbon sequestration. And all of this is taking place in the context of faster than expected climate change which is altering the biophysical environment for land-related activities. The goal of the paper is to determine the optimal profile for global land use in the context of growing commercial demands for food and forest products, increasing non-market demands for ecosystem services, and more stringent GHG mitigation targets. We then seek to assess how the uncertainty associated with the underlying biophysical and economic processes influences this optimal profile of land use, in light of potential irreversibility in these decisions. We develop a dynamic long-run, forward-looking partial equilibrium framework in which the societal objective function being maximized places value on food production, liquid fuels (including biofuels), timber production, forest carbon and biodiversity. Given the importance of land-based emissions to any GHG mitigation strategy, as well as the potential impacts of climate change itself on the productivity of land in agriculture, forestry and ecosystem services, we aim to identify the optimal allocation of the world's land resources, over the course of the next century, in the face of alternative GHG constraints. The forestry sector is characterized by multiple forest vintages which add considerable computational complexity in the context of this dynamic analysis. In order to solve this model efficiently, we have employed the Purdue University parallel processing computing cluster. The model is solved over the period 2000 - 2100. Our 100 year baseline accurately reflects developments in global land use over the 10 years that have already transpired, while also incorporating projections of population, income and demand growth from a variety of international agencies. We also consider three counterfactual scenarios (higher growth in energy prices, lower growth in agricultural productivity, and global GHG emissions regulations). Our model baseline predicts that, in absence of market imperfections, growth in cropland/deforestation that account for a large share of land-use GHG emission, declines significantly in the medium run. However, energy prices and policies have a significant effect on agricultural land use. Sensitivity to energy prices is compounded by vulnerability of agriculture to adverse productivity shocks from climate. In a 'perfect storm' of high growth in energy prices and declining agricultural productivity growth, additional demand for cropland leads to significant deforestation and higher GHG emissions. As a result, large welfare losses occur. When we also expect the sector to deliver increased ecosystem services as well as land-based GHG abatement, the pressure on land and water resources can be very significant.
Liddy, Clare; Drosinis, Paul; Deri Armstrong, Catherine; McKellips, Fanny; Afkham, Amir; Keely, Erin
2016-01-01
Objective This study estimates the costs and potential savings associated with all eConsult cases completed between 1 April 2014 and 31 March 2015. Design Costing evaluation from the societal perspective estimating the costs and potential savings associated with all eConsults completed during the study period. Setting Champlain health region in Eastern Ontario, Canada. Population Primary care providers and specialists registered to use the eConsult service. Main outcome measures Costs included (1) delivery costs; (2) specialist remuneration; (3) costs associated with traditional (face-to-face) referrals initiated as a result of eConsult. Potential savings included (1) costs of traditional referrals avoided; (2) indirect patient savings through avoided travel and lost wages/productivity. Net potential societal cost savings were estimated by subtracting total costs from total potential savings. Results A total of 3487 eConsults were completed during the study period. In 40% of eConsults, a face-to-face specialist visit was originally contemplated but avoided as result of eConsult. In 3% of eConsults, a face-to-face specialist visit was not originally contemplated but was prompted as a result of the eConsult. From the societal perspective, total costs were estimated at $207 787 and total potential savings were $246 516. eConsult led to a net societal saving of $38 729 or $11 per eConsult. Conclusions Our findings demonstrate potential cost savings from the societal perspective, as patients avoided the travel costs and lost wages/productivity associated with face-to-face specialist visits. Greater savings are expected once we account for other costs such as avoided tests and visits and potential improved health outcomes associated with shorter wait times. Our findings are valuable for healthcare delivery decision-makers as they seek solutions to improve care in a patient-centred and efficient manner. PMID:27338880
Investigating energy-saving potentials in the cloud.
Lee, Da-Sheng
2014-02-20
Collecting webpage messages can serve as a sensor for investigating the energy-saving potential of buildings. Focusing on stores, a cloud sensor system is developed to collect data and determine their energy-saving potential. The owner of a store under investigation must register online, report the store address, area, and the customer ID number on the electric meter. The cloud sensor system automatically surveys the energy usage records by connecting to the power company website and calculating the energy use index (EUI) of the store. Other data includes the chain store check, company capital, location price, and the influence of weather conditions on the store; even the exposure frequency of store under investigation may impact the energy usage collected online. After collecting data from numerous stores, a multi-dimensional data array is constructed to determine energy-saving potential by identifying stores with similarity conditions. Similarity conditions refer to analyzed results that indicate that two stores have similar capital, business scale, weather conditions, and exposure frequency on web. Calculating the EUI difference or pure technical efficiency of stores, the energy-saving potential is determined. In this study, a real case study is performed. An 8-dimensional (8D) data array is constructed by surveying web data related to 67 stores. Then, this study investigated the savings potential of the 33 stores, using a site visit, and employed the cloud sensor system to determine the saving potential. The case study results show good agreement between the data obtained by the site visit and the cloud investigation, with errors within 4.17%. Among 33 the samples, eight stores have low saving potentials of less than 5%. The developed sensor on the cloud successfully identifies them as having low saving potential and avoids wasting money on the site visit.
Investigating Energy-Saving Potentials in the Cloud
Lee, Da-Sheng
2014-01-01
Collecting webpage messages can serve as a sensor for investigating the energy-saving potential of buildings. Focusing on stores, a cloud sensor system is developed to collect data and determine their energy-saving potential. The owner of a store under investigation must register online, report the store address, area, and the customer ID number on the electric meter. The cloud sensor system automatically surveys the energy usage records by connecting to the power company website and calculating the energy use index (EUI) of the store. Other data includes the chain store check, company capital, location price, and the influence of weather conditions on the store; even the exposure frequency of store under investigation may impact the energy usage collected online. After collecting data from numerous stores, a multi-dimensional data array is constructed to determine energy-saving potential by identifying stores with similarity conditions. Similarity conditions refer to analyzed results that indicate that two stores have similar capital, business scale, weather conditions, and exposure frequency on web. Calculating the EUI difference or pure technical efficiency of stores, the energy-saving potential is determined. In this study, a real case study is performed. An 8-dimensional (8D) data array is constructed by surveying web data related to 67 stores. Then, this study investigated the savings potential of the 33 stores, using a site visit, and employed the cloud sensor system to determine the saving potential. The case study results show good agreement between the data obtained by the site visit and the cloud investigation, with errors within 4.17%. Among 33 the samples, eight stores have low saving potentials of less than 5%. The developed sensor on the cloud successfully identifies them as having low saving potential and avoids wasting money on the site visit. PMID:24561405
Multiple greenhouse gas feedbacks from the land biosphere under future climate change scenarios
NASA Astrophysics Data System (ADS)
Stocker, Benjamin; Roth, Raphael; Joos, Fortunat; Spahni, Renato; Steinacher, Marco; Zaehle, Soenke; Bouwman, Lex; Xu-Ri, Xu-Ri; Prentice, Colin
2013-04-01
Atmospheric concentrations of the three important greenhouse gases (GHG) CO2, CH4, and N2O are mediated by processes in the terrestrial biosphere. The sensitivity of terrestrial GHG emissions to climate and CO2 contributed to the sharp rise in atmospheric GHG concentrations since preindustrial times and leads to multiple feedbacks between the terrestrial biosphere and the climate system. The strength of these feedbacks is determined by (i) the sensitivity of terrestrial GHG emissions to climate and CO2 and (ii) the greenhouse warming potential of the respective gas. Here, we quantify feedbacks from CO2, CH4, N2O, and land surface albedo in a consistent and comprehensive framework based on a large set of simulations conducted with an Earth System Model of Intermediate Complexity. The modeled sensitivities of CH4 and N2O emissions are tested, demonstrating that independent data for non-land (anthropogenic, oceanic, etc.) GHG emissions, combined with simulated emissions from natural and agricultural land reproduces historical atmospheric budgets within their uncertainties. 21st-century scenarios for climate, land use change and reactive nitrogen inputs (Nr) are applied to investigate future GHG emissions. Results suggest that in a business-as-usual scenario, terrestrial N2O emissions increase from 9.0 by today to 9.8-11.1 (RCP 2.6) and 14.2-17.0 TgN2O-N/yr by 2100 (RCP 8.5). Without anthropogenic Nr inputs, the amplification is reduced by 24-32%. Soil CH4 emissions increase from 221 at present to 228-245 in RCP 2.6 and to 303-343 TgCH4/yr in RCP 8.5, and the land becomes a net source of C by 2100 AD. Feedbacks from land imply an additional warming of 1.3-1.5°C by 2300 in RCP 8.5, 0.4-0.5°C of which are due to N2O and CH4. The combined effect of multiple GHGs and albedo represents an increasingly positive total feedback to anthropogenic climate change with positive individual feedbacks from CH4, N2O, and albedo outweighing the diminishing negative feedback from CO2 fertilisation of terrestrial C storage. This positive feedback from terrestrial biogeochemistry amplifies the traditionally defined physical equilibrium climate sensitivity by 23-28%, Strong mitigation, reducing Nr inputs and preserving natural vegetation limits the amplification of terrestrial GHG emissions and prevents the land biosphere from acting as an increasingly strong amplifier of anthropogenic climate change.
USDA-ARS?s Scientific Manuscript database
Little is known about the effect of management practices on net global warming potential (GWP) and greenhouse gas intensity (GHGI) that account for all sources and sinks of greenhouse gas (GHG) emissions in dryland cropping systems. The objective of this study was to compare the effect of a combinat...
USDA-ARS?s Scientific Manuscript database
Agricultural practices contribute significant amount of greenhouse gas (GHG) emissions, but little is known about their effects on net global warming potential (GWP) and greenhouse gas intensity (GHGI) that account for all sources and sinks of carbon dioxide emissions per unit area or crop yield. Se...
Co-Optimization of Fuels and Engines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farrell, John
2016-04-11
The Co-Optimization of Fuels and Engines (Co-Optima) initiative is a new DOE initiative focused on accelerating the introduction of affordable, scalable, and sustainable biofuels and high-efficiency, low-emission vehicle engines. The simultaneous fuels and vehicles research and development (R&D) are designed to deliver maximum energy savings, emissions reduction, and on-road vehicle performance. The initiative's integrated approach combines the previously independent areas of biofuels and combustion R&D, bringing together two DOE Office of Energy Efficiency & Renewable Energy research offices, ten national laboratories, and numerous industry and academic partners to simultaneously tackle fuel and engine research and development (R&D) to maximize energymore » savings and on-road vehicle performance while dramatically reducing transportation-related petroleum consumption and greenhouse gas (GHG) emissions. This multi-year project will provide industry with the scientific underpinnings required to move new biofuels and advanced engine systems to market faster while identifying and addressing barriers to their commercialization. This project's ambitious, first-of-its-kind approach simultaneously tackles fuel and engine innovation to co-optimize performance of both elements and provide dramatic and rapid cuts in fuel use and emissions. This presentation provides an overview of the initiative and reviews recent progress focused on both advanced spark-ignition and compression-ignition approaches.« less
Greenhouse gas emissions from aviation and marine transportation : mitigation potential and policies
DOT National Transportation Integrated Search
2009-12-01
This paper provides an overview of greenhouse gas (GHG) emissions : from aviation and marine transportation and the various mitigation options to reduce these emissions. Reducing global emissions by 50 to 80 percent below 1990 levels by 2050reduct...
Center for Corporate Climate Leadership GHG Inventory Guidance for Low Emitters
Tools and guidance for low emitters and small businesses to develop an organization-wide GHG inventory and establish a plan to ensure GHG emissions data consistency for tracking progress towards reaching an emissions reduction goal.
Land-use change and greenhouse gas emissions from corn and cellulosic ethanol
2013-01-01
Background The greenhouse gas (GHG) emissions that may accompany land-use change (LUC) from increased biofuel feedstock production are a source of debate in the discussion of drawbacks and advantages of biofuels. Estimates of LUC GHG emissions focus mainly on corn ethanol and vary widely. Increasing the understanding of LUC GHG impacts associated with both corn and cellulosic ethanol will inform the on-going debate concerning their magnitudes and sources of variability. Results In our study, we estimate LUC GHG emissions for ethanol from four feedstocks: corn, corn stover, switchgrass, and miscanthus. We use new computable general equilibrium (CGE) results for worldwide LUC. U.S. domestic carbon emission factors are from state-level modelling with a surrogate CENTURY model and U.S. Forest Service data. This paper investigates the effect of several key domestic lands carbon content modelling parameters on LUC GHG emissions. International carbon emission factors are from the Woods Hole Research Center. LUC GHG emissions are calculated from these LUCs and carbon content data with Argonne National Laboratory’s Carbon Calculator for Land Use Change from Biofuels Production (CCLUB) model. Our results indicate that miscanthus and corn ethanol have the lowest (−10 g CO2e/MJ) and highest (7.6 g CO2e/MJ) LUC GHG emissions under base case modelling assumptions. The results for corn ethanol are lower than corresponding results from previous studies. Switchgrass ethanol base case results (2.8 g CO2e/MJ) were the most influenced by assumptions regarding converted forestlands and the fate of carbon in harvested wood products. They are greater than miscanthus LUC GHG emissions because switchgrass is a lower-yielding crop. Finally, LUC GHG emissions for corn stover are essentially negligible and insensitive to changes in model assumptions. Conclusions This research provides new insight into the influence of key carbon content modelling variables on LUC GHG emissions associated with the four bioethanol pathways we examined. Our results indicate that LUC GHG emissions may have a smaller contribution to the overall biofuel life cycle than previously thought. Additionally, they highlight the need for future advances in LUC GHG emissions estimation including improvements to CGE models and aboveground and belowground carbon content data. PMID:23575438
van de Kamp, Mirjam E; van Dooren, Corné; Hollander, Anne; Geurts, Marjolein; Brink, Elizabeth J; van Rossum, Caroline; Biesbroek, Sander; de Valk, Elias; Toxopeus, Ido B; Temme, Elisabeth H M
2018-02-01
To determine the differences in environmental impact and nutrient content of the current Dutch diet and four healthy diets aimed at lowering greenhouse gas (GHG) emissions. GHG emissions (as proxy for environmental impact) and nutrient content of the current Dutch diet and four diets adhering to the Dutch food based dietary guidelines (Wheel of Five), were compared in a scenario study. Scenarios included a healthy diet with or without meat, and the same diets in which only foods with relatively low GHG emissions are chosen. For the current diet, data from the Dutch National Food Consumption Survey 2007-2010 were used. GHG emissions (in kg CO 2 -equivalents) were based on life cycle assessments. Results are reported for men and women aged 19-30years and 31-50years. The effect on GHG emissions of changing the current Dutch diet to a diet according to the Wheel of Five (corresponding with the current diet as close as possible), ranged from -13% for men aged 31-50years to +5% for women aged 19-30years. Replacing meat in this diet and/or consuming only foods with relatively low GHG emissions resulted in average GHG emission reductions varying from 28-46%. In the scenarios in which only foods with relatively low GHG emissions are consumed, fewer dietary reference intakes (DRIs) were met than in the other healthy diet scenarios. However, in all healthy diet scenarios the number of DRIs being met was equal to or higher than that in the current diet. Diets adhering to food based dietary guidelines did not substantially reduce GHG emissions compared to the current Dutch diet, when these diets stayed as close to the current diet as possible. Omitting meat from these healthy diets or consuming only foods with relatively low associated GHG emissions both resulted in GHG emission reductions of around a third. These findings may be used to expand food based dietary guidelines with information on how to reduce the environmental impact of healthy diets. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
NASA Astrophysics Data System (ADS)
Brigham, B. A.; O'Mullan, G. D.; Bird, J. A.
2014-12-01
The tidal Hudson River Estuary (HRE) receives significant inputs of readily dissolvable carbon (C) and nitrogen (N) from incomplete wastewater treatment and sewer overflow during storm events associated with NYC and other urban centers. Nutrient deposition may alter C utilization in the estuarine water column, associated sediments and surrounding wetlands. In these anaerobic systems, we hypothesize that microbial activity is limited by the availability of easily-degradable C (not electron acceptors), which acts as a co-metabolite and provides energy for organic matter decomposition. Sporadic transport of highly C enriched storm derived runoff may substantially enhance greenhouse gas (GHG) production rates through the utilization of stored C pools. To test our hypothesis carbon dioxide (CO2) and methane (CH4) process rates (1) were evaluated from soil cores removed from three distinct HRE wetland sites (Saw Mill Creek, Piermont, and Iona Island Marsh(s)) across a salinity gradient and incubated under varying nutrient treatments. Further, CO2 and CH4 surface water effluxes (2) were quantified from multiple river cruises spanning two years at varying distance from nutrient sources associated with NYC. Incubation experiments from wetland soil core experiments demonstrated that readily degradable C but not inorganic N additions stimulated GHG production (200 - 350 ug C g-1 of dry soil day-1) threefold compared to negative controls. The HRE was found to be both a CO2 and CH4 source under all conditions. The greatest GHG efflux (300 - 3000 nmoles C m-2 day-1) was quantified in mid-channel, tributary, and near shore sites in close proximity to NYC which following precipitation events demonstrated 2-20X increased GHG efflux. These results demonstrate that anthropogenic C additions associated with dense urban centers have the potential to enhance anaerobic microbial degradation of organic matter and subsequent GHG production.
NASA Astrophysics Data System (ADS)
Deng, Hong-Mei; Liang, Qiao-Mei; Liu, Li-Jing; Diaz Anadon, Laura
2017-12-01
The perceived inability of climate change mitigation goals alone to mobilize sufficient climate change mitigation efforts has, among other factors, led to growing research on the co-benefits of reducing greenhouse gas (GHG) emissions. This study conducts a systematic review (SR) of the literature on the co-benefits of mitigating GHG emissions resulting in 1554 papers. We analyze these papers using bibliometric analysis, including a keyword co-occurrence analysis. We then iteratively develop and present a typology of co-benefits, mitigation sectors, geographic scope, and methods based on the manual double coding of the papers resulting from the SR. We find that the co-benefits from GHG mitigation that have received the largest attention of researchers are impacts on ecosystems, economic activity, health, air pollution, and resource efficiency. The co-benefits that have received the least attention include the impacts on conflict and disaster resilience, poverty alleviation (or exacerbation), energy security, technological spillovers and innovation, and food security. Most research has investigated co-benefits from GHG mitigation in the agriculture, forestry and other land use (AFOLU), electricity, transport, and residential sectors, with the industrial sector being the subject of significantly less research. The largest number of co-benefits publications provide analysis at a global level, with relatively few studies providing local (city) level analysis or studying co-benefits in Oceanian or African contexts. Finally, science and engineering methods, in contrast to economic or social science methods, are the methods most commonly employed in co-benefits papers. We conclude that given the potential mobilizing power of understudied co-benefits (e.g. poverty alleviation) and local impacts, the magnitude of GHG emissions from the industrial sector, and the fact that Africa and South America are likely to be severely affected by climate change, there is an opportunity for the research community to fill these gaps.
Solid waste treatment as a high-priority and low-cost alternative for greenhouse gas mitigation.
Ayalon, O; Avnimelech, Y; Shechter, M
2001-05-01
The increased concern about environmental problems caused by inadequate waste management, as well as the concern about global warming, promotes actions toward a sustainable management of the organic fraction of the waste. Landfills, the most common means to dispose of municipal solid waste (MSW), lead to the conversion of the organic waste to biogas, containing about 50% methane, a very active greenhouse gas (GHG). One unit of methane has a global warming potential of 21 computed for a 100-year horizon or 56 computed for 20 years. The waste sector in Israel contributes 13% of total greenhouse gases (GHG) emissions for a time horizon of 100 years (for a time horizon of 20 years, the waste sector contribution equals to more than 25% of total GHG emissions). The ultimate goal is to minimize the amount of methane (CH4) by converting it to CO2. This can be achieved by physicochemical means (e.g., landfill gas flare, incineration) or by biological processes (e.g., composting, anaerobic digestion). Since the waste in Israel has a high organic material content, it was found that the most cost-effective means to treat the degradable organic components is by aerobic composting (investment of less than US$ 10 to reduce emission of one ton CO2 equivalent per year). Another benefit of this technology is the ability to implement it within a short period. The suggested approach, which should be implemented especially in developing countries, could reduce a significant amount of GHG at relatively low cost and short time. The development of a national policy for proper waste treatment can be a significant means to abate GHG emissions in the short term, enabling a gain in time to develop other means for the long run. In addition, the use of CO2 quotas will credit the waste sector and will promote profitable proper waste management.
NASA Astrophysics Data System (ADS)
Voigt, Carolina; Lamprecht, Richard E.; Marushchak, Maija E.; Biasi, Christina; Martikainen, Pertti J.
2014-05-01
Peatlands, especially those located in the highly sensitive arctic and subarctic latitudes, are known to play a major role in the global carbon cycle. Predicted climatic changes - entailing an increase in near-surface temperature and a change in precipitation patterns - will most likely have a serious yet uncertain impact on the greenhouse gas (GHG) balance of these ecosystems. Microbial processes are enhanced by warmer temperatures which may lead to increased trace gas fluxes to the atmosphere. However, the response of ecosystem processes and related GHG fluxes may differ largely across the landscape depending on soil type, vegetation cover, and moisture conditions. In this study we investigate how temperature increase potentially reflects on GHG fluxes (CO2, CH4 and N2O) from various tundra surfaces in the Russian Arctic. These surfaces include raised peat plateau complexes, mineral tundra soils, bare surfaces affected by frost action such as peat circles and thermokarst lake walls, as well as wetlands. Predicted temperature increase and climate change effects are simulated by means of open top chambers (OTCs), which are placed on different soil types for the whole snow-free period. GHG fluxes, gas and nutrient concentrations in the soil profile, as well as supporting environmental parameters are monitored for the full growing season. Aim of the study is not only the quantification of aboveground GHG fluxes from the study area, but the linking of those to underlying biogeochemical processes in permafrost soils. Special emphasis is placed on the interface between active layer and old permafrost and its response to warming, since little is known about the lability of old carbon stocks made available through an increase in active layer depth. Overall goal of the study is to gain a better understanding of C and N cycling in subarctic tundra soils and to deepen knowledge in respect to carbon-permafrost feedbacks in respect to climate.
Cai, Hao; Wang, Michael Q
2014-10-21
The climate impact assessment of vehicle/fuel systems may be incomplete without considering short-lived climate forcers of black carbon (BC) and primary organic carbon (POC). We quantified life-cycle BC and POC emissions of a large variety of vehicle/fuel systems with an expanded Greenhouse gases, Regulated Emissions, and Energy use in Transportation model developed at Argonne National Laboratory. Life-cycle BC and POC emissions have small impacts on life-cycle greenhouse gas (GHG) emissions of gasoline, diesel, and other fuel vehicles, but would add 34, 16, and 16 g CO2 equivalent (CO2e)/mile, or 125, 56, and 56 g CO2e/mile with the 100 or 20 year Global Warming Potentials of BC and POC emissions, respectively, for vehicles fueled with corn stover-, willow tree-, and Brazilian sugarcane-derived ethanol, mostly due to BC- and POC-intensive biomass-fired boilers in cellulosic and sugarcane ethanol plants for steam and electricity production, biomass open burning in sugarcane fields, and diesel-powered agricultural equipment for biomass feedstock production/harvest. As a result, life-cycle GHG emission reduction potentials of these ethanol types, though still significant, are reduced from those without considering BC and POC emissions. These findings, together with a newly expanded GREET version, help quantify the previously unknown impacts of BC and POC emissions on life-cycle GHG emissions of U.S. vehicle/fuel systems.
Lane, Diana R; Ready, Richard C; Buddemeier, Robert W; Martinich, Jeremy A; Shouse, Kate Cardamone; Wobus, Cameron W
2013-01-01
The biological and economic values of coral reefs are highly vulnerable to increasing atmospheric and ocean carbon dioxide concentrations. We applied the COMBO simulation model (COral Mortality and Bleaching Output) to three major U.S. locations for shallow water reefs: South Florida, Puerto Rico, and Hawaii. We compared estimates of future coral cover from 2000 to 2100 for a "business as usual" (BAU) greenhouse gas (GHG) emissions scenario with a GHG mitigation policy scenario involving full international participation in reducing GHG emissions. We also calculated the economic value of changes in coral cover using a benefit transfer approach based on published studies of consumers' recreational values for snorkeling and diving on coral reefs as well as existence values for coral reefs. Our results suggest that a reduced emissions scenario would provide a large benefit to shallow water reefs in Hawaii by delaying or avoiding potential future bleaching events. For Hawaii, reducing emissions is projected to result in an estimated "avoided loss" from 2000 to 2100 of approximately $10.6 billion in recreational use values compared to a BAU scenario. However, reducing emissions is projected to provide only a minor economic benefit in Puerto Rico and South Florida, where sea-surface temperatures are already close to bleaching thresholds and coral cover is projected to drop well below 5% cover under both scenarios by 2050, and below 1% cover under both scenarios by 2100.
Global warming potential of manure amended soils under rice-wheat system in the Indo-Gangetic plains
NASA Astrophysics Data System (ADS)
Bhatia, A.; Pathak, H.; Jain, N.; Singh, P. K.; Singh, A. K.
Use of organic amendments such as farmyard manure (FYM), green manure (GM) and crop residues is important to improve soil health and reduce the dependence on synthetic chemical fertilizer. However, these organic amendments also effect the emissions of greenhouse gas (GHG) from soil. Influence of different organic amendments on emissions of GHG from soil and their global warming potential (GWP) was studied in a field experiment in rice-wheat cropping system of Indo-Gangetic plains (IGP). There was 28% increase in CH 4 emissions on addition of 25% N through Sesbania GM along with urea compared to urea alone. Substitution of 100% inorganic N by organic sources lead to a 60% increase in CH 4 emissions. The carbon equivalent emission from rice-wheat systems varied between 3816 and 4886 kg C equivalent ha -1 depending upon fertilizer and organic amendment. GWP of rice-wheat system increased by 28% on full substitution of organic N by chemical N. However, the C efficiency ratios of the GM and crop residue treatments were at par with the recommended inorganic fertilizer treatment. Thus use of organic amendments along with inorganic fertilizer increases the GWP of the rice-wheat system but may improve the soil fertility status without adversely affecting the C efficiency ratio. However, the trade-off between improved yield and soil health versus GHG emissions should be taken into account while promoting the practice of farming with organic residues substitution for mineral fertilizer.
Schivley, Greg; Ingwersen, Wesley W; Marriott, Joe; Hawkins, Troy R; Skone, Timothy J
2015-07-07
Improvements to coal power plant technology and the cofired combustion of biomass promise direct greenhouse gas (GHG) reductions for existing coal-fired power plants. Questions remain as to what the reduction potentials are from a life cycle perspective and if it will result in unintended increases in impacts to air and water quality and human health. This study provides a unique analysis of the potential environmental impact reductions from upgrading existing subcritical pulverized coal power plants to increase their efficiency, improving environmental controls, cofiring biomass, and exporting steam for industrial use. The climate impacts are examined in both a traditional-100 year GWP-method and a time series analysis that accounts for emission and uptake timing over the life of the power plant. Compared to fleet average pulverized bed boilers (33% efficiency), we find that circulating fluidized bed boilers (39% efficiency) may provide GHG reductions of about 13% when using 100% coal and reductions of about 20-37% when cofiring with 30% biomass. Additional greenhouse gas reductions from combined heat and power are minimal if the steam coproduct displaces steam from an efficient natural gas boiler. These upgrades and cofiring biomass can also reduce other life cycle impacts, although there may be increased impacts to water quality (eutrophication) when using biomass from an intensely cultivated source. Climate change impacts are sensitive to the timing of emissions and carbon sequestration as well as the time horizon over which impacts are considered, particularly for long growth woody biomass.
Lane, Diana R.; Ready, Richard C.; Buddemeier, Robert W.; Martinich, Jeremy A.; Shouse, Kate Cardamone; Wobus, Cameron W.
2013-01-01
The biological and economic values of coral reefs are highly vulnerable to increasing atmospheric and ocean carbon dioxide concentrations. We applied the COMBO simulation model (COral Mortality and Bleaching Output) to three major U.S. locations for shallow water reefs: South Florida, Puerto Rico, and Hawaii. We compared estimates of future coral cover from 2000 to 2100 for a “business as usual” (BAU) greenhouse gas (GHG) emissions scenario with a GHG mitigation policy scenario involving full international participation in reducing GHG emissions. We also calculated the economic value of changes in coral cover using a benefit transfer approach based on published studies of consumers' recreational values for snorkeling and diving on coral reefs as well as existence values for coral reefs. Our results suggest that a reduced emissions scenario would provide a large benefit to shallow water reefs in Hawaii by delaying or avoiding potential future bleaching events. For Hawaii, reducing emissions is projected to result in an estimated “avoided loss” from 2000 to 2100 of approximately $10.6 billion in recreational use values compared to a BAU scenario. However, reducing emissions is projected to provide only a minor economic benefit in Puerto Rico and South Florida, where sea-surface temperatures are already close to bleaching thresholds and coral cover is projected to drop well below 5% cover under both scenarios by 2050, and below 1% cover under both scenarios by 2100. PMID:24391717
Incorporating greenhouse gas (GHG) emissions in long range transportation planning.
DOT National Transportation Integrated Search
2014-05-01
Greenhouse gas (GHG) emissions continue to be an important focus area for state, local, and federal : agencies. The transportation sector is the second biggest contributor to GHG emissions in the U.S., and : Texas contributes the highest emissions am...
40 CFR 98.43 - Calculating GHG emissions.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Calculating GHG emissions. 98.43 Section 98.43 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Electricity Generation § 98.43 Calculating GHG emissions...
Life cycle analysis of greenhouse gas emissions for fluorescent lamps in mainland China.
Chen, Sha; Zhang, Jiaxing; Kim, Junbeum
2017-01-01
China is the world's largest emitter of carbon dioxide, and it is also one of the largest fluorescent lamp consuming and producing country in the world. However, there are few studies evaluating greenhouse gas (GHG) emissions of fluorescent lamps in China. This analysis compared GHG emissions of compact fluorescent lamps with linear fluorescent lamps using life cycle assessment method in China's national conditions. The GHG emissions of fluorescent lamps from their manufacture to the final disposal phase on the national level of China were also quantified. The results indicate that the use phase dominates the GHG emissions for both lamps. Linear fluorescent lamp is a better source of light compared to compact fluorescent lamp with respect to GHG emissions. The analysis found that in 2011, China generated around 710.90milliontons CO 2 -eq associated with fluorescent lamps. The raw material production and use phases accounted for major GHG emissions. More than half of GHG emissions during the domestic production were embodied in the exported lamps in recent years. This urges the government to take necessary measures that lead to more environmental friendly production, consumption and trade patterns. Copyright © 2016 Elsevier B.V. All rights reserved.
Climate impacts of oil extraction increase significantly with oilfield age
NASA Astrophysics Data System (ADS)
Masnadi, Mohammad S.; Brandt, Adam R.
2017-08-01
Record-breaking temperatures have induced governments to implement targets for reducing future greenhouse gas (GHG) emissions. Use of oil products contributes ~35% of global GHG emissions, and the oil industry itself consumes 3-4% of global primary energy. Because oil resources are becoming increasingly heterogeneous, requiring different extraction and processing methods, GHG studies should evaluate oil sources using detailed project-specific data. Unfortunately, prior oil-sector GHG analysis has largely neglected the fact that the energy intensity of producing oil can change significantly over the life of a particular oil project. Here we use decades-long time-series data from twenty-five globally significant oil fields (>1 billion barrels ultimate recovery) to model GHG emissions from oil production as a function of time. We find that volumetric oil production declines with depletion, but this depletion is accompanied by significant growth--in some cases over tenfold--in per-MJ GHG emissions. Depletion requires increased energy expenditures in drilling, oil recovery, and oil processing. Using probabilistic simulation, we derive a relationship for estimating GHG increases over time, showing an expected doubling in average emissions over 25 years. These trends have implications for long-term emissions and climate modelling, as well as for climate policy.
Nitrous oxide emission and soil carbon sequestration from herbaceous perennial biofuel feedstocks
USDA-ARS?s Scientific Manuscript database
Greenhouse gas (GHG) mitigation and renewable, domestic fuels are needed in the United States. Switchgrass (Panicum virgatum L.) and big bluestem (Andropogon gerdardii Vitman) are potential bioenergy feedstocks that may meet this need. However, managing perennial grasses for feedstock requires nitro...
Soil C storage and greenhouse gas emission perennial grasses managed for bio energy feedstock
USDA-ARS?s Scientific Manuscript database
Perennial grasses like switchgrass or big bluestem when managed as bioenergy feedstock require nitrogenous inputs. Nitrogen fertilizer frequently cause nitrous oxide emission. Therefore, managing grasses as feedstock may reduce the greenhouse gas (GHG) mitigation potential expected from perennial. ...
DOT National Transportation Integrated Search
2014-05-01
Biofuels are being pursued for their potential greenhouse gas emissions benefits, among other reasons. In order to maximize productivity, avoid food-fuel conflicts, and minimize GHG emissions, many advanced biofuel feedstock crops, such as thos...
40 CFR 98.43 - Calculating GHG emissions.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 22 2012-07-01 2012-07-01 false Calculating GHG emissions. 98.43 Section 98.43 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Electricity Generation § 98.43 Calculating GHG emissions. (a...
40 CFR 98.43 - Calculating GHG emissions.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 21 2011-07-01 2011-07-01 false Calculating GHG emissions. 98.43 Section 98.43 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Electricity Generation § 98.43 Calculating GHG emissions. (a...
40 CFR 98.43 - Calculating GHG emissions.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 22 2013-07-01 2013-07-01 false Calculating GHG emissions. 98.43 Section 98.43 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Electricity Generation § 98.43 Calculating GHG emissions. (a...
40 CFR 98.43 - Calculating GHG emissions.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 21 2014-07-01 2014-07-01 false Calculating GHG emissions. 98.43 Section 98.43 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Electricity Generation § 98.43 Calculating GHG emissions. (a...
40 CFR 98.113 - Calculating GHG emissions.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Calculating GHG emissions. 98.113 Section 98.113 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Ferroalloy Production § 98.113 Calculating GHG emissions. You...