Williams, Christopher; Jensen, Mike
2012-11-06
This data was collected by the NOAA 449-MHz and 2.8-GHz profilers in support of the Department of Energy (DOE) and NASA sponsored Mid-latitude Continental Convective Cloud Experiment (MC3E). The profiling radars were deployed in Northern Oklahoma at the DOE Atmospheric Radiation Mission (ARM) Southern Great Plans (SGP) Central Facility from 22 April through 6 June 2011. NOAA deployed three instruments: a Parsivel disdrometer, a 2.8-GHz profiler, and a 449-MHz profiler. The parasivel provided surface estimates of the raindrop size distribution and is the reference used to absolutely calibrate the 2.8 GHz profiler. The 2.8-GHz profiler provided unattenuated reflectivity profiles of the precipitation. The 449-MHz profiler provided estimates of the vertical air motion during precipitation from near the surface to just below the freezing level. By using the combination of 2.8-GHz and 449-MHz profiler observations, vertical profiles of raindrop size distributions can be retrieved. The profilers are often reference by their frequency band: the 2.8-GHz profiler operates in the S-band and the 449-MHz profiler operates in the UHF band. The raw observations are available as well as calibrated spectra and moments. This document describes how the instruments were deployed, how the data was collected, and the format of the archived data.
Williams, Christopher
2012-11-06
This data was collected by the NOAA 449-MHz and 2.8-GHz profilers in support of the Department of Energy (DOE) and NASA sponsored Mid-latitude Continental Convective Cloud Experiment (MC3E). The profiling radars were deployed in Northern Oklahoma at the DOE Atmospheric Radiation Mission (ARM) Southern Great Plans (SGP) Central Facility from 22 April through 6 June 2011. NOAA deployed three instruments: a Parsivel disdrometer, a 2.8-GHz profiler, and a 449-MHz profiler. The parasivel provided surface estimates of the raindrop size distribution and is the reference used to absolutely calibrate the 2.8 GHz profiler. The 2.8-GHz profiler provided unattenuated reflectivity profiles of the precipitation. The 449-MHz profiler provided estimates of the vertical air motion during precipitation from near the surface to just below the freezing level. By using the combination of 2.8-GHz and 449-MHz profiler observations, vertical profiles of raindrop size distributions can be retrieved. The profilers are often reference by their frequency band: the 2.8-GHz profiler operates in the S-band and the 449-MHz profiler operates in the UHF band. The raw observations are available as well as calibrated spectra and moments. This document describes how the instruments were deployed, how the data was collected, and the format of the archived data.
Williams, Christopher; Jensen, Mike
2012-11-06
This data was collected by the NOAA 449-MHz and 2.8-GHz profilers in support of the Department of Energy (DOE) and NASA sponsored Mid-latitude Continental Convective Cloud Experiment (MC3E). The profiling radars were deployed in Northern Oklahoma at the DOE Atmospheric Radiation Mission (ARM) Southern Great Plans (SGP) Central Facility from 22 April through 6 June 2011. NOAA deployed three instruments: a Parsivel disdrometer, a 2.8-GHz profiler, and a 449-MHz profiler. The parasivel provided surface estimates of the raindrop size distribution and is the reference used to absolutely calibrate the 2.8 GHz profiler. The 2.8-GHz profiler provided unattenuated reflectivity profiles of the precipitation. The 449-MHz profiler provided estimates of the vertical air motion during precipitation from near the surface to just below the freezing level. By using the combination of 2.8-GHz and 449-MHz profiler observations, vertical profiles of raindrop size distributions can be retrieved. The profilers are often reference by their frequency band: the 2.8-GHz profiler operates in the S-band and the 449-MHz profiler operates in the UHF band. The raw observations are available as well as calibrated spectra and moments. This document describes how the instruments were deployed, how the data was collected, and the format of the archived data.
Williams, Christopher; Jensen, Mike
2012-11-06
This data was collected by the NOAA 449-MHz and 2.8-GHz profilers in support of the Department of Energy (DOE) and NASA sponsored Mid-latitude Continental Convective Cloud Experiment (MC3E). The profiling radars were deployed in Northern Oklahoma at the DOE Atmospheric Radiation Mission (ARM) Southern Great Plans (SGP) Central Facility from 22 April through 6 June 2011. NOAA deployed three instruments: a Parsivel disdrometer, a 2.8-GHz profiler, and a 449-MHz profiler. The parasivel provided surface estimates of the raindrop size distribution and is the reference used to absolutely calibrate the 2.8 GHz profiler. The 2.8-GHz profiler provided unattenuated reflectivity profiles of the precipitation. The 449-MHz profiler provided estimates of the vertical air motion during precipitation from near the surface to just below the freezing level. By using the combination of 2.8-GHz and 449-MHz profiler observations, vertical profiles of raindrop size distributions can be retrieved. The profilers are often reference by their frequency band: the 2.8-GHz profiler operates in the S-band and the 449-MHz profiler operates in the UHF band. The raw observations are available as well as calibrated spectra and moments. This document describes how the instruments were deployed, how the data was collected, and the format of the archived data.
Williams, Christopher; Jensen, Mike
2012-11-06
This data was collected by the NOAA 449-MHz and 2.8-GHz profilers in support of the Department of Energy (DOE) and NASA sponsored Mid-latitude Continental Convective Cloud Experiment (MC3E). The profiling radars were deployed in Northern Oklahoma at the DOE Atmospheric Radiation Mission (ARM) Southern Great Plans (SGP) Central Facility from 22 April through 6 June 2011. NOAA deployed three instruments: a Parsivel disdrometer, a 2.8-GHz profiler, and a 449-MHz profiler. The parasivel provided surface estimates of the raindrop size distribution and is the reference used to absolutely calibrate the 2.8 GHz profiler. The 2.8-GHz profiler provided unattenuated reflectivity profiles of the precipitation. The 449-MHz profiler provided estimates of the vertical air motion during precipitation from near the surface to just below the freezing level. By using the combination of 2.8-GHz and 449-MHz profiler observations, vertical profiles of raindrop size distributions can be retrieved. The profilers are often reference by their frequency band: the 2.8-GHz profiler operates in the S-band and the 449-MHz profiler operates in the UHF band. The raw observations are available as well as calibrated spectra and moments. This document describes how the instruments were deployed, how the data was collected, and the format of the archived data.
NASA Astrophysics Data System (ADS)
Sekelsky, Stephen Michael
1995-11-01
The Microwave Remote Sensing Laboratory (MIRSL) st the University of Massachusetts has developed a unique single antenna, dual-frequency polarimetric Cloud Profiling Radar System (CPRS). This project was funded by the Department of Energy's Atmospheric Radiation Measurement (ARM) program, and was intended to help fill the void of ground-based remote sensors capable of characterizing cloud microphysical properties. CPRS is unique in that it can simultaneously measure the complex power backscattered from clouds at 33 GHz and 95 GHz through the same aperture. Both the 33 GHz and 95 GHz channels can transmit pulse-to-pulse selectable vertical or horizontal polarization, and simultaneously record both the copolarized and crosspolarized backscatter. CPRS Doppler, polarimetric and dual-wavelength reflectivity measurements combined with in situ cloud measurements should lead to the development of empirical models that can more accurately classify cloud-particle phase and habit, and make better quantitative estimates of particle size distribution parameters. This dissertation describes the CPRS hardware, and presents colocated 33 GHz and 95 GHz measurements that illustrate the use of dual-frequency measurements to estimate particle size when Mie scattering, is observed in backscatter from rain and ice-phase clouds. Polarimetric measurements are presented as a means of discriminating cloud phase (ice-water) and estimating crystal shape in cirrus clouds. Polarimetric and dual-wavelength observations of insects are also presented with a brief discussion of their impact on the interpretation of precipitation and liquid cloud measurements. In precipitation, Diermendjian's equations for Mie backscatter (1) and the Marshal-Palmer drop-size distribution are used to develop models relating differences in the reflectivity and mean velocity at 33 GHz and 95 GHz to the microphysical parameters of rain. These models are then used to estimate mean droplet size from CPRS measurements of drizzle, which were collected in July, 1993 during the system's first field test in Lincoln, NE. The dissertation also presents cirrus cloud and other measurements collected during the DOE-sponsored Remote Cloud Sensing Intensive Operations Period (RCS-IOP) experiment in April, 1994. Zenith-pointing cirrus measurements show small differences in 33 GHz and 95 GHz reflectivity, as models have predicted (2). Depolarization was also detected in a few cases when ice crystals precipitated from the base of a cloud. On May 29, 1994 CPRS observed a convective storm that produced a cirrus anvil cloud and hail. These storms are one 'engine' producing cirrus clouds and are currently a topic of intensive research by climatologists. Both zenith-pointing and range-height data formats are presented. Measurements of depolarization above the melting/layer are compared to in situ observations of particle size and shape. The RCS-IOP experiment also provided a first opportunity to verify our calibration with aircraft in situ measurements, and to compare our cloud measurements to those collected by other remote sensors. (Abstract shortened by UMI.).
The Effect of Clouds on Water Vapor Profiling from the Millimeter-Wave Radiometric Measurements
NASA Technical Reports Server (NTRS)
Wang, J. R.; Spinhirne, J. D.; Racette, P.; Chang, L. A.; Hart, W.
1997-01-01
Simultaneous measurements with the millimeter-wave imaging radiometer (MIR), cloud lidar system (CLS), and the MODIS airborne simulator (MAS) were made aboard the NASA ER-2 aircraft over the western Pacific Ocean on 17-18 January 1993. These measurements were used to study the effects of clouds on water vapor profile retrievals based on millimeter-wave radiometer measurements. The CLS backscatter measurements (at 0.532 and 1.064 am) provided information on the heights and a detailed structure of cloud layers; the types of clouds could be positively identified. All 12 MAS channels (0.6-13 Am) essentially respond to all types of clouds, while the six MIR channels (89-220 GHz) show little sensitivity to cirrus clouds. The radiances from the 12-/Am and 0.875-gm channels of the MAS and the 89-GHz channel of the MIR were used to gauge the performance of the retrieval of water vapor profiles from the MIR observations under cloudy conditions. It was found that, for cirrus and absorptive (liquid) clouds, better than 80% of the retrieval was convergent when one of the three criteria was satisfied; that is, the radiance at 0.875 Am is less than 100 W/cm.sr, or the brightness at 12 Am is greater than 260 K, or brightness at 89 GHz is less than 270 K (equivalent to cloud liquid water of less than 0.04 g/cm). The range of these radiances for convergent retrieval increases markedly when the condition for convergent retrieval was somewhat relaxed. The algorithm of water vapor profiling from the MIR measurements could not perform adequately over the areas of storm-related clouds that scatter radiation at millimeter wavelengths.
Review of Nimbus-5 Microwave Spectrometer results. [atmospheric temperature profile measurement
NASA Technical Reports Server (NTRS)
Staelin, D. H.
1974-01-01
Nimbus-E Microwave Spectrometer (NEMS) data are analyzed, especially those obtained from the 53.65, 54.9, and 58.8 GHz channels, corresponding to sensing at 4, 11, and 18 km respectively. The observations permit highly precise horizontal temperature profiles to be established and are hardly affected by clouds. The sensings of the 54.9 GHz channel unambiguously delineate wave structure on the equator. Horizontal water vapor profiles are derived from the 22.235 and 31.4 GHz channel data.
NASA Astrophysics Data System (ADS)
Ewald, Florian; Gross, Silke; Hagen, Martin; Hirsch, Lutz; Delanoë, Julien
2017-04-01
Clouds play an important role in the climate system since they have a profound influence on Earth's radiation budget and the water cycle. Uncertainties associated with their spatial characteristics as well as their microphysics still introduce large uncertainties in climate change predictions. In recent years, our understanding of the inner workings of clouds has been greatly advanced by the deployment of cloud profiling microwave radars from ground as well as from space like CloudSat or the upcoming EarthCARE satellite mission. In order to validate and assess the limitations of these spaceborne missions, a well-calibrated, airborne cloud radar with known sensitivity to clouds is indispensable. Within this context, the German research aircraft HALO was equipped with the high-power (30kW peak power) cloud radar operating at 35 GHz and a high spectral resolution lidar (HSRL) system at 532 nm. During a number of flight experiments over Europe and over the tropical and extra-tropical North-Atlantic, several radar calibration efforts have been made using the ocean surface backscatter. Moreover, CloudSat underflights have been conducted to compare the radar reflectivity and measurement sensitivity between the air- and spaceborne instruments. Additionally, the influence of different radar wavelengths was explored with joint flights of HALO and the French Falcon 20 aircraft, which was equipped with the RASTA cloud radar at 94 GHz and a HSRL at 355 nm. In this presentation, we will give an overview of lessons learned from different calibration strategies using the ocean surface backscatter. Additional measurements of signal linearity and signal saturation will complement this characterization. Furthermore, we will focus on the coordinated airborne measurements regarding the different sensitivity for clouds at 35 GHz and 94 GHz. By using the highly sensitive lidar signals, we show if the high-power cloud radar at 35 GHz can be used to validate spaceborne and airborne measurements at 94 GHz and which differences are to be expected. Furthermore, the coordinated measurements are used to explore the reflectivity cut-offs of CloudSat and future spaceborne constellations and compare them to ground-based systems.
A 94 GHz RF Electronics Subsystem for the CloudSat Cloud Profiling Radar
NASA Technical Reports Server (NTRS)
LaBelle, Remi C.; Girard, Ralph; Arbery, Graham
2003-01-01
The CloudSat spacecraft, scheduled for launch in 2004, will carry the 94 GHz Cloud Profiling Radar (CPR) instrument. The design, assembly and test of the flight Radio Frequency Electronics Subsystem (RFES) for this instrument has been completed and is presented here. The RFES consists of an Upconverter (which includes an Exciter and two Drive Amplifiers (DA's)), a Receiver, and a Transmitter Calibrator assembly. Some key performance parameters of the RFES are as follows: dual 100 mW pulse-modulated drive outputs at 94 GHz, overall Receiver noise figure < 5.0 dB, a highly stable W-band noise source to provide knowledge accuracy of Receiver gain of < 0.4 dB over the 2 year mission life, and a W-band peak power detector to monitor the transmitter output power to within 0.5 dB over life. Some recent monolithic microwave integrated circuit (MMIC) designs were utilized which implement the DA's in 0.1 micron GaAs high electron-mobility transistor (HEMT) technology and the Receiver low-noise amplifier (LNA) in 0.1 micron InP HEMT technology.
G-band atmospheric radars: new frontiers in cloud physics
NASA Astrophysics Data System (ADS)
Battaglia, A.; Westbrook, C. D.; Kneifel, S.; Kollias, P.; Humpage, N.; Löhnert, U.; Tyynelä, J.; Petty, G. W.
2014-01-01
Clouds and associated precipitation are the largest source of uncertainty in current weather and future climate simulations. Observations of the microphysical, dynamical and radiative processes that act at cloud-scales are needed to improve our understanding of clouds. The rapid expansion of ground-based super-sites and the availability of continuous profiling and scanning multi-frequency radar observations at 35 and 94 GHz have significantly improved our ability to probe the internal structure of clouds in high temporal-spatial resolution, and to retrieve quantitative cloud and precipitation properties. However, there are still gaps in our ability to probe clouds due to large uncertainties in the retrievals. The present work discusses the potential of G-band (frequency between 110 and 300 GHz) Doppler radars in combination with lower frequencies to further improve the retrievals of microphysical properties. Our results show that, thanks to a larger dynamic range in dual-wavelength reflectivity, dual-wavelength attenuation and dual-wavelength Doppler velocity (with respect to a Rayleigh reference), the inclusion of frequencies in the G-band can significantly improve current profiling capabilities in three key areas: boundary layer clouds, cirrus and mid-level ice clouds, and precipitating snow.
G band atmospheric radars: new frontiers in cloud physics
NASA Astrophysics Data System (ADS)
Battaglia, A.; Westbrook, C. D.; Kneifel, S.; Kollias, P.; Humpage, N.; Löhnert, U.; Tyynelä, J.; Petty, G. W.
2014-06-01
Clouds and associated precipitation are the largest source of uncertainty in current weather and future climate simulations. Observations of the microphysical, dynamical and radiative processes that act at cloud scales are needed to improve our understanding of clouds. The rapid expansion of ground-based super-sites and the availability of continuous profiling and scanning multi-frequency radar observations at 35 and 94 GHz have significantly improved our ability to probe the internal structure of clouds in high temporal-spatial resolution, and to retrieve quantitative cloud and precipitation properties. However, there are still gaps in our ability to probe clouds due to large uncertainties in the retrievals. The present work discusses the potential of G band (frequency between 110 and 300 GHz) Doppler radars in combination with lower frequencies to further improve the retrievals of microphysical properties. Our results show that, thanks to a larger dynamic range in dual-wavelength reflectivity, dual-wavelength attenuation and dual-wavelength Doppler velocity (with respect to a Rayleigh reference), the inclusion of frequencies in the G band can significantly improve current profiling capabilities in three key areas: boundary layer clouds, cirrus and mid-level ice clouds, and precipitating snow.
NASA Technical Reports Server (NTRS)
Wang, Zhien; Heymsfield, Gerald M.; Li, Lihua; Heymsfield, Andrew J.
2005-01-01
An algorithm to retrieve optically thick ice cloud microphysical property profiles is developed by using the GSFC 9.6 GHz ER-2 Doppler Radar (EDOP) and the 94 GHz Cloud Radar System (CRS) measurements aboard the high-altitude ER-2 aircraft. In situ size distribution and total water content data from the CRYSTAL-FACE field campaign are used for the algorithm development. To reduce uncertainty in calculated radar reflectivity factors (Ze) at these wavelengths, coincident radar measurements and size distribution data are used to guide the selection of mass-length relationships and to deal with the density and non-spherical effects of ice crystals on the Ze calculations. The algorithm is able to retrieve microphysical property profiles of optically thick ice clouds, such as, deep convective and anvil clouds, which are very challenging for single frequency radar and lidar. Examples of retrieved microphysical properties for a deep convective clouds are presented, which show that EDOP and CRS measurements provide rich information to study cloud structure and evolution. Good agreement between IWPs derived from an independent submillimeter-wave radiometer, CoSSIR, and dual-wavelength radar measurements indicates accuracy of the IWC retrieved from the two-frequency radar algorithm.
Water vapor profiling using microwave radiometry
NASA Technical Reports Server (NTRS)
Wang, J. R.; Wilheit, T. T.
1988-01-01
Water vapor is one of the most important constituents in the Earth's atmosphere. Its spatial and temporal variations affect a wide spectrum of meteorological phenomena ranging from the formation of clouds to the development of severe storms. The passive microwave technique offers an excellent means for water vapor measurements. It can provide both day and night coverage under most cloud conditions. Two water vapor absorption features, at 22 and 183 GHz, were explored in the past years. The line strengths of these features differ by nearly two orders of magnitude. As a consequence, the techniques and the final products of water vapor measurements are also quite different. The research effort in the past few years was to improve and extend the retrieval algorithm to the measurements of water vapor profiles under cloudy conditions. In addition, the retrieval of total precipitable water using 183 GHz measurements, but in a manner analogous to the use of 22 GHz measurements, to increase measurement sensitivity for atmospheres of very low moisture content was also explored.
Investigation of passive atmospheric sounding using millimeter and submillimeter wavelength channels
NASA Technical Reports Server (NTRS)
Gasiewski, Albin J.; Kunkee, D. B.; Jackson, D. M.; Blackwell, W.; Sharpe, S.
1994-01-01
Progress by the Georgia Institute of Technology's Laboratory for Radio-science and Remote Sensing in developing techniques for passive microwave retrieval of water vapor profiles and cloud and precipitation parameters using millimeter and submillimeter wavelength channels is reviewed. Channels of particular interest are in the tropospheric transmission windows at 90, 166, 220, 340, and 410 GHz and centered around the water vapor lines at 183 and 325 GHz. Collectively, these channels have potential application in high-resolution precipitation mapping (e.g., from geosynchronous orbit), remote sensing of cloud and precipitation parameters, including cirrus ice mass, and improved retrieval of water vapor profiles. During the period from January 1, 1994 through June 30, 1994 research activities focussed on calibrating and interpreting data from the Millimeter-Wave Imaging Radiometer (MIR). The MIR was deployed on the NASA ER-2 during the Convective Atmospheric Moisture Experiment (CAMEX, September-October 1993) to obtain the first submillimeter-wave tropospheric imagery of convective precipitations. A 325-GHz radiometer consisted of a submillimeter-wave DSB receiver with three IF channels at +/- 1, 3, and 8.5 GHz, and approximately 14 dB DSB noise figure was successfully operated during these experiments. Activities supported under this grant include a study of the impact of local oscillator reflections from the MIR calibration loads, the development of optimal gain and offset filters for radiometric calibration, and the modeling and interpretation of the MIR 325-GHz data over both clear and cloudy atmospheres. In addition, polarimetric radiometer measurements and modeling for ocean surface and atmospheric cloud-ice studies_were supported.
Prediction of slant path rain attenuation statistics at various locations
NASA Technical Reports Server (NTRS)
Goldhirsh, J.
1977-01-01
The paper describes a method for predicting slant path attenuation statistics at arbitrary locations for variable frequencies and path elevation angles. The method involves the use of median reflectivity factor-height profiles measured with radar as well as the use of long-term point rain rate data and assumed or measured drop size distributions. The attenuation coefficient due to cloud liquid water in the presence of rain is also considered. Absolute probability fade distributions are compared for eight cases: Maryland (15 GHz), Texas (30 GHz), Slough, England (19 and 37 GHz), Fayetteville, North Carolina (13 and 18 GHz), and Cambridge, Massachusetts (13 and 18 GHz).
NASA Astrophysics Data System (ADS)
Prigent, Catherine; Wang, Die; Aires, Filipe; Jimenez, Carlos
2017-04-01
The meteorological observations from satellites in the microwave domain are currently limited to below 190 GHz. However, the next generation of European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT) Polar System-Second Generation-EPS-SG will carry an instrument, the Ice Cloud Imager (ICI), with frequencies up to 664 GHz, to improve the characterization of the cloud frozen phase. In this paper, a statistical retrieval of cloud parameters for ICI is developed, trained on a synthetic database derived from the coupling of a mesoscale cloud model and radiative transfer calculations. The hydrometeor profiles simulated with the Weather Research and Forecasting model (WRF) for twelve diverse European mid-latitude situations are used to simulate the brightness temperatures with the Atmospheric Radiative Transfer Simulator (ARTS) to prepare the retrieval database. The WRF+ARTS simulations have been compared to the Special Sensor Microwave Imager/Sounder (SSMIS) observations up to 190 GHz: this successful evaluation gives us confidence in the simulations at the ICI channels from 183 to 664 GHz. Statistical analyses have been performed on this simulated retrieval database, showing that it is not only physically realistic but also statistically satisfactory for retrieval purposes. A first Neural Network (NN) classifier is used to detect the cloud presence. A second NN is developed to retrieve the liquid and ice integrated cloud quantities over sea and land separately. The detection and retrieval of the hydrometeor quantities (i.e., ice, snow, graupel, rain, and liquid cloud) are performed with ICI-only, and with ICI combined with observations from the MicroWave Imager (MWI, with frequencies from 19 to 190 GHz, also on board MetOp-SG). The ICI channels have been optimized for the detection and quantification of the cloud frozen phases: adding the MWI channels improves the performance of the vertically integrated hydrometeor contents, especially for the cloud liquid phases. The relative error for the retrieved integrated frozen water content (FWP, i.e., ice+snow+graupel) is below 40% for 0.1kg/m2 < FWP < 0.5kg/m2 and below 20% for FWP > 0.5 kg/m2.
NASA Astrophysics Data System (ADS)
Lamer, K.; Luke, E. P.; Kollias, P.; Oue, M.; Wang, J.
2017-12-01
The Atmospheric Radiation Measurement (ARM) Climate Research Facility operates a fixed observatory in the Eastern North Atlantic (ENA) on Graciosa Island in the Azores. Straddling the tropics and extratropics, the Azores receive air transported from North America, the Arctic and sometimes Europe. At the ARM ENA site, marine boundary layer clouds are frequently observed all year round. Estimates of drizzle mass flux from the surface to cloud base height are documented using a combination of high sensitivity profiling 35-GHz radar and ceilometer observations. Three years of drizzle mass flux retrievals reveal that statistically, directly over the ENA site, marine boundary layer cloud drizzle rates tend to be weak with few heavy drizzle events. In the summer of 2017, this site hosted the first phase of the Aerosol and Cloud Experiments in the Eastern North Atlantic (ACE-ENA) field campaign, which is motivated by the need for comprehensive in situ characterization of boundary layer structure, low clouds and aerosols. During this phase, the 35-GHz scanning ARM cloud radar was operated as a surveillance radar, providing regional context for the profiling observations. While less sensitive, the scanning radar measurements document a larger number of heavier drizzle events and provide domain-representative estimates of shallow precipitation. A best estimate, domain averaged, shallow precipitation rate for the region around the ARM ENA site is presented. The methodology optimally combines the ability of the profiling observations to detect the weak but frequently occurring drizzle events with the scanning cloud radar's ability to capture the less frequent heavier drizzle events. The technique is also evaluated using high resolution model output and a sophisticated forward radar operator.
NASA Technical Reports Server (NTRS)
Molthan, Andrew L.; Jedlovec, Gary J.; Lapenta, William M.
2008-01-01
The CloudSat Mission, part of the NASA A-Train, is providing the first global survey of cloud profiles and cloud physical properties, observing seasonal and geographical variations that are pertinent to evaluating the way clouds are parameterized in weather and climate forecast models. CloudSat measures the vertical structure of clouds and precipitation from space through the Cloud Profiling Radar (CPR), a 94 GHz nadir-looking radar measuring the power backscattered by clouds as a function of distance from the radar. One of the goals of the CloudSat mission is to evaluate the representation of clouds in forecast models, thereby contributing to improved predictions of weather, climate and the cloud-climate feedback problem. This paper highlights potential limitations in cloud microphysical schemes currently employed in the Weather Research and Forecast (WRF) modeling system. The horizontal and vertical structure of explicitly simulated cloud fields produced by the WRF model at 4-km resolution are being evaluated using CloudSat observations in concert with products derived from MODIS and AIRS. A radiative transfer model is used to produce simulated profiles of radar reflectivity given WRF input profiles of hydrometeor mixing ratios and ambient atmospheric conditions. The preliminary results presented in the paper will compare simulated and observed reflectivity fields corresponding to horizontal and vertical cloud structures associated with midlatitude cyclone events.
Rayleigh beacon for measuring the surface profile of a radio telescope.
Padin, S
2014-12-01
Millimeter-wavelength Rayleigh scattering from water droplets in a cloud is proposed as a means of generating a bright beacon for measuring the surface profile of a radio telescope. A λ=3 mm transmitter, with an output power of a few watts, illuminating a stratiform cloud, can generate a beacon with the same flux as Mars in 10 GHz bandwidth, but the beacon has a narrow line width, so it is extremely bright. The key advantage of the beacon is that it can be used at any time, and positioned anywhere in the sky, as long as there are clouds.
Percentage Contributions from Atmospheric and Surface Features to Computed Brightness Temperatures
NASA Technical Reports Server (NTRS)
Jackson, Gail Skofronick
2006-01-01
Over the past few years, there has become an increasing interest in the use of millimeter-wave (mm-wave) and sub-millimeter-wave (submm-wave) radiometer observations to investigate the properties of ice particles in clouds. Passive radiometric channels respond to both the integrated particle mass throughout the volume and field of view, and to the amount, location, and size distribution of the frozen (and liquid) particles with the sensitivity varying for different frequencies and hydrometeor types. One methodology used since the 1960's to discern the relationship between the physical state observed and the brightness temperature (TB) is through the temperature weighting function profile. In this research, the temperature weighting function concept is exploited to analyze the sensitivity of various characteristics of the cloud profile, such as relative humidity, ice water path, liquid water path, and surface emissivity. In our numerical analysis, we compute the contribution (in Kelvin) from each of these cloud and surface characteristics, so that the sum of these various parts equals the computed TB. Furthermore, the percentage contribution from each of these characteristics is assessed. There is some intermingling/contamination of the contributions from various components due to the integrated nature of passive observations and the absorption and scattering between the vertical layers, but all in all the knowledge gained is useful. This investigation probes the sensitivity over several cloud classifications, such as cirrus, blizzards, light snow, anvil clouds, and heavy rain. The focus is on mm-wave and submm-wave frequencies, however discussions of the effects of cloud variations to frequencies as low as 10 GHz and up to 874 GHz will also be presented. The results show that nearly 60% of the TB value at 89 GHz comes from the earth's surface for even the heaviest blizzard snow rates. On the other hand, a significant percentage of the TB value comes from the snow in the cloud for 166, and 183 plus or minus 7 GHz for the heavy and medium snow rates. For submm-wave channels, there is no contribution from the surface because these channels cannot probe through clouds, nor normal water vapor amounts in clear air regions. This work is extremely valuable in physically-based retrieval algorithm development research.
NASA Technical Reports Server (NTRS)
Molthan, A. L.; Haynes, J. A.; Jedlovec, G. L.; Lapenta, W. M.
2009-01-01
As operational numerical weather prediction is performed at increasingly finer spatial resolution, precipitation traditionally represented by sub-grid scale parameterization schemes is now being calculated explicitly through the use of single- or multi-moment, bulk water microphysics schemes. As computational resources grow, the real-time application of these schemes is becoming available to a broader audience, ranging from national meteorological centers to their component forecast offices. A need for improved quantitative precipitation forecasts has been highlighted by the United States Weather Research Program, which advised that gains in forecasting skill will draw upon improved simulations of clouds and cloud microphysical processes. Investments in space-borne remote sensing have produced the NASA A-Train of polar orbiting satellites, specially equipped to observe and catalog cloud properties. The NASA CloudSat instrument, a recent addition to the A-Train and the first 94 GHz radar system operated in space, provides a unique opportunity to compare observed cloud profiles to their modeled counterparts. Comparisons are available through the use of a radiative transfer model (QuickBeam), which simulates 94 GHz radar returns based on the microphysics of cloudy model profiles and the prescribed characteristics of their constituent hydrometeor classes. CloudSat observations of snowfall are presented for a case in the central United States, with comparisons made to precipitating clouds as simulated by the Weather Research and Forecasting Model and the Goddard single-moment microphysics scheme. An additional forecast cycle is performed with a temperature-based parameterization of the snow distribution slope parameter, with comparisons to CloudSat observations provided through the QuickBeam simulator.
Observations of SO in dark and molecular clouds
NASA Technical Reports Server (NTRS)
Rydbeck, O. E. H.; Hjalmarson, A.; Rydbeck, G.; Ellder, J.; Kollberg, E.; Irvine, W. M.
1980-01-01
The 1(0)-0(1) transition of SO at 30 GHz has been observed in several sources, including the first detection of sulfur monoxide in cold dark clouds without apparent internal energy sources. The SO transition appears to be an excellent tracer of structure in dark clouds, and the data support suggestions that self-absorption is important in determining emission profiles in such regions for large line-strength transitions. Column densities estimated from a comparison of the results for the two isotopic species indicate a high fractional abundance of SO in dark clouds.
NASA Technical Reports Server (NTRS)
McGill, Matthew J.; Li, Li-Hua; Hart, William D.; Heymsfield, Gerald M.; Hlavka, Dennis L.; Vaughan, Mark A.; Winker, David M.
2003-01-01
In the near future NASA plans to fly satellites carrying a multi-wavelength backscatter lidar and a 94-GHz cloud profiling radar in formation to provide complete global profiling of cloud and aerosol properties. The CRYSTAL-FACE field campaign, conducted during July 2002, provided the first high-altitude colocated measurements from lidar and cloud profiling radar to simulate these spaceborne sensors. The lidar and radar provide complementary measurements with varying degrees of measurement overlap. This paper presents initial results of the combined airborne lidar-radar measurements during CRYSTAL-FACE. The overlap of instrument sensitivity is presented, within the context of particular CRYSTAL-FACE conditions. Results are presented to quantify the portion of atmospheric profiles sensed independently by each instrument and the portion sensed simultaneously by the two instruments.
Ice water path estimation and characterization using passive microwave radiometry
NASA Technical Reports Server (NTRS)
Vivekanandan, J.; Turk, J.; Bringi, V. N.
1991-01-01
Model computations of top-of-atmospheric microwave brightness temperatures T(B) from layers of precipitation-sized ice of variable bulk density and ice water content (IWC) are presented. It is shown that the 85-GHz T(B) depends essentially on the ice optical thickness. The results demonstrate the potential usefulness of scattering-based channels for characterizing the ice phase and suggest a top-down methodology for retrieval of cloud vertical structure and precipitation estimation from multifrequency passive microwave measurements. Attention is also given to radiative transfer model results based on the multiparameter radar data initialization from the Cooperative Huntsville Meteorological Experiment (COHMEX) in northern Alabama. It is shown that brightness temperature warming effects due to the inclusion of a cloud liquid water profile are especially significant at 85 GHz during later stages of cloud evolution.
An Analysis of Water Line Profiles in Star Formation Regions Observed by SWAS
NASA Technical Reports Server (NTRS)
Ashby, Matthew L. N.; Bergin, Edwin A.; Plume, Rene; Carpenter, John M.; Neufeld, David A.; Chin, Gordon; Erickson, Neal R.; Goldsmith, Paul F.; Harwit, Martin; Howe, J. E.
2000-01-01
We present spectral line profiles for the 557 GHz 1(sub 1,0) yields 1(sub 0,1) ground-state rotational transition of ortho-H2(16)O for 18 galactic star formation regions observed by SWAS. 2 Water is unambiguously detected in every source. The line profiles exhibit a wide variety of shapes, including single-peaked spectra and self-reversed profiles. We interpret these profiles using a Monte Carlo code to model the radiative transport. The observed variations in the line profiles can be explained by variations in the relative strengths of the bulk flow and small-scale turbulent motions within the clouds. Bulk flow (infall, outflow) must be present in some cloud cores, and in certain cases this bulk flow dominates the turbulent motions.
Investigation of passive atmospheric sounding using millimeter and submillimeter wavelength channels
NASA Technical Reports Server (NTRS)
Gasiewski, A. J.; Adelberg, L. K.; Kunkee, D. B.; Jackson, D. M.
1993-01-01
Progress by investigators at the Georgia Institute of Technology in the development of techniques for passive microwave retrieval of water vapor, cloud, and precipitation parameters using millimeter- and sub-millimeter wavelength channels is reviewed. Channels of particular interest are in the tropospheric transmission windows at 90, 166, 220, 340, and 410 GHz and centered around the water vapor lines at 183 and 325 GHz. Collectively, these channels have potential application in high-resolution mapping (e.g., from geosynchronous orbit), remote sensing of cloud and precipitation parameters, and retrieval of water vapor profiles. During the period from 1 Jan. 1993 through 30 Jun. 1993 the Millimeter-wave Imaging Radiometer (MIR) completed data flights during a two-month long deployment in conjunction with TOGA/COARE. Coincident data was collected from several other ground-based, airborne, and satellite sensors, including the NASA/MSFC AMPR, MIT MTS, DMSP SSM/T-2 satellite, collocated radiosondes, ground- and aircraft-based radiometers and cloud lidars, airborne infrared imagers, solar flux probes, and airborne cloud particle sampling probes.
NASA Astrophysics Data System (ADS)
Buiat, Martina; Porcù, Federico; Dietrich, Stefano
2017-01-01
Cloud electrification and related lightning activity in thunderstorms have their origin in the charge separation and resulting distribution of charged iced particles within the cloud. So far, the ice distribution within convective clouds has been investigated mainly by means of ground-based meteorological radars. In this paper we show how the products from Cloud Profiling Radar (CPR) on board CloudSat, a polar satellite of NASA's Earth System Science Pathfinder (ESSP), can be used to obtain information from space on the vertical distribution of ice particles and ice content and relate them to the lightning activity. The analysis has been carried out, focusing on 12 convective events over Italy that crossed CloudSat overpasses during significant lightning activity. The CPR products considered here are the vertical profiles of cloud ice water content (IWC) and the effective radius (ER) of ice particles, which are compared with the number of strokes as measured by a ground lightning network (LINET). Results show a strong correlation between the number of strokes and the vertical distribution of ice particles as depicted by the 94 GHz CPR products: in particular, cloud upper and middle levels, high IWC content and relatively high ER seem to be favourable contributory causes for CG (cloud to ground) stroke occurrence.
NASA Astrophysics Data System (ADS)
Zhang, Jinqiang; Li, Zhanqing; Chen, Hongbin; Cribb, Maureen
2013-01-01
Cloud vertical structure is a key quantity in meteorological and climate studies, but it is also among the most difficult quantities to observe. In this study, we develop a long-term (10 years) radiosonde-based cloud profile product for the U.S. Department of Energy's Atmospheric Radiation Measurement (ARM) program Southern Great Plains (SGP), Tropical Western Pacific (TWP), and North Slope of Alaska (NSA) sites and a shorter-term product for the ARM Mobile Facility (AMF) deployed in Shouxian, Anhui Province, China (AMF-China). The AMF-China site was in operation from 14 May to 28 December 2008; the ARM sites have been collecting data for over 15 years. The Active Remote Sensing of Cloud (ARSCL) value-added product (VAP), which combines data from the 95-GHz W-band ARM Cloud Radar (WACR) and/or the 35-GHz Millimeter Microwave Cloud Radar (MMCR), is used in this study to validate the radiosonde-based cloud layer retrieval method. The performance of the radiosonde-based cloud layer retrieval method applied to data from different climate regimes is evaluated. Overall, cloud layers derived from the ARSCL VAP and radiosonde data agree very well at the SGP and AMF-China sites. At the TWP and NSA sites, the radiosonde tends to detect more cloud layers in the upper troposphere.
Dichroic Filter for Separating W-Band and Ka-Band
NASA Technical Reports Server (NTRS)
Epp, Larry W.; Durden, Stephen L.; Jamnejad, Vahraz; Long, Ezra M.; Sosnowski, John B.; Higuera, Raymond J.; Chen, Jacqueline C.
2012-01-01
The proposed Aerosol/Cloud/Ecosystems (ACEs) mission development would advance cloud profiling radar from that used in CloudSat by adding a 35-GHz (Ka-band) channel to the 94-GHz (W-band) channel used in CloudSat. In order to illuminate a single antenna, and use CloudSat-like quasi-optical transmission lines, a spatial diplexer is needed to add the Ka-band channel. A dichroic filter separates Ka-band from W-band by employing advances in electrical discharge machining (EDM) and mode-matching analysis techniques developed and validated for designing dichroics for the Deep Space Network (DSN), to develop a preliminary design that both met the requirements of frequency separation and mechanical strength. First, a mechanical prototype was built using an approximately 102-micron-diameter EDM process, and tolerances of the hole dimensions, wall thickness, radius, and dichroic filter thickness measured. The prototype validated the manufacturing needed to design a dichroic filter for a higher-frequency usage than previously used in the DSN. The initial design was based on a Ka-band design, but thicker walls are required for mechanical rigidity than one obtains by simply scaling the Ka-band dichroic filter. The resulting trade of hole dimensions for mechanical rigidity (wall thickness) required electrical redesign of the hole dimensions. Updates to existing codes in the linear solver decreased the analysis time using mode-matching, enabling the electrical design to be realized quickly. This work is applicable to missions and instruments that seek to extend W-band cloud profiling measurements to other frequencies. By demonstrating a dichroic filter that passes W-band, but reflects a lower frequency, this opens up the development of instruments that both compare to and enhance CloudSat.
Improving the Representation of Snow Crystal Properties with a Single-Moment Mircophysics Scheme
NASA Technical Reports Server (NTRS)
Molthan, Andrew L.; Petersen, Walter A.; Case, Jonathan L.; Demek, Scott R.
2010-01-01
Single-moment microphysics schemes are utilized in an increasing number of applications and are widely available within numerical modeling packages, often executed in near real-time to aid in the issuance of weather forecasts and advisories. In order to simulate cloud microphysical and precipitation processes, a number of assumptions are made within these schemes. Snow crystals are often assumed to be spherical and of uniform density, and their size distribution intercept may be fixed to simplify calculation of the remaining parameters. Recently, the Canadian CloudSat/CALIPSO Validation Project (C3VP) provided aircraft observations of snow crystal size distributions and environmental state variables, sampling widespread snowfall associated with a passing extratropical cyclone on 22 January 2007. Aircraft instrumentation was supplemented by comparable surface estimations and sampling by two radars: the C-band, dual-polarimetric radar in King City, Ontario and the NASA CloudSat 94 GHz Cloud Profiling Radar. As radar systems respond to both hydrometeor mass and size distribution, they provide value when assessing the accuracy of cloud characteristics as simulated by a forecast model. However, simulation of the 94 GHz radar signal requires special attention, as radar backscatter is sensitive to the assumed crystal shape. Observations obtained during the 22 January 2007 event are used to validate assumptions of density and size distribution within the NASA Goddard six-class single-moment microphysics scheme. Two high resolution forecasts are performed on a 9-3-1 km grid, with C3VP-based alternative parameterizations incorporated and examined for improvement. In order to apply the CloudSat 94 GHz radar to model validation, the single scattering characteristics of various crystal types are used and demonstrate that the assumption of Mie spheres is insufficient for representing CloudSat reflectivity derived from winter precipitation. Furthermore, snow density and size distribution characteristics are allowed to vary with height, based upon direct aircraft estimates obtained from C3VP data. These combinations improve the representation of modeled clouds versus their radar-observed counterparts, based on profiles and vertical distributions of reflectivity. These meteorological events are commonplace within the mid-latitude cold season and present a challenge to operational forecasters. This study focuses on one event, likely representative of others during the winter season, and aims to improve the representation of snow for use in future operational forecasts.
NASA Astrophysics Data System (ADS)
Accadia, Christophe; Schlüssel, Peter; Phillips, Pepe L.; Wilson, J. Julian W.
2013-10-01
The EUMETSAT Polar System (EPS) will be followed by a second generation system, EPS-SG, in the 2020-2040 timeframe and contribute to the Joint Polar System being jointly set up with NOAA. Among the various missions which are part of EPS-SG, there are the Microwave Imager (MWI) and the Ice Cloud Imager (ICI). The MWI frequencies are from 18 GHz up to 183 GHz. All MWI channels up to 89 GHz measure both V and H polarisations. The primary objective of the MWI mission is to support Numerical Weather Prediction at regional and global scales. The MWI will not only provide continuity of measurements for some heritage microwave imager channels (e.g. SSM/I, AMSR-E) but will also include additional channels such as the 50-55 / 118 GHz bands. The combined use of these channels will provide more information on cloud and precipitation over sea and land. The ICI will provide measurements over the sub-millimetre spectral range contributing to an innovative characterisation of clouds over the whole globe. The ICI has channels at 183 GHz, 325 GHz and 448 GHz with single V polarisation and two channels at 243 GHz and 664 GHz with both V and H polarisation. The ICI's primary objectives are to support climate monitoring and validation of ice cloud models and the parameterisation of ice clouds in weather and climate models through the provision of ice cloud products.
NASA Astrophysics Data System (ADS)
Gasiewski, A. J.; Sanders, B. T.; Gallaher, D. W.; Periasamy, L.; Alvarenga, G.; Weaver, R.; Scambos, T. A.
2014-12-01
PolarCube is a 3U CubeSat based on the CU ALL-STAR bus hosting an eight-channel passive microwave scanning spectrometer operating at the 118.7503 GHz (1-) O2 resonance. The anticipated launch date is in late 2015. It is being designed to operate for 12 months on orbit to provide global 118-GHz spectral imagery of the Earth over a full seasonal cycle. The mission will focus on the study of Arctic vertical temperature structure and its relation to sea ice coverage, but include the secondary goals of assessing the potential for convective cloud mass detection and cloud top altitude measurement and hurricane warm core sounding. The principles used by PolarCube for sounding and cloud measurement have been well established in number of peer-reviewed papers, although measurements using the 118 GHz oxygen line over the dry polar regions (unaffected by water vapor) have never been demonstrated from space. The PolarCube channels are selected to probe clear-air emission over vertical levels from the surface to the lower stratosphere. Operational spaceborne microwave soundings have available for decades but using lower frequencies (50-57 GHz) and from higher altitudes. While the JPSS ATMS sensor provides global coverage at ~32 km resolution PolarCube will improve on this resolution by a factor of two (~16 km), thus facilitating a key science goal of mapping sea ice concentration and extent while obtaining temperature profile data. Additionally, we seek to correlate freeze-thaw line data from the NASA SMAP mission with atmospheric temperature structure to help understand the relationship between clouds, temperature, and surface energy fluxes during seasonal transitions. PolarCube will also provide the first demonstration of a very low cost passive microwave sounder that if operated in a fleet configuration would have the potential to fulfill the goals of the Precipitation Atmospheric Temperature and Humidity (PATH) mission, as defined in the NRC Decadal Survey.
Cloud Particle Size and Water/Ice Ratio Estimation using the DMSP SSMIS Sounder
NASA Astrophysics Data System (ADS)
Peng, G. S.; Fote, A. A.; Wu, D. L.; Boucher, D. J.; Thomas, B. H.; Kishi, A. M.
2008-12-01
The Defense Meteorological Satellite Program (DMSP) Special Sensor Microwave Imager/Sounder (SSMIS) is a next-generation passive conically scanning microwave radiometer. It combines both imaging and sounding capabilities of current operational instruments, SSM/I, SSM/T-1 and SSM/T-2. It also improves the capability of temperature sounding by providing profiles from the surface up to 70 km altitude with higher spatial resolutions (~37.5 for lower air and ~75 km for upper air). DMSP Flight 17 launched on 4 November 2006 from Vandenberg Air Force Base carrying the second SSMIS sounder. During the SSMIS Cal/Val period, cold patches were observed in the 50-55 GHz temperature sounding channels at low latitudes. Cold patches were also more apparent in the horizontal polarization (H- pol) than the Vertical polarization (V-pol) channels. A difference in sensitivity of the H-pol and V-pol channels gives the ratio of water to ice in the clouds. Subsequent investigation showed that these patches appeared in the 91.6 GHz channels but not the 37 GHz channels. This information, together with the theoretical scattering efficiency for spherical particles of various sizes, gives an upper bound of < 2 mm diameter for water and ice particles that may not be detected by SSMIS operational 'cloud clearing' algorithms.
AMF3 CloudSat Overpasses Field Campaign Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matrosov, Sergey; Hardin, Joseph; De Boer, Gijs
Synergy between ground-based and satellite radar observations of clouds and precipitation is important for refining the algorithms to retrieve hydrometeor microphysical parameters, improvements in the retrieval accuracy, and better understanding the advantages and limitations of different retrieval approaches. The new dual-frequency (Ka- and W-band, 35 GHz and 94 GHz) fully polarimetric scanning U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Research Facility cloud radars (SACRs-2) are advanced sensors aimed to significantly enhance remote sensing capabilities (Kollias et al. 2016). One of these radars was deployed as part of the third ARM Mobile Facility (AMF3) at Oliktok Point, Alaska (70.495omore » N, 149.886oW). The National Aeronautics and Space Administration (NASA) CloudSat satellite, which is part of the polar-orbiting A-train satellite constellation, passes over the vicinity of the AMF3 location (typically within 0-7 km depending on a particular overpass) on a descending orbit every 16 days at approximately 13:21 UTC. The nadir pointing W-band CloudSat cloud profiling radar (CPR) provides vertical profiles of reflectivity that are then used for retrievals of hydrometeor parameters (Tanelli et al. 2008). The main objective of the AMF3 CloudSat overpasses intensive operating period (IOP) campaign was to collect approximately collocated in space and time radar data from the SACR-2 and the CloudSat CPR measurements for subsequent joint analysis of radar variables and microphysical retrievals of cloud and precipitation parameters. Providing the reference for the SACR-2 absolute calibration from the well-calibrated CloudSat CPR was another objective of this IOP. The IOP objectives were achieved by conducting seven special SACR-2 scans during the 10.5-min period centered at the exact time of the CloudSat overpass over the AMF3 (~1321 UTC) on six dates of the CloudSat overpasses during the three-month period allocated to this IOP. These six days were March 5 and 21, April 6 and 22, and May 8 and 24.« less
NASA Technical Reports Server (NTRS)
Muller, Bradley M.; Fuelberg, Henry E.; Xiang, Xuwu
1994-01-01
Radiative transfer simulations are performed to determine how water vapor and nonprecipitating cloud liquid water and ice particles within typical midlatitude atmospheres affect brightness temperatures T(sub B)'s of moisture sounding channels used in the Advanced Microwave Sounding Unit (AMSU) and AMSU-like instruments. The purpose is to promote a general understanding of passive top-of-atmosphere T(sub B)'s for window frequencies at 23.8, 89.0, and 157.0 GHz, and water vapor frequencies at 176.31, 180.31, and 182.31 GHz by documenting specific examples. This is accomplished through detailed analyses of T(sub B)'s for idealized atmospheres, mostly representing temperate conditions over land. Cloud effects are considered in terms of five basic properties: droplet size distribution, phase, liquid or ice water content, altitude, and thickness. Effects on T(sub B) of changing surface emissivity also are addressed. The brightness temperature contribution functions are presented as an aid to physically interpreting AMSU T(sub B)'s. Both liquid and ice clouds impact the T(sub B)'s in a variety of ways. The T(sub B)'s at 23.8 and 89 GHz are more strongly affected by altostratus liquid clouds than by cirrus clouds for equivalent water paths. In contrast, channels near 157 and 183 GHz are more strongly affected by ice clouds. Higher clouds have a greater impact on 157- and 183-GHz T(sub B)'s than do lower clouds. Clouds depress T(sub B)'s of the higher-frequency channels by suppressing, but not necessarily obscuring, radiance contributions from below. Thus, T(sub B)'s are less closely associated with cloud-top temperatures than are IR radiometric temperatures. Water vapor alone accounts for up to 89% of the total attenuation by a midtropospheric liquid cloud for channels near 183 GHz. The Rayleigh approximation is found to be adequate for typical droplet size distributions; however, Mie scattering effects from liquid droplets become important for droplet size distribution functions with modal radii greater than 20 micrometers near 157 and 183 GHz, and greater than 30-40 micrometers at 89 GHz. This is due mainly to the relatively small concentrations of droplets much larger than the mode radius. Orographic clouds and tropical cumuli have been observed to contain droplet size distributions with mode radii in the 30-40 micrometers range. Thus, as new instruments bridge the gap between microwave and infrared to frequencies even higher than 183 GHz, radiative transfer modelers are cautioned to explicitly address scattering characteristics of such clouds.
A Bayesian approach to microwave precipitation profile retrieval
NASA Technical Reports Server (NTRS)
Evans, K. Franklin; Turk, Joseph; Wong, Takmeng; Stephens, Graeme L.
1995-01-01
A multichannel passive microwave precipitation retrieval algorithm is developed. Bayes theorem is used to combine statistical information from numerical cloud models with forward radiative transfer modeling. A multivariate lognormal prior probability distribution contains the covariance information about hydrometeor distribution that resolves the nonuniqueness inherent in the inversion process. Hydrometeor profiles are retrieved by maximizing the posterior probability density for each vector of observations. The hydrometeor profile retrieval method is tested with data from the Advanced Microwave Precipitation Radiometer (10, 19, 37, and 85 GHz) of convection over ocean and land in Florida. The CP-2 multiparameter radar data are used to verify the retrieved profiles. The results show that the method can retrieve approximate hydrometeor profiles, with larger errors over land than water. There is considerably greater accuracy in the retrieval of integrated hydrometeor contents than of profiles. Many of the retrieval errors are traced to problems with the cloud model microphysical information, and future improvements to the algorithm are suggested.
High-spatial-resolution passive microwave sounding systems
NASA Technical Reports Server (NTRS)
Staelin, D. H.; Rosenkranz, P. W.
1994-01-01
The principal contributions of this combined theoretical and experimental effort were to advance and demonstrate new and more accurate techniques for sounding atmospheric temperature, humidity, and precipitation profiles at millimeter wavelengths, and to improve the scientific basis for such soundings. Some of these techniques are being incorporated in both research and operational systems. Specific results include: (1) development of the MIT Microwave Temperature Sounder (MTS), a 118-GHz eight-channel imaging spectrometer plus a switched-frequency spectrometer near 53 GHz, for use on the NASA ER-2 high-altitude aircraft, (2) conduct of ER-2 MTS missions in multiple seasons and locations in combination with other instruments, mapping with unprecedented approximately 2-km lateral resolution atmospheric temperature and precipitation profiles, atmospheric transmittances (at both zenith and nadir), frontal systems, and hurricanes, (3) ground based 118-GHz 3-D spectral images of wavelike structure within clouds passing overhead, (4) development and analysis of approaches to ground- and space-based 5-mm wavelength sounding of the upper stratosphere and mesosphere, which supported the planning of improvements to operational weather satellites, (5) development of improved multidimensional and adaptive retrieval methods for atmospheric temperature and humidity profiles, (6) development of combined nonlinear and statistical retrieval techniques for 183-GHz humidity profile retrievals, (7) development of nonlinear statistical retrieval techniques for precipitation cell-top altitudes, and (8) numerical analyses of the impact of remote sensing data on the accuracy of numerical weather predictions; a 68-km gridded model was used to study the spectral properties of error growth.
NASA Technical Reports Server (NTRS)
Prasad, N.; Yeh, Hwa-Young M.; Adler, Robert F.; Tao, Wei-Kuo
1995-01-01
A three-dimensional cloud model, radiative transfer model-based simulation system is tested and validated against the aircraft-based radiance observations of an intense convective system in southeastern Virginia on 29 June 1986 during the Cooperative Huntsville Meteorological Experiment. NASA's ER-2, a high-altitude research aircraft with a complement of radiometers operating at 11-micrometer infrared channel and 18-, 37-, 92-, and 183-GHz microwave channels provided data for this study. The cloud model successfully simulated the cloud system with regard to aircraft- and radar-observed cloud-top heights and diameters and with regard to radar-observed reflectivity structure. For the simulation time found to correspond best with the aircraft- and radar-observed structure, brightness temperatures T(sub b) are simulated and compared with observations for all the microwave frequencies along with the 11-micrometer infrared channel. Radiance calculations at the various frequencies correspond well with the aircraft observations in the areas of deep convection. The clustering of 37-147-GHz T(sub b) observations and the isolation of the 18-GHz values over the convective cores are well simulated by the model. The radiative transfer model, in general, is able to simulate the observations reasonably well from 18 GHz through 174 GHz within all convective areas of the cloud system. When the aircraft-observed 18- and 37-GHz, and 90- and 174-GHz T(sub b) are plotted against each other, the relationships have a gradual difference in the slope due to the differences in the ice particle size in the convective and more stratiform areas of the cloud. The model is able to capture these differences observed by the aircraft. Brightness temperature-rain rate relationships compare reasonably well with the aircraft observations in terms of the slope of the relationship. The model calculations are also extended to select high-frequency channels at 220, 340, and 400 GHz to simulate the Millimeter-wave Imaging Radiometer aircraft instrument to be flown in the near future. All three of these frequencies are able to discriminate the convective and anvil portions of the system, providing useful information similar to that from the frequencies below 183 GHz but with potentially enhanced spatial resolution from a satellite platform. In thin clouds, the dominant effect of water vapor is seen at 174, 340, and 400 GHz. In thick cloudy areas, the scattering effect is dominant at 90 and 220 GHz, while the overlaying water vapor can attenuate at 174, 340, and 400 GHz. All frequencies (90-400 GHz) show strong signatures in the core.
The 94 GHz Cloud Radar System on a NASA ER-2 Aircraft
NASA Technical Reports Server (NTRS)
Li, Lihua; Heymsfield, Gerald M.; Racette, Paul E.; Tian, Lin; Zenker, Ed
2003-01-01
The 94-GHz (W-band) Cloud Radar System (CRS) has been developed and flown on a NASA ER-2 high-altitude (20 km) aircraft. The CRS is a fully coherent, polarimeteric Doppler radar that is capable of detecting clouds and precipitation from the surface up to the aircraft altitude in the lower stratosphere. The radar is especially well suited for cirrus cloud studies because of its high sensitivity and fine spatial resolution. This paper describes the CRS motivation, instrument design, specifications, calibration, and preliminary data &om NASA s Cirrus Regional Study of Tropical Anvils and Cirrus Layers - Florida Area Cirrus Experiment (CRYSTAL-FACE) field campaign. The unique combination of CRS with other sensors on the ER-2 provides an unprecedented opportunity to study cloud radiative effects on the global energy budget. CRS observations are being used to improve our knowledge of atmospheric scattering and attenuation characteristics at 94 GHz, and to provide datasets for algorithm implementation and validation for the upcoming NASA CloudSat mission that will use a 94-GHz spaceborne cloud radar to provide the first direct global survey of the vertical structure of cloud systems.
NASA Astrophysics Data System (ADS)
di Girolamo, P.; Summa, D.; Bhawar, R.; di Iorio, T.; Norton, E. G.; Peters, G.; Dufournet, Y.
2011-11-01
During the Convective and Orographically-induced Precipitation Study (COPS), lidar dark and bright bands were observed by the University of BASILicata Raman lidar system (BASIL) during several intensive (IOPs) and special (SOPs) observation periods (among others, 23 July, 15 August, and 17 August 2007). Lidar data were supported by measurements from the University of Hamburg cloud radar MIRA 36 (36 GHz), the University of Hamburg dual-polarization micro rain radars (24.1 GHz) and the University of Manchester UHF wind profiler (1.29 GHz). Results from BASIL and the radars for 23 July 2007 are illustrated and discussed to support the comprehension of the microphysical and scattering processes responsible for the appearance of the lidar and radar dark and bright bands. Simulations of the lidar dark and bright band based on the application of concentric/eccentric sphere Lorentz-Mie codes and a melting layer model are also provided. Lidar and radar measurements and model results are also compared with measurements from a disdrometer on ground and a two-dimensional cloud (2DC) probe on-board the ATR42 SAFIRE.
Lidar and radar measurements of the melting layer: observations of dark and bright band phenomena
NASA Astrophysics Data System (ADS)
Di Girolamo, P.; Summa, D.; Cacciani, M.; Norton, E. G.; Peters, G.; Dufournet, Y.
2012-05-01
Multi-wavelength lidar measurements in the melting layer revealing the presence of dark and bright bands have been performed by the University of BASILicata Raman lidar system (BASIL) during a stratiform rain event. Simultaneously radar measurements have been also performed from the same site by the University of Hamburg cloud radar MIRA 36 (35.5 GHz), the University of Hamburg dual-polarization micro rain radar (24.15 GHz) and the University of Manchester UHF wind profiler (1.29 GHz). Measurements from BASIL and the radars are illustrated and discussed in this paper for a specific case study on 23 July 2007 during the Convective and Orographically-induced Precipitation Study (COPS). Simulations of the lidar dark and bright band based on the application of concentric/eccentric sphere Lorentz-Mie codes and a melting layer model are also provided. Lidar and radar measurements and model results are also compared with measurements from a disdrometer on ground and a two-dimensional cloud (2DC) probe on-board the ATR42 SAFIRE. Measurements and model results are found to confirm and support the conceptual microphysical/scattering model elaborated by Sassen et al. (2005).
A simple biota removal algorithm for 35 GHz cloud radar measurements
NASA Astrophysics Data System (ADS)
Kalapureddy, Madhu Chandra R.; Sukanya, Patra; Das, Subrata K.; Deshpande, Sachin M.; Pandithurai, Govindan; Pazamany, Andrew L.; Ambuj K., Jha; Chakravarty, Kaustav; Kalekar, Prasad; Krishna Devisetty, Hari; Annam, Sreenivas
2018-03-01
Cloud radar reflectivity profiles can be an important measurement for the investigation of cloud vertical structure (CVS). However, extracting intended meteorological cloud content from the measurement often demands an effective technique or algorithm that can reduce error and observational uncertainties in the recorded data. In this work, a technique is proposed to identify and separate cloud and non-hydrometeor echoes using the radar Doppler spectral moments profile measurements. The point and volume target-based theoretical radar sensitivity curves are used for removing the receiver noise floor and identified radar echoes are scrutinized according to the signal decorrelation period. Here, it is hypothesized that cloud echoes are observed to be temporally more coherent and homogenous and have a longer correlation period than biota. That can be checked statistically using ˜ 4 s sliding mean and standard deviation value of reflectivity profiles. The above step helps in screen out clouds critically by filtering out the biota. The final important step strives for the retrieval of cloud height. The proposed algorithm potentially identifies cloud height solely through the systematic characterization of Z variability using the local atmospheric vertical structure knowledge besides to the theoretical, statistical and echo tracing tools. Thus, characterization of high-resolution cloud radar reflectivity profile measurements has been done with the theoretical echo sensitivity curves and observed echo statistics for the true cloud height tracking (TEST). TEST showed superior performance in screening out clouds and filtering out isolated insects. TEST constrained with polarimetric measurements was found to be more promising under high-density biota whereas TEST combined with linear depolarization ratio and spectral width perform potentially to filter out biota within the highly turbulent shallow cumulus clouds in the convective boundary layer (CBL). This TEST technique is promisingly simple in realization but powerful in performance due to the flexibility in constraining, identifying and filtering out the biota and screening out the true cloud content, especially the CBL clouds. Therefore, the TEST algorithm is superior for screening out the low-level clouds that are strongly linked to the rainmaking mechanism associated with the Indian Summer Monsoon region's CVS.
NASA Technical Reports Server (NTRS)
Prigent, Catherine; Pardo, Juan R.; Mishchenko, Michael I.; Rossow, Willaim B.; Hansen, James E. (Technical Monitor)
2001-01-01
Special Sensor Microwave /Imager (SSM/I) observations in cloud systems are studied over the tropics. Over optically thick cloud systems, presence of polarized signatures at 37 and 85 GHz is evidenced and analyzed with the help of cloud top temperature and optical thickness extracted from visible and IR satellite observations. Scattering signatures at 85 GHz (TbV(85) less than or = 250 K) are associated with polarization differences greater than or = 6 K, approx. 50%, of the time over ocean and approx. 40% over land. In addition. over thick clouds the polarization difference at 37 GHz is rarely negligible. The polarization differences at 37 and 85 GHz do not stem from the surface but are generated in regions of relatively homogeneous clouds having high liquid water content. To interpret the observations, a radiative transfer model that includes the scattering by non-spherical particles is developed. based on the T-matrix approach and using the doubling and adding method. In addition to handling randomly and perfectly oriented particles, this model can also simulate the effect of partial orientation of the hydrometeors. Microwave brightness temperatures are simulated at SSM/I frequencies and are compared with the observations. Polarization differences of approx. 2 K can be simulated at 37 GHz over a rain layer, even using spherical drops. The polarization difference is larger for oriented non-spherical particles. The 85 GHz simulations are very sensitive to the ice phase of the cloud. Simulations with spherical particles or with randomly oriented non-spherical ice particles cannot replicate the observed polarization differences. However, with partially oriented non-spherical particles, the observed polarized signatures at 85 GHz are explained, and the sensitivity of the scattering characteristics to the particle size, asphericity, and orientation is analyzed. Implications on rain and ice retrievals are discussed.
NASA Technical Reports Server (NTRS)
Stutzman, Warren L. (Editor); Brown, Gary S. (Editor)
1991-01-01
The primary objective of the Large Space Antenna (LSA) Science Panel was to evaluate the science benefits that can be realized with a 25-meter class antenna in a microwave/millimeter wave remote sensing system in geostationary orbit. The panel concluded that a 25-meter or larger antenna in geostationary orbit can serve significant passive remote sensing needs in the 10 to 60 GHz frequency range, including measurements of precipitation, water vapor, atmospheric temperature profile, ocean surface wind speed, oceanic cloud liquid water content, and snow cover. In addition, cloud base height, atmospheric wind profile, and ocean currents can potentially be measured using active sensors with the 25-meter antenna. Other environmental parameters, particularly those that do not require high temporal resolution, are better served by low Earth orbit based sensors.
NASA Technical Reports Server (NTRS)
Li, Li-Hua; Heymsfield, Gerald M.; Tian, Lin; Racette, Paul E.
2004-01-01
Scattering properties of the Ocean surface have been widely used as a calibration reference for airborne and spaceborne microwave sensors. However, at millimeter-wave frequencies, the ocean surface backscattering mechanism is still not well understood, in part, due to the lack of experimental measurements. During the Cirrus Regional Study of Tropical Anvils and Cirrus Layers-Florida Area Cirrus Experiment (CRYSTAL-FACE), measurements of ocean surface backscattering were made using a 94-GHz (W-band) cloud radar onboard a NASA ER-2 high-altitude aircraft. The measurement set includes the normalized Ocean surface cross section over a range of the incidence angles under a variety of wind conditions. Analysis of the radar measurements shows good agreement with a quasi-specular scattering model. This unprecedented dataset enhances our knowledge about the Ocean surface scattering mechanism at 94 GHz. The results of this work support the proposition of using the Ocean surface as a calibration reference for airborne millimeter-wave cloud radars and for the ongoing NASA CloudSat mission, which will use a 94-GHz spaceborne cloud radar for global cloud measurements.
NASA Astrophysics Data System (ADS)
Di Girolamo, Paolo; Summa, Donato; Bhawar, Rohini; Di Iorio, Tatiana; Vaughan, Geraint; Norton, Emily; Peters, Gerhard
2009-03-01
During the Convective and Orographically-induced Precipitation Study (COPS), lidar dark bands were observed by the Univ. of BASILicata Raman lidar system (BASIL) on several IOPs and SOPs (among others, 23 July, 15 August, 17 August). Dark band signatures appear in the lidar measurements of particle backscattering at 355, 532 and 1064 nm and particle extinction at 355 and 532 nm, as well as in particle depolarization measurements. Lidar data are supported by measurements from the University of Hamburg cloud radar MIRA 36 (36 GHz), the University of Hamburg dual-polarization micro rain radars (24.1 GHz) and the University of Manchester Radio UHF clear air wind profiler (1.29 GHz). Results from BASIL and the radars are illustrated and discussed to support in the comprehension of the microphysical and scattering processes responsible for the appearance of the lidar dark band and radar bright band.
Observational Approach to Molecular Cloud Evolutation with the Submillimeter-Wave CI Lines
NASA Astrophysics Data System (ADS)
Oka, T.; Yamamoto, S.
Neutral carbon atoms (CI) play important roles both in chemistry and cooling processes of interstellar molecular clouds. It is thus crucial to explore its large area distribution to obtain information on formation processes and thermal balance of molecular clouds. However, observations of the submillimeter-wave CI lines have been limited to small areas around some representative objects. We have constructed a 1.2 m submillimeter-wave telescope at the summit of Mt.Fuji. The telescope was designed for the exclusive use of surveying molecular clouds in two submillimeter-wave CI lines, 3 P1 -3 P0 (492GHz) and 3 P2 -3 P1 (809 GHz), of atomic carbon. A superconductor-insulator-superconductor (SIS) mixer receiver was equipped on the Nasmyth focus of the telescope. The receiver noise temperatures [Trx(DSB)] are 300 K and 1000 K for the 492 GHz and the 809 GHz mixers, respectively. The intermediate frequency is centered at 2 GHz, having a 700 MHz bandwidth. An acousto-optical spectrometer (AOS) with 1024 channel outputs is used as a receiver backend. The telescope was installed at Nishi-yasugawara (alt. 3725 m), which is 200 m north of the highest peak, Kengamine (3776 m), in July 1998. It has b en operatede successfully during 4 observing seasons in a remote way from the Hongo campus of the University of Tokyo. We have already observed more than 40 square degrees of the sky with the CI 492 GHz line. The distribution of CI emission is found to be different from those of the 13 CO or C1 8 O emission in some clouds. These differences are discussed in relation to formation processes of molecular clouds.
Winter QPF Sensitivities to Snow Parameterizations and Comparisons to NASA CloudSat Observations
NASA Technical Reports Server (NTRS)
Molthan, Andrew; Haynes, John M.; Jedlovec, Gary J.; Lapenta, William M.
2009-01-01
Steady increases in computing power have allowed for numerical weather prediction models to be initialized and run at high spatial resolution, permitting a transition from larger scale parameterizations of the effects of clouds and precipitation to the simulation of specific microphysical processes and hydrometeor size distributions. Although still relatively coarse in comparison to true cloud resolving models, these high resolution forecasts (on the order of 4 km or less) have demonstrated value in the prediction of severe storm mode and evolution and are being explored for use in winter weather events . Several single-moment bulk water microphysics schemes are available within the latest release of the Weather Research and Forecast (WRF) model suite, including the NASA Goddard Cumulus Ensemble, which incorporate some assumptions in the size distribution of a small number of hydrometeor classes in order to predict their evolution, advection and precipitation within the forecast domain. Although many of these schemes produce similar forecasts of events on the synoptic scale, there are often significant details regarding precipitation and cloud cover, as well as the distribution of water mass among the constituent hydrometeor classes. Unfortunately, validating data for cloud resolving model simulations are sparse. Field campaigns require in-cloud measurements of hydrometeors from aircraft in coordination with extensive and coincident ground based measurements. Radar remote sensing is utilized to detect the spatial coverage and structure of precipitation. Here, two radar systems characterize the structure of winter precipitation for comparison to equivalent features within a forecast model: a 3 GHz, Weather Surveillance Radar-1988 Doppler (WSR-88D) based in Omaha, Nebraska, and the 94 GHz NASA CloudSat Cloud Profiling Radar, a spaceborne instrument and member of the afternoon or "A-Train" of polar orbiting satellites tasked with cataloguing global cloud characteristics. Each system provides a unique perspective. The WSR-88D operates in a surveillance mode, sampling cloud volumes of Rayleigh scatterers where reflectivity is proportional to the sixth moment of the size distribution of equivalent spheres. The CloudSat radar provides enhanced sensitivity to smaller cloud ice crystals aloft, as well as consistent vertical profiles along each orbit. However, CloudSat reflectivity signatures are complicated somewhat by resonant Mie scattering effects and significant attenuation in the presence of cloud or rain water. Here, both radar systems are applied to a case of light to moderate snowfall within the warm frontal zone of a cold season, synoptic scale storm. Radars allow for an evaluation of the accuracy of a single-moment scheme in replicating precipitation structures, based on the bulk statistical properties of precipitation as suggested by reflectivity signatures.
IceCube: CubeSat 883-GHz Radiometry for Future Ice Cloud Remote Sensing
NASA Technical Reports Server (NTRS)
Wu, Dongliang; Esper, Jaime; Ehsan, Negar; Johnson, Thomas; Mast, William; Piepmeier, Jeffery R.; Racette, Paul E.
2015-01-01
Ice clouds play a key role in the Earth's radiation budget, mostly through their strong regulation of infrared radiation exchange. Accurate observations of global cloud ice and its distribution have been a challenge from space, and require good instrument sensitivities to both cloud mass and microphysical properties. Despite great advances from recent spaceborne radar and passive sensors, uncertainty of current ice water path (IWP) measurements is still not better than a factor of 2. Submillimeter (submm) wave remote sensing offers great potential for improving cloud ice measurements, with simultaneous retrievals of cloud ice and its microphysical properties. The IceCube project is to enable this cloud ice remote sensing capability in future missions, by raising 874-GHz receiver technology TRL from 5 to 7 in a spaceflight demonstration on 3-U CubeSat in a low Earth orbit (LEO) environment. The NASAs Goddard Space Flight Center (GSFC) is partnering with Virginia Diodes Inc (VDI) on the 874-GHz receiver through its Vector Network Analyzer (VNA) extender module product line, to develop an instrument with precision of 0.2 K over 1-second integration and accuracy of 2.0 K or better. IceCube is scheduled to launch to and subsequent release from the International Space Station (ISS) in mid-2016 for nominal operation of 28 plus days. We will present the updated design of the payload and spacecraft systems, as well as the operation concept. We will also show the simulated 874-GHz radiances from the ISS orbits and cloud scattering signals as expected for the IceCube cloud radiometer.
Advancing Technologies for Climate Observation
NASA Technical Reports Server (NTRS)
Wu, D.; Esper, J.; Ehsan, N.; Johnson, T.; Mast, W.; Piepmeier, J.; Racette, P.
2014-01-01
Climate research needs Accurate global cloud ice measurements Cloud ice properties are fundamental controlling variables of radiative transfer and precipitation Cost-effective, sensitive instruments for diurnal and wide-swath coverage Mature technology for space remote sensing IceCube objectivesDevelop and validate a flight-qualified 883 GHz receiver for future use in ice cloud radiometer missions Raise TRL (57) of 883 GHz receiver technology Reduce instrument cost and risk by developing path to space for COTS sub-mm-wave receiver systems Enable remote sensing of global cloud ice with advanced technologies and techniques
Upper-Tropospheric Cloud Ice from IceCube
NASA Astrophysics Data System (ADS)
Wu, D. L.
2017-12-01
Cloud ice plays important roles in Earth's energy budget and cloud-precipitation processes. Knowledge of global cloud ice and its properties is critical for understanding and quantifying its roles in Earth's atmospheric system. It remains a great challenge to measure these variables accurately from space. Submillimeter (submm) wave remote sensing has capability of penetrating clouds and measuring ice mass and microphysical properties. In particular, the 883-GHz frequency is a highest spectral window in microwave frequencies that can be used to fill a sensitivity gap between thermal infrared (IR) and mm-wave sensors in current spaceborne cloud ice observations. IceCube is a cubesat spaceflight demonstration of 883-GHz radiometer technology. Its primary objective is to raise the technology readiness level (TRL) of 883-GHz cloud radiometer for future Earth science missions. By flying a commercial receiver on a 3U cubesat, IceCube is able to achieve fast-track maturation of space technology, by completing its development, integration and testing in 2.5 years. IceCube was successfully delivered to ISS in April 2017 and jettisoned from the International Space Station (ISS) in May 2017. The IceCube cloud-ice radiometer (ICIR) has been acquiring data since the jettison on a daytime-only operation. IceCube adopted a simple design without payload mechanism. It makes maximum utilization of solar power by spinning the spacecraft continuously about the Sun vector at a rate of 1.2° per second. As a result, the ICIR is operated under the limited resources (8.6 W without heater) and largely-varying (18°C-28°C) thermal environments. The spinning cubesat also allows ICIR to have periodical views between the Earth (atmosphere and clouds) and cold space (calibration), from which the first 883-GHz cloud map is obtained. The 883-GHz cloud radiance, sensitive to ice particle scattering, is proportional to cloud ice amount above 10 km. The ICIR cloud map acquired during June 20-July 2, 2017 shows a clear distribution of the inter-tropical convergence zone (ITCZ), as well as the classic Gill-model pattern over the Western Pacific and Indian monsoon regions. Like the ISS, the coverage of ICIR observations is limited to low-to-mid latitudes. More science results and IceCube experiments with the cubesat operation will be discussed.
The DC-8 Submillimeter-Wave Cloud Ice Radiometer
NASA Technical Reports Server (NTRS)
Walter, Steven J.; Batelaan, Paul; Siegel, Peter; Evans, K. Franklin; Evans, Aaron; Balachandra, Balu; Gannon, Jade; Guldalian, John; Raz, Guy; Shea, James
2000-01-01
An airborne radiometer is being developed to demonstrate the capability of radiometry at submillimeter-wavelengths to characterize cirrus clouds. At these wavelengths, cirrus clouds scatter upwelling radiation from water vapor in the lower troposphere. Radiometric measurements made at multiple widely spaced frequencies permit flux variations caused by changes in scattering due to crystal size to be distinguished from changes in cloud ice content. Measurements at dual polarizations can also be used to constrain the mean crystal shape. An airborne radiometer measuring the upwelling submillimeter-wave flux should then able to retrieve both bulk and microphysical cloud properties. The radiometer is being designed to make measurements at four frequencies (183 GHz, 325 GHz, 448 GHz, and 643 GHz) with dual-polarization capability at 643 GHz. The instrument is being developed for flight on NASA's DC-8 and will scan cross-track through an aircraft window. Measurements with this radiometer in combination with independent ground-based and airborne measurements will validate the submillimeter-wave radiometer retrieval techniques. The goal of this effort is to develop a technique to enable spaceborne characterization of cirrus, which will meet a key climate measurement need. The development of an airborne radiometer to validate cirrus retrieval techniques is a critical step toward development of spaced-based radiometers to investigate and monitor cirrus on a global scale. The radiometer development is a cooperative effort of the University of Colorado, Colorado State University, Swales Aerospace, and Jet Propulsion Laboratory and is funded by the NASA Instrument Incubator Program.
Kim, Joongheon; Kim, Jong-Kook
2016-01-01
This paper addresses the computation procedures for estimating the impact of interference in 60 GHz IEEE 802.11ad uplink access in order to construct visual big-data database from randomly deployed surveillance camera sensing devices. The acquired large-scale massive visual information from surveillance camera devices will be used for organizing big-data database, i.e., this estimation is essential for constructing centralized cloud-enabled surveillance database. This performance estimation study captures interference impacts on the target cloud access points from multiple interference components generated by the 60 GHz wireless transmissions from nearby surveillance camera devices to their associated cloud access points. With this uplink interference scenario, the interference impacts on the main wireless transmission from a target surveillance camera device to its associated target cloud access point with a number of settings are measured and estimated under the consideration of 60 GHz radiation characteristics and antenna radiation pattern models.
A water vapour monitor at Paranal Observatory
NASA Astrophysics Data System (ADS)
Kerber, Florian; Rose, Thomas; Chacón, Arlette; Cuevas, Omar; Czekala, Harald; Hanuschik, Reinhard; Momany, Yazan; Navarrete, Julio; Querel, Richard R.; Smette, Alain; van den Ancker, Mario E.; Cure, Michel; Naylor, David A.
2012-09-01
We present the performance characteristics of a water vapour monitor that has been permanently deployed at ESO's Paranal observatory as a part of the VISIR upgrade project. After a careful analysis of the requirements and an open call for tender, the Low Humidity and Temperature Profiling microwave radiometer (LHATPRO), manufactured by Radiometer Physics GmbH (RPG), has been selected. The unit measures several channels across the strong water vapour emission line at 183 GHz, necessary for resolving the low levels of precipitable water vapour (PWV) that are prevalent on Paranal (median ~2.5 mm). The unit comprises the above humidity profiler (183-191 GHz), a temperature profiler (51-58 GHz), and an infrared radiometer (~10 μm) for cloud detection. The instrument has been commissioned during a 2.5 week period in Oct/Nov 2011, by comparing its measurements of PWV and atmospheric profiles with the ones obtained by 22 radiosonde balloons. In parallel an IR radiometer (Univ. Lethbridge) has been operated, and various observations with ESO facility spectrographs have been taken. The RPG radiometer has been validated across the range 0.5 - 9 mm demonstrating an accuracy of better than 0.1 mm. The saturation limit of the radiometer is about 20 mm. Currently, the radiometer is being integrated into the Paranal infrastructure to serve as a high time-resolution monitor in support of VLT science operations. The water vapour radiometer's ability to provide high precision, high time resolution information on this important aspect of the atmosphere will be most useful for conducting IR observations with the VLT under optimal conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Edgeworth R. Westwater; Kenneth S. Gage; Yong Han
1996-09-06
From January 6 to February 28, 1993, the second phase of the Prototype Radiation Observation Experiment (PROBE) was conducted in Kavieng, Papua New Guinea. Data taken during PROBE included frequent radiosondes, 915 MHz Wind profiler/Radio Acoustic Sounding System (RASS) observations of winds and temperatures, and lidar measurements of cloud-base heights. In addition, a dual-channel Microwave Water Substance Radiometer (MWSR) at 23.87 and 31.65 GHz and a Fourier Transform Infrared Radiometer (FTIR) were operated. The FTIR operated between 500 and 2000 cm{sup -1} and measured some of the first high spectral resolution (1 cm{sup -1}) radiation data taken in the tropics.more » The microwave radiometer provided continuous measurements with 30-second resolution of precipitable water vapor (PWV) and integrated cloud liquid (ICL), the RASS measured virtual temperature profiles every 30 minutes, and the cloud lidar provided episodic measurements of clouds every minute. The RASS, MWSR, and FTIR data taken during PROBE were compared with radiosonde data. Broadband longwave and shortwave irradiance data and lidar data were used to identify the presence of cirrus clouds and clear conditions. Comparisons were made between measured and calculated radiance during clear conditions, using radiosonde data as input to a Line-By-Line Radiative Transfer Model. Comparisons of RASS-measured virtual temperature with radiosonde data revealed a significant cold bias below 500 m.« less
EarthCARE mission, overview, implementation approach and development status
NASA Astrophysics Data System (ADS)
Lefebvre, Alain; Hélière, Arnaud; Pérez Albiñana, Abelardo; Wallace, Kotska; Maeusli, Damien; Lemanczyk, Jerzy; Lusteau, Cyrille; Nakatsuka, Hirotaka; Tomita, Eiichi
2016-05-01
The European Space Agency (ESA) and the Japan Aerospace Exploration Agency (JAXA) are co-operating to develop the EarthCARE satellite mission with the fundamental objective of improving the understanding of the processes involving clouds, aerosols and radiation in the Earth's atmosphere in order to include them correctly and reliably in climate and numerical weather prediction models. The satellite will be placed in a Sun-Synchronous Orbit at about 400 Km altitude and14h00 mean local solar time. The payload consisting of a High Spectral Resolution UV Atmospheric LIDar (ATLID), a 94GHz Cloud Profiling Radar (CPR) with Doppler capability, a Multi-Spectral Imager (MSI) and a Broad-Band Radiometer will provide information on cloud and aerosol vertical structure of the atmosphere along the satellite track as well as information about the horizontal structures of clouds and radiant flux from sub-satellite cells. The presentation will cover the configuration of the satellite with its four instruments, the mission implementation approach, an overview of the ground segment and the overall mission development status.
Physical Models of Layered Polar Firn Brightness Temperatures from 0.5 to 2 GHz
NASA Technical Reports Server (NTRS)
Tan, Shurun; Aksoy, Mustafa; Brogioni, Marco; Macelloni, Giovanni; Durand, Michael; Jezek, Kenneth C.; Wang, Tian-Lin; Tsang, Leung; Johnson, Joel T.; Drinkwater, Mark R.;
2015-01-01
We investigate physical effects influencing 0.5-2 GHz brightness temperatures of layered polar firn to support the Ultra Wide Band Software Defined Radiometer (UWBRAD) experiment to be conducted in Greenland and in Antarctica. We find that because ice particle grain sizes are very small compared to the 0.5-2 GHz wavelengths, volume scattering effects are small. Variations in firn density over cm- to m-length scales, however, cause significant effects. Both incoherent and coherent models are used to examine these effects. Incoherent models include a 'cloud model' that neglects any reflections internal to the ice sheet, and the DMRT-ML and MEMLS radiative transfer codes that are publicly available. The coherent model is based on the layered medium implementation of the fluctuation dissipation theorem for thermal microwave radiation from a medium having a nonuniform temperature. Density profiles are modeled using a stochastic approach, and model predictions are averaged over a large number of realizations to take into account an averaging over the radiometer footprint. Density profiles are described by combining a smooth average density profile with a spatially correlated random process to model density fluctuations. It is shown that coherent model results after ensemble averaging depend on the correlation lengths of the vertical density fluctuations. If the correlation length is moderate or long compared with the wavelength (approximately 0.6x longer or greater for Gaussian correlation function without regard for layer thinning due to compaction), coherent and incoherent model results are similar (within approximately 1 K). However, when the correlation length is short compared to the wavelength, coherent model results are significantly different from the incoherent model by several tens of kelvins. For a 10-cm correlation length, the differences are significant between 0.5 and 1.1 GHz, and less for 1.1-2 GHz. Model results are shown to be able to match the v-pol SMOS data closely and predict the h-pol data for small observation angles.
NASA Technical Reports Server (NTRS)
Racette, Paul; Wang, James R.; Ackerman, Steven; Skofronick-Jackson, Gail; Evans, K. Frank; O'CStarr, David
2006-01-01
This paper presents the chronological development of technologies and techniques that have led to a satellite mission concept aimed at quantifying the temporal and spatial distributions of upper tropospheric ice clouds. The Submillimeter-wave and Infrared Ice Cloud Experiment (SIRICE) is an Earth System Science Pathfinder mission concept designed to improve our understanding of the upper tropospheric water cycle and its coupling to the Earth s radiation budget. Ice outflow from convective storm systems is known to play an important role in regional energy budgets; however, ice generation and subsequent precipitation and sublimation are poorly quantified. SIRICE will provide measurements of ice cloud distributions and microphysical properties which are needed for understanding the crucial link between the hydrologic and energy cycles. The SIRICE measurement platform is comprised of two integrated instruments, the Submillimeter/millimeter-wave radiometer (SM4) and the Infrared Cloud Ice Radiometer (IRCIR). The primary instrument is the SM4, a conical scanner that provides a 1600 km swath of the Earth's surface at 53 degree incidence. The SM4 has 6 linearly polarized receivers measuring 12 spectral bands centered at 183 GHz, 325 GHz, 448 GHz, 643 GHz and 874 GHz; two receivers at 643 GHz measure horizontal and vertical polarizations. Submillimeter-wavelengths are well suited to the remote sensing of ice clouds due to the relative size of the wavelengths to particle sizes. Upwelling emission from lower tropospheric water vapor is scattered by the ice clouds thus causing a brightness temperature depression at submillimeter wavelengths. The IRCIR is a push broom imager with approximately 1500 km swath and spectral channels at 11 and 12 micrometers. This combination of coincident infrared and submillimeter-wavelength measurements were chosen because of its ability to provide retrieval of ice water path and median particle size for a wide range of ice clouds from thin cirrus to thick anvil structures. Over the past decade there has been a parallel development of submillimeter-wave technologies, demonstration instruments, and remote sensing techniques that have led to the present SIRICE mission concept. Mapping of these developmental paths reveals the origins, rational and maturity of features of the SIRICE payload such as its channel selection, compact design, and multipoint calibration. This presentation traces the evolution of the SIRICE mission concept from the early 1990's to its present status.
Detection of interstellar CH in the far-infrared
NASA Technical Reports Server (NTRS)
Stacey, Gordon J.; Lugten, J. B.; Genzel, R.
1987-01-01
The first astronomical detection of CH in the far-infrared has been made. A ground state of rotational transition was observed in absorption against the far-infrared continuum peak of Sgr B2. The lines are resolved at a velocity resolution of 62 km/s, have a line width of roughly 250 km/s, and a line center optical depth of about 0.29. The inferred total column density of CH in the ground state along the line of sight is roughly 1.6 x 10 to the 15th/sq cm. Comparison of the far-infrared profiles to the 3 GHz emission lines confirms that the ground-state Lambda-doublet levels are inverted and gives an accurate estimate of the excitation temperature. The excitation temperature of the 3264 MHz line varies from cloud to cloud along the line of sight, the levels being most inverted in the Sgr B2 molecular cloud. The large intensity of the 3264 MHz line in this cloud relative to other clouds along the line of sight may thus be primarily an excitation effect.
NASA Astrophysics Data System (ADS)
Reising, S. C.; Kangaslahti, P.; Schlecht, E.; Bosch-Lluis, X.; Ogut, M.; Padmanabhan, S.; Cofield, R.; Chahat, N.; Brown, S. T.; Jiang, J. H.; Deal, W.; Zamora, A.; Leong, K.; Shih, S.; Mei, G.
2015-12-01
Measurements of upper-tropospheric water vapor and cloud ice at a variety of local times are critically needed to provide information not currently available from microwave sensors in sun-synchronous orbits. Such global measurements would enable increasingly accurate cloud and moisture simulations in global circulation models, improving both climate predictions and knowledge of their uncertainty. In addition, this capability would address the need for measurements of cloud ice particle size distribution and water content in both clean and polluted environments. Complementary measurements of aerosol pollution would allow investigation of its effects on cloud properties and climate. This is particularly important since the uncertainty in the aerosol effect on climate is at least four times as great as the uncertainty in greenhouse gas effects. To address this unmet need, a collaborative team among Colorado State University, Caltech Jet Propulsion Laboratory and Northrop Grumman Corporation is developing and fabricating the Tropospheric Water and Cloud ICE (TWICE) radiometer instrument. TWICE is designed with size, mass, power consumption and downlink data rate compatible with deployment aboard a 6U-Class nanosatellite. TWICE is advancing the state of the art of spaceborne millimeter- and submillimeter-wave radiometers by transitioning from Schottky mixer-based front ends to InP HEMT MMIC low-noise amplifier front ends, substantially reducing the radiometer's mass, volume and power consumption. New low-noise amplifiers and related front-end components are being designed and fabricated by JPL and Northrop Grumman based on InP HEMT MMIC technology up to 670 GHz. The TWICE instrument will provide 16 radiometer channels, including window frequencies near 240, 310 and 670 GHz to perform ice particle sizing and determine total ice water content, as well as four sounding channels each near 118 GHz for temperature sounding and near 183 GHz and 380 GHz for water vapor sounding during nearly all weather conditions, particularly useful in the upper troposphere in the presence of ice clouds.
New Science Enabled by the NASA TROPICS CubeSat Constellation Mission
NASA Astrophysics Data System (ADS)
Blackwell, W. J.; Braun, S. A.; Bennartz, R.; Velden, C.; Demaria, M.; Atlas, R. M.; Dunion, J. P.; Marks, F.; Rogers, R. F.; Annane, B.
2017-12-01
Recent technology advances in miniature microwave radiometers that can be hosted on very small satellites has made possible a new class of affordable constellation missions that provide very high revisit rates of tropical cyclones and other severe weather. The Time-Resolved Observations of Precipitation structure and storm Intensity with a Constellation of Smallsats (TROPICS) mission was selected by NASA as part of the Earth Venture-Instrument (EVI-3) program and is now in development with planned launch readiness in late 2019. The overarching goal for TROPICS is to provide nearly all-weather observations of 3-D temperature and humidity, as well as cloud ice and precipitation horizontal structure, at high temporal resolution to conduct high-value science investigations of tropical cyclones, including: (1) relationships of rapidly evolving precipitation and upper cloud structures to upper-level warm-core intensity and associated storm intensity changes; (2) the evolution of precipitation structure and storm intensification in relationship to environmental humidity fields; and (3) the impact of rapid-update observations on numerical and statistical intensity forecasts of tropical cyclones. TROPICS will provide rapid-refresh microwave measurements (median refresh rate better than 60 minutes for the baseline mission) over the tropics that can be used to observe the thermodynamics of the troposphere and precipitation structure for storm systems at the mesoscale and synoptic scale over the entire storm lifecycle. TROPICS comprises a constellation of six CubeSats in three low-Earth orbital planes. Each CubeSat will host a high performance radiometer to provide temperature profiles using seven channels near the 118.75 GHz oxygen absorption line, water vapor profiles using 3 channels near the 183 GHz water vapor absorption line, imagery in a single channel near 90 GHz for precipitation measurements (when combined with higher resolution water vapor channels), and a single channel at 206 GHz that is more sensitive to precipitation-sized ice particles. This observing system offers an unprecedented combination of horizontal and temporal resolution to measure environmental and inner-core conditions for tropical cyclones on a nearly global scale.
VizieR Online Data Catalog: Mass Distribution of Infrared Dark Clouds (Gomez+, 2014)
NASA Astrophysics Data System (ADS)
Gomez, L.; Wyrowski, F.; Shculler, F.; Menten, K. M.; Ballesteros-Paredes, J.
2014-01-01
Six southern hemisphere clouds with high extinction were observed on 2007-08-25/28 with the LABOCA (Large APEX BOlometer CAmera) instrument on the APEX 12m telescope, at a frequency of 345GHz and a bandwidth of 610GHz (for the instrument, see Siringo et al. 2009A&A...497..945S). (2 data files).
Refrigeration of the 18.3 GHz C_3H_2 Transition in Dark Clouds G1.6-0.25
NASA Technical Reports Server (NTRS)
Kuiper, T. B. H.; Whiteoak, J. B.; Peng, R. -S.; Peters, W. L., III; Reynolds, J. E.
1993-01-01
We have observed the 1_(10)-1_(01) (18.3 GHz) transition of orthocyclopropenylidene, C_(-3)H_(-2), at 24 positions in the unusual dense cloud G1.6- 0.025. Except for one position, the transition is refrigerated, a phenomenon which has not been seen in this transition before.
NASA Technical Reports Server (NTRS)
Petty, Grant W.; Katsaros, Kristina B.
1992-01-01
A detailed parameterization is developed for the contribution of the nonprecipitating atmosphere to the microwave brightness temperatures observed by the Special Sensor Microwave/Imager (SSM/I). The atmospheric variables considered include the viewing angle, the integrated water vapor amount and scale height, the effective tropospheric lapse rate and near-surface temperature, the total cloud liquid water, the effective cloud height, and the surface pressure. The dependence of the radiative variables on meteorological variables is determined for each of the SSM/I frequencies 19.35, 22.235, 37.0, and 85.5 GHz, based on the values computed from 16,893 maritime temperature and humidity profiles representing all latitude belts and all seasons. A comparison of the predicted brightness temperatures with brightness temperatures obtained by direct numerical integration of the radiative transfer equation for the radiosonde-profile dataset yielded rms differences well below 1 K for all four SSM/I frequencies.
Characterization of the atmosphere above a site for millimeter wave astronomy
NASA Astrophysics Data System (ADS)
Nasir, Francesco Tony; Buffa, Franco; Deiana, Gian Luigi
2011-04-01
The Sardinia Radio Telescope (SRT) is a challeging scientific project managed by the National Institute for Astrophysics (INAF), it is being developed at 30 km North of the city of Cagliari, Italy. The goal of the SRT project is to build a general purpose, fully steerable, 64 m diameter radio telescope, capable of operating with high efficiency in the centimeter and millimeter frequency range (0.3-100 GHz). In portions of this frequency range, especially towards the high end, astronomical observations can be heavily deteriorated by non-optimal atmospheric conditions, especially by water vapor content. The water molecule permanent electric dipole in fact, leads to pressure broadened rotational transitions around the 22.23 GHz spectral line. Furthermore, water vapor's continuum absorption and emission may influence higher frequency observations too. To a lower degree, cloud liquid black body radiation can also affect centimeter and millimeter observations. In addition to this, inhomogeneities in water vapor distributions can cause signal phase errors which introduce a great amount of uncertainty to VLBI mode observations. The Astronomical Observatory of Cagliari (OA-CA) has obtained historical timeseries of radiosonde profiles conducted at the airport of Cagliari. Through the radiosonde measurements and an appropriate radiative transfer model, we have performed a statistical analysis of the SRT site's atmosphere which accounts for atmospheric opacity at different frequencies, integrated water vapor (IWV), integrated liquid water (ILW) and cloud cover distributions during the year. This will help to investigate in which period of the year astronomical observations at different frequencies should be performed preferably. The results show that, at the SRT site, K-band astronomical observations are possible all year round, the median opacity at 22.23 GHz is 0.10 Np in the winter (Dec-Jan-Feb) and 0.16 Np in the summer (Jun-Jul-Aug). Integrated water vapor during winter months ranges, on average, between 7 and 15 mm. Cloud cover is usually not present for more than 36% of the time during the year. The atmospheric opacity study indicates that observations at higher frequencies (50-100 GHz) may be performed usefully: the median opacity at 100 GHz is usually below or equal to 0.2 Np in the period that ranges from January to April.
Sensitivity Study of Ice Crystal Optical Properties in the 874 GHz Submillimeter Band
NASA Technical Reports Server (NTRS)
Tang, Guanglin; Yang, Ping; Wu, Dong L.
2015-01-01
Testing of an 874 GHz submillimeter radiometer on meteorological satellites is being planned to improve ice water content retrievals. In this paper we study the optical properties of ice cloud particles in the 874 GHz band. The results show that the bulk scattering and absorption coefficients of an ensemble of ice cloud particles are sensitive to the particle shape and effective diameter, whereas the latter is also sensitive to temperature. The co-polar back scattering cross-section is not sensitive to particle shape, temperature, and the effective diameter in the range of 50200 m.
Differential absorption radar techniques: water vapor retrievals
NASA Astrophysics Data System (ADS)
Millán, Luis; Lebsock, Matthew; Livesey, Nathaniel; Tanelli, Simone
2016-06-01
Two radar pulses sent at different frequencies near the 183 GHz water vapor line can be used to determine total column water vapor and water vapor profiles (within clouds or precipitation) exploiting the differential absorption on and off the line. We assess these water vapor measurements by applying a radar instrument simulator to CloudSat pixels and then running end-to-end retrieval simulations. These end-to-end retrievals enable us to fully characterize not only the expected precision but also their potential biases, allowing us to select radar tones that maximize the water vapor signal minimizing potential errors due to spectral variations in the target extinction properties. A hypothetical CloudSat-like instrument with 500 m by ˜ 1 km vertical and horizontal resolution and a minimum detectable signal and radar precision of -30 and 0.16 dBZ, respectively, can estimate total column water vapor with an expected precision of around 0.03 cm, with potential biases smaller than 0.26 cm most of the time, even under rainy conditions. The expected precision for water vapor profiles was found to be around 89 % on average, with potential biases smaller than 77 % most of the time when the profile is being retrieved close to surface but smaller than 38 % above 3 km. By using either horizontal or vertical averaging, the precision will improve vastly, with the measurements still retaining a considerably high vertical and/or horizontal resolution.
NASA Technical Reports Server (NTRS)
Sadowy, Gregory; Tanelli, Simone; Chamberlain, Neil; Durden, Stephen; Fung, Andy; Sanchez-Barbetty, Mauricio; Thrivikraman, Tushar
2013-01-01
The National Resource Council’s Earth Science Decadal Survey” (NRCDS) has identified the Aerosol/Climate/Ecosystems (ACE) Mission as a priority mission for NASA Earth science. The NRC recommended the inclusion of "a cross-track scanning cloud radar with channels at 94 GHz and possibly 34 GHz for measurement of cloud droplet size, glaciation height, and cloud height". Several radar concepts have been proposed that meet some of the requirements of the proposed ACE mission but none have provided scanning capability at both 34 and 94 GHz due to the challenge of constructing scanning antennas at 94 GHz. In this paper, we will describe a radar design that leverages new developments in microwave monolithic integrated circuits (MMICs) and micro-machining to enable an electronically-scanned radar with both Ka-band (35 GHz) and W-band (94-GHz) channels. This system uses a dual-frequency linear active electronically-steered array (AESA) combined with a parabolic cylindrical reflector. This configuration provides a large aperture (3m x 5m) with electronic-steering but is much simpler than a two-dimension AESA of similar size. Still, the W-band frequency requires element spacing of approximately 2.5 mm, presenting significant challenges for signal routing and incorporation of MMICs. By combining (Gallium Nitride) GaN MMIC technology with micro-machined radiators and interconnects and silicon-germanium (SiGe) beamforming MMICs, we are able to meet all the performance and packaging requirements of the linear array feed and enable simultaneous scanning of Ka-band and W-band radars over swath of up to 100 km.
NASA Astrophysics Data System (ADS)
Majurec, Ninoslav
In the spring of 2001 the Microwave Remote Sensing Laboratory (MIRSL) at the University of Massachusetts began the development of an advanced Multi-Frequency Radar (AMFR) system for studying clouds and precipitation. This mobile radar was designed to consist of three polarimetric Doppler subsystems operating at Ku-band (13.4 GHz), Ka-band (35.6 GHz) and W-band (94.92 GHz). This combination of frequency bands allows a measurement of a wide range of atmospheric targets ranging from weakly reflecting clouds to strong precipitation. The antenna beamwidths at each frequency were intentionally matched, ensuring consistent sampling volume. Multi-frequency radar remote sensing techniques are not widely used because few multi-frequency radars are available to the science community. One exception is the 33 GHz/95 GHz UMass Cloud Profiling Radar System (CPRS), which AMFR is intended to replace. AMFR's multi-parameter capabilities are designed for characterizing the complex microphysics of layer clouds and precipitation processes in winter storms. AMFR will also play an important role in developing algorithms and validating measurements for an upcoming generation of space-borne radars. The frequency bands selected for AMFR match those of several sensors that have been deployed or are under development. These include the Japanese Aerospace Exploration Agencies (JAXA's) Tropical Rainfall Measuring Mission (TRMM) satellite Ku-band (13 GHz) radar, the CloudSat W-band (95 GHz) radar, and the Global Precipitation Mission (GPM) satellite radars at Ku-band and Ka-band. This dissertation describes the AMFR hardware design and development. Compared to CPRS, the addition of one extra frequency band (Ku) will extend AMFR's measurement capabilities towards the larger particle sizes (precipitation). AMFR's design is based around high-power klystron amplifiers. This ensures complete coherency (CPRS uses magnetrons and coherent-on-receive technique). The partial loss in sensitivity due to lower output power of klystron amplifiers (comparing to magnetrons) is compensated by use of pulse compression (linear FM). The problem of range sidelobes (pulse compression artifacts) has been solved by using appropriate windowing functions in the receiver. Satisfactory sidelobe suppression level of 45 dB has been demonstrated in the lab. The currently best achievable range resolution of the AMFR system is 30 m (corresponds to 5 MHz receiver BW, set by the sampling rate of the Analog-to-Digital card). During the design stage, various polarization schemes have been investigated. The polarization scheme analysis showed the switching polarization scheme to be the best suited for the AMFR system. The AMFR subsystems were partially finished in the winter of 2005. Some preliminary tests were conducted in January 2006. Antenna platform was fabricated in summer 2006. The final assembly took place in the fall of 2006. Early results are presented in the dissertation. These results were helpful in revealing of certain problems in the radar system (i.e. immediate processing computer synchronization) that needed to be addressed during system development. Stratiform rain event occurred on December 18 2006 has been analyzed in detail. A number of commonly used theoretical particle size distributions is presented. Furthermore, it is shown that a fully calibrated multi-frequency radar system has capability of separating scattering and attenuation effects. This was accomplished by fitting the theoretical models into the measured data. An alternative method of estimating rain rate that relies on the dual wavelength ratios is also presented. Although not as powerful as theoretical model fitting, it has its merits for off-zenith observations. During January 2007, AMFR system participated in the C3VP experiment (Canadian CloudSat/CALIPSO Validation Project) in south Ontario, Canada. Some of the data obtained during C3VP experiment has been analyzed and presented. Analysis of these two weather events resulted in the development of the initial multi-frequency particle size distribution retrieval algorithm.
The EarthCARE satellite payload
NASA Astrophysics Data System (ADS)
Wallace, Kotska; Perez-Albinana, Abelardo; Lemanczyk, Jerzy; Heliere, Arnaud; Wehr, Tobias; Eisinger, Michael; Lefebvre, Alain; Nakatsuka, Hirotaka; Tomita, Eiichi
2014-10-01
EarthCARE is ESA's third Earth Explorer Core Mission, with JAXA providing one instrument. The mission facilitates unique data product synergies, to improve understanding of atmospheric cloud-aerosol interactions and Earth radiative balance, towards enhancing climate and numerical weather prediction models. This paper will describe the payload, consisting of two active instruments: an ATmospheric LIDar (ATLID) and a Cloud Profiling Radar (CPR), and two passive instruments: a Multi Spectral Imager (MSI) and a Broad Band Radiometer (BBR). ATLID is a UV lidar providing atmospheric echoes, with a vertical resolution of 100 m, up to 40 km altitude. Using very high spectral resolution filtering the relative contributions of particle (aerosols) and Rayleigh (molecular) back scattering will be resolved, allowing cloud and aerosol optical depth to be deduced. Particle scatter co- and cross-polarisation measurements will provide information about the cloud and aerosol particles' physical characteristics. JAXA's 94.05 GHz Cloud Profiling Radar operates with a pulse width of 3.3 μm and repetition frequency 6100 to 7500 Hz. The 2.5 m aperture radar will retrieve data on clouds and precipitation. Doppler shift measurements in the backscatter signal will furthermore allow inference of the vertical motion of particles to an accuracy of about 1 m/s. MSI's 500 m pixel data will provide cloud and aerosol information and give context to the active instrument measurements for 3-D scene construction. Four solar channels and three thermal infrared channels cover 35 km on one side to 115 km on the other side of the other instrument's observations. BBR measures reflected solar and emitted thermal radiation from the scene. To reduce uncertainty in the radiance to flux conversion, three independent view angles are observed for each scene. The combined data allows more accurate flux calculations, which can be further improved using MSI data.
Han, Xiao-Jing; Duan, Si-Bo; Li, Zhao-Liang
2017-02-20
An analysis of the atmospheric impact on ground brightness temperature (Tg) is performed for numerous land surface types at commonly-used frequencies (i.e., 1.4 GHz, 6.93 GHz, 10.65 GHz, 18.7 GHz, 23.8 GHz, 36.5 GHz and 89.0 GHz). The results indicate that the atmosphere has a negligible impact on Tg at 1.4 GHz for land surfaces with emissivities greater than 0.7, at 6.93 GHz for land surfaces with emissivities greater than 0.8, and at 10.65 GHz for land surfaces with emissivities greater than 0.9 if a root mean square error (RMSE) less than 1 K is desired. To remove the atmospheric effect on Tg, a generalized atmospheric correction method is proposed by parameterizing the atmospheric transmittance τ and upwelling atmospheric brightness temperature Tba↑. Better accuracies with Tg RMSEs less than 1 K are achieved at 1.4 GHz, 6.93 GHz, 10.65 GHz, 18.7 GHz and 36.5 GHz, and worse accuracies with RMSEs of 1.34 K and 4.35 K are obtained at 23.8 GHz and 89.0 GHz, respectively. Additionally, a simplified atmospheric correction method is developed when lacking sufficient input data to perform the generalized atmospheric correction method, and an emissivity-based atmospheric correction method is presented when the emissivity is known. Consequently, an appropriate atmospheric correction method can be selected based on the available data, frequency and required accuracy. Furthermore, this study provides a method to estimate τ and Tba↑ of different frequencies using the atmospheric parameters (total water vapor content in observation direction Lwv, total cloud liquid water content Lclw and mean temperature of cloud Tclw), which is important for simultaneously determining the land surface parameters using multi-frequency passive microwave satellite data.
NASA Astrophysics Data System (ADS)
Kalesse, H.; Myagkov, A.; Seifert, P.; Buehl, J.
2015-12-01
Cloud radar Doppler spectra offer much information about cloud processes. By analyzing millimeter radar Doppler spectra from cloud-top to -base in mixed-phase clouds in which super-cooled liquid-layers are present we try to tell the microphysical evolution story of particles that are present by disentangling the contributions of the solid and liquid particles to the total radar returns. Instead of considering vertical profiles, dynamical effects are taken into account by following the particle population evolution along slanted paths which are caused by horizontal advection of the cloud. The goal is to identify regions in which different microphysical processes such as new particle formation (nucleation), water vapor deposition, aggregation, riming, or sublimation occurr. Cloud radar measurements are supplemented by Doppler lidar and Raman lidar observations as well as observations with MWR, wind profiler, and radio sondes. The presence of super-cooled liquid layers is identified by positive liquid water paths in MWR measurements, the vertical location of liquid layers (in non-raining systems and below lidar extinction) is derived from regions of high-backscatter and low depolarization in Raman lidar observations. In collocated cloud radar measurements, we try to identify cloud phase in the cloud radar Doppler spectrum via location of the Doppler peak(s), the existence of multi-modalities or the spectral skewness. Additionally, within the super-cooled liquid layers, the radar-identified liquid droplets are used as air motion tracer to correct the radar Doppler spectrum for vertical air motion w. These radar-derived estimates of w are validated by independent estimates of w from collocated Doppler lidar measurements. A 35 GHz vertically pointing cloud Doppler radar (METEK MIRA-35) in linear depolarization (LDR) mode is used. Data is from the deployment of the Leipzig Aerosol and Cloud Remote Observations System (LACROS) during the Analysis of the Composition of Clouds with Extended Polarization Techniques (ACCEPT) field experiment in Cabauw, Netherlands in Fall 2014. There, another MIRA-35 was operated in simultaneous transmission and simultaneous reception (STSR) mode for obtaining measurements of differential reflectivity (ZDR) and correlation coefficient ρhv.
A Cloud and Precipitation Radar System Concept for the ACE Mission
NASA Technical Reports Server (NTRS)
Durden, S. L.; Tanelli, S.; Epp, L.; Jamnejad, V.; Perez, R.; Prata, A.; Samoska, L.; Long, E; Fang, H.; Esteban-Fernandez, D.;
2011-01-01
One of the instruments recommended for deployment on the Aerosol/Cloud/Ecosystems (ACE) mission is a new advanced cloud profiling radar. In this paper, we describe such a radar design, called ACERAD, which has 35- and 94-GHz channels, each having Doppler and dual-polarization capabilities. ACERAD will scan at Ka-band and will be nadir-looking at W-band. To get a swath of 25-30 km, considered the minimum useful for Ka-band, ACERAD needs to scan at least 2 degrees off nadir; this is at least 20 beamwidths, which is quite large for a typical parabolic reflector. This problem is being solved with a Dragonian design; a scaled prototype of the antenna is being fabricated and will be tested on an antenna range. ACERAD also uses a quasi-optical transmission line at W-band to connect the transmitter to the antenna and antenna to the receiver. A design for this has been completed and is being laboratory tested. This paper describes the current ACERAD design and status.
The first observed cloud echoes and microphysical parameter retrievals by China's 94-GHz cloud radar
NASA Astrophysics Data System (ADS)
Wu, Juxiu; Wei, Ming; Hang, Xin; Zhou, Jie; Zhang, Peichang; Li, Nan
2014-06-01
By using the cloud echoes first successfully observed by China's indigenous 94-GHz SKY cloud radar, the macrostructure and microphysical properties of drizzling stratocumulus clouds in Anhui Province on 8 June 2013 are analyzed, and the detection capability of this cloud radar is discussed. The results are as follows. (1) The cloud radar is able to observe the time-varying macroscopic and microphysical parameters of clouds, and it can reveal the microscopic structure and small-scale changes of clouds. (2) The velocity spectral width of cloud droplets is small, but the spectral width of the cloud containing both cloud droplets and drizzle is large. When the spectral width is more than 0.4 m s-1, the radar reflectivity factor is larger (over -10 dBZ). (3) The radar's sensitivity is comparatively higher because the minimum radar reflectivity factor is about -35 dBZ in this experiment, which exceeds the threshold for detecting the linear depolarized ratio (LDR) of stratocumulus (commonly -11 to -14 dBZ; decreases with increasing turbulence). (4) After distinguishing of cloud droplets from drizzle, cloud liquid water content and particle effective radius are retrieved. The liquid water content of drizzle is lower than that of cloud droplets at the same radar reflectivity factor.
NASA Astrophysics Data System (ADS)
Nagasaki, Takeo; Tajima, Osamu; Araki, Kentaro; Ishimoto, Hiroshi
2016-07-01
We propose a novel ground-based meteorological monitoring system. In the 20{30 GHz band, our system simultaneously measures a broad absorption peak of water vapor and cloud liquid water. Additional observation in the 50{60 GHz band obtains the radiation of oxygen. Spectral results contain vertical profiles of the physical temperature of atmospheric molecules. We designed a simple method for placing the system atop high buildings and mountains and on decks of ships. There is a simple optical system in front of horn antennas for each frequency band. A focused signal from a reflector is separated into two polarized optical paths by a wire grid. Each signal received by the horn antenna is amplified by low-noise amplifiers. Spectra of each signal are measured as a function of frequency using two analyzers. A blackbody calibration source is maintained at 50 K in a cryostat. The calibration signal is led to each receiver via the wire grid. The input path of the signal is selected by rotation of the wire grid by 90°, because the polarization axis of the reflected path and axis of the transparent path are orthogonal. We developed a prototype receiver and demonstrated its performance using monitoring at the zenith.
Class I methanol masers in NGC 253: Alcohol at the end of the bar
NASA Astrophysics Data System (ADS)
Ellingsen, S. P.; Chen, X.; Breen, S. L.; Qiao, H.-H.
2017-11-01
We have used the Australia Telescope Compact Array to observe the 36.2-GHz class I methanol maser emission towards NGC 253 and find that it is located at the interface between the nuclear ring and both ends of the galactic bar. This is thought to be the location of the inner Linblad resonance and we suggest that the maser emission in this region is likely due to large-scale cloud-cloud collisions. We have detected the first extragalactic 44.1-GHz class I methanol maser and find that it is associated with the 36.2-GHz maser emission. In contrast to the class I methanol masers found in Galactic star formation regions, the 44.1-GHz emission in NGC 253 is two orders of magnitude weaker than the 36.2-GHz masers. Both the 36.2- and 44.1-GHz emission is orders of magnitude stronger than expected from typical high-mass star formation regions. This demonstrates that the luminous class I methanol masers observed in NGC 253 are significantly different from those associated with Galactic star formation.
Empirical conversion of the vertical profile of reflectivity from Ku-band to S-band frequency
NASA Astrophysics Data System (ADS)
Cao, Qing; Hong, Yang; Qi, Youcun; Wen, Yixin; Zhang, Jian; Gourley, Jonathan J.; Liao, Liang
2013-02-01
ABSTRACT This paper presents an empirical method for converting reflectivity from Ku-band (13.8 GHz) to S-band (2.8 GHz) for several hydrometeor species, which facilitates the incorporation of Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR) measurements into quantitative precipitation estimation (QPE) products from the U.S. Next-Generation Radar (NEXRAD). The development of empirical dual-frequency relations is based on theoretical simulations, which have assumed appropriate scattering and microphysical models for liquid and solid hydrometeors (raindrops, snow, and ice/hail). Particle phase, shape, orientation, and density (especially for snow particles) have been considered in applying the T-matrix method to compute the scattering amplitudes. Gamma particle size distribution (PSD) is utilized to model the microphysical properties in the ice region, melting layer, and raining region of precipitating clouds. The variability of PSD parameters is considered to study the characteristics of dual-frequency reflectivity, especially the variations in radar dual-frequency ratio (DFR). The empirical relations between DFR and Ku-band reflectivity have been derived for particles in different regions within the vertical structure of precipitating clouds. The reflectivity conversion using the proposed empirical relations has been tested using real data collected by TRMM-PR and a prototype polarimetric WSR-88D (Weather Surveillance Radar 88 Doppler) radar, KOUN. The processing and analysis of collocated data demonstrate the validity of the proposed empirical relations and substantiate their practical significance for reflectivity conversion, which is essential to the TRMM-based vertical profile of reflectivity correction approach in improving NEXRAD-based QPE.
NASA Astrophysics Data System (ADS)
Lebsock, M. D.; Millan Valle, L. F.; Cooper, K. B.; Siles, J.; Monje, R.
2017-12-01
We present the results of our efforts to build and demonstrate the first Differential Absorption Radar (DAR), which will provide unique capabilities to remotely sound for water vapor within cloudy and precipitating atmospheres. The approach leverages multiple radar channels located near the 183 GHz water vapor absorption feature to simultaneously derive microphysical and water vapor profiles. The DAR technique has the potential to neatly complement existing water vapor sounding techniques such as infrared and microwave sounding and GPS radio occultation. These precisions rival those of existing water vapor remote sensing instruments. The approach works best from above clouds because the water vapor burden and line width increases towards the Earth surface allowing increased sampling from the top-down compared with bottom-up. From an airborne or satellite platform channels can be selected that target either upper-tropospheric or lower-tropospheric clouds. Our theoretical studies suggest that the water vapor concentration can be retrieved to within 1-3 gm-3 and the column integrated water vapor can be retrieved to within 1 kgm-2. The high-frequency radar is only recently enabled by technological advances that have allowed us to demonstrate 0.5 W of continuous power near 183 GHz. We are currently developing an airborne DAR using a Frequency Modulated Continuous Wave (FMCW) architecture with a quasi-optical duplexer providing 80 dB of transmit/receive isolation. A prototype of this instrument recently made the first ever range resolved DAR measurements of humidity out to several hundred meters during a light rain event at JPL. The spectral dependence of the attenuation was in excellent agreement with the predicted attenuation based on nearby weather stations, proving for the first time the feasibility of the concept. A major impediment to implementing DAR is the international regulation of radio-frequency transmissions below 300 GHz. The major roadblocks and potential paths forward towards a spaceborne instruments will be presented.
NASA Astrophysics Data System (ADS)
Fairall, C. W.; Williams, C.; Grachev, A. A.; Brewer, A.; Choukulkar, A.
2013-12-01
The VAMOS (VOCALS) field program involved deployment of several measurement systems based on ships, land and aircraft over the SE Pacific Ocean. The NOAA Ship Ronald H. Brown was the primary platform for surface based measurements which included the High Resolution Doppler Lidar (HRDL) and the motion-stabilized 94-GHz cloud Doppler radar (W-band radar). In this paper, the data from the W-band radar will be used to study the turbulent and microphysical structure of the stratocumulus clouds prevalent in the region. The radar data consists of a 3 Hz time series of radar parameters (backscatter coefficient, mean Doppler shift, and Doppler width) at 175 range gates (25-m spacing). Several statistical methods to de-convolve the turbulent velocity and gravitational settling velocity are examined and an optimized algorithm is developed. 20 days of observations are processed to examine in-cloud profiles of mean turbulent statistics (vertical velocity variance, skewness, dissipation rate) in terms of surface fluxes and estimates of entrainment and cloudtop radiative cooling. The clean separation of turbulent and fall velocities will allow us to compute time-averaged drizzle-drop size spectra within and below the cloud that are significantly superior to previous attempts with surface-based marine cloud radar observations.
NASA Astrophysics Data System (ADS)
Wu, D. L.; Esper, J.; Ehsan, N.; Piepmeier, J. R.; Racette, P.
2014-12-01
Ice clouds play a key role in the Earth's radiation budget, mostly through their strong regulation of infrared radiation exchange. Submillimeter wave remote sensing offers a unique capability to improve cloud ice measurements from space. At 874 GHz cloud scattering produces a larger brightness temperature depression from cirrus than lower frequencies, which can be used to retrieve vertically-integrated cloud ice water path (IWP) and ice particle size. The objective of the IceCube project is to retire risks of 874-GHz receiver technology by raising its TRL from 5 to 7. The project will demonstrate, on a 3-U CubeSat in a low Earth orbit (LEO) environment, the 874-GHz receiver system with noise equivalent differential temperature (NEDT) of ~0.2 K for 1-second integration and calibration error of 2.0 K or less as measured from deep-space observations. The Goddard Space Flight Center (GSFC) is partnering with Virginia Diodes, Inc (VDI) to qualify commercially available 874-GHz receiver technology for spaceflight, and demonstrate the radiometer performance. The instrument (submm-wave cloud radiometer, or SCR), along with the CubeSat system developed and integrated by GSFC, will be ready for launch in two years. The instrument subsystem includes a reflector antenna, sub-millimeter wave mixer, frequency multipliers and stable local oscillator, an intermediate frequency (IF) circuit with noise injection, and data-power boards. The mixer and frequency multipliers are procured from VDI with GSFC insight into fabrication and testing processes to ensure scalability to spaceflight beyond TRL 7. The remaining components are a combination of GSFC-designed and commercial off-the-shelf (COTS) at TRLs of 5 or higher. The spacecraft system is specified by GSFC and comprises COTS components including three-axis stabilizer and sun sensor, GPS receiver, deployable solar arrays, UHF radio, and 2 GB of on-board storage. The spacecraft and instrument are integrated and flight qualified through environmental testing at GSFC. The concept of operations is to fly the GSFC designed instrument/spacecraft in a LEO orbit and collect the 874-GHz radiance data for a period of at least 28+ days. Communication will be through the WFF's UHF ground station. Mission Operations and data processing and validation will be conducted at GSFC.
Heavy water stratification in a low-mass protostar
NASA Astrophysics Data System (ADS)
Coutens, A.; Vastel, C.; Cazaux, S.; Bottinelli, S.; Caux, E.; Ceccarelli, C.; Demyk, K.; Taquet, V.; Wakelam, V.
2013-05-01
Context. Despite the low elemental deuterium abundance in the Galaxy, enhanced molecular deuterium fractionation has been found in the environments of low-mass star-forming regions and, in particular, the Class 0 protostar IRAS 16293-2422. Aims: The key program Chemical HErschel Surveys of Star forming regions (CHESS) aims at studying the molecular complexity of the interstellar medium. The high sensitivity and spectral resolution of the Herschel/HIFI (Heterodyne Instrument for Far-Infrared) instrument provide a unique opportunity to observe the fundamental 11,1-00,0 transition of ortho-D2O at 607 GHz and the higher energy 21,2-10,1 transition of para-D2O at 898 GHz, both of which are inaccessible from the ground. Methods: The ortho-D2O transition at 607 GHz was previously detected. We present in this paper the first tentative detection for the para-D2O transition at 898 GHz. The spherical Monte Carlo radiative transfer code RATRAN was used to reproduce the observed line profiles of D2O with the same method that was used to reproduce the HDO and H218O line profiles in IRAS 16293-2422. Results: As for HDO, the absorption component seen on the D2O lines can only be reproduced by adding an external absorbing layer, possibly created by the photodesorption of the ices at the edges of the molecular cloud. The D2O column density is found to be about 2.5 × 1012 cm-2 in this added layer, leading to a D2O/H2O ratio of about 0.5%. At a 3σ uncertainty, upper limits of 0.03% and 0.2% are obtained for this ratio in the hot corino and the colder envelope of IRAS 16293-2422, respectively. Conclusions: The deuterium fractionation derived in our study suggests that the ices present in IRAS 16293-2422 formed on warm dust grains (~15-20 K) in dense (~104-5 × 104 cm-3) translucent clouds. These results allow us to address the earliest phases of star formation and the conditions in which ices form. Based on Herschel/HIFI observations. Herschel is an ESA space observatory with scientific instruments provided by European-led principal Investigator consortia and with important participation from NASA.
VizieR Online Data Catalog: 22-GHz water maser clouds (Richards+, 2012)
NASA Astrophysics Data System (ADS)
Richards, A. M. S.; Etoka, S.; Gray, M. D.; Lekht, E. E.; Mendoza-Torres, J. E.; Murakawa, K.; Rudnitskij, G.; Yates, J. A.
2012-07-01
Measurements of 22-GHz water maser clouds, made with the MERLIN radio interferometer. Obects presented (number of epochs): S Per (2); U Ori (4); U Her (3); IK Tau (3); RT Vir (7); W Hya (4). Results for VX Sgr were presented in Murakawa et al, 2003, Cat. J/MNRAS/344/1. The position and other properties of each patch of maser emission in each channel were measured by fitting 2D Gaussian components. The components form features corresponding to spatially distinct clouds and the properties of each cloud was calculated as described in the paper. For each cloud, we give the mean Vlsr, the total velocity extent DV, the full width half maximum DV1/2, the offsets of the cloud centroid from the assumed stellar position x, y and a (=sqrt(x2+y2), the feature largest angular size l and the peak flux density I. All velocities, angular distances and flux densities are in km/s, mas and Jy, respectively. (2 data files).
NASA Technical Reports Server (NTRS)
Slobin, S. D.
1982-01-01
The microwave attenuation and noise temperature effects of clouds can result in serious degradation of telecommunications link performance, especially for low-noise systems presently used in deep-space communications. Although cloud effects are generally less than rain effects, the frequent presence of clouds will cause some amount of link degradation a large portion of the time. This paper presents a general review of cloud types and their water particle densities, attenuation and noise temperature calculations, and basic link signal-to-noise ratio calculations. Tabular results of calculations for 12 different cloud models are presented for frequencies in the range 10-50 GHz. Curves of average-year attenuation and noise temperature statistics at frequencies ranging from 10 to 90 GHz, calculated from actual surface and radiosonde observations, are given for 15 climatologically distinct regions in the contiguous United States, Alaska, and Hawaii. Nonuniform sky cover is considered in these calculations.
NASA Astrophysics Data System (ADS)
Fontaine, Emmanuel; Illingworth, Anthony, J.; Stein, Thorwald
2017-04-01
This study is performed using vertical profiles of radar measurements at 35GHz, for the period going from 29th of February to 1rst October 2016, at the Chilbolton observatory in United Kingdom. During this period, more than 40 days with precipitation events are investigated. The investigation uses the synergy of radar reflectivity factors, vertical velocity, Doppler spectrum width, and linear depolarization ratio (LDR) to differentiate between stratiform and convective rain events. The depth of the layer with Doppler spectrum width values greater than 0.5 m s-1 is shown to be a suitable proxy to distinguish between convective and stratiform events. Using LDR to detect the radar bright band, bright band characteristics such as depth of the layer and maximum LDR are shown to vary with the amount of turbulence aloft. Profiles of radar measurements are also compared to rain gauge measurements to study the contribution of convective and stratiform rainfall to total rain duration and amount. To conclude, this study points out differences between convective and stratiform rains and quantifies their contributions over a precipitation event, highlighting that convective and stratiform rainfall should be considered as a continuum rather than a dichotomy.
Typhoon June /1975/ viewed by a scanning microwave spectrometer
NASA Technical Reports Server (NTRS)
Rosenkranz, P. W.; Staelin, D. H.; Grody, N. C.
1978-01-01
Data were collected by the scanning microwave spectrometer onboard Nimbus 6 during the June 1975 typhoon in the Philippine Sea. The spectrometer was equipped with channels centered on 22.23 GHz (a water vapor band), 31.65 GHz (a transmittance window), and 52.85, 53.85, and 55.45 GHz (an oxygen band). Temperature maps, derived from oxygen band measurements, showed that the typhoon eye had a single peak varying in amplitude with time. Water line and window measurements were used to develop a coordinate system having mutually orthogonal atmospheric variables of column water-vapor content and cloud liquid-water content. Vapor measurements showed a maximum around the intensifying typhoon with a more developed structure during typhoon development. Values were extrapolated for surface wind speed and cloud liquid water vapor content by assuming the troposphere to be saturated with respect to the water vapor in the typhoon. Comparisons with infrared cloud imagery and aircraft flight data show different time variations, attributed to poor typhoon-eye resolution in the microwave images.
Surface and Atmospheric Contributions to Passive Microwave Brightness Temperatures
NASA Technical Reports Server (NTRS)
Jackson, Gail Skofronick; Johnson, Benjamin T.
2010-01-01
Physically-based passive microwave precipitation retrieval algorithms require a set of relationships between satellite observed brightness temperatures (TB) and the physical state of the underlying atmosphere and surface. These relationships are typically non-linear, such that inversions are ill-posed especially over variable land surfaces. In order to better understand these relationships, this work presents a theoretical analysis using brightness temperature weighting functions to quantify the percentage of the TB resulting from absorption/emission/reflection from the surface, absorption/emission/scattering by liquid and frozen hydrometeors in the cloud, the emission from atmospheric water vapor, and other contributors. The results are presented for frequencies from 10 to 874 GHz and for several individual precipitation profiles as well as for three cloud resolving model simulations of falling snow. As expected, low frequency channels (<89 GHz) respond to liquid hydrometeors and the surface, while the higher frequency channels become increasingly sensitive to ice hydrometeors and the water vapor sounding channels react to water vapor in the atmosphere. Low emissivity surfaces (water and snow-covered land) permit energy downwelling from clouds to be reflected at the surface thereby increasing the percentage of the TB resulting from the hydrometeors. The slant path at a 53deg viewing angle increases the hydrometeor contributions relative to nadir viewing channels and show sensitivity to surface polarization effects. The TB percentage information presented in this paper answers questions about the relative contributions to the brightness temperatures and provides a key piece of information required to develop and improve precipitation retrievals over land surfaces.
NASA Astrophysics Data System (ADS)
Reising, S. C.; Todd, G.; Kummerow, C. D.; Chandrasekar, V.; Padmanabhan, S.; Lim, B.; Brown, S. T.; van den Heever, S. C.; L'Ecuyer, T.; Ruf, C. S.; Luo, Z. J.; Munchak, S. J.; Haddad, Z. S.; Boukabara, S. A.
2015-12-01
The Temporal Experiment for Storms and Tropical Systems Technology Demonstration (TEMPEST-D) is designed to demonstrate required technology to enable a constellation of 6U-Class nanosatellites to directly observe the time evolution of clouds and study the conditions that control the transition of clouds to precipitation using high-temporal resolution observations. TEMPEST millimeter-wave radiometers in the 90-GHz to 183-GHz frequency range penetrate into the cloud to observe key changes as the cloud begins to precipitate or ice accumulates inside the storm. The evolution of ice formation in clouds is important for climate prediction since it largely drives Earth's radiation budget. TEMPEST improves understanding of cloud processes and helps to constrain one of the largest sources of uncertainty in climate models. TEMPEST-D provides observations at five millimeter-wave frequencies from 90 to 183 GHz using a single compact instrument that is well suited for the 6U-Class architecture and fits well within the capabilities of NASA's CubeSat Launch Initiative (CSLI), for which TEMPEST-D was approved in 2015. For a potential future mission of one year of operations, five identical 6U-Class satellites deployed in the same orbital plane with 5-10 minute spacing at ~400 km altitude and 50°-65° inclination are expected to capture 3 million observations of precipitation, including 100,000 deep convective events. TEMPEST is designed to provide critical information on the time evolution of cloud and precipitation microphysics, yielding a first-order understanding of the behavior of assumptions in current cloud-model parameterizations in diverse climate regimes.
NASA Astrophysics Data System (ADS)
Shiobara, M.; Takano, T.; Okamoto, H.; Yabuki, M.
2015-12-01
Clouds and aerosols are key elements having a potential to change climate by their radiative effects on the energy balance in the global climate system. In the Arctic, we have been continuing ground-based remote-sensing measurements for clouds and aerosols using a sky-radiometer, a micro-pulse lidar (MPL) and an all-sky camera in Ny-Ålesund (78.9N, 11.9E), Svalbard since early 2000's. In addition to such regular operations, several new measurements have been performed with a polarization MPL since August 2013, a 95GHz Doppler cloud radar since September 2013, and a dual frequency microwave radiometer since June 2014. An intensive field experiment for cloud-aerosol-radiation interaction study named A-CARE (PI: J. Ukita) was conducted for water clouds in the period of 23 June - 13 July 2014 and for mixed phase clouds in the period of 30 March - 23 April 2015 in Ny-Alesund. The experiment consisted of ground-based remote-sensing and in-situ cloud microphysics measurements. In this paper, preliminary results from these remote-sensing measurements will be presented, particularly in regard to physical characteristics of Arctic clouds based on radar-lidar collocated observation in Ny-Ålesund.
NASA Astrophysics Data System (ADS)
Nagasaki, T.; Araki, K.; Ishimoto, H.; Kominami, K.; Tajima, O.
2016-08-01
High-resolution estimation of thermodynamic properties in the atmosphere can help to predict and mitigate meteorological disasters, such as local heavy rainfall and tornadic storms. For the purposes of short-term forecasting and nowcasting of severe storms, we propose a novel ground-based measurement system, which observes the intensity of atmospheric radiation in the microwave range. Our multi-band receiver system is designed to identify a rapid increase in water vapor before clouds are generated. At frequencies between 20 and 30 GHz, our system simultaneously measures water vapor as a broad absorption peak at 22 GHz as well as cloud liquid water. Another band at 50-60 GHz provides supplementary information from oxygen radiation to give vertical profiles of physical temperature. For the construction of this cold receiver system, novel technologies originally developed for observations of cosmic microwave background radiation were applied. The input atmospheric signal is amplified by a cold low-noise amplifier maintained below 10 K, while the spectrum of this amplified signal is measured using a signal analyzer under ambient conditions. The cryostat also contains a cold black body at 40 K to act as a calibration signal. This calibration signal is transported to each of the receivers via a wire grid. We can select either the atmospheric signal or the calibration signal by changing the orientation of this wire. Each receiver can be calibrated using this setup. Our system is designed to be compact (<1 m3), with low power consumption (˜ 1.5 kW). Therefore, it is easy to deploy on top of high buildings, mountains, and ship decks.
Kneifel, Stefan; Redl, Stephanie; Orlandi, Emiliano; ...
2014-04-10
Microwave radiometers (MWR) are commonly used to quantify the amount of supercooled liquid water (SLW) in clouds; however, the accuracy of the SLW retrievals is limited by the poor knowledge of the SLW dielectric properties at microwave frequencies. Six liquid water permittivity models were compared with ground-based MWR observations between 31 and 225 GHz from sites in Greenland, the German Alps, and a low-mountain site; average cloud temperatures of observed thin cloud layers range from 0° to –33°C. A recently published method to derive ratios of liquid water opacity from different frequencies was employed in this analysis. These ratios aremore » independent of liquid water path and equal to the ratio of αL at those frequencies that can be directly compared with the permittivity model predictions. The observed opacity ratios from all sites show highly consistent results that are generally within the range of model predictions; however, none of the models are able to approximate the observations over the entire frequency and temperature range. Findings in earlier published studies were used to select one specific model as a reference model for αL at 90 GHz; together with the observed opacity ratios, the temperature dependence of αL at 31.4, 52.28, 150, and 225 GHz was derived. The results reveal that two models fit the opacity ratio data better than the other four models, with one of the two models fitting the data better for frequencies below 90 GHz and the other for higher frequencies. Furthermore, these findings are relevant for SLW retrievals and radiative transfer in the 31–225-GHz frequency region.« less
NASA Technical Reports Server (NTRS)
Cummins, S. E.; Green, S.; Thaddeus, P.; Linke, R. A.
1983-01-01
Observations of the K components of the CH3CN J = 4-to-3 rotational transition at 73.6 GHz, the 6-to-5 transition at 110.4 GHz, and the 7-to-6 transition at 128.7 GHz, yield a mean kinetic temperature value of 85 + or - 10 K and a mean H2 density of 110,000 + or - 50,000/cu cm for the central 2.0 arcmin of the Sgr B2 molecular cloud. Within the K = zero-to-4 ladders of CH3CN in Sgr B2, the populations of the radiatively coupled J levels are relaxed and exhibit a rotational temperature of about 16 K, which is similar to that of several linear molecules.
Polar cloud observatory at Ny-Ålesund in GRENE Arctic Climate Change Research Project
NASA Astrophysics Data System (ADS)
Yamanouchi, Takashi; Takano, Toshiaki; Shiobara, Masataka; Okamoto, Hajime; Koike, Makoto; Ukita, Jinro
2016-04-01
Cloud is one of the main processes in the climate system and especially a large feed back agent for Arctic warming amplification (Yoshimori et al., 2014). From this reason, observation of polar cloud has been emphasized and 95 GHz cloud profiling radar in high precision was established at Ny-Ålesund, Svalbard in 2013 as one of the basic infrastructure in the GRENE (Green Network of Excellence Program) Arctic Climate Change Research Project. The radar, "FALCON-A", is a FM-CW (frequency modulated continuous wave) Doppler radar, developed for Arctic use by Chiba University (PI: T. Takano) in 2012, following its prototype, "FALCON-1" which was developed in 2006 (Takano et al., 2010). The specifications of the radar are, central frequency: 94.84 GHz; antenna power: 1 W; observation height: up to 15 km; range resolution: 48 m; beam width: 0.2 degree (15 m at 5 km); Doppler width: 3.2 m/s; time interval: 10 sec, and capable of archiving high sensitivity and high spatial and time resolution. An FM-CW type radar realizes similar sensitivity with much smaller parabolic antennas separated 1.4 m from each other used for transmitting and receiving the wave. Polarized Micro-Pulse Lidar (PMPL, Sigma Space MPL-4B-IDS), which is capable to measure the backscatter and depolarization ratio, has also been deployed to Ny-Ålesund in March 2012, and now operated to perform collocated measurements with FALCON-A. Simultaneous measurement data from collocated PMPL and FALCON-A are available for synergetic analyses of cloud microphysics. Cloud mycrophysics, such as effective radius of ice particles and ice water content, are obtained from the analysis based on algorithm, which is modified for ground-based measurements from Okamoto's retrieval algorithm for satellite based cloud profiling radar and lidar (CloudSat and CALIPSO; Okamoto et al., 2010). Results of two years will be shown in the presentation. Calibration is a point to derive radar reflectivity (dBZ) from original intensity data. Degradation of transmission power was monitored and sensitivity of receiving system was derived with estimating antenna gain by using radio wave absorber and considering antenna geometry of two antenna system. In order to estimate final results, altitude dependent detection limit curve was also calculated. Original intensity data in real time and calibrated radar reflectivity data are archived on "Arctic Data archive System (ADS)". Other collocated observations were made with fog monitor (particle size distribution), MPS (particle image) for continuous measurements at Zeppelin Mountain, 450 m height a. s. l., and tethered balloon for intense observing period. From these measurements together with aerosol and meteorological monitoring made by collaborating institutes (Stockholm University, University of Florence, AWI, NILU, NCAR and NPI) microphysics of low level cloud and aerosol-cloud interactions are discussed. Ground based remote sensors provide a powerful validation for satellite cloud observations. Radar reflectivity (dBZ) by FALCON-A was compared with that by CPR on CloudSAT during several overpasses around Ny-Ålesund, and though some difference due to the different vertical resolution was seen, overall agreement was confirmed. We are planning to establish Ny-Ålesund observatory as the super site for validation for EarthCARE (JAXA-ESA) mission.
High-resolution imaging of rain systems with the advanced microwave precipitation radiometer
NASA Technical Reports Server (NTRS)
Spencer, Roy W.; Hood, Robbie E.; Lafontaine, Frank J.; Smith, Eric A.; Platt, Robert; Galliano, Joe; Griffin, Vanessa L.; Lobl, Elena
1994-01-01
An advanced Microwave Precipitation Radiometer (AMPR) has been developed and flown in the NASA ER-2-high-altitude aircraft for imaging various atmospheric and surface processes, primarily the internal structure of rain clouds. The AMPR is a scanning four-frequency total power microwave radiometer that is externally calibrated with high-emissivity warm and cold loads. Separate antenna systems allow the sampling of the 10.7- and 19.35-GHz channels at the same spatial resolution, while the 37.1- and 85.5-GHz channels utilize the same multifrequency feedhorn as the 19.35-GHz channel. Spatial resolutions from an aircraft altitude of 20-km range from 0.6 km at 85.5 GHz to 2.8 km at 19.35 and 10.7 GHz. All channels are sampled every 0.6 km in both along-track and cross-track directions, leading to a contiguous sampling pattern of the 85.5-GHz 3-dB beamwidth footprints, 2.3X oversampling of the 37.1-GHz data, and 4.4X oversampling of the 19.35- and 10.7-GHz data. Radiometer temperature sensitivities range from 0.2 to 0.5 C. Details of the system are described, including two different calibration systems and their effect on the data collected. Examples of oceanic rain systems are presented from Florida and the tropical west Pacific that illustrate the wide variety of cloud water, rainwater, and precipitation-size ice combinations that are observable from aircraft altitudes.
Development of GK-2A cloud optical and microphysical properties retrieval algorithm
NASA Astrophysics Data System (ADS)
Yang, Y.; Yum, S. S.; Um, J.
2017-12-01
Cloud and aerosol radiative forcing is known to be one of the the largest uncertainties in climate change prediction. To reduce this uncertainty, remote sensing observation of cloud radiative and microphysical properties have been used since 1970s and the corresponding remote sensing techniques and instruments have been developed. As a part of such effort, Geo-KOMPSAT-2A (Geostationary Korea Multi-Purpose Satellite-2A, GK-2A) will be launched in 2018. On the GK-2A, the Advanced Meteorological Imager (AMI) is primary instrument which have 3 visible, 3 near-infrared, and 10 infrared channels. To retrieve optical and microphysical properties of clouds using AMI measurements, the preliminary version of new cloud retrieval algorithm for GK-2A was developed and several validation tests were conducted. This algorithm retrieves cloud optical thickness (COT), cloud effective radius (CER), liquid water path (LWP), and ice water path (IWP), so we named this algorithm as Daytime Cloud Optical thickness, Effective radius and liquid and ice Water path (DCOEW). The DCOEW uses cloud reflectance at visible and near-infrared channels as input data. An optimal estimation (OE) approach that requires appropriate a-priori values and measurement error information is used to retrieve COT and CER. LWP and IWP are calculated using empirical relationships between COT/CER and cloud water path that were determined previously. To validate retrieved cloud properties, we compared DCOEW output data with other operational satellite data. For COT and CER validation, we used two different data sets. To compare algorithms that use cloud reflectance at visible and near-IR channels as input data, MODIS MYD06 cloud product was selected. For the validation with cloud products that are based on microwave measurements, COT(2B-TAU)/CER(2C-ICE) data retrieved from CloudSat cloud profiling radar (W-band, 94 GHz) was used. For cloud water path validation, AMSR-2 Level-3 Cloud liquid water data was used. Detailed results will be shown at the conference.
[Atmospheric Influences Analysis on the Satellite Passive Microwave Remote Sensing].
Qiu, Yu-bao; Shi, Li-juan; Shi, Jian-cheng; Zhao, Shao-jie
2016-02-01
Passive microwave remote sensing offers its all-weather work capabilities, but atmospheric influences on satellite microwave brightness temperature were different under different atmospheric conditions and environments. In order to clarify atmospheric influences on Advanced Microwave Scanning Radiometer-Earth Observing System (AMSR-E), atmospheric radiation were simulated based on AMSR-E configuration under clear sky and cloudy conditions, by using radiative transfer model and atmospheric conditions data. Results showed that atmospheric water vapor was the major factor for atmospheric radiation under clear sky condition. Atmospheric transmittances were almost above 0.98 at AMSR-E's low frequencies (< 18.7 GHz) and the microwave brightness temperature changes caused by atmosphere can be ignored in clear sky condition. Atmospheric transmittances at 36.5 and 89 GHz were 0.896 and 0.756 respectively. The effects of atmospheric water vapor needed to be corrected when using microwave high-frequency channels to inverse land surface parameters in clear sky condition. But under cloud cover or cloudy conditions, cloud liquid water was the key factor to cause atmospheric radiation. When sky was covered by typical stratus cloud, atmospheric transmittances at 10.7, 18.7 and 36.5 GHz were 0.942, 0.828 and 0.605 respectively. Comparing with the clear sky condition, the down-welling atmospheric radiation caused by cloud liquid water increased up to 75.365 K at 36.5 GHz. It showed that the atmospheric correction under different clouds covered condition was the primary work to improve the accuracy of land surface parameters inversion of passive microwave remote sensing. The results also provided the basis for microwave atmospheric correction algorithm development. Finally, the atmospheric sounding data was utilized to calculate the atmospheric transmittance of Hailaer Region, Inner Mongolia province, in July 2013. The results indicated that atmospheric transmittances were close to 1 at C-band and X-band. 89 GHz was greatly influenced by water vapor and its atmospheric transmittance was not more than 0.7. Atmospheric transmittances in Hailaer Region had a relatively stable value in summer, but had about 0.1 fluctuations with the local water vapor changes.
ESA's Ice Cloud Imager on Metop Second Generation
NASA Astrophysics Data System (ADS)
Klein, Ulf; Loiselet, Marc; Mason, Graeme; Gonzalez, Raquel; Brandt, Michael
2016-04-01
Since 2006, the European contribution to operational meteorological observations from polar orbit has been provided by the Meteorological Operational (MetOp) satellites, which is the space segment of the EUMETSAT Polar System (EPS). The first MetOp satellite was launched in 2006, 2nd 2012 and 3rd satellite is planned for launch in 2018. As part of the next generation EUMETSAT Polar System (EPS-SG), the MetOp Second Generation (MetOp-SG) satellites will provide continuity and enhancement of these observations in the 2021 - 2042 timeframe. The noel Ice Cloud Imager (ICI) is one of the instruments selected to be on-board the MetOp-SG satellite "B". The main objective of the ICI is to enable cloud ice retrieval, with emphasis on cirrus clouds. ICI will provide information on cloud ice mean altitude, cloud ice water path and cloud ice effective radius. In addition, it will provide water vapour profile measurement capability. ICI is a 13-channel microwave/sub-millimetre wave radiometer, covering the frequency range from 183 GHz up to 664 GHz. The instrument is composed of a rotating part and a fixed part. The rotating part includes the main antenna, the feed assembly and the receiver electronics. The fixed part contains the hot calibration target, the reflector for viewing the cold sky and the electronics for the instrument control and interface with the platform. Between the fixed and the rotating part is the scan mechanism. Scan mechanism is not only responsible of rotating the instrument and providing its angular position, but it will also have pass through the power and data lines. The Scan mechanism is controlled by the fully redundant Control and Drive Electronics ICI is calibrated using an internal hot target and a cold sky mirror, which are viewed once per rotation. The internal hot target is a traditional pyramidal target. The hot target is covered by an annular shield during rotation with only a small opening for the feed horns to guarantee a stable environment. Also, in order to achieve very good radiometric accuracy and stability, the ICI instrument is designed with sun-shields in order to minimize sun-intrusion at all possible sun angles. Details of the instrument design and the current development status will be presented.
NASA Technical Reports Server (NTRS)
Yeh, Hwa-Young M.; Prasad, N.; Mack, Robert A.; Adler, Robert F.
1990-01-01
In this June 29, 1986 case study, a radiative transfer model is used to simulate the aircraft multichannel microwave brightness temperatures presented in the Adler et al. (1990) paper and to study the convective storm structure. Ground-based radar data are used to derive hydrometeor profiles of the storm, based on which the microwave upwelling brightness temperatures are calculated. Various vertical hydrometeor phase profiles and the Marshall and Palmer (M-P, 1948) and Sekhon and Srivastava (S-S, 1970) ice particle size distributions are experimented in the model. The results are compared with the aircraft radiometric data. The comparison reveals that the M-P distribution well represents the ice particle size distribution, especially in the upper tropospheric portion of the cloud; the S-S distribution appears to better simulate the ice particle size at the lower portion of the cloud, which has a greater effect on the low-frequency microwave upwelling brightness temperatures; and that, in deep convective regions, significant supercooled liquid water (about 0.5 g/cu m) may be present up to the -30 C layer, while in less convective areas, frozen hydrometeors are predominant above -10 C level.
NASA Technical Reports Server (NTRS)
Gong, J.; Wu, D. L.
2014-01-01
Ice water path (IWP) and cloud top height (ht) are two of the key variables in determining cloud radiative and thermodynamical properties in climate models. Large uncertainty remains among IWP measurements from satellite sensors, in large part due to the assumptions made for cloud microphysics in these retrievals. In this study, we develop a fast algorithm to retrieve IWP from the 157, 183.3+/-3 and 190.3 GHz radiances of the Microwave Humidity Sounder (MHS) such that the MHS cloud ice retrieval is consistent with CloudSat IWP measurements. This retrieval is obtained by constraining the empirical forward models between collocated and coincident measurements of CloudSat IWP and MHS cloud-induced radiance depression (Tcir) at these channels. The empirical forward model is represented by a lookup table (LUT) of Tcir-IWP relationships as a function of ht and the frequency channel.With ht simultaneously retrieved, the IWP is found to be more accurate. The useful range of the MHS IWP retrieval is between 0.5 and 10 kg/sq m, and agrees well with CloudSat in terms of the normalized probability density function (PDF). Compared to the empirical model, current operational radiative transfer models (RTMs) still have significant uncertainties in characterizing the observed Tcir-IWP relationships. Therefore, the empirical LUT method developed here remains an effective approach to retrieving ice cloud properties from the MHS-like microwave channels.
NASA Astrophysics Data System (ADS)
Xu, Z.; Mace, G. G.; Posselt, D. J.
2017-12-01
As we begin to contemplate the next generation atmospheric observing systems, it will be critically important that we are able to make informed decisions regarding the trade space between scientific capability and the need to keep complexity and cost within definable limits. To explore this trade space as it pertains to understanding key cloud and precipitation processes, we are developing a Markov Chain Monte Carlo (MCMC) algorithm suite that allows us to arbitrarily define the specifications of candidate observing systems and then explore how the uncertainties in key retrieved geophysical parameters respond to that observing system. MCMC algorithms produce a more complete posterior solution space, and allow for an objective examination of information contained in measurements. In our initial implementation, MCMC experiments are performed to retrieve vertical profiles of cloud and precipitation properties from a spectrum of active and passive measurements collected by aircraft during the ACE Radiation Definition Experiments (RADEX). Focusing on shallow cumulus clouds observed during the Integrated Precipitation and Hydrology EXperiment (IPHEX), observing systems in this study we consider W and Ka-band radar reflectivity, path-integrated attenuation at those frequencies, 31 and 94 GHz brightness temperatures as well as visible and near-infrared reflectance. By varying the sensitivity and uncertainty of these measurements, we quantify the capacity of various combinations of observations to characterize the physical properties of clouds and precipitation.
Measurement of Low Amounts of Precipitable Water Vapor Using Ground-Based Millimeterwave Radiometry
NASA Technical Reports Server (NTRS)
Racette, Paul E.; Westwater, Ed R.; Han, Yong; Gasiewski, Albin J.; Klein, Marian; Cimini, Domenico; Jones, David C.; Manning, WIll; Kim, Edward J.; Wang, James R.
2003-01-01
Extremely dry conditions characterized by amounts of precipitable water vapor (PWV) as as 1-2 mm commonly occur in high-latitude regions during the winter months. While such atmospheres carry only a few percent of the latent heat energy compared to tropical atmospheres, the effects of low vapor amounts on the polar radiation budget - both directly through modulation of longwave radiation and indirectly through the formation of clouds - are considerable. Accurate measurements of precipitable water vapor (PWV) during such dry conditions are needed to improve polar radiation models for use in understanding and predicting change in the climatically sensitive polar regions. To this end, the strong water vapor absorption at 183.310 GHz provides a unique means of measuring low amounts of PWV. Weighting function analysis, forward model calculations based upon a 7-year radiosonde dataset, and retrieval simulations consistently predict that radiometric measurements made using several millimeter-wavelength (MMW) channels near the 183 GHz line, together with established microwave (MW) measurements at the 22.235 GHz water vapor line and -3 1 GHz atmospheric absorption window can be used to determine within 5% uncertainty the full range of PWV expected in the Arctic. This unique collective capability stands in spite of accuracy limitations stemming from uncertainties due to the sensitivity of the vertical distribution of temperature and water vapor at MMW channels. In this study the potential of MMW radiometry using the 183 GHz line for measuring low amounts of PWV is demonstrated both theoretically and experimentally. The study uses data obtained during March 1999 as part of an experiment conducted at the Department of Energy s Cloud and Radiation Testbed (CART) near Barrow, Alaska. Several radiometers from both NOAA and NASA were deployed during the experiment to provide the first combined MMW and MW ground-based data set during dry arctic conditions. Single-channel retrievals of PWV were performed using the MW and MMW data. Discrepancies in the retrieved values were found to be consistent with differences observed between measured brightness temperatures (TBs) and forward-modeled TBs based on concurrent radiosonde profiles. These discrepancies are greater than can be explained by measurement error alone and are attributed to absorption model uncertainty. We discuss here the measurements, retrieval technique, and line model discrepancies along with difficulties and potential of MMW/MW PWV measurement.
NASA Astrophysics Data System (ADS)
McGuire, Brett A.; Corby, Joanna F.; Martin-Drumel, Marie-Aline; Schilke, P.; McCarthy, Michael C.; Remijan, Anthony
2017-06-01
Many diffuse and translucent clouds lie along the line of sight between Earth and the Galactic Center that can be probed through molecular absorption at characteristic velocities. We highlight results of a study of diffuse and translucent clouds along the line of sight to Sgr B2, including SOFIA observations of SH near 1.4 THz and GBT PRIMOS observations from 4 to 50 GHz. We find significant variation in the chemical conditions within these clouds, and the abundances do not appear to correlate with the total optical depth. Additionally, from the GBT observations, we report the first detections of multiple complex organic molecules (COMs) in diffuse and translucent clouds, including CH_3CN, HC_3N, CH_3CHO, and NH_2CHO. We compare the GBT results to complementary observations of SH, H_2S, and others at mm, sub-mm, and THz frequencies from the NRAO 12m, Herschel HIFI, and SOFIA facilities, and comment on the insights into interstellar sulfur chemistry which is currently not well constrained.
Line-of-sight extrapolation noise in dust polarization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Poh, Jason; Dodelson, Scott
The B-modes of polarization at frequencies ranging from 50-1000 GHz are produced by Galactic dust, lensing of primordial E-modes in the cosmic microwave background (CMB) by intervening large scale structure, and possibly by primordial B-modes in the CMB imprinted by gravitational waves produced during inflation. The conventional method used to separate the dust component of the signal is to assume that the signal at high frequencies (e.g., 350 GHz) is due solely to dust and then extrapolate the signal down to lower frequency (e.g., 150 GHz) using the measured scaling of the polarized dust signal amplitude with frequency. For typicalmore » Galactic thermal dust temperatures of about 20K, these frequencies are not fully in the Rayleigh-Jeans limit. Therefore, deviations in the dust cloud temperatures from cloud to cloud will lead to different scaling factors for clouds of different temperatures. Hence, when multiple clouds of different temperatures and polarization angles contribute to the integrated line-of-sight polarization signal, the relative contribution of individual clouds to the integrated signal can change between frequencies. This can cause the integrated signal to be decorrelated in both amplitude and direction when extrapolating in frequency. Here we carry out a Monte Carlo analysis on the impact of this line-of-sight extrapolation noise, enabling us to quantify its effect. Using results from the Planck experiment, we find that this effect is small, more than an order of magnitude smaller than the current uncertainties. However, line-of-sight extrapolation noise may be a significant source of uncertainty in future low-noise primordial B-mode experiments. Scaling from Planck results, we find that accounting for this uncertainty becomes potentially important when experiments are sensitive to primordial B-mode signals with amplitude r < 0.0015 .« less
A second look at the CloudSat/TRMM intersect data
NASA Astrophysics Data System (ADS)
Haddad, Z.; Kuo, K.; Smith, E. A.; Kiang, D.; Turk, F. J.
2010-12-01
The original objective motivating the creation of the CloudSat+TRMM intersect products (by E.A. Smith, K.-S. Kuo et al) was to provide new opportunities in research related to precipitating clouds. The data products consist of near-coincident CloudSat Cloud Profiling Radar calibrated 94-GHz reflectivity factors and detection flag, sampled every 240 m in elevation, and the TRMM Precipitation Radar calibrated 13.8-GHz reflectivity factors, attenuation-adjusted reflectivity factors and rain rate estimates, sampled every 250 m in elevation, in the TRMM beam whose footprint encompasses the CloudSat beam footprint. Because retrieving precipitation distributions from single-frequency radar measurements is a very under-constrained proposition, we decided to restrict our analyses to CloudSat data that were taken within 3 minutes of a TRMM pass. We ended up with over 5000 beams of nearly simultaneous observations of precipitation, and proceeded in two different ways: 1) we attempted to perform retrievals based on simultaneous radar reflectivity measurements at Ku and W bands. At low precipitation rates, the Ku-band radar does not detect much of the rain. At higher precipitation rates, the W-band radar incurs high attenuation, and this makes “Hitschfeld-Bordan” retrievals (from the top of the column down toward the surface) diverge because of numerical instability. The main question for this portion of the analysis was to determine if these two extremes are indeed extremes that still afford us a significant number of “in-between” cases, on which we can apply a careful dual-frequency retrieval algorithm; 2) we also attempted to quantify the ability of the Ku-band measurements to provide complementary information to the W-band estimates outside their overlap region, and vice versa. Specifically, instead of looking at the admittedly small vertical region where both radars detect precipitation and where their measurements are unambiguously related to the underlying physics (unaffected by multiple scattering), we considered the TRMM estimates in the rain below the freezing level, and tried to infer the joint behavior of the overlying CloudSat measurements above the freezing level as a function of the rain - and, conversely, we considered the vertical variability of the CloudSat estimates in the above-freezing region, and derived the joint behavior of the TRMM measurements in the rain as a function of the CloudSat estimates. The results are compiled in databases that should allow users of less-sensitive lower-frequency radars to infer some quantitative information about the storm structure above the precipitating core in the absence of higher-frequency measurements, just as it will allow users of too-sensitive higher-frequency radars to infer some quantitative information about the precipitation closer to the surface in the absence of lower-frequency measurements.
Stratocumulus Precipitation and Entrainment Experiment (SPEE) Field Campaign Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Albrecht, Bruce; Ghate, Virendra; CADeddu, Maria
2016-06-01
The scientific focus of this project was to examine precipitation and entrainment processes in marine stratocumulus clouds. The entrainment studies focused on characterizing cloud turbulence at cloud top using Doppler cloud radar observations. The precipitation studies focused on characterizing the precipitation and the macroscopic properties (cloud thickness, and liquid water path) of the clouds. This project will contribute to the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility’s overall objective of providing the remote-sensing observations needed to improve the representation of key cloud processes in climate models. It will be of direct relevance to the componentsmore » of ARM dealing with entrainment and precipitation processes in stratiform clouds. Further, the radar observing techniques that will be used in this study were developed using ARM Southern Great Plains (SGP) facility observations under Atmospheric System Research (ASR) support. The observing systems operating automatously from a site located just north of the Center for Interdisciplinary Remotely-Piloted Aircraft Studies (CIRPAS) aircraft hangar in Marina, California during the period of 1 May to 4 November 2015 included: 1. Microwave radiometer: ARM Microwave Radiometer, 3-Channel (MWR3C) with channels centered at 23.834, 30, and 89 GHz; supported by Dr. Maria Cadeddu. 2. Cloud Radar: CIRPAS 95 GHz Frequency Modulated Continuous Wave (FMCW) Cloud Radar (Centroid Frequency Chirp Rate [CFCR]); operations overseen by Drs. Ghate and Albrecht. 3. Ceilometer: Vaisala CK-14; operations overseen by Drs. Ghate and Albrecht.« less
Lightning and 85-GHz MCSs in the Global Tropics
NASA Technical Reports Server (NTRS)
Toracinta, E. Richard; Zipser, E. J.
1999-01-01
Numerous observations of tropical convection show that tropical continental mesoscale convective systems (MCSs) are much more prolific lightning producers than their oceanic counterparts. Satellite-based climatologies using 85-GHz passive microwave ice-scattering signatures from the Special Sensor Microwave/Imager (SSM/I) indicate that MCSs of various size and intensity are found throughout the global tropics. In contrast, global lightning distributions show a strong land bias with an order of magnitude difference between land and ocean lightning. This is somewhat puzzling, since 85-GHz ice-scattering and the charge separation processes that lead to lightning are both thought to depend upon the existence of large graupel particles. The fact that low 85-GHz brightness temperatures are observed in tropical oceanic MCSs containing virtually no lightning leads to the postulate that tropical oceanic and tropical continental MCSs have fundamentally different hydrometeor profiles through the mixed phase region of the cloud (0 C <= T <= 20 C). Until recently, validation of this postulate has not been practicable on a global scale. Recent deployment of the Tropical Rainfall Measuring Mission (TRMM) satellite presents a unique opportunity for MCS studies. The multi-sensor instrument ensemble aboard TRMM, including a multi-channel microwave radiometer, the Lightning Imaging Sensor (LIS), and the first space-borne radar, facilitates high-resolution case studies of MCS structure throughout the global tropics. An important precursor, however, is to better understand the distribution of MCSs and lightning in the tropics. With that objective in mind, this research undertakes a systematic comparison of 85-GHz-defined MCSs and lightning over the global tropics for a full year, as an initial step toward quantifying differences between land and ocean convective systems.
Preliminary Experiments for the Assessment of V/W-band Links for Space-Earth Communications
NASA Technical Reports Server (NTRS)
Nessel, James A.; Acosta, Roberto J.; Miranda, Felix A.
2013-01-01
Since September 2012, NASA Glenn Research Center has deployed a microwave profiling radiometer at White Sands, NM, to estimate atmospheric propagation effects on communications links in the V and W bands (71-86GHz). Estimates of attenuation statistics in the millimeter wave due to gaseous and cloud components of the atmosphere show good agreement with current ITU-R models, but fail to predict link performance in the presence of moderate to heavy rain rates, due to the inherent limitations of passive radiometry. Herein, we discuss the preliminary results of these measurements and describe a design for a terrestrial link experiment to validate/refine existing rain attenuation models in the V/Wbands.
Preliminary Experiments for the Assessment of VW-Band Links for Space-Earth Communications
NASA Technical Reports Server (NTRS)
Nessel, James A.; Acosta, Roberto J.; Miranda, Felix A.
2013-01-01
Since September 2012, NASA Glenn Research Center has deployed a microwave profiling radiometer at White Sands, NM, to estimate atmospheric propagation effects on communications links in the V and W bands (71-86GHz). Estimates of attenuation statistics in the millimeter wave due to gaseous and cloud components of the atmosphere show good agreement with current ITU-R models, but fail to predict link performance in the presence of moderate to heavy rain rates, due to the inherent limitations of passive radiometry. Herein, we discuss the preliminary results of these measurements and describe a design for a terrestrial link experiment to validaterefine existing rain attenuation models in the VW-bands.
NASA Technical Reports Server (NTRS)
Prabhakara, C.; Dalu, G.; Liberti, G. L.; Nucciarone, J. J.; Suhasini, R.
1991-01-01
The brightness temperature (T sub b) measured at 37 GHz shows fairly strong emission from rain, and only slight effects caused by scattering by ice above the rain clouds. At frequencies below 37 GHz, were the fov is larger and the volume extinction coefficient is weaker, it is found that the observations do not yield appreciable additional information about rain. At 85 GHz (fov = 15 km), where the volume extinction is considerably larger, direct information about rain below the clouds is usually masked. Based on the above ideas, 37 GHz observations with a 30 km fov from SMMR and SSM/I are selected to develop an empirical method for the estimation of rain rate. In this method, the statistics of the observed T sub b's at 37 GHz in a rain storm are related to the rain rate statistics in that storm. The underestimation of rain rate, arising from the inability of the radiometer to respond sensitively to rain rate above a given threshold, is rectified in this technique with the aid of two parameters that depend on the total water vapor content in the atmosphere. The retrieved rain rates compare favorably with radar observations and monthly mean global maps of rain derived from this technique over the oceans.
Rainfall estimation over oceans from SMMR and SSM/I microwave data
NASA Technical Reports Server (NTRS)
Prabhakara, C.; Dalu, G.; Liberti, G. L.; Nucciarone, J. J.; Suhasini, R.
1992-01-01
The brightness temperature (T sub b) measured at 37 GHz shows fairly strong emission from rain, and only slight effects caused by scattering by ice above the rain clouds. At frequencies below 37 GHz, where the FOV is larger and the volume extinction coefficient is weaker, it is found that the observations do not yield appreciable additional information about rain. At 85 GHz (FOV = 15 km), where the volume extinction is considerably larger, direct information about rain below the clouds is usually masked. Based on the above idea, 37 GHz observations with a 30 km FOV from SMMR and SSM/I are selected to develop an empirical method for the estimation of rain rate. In this method, the statistics of the observed T sub b's at 37 GHz in a rain storm are related to the rain rate statistics in that storm. The underestimation of rain rate, arising from the inability of the radiometer to respond sensitively to rain rate above a given threshold is rectified in this technique with the aid of two parameters that depend on the total water vapor content in the atmosphere. The retrieved rain rates compare favorably with radar observations and monthly mean global maps of rain derived from this technique over the oceans.
Using Observations from GPM and CloudSat to Produce a Climatology of Precipitation over the Ocean
NASA Astrophysics Data System (ADS)
Hayden, L.; Liu, C.
2017-12-01
Satellite based instruments are essential to the observation of precipitation at a global scale, especially over remote oceanic regions. Each instrument has its own strengths and limitations when it comes to accurately determining the rate of precipitation occurring at the surface. By using the complementary strengths of two satellite based instruments, we attempt to produce a more complete climatology of global oceanic precipitation. The Global Precipitation Measurement (GPM) Core Osbervatory's Dual-frequency Precipitation Radar (DPR) is capable of measuring precipitation producing radar reflectivity above 12 dBZ [Hamada and Takayabu 2016]. The CloudSat satellite's Cloud Profiling Radar (CPR) uses higher frequency C band (94 GHz) radiation, and is therefore capable of measuring precipitation occurring at low precipitation rates which are not detected by the GPM DPR. The precipitation estimates derived by the two satellites are combined and the results are examined. CloudSat data from July 2006 to December 2010 are used. GPM data from March 2014 through May 2016 are used. Since the two datasets do not temporally overlap, this study is conducted from a climatological standpoint. The average occurrence for different precipitation rates is calculated for both satellites. To produce the combined dataset, the precipitation from CloudSat are used for the low precipitation rates while CloudSat precipitation amount is greater than that from GPM DPR, until GPM DPR precipitation amount is higher than that from CloudSat, at which precipitation rate data from the GPM are used. By combining the two datasets, we discuss the seasonal and geo-graphical distribution of weak precipitation detected by CloudSat that is beyond the sensitivity of GPM DPR. We also hope to gain a more complete picture of the precipitation that occurs over oceanic regions.
The NASA Icing Remote Sensing System
NASA Technical Reports Server (NTRS)
Reehorst, Andrew L.; Brinker, David J.; Ratvasky, Thomas P.; Ryerson, Charles C.; Koenig, George G.
2005-01-01
NASA and the U.S. Army Cold Regions Research and Engineering Laboratory (CRREL) have an on-going activity to develop remote sensing technologies for the detection and measurement of icing conditions aloft. A multiple instrument approach is the current emphasis of this activity. Utilizing radar, radiometry, and lidar, a region of supercooled liquid is identified. If the liquid water content (LWC) is sufficiently high, then the region of supercooled liquid cloud is flagged as being an aviation hazard. The instruments utilized for the current effort are an X-band vertical staring radar, a radiometer that measures twelve frequencies between 22 and 59 GHz, and a lidar ceilometer. The radar data determine cloud boundaries, the radiometer determines the sub-freezing temperature heights and total liquid water content, and the ceilometer refines the lower cloud boundary. Data are post-processed with a LabVIEW program with a resultant supercooled LWC profile and aircraft hazard identification. Remotely sensed measurements gathered during the 2003-2004 Alliance Icing Research Study (AIRS II) were compared to aircraft in-situ measurements. Although the comparison data set is quite small, the cases examined indicate that the remote sensing technique appears to be an acceptable approach.
NASA Astrophysics Data System (ADS)
Kirchengast, G.; Schweitzer, S.
2008-12-01
The ACCURATE (Atmospheric Climate and Chemistry in the UTLS Region And climate Trends Explorer) mission was conceived at the Wegener Center in late 2004 and subsequently proposed in 2005 by an international team of more than 20 scientific partners from more than 12 countries to an ESA selection process for next Earth Explorer Missions. While the mission was not selected for formal pre-phase A study, it received very positive evaluation and was recommended for further development and demonstration. ACCURATE employs the occultation measurement principle, known for its unique combination of high vertical resolution, accuracy and long-term stability, in a novel way. It systematically combines use of highly stable signals in the MW 17-23/178-196 GHz bands (LEO-LEO MW crosslink occultation) with laser signals in the SWIR 2-2.5 μm band (LEO-LEO IR laser crosslink occultation) for exploring and monitoring climate and chemistry in the atmosphere with focus on the UTLS region (upper troposphere/lower stratosphere, 5-35 km). The MW occultation is an advanced and at the same time compact version of the LEO-LEO MW occultation concept, studied in 2002-2004 for the ACE+ mission project of ESA for frequencies including the 17-23 GHz band, complemented by U.S. study heritage for frequencies including the 178-196 GHz bands (R. Kursinski et al., Univ. of Arizona, Tucson). The core of ACCURATE is tight synergy of the IR laser crosslinks with the MW crosslinks. The observed parameters, obtained simultaneously and in a self-calibrated manner based on Doppler shift and differential log-transmission profiles, comprise the fundamental thermodynamic variables of the atmosphere (temperature, pressure/geopotential height, humidity) retrieved from the MW bands, complemented by line-of-sight wind, six greenhouse gases (GHGs) and key species of UTLS chemistry (H2O, CO2, CH4, N2O, O3, CO) and four CO2 and H2O isotopes (HDO, H218O, 13CO2, C18OO) from the SWIR band. Furthermore, profiles of aerosol extinction, cloud layering, and turbulence are obtained. All profiles come with accurate height knowledge (< 10 m uncertainty), since measuring height as a function of time is intrinsic to the MW occultation part of ACCURATE. The presentation will introduce ACCURATE along the lines above, with emphasis on the climate science value and the new IR laser occultation capability. The focus will then be on retrieval performance analysis results obtained so far, in particular regarding the profiles of GHGs, isotopes, and wind. The results provide evidence that the GHG and isotope profiles can generally be retrieved within 5-35 km outside clouds with < 1% to 5% rms accuracy at 1-2 km vertical resolution, and wind with < 2 m/s accuracy. Monthly mean climatological profiles, assuming ~40 profiles per climatologic grid box per month, are found unbiased (free of time-varying biases) and at < 0.2% to 0.5% rms accuracy. These encouraging results are discussed in light of the potential of the ACCURATE technique to provide benchmark data for future monitoring of climate, GHGs, and chemistry variability and change. European science and demonstration activities are outlined, including international participation opportunities.
Development of High Altitude UAV Weather Radars for Hurricane Research
NASA Technical Reports Server (NTRS)
Heymsfield, Gerald; Li, Li-Hua
2005-01-01
A proposed effort within NASA called (ASHE) over the past few years was aimed at studying the genesis of tropical disturbances off the east coast of Africa. This effort was focused on using an instrumented Global Hawk UAV with high altitude (%Ok ft) and long duration (30 h) capability. While the Global Hawk availability remains uncertain, development of two relevant instruments, a Doppler radar (URAD - UAV Radar) and a backscatter lidar (CPL-UAV - Cloud Physics Lidar), are in progress. The radar to be discussed here is based on two previous high-altitude, autonomously operating radars on the NASA ER-2 aircraft, the ER-2 Doppler Radar (EDOP) at X-band (9.6 GHz), and the Cloud Radar System (CRS) at W- band (94 GHz). The nadir-pointing EDOP and CRS radars profile vertical reflectivity structure and vertical Doppler winds in precipitation and clouds, respectively. EDOP has flown in all of the CAMEX flight series to study hurricanes over storms such as Hurricanes Bonnie, Humberto, Georges, Erin, and TS Chantal. These radars were developed at Goddard over the last decade and have been used for satellite algorithm development and validation (TRMM and Cloudsat), and for hurricane and convective storm research. We describe here the development of URAD that will measure wind and reflectivity in hurricanes and other weather systems from a top down, high-altitude view. URAD for the Global Hawk consists of two subsystems both of which are at X-band (9.3-9.6 GHz) and Doppler: a nadir fixed-beam Doppler radar for vertical motion and precipitation measurement, and a Conical scanning radar for horizontal winds in cloud and at the surface, and precipitation structure. These radars are being designed with size, weight, and power consumption suitable for the Global Hawk and other UAV's. The nadir radar uses a magnetron transmitter and the scanning radar uses a TWT transmitter. With conical scanning of the radar at a 35" incidence angle over an ocean surface in the absence of precipitation, the surface return over a single 360 degree sweep over -25 h-diameter region provides information on the surface wind speed and direction within the scan circle. In precipitation regions, the conical scan with appropriate mapping and analysis provides the 3D structure of reflectivity beneath the plane and the horizontal winds. The use of conical scanning in hurricanes has recently been demonstrated for measuring inner core winds with the IWRAP system flying on the NOAA P3's. In this presentation, we provide a description of the URAD system hardware, status, and future plans. In addition to URAD, NASA SBIR activity is supporting a Phase I study by Remote Sensing Solutions and the University of Massachusetts for a dual-frequency IWRAP for a high altitude UAV that utilizes solid state transmitters at 14 and 35 GHz, the same frequencies that are planned for the radar on the Global Precipitation System satellite. This will be discussed elsewhere at the meeting.
NASA Technical Reports Server (NTRS)
Meneghini, Robert; Kumagai, Hiroshi; Wang, James R.; Iguchi, Toshio; Kozu, Toshiaki
1997-01-01
The need to understand the complementarity of the radar and radiometer is important not only to the Tropical Rain Measuring Mission (TRMM) program but to a growing number of multi-instrumented airborne experiment that combine single or dual-frequency radars with multichannel radiometers. The method of analysis used in this study begins with the derivation of dual-wavelength radar equations for the estimation of a two-parameter drop size distribution (DSD). Defining a "storm model" as the set of parameters that characterize snow density, cloud water, water vapor, and features of the melting layer, then to each storm model there will usually correspond a set of range-profiled drop size distributions that are approximate solutions of the radar equations. To test these solutions, a radiative transfer model is used to compute the brightness temperatures for the radiometric frequencies of interest. A storm model or class of storm models is considered optimum if it provides the best reproduction of the radar and radiometer measurements. Tests of the method are made for stratiform rain using simulated storm models as well as measured airborne data. Preliminary results show that the best correspondence between the measured and estimated radar profiles usually can be obtained by using a moderate snow density (0.1-0.2 g/cu cm), the Maxwell-Garnett mixing formula for partially melted hydrometeors (water matrix with snow inclusions), and low to moderate values of the integrated cloud liquid water (less than 1 kg/sq m). The storm-model parameters that yield the best reproductions of the measured radar reflectivity factors also provide brightness temperatures at 10 GHz that agree well with the measurements. On the other hand, the correspondence between the measured and modeled values usually worsens in going to the higher frequency channels at 19 and 34 GHz. In searching for possible reasons for the discrepancies, It is found that changes in the DSD parameter Mu, the radar constants, or the path-integrated attenuation can affect the high frequency channels significantly. In particular, parameters that cause only modest increases in the median mass diameter of the snow, and which have a minor effect on the radar returns or the low frequency brightness temperature, can produce a strong cooling of the 34 GHz brightness temperature.
Ultra-High Spectral Resolution Observations of Fragmentation in Dark Cloud Cores
NASA Technical Reports Server (NTRS)
Velusamy, T.; Langer, W.; Kuiper, T; Levin, S.; Olsen, E.
1993-01-01
This paper presents new evidence of the fragmentary structure of dense cores in dark clouds using the high resolution spectra of the carbon chain molecule CCS transition (J subscript N = 2 subscript 1 - 1 subscript o) at 22.344033 GHz with 0.008 km s superscript -1 resolution.
NASA Technical Reports Server (NTRS)
Smith, Eric A.; Kuo, Kwo-Sen; Carty, Hezekiah
2008-01-01
The CloudSat satellite's Cloud Profiling Radar (CPR) is a highly sensitive 94 GHz (W-band) nadir viewing radar system flown in retrograde sun synchronous orbit useful for determining the vertical structure of cloud hydrometeors down to sensitivity of approx. -30 dBZ reflectivity factor. Given this sensitivity, it is possible to unambiguously measure precipitation rates in clouds over a spectrum extending from approx. 0.08 - 3.0 mm hr (sup -1) down to altitudes of 0.5 km with approx.0.25 km vertical binning. This enables an effective means to measure a great deal of the drizzle and light rain spectrum. However, because of its near-polar sunsynchronous orbit, CloudSat cannot sample the diurnal cycle of precipitation, nor with its nadir-only CPR view can it obtain a high duty cycle in sampling precipitation at fixed local times over fixed positions. On the other hand, the TRMM satellite, which is flown in a non-sunsynchronous 35-degree inclined orbit carrying the 13.8 GHz KU-band Precipitation Radar (PR) scanning through nadir over an approx. 225 km swath, can sample both the diurnal cycle and with a much improved duty cycle relative to CloudSat. Moreover, the PR and CPR have the same 0.25 km vertical binning capability. The PR's greatest shortcoming is its approx. +17 dBZ sensitivity, which eliminates the possibility of measuring rain rates below -0.3-0.5 mm hr(sup -1), which can involve rainfall accumulations of up to 50% of the total over some regions. This begs the question of whether by combining CPR and PR data sets, whether it is possible to obtain an augmented measurement of the diurnal precipitation cycle. By collecting complimentary datasets during CloudSat and TRMM satellite orbit crossings within a delta t = 45-min proximity window, it is possible to demonstrate that whenever TRMM detects a precipitation signal, the correlations along the vertical axis between the reflectivities acquired from the CPR and PR are in inverse proportion to the magnitude of the delta t proximity window. By taking advantage of these underlying correlations, it is possible to develop a functional which can be used to broaden the reflectivity spectrum, concomitantly the rain rate spectrum, of the PR measurements based on the inherently broader reflectivity spectrum of the CPR at the lower reflectivity end of the spectrum, concomitantly at lighter rain rates. With the functional in place, it is then possible to produce synthetic CloudSat precipitation imagery over the PR track and thus over the diurnal time period. These augmented data are then used to study the spectral-vertical diurnal properties of precipitation over oceanic regions observed by TRMM.
Precise Millimeter-Wave Laboratory Frequencies for CS and C34S
NASA Astrophysics Data System (ADS)
Gottlieb, C. A.; Myers, P. C.; Thaddeus, P.
2003-05-01
Nine successive rotational lines in the ground vibrational state of CS and C34S between 96 GHz (J=2-1) and 500 GHz (10-9) were measured in the laboratory to an accuracy of a few kHz. When our measurements are combined with the submillimeter-wave measurements of Ahrens & Winnewisser, the entire rotational spectrum of both isotopic species is predicted to an accuracy of about 1 part in 108 up to 500 GHz and 5 parts in 108 near 1000 GHz. These frequencies should be useful for quantitative studies of cloud core collapse and star formation in the millimeter- and submillimeter-wave bands.
NASA Technical Reports Server (NTRS)
Smith, Eric A.; Im, Eastwood; Tripoli, Gregory J.; Yang, Song
2008-01-01
First, we examine current scientific progress and understanding that have been possible through use of spaceborne precipitation radar measurements being provided by the TRMM and CloudSat satellites. Second, we look across a future 20-year time frame to assess how and why anticipated improvements in space radar systems will further advance scientific progress into topic areas once considered beyond the realm of space-based remote sensing. JAXA's 13.8 GHz Ku-band cross-track scanning Precipitation Radar (PR) developed for flight on NASA's non-sun-synchronous, diurnally-precessing TRMM satellite, was the first Earth radar flown in space that was designed specifically for precipitation measurement. Its proven accuracy in measuring global rainfall in the tropics and sub-tropics and its unanticipated longevity in continuing these measurements beyond a full decade have established the standards against which all follow-up and future space radars will be evaluated. In regards to the current PR measurement time series, we will discuss a selection of major scientific discoveries and impacts which have set the stage for future radar measuring systems. In fact, the 2nd contemporary space radar applicable for terrestrial precipitation measurement, i.e., JPL-CSA's 94 GHz nadir-staring Cloud Profiling Radar (CPR) flown on NASA's sun-synchronous CloudSat satellite, although designed primarily for measurement of non-precipitating cloud hydrometeors and aerosols, has also unquestionably advanced precipitation measurement because CPR's higher frequency and greatly increased sensitivity (approximately 30 dBZ) has enabled global observations of light rain rate spectrum processes (i.e., rain rates below 0.05 mm per hourand of precipitation processes in the high troposphere (particularly ice phase processes). These processes are beyond reach of the TRMM radar because the PR sensitivity limit is approximately 17 dBZ which means its lower rain rate cutoff is around 0.3 mm per hour and its vertical profiling acuity is greatly limited above the melting layer. Thus, the newer CPR measurements have become important for a variety of scientific reasons that will be highlighted and assessed. In considering scientific progress likely to stem from future precipitation radar systems, we will specifically examine possible scientific impacts from three anticipated missions for which NASA and various of its space agency partners are expected to lead the way. These three missions are: (1) the nearterm Global Precipitation Measuring (GPM) Mission; (2) the decadal timeline Aerosol and Cloud Experiment (ACE) Mission; and the post-decadal timeline NEXRAD in Space (NIS) Mission. The observational capabilities of the planned radar systems for each of these three satellite missions are distinct from each other and each provides progressive improvements in precipitation measuring and scientific research capabilities relative to where we are now -- insofar as TRMM PR and the CloudSat CPR capabilities. The potential innovations in scientific research will be discussed in a framework of likely synergisms between next-generation radar capabilities and accessible dynamical and microphysical properties that have heretofore evaded detection.
A Multi-Frequency Wide-Swath Spaceborne Cloud and Precipitation Imaging Radar
NASA Technical Reports Server (NTRS)
Li, Lihua; Racette, Paul; Heymsfield, Gary; McLinden, Matthew; Venkatesh, Vijay; Coon, Michael; Perrine, Martin; Park, Richard; Cooley, Michael; Stenger, Pete;
2016-01-01
Microwave and millimeter-wave radars have proven their effectiveness in cloud and precipitation observations. The NASA Earth Science Decadal Survey (DS) Aerosol, Cloud and Ecosystems (ACE) mission calls for a dual-frequency cloud radar (W band 94 GHz and Ka-band 35 GHz) for global measurements of cloud microphysical properties. Recently, there have been discussions of utilizing a tri-frequency (KuKaW-band) radar for a combined ACE and Global Precipitation Measurement (GPM) follow-on mission that has evolved into the Cloud and Precipitation Process Mission (CaPPM) concept. In this presentation we will give an overview of the technology development efforts at the NASA Goddard Space Flight Center (GSFC) and at Northrop Grumman Electronic Systems (NGES) through projects funded by the NASA Earth Science Technology Office (ESTO) Instrument Incubator Program (IIP). Our primary objective of this research is to advance the key enabling technologies for a tri-frequency (KuKaW-band) shared-aperture spaceborne imaging radar to provide unprecedented, simultaneous multi-frequency measurements that will enhance understanding of the effects of clouds and precipitation and their interaction on Earth climate change. Research effort has been focused on concept design and trade studies of the tri-frequency radar; investigating architectures that provide tri-band shared-aperture capability; advancing the development of the Ka band active electronically scanned array (AESA) transmitreceive (TR) module, and development of the advanced radar backend electronics.
A Broadband Microwave Radiometer Technique at X-band for Rain and Drop Size Distribution Estimation
NASA Technical Reports Server (NTRS)
Meneghini, R.
2005-01-01
Radiometric brightess temperatures below about 12 GHz provide accurate estimates of path attenuation through precipitation and cloud water. Multiple brightness temperature measurements at X-band frequencies can be used to estimate rainfall rate and parameters of the drop size distribution once correction for cloud water attenuation is made. Employing a stratiform storm model, calculations of the brightness temperatures at 9.5, 10 and 12 GHz are used to simulate estimates of path-averaged median mass diameter, number concentration and rainfall rate. The results indicate that reasonably accurate estimates of rainfall rate and information on the drop size distribution can be derived over ocean under low to moderate wind speed conditions.
Application of Multilayer Feedforward Neural Networks to Precipitation Cell-Top Altitude Estimation
NASA Technical Reports Server (NTRS)
Spina, Michelle S.; Schwartz, Michael J.; Staelin, David H.; Gasiewski, Albin J.
1998-01-01
The use of passive 118-GHz O2 observations of rain cells for precipitation cell-top altitude estimation is demonstrated by using a multilayer feed forward neural network retrieval system. Rain cell observations at 118 GHz were compared with estimates of the cell-top altitude obtained by optical stereoscopy. The observations were made with 2 4 km horizontal spatial resolution by using the Millimeter-wave Temperature Sounder (MTS) scanning spectrometer aboard the NASA ER-2 research aircraft during the Genesis of Atlantic Lows Experiment (GALE) and the COoperative Huntsville Meteorological EXperiment (COHMEX) in 1986. The neural network estimator applied to MTS spectral differences between clouds, and nearby clear air yielded an rms discrepancy of 1.76 km for a combined cumulus, mature, and dissipating cell set and 1.44 km for the cumulus-only set. An improvement in rms discrepancy to 1.36 km was achieved by including additional MTS information on the absolute atmospheric temperature profile. An incremental method for training neural networks was developed that yielded robust results, despite the use of as few as 56 training spectra. Comparison of these results with a nonlinear statistical estimator shows that superior results can be obtained with a neural network retrieval system. Imagery of estimated cell-top altitudes was created from 118-GHz spectral imagery gathered from CAMEX, September through October 1993, and from cyclone Oliver, February 7, 1993.
NASA Astrophysics Data System (ADS)
Flagey, N.; Goldsmith, P. F.; Lis, D. C.; Gerin, M.; Neufeld, D.; Sonnentrucker, P.; De Luca, M.; Godard, B.; Goicoechea, J. R.; Monje, R.; Phillips, T. G.
2013-01-01
We present Herschel/HIFI observations of the three ground state transitions of H2O (556, 1669, and 1113 GHz) and H218O (547, 1655, and 1101 GHz)—as well as the first few excited transitions of H2O (987, 752, and 1661 GHz)—toward six high-mass star-forming regions, obtained as part of the PRISMAS (PRobing InterStellar Molecules with Absorption line Studies) Guaranteed Time Key Program. Water vapor associated with the translucent clouds in Galactic arms is detected in absorption along every line of sight in all the ground state transitions. The continuum sources all exhibit broad water features in emission in the excited and ground state transitions. Strong absorption features associated with the source are also observed at all frequencies except 752 GHz. We model the background continuum and line emission to infer the optical depth of each translucent cloud along the lines of sight. We derive the column density of H2O or H218O for the lower energy level of each transition observed. The total column density of water in translucent clouds is usually about a few 1013 cm-2. We find that the abundance of water relative to hydrogen nuclei is 1 × 10-8 in agreement with models for oxygen chemistry in which high cosmic ray ionization rates are assumed. Relative to molecular hydrogen, the abundance of water is remarkably constant through the Galactic plane with X(H2O) =5 × 10-8, which makes water a good traced of H2 in translucent clouds. Observations of the excited transitions of H2O enable us to constrain the abundance of water in excited levels to be at most 15%, implying that the excitation temperature, T ex, in the ground state transitions is below 10 K. Further analysis of the column densities derived from the two ortho ground state transitions indicates that T ex ~= 5 K and that the density n(H2) in the translucent clouds is below 104 cm-3. We derive the water ortho-to-para ratio for each absorption feature along the line of sight and find that most of the clouds show ratios consistent with the value of 3 expected in thermodynamic equilibrium in the high-temperature limit. However, two clouds with large column densities exhibit a ratio that is significantly below 3. This may argue that the history of water molecules includes a cold phase, either when the molecules were formed on cold grains in the well-shielded, low-temperature regions of the clouds, or when they later become at least partially thermalized with the cold gas (~25 K) in those regions; evidently, they have not yet fully thermalized with the warmer (~50 K) translucent portions of the clouds. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.
Gas kinematics in the H II regions G351.69-1.15 and G351.63-1.25
NASA Astrophysics Data System (ADS)
Veena, V. S.; Vig, S.; Tej, A.; Kantharia, N. G.; Ghosh, S. K.
2017-03-01
We probe the structure and kinematics of two neighbouring H II regions identified as cometary and bipolar, using radio recombination lines (RRLs). The H172α RRLs from these H II regions: G351.69-1.15 and G351.63-1.25, are mapped using Giant Metrewave Radio Telescope, India. We also detect carbon RRLs C172α towards both these regions. The hydrogen RRLs display the effects of pressure and dynamical broadening in the line profiles, with the dynamical broadening (∼15 km s-1) playing a major role in the observed profile of G351.69-1.15. We investigate the kinematics of molecular gas species towards this H II region from the Millimetre Astronomy Legacy Team 90 GHz Pilot Survey. The molecular gas is mostly distributed towards the north and north-west of the cometary head. The molecular line profiles indicate signatures of turbulence and outflow in this region. The ionized gas at the cometary tail is blueshifted by ∼8 km s-1 with respect to the ambient molecular cloud, consistent with the earlier proposed champagne flow scenario. The relative velocity of ∼5 km s-1 between the northern and southern lobes of the bipolar H II region G351.63-1.25 is consistent with the premise that the bipolar morphology is a result of the expanding ionized lobes within a flat molecular cloud.
NASA Astrophysics Data System (ADS)
Tang, Fei; Zou, Xiaolei
2017-12-01
The Microwave Radiation Imager (MWRI) on board Chinese Fengyun-3 (FY-3) satellites provides measurements at 10.65, 18.7, 23.8, 36.5, and 89.0 GHz with both horizontal and vertical polarization channels. Brightness temperature measurements of those channels with their central frequencies higher than 19 GHz from satellite-based microwave imager radiometers had traditionally been used to retrieve cloud liquid water path (LWP) over ocean. The results show that the lowest frequency channels are the most appropriate for retrieving LWP when its values are large. Therefore, a modified LWP retrieval algorithm is developed for retrieving LWP of different magnitudes involving not only the high frequency channels but also the lowest frequency channels of FY-3 MWRI. The theoretical estimates of the LWP retrieval errors are between 0.11 and 0.06 mm for 10.65- and 18.7-GHz channels and between 0.02 and 0.04 mm for 36.5- and 89.0-GHz channels. It is also shown that the brightness temperature observations at 10.65 GHz can be utilized to better retrieve the LWP greater than 3 mm in the eyewall region of Super Typhoon Neoguri (2014). The spiral structure of clouds within and around Typhoon Neoguri can be well captured by combining the LWP retrievals from different frequency channels.
Chemical footprint of star formation feedback in M 82 on scales of ~100 pc
NASA Astrophysics Data System (ADS)
Ginard, D.; Fuente, A.; García-Burillo, S.; Alonso-Albi, T.; Krips, M.; Gerin, M.; Neri, R.; Pilleri, P.; Usero, A.; Treviño-Morales, S. P.
2015-06-01
Context. M 82 is one of the nearest and brightest starburst galaxies. It has been extensively studied in the past decade and by now is considered the prototypical extragalactic photon-dominated region (PDR) and a reference for studying star formation feedback. Aims: Our aim is to characterize the molecular chemistry in M 82 at spatial scales of giant molecular clouds (GMCs), ~100 pc, to investigate the feedback effects of the star formation activity. Methods: We present interferometric observations of the CN 1 → 0 (113.491 GHz), N2H+1 → 0 (93.173 GHz), H(41)α (92.034 GHz), CH3CN (91.987 GHz), CS 3 → 2 (146.969 GHz), c-C3H2 31,2 → 22,1 (145.089 GHz), H2CO 20,2 → 10,1 (145.603 GHz), and HC3N 16 → 15 (145.601 GHz) lines carried out with the IRAM Plateau de Bure Interferometer (PdBI). PDR chemical modeling was used to interpret these observations. Results: Our results show that the abundances of N2H+, CS and H13CO+ remain quite constant across the galaxy, confirming that these species are excellent tracers of the dense molecular gas. In contrast, the abundance of CN increases by a factor of ~3 in the inner x2 bar orbits. The [CN]/[N2H+] ratio is well correlated with the H(41)α emission at all spatial scales down to ~100 pc. Chemical modeling shows that the variations in the [CN]/[N2H+] ratio can be explained as the consequence of differences in the local intestellar UV field and in the average cloud sizes within the nucleus of the galaxy. Conclusions: Our high spatial resolution imaging of the starburst galaxy M 82 shows that the star formation activity has a strong impact on the chemistry of the molecular gas. In particular, the entire nucleus behaves as a giant PDR whose chemistry is determined by the local UV flux. The detection of N2H+ shows the existence of a population of clouds with Av> 20 mag all across the galaxy plane. These clouds constitute the molecular gas reservoir for the formation of new stars and, although it is distributed throughout the nucleus, the highest concentration occurs in the outer x1 bar orbits (R ~ 280 pc). Based on observations carried out with the IRAM Plateau de Bure Interferometer. IRAM is supported by INSU/CNRS (France), MPG (Germany), and IGN (Spain).Appendix A is available in electronic form at http://www.aanda.orgFITS files of the reduced data cubes are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/578/A49
Line-of-sight extrapolation noise in dust polarization
NASA Astrophysics Data System (ADS)
Poh, Jason; Dodelson, Scott
2017-05-01
The B-modes of polarization at frequencies ranging from 50-1000 GHz are produced by Galactic dust, lensing of primordial E-modes in the cosmic microwave background (CMB) by intervening large scale structure, and possibly by primordial B-modes in the CMB imprinted by gravitational waves produced during inflation. The conventional method used to separate the dust component of the signal is to assume that the signal at high frequencies (e.g. 350 GHz) is due solely to dust and then extrapolate the signal down to a lower frequency (e.g. 150 GHz) using the measured scaling of the polarized dust signal amplitude with frequency. For typical Galactic thermal dust temperatures of ˜20 K , these frequencies are not fully in the Rayleigh-Jeans limit. Therefore, deviations in the dust cloud temperatures from cloud to cloud will lead to different scaling factors for clouds of different temperatures. Hence, when multiple clouds of different temperatures and polarization angles contribute to the integrated line-of-sight polarization signal, the relative contribution of individual clouds to the integrated signal can change between frequencies. This can cause the integrated signal to be decorrelated in both amplitude and direction when extrapolating in frequency. Here we carry out a Monte Carlo analysis on the impact of this line-of-sight extrapolation noise on a greybody dust model consistent with Planck and Pan-STARRS observations, enabling us to quantify its effect. Using results from the Planck experiment, we find that this effect is small, more than an order of magnitude smaller than the current uncertainties. However, line-of-sight extrapolation noise may be a significant source of uncertainty in future low-noise primordial B-mode experiments. Scaling from Planck results, we find that accounting for this uncertainty becomes potentially important when experiments are sensitive to primordial B-mode signals with amplitude r ≲0.0015 in the greybody dust models considered in this paper.
NASA Technical Reports Server (NTRS)
Ham, Seung-Hee; Sohn, Byung-Ju; Kato, Seiji; Satoh, Masaki
2013-01-01
The shape of the vertical profile of ice cloud layers is examined using 4 months of CloudSat and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) global measurements taken on January, April, July, and October 2007. Ice clouds are selected using temperature profiles when the cloud base is located above the 253K temperature level. The obtained ice water content (IWC), effective radius, or extinction coefficient profiles are normalized by their layer mean values and are expressed in the normalized vertical coordinate, which is defined as 0 and 1 at the cloud base and top heights, respectively. Both CloudSat and CALIPSO observations show that the maximum in the IWC and extinction profiles shifts toward the cloud bottom, as the cloud depth increases. In addition, clouds with a base reaching the surface in a high-latitude region show that the maximum peak of the IWC and extinction profiles occurs near the surface, which is presumably due to snow precipitation. CloudSat measurements show that the seasonal difference in normalized cloud vertical profiles is not significant, whereas the normalized cloud vertical profile significantly varies depending on the cloud type and the presence of precipitation. It is further examined if the 7 day Nonhydrostatic Icosahedral Atmospheric Model (NICAM) simulation results from 25 December 2006 to 1 January 2007 generate similar cloud profile shapes. NICAM IWC profiles also show maximum peaks near the cloud bottom for thick cloud layers and maximum peaks at the cloud bottom for low-level clouds near the surface. It is inferred that oversized snow particles in the NICAM cloud scheme produce a more vertically inhomogeneous IWC profile than observations due to quick sedimentation.
Analytical Retrieval of Global Land Surface Emissivity Maps at AMSR-E passive microwave frequencies
NASA Astrophysics Data System (ADS)
Norouzi, H.; Temimi, M.; Khanbilvardi, R.
2009-12-01
Land emissivity is a crucial boundary condition in Numerical Weather Prediction (NWP) modeling. Land emissivity is also a key indicator of land surface and subsurface properties. The objective of this study, supported by NOAA-NESDIS, is to develop global land emissivity maps using AMSR-E passive microwave measurements along with several ancillary data. The International Satellite Cloud Climatology Project (ISCCP) database has been used to obtain several inputs for the proposed approach such as land surface temperature, cloud mask and atmosphere profile. The Community Radiative Transfer Model (CRTM) has been used to estimate upwelling and downwelling atmospheric contributions. Although it is well known that correction of the atmospheric effect on brightness temperature is required at higher frequencies (over 19 GHz), our preliminary results have shown that a correction at 10.7 GHz is also necessary over specific areas. The proposed approach is based on three main steps. First, all necessary data have been collected and processed. Second, a global cloud free composite of AMSR-E data and corresponding ancillary images is created. Finally, monthly composting of emissivity maps has been performed. AMSR-E frequencies at 6.9, 10.7, 18.7, 36.5 and 89.0 GHz have been used to retrieve the emissivity. Water vapor information obtained from ISCCP (TOVS data) was used to calculate upwelling, downwelling temperatures and atmospheric transmission in order to assess the consistency of those derived from the CRTM model. The frequent land surface temperature (LST) determination (8 times a day) in the ISCCP database has allowed us to assess the diurnal cycle effect on emissivity retrieval. Differences in magnitude and phase between thermal temperature and low frequencies microwave brightness temperature have been noticed. These differences seem to vary in space and time. They also depend on soil texture and thermal inertia. The proposed methodology accounts for these factors and resultant differences in phase and magnitude between LST and microwave brightness temperature. Additional factors such as topography and vegetation cover are under investigation. In addition, the potential of extrapolating the obtained land emissivity maps to different window and sounding channels has been also investigated in this study. The extrapolation of obtained emissivities to different incident angles is also under investigation. Land emissivity maps have been developed at different AMSR-E frequencies. Obtained product has been validated and compared to global land use distribution. Moreover, global soil moisture AMSR-E product maps have been also used to assess to the spatial distribution of the emissivity. Moreover, obtained emissivity maps seem to be consistent with landuse/land cover maps. They also agree well with land emissivity maps obtained from the ISCCP database and developed using SSM/I observations (for frequencies over 19 GHz).
NASA Technical Reports Server (NTRS)
Pittman, Jasna V.; Robertson, Franklin R.; Atkinson, Robert J.
2008-01-01
Accurate representation of the physical and radiative properties of clouds in climate models continues to be a challenge. At present, both remote sensing observations and modeling of microphysical properties of clouds rely heavily on parameterizations or assumptions on particle size distribution (PSD) and cloud phase. In this study, we compare Ice Water Path (IWP), an important physical and radiative property that provides the amount of ice present in a cloud column, using measurements obtained via three different retrieval strategies. The datasets we use in this study include Visible/Near-IR IWP from the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument flying aboard the Aqua satellite, Radar-only IWP from the CloudSat instrument operating at 94 GHz, and NOAA/NESDIS operational IWP from the 89 and 157 GHz channels of the Microwave Humidity Sounder (MHS) instrument flying aboard the NOAA-18 satellite. In the Visible/Near-IR, IWP is derived from observations of optical thickness and effective radius. CloudSat IWP is determined from measurements of cloud backscatter and assumed PSD. MHS IWP retrievals depend on scattering measurements at two different, non-water absorbing channels, 89 and 157 GHz. In order to compare IWP obtained from these different techniques and collected at different vertical and horizontal resolutions, we examine summertime cases in the tropics (30S - 30N) when all 3 satellites are within 4 minutes of each other (approximately 1500 km). All measurements are then gridded to a common 15 km x 15 km box determined by MHS. In a grid box comparison, we find CloudSat to report the highest IWP followed by MODIS, followed by MHS. In a statistical comparison, probability density distributions show MHS with the highest frequencies at IWP of 100-1000 g/m(exp 2) and CloudSat with the longest tail reporting IWP of several thousands g/m(exp 2). For IWP greater than 30 g/m(exp 2), MODIS is consistently higher than CloudSat, and it is higher at the lower IWPs but lower at the higher IWPs that overlap with MHS. Some of these differences can be attributed to the limitations of the measuring techniques themselves, but some can result from the assumptions made in the algorithms that generate the IWP product. We investigate this issue by creating categories based on various conditions such as cloud type, precipitation presence, underlying liquid water content, and surface type (land vs. ocean) and by comparing the performance of the IWP products under each condition.
NASA Astrophysics Data System (ADS)
Arakelyan, A. K.; Hambaryan, A. K.; Arakelyan, A. A.
2012-05-01
In this paper the results of polarization measurements of clear air and clouds brightness temperatures at 37GHz are presented. The results were obtained during the measurements carried out in Armenia from the measuring complex built under the framework of ISTC Projects A-872 and A-1524. The measurements were carried out at vertical and horizontal polarizations, under various angles of sensing by Ka-band combined scatterometric-radiometric system (ArtAr-37) developed and built by ECOSERV Remote Observation Centre Co.Ltd. under the framework of the above Projects. In the paper structural and operational features of the utilized system and the whole measuring complex will be considered and discussed as well.
NASA Astrophysics Data System (ADS)
Panegrossi, Giulia; Casella, Daniele; Sanò, Paolo; Cinzia Marra, Anna; Dietrich, Stefano; Johnson, Benjamin T.; Kulie, Mark S.
2017-04-01
Snowfall is the main component of the global precipitation amount at mid and high latitudes, and improvement of global spaceborne snowfall quantitative estimation is one of the main goals of the Global Precipitation Measurement (GPM) mission. Advancements in snowfall detection and retrieval accuracy at mid-high latitudes are expected from both instruments on board the GPM Core Observatory (GPM-CO): the GMI, the most advanced conical precipitation radiometer with respect to both channel assortment and spatial resolution; and the Dual-frequency Precipitation Radar (DPR) (Ka and Ku band). Moreover, snowfall monitoring is now possible by exploiting the high frequency channels (i.e. >100 GHz) available from most of the microwave radiometers in the GPM constellation providing good temporal coverage at mid-high latitudes (hourly or less). Among these, the Advanced Technology Microwave Sounder (ATMS) onboard Suomi-NPP is the most advanced polar-orbiting cross track radiometer with 5 channels in the 183 GHz oxygen absorption band. Finally, CloudSat carries the W-band Cloud Profiling Radar (CPR) that has collected data since its launch in 2006. While CPR was primarily designed as a cloud remote sensing mission, its high-latitude coverage (up to 82° latitude) and high radar sensitivity ( -28 dBZ) make it very suitable for snowfall-related research. In this work a number of global datasets made of coincident observations of snowfall producing clouds from the spaceborne radars DPR and CPR and from the most advanced radiometers available (GMI and ATMS) have been created and analyzed. We will show the results of a study where CPR is used to: 1) assess snowfall detection and estimate capabilities of DPR; 2) analyze snowfall signatures in the high frequency channels of the passive microwave radiometers in relation to fundamental environmental conditions. We have estimated that DPR misses a very large fraction of snowfall precipitation (more than 90% of the events and around 70% of the precipitating snowfall mass), mostly because of sensitivity limits of the DPR and secondly because of the effect of side lobe clutter. We will show that improved DPR detection capabilities (> 50%) of the snowfall mass can be achieved by optimally combining Ku-band and Ka-band measured reflectivity and exploiting the weak signals related to snowfall. ATMS-CPR, GMI-CPR, and GMI-DPR coincident observations have been analyzed in order to study the multichannel brightness temperature signal related to snowfall. The main results of this study show that the high frequency channels (and the 183 GHz band channels in particular) can be successfully used to identify snowfall, but results depend strongly on proper identification of surface background and proper estimation of integrated water vapor content. In this context a new algorithm for surface classification using primarily ATMS (and GMI) low frequency channels, and identifying different snow-covered land surfaces and ice or broken-ice over ocean, is proposed and will be presented.
NASA Technical Reports Server (NTRS)
Pittman, Jasna; Robertson, Franklin; Blankenship, Clay
2008-01-01
Accurate measurement of the physical and radiative properties of clouds and their representation in climate models continues to be a challe nge. Model parameterizations are still subject to a large number of t unable parameters; furthermore, accurate and representative in situ o bservations are very sparse, and satellite observations historically have significant quantitative uncertainties, particularly with respect to particle size distribution (PSD) and cloud phase. Ice Water Path (IWP), or amount of ice present in a cloud column, is an important cl oud property to accurately quantify, because it is an integral measur e of the microphysical properties of clouds and the cloud feedback pr ocesses in the climate system. This paper investigates near co-incident retrievals of IWP over tropical oceans using three diverse measurem ent systems: radar from CloudSat, Vis/IR from Aqua/MODIS, and microwa ve from NOAA-18IMHS. CloudSat 94 GHz radar measurements provide high resolution vertical and along-orbit structure of cloud reflectivity a nd enable IWP (and IWC) retrievals. Overlapping MODIS measurements of cloud optical thickness and phase allow estimates of IWP when cloud tops are identified as being ice. Periodically, NOAA18 becomes co-inci dent in space I time to enable comparison of A-Train measurements to IWP inferred from the 157 and 89 GHz channel radiances. This latter m easurement is effective only for thick convective anvil systems. We s tratify these co-incident data (less than 4 minutes separation) into cirrus only, cirrus overlying liquid water clouds, and precipitating d eep convective clouds. Substantial biases in IWP and ice effective ra dius are found. Systematic differences in these retrievals are consid ered in light of the uncertainties in a priori assumptions ofPSDs, sp ectral sensitivity and algorithm strategies, which have a direct impact on the IWP product.
NASA Icing Remote Sensing System Comparisons From AIRS II
NASA Technical Reports Server (NTRS)
Reehorst, Andrew L.; Brinker, David J.; Ratvasky, Thomas P.
2005-01-01
NASA has an on-going activity to develop remote sensing technologies for the detection and measurement of icing conditions aloft. A multiple instrument approach is the current emphasis of this activity. Utilizing radar, radiometry, and lidar, a region of supercooled liquid is identified. If the liquid water content (LWC) is sufficiently high, then the region of supercooled liquid cloud is flagged as being an aviation hazard. The instruments utilized for the current effort are an X-band vertical staring radar, a radiometer that measures twelve frequencies between 22 and 59 GHz, and a lidar ceilometer. The radar data determine cloud boundaries, the radiometer determines the sub-freezing temperature heights and total liquid water content, and the ceilometer refines the lower cloud boundary. Data is post-processed with a LabVIEW program with a resultant supercooled LWC profile and aircraft hazard identification. Individual remotely sensed measurements gathered during the 2003-2004 Alliance Icing Research Study (AIRS II) were compared to aircraft in-situ measurements. Comparisons between the remote sensing system s fused icing product and in-situ measurements from the research aircraft are reviewed here. While there are areas where improvement can be made, the cases examined indicate that the fused sensor remote sensing technique appears to be a valid approach.
A cloud model-radiative model combination for determining microwave TB-rain rate relations
NASA Technical Reports Server (NTRS)
Szejwach, Gerard; Adler, Robert F.; Jobard, Esabelle; Mack, Robert A.
1986-01-01
The development of a cloud model-radiative transfer model combination for computing average brightness temperature, T(B), is discussed. The cloud model and radiative transfer model used in this study are described. The relations between rain rate, cloud and rain water, cloud and precipitation ice, and upwelling radiance are investigated. The effects of the rain rate relations on T(B) under different climatological conditions are examined. The model-derived T(B) results are compared to the 92 and 183 GHz aircraft observations of Hakkarinen and Adler (1984, 1986) and the radar-estimated rain rate of Hakkarinen and Adler (1986); good correlation between the data is detected.
NASA Technical Reports Server (NTRS)
Molthan, Andrew L.; Petersen, Walter A.; Case, Jonathan L.; Dembek, Scott R.; Jedlovec, Gary J.
2009-01-01
Increases in computational resources have allowed operational forecast centers to pursue experimental, high resolution simulations that resolve the microphysical characteristics of clouds and precipitation. These experiments are motivated by a desire to improve the representation of weather and climate, but will also benefit current and future satellite campaigns, which often use forecast model output to guide the retrieval process. Aircraft, surface and radar data from the Canadian CloudSat/CALIPSO Validation Project are used to check the validity of size distribution and density characteristics for snowfall simulated by the NASA Goddard six-class, single-moment bulk water microphysics scheme, currently available within the Weather Research and Forecast (WRF) Model. Widespread snowfall developed across the region on January 22, 2007, forced by the passing of a midlatitude cyclone, and was observed by the dual-polarimetric, C-band radar King City, Ontario, as well as the NASA 94 GHz CloudSat Cloud Profiling Radar. Combined, these data sets provide key metrics for validating model output: estimates of size distribution parameters fit to the inverse-exponential equations prescribed within the model, bulk density and crystal habit characteristics sampled by the aircraft, and representation of size characteristics as inferred by the radar reflectivity at C- and W-band. Specified constants for distribution intercept and density differ significantly from observations throughout much of the cloud depth. Alternate parameterizations are explored, using column-integrated values of vapor excess to avoid problems encountered with temperature-based parameterizations in an environment where inversions and isothermal layers are present. Simulation of CloudSat reflectivity is performed by adopting the discrete-dipole parameterizations and databases provided in literature, and demonstrate an improved capability in simulating radar reflectivity at W-band versus Mie scattering assumptions.
NASA Astrophysics Data System (ADS)
Proschek, Veronika; Kirchengast, Gottfried; Schweitzer, Susanne; Fritzer, Johannes
2010-05-01
The new climate satellite concept ACCURATE (Atmospheric Climate and Chemistry in the UTLS Region And climate Trends Explorer) enables simultaneous measurement of profiles of greenhouse gases, isotopes, wind and thermodynamic variables from Low Earth Orbit (LEO) satellites. The measurement principle applied is a combination of the novel LEO-LEO infrared laser occultation (LIO) technique and the already better studied LEO-LEO microwave occultation (LMO) technique. Resulting occultation events are evenly distributed around the world, have high vertical resolution and accuracy and are stable over long time periods. The LIO uses near-monochromatic signals in the short-wave infrared range (~2-2.5 μm for ACCURATE). These signals are absorbed by various trace species in the Earth's atmosphere. Profiles of the concentration of the absorbing species can be derived from signal transmission measurements. Accurately known temperature, pressure and humidity profiles derived from simultaneously measured LMO signals are essential pre-information for the retrieval of the trace species profiles. These LMO signals lie in the microwave band region from 17-23 GHz and, optionally, 178-195 GHz. The current ACCURATE mission design is arranged for the measurement of six greenhouse gases (GHG) (H2O, CO2, CH4, N2O, O3, CO) and four isotopes (13CO2, C18OO, HDO, H218O), with focus on the upper troposphere/lower stratosphere region (UTLS, 5-35 km). Wind speed in line-of-sight can be derived from a line-symmetric transmission difference which is caused by wind-induced Doppler shift. By-products are information on cloud layering, aerosol extinction, and scintillation strength. We introduce the methodology to retrieve GHG profiles from quasi-realistic forward-simulated intensities of LIO signals and thermodynamic profiles retrieved in a preceding step from LMO signals. Key of the retrieval methodology is the differencing of two LIO transmission signals, one being GHG sensitive on a target absorption line and one being a close-by reference outside of any absorption lines. The reference signal is used to remove atmospheric broadband" effects by this differential absorption" approach. Refractivity and impact parameter of the LIO signals, needed for the retrieval, can be computed from the LMO-derived thermodynamic profiles. An Abel Transform converts the differential LIO log-transmission profile to the absorption coefficient. Based on the absorption coefficient and the absorption cross section of the GHG under investigation, that can as well be computed from the LMO-derived profiles, the number density profile or volume mixing ratio of the desired GHG can be finally derived. When using several LIO signals, best sensitive to the same GHG at different heights, a joint optimal GHG profile can be constructed by combining the individual profiles in an inverse-variance-weighted manner (practically used for H2O, obtained from 3-4 signals, and for CO2, obtained from 2 isotope signals). The thermodynamic parameters (temperature, pressure and humidity) derived from LMO as basis for the LIO retrieval are found to be accurate to better than 0.5 K for temperature, 0.2% for pressure, and 10% for humidity. The accuracy of retrieved trace species profiles is found better than 1% to 4% for single profiles in the UTLS region (outside clouds which block infrared) and the profiles are essentially unbiased (biases
Through thick and thin: quantitative classification of photometric observing conditions on Paranal
NASA Astrophysics Data System (ADS)
Kerber, Florian; Querel, Richard R.; Neureiter, Bianca; Hanuschik, Reinhard
2016-07-01
A Low Humidity and Temperature Profiling (LHATPRO) microwave radiometer is used to monitor sky conditions over ESO's Paranal observatory. It provides measurements of precipitable water vapour (PWV) at 183 GHz, which are being used in Service Mode for scheduling observations that can take advantage of favourable conditions for infrared (IR) observations. The instrument also contains an IR camera measuring sky brightness temperature at 10.5 μm. It is capable of detecting cold and thin, even sub-visual, cirrus clouds. We present a diagnostic diagram that, based on a sophisticated time series analysis of these IR sky brightness data, allows for the automatic and quantitative classification of photometric observing conditions over Paranal. The method is highly sensitive to the presence of even very thin clouds but robust against other causes of sky brightness variations. The diagram has been validated across the complete range of conditions that occur over Paranal and we find that the automated process provides correct classification at the 95% level. We plan to develop our method into an operational tool for routine use in support of ESO Science Operations.
Ice Cloud Optical Thickness and Extinction Estimates from Radar Measurements.
NASA Astrophysics Data System (ADS)
Matrosov, Sergey Y.; Shupe, Matthew D.; Heymsfield, Andrew J.; Zuidema, Paquita
2003-11-01
A remote sensing method is proposed to derive vertical profiles of the visible extinction coefficients in ice clouds from measurements of the radar reflectivity and Doppler velocity taken by a vertically pointing 35-GHz cloud radar. The extinction coefficient and its vertical integral, optical thickness τ, are among the fundamental cloud optical parameters that, to a large extent, determine the radiative impact of clouds. The results obtained with this method could be used as input for different climate and radiation models and for comparisons with parameterizations that relate cloud microphysical parameters and optical properties. An important advantage of the proposed method is its potential applicability to multicloud situations and mixed-phase conditions. In the latter case, it might be able to provide the information on the ice component of mixed-phase clouds if the radar moments are dominated by this component. The uncertainties of radar-based retrievals of cloud visible optical thickness are estimated by comparing retrieval results with optical thicknesses obtained independently from radiometric measurements during the yearlong Surface Heat Budget of the Arctic Ocean (SHEBA) field experiment. The radiometric measurements provide a robust way to estimate τ but are applicable only to optically thin ice clouds without intervening liquid layers. The comparisons of cloud optical thicknesses retrieved from radar and from radiometer measurements indicate an uncertainty of about 77% and a bias of about -14% in the radar estimates of τ relative to radiometric retrievals. One possible explanation of the negative bias is an inherently low sensitivity of radar measurements to smaller cloud particles that still contribute noticeably to the cloud extinction. This estimate of the uncertainty is in line with simple theoretical considerations, and the associated retrieval accuracy should be considered good for a nonoptical instrument, such as radar. This paper also presents relations between radar-derived characteristic cloud particle sizes and effective sizes used in models. An average relation among τ, cloud ice water path, and the layer mean value of cloud particle characteristic size is also given. This relation is found to be in good agreement with in situ measurements. Despite a high uncertainty of radar estimates of extinction, this method is useful for many clouds where optical measurements are not available because of cloud multilayering or opaqueness.
NASA Astrophysics Data System (ADS)
Kerber, Florian; Querel, Richard R.; Neureiter, Bianca
2015-04-01
A Low Humidity and Temperature Profiling (LHATPRO) microwave radiometer, manufactured by Radiometer Physics GmbH (RPG), is used to monitor sky conditions over ESO's Paranal observatory in support of VLT science operations. The unit measures several channels across the strong water vapour emission line at 183 GHz, necessary for resolving the low levels of precipitable water vapour (PWV) that are prevalent on Paranal (median ∼2.4 mm). The instrument consists of a humidity profiler (183-191 GHz), a temperature profiler (51-58 GHz), and an infrared camera (∼10 μm) for cloud detection. We present a statistical analysis of the homogeneity of all-sky PWV using 24 months of PWV observations. The question we tried to address was whether PWV is homogeneous enough across the sky such that service mode observations with the VLT can routinely be conducted with a user-provided constraint for PWV measured at zenith. We find the PWV over Paranal to be remarkably homogeneous across the sky down to 27.5° elevation with a median variation of 0.07 mm (rms). The homogeneity is a function of the absolute PWV but the relative variation is fairly constant at 2 to 3% (rms). Such variations will not be a significant issue for analysis of astronomical data. Users at ESO can specify PWV - measured at zenith - as an ambient constraint in service mode to enable, for instance, very demanding observations in the infrared. We conclude that in general it will not be necessary to add another observing constraint for PWV homogeneity to ensure integrity of observations. For demanding observations requiring very low PWV, where the relative variation is higher, the optimum support could be provided by observing with the LHATPRO in the same line-of-sight simultaneously. Such a mode of operations has already been tested but will have to be justified in terms of scientific gain before implementation can be considered. We plan to extend our analysis of PWV variations covering a larger parameters space for temporal and spatial resolution in the future. Also for climate studies such data sets will be relevant.
All-sky homogeneity of precipitable water vapour over Paranal
NASA Astrophysics Data System (ADS)
Querel, Richard R.; Kerber, Florian
2014-08-01
A Low Humidity and Temperature Profiling (LHATPRO) microwave radiometer, manufactured by Radiometer Physics GmbH (RPG), is used to monitor sky conditions over ESO's Paranal observatory in support of VLT science operations. The unit measures several channels across the strong water vapour emission line at 183 GHz, necessary for resolving the low levels of precipitable water vapour (PWV) that are prevalent on Paranal (median ~2.4 mm). The instrument consists of a humidity profiler (183-191 GHz), a temperature profiler (51-58 GHz), and an infrared camera (~10 μm) for cloud detection. We present, for the first time, a statistical analysis of the homogeneity of all-sky PWV using 21 months of periodic (every 6 hours) all-sky scans from the radiometer. These data provide unique insight into the spatial and temporal variation of atmospheric conditions relevant for astronomical observations, particularly in the infrared. We find the PWV over Paranal to be remarkably homogeneous across the sky down to 27.5° elevation with a median variation of 0.32 mm (peak to valley) or 0.07 mm (rms). The homogeneity is a function of the absolute PWV but the relative variation is fairly constant at 10-15% (peak to valley) and 3% (rms). Such variations will not be a significant issue for analysis of astronomical data. Users at ESO can specify PWV - measured at zenith - as an ambient constraint in service mode to enable, for instance, very demanding observations in the infrared that can only be conducted during periods of very good atmospheric transmission and hence low PWV. We conclude that in general it will not be necessary to add another observing constraint for PWV homogeneity to ensure integrity of observations. For demanding observations requiring very low PWV, where the relative variation is higher, the optimum support could be provided by observing with the LHATPRO in the same line-of-sight simultaneously. Such a mode of operations has already been tested but will have to be justified in terms of scientific gain before implementation can be considered. This will be explored further in the future.
NASA Technical Reports Server (NTRS)
Pazmany, Andrew L.; Reehorst, Andrew (Technical Monitor)
2001-01-01
The Mount Washington Icing Sensors Project (MWISP) was a multi-investigator experiment with participants from Quadrant Engineering, NOAA Environmental Technology Laboratory (NOAA/ETL), the Microwave Remote Sensing Laboratory (MIRSL) of the University of Massachusetts (UMass), and others. Radar systems from UMass and NOAA/ETL were used to measure X-, Ka-, and W-band backscatter data from the base of Mt. Washington, while simultaneous in-situ particle measurements were made from aircraft and from the observatory at the summit. This report presents range and time profiles of liquid water content and particle size parameters derived from range profiles of radar reflectivity as measured at X-, Ka-, and W-band (9.3, 33.1, and 94.9 GHz) using an artificial neural network inversion algorithm. In this report, we provide a brief description of the experiment configuration, radar systems, and a review of the artificial neural network used to extract cloud parameters from the radar data. Time histories of liquid water content (LWC), mean volume diameter (MVD) and mean Z diameter (MZD) are plotted at 300 m range intervals for slant ranges between 1.1 and 4 km. Appendix A provides details on the extraction of radar reflectivity from measured radar power, and Appendix B provides summary logs of the weather conditions for each day in which we processed data.
NASA Astrophysics Data System (ADS)
Kato, Seiji; Sun-Mack, Sunny; Miller, Walter F.; Rose, Fred G.; Chen, Yan; Minnis, Patrick; Wielicki, Bruce A.
2010-01-01
A cloud frequency of occurrence matrix is generated using merged cloud vertical profiles derived from the satellite-borne Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) and cloud profiling radar. The matrix contains vertical profiles of cloud occurrence frequency as a function of the uppermost cloud top. It is shown that the cloud fraction and uppermost cloud top vertical profiles can be related by a cloud overlap matrix when the correlation length of cloud occurrence, which is interpreted as an effective cloud thickness, is introduced. The underlying assumption in establishing the above relation is that cloud overlap approaches random overlap with increasing distance separating cloud layers and that the probability of deviating from random overlap decreases exponentially with distance. One month of Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) and CloudSat data (July 2006) support these assumptions, although the correlation length sometimes increases with separation distance when the cloud top height is large. The data also show that the correlation length depends on cloud top hight and the maximum occurs when the cloud top height is 8 to 10 km. The cloud correlation length is equivalent to the decorrelation distance introduced by Hogan and Illingworth (2000) when cloud fractions of both layers in a two-cloud layer system are the same. The simple relationships derived in this study can be used to estimate the top-of-atmosphere irradiance difference caused by cloud fraction, uppermost cloud top, and cloud thickness vertical profile differences.
DOE Office of Scientific and Technical Information (OSTI.GOV)
P Kollias; MA Miller; KB Widener
2005-12-30
The United States (U.S.) Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility (ACRF) operates millimeter wavelength cloud radars (MMCRs) in several climatological regimes. The MMCRs, are the primary observing tool for quantifying the properties of nearly all radiatively important clouds over the ACRF sites. The first MMCR was installed at the ACRF Southern Great Plains (SGP) site nine years ago and its original design can be traced to the early 90s. Since then, several MMCRs have been deployed at the ACRF sites, while no significant hardware upgrades have been performed. Recently, a two-stage upgrade (first C-40 Digitalmore » Signal Processors [DSP]-based, and later the PC-Integrated Radar AcQuisition System [PIRAQ-III] digital receiver) of the MMCR signal-processing units was completed. Our future MMCR related goals are: 1) to have a cloud radar system that continues to have high reliability and uptime and 2) to suggest potential improvements that will address increased sensitivity needs, superior sampling and low cost maintenance of the MMCRs. The Traveling Wave Tube (TWT) technology, the frequency (35-GHz), the radio frequency (RF) layout, antenna, the calibration and radar control procedure and the environmental enclosure of the MMCR remain assets for our ability to detect the profile of hydrometeors at all heights in the troposphere at the ACRF sites.« less
Venus mesospheric winds and the carbon monoxide bulge
NASA Technical Reports Server (NTRS)
Gurwell, Mark A.; Muhleman, Duane O.; Shah, Kathryn Pierce
1992-01-01
Recently, our group mapped the CO absorption lines on the disk of Venus in 1988 using the synthetic aperture array at the Owens Valley Radio Observatory. Observations were make in the (0-1) rotational transition of CO at 115 GHz, or a wavelength of 2.6 mm. Systematic variations in the Doppler shifts of the lines (particularly near the limbs) enable the group to directly map the wind field at 100 plus or minus 10 km, the peak altitude for the experimental weighting functions used. These measurements show that the winds are indeed of the order of a 100 m/s at this altitude. Previously, many had assumed that the vertical wind profile would quickly fall to zero above the cloud tops, due to cyclostrophic breakdown. This work is reviewed.
The Herschel/HIFI spectral survey of OMC-2 FIR 4 (CHESS). An overview of the 480 to 1902 GHz range
NASA Astrophysics Data System (ADS)
Kama, M.; López-Sepulcre, A.; Dominik, C.; Ceccarelli, C.; Fuente, A.; Caux, E.; Higgins, R.; Tielens, A. G. G. M.; Alonso-Albi, T.
2013-08-01
Context. Broadband spectral surveys of protostars offer a rich view of the physical, chemical and dynamical structure and evolution of star-forming regions. The Herschel Space Observatory opened up the terahertz regime to such surveys, giving access to the fundamental transitions of many hydrides and to the high-energy transitions of many other species. Aims: A comparative analysis of the chemical inventories and physical processes and properties of protostars of various masses and evolutionary states is the goal of the Herschel CHEmical Surveys of Star forming regions (CHESS) key program. This paper focusses on the intermediate-mass protostar, OMC-2 FIR 4. Methods: We obtained a spectrum of OMC-2 FIR 4 in the 480 to 1902 GHz range with the HIFI spectrometer onboard Herschel and carried out the reduction, line identification, and a broad analysis of the line profile components, excitation, and cooling. Results: We detect 719 spectral lines from 40 species and isotopologs. The line flux is dominated by CO, H2O, and CH3OH. The line profiles are complex and vary with species and upper level energy, but clearly contain signatures from quiescent gas, a broad component likely due to an outflow, and a foreground cloud. Conclusions: We find abundant evidence for warm, dense gas, as well as for an outflow in the field of view. Line flux represents 2% of the 7 L⊙ luminosity detected with HIFI in the 480 to 1250 GHz range. Of the total line flux, 60% is from CO, 13% from H2O and 9% from CH3OH. A comparison with similar HIFI spectra of other sources is set to provide much new insight into star formation regions, a case in point being a difference of two orders of magnitude in the relative contribution of sulphur oxides to the line cooling of Orion KL and OMC-2 FIR 4. Appendix A is available in electronic form at http://www.aanda.org
Odin observations of H2O and O2 in comets and interstellar clouds
NASA Astrophysics Data System (ADS)
Hjalmarson, Åke; Odin Team
2002-11-01
We here report on results from single-position observations, and in some cases also mapping, of the 557 GHz ortho-H2O line in several comets and in many interstellar molecular clouds by the Odin sub-millimetre wave spectroscopy satellite. The H2O production rates have been accurately determined in four comets, C/2001 A2 (LINEAR), 19P/Borrelly, C/2000 WM1 (LINEAR), and 153P/2002 C1 (Ikeya-Zhang). In comet Ikeya-Zhang our detection at a low level of the corresponding H218O emission line verifies the H2O production rate (which depends upon the assumed radiative and collisional excitation and also upon radiative transfer modelling) and is consistent with a nearly terrestrial 16O/18O-isotope ratio. In an astrobiological context, the cometary H2O production rates are especially important as reference levels for comparison with abundances of other molecules simultaneously observed with ground-based telescopes. In interstellar clouds the observed gas-phase H2O abundances (vs H2) range from 5×10-4 in the Orion KL outflow/shock region (where essentially all oxygen is locked up in H2O) to circa 10-8 in quiescent cloud regions (where H2O) is just one of many trace molecules). From an astrobiological point of view, the molecular abundances in star forming clouds are important in terms of initial conditions for the chemistry in proto-planetary disks ("proto-solar nebulae"), the formation sites of new planetary systems. In simultaneous observations, Odin has also detected the 572 GHz ortho-NH3 line in cold and warm clouds as well as in the Orion outflow and Bar/PDR regions (an area of increased ionisation caused by the intense UV flux from newly born massive stars). In other simultaneous observations, we have performed sensitive searches for O2 at 119 GHz. Although no detection can be reported as yet, the resulting very low abundance limits (<10-7) are very intriguing when they are compared with current "standard" model expectations, which fall in the range 10-5-10-4.
The Influence of Microphysical Cloud Parameterization on Microwave Brightness Temperatures
NASA Technical Reports Server (NTRS)
Skofronick-Jackson, Gail M.; Gasiewski, Albin J.; Wang, James R.; Zukor, Dorothy J. (Technical Monitor)
2000-01-01
The microphysical parameterization of clouds and rain-cells plays a central role in atmospheric forward radiative transfer models used in calculating passive microwave brightness temperatures. The absorption and scattering properties of a hydrometeor-laden atmosphere are governed by particle phase, size distribution, aggregate density., shape, and dielectric constant. This study identifies the sensitivity of brightness temperatures with respect to the microphysical cloud parameterization. Cloud parameterizations for wideband (6-410 GHz observations of baseline brightness temperatures were studied for four evolutionary stages of an oceanic convective storm using a five-phase hydrometeor model in a planar-stratified scattering-based radiative transfer model. Five other microphysical cloud parameterizations were compared to the baseline calculations to evaluate brightness temperature sensitivity to gross changes in the hydrometeor size distributions and the ice-air-water ratios in the frozen or partly frozen phase. The comparison shows that, enlarging the rain drop size or adding water to the partly Frozen hydrometeor mix warms brightness temperatures by up to .55 K at 6 GHz. The cooling signature caused by ice scattering intensifies with increasing ice concentrations and at higher frequencies. An additional comparison to measured Convection and Moisture LA Experiment (CAMEX 3) brightness temperatures shows that in general all but, two parameterizations produce calculated T(sub B)'s that fall within the observed clear-air minima and maxima. The exceptions are for parameterizations that, enhance the scattering characteristics of frozen hydrometeors.
High-Altitude MMIC Sounding Radiometer for the Global Hawk Unmanned Aerial Vehicle
NASA Technical Reports Server (NTRS)
Brown, Shannon T.; Lim, Boon H.; Tanner, Alan B.; Tanabe, Jordan M.; Kangaslahti, Pekka P.; Gaier, Todd C.; Soria, Mary M.; Lambrigtsen, Bjorn H.; Denning, Richard F.; Stachnik, Robert A.
2012-01-01
Microwave imaging radiometers operating in the 50-183 GHz range for retrieving atmospheric temperature and water vapor profiles from airborne platforms have been limited in the spatial scales of atmospheric structures that are resolved not because of antenna aperture size, but because of high receiver noise masking the small variations that occur on small spatial scales. Atmospheric variability on short spatial and temporal scales (second/ km scale) is completely unresolved by existing microwave profilers. The solution was to integrate JPL-designed, high-frequency, low-noise-amplifier (LNA) technology into the High-Altitude MMIC Sounding Radiometer (HAMSR), which is an airborne microwave sounding radiometer, to lower the system noise by an order of magnitude to enable the instrument to resolve atmospheric variability on small spatial and temporal scales. HAMSR has eight sounding channels near the 60-GHz oxygen line complex, ten channels near the 118.75-GHz oxygen line, and seven channels near the 183.31-GHz water vapor line. The HAMSR receiver system consists of three heterodyne spectrometers covering the three bands. The antenna system consists of two back-to-back reflectors that rotate together at a programmable scan rate via a stepper motor. A single full rotation includes the swath below the aircraft followed by observations of ambient (roughly 0 C in flight) and heated (70 C) blackbody calibration targets located at the top of the rotation. A field-programmable gate array (FPGA) is used to read the digitized radiometer counts and receive the reflector position from the scan motor encoder, which are then sent to a microprocessor and packed into data files. The microprocessor additionally reads telemetry data from 40 onboard housekeeping channels (containing instrument temperatures), and receives packets from an onboard navigation unit, which provides GPS time and position as well as independent attitude information (e.g., heading, roll, pitch, and yaw). The raw data files are accessed through an Ethernet port. The HAMSR data rate is relatively low at 75 kbps, allowing for real-time access over the Global Hawk high-data-rate downlink. Once on the ground, the raw data are unpacked and processed through two levels of processing. The Level 1 product contains geo-located, time-stamped, calibrated brightness temperatures for the Earth scan. These data are then input to a lD variational retrieval algorithm to produce temperature, water vapor, and cloud liquid water profiles, as well as several derived products such as potential temperature and relative humidity.
Survey for C-Band High Spectral Lines with the Arecibo Telescope
NASA Astrophysics Data System (ADS)
Tan, Wei Siang
High-mass stars have masses greater than 8 solar masses and are the main source of heavy elements such as iron in the interstellar medium. This type of stars form in giant molecular clouds. Studying the molecular environment in star-forming regions is crucial to understand the physical structure and conditions that lead to the formation of high-mass stars. This thesis presents observations conducted with the 305m Arecibo Telescope in Puerto Rico of twelve high-mass star forming regions. Every source was observed in multiple transitions of molecular species including CH, CH3OH, H2CS, and OH lines, and a radio recombination line. The observations were conducted with the C-Band High receiver of the Arecibo Telescope in the frequency range of 6.0 to 7.4GHz. The goals of the observations were to investigate the detectability of different molecular species (including new possible molecular masers) and obtain high sensitivity observations of the 6.7GHz CH3OH line to detect absorption and use it as a probe of the kinematics of the molecular material with respect to the ionized gas. Among the results of the observations, we report detection of 6.7GHz CH3OH masers toward nine regions, OH masers toward five sources, 6.7GHz CH3OH absorption toward four sources (including tentative detections), and detection of H2CS toward the star forming region G34.26+0.15. We also found a variable and recurrent 6.7GHz CH3OH maser in G45.12+0.13. The 6.7GHz CH 3OH and 6278.65MHz H2CS absorption lines were modeled using the radiative transfer code RADEX to investigate the physical conditions of the molecular clouds responsible for the absorption lines. Our analysis of the absorption lines supports the interpretation that the spectral lines are tracing molecular envelopes of HII regions. In the case of 6.7GHz CH 3OH absorption, our results and data from an extensive literature review indicate that absorption is rare, but that a population of 6.7GHz CH 3OH absorbers may be present at levels below ˜ 100mJy. In the case of the 6278.65MHz H2CS absorption in G34.26+0.15, the data are consistent with infalling gas onto the HII region, which supports the key principle of gravitational collapse of molecular clouds during the process of star formation. However, high angular resolution observations of the H 2CS line are needed to confirm the infall hypothesis.
NASA Astrophysics Data System (ADS)
Rambe, A. H.; Abdillah, K.
2018-02-01
This paper discussed a low profile rectangular patch microstrip antenna design working on dual-band 1.8 GHz and 2.4 GHz. Dual-band characteristic is achieved by using inset-feed point and slot size adjustment. The designed antenna was printed on a FR4 substrate with relative permittivity of 4.4 and a thickness of 1.6 mm with patch size 40 x 29 mm. The measurement results show that the realized antenna successfully working on dual-band, achieving bandwidth of 45 MHz and 95 MHz, gain of 4.08 dBi and 5.79 dBi for 1.8 GHz and 2.4 GHz subsequently.
Low Profile Tunable Dipole Antennas Using BST Varactors for Biomedical Applications
NASA Technical Reports Server (NTRS)
Cure, David; Weller, Thomas; Price, Tony; Miranda, Felix A.
2013-01-01
In this presentation a 2.4 GHz low profile (lambda45) tunable dipole antenna is evaluated in the presence of a human core model (HCM) body phantom. The antenna uses a frequency selective surface (FSS) with interdigital barium strontium titanate (BST) varactor-tuned unit cells and its performance is compared to a similar low profile antenna that uses an FSS with semiconductor varactor diodes. The measured data of the antenna demonstrate tunability from 2.2 GHz to 2.55 GHz in free space and impedance match improvement in the presence of a HCM at different distances. This antenna has smaller size, lower cost and less weight compared to the semiconductor varactor diode counterpart.
Low Profile Tunable Dipole Antenna Using BST Varactors for Biomedical Applications
NASA Technical Reports Server (NTRS)
Cure, David; Weller, Thomas M.; Miranda, Felix A.; Price, Tony
2013-01-01
In this paper a 2.4 GHz low profile (lambda/47) tunable dipole antenna is evaluated in the presence of a human core model (HCM) body phantom. The antenna uses a frequency selective surface (FSS) with interdigital barium strontium titanate (BST) varactor-tuned unit cells and its performance is compared to a similar low profile antenna that uses an FSS with semiconductor varactor diodes. The measured data of the antenna demonstrate tunability from 2.2 GHz to 2.55 GHz in free space and impedance match improvement in the presence of a HCM at different distances. This antenna has smaller size, lower cost and less weight compared to the semiconductor varactor diode counterpart.
NASA Technical Reports Server (NTRS)
Hodges, D. B.
1976-01-01
An iterative method is presented to retrieve single field of view (FOV) tropospheric temperature profiles directly from cloud-contaminated radiance data. A well-defined temperature profile may be calculated from the radiative transfer equation (RTE) for a partly cloudy atmosphere when the average fractional cloud amount and cloud-top height for the FOV are known. A cloud model is formulated to calculate the fractional cloud amount from an estimated cloud-top height. The method is then examined through use of simulated radiance data calculated through vertical integration of the RTE for a partly cloudy atmosphere using known values of cloud-top height(s) and fractional cloud amount(s). Temperature profiles are retrieved from the simulated data assuming various errors in the cloud parameters. Temperature profiles are retrieved from NOAA-4 satellite-measured radiance data obtained over an area dominated by an active cold front and with considerable cloud cover and compared with radiosonde data. The effects of using various guessed profiles and the number of iterations are considered.
NASA Technical Reports Server (NTRS)
Molthan, Andrew L.; Petersen, Walter A.; Case, Jonathan L.; Dembek, Scott R.
2009-01-01
Increases in computational resources have allowed operational forecast centers to pursue experimental, high resolution simulations that resolve the microphysical characteristics of clouds and precipitation. These experiments are motivated by a desire to improve the representation of weather and climate, but will also benefit current and future satellite campaigns, which often use forecast model output to guide the retrieval process. The combination of reliable cloud microphysics and radar reflectivity may constrain radiative transfer models used in satellite simulators during future missions, including EarthCARE and the NASA Global Precipitation Measurement. Aircraft, surface and radar data from the Canadian CloudSat/CALIPSO Validation Project are used to check the validity of size distribution and density characteristics for snowfall simulated by the NASA Goddard six-class, single moment bulk water microphysics scheme, currently available within the Weather Research and Forecast (WRF) Model. Widespread snowfall developed across the region on January 22, 2007, forced by the passing of a mid latitude cyclone, and was observed by the dual-polarimetric, C-band radar King City, Ontario, as well as the NASA 94 GHz CloudSat Cloud Profiling Radar. Combined, these data sets provide key metrics for validating model output: estimates of size distribution parameters fit to the inverse-exponential equations prescribed within the model, bulk density and crystal habit characteristics sampled by the aircraft, and representation of size characteristics as inferred by the radar reflectivity at C- and W-band. Specified constants for distribution intercept and density differ significantly from observations throughout much of the cloud depth. Alternate parameterizations are explored, using column-integrated values of vapor excess to avoid problems encountered with temperature-based parameterizations in an environment where inversions and isothermal layers are present. Simulation of CloudSat reflectivity is performed by adopting the discrete-dipole parameterizations and databases provided in literature, and demonstrate an improved capability in simulating radar reflectivity at W-band versus Mie scattering assumptions.
NASA Technical Reports Server (NTRS)
Iguchi, T.; Nakajima, T.; Khain, A. P.; Saito, K.; Takemura, T.; Okamoto, H.; Nishizawa, T.; Tao, W.-K.
2012-01-01
Equivalent radar reflectivity factors (Ze) measured by W-band radars are directly compared with the corresponding values calculated from a three-dimensional non-hydrostatic meso-scale model coupled with a spectral-bin-microphysical (SBM) scheme for cloud. Three case studies are the objects of this research: one targets a part of ship-borne observation using 95 GHz Doppler radar over the Pacific Ocean near Japan in May 2001; other two are aimed at two short segments of space-borne observation by the cloud profiling radar on CloudSat in November 2006. The numerical weather prediction (NWP) simulations reproduce general features of vertical structures of Ze and Doppler velocity. A main problem in the reproducibility is an overestimation of Ze in ice cloud layers. A frequency analysis shows a strong correlation between ice water contents (IWC) and Ze in the simulation; this characteristic is similar to those shown in prior on-site studies. From comparing with the empirical correlations by the prior studies, the simulated Ze is overestimated than the corresponding values in the studies at the same IWC. Whereas the comparison of Doppler velocities suggests that large-size snowflakes are necessary for producing large velocities under the freezing level and hence rules out the possibility that an overestimation of snow size causes the overestimation of Ze. Based on the results of several sensitivity tests, we conclude that the source of the overestimation is a bias in the microphysical calculation of Ze or an overestimation of IWC. To identify the source of the problems needs further validation research with other follow-up observations.
NASA Astrophysics Data System (ADS)
Reynolds, J. C.; Schroeder, J. A.
1993-03-01
The FORTRAN library that the NOAA Wave Propagation Laboratory (WPL) developed to perform radiative transfer calculations for an upward-looking microwave radiometer is described. Although the theory and algorithms have been used for many years in WPL radiometer research, the Radiative Transfer Equation (RTE) software has combined them into a toolbox that is portable, readable, application independent, and easy to update. RTE has been optimized for the UNIX environment. However, the FORTRAN source code can be compiled on any platform that provides a Standard FORTRAN 77 compiler. RTE allows a user to do cloud modeling, calibrate radiometers, simulate hypothetical radiometer systems, develop retrieval techniques, and compute weighting functions. The radiative transfer model used is valid for channel frequencies below 1000 GHz in clear conditions and for frequencies below 100 GHz when clouds are present.
The 90 GHz radiometric imaging. [for terrain analysis
NASA Technical Reports Server (NTRS)
King, H. E.; White, J. D.; Wilson, W. J.; Mori, T. T.; Hollinger, J. P.; Troy, B. E.; Kenney, J. E.; Mcgoogan, J. T.
1976-01-01
A 90-GHz (3 mm wavelength) radiometer with a noise output fluctuation of 0.22 K (RMS), with a scanning antenna beam mirror, and the data processing system are described. Real-time radiometric imaging of terrain and man-made objects are shown. Flying at an altitude of 1500 ft a radiometer antenna with a 2 degrees halfpower beamwidth can distinguish landforms, waterways, roads, runways, bridges, ships at sea and their wakes, aircraft on runways, and athletic fields. A flight taken at an altitude of 3000 ft with approximately 2000 ft of clouds below the radiometer demonstrates the ability to distinguish bridges, rivers, marshland and other landforms even though the clouds are optically opaque. The radiometric images of a few representative scenes along with photographs of the corresponding scenes are presented to demonstrate the resolution of the imager system.
NASA Technical Reports Server (NTRS)
Kato, Seiji; Sun-Mack, Sunny; Miller, Walter F.; Rose, Fred G.; Chen, Yan; Minnis, Patrick; Wielicki, Bruce A.
2009-01-01
A cloud frequency of occurrence matrix is generated using merged cloud vertical profile derived from Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) and Cloud Profiling Radar (CPR). The matrix contains vertical profiles of cloud occurrence frequency as a function of the uppermost cloud top. It is shown that the cloud fraction and uppermost cloud top vertical pro les can be related by a set of equations when the correlation distance of cloud occurrence, which is interpreted as an effective cloud thickness, is introduced. The underlying assumption in establishing the above relation is that cloud overlap approaches the random overlap with increasing distance separating cloud layers and that the probability of deviating from the random overlap decreases exponentially with distance. One month of CALIPSO and CloudSat data support these assumptions. However, the correlation distance sometimes becomes large, which might be an indication of precipitation. The cloud correlation distance is equivalent to the de-correlation distance introduced by Hogan and Illingworth [2000] when cloud fractions of both layers in a two-cloud layer system are the same.
Microwave brightness temperature features of lunar craters: observation from Chang'E-1 mission
NASA Astrophysics Data System (ADS)
Hu, Guo-Ping; Chen, Ke; Guo, Wei; Li, Qing-Xia; Su, Hong-Yan
2013-01-01
Topographic features of lunar craters have been found from the brightness temperature (TB) observed by the multichannel (3.0, 7.8, 19.35, and 37 GHz) microwave radiometer (MRM) aboard Chang'E-1 (CE-1) in a single track view. As the topographic effect is more obvious at 37 GHz, 37 GHz TB has been focused on in this work. The variation of 37 GHz daytime (nighttime) TB along the profile of a crater is found to show an oscillatory behavior. The amplitude of daytime TB is significantly affected by the observation time and the shape of the crater, whose diameter is bigger than the spatial resolution of MRM onboard CE-1. The large and typical diurnal TB difference (nighttime TB minus daytime TB) at 37 GHz over selected young craters due to the large rock abundance in craters, have been discussed and compared with the altitude profile.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dickel, John R.; Gruendl, Robert A.; McIntyre, Vincent J.
Detailed 4.8 and 8.6 GHz radio images of the entire Small Magellanic Cloud with half-power beamwidths of 35'' at 4.8 GHz and 22'' at 8.6 GHz have been obtained using the Australia Telescope Compact Array. A total of 3564 mosaic positions were used to cover an area of 4.{sup 0}5 on a side. Full polarimetric observations were made. These images have sufficient spatial resolution ({approx}9 and 6 pc, respectively) and sensitivity (3{sigma} of 1.5 mJy beam{sup -1}) to identify most of the individual supernova remnants and H II regions and also, in combination with available data from the Parkes 64more » m telescope, the structure of the smooth emission in that galaxy. In addition, limited data using the sixth antenna at 4.5-6 km baselines are available to distinguish bright point sources (< 3 and 2 arcsec, respectively) and to help estimate sizes of individual sources smaller than the resolution of the full survey. The resultant database will be valuable for statistical studies and comparisons with X-ray, optical and infrared surveys of the Small Magellanic Cloud with similar resolution. The images and calibrated uv data are publicly available in FITS format.« less
NASA Technical Reports Server (NTRS)
Skofronick-Jackson, Gail; Johnson, Benjamin T.
2011-01-01
Physically based passive microwave precipitation retrieval algorithms require a set of relationships between satellite -observed brightness temperatures (TBs) and the physical state of the underlying atmosphere and surface. These relationships are nonlinear, such that inversions are ill ]posed especially over variable land surfaces. In order to elucidate these relationships, this work presents a theoretical analysis using TB weighting functions to quantify the percentage influence of the TB resulting from absorption, emission, and/or reflection from the surface, as well as from frozen hydrometeors in clouds, from atmospheric water vapor, and from other contributors. The percentage analysis was also compared to Jacobians. The results are presented for frequencies from 10 to 874 GHz, for individual snow profiles, and for averages over three cloud-resolving model simulations of falling snow. The bulk structure (e.g., ice water path and cloud depth) of the underlying cloud scene was found to affect the resultant TB and percentages, producing different values for blizzard, lake effect, and synoptic snow events. The slant path at a 53 viewing angle increases the hydrometeor contributions relative to nadir viewing channels. Jacobians provide the magnitude and direction of change in the TB values due to a change in the underlying scene; however, the percentage analysis provides detailed information on how that change affected contributions to the TB from the surface, hydrometeors, and water vapor. The TB percentage information presented in this paper provides information about the relative contributions to the TB and supplies key pieces of information required to develop and improve precipitation retrievals over land surfaces.
NASA Astrophysics Data System (ADS)
Marzano, F. S.; Cimini, D.; Montopoli, M.; Rossi, T.; Mortari, D.; di Michele, S.; Bauer, P.
2009-04-01
Millimeter-wave observation of the atmospheric parameters is becoming an appealing goal within satellite radiometry applications. The major technological advantage of millimeter-wave (MMW) radiometers is the reduced size of the overall system, for given performances, with respect to microwave sensor. On the other hand, millimeter-wave sounding can exploit window frequencies and various gaseous absorption bands at 50/60 GHz, 118 GHz and 183 GHz. These bands can be used to estimate tropospheric temperature profiles, integrated water vapor and cloud liquid content and, using a differentia spectral mode, light rainfall and snowfall. Millimeter-wave radiometers, for given observation conditions, can also exhibit relatively small field-of-views (FOVs), of the order of some kilometers for low-Earth-orbit (LEO) satellites. However, the temporal resolution of LEO millimeter-wave system observations remains a major drawback with respect to the geostationary-Earth-orbit (GEO) satellites. An overpass every about 12 hours for a single LEO platform (conditioned to a sufficiently large swath of the scanning MMW radiometer) is usually too much when compared with the typical temporal scale variation of atmospheric fields. This feature cannot be improved by resorting to GEO platforms due to their high orbit altitude and consequent degradation of the MMW-sensor FOVs. A way to tackle this impasse is to draw our attention at the regional scale and to focus non-circular orbits over the area of interest, exploiting the concept of micro-satellite flower constellations. The Flower Constellations (FCs) is a general class of elliptical orbits which can be optimized, through genetic algorithms, in order to maximize the revisiting time and the orbital height, ensuring also a repeating ground-track. The constellation concept nicely matches the choice of mini-satellites as a baseline choice, due to their small size, weight (less than 500 kilograms) and relatively low cost (essential when deploying several identical speceborne platforms). Moreover, the micro-satellite solution clearly addresses the choice of small passive sensors with small size, low weight and power consumption, features which cannot be usually satisfied by active sensors. In this respect, MMW technology is the most compatible with the specifications and constraints of micro-satellites. In this work, we will discuss the numerical results of a feasibility study aimed at designing a Flower elliptical constellation of 3 micro-satellite millimeter-wave radiometers for pseudo-geostationary atmospheric observations over the Mediterranean region. The Flower constellation will be optimized in such a way to simulate a pseudo-geostationary observation of the Mediterranean area with an observation repetition time less than 2 hours. The mission requirements request the retrieval of thermodinamical and hydrological properties of the troposphere, specifically temperature profiles, integrated water vapor and cloud liquid content, rainfall and snowfall. Several configurations of the MMW radiometer multi-band channels will be discussed, pointing out the trade-off between performances and complexity. Integrated estimation algorithms, based on a Bayesian approache, will be illustrated to retrieve the requested atmospheric parameters, discussing its sensitivity to sensor radiometric precision and accuracy within each frequency-set configuration. After this numerical study, a review of the mission requirements and specifications will be also proposed.
Molecular clouds and galactic spiral structure
NASA Technical Reports Server (NTRS)
Dame, T. M.
1984-01-01
Galactic CO line emission at 115 GHz was surveyed in order to study the distribution of molecular clouds in the inner galaxy. Comparison of this survey with similar H1 data reveals a detailed correlation with the most intense 21 cm features. To each of the classical 21 cm H1 spiral arms of the inner galaxy there corresponds a CO molecular arm which is generally more clearly defined and of higher contrast. A simple model is devised for the galactic distribution of molecular clouds. The modeling results suggest that molecular clouds are essentially transient objects, existing for 15 to 40 million years after their formation in a spiral arm, and are largely confined to spiral features about 300 pc wide.
Sixty GHz IMPATT diode development
NASA Technical Reports Server (NTRS)
Ma, Y. E.; Chen, J.; Benko, E.; Barger, M. J.; Nghiem, H.; Trinh, T. Q.; Kung, J.
1985-01-01
The objective of this program is to develop 60 GHz GaAs IMPATT Diodes suitable for communications applications. The performance goal of the 60 GHz IMPATT is 1W CW output power with a conversion efficiency of 15 percent and 10 year life time. During the course of the program, double drift (DD) GaAs IMPATT Diodes have been developed resulting in the state of the art performance at V band frequencies. A CW output power of 1.12 W was demonstrated at 51.9 GHz with 9.7 percent efficiency. The best conversion efficiency achieved was 15.3 percent. V band DD GaAs IMPATTs were developed using both small signal and large signal analyses. GaAs wafers of DD flat, DD hybrid, and DD Read profiles using molecular beam epitaxy (MBE) were developed with excellent doping profile control. Wafer evaluation was routinely made by the capacitance versus voltage (C-V) measurement. Ion mass spectrometry (SIMS) analysis was also used for more detailed profile evaluation.
Performance of greenhouse gas profiling by infrared-laser and microwave occultation in cloudy air
NASA Astrophysics Data System (ADS)
Proschek, V.; Kirchengast, G.; Emde, C.; Schweitzer, S.
2012-12-01
ACCURATE is a proposed future satellite mission enabling simultaneous measurements of greenhouse gases (GHGs), wind and thermodynamic variables from Low Earth Orbit (LEO). The measurement principle is a combination of LEO-LEO infrared-laser occultation (LIO) and microwave occultation (LMO), the LMIO method, where the LIO signals are very sensitive to clouds. The GHG retrieval will therefore be strongly influenced by clouds in parts of the troposphere. The IR-laser signals, at wavelengths within 2--2.5μ m, are chosen to measure six GHGs (H2O, CO2, CH4, N2O, O3, CO; incl.~key isotopes 13CO2, C18OO, HDO). The LMO signals enable to co-measure the thermodynamic variables. In this presentation we introduce the algorithm to retrieve GHG profiles under cloudy-air conditions by using quasi-realistic forward simulations, including also influence of Rayleigh scattering, scintillations and aerosols. Data from CALIPSO--Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations--with highest vertical resolution of about 60 m and horizontal resolution of about 330 m were used for simulation of clouds. The IR-laser signals consist for each GHG of a GHG-sensitive and a close-by reference signal. The key process, ``differencing'' of these two signals, removes the atmospheric ``broadband'' effects, resulting in a pure GHG transmission profile. Very thin ice clouds, like sub-visible cirrus, are fairly transparent to the IR-laser signals, thicker and liquid water clouds block the signals. The reference signal is used to produce a cloud layering profile from zero to blocking clouds and is smoothed in a preprocess to suppress scintillations. Sufficiently small gaps, of width <2 km in the cloud layering profile, are found to enable a decent retrieval of entire GHG profiles over the UTLS under broken cloudiness and are therefore bridged by interpolation. Otherwise in case of essentially continuous cloudiness the profiles are found to terminate at cloud top level. The accuracy of retrieved GHG profiles is found better than 1% to 4% for single profiles in the UTLS region outside clouds and through broken cloudiness, and the profiles are essentially unbiased. Cloud gap-interpolation increases the tropospheric penetration of GHG profiles for scientific applications. The associated cloud layering profile provides quality-control information on cloud gap-interpolations, if they occured, and on cloud-top altitude for cloud blocking cases. The LMIO technique shows promising prospects for GHG monitoring even under cloudy-air conditions.
Extraction of Profile Information from Cloud Contaminated Radiances. Appendixes 2
NASA Technical Reports Server (NTRS)
Smith, W. L.; Zhou, D. K.; Huang, H.-L.; Li, Jun; Liu, X.; Larar, A. M.
2003-01-01
Clouds act to reduce the signal level and may produce noise dependence on the complexity of the cloud properties and the manner in which they are treated in the profile retrieval process. There are essentially three ways to extract profile information from cloud contaminated radiances: (1) cloud-clearing using spatially adjacent cloud contaminated radiance measurements, (2) retrieval based upon the assumption of opaque cloud conditions, and (3) retrieval or radiance assimilation using a physically correct cloud radiative transfer model which accounts for the absorption and scattering of the radiance observed. Cloud clearing extracts the radiance arising from the clear air portion of partly clouded fields of view permitting soundings to the surface or the assimilation of radiances as in the clear field of view case. However, the accuracy of the clear air radiance signal depends upon the cloud height and optical property uniformity across the two fields of view used in the cloud clearing process. The assumption of opaque clouds within the field of view permits relatively accurate profiles to be retrieved down to near cloud top levels, the accuracy near the cloud top level being dependent upon the actual microphysical properties of the cloud. The use of a physically correct cloud radiative transfer model enables accurate retrievals down to cloud top levels and below semi-transparent cloud layers (e.g., cirrus). It should also be possible to assimilate cloudy radiances directly into the model given a physically correct cloud radiative transfer model using geometric and microphysical cloud parameters retrieved from the radiance spectra as initial cloud variables in the radiance assimilation process. This presentation reviews the above three ways to extract profile information from cloud contaminated radiances. NPOESS Airborne Sounder Testbed-Interferometer radiance spectra and Aqua satellite AIRS radiance spectra are used to illustrate how cloudy radiances can be used in the profile retrieval process.
A New Airborne Submillimetre Demonstrator
NASA Astrophysics Data System (ADS)
Lee, Clare; Baran, Anthony; Fox, Stuart; Harlow, Chawn; King, Rob; Rogers, Stuart; Rule, Ian
2013-12-01
ISMAR (International SubMillimetre Airborne Radiometer) is a new aircraft remote sensing instrument, with heterodyne receivers from 118 to 664GHz. It has been funded by the Met Office and ESA, and has been designed to allow additional channels to be added, including 874GHz. Submillimetre frequencies are very sensitive to ice clouds and can provide direct retrievals of Ice Water Path [1] which is an important parameter in General Circulation Models. ISMAR will be used as a satellite demonstrator as well as for investigating specific scientific case studies. It can be used in the preparation for the usage of Ice Cloud Imager (ICI) data on MetOp- SG and for calibration/validation post satellite launch. The instrument has been certified on the FAAM BAe- 146 aircraft and is currently undergoing a channel upgrade. This paper describes the instrument, its applications and the future aircraft campaign plans.
Analysis of actinic flux profiles measured from an ozonesonde balloon
NASA Astrophysics Data System (ADS)
Wang, P.; Allaart, M.; Knap, W. H.; Stammes, P.
2015-04-01
A green light sensor has been developed at KNMI to measure actinic flux profiles using an ozonesonde balloon. In total, 63 launches with ascending and descending profiles were performed between 2006 and 2010. The measured uncalibrated actinic flux profiles are analysed using the Doubling-Adding KNMI (DAK) radiative transfer model. Values of the cloud optical thickness (COT) along the flight track were taken from the Spinning Enhanced Visible and Infrared Imager (SEVIRI) Cloud Physical Properties (CPP) product. The impact of clouds on the actinic flux profile is evaluated on the basis of the cloud modification factor (CMF) at the cloud top and cloud base, which is the ratio between the actinic fluxes for cloudy and clear-sky scenes. The impact of clouds on the actinic flux is clearly detected: the largest enhancement occurs at the cloud top due to multiple scattering. The actinic flux decreases almost linearly from cloud top to cloud base. Above the cloud top the actinic flux also increases compared to clear-sky scenes. We find that clouds can increase the actinic flux to 2.3 times the clear-sky value at cloud top and decrease it to about 0.05 at cloud base. The relationship between CMF and COT agrees well with DAK simulations, except for a few outliers. Good agreement is found between the DAK-simulated actinic flux profiles and the observations for single-layer clouds in fully overcast scenes. The instrument is suitable for operational balloon measurements because of its simplicity and low cost. It is worth further developing the instrument and launching it together with atmospheric chemistry composition sensors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saigo, Kazuya; Harada, Ryohei; Kawamura, Akiko
We present the ALMA Band 3 and Band 6 results of {sup 12}CO(2-1), {sup 13}CO(2-1), H30 α recombination line, free–free emission around 98 GHz, and the dust thermal emission around 230 GHz toward the N159 East Giant Molecular Cloud (N159E) in the Large Magellanic Cloud (LMC). LMC is the nearest active high-mass star-forming face-on galaxy at a distance of 50 kpc and is the best target for studing high-mass star formation. ALMA observations show that N159E is the complex of filamentary clouds with the width and length of ∼1 pc and several parsecs. The total molecular mass is 0.92 ×more » 10{sup 5} M {sub ⊙} from the {sup 13}CO(2-1) intensity. N159E harbors the well-known Papillon Nebula, a compact high-excitation H ii region. We found that a YSO associated with the Papillon Nebula has the mass of 35 M {sub ⊙} and is located at the intersection of three filamentary clouds. It indicates that the formation of the high-mass YSO was induced by the collision of filamentary clouds. Fukui et al. reported a similar kinematic structure toward two YSOs in the N159 West region, which are the other YSOs that have the mass of ≳35 M {sub ⊙}. This suggests that the collision of filamentary clouds is a primary mechanism of high-mass star formation. We found a small molecular hole around the YSO in Papillon Nebula with a sub-parsec scale. It is filled by free–free and H30 α emission. The temperature of the molecular gas around the hole reaches ∼80 K. It indicates that this YSO has just started the distruction of parental molecular cloud.« less
NASA Astrophysics Data System (ADS)
Saigo, Kazuya; Onishi, Toshikazu; Nayak, Omnarayani; Meixner, Margaret; Tokuda, Kazuki; Harada, Ryohei; Morioka, Yuuki; Sewiło, Marta; Indebetouw, Remy; Torii, Kazufumi; Kawamura, Akiko; Ohama, Akio; Hattori, Yusuke; Yamamoto, Hiroaki; Tachihara, Kengo; Minamidani, Tetsuhiro; Inoue, Tsuyoshi; Madden, Suzanne; Galametz, Maud; Lebouteiller, Vianney; Chen, C.-H. Rosie; Mizuno, Norikazu; Fukui, Yasuo
2017-01-01
We present the ALMA Band 3 and Band 6 results of 12CO(2-1), 13CO(2-1), H30α recombination line, free-free emission around 98 GHz, and the dust thermal emission around 230 GHz toward the N159 East Giant Molecular Cloud (N159E) in the Large Magellanic Cloud (LMC). LMC is the nearest active high-mass star-forming face-on galaxy at a distance of 50 kpc and is the best target for studing high-mass star formation. ALMA observations show that N159E is the complex of filamentary clouds with the width and length of ˜1 pc and several parsecs. The total molecular mass is 0.92 × 105 M⊙ from the 13CO(2-1) intensity. N159E harbors the well-known Papillon Nebula, a compact high-excitation H II region. We found that a YSO associated with the Papillon Nebula has the mass of 35 M⊙ and is located at the intersection of three filamentary clouds. It indicates that the formation of the high-mass YSO was induced by the collision of filamentary clouds. Fukui et al. reported a similar kinematic structure toward two YSOs in the N159 West region, which are the other YSOs that have the mass of ≳35 M⊙. This suggests that the collision of filamentary clouds is a primary mechanism of high-mass star formation. We found a small molecular hole around the YSO in Papillon Nebula with a sub-parsec scale. It is filled by free-free and H30α emission. The temperature of the molecular gas around the hole reaches ˜80 K. It indicates that this YSO has just started the distruction of parental molecular cloud.
ARM Cloud Radar Simulator Package for Global Climate Models Value-Added Product
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Yuying; Xie, Shaocheng
It has been challenging to directly compare U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility ground-based cloud radar measurements with climate model output because of limitations or features of the observing processes and the spatial gap between model and the single-point measurements. To facilitate the use of ARM radar data in numerical models, an ARM cloud radar simulator was developed to converts model data into pseudo-ARM cloud radar observations that mimic the instrument view of a narrow atmospheric column (as compared to a large global climate model [GCM] grid-cell), thus allowing meaningful comparison between model outputmore » and ARM cloud observations. The ARM cloud radar simulator value-added product (VAP) was developed based on the CloudSat simulator contained in the community satellite simulator package, the Cloud Feedback Model Intercomparison Project (CFMIP) Observation Simulator Package (COSP) (Bodas-Salcedo et al., 2011), which has been widely used in climate model evaluation with satellite data (Klein et al., 2013, Zhang et al., 2010). The essential part of the CloudSat simulator is the QuickBeam radar simulator that is used to produce CloudSat-like radar reflectivity, but is capable of simulating reflectivity for other radars (Marchand et al., 2009; Haynes et al., 2007). Adapting QuickBeam to the ARM cloud radar simulator within COSP required two primary changes: one was to set the frequency to 35 GHz for the ARM Ka-band cloud radar, as opposed to 94 GHz used for the CloudSat W-band radar, and the second was to invert the view from the ground to space so as to attenuate the beam correctly. In addition, the ARM cloud radar simulator uses a finer vertical resolution (100 m compared to 500 m for CloudSat) to resolve the more detailed structure of clouds captured by the ARM radars. The ARM simulator has been developed following the COSP workflow (Figure 1) and using the capabilities available in COSP wherever possible. The ARM simulator is written in Fortran 90, just as is the COSP. It is incorporated into COSP to facilitate use by the climate modeling community. In order to evaluate simulator output, the observational counterpart of the simulator output, radar reflectivity-height histograms (CFAD) is also generated from the ARM observations. This report includes an overview of the ARM cloud radar simulator VAP and the required simulator-oriented ARM radar data product (radarCFAD) for validating simulator output, as well as a user guide for operating the ARM radar simulator VAP.« less
Communication Systems through Artificial Earth Satellites (Selected Pages)
1987-02-05
A. The speaking currents of this subscriber from equipment AP come through AC only into the two-wire circuit, but also are branched/ shunted to AY, and...distribution of cloud cover. The evaluation, based on the statistic study of clouds [3.3) and rains of South England, at A=50 at the frequency of 4 GHz... Studies of conditions for passage of radio waves through disturbed ionosphere showed [3.16] that aurorae polares increase speed of fadings and are
HAMP - the microwave package on the High Altitude and LOng range research aircraft (HALO)
NASA Astrophysics Data System (ADS)
Mech, M.; Orlandi, E.; Crewell, S.; Ament, F.; Hirsch, L.; Hagen, M.; Peters, G.; Stevens, B.
2014-12-01
An advanced package of microwave remote sensing instrumentation has been developed for the operation on the new German High Altitude LOng range research aircraft (HALO). The HALO Microwave Package, HAMP, consists of two nadir-looking instruments: a cloud radar at 36 GHz and a suite of passive microwave radiometers with 26 frequencies in different bands between 22.24 and 183.31 ± 12.5 GHz. We present a description of HAMP's instrumentation together with an illustration of its potential. To demonstrate this potential, synthetic measurements for the implemented passive microwave frequencies and the cloud radar based on cloud-resolving and radiative transfer model calculations were performed. These illustrate the advantage of HAMP's chosen frequency coverage, which allows for improved detection of hydrometeors both via the emission and scattering of radiation. Regression algorithms compare HAMP retrieval with standard satellite instruments from polar orbiters and show its advantages particularly for the lower atmosphere with a root-mean-square error reduced by 5 and 15% for temperature and humidity, respectively. HAMP's main advantage is the high spatial resolution of about 1 km, which is illustrated by first measurements from test flights. Together these qualities make it an exciting tool for gaining a better understanding of cloud processes, testing retrieval algorithms, defining future satellite instrument specifications, and validating platforms after they have been placed in orbit.
HAMP - the microwave package on the High Altitude and LOng range research aircraft HALO
NASA Astrophysics Data System (ADS)
Mech, M.; Orlandi, E.; Crewell, S.; Ament, F.; Hirsch, L.; Hagen, M.; Peters, G.; Stevens, B.
2014-05-01
An advanced package of microwave remote sensing instrumentation has been developed for the operation on the new German High Altitude LOng range research aircraft (HALO). The HALO Microwave Package, HAMP, consists of two nadir looking instruments: a cloud radar at 36 GHz and a suite of passive microwave radiometers with 26 frequencies in different bands between 22.24 and 183.31 ± 12.5 GHz. We present a description of HAMP's instrumentation together with an illustration of its potential. To demonstrate this potential synthetic measurements for the implemented passive microwave frequencies and the cloud radar based on cloud resolving and radiative transfer model calculations were performed. These illustrate the advantage of HAMP's chosen frequency coverage, which allows for improved detection of hydrometeors both via the emission and scattering of radiation. Regression algorithms compare HAMP retrieval with standard satellite instruments from polar orbiters and show its advantages particularly for the lower atmosphere with a reduced root mean square error by 5 and 15% for temperature and humidity, respectively. HAMP's main advantage is the high spatial resolution of about 1 km which is illustrated by first measurements from test flights. Together these qualities make it an exciting tool for gaining better understanding of cloud processes, testing retrieval algorithms, defining future satellite instrument specifications, and validating platforms after they have been placed in orbit.
VizieR Online Data Catalog: Herschel nearby isolated low-mass clouds maps (Sadavoy+, 2018)
NASA Astrophysics Data System (ADS)
Sadavoy, S. I.; Keto, E.; Bourke, T. L.; Dunham, M. M.; Myers, P. C.; Stephens, I. W.; di, Francesco J.; Webb, K.; Stutz, A. M.; Launhardt, R.; Tobin, J. J.
2018-05-01
For all the sources listed in table1, maps of dust temperature and optical depth at 353GHz for all globules as fits files. For all the sources listed in table1, maps of dust temperature, optical depth at 353GHz, and corrected Herschel intensities are available as fits files. The intensity maps contain labels to indicate the reliability of their intensity corrections with Group A as the most reliable, Group B as somewhat reliable, and Group C as least reliable. See paper for details. (3 data files).
A comparison between CloudSat and aircraft data for mixed-phase and cirrus clouds
NASA Astrophysics Data System (ADS)
Mioche, G.; Gayet, J.-F.; Minikin, A.; Herber, A.; Pelon, J.
2009-04-01
Nowadays, space remote sensing measurements are a very useful way to study the atmosphere on a global scale. Among the numerous scientific satellites in space, the A-Train is a constellation of 6 satellites flying together with on board complementary instruments of new generation (radiometers, radar, lidar, spectrometers…) to study all parts of the atmosphere: gas composition, clouds and aerosols distribution and properties, and radiation budget. Among these satellites, two of them where launched in 2006: CALIPSO and CloudSat, respectively with a Lidar (532 and 1064 nm channels with depolarization) and a 94 GHz radar on board. They are especially dedicated to the study of clouds and aerosols, and will allow to obtain for the first time the vertical profiles of clouds and aerosols on a global scale during 3 years. However, to determine clouds and aerosols properties from space raw data, retrieval methods need to be developed. In order to validate these retrieved techniques, and thus the clouds and aerosols properties, numerous validation plans take place around the world, included different ways as ground based measurements, in situ measurements, or airborne remote sensing instruments in collocation with the satellite tracks. In this context, the ASTAR-2007 and POLARCAT-2008 campaigns took place respectively in the Arctic region of Spitzbergen-Norway in April 2007 and in North part of Sweden in April 2008 to study mixed-phase clouds and the CIRCLE-2 campaign was carried out in Western Europe in May 2007 to sample mid-latitude cirrus clouds. The main objectives are the study of microphysical and optical properties of mixed-phase and ice clouds with particular interest on the validation of clouds products derived from CloudSat and CALIPSO data during co-located remote and in situ observations. The airborne microphysical instruments include the Polar Nephelometer probe to measure the scattering phase function and asymmetry parameter of cloud particles, the high resolution Cloud Particle Imager probe (CPI) for imaging the ice particle morphology (2.3 microns pixels size) and standard PMS probes: 2D-C, FSSP-100 and FSSP-300. This presentation focuses on the validation of the standard parameter of the Cloud Profiling Radar (CPR) of CloudSat (equivalent radar reflectivity factor Z). The different IWC(ice water content)-Z relationships determined from combined CloudSat and in situ data are then discussed. The method to derive equivalent reflectivity factor from the CPI data is first presented. According to the particle shape, a mass-diameter relationship and thus a reflectivity factor is determined for each type of ice crystal. This technique noticeably decreases the discrepancies of radar reflectivity-derived values due to the natural variability of ice crystal shapes. Comparisons of the reflectivity factor deduced from CPI and those from CloudSat for various types of clouds are then discussed. The next step to the interpretation of the CloudSat product is to derive IWC-Z relationships for assessing IWC distributions on a global scale, which is an important improvement to constrain global scale modelling. Several IWC-Z relationships are determined from in situ measurements according to the various case studies including Arctic mixed-phase clouds, Arctic and mid-latitude cirrus. The improvements on the results by using the CPI data-processing method are discussed. Acknowledgements: This work was funded by the Centre National d'Etudes Spatiales (CNES), the Agence Nationale de la Recherche (ANR BLAN06-1_137670), the Institut National des Sciences de l'Univers (INSU/CNRS), the Institut Polaire Français Paul Emile Victor (IPEV), the Alfred Wegener Institute (AWI) and the Deutsches Zentrum für Luft-und Raumfahrt (DLR). The CloudSat data are courtesy of the CloudSat Data Processing Center.
Non-Uniform Bias Enhancement of a Varactor-Tuned FSS used with a Low Profile 2.4 GHz Dipole Antenna
NASA Technical Reports Server (NTRS)
Cure, David; Weller, Thomas M.; Miranda, Felix A.
2012-01-01
In this paper a low profile antenna using a nonuniformly biased varactor-tuned frequency selective surface (FSS) is presented. The tunable FSS avoids the use of vias and has a simplified DC bias network. The voltages to the DC bias ports can be varied independently allowing adjustment in the frequency response and enhanced radiation properties. The measured data demonstrate tunability from 2.15 GHz to 2.63 GHz with peak efficiencies that range from 50% to 90% and instantaneous bandwidths of 50 MHz to 280 MHz within the tuning range. The total antenna thickness is approximately lambda/45.
What does Reflection from Cloud Sides tell us about Vertical Distribution of Cloud Droplet Sizes?
NASA Technical Reports Server (NTRS)
Marshak, A.; Martins, J. V.; Zubko, V.; Kaufman, Y. J.
2006-01-01
Cloud development, the onset of precipitation and the effect of aerosol on clouds depend on the structure of the cloud profiles of droplet size and phase. Aircraft measurements of cloud profiles are limited in their temporal and spatial extent. Satellites were used to observe cloud tops not cloud profiles with vertical profiles of precipitation-sized droplets anticipated from CloudSat. The recently proposed CLAIM-3D satellite mission (cloud aerosol interaction mission in 3-D) suggests to measure profiles of cloud microphysical properties by retrieving them from the solar and infrared radiation reflected or emitted from cloud sides. Inversion of measurements from the cloud sides requires rigorous understanding of the 3-dimentional(3-D) properties of clouds. Here we discuss the reflected sunlight from the cloud sides and top at two wavelengths: one nonabsorbing to solar radiation (0.67 microns) and one with liquid water efficient absorption of solar radiation (2.1 microns). In contrast to the plane-parallel approximation, a conventional approach to all current operational retrievals, 3-D radiative transfer is used for interpreting the observed reflectances. General properties of the radiation reflected from the sides of an isolated cloud are discussed. As a proof of concept, the paper shows a few examples of radiation reflected from cloud fields generated by a simple stochastic cloud model with the prescribed vertically resolved microphysics. To retrieve the information about droplet sizes, we propose to use the probability density function of the droplet size distribution and its first two moments instead of the assumption about fixed values of the droplet effective radius. The retrieval algorithm is based on the Bayesian theorem that combines prior information about cloud structure and microphysics with radiative transfer calculations.
Detection of nitric oxide in the dark cloud L134N
NASA Technical Reports Server (NTRS)
Mcgonagle, D.; Irvine, W. M.; Minh, Y. C.; Ziurys, L. M.
1990-01-01
The first detection of interstellar nitric oxide (NO) in a cold dark cloud, L134N is reported. Nitric oxide was observed by means of its two 2 Pi 1/2, J = 3/2 - 1/2, rotational transitions at 150.2 and 150.5 GHz, which occur because of Lambda-doubling. The inferred column density for L134N is about 5 x 10 to the 14th/sq cm toward the SO peak in that cloud. This value corresponds to a fractional abundance relative to molecular hydrogen of about 6 x 10 to the -8th and is in good agreement with predictions of quiescent cloud ion-molecule chemistry. NO was not detected toward the dark cloud TMC-1 at an upper limit of 3 x 10 to the -8th or less.
G-Band Vapor Radiometer Profiler (GVRP) Handbook
DOE Office of Scientific and Technical Information (OSTI.GOV)
Caddeau, MP
2010-06-23
The G-Band Vapor Radiometer Profiler (GVRP) provides time-series measurements of brightness temperatures from 15 channels between 170 and 183.310 GHz. Atmospheric emission in this spectral region is primarily due to water vapor, with some influence from liquid water. Channels between 170.0 and 176.0 GHz are particularly sensitive to the presence of liquid water. The sensitivity to water vapor of the 183.31-GHz line is approximately 30 times higher than at the frequencies of the two-channel microwave radiometer (MWR) for a precipitable water vapor (PWV) amount of less than 2.5 mm. Measurements from the GVRP instrument are therefore especially useful during low-humiditymore » conditions (PWV < 5 mm). In addition to integrated water vapor and liquid water, the GVRP can provide low-resolution vertical profiles of water vapor in very dry conditions.« less
NASA Astrophysics Data System (ADS)
Nomokonova, Tatiana; Ebell, Kerstin; Löhnert, Ulrich; Maturilli, Marion
2017-04-01
Clouds are one of the crucial components of the hydrological and energy cycles and thus affecting the global climate. Their special importance in Arctic regions is defined by cloud's influence on the radiation budget. Arctic clouds usually occur at low altitudes and often contain highly concentrated tiny liquid drops. During winter, spring, and autumn periods such clouds tend to conserve the long-wave radiation in the atmosphere and, thus, produce warming of the Arctic climate. In summer though clouds efficiently scatter the solar radiation back to space and, therefore, induce a cooling effect. An accurate characterization of the net effect of clouds on the Arctic climate requires long-term and precise observations. However, only a few measurement sites exist which perform continuous, vertically resolved observations of clouds in the Arctic, e.g. in Alaska, Canada, and Greenland. These sites typically make use of a combination of different ground-based remote sensing instruments, e.g. cloud radar, ceilometer and microwave radiometer in order to characterize clouds. Within the Transregional Collaborative Research Center (TR 172) "Arctic Amplification: Climate Relevant Atmospheric and Surface Processes, and Feedback Mechanisms (AC)3" comprehensive observations of the atmospheric column are performed at the German-French Research Station AWIPEV at Ny-Ålesund, Svalbard. Ny-Ålesund is located in the warmest part of the Arctic where climate is significantly influenced by adiabatic heating from the warm ocean. Thus, measurements at Ny-Ålesund will complement our understanding of cloud formation and development in the Arctic. This particular study is devoted to the characterization of the cloud macro- and microphysical properties at Ny-Ålesund and of the atmospheric conditions, under which these clouds form and develop. To this end, the information of the various instrumentation at the AWIPEV observatory is synergistically analysed: information about the thermodynamic structure of the atmosphere is obtained from long-term radiosonde launches. In addition, continuous vertical profiles of temperature and humidity are provided by the microwave radiometer HATPRO. A set of active remote sensing instruments performs cloud observations at Ny-Ålesund: a ceilometer and a Doppler lidar operating since 2011 and 2013, respectively, are now complemented with a novel 94 GHz FMCW cloud radar. As a first step, the CLOUDNET algorithms, including a target categorization and classification, are applied to the observations. In this study, we will present a first analysis of cloud properties at Ny-Ålesund including for example cloud occurrence, cloud geometry (cloud base, cloud top, and thickness) and cloud type (liquid, ice, mixed-phase). The different types of clouds are set into context to the environmental conditions such as temperature, amount of water vapour, and liquid water. We also expect that the cloud properties strongly depend on the wind direction. The first results of this analysis will be also shown.
Investigation of passive atmospheric sounding using millimeter and submillimeter wavelength channels
NASA Technical Reports Server (NTRS)
Gasiewski, Albin J.; Adelberg, L. K.; Kunkee, D. B.; Jackson, D. M.
1993-01-01
Activities within the period from July 1, 1992 through December 31, 1992 by Georgia Tech researchers in millimeter and submillimeter wavelength tropospheric remote sensing have been centered around the calibration of the Millimeter-wave Imaging Radiometer (MIR), preliminary flight data analysis, and preparation for TOGA/COARE. The MIR instrument is a joint project between NASA/GSFC and Georgia Tech. In the current configuration, the MIR has channels at 90, 150, 183(+/-1,3,7), and 220 GHz. Provisions for three additional channels at 325(+/-1,3) and 8 GHz have been made, and a 325-GHz receiver is currently being built by the ZAX Millimeter Wave Corporation for use in the MIR. Past Georgia Tech contributions to the MIR and its related scientific uses have included basic system design studies, performance analyses, and circuit and radiometric load design, in-flight software, and post-flight data display software. The combination of the above millimeter wave and submillimeter wave channels aboard a single well-calibrated instrument will provide unique radiometric data for radiative transfer and cloud and water vapor retrieval studies. A paper by the PI discussing the potential benefits of passive millimeter and submillimeter wave observations for cloud, water vapor and precipitation measurements has recently been published, and is included as an appendix.
What Does Reflection from Cloud Sides Tell Us About Vertical Distribution of Cloud Droplet Sizes?
NASA Technical Reports Server (NTRS)
Marshak, Alexander; Martins, J. Vanderlei; Zubko, Victor; Kaufman, Yoram, J.
2005-01-01
Cloud development, the onset of precipitation and the effect of aerosol on clouds depend on the structure of the cloud profiles of droplet size and phase. Aircraft measurements of cloud profiles are limited in their temporal and spatial extent. Satellites were used to observe cloud tops not cloud profiles with vertical profiles of precipitation-sized droplets anticipated from Cloudsat. The recently proposed CLAIM-3D satellite mission (cloud aerosol interaction mission in 3D) suggests to measure profiles of cloud microphysical properties by retrieving them from the solar and infrared radiation reflected or emitted from cloud sides. Inversion of measurements from the cloud sides requires rigorous understanding of the 3-dimensional (3D) properties of clouds. Here we discuss the reflected sunlight from the cloud sides and top at two wavelengths: one nonabsorbing to solar radiation (0.67 micrometers) and one with liquid water efficient absorption of solar radiation (2.1 micrometers). In contrast to the plane-parallel approximation, a conventional approach to all current operational retrievals, 3D radiative transfer is used for interpreting the observed reflectances. General properties of the radiation reflected from the sides of an isolated cloud are discussed. As a proof of concept, the paper shows a few examples of radiation reflected from cloud fields generated by a simple stochastic cloud model with the prescribed vertically resolved microphysics. To retrieve the information about droplet sizes, we propose to use the probability density function of the droplet size distribution and its first two moments instead of the assumption about fixed values of the droplet effective radius. The retrieval algorithm is based on the Bayesian theorem that combines prior information about cloud structure and microphysics with radiative transfer calculations.
An Airborne Millimeter-Wave FM-CW Radar for Thickness Profiling of Freshwater Ice
1992-11-01
commercial and recreational application, including safety and trafficability surveys. A proto- type broadband millimeter wave (26.5 to 40 GHz) Frequency...and utility for ice safety and traffica- appropriate antenna for transmission. Morey (1974) bility studies. Other important applications include...resolution and a 2.7- which can provide reliable safety survey profiling for GHz center frequency, that is capable of airborne pro- the entire practical
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gerald Heymsfield
Data was taken with the NASA ER-2 aircraft with the Cloud Radar System and other instruments in conjunction with the DOE ARM CLASIC field campaign. The flights were near the SGP site in north Central Oklahoma and targeted small developing convection. The CRS is a 94 GHz nadir pointing Doppler radar. Also on board the ER-2 was the Cloud Physics Lidar (CPL). Seven science flights were conducted but the weather conditions did not cooperate in that there was neither developing convection, or there was heavy rain.
Application of Ground Based Microwave Radiometry for Characterizing Tropical Convection
NASA Astrophysics Data System (ADS)
Renju, R.; Raju, C. S.
2016-12-01
The characterization of the microphysical and thermodynamical properties of convective events over the tropical coastal station Thiruvananthapuram (TVM, 8.5o N 76.9oE) has been carried out by utilizing multiyear Microwave Radiometer Profiler (MRP) observations. The analyses have been extended to develop a methodology to identify convective events, based on the radiometric brightness temperature (Tb) differences, at 30 GHz and 22.5 GHz channels and are compared using reflectivity and rainfall intensity deduced from concurrent and collocated disdrometer measurements. In all 84 such convections were identified using the above methodology over the station for a period of years, 2010-2013; both during pre- and post- Indian summer monsoon months and further evaluated by computing their stability indices. The occurrence of convection over this coastal station peaks in the afternoon and early morning hours with genesis, respectively, over the land and the sea. The number of occurrence of convective events are less during monsoon deficit year whereas strong and more during heavy monsoon rainfall year. These findings are further evaluated with the percentage occurrence of fractional convective clouds derived from microwave payload SAPHIR observations on Megha-Tropique satellite. Based on the analyses the frequency of occurrence of convection can be related to the monsoonal rainfall obtaining over the region. The analyses also indicate that the microwave radiometric brightness temperature of humidity channels depicts the type of convection and respond two hours prior to the occurrence of rainfall. In addition to that the multi-angle observations of microwave radiometer profiler have been utilized to study the propagation of convective systems. This study and the methodology developed for identifying convection have significance in microwave (Ka- and W-band) satellite propagation characterization since convection and precipitation are the major hindrance to satellite communication over the tropical region.
NASA Astrophysics Data System (ADS)
Gong, J.; Zeng, X.; Wu, D. L.; Li, X.
2017-12-01
Diurnal variation of tropical ice cloud has been well observed and examined in terms of the area of coverage, occurring frequency, and total mass, but rarely on ice microphysical parameters (habit, size, orientation, etc.) because of lack of direct measurements of ice microphysics on a high temporal and spatial resolutions. This accounts for a great portion of the uncertainty in evaluating ice cloud's role on global radiation and hydrological budgets. The design of Global Precipitation Measurement (GPM) mission's procession orbit gives us an unprecedented opportunity to study the diurnal variation of ice microphysics on the global scale for the first time. Dominated by cloud ice scattering, high-frequency microwave polarimetric difference (PD, namely the brightness temperature difference between vertically- and horizontally-polarized paired channel measurements) from the GPM Microwave Imager (GMI) has been proven by our previous study to be very valuable to infer cloud ice microphysical properties. Using one year of PD measurements at 166 GHz, we found that cloud PD exhibits a strong diurnal cycle in the tropics (25S-25N). The peak PD amplitude varies as much as 35% over land, compared to only 6% over ocean. The diurnal cycle of the peak PD value is strongly anti-correlated with local ice cloud occurring frequency and the total ice mass with a leading period of 3 hours for the maximum correlation. The observed PD diurnal cycle can be explained by the change of ice crystal axial ratio. Using a radiative transfer model, we can simulate the observed 166 GHz PD-brightness temperature curve as well as its diurnal variation using different axial ratio values, which can be caused by the diurnal variation of ice microphysical properties including particle size, percentage of horizontally-aligned non-spherical particles, and ice habit. The leading of the change of PD ahead of ice cloud mass and occurring frequency implies the important role microphysics play in the formation and dissipation processes of ice clouds and frozen precipitations.
Market capture by 30/20 GHz satellite systems. Volume 1: Executive summary
NASA Technical Reports Server (NTRS)
Gamble, R. B.; Saporta, L.
1981-01-01
Demand for 30/20 GHz satellite systems over the next two decades is projected. Topics include a profile of the communications market, switched, dedicated, and packet transmission modes, deferred and real-time traffic, quality and reliability considerations, the capacity of competing transmission media, and scenarios for the growth and development of 30/20 GHz satellite communications.
Market capture by 30/20 GHz satellite systems. Volume 1: Executive summary
NASA Astrophysics Data System (ADS)
Gamble, R. B.; Saporta, L.
1981-04-01
Demand for 30/20 GHz satellite systems over the next two decades is projected. Topics include a profile of the communications market, switched, dedicated, and packet transmission modes, deferred and real-time traffic, quality and reliability considerations, the capacity of competing transmission media, and scenarios for the growth and development of 30/20 GHz satellite communications.
Ade, P. A. R.; Aghanim, N.; Alves, M. I. R.; ...
2016-02-09
Within ten nearby (d < 450 pc) Gould belt molecular clouds we evaluate in this paper statistically the relative orientation between the magnetic field projected on the plane of sky, inferred from the polarized thermal emission of Galactic dust observed by Planck at 353 GHz, and the gas column density structures, quantified by the gradient of the column density, N H. The selected regions, covering several degrees in size, are analysed at an effective angular resolution of 10' FWHM, thus sampling physical scales from 0.4 to 40 pc in the nearest cloud. The column densities in the selected regions rangemore » from N H≈ 10 21 to10 23 cm -2, and hence they correspond to the bulk of the molecular clouds. The relative orientation is evaluated pixel by pixel and analysed in bins of column density using the novel statistical tool called “histogram of relative orientations”. Throughout this study, we assume that the polarized emission observed by Planck at 353 GHz is representative of the projected morphology of the magnetic field in each region, i.e., we assume a constant dust grain alignment efficiency, independent of the local environment. Within most clouds we find that the relative orientation changes progressively with increasing N H, from mostly parallel or having no preferred orientation to mostly perpendicular. In simulations of magnetohydrodynamic turbulence in molecular clouds this trend in relative orientation is a signature of Alfvénic or sub-Alfvénic turbulence, implying that the magnetic field is significant for the gas dynamics at the scales probed by Planck. Finally, we compare the deduced magnetic field strength with estimates we obtain from other methods and discuss the implications of the Planck observations for the general picture of molecular cloud formation and evolution.« less
Miller, Daniel J; Zhang, Zhibo; Ackerman, Andrew S; Platnick, Steven; Baum, Bryan A
2016-04-27
Passive optical retrievals of cloud liquid water path (LWP), like those implemented for Moderate Resolution Imaging Spectroradiometer (MODIS), rely on cloud vertical profile assumptions to relate optical thickness ( τ ) and effective radius ( r e ) retrievals to LWP. These techniques typically assume that shallow clouds are vertically homogeneous; however, an adiabatic cloud model is plausibly more realistic for shallow marine boundary layer cloud regimes. In this study a satellite retrieval simulator is used to perform MODIS-like satellite retrievals, which in turn are compared directly to the large-eddy simulation (LES) output. This satellite simulator creates a framework for rigorous quantification of the impact that vertical profile features have on LWP retrievals, and it accomplishes this while also avoiding sources of bias present in previous observational studies. The cloud vertical profiles from the LES are often more complex than either of the two standard assumptions, and the favored assumption was found to be sensitive to cloud regime (cumuliform/stratiform). Confirming previous studies, drizzle and cloud top entrainment of dry air are identified as physical features that bias LWP retrievals away from adiabatic and toward homogeneous assumptions. The mean bias induced by drizzle-influenced profiles was shown to be on the order of 5-10 g/m 2 . In contrast, the influence of cloud top entrainment was found to be smaller by about a factor of 2. A theoretical framework is developed to explain variability in LWP retrievals by introducing modifications to the adiabatic r e profile. In addition to analyzing bispectral retrievals, we also compare results with the vertical profile sensitivity of passive polarimetric retrieval techniques.
Miller, Daniel J.; Zhang, Zhibo; Ackerman, Andrew S.; Platnick, Steven; Baum, Bryan A.
2018-01-01
Passive optical retrievals of cloud liquid water path (LWP), like those implemented for Moderate Resolution Imaging Spectroradiometer (MODIS), rely on cloud vertical profile assumptions to relate optical thickness (τ) and effective radius (re) retrievals to LWP. These techniques typically assume that shallow clouds are vertically homogeneous; however, an adiabatic cloud model is plausibly more realistic for shallow marine boundary layer cloud regimes. In this study a satellite retrieval simulator is used to perform MODIS-like satellite retrievals, which in turn are compared directly to the large-eddy simulation (LES) output. This satellite simulator creates a framework for rigorous quantification of the impact that vertical profile features have on LWP retrievals, and it accomplishes this while also avoiding sources of bias present in previous observational studies. The cloud vertical profiles from the LES are often more complex than either of the two standard assumptions, and the favored assumption was found to be sensitive to cloud regime (cumuliform/stratiform). Confirming previous studies, drizzle and cloud top entrainment of dry air are identified as physical features that bias LWP retrievals away from adiabatic and toward homogeneous assumptions. The mean bias induced by drizzle-influenced profiles was shown to be on the order of 5–10 g/m2. In contrast, the influence of cloud top entrainment was found to be smaller by about a factor of 2. A theoretical framework is developed to explain variability in LWP retrievals by introducing modifications to the adiabatic re profile. In addition to analyzing bispectral retrievals, we also compare results with the vertical profile sensitivity of passive polarimetric retrieval techniques. PMID:29637042
Assessment of Radiometer Calibration with GPS Radio Occultation for the MiRaTA CubeSat Mission.
Marinan, Anne D; Cahoy, Kerri L; Bishop, Rebecca L; Lui, Susan S; Bardeen, James R; Mulligan, Tamitha; Blackwell, William J; Leslie, R Vincent; Osaretin, Idahosa; Shields, Michael
2016-12-01
The Microwave Radiometer Technology Acceleration (MiRaTA) is a 3U CubeSat mission sponsored by the NASA Earth Science Technology Office (ESTO). The science payload on MiRaTA consists of a tri-band microwave radiometer and Global Positioning System (GPS) radio occultation (GPSRO) sensor. The microwave radiometer takes measurements of all-weather temperature (V-band, 50-57 GHz), water vapor (G-band, 175-191 GHz), and cloud ice (G-band, 205 GHz) to provide observations used to improve weather forecasting. The Aerospace Corporation's GPSRO experiment, called the Compact TEC (Total Electron Content) and Atmospheric GPS Sensor (CTAGS), measures profiles of temperature and pressure in the upper troposphere/lower stratosphere (∼20 km) and electron density in the ionosphere (over 100 km). The MiRaTA mission will validate new technologies in both passive microwave radiometry and GPS radio occultation: (1) new ultra-compact and low-power technology for multi-channel and multi-band passive microwave radiometers, (2) the application of a commercial off the shelf (COTS) GPS receiver and custom patch antenna array technology to obtain neutral atmospheric GPSRO retrieval from a nanosatellite, and (3) a new approach to spaceborne microwave radiometer calibration using adjacent GPSRO measurements. In this paper, we focus on objective (3), developing operational models to meet a mission goal of 100 concurrent radiometer and GPSRO measurements, and estimating the temperature measurement precision for the CTAGS instrument based on thermal noise. Based on an analysis of thermal noise of the CTAGS instrument, the expected temperature retrieval precision is between 0.17 K and 1.4 K, which supports the improvement of radiometric calibration to 0.25 K.
Assessment of Radiometer Calibration with GPS Radio Occultation for the MiRaTA CubeSat Mission
Marinan, Anne D.; Cahoy, Kerri L.; Bishop, Rebecca L.; Lui, Susan S.; Bardeen, James R.; Mulligan, Tamitha; Blackwell, William J.; Leslie, R. Vincent; Osaretin, Idahosa; Shields, Michael
2017-01-01
The Microwave Radiometer Technology Acceleration (MiRaTA) is a 3U CubeSat mission sponsored by the NASA Earth Science Technology Office (ESTO). The science payload on MiRaTA consists of a tri-band microwave radiometer and Global Positioning System (GPS) radio occultation (GPSRO) sensor. The microwave radiometer takes measurements of all-weather temperature (V-band, 50-57 GHz), water vapor (G-band, 175-191 GHz), and cloud ice (G-band, 205 GHz) to provide observations used to improve weather forecasting. The Aerospace Corporation's GPSRO experiment, called the Compact TEC (Total Electron Content) and Atmospheric GPS Sensor (CTAGS), measures profiles of temperature and pressure in the upper troposphere/lower stratosphere (∼20 km) and electron density in the ionosphere (over 100 km). The MiRaTA mission will validate new technologies in both passive microwave radiometry and GPS radio occultation: (1) new ultra-compact and low-power technology for multi-channel and multi-band passive microwave radiometers, (2) the application of a commercial off the shelf (COTS) GPS receiver and custom patch antenna array technology to obtain neutral atmospheric GPSRO retrieval from a nanosatellite, and (3) a new approach to spaceborne microwave radiometer calibration using adjacent GPSRO measurements. In this paper, we focus on objective (3), developing operational models to meet a mission goal of 100 concurrent radiometer and GPSRO measurements, and estimating the temperature measurement precision for the CTAGS instrument based on thermal noise. Based on an analysis of thermal noise of the CTAGS instrument, the expected temperature retrieval precision is between 0.17 K and 1.4 K, which supports the improvement of radiometric calibration to 0.25 K. PMID:28828144
Planck early results. XXIV. Dust in the diffuse interstellar medium and the Galactic halo
NASA Astrophysics Data System (ADS)
Planck Collaboration; Abergel, A.; Ade, P. A. R.; Aghanim, N.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Balbi, A.; Banday, A. J.; Barreiro, R. B.; Bartlett, J. G.; Battaner, E.; Benabed, K.; Benoît, A.; Bernard, J.-P.; Bersanelli, M.; Bhatia, R.; Blagrave, K.; Bock, J. J.; Bonaldi, A.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.; Bucher, M.; Burigana, C.; Cabella, P.; Cantalupo, C. M.; Cardoso, J.-F.; Catalano, A.; Cayón, L.; Challinor, A.; Chamballu, A.; Chiang, L.-Y.; Chiang, C.; Christensen, P. R.; Clements, D. L.; Colombi, S.; Couchot, F.; Coulais, A.; Crill, B. P.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Gasperis, G.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Delouis, J.-M.; Désert, F.-X.; Dickinson, C.; Donzelli, S.; Doré, O.; Dörl, U.; Douspis, M.; Dupac, X.; Efstathiou, G.; Enßlin, T. A.; Eriksen, H. K.; Finelli, F.; Forni, O.; Frailis, M.; Franceschi, E.; Galeotta, S.; Ganga, K.; Giard, M.; Giardino, G.; Giraud-Héraud, Y.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Hansen, F. K.; Harrison, D.; Helou, G.; Henrot-Versillé, S.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hovest, W.; Hoyland, R. J.; Huffenberger, K. M.; Jaffe, A. H.; Joncas, G.; Jones, A.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Kneissl, R.; Knox, L.; Kurki-Suonio, H.; Lagache, G.; Lamarre, J.-M.; Lasenby, A.; Laureijs, R. J.; Lawrence, C. R.; Leach, S.; Leonardi, R.; Leroy, C.; Linden-Vørnle, M.; Lockman, F. J.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; MacTavish, C. J.; Maffei, B.; Maino, D.; Mandolesi, N.; Mann, R.; Maris, M.; Marshall, D. J.; Martin, P.; Martínez-González, E.; Masi, S.; Matarrese, S.; Matthai, F.; Mazzotta, P.; McGehee, P.; Meinhold, P. R.; Melchiorri, A.; Mendes, L.; Mennella, A.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Munshi, D.; Murphy, A.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; O'Dwyer, I. J.; Osborne, S.; Pajot, F.; Paladini, R.; Pasian, F.; Patanchon, G.; Perdereau, O.; Perotto, L.; Perrotta, F.; Piacentini, F.; Piat, M.; Pinheiro Gonçalves, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Poutanen, T.; Prézeau, G.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Reach, W. T.; Reinecke, M.; Renault, C.; Ricciardi, S.; Riller, T.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Rowan-Robinson, M.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Santos, D.; Savini, G.; Scott, D.; Seiffert, M. D.; Shellard, P.; Smoot, G. F.; Starck, J.-L.; Stivoli, F.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sygnet, J.-F.; Tauber, J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Torre, J.-P.; Tristram, M.; Tuovinen, J.; Umana, G.; Valenziano, L.; Vielva, P.; Villa, F.; Vittorio, N.; Wade, L. A.; Wandelt, B. D.; Wilkinson, A.; Yvon, D.; Zacchei, A.; Zonca, A.
2011-12-01
This paper presents the first results from a comparison of Planck dust maps at 353, 545 and 857GHz, along with IRAS data at 3000 (100 μm) and 5000GHz (60 μm), with Green Bank Telescope 21-cm observations of Hi in 14 fields covering more than 800 deg2 at high Galactic latitude. The main goal of this study is to estimate the far-infrared to sub-millimeter (submm) emissivity of dust in the diffuse local interstellar medium (ISM) and in the intermediate-velocity (IVC) and high-velocity clouds (HVC) of the Galactic halo. Galactic dust emission for fields with average Hi column density lower than 2 × 1020 cm-2 is well correlated with 21-cm emission because in such diffuse areas the hydrogen is predominantly in the neutral atomic phase. The residual emission in these fields, once the Hi-correlated emission is removed, is consistent with the expected statistical properties of the cosmic infrared background fluctuations. The brighter fields in our sample, with an average Hi column density greater than 2 × 1020 cm-2, show significant excess dust emission compared to the Hi column density. Regions of excess lie in organized structures that suggest the presence of hydrogen in molecular form, though they are not always correlated with CO emission. In the higher Hi column density fields the excess emission at 857 GHz is about 40% of that coming from the Hi, but over all the high latitude fields surveyed the molecular mass faction is about 10%. Dust emission from IVCs is detected with high significance by this correlation analysis. Its spectral properties are consistent with, compared to the local ISM values, significantly hotter dust (T ~ 20K), lower submm dust opacity normalized per H-atom, and a relative abundance of very small grains to large grains about four times higher. These results are compatible with expectations for clouds that are part of the Galactic fountain in which there is dust shattering and fragmentation. Correlated dust emission in HVCs is not detected; the average of the 99.9% confidence upper limits to the emissivity is 0.15 times the local ISM value at 857 and 3000GHz, in accordance with gas phase evidence for lower metallicity and depletion in these clouds. Unexpected anti-correlated variations of the dust temperature and emission cross-section per H atom are identified in the local ISM and IVCs, a trend that continues into molecular environments. This suggests that dust growth through aggregation, seen in molecular clouds, is active much earlier in the cloud condensation and star formation processes. Corresponding author: M.-A. Miville-Deschênes, e-mail: mamd@ias.u-psud.fr
SPIDER: Probing the dawn of time from above the clouds
NASA Astrophysics Data System (ADS)
Moncelsi, Lorenzo; Spider Collaboration
2017-11-01
SPIDER is a balloon-borne microwave polarimeter designed to measure cosmological B-modes on degree angular scales in the presence of Galactic foregrounds. With six independent telescopes housing a total of 2000 detectors in the 90 GHz and 150 GHz frequency bands, SPIDER is the most instantaneously-sensitive CMB polarimeter deployed on the sky to date. SPIDER was successfully launched from McMurdo Station, Antarctica in January 2015 and acquired science data for 16 days. We cover the in-flight performance and present highlights from the ongoing data-analysis. After a successful recovery, the SPIDER team is planning the next flight, featuring one foreground-optimized channel at 280GHz, which will allow us constrain the primordial tensor-mode amplitude at the level of r < 0.03 (99% CL), in the presence of foregrounds.
European VLBI Network imaging of 6.7 GHz methanol masers
NASA Astrophysics Data System (ADS)
Bartkiewicz, A.; Szymczak, M.; van Langevelde, H. J.
2016-03-01
Context. Methanol masers at 6.7 GHz are well known tracers of high-mass star-forming regions. However, their origin is still not clearly understood. Aims: We aimed to determine the morphology and velocity structure for a large sample of the maser emission with generally lower peak flux densities than those in previous surveys. Methods: Using the European VLBI Network (EVN) we imaged the remaining sources from a sample of sources that were selected from the unbiased survey using the Torun 32 m dish. In this paper we report the results for 17 targets. Together they form a database of a total of 63 source images with high sensitivity (3σrms = 15-30 mJy beam-1), milliarcsecond angular resolution (6-10 mas) and very good spectral resolution (0.09 km s-1 or 0.18 km s-1) for detailed studies. Results: We studied in detail the properties of the maser clouds and calculated the mean and median values of the projected size (17.4 ± 1.2 au and 5.5 au, respectively) as well as the FWHM of the line (0.373 ± 0.011 km s-1 and 0.315 km s-1 for the mean and median values, respectively), testing whether it was consistent with Gaussian profile. We also found maser clouds with velocity gradients (71%) that ranged from 0.005 km s-1 au-1 to 0.210 km s-1 au-1. We tested the kinematic models to explain the observed structures of the 6.7 GHz emission. There were targets where the morphology supported the scenario of a rotating and expanding disk or a bipolar outflow. Comparing the interferometric and single-dish spectra we found that, typically, 50-70% of the flux was missing. This phenomena is not strongly related to the distance of the source. Conclusions: The EVN imaging reveals that in the complete sample of 63 sources the ring-like morphology appeared in 17% of sources, arcs were seen in a further 8%, and the structures were complex in 46% cases. The ultra-compact (UC) H II regions coincide in position in the sky for 13% of the sources. They are related both to extremely high and low luminosity masers from the sample. The catalogue of the complete sample is available via http://paulo.astro.uni.torun.pl/~pw/mmcat/
NASA Astrophysics Data System (ADS)
Khatri, P.; Iwabuchi, H.; Saito, M.
2017-12-01
High-level cirrus clouds, which normally occur over more than 20% of the globe, are known to have profound impacts on energy budget and climate change. The scientific knowledge regarding the vertical structure of such high-level cirrus clouds and their geometrical thickness are relatively poorer compared to low-level water clouds. Knowledge regarding cloud vertical structure is especially important in passive remote sensing of cloud properties using infrared channels or channels strongly influenced by gaseous absorption when clouds are geometrically thick and optically thin. Such information is also very useful for validating cloud resolving numerical models. This study analyzes global scale data of ice clouds identified by Cloud profiling Radar (CPR) onboard CloudSat and Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) onboard CALIPSO to parameterize (i) vertical profiles of ice water content (IWC), cloud-particle effective radius (CER), and ice-particle number concentration for varying ice water path (IWP) values and (ii) the relation of cloud geometrical thickness (CGT) with IWP and CER for varying cloud top temperature (CTT) values. It is found that the maxima in IWC and CER profile shifts towards cloud base with the increase of IWP. Similarly, if the cloud properties remain same, CGT shows an increasing trend with the decrease of CTT. The implementation of such cloud vertical inhomogeneity parameterization in the forward model used in the Integrated Cloud Analysis System ICAS (Iwabuchi et al., 2016) generally shows increase of brightness temperatures in infrared channels compared to vertically homogeneous cloud assumption. The cloud vertical inhomogeneity is found to bring noticeable changes in retrieved cloud properties. Retrieved CER and cloud top height become larger for optically thick cloud. We will show results of comparison of cloud properties retrieved from infrared measurements and active remote sensing.
NASA Astrophysics Data System (ADS)
Reising, Steven C.; Gaier, Todd C.; Kummerow, Christian D.; Padmanabhan, Sharmila; Lim, Boon H.; Brown, Shannon T.; Heneghan, Cate; Chandra, Chandrasekar V.; Olson, Jon; Berg, Wesley
2016-04-01
TEMPEST-D will reduce the risk, cost and development time of a future constellation of 6U-Class nanosatellites to directly observe the time evolution of clouds and study the conditions that control the transition from non-precipitating to precipitating clouds using high-temporal resolution observations. TEMPEST-D provides passive millimeter-wave observations using a compact instrument that fits well within the size, weight and power (SWaP) requirements of the 6U-Class satellite architecture. TEMPEST-D is suitable for launch through NASA's CubeSat Launch Initiative (CSLI), for which it was selected in February 2015. By measuring the temporal evolution of clouds from the moment of the onset of precipitation, a TEMPEST constellation mission would improve our understanding of cloud processes and help to constrain one of the largest sources of uncertainty in climate models. Knowledge of clouds, cloud processes and precipitation is essential to our understanding of climate change. Uncertainties in the representation of key processes that govern the formation and dissipation of clouds and, in turn, control the global water and energy budgets lead to substantially different predictions of future climate in current models. TEMPEST millimeter-wave radiometers with five frequencies from 89 GHz to 182 GHz penetrate into the cloud to observe key changes as precipitation begins or ice accumulates inside the storm. The evolution of ice formation in clouds is important for climate prediction and a key factor in Earth's radiation budget. TEMPEST is designed to provide critical information on the time evolution of cloud and precipitation, yielding a first-order understanding of assumptions and uncertainties in current cloud parameterizations in general circulation models in diverse climate regimes. For a potential future one-year operational mission, five identical 6U-Class satellites would be deployed in the same orbital plane with 5- to 10-minute spacing deployed in an orbit similar to the International Space Station resupply missions, i.e. at ~400 km altitude and ~51° inclination. A one-year mission would capture 3 million observations of precipitation greater than 1 mm/hour rain rate, including at least 100,000 deep convective events. Passive drag-adjusting maneuvers would separate the five CubeSats in the same orbital plane by 5-10 minutes each, similar to deployment techniques to be used by NASA's Cyclone Global Navigation Satellite Systems (CYGNSS) mission.
Zeeman Effect observations toward 36 GHz methanol masers in the Galactic Center
NASA Astrophysics Data System (ADS)
Potvin, Justin A.; Momjian, Emmanuel; Pratim Sarma, Anuj
2017-01-01
We present observations of 36 GHz Class I methanol masers taken with the Karl G. Jansky Very Large Array (VLA) in the B configuration with the aim of detecting the Zeeman Effect. We targeted several 36 GHz Class I methanol masers associated with supernova remnants (SNRs) toward the Galactic Center. Each source was observed in dual circular polarizations for three hours. The observed spectral profiles of the masers are complex, with several components blended in velocity. In only one case was the Stokes V maser profile prominent enough to reveal a 2-sigma hint of a magnetic field of zBlos = 14.56 +/- 5.60 Hz; we have chosen to express our results in terms of zBlos since the Zeeman splitting factor (z) for 36 GHz methanol masers has not been measured. There are several hints that these spectra would reveal significant magnetic fields if they could be spatially and spectrally resolved.
NASA Technical Reports Server (NTRS)
Liu, Xu; Larar, Allen M.; Zhou, Daniel K.; Kizer, Susan H.; Wu, Wan; Barnet, Christopher; Divakarla, Murty; Guo, Guang; Blackwell, Bill; Smith, William L.;
2011-01-01
Different methods for retrieving atmospheric profiles in the presence of clouds from hyperspectral satellite remote sensing data will be described. We will present results from the JPSS cloud-clearing algorithm and NASA Langley cloud retrieval algorithm.
ISMAR: an airborne submillimetre radiometer
NASA Astrophysics Data System (ADS)
Fox, Stuart; Lee, Clare; Moyna, Brian; Philipp, Martin; Rule, Ian; Rogers, Stuart; King, Robert; Oldfield, Matthew; Rea, Simon; Henry, Manju; Wang, Hui; Chawn Harlow, R.
2017-02-01
The International Submillimetre Airborne Radiometer (ISMAR) has been developed as an airborne demonstrator for the Ice Cloud Imager (ICI) that will be launched on board the next generation of European polar-orbiting weather satellites in the 2020s. It currently has 15 channels at frequencies between 118 and 664 GHz which are sensitive to scattering by cloud ice, and additional channels at 874 GHz are being developed. This paper presents an overview of ISMAR and describes the algorithms used for calibration. The main sources of bias in the measurements are evaluated, as well as the radiometric sensitivity in different measurement scenarios. It is shown that for downward views from high altitude, representative of a satellite viewing geometry, the bias in most channels is less than ±1 K and the NEΔT is less than 2 K, with many channels having an NEΔT less than 1 K. In-flight calibration accuracy is also evaluated by comparison of high-altitude zenith views with radiative-transfer simulations.
TRMM Observations of Polarization Difference in 85 GHz: Information About Hydrometeors and Rain Rate
NASA Technical Reports Server (NTRS)
Prabhakara, C.; Iacovazzi, R., Jr.; Yoo, J.-M.; Einaudi, Franco (Technical Monitor)
2000-01-01
Observations made by the Precipitation Radar (PR) and the Microwave Imager (TMI) radiometer on board the Tropical Rainfall Measuring Mission (TRMM) satellite help us to show the significance of the 85 GHz polarization difference, PD85, measured by TMI. Rain type, convective or stratiform, deduced from the PR allows us to infer that PD85 is generally positive in stratiform rain clouds, while PD85 can be markedly negative in deep convective rain clouds. Furthermore, PD85 increases in a gross manner as stratiform rain rate increases. On the contrary, in a crude fashion PD85 decreases as convective rain rate increases. From the observations of TMI and PR, we find that PD85 is a weak indicator of rain rate. Utilizing information from existing polarimetric radar studies, we infer that negative values of PD85 are likely associated with vertically-oriented small oblate or wet hail that are found in deep convective updrafts.
Microwave Brightness Temperatures of Tilted Convective Systems
NASA Technical Reports Server (NTRS)
Hong, Ye; Haferman, Jeffrey L.; Olson, William S.; Kummerow, Christian D.
1998-01-01
Aircraft and ground-based radar data from the Tropical Ocean and Global Atmosphere Coupled-Ocean Atmosphere Response Experiment (TOGA COARE) show that convective systems are not always vertical. Instead, many are tilted from vertical. Satellite passive microwave radiometers observe the atmosphere at a viewing angle. For example, the Special Sensor Microwave/Imager (SSM/I) on Defense Meteorological Satellite Program (DMSP) satellites and the Tropical Rainfall Measurement Mission (TRMM) Microwave Imager (TMI) on the TRMM satellite have an incident angle of about 50deg. Thus, the brightness temperature measured from one direction of tilt may be different than that viewed from the opposite direction due to the different optical depth. This paper presents the investigation of passive microwave brightness temperatures of tilted convective systems. To account for the effect of tilt, a 3-D backward Monte Carlo radiative transfer model has been applied to a simple tilted cloud model and a dynamically evolving cloud model to derive the brightness temperature. The radiative transfer results indicate that brightness temperature varies when the viewing angle changes because of the different optical depth. The tilt increases the displacements between high 19 GHz brightness temperature (Tb(sub 19)) due to liquid emission from lower level of cloud and the low 85 GHz brightness temperature (Tb(sub 85)) due to ice scattering from upper level of cloud. As the resolution degrades, the difference of brightness temperature due to the change of viewing angle decreases dramatically. The dislocation between Tb(sub 19) and Tb(sub 85), however, remains prominent.
NASA Technical Reports Server (NTRS)
Allen, Kenneth C.
1988-01-01
Progress on millimeter-wave propagation experiments in Hawaii is reported. A short path for measuring attenuation in rain at 9.6, 28.8, 57.6, and 96.1 GHz is in operation. A slant path from Hilo to the top of Mauna Kea is scheduled. On this path, scattering from rain and clouds that may cause interference for satellites closely spaced in geosynchronous orbit will be measured at the same frequencies at 28.8 and 96.1 GHz. In addition the full transmission matrix will be measured at the same frequencies on the slant path. The technique and equipment used to measure the transmission matrix are described.
NASA Astrophysics Data System (ADS)
Nagai, H.; Fujita, Y.; Nakamura, M.; Orienti, M.; Kino, M.; Asada, K.; Giovannini, G.
2017-11-01
We present Very Long Baseline Array polarimetric observations of the innermost jet of 3C 84 (NGC 1275) at 43 GHz. A significant polarized emission is detected at the hotspot of the innermost restarted jet, which is located 1 pc south from the radio core. While the previous report presented a hotspot at the southern end of the western limb, the hotspot location has been moved to the southern end of the eastern limb. Faraday rotation is detected within an entire bandwidth of the 43 GHz band. The measured rotation measure (RM) is at most (6.3 ± 1.9) × 105 rad m-2 and might be slightly time variable on the timescale of a month by a factor of a few. Our measured RM and the RM previously reported by the CARMA and SMA observations cannot be consistently explained by the spherical accretion flow with a power-law profile. We propose that a clumpy/inhomogeneous ambient medium is responsible for the observed RM. Using an equipartition magnetic field, we derive the electron density of 2 × 104 cm-3. Such an electron density is consistent with the cloud of the narrow line emission region around the central engine. We also discuss the magnetic field configuration from the black hole scale to the parsec scale and the origin of low polarization.
A New Algorithm for Detecting Cloud Height using OMPS/LP Measurements
NASA Technical Reports Server (NTRS)
Chen, Zhong; DeLand, Matthew; Bhartia, Pawan K.
2016-01-01
The Ozone Mapping and Profiler Suite Limb Profiler (OMPS/LP) ozone product requires the determination of cloud height for each event to establish the lower boundary of the profile for the retrieval algorithm. We have created a revised cloud detection algorithm for LP measurements that uses the spectral dependence of the vertical gradient in radiance between two wavelengths in the visible and near-IR spectral regions. This approach provides better discrimination between clouds and aerosols than results obtained using a single wavelength. Observed LP cloud height values show good agreement with coincident Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) measurements.
NASA Technical Reports Server (NTRS)
Olson, William S.; Bauer, Peter; Kummerow, Christian D.; Tao, Wei-Kuo
2000-01-01
The one-dimensional, steady-state melting layer model developed in Part I of this study is used to calculate both the microphysical and radiative properties of melting precipitation, based upon the computed concentrations of snow and graupel just above the freezing level at applicable horizontal gridpoints of 3-dimensional cloud resolving model simulations. The modified 3-dimensional distributions of precipitation properties serve as input to radiative transfer calculations of upwelling radiances and radar extinction/reflectivities at the TRMM Microwave Imager (TMI) and Precipitation Radar (PR) frequencies, respectively. At the resolution of the cloud resolving model grids (approx. 1 km), upwelling radiances generally increase if mixed-phase precipitation is included in the model atmosphere. The magnitude of the increase depends upon the optical thickness of the cloud and precipitation, as well as the scattering characteristics of ice-phase precipitation aloft. Over the set of cloud resolving model simulations utilized in this study, maximum radiance increases of 43, 28, 18, and 10 K are simulated at 10.65, 19.35 GHz, 37.0, and 85.5 GHz, respectively. The impact of melting on TMI-measured radiances is determined not only by the physics of the melting particles but also by the horizontal extent of the melting precipitation, since the lower-frequency channels have footprints that extend over 10''s of kilometers. At TMI resolution, the maximum radiance increases are 16, 15, 12, and 9 K at the same frequencies. Simulated PR extinction and reflectivities in the melting layer can increase dramatically if mixed-phase precipitation is included, a result consistent with previous studies. Maximum increases of 0.46 (-2 dB) in extinction optical depth and 5 dBZ in reflectivity are simulated based upon the set of cloud resolving model simulations.
Radar sensitivity and antenna scan pattern study for a satellite-based Radar Wind Sounder (RAWS)
NASA Technical Reports Server (NTRS)
Stuart, Michael A.
1992-01-01
Modeling global atmospheric circulations and forecasting the weather would improve greatly if worldwide information on winds aloft were available. Recognition of this led to the inclusion of the LAser Wind Sounder (LAWS) system to measure Doppler shifts from aerosols in the planned for Earth Observation System (EOS). However, gaps will exist in LAWS coverage where heavy clouds are present. The RAdar Wind Sensor (RAWS) is an instrument that could fill these gaps by measuring Doppler shifts from clouds and rain. Previous studies conducted at the University of Kansas show RAWS as a feasible instrument. This thesis pertains to the signal-to-noise ratio (SNR) sensitivity, transmit waveform, and limitations to the antenna scan pattern of the RAWS system. A dop-size distribution model is selected and applied to the radar range equation for the sensitivity analysis. Six frequencies are used in computing the SNR for several cloud types to determine the optimal transmit frequency. the results show the use of two frequencies, one higher (94 GHz) to obtain sensitivity for thinner cloud, and a lower frequency (24 GHz) to obtain sensitivity for thinner cloud, and a lower frequency (24 GHz) for better penetration in rain, provide ample SNR. The waveform design supports covariance estimation processing. This estimator eliminates the Doppler ambiguities compounded by the selection of such high transmit frequencies, while providing an estimate of the mean frequency. the unambiguous range and velocity computation shows them to be within acceptable limits. The design goal for the RAWS system is to limit the wind-speed error to less than 1 ms(exp -1). Due to linear dependence between vectors for a three-vector scan pattern, a reasonable wind-speed error is unattainable. Only the two-vector scan pattern falls within the wind-error limits for azimuth angles between 16 deg to 70 deg. However, this scan only allows two components of the wind to be determined. As a result, a technique is then shown, based on the Z-R-V relationships, that permit the vertical component (i.e., rain) to be computed. Thus the horizontal wind components may be obtained form the covariance estimator and the vertical component from the reflectivity factor. Finally, a new candidate system is introduced which summarizes the parameters taken from previous RAWS studies, or those modified in this thesis.
NASA Astrophysics Data System (ADS)
Che, Yunfei; Ma, Shuqing; Xing, Fenghua; Li, Siteng; Dai, Yaru
2018-03-01
This paper focuses on an improvement of the retrieval of atmospheric temperature and relative humidity profiles through combining active and passive remote sensing. Ground-based microwave radiometer and millimeter-wavelength cloud radar were used to acquire the observations. Cloud base height and cloud thickness determinations from cloud radar were added into the atmospheric profile retrieval process, and a back-propagation neural network method was used as the retrieval tool. Because a substantial amount of data are required to train a neural network, and as microwave radiometer data are insufficient for this purpose, 8 years of radiosonde data from Beijing were used as the database. The monochromatic radiative transfer model was used to calculate the brightness temperatures in the same channels as the microwave radiometer. Parts of the cloud base heights and cloud thicknesses in the training data set were also estimated using the radiosonde data. The accuracy of the results was analyzed through a comparison with L-band sounding radar data and quantified using the mean bias, root-mean-square error (RMSE), and correlation coefficient. The statistical results showed that an inversion with cloud information was the optimal method. Compared with the inversion profiles without cloud information, the RMSE values after adding cloud information reduced to varying degrees for the vast majority of height layers. These reductions were particularly clear in layers with clouds. The maximum reduction in the RMSE for the temperature profile was 2.2 K, while that for the humidity profile was 16%.
NASA Astrophysics Data System (ADS)
Costa-Surós, M.; Calbó, J.; González, J. A.; Long, C. N.
2013-06-01
The cloud vertical distribution and especially the cloud base height, which is linked to cloud type, is an important characteristic in order to describe the impact of clouds in a changing climate. In this work several methods to estimate the cloud vertical structure (CVS) based on atmospheric sounding profiles are compared, considering number and position of cloud layers, with a ground based system which is taken as a reference: the Active Remote Sensing of Clouds (ARSCL). All methods establish some conditions on the relative humidity, and differ on the use of other variables, the thresholds applied, or the vertical resolution of the profile. In this study these methods are applied to 125 radiosonde profiles acquired at the ARM Southern Great Plains site during all seasons of year 2009 and endorsed by GOES images, to confirm that the cloudiness conditions are homogeneous enough across their trajectory. The overall agreement for the methods ranges between 44-88%; four methods produce total agreements around 85%. Further tests and improvements are applied on one of these methods. In addition, we attempt to make this method suitable for low resolution vertical profiles, which could be useful in atmospheric modeling. The total agreement, even when using low resolution profiles, can be improved up to 91% if the thresholds for a moist layer to become a cloud layer are modified to minimize false negatives with the current data set, thus improving overall agreement.
NASA Astrophysics Data System (ADS)
Costa Surós, Montserrat; Stachlewska, Iwona S.
2016-04-01
A long-term study, assessing ground-based remote Raman lidar versus in-situ radiosounding has been conducted with the aim of improving the knowledge on the water content vertical profile through the atmosphere, and thus the conditions for cloud formation processes. Water vapor mixing ratio (WVMR) and relative humidity (RH) profiles were retrieved from ADR Lidar (PollyXT-type, EARLINET site in Warsaw). So far, more than 100 nighttime profiles averaged over 1h around midnight from July 2013 to December 2015 have been investigated. Data were evaluated with molecular extinctions calculated using two approximations: the US62 standard atmosphere and the radiosounding launched in Legionowo (12374). The calibration factor CH2O for lidar retrievals was obtained for each profile using the regression method and the profile method to determine the best calibration factor approximation to be used in the final WVMR and RH calculation. Thus, statistically representative results for comparisons between lidar WVMR median profiles obtained by calibrating using radiosounding profiles and using atmospheric synthetic profiles, all of them with the best calibration factor, will be presented. Finally, in order to constrain the conditions of cloud formation in function of the RH profile, the COS14 algorithm, capable of deriving cloud bases and tops by applying thresholds to the RH profiles, was applied to find the cloud vertical structure (CVS). The algorithm was former applied to radiosounding profiles at SGP-ARM site and tested against the CVS obtained from the Active Remote Sensing of Clouds (ARSCL) data. Similarly, it was applied for lidar measurements at the Warsaw measurement site.
Satellite-derived vertical profiles of temperature and dew point for mesoscale weather forecast
NASA Astrophysics Data System (ADS)
Masselink, Thomas; Schluessel, P.
1995-12-01
Weather forecast-models need spatially high resolutioned vertical profiles of temperature and dewpoint for their initialisation. These profiles can be supplied by a combination of data from the Tiros-N Operational Vertical Sounder (TOVS) and the imaging Advanced Very High Resolution Radiometer (AVHRR) on board the NOAA polar orbiting sate!- lites. In cloudy cases the profiles derived from TOVS data only are of insufficient accuracy. The stanthrd deviations from radiosonde ascents or numerical weather analyses likely exceed 2 K in temperature and 5Kin dewpoint profiles. It will be shown that additional cloud information as retrieved from AVHIRR allows a significant improvement in theaccuracy of vertical profiles. The International TOVS Processing Package (ITPP) is coupled to an algorithm package called AVHRR Processing scheme Over cLouds, Land and Ocean (APOLLO) where parameters like cloud fraction and cloud-top temperature are determined with higher accuracy than obtained from TOVS retrieval alone. Furthermore, a split-window technique is applied to the cloud-free AVHRR imagery in order to derive more accurate surface temperatures than can be obtained from the pure TOVS retrieval. First results of the impact of AVHRR cloud detection on the quality of the profiles are presented. The temperature and humidity profiles of different retrieval approaches are validated against analyses of the European Centre for Medium-Range Weatherforecasts.
NASA Technical Reports Server (NTRS)
Petersen, Walter A.; Jensen, Michael P.
2011-01-01
The joint NASA Global Precipitation Measurement (GPM) -- DOE Atmospheric Radiation Measurement (ARM) Midlatitude Continental Convective Clouds Experiment (MC3E) was conducted from April 22-June 6, 2011, centered on the DOE-ARM Southern Great Plains Central Facility site in northern Oklahoma. GPM field campaign objectives focused on the collection of airborne and ground-based measurements of warm-season continental precipitation processes to support refinement of GPM retrieval algorithm physics over land, and to improve the fidelity of coupled cloud resolving and land-surface satellite simulator models. DOE ARM objectives were synergistically focused on relating observations of cloud microphysics and the surrounding environment to feedbacks on convective system dynamics, an effort driven by the need to better represent those interactions in numerical modeling frameworks. More specific topics addressed by MC3E include ice processes and ice characteristics as coupled to precipitation at the surface and radiometer signals measured in space, the correlation properties of rainfall and drop size distributions and impacts on dual-frequency radar retrieval algorithms, the transition of cloud water to rain water (e.g., autoconversion processes) and the vertical distribution of cloud water in precipitating clouds, and vertical draft structure statistics in cumulus convection. The MC3E observational strategy relied on NASA ER-2 high-altitude airborne multi-frequency radar (HIWRAP Ka-Ku band) and radiometer (AMPR, CoSMIR; 10-183 GHz) sampling (a GPM "proxy") over an atmospheric column being simultaneously profiled in situ by the University of North Dakota Citation microphysics aircraft, an array of ground-based multi-frequency scanning polarimetric radars (DOE Ka-W, X and C-band; NASA D3R Ka-Ku and NPOL S-bands) and wind-profilers (S/UHF bands), supported by a dense network of over 20 disdrometers and rain gauges, all nested in the coverage of a six-station mesoscale rawinsonde network. As an exploratory effort to examine land-surface emissivity impacts on retrieval algorithms, and to demonstrate airborne soil moisture retrieval capabilities, the University of Tennessee Space Institute Piper aircraft carrying the MAPIR L-band radiometer was also flown during the latter half of the experiment in coordination with the ER-2. The observational strategy provided a means to sample the atmospheric column in a redundant framework that enables inter-calibration and constraint of measured and retrieved precipitation characteristics such as particle size distributions, or water contents- all within the umbrella of "proxy" satellite measurements (i.e., the ER-2). Complimenting the precipitation sampling framework, frequent and coincident launches of atmospheric soundings (e.g., 4-8/day) then provided a much larger mesoscale view of the thermodynamic and winds environment, a data set useful for initializing cloud models. The datasets collected represent a variety cloud and precipitation types including isolated cumulus clouds, severe thunderstorms, mesoscale convective systems, and widespread regions of light to moderate stratiform precipitation. We will present the MC3E experiment design, an overview of operations, and a summary of preliminary results.
NASA Astrophysics Data System (ADS)
Zhang, G.; McFarquhar, G.; Poellot, M.; Verlinde, J.; Heymsfield, A.; Kok, G.
2005-12-01
Arctic stratus clouds play an important role in the energy balance of the Arctic region. Previous studies have suggested that Arctic stratus persist due to a balance among cloud top radiation cooling, latent heating, ice crystal fall out and large scale forcing. In this study, radiative heating profiles through Arctic stratus are computed using cloud, surface and thermodynamic observations obtained during the Mixed-Phase Arctic Cloud Experiment (M-PACE) as input to the radiative transfer model STREAMER. In particular, microphysical and macrophycial cloud properties such as phase, water content, effective particle size, particle shape, cloud height and cloud thickness were derived using data collected by in-situ sensors on the University of North Dakota (UND) Citation and ground-based remote sensors at Barrow and Oliktok Point. Temperature profiles were derived from radiosonde launches and a fresh snow surface was assumed. One series of sensitivity studies explored the dependence of the heating profile on the solar zenith angle. For smaller solar zenith angles, more incoming solar radiation is received at cloud top acting to counterbalance infrared cooling. As solar zenith angle in the Arctic is large compared to low latitudes, a large solar zenith angle may contribute to the longevity of these clouds.
Investigation of passive atmospheric sounding using millimeter and submillimeter wavelength channels
NASA Technical Reports Server (NTRS)
Gasiewski, Albin J.; Kunkee, D. B.; Jackson, D. M.; Adelberg, L. K.
1992-01-01
Activities within the period from January 1, 1992 through June 30, 1992 by Georgia Tech researchers in millimeter and submillimeter wavelength tropospheric remote sensing have been centered around the integration and initial data flights of the MIR on board the NASA ER-2. Georgia Tech contributions during this period include completion of the MIR flight software and implementation of a 'quick-view' graphics program for ground based calibration and analysis of the MIR imagery. In the current configuration, the MIR has channels at 90, 150, 183 +/- 1,3,7, and 220 GHz. Provisions for three additional channels at 325 +/-1,3 and 9 GHZ have been made, and a 325-GHz receiver is currently being built by the ZAX Millimeter Wave Corporation for use in the MIR. The combination of the millimeter wave and submillimeter wave channels aboard a single well-calibrated instrument will provide the necessary aircraft radiometric data for radiative transfer and cloud and water vapor retrieval studies. A paper by the PI discussing the potential benefits of passive millimeter and submillimeter wave observations for cloud, water vapor and precipitation measurements has recently been accepted for publication (Gasiewski, 1992), and is included as Appendix A. The MIR instrument is a joint project between NASA/GSFC and Georgia Tech. Other Georgia Tech contributions to the MIR and its related scientific uses have included basic system design studies, performance analyses, and circuit and radiometric load design.
MM-Wave Radiometric Measurements of Low Amounts of Precipitable Water Vapor
NASA Technical Reports Server (NTRS)
Racette, P.; Westwater, Ed; Han, Yong; Manning, Will; Jones, David; Gasiewski, Al
2000-01-01
An experiment was conducted during March, 1999 to study ways in which to improve techniques for measuring low amounts of total-column precipitable water vapor (PWV). The experiment was conducted at the DOE's ARM program's North Slope of Alaska/Adjacent Arctic Ocean Cloud and Radiation Testbed site (DoE ARM NSA/AAO CaRT) located just outside Barrow, Alaska. NASA and NOAA deployed a suite of radiometers covering 25 channels in the frequency range of 20 GHz up to 340 GHz including 8 channels around the 183 GHz water vapor absorption line. In addition to the usual CaRT site instrumentation the NOAA Depolarization and Backscatter Unattended Lidar (DABUL), the SUNY Rotating Shadowband Spectroradiometer (RSS) and other surface based meteorological instrumentation were deployed during the intensive observation period. Vaisala RS80 radiosondes were launched daily as well as nearby National Weather Service VIZ sondes. Atmospheric conditions ranged from clear calm skies to blowing snow and heavy multi-layer cloud coverage. Measurements made by the radiosondes indicate the PWV varied from approx. 1 to approx. 5 mm during the experiment. The near-surface temperature varied between about -40 C to - 15 C. In this presentation, an overview of the experiment with examples of data collected will be presented. Application of the data for assessing the potential and limitations of millimeter-wave radiometry for retrieving very low amounts of PWV will be discussed.
Normalized vertical ice mass flux profiles from vertically pointing 8-mm-wavelength Doppler radar
NASA Technical Reports Server (NTRS)
Orr, Brad W.; Kropfli, Robert A.
1993-01-01
During the FIRE 2 (First International Satellite Cloud Climatology Project Regional Experiment) project, NOAA's Wave Propagation Laboratory (WPL) operated its 8-mm wavelength Doppler radar extensively in the vertically pointing mode. This allowed for the calculation of a number of important cirrus cloud parameters, including cloud boundary statistics, cloud particle characteristic sizes and concentrations, and ice mass content (imc). The flux of imc, or, alternatively, ice mass flux (imf), is also an important parameter of a cirrus cloud system. Ice mass flux is important in the vertical redistribution of water substance and thus, in part, determines the cloud evolution. It is important for the development of cloud parameterizations to be able to define the essential physical characteristics of large populations of clouds in the simplest possible way. One method would be to normalize profiles of observed cloud properties, such as those mentioned above, in ways similar to those used in the convective boundary layer. The height then scales from 0.0 at cloud base to 1.0 at cloud top, and the measured cloud parameter scales by its maximum value so that all normalized profiles have 1.0 as their maximum value. The goal is that there will be a 'universal' shape to profiles of the normalized data. This idea was applied to estimates of imf calculated from data obtained by the WPL cloud radar during FIRE II. Other quantities such as median particle diameter, concentration, and ice mass content can also be estimated with this radar, and we expect to also examine normalized profiles of these quantities in time for the 1993 FIRE II meeting.
Characterizing the Dust-Correlated Anomalous Emission in LDN 1622
NASA Astrophysics Data System (ADS)
Cleary, Kieran; Casassus, Simon; Dickinson, Clive; Lawrence, Charles; Sakon, Itsuki
2008-03-01
The search for 'dust-correlated microwave emission' was started by the surprising excess correlation of COBE-DMR maps, at 31.5, 53 and 91GHz, with DIRBE dust emission at 140 microns. It was first thought to be Galactic free-free emission from the Warm Ionized Medium (WIM). However, Leitch et al. (1997) ruled out a link with free-free by comparing with Halpha templates and first confirmed the anomalous nature of this emission. Since then, this emission has been detected by a number of experiments in the frequency range 5-60 GHz. The most popular explanation is emission from ultra-small spinning dust grains (first postulated by Erickson, 1957), which is expected to have a spectrum that is highly peaked at about 20 GHz. Spinning dust models appear to be broadly consistent with microwave data at high latitudes, but the data have not been conclusive, mainly due to the difficulty of foreground separation in CMB data. LDN 1622 is a dark cloud that lies within the Orion East molecular cloud at a distance of 120 pc. Recent cm-wave observations, in combination with WMAP data, have verified the detection of anomalous dust-correlated emission in LDN 1622. This mid-IR-cm correlation in LDN 1622 is currently the only observational evidence that very small grains VSG emit at GHz frequencies. We propose a programme of spectroscopic observations of LDN 1622 with Spitzer IRS to address the following questions: (i) Are the IRAS 12 and 25 microns bands tracing VSG emission in LDN 1622? (ii) What Mid-IR features and continuum bands best correlate with the cm-wave emission? and (iii) How do the dust properties vary with the cm-wave emission? These questions have important implications for high-sensitivity CMB experiments.
NASA Astrophysics Data System (ADS)
Carvajal, M.; Margulès, L.; Tercero, B.; Demyk, K.; Kleiner, I.; Guillemin, J. C.; Lattanzi, V.; Walters, A.; Demaison, J.; Wlodarczak, G.; Huet, T. R.; Møllendal, H.; Ilyushin, V. V.; Cernicharo, J.
2009-06-01
Context: Laboratory measurements and analysis of the microwave and millimeter-wave spectra of potential interstellar molecules are a prerequisite for their subsequent identification by radioastronomical techniques. The spectral analysis provides spectroscopic parameters that are used in the assignment procedure of the laboratory spectra, and that also predict the frequencies of transitions not measured in the laboratory with a high degree of precision. Aims: An experimental laboratory study and its theoretical analysis is presented for 13C2-methyl formate (HCOO13CH3) allowing a search for this isotopologue in the Orion molecular cloud. The 13C1-methyl formate (H13COOCH3) molecule was also searched for in this interstellar cloud, using previously published spectroscopic data. Methods: The experimental spectra of 13C2-methyl formate were recorded in the microwave and sub-mm energy ranges (4-20 GHz, 8-80 GHz, 150-700 GHz). The spectra were analyzed using the Rho-Axis Method (RAM), which takes the CH3 internal rotation and the coupling between internal rotation and global rotation into account. Results: Twenty-seven spectroscopic constants of 13C2-methyl formate have been obtained from a fit of 936 transitions of the ground torsional state with a standard (unitless) deviation of 1.08. A prediction of line positions and intensities is also produced. This prediction allowed us to identify 230 13C2-methyl formate lines in the Orion interstellar molecular cloud. We refitted all previously published ground state transitions of the 13C1-methyl formate molecule in order to provide a prediction of its ground state spectrum. 234 lines of 13C1-methyl formate were detected in the Orion interstellar cloud using that prediction. Tables A.1-A.5 are only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/500/1109
Microwave Atmospheric-Pressure Sensor
NASA Technical Reports Server (NTRS)
Flower, D. A.; Peckham, G. E.; Bradford, W. J.
1986-01-01
Report describes tests of microwave pressure sounder (MPS) for use in satellite measurements of atmospheric pressure. MPS is multifrequency radar operating between 25 and 80 GHz. Determines signal absorption over vertical path through atmosphere by measuring strength of echoes from ocean surface. MPS operates with cloud cover, and suitable for use on current meteorological satellites.
Tropical Cyclone Diurnal Cycle as Observed by TRMM
NASA Technical Reports Server (NTRS)
Leppert, Kenneth D., II; Cecil, D. J.
2015-01-01
Using infrared satellite data, previous work has shown a consistent diurnal cycle in the pattern of cold cloud tops around mature tropical cyclones. In particular, an increase in the coverage by cold cloud tops often occurs in the inner core of the storm around the time of sunset and subsequently propagates outward to several hundred kilometers over the course of the following day. This consistent cycle may have important implications for structure and intensity changes of tropical cyclones and the forecasting of such changes. Because infrared satellite measurements are primarily sensitive to cloud top, the goal of this study is to use passive and active microwave measurements from the Tropical Rainfall Measurement Mission (TRMM) Microwave Imager (TMI) and Precipitation Radar (PR), respectively, to examine and better understand the tropical cyclone diurnal cycle throughout a larger depth of the storm's clouds. The National Hurricane Center's best track dataset was used to extract all PR and TMI pixels within 1000 km of each tropical cyclone that occurred in the Atlantic basin between 1998-2011. Then the data was composited according to radius (100-km bins from 0-1000 km) and local standard time (LST; 3-hr bins). Specifically, PR composites involved finding the percentage of pixels with reflectivity greater than or equal to 20 dBZ at various heights (i.e., 2-14 km in increments of 2 km) as a function of radius and time. The 37- and 85- GHz TMI channels are especially sensitive to scattering by precipitation-sized ice in the mid to upper portions of clouds. Hence, the percentage of 37- and 85-GHz polarization corrected temperatures less than various thresholds were calculated using data from all storms as a function of radius and time. For 37 GHz, thresholds of 260 K, 265 K, 270 K, and 275 K were used, and for 85 GHz, thresholds of 200-270 K in increments of 10 K were utilized. Note that convection forced by the interactions of a tropical cyclone with land (e.g., due to frictional convergence) may disrupt the natural convective cycle of a cyclone. Hence, only data pertaining to storms whose centers were greater than 300 km from land were included in the composites. Early results suggest the presence of a diurnal cycle in the PR composites of all Atlantic basin tropical cyclones from a height of 2-12 km from approximately 0-400 km radius, but the cycle is most apparent above 6 km. At a height of 8 km, there is a peak (minimum) in the percentage of PR pixels greater than or equal to 20 dBZ near 0 (21) LST in the inner core with some indication that this signal propagates outward with time. In contrast, the 37- and 85-GHz composites show little indication of a diurnal cycle at any radii, regardless of the threshold used. Ongoing work with this project will involve sub-setting the composites according to storm intensity to see if the diurnal cycle varies with storm strength. Moderate to strong vertical wind shear often leads to asymmetries in tropical cyclone convection and may disrupt the cyclone's natural diurnal cycle. Therefore, wind shear thresholds will be applied to the composites to determine if the diurnal cycle becomes more apparent in a low shear environment. Finally, other work to be completed will involve developing composites for other tropical cyclone basins, including the East Pacific, Northwest Pacific, South Pacific, and Indian Ocean.
Parameterization of cloud lidar backscattering profiles by means of asymmetrical Gaussians
NASA Astrophysics Data System (ADS)
del Guasta, Massimo; Morandi, Marco; Stefanutti, Leopoldo
1995-06-01
A fitting procedure for cloud lidar data processing is shown that is based on the computation of the first three moments of the vertical-backscattering (or -extinction) profile. Single-peak clouds or single cloud layers are approximated to asymmetrical Gaussians. The algorithm is particularly stable with respect to noise and processing errors, and it is much faster than the equivalent least-squares approach. Multilayer clouds can easily be treated as a sum of single asymmetrical Gaussian peaks. The method is suitable for cloud-shape parametrization in noisy lidar signatures (like those expected from satellite lidars). It also permits an improvement of cloud radiative-property computations that are based on huge lidar data sets for which storage and careful examination of single lidar profiles can't be carried out.
AIRS/AMSU/HSB Data at Goddard Earth Science DISC DAAC
NASA Astrophysics Data System (ADS)
Cho, S.; Qin, J.; Li, J.; Lu, L.
2003-12-01
The Atmospheric Infrared Sounder (AIRS) data product suite is now available at the NASA/GSFC Distributed Active Archive Center (GDAAC) located at the NASA Goddard Earth Sciences Data and Information Services Center (GES DISC) in Greenbelt, Maryland, USA. AIRS data products are a combination of AIRS, Advanced Microwave Sounding Unit (AMSU-A) and Humidity Sounder for Brazil (HSB) measurements. Global coverage by the instruments is obtained twice daily (day and night) and the data along the orbit is processed into 6-minute granules. AIRS alone has 2,378 channels measuring in the infrared range 3.74-15.4 mm and four channels measuring in the visible/near-infrared range 0.4-1.1mm. A day's worth of AIRS data is divided into 240 scenes each of 6 minute duration. The data is produced in HDF-EOS format and generally become available 30-36 hours after satellite measurement from the GDAAC. Level1B data (calibrated, geo-located radiances) contains radiances from 2378 AIRS infrared channels in the 3.74 to 15.4 μm and 4 visible/near infrared channels in the 0.4 to 1.0 μm, and brightness temperature from 15 AMSU-A channels in the 50 - 90 GHz and 23 - 32 GHz and 4 HSB in the 150 - 190 GHz. The brightness temperature from two microwave instruments is used to initialize the surface temperature and atmospheric temperature profile required for the retrieval of the final AIRS geophysical products. Level2 data (geophysical parameters) is grouped into three products - Cloud-Cleared Infrared Radiance, Standard Retrieval, and Support Retrieval. The retrieval products contain atmospheric parameters such as temperatures, humidity, cloud, water vapor, and ozone in 28 pressure levels and 100 pressure levels respectively. Support Retrieval product is intended for the knowledgeable, experienced user of AIRS/AMSU-A/HSB products. It contains high resolution profiles intended to be used for computation of radiances, as-yet unimplemented research products and various parameters and intermediate results used to evaluate and track the progress of the retrieval algorithm. AIRS/AMSU-A/HSB data products can be ordered on line at no cost via the GDAAC Search and Order interface or the EOS Data Gateway (EDG). Most recent data may also be obtained from the Data Pool, an online cache that provides FTP access for quick download. Daily summary browse images and preview images of individual data granules are also accessible from the search interfaces to help users evaluate the data prior to ordering or downloading. The Atmospheric Dynamics Data Support Team (ADDST) at GDAAC is providing science and data support to assist users in understanding, accessing, and applying the AIRS data products. An extensive informational AIRS data support web site has been prepared by ADDST for data users at http://daac.gsfc.nasa.gov/atmodyn/airs/
NASA Astrophysics Data System (ADS)
Costa-Surós, M.; Calbó, J.; González, J. A.; Long, C. N.
2014-08-01
The cloud vertical distribution and especially the cloud base height, which is linked to cloud type, are important characteristics in order to describe the impact of clouds on climate. In this work, several methods for estimating the cloud vertical structure (CVS) based on atmospheric sounding profiles are compared, considering the number and position of cloud layers, with a ground-based system that is taken as a reference: the Active Remote Sensing of Clouds (ARSCL). All methods establish some conditions on the relative humidity, and differ in the use of other variables, the thresholds applied, or the vertical resolution of the profile. In this study, these methods are applied to 193 radiosonde profiles acquired at the Atmospheric Radiation Measurement (ARM) Southern Great Plains site during all seasons of the year 2009 and endorsed by Geostationary Operational Environmental Satellite (GOES) images, to confirm that the cloudiness conditions are homogeneous enough across their trajectory. The perfect agreement (i.e., when the whole CVS is estimated correctly) for the methods ranges between 26 and 64%; the methods show additional approximate agreement (i.e., when at least one cloud layer is assessed correctly) from 15 to 41%. Further tests and improvements are applied to one of these methods. In addition, we attempt to make this method suitable for low-resolution vertical profiles, like those from the outputs of reanalysis methods or from the World Meteorological Organization's (WMO) Global Telecommunication System. The perfect agreement, even when using low-resolution profiles, can be improved by up to 67% (plus 25% of the approximate agreement) if the thresholds for a moist layer to become a cloud layer are modified to minimize false negatives with the current data set, thus improving overall agreement.
NASA Astrophysics Data System (ADS)
Costa-Surós, M.; Calbó, J.; González, J. A.; Long, C. N.
2014-04-01
The cloud vertical distribution and especially the cloud base height, which is linked to cloud type, is an important characteristic in order to describe the impact of clouds on climate. In this work several methods to estimate the cloud vertical structure (CVS) based on atmospheric sounding profiles are compared, considering number and position of cloud layers, with a ground based system which is taken as a reference: the Active Remote Sensing of Clouds (ARSCL). All methods establish some conditions on the relative humidity, and differ on the use of other variables, the thresholds applied, or the vertical resolution of the profile. In this study these methods are applied to 193 radiosonde profiles acquired at the ARM Southern Great Plains site during all seasons of year 2009 and endorsed by GOES images, to confirm that the cloudiness conditions are homogeneous enough across their trajectory. The perfect agreement (i.e. when the whole CVS is correctly estimated) for the methods ranges between 26-64%; the methods show additional approximate agreement (i.e. when at least one cloud layer is correctly assessed) from 15-41%. Further tests and improvements are applied on one of these methods. In addition, we attempt to make this method suitable for low resolution vertical profiles, like those from the outputs of reanalysis methods or from the WMO's Global Telecommunication System. The perfect agreement, even when using low resolution profiles, can be improved up to 67% (plus 25% of approximate agreement) if the thresholds for a moist layer to become a cloud layer are modified to minimize false negatives with the current data set, thus improving overall agreement.
Cloud vertical profiles derived from CALIPSO and CloudSat and a comparison with MODIS derived clouds
NASA Astrophysics Data System (ADS)
Kato, S.; Sun-Mack, S.; Miller, W. F.; Rose, F. G.; Minnis, P.; Wielicki, B. A.; Winker, D. M.; Stephens, G. L.; Charlock, T. P.; Collins, W. D.; Loeb, N. G.; Stackhouse, P. W.; Xu, K.
2008-05-01
CALIPSO and CloudSat from the a-train provide detailed information of vertical distribution of clouds and aerosols. The vertical distribution of cloud occurrence is derived from one month of CALIPSO and CloudSat data as a part of the effort of merging CALIPSO, CloudSat and MODIS with CERES data. This newly derived cloud profile is compared with the distribution of cloud top height derived from MODIS on Aqua from cloud algorithms used in the CERES project. The cloud base from MODIS is also estimated using an empirical formula based on the cloud top height and optical thickness, which is used in CERES processes. While MODIS detects mid and low level clouds over the Arctic in April fairly well when they are the topmost cloud layer, it underestimates high- level clouds. In addition, because the CERES-MODIS cloud algorithm is not able to detect multi-layer clouds and the empirical formula significantly underestimates the depth of high clouds, the occurrence of mid and low-level clouds is underestimated. This comparison does not consider sensitivity difference to thin clouds but we will impose an optical thickness threshold to CALIPSO derived clouds for a further comparison. The effect of such differences in the cloud profile to flux computations will also be discussed. In addition, the effect of cloud cover to the top-of-atmosphere flux over the Arctic using CERES SSF and FLASHFLUX products will be discussed.
Profiling of Atmospheric Water Vapor from the SSM/T-2 Radiometric Measurements
NASA Technical Reports Server (NTRS)
Wang, J. R.
2000-01-01
An advantage of using the millimeter-wave measurements for water vapor profiling is the ability to probe beyond a moderate cloud cover. Such a capability has been demonstrated from an airborne MIR (Millimeter-wave Imaging Radiometer) flight over the Pacific Ocean during an intense observation period of TOGA/COARE (Tropical Ocean Global Atmosphere/ Couple Ocean Atmospheric Response Experiment) in early 1993. A Cloud Lidar System (CLS) and MODIS Airborne Simulator (MAS) were on board the same aircraft to identify the presence of clouds and cloud type. The retrieval algorithm not only provides output of a water vapor profile, but also the cloud liquid water and approximate cloud altitude required to satisfy convergence of the retrieval. The validity of these cloud parameters has not been verified previously. In this document, these cloud parameters are compared with those derived from concurrent measurements from the CLS and AMPR (Advanced Microwave Precipitation Radiometer).
NASA Astrophysics Data System (ADS)
MacDonald, Alexander B.; Dadashazar, Hossein; Chuang, Patrick Y.; Crosbie, Ewan; Wang, Hailong; Wang, Zhen; Jonsson, Haflidi H.; Flagan, Richard C.; Seinfeld, John H.; Sorooshian, Armin
2018-04-01
This study uses airborne cloud water composition measurements to characterize the vertical structure of air-equivalent mass concentrations of water-soluble species in marine stratocumulus clouds off the California coast. A total of 385 cloud water samples were collected in the months of July and August between 2011 and 2016 and analyzed for water-soluble ionic and elemental composition. Three characteristic profiles emerge: (i) a reduction of concentration with in-cloud altitude for particulate species directly emitted from sources below cloud without in-cloud sources (e.g., Cl- and Na+), (ii) an increase of concentration with in-cloud altitude (e.g., NO2- and formate), and (iii) species exhibiting a peak in concentration in the middle of cloud (e.g., non-sea-salt SO42-, NO3-, and organic acids). Vertical profiles of rainout parameters such as loss frequency, lifetime, and change in concentration with respect to time show that the scavenging efficiency throughout the cloud depth depends strongly on the thickness of the cloud. Thin clouds exhibit a greater scavenging loss frequency at cloud top, while thick clouds have a greater scavenging loss frequency at cloud base. The implications of these results for treatment of wet scavenging in models are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
MacDonald, Alexander B.; Dadashazar, Hossein; Chuang, Patrick Y.
This study uses airborne cloud water composition measurements to characterize the vertical structure of air-equivalent mass concentrations of water-soluble species in marine stratocumulus clouds off the California coast. A total of 385 cloud water samples were collected in the months of July and August between 2011 and 2016 and analyzed for water-soluble ionic and elemental composition. Three characteristic profiles emerge: (i) a reduction of concentration with in-cloud altitude for particulate species directly emitted from sources below cloud without in-cloud sources (e.g., Cl-, Na+); (ii) an increase of concentration with in-cloud altitude (e.g., NO2-, formate); and (iii) species exhibiting a peakmore » in concentration in the middle of cloud (e.g., non-sea salt SO42-, NO3-, organic acids). Vertical profiles of rainout parameters such as loss frequency, lifetime, and change in concentration with respect to time show that the scavenging efficiency throughout the cloud depth depends strongly on the thickness of the cloud. Thin clouds exhibit a greater scavenging loss frequency at cloud top, while thick clouds have a greater scavenging loss frequency at cloud base. The implications of these results for treatment of wet scavenging in models are discussed.« less
Detection of 17 GHz radio emission from X-ray-bright points
NASA Technical Reports Server (NTRS)
Kundu, M. R.; Shibasaki, K.; Enome, S.; Nitta, N.
1994-01-01
Using observations made with the Nobeyama radio heliograph (NRH) at 17 GHz and the Yohkoh/SXT experiment, we report the first detection of 17 GHz signatures of coronal X-ray-bright points (XBPs). This is also the first reported detection of flaring bright points in microwaves. We have detected four BPs at 17 GHz out of eight identified in SXT data on 1992 July 31, for which we looked for 17 GHz emission. For one XBP located in a quiet mixed-polarity region, the peak times at 17 GHz and X-rays are very similar, and both are long-lasting-about 2 hr in duration. There is a second BP (located near an active region) which is most likely flaring also, but the time profiles in the two spectral domains are not similar. The other two 17 GHz BPs are quiescent with fluctuations superposed upon them. For the quiet region XBP, the gradual, long-lasting, and unpolarized emission suggests that the 17 GHz emission is thermal.
CloudSat Profiles Tropical Storm Andrea
2007-05-10
CloudSat's Cloud Profiling Radar captured a profile across Tropical Storm Andrea on Wednesday, May 9, 2007, near the South Carolina/Georgia/Florida Atlantic coast. The upper image shows an infrared view of Tropical Storm Andrea from the Moderate Resolution Imaging Spectroradiometer instrument on NASA's Aqua satellite, with CloudSat's ground track shown as a red line. The lower image is the vertical cross section of radar reflectivity along this path, where the colors indicate the intensity of the reflected radar energy. CloudSat orbits approximately one minute behind Aqua in a satellite formation known as the A-Train. http://photojournal.jpl.nasa.gov/catalog/PIA09379
NASA Astrophysics Data System (ADS)
Nakamori, Kota; Suzuki, Yasuki; Ohya, Hiroyo; Takano, Toshiaki; Kawamura, Yohei; Nakata, Hiroyuki; Yamashita, Kozo
2017-04-01
It is known that lightning and precipitations of rain droplets generated from thunderclouds are a generator of global atmospheric electric circuit. In the fair weather, the atmospheric electric fields (AEF) are downward (positive), while they are upward (negative) during lightning and precipitations. However, the correlations between the AEF, and the cloud parameters such as cloud cover, weather phenomenon, have been not revealed quantitatively yet. In this study, we investigate the correlations between the AEF and the cloud parameters, weather phenomenon using a field mill, the 95 GHz-FALCON (FMCW Radar for Cloud Observations)-I and all-sky camera observations. In this study, we installed a Boltek field mill on the roof of our building in Chiba University, Japan, (Geographic coordinate: 35.63 degree N, 140.10 degree E, the sea level: 55 m) on the first June, 2016. The sampling time of the AEF is 0.5 s. On the other hand, the FALCON-I has observed the cloud parameters far from about 76 m of the field mill throughout 24 hours every day. The vertical cloud profiles and the Doppler velocity of cloud particles can be derived by the FALCON-I with high distance resolutions (48.8 m) (Takano et al., 2010). In addition, the images of the clouds and precipitations are recorded with 30-s sampling by an all-sky camera using a CCD camera on the same roof during 05:00-22:00 LT every day. The distance between the field mill and the all-sky camera is 3.75 m. During 08:30 UT - 10:30 UT, on 4 July, 2016, we found the variation of the AEF due to the approach of thundercloud. The variation consisted of two patterns. One was slow variation due to the movement of thunderclouds, and the other was rapid variation associated with lightning discharges. As for the movement of thunderclouds, the AEF increased when the anvil was located over the field mill, which was opposite direction of the previous studies. This change might be due to the positive charges in the upper anvil more than 14 km altitude. As for the rapid variations of the AEF, 12 peaks of the AEF coincided with the occurrence of the lightning within 37 km. Moreover, we developed the automatic procedure to estimate the cloud cover from cloud optical images using the RGB color values. We estimated the correlation between the cloud cover and the AEF during June - November, 2016. The AEF decreased with increasing the cloud cover. This trend may be caused by the dielectric polarization due to the insert of the dielectric clouds into the global condenser. The standard deviation of AEF was small when the cloud cover increased. In this session, we will show the variations in the AEF during usual precipitations and snowing.
First observations of tracking clouds using scanning ARM cloud radars
Borque, Paloma; Giangrande, Scott; Kollias, Pavlos
2014-12-01
Tracking clouds using scanning cloud radars can help to document the temporal evolution of cloud properties well before large drop formation (‘‘first echo’’). These measurements complement cloud and precipitation tracking using geostationary satellites and weather radars. Here, two-dimensional (2-D) Along-Wind Range Height Indicator (AW-RHI) observations of a population of shallow cumuli (with and without precipitation) from the 35-GHz scanning ARM cloud radar (SACR) at the DOE Atmospheric Radiation Measurements (ARM) program Southern Great Plains (SGP) site are presented. Observations from the ARM SGP network of scanning precipitation radars are used to provide the larger scale context of the cloud fieldmore » and to highlight the advantages of the SACR to detect the numerous, small, non-precipitating cloud elements. A new Cloud Identification and Tracking Algorithm (CITA) is developed to track cloud elements. In CITA, a cloud element is identified as a region having a contiguous set of pixels exceeding a preset reflectivity and size threshold. The high temporal resolution of the SACR 2-D observations (30 sec) allows for an area superposition criteria algorithm to match cloud elements at consecutive times. Following CITA, the temporal evolution of cloud element properties (number, size, and maximum reflectivity) is presented. The vast majority of the designated elements during this cumulus event were short-lived non-precipitating clouds having an apparent life cycle shorter than 15 minutes. The advantages and disadvantages of cloud tracking using an SACR are discussed.« less
First observations of tracking clouds using scanning ARM cloud radars
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borque, Paloma; Giangrande, Scott; Kollias, Pavlos
Tracking clouds using scanning cloud radars can help to document the temporal evolution of cloud properties well before large drop formation (‘‘first echo’’). These measurements complement cloud and precipitation tracking using geostationary satellites and weather radars. Here, two-dimensional (2-D) Along-Wind Range Height Indicator (AW-RHI) observations of a population of shallow cumuli (with and without precipitation) from the 35-GHz scanning ARM cloud radar (SACR) at the DOE Atmospheric Radiation Measurements (ARM) program Southern Great Plains (SGP) site are presented. Observations from the ARM SGP network of scanning precipitation radars are used to provide the larger scale context of the cloud fieldmore » and to highlight the advantages of the SACR to detect the numerous, small, non-precipitating cloud elements. A new Cloud Identification and Tracking Algorithm (CITA) is developed to track cloud elements. In CITA, a cloud element is identified as a region having a contiguous set of pixels exceeding a preset reflectivity and size threshold. The high temporal resolution of the SACR 2-D observations (30 sec) allows for an area superposition criteria algorithm to match cloud elements at consecutive times. Following CITA, the temporal evolution of cloud element properties (number, size, and maximum reflectivity) is presented. The vast majority of the designated elements during this cumulus event were short-lived non-precipitating clouds having an apparent life cycle shorter than 15 minutes. The advantages and disadvantages of cloud tracking using an SACR are discussed.« less
NASA Astrophysics Data System (ADS)
Luce, Hubert; Mega, Tomoaki; Yamamoto, Masayuki K.; Yamamoto, Mamoru; Hashiguchi, Hiroyuki; Fukao, Shoichiro; Nishi, Noriyuki; Tajiri, Takuya; Nakazato, Masahisa
2010-10-01
Using the very high frequency (46.5 MHz) middle and upper atmosphere radar (MUR), Ka band (35 GHz) and X band (9.8 GHz) weather radars, a Kelvin-Helmholtz (KH) instability occurring at a cloud base and its impact on modulating cloud bottom altitudes are described by a case study on 8 October 2008 at the Shigaraki MU Observatory, Japan (34.85°N, 136.10°E). KH braids were monitored by the MUR along the slope of a cloud base gradually rising with time around an altitude of ˜5.0 km. The KH braids had a horizontal wavelength of about 3.6 km and maximum crest-to-trough amplitude of about 1.6 km. Nearly monochromatic and out of phase vertical air motion oscillations exceeding ±3 m s-1 with a period of ˜3 min 20 s were measured by the MUR above and below the cloud base. The axes of the billows were at right angles of the wind and wind shear both oriented east-north-east at their altitude. The isotropy of the radar echoes and the large variance of Doppler velocity in the KH billows (including the braids) indicate the presence of strong turbulence at the Bragg (˜3.2 m) scale. After the passage of the cloud system, the KH waves rapidly damped and the vertical scale of the KH braids progressively decreased down to about 100 m before their disappearance. The radar observations suggest that the interface between clear air and cloud was conducive to the presence of the dynamical shear instability by reducing static stability (and then the Richardson number) near the cloud base. Downward cloudy protuberances detected by the Ka band radar had vertical and horizontal scales of about 0.6-1.1 and 3.2 km, respectively, and were clearly associated with the downward air motions. Observed oscillations of the reflectivity-weighted Doppler velocity measured by the X band radar indicate that falling ice particles underwent the vertical wind motions generated by the KH instability to form the protuberances. The protuberances at the cloud base might be either KH billow clouds or perhaps some sort of mamma. Reflectivity-weighted particle fall velocity computed from Doppler velocities measured by the X band radar and the MUR showed an average value of 1.3 ms-1 within the cloud and in the protuberance environment.
NASA Astrophysics Data System (ADS)
Palancade, J. P.
2012-12-01
Above 1GHz, the qualification of a receiving radio-equipment is not an easy task for radio amateurs. The available measurement equipments is generally not accessible most of the time for reasons such as price, availability and knowledge to use them. The results of these measurements are generally very sensitive to the way they are performed and each parameter has to be carefully controlled and taken into account to limit the range of possible results interpretation. Fortunately one of the best tool to check a microwave receiving installation is the sun. The most popular measurement used by amateur people is the comparison of the signal intensity between the sun and a cold sky region, by simply pointing the antenna (named Cs/Sun). The present study , after a short description of the home made radio equipment involved, aims to present the results of a measurements campaign of solar transits on 11.2 and 24 GHz during 28 consecutive days in January 2013. Preliminary results of the present study tend to show that if, the amplitude fluctuations recorded on 11.2 GHz can be correlated with radio solar flux variations, on 24 GHz, the same radio solar flux variations are hidden by meteorological events such as clouds coverage and probably hygrometry.
The Atmospheric Infrared Sounder Version 6 Cloud Products
NASA Technical Reports Server (NTRS)
Kahn, B. H.; Irion, F. W.; Dang, V. T.; Manning, E. M.; Nasiri, S. L.; Naud, C. M.; Blaisdell, J. M.; Schreier, M. M..; Yue, Q.; Bowman, K. W.;
2014-01-01
The version 6 cloud products of the Atmospheric Infrared Sounder (AIRS) and Advanced Microwave Sounding Unit (AMSU) instrument suite are described. The cloud top temperature, pressure, and height and effective cloud fraction are now reported at the AIRS field-of-view (FOV) resolution. Significant improvements in cloud height assignment over version 5 are shown with FOV-scale comparisons to cloud vertical structure observed by the CloudSat 94 GHz radar and the Cloud-Aerosol LIdar with Orthogonal Polarization (CALIOP). Cloud thermodynamic phase (ice, liquid, and unknown phase), ice cloud effective diameter D(sub e), and ice cloud optical thickness (t) are derived using an optimal estimation methodology for AIRS FOVs, and global distributions for 2007 are presented. The largest values of tau are found in the storm tracks and near convection in the tropics, while D(sub e) is largest on the equatorial side of the midlatitude storm tracks in both hemispheres, and lowest in tropical thin cirrus and the winter polar atmosphere. Over the Maritime Continent the diurnal variability of tau is significantly larger than for the total cloud fraction, ice cloud frequency, and D(sub e), and is anchored to the island archipelago morphology. Important differences are described between northern and southern hemispheric midlatitude cyclones using storm center composites. The infrared-based cloud retrievals of AIRS provide unique, decadal-scale and global observations of clouds over portions of the diurnal and annual cycles, and capture variability within the mesoscale and synoptic scales at all latitudes.
NASA Technical Reports Server (NTRS)
Uttal, Taneil; Frisch, Shelby; Wang, Xuan-Ji; Key, Jeff; Schweiger, Axel; Sun-Mack, Sunny; Minnis, Patrick
2005-01-01
A one year comparison is made of mean monthly values of cloud fraction and cloud optical depth over Barrow, Alaska (71 deg 19.378 min North, 156 deg 36.934 min West) between 35 GHz radar-based retrievals, the TOVS Pathfinder Path-P product, the AVHRR APP-X product, and a MODIS based cloud retrieval product from the CERES-Team. The data sets represent largely disparate spatial and temporal scales, however, in this paper, the focus is to provide a preliminary analysis of how the mean monthly values derived from these different data sets compare, and determine how they can best be used separately, and in combination to provide reliable estimates of long-term trends of changing cloud properties. The radar and satellite data sets described here incorporate Arctic specific modifications that account for cloud detection challenges specific to the Arctic environment. The year 2000 was chosen for this initial comparison because the cloud radar data was particularly continuous and reliable that year, and all of the satellite retrievals of interest were also available for the year 2000. Cloud fraction was chosen as a comparison variable as accurate detection of cloud is the primary product that is necessary for any other cloud property retrievals. Cloud optical depth was additionally selected as it is likely the single cloud property that is most closely correlated to cloud influences on surface radiation budgets.
Cold Water Vapor in the Barnard 5 Molecular Cloud
NASA Technical Reports Server (NTRS)
Wirstrom, E. S.; Charnley, S. B.; Persson, C. M.; Buckle, J. V.; Cordiner, M. A.; Takakuwa, S.
2014-01-01
After more than 30 yr of investigations, the nature of gas-grain interactions at low temperatures remains an unresolved issue in astrochemistry. Water ice is the dominant ice found in cold molecular clouds; however, there is only one region where cold ((is) approximately 10 K) water vapor has been detected-L1544. This study aims to shed light on ice desorption mechanisms under cold cloud conditions by expanding the sample. The clumpy distribution of methanol in dark clouds testifies to transient desorption processes at work-likely to also disrupt water ice mantles. Therefore, the Herschel HIFI instrument was used to search for cold water in a small sample of prominent methanol emission peaks. We report detections of the ground-state transition of o-H2O (J = 110-101) at 556.9360 GHz toward two positions in the cold molecular cloud, Barnard 5. The relative abundances of methanol and water gas support a desorption mechanism which disrupts the outer ice mantle layers, rather than causing complete mantle removal.
Donovan, David Patrick; Quante, Markus; Schlimme, Ingo; Macke, Andreas
2004-09-01
The effect of ice crystal size and shape on the relation between radar reflectivity and optical extinction is examined. Discrete-dipole approximation calculations of 95-GHz radar reflectivity and ray-tracing calculations are applied to ice crystals of various habits and sizes. Ray tracing was used primarily to calculate optical extinction and to provide approximate information on the lidar backscatter cross section. The results of the combined calculations are compared with Mie calculations applied to collections of different types of equivalent spheres. Various equivalent sphere formulations are considered, including equivalent radar-lidar spheres; equivalent maximum dimension spheres; equivalent area spheres, and equivalent volume and equivalent effective radius spheres. Marked differences are found with respect to the accuracy of different formulations, and certain types of equivalent spheres can be used for useful prediction of both the radar reflectivity at 95 GHz and the optical extinction (but not lidar backscatter cross section) over a wide range of particle sizes. The implications of these results on combined lidar-radar ice cloud remote sensing are discussed.
In Vivo Simulator for Microwave Treatment
NASA Technical Reports Server (NTRS)
Arndt, G. Dickey (Inventor); Carl, James R. (Inventor); Raffoul, George W. (Inventor); Karasack, Vincent G. (Inventor); Pacifico, Antonio (Inventor); Pieper, Carl F. (Inventor)
2001-01-01
Method and apparatus are provided for propagating microwave energy into heart tissues to produce a desired temperature profile therein at tissue depths sufficient for thermally ablating arrhythmogenic cardiac tissue to treat ventricular tachycardia and other arrhythmias while preventing excessive heating of surrounding tissues, organs, and blood. A wide bandwidth double-disk antenna is effective for this purpose over a bandwidth of about 6 GHz. A computer simulation provides initial screening capabilities for an antenna such as antenna. frequency, power level, and power application duration. The simulation also allows optimization of techniques for specific patients or conditions. In operation, microwave energy between about 1 GHz and 12 GHz is applied to monopole microwave radiator having a surface wave limiter. A test setup provides physical testing of microwave radiators to determine the temperature profile created in actual heart tissue or ersatz heart tissue. Saline solution pumped over the heart tissue with a peristaltic pump simulates blood flow. Optical temperature sensors disposed at various tissue depths within the heart tissue detect the temperature profile without creating any electromagnetic interference. The method may be used to produce a desired temperature profile in other body tissues reachable by catheter such as tumors and the like.
NASA Astrophysics Data System (ADS)
Pokharel, Binod; Geerts, Bart
2016-12-01
The AgI Seeding Cloud Impact Investigation (ASCII) campaign was conducted in early 2012 and 2013 over two mountain ranges in southern Wyoming to examine the impact of ground-based glaciogenic seeding on snow growth in winter orographic clouds. The campaign was supported by a network of ground-based instruments, including microwave radiometers, two profiling Ka-band Micro-Rain Radars (MRRs), a Doppler on Wheels (DOW) X-band radar, and a Parsivel disdrometer. The University of Wyoming King Air operated the profiling Wyoming Cloud Radar, the Wyoming Cloud Lidar, and in situ cloud and precipitation particle probes. The characteristics of the orographic clouds, flow field, and upstream stability profiles in 27 intensive observation periods (IOPs) are described here. A composite analysis of the impact of seeding on snow growth is presented in Part II of this study (Pokharel et al., 2017).
NASA Astrophysics Data System (ADS)
DeSouza-Machado, Sergio; Larrabee Strow, L.; Tangborn, Andrew; Huang, Xianglei; Chen, Xiuhong; Liu, Xu; Wu, Wan; Yang, Qiguang
2018-01-01
One-dimensional variational retrievals of temperature and moisture fields from hyperspectral infrared (IR) satellite sounders use cloud-cleared radiances (CCRs) as their observation. These derived observations allow the use of clear-sky-only radiative transfer in the inversion for geophysical variables but at reduced spatial resolution compared to the native sounder observations. Cloud clearing can introduce various errors, although scenes with large errors can be identified and ignored. Information content studies show that, when using multilayer cloud liquid and ice profiles in infrared hyperspectral radiative transfer codes, there are typically only 2-4 degrees of freedom (DOFs) of cloud signal. This implies a simplified cloud representation is sufficient for some applications which need accurate radiative transfer. Here we describe a single-footprint retrieval approach for clear and cloudy conditions, which uses the thermodynamic and cloud fields from numerical weather prediction (NWP) models as a first guess, together with a simple cloud-representation model coupled to a fast scattering radiative transfer algorithm (RTA). The NWP model thermodynamic and cloud profiles are first co-located to the observations, after which the N-level cloud profiles are converted to two slab clouds (TwoSlab; typically one for ice and one for water clouds). From these, one run of our fast cloud-representation model allows an improvement of the a priori cloud state by comparing the observed and model-simulated radiances in the thermal window channels. The retrieval yield is over 90 %, while the degrees of freedom correlate with the observed window channel brightness temperature (BT) which itself depends on the cloud optical depth. The cloud-representation and scattering package is benchmarked against radiances computed using a maximum random overlap (RMO) cloud scheme. All-sky infrared radiances measured by NASA's Atmospheric Infrared Sounder (AIRS) and NWP thermodynamic and cloud profiles from the European Centre for Medium-Range Weather Forecasts (ECMWF) forecast model are used in this paper.
Improved Weather Forecasting for the Dynamic Scheduling System of the Green Bank Telescope
NASA Astrophysics Data System (ADS)
Henry, Kari; Maddalena, Ronald
2018-01-01
The Robert C Byrd Green Bank Telescope (GBT) uses a software system that dynamically schedules observations based on models of vertical weather forecasts produced by the National Weather Service (NWS). The NWS provides hourly forecasted values for ~60 layers that extend into the stratosphere over the observatory. We use models, recommended by the Radiocommunication Sector of the International Telecommunications Union, to derive the absorption coefficient in each layer for each hour in the NWS forecasts and for all frequencies over which the GBT has receivers, 0.1 to 115 GHz. We apply radiative transfer models to derive the opacity and the atmospheric contributions to the system temperature, thereby deriving forecasts applicable to scheduling radio observations for up to 10 days into the future. Additionally, the algorithms embedded in the data processing pipeline use historical values of the forecasted opacity to calibrate observations. Until recently, we have concentrated on predictions for high frequency (> 15 GHz) observing, as these need to be scheduled carefully around bad weather. We have been using simple models for the contribution of rain and clouds since we only schedule low-frequency observations under these conditions. In this project, we wanted to improve the scheduling of the GBT and data calibration at low frequencies by deriving better algorithms for clouds and rain. To address the limitation at low frequency, the observatory acquired a Radiometrics Corporation MP-1500A radiometer, which operates in 27 channels between 22 and 30 GHz. By comparing 16 months of measurements from the radiometer against forecasted system temperatures, we have confirmed that forecasted system temperatures are indistinguishable from those measured under good weather conditions. Small miss-calibrations of the radiometer data dominate the comparison. By using recalibrated radiometer measurements, we looked at bad weather days to derive better models for forecasting the contribution of clouds to the opacity and system temperatures. We will show how these revised algorithms should help us improve both data calibration and the accuracy of scheduling low-frequency observations.
90 GHz and 150 GHz Observations of the Orion M42 Region. A Submillimeter to Radio Analysis
NASA Technical Reports Server (NTRS)
Dicker, S. R.; Mason, B. S.; Korngut, P. M.; Cotton, W. D.; Compiegne, M.; Devlin, M. J.; Martin, P. G.; Ade, P. A. R; Benford, D. J.; Irwin, K. D.;
2009-01-01
We have used the new 90GHz MUSTANG camera on the Robert C. Green Bank Telescope (GBT)to map the bright Huygens region of the star-forming region M42 with a resolution of 9" and a sensitivity of 2.8 mJy/beam. Ninety GHz is an interesting transition frequency, as MUSTANG detects both the free-free emission characteristic of the H II region created by the Trapezium stars, normally seen at lower frequencies, and thermal dust emission from the background OMCI molecular cloud, normally mapped at higher frequencies. We also present similar data from the 150 GHz GISMO camera taken on the IRAM 30 m telescope. This map has 15" resolution. By combining the MUSTANG data with 1.4, 8. and 31 GHz radio data from the VLA and GBT, we derive a new estimate of the emission measure averaged electron temperature of T(sub e) = 11376+/-1050 K by an original method relating free-free emission intensities at optically thin and optically thick frequencies. Combining Infrared Space Observatory-long wavelength spectrometer (ISO-LWS) data with our data, we derive a new estimate of the dust temperature and spectral emissivity index within the 80" ISO-LWS beam toward Orion KL/BN, T(sub d) = 42+/-3 K and Beta(sub d) = 1.3+/-0.1. We show that both T(sub d) and Beta(sub d) decrease when going from the H II region and excited OMCI interface to the denser UV shielded part OMCI (Orion KL/BN, Orion S). With a model consisting of only free-free and thermal dust emission, we are able to fit data taken at frequencies from 1.5 GHz to 854 GHz (350 micrometers).
Curved Radio Spectra of Weak Cluster Shocks
NASA Astrophysics Data System (ADS)
Kang, Hyesung; Ryu, Dongsu
2015-08-01
In order to understand certain observed features of arc-like giant radio relics such as the rareness, uniform surface brightness, and curved integrated spectra, we explore a diffusive shock acceleration (DSA) model for radio relics in which a spherical shock impinges on a magnetized cloud containing fossil relativistic electrons. Toward this end, we perform DSA simulations of spherical shocks with the parameters relevant for the Sausage radio relic in cluster CIZA J2242.8+5301, and calculate the ensuing radio synchrotron emission from re-accelerated electrons. Three types of fossil electron populations are considered: a delta-function like population with the shock injection momentum, a power-law distribution, and a power law with an exponential cutoff. The surface brightness profile of the radio-emitting postshock region and the volume-integrated radio spectrum are calculated and compared with observations. We find that the observed width of the Sausage relic can be explained reasonably well by shocks with speed {u}{{s}}˜ 3× {10}3 {km} {{{s}}}-1 and sonic Mach number {M}{{s}}˜ 3. These shocks produce curved radio spectra that steepen gradually over (0.1-10){ν }{br} with a break frequency {ν }{br}˜ 1 GHz if the duration of electron acceleration is ˜60-80 Myr. However, the abrupt increase in the spectral index above ˜1.5 GHz observed in the Sausage relic seems to indicate that additional physical processes, other than radiative losses, operate for electrons with {γ }{{e}}≳ {10}4.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nagai, H.; Kino, M.; Fujita, Y.
2017-11-01
We present Very Long Baseline Array polarimetric observations of the innermost jet of 3C 84 (NGC 1275) at 43 GHz. A significant polarized emission is detected at the hotspot of the innermost restarted jet, which is located 1 pc south from the radio core. While the previous report presented a hotspot at the southern end of the western limb, the hotspot location has been moved to the southern end of the eastern limb. Faraday rotation is detected within an entire bandwidth of the 43 GHz band. The measured rotation measure (RM) is at most (6.3 ± 1.9) × 10{sup 5}more » rad m{sup −2} and might be slightly time variable on the timescale of a month by a factor of a few. Our measured RM and the RM previously reported by the CARMA and SMA observations cannot be consistently explained by the spherical accretion flow with a power-law profile. We propose that a clumpy/inhomogeneous ambient medium is responsible for the observed RM. Using an equipartition magnetic field, we derive the electron density of 2 × 10{sup 4} cm{sup −3}. Such an electron density is consistent with the cloud of the narrow line emission region around the central engine. We also discuss the magnetic field configuration from the black hole scale to the parsec scale and the origin of low polarization.« less
NASA Astrophysics Data System (ADS)
Gorodetskaya, Irina V.; Maahn, Maximilian; Gallée, Hubert; Kneifel, Stefan; Souverijns, Niels; Gossart, Alexandra; Crewell, Susanne; Van Lipzig, Nicole P. M.
2016-04-01
Large interannual variability has been found in surface mass balance (SMB) over the East Antarctic ice sheet coastal and escarpment zones, with the total yearly SMB strongly depending on occasional intense precipitation events. Thus for correct prediction of the ice sheet climate and SMB, climate models should be capable to represent such events. Not less importantly, models should also correctly represent the relevant mechanisms behind. The coupled land-atmosphere non-hydrostatic regional climate model MAR (Modèle Atmosphérique Régional) is used to simulate climate and SMB of Dronning Maud Land (DML), East Antarctica. DML has shown a significant increase in SMB during the last years attributed to only few occasional very intense snowfall events. MAR is run at 5km horizontal resolution using initial and boundary conditions from the European Centre for Medium-range Weather Forecasts (ECMWF) Interim re-analysis atmospheric and oceanic fields. The MAR microphysical scheme predicts the evolution of the mixing ratios of five water species: specific humidity, cloud droplets and ice crystals, raindrops and snow particles. Additional prognostic equation describes the number concentration of cloud ice crystals. The mass and terminal velocity of snow particles are defined as for the graupel-like snowflakes of hexagonal type. These definitions are important to determine single scattering properties for snow hydrometeors used as input (along with cloud particle properties and atmospheric parameters) into the Passive and Active Microwave radiative TRAnsfer model (PAMTRA). PAMTRA allows direct comparison of the radar-measured and climate model-based vertical profiles of the radar reflectivity and Doppler velocity for particular precipitation events. The comparison is based on the measurements from the vertically profiling 24-GHz MRR radar operating as part of the cloud-precipitation-meteorological observatory at Princess Elisabeth (PE) base in DML escarpment zone, from 2010 through now. Preliminary results show that MAR simulates well the timing of major synoptic-scale precipitation events, while a bias exists towards higher radar reflectivities using MAR snowfall properties compared to PE MRR measurements. This bias can be related to the differences both in the amount and type of snowflakes reaching the surface. The spatial extent of precipitation also matters as PE provides only vertical profiling. PAMTRA is used to evaluate specific intense snowfall events at PE-centered grid, while MAR-simulated atmospheric fields are further analyzed for understanding the large- and meso-scale atmospheric circulation and moisture transport patterns, together with cloud properties responsible for these events. PE measurements showed that the most intense precipitation events at PE (up to 30 mm water equivalent per day) have been associated with atmospheric rivers, where enhanced tropospheric integrated water vapor amounts are concentrated in narrow long bands stretching from subtropical latitudes to the East Antarctic coast. We analyze representation of such events in MAR, including their extent, intensity, as well as time and location of where such moisture bands are reaching the Antarctic coast.
New single-aircraft integrated atmospheric observation capabilities
NASA Astrophysics Data System (ADS)
Wang, Z.
2011-12-01
Improving current weather and climate model capabilities requires better understandings of many atmospheric processes. Thus, advancing atmospheric observation capabilities has been regarded as the highest imperatives to advance the atmospheric science in the 21st century. Under the NSF CAREER support, we focus on developing new airborne observation capabilities through the developments of new instrumentations and the single-aircraft integration of multiple remote sensors with in situ probes. Two compact Wyoming cloud lidars were built to work together with a 183 GHz microwave radiometer, a multi-beam Wyoming cloud radar and in situ probes for cloud studies. The synergy of these remote sensor measurements allows us to better resolve the vertical structure of cloud microphysical properties and cloud scale dynamics. Together with detailed in situ data for aerosol, cloud, water vapor and dynamics, we developed the most advanced observational capability to study cloud-scale properties and processes from a single aircraft (Fig. 1). A compact Raman lidar was also built to work together with in situ sampling to characterize boundary layer aerosol and water vapor distributions for many important atmospheric processes studies, such as, air-sea interaction and convective initialization. Case studies will be presented to illustrate these new observation capabilities.
Atmospheric parameterization schemes for satellite cloud property retrieval during FIRE IFO 2
NASA Technical Reports Server (NTRS)
Titlow, James; Baum, Bryan A.
1993-01-01
Satellite cloud retrieval algorithms generally require atmospheric temperature and humidity profiles to determine such cloud properties as pressure and height. For instance, the CO2 slicing technique called the ratio method requires the calculation of theoretical upwelling radiances both at the surface and a prescribed number (40) of atmospheric levels. This technique has been applied to data from, for example, the High Resolution Infrared Radiometer Sounder (HIRS/2, henceforth HIRS) flown aboard the NOAA series of polar orbiting satellites and the High Resolution Interferometer Sounder (HIS). In this particular study, four NOAA-11 HIRS channels in the 15-micron region are used. The ratio method may be applied to various channel combinations to estimate cloud top heights using channels in the 15-mu m region. Presently, the multispectral, multiresolution (MSMR) scheme uses 4 HIRS channel combination estimates for mid- to high-level cloud pressure retrieval and Advanced Very High Resolution Radiometer (AVHRR) data for low-level (is greater than 700 mb) cloud level retrieval. In order to determine theoretical upwelling radiances, atmospheric temperature and water vapor profiles must be provided as well as profiles of other radiatively important gas absorber constituents such as CO2, O3, and CH4. The assumed temperature and humidity profiles have a large effect on transmittance and radiance profiles, which in turn are used with HIRS data to calculate cloud pressure, and thus cloud height and temperature. For large spatial scale satellite data analysis, atmospheric parameterization schemes for cloud retrieval algorithms are usually based on a gridded product such as that provided by the European Center for Medium Range Weather Forecasting (ECMWF) or the National Meteorological Center (NMC). These global, gridded products prescribe temperature and humidity profiles for a limited number of pressure levels (up to 14) in a vertical atmospheric column. The FIRE IFO 2 experiment provides an opportunity to investigate current atmospheric profile parameterization schemes, compare satellite cloud height results using both gridded products (ECMWF) and high vertical resolution sonde data from the National Weather Service (NWS) and Cross Chain Loran Atmospheric Sounding System (CLASS), and suggest modifications in atmospheric parameterization schemes based on these results.
Atmospheric Science Data Center
2016-02-16
... the spatial distributions of stratospheric aerosols, ozone, nitrogen dioxide, water vapor and cloud occurrence by mapping vertical profiles ... Clouds Clouds in a Clear Sky Clouds in the Balance Stars Clouds Crops Volcanoes and Climate Change ...
Influence of multiple scattering on CloudSat measurements in snow: A model study
NASA Astrophysics Data System (ADS)
Matrosov, Sergey Y.; Battaglia, Alessandro
2009-06-01
The effects of multiple scattering on larger precipitating hydrometers have an influence on measurements of the spaceborne W-band (94 GHz) CloudSat radar. This study presents initial quantitative estimates of these effects in “dry” snow using radiative transfer calculations for appropriate snowfall models. It is shown that these effects become significant (i.e., greater than approximately 1 dB) when snowfall radar reflectivity factors are greater than about 10-15 dBZ. Reflectivity enhancement due to multiple scattering can reach 4-5 dB in heavier stratiform snowfalls. Multiple scattering effects counteract signal attenuation, so the observed CloudSat reflectivity factors in snowfall could be relatively close to the values that would be observed in the case of single scattering and the absence of attenuation.
Optical property retrievals of subvisual cirrus clouds from OSIRIS limb-scatter measurements
NASA Astrophysics Data System (ADS)
Wiensz, J. T.; Degenstein, D. A.; Lloyd, N. D.; Bourassa, A. E.
2012-08-01
We present a technique for retrieving the optical properties of subvisual cirrus clouds detected by OSIRIS, a limb-viewing satellite instrument that measures scattered radiances from the UV to the near-IR. The measurement set is composed of a ratio of limb radiance profiles at two wavelengths that indicates the presence of cloud-scattering regions. Optical properties from an in-situ database are used to simulate scattering by cloud-particles. With appropriate configurations discussed in this paper, the SASKTRAN successive-orders of scatter radiative transfer model is able to simulate accurately the in-cloud radiances from OSIRIS. Configured in this way, the model is used with a multiplicative algebraic reconstruction technique (MART) to retrieve the cloud extinction profile for an assumed effective cloud particle size. The sensitivity of these retrievals to key auxiliary model parameters is shown, and it is demonstrated that the retrieved extinction profile models accurately the measured in-cloud radiances from OSIRIS. Since OSIRIS has an 11-yr record of subvisual cirrus cloud detections, the work described in this manuscript provides a very useful method for providing a long-term global record of the properties of these clouds.
Millimeter- and Submillimeter-Wave Remote Sensing Using Small Satellites
NASA Technical Reports Server (NTRS)
Ehsan, N.; Esper, J.; Piepmeier, J.; Racette, P.; Wu, D.
2014-01-01
Cloud ice properties and processes play fundamental roles in atmospheric radiation and precipitation. Limited knowledge and poor representation of clouds in global climate models have led to large uncertainties about cloud feedback processes under climate change. Ice clouds have been used as a tuning parameter in the models to force agreement with observations of the radiation budget at the top of the atmosphere, and precipitation at the bottom. The lack of ice cloud measurements has left the cloud processes at intermediate altitudes unconstrained. Millimeter (mm) and submillimeter (submm)-wave radiometry is widely recognized for its potential to fill the cloud measurement gap in the middle and upper troposphere. Analyses have shown that channels from 183900 GHz offer good sensitivity to ice cloud scattering and can provide ice water path (IWP) products to an accuracy of 25 by simultaneously retrieving ice particle size (Dme) and IWP. Therefore, it is highly desirable to develop a cost-effective, compact mm/submm-wave instrument for cloud observations that can be deployed on future small satellites.This paper presents a conceptual study for a mm/submm-wave instrument for multispectral measurements of ice clouds. It discusses previous work at these frequencies by NASA Goddard Space Flight Center (GSFC) and the current instrument study, as well as receiver architectures and their anticipated performance. And finally, it describes a microsatellite prototype intended for use with this mm/submm-wave instrument.
NASA Astrophysics Data System (ADS)
Keat, W. J.; Westbrook, C. D.
2017-11-01
Pristine ice crystals typically have high aspect ratios (≫ 1), have a high density and tend to fall preferentially with their major axis aligned horizontally. Consequently, they can, in certain circumstances, be readily identified by measurements of differential reflectivity (ZDR), which is related to their average aspect ratio. However, because ZDR is reflectivity weighted, its interpretation becomes ambiguous in the presence of even a few, larger aggregates or irregular polycrystals. An example of this is in mixed-phase regions that are embedded within deeper ice cloud. Currently, our understanding of the microphysical processes within these regions is hindered by a lack of good observations. In this paper, a novel technique is presented that removes this ambiguity using measurements from the 3 GHz Chilbolton Advanced Meteorological Radar in Southern England. By combining measurements of ZDR and the copolar correlation coefficient (ρhv), we show that it is possible to retrieve both the relative contribution to the radar signal and "intrinsic" ZDR (ZDRIP) of the pristine oriented crystals, even in circumstances where their signal is being masked by the presence of aggregates. Results from two case studies indicate that enhancements in ZDR embedded within deep ice clouds are typically produced by pristine oriented crystals with ZDRIP values between 3 and 7 dB (equivalent to 5-9 dB at horizontal incidence) but with varying contributions to the radar reflectivity. Vertically pointing 35 GHz cloud radar Doppler spectra and in situ particle images from the Facility for Airborne Atmospheric Measurements BAe-146 aircraft support the conceptual model used and are consistent with the retrieval interpretation.
A multi-sensor analysis of Nimbus 5 data on 22 January 1973. [meteorological parameters
NASA Technical Reports Server (NTRS)
Allison, L. J.; Rodgers, E. B.; Wilheit, T. T.; Wexler, R.
1973-01-01
The Nimbus 5 meteorological satellite carried aloft a full complement of radiation sensors, the data from which were analyzed and intercompared during orbits 569-570 on 22 January 1973. The electrically scanning microwave radiometer (ESMR) which sensed passive microwave radiation in the 19.35 GHz region, delineated rain areas over the ocean off the U.S. east coast, in good agreement with WSR-57 and FPS-77 radar imagery and permitted the estimation of rainfall rates in this region. Residual ground water in the lower Mississippi Valley, which resulted from abnormal rainfall in previous months, was indicated under clear sky conditions by soil brightness temperature values in the Nimbus 5 ESMR and U.S. Air Force Data Acquisition and Processing Program (DAPP) IR data. The temperature-humidity infrared radiometer showed the height and spatial configuration of frontal clouds along the east coast and outlined the confluence of a polar jet stream with a broad sub-tropical jet stream along the U.S. Gulf Coast. Temperature profiles from three vertical temperature sounders, the infrared temperature profile radiometer (ITPR), the Nimbus E microwave spectrometer (NEMS) and the selective chopper radiometer (SCR) were found to be in good agreement with related radiosonde ascents along orbit 569 from the sub-tropics to the Arctic Circle.
VizieR Online Data Catalog: Transitions in OMC-2 FIR 4 in the far-IR (Kama+, 2013)
NASA Astrophysics Data System (ADS)
Kama, M.; Lopez-Sepulcre, A.; Dominik, C.; Ceccarelli, C.; Fuente, A.; Caux, E.; Higgins, R.; Tielens, A. G. G. M.; Alonso-Albi, T.
2014-04-01
Broadband spectral surveys of protostars offer a rich view of the physical, chemical and dynamical structure and evolution of star-forming regions. The Herschel Space Observatory opened up the terahertz regime to such surveys, giving access to the fundamental transitions of many hydrides and to the high-energy transitions of many other species. A comparative analysis of the chemical inventories and physical processes and properties of protostars of various masses and evolutionary states is the goal of the Herschel CHEmical Surveys of Star forming regions (CHESS) key program. This paper focusses on the intermediate-mass protostar, OMC-2 FIR 4. We obtained a spectrum of OMC-2 FIR 4 in the 480 to 1902GHz range with the HIFI spectrometer onboard Herschel and carried out the reduction, line identification, and a broad analysis of the line profile components, excitation, and cooling. We detect 719 spectral lines from 40 species and isotopologs. The line flux is dominated by CO, H2O, and CH3OH. The line profiles are complex and vary with species and upper level energy, but clearly contain signatures from quiescent gas, a broad component likely due to an outflow, and a foreground cloud. We find abundant evidence for warm, dense gas, as well as for an outflow in the field of view. Line flux represents 2% of the 7L⊙ luminosity detected with HIFI in the 480 to 1250GHz range. Of the total line flux, 60% is from CO, 13% from H2O and 9% from CH3OH. A comparison with similar HIFI spectra of other sources is set to provide much new insight into star formation regions, a case in point being a difference of two orders of magnitude in the relative contribution of sulphur oxides to the line cooling of Orion KL and OMC-2 FIR 4. (1 data file).
Thermodynamic and cloud parameter retrieval using infrared spectral data
NASA Technical Reports Server (NTRS)
Zhou, Daniel K.; Smith, William L., Sr.; Liu, Xu; Larar, Allen M.; Huang, Hung-Lung A.; Li, Jun; McGill, Matthew J.; Mango, Stephen A.
2005-01-01
High-resolution infrared radiance spectra obtained from near nadir observations provide atmospheric, surface, and cloud property information. A fast radiative transfer model, including cloud effects, is used for atmospheric profile and cloud parameter retrieval. The retrieval algorithm is presented along with its application to recent field experiment data from the NPOESS Airborne Sounding Testbed - Interferometer (NAST-I). The retrieval accuracy dependence on cloud properties is discussed. It is shown that relatively accurate temperature and moisture retrievals can be achieved below optically thin clouds. For optically thick clouds, accurate temperature and moisture profiles down to cloud top level are obtained. For both optically thin and thick cloud situations, the cloud top height can be retrieved with an accuracy of approximately 1.0 km. Preliminary NAST-I retrieval results from the recent Atlantic-THORPEX Regional Campaign (ATReC) are presented and compared with coincident observations obtained from dropsondes and the nadir-pointing Cloud Physics Lidar (CPL).
Cloudsat tropical cyclone database
NASA Astrophysics Data System (ADS)
Tourville, Natalie D.
CloudSat (CS), the first 94 GHz spaceborne cloud profiling radar (CPR), launched in 2006 to study the vertical distribution of clouds. Not only are CS observations revealing inner vertical cloud details of water and ice globally but CS overpasses of tropical cyclones (TC's) are providing a new and exciting opportunity to study the vertical structure of these storm systems. CS TC observations are providing first time vertical views of TC's and demonstrate a unique way to observe TC structure remotely from space. Since December 2009, CS has intersected every globally named TC (within 1000 km of storm center) for a total of 5,278 unique overpasses of tropical systems (disturbance, tropical depression, tropical storm and hurricane/typhoon/cyclone (HTC)). In conjunction with the Naval Research Laboratory (NRL), each CS TC overpass is processed into a data file containing observational data from the afternoon constellation of satellites (A-TRAIN), Navy's Operational Global Atmospheric Prediction System Model (NOGAPS), European Center for Medium range Weather Forecasting (ECMWF) model and best track storm data. This study will describe the components and statistics of the CS TC database, present case studies of CS TC overpasses with complementary A-TRAIN observations and compare average reflectivity stratifications of TC's across different atmospheric regimes (wind shear, SST, latitude, maximum wind speed and basin). Average reflectivity stratifications reveal that characteristics in each basin vary from year to year and are dependent upon eye overpasses of HTC strength storms and ENSO phase. West Pacific (WPAC) basin storms are generally larger in size (horizontally and vertically) and have greater values of reflectivity at a predefined height than all other basins. Storm structure at higher latitudes expands horizontally. Higher vertical wind shear (≥ 9.5 m/s) reduces cloud top height (CTH) and the intensity of precipitation cores, especially in HTC strength storms. Average zero and ten dBZ height thresholds confirm WPAC storms loft precipitation sized particles higher into the atmosphere than in other basins. Two CS eye overpasses (32 hours apart) of a weakening Typhoon Nida in 2009 reveal the collapse of precipitation cores, warm core anomaly and upper tropospheric ice water content (IWC) under steady moderate shear conditions.
SACR ADVance 3-D Cartesian Cloud Cover (SACR-ADV-3D3C) product
Meng Wang, Tami Toto, Eugene Clothiaux, Katia Lamer, Mariko Oue
2017-03-08
SACR-ADV-3D3C remaps the outputs of SACRCORR for cross-wind range-height indicator (CW-RHI) scans to a Cartesian grid and reports reflectivity CFAD and best estimate domain averaged cloud fraction. The final output is a single NetCDF file containing all aforementioned corrected radar moments remapped on a 3-D Cartesian grid, the SACR reflectivity CFAD, a profile of best estimate cloud fraction, a profile of maximum observable x-domain size (xmax), a profile time to horizontal distance estimate and a profile of minimum observable reflectivity (dBZmin).
Lidar characterizations of atmospheric aerosols and clouds
NASA Astrophysics Data System (ADS)
Ferrare, R. A.; Hostetler, C. A.; Hair, J. W.; Burton, S. P.
2017-12-01
Knowledge of the vertical profile, composition, concentration, and size distribution of aerosols is required to quantify the impacts of aerosols on human health, global and regional climate, clouds and precipitation. In particular, radiative forcing due to anthropogenic aerosols is the most uncertain part of anthropogenic radiative forcing, with aerosol-cloud interactions (ACI) as the largest source of uncertainty in current estimates of global radiative forcing. Improving aerosol transport model predictions of the vertical profile of aerosol optical and microphysical characteristics is crucial for improving assessments of aerosol radiative forcing. Understanding how aerosols and clouds interact is essential for investigating the aerosol indirect effect and ACI. Through its ability to provide vertical profiles of aerosol and cloud distributions as well as important information regarding the optical and physical properties of aerosols and clouds, lidar is a crucial tool for addressing these science questions. This presentation describes how surface, airborne, and satellite lidar measurements have been used to address these questions, and in particular how High Spectral Resolution Lidar (HSRL) measurements provide profiles of aerosol properties (backscatter, extinction, depolarization, concentration, size) important for characterizing radiative forcing. By providing a direct measurement of aerosol extinction, HSRL provides more accurate aerosol measurement profiles and more accurate constraints for models than standard retrievals from elastic backscatter lidar, which loses accuracy and precision at lower altitudes due to attenuation from overlying layers. Information regarding particle size and abundance from advanced lidar retrievals provides better proxies for cloud-condensation-nuclei (CCN), which are required for assessing aerosol-cloud interactions. When combined with data from other sensors, advanced lidar measurements can provide information on aerosol and cloud properties for addressing both direct and indirect radiative forcing.
Jupiter's Deep Cloud Structure Revealed Using Keck Observations of Spectrally Resolved Line Shapes
NASA Technical Reports Server (NTRS)
Bjoraker, G. L.; Wong, M.H.; de Pater, I.; Adamkovics, M.
2015-01-01
Technique: We present a method to determine the pressure at which significant cloud opacity is present between 2 and 6 bars on Jupiter. We use: a) the strength of a Fraunhofer absorption line in a zone to determine the ratio of reflected sunlight to thermal emission, and b) pressure- broadened line profiles of deuterated methane (CH3D) at 4.66 meters to determine the location of clouds. We use radiative transfer models to constrain the altitude region of both the solar and thermal components of Jupiter's 5-meter spectrum. Results: For nearly all latitudes on Jupiter the thermal component is large enough to constrain the deep cloud structure even when upper clouds are present. We find that Hot Spots, belts, and high latitudes have broader line profiles than do zones. Radiative transfer models show that Hot Spots in the North and South Equatorial Belts (NEB, SEB) typically do not have opaque clouds at pressures greater than 2 bars. The South Tropical Zone (STZ) at 32 degrees South has an opaque cloud top between 4 and 5 bars. From thermochemical models this must be a water cloud. We measured the variation of the equivalent width of CH3D with latitude for comparison with Jupiter's belt-zone structure. We also constrained the vertical profile of H2O in an SEB Hot Spot and in the STZ. The Hot Spot is very dry for a probability less than 4.5 bars and then follows the H2O profile observed by the Galileo Probe. The STZ has a saturated H2O profile above its cloud top between 4 and 5 bars.
Retrieval of subvisual cirrus cloud optical thickness from limb-scatter measurements
NASA Astrophysics Data System (ADS)
Wiensz, J. T.; Degenstein, D. A.; Lloyd, N. D.; Bourassa, A. E.
2013-01-01
We present a technique for estimating the optical thickness of subvisual cirrus clouds detected by OSIRIS (Optical Spectrograph and Infrared Imaging System), a limb-viewing satellite instrument that measures scattered radiances from the UV to the near-IR. The measurement set is composed of a ratio of limb radiance profiles at two wavelengths that indicates the presence of cloud-scattering regions. Cross-sections and phase functions from an in situ database are used to simulate scattering by cloud-particles. With appropriate configurations discussed in this paper, the SASKTRAN successive-orders of scatter radiative transfer model is able to simulate accurately the in-cloud radiances from OSIRIS. Configured in this way, the model is used with a multiplicative algebraic reconstruction technique (MART) to retrieve the cloud extinction profile for an assumed effective cloud particle size. The sensitivity of these retrievals to key auxiliary model parameters is shown, and it is shown that the retrieved extinction profile, for an assumed effective cloud particle size, models well the measured in-cloud radiances from OSIRIS. The greatest sensitivity of the retrieved optical thickness is to the effective cloud particle size. Since OSIRIS has an 11-yr record of subvisual cirrus cloud detections, the work described in this manuscript provides a very useful method for providing a long-term global record of the properties of these clouds.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Wei; Schumacher, Courtney; McFarlane, Sally A.
2013-01-31
Radiative heating profiles of the International Satellite Cloud Climatology Project (ISCCP) cloud regimes (or weather states) were estimated by matching ISCCP observations with radiative properties derived from cloud radar and lidar measurements from the Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) sites at Manus, Papua New Guinea, and Darwin, Australia. Focus was placed on the ISCCP cloud regimes containing the majority of upper level clouds in the tropics, i.e., mesoscale convective systems (MCSs), deep cumulonimbus with cirrus, mixed shallow and deep convection, and thin cirrus. At upper levels, these regimes have average maximum cloud occurrences ranging from 30% tomore » 55% near 12 km with variations depending on the location and cloud regime. The resulting radiative heating profiles have maxima of approximately 1 K/day near 12 km, with equal heating contributions from the longwave and shortwave components. Upper level minima occur near 15 km, with the MCS regime showing the strongest cooling of 0.2 K/day and the thin cirrus showing no cooling. The gradient of upper level heating ranges from 0.2 to 0.4 K/(day∙km), with the most convectively active regimes (i.e., MCSs and deep cumulonimbus with cirrus) having the largest gradient. When the above heating profiles were applied to the 25-year ISCCP data set, the tropics-wide average profile has a radiative heating maximum of 0.45Kday-1 near 250 hPa. Column-integrated radiative heating of upper level cloud accounts for about 20% of the latent heating estimated by the Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR). The ISCCP radiative heating of tropical upper level cloud only slightly modifies the response of an idealized primitive equation model forced with the tropics-wide TRMM PR latent heating, which suggests that the impact of upper level cloud is more important to large-scale tropical circulation variations because of convective feedbacks rather than direct forcing by the cloud radiative heating profiles. However, the height of the radiative heating maxima and gradient of the heating profiles are important to determine the sign and patterns of the horizontal circulation anomaly driven by radiative heating at upper levels.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kollias, Pavlos
This is a multi-institutional, collaborative project using a three-tier modeling approach to bridge field observations and global cloud-permitting models, with emphases on cloud population structural evolution through various large-scale environments. Our contribution was in data analysis for the generation of high value cloud and precipitation products and derive cloud statistics for model validation. There are two areas in data analysis that we contributed: the development of a synergistic cloud and precipitation cloud classification that identify different cloud (e.g. shallow cumulus, cirrus) and precipitation types (shallow, deep, convective, stratiform) using profiling ARM observations and the development of a quantitative precipitation ratemore » retrieval algorithm using profiling ARM observations. Similar efforts have been developed in the past for precipitation (weather radars), but not for the millimeter-wavelength (cloud) radar deployed at the ARM sites.« less
NASA Astrophysics Data System (ADS)
Houtz, Derek Anderson
Microwave radiometers allow remote sensing of earth and atmospheric temperatures from space, anytime, anywhere, through clouds, and in the dark. Data from microwave radiometers are high-impact operational inputs to weather forecasts, and are used to provide a vast array of climate data products including land and sea surface temperatures, soil moisture, ocean salinity, cloud precipitation and moisture height profiles, and even wind speed and direction, to name a few. Space-borne microwave radiometers have a major weakness when it comes to long-term climate trends due to their lack of traceability. Because there is no standard, or absolute reference, for microwave brightness temperature, nationally or internationally, individual instruments must each rely on their own internal calibration source to set an absolute reference to the fundamental unit of Kelvin. This causes each subsequent instrument to have a calibration offset and there is no 'true' reference. The work introduced in this thesis addresses this vacancy by proposing and introducing a NIST microwave brightness temperature source that may act as the primary reference. The NIST standard will allow pre-launch calibration of radiometers across a broad range of remote sensing pertinent frequencies between 18 GHz and 220 GHz. The blackbody will be capable of reaching temperatures ranging between liquid nitrogen boiling at approximately 77 K and warm-target temperature of 350 K. The brightness temperature of the source has associated standard uncertainty ranging as a function of frequency between 0.084 K and 0.111 K. The standard can be transferred to the calibration source in the instrument, providing traceability of all subsequent measurements back to the primary standard. The development of the NIST standard source involved predicting and measuring its brightness temperature, and minimizing the associated uncertainty of this quantity. Uniform and constant physical temperature along with well characterized and maximized emissivity are fundamental to a well characterized blackbody. The chosen geometry is a microwave absorber coated copper cone. Electromagnetic and thermal simulations are introduced to optimize the design. Experimental verifications of the simulated quantities confirm the predicted performance of the blackbody.
High resolution radiometric measurements of convective storms during the GATE experiment
NASA Technical Reports Server (NTRS)
Fowler, G.; Lisa, A. S.
1976-01-01
Using passive microwave data from the NASA CV-990 aircraft and radar data collected during the Global Atmospheric Research Program Atlantic Tropical Experiment (GATE), an empirical model was developed relating brightness temperatures sensed at 19.35 GHz to surface rainfall rates. This model agreed well with theoretical computations of the relationship between microwave radiation and precipitation in the tropics. The GATE aircraft microwave data was then used to determine the detailed structure of convective systems. The high spatial resolution of the data permitted identification of individual cells which retained unique identities throughout their lifetimes in larger cloud masses and allowed analysis of the effects of cloud merger.
NASA Technical Reports Server (NTRS)
Irvine, William M.; Schloerb, F. Peter
1987-01-01
Detailed study of the first interstellar hydrocarbon ring, cyclopropenylidene (C3H2), is continuing. The singly deuterated isotope of this molecule, C3HD, was observed in several cold interstellar clouds. The results of a large survey for C3H2 in galactic sources of various types will soon be completed. It appears that cyclopropenylidene is present in virtually all interstellar clouds of at least moderate density. In order to make the first determinations of the CO2/CO abundance ratio in interstellar sources, observations of protonated CO2 were pursued. The spectrum from 18.5 to 22 GHz for several interstellar clouds is being systematically measured. Particular attention is being given to the cold, dark clouds TMC-1 and L124N, which may be formation sites for solar mass stars. The phenomena of maser emission from molecules of methanol is being studied in certain interstellar clouds. A comparison of 1 millimeter continuum emission from dust with the column density of carbon monoxide as determined from the rare C(18)O isotope for 4 molecular clouds in the Galaxy is nearing completion. Papers published during the period of this report are listed.
NASA Astrophysics Data System (ADS)
Wang, C.; Luo, Z. J.; Chen, X.; Zeng, X.; Tao, W.; Huang, X.
2012-12-01
Cloud top temperature is a key parameter to retrieval in the remote sensing of convective clouds. Passive remote sensing cannot directly measure the temperature at the cloud tops. Here we explore a synergistic way of estimating cloud top temperature by making use of the simultaneous passive and active remote sensing of clouds (in this case, CloudSat and MODIS). Weighting function of the MODIS 11μm band is explicitly calculated by feeding cloud hydrometer profiles from CloudSat retrievals and temperature and humidity profiles based on ECMWF ERA-interim reanalysis into a radiation transfer model. Among 19,699 tropical deep convective clouds observed by the CloudSat in 2008, the averaged effective emission level (EEL, where the weighting function attains its maximum) is at optical depth 0.91 with a standard deviation of 0.33. Furthermore, the vertical gradient of CloudSat radar reflectivity, an indicator of the fuzziness of convective cloud top, is linearly proportional to, d_{CTH-EEL}, the distance between the EEL of 11μm channel and cloud top height (CTH) determined by the CloudSat when d_{CTH-EEL}<0.6km. Beyond 0.6km, the distance has little sensitivity to the vertical gradient of CloudSat radar reflectivity. Based on these findings, we derive a formula between the fuzziness in the cloud top region, which is measurable by CloudSat, and the MODIS 11μm brightness temperature assuming that the difference between effective emission temperature and the 11μm brightness temperature is proportional to the cloud top fuzziness. This formula is verified using the simulated deep convective cloud profiles by the Goddard Cumulus Ensemble model. We further discuss the application of this formula in estimating cloud top buoyancy as well as the error characteristics of the radiative calculation within such deep-convective clouds.
Cloud Detection Using Measured and Modeled State Parameters
NASA Technical Reports Server (NTRS)
Yi, Y.; Minnis, P.; Huang, J.; Ayers, J. K.; Doelling, D. R.; Khaiyer, M. M.; Nordeen, M. L.
2004-01-01
In this study, hourly RUC analyses were used to examine the differences between RH and temperature values from RUC reanalysis data and from radiosonde atmospheric profiles obtained at the ARM SCF. The results show that the temperature observations from the SONDE and RUC are highly correlated. The RHs are also well-correlated, but the SONDE values generally exceed those from RUC. Inside cloud layers, the RH from RUC is 2-14% lower than the RH from SONDE for all RUC layers. Although the layer mean RH within clouds is much greater than the layer mean RH outside cloud or in the clear-sky, RH thresholds chosen as a function of temperature can more accurately diagnose cloud occurrence for either dataset. For overcast clouds, it was found that the 50% probability RH threshold for diagnosing a cloud, within a given upper tropospheric layer is roughly 90% for the Vaisala RS80-15LH radisonde and 80% for RUC data. While for the partial cloud (cloud amount is less than 90%), the RH thresholds of SONDE are close to RUC for a given probability in upper tropospheric layers. The probabilities of detecting clouds at a given RH and temperature should be useful for a variety of application such as the development of new cloud parameterizations or for estimating the vertical profile of cloudiness underneath a given cloud observed from the satellite to construct a 3-D cloud data set for computing atmospheric radiative heating profiles or determining potential aircraft icing conditions.
A Comparison between Lightning Activity and Passive Microwave Measurements
NASA Technical Reports Server (NTRS)
Kevin, Driscoll T.; Hugh, Christian J.; Goodman, Steven J.
1999-01-01
A recent examination of data from the Lightning Imaging Sensor (LIS) and the TRMM Microwave Imager (TMI) suggests that storm with the highest frequency of lightning also possess the most pronounced microwave scattering signatures at 37 and 85 GHz. This study demonstrates a clear dependence between lightning and the passive microwave measurements, and accentuates how direct the relationship really is between cloud ice and lightning activity. In addition, the relationship between the quantity of ice content and the frequency of lightning (not just the presence of lightning) , is consistent throughout the seasons in a variety of regimes. Scatter plots will be presented which show the storm-averaged brightness temperatures as a function of the lightning density of the storms (L/Area) . In the 85 GHz and 37 GHz scatter plots, the brightness temperature is presented in the form Tb = k1 x log10(L/Area) + k2, where the slope of the regression, k1, is 58 for the 85 GHz relationship and 30.7 for the 37 GHz relationship. The regression for both these fits showed a correlation of 0.76 (r2 = 0.58), which is quite promising considering the simple procedure used to make the comparisons, which have not yet even been corrected for the view angle differences between the instruments, or the polarization corrections in the microwave imager.
Stratospheric water vapor measurements at Thule, Greenland, by means of a new 22 GHz spectrometer
NASA Astrophysics Data System (ADS)
Mevi, Gabriele; Muscari, Giovanni; Mari, Massimo; Meloni, Daniela; Di Iorio, Tatiana; Pace, Giandomenico; di Sarra, Alcide; Cacciani, Marco
2017-04-01
A new 22 GHz water vapor spectrometer, VESPA-22 (water Vapour Emission Spectrometer for Polar Atmosphere), was installed in July 2016 at the Thule High Arctic Atmospheric Observatory (THAAO) located at Thule Air Base (76.5° N, 68.8° W), Greenland, and participated in the intensive measurement campaign of the Study of the water VApour in the polar AtmosPhere (SVAAP) project. After the campaign VESPA-22 has continued to carry out measurements in an autonomous mode and has now obtained more than 6 months of data. VESPA-22 was designed and built at the Istituto Nazionale di Geofisica and Vulcanologia (INGV) and measures the 22.235 GHz water vapor emission line with a bandwidth of 500 MHz and a frequency resolution of 31 kHz. The collected spectra are inverted using an optimal estimation algorithm in order to retrieve water vapour vertical profiles from about 26 to 72 km with a vertical resolution varying from 4 to 7.5 km. The spectrometer can produce 2 to 4 vertical profiles a day, depending on season and weather conditions. VESPA-22 also measures the atmospheric optical depth at 22 GHz and can therefore provide an estimate of precipitable water vapor (PWV) with a temporal resolution of few minutes. The instrument is calibrated every 30 minutes using noise diodes and tipping curves, and requires a calibration with liquid nitrogen (LN2) only once every few months. We will present water vapor stratospheric profiles over Thule obtained during an almost complete yearly cycle. The retrieved profiles have been compared with the Aura/MLS H2O dataset. During autumn 2016 the two datasets show a mean difference of less than 5% and a correlation coefficient of about 0.9 at all altitudes between 26 to 60 km.
Endothelium Preserving Microwave Treatment for Atherosclerosis
NASA Technical Reports Server (NTRS)
Carl, James R. (Inventor); Arndt, G. Dickey (Inventor); Fink, Patrick W. (Inventor); Beer, N. Reginald (Inventor); Henry, Phillip D. (Inventor); Pacifico, Antonio (Inventor); Raffoul, George W. (Inventor)
2000-01-01
Method and apparatus are provided to treat atherosclerosis wherein the artery is partially closed by dilating the artery while preserving the vital and sensitive endothelial layer thereof Microwave energy having a frequency from 3 GHz to 300 GHz is propagated into the arterial wall to produce a desired temperature profile therein at tissue depths sufficient for thermally necrosing connective tissue and softening fatty and waxy plaque while limiting heating of surrounding tissues including the endothelial laser and/or other healthy tissue, organs, and blood. The heating period for raising the temperature a potentially desired amount, about 20 C., within the atherosclerotic lesion may be less than about one second. In one embodiment of the invention, a radically beveled waveguide antenna is used to deliver microwave energy at frequencies from 25 GHz or 30 GHz to about 300 GHz and is focused towards a particular radial sector of the artery. Because the atherosclerotic lesions are often asymmetrically disposed, directable of focussed heating preserves healthy sectors of the artery and applies energy to the asymmetrically positioned lesion faster than a non-directed beam. A computer simulation predicts isothermic temperature profiles for the given conditions and man be used in selecting power, pulse duration, beam width, and frequency of operation to maximize energy deposition and control heat rise within the atherosclerotic lesion without harming healthy tissues or the sensitive endothelium cells.
Endothelium Preserving Microwave Treatment for Atherosclerosis
NASA Technical Reports Server (NTRS)
Carl, James R. (Inventor); Arndt, G. Dickey (Inventor); Fink, Patrick W. (Inventor); Beer, N. Reginald (Inventor); Henry, Phillip D. (Inventor); Pacifico, Antonio (Inventor); Raffoul, George W. (Inventor)
2001-01-01
Method and apparatus are provided to treat atherosclerosis wherein the artery is partially closed by dilating the artery while preserving the vital and sensitive endothelial layer thereof. Microwave energy having a frequency from 3 GHz to 300 GHz is propagated into the arterial wall to produce a desired temperature profile therein at tissue depths sufficient for thermally necrosing connective tissue and softening fatty and waxy plaque while limiting heating of surrounding tissues including the endothelial layer and/or other healthy tissue, organs, and blood. The heating period for raising the temperature a potentially desired amount, about 20 C. within the atherosclerotic lesion may be less than about one second. In one embodiment of the invention, a radically beveled waveguide antenna is used to deliver microwave energy at frequencies from 25 GHz or 30 GHz to about 300 GHz and is focused towards a particular radial sector of the artery. Because the atherosclerotic lesions are often asymmetrically disposed directable or focussed heating preserves healthy sectors of the artery and applies energy to the asymmetrically positioned lesion faster than a non-directed beam. A computer simulation predicts isothermic temperature profiles for the given conditions and may be used in selecting power, pulse duration, beam width, and frequency of operation to maximize energy deposition and control heat rise within the atherosclerotic lesion without harming healthy tissues or the sensitive endothelium cells.
Endothelium Preserving Microwave Treatment for Atherosclerois
NASA Technical Reports Server (NTRS)
Carl, James R. (Inventor); Arndt, G. Dickey (Inventor); Fink, Patrick W. (Inventor); Beer, N. Reginald (Inventor); Henry, Phillip D. (Inventor); Pacifico, Antonio (Inventor); Raffoul, George W. (Inventor)
2001-01-01
Method and apparatus are provided to treat atherosclerosis wherein the artery is partially closed by dilating the artery while preserving the vital and sensitive endothelial layer thereof. Microwave energy having a frequency from 3 GHz to 300 GHz is propagated into the arterial wall to produce a desired temperature profile therein at tissue depths sufficient for thermally necrosing connective tissue and softening fatty and waxy plaque while limiting heating of surrounding tissues including the endothelial layer and/or other healthy tissue, organs, and blood. The heating period for raising the temperature a potentially desired amount about 20 C, with the atherosclerotic lesion may be less than about one second. In one embodiment of the invention, a radically beveled waveguide antenna is used to deliver microwave energy at frequencies from 25 GHz or 30 GHz to about 300 GHz and is focused towards a particular radical sector of the artery. Because the atherosclerotic lesions are often asymmetrically disposed, directable or focussed heating preserves healthy sectors of the artery and applies energy to the asymmetrically positioned lesion faster than a non-directed beam. A computer simulation predicts isothermic temperature profiles for the given conditions and may be used in selecting power, pulse duration, beam width, and frequency of operation to maximize energy deposition and control heat rise within the atherosclerotic lesion without harming healthy tissues or the sensitive endothelium cells.
Endothelium Preserving Microwave Treatment for Atherosclerosis
NASA Technical Reports Server (NTRS)
Carl, James R. (Inventor); Arndt, Dickey (Inventor); Fink, Patrick W. (Inventor); Beer, Reginald (Inventor); Henry, Phillip D. (Inventor); Pacifico, Antonio (Inventor); Raffoul, George W. (Inventor)
2002-01-01
Method and apparatus are provided to treat atherosclerosis wherein the artery is partially closed by dilating the artery while preserving the vital and sensitive endothelial layer thereof. Microwave energy having a frequency from 3 GHz to 300 GHz is propagated into the arterial wall to produce a desired temperature profile therein at tissue depths sufficient for thermally necrosing connective tissue and softening fatty and waxy plaque while limiting heating of surrounding tissues including the endothelial layer and/or other healthy tissue, organs, and blood. The heating period for raising the temperature a potentially desired amount, about 20 C. within the atherosclerotic lesion may be less than about one second. In one embodiment of the invention, a radically beveled waveguide antenna is used to deliver microwave energy at frequencies from 25 GHz or 30 GHz to about 300 GHz and is focused towards a particular radial sector of the artery. Because the atherosclerotic lesions are often asymmetrically disposed, directable or focussed heating preserves healthy sectors or the artery and applies energy to the asymmetrically positioned lesion faster than a non-directed bean. A computer simulation predicts isothermic temperature profiles for the given conditions and may be used in selecting power, pulse duration, beam width, and frequency of operation to maximize energy deposition and control heat rise within the atherosclerotic lesion without harming healthy tissues or the sensitive endothelium cells.
A Search for Interstellar Oxiranecarbonitrile (C3H3NO)
NASA Technical Reports Server (NTRS)
Dicken, J. E.; Irvine, W. M.; Ohishi, M.; Arrhenius, G.; Bauder, A.; Mueller, F.; Eschenmoser, A.
1996-01-01
We report a search in cold, quiescent and in 'hot core' type interstellar molecular clouds for the small cyclic molecule oxiranecarbonitrile (C3H3NO), which has been suggested as a precursor of important prebiotic molecules. We have determined upper limits to the column density and fractional abundance for the observed sources and find that, typically, the fractional abundance by number relative to molecular hydrogen Of C3H3NO is less than a few times 10(exp -10). This limit is one to two orders of magnitude less than the measured abundance of such similarly complex species as CH3CH2CN and HCOOCH3 in well-studied hot cores. A number of astrochemical discoveries were made, including the first detection of the species CH3CH2CN in the massive star-forming clouds G34.3+0.2 and W51M and the first astronomical detections of some eight rotational transitions of CH3CH2CN, CH3CCH, and HCOOCH3. In addition, we found 8 emission lines in the 89 GHz region and 18 in the 102 GHz region which we were unable to assign.
Microwave radiative transfer studies of precipitation
NASA Technical Reports Server (NTRS)
Bringi, V. N.; Vivekanandan, J.; Turk, F. Joseph
1993-01-01
Since the deployment of the DMSP SSM/I microwave imagers in 1987, increased utilization of passive microwave radiometry throughout the 10 - 100 GHz spectrum has occurred for measurement of atmospheric constituents and terrestrial surfaces. Our efforts have focused on observations and analysis of the microwave radiative transfer behavior of precipitating clouds. We have focused particular attention on combining both aircraft and SSM/I radiometer imagery with ground-based multiparameter radar observations. As part of this and the past NASA contract, we have developed a multi-stream, polarized radiative transfer model which incorporates scattering. The model has the capability to be initialized with cloud model output or multiparameter radar products. This model provides the necessary 'link' between the passive microwave radiometer and active microwave radar observations. This unique arrangement has allowed the brightness temperatures (TB) to be compared against quantities such as rainfall, liquid/ice water paths, and the vertical structure of the cloud. Quantification of the amounts of ice and water in precipitating clouds is required for understanding of the global energy balance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sakamoto, Naoki; Kato, Yushi; Kiriyama, Ryutaro
2011-01-07
A new concept on magnetic field of plasma production and confinement by using permanent magnets, i.e. cylindrically comb-shaped magnets, has been proposed to enhance efficiency of an electron cyclotron resonance (ECR) plasma for broad and dense ion beam source under the low pressure and also the low microwave power. The resonance zones corresponding to the fundamental ECR for 2.45 GHz and 11-13 GHz frequency are constructed at different positions. The profiles of the plasma parameters in the ECR ion source are different from each frequency of microwave. Large bore extractor is set at the opposite side against the microwave feeds.more » It is found that differences of their profiles also appear at those of ion beam profiles. We conducted to launch simultaneously multiplex frequency microwaves controlled individually, and tried to control the profiles of the plasma parameters and then those of extracted ion beam.« less
PULSE BROADENING MEASUREMENTS FROM THE GALACTIC CENTER PULSAR J1745-2900
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spitler, L. G.; Lee, K. J.; Eatough, R. P.
2014-01-01
We present temporal scattering measurements of single pulses and average profiles of PSR J1745-2900, a magnetar recently discovered only 3 arcsec away from Sagittarius A* (Sgr A*), from 1.2 to 18.95 GHz using the Effelsberg 100 m Radio Telescope, the Nançay Decimetric Radio Telescope, and the Jodrell Bank Lovell Telescope. Single pulse analysis shows that the integrated pulse profile above 2 GHz is dominated by pulse jitter, while below 2 GHz the pulse profile shape is dominated by scattering. This is the first object in the Galactic center (GC) with both pulse broadening and angular broadening measurements. We measure a pulse broadening time scale at 1 GHzmore » of τ{sub 1GHz} = 1.3 ± 0.2 and pulse broadening spectral index of α = –3.8 ± 0.2, which is several orders of magnitude lower than predicted by the NE2001 model (Cordes and Lazio 2002). If this scattering time scale is representative of the GC as a whole, then previous surveys should have detected many pulsars. The lack of detections implies either our understanding of scattering in the GC is incomplete or there are fewer pulsars in the GC than previously predicted. Given that magnetars are a rare class of radio pulsar, there are likely many canonical and millisecond pulsars in the GC, and not surprisingly, scattering in the GC is spatially complex.« less
Remote Sensing of Multiple Cloud Layer Heights Using Multi-Angular Measurements
NASA Technical Reports Server (NTRS)
Sinclair, Kenneth; Van Diedenhoven, Bastiaan; Cairns, Brian; Yorks, John; Wasilewski, Andrzej; Mcgill, Matthew
2017-01-01
Cloud top height (CTH) affects the radiative properties of clouds. Improved CTH observations will allow for improved parameterizations in large-scale models and accurate information on CTH is also important when studying variations in freezing point and cloud microphysics. NASAs airborne Research Scanning Polarimeter (RSP) is able to measure cloud top height using a novel multi-angular contrast approach. For the determination of CTH, a set of consecutive nadir reflectances is selected and the cross-correlations between this set and co-located sets at other viewing angles are calculated for a range of assumed cloud top heights, yielding a correlation profile. Under the assumption that cloud reflectances are isotropic, local peaks in the correlation profile indicate cloud layers. This technique can be applied to every RSP footprint and we demonstrate that detection of multiple peaks in the correlation profile allow retrieval of heights of multiple cloud layers within single RSP footprints. This paper provides an in-depth description of the architecture and performance of the RSPs CTH retrieval technique using data obtained during the Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC(exp. 4)RS) campaign. RSP retrieved cloud heights are evaluated using collocated data from the Cloud Physics Lidar (CPL). The method's accuracy associated with the magnitude of correlation, optical thickness, cloud thickness and cloud height are explored. The technique is applied to measurements at a wavelength of 670 nm and 1880 nm and their combination. The 1880-nm band is virtually insensitive to the lower troposphere due to strong water vapor absorption.
Structured surface reflector design for oblique incidence beam splitter at 610 GHz.
Defrance, F; Casaletti, M; Sarrazin, J; Wiedner, M C; Gibson, H; Gay, G; Lefèvre, R; Delorme, Y
2016-09-05
An iterative alternate projection-based algorithm is developed to design structured surface reflectors to operate as beam splitters at GHz and THz frequencies. To validate the method, a surface profile is determined to achieve a reflector at 610 GHz that generates four equal-intensity beams towards desired directions of ±12.6° with respect to the specular reflection axis. A prototype is fabricated and the beam splitter behavior is experimentally demonstrated. Measurements confirm a good agreement (within 1%) with computer simulations using Feko, validating the method. The beam splitter at 610 GHz has a measured efficiency of 78% under oblique incidence illumination that ensures a similar intensity between the four reflected beams (variation of about 1%).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Genova-Santos, R.; Rebolo, R.; Rubino-Martin, J. A.
2011-12-10
We present evidence for anomalous microwave emission (AME) in the Pleiades reflection nebula, using data from the seven-year release of the Wilkinson Microwave Anisotropy Probe and from the COSMOSOMAS (Cosmological Structures on Medium Angular Scales) experiment. The flux integrated in a 1 Degree-Sign radius around R.A. = 56.{sup 0}24, decl. = 23.{sup 0}78 (J2000) is 2.15 {+-} 0.12 Jy at 22.8 GHz, where AME is dominant. COSMOSOMAS data show no significant emission, but allow one to set upper limits of 0.94 and 1.58 Jy (99.7% confidence level), respectively, at 10.9 and 14.7 GHz, which are crucial to pin down themore » AME spectrum at these frequencies, and to discard any other emission mechanisms which could have an important contribution to the signal detected at 22.8 GHz. We estimate the expected level of free-free emission from an extinction-corrected H{alpha} template, while the thermal dust emission is characterized from infrared DIRBE data and extrapolated to microwave frequencies. When we deduct the contribution from these two components at 22.8 GHz, the residual flux, associated with AME, is 2.12 {+-} 0.12 Jy (17.7{sigma}). The spectral energy distribution from 10 to 60 GHz can be accurately fitted with a model of electric dipole emission from small spinning dust grains distributed in two separated phases of molecular and atomic gas, respectively. The dust emissivity, calculated by correlating the 22.8 GHz data with 100 {mu}m data, is found to be 4.36 {+-} 0.17 {mu}K (MJy sr{sup -1}){sup -1}, a value considerably lower than in typical AME clouds, which present emissivities of {approx}20 {mu}K (MJy sr{sup -1}){sup -1}, although higher than the 0.2 {mu}K (MJy sr{sup -1}){sup -1} of the translucent cloud LDN 1780, where AME has recently been claimed. The physical properties of the Pleiades nebula, in particular its low extinction A{sub V} {approx} 0.4, indicate that this is indeed a much less opaque object than those where AME has usually been studied. This fact, together with the broad knowledge of the stellar content of this region, provides an excellent testbed for AME characterization in physical conditions different from those generally explored up to now.« less
NASA Technical Reports Server (NTRS)
Zemba, Michael; Nessel, James; Tarasenko, Nicholas; Lane, Steven
2017-01-01
Since October 2015, NASA Glenn Research Center (GRC) and the Air Force Research Laboratory (AFRL) have collaboratively operated an RF terrestrial link in Albuquerque, New Mexico to characterize atmospheric propagation phenomena at 72 and 84 GHz. The WV-band Terrestrial Link Experiment (WTLE) consists of coherent transmitters at each frequency on the crest of the Sandia Mountains and a corresponding pair of receivers in south Albuquerque. The beacon receivers provide a direct measurement of the link attenuation, while concurrent weather instrumentation provides a measurement of the atmospheric conditions.Among the available weather instruments is an optical disdrometer which yields an optical measurement of rain rate, as well as droplet size and velocity distributions (DSD, DVD). In particular, the DSD can be used to derive an instantaneous scaling factor (ISF) by which the measured data at one frequency can be scaled to another for example, scaling the 72 GHz to an expected 84 GHz timeseries. Given the availability of both the DSD prediction and the directly observed 84 GHz attenuation, WTLE is thus uniquely able assess DSD-derived instantaneous frequency scaling at the VW-bands. Previous work along these lines has investigated the DSD-derived ISF at Ka and Q-band (20 GHz to 40 GHz) using a satellite beacon receiver experiment in Milan, Italy [1-3]. This work will expand the investigation to terrestrial links in the VW-bands, where the frequency scaling factor is lower and where the link is also much more sensitive to attenuation by rain, clouds, and other atmospheric effects.
NASA Technical Reports Server (NTRS)
Zemba, Michael; Nessel, James; Tarasenko, Nicholas; Lane, Steven
2017-01-01
Since October 2015, NASA Glenn Research Center (GRC) and the Air Force Research Laboratory (AFRL) have collaboratively operated an RF terrestrial link in Albuquerque, New Mexico to characterize atmospheric propagation phenomena at 72 and 84 GHz. The W/V-band Terrestrial Link Experiment (WTLE) consists of coherent transmitters at each frequency on the crest of the Sandia Mountains and a corresponding pair of receivers in south Albuquerque. The beacon receivers provide a direct measurement of the link attenuation, while concurrent weather instrumentation provides a measurement of the atmospheric conditions. Among the available weather instruments is an optical disdrometer which yields an optical measurement of rain rate, as well as droplet size and velocity distributions (DSD, DVD). In particular, the DSD can be used to derive an instantaneous scaling factor (ISF) by which the measured data at one frequency can be scaled to another - for example, scaling the 72 GHz to an expected 84 GHz timeseries. Given the availability of both the DSD prediction and the directly observed 84 GHz attenuation, WTLE is thus uniquely able assess DSD-derived instantaneous frequency scaling at the V/W-bands. Previous work along these lines has investigated the DSD-derived ISF at Ka and Q-band (20 GHz to 40 GHz) using a satellite beacon receiver experiment in Milan, Italy. This work will expand the investigation to terrestrial links in the V/W-bands, where the frequency scaling factor is lower and where the link is also much more sensitive to attenuation by rain, clouds, and other atmospheric effects.
Estimation of Cloud Fraction Profile in Shallow Convection Using a Scanning Cloud Radar
Oue, Mariko; Kollias, Pavlos; North, Kirk W.; ...
2016-10-18
Large spatial heterogeneities in shallow convection result in uncertainties in estimations of domain-averaged cloud fraction profiles (CFP). This issue is addressed using large eddy simulations of shallow convection over land coupled with a radar simulator. Results indicate that zenith profiling observations are inadequate to provide reliable CFP estimates. Use of Scanning Cloud Radar (SCR), performing a sequence of cross-wind horizon-to-horizon scans, is not straightforward due to the strong dependence of radar sensitivity to target distance. An objective method for estimating domain-averaged CFP is proposed that uses observed statistics of SCR hydrometeor detection with height to estimate optimum sampling regions. Thismore » method shows good agreement with the model CFP. Results indicate that CFP estimates require more than 35 min of SCR scans to converge on the model domain average. Lastly, the proposed technique is expected to improve our ability to compare model output with cloud radar observations in shallow cumulus cloud conditions.« less
Tropical High Cloud Fraction Controlled by Cloud Lifetime Rather Than Clear-sky Convergence
NASA Astrophysics Data System (ADS)
Seeley, J.; Jeevanjee, N.; Romps, D. M.
2016-12-01
Observations and simulations show a peak in cloud fraction below the tropopause. This peak is usually attributed to a roughly co-located peak in radiatively-driven clear-sky convergence, which is presumed to force convective detrainment and thus promote large cloud fraction. Using simulations of radiative-convective equilibrium forced by various radiative cooling profiles, we refute this mechanism by showing that an upper-tropospheric peak in cloud fraction persists even in simulations with no peak in clear-sky convergence. Instead, cloud fraction profiles seem to be controlled by cloud lifetimes — i.e., how long it takes for clouds to dissipate after they have detrained. A simple model of cloud evaporation shows that the small saturation deficit in the upper troposphere greatly extends cloud lifetimes there, while the large saturation deficit in the lower troposphere causes condensate to evaporate quickly. Since cloud mass flux must go to zero at the tropopause, a peak in cloud fraction emerges at a "sweet spot" below the tropopause where cloud lifetimes are long and there is still sufficient mass flux to be detrained.
NASA Astrophysics Data System (ADS)
Mohammed, P. N.; Steffes, P. G.; Kliore, A. J.; Anabtawi, A.; Asmar, S. W.; Barbinis, E.; Goltz, G.; Johnston, D.; Marouf, E. A.
2005-08-01
The results from the first Cassini Radio Science Subsystem(RSS) occultation, which occurred at the Rev 7 periapse, are being used to derive profiles of the atmospheric constituents encountered by the three frequency (S-, X-, and Ka-band) radio link. A computer model has been developed to simulate ray paths and the ray path parameters in the atmosphere of Saturn encountered during occultation (see Mohammed and Steffes, Bull. Amer. Astron. Soc., 36, no. 4, 1107, 2004). This forward model, which can be used on any oblate planet, will be used to determine the refractive defocusing and derive the profiles of phosphine and ammonia using data observed at Ka-band (32 GHz or 9.3 mm), X-band (8.4 GHz or 3.6 cm) and S-band (2.3 GHz or 13 cm). The results of laboratory measurements of the 9 mm opacity of phosphine and ammonia (Mohammed and Steffes, ICARUS 166, 425-435, 2003) and the centimeter wavelength opacity of these constituents measured under simulated conditions for Saturn (see, e.g., Hoffman et. al. ICARUS 152, 172-184, 2001) were incorporated into the forward radio occultation model used in these derivations.
What are the associated parameters and temporal coverage?
Atmospheric Science Data Center
2014-12-08
... Extinction Coefficient, Cloud Vertical Profile, Radar-only Liquid Water Content, Radar-only Liquid Ice Content, Vertical Flux Profile, ... ISCCP-D2like Cloud fraction, Effective Pressure, Temperature, optical depth, IWP/LWP, particle size, IR Emissivity in ...
NASA Astrophysics Data System (ADS)
Corby, J. F.; McGuire, B. A.; Herbst, E.; Remijan, A. J.
2018-02-01
The 1-50 GHz PRebiotic Interstellar MOlecular Survey (PRIMOS) contains 50 molecular absorption lines observed in clouds located in the line-of-sight to Sgr B2(N). The line-of-sight material is associated with diffuse and translucent clouds located in the Galactic center, bar, and spiral arms in the disk. We measured the column densities and estimate abundances, relative to H2, of 11 molecules and additional isotopologues observed in this material. We used absorption by optically thin transitions of c-C3H2 to estimate the molecular hydrogen columns, and argue that this method is preferable to more commonly used methods. We discuss the kinematic structure and abundance patterns of small molecules including the sulfur-bearing species CS, SO, CCS, H2CS, and HCS+; oxygen-bearing molecules OH, SiO, and H2CO; and simple hydrocarbon molecules c-C3H2, l-C3H, and l-C3H+. Finally, we discuss the implications of the observed chemistry for the structure of the gas and dust in the ISM. Highlighted results include the following. First, whereas gas in the disk has a molecular hydrogen fraction of 0.65, clouds on the outer edge of the Galactic bar and in or near the Galactic center have molecular fractions of 0.85 and >0.9, respectively. Second, we observe trends in isotope ratios with Galactocentric distance; while carbon and silicon show enhancement of the rare isotopes at low Galactocentric distances, sulfur exhibits no trend with Galactocentric distance. We also determine that the ratio of c-C3H2/c-H13CCCH provides a good estimate of the 12C/13C ratio, whereas H2CO/H213CO exhibits fractionation. Third, we report the presence of l-C3H+ in diffuse clouds for the first time. Finally, we suggest that CS has an enhanced abundance within higher density clumps of material in the disk, and therefore may be diagnostic of cloud conditions. If this holds, the diffuse clouds in the Galactic disk contain multiple embedded hyperdensities in a clumpy structure, and the density profile is not a simple function of AV. The reduced spectra (FITS files) are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/610/A10
CloudSat First Image of a Warm Front Storm Over the Norwegian Sea
NASA Technical Reports Server (NTRS)
2006-01-01
[figure removed for brevity, see original site] Figure 1 CloudSat's first image, of a warm front storm over the Norwegian Sea, was obtained on May 20, 2006. In this horizontal cross-section of clouds, warm air is seen rising over colder air as the satellite travels from right to left. The red colors are indicative of highly reflective particles such as water droplets (or rain) or larger ice crystals (or snow), while the blue indicates thinner clouds (such as cirrus). The flat green/blue lines across the bottom represent the ground signal. The vertical scale on the CloudSat Cloud Profiling Radar image is approximately 30 kilometers (19 miles). The blue line below the Cloud Profiling Radar image indicates that the data were taken over water. The inset image shows the CloudSat track relative to a Moderate Resolution Imaging Spectroradiometer (MODIS) infrared image taken at nearly the same time.CloudSat Image of a Polar Night Storm Near Antarctica
NASA Technical Reports Server (NTRS)
2006-01-01
[figure removed for brevity, see original site] Figure 1 CloudSat image of a horizontal cross-section of a polar night storm near Antarctica. Until now, clouds have been hard to observe in polar regions using remote sensing, particularly during the polar winter or night season. The red colors are indicative of highly reflective particles such as water (rain) or ice crystals, while the blue indicates thinner clouds (such as cirrus). The flat green/blue lines across the bottom represent the ground signal. The vertical scale on the CloudSat Cloud Profiling Radar image is approximately 30 kilometers (19 miles). The blue line below the Cloud Profiling Radar image indicates that the data were taken over water; the brown line below the image indicates the relative elevation of the land surface. The inset image shows the CloudSat track relative to a Moderate Resolution Imaging Spectroradiometer (MODIS) infrared image taken at nearly the same time.Vector velocity profiles of the solar wind within expanding magnetic clouds at 1 AU: Some surprises
NASA Astrophysics Data System (ADS)
Wu, C.; Lepping, R. P.; Berdichevsky, D.; Ferguson, T.; Lazarus, A. J.
2002-12-01
We investigated the average vector velocity profile of 36 carefully chosen WIND interplanetary magnetic clouds occurring over about a 7 year period since spacecraft launch, to see if a differential pattern of solar wind flow exists. Particular cases were chosen of clouds whose axes were generally within 45 degrees of the ecliptic plane and of relatively well determined characteristics obtained from cloud-parameter (cylindrically symmetric force free) fitting. This study was motivated by the desire to understand the manner in which magnetic clouds expand, a well know phenomenon revealed by most cloud speed-profiles at 1 AU. One unexpected and major result was that, even though cloud expansion was confirmed, it was primarily along the Xgse axis; i.e., neither the Ygse or Zgse velocity components reveal any noteworthy pattern. After splitting the full set of clouds into a north-passing set (spacecraft passing above the cloud, where Nn = 21) and south-passing set (Ns = 15), to study the plasma expansion of the clouds with respect to the position of the observer, it was seen that the Xgse component of velocity differs for these two sets in a rather uniform and measurable way for most of the average cloud's extent. This does not appear to be the case for the Ygse or Zgse velocity components where little measurable differences exists, and clearly no pattern, across the average cloud between the north and south positions. It is not clear why such a remarkably non-axisymmetric plasma flow pattern within the "average magnetic cloud" at 1 AU should exist. The study continues from the perspective of magnetic cloud coordinate representation. ~ ~ ~
Cold Season Ground Validation Activities in support of GPM
NASA Astrophysics Data System (ADS)
Hudak, D. R.; Petersen, W. A.
2012-12-01
A fundamental component of the next-generation global precipitation data products that will be addressed by the GPM mission is the hydrologic cycle at higher latitudes. In this respect, falling snow represents a primary contribution to regional atmospheric and terrestrial water budgets. The current study provides provide information on the precipitation microphysics and processes associated with cold season precipitation and precipitating cloud systems across multiple scales. It also addresses the ability of in-situ ground-based sensors as well as multi-frequency active and passive microwave sensors to detect and estimate falling snow, and more generally to contribute to our knowledge and understanding of the complete global water cycle. The work supports the incorporation of appropriate physics into GPM snowfall retrieval algorithms and the development of improved ground validation techniques for GPM product evaluation. Important information for developing GPM falling snow retrieval algorithms will be provided by a field campaign that took place in the winter of 2011/12 in the Great Lakes area of North America, termed the GPM Cold Season Precipitation Experiment (GCPEx). GCPEx represented a collaboration among the NASA, Environment Canada (EC), the Canadian Space Agency and several US, Canadian and European universities. The data collection strategy for GCPEx was coordinated, stacked high-altitude and in-situ cloud aircraft missions sampling within a broader network of ground-based volumetric observations and measurements. The NASA DSC-8 research aircraft provided a platform for the downward-viewing dual-frequency radar and multi-frequency radiometer observations. The University of North Dakota Citation and the Canadian NRC Convair-580 aircraft provided in-situ profiles of cloud and precipitation microphysics using a suite of optical array probes and bulk measurement instrumentation. Ground sampling was focused about a densely-instrumented central location that is well situated within both mid-latitude synoptic and lake-effect snowfall regimes. The instrumentation suite at CARE included active remote sensing observations as follows: W, Ku, and X-band vertically pointing radars, a Ku and Ka-band dual polarization full scanning radar, and nearby C-band dual polarization, scanning radar. The passive remote sensing suite includes a triple channel profiling microwave radiometer (10, 21, 36 GHz), and a dual channel polarization radiometer (89 and 150 GHz). In-situ measurements at CARE include a 2D video disdrometer, the Precipitation Video Imager, digital photography and a number of other technologies that estimate instantaneous precipitation rate. GCPEX collected ground-based data on 22 distinct precipitation events, 2 rain, 3 mixed and 17 snow. For 16 of these events, there were also aircraft observations. In addition, there were two clear air flights. The presentation will provide an overview of the data collection. It will also summarize the ground-based event precipitation estimates from various sensors as compared to a manual double fence reference to assess measurement uncertainties. Examples will be presented from radar and aircraft in-situ data highlighting the variability of snowfall characteristics relative to the synoptic context. Plans for ongoing validation studies with the WMO Solid Precipitation Intercomparison Experiment beginning in 2013 will be described.
A study of the 3D radiative transfer effect in cloudy atmospheres
NASA Astrophysics Data System (ADS)
Okata, M.; Teruyuki, N.; Suzuki, K.
2015-12-01
Evaluation of the effect of clouds in the atmosphere is a significant problem in the Earth's radiation budget study with their large uncertainties of microphysics and the optical properties. In this situation, we still need more investigations of 3D cloud radiative transer problems using not only models but also satellite observational data.For this purpose, we have developed a 3D-Monte-Carlo radiative transfer code that is implemented with various functions compatible with the OpenCLASTR R-Star radiation code for radiance and flux computation, i.e. forward and backward tracing routines, non-linear k-distribution parameterization (Sekiguchi and Nakajima, 2008) for broad band solar flux calculation, and DM-method for flux and TMS-method for upward radiance (Nakajima and Tnaka 1998). We also developed a Minimum cloud Information Deviation Profiling Method (MIDPM) as a method for a construction of 3D cloud field with MODIS/AQUA and CPR/CloudSat data. We then selected a best-matched radar reflectivity factor profile from the library for each of off-nadir pixels of MODIS where CPR profile is not available, by minimizing the deviation between library MODIS parameters and those at the pixel. In this study, we have used three cloud microphysical parameters as key parameters for the MIDPM, i.e. effective particle radius, cloud optical thickness and top of cloud temperature, and estimated 3D cloud radiation budget. We examined the discrepancies between satellite observed and mode-simulated radiances and three cloud microphysical parameter's pattern for studying the effects of cloud optical and microphysical properties on the radiation budget of the cloud-laden atmospheres.
The GCM-Oriented CALIPSO Cloud Product (CALIPSO-GOCCP)
NASA Astrophysics Data System (ADS)
Chepfer, H.; Bony, S.; Winker, D.; Cesana, G.; Dufresne, J. L.; Minnis, P.; Stubenrauch, C. J.; Zeng, S.
2010-01-01
This article presents the GCM-Oriented Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) Cloud Product (GOCCP) designed to evaluate the cloudiness simulated by general circulation models (GCMs). For this purpose, Cloud-Aerosol Lidar with Orthogonal Polarization L1 data are processed following the same steps as in a lidar simulator used to diagnose the model cloud cover that CALIPSO would observe from space if the satellite was flying above an atmosphere similar to that predicted by the GCM. Instantaneous profiles of the lidar scattering ratio (SR) are first computed at the highest horizontal resolution of the data but at the vertical resolution typical of current GCMs, and then cloud diagnostics are inferred from these profiles: vertical distribution of cloud fraction, horizontal distribution of low, middle, high, and total cloud fractions, instantaneous SR profiles, and SR histograms as a function of height. Results are presented for different seasons (January-March 2007-2008 and June-August 2006-2008), and their sensitivity to parameters of the lidar simulator is investigated. It is shown that the choice of the vertical resolution and of the SR threshold value used for cloud detection can modify the cloud fraction by up to 0.20, particularly in the shallow cumulus regions. The tropical marine low-level cloud fraction is larger during nighttime (by up to 0.15) than during daytime. The histograms of SR characterize the cloud types encountered in different regions. The GOCCP high-level cloud amount is similar to that from the TIROS Operational Vertical Sounder (TOVS) and the Atmospheric Infrared Sounder (AIRS). The low-level and middle-level cloud fractions are larger than those derived from passive remote sensing (International Satellite Cloud Climatology Project, Moderate-Resolution Imaging Spectroradiometer-Cloud and Earth Radiant Energy System Polarization and Directionality of Earth Reflectances, TOVS Path B, AIRS-Laboratoire de Météorologie Dynamique) because the latter only provide information on the uppermost cloud layer.
Conceptual Study of A Hetrodyne Receiver for the Origins Space Telescope
NASA Astrophysics Data System (ADS)
Wiedner, Martina
2018-01-01
The Origins Space Telescope (OST) is a mission concept of an extremely versatile observatory with 5 science instruments, of which the HEterodyne Receivers for OST (HERO) is one. HERO's main targets are high spectral resolution observations (Δλ/λ up to 107 or Δv = 0.03km/s) of water to follow its trail from cores to YSOs as well as H2O and HDO observations on comets. HERO will probe all neutral ISM phases using cooling lines ([CII], [OI]) and hydrides as probes of CO-dark H2 (CH, HF). HERO will reveal how molecular clouds and filaments form in the local ISM up to nearby galaxies. In order to achieve these observational goals, HERO will cover an extremely wide frequency range from 468 to 2700 GHz and a window around the OI line at 4563 to 4752GHz. It will consist of very large focal plane arrays of 128 pixels between 900 - 2700 GHz and at 4.7 THz, and 32 pixels for the 468 to 900 GHz range. The instrument is exploiting Herschel/HIFI heritage. HERO's large arrays require low dissipation and low power components. The HERO concept makes use of the latest cryogenic SiGe amplifier technology, as well as CMOS technology for the backends with 2 orders of magnitude lower power.
Microwave signatures of ice hydrometeors from ground-based observations above Summit, Greenland
Pettersen, Claire; Bennartz, Ralf; Kulie, Mark S.; ...
2016-04-15
Multi-instrument, ground-based measurements provide unique and comprehensive data sets of the atmosphere for a specific location over long periods of time and resulting data compliment past and existing global satellite observations. Our paper explores the effect of ice hydrometeors on ground-based, high-frequency passive microwave measurements and attempts to isolate an ice signature for summer seasons at Summit, Greenland, from 2010 to 2013. Furthermore, data from a combination of passive microwave, cloud radar, radiosonde, and ceilometer were examined to isolate the ice signature at microwave wavelengths. By limiting the study to a cloud liquid water path of 40 g m -2more » or less, the cloud radar can identify cases where the precipitation was dominated by ice. These cases were examined using liquid water and gas microwave absorption models, and brightness temperatures were calculated for the high-frequency microwave channels: 90, 150, and 225GHz. By comparing the measured brightness temperatures from the microwave radiometers and the calculated brightness temperature using only gas and liquid contributions, any residual brightness temperature difference is due to emission and scattering of microwave radiation from the ice hydrometeors in the column. The ice signature in the 90, 150, and 225 GHz channels for the Summit Station summer months was isolated. Then, this measured ice signature was compared to an equivalent brightness temperature difference calculated with a radiative transfer model including microwave single-scattering properties for several ice habits. Furthermore, initial model results compare well against the 4 years of summer season isolated ice signature in the high-frequency microwave channels.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pettersen, Claire; Bennartz, Ralf; Kulie, Mark S.
Multi-instrument, ground-based measurements provide unique and comprehensive data sets of the atmosphere for a specific location over long periods of time and resulting data compliment past and existing global satellite observations. Our paper explores the effect of ice hydrometeors on ground-based, high-frequency passive microwave measurements and attempts to isolate an ice signature for summer seasons at Summit, Greenland, from 2010 to 2013. Furthermore, data from a combination of passive microwave, cloud radar, radiosonde, and ceilometer were examined to isolate the ice signature at microwave wavelengths. By limiting the study to a cloud liquid water path of 40 g m -2more » or less, the cloud radar can identify cases where the precipitation was dominated by ice. These cases were examined using liquid water and gas microwave absorption models, and brightness temperatures were calculated for the high-frequency microwave channels: 90, 150, and 225GHz. By comparing the measured brightness temperatures from the microwave radiometers and the calculated brightness temperature using only gas and liquid contributions, any residual brightness temperature difference is due to emission and scattering of microwave radiation from the ice hydrometeors in the column. The ice signature in the 90, 150, and 225 GHz channels for the Summit Station summer months was isolated. Then, this measured ice signature was compared to an equivalent brightness temperature difference calculated with a radiative transfer model including microwave single-scattering properties for several ice habits. Furthermore, initial model results compare well against the 4 years of summer season isolated ice signature in the high-frequency microwave channels.« less
The Green Bank Telescope: First Full Winter of Operation at 3mm
NASA Astrophysics Data System (ADS)
Lockman, Felix J.
2017-06-01
The winter of 2016-2017 marks the first season for the Green Bank Telescope (GBT) with full instrumentation in the 3mm band. ARGUS, a 16-pixel array, provides spectroscopic capabilities over 80-116 GHz. MUSTANG-2, a 223 pixel bolometer array, provides extremely sensitive continuum mapping capabilities over a 30 GHz band centered on 90 GHz at an angular resolution of 9”. In addition, there is a 2-pixel receiver that covers the lower part of the 3mm band, 67-93 GHz, for spectroscopy, continuum measurements, and VLBI.In March, under good night-time conditions, the GBT angular resolution at 109 GHz was measured to be 6.5”. This corresponds to 1.16 lambda/Diameter, exactly as expected from theoretical considerations and identical to the wavelength/Diameter ratio measured at much lower frequencies. Near sidelobe levels are below -20 dB.This poster will review some results that highlight the GBT’s new capabilities in the 3mm band, including new insights into the origin of the anomalous microwave emission, 13CO measurements of a cloud in the Milky Way halo that is in the process making the transition between atomic and molecular gas, HCO+ measurements of infall in a star-forming region, and measurements of dust emission and its spectrum in Orion.The Green Bank Observatory is a facility of the National Science Foundation, operated under a cooperative agreement by Associated Universities, Inc.
Design and development of a multifunction millimeter wave sensor
NASA Astrophysics Data System (ADS)
Nadimi, Sayyid Abdolmajid
1998-11-01
The millimeter-wave (MMW) spectrum (30-300 GHz) offers a unique combination of features that are advantageous when retrieving information about the environment. Due to small wavelengths involved, physically small antennas may be used to obtain very high gains (>50 dB) and resulting high spatial resolutions. Moreover, some features have scattering and emission behaviors that are more sensitive at MMW wavelengths than at microwave wavelengths. Examples include, water vapor (H2O). fog, haze, clouds, ozone (O 3) molecules, and chlorine monoxide (ClO) have rotational spectra in this region. The 75-110 GHz (W-band) atmospheric window is relatively quiet, and it can supply spectral information that can be useful in identifying and quantifying pollutants. Information such as the size and concentration of particulate pollutants can be obtained using radar techniques at W-band. Although there have been some activities at millimeter wave frequencies over very narrow bandwidths, there is a great need for wider bandwidth instruments for studying scattering and emission behaviors. To address this need and provide a versatile system for laboratory studies of electromagnetic phenomena at millimeter-wave frequencies, a multifunctionmillimeter- wave sensor has been designed and developed. This instrument is an active/passive wide band sensor operating in the 75-110 GHz region of the millimeter wave spectrum in four primary modes: (1)As a spectrometer measuring absorption over the entire 75-110 GHz region. (2)As a radiometer measuring blackbody emissions over the entire 75-110 GHz region. (3)As a pulse radar over a 500 MHz bandwidth centered around 93.1 GHz with a peak power of 200 mW. (4)As a step frequency radar when used in combination with a network analyzer over selected 9 GHz bandwidth segments (75-84, 84-93, 93-102, and 102-110) of the 75-110 GHz region. Measurements were performed on two volume fraction (15% and 20%) dense random media targets using this system. The results for backscattering and transmission measurements are presented for both targets for the frequencies from 95.1 to 110.1 GHz.
Yoon, Jeonghoon; Cho, Jeiwon; Kim, Namgon; Kim, Dae-Duk; Lee, Eunsook; Cheon, Changyul; Kwon, Youngwoo
2011-10-15
To overcome the limits of conventional microwave ablation, a new frequency spectrum above 6 GHz has been explored for low-power and low collateral damage ablation procedure. A planar coaxial probe-based applicator, suitable for easy insertion into the human body, was developed for our study to cover a wideband frequency up to 30 GHz. Thermal ablations with small input power (1-3 W) at various microwave frequencies were performed on nude mice xenografted with human breast cancer. Comparative study of ablation efficiencies revealed that 18-GHz microwave results in the largest difference in the temperature rise between cancer and normal tissues as well as the highest ablation efficiency, reaching 20 times that of 2 GHz. Thermal profile study on the composite region of cancer and fat also showed significantly reduced collateral damage using 18 GHz. Application of low-power (1 W) 18-GHz microwave on the nude mice xenografted with human breast cancer cells resulted in recurrence-free treatment. The proposed microwave ablation method can be a very effective process to treat small-sized tumor with minimized invasiveness and collateral damages. Copyright © 2010 UICC.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bernstein, L. S.; Clark, F. O.; Lynch, D. K., E-mail: larry@spectral.com, E-mail: dave@thulescientific.com
2013-05-01
We suggest that the diffuse interstellar bands (DIBs) arise from absorption lines of electronic transitions in molecular clusters primarily composed of a single molecule, atom, or ion ({sup s}eed{sup )}, embedded in a single-layer shell of H{sub 2} molecules. Less abundant variants of the cluster, including two seed molecules and/or a two-layer shell of H{sub 2} molecules, may also occur. The lines are broadened, blended, and wavelength-shifted by interactions between the seed and surrounding H{sub 2} shell. We refer to these clusters as contaminated H{sub 2} clusters (CHCs). We show that CHC spectroscopy matches the diversity of observed DIB spectralmore » profiles and provides good fits to several DIB profiles based on a rotational temperature of 10 K. CHCs arise from {approx}centimeter-sized, dirty H{sub 2} ice balls, called contaminated H{sub 2} ice macro-particles (CHIMPs), formed in cold, dense, giant molecular clouds (GMCs), and later released into the interstellar medium (ISM) upon GMC disruption. Attractive interactions, arising from Van der Waals and ion-induced dipole potentials, between the seeds and H{sub 2} molecules enable CHIMPs to attain centimeter-sized dimensions. When an ultraviolet (UV) photon is absorbed in the outer layer of a CHIMP, it heats the icy matrix and expels CHCs into the ISM. While CHCs are quickly destroyed by absorbing UV photons, they are replenished by the slowly eroding CHIMPs. Since CHCs require UV photons for their release, they are most abundant at, but not limited to, the edges of UV-opaque molecular clouds, consistent with the observed, preferred location of DIBs. An inherent property of CHCs, which can be characterized as nanometer size, spinning, dipolar dust grains, is that they emit in the radio-frequency region. We also show that the CHCs offer a natural explanation for the anomalous microwave emission feature in the {approx}10-100 GHz spectral region.« less
Formaldehyde in the Diffuse Interstellar Cloud MBM40
NASA Astrophysics Data System (ADS)
Joy, Mackenzie; Magnani, Loris A.
2018-06-01
MBM40, a high-latitude molecular cloud, has been extensively studied using different molecular tracers. It appears that MBM40 is composed of a relatively dense, helical filament embedded in a more diffuse substrate of low density molecular gas. In order to study the transition between the two regimes, this project presents the first high-resolution mapping of MBM40 using the 110-111 hyperfine transition of formaldehyde (H2CO) at 4.83 GHz. We used H2CO spectra obtained with the Arecibo telescope more than a decade ago to construct this map. The results can be compared to previous maps made from the CO(1-0) transition to gain further understanding of the structure of the cloud. The intensity of the H2CO emission was compared to the CO emission. Although a correlation exists between the H2CO and CO emissivity, there seems to be a saturation of H2CO line strength for stronger CO emissivity. This is probably a radiative transfer effect of the CO emission. We have also found that the velocity dispersion of H2CO in the lower ridge of the cloud is significantly lower than in the rest of the cloud. This may indicate that this portion of the cloud is a coherent structure (analogous to an eddy) in a turbulent flow.
NASA Technical Reports Server (NTRS)
Selkirk, Henry B.; Molod, Andrea M.
2014-01-01
Large-scale models such as GEOS-5 typically calculate grid-scale fractional cloudiness through a PDF parameterization of the sub-gridscale distribution of specific humidity. The GEOS-5 moisture routine uses a simple rectangular PDF varying in height that follows a tanh profile. While below 10 km this profile is informed by moisture information from the AIRS instrument, there is relatively little empirical basis for the profile above that level. ATTREX provides an opportunity to refine the profile using estimates of the horizontal variability of measurements of water vapor, total water and ice particles from the Global Hawk aircraft at or near the tropopause. These measurements will be compared with estimates of large-scale cloud fraction from CALIPSO and lidar retrievals from the CPL on the aircraft. We will use the variability measurements to perform studies of the sensitivity of the GEOS-5 cloud-fraction to various modifications to the PDF shape and to its vertical profile.
A 3D Cloud-Construction Algorithm for the EarthCARE Satellite Mission
NASA Technical Reports Server (NTRS)
Barker, H. W.; Jerg, M. P.; Wehr, T.; Kato, S.; Donovan, D. P.; Hogan, R. J.
2011-01-01
This article presents and assesses an algorithm that constructs 3D distributions of cloud from passive satellite imagery and collocated 2D nadir profiles of cloud properties inferred synergistically from lidar, cloud radar and imager data.
VizieR Online Data Catalog: M-3.8+0.9 molecular cloud 3mm datacubes (Riquelme+ 2018)
NASA Astrophysics Data System (ADS)
Riquelme, D.; Amo-Baladron, A.; Martin-Pintado, J.; Mauersberger, R.; Martin, S.; Burton, M.; Cunningham, M.; Jones, P.; Menten, K. M.; Bronfman, L.; Guesten, R.
2018-01-01
We mapped the M-3.8+0.9 molecular cloud placed at the footpoints of a giant molecular loop, in 3-mm range molecular lines using Mopra telescope, and the 13CO (2-1) line at 1 mm using the 12-m Atacama Pathfinder EXperiment (APEX) telescope. The Mopra observations were performed during September 2008 and August 2009. We used the digital mode filter bank MOPS in broadband mode, covering 8GHz of bandwidth simultaneously in four 2.2GHz sub-bands, each of them with 8192 channel spaced by 0.27MHz. Two polarizations were measured simultaneously. We produce one data cube per detected molecule. The final spatial resolution of the data cubes is between 49 arcsec and 51 arcsec at 115 and 86GHz respectively. The size of the pixel is 15 arcsec. The spectral resolution of the data is 269.5kHz (0.94-0.78km/s). The data is presented in T*a (K). The APEX observations were carried out on 24 June, and 1, 2, and 3 July 2014 under the APEX project code M-093.F-008-2014 using the APEX-1 (SHIFI) receiver and the eXtended bandwidth Fast Fourier Transform Spectrometer (XFFTS) backend. The data were regridded in equatorial coordinates and then converted to Galactic coordinates for comparison with the Mopra data using standard CLASS routines. The pixel size is 13.8 arcsec. The spatial resolution is 30.1 arcsec and the spectral resolution is 299.8kHz (1.03km/s). The data is presented in Tmb (K). (2 data files).
NASA Technical Reports Server (NTRS)
Ott, Lesley; Pickering, Kenneth; Stenchikov, Georgiy; Allen, Dale; DeCaria, Alex; Ridley, Brian; Lin, Ruei-Fong; Lang, Steve; Tao, Wei-Kuo
2009-01-01
A 3-D cloud scale chemical transport model that includes a parameterized source of lightning NO(x), based on observed flash rates has been used to simulate six midlatitude and subtropical thunderstorms observed during four field projects. Production per intracloud (P(sub IC) and cloud-to-ground (P(sub CG)) flash is estimated by assuming various values of P(sub IC) and P(sub CG) for each storm and determining which production scenario yields NO(x) mixing ratios that compare most favorably with in-cloud aircraft observations. We obtain a mean P(sub CG) value of 500 moles NO (7 kg N) per flash. The results of this analysis also suggest that on average, P(sub IC) may be nearly equal to P(sub CG), which is contrary to the common assumption that intracloud flashes are significantly less productive of NO than are cloud-to-ground flashes. This study also presents vertical profiles of the mass of lightning NO(x), after convection based on 3-D cloud-scale model simulations. The results suggest that following convection, a large percentage of lightning NO(x), remains in the middle and upper troposphere where it originated, while only a small percentage is found near the surface. The results of this work differ from profiles calculated from 2-D cloud-scale model simulations with a simpler lightning parameterization that were peaked near the surface and in the upper troposphere (referred to as a "C-shaped" profile). The new model results (a backward C-shaped profile) suggest that chemical transport models that assume a C-shaped vertical profile of lightning NO(x) mass may place too much mass neat the surface and too little in the middle troposphere.
NASA Astrophysics Data System (ADS)
Gong, Jie; Zeng, Xiping; Wu, Dong L.; Li, Xiaowen
2018-01-01
The diurnal variation of tropical ice clouds has been well observed and examined in terms of the occurring frequency and total mass but rarely from the viewpoint of ice microphysical parameters. It accounts for a large portion of uncertainties in evaluating ice clouds' role on global radiation and hydrological budgets. Owing to the advantage of precession orbit design and paired polarized observations at a high-frequency microwave band that is particularly sensitive to ice particle microphysical properties, 3 years of polarimetric difference (PD) measurements using the 166 GHz channel of Global Precipitation Measurement Microwave Imager (GPM-GMI) are compiled to reveal a strong diurnal cycle over tropical land (30°S-30°N) with peak amplitude varying up to 38%. Since the PD signal is dominantly determined by ice crystal size, shape, and orientation, the diurnal cycle observed by GMI can be used to infer changes in ice crystal properties. Moreover, PD change is found to lead the diurnal changes of ice cloud occurring frequency and total ice mass by about 2 h, which strongly implies that understanding ice microphysics is critical to predict, infer, and model ice cloud evolution and precipitation processes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Medvedev, Ivan R.; De Lucia, Frank C.; Herbst, Eric
Since methyl formate (HCOOCH{sub 3}) is found to have a high abundance in hot molecular cores and other types of clouds in the galactic center, it is reasonable to search among such sources for detectable abundances of the more complex analog ethyl formate (HCOOC{sub 2}H{sub 5}). Following a previous study of the millimeter-wave spectrum of ethyl formate, we have extended the analysis of the vibrational ground state of the trans and gauche conformers of ethyl formate into the submillimeter-wave range. Over 2200 new spectral lines have been measured and analyzed at frequencies up to 380 GHz. Fitting the data formore » each conformer to a Watson A-reduced asymmetric-top Hamiltonian has allowed us to predict the frequencies and intensities of many more transitions through 380 GHz.« less
Cloud and Radiation Mission with Active and Passive Sensing from the Space Station
NASA Technical Reports Server (NTRS)
Spinhirne, James D.
1998-01-01
A cloud and aerosol radiative forcing and physical process study involving active laser and radar profiling with a combination of passive radiometric sounders and imagers would use the space station as an observation platform. The objectives are to observe the full three dimensional cloud and aerosol structure and the associated physical parameters leading to a complete measurement of radiation forcing processes. The instruments would include specialized radar and lidar for cloud and aerosol profiling, visible, infrared and microwave imaging radiometers with comprehensive channels for cloud and aerosol observation and specialized sounders. The low altitude,. available power and servicing capability of the space station are significant advantages for the active sensors and multiple passive instruments.
Lidar measurements of boundary layers, aerosol scattering and clouds during project FIFE
NASA Technical Reports Server (NTRS)
Eloranta, Edwin W. (Principal Investigator)
1995-01-01
A detailed account of progress achieved under this grant funding is contained in five journal papers. The titles of these papers are: The calculation of area-averaged vertical profiles of the horizontal wind velocity using volume imaging lidar data; Volume imaging lidar observation of the convective structure surrounding the flight path of an instrumented aircraft; Convective boundary layer mean depths, cloud base altitudes, cloud top altitudes, cloud coverages, and cloud shadows obtained from Volume Imaging Lidar data; An accuracy analysis of the wind profiles calculated from Volume Imaging Lidar data; and Calculation of divergence and vertical motion from volume-imaging lidar data. Copies of these papers form the body of this report.
Observed Aerosol Influence on Ice Water Content of Arctic Mixed-Phase Clouds
NASA Astrophysics Data System (ADS)
Norgren, M.; de Boer, G.; Shupe, M.
2016-12-01
The response of ice water content (IWC) in Arctic mixed-phase stratocumulus to atmospheric aerosols is observed. IWC retrievals from ground based radars operated by the Atmospheric Radiation Measurement (ARM) program in Barrow, Alaska are used to construct composite profiles of cloud IWC from a 9-year radar record starting in January of 2000. The IWC profiles for high (polluted) and low (clean) aerosol loadings are compared. Generally, we find that clean clouds exhibit statistically significant higher levels of IWC than do polluted clouds by a factor of 2-4 at cloud base. For springtime clouds, with a maximum relative humidity with respect to ice (RHI) above 110% in the cloud layer, the IWC at cloud base was a factor of 3.25 times higher in clean clouds than it was in polluted clouds. We infer that the aerosol loading of the cloud environment alters the liquid drop size distribution within the cloud, with larger drops being more frequent in clean clouds. Larger cloud drops promote riming within the cloud layer, which is one explanation for the higher IWC levels in clean clouds. The drop size distribution may also be a significant control of ice nucleation events within mixed-phase clouds. Whether the high IWC levels in clean clouds are due to increased riming or nucleation events is unclear at this time.
VizieR Online Data Catalog: Deuterated water in prestellar cores (Quenard+, 2016)
NASA Astrophysics Data System (ADS)
Quenard, D.; Taquet, V.; Vastel, C.; Caselli, P.; Ceccarelli, C.
2015-11-01
Line profiles of the ortho-H2O 11,0-10,1 1,0,1-0,0,0 (APEX) transitions at 556.93607 and 464.92452GHz respectively are presented. For each line, we provide the intensity of the main beam temperature (Tmb) in Kelvin as a function of the rest frequency in GHz. The Vlsr of the source is 7.2km/s. (2 data files).
Klehr, A; Wenzel, H; Brox, O; Schwertfeger, S; Staske, R; Erbert, G
2013-02-11
We present detailed experimental investigations of the temporal, spectral and spatial behavior of a gain-switched distributed feedback (DFB) laser emitting at a wavelength of 1064 nm. Gain-switching is achieved by injecting nearly rectangular shaped current pulses having a length of 50 ns and a very high amplitude up to 2.5 A. The repetition frequency is 200 kHz. The laser has a ridge waveguide (RW) for lateral waveguiding with a ridge width of 3 µm and a cavity length of 1.5 mm. Time resolved investigations show, depending on the amplitude of the current pulses, that the optical power exhibits different types of oscillatory behavior during the pulses, accompanied by changes in the lateral near field intensity profiles and optical spectra. Three different types of instabilities can be distinguished: mode beating with frequencies between 25 GHz and 30 GHz, switching between different lateral intensity profiles with a frequency of 0.4 GHz and self-sustained oscillations with a frequency of 4 GHz. The investigations are of great relevance for the utilization of gain-switched DFB-RW lasers as seed lasers for fiber laser systems and in other applications, which require a high optical power.
NASA Technical Reports Server (NTRS)
Welton, Ellsworth J.; McGill, Matthew J.; Yorks, John E.; Hlavka, Dennis L.; Hart, William D.; Palm, Stephen P.; Colarco, Peter R.
2011-01-01
Spaceborne lidar profiling of aerosol and cloud layers has been successfully implemented during a number of prior missions, including LITE, ICESat, and CALIPSO. Each successive mission has added increased capability and further expanded the role of these unique measurements in wide variety of applications ranging from climate, to air quality, to special event monitoring (ie, volcanic plumes). Many researchers have come to rely on the availability of profile data from CALIPSO, especially data coincident with measurements from other A-Train sensors. The CALIOP lidar on CALIPSO continues to operate well as it enters its fifth year of operations. However, active instruments have more limited lifetimes than their passive counterparts, and we are faced with a potential gap in lidar profiling from space if the CALIOP lidar fails before a new mission is operational. The ATLID lidar on EarthCARE is not expected to launch until 2015 or later, and the lidar component of NASA's proposed Aerosols, Clouds, and Ecosystems (ACE) mission would not be until after 2020. Here we present a new aerosol and cloud lidar that was recently selected to provide profiling data from the International Space Station (ISS) starting in 2013. The Cloud-Aerosol Transport System (CATS) is a three wavelength (1064, 532, 355 nm) elastic backscatter lidar with HSRL capability at 532 nm. Depolarization measurements will be made at all wavelengths. The primary objective of CATS is to continue the CALIPSO aerosol and cloud profile data record, ideally with overlap between both missions and EarthCARE. In addition, the near real time data capability of the ISS will enable CATS to support operational applications such as air quality and special event monitoring. The HSRL channel will provide a demonstration of technology and a data testbed for direct extinction retrievals in support of ACE mission development. An overview of the instrument and mission will be provided, along with a summary of the science objectives and simulated data.
Ortho-para-hydrogen equilibration on Jupiter
NASA Technical Reports Server (NTRS)
Carlson, Barbara E.; Lacis, Andrew A.; Rossow, William B.
1992-01-01
Voyager IRIS observations reveal that the Jovian para-hydrogen fraction is not in thermodynamic equilibrium near the NH3 cloud top, implying that a vertical gradient exists between the high-temperature equilibrium value of 0.25 at depth and the cloud top values. The height-dependent para-hydrogen profile is obtained using an anisotropic multiple-scattering radiative transfer model. A vertical correlation is found to exist between the location of the para-hydrogen gradient and the NH3 cloud, strongly suggesting that paramagnetic conversion on NH3 cloud particle surfaces is the dominant equilibration mechanism. Below the NH3 cloud layer, the para fraction is constant with depth and equal to the high-temperature equilibrium value of 0.25. The degree of cloud-top equilibration appears to depend on the optical depth of the NH3 cloud layer. Belt-zone variations in the para-hydrogen profile seem to be due to differences in the strength of the vertical mixing.
Negative Aerosol-Cloud re Relationship From Aircraft Observations Over Hebei, China
NASA Astrophysics Data System (ADS)
Zhao, Chuanfeng; Qiu, Yanmei; Dong, Xiaobo; Wang, Zhien; Peng, Yiran; Li, Baodong; Wu, Zhihui; Wang, Yang
2018-01-01
Using six flights observations in September 2015 over Hebei, China, this study shows a robust negative aerosol-cloud droplet effective radius (
NASA Technical Reports Server (NTRS)
Suleiman, Shady H.; Kolodner, Marc A.; Steffes, Paul G.
1996-01-01
High-accuracy laboratory measurements of the temperature dependence of the opacity from gaseous sulfur dioxide (SO2) in a carbon dioxide (CO2) atmosphere at temperatures from 290 to 505 K and at pressures from 1 to 4 atm have been conducted at frequencies of 2.25 GHz (13.3 cm), 8.5 GHz (3.5 cm), and 21.7 GHz (1.4 cm). Based on these absorptivity measurements, a Ben-Reuven (BR) line shape model has been developed that provides a more accurate characterization of the microwave absorption of gaseous S02 in the Venus atmosphere as compared with other formalisms. The developed BR formalism is incorporated into a radiative transfer model. The resulting microwave emission spectrum of Venus is then used to set an upper limit on the disk-averaged abundance of gaseous S02 below the main cloud layer. It is found that gaseous S02 has an upper limit of 150 ppm, which compares well with previous spacecraft in situ measurements and Earth-based radio astronomical observations.
NASA Technical Reports Server (NTRS)
Ringerud, S.; Kummerow, C. D.; Peters-Lidard, C. D.
2015-01-01
An accurate understanding of the instantaneous, dynamic land surface emissivity is necessary for a physically based, multi-channel passive microwave precipitation retrieval scheme over land. In an effort to assess the feasibility of the physical approach for land surfaces, a semi-empirical emissivity model is applied for calculation of the surface component in a test area of the US Southern Great Plains. A physical emissivity model, using land surface model data as input, is used to calculate emissivity at the 10GHz frequency, combining contributions from the underlying soil and vegetation layers, including the dielectric and roughness effects of each medium. An empirical technique is then applied, based upon a robust set of observed channel covariances, extending the emissivity calculations to all channels. For calculation of the hydrometeor contribution, reflectivity profiles from the Tropical Rainfall Measurement Mission Precipitation Radar (TRMM PR) are utilized along with coincident brightness temperatures (Tbs) from the TRMM Microwave Imager (TMI), and cloud-resolving model profiles. Ice profiles are modified to be consistent with the higher frequency microwave Tbs. Resulting modeled top of the atmosphere Tbs show correlations to observations of 0.9, biases of 1K or less, root-mean-square errors on the order of 5K, and improved agreement over the use of climatological emissivity values. The synthesis of these models and data sets leads to the creation of a simple prototype Tb database that includes both dynamic surface and atmospheric information physically consistent with the land surface model, emissivity model, and atmospheric information.
Latent Heating Retrieval from TRMM Observations Using a Simplified Thermodynamic Model
NASA Technical Reports Server (NTRS)
Grecu, Mircea; Olson, William S.
2003-01-01
A procedure for the retrieval of hydrometeor latent heating from TRMM active and passive observations is presented. The procedure is based on current methods for estimating multiple-species hydrometeor profiles from TRMM observations. The species include: cloud water, cloud ice, rain, and graupel (or snow). A three-dimensional wind field is prescribed based on the retrieved hydrometeor profiles, and, assuming a steady-state, the sources and sinks in the hydrometeor conservation equations are determined. Then, the momentum and thermodynamic equations, in which the heating and cooling are derived from the hydrometeor sources and sinks, are integrated one step forward in time. The hydrometeor sources and sinks are reevaluated based on the new wind field, and the momentum and thermodynamic equations are integrated one more step. The reevalution-integration process is repeated until a steady state is reached. The procedure is tested using cloud model simulations. Cloud-model derived fields are used to synthesize TRMM observations, from which hydrometeor profiles are derived. The procedure is applied to the retrieved hydrometeor profiles, and the latent heating estimates are compared to the actual latent heating produced by the cloud model. Examples of procedure's applications to real TRMM data are also provided.
Evaluating cloud retrieval algorithms with the ARM BBHRP framework
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mlawer,E.; Dunn,M.; Mlawer, E.
2008-03-10
Climate and weather prediction models require accurate calculations of vertical profiles of radiative heating. Although heating rate calculations cannot be directly validated due to the lack of corresponding observations, surface and top-of-atmosphere measurements can indirectly establish the quality of computed heating rates through validation of the calculated irradiances at the atmospheric boundaries. The ARM Broadband Heating Rate Profile (BBHRP) project, a collaboration of all the working groups in the program, was designed with these heating rate validations as a key objective. Given the large dependence of radiative heating rates on cloud properties, a critical component of BBHRP radiative closure analysesmore » has been the evaluation of cloud microphysical retrieval algorithms. This evaluation is an important step in establishing the necessary confidence in the continuous profiles of computed radiative heating rates produced by BBHRP at the ARM Climate Research Facility (ACRF) sites that are needed for modeling studies. This poster details the continued effort to evaluate cloud property retrieval algorithms within the BBHRP framework, a key focus of the project this year. A requirement for the computation of accurate heating rate profiles is a robust cloud microphysical product that captures the occurrence, height, and phase of clouds above each ACRF site. Various approaches to retrieve the microphysical properties of liquid, ice, and mixed-phase clouds have been processed in BBHRP for the ACRF Southern Great Plains (SGP) and the North Slope of Alaska (NSA) sites. These retrieval methods span a range of assumptions concerning the parameterization of cloud location, particle density, size, shape, and involve different measurement sources. We will present the radiative closure results from several different retrieval approaches for the SGP site, including those from Microbase, the current 'reference' retrieval approach in BBHRP. At the NSA, mixed-phase clouds and cloud with a low optical depth are prevalent; the radiative closure studies using Microbase demonstrated significant residuals. As an alternative to Microbase at NSA, the Shupe-Turner cloud property retrieval algorithm, aimed at improving the partitioning of cloud phase and incorporating more constrained, conditional microphysics retrievals, also has been evaluated using the BBHRP data set.« less
NASA Astrophysics Data System (ADS)
Rusli, Stephanie P.; Donovan, David P.; Russchenberg, Herman W. J.
2017-12-01
Despite the importance of radar reflectivity (Z) measurements in the retrieval of liquid water cloud properties, it remains nontrivial to interpret Z due to the possible presence of drizzle droplets within the clouds. So far, there has been no published work that utilizes Z to identify the presence of drizzle above the cloud base in an optimized and a physically consistent manner. In this work, we develop a retrieval technique that exploits the synergy of different remote sensing systems to carry out this task and to subsequently profile the microphysical properties of the cloud and drizzle in a unified framework. This is accomplished by using ground-based measurements of Z, lidar attenuated backscatter below as well as above the cloud base, and microwave brightness temperatures. Fast physical forward models coupled to cloud and drizzle structure parameterization are used in an optimal-estimation-type framework in order to retrieve the best estimate for the cloud and drizzle property profiles. The cloud retrieval is first evaluated using synthetic signals generated from large-eddy simulation (LES) output to verify the forward models used in the retrieval procedure and the vertical parameterization of the liquid water content (LWC). From this exercise it is found that, on average, the cloud properties can be retrieved within 5 % of the mean truth. The full cloud-drizzle retrieval method is then applied to a selected ACCEPT (Analysis of the Composition of Clouds with Extended Polarization Techniques) campaign dataset collected in Cabauw, the Netherlands. An assessment of the retrieval products is performed using three independent methods from the literature; each was specifically developed to retrieve only the cloud properties, the drizzle properties below the cloud base, or the drizzle fraction within the cloud. One-to-one comparisons, taking into account the uncertainties or limitations of each retrieval, show that our results are consistent with what is derived using the three independent methods.
NASA Technical Reports Server (NTRS)
Zhou, Daniel K.; Liu, Xu; Larar, Allen M.; Smith, WIlliam L.; Taylor, Jonathan P.; Schluessel, Peter; Strow, L. Larrabee; Mango, Stephen A.
2008-01-01
The Joint Airborne IASI Validation Experiment (JAIVEx) was conducted during April 2007 mainly for validation of the IASI on the MetOp satellite. IASI possesses an ultra-spectral resolution of 0.25/cm and a spectral coverage from 645 to 2760/cm. Ultra-spectral resolution infrared spectral radiance obtained from near nadir observations provide atmospheric, surface, and cloud property information. An advanced retrieval algorithm with a fast radiative transfer model, including cloud effects, is used for atmospheric profile and cloud parameter retrieval. This physical inversion scheme has been developed, dealing with cloudy as well as cloud-free radiance observed with ultraspectral infrared sounders, to simultaneously retrieve surface, atmospheric thermodynamic, and cloud microphysical parameters. A fast radiative transfer model, which applies to the cloud-free and/or clouded atmosphere, is used for atmospheric profile and cloud parameter retrieval. A one-dimensional (1-d) variational multi-variable inversion solution is used to improve an iterative background state defined by an eigenvector-regression-retrieval. The solution is iterated in order to account for non-linearity in the 1-d variational solution. It is shown that relatively accurate temperature and moisture retrievals are achieved below optically thin clouds. For optically thick clouds, accurate temperature and moisture profiles down to cloud top level are obtained. For both optically thin and thick cloud situations, the cloud top height can be retrieved with relatively high accuracy (i.e., error < 1 km). Preliminary retrievals of atmospheric soundings, surface properties, and cloud optical/microphysical properties with the IASI observations are obtained and presented. These retrievals will be further inter-compared with those obtained from airborne FTS system, such as the NPOESS Airborne Sounder Testbed - Interferometer (NAST-I), dedicated dropsondes, radiosondes, and ground based Raman Lidar. The capabilities of satellite ultra-spectral sounder such as the IASI are investigated indicating a high vertical structure of atmosphere is retrieved.
Hurricane Ivan as Observed by NASA's Spaceborne Atmospheric Infrared Sounder (AIRS)
NASA Technical Reports Server (NTRS)
2004-01-01
[figure removed for brevity, see original site] [figure removed for brevity, see original site] Figure 1: Microwave 89Ghz imageFigure 2: Visible/near infrared sensor Hurricane Ivan is the most powerful hurricane to hit the Caribbean in 10 years. On September 7 and 8 it damaged 90 percent of the homes in Grenada and killed at least 16 people as it swept over Grenada, Barbados and the other islands in the area. By Thursday morning on September 9, Ivan's sustained winds reached 160 mph making it a rare category 5 hurricane on the Saffir-Simpson scale. By Monday September 13, Ivan is blamed for 67 deaths and skirts western Cuba with winds clocked at 156 mph. The National Hurricane Center predicted the eye of Ivan will make landfall across Mobile Bay in Alabama late Wednesday or early Thursday. These images of Hurricane Ivan were acquired by the AIRS infrared, microwave, and visible sensors on September 15 at 1:30 pm local time as the storm moves in to Alabama. Ivan at category 4 strength is about 150 miles south of Mobile, Alabama and is moving north at 14 mph. Maximum sustained winds are reported to be at 135 mph and extend 105 miles from the center, while tropical storm-force winds extend 290 miles from the center. Ivan pounded the Gulf coast all day Wednesday, and is expected to make landfall between midnight and 3am in Mobile Bay, Alabama. This image shows how the storm looks through an AIRS Infrared window channel, and reveals a very large eye - about 75 km (50 miles) across. Window channels measure the temperature of the cloud tops or the surface of the Earth in cloud-free regions. The lowest temperatures are associated with high, cold cloud tops that make up the top of the hurricane. The infrared signal does not penetrate through clouds, so the purple color indicates the cool cloud tops of the storm. In cloud-free areas, the infrared signal is retrieved at the Earth's surface, revealing warmer temperatures. Cooler areas are pushing to purple and warmer areas are pushing to red. The microwave image (figure 2) reveals where the heaviest precipitation in Ivan is taking place. The blue areas within the storm show the location of this heavy precipitation. Blue areas outside of the storm where there are moderate or no clouds are where the cold (in the microwave sense) sea surface shines through. The image shows that the largest area of intense convection/precipitation is in the NE quadrant, centered near New Orleans. There is a smaller but still quite intense area in the SE quadrant trailing the center of the storm that might impact the Alabama coast. Image Journal [figure removed for brevity, see original site] September 7, Tuesday, 1:30 am. - infrared, 12micron The infrared signal does not penetrate through clouds, so the purple color reveals the cool cloud tops of the hurricane. In cloud-free areas, the infrared signal is retrieved at the Earth's surface, revealing warmer temperatures. Ivan becomes better organized as it approaches the Windward Islands. The center of the storm is 170 miles (275 km) southeast of Barbados and moving west at 21 mph (33 km/hr). Maximum sustained winds near 105 mph which extend outward at this force for 70 miles (110 km). [figure removed for brevity, see original site] September 7, Tuesday, 1:30 am. - microwave, 89GHz [figure removed for brevity, see original site] September 8, Wednesday, 1:30 am. - infrared, 12micron The infrared signal does not penetrate through clouds, so the purple color reveals the cool cloud tops of the hurricane. In cloud-free areas, the infrared signal is retrieved at the Earth's surface, revealing warmer temperatures. Ivan becomes better organized as it approaches the Windward Islands. The center of the storm is 170 miles (275 km) southeast of Barbados and moving west at 21 mph (33 km/hr). Maximum sustained winds near 105 mph which extend outward at this force for 70 miles (110 km). [figure removed for brevity, see original site] September 8, Wednesday, 1:30 am. - microwave, 89GHz [figure removed for brevity, see original site] September 10, Friday, 1:30 pm. - infrared, 12micron Ivan closes in on Jamaica. With only 85 miles between the storm and the island, Ivan's winds at category 4 are sustained at 145 mph (230 km/hr). Hurricane-strength winds extend up to 60 miles from the center of Ivan, and tropical-storm force winds are up to 175 miles from the center. Ivan is now better organized and has a well-defined eye. After Ivan leaves Jamaica, it is expected to hit western Cuba, probably making landfall later Sunday as a CAT 4 hurricane. [figure removed for brevity, see original site] September 10, Friday, 1:30 pm. - microwave, 89GHz [figure removed for brevity, see original site] September 10, Friday, 1:30 pm. - visible/near-infrared [figure removed for brevity, see original site] September 13, Friday, 1:30 pm. - infrared, 12micron Ivan's winds at category 5 strength are sustained at 160 mph (260 km/hr) and extend out to 105 miles from the center. Tropical-storm force winds are up to 205 miles from the center. The infrared image shows that the eye has grown quite large - perhaps 40 km (25 miles) across - which is sometimes an indication of weakening but may not be in this case. The surface pressure at the time of this image was estimated by the National Hurricane Center at 915 mb and falling - consistent with a very intense and strengthening hurricane. [figure removed for brevity, see original site] September 13, Friday, 1:30 pm. - microwave, 89GHz The microwave image shows that Ivan has again developed two distinct convective centers, separated by about 250 km. That pattern developed on September 5 and persisted for 4 days. It disappeared while the storm was passing over Jamaica, but it has now re-formed. [figure removed for brevity, see original site] September 13, Friday, 1:30 pm. - visible/near-infrared The Atmospheric Infrared Sounder Experiment, with its visible, infrared, and microwave detectors, provides a three-dimensional look at Earth's weather. Working in tandem, the three instruments can make simultaneous observations all the way down to the Earth's surface, even in the presence of heavy clouds. With more than 2,000 channels sensing different regions of the atmosphere, the system creates a global, 3-D map of atmospheric temperature and humidity and provides information on clouds, greenhouse gases, and many other atmospheric phenomena. The AIRS Infrared Sounder Experiment flies onboard NASA's Aqua spacecraft and is managed by NASA's Jet Propulsion Laboratory, Pasadena, Calif., under contract to NASA. JPL is a division of the California Institute of Technology in Pasadena.High Spectral Resolution Lidar for atmospheric temperature profiling.
NASA Astrophysics Data System (ADS)
Razenkov, I.; Eloranta, E. W.
2017-12-01
The High Spectral Resolution Lidar (HSRL) designed at the University of Wisconsin-Madison is equipped with two iodine absorption filters with different line widths (1.8 GHz and 2.85 GHz). The filters are implemented to discriminate between Mie and Rayleigh backscattering and to resolve temperature sensitive changes in Rayleigh spectrum for atmospheric temperature profile measurements. This measurement capability makes the instrument intrinsically and absolutely calibrated. HSRL has a shared transmitter-receiver telescope and operates in the eye-safe mode with the product of laser average power and telescope aperture less than 0.025 𝑊𝑚2 at 532 nm. With this low-power prototype instrument we have achieved temperature profile measurements extending above tropopause with a time resolution of several hours. Further instrument optimizations will reduce systematic measurement errors and will improve a signal-to-noise ratio providing temperature data comparable to a standard radiosonde with higher time resolution.
A Well-Calibrated Ocean Algorithm for Special Sensor Microwave/Imager
NASA Technical Reports Server (NTRS)
Wentz, Frank J.
1997-01-01
I describe an algorithm for retrieving geophysical parameters over the ocean from special sensor microwave/imager (SSM/I) observations. This algorithm is based on a model for the brightness temperature T(sub B) of the ocean and intervening atmosphere. The retrieved parameters are the near-surface wind speed W, the columnar water vapor V, the columnar cloud liquid water L, and the line-of-sight wind W(sub LS). I restrict my analysis to ocean scenes free of rain, and when the algorithm detects rain, the retrievals are discarded. The model and algorithm are precisely calibrated using a very large in situ database containing 37,650 SSM/I overpasses of buoys and 35,108 overpasses of radiosonde sites. A detailed error analysis indicates that the T(sub B) model rms accuracy is between 0.5 and 1 K and that the rms retrieval accuracies for wind, vapor, and cloud are 0.9 m/s, 1.2 mm, and 0.025 mm, respectively. The error in specifying the cloud temperature will introduce an additional 10% error in the cloud water retrieval. The spatial resolution for these accuracies is 50 km. The systematic errors in the retrievals are smaller than the rms errors, being about 0.3 m/s, 0.6 mm, and 0.005 mm for W, V, and L, respectively. The one exception is the systematic error in wind speed of -1.0 m/s that occurs for observations within +/-20 deg of upwind. The inclusion of the line-of-sight wind W(sub LS) in the retrieval significantly reduces the error in wind speed due to wind direction variations. The wind error for upwind observations is reduced from -3.0 to -1.0 m/s. Finally, I find a small signal in the 19-GHz, horizontal polarization (h(sub pol) T(sub B) residual DeltaT(sub BH) that is related to the effective air pressure of the water vapor profile. This information may be of some use in specifying the vertical distribution of water vapor.
NASA Astrophysics Data System (ADS)
Küchler, N.; Kneifel, S.; Kollias, P.; Loehnert, U.
2017-12-01
Cumulus and stratocumulus clouds strongly affect the Earth's radiation budget and are a major uncertainty source in weather and climate prediction models. To improve and evaluate models, a comprehensive understanding of cloud processes is necessary and references are needed. Therefore active and passive microwave remote sensing of clouds can be used to derive cloud properties such as liquid water path and liquid water content (LWC), which can serve as a reference for model evaluation. However, both the measurements and the assumptions when retrieving physical quantities from the measurements involve uncertainty sources. Frisch et al. (1998) combined radar and radiometer observations to derive LWC profiles. Assuming their assumptions are correct, there will be still uncertainties regarding the measurement setup. We investigate how varying beam width, temporal and vertical resolutions, frequency combinations, and beam overlap of and between the two instruments influence the retrieval of LWC profiles. Especially, we discuss the benefit of combining vertically, high resolved radar and radiometer measurements using the same antenna, i.e. having ideal beam overlap. Frisch, A. S., G. Feingold, C. W. Fairall, T. Uttal, and J. B. Snider, 1998: On cloud radar and microwave radiometer measurements of stratus cloud liquid water profiles. J. Geophys. Res.: Atmos., 103 (18), 23 195-23 197, doi:0148-0227/98/98JD-01827509.00.
Planck early results. XXV. Thermal dust in nearby molecular clouds
NASA Astrophysics Data System (ADS)
Planck Collaboration; Abergel, A.; Ade, P. A. R.; Aghanim, N.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Balbi, A.; Banday, A. J.; Barreiro, R. B.; Bartlett, J. G.; Battaner, E.; Benabed, K.; Benoît, A.; Bernard, J.-P.; Bersanelli, M.; Bhatia, R.; Bock, J. J.; Bonaldi, A.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.; Bucher, M.; Burigana, C.; Cabella, P.; Cardoso, J.-F.; Catalano, A.; Cayón, L.; Challinor, A.; Chamballu, A.; Chiang, L.-Y.; Chiang, C.; Christensen, P. R.; Clements, D. L.; Colombi, S.; Couchot, F.; Coulais, A.; Crill, B. P.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Gasperis, G.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Delouis, J.-M.; Désert, F.-X.; Dickinson, C.; Dobashi, K.; Donzelli, S.; Doré, O.; Dörl, U.; Douspis, M.; Dupac, X.; Efstathiou, G.; Enßlin, T. A.; Eriksen, H. K.; Finelli, F.; Forni, O.; Frailis, M.; Franceschi, E.; Galeotta, S.; Ganga, K.; Giard, M.; Giardino, G.; Giraud-Héraud, Y.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Guillet, V.; Hansen, F. K.; Harrison, D.; Henrot-Versillé, S.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hovest, W.; Hoyland, R. J.; Huffenberger, K. M.; Jaffe, A. H.; Jones, A.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Kneissl, R.; Knox, L.; Kurki-Suonio, H.; Lagache, G.; Lamarre, J.-M.; Lasenby, A.; Laureijs, R. J.; Lawrence, C. R.; Leach, S.; Leonardi, R.; Leroy, C.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; MacTavish, C. J.; Maffei, B.; Mandolesi, N.; Mann, R.; Maris, M.; Marshall, D. J.; Martin, P.; Martínez-González, E.; Masi, S.; Matarrese, S.; Matthai, F.; Mazzotta, P.; McGehee, P.; Meinhold, P. R.; Melchiorri, A.; Mendes, L.; Mennella, A.; Mitra, S.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Munshi, D.; Murphy, A.; Naselsky, P.; Natoli, P.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; Osborne, S.; Pajot, F.; Paladini, R.; Pasian, F.; Patanchon, G.; Perdereau, O.; Perotto, L.; Perrotta, F.; Piacentini, F.; Piat, M.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Poutanen, T.; Prézeau, G.; Prunet, S.; Puget, J.-L.; Reach, W. T.; Rebolo, R.; Reinecke, M.; Renault, C.; Ricciardi, S.; Riller, T.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Santos, D.; Savini, G.; Scott, D.; Seiffert, M. D.; Shellard, P.; Smoot, G. F.; Starck, J.-L.; Stivoli, F.; Stolyarov, V.; Sudiwala, R.; Sygnet, J.-F.; Tauber, J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Torre, J.-P.; Tristram, M.; Tuovinen, J.; Umana, G.; Valenziano, L.; Verstraete, L.; Vielva, P.; Villa, F.; Vittorio, N.; Wade, L. A.; Wandelt, B. D.; Yvon, D.; Zacchei, A.; Zonca, A.
2011-12-01
Planck allows unbiased mapping of Galactic sub-millimetre and millimetre emission from the most diffuse regions to the densest parts of molecular clouds. We present an early analysis of the Taurus molecular complex, on line-of-sight-averaged data and without component separation. The emission spectrum measured by Planck and IRAS can be fitted pixel by pixel using a single modified blackbody. Some systematic residuals are detected at 353 GHz and 143 GHz, with amplitudes around -7% and +13%, respectively, indicating that the measured spectra are likely more complex than a simple modified blackbody. Significant positive residuals are also detected in the molecular regions and in the 217 GHz and 100 GHz bands, mainly caused by the contribution of the J = 2 → 1 and J = 1 → 0 12CO and 13CO emission lines. We derive maps of the dust temperature T, the dust spectral emissivity index β, and the dust optical depth at 250 μm τ250. The temperature map illustrates the cooling of the dust particles in thermal equilibrium with the incident radiation field, from 16 - 17 K in the diffuse regions to 13 - 14 K in the dense parts. The distribution of spectral indices is centred at 1.78, with a standard deviation of 0.08 and a systematic error of 0.07. We detect a significant T - β anti-correlation. The dust optical depth map reveals the spatial distribution of the column density of the molecular complex from the densest molecular regions to the faint diffuse regions. We use near-infrared extinction and Hi data at 21-cm to perform a quantitative analysis of the spatial variations of the measured dust optical depth at 250 μm per hydrogen atom τ250/NH. We report an increase of τ250/NH by a factor of about 2 between the atomic phase and the molecular phase, which has a strong impact on the equilibrium temperature of the dust particles. Corresponding author: A. Abergel, e-mail: alain.abergel@ias.u-psud.fr
The Compact Radio Sources in the Nucleus of NGC 1068
NASA Astrophysics Data System (ADS)
Roy, A. L.; Colbert, E. J. M.; Wilson, A. S.; Ulvestad, J. S.
1998-09-01
We report VLBA images of the nucleus of the Seyfert galaxy NGC 1068 at 1.7, 5, and 15 GHz, with resolutions between 3 and 10 mas (0.2-0.7 pc) and a sensitivity of ~106 K at all three frequencies. Our goals are to study the morphology of the radio emission at subparsec resolution and to investigate thermal gas in the putative obscuring disk or torus and in the narrow-line region clouds through free-free absorption of the radio emission. All four known radio components in the central arcsecond (S2, S1, C, and NE, from south to north) have been detected at either 1.7 or 5 GHz, or both. No radio emission was detected at 15 GHz. Component S1 is probably associated with the active nucleus, with radio emission originating from the inner edge of the obscuring torus according to Gallimore et al. Our observed flux densities at 1.7 and 5 GHz are in agreement with their thermal bremsstrahlung emission model, and we find that the nuclear radiation may be strong enough to heat the gas in S1 to the required temperature of ~4 × 106 K. The bremsstrahlung power would be 0.15(frefl/0.01) times the bolometric luminosity of the nucleus between 1014.6 and 1018.4 Hz (where frefl is the fraction of radiation reflected into our line of sight by the electron-scattering mirror) and so the model is energetically reasonable. We also discuss two other models for S1 that also match the observed radio spectrum: electron scattering by the torus of radio emission from a compact synchrotron self-absorbed source and synchrotron radiation from the torus itself. Components NE and S2 have spectra consistent with optically thin synchrotron emission, without significant absorption. Both of these components are elongated roughly perpendicular to the larger scale radio jet, suggesting that their synchrotron emission is related to transverse shocks in the jet or to bow shocks in the external medium. Component C has a nonthermal spectrum absorbed at low frequency. This absorption is consistent with free-free absorption by plasma with conditions typical of narrow-line region clouds.
Fielding, M. D.; Chiu, J. C.; Hogan, R. J.; ...
2015-02-16
Active remote sensing of marine boundary-layer clouds is challenging as drizzle drops often dominate the observed radar reflectivity. We present a new method to simultaneously retrieve cloud and drizzle vertical profiles in drizzling boundary-layer cloud using surface-based observations of radar reflectivity, lidar attenuated backscatter, and zenith radiances. Specifically, the vertical structure of droplet size and water content of both cloud and drizzle is characterised throughout the cloud. An ensemble optimal estimation approach provides full error statistics given the uncertainty in the observations. To evaluate the new method, we first perform retrievals using synthetic measurements from large-eddy simulation snapshots of cumulusmore » under stratocumulus, where cloud water path is retrieved with an error of 31 g m −2. The method also performs well in non-drizzling clouds where no assumption of the cloud profile is required. We then apply the method to observations of marine stratocumulus obtained during the Atmospheric Radiation Measurement MAGIC deployment in the northeast Pacific. Here, retrieved cloud water path agrees well with independent 3-channel microwave radiometer retrievals, with a root mean square difference of 10–20 g m −2.« less
CloudSat 2C-ICE product update with a new Ze parameterization in lidar-only region.
Deng, Min; Mace, Gerald G; Wang, Zhien; Berry, Elizabeth
2015-12-16
The CloudSat 2C-ICE data product is derived from a synergetic ice cloud retrieval algorithm that takes as input a combination of CloudSat radar reflectivity ( Z e ) and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation lidar attenuated backscatter profiles. The algorithm uses a variational method for retrieving profiles of visible extinction coefficient, ice water content, and ice particle effective radius in ice or mixed-phase clouds. Because of the nature of the measurements and to maintain consistency in the algorithm numerics, we choose to parameterize (with appropriately large specification of uncertainty) Z e and lidar attenuated backscatter in the regions of a cirrus layer where only the lidar provides data and where only the radar provides data, respectively. To improve the Z e parameterization in the lidar-only region, the relations among Z e , extinction, and temperature have been more thoroughly investigated using Atmospheric Radiation Measurement long-term millimeter cloud radar and Raman lidar measurements. This Z e parameterization provides a first-order estimation of Z e as a function extinction and temperature in the lidar-only regions of cirrus layers. The effects of this new parameterization have been evaluated for consistency using radiation closure methods where the radiative fluxes derived from retrieved cirrus profiles compare favorably with Clouds and the Earth's Radiant Energy System measurements. Results will be made publicly available for the entire CloudSat record (since 2006) in the most recent product release known as R05.
Highlights from the IRAM-30m Telescope
NASA Astrophysics Data System (ADS)
Mauersberger, R.
The world's largest astronomical antenna for the entire mm-range, the IRAM 30m telescope, is operated in the Spanish Sierra Nevada by the Instituto de Radioastronomía Milimétrica (IRAM). IRAM is sponsored by the Spanish Instituto Geográfico Nacional, the German Max-Planck Gesellschaft and the French CNRS. The antenna is located at an altitude of almost 3000 m way above most of the atmospheric water vapor. Its high surface accuracy (˜ 50μ m) allows observations down to a wavelength of 1mm (corresponding to 280 Ghz). At this wavelength, the angular resolution of the IRAM 30m telescope is 10''. A technical summary can be found at http://www.iram.es/IRAMES/telescope/telescopeSummary/telescope_summary.html. The telescope is equipped with a 117 pixel bolometer camera for the 1.3 mm atmospheric window (MAMBO), which is mainly used to detect the thermal emission from interstellar dust, but also from solar system objects. There are several cooled heterodyne receiver systems which can be used for spectral line observations. First, there are eight single pixel heterodyne receivers for the principal spectral ranges used at the 30m telescope (3mm: 67-116 Ghz, 2mm: 130-183 Ghz, 1.3mm 194-266 Ghz and 1mm: 241-282 Ghz). These receivers can be combined flexibly in such a way that one can observe with 4 receiverrs simultaneously (either all four band in single polarization, or two bands respectively in dual polarization). A 2*9 pixel camera for the 1.3mm spectral range (210-276 Ghz) (HERA) can be used to map molecular line emission in the interstellar medium. The instantaneous bandwidth of each heterodyne receivers is up to 1 Ghz (500 Mhz in the 3mm range). Autocorrelation spectrometers and filterbanks with a large variety of spectral resolutions and bandwidths adopt to the needs for the investigation of different astronomical objects (in dark clouds the Doppler line width can be ll1 km/s, while in external galaxies typical linewidth are in the range of 200 km/s). The 30m telescope can be used to investigate a large range of objects (from planetary atmospheres and comets over stellar atmospheres, galactic and extragalactic star forming regions to molecular and thermal emission of high redshift galaxies) and of physical and astronomical processes. Molecular spectroscopy is a preferred research field of the IRAM 30m telescope, and it has detected many of the known inter- or circumstellar molecules for the first time, mainly because of its sensitive receivers and the angular resolution which is well adapted to the size of some interesting astronomical targets. The recent increase of available spectrometer channels makes it now possible to obtain full mm-spectral scans of evolved stars (e.g. IRC+10216), star forming regions (e.g. The Sagittarius B2 cloud near the center of the Milky Way, the dark cloud Barnard 1) or external galaxies (NGC253) in a reasonable amount of time. It turns out that these regions show a different chemical composition and complexity due to the dominant physical processes (ion molecule collisions, shocks, grain mantle evaporation ldots) and their evolutionary states. In some cases the information that can be obtained is not limited by the available integration time but by blending of many weak molecular lines. The IRAM 30m telescope (and the IRAM Plateau de Bure Interferometer: http://www.iram.fr) are open to the Spanish scientific community. However, the IRAM telescopes have a high oversubscription factor. Although observing is made easy, it is therefore recommended that first time users seek a collaboration with frequent users of these instruments. In order to attract new users to their instruments and to help to successfully compete for observing time, IRAM is organizing Observing Schools in Sierra Nevada and in Grenoble for non specialists in mm-astronomy (see e.g. http://www.iram.es/IRAMES).
What does reflection from cloud sides tell us about vertical distribution of cloud droplets?
NASA Technical Reports Server (NTRS)
Marshak, A.; Kaufman, Yoram; Martins, V.; Zubko, Victor
2006-01-01
In order to accurately measure the interaction of clouds with aerosols, we have to resolve the vertical distribution of cloud droplet sizes and determine the temperature of glaciation for clean and polluted clouds. Knowledge of the droplet vertical profile is also essential for understanding precipitation. So far, all existing satellites either measure cloud microphysics only at cloud top (e.g., MODIS) or give a vertical profile of precipitation sized droplets (e.g., Cloudsat). What if one measures cloud microphysical properties in the vertical by retrieving them from the solar and infrared radiation reflected or emitted from cloud sides? This was the idea behind CLAIM-3D (A 3D - cloud aerosol interaction mission) recently proposed by NASA GSFC. This presentation will focus on the interpretation of the radiation reflected from cloud sides. In contrast to plane-parallel approximation, a conventional approach to all current operational retrievals, 3D radiative transfer will be used for interpreting the observed reflectances. As a proof of concept, we will show a few examples of radiation reflected from cloud fields generated by a simple stochastic cloud model with prescribed microphysics. Instead of fixed values of the retrieved effective radii, the probability density functions of droplet size distributions will serve as possible retrievals.
NASA Technical Reports Server (NTRS)
Fairall, C. W.; Hare, J. E.; Snider, Jack B.
1990-01-01
As part of the FIRE/Extended Time Observations (ETO) program, extended time observations were made at San Nicolas Island (SNI) from March to October, 1987. Hourly averages of air temperature, relative humidity, wind speed and direction, solar irradiance, and downward longwave irradiance were recorded. The radiation sensors were standard Eppley pyranometers (shortwave) and pyrgeometers (longwave). The SNI data were processed in several ways to deduce properties of the stratocumulus covered marine boundary layer (MBL). For example, from the temperature and humidity the lifting condensation level, which is an estimate of the height of the cloud bottom, can be computed. A combination of longwave irradiance statistics can be used to estimate fractional cloud cover. An analysis technique used to estimate the integrated cloud liquid water content (W) and the cloud albedo from the measured solar irradiance is also described. In this approach, the cloud transmittance is computed by dividing the irradiance measured at some time by a clear sky value obtained at the same hour on a cloudless day. From the transmittance and the zenith angle, values of cloud albedo and W are computed using the radiative transfer parameterizations of Stephens (1978). These analysis algorithms were evaluated with 17 days of simultaneous and colocated mm-wave (20.6 and 31.65 GHz) radiometer measurements of W and lidar ceilometer measurements of cloud fraction and cloudbase height made during the FIRE IFO. The algorithms are then applied to the entire data set to produce a climatology of these cloud properties for the eight month period.
Hemispheric aerosol vertical profiles: anthropogenic impacts on optical depth and cloud nuclei.
Clarke, Antony; Kapustin, Vladimir
2010-09-17
Understanding the effect of anthropogenic combustion upon aerosol optical depth (AOD), clouds, and their radiative forcing requires regionally representative aerosol profiles. In this work, we examine more than 1000 vertical profiles from 11 major airborne campaigns in the Pacific hemisphere and confirm that regional enhancements in aerosol light scattering, mass, and number are associated with carbon monoxide from combustion and can exceed values in unperturbed regions by more than one order of magnitude. Related regional increases in a proxy for cloud condensation nuclei (CCN) and AOD imply that direct and indirect aerosol radiative effects are coupled issues linked globally to aged combustion. These profiles constrain the influence of combustion on regional AOD and CCN suitable for challenging climate model performance and informing satellite retrievals.
Reducing Surface Clutter in Cloud Profiling Radar Data
NASA Technical Reports Server (NTRS)
Tanelli, Simone; Pak, Kyung; Durden, Stephen; Im, Eastwood
2008-01-01
An algorithm has been devised to reduce ground clutter in the data products of the CloudSat Cloud Profiling Radar (CPR), which is a nadir-looking radar instrument, in orbit around the Earth, that measures power backscattered by clouds as a function of distance from the instrument. Ground clutter contaminates the CPR data in the lowest 1 km of the atmospheric profile, heretofore making it impossible to use CPR data to satisfy the scientific interest in studying clouds and light rainfall at low altitude. The algorithm is based partly on the fact that the CloudSat orbit is such that the geodetic altitude of the CPR varies continuously over a range of approximately 25 km. As the geodetic altitude changes, the radar timing parameters are changed at intervals defined by flight software in order to keep the troposphere inside a data-collection time window. However, within each interval, the surface of the Earth continuously "scans through" (that is, it moves across) a few range bins of the data time window. For each radar profile, only few samples [one for every range-bin increment ((Delta)r = 240 m)] of the surface-clutter signature are available around the range bin in which the peak of surface return is observed, but samples in consecutive radar profiles are offset slightly (by amounts much less than (Delta)r) with respect to each other according to the relative change in geodetic altitude. As a consequence, in a case in which the surface area under examination is homogenous (e.g., an ocean surface), a sequence of consecutive radar profiles of the surface in that area contains samples of the surface response with range resolution (Delta)p much finer than the range-bin increment ((Delta)p << r). Once the high-resolution surface response has thus become available, the profile of surface clutter can be accurately estimated by use of a conventional maximum-correlation scheme: A translated and scaled version of the high-resolution surface response is fitted to the observed low-resolution profile. The translation and scaling factors that optimize the fit in a maximum-correlation sense represent (1) the true position of the surface relative to the sampled surface peak and (2) the magnitude of the surface backscatter. The performance of this algorithm has been tested on CloudSat data acquired over an ocean surface. A preliminary analysis of the test data showed a surface-clutter-rejection ratio over flat surfaces of >10 dB and a reduction of the contaminated altitude over ocean from about 1 km to about 0.5 km (over the ocean). The algorithm has been embedded in CloudSat L1B processing as of Release 04 (July 2007), and the estimated flat surface clutter is removed in L2B-GEOPROF product from the observed profile of reflectivity (see CloudSat product documentation for details and performance at http://www.cloudsat.cira.colostate.edu/ dataSpecs.php?prodid=1).
Miniature MMIC Low Mass/Power Radiometer Modules for the 180 GHz GeoSTAR Array
NASA Technical Reports Server (NTRS)
Kangaslahti, Pekka; Tanner, Alan; Pukala, David; Lambrigtsen, Bjorn; Lim, Boon; Mei, Xiaobing; Lai, Richard
2010-01-01
We have developed and demonstrated miniature 180 GHz Monolithic Microwave Integrated Circuit (MMIC) radiometer modules that have low noise temperature, low mass and low power consumption. These modules will enable the Geostationary Synthetic Thinned Aperture Radiometer (GeoSTAR) of the Precipitation and All-weather Temperature and Humidity (PATH) Mission for atmospheric temperature and humidity profiling. The GeoSTAR instrument has an array of hundreds of receivers. Technology that was developed included Indium Phosphide (InP) MMIC Low Noise Amplifiers (LNAs) and second harmonic MMIC mixers and I-Q mixers, surface mount Multi-Chip Module (MCM) packages at 180 GHz, and interferometric array at 180 GHz. A complete MMIC chip set for the 180 GHz receiver modules (LNAs and I-Q Second harmonic mixer) was developed. The MMIC LNAs had more than 50% lower noise temperature (NT=300K) than previous state-of-art and MMIC I-Q mixers demonstrated low LO power (3 dBm). Two lots of MMIC wafers were processed with very high DC transconductance of up to 2800 mS/mm for the 35 nm gate length devices. Based on these MMICs a 180 GHz Multichip Module was developed that had a factor of 100 lower mass/volume (16x18x4.5 mm3, 3g) than previous generation 180 GHz receivers.
Status of a Parkes Survey of the Large Magellanic Cloud for Millisecond Pulsars and Transients
NASA Astrophysics Data System (ADS)
Crawford, Fronefield; Lorimer, Duncan; Ridley, Josh; Bonidie, Victoria; Faisal Alam, Md
2018-01-01
To date, no millisecond radio pulsars have been discovered outside of our Galaxy. We are undertaking the first survey of the Large Magellanic Cloud that is sensitive to millisecond pulsars. For this search we are using the 1.4 GHz multibeam receiver on the Parkes 64-m telescope. We also hope to discover new source populations and probe the high-end of the pulsar luminosity function. We are searching our data over a wide range of dispersion measures for both single-pulse events and for accelerated pulsars. With about 40% of the survey completed, we have discovered three new long-period pulsars (all of which have been published) but have not yet confirmed any new millisecond pulsars.
NASA Technical Reports Server (NTRS)
Joiner, J.; Vasilkov, A.; Gupta, P.; Bhartia, P. K.; Veefkind, P.; Sneep, M.; de Haan, J.; Polonsky, I.; Spurr, R.
2012-01-01
The cloud Optical Centroid Pressure (OCP), also known as the effective cloud pressure, is a satellite-derived parameter that is commonly used in trace-gas retrievals to account for the effects of clouds on near-infrared through ultraviolet radiance measurements. Fast simulators are desirable to further expand the use of cloud OCP retrievals into the operational and climate communities for applications such as data assimilation and evaluation of cloud vertical structure in general circulation models. In this paper, we develop and validate fast simulators that provide estimates of the cloud OCP given a vertical profile of optical extinction. We use a pressure-weighting scheme where the weights depend upon optical parameters of clouds and/or aerosol. A cloud weighting function is easily extracted using this formulation. We then use fast simulators to compare two different satellite cloud OCP retrievals from the Ozone Monitoring Instrument (OMI) with estimates based on collocated cloud extinction profiles from a combination of CloudS at radar and MODIS visible radiance data. These comparisons are made over a wide range of conditions to provide a comprehensive validation of the OMI cloud OCP retrievals. We find generally good agreement between OMI cloud OCPs and those predicted by CloudSat. However, the OMI cloud OCPs from the two independent algorithms agree better with each other than either does with the estimates from CloudSat/MODIS. Differences between OMI cloud OCPs and those based on CloudSat/MODIS may result from undetected snow/ice at the surface, cloud 3-D effects, low altitude clouds missed by CloudSat, and the fact that CloudSat only observes a relatively small fraction of an OMI field-of-view.
915-MHz Wind Profiler for Cloud Forecasting at Brookhaven National Laboratory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jensen, M.; Bartholomew, M. J.; Giangrande, S.
When considering the amount of shortwave radiation incident on a photovoltaic solar array and, therefore, the amount and stability of the energy output from the system, clouds represent the greatest source of short-term (i.e., scale of minutes to hours) variability through scattering and reflection of incoming solar radiation. Providing estimates of this short-term variability is important for determining and regulating the output from large solar arrays as they connect with the larger power infrastructure. In support of the installation of a 37-MW solar array on the grounds of Brookhaven National Laboratory (BNL), a study of the impacts of clouds onmore » the output of the solar array has been undertaken. The study emphasis is on predicting the change in surface solar radiation resulting from the observed/forecast cloud field on a 5-minute time scale. At these time scales, advection of cloud elements over the solar array is of particular importance. As part of the BNL Aerosol Life Cycle Intensive Operational Period (IOP), a 915-MHz Radar Wind Profiler (RWP) was deployed to determine the profile of low-level horizontal winds and the depth of the planetary boundary layer. The initial deployment mission of the 915-MHz RWP for cloud forecasting has been expanded the deployment to provide horizontal wind measurements for estimating and constraining cloud advection speeds. A secondary focus is on the observation of dynamics and microphysics of precipitation during cold season/winter storms on Long Island. In total, the profiler was deployed at BNL for 1 year from May 2011 through May 2012.« less
915-Mhz Wind Profiler for Cloud Forecasting at Brookhaven National Laboratory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jensen, M.; Bartholomew, M. J.; Giangrande, S.
When considering the amount of shortwave radiation incident on a photovoltaic solar array and, therefore, the amount and stability of the energy output from the system, clouds represent the greatest source of short-term (i.e., scale of minutes to hours) variability through scattering and reflection of incoming solar radiation. Providing estimates of this short-term variability is important for determining and regulating the output from large solar arrays as they connect with the larger power infrastructure. In support of the installation of a 37-MW solar array on the grounds of Brookhaven National Laboratory (BNL), a study of the impacts of clouds onmore » the output of the solar array has been undertaken. The study emphasis is on predicting the change in surface solar radiation resulting from the observed/forecast cloud field on a 5-minute time scale. At these time scales, advection of cloud elements over the solar array is of particular importance. As part of the BNL Aerosol Life Cycle Intensive Operational Period (IOP), a 915-MHz Radar Wind Profiler (RWP) was deployed to determine the profile of low-level horizontal winds and the depth of the planetary boundary layer. The initial deployment mission of the 915-MHz RWP for cloud forecasting has been expanded the deployment to provide horizontal wind measurements for estimating and constraining cloud advection speeds. A secondary focus is on the observation of dynamics and microphysics of precipitation during cold season/winter storms on Long Island. In total, the profiler was deployed at BNL for 1 year from May 2011 through May 2012.« less
NASA Astrophysics Data System (ADS)
Mangold, Alexander; Laffineur, Quentin; De Backer, Hugo; Herenz, Paul; Wex, Heike; Gossart, Alexandra; Souverijns, Niels; Gorodetskaya, Irina; Van Lipzig, Nicole
2016-04-01
Since 2010, several complementary ground-based instruments for measuring the aerosol composition of the Antarctic atmosphere have been operated at the Belgian Antarctic research station Princess Elisabeth, in Dronning Maud Land, East Antarctica (71.95° S, 23.35° E, 1390 m asl.). In addition, three ground-based remote sensing instruments for cloud and precipitation observations have been installed for continuous operation, including a ceilometer (cloud base height, type, vertical extent), a 24 Ghz micro-rain radar (vertical profiles of radar effective reflectivity and Doppler velocity), and a pyrometer (cloud base temperature). The station is inhabited from November to end of February and operates under remote control during the other months. In this contribution, the general aerosol and cloud condensation nuclei (CCN) properties will be described with a special focus on new particle formation events and around precipitation events. New particle formation events are important for the atmospheric aerosol budget and they also show that aerosols are not only transported to Antarctica but are also produced there, also inland. Aerosols are essential for cloud formation and therefore also for precipitation, which is the only source for mass gain of the Antarctic ice sheet. Measured aerosol properties comprise size distribution, total number, total mass concentration, mass concentration of light-absorbing aerosol and absorption coefficient and total scattering coefficient. In addition, a CCN counter has been operated during austral summers 2013/14, 2014/15 and 2015/16. The baseline total number concentration N-total was around some hundreds of particles/cm3. During new particle formation events N-total increased to some thousands of particles/cm3. Simultaneous measurements of N-total, size distribution and CCN number revealed that mostly the number of particles smaller than 100 nm increased and that the concentration of cloud condensation nuclei increased only very weakly, respectively. Further analysis of the CCN data indicate that the aerosol measured at Princess Elisabeth station consisted mainly of material with a hygroscopicity close to that of sulfate. The measured wavelength-dependent aerosol absorption and scattering coefficients give further insight on the aerosol type, showing that mainly strongly scattering aerosol dominates. However, the fraction of light-absorbing aerosol increased during the passage of some extra-tropical cyclones or frontal systems, indicating the presence of aged, long-range transported aerosol. The characterisation of the atmospheric aerosol at Princess Elisabeth station will be used in this contribution to compare it with simultaneously measured precipitation observations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kato, Yushi; Sakamoto, Naoki; Kiriyama, Ryutaro
2012-02-15
In order to contribute to various applications of plasma and beams based on an electron cyclotron resonance, a new concept on magnetic field with all magnets on plasma production and confinement has been proposed with enhanced efficiency for broad and dense ion beam. The magnetic field configuration consists of a pair of comb-shaped magnet surrounding plasma chamber cylindrically. Resonance zones corresponding for 2.45 GHz and 11-13 GHz frequencies are positioned at spatially different positions. We launch simultaneously multiplex frequencies microwaves operated individually, try to control profiles of the plasma parameters and the extracted ion beams, and to measure them inmore » detail.« less
Study of a Flexible Low Profile Tunable Dipole Antenna Using Barium Strontium Titanate Varactors
NASA Technical Reports Server (NTRS)
Cure, David; Weller, Thomas; Miranda, Felix A.
2014-01-01
In this paper a flexible low profile dipole antenna using a frequency selective surface (FSS) with interdigital barium strontium titanate (BST) varactor-tuned unit cells is presented. The varactor chips were placed only along one dimension of the FSS to avoid the use of vias and simplify the DC bias network. The antenna uses overlapping metallic plates that resemble fish scales as a ground plane to improve the flexibility of the multi-material stack structure. The measured data of the antenna demonstrate tunability from 2.42 GHz to 2.66 GHz and 1.3 dB gain drop when using overlapping metallic plates instead of continuous ground plane. The total antenna thickness is approximately lambda/24.
NASA Technical Reports Server (NTRS)
Greenwald, Thomas J.; Christopher, Sundar A.; Chou, Joyce
1997-01-01
Satellite observations of the cloud liquid water path (LWP) are compared from special sensor microwave imager (SSM/I) measurements and GOES 8 imager solar reflectance (SR) measurements to ascertain the impact of sub-field-of-view (FOV) cloud effects on SSM/I 37 GHz retrievals. The SR retrievals also incorporate estimates of the cloud droplet effective radius derived from the GOES 8 3.9-micron channel. The comparisons consist of simultaneous collocated and full-resolution measurements and are limited to nonprecipitating marine stratocumulus in the eastern Pacific for two days in October 1995. The retrievals from these independent methods are consistent for overcast SSM/I FOVS, with RMS differences as low as 0.030 kg/sq m, although biases exist for clouds with more open spatial structure, where the RMS differences increase to 0.039 kg/sq m. For broken cloudiness within the SSM/I FOV the average beam-filling error (BFE) in the microwave retrievals is found to be about 22% (average cloud amount of 73%). This systematic error is comparable with the average random errors in the microwave retrievals. However, even larger BFEs can be expected for individual FOVs and for regions with less cloudiness. By scaling the microwave retrievals by the cloud amount within the FOV, the systematic BFE can be significantly reduced but with increased RMS differences of O.046-0.058 kg/sq m when compared to the SR retrievals. The beam-filling effects reported here are significant and are expected to impact directly upon studies that use instantaneous SSM/I measurements of cloud LWP, such as cloud classification studies and validation studies involving surface-based or in situ data.
Profiling atmospheric water vapor by microwave radiometry
NASA Technical Reports Server (NTRS)
Wang, J. R.; Wilheit, T. T.; Szejwach, G.; Gesell, L. H.; Nieman, R. A.; Niver, D. S.; Krupp, B. M.; Gagliano, J. A.; King, J. L.
1983-01-01
High-altitude microwave radiometric observations at frequencies near 92 and 183.3 GHz were used to study the potential of retrieving atmospheric water vapor profiles over both land and water. An algorithm based on an extended kalman-Bucy filter was implemented and applied for the water vapor retrieval. The results show great promise in atmospheric water vapor profiling by microwave radiometry heretofore not attainable at lower frequencies.
NASA Technical Reports Server (NTRS)
Olson, William S.; Bauer, Peter; Viltard, Nicolas F.; Johnson, Daniel E.; Tao, Wei-Kuo
2000-01-01
In this study, a 1-D steady-state microphysical model which describes the vertical distribution of melting precipitation particles is developed. The model is driven by the ice-phase precipitation distributions just above the freezing level at applicable gridpoints of "parent" 3-D cloud-resolving model (CRM) simulations. It extends these simulations by providing the number density and meltwater fraction of each particle in finely separated size categories through the melting layer. The depth of the modeled melting layer is primarily determined by the initial material density of the ice-phase precipitation. The radiative properties of melting precipitation at microwave frequencies are calculated based upon different methods for describing the dielectric properties of mixed phase particles. Particle absorption and scattering efficiencies at the Tropical Rainfall Measuring Mission Microwave Imager frequencies (10.65 to 85.5 GHz) are enhanced greatly for relatively small (approx. 0.1) meltwater fractions. The relatively large number of partially-melted particles just below the freezing level in stratiform regions leads to significant microwave absorption, well-exceeding the absorption by rain at the base of the melting layer. Calculated precipitation backscatter efficiencies at the Precipitation Radar frequency (13.8 GHz) increase in proportion to the particle meltwater fraction, leading to a "bright-band" of enhanced radar reflectivities in agreement with previous studies. The radiative properties of the melting layer are determined by the choice of dielectric models and the initial water contents and material densities of the "seeding" ice-phase precipitation particles. Simulated melting layer profiles based upon snow described by the Fabry-Szyrmer core-shell dielectric model and graupel described by the Maxwell-Garnett water matrix dielectric model lead to reasonable agreement with radar-derived melting layer optical depth distributions. Moreover, control profiles that do not contain mixed-phase precipitation particles yield optical depths that are systematically lower than those observed. Therefore, the use of the melting layer model to extend 3-D CRM simulations appears justified, at least until more realistic spectral methods for describing melting precipitation in high-resolution, 3-D CRM's are implemented.
The ARM Cloud Radar Simulator for Global Climate Models: Bridging Field Data and Climate Models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Yuying; Xie, Shaocheng; Klein, Stephen A.
Clouds play an important role in Earth’s radiation budget and hydrological cycle. However, current global climate models (GCMs) have had difficulties in accurately simulating clouds and precipitation. To improve the representation of clouds in climate models, it is crucial to identify where simulated clouds differ from real world observations of them. This can be difficult, since significant differences exist between how a climate model represents clouds and what instruments observe, both in terms of spatial scale and the properties of the hydrometeors which are either modeled or observed. To address these issues and minimize impacts of instrument limitations, the conceptmore » of instrument “simulators”, which convert model variables into pseudo-instrument observations, has evolved with the goal to improve and to facilitate the comparison of modeled clouds with observations. Many simulators have (and continue to be developed) for a variety of instruments and purposes. A community satellite simulator package, the Cloud Feedback Model Intercomparison Project (CFMIP) Observation Simulator Package (COSP; Bodas-Salcedo et al. 2011), contains several independent satellite simulators and is being widely used in the global climate modeling community to exploit satellite observations for model cloud evaluation (e.g., Klein et al. 2013; Zhang et al. 2010). This article introduces a ground-based cloud radar simulator developed by the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) program for comparing climate model clouds with ARM observations from its vertically pointing 35-GHz radars. As compared to CloudSat radar observations, ARM radar measurements occur with higher temporal resolution and finer vertical resolution. This enables users to investigate more fully the detailed vertical structures within clouds, resolve thin clouds, and quantify the diurnal variability of clouds. Particularly, ARM radars are sensitive to low-level clouds, which are difficult for the CloudSat radar to detect due to surface contamination (Mace et al. 2007; Marchand et al. 2008). Therefore, the ARM ground-based cloud observations can provide important observations of clouds that complement measurements from space.« less
Low-cost dielectric substrate for designing low profile multiband monopole microstrip antenna.
Ahsan, M R; Islam, M T; Habib Ullah, M; Arshad, H; Mansor, M F
2014-01-01
This paper proposes a small sized, low-cost multiband monopole antenna which can cover the WiMAX bands and C-band. The proposed antenna of 20 × 20 mm(2) radiating patch is printed on cost effective 1.6 mm thick fiberglass polymer resin dielectric material substrate and fed by 4 mm long microstrip line. The finite element method based, full wave electromagnetic simulator HFSS is efficiently utilized for designing and analyzing the proposed antenna and the antenna parameters are measured in a standard far-field anechoic chamber. The experimental results show that the prototype of the antenna has achieved operating bandwidths (voltage stand wave ratio (VSWR) less than 2) 360 MHz (2.53-2.89 GHz) and 440 MHz (3.47-3.91 GHz) for WiMAX and 1550 MHz (6.28-7.83 GHz) for C-band. The simulated and measured results for VSWR, radiation patterns, and gain are well matched. Nearly omnidirectional radiation patterns are achieved and the peak gains are of 3.62 dBi, 3.67 dBi, and 5.7 dBi at 2.66 GHz, 3.65 GHz, and 6.58 GHz, respectively.
NASA Astrophysics Data System (ADS)
Solorzano, N. N.; Thomas, J. N.; Hutchins, M. L.; Holzworth, R. H.
2016-10-01
We investigate lightning strokes and deep convection through the examination of cloud-to-ground (CG) lightning from the World Wide Lightning Location Network (WWLLN) and passive microwave radiometer data. Microwave channels at 37 to 183.3 GHz are provided by the Tropical Rainfall Measuring Mission satellite (TRMM) Microwave Imager (TMI) and the Special Sensor Microwave Imager/Sounder (SSMIS) on the Defense Meteorological Satellite Program (DMSP) satellite F16. The present study compares WWLLN stroke rates and minimum radiometer brightness temperatures (Tbs) for two Northern Hemisphere and Southern Hemisphere summers (2009-2011) in the broad tropics (35°S to 35°N). To identify deep convection, we use lightning data and Tbs derived from all channels and differences in the Tbs (ΔTbs) of the three water vapor channels near 183.3 GHz. We find that stroke probabilities increase with increasing Tb depressions for all frequencies examined. Moreover, we apply methods that use the 183.3 GHz channels to pinpoint deep convection associated with lightning. High lightning stroke probabilities are found over land regions for both intense and relatively weak convective systems, although the TMI 85 GHz results should be used with caution as they are affected by a 7 km gap between the conical scans. Over the ocean, lightning is associated mostly with larger Tb depressions. Generally, our results support the noninductive thundercloud charging mechanism but do not rule out the inductive mechanism during the mature stages of storms. Lastly, we present a case study in which lightning stroke rates are used to reconstruct microwave radiometer Tbs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Turner, D. D.; Cadeddu, M. P.; Lohnert, U.
2009-10-01
Abstract—Ground-based observations from two different radiometers are used to evaluate commonly used microwave/ millimeter-wave propagation models at 150 GHz. This frequency has strong sensitivity to changes in precipitable water vapor (PWV) and cloud liquid water. The observations were collected near Hesselbach, Germany, as part of the Atmospheric Radiation Measurement program’s support of the General Observing Period and the Convective and Orographic Precipitation Study. The observations from the two radiometers agree well with each other, with a slope of 0.993 and a mean bias of 0.12 K. The observations demonstrate that the relative sensitivity of the different absorption models to PWVmore » in clear-sky conditions at 150 GHz is significant and that four models differ significantly from the observed brightness temperature. These models were modified to get agreement with the 150-GHz observations, where the PWV ranged from 0.35 to 2.88 cm. The models were modified by adjusting the strength of the foreign- and self-broadened water vapor continuum coefficients, where the magnitude was model dependent. In all cases, the adjustment to the two components of the water vapor continuum was in opposite directions (i.e., increasing the contribution from the foreign-broadened component while decreasing contribution from the self-broadened component or vice versa). While the original models had significant disagreements relative to each other, the resulting modified models show much better agreement relative to each other throughout the microwave spectrum. The modified models were evaluated using independent observations at 31.4 GHz.« less
Cloud Properties and Radiative Heating Rates for TWP
Comstock, Jennifer
2013-11-07
A cloud properties and radiative heating rates dataset is presented where cloud properties retrieved using lidar and radar observations are input into a radiative transfer model to compute radiative fluxes and heating rates at three ARM sites located in the Tropical Western Pacific (TWP) region. The cloud properties retrieval is a conditional retrieval that applies various retrieval techniques depending on the available data, that is if lidar, radar or both instruments detect cloud. This Combined Remote Sensor Retrieval Algorithm (CombRet) produces vertical profiles of liquid or ice water content (LWC or IWC), droplet effective radius (re), ice crystal generalized effective size (Dge), cloud phase, and cloud boundaries. The algorithm was compared with 3 other independent algorithms to help estimate the uncertainty in the cloud properties, fluxes, and heating rates (Comstock et al. 2013). The dataset is provided at 2 min temporal and 90 m vertical resolution. The current dataset is applied to time periods when the MMCR (Millimeter Cloud Radar) version of the ARSCL (Active Remotely-Sensed Cloud Locations) Value Added Product (VAP) is available. The MERGESONDE VAP is utilized where temperature and humidity profiles are required. Future additions to this dataset will utilize the new KAZR instrument and its associated VAPs.
Impact of Arctic sea-ice retreat on the recent change in cloud-base height during autumn
NASA Astrophysics Data System (ADS)
Sato, K.; Inoue, J.; Kodama, Y.; Overland, J. E.
2012-12-01
Cloud-base observations over the ice-free Chukchi and Beaufort Seas in autumn were conducted using a shipboard ceilometer and radiosondes during the 1999-2010 cruises of the Japanese R/V Mirai. To understand the recent change in cloud base height over the Arctic Ocean, these cloud-base height data were compared with the observation data under ice-covered situation during SHEBA (the Surface Heat Budget of the Arctic Ocean project in 1998). Our ice-free results showed a 30 % decrease (increase) in the frequency of low clouds with a ceiling below (above) 500 m. Temperature profiles revealed that the boundary layer was well developed over the ice-free ocean in the 2000s, whereas a stable layer dominated during the ice-covered period in 1998. The change in surface boundary conditions likely resulted in the difference in cloud-base height, although it had little impact on air temperatures in the mid- and upper troposphere. Data from the 2010 R/V Mirai cruise were investigated in detail in terms of air-sea temperature difference. This suggests that stratus cloud over the sea ice has been replaced as stratocumulus clouds with low cloud fraction due to the decrease in static stability induced by the sea-ice retreat. The relationship between cloud-base height and air-sea temperature difference (SST-Ts) was analyzed in detail using special section data during 2010 cruise data. Stratus clouds near the sea surface were predominant under a warm advection situation, whereas stratocumulus clouds with a cloud-free layer were significant under a cold advection situation. The threshold temperature difference between sea surface and air temperatures for distinguishing the dominant cloud types was 3 K. Anomalous upward turbulent heat fluxes associated with the sea-ice retreat have likely contributed to warming of the lower troposphere. Frequency distribution of the cloud-base height (km) detected by a ceilometer/lidar (black bars) and radiosondes (gray bars), and profiles of potential temperature (K) for (a) ice-free cases (R/V Mirai during September) and (b) ice-covered case (SHEBA during September 1998). (c) Vertical profiles of air temperature from 1000 hPa to 150 hPa (solid lines: observations north of 75°N, and dashed lines: the ERA-Interim reanalysis over 75-82.5°N, 150-170°W). Green, blue, and red lines denote profiles derived from observations by NP stations (the 1980s), SHEBA (1998), and the R/V Mirai (the 2000s), respectively. (d) Temperature trend calculated by the ERA-Interim reanalysis over the area.
NASA Technical Reports Server (NTRS)
Shenk, W. E.; Adler, R. F.; Chesters, D.; Susskind, J.; Uccellini, L.
1984-01-01
The measurements from current and planned geosynchronous satellites provide quantitative estimates of temperature and moisture profiles, surface temperature, wind, cloud properties, and precipitation. A number of significant observation characteristics remain, they include: (1) temperature and moisture profiles in cloudy areas; (2) high vertical profile resolution; (3) definitive precipitation area mapping and precipitation rate estimates on the convective cloud scale; (4) winds from low level cloud motions at night; (5) the determination of convective cloud structure; and (6) high resolution surface temperature determination. Four major new observing capabilities are proposed to overcome these deficiencies: a microwave sounder/imager, a high resolution visible and infrared imager, a high spectral resolution infrared sounder, and a total ozone mapper. It is suggested that the four sensors are flown together and used to support major mesoscale and short range forecasting field experiments.
VizieR Online Data Catalog: Planck Catalogue of Galactic cold clumps (PGCC) (Planck+, 2016)
NASA Astrophysics Data System (ADS)
Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartolo, N.; Battaner, E.; Benabed, K.; Benoit, A.; Benoit-Levy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.; Bucher, M.; Burigana, C.; Butler, R. C.; Calabrese, E.; Catalano, A.; Chamballu, A.; Chiang, H. C.; Christensen, P. R.; Clements, D. L.; Colombi, S.; Colombo, L. P. L.; Combet, C.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; De Rosa, A.; de Zotti, G.; Delabrouille, J.; Desert, F.-X.; Dickinson, C.; Diego, J. M.; Dole, H.; Donzelli, S.; Dore, O.; Douspis, M.; Ducout, A.; Dupac, X.; Efstathiou, G.; Elsner, F.; Ensslin, T. A.; Eriksen, H. K.; Falgarone, E.; Fergusson, J.; Fergusson, J.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Frejsel, A.; Galeotta, S.; Galli, S.; Ganga, K.; Giard, M.; Giraud-Heraud, Y.; Gjerlow, E.; Gonzalez-Nuevo, J.; Gorsk, I. K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Gudmundsson, J. E.; Hansen, F. K.; Hanson, D.; Harrison, D. L.; Helou, G.; Henrot-Versille, S.; Hernandez-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hovest, W.; Huffenberger, K. M.; Hurier, G.; Jaffe, A. H.; Jaffe, T. R.; Jones, W. C.; Juvela, M.; Keihanen, E.; Keskitalo, R.; Kisner, T. S.; Knoche, J.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lamarre, J.-M.; Lasenby, A.; Lattanzi, M.; Lawrence, C. R.; Leonardi, R.; Lesgourgues, J.; Levrier, F.; Liguori, M.; Lilje, P. B.; Linden-Vornle, M.; Lopez-Caniego, M.; Lubin, P. M.; Macias-Perez, J. F.; Maggio, G.; Maino, D.; Mandolesi, N.; Mangilli, A.; Marshall, D. J.; Martin, P. G.; Martinez-Gonzalez, E.; Masi, S.; Matarrese, S.; Mazzotta, P.; McGehee, P.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra, S.; Miville-Deschenes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Moss, A.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C. B.; Norgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; Oxborrow, C. A.; Paci, F.; Pagano, L.; Pajot, F.; Paladini, R.; Paoletti, D.; Pasian, F.; Patanchon, G.; Pearson, T. J.; Pelkonen, V.-M.; Perdereau, O.; Perotto, L.; Perrotta, F.; Pettorino, V.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Pratt, G. W.; Prezeau, G.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Reach, W. T.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Renzi, A.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Rossetti, M.; Roudier, G.; Rubino-Martin, J. A.; Rusholme, B.; Sandri, M.; Santos, D.; Savelainen, M.; Savini, G.; Scott, D.; Seiffert, M. D.; Shellard, E. P. S.; Spencer, L. D.; Stolyarov, V.; Sudiwala, R.; Sunyaev, R.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Tuovinen, J.; Umana, G.; Valenziano, L.; Valiviita, J.; van Tent, B.; Vielva, P.; Villa, F.; Wade, L. A.; Wandelt, B. D.; Wehus, I. K.; Yvon, D.; Zacchei, A.; Zonca, A.
2017-01-01
The Planck Catalogue of Galactic Cold Clumps (PGCC) is a list of 13188 Galactic sources and 54 sources located in the Small and Large Magellanic Clouds. The sources have been identified in Planck data as sources colder than their environment. It has been built using the 48 months Planck data at 857, 545, and 353GHz combined with the 3THz IRAS data. (1 data file).
Propagation Effects in Space/Earth Paths.
1980-08-01
effects of clouds, fogs and gaseous absorption. The background loss in the various atmospheric windows occurring above 70 GHz appears to be higher...strongly positive, all the cases plotted give loss in horizon exceeding 50 km except for the thinnest region (0.1 km) and the smallers N (270). s 5...scatter signals causing respectively: a loss in signal level, a decrease in the efficiency of dual-polarize6 channels and station-to-station interference
Tropical Cloud Properties and Radiative Heating Profiles
Mather, James
2008-01-15
We have generated a suite of products that includes merged soundings, cloud microphysics, and radiative fluxes and heating profiles. The cloud microphysics is strongly based on the ARM Microbase value added product (Miller et al., 2003). We have made a few changes to the microbase parameterizations to address issues we observed in our initial analysis of the tropical data. The merged sounding product is not directly related to the product developed by ARM but is similar in that it uses the microwave radiometer to scale the radiosonde column water vapor. The radiative fluxes also differ from the ARM BBHRP (Broadband Heating Rate Profile) product in terms of the radiative transfer model and the sampling interval.
Redesign of the End Group in the 3.9 GHz LCLS-II Cavity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lunin, Andrei; Gonin, Ivan; Khabiboulline, Timergali
Development and production of Linac Coherent Light Source II (LCLS-II) is underway. The central part of LCLS-II is a continuous wave superconducting RF (CW SCRF) electron linac. The 3.9 GHz third harmonic cavity similar to the XFEL design will be used in LCLS-II for linearizing the longitudinal beam profile*. The initial design of the 3.9 GHz cavity developed for XFEL project has a large, 40 mm, beam pipe aperture for better higher-order mode (HOM) damping. It is resulted in dipole HOMs with frequencies nearby the operating mode, which causes difficulties with HOM coupler notch filter tuning. The CW linac operationmore » requires an extra caution in the design of the HOM coupler in order to prevent its possible overheating. In this paper we present the modified 3.9 GHz cavity End Group for meeting the LCLS-II requirements« less
NASA Technical Reports Server (NTRS)
Weisz, Elisabeth; Li, Jun; Li, Jinlong; Zhou, Daniel K.; Huang, Hung-Lung; Goldberg, Mitchell D.; Yang, Ping
2007-01-01
High-spectral resolution measurements from the Atmospheric Infrared Sounder (AIRS) onboard the EOS (Earth Observing System) Aqua satellite provide unique information about atmospheric state, surface and cloud properties. This paper presents an AIRS alone single field-of-view (SFOV) retrieval algorithm to simultaneously retrieve temperature, humidity and ozone profiles under all weather conditions, as well as cloud top pressure (CTP) and cloud optical thickness (COT) under cloudy skies. For optically thick cloud conditions the above-cloud soundings are derived, whereas for clear skies and optically thin cloud conditions the profiles are retrieved from 0.005 hPa down to the earth's surface. Initial validation has been conducted by using the operational MODIS (Moderate Resolution Imaging Spectroradiometer) product, ECMWF (European Center of Medium range Weather Forecasts) analysis fields and radiosonde observations (RAOBs). These inter-comparisons clearly demonstrate the potential of this algorithm to process data from 38 high-spectral infrared (IR) sounder instruments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chibueze, James O.; Imura, Kenji; Omodaka, Toshihiro
2013-01-01
We mapped the (1,1), (2,2), and (3,3) lines of NH{sub 3} toward the molecular cloud associated with the Monkey Head Nebula (MHN) with a 1.'6 angular resolution using a Kashima 34 m telescope operated by the National Institute of Information and Communications Technology (NICT). The kinetic temperature of the molecular gas is 15-30 K in the eastern part and 30-50 K in the western part. The warmer gas is confined to a small region close to the compact H II region S252A. The cooler gas is extended over the cloud even near the extended H II region, the MHN. Wemore » made radio continuum observations at 8.4 GHz using the Yamaguchi 32 m radio telescope. The resultant map shows no significant extension from the H{alpha} image. This means that the molecular cloud is less affected by the MHN, suggesting that the molecular cloud did not form by the expanding shock of the MHN. Although the spatial distribution of the Wide-field Infrared Survey Explorer and Two Micron All Sky Survey point sources suggests that triggered low- and intermediate-mass star formation took place locally around S252A, but the exciting star associated with it should be formed spontaneously in the molecular cloud.« less
The 60 GHz IMPATT diode development
NASA Technical Reports Server (NTRS)
Dat, Rovindra; Ayyagari, Murthy; Hoag, David; Sloat, David; Anand, Yogi; Whitely, Stan
1986-01-01
The objective is to develop 60 GHz IMPATT diodes suitable for communications applications. The performance goals of the 60 GHz IMPATT is 1W CW output power with a conversion efficiency of 15 percent and 10-year lifetime. The final design of the 60 GHz IMPATT structure evolved from computer simulations performed at the University of Michigan. The initial doping profile, involving a hybrid double-drift (HDD) design, was derived from a drift-diffusion model that used the static velocity-field characteristics for GaAs. Unfortunately, the model did not consider the effects of velocity undershoot and delay of the avalanche process due to energy relaxation. Consequently, the initial devices were oscillating at a much lower frequency than anticipated. With a revised simulation program that included the two effects given above, a second HDD profile was generated and was used as a basis for fabrication efforts. In the area of device fabrication, significant progress was made in epitaxial growth and characterization, wafer processing, and die assembly. The organo-metallic chemical vapor deposition (OMCVD) was used. Starting with a baseline X-Band IMPATT technology, appropriate processing steps were modified to satisfy the device requirements at V-Band. In terms of efficiency and reliability, the device requirements dictate a reduction in its series resistance and thermal resistance values. Qualitatively, researchers were able to reduce the diodes' series resistance by reducing the thickness of the N+ GaAs substrate used in its fabrication.
Cadeddu, Maria P.; Marchand, Roger; Orlandi, Emiliano; ...
2017-08-11
Satellite and ground-based microwave radiometers are routinely used for the retrieval of liquid water path (LWP) under all atmospheric conditions. The retrieval of water vapor and LWP from ground-based radiometers during rain has proved to be a difficult challenge for two principal reasons: the inadequacy of the nonscattering approximation in precipitating clouds and the deposition of rain drops on the instrument's radome. In this paper, we combine model computations and real ground-based, zenith-viewing passive microwave radiometer brightness temperature measurements to investigate how total, cloud, and rain LWP retrievals are affected by assumptions on the cloud drop size distribution (DSD) andmore » under which conditions a nonscattering approximation can be considered reasonably accurate. Results show that until the drop effective diameter is larger than similar to 200 mu m, a nonscattering approximation yields results that are still accurate at frequencies less than 90 GHz. For larger drop sizes, it is shown that higher microwave frequencies contain useful information that can be used to separate cloud and rain LWP provided that the vertical distribution of hydrometeors, as well as the DSD, is reasonably known. The choice of the DSD parameters becomes important to ensure retrievals that are consistent with the measurements. A physical retrieval is tested on a synthetic data set and is then used to retrieve total, cloud, and rain LWP from radiometric measurements during two drizzling cases at the atmospheric radiation measurement Eastern North Atlantic site.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cadeddu, Maria P.; Marchand, Roger; Orlandi, Emiliano
Satellite and ground-based microwave radiometers are routinely used for the retrieval of liquid water path (LWP) under all atmospheric conditions. The retrieval of water vapor and LWP from ground-based radiometers during rain has proved to be a difficult challenge for two principal reasons: the inadequacy of the nonscattering approximation in precipitating clouds and the deposition of rain drops on the instrument's radome. In this paper, we combine model computations and real ground-based, zenith-viewing passive microwave radiometer brightness temperature measurements to investigate how total, cloud, and rain LWP retrievals are affected by assumptions on the cloud drop size distribution (DSD) andmore » under which conditions a nonscattering approximation can be considered reasonably accurate. Results show that until the drop effective diameter is larger than similar to 200 mu m, a nonscattering approximation yields results that are still accurate at frequencies less than 90 GHz. For larger drop sizes, it is shown that higher microwave frequencies contain useful information that can be used to separate cloud and rain LWP provided that the vertical distribution of hydrometeors, as well as the DSD, is reasonably known. The choice of the DSD parameters becomes important to ensure retrievals that are consistent with the measurements. A physical retrieval is tested on a synthetic data set and is then used to retrieve total, cloud, and rain LWP from radiometric measurements during two drizzling cases at the atmospheric radiation measurement Eastern North Atlantic site.« less
Fingerprints of a riming event on cloud radar Doppler spectra: observations and modeling
Kalesse, Heike; Szyrmer, Wanda; Kneifel, Stefan; ...
2016-03-09
In this paper, Radar Doppler spectra measurements are exploited to study a riming event when precipitating ice from a seeder cloud sediment through a supercooled liquid water (SLW) layer. The focus is on the "golden sample" case study for this type of analysis based on observations collected during the deployment of the Atmospheric Radiation Measurement Program's (ARM) mobile facility AMF2 at Hyytiälä, Finland, during the Biogenic Aerosols – Effects on Clouds and Climate (BAECC) field campaign. The presented analysis of the height evolution of the radar Doppler spectra is a state-of-the-art retrieval with profiling cloud radars in SLW layers beyondmore » the traditional use of spectral moments. Dynamical effects are considered by following the particle population evolution along slanted tracks that are caused by horizontal advection of the cloud under wind shear conditions. In the SLW layer, the identified liquid peak is used as an air motion tracer to correct the Doppler spectra for vertical air motion and the ice peak is used to study the radar profiles of rimed particles. A 1-D steady-state bin microphysical model is constrained using the SLW and air motion profiles and cloud top radar observations. The observed radar moment profiles of the rimed snow can be simulated reasonably well by the model, but not without making several assumptions about the ice particle concentration and the relative role of deposition and aggregation. In conclusion, this suggests that in situ observations of key ice properties are needed to complement the profiling radar observations before process-oriented studies can effectively evaluate ice microphysical parameterizations.« less
NASA Astrophysics Data System (ADS)
Nayak, M.; Beck, J.; Udrea, B.
This paper focuses on the aerospace application of a single beam laser rangefinder (LRF) for 3D imaging, shape detection, and reconstruction in the context of a space-based space situational awareness (SSA) mission scenario. The primary limitation to 3D imaging from LRF point clouds is the one-dimensional nature of the single beam measurements. A method that combines relative orbital motion and scanning attitude motion to generate point clouds has been developed and the design and characterization of multiple relative motion and attitude maneuver profiles are presented. The target resident space object (RSO) has the shape of a generic telecommunications satellite. The shape and attitude of the RSO are unknown to the chaser satellite however, it is assumed that the RSO is un-cooperative and has fixed inertial pointing. All sensors in the metrology chain are assumed ideal. A previous study by the authors used pure Keplerian motion to perform a similar 3D imaging mission at an asteroid. A new baseline for proximity operations maneuvers for LRF scanning, based on a waypoint adaptation of the Hill-Clohessy-Wiltshire (HCW) equations is examined. Propellant expenditure for each waypoint profile is discussed and combinations of relative motion and attitude maneuvers that minimize the propellant used to achieve a minimum required point cloud density are studied. Both LRF strike-point coverage and point cloud density are maximized; the capability for 3D shape registration and reconstruction from point clouds generated with a single beam LRF without catalog comparison is proven. Next, a method of using edge detection algorithms to process a point cloud into a 3D modeled image containing reconstructed shapes is presented. Weighted accuracy of edge reconstruction with respect to the true model is used to calculate a qualitative “ metric” that evaluates effectiveness of coverage. Both edge recognition algorithms and the metric are independent of point cloud densit- , therefore they are utilized to compare the quality of point clouds generated by various attitude and waypoint command profiles. The RSO model incorporates diverse irregular protruding shapes, such as open sensor covers, instrument pods and solar arrays, to test the limits of the algorithms. This analysis is used to mathematically prove that point clouds generated by a single-beam LRF can achieve sufficient edge recognition accuracy for SSA applications, with meaningful shape information extractable even from sparse point clouds. For all command profiles, reconstruction of RSO shapes from the point clouds generated with the proposed method are compared to the truth model and conclusions are drawn regarding their fidelity.
NASA Technical Reports Server (NTRS)
Hlavka, Dennis; Tian, Lin; Hart, William; Li, Lihua; McGill, Matthew; Heymsfield, Gerald
2009-01-01
Aircraft lidar works by shooting laser pulses toward the earth and recording the return time and intensity of any of the light returning to the aircraft after scattering off atmospheric particles and/or the Earth s surface. The scattered light signatures can be analyzed to tell the exact location of cloud and aerosol layers and, with the aid of a few optical assumptions, can be analyzed to retrieve estimates of optical properties such as atmospheric transparency. Radar works in a similar fashion except it sends pulses toward earth at a much larger wavelength than lidar. Radar records the return time and intensity of cloud or rain reflection returning to the aircraft. Lidar can measure scatter from optically thin cirrus and aerosol layers whose particles are too small for the radar to detect. Radar can provide reflection profiles through thick cloud layers of larger particles that lidar cannot penetrate. Only after merging the two instrument products can accurate measurements of the locations of all layers in the full atmospheric column be achieved. Accurate knowledge of the vertical distribution of clouds is important information for understanding the Earth/atmosphere radiative balance and for improving weather/climate forecast models. This paper describes one such merged data set developed from the Tropical Composition, Cloud and Climate Coupling (TC4) experiment based in Costa Rica in July-August 2007 using the nadir viewing Cloud Physics Lidar (CPL) and the Cloud Radar System (CRS) on board the NASA ER-2 aircraft. Statistics were developed concerning cloud probability through the atmospheric column and frequency of the number of cloud layers. These statistics were calculated for the full study area, four sub-regions, and over land compared to over ocean across all available flights. The results are valid for the TC4 experiment only, as preferred cloud patterns took priority during mission planning. The TC4 Study Area was a very cloudy region, with cloudy profiles occurring 94 percent of the time during the ER-2 flights. One to three cloud layers were common, with the average calculated at 2.03 layers per profile. The upper troposphere had a cloud frequency generally over 30%, reaching 42 percent near 13 km during the study. There were regional differences. The Caribbean was much clearer than the Pacific regions. Land had a much higher frequency of high clouds than ocean areas. One region just south and west of Panama had a high probability of clouds below 15 km altitude with the frequency never dropping below 25% and reaching a maximum of 60% at 11-13 km altitude. These cloud statistics will help characterize the cloud volume for TC4 scientists as they try to understand the complexities of the tropical atmosphere.
NASA Technical Reports Server (NTRS)
Welton, Ellsworth J.; McGill, Mathew J.; Yorks. John E.; Hlavka, Dennis L.; Hart, William D.; Palm, Stephen P.; Colarco, Peter R.
2012-01-01
Spaceborne lidar profiling of aerosol and cloud layers has been successfully implemented during a number of prior missions, including LITE, ICESat, and CALIPSO. Each successive mission has added increased capability and further expanded the role of these unique measurements in wide variety of applications ranging from climate, to air quality, to special event monitoring (ie, volcanic plumes). Many researchers have come to rely on the availability of profile data from CALIPSO, especially data coincident with measurements from other A-Train sensors. The CALIOP lidar on CALIPSO continues to operate well as it enters its fifth year of operations. However, active instruments have more limited lifetimes than their passive counterparts, and we are faced with a potential gap in lidar profiling from space if the CALIOP lidar fails before a new mission is operational. The ATLID lidar on EarthCARE is not expected to launch until 2015 or later, and the lidar component of NASA's proposed Aerosols, Clouds, and Ecosystems (ACE) mission would not be until after 2020. Here we present a new aerosol and cloud lidar that was recently selected to provide profiling data from the International Space Station (ISS) starting in 2013. The Cloud-Aerosol Transport System (CATS) is a three wavelength (1064,532,355 nm) elastic backscatter lidar with HSRL capability at 532 nm. Depolarization measurements will be made at all wavelengths. The primary objective of CATS is to continue the CALIPSO aerosol and cloud profile data record, ideally with overlap between both missions and EarthCARE. In addition, the near real time (NRT) data capability ofthe ISS will enable CATS to support operational applications such as aerosol and air quality forecasting and special event monitoring. The HSRL channel will provide a demonstration of technology and a data testbed for direct extinction retrievals in support of ACE mission development. An overview of the instrument and mission will be provided, along with a summary of the science objectives and simulated data. Input from the ICAP community is desired to help plan our NRT mission goals and interactions with ICAP forecasters.
Assessment of 3D cloud radiative transfer effects applied to collocated A-Train data
NASA Astrophysics Data System (ADS)
Okata, M.; Nakajima, T.; Suzuki, K.; Toshiro, I.; Nakajima, T. Y.; Okamoto, H.
2017-12-01
This study investigates broadband radiative fluxes in the 3D cloud-laden atmospheres using a 3D radiative transfer (RT) model, MCstar, and the collocated A-Train cloud data. The 3D extinction coefficients are constructed by a newly devised Minimum cloud Information Deviation Profiling Method (MIDPM) that extrapolates CPR radar profiles at nadir into off-nadir regions within MODIS swath based on collocated information of MODIS-derived cloud properties and radar reflectivity profiles. The method is applied to low level maritime water clouds, for which the 3D-RT simulations are performed. The radiative fluxes thus simulated are compared to those obtained from CERES as a way to validate the MIDPM-constructed clouds and our 3D-RT simulations. The results show that the simulated SW flux agrees with CERES values within 8 - 50 Wm-2. One of the large biases occurred by cyclic boundary condition that was required to pose into our computational domain limited to 20km by 20km with 1km resolution. Another source of the bias also arises from the 1D assumption for cloud property retrievals particularly for thin clouds, which tend to be affected by spatial heterogeneity leading to overestimate of the cloud optical thickness. These 3D-RT simulations also serve to address another objective of this study, i.e. to characterize the "observed" specific 3D-RT effects by the cloud morphology. We extend the computational domain to 100km by 100km for this purpose. The 3D-RT effects are characterized by errors of existing 1D approximations to 3D radiation field. The errors are investigated in terms of their dependence on solar zenith angle (SZA) for the satellite-constructed real cloud cases, and we define two indices from the error tendencies. According to the indices, the 3D-RT effects are classified into three types which correspond to different simple three morphologies types, i.e. isolated cloud type, upper cloud-roughened type and lower cloud-roughened type. These 3D-RT effects linked to cloud morphologies are also visualized in the form of the RGB composite maps constructed from MODIS/Aqua three channels, which show cloud optical thickness and cloud height information. Such a classification offers a novel insight into 3D-RT effect in a manner that directly relates to cloud morphology.
Autonomous, Full-Time Cloud Profiling at Arm Sites with Micro Pulse Lidar
NASA Technical Reports Server (NTRS)
Spinhirne, James D.; Campbell, James R.; Hlavka, Dennis L.; Scott, V. Stanley; Flynn, Connor J.
2000-01-01
Since the early 1990's technology advances permit ground based lidar to operate full time and profile all significant aerosol and cloud structure of the atmosphere up to the limit of signal attenuation. These systems are known as Micro Pulse Lidars (MPL), as referenced by Spinhirne (1993), and were first in operation at DOE Atmospheric Radiation Measurement (ARM) sites. The objective of the ARM program is to improve the predictability of climate change, particularly as it relates to cloud-climate feedback. The fundamental application of the MPL systems is towards the detection of all significant hydrometeor layers, to the limit of signal attenuation. The heating and cooling of the atmosphere are effected by the distribution and characteristics of clouds and aerosol concentration. Aerosol and cloud retrievals in several important areas can only be adequately obtained with active remote sensing by lidar. For cloud cover, the height and related emissivity of thin clouds and the distribution of base height for all clouds are basic parameters for the surface radiation budget, and lidar is essetial for accurate measurements. The ARM MPL observing network represents the first long-term, global lidar study known within the community. MPL systems are now operational at four ARM sites. A six year data set has been obtained at the original Oklahoma site, and there are several years of observations at tropical and artic sites. Observational results include cloud base height distributions and aerosol profiles. These expanding data sets offer a significant new resource for cloud, aerosol and atmospheric radiation analysis. The nature of the data sets, data processing algorithms, derived parameters and application results are presented.
Fielding, M. D.; Chiu, J. C.; Hogan, R. J.; ...
2015-07-02
Active remote sensing of marine boundary-layer clouds is challenging as drizzle drops often dominate the observed radar reflectivity. We present a new method to simultaneously retrieve cloud and drizzle vertical profiles in drizzling boundary-layer clouds using surface-based observations of radar reflectivity, lidar attenuated backscatter, and zenith radiances under conditions when precipitation does not reach the surface. Specifically, the vertical structure of droplet size and water content of both cloud and drizzle is characterised throughout the cloud. An ensemble optimal estimation approach provides full error statistics given the uncertainty in the observations. To evaluate the new method, we first perform retrievalsmore » using synthetic measurements from large-eddy simulation snapshots of cumulus under stratocumulus, where cloud water path is retrieved with an error of 31 g m -2. The method also performs well in non-drizzling clouds where no assumption of the cloud profile is required. We then apply the method to observations of marine stratocumulus obtained during the Atmospheric Radiation Measurement MAGIC deployment in the Northeast Pacific. Here, retrieved cloud water path agrees well with independent three-channel microwave radiometer retrievals, with a root mean square difference of 10–20 g m -2.« less
NASA Technical Reports Server (NTRS)
Zhou, Daniel K.; Liu, Xu; Larar, Allen M.; Smith, William L.; Yang, Ping; Schluessel, Peter; Strow, Larrabee
2007-01-01
An advanced retrieval algorithm with a fast radiative transfer model, including cloud effects, is used for atmospheric profile and cloud parameter retrieval. This physical inversion scheme has been developed, dealing with cloudy as well as cloud-free radiance observed with ultraspectral infrared sounders, to simultaneously retrieve surface, atmospheric thermodynamic, and cloud microphysical parameters. A fast radiative transfer model, which applies to the clouded atmosphere, is used for atmospheric profile and cloud parameter retrieval. A one-dimensional (1-d) variational multivariable inversion solution is used to improve an iterative background state defined by an eigenvector-regression-retrieval. The solution is iterated in order to account for non-linearity in the 1-d variational solution. This retrieval algorithm is applied to the MetOp satellite Infrared Atmospheric Sounding Interferometer (IASI) launched on October 19, 2006. IASI possesses an ultra-spectral resolution of 0.25 cm(exp -1) and a spectral coverage from 645 to 2760 cm(exp -1). Preliminary retrievals of atmospheric soundings, surface properties, and cloud optical/microphysical properties with the IASI measurements are obtained and presented.
POST-OUTBURST RADIO OBSERVATIONS OF THE HIGH MAGNETIC FIELD PULSAR PSR J1119-6127
DOE Office of Scientific and Technical Information (OSTI.GOV)
Majid, Walid A.; Pearlman, Aaron B.; Dobreva, Tatyana
We have carried out high-frequency radio observations of the high magnetic field pulsar PSR J1119-6127 following its recent X-ray outburst. While initial observations showed no evidence of significant radio emission, subsequent observations detected pulsed emission across a large frequency band. In this Letter, we report on the initial disappearance of the pulsed emission and its prompt reactivation and dramatic evolution over several months of observation. The periodic pulse profile at S -band (2.3 GHz) after reactivation exhibits a multi-component emission structure, while the simultaneous X -band (8.4 GHz) profile shows a single emission peak. Single pulses were also detected atmore » S -band near the main emission peaks. We present measurements of the spectral index across a wide frequency bandwidth, which captures the underlying changes in the radio emission profile of the neutron star. The high-frequency radio detection, unusual emission profile, and observed variability suggest similarities with magnetars, which may independently link the high-energy outbursts to magnetar-like behavior.« less
NASA Technical Reports Server (NTRS)
Hancock, G. D.; Waite, W. P.
1984-01-01
Two experiments were performed employing swept frequency microwaves for the purpose of investigating the reflectivity from soil volumes containing both discontinuous and continuous changes in subsurface soil moisture content. Discontinuous moisture profiles were artificially created in the laboratory while continuous moisture profiles were induced into the soil of test plots by the environment of an agricultural field. The reflectivity for both the laboratory and field experiments was measured using bi-static reflectometers operated over the frequency ranges of 1.0 to 2.0 GHz and 4.0 to 8.0 GHz. Reflectivity models that considered the discontinuous and continuous moisture profiles within the soil volume were developed and compared with the results of the experiments. This comparison shows good agreement between the smooth surface models and the measurements. In particular the comparison of the smooth surface multi-layer model for continuous moisture profiles and the yield experiment measurements points out the sensitivity of the specular component of the scattered electromagnetic energy to the movement of moisture in the soil.
NASA Astrophysics Data System (ADS)
Miller, W. F.; Kato, S.; Rose, F. G.; Sun-Mack, S.
2009-12-01
Under the NASA Energy and Water Cycle System (NEWS) program, cloud and aerosol properties derived from CALIPSO, CloudSat, and MODIS data then matched to the CERES footprint are used for irradiance profile computations. Irradiance profiles are included in the publicly available product, CCCM. In addition to the MODIS and CALIPSO generated aerosol, aerosol optical thickness is calculated over ocean by processing MODIS radiance through the Stowe-Ignatov algorithm. The CERES cloud mask and properties algorithm are use with MODIS radiance to provide additional cloud information to accompany the actively sensed data. The passively sensed data is the only input to the standard CERES radiative flux products. The combined information is used as input to the NASA Langley Fu-Liou radiative transfer model to determine vertical profiles and Top of Atmosphere shortwave and longwave flux for pristine, all-sky, and aerosol conditions for the special data product. In this study, the three sources of aerosol optical thickness will be compared directly and their influence on the calculated and measured TOA fluxes. Earlier studies indicate that the largest uncertainty in estimating direct aerosol forcing using aerosol optical thickness derived from passive sensors is caused by cloud contamination. With collocated CALIPSO data, we are able to estimate frequency of occurrence of cloud contamination, effect on the aerosol optical thickness and direct radiative effect estimates.
Liquid water content variation with altitude in clouds over Europe
NASA Astrophysics Data System (ADS)
Andreea, Boscornea; Sabina, Stefan
2013-04-01
Cloud water content is one of the most fundamental measurements in cloud physics. Knowledge of the vertical variability of cloud microphysical characteristics is important for a variety of reasons. The profile of liquid water content (LWC) partially governs the radiative transfer for cloudy atmospheres, LWC profiles improves our understanding of processes acting to form and maintain cloud systems and may lead to improvements in the representation of clouds in numerical models. Presently, in situ airborne measurements provide the most accurate information about cloud microphysical characteristics. This information can be used for verification of both numerical models and cloud remote sensing techniques. The aim of this paper was to analyze the liquid water content (LWC) measurements in clouds, in time of the aircraft flights. The aircraft and its platform ATMOSLAB - Airborne Laboratory for Environmental Atmospheric Research is property of the National Institute for Aerospace Research "Elie Carafoli" (INCAS), Bucharest, Romania. The airborne laboratory equipped for special research missions is based on a Hawker Beechcraft - King Air C90 GTx aircraft and is equipped with a sensors system CAPS - Cloud, Aerosol and Precipitation Spectrometer (30 bins, 0.51-50 m). The processed and analyzed measurements are acquired during 4 flights from Romania (Bucharest, 44°25'57″N 26°06'14″E) to Germany (Berlin 52°30'2″N 13°23'56″E) above the same region of Europe. The flight path was starting from Bucharest to the western part of Romania above Hungary, Austria at a cruse altitude between 6000-8500 m, and after 5 hours reaching Berlin. In total we acquired data during approximately 20 flight hours and we presented the vertical and horizontal LWC variations for different cloud types. The LWC values are similar for each type of cloud to values from literature. The vertical LWC profiles in the atmosphere measured during takeoff and landing of the aircraft have shown their dependence of the meteorological parameters.
Jalali, Mahdi; Sedghi, Tohid; Shafei, Shahin
2014-01-01
A novel configuration of a printed monopole antenna with a very compact size for satisfying WLAN operations at the 5.2/5.8 GHz and also for X-band operations at the 10 GHz has been proposed. The antenna includes a simple square-shaped patch as the radiator, the rotated U-shaped conductor back plane element with embedded strip on it, and the partial rectangular ground surface. By using the rotated U-shaped conductor-backed plane with proper values, good impedance matching and improvement in bandwidth can be achieved, at the lower and upper bands. The impedance bandwidth for S11 < -10 dB is about 1.15 GHz for 5 GHz band and 5.3 GHz for X-band. The measured peak gains are about 1.9 dBi at WLAN-band and 4.2 dBi at X-band. The experimental results represent that the realized antenna with good omnidirectional radiation characteristics, enough impedance bandwidth, and reasonable gains can be appropriate for various applications of the future developed technologies and handheld devices.
Depolarization Lidar Determination Of Cloud-Base Microphysical Properties
NASA Astrophysics Data System (ADS)
Donovan, D. P.; Klein Baltink, H.; Henzing, J. S.; de Roode, S.; Siebesma, A. P.
2016-06-01
The links between multiple-scattering induced depolarization and cloud microphysical properties (e.g. cloud particle number density, effective radius, water content) have long been recognised. Previous efforts to use depolarization information in a quantitative manner to retrieve cloud microphysical cloud properties have also been undertaken but with limited scope and, arguably, success. In this work we present a retrieval procedure applicable to liquid stratus clouds with (quasi-)linear LWC profiles and (quasi-)constant number density profiles in the cloud-base region. This set of assumptions allows us to employ a fast and robust inversion procedure based on a lookup-table approach applied to extensive lidar Monte-Carlo multiple-scattering calculations. An example validation case is presented where the results of the inversion procedure are compared with simultaneous cloud radar observations. In non-drizzling conditions it was found, in general, that the lidar- only inversion results can be used to predict the radar reflectivity within the radar calibration uncertainty (2-3 dBZ). Results of a comparison between ground-based aerosol number concentration and lidar-derived cloud base number considerations are also presented. The observed relationship between the two quantities is seen to be consistent with the results of previous studies based on aircraft-based in situ measurements.
NASA Astrophysics Data System (ADS)
Cernicharo, Jose
2016-06-01
The increasing sensitivity offered by the new generation of radio astronomical receivers and radio telescopes (single dishes and radio interferometers) has provided an enormous impact in our capacity to study the molecular content of interstellar and circumstellar clouds. Astronomers face now the challenging problem of interpreting the thousands of lines detected in hot cores which arise from isotopologues and vibrationally excited states of most known molecules. Although all strong features have been already assigned to abundant species, many of the lines still pending to be assigned could arise from very abundant molecular species having low dipole moment and/or very large partition functions. The only way to address this problem in astrophysics is through a close collaboration between astrophysicists and laboratory spectroscopists. In this talk I am going to present the results obtained over the last 10 years in interpreting the line surveys of Orion gathered with the 30m IRAM radio telescope and with ALMA. The most recent molecule found in this cloud is methyl isocyanate, CH3NCO, for which near 400 lines have been found in Oriona in the 80-280 GHz domain. This molecule has an abundance only a factor 5-20 below that of the well-known species HNCO and CH3CN. The molecule has been also found towards the giant cloud SgrB2b in the galactic center. Finally, I will present the case of the submillimeter spectrum of the carbon-rich evolved star IRC+10216 in which we have recently found Si2C with an abundance similar to SiC2. Our recent ALMA observations in a narrow band of 20 GHz around 265 GHz show near 200 features corresponding to the J=3-2 transition of hot HCN (vibrational levels up to 11000 cm-1). In addition to HCN lines, a forest of several hundreds of U lines dominates the spectrum. Most of these lines arise from molecules that condensate very quickly into dust grainsc. aJ. Cernicharo, Z.Kisiel, B.Tercero, et al., A&A 587, L4 (2016). bD.T. Halfen, V.V.Ilyushin, L.Ziurys, ApJ 812, L5 (2015). cJ. Cernicharo, F. Daniel, A. Castro-Carrizo, et al., ApJ, 778, L25 (2015).
Sub-arcsecond imaging of the water emission in Arp 220.
König, S; Martín, S; Muller, S; Cernicharo, J; Sakamoto, K; Zschaechner, L K; Humphreys, E M L; Mroczkowski, T; Krips, M; Galametz, M; Aalto, S; Vlemmings, W H T; Ott, J; Meier, D S; Fuente, A; García-Burillo, S; Neri, R
2017-06-01
Extragalactic observations of water emission can provide valuable insights into the excitation of the interstellar medium. In particular they allow us to investigate the excitation mechanisms in obscured nuclei, i.e. whether an active galactic nucleus or a starburst dominate. We use sub-arcsecond resolution observations to tackle the nature of the water emission in Arp 220. ALMA Band 5 science verification observations of the 183 GHz H 2 O 3 13 -2 20 line, in conjunction with new ALMA Band 7 H 2 O 5 15 -4 22 data at 325 GHz, and supplementary 22 GHz H 2 O 6 16 - 5 23 VLA observations, are used to better constrain the parameter space in the excitation modelling of the water lines. We detect 183 GHz H 2 O and 325 GHz water emission towards the two compact nuclei at the center of Arp 220, being brighter in Arp 220 West. The emission at these two frequencies is compared to previous single-dish data and does not show evidence of variability. The 183 and 325 GHz lines show similar spectra and kinematics, but the 22 GHz profile is significantly different in both nuclei due to a blend with an NH 3 absorption line. Our findings suggest that the most likely scenario to cause the observed water emission in Arp 220 is a large number of independent masers originating from numerous star-forming regions.
2013-09-30
Cover in the Beaufort and Chukchi Seas Atmospheric Observations and Modeling as Part of the Seasonal Ice Zone Reconnaissance Surveys Axel...how changes in sea ice and sea surface conditions in the SIZ affect changes in cloud properties and cover . • Determine the role additional atmospheric...REPORT TYPE 3. DATES COVERED 00-00-2013 to 00-00-2013 4. TITLE AND SUBTITLE Atmospheric Profiles, Clouds, and the Evolution of Sea Ice Cover in the
A Physical Model to Estimate Snowfall over Land using AMSU-B Observations
NASA Technical Reports Server (NTRS)
Kim, Min-Jeong; Weinman, J. A.; Olson, W. S.; Chang, D.-E.; Skofronick-Jackson, G.; Wang, J. R.
2008-01-01
In this study, we present an improved physical model to retrieve snowfall rate over land using brightness temperature observations from the National Oceanic and Atmospheric Administration's (NOAA) Advanced Microwave Sounder Unit-B (AMSU-B) at 89 GHz, 150 GHz, 183.3 +/- 1 GHz, 183.3 +/- 3 GHz, and 183.3 +/- 7 GHz. The retrieval model is applied to the New England blizzard of March 5, 2001 which deposited about 75 cm of snow over much of Vermont, New Hampshire, and northern New York. In this improved physical model, prior retrieval assumptions about snowflake shape, particle size distributions, environmental conditions, and optimization methodology have been updated. Here, single scattering parameters for snow particles are calculated with the Discrete-Dipole Approximation (DDA) method instead of assuming spherical shapes. Five different snow particle models (hexagonal columns, hexagonal plates, and three different kinds of aggregates) are considered. Snow particle size distributions are assumed to vary with air temperature and to follow aircraft measurements described by previous studies. Brightness temperatures at AMSU-B frequencies for the New England blizzard are calculated using these DDA calculated single scattering parameters and particle size distributions. The vertical profiles of pressure, temperature, relative humidity and hydrometeors are provided by MM5 model simulations. These profiles are treated as the a priori data base in the Bayesian retrieval algorithm. In algorithm applications to the blizzard data, calculated brightness temperatures associated with selected database profiles agree with AMSU-B observations to within about +/- 5 K at all five frequencies. Retrieved snowfall rates compare favorably with the near-concurrent National Weather Service (NWS) radar reflectivity measurements. The relationships between the NWS radar measured reflectivities Z(sub e) and retrieved snowfall rate R for a given snow particle model are derived by a histogram matching technique. All of these Z(sub e)-R relationships fall in the range of previously established Z(sub e)-R relationships for snowfall. This suggests that the current physical model developed in this study can reliably estimate the snowfall rate over land using the AMSU-B measured brightness temperatures.
NASA Astrophysics Data System (ADS)
Hillman, Benjamin R.; Marchand, Roger T.; Ackerman, Thomas P.; Mace, Gerald G.; Benson, Sally
2017-03-01
Satellite retrievals of cloud properties are often used in the evaluation of global climate models, and in recent years satellite instrument simulators have been used to account for known retrieval biases in order to make more consistent comparisons between models and retrievals. Many of these simulators have seen little critical evaluation. Here we evaluate the Multiangle Imaging Spectroradiometer (MISR) simulator by using visible extinction profiles retrieved from a combination of CloudSat, CALIPSO, MODIS, and AMSR-E observations as inputs to the MISR simulator and comparing cloud top height statistics from the MISR simulator with those retrieved by MISR. Overall, we find that the occurrence of middle- and high-altitude topped clouds agrees well between MISR retrievals and the MISR-simulated output, with distributions of middle- and high-topped cloud cover typically agreeing to better than 5% in both zonal and regional averages. However, there are significant differences in the occurrence of low-topped clouds between MISR retrievals and MISR-simulated output that are due to differences in the detection of low-level clouds between MISR and the combined retrievals used to drive the MISR simulator, rather than due to errors in the MISR simulator cloud top height adjustment. This difference highlights the importance of sensor resolution and boundary layer cloud spatial structure in determining low-altitude cloud cover. The MISR-simulated and MISR-retrieved cloud optical depth also show systematic differences, which are also likely due in part to cloud spatial structure.
High Power SiGe X-Band (8-10 GHz) Heterojunction Bipolar Transistors and Amplifiers
NASA Technical Reports Server (NTRS)
Ma, Zhenqiang; Jiang, Ningyue; Ponchak, George E.; Alterovitz, Samuel A.
2005-01-01
Limited by increased parasitics and thermal effects as the device size becomes large, current commercial SiGe power HBTs are difficult to operate at X-band (8-12 GHz) with adequate power added efficiencies at high power levels. We found that, by changing the heterostructure and doping profile of SiGe HBTs, their power gain can be significantly improved without resorting to substantial lateral scaling. Furthermore, employing a common-base configuration with proper doping profile instead of a common-emitter configuration improves the power gain characteristics of SiGe HBTs, which thus permits these devices to be efficiently operated at X-band. In this paper, we report the results of SiGe power HBTs and MMIC power amplifiers operating at 8-10 GHz. At 10 GHz, 22.5 dBm (178 mW) RF output power with concurrent gain of 7.32 dB is measured at the peak power-added efficiency of 20.0% and the maximum RF output power of 24.0 dBm (250 mW) is achieved from a 20 emitter finger SiGe power HBT. Demonstration of single-stage X-band medium-power linear MMIC power amplifier is also realized at 8 GHz. Employing a 10-emitter finger SiGe HBT and on-chip input and output matching passive components, a linear gain of 9.7 dB, a maximum output power of 23.4 dBm and peak power added efficiency of 16% is achieved from the power amplifier. The MMIC exhibits very low distortion with third order intermodulation (IM) suppression C/I of -13 dBc at output power of 21.2 dBm and over 20dBm third order output intercept point (OIP3).
Compact antenna arrays with wide bandwidth and low sidelobe levels
Strassner, II, Bernd H.
2014-09-09
Highly efficient, low cost, easily manufactured SAR antenna arrays with lightweight low profiles, large instantaneous bandwidths and low SLL are disclosed. The array topology provides all necessary circuitry within the available antenna aperture space and between the layers of material that comprise the aperture. Bandwidths of 15.2 GHz to 18.2 GHz, with 30 dB SLLs azimuthally and elevationally, and radiation efficiencies above 40% may be achieved. Operation over much larger bandwidths is possible as well.
NASA Technical Reports Server (NTRS)
Spencer, R. W.; Howland, M. R.
1984-01-01
The severe weather characteristics of convective storms as observed by the Nimbus 7 Scanning Multichannel Microwave Radiometer (SMMR) are investigated. Low 37 GHz brightness temperatures (due to scattering of upwelling radiation by precipitation size ice) are related to the occurrence of severe weather (large hail, strong winds or wind damage, tornadoes and funnel clouds) within one hour of the satellite observation time. During 1979 and 1980 over the United States there were 263 storms which had very cold 37 GHz signatures. Of these storms 15% were severe. The SMMR detected hail, wind, and tornadic storms equally well. Critical Success Indices (CSI's) of 0.32, 0.48, and 0.38 are achieved for the thresholding of severe vs. nonsevere low brightness temperature events during 1979, 1980, and the two years combined, respectively. Such scores are comparable to skill scores for early radar detection methods. These results suggest that a future geostationary passive microwave imaging capability at 37 GHz, with sufficient spatial and temporal resolution, would allow the detection of severe convective storms. This capability would provide a useful complement to radar, especially in areas not covered by radar.
Modeling Ka-band low elevation angle propagation statistics
NASA Technical Reports Server (NTRS)
Russell, Thomas A.; Weinfield, John; Pearson, Chris; Ippolito, Louis J.
1995-01-01
The statistical variability of the secondary atmospheric propagation effects on satellite communications cannot be ignored at frequencies of 20 GHz or higher, particularly if the propagation margin allocation is such that link availability falls below 99 percent. The secondary effects considered in this paper are gaseous absorption, cloud absorption, and tropospheric scintillation; rain attenuation is the primary effect. Techniques and example results are presented for estimation of the overall combined impact of the atmosphere on satellite communications reliability. Statistical methods are employed throughout and the most widely accepted models for the individual effects are used wherever possible. The degree of correlation between the effects is addressed and some bounds on the expected variability in the combined effects statistics are derived from the expected variability in correlation. Example estimates are presented of combined effects statistics in the Washington D.C. area of 20 GHz and 5 deg elevation angle. The statistics of water vapor are shown to be sufficient for estimation of the statistics of gaseous absorption at 20 GHz. A computer model based on monthly surface weather is described and tested. Significant improvement in prediction of absorption extremes is demonstrated with the use of path weather data instead of surface data.
ALMA Images of the Orion Hot Core at 349 GHz
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wright, M. C. H.; Plambeck, R. L., E-mail: wright@astro.berkeley.edu
We present ALMA images of the dust and molecular line emission in the Orion Hot Core at 349 GHz. At 0.″2 angular resolution the images reveal multiple clumps in an arc ∼1″ east of Orion Source I, the protostar at the center of the Kleinmann–Low Nebula, and another chain of peaks from IRc7 toward the southwest. The molecular line images show narrow filamentary structures at velocities >10 km s{sup −1} away from the heavily resolved ambient cloud velocity ∼5 km s{sup −1}. Many of these filaments trace the SiO outflow from Source I, and lie along the edges of themore » dust emission. Molecular line emission at excitation temperatures 300–2000 K, and velocities >10 km s{sup −1} from the ambient cloud, suggest that the Hot Core may be heated in shocks by the outflow from Source I or from the Becklin–Neugebauer (BN)/SrcI explosion. The spectral line observations also reveal a remarkable molecular ring, ∼2″ south of SrcI, with a diameter ∼600 au. The ring is seen in high-excitation transitions of HC{sub 3}N, HCN v 2 = 1, and SO{sub 2}. An impact of ejecta from the BN/SrcI explosion with a dense dust clump could result in the observed ring of shocked material.« less
Early Wheel Train Damage Detection Using Wireless Sensor Network Antenna
NASA Astrophysics Data System (ADS)
Fazilah, A. F. M.; Azemi, S. N.; Azremi, A. A. H.; Soh, P. J.; Kamarudin, L. M.
2018-03-01
Antenna for a wireless sensor network for early wheel trains damage detection has successfully developed and fabricated with the aim to minimize the risk and increase the safety guaranty for train. Current antenna design is suffered in gain and big in size. For the sensor, current existing sensor only detect when the wheel malfunction. Thus, a compact microstrip patch antenna with operating frequency at 2.45GHz is design with high gain of 4.95dB will attach to the wireless sensor device. Simulation result shows that the antenna is working at frequency 2.45GHz and the return loss at -34.46dB are in a good agreement. The result also shows the good radiation pattern and almost ideal VSWR which is 1.04. The Arduino Nano, LM35DZ and ESP8266-07 Wi-Fi module is applied to the core system with capability to sense the temperature and send the data wirelessly to the cloud. An android application has been created to monitor the temperature reading based on the real time basis. The mainly focuses for the future improvement is by minimize the size of the antenna in order to make in more compact. In addition, upgrade an android application that can collect the raw data from cloud and make an alarm system to alert the loco pilot.
Cloud-to-Ground Lightning Estimates Derived from SSMI Microwave Remote Sensing and NLDN
NASA Technical Reports Server (NTRS)
Winesett, Thomas; Magi, Brian; Cecil, Daniel
2015-01-01
Lightning observations are collected using ground-based and satellite-based sensors. The National Lightning Detection Network (NLDN) in the United States uses multiple ground sensors to triangulate the electromagnetic signals created when lightning strikes the Earth's surface. Satellite-based lightning observations have been made from 1998 to present using the Lightning Imaging Sensor (LIS) on the NASA Tropical Rainfall Measuring Mission (TRMM) satellite, and from 1995 to 2000 using the Optical Transient Detector (OTD) on the Microlab-1 satellite. Both LIS and OTD are staring imagers that detect lightning as momentary changes in an optical scene. Passive microwave remote sensing (85 and 37 GHz brightness temperatures) from the TRMM Microwave Imager (TMI) has also been used to quantify characteristics of thunderstorms related to lightning. Each lightning detection system has fundamental limitations. TRMM satellite coverage is limited to the tropics and subtropics between 38 deg N and 38 deg S, so lightning at the higher latitudes of the northern and southern hemispheres is not observed. The detection efficiency of NLDN sensors exceeds 95%, but the sensors are only located in the USA. Even if data from other ground-based lightning sensors (World Wide Lightning Location Network, the European Cooperation for Lightning Detection, and Canadian Lightning Detection Network) were combined with TRMM and NLDN, there would be enormous spatial gaps in present-day coverage of lightning. In addition, a globally-complete time history of observed lightning activity is currently not available either, with network coverage and detection efficiencies varying through the years. Previous research using the TRMM LIS and Microwave Imager (TMI) showed that there is a statistically significant correlation between lightning flash rates and passive microwave brightness temperatures. The physical basis for this correlation emerges because lightning in a thunderstorm occurs where ice is first present in the cloud and electric charge separation occurs. These ice particles efficiently scatter the microwave radiation at the 85 and 37 GHz frequencies, thus leading to large brightness temperature depressions. Lightning flash rate is related to the total amount of ice passing through the convective updraft regions of thunderstorms. Confirmation of this relationship using TRMM LIS and TMI data, however, remains constrained to TRMM observational limits of the tropics and subtropics. Satellites from the Defense Meteorology Satellite Program (DMSP) have global coverage and are equipped with passive microwave imagers that, like TMI, observe brightness temperatures at 85 and 37 GHz. Unlike the TRMM satellite, however, DMSP satellites do not have a lightning sensor, and the DMSP microwave data has never been used to derive global lightning. In this presentation, a relationship between DMSP Special Sensor Microwave Imager (SSMI) data and ground-based cloud-to-ground (CG) lightning data from NLDN is investigated to derive a spatially complete time history of CG lightning for the USA study area. This relationship is analogous to the established using TRMM LIS and TMI data. NLDN has the most spatially and temporally complete CG lightning data for the USA, and therefore provides the best opportunity to find geospatially coincident observations with SSMI sensors. The strongest thunderstorms generally have minimum 85 GHz Polarized Corrected brightness Temperatures (PCT) less than 150 K. Archived radar data was used to resolve the spatial extent of the individual storms. NLDN data for that storm spatial extent defined by radar data was used to calculate the CG flash rate for the storm. Similar to results using TRMM sensors, a linear model best explained the relationship between storm-specific CG flash rates and minimum 85 GHz PCT. However, the results in this study apply only to CG lightning. To extend the results to weaker storms, the probability of CG lightning (instead of the flash rate) was calculated for storms having 85 GHz PCT greater than 150 K. NLDN data was used to determine if a CG strike occurred for a storm. This probability of CG lightning was plotted as a function of minimum 85 GHz PCT and minimum 37 GHz PCT. These probabilities were used in conjunction with the linear model to estimate the CG flash rate for weaker storms with minimum 85 GHz PCTs greater than 150 K. Results from the investigation of CG lightning and passive microwave radiation signals agree with the previous research investigating total lightning and brightness temperature. Future work will take the established relationships and apply them to the decades of available DMSP data for the USA to derive a map of CG lightning flash rates. Validation of this method and uncertainty analysis will be done by comparing the derived maps of CG lightning flash rates against existing NLDN maps of CG lightning flash rates.
Airborne radar and radiometer experiment for quantitative remote measurements of rain
NASA Technical Reports Server (NTRS)
Kozu, Toshiaki; Meneghini, Robert; Boncyk, Wayne; Wilheit, Thomas T.; Nakamura, Kenji
1989-01-01
An aircraft experiment has been conducted with a dual-frequency (10 GHz and 35 GHz) radar/radiometer system and an 18-GHz radiometer to test various rain-rate retrieval algorithms from space. In the experiment, which took place in the fall of 1988 at the NASA Wallops Flight Facility, VA, both stratiform and convective storms were observed. A ground-based radar and rain gauges were also used to obtain truth data. An external radar calibration is made with rain gauge data, thereby enabling quantitative reflectivity measurements. Comparisons between path attenuations derived from the surface return and from the radar reflectivity profile are made to test the feasibility of a technique to estimate the raindrop size distribution from simultaneous radar and path-attenuation measurements.
Detecting Aerosol Effect on Deep Precipitation Systems: A Modeling Study
NASA Astrophysics Data System (ADS)
Li, X.; Tao, W.; Khain, A.; Kummerow, C.; Simpson, J.
2006-05-01
Urban cities produce high concentrations of anthropogenic aerosols. These aerosols are generally hygroscopic and may serve as Cloud Condensation Nuclei (CCN). This study focuses on the aerosol indirect effect on the deep convective systems over the land. These deep convective systems contribute to the majority of the summer time rainfall and are important for local hydrological cycle and weather forecast. In a companion presentation (Tao et al.) in this session, the mechanisms of aerosol-cloud-precipitation interactions in deep convective systems are explored using cloud-resolving model simulations. Here these model results will be analyzed to provide guidance to the detection of the impact of aerosols as CCN on summer time, deep convections using the currently available observation methods. The two-dimensional Goddard Cumulus Ensemble (GCE) model with an explicit microphysical scheme has been used to simulate the aerosol effect on deep precipitation systems. This model simulates the size distributions of aerosol particles, as well as cloud, rain, ice crystals, snow, graupel, and hail explicitly. Two case studies are analyzed: a midlatitude summer time squall in Oklahoma, and a sea breeze convection in Florida. It is shown that increasing the CCN number concentration does not affect the rainfall structure and rain duration in these two cases. The total surface rainfall rate is reduced in the squall case, but remains essentially the same in the sea breeze case. For the long-lived squall system with a significant portion of the stratiform rain, the surface rainfall PDF (probability density function) distribution is more sensitive to the change of the initial CCN concentrations compared with the total surface rainfall. The possibility of detecting the aerosol indirect effect in deep precipitation systems from the space is also studied in this presentation. The hydrometeors fields from the GCE model simulations are used as inputs to a microwave radiative transfer model. It is found that Tb at higher frequencies (35 GHz and 85 GHz) are quite sensitive to the CCN concentration variations. This is because the higher frequency brightness temperatures are sensitive to large, ice-phase particles. In a clean environment, the deep convections produce larger cloud particles. When these cloud particles are transported above the freezing level by strong updrafts, they form larger precipitable ice particles (snow, graupel and hail) compared with dirty environment simulations. These larger ice particles result in significantly colder brightness temperatures at high frequencies in the clean scenario simulations.
NASA Technical Reports Server (NTRS)
Wang, Chunpeng; Lou, Zhengzhao Johnny; Chen, Xiuhong; Zeng, Xiping; Tao, Wei-Kuo; Huang, Xianglei
2014-01-01
Cloud-top temperature (CTT) is an important parameter for convective clouds and is usually different from the 11-micrometers brightness temperature due to non-blackbody effects. This paper presents an algorithm for estimating convective CTT by using simultaneous passive [Moderate Resolution Imaging Spectroradiometer (MODIS)] and active [CloudSat 1 Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO)] measurements of clouds to correct for the non-blackbody effect. To do this, a weighting function of the MODIS 11-micrometers band is explicitly calculated by feeding cloud hydrometer profiles from CloudSat and CALIPSO retrievals and temperature and humidity profiles based on ECMWF analyses into a radiation transfer model.Among 16 837 tropical deep convective clouds observed by CloudSat in 2008, the averaged effective emission level (EEL) of the 11-mm channel is located at optical depth; approximately 0.72, with a standard deviation of 0.3. The distance between the EEL and cloud-top height determined by CloudSat is shown to be related to a parameter called cloud-top fuzziness (CTF), defined as the vertical separation between 230 and 10 dBZ of CloudSat radar reflectivity. On the basis of these findings a relationship is then developed between the CTF and the difference between MODIS 11-micrometers brightness temperature and physical CTT, the latter being the non-blackbody correction of CTT. Correction of the non-blackbody effect of CTT is applied to analyze convective cloud-top buoyancy. With this correction, about 70% of the convective cores observed by CloudSat in the height range of 6-10 km have positive buoyancy near cloud top, meaning clouds are still growing vertically, although their final fate cannot be determined by snapshot observations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Narayan, Ramesh; Sironi, Lorenzo; Oezel, Feryal
2012-10-01
A dense ionized cloud of gas has been recently discovered to be moving directly toward the supermassive black hole, Sgr A*, at the Galactic center. In 2013 June, at the pericenter of its highly eccentric orbit, the cloud will be approximately 3100 Schwarzschild radii from the black hole and will move supersonically through the ambient hot gas with a velocity of v{sub p} Almost-Equal-To 5400 km s{sup -1}. A bow shock is likely to form in front of the cloud and could accelerate electrons to relativistic energies. We estimate via particle-in-cell simulations the energy distribution of the accelerated electrons andmore » show that the non-thermal synchrotron emission from these electrons might exceed the quiescent radio emission from Sgr A* by a factor of several. The enhanced radio emission should be detectable at GHz and higher frequencies around the time of pericentric passage and in the following months. The bow shock emission is expected to be displaced from the quiescent radio emission of Sgr A* by {approx}33 mas. Interferometric observations could resolve potential changes in the radio image of Sgr A* at wavelengths {approx}< 6 cm.« less
NASA Astrophysics Data System (ADS)
Noone, D. C.; Raudzens Bailey, A.; Toohey, D. W.; Twohy, C. H.; Heymsfield, A.; Rella, C.; Van Pelt, A. D.
2011-12-01
Convective clouds play a significant role in the moisture and heat balance of the tropics. The dynamics of organized and isolated convection are a function of the background thermodynamic profile and wind shear, buoyancy sources near the surface and the latent heating inside convective updrafts. The stable oxygen and hydrogen isotope ratios in water vapor and condensate can be used to identify dominant moisture exchanges and aspects of the cloud microphysics that are otherwise difficult to observe. Both the precipitation efficiency and the dilution of cloud updrafts by entrainment can be estimated since the isotopic composition outside the plume is distinct from inside. Measurements of the 18O/16O and D/H isotope ratios were made in July 2011 on 13 research flights of the NCAR C130 aircraft during the ICE-T (Ice in Clouds Experiment - Tropical) field campaign near St Croix. Measurements were made using an instrument based on the Picarro Wave-Length Scanning Cavity Ring Down platform that includes a number of optical, hardware and software modifications to allow measurements to be made at 5 Hz for deployment on aircraft. The measurement system was optimized to make precise measurements of the isotope ratio of liquid and ice cloud condensate by coupling the gas analyzer to the NCAR Counter flow Virtual Impactor inlet. The inlet system provides a particle enhancement while rejecting vapor. Sample air is vigorously heated before flowing into the gas phase analyzer. We present statistics that demonstrate the performance and calibration of the instrument. Measured profiles show that environmental air exhibits significant layering showing controls from boundary layer processes, large scale horizontal advection and regional subsidence. Condensate in clouds is consistent with generally low precipitation efficiency, although there is significant variability in the isotope ratios suggesting heterogeneity within plumes and the stochastic nature of detrainment processes. Entrainment of air into the plume is seen as evaporation of condensate. In the plume between about -7 and -12C, the ice condensate fraction increases with height, and the isotope ratios are used to discern ice formation from deposition from ice formed from in situ freezing of cloud liquid. The observed profiles demonstrate a new capacity for cloud process studies and provide new insight into the water budget of clouds.
NASA Technical Reports Server (NTRS)
Wu, Xiaohua; Diak, George R.; Hayden, Cristopher M.; Young, John A.
1995-01-01
These observing system simulation experiments investigate the assimilation of satellite-observed water vapor and cloud liquid water data in the initialization of a limited-area primitive equations model with the goal of improving short-range precipitation forecasts. The assimilation procedure presented includes two aspects: specification of an initial cloud liquid water vertical distribution and diabatic initialization. The satellite data is simulated for the next generation of polar-orbiting satellite instruments, the Advanced Microwave Sounding Unit (AMSU) and the High-Resolution Infrared Sounder (HIRS), which are scheduled to be launched on the NOAA-K satellite in the mid-1990s. Based on cloud-top height and total column cloud liquid water amounts simulated for satellite data a diagnostic method is used to specify an initial cloud water vertical distribution and to modify the initial moisture distribution in cloudy areas. Using a diabatic initialization procedure, the associated latent heating profiles are directly assimilated into the numerical model. The initial heating is estimated by time averaging the latent heat release from convective and large-scale condensation during the early forecast stage after insertion of satellite-observed temperature, water vapor, and cloud water formation. The assimilation of satellite-observed moisture and cloud water, together withy three-mode diabatic initialization, significantly alleviates the model precipitation spinup problem, especially in the first 3 h of the forecast. Experimental forecasts indicate that the impact of satellite-observed temperature and water vapor profiles and cloud water alone in the initialization procedure shortens the spinup time for precipitation rates by 1-2 h and for regeneration of the areal coverage by 3 h. The diabatic initialization further reduces the precipitation spinup time (compared to adiabatic initialization) by 1 h.
NASA Technical Reports Server (NTRS)
Allison, L. J.; Rodgers, E. B.; Wilheit, T. T.; Wexler, R.
1975-01-01
The Nimbus 5 meteorological satellite has a full complement of radiation sensors. Data from these sensors were analyzed and intercompared for orbits 569 and 570. The electrically-scanning microwave radiometer (19.35-GHz region) delineated rain areas over the ocean off the U.S. east coast, in good agreement with radar imagery, and permitted the estimation of rainfall rates in this region. Residual ground water, from abnormal rainfall in the lower Mississippi Valley, was indicated under clear sky conditions by soil brightness temperature values in the Nimbus 5 electrically scanning microwave radiometer and U.S. Air Force Data Acquisition and Processing Program infrared data. The temperature-humidity infrared radiometer (6.7 micron and 11 micron) showed the height and spatial configuration of frontal clouds along the east coast and outlined the confluence of a polar jet stream with a broad subtropical jet stream along the U.S. Gulf Coast. Temperature profiles from three vertical temperature sounders are found to be in good agreement with related radiosonde ascents along orbit 569 from the subtropics to the Arctic Circle.
The Earth Observing System Microwave Limb Sounder (EOS MLS) on the Aura Satellite
NASA Technical Reports Server (NTRS)
Waters, Joe W.; Froidevaux, Lucien; Harwood, Robert S.; Jarnot, Robert F.; Pickett, Herbert M.; Read, William G.; Siegel, Peter H.; Cofield, Richard E.; Filipiak, Mark J.; Flower, Dennis A.;
2006-01-01
The Earth Observing System Microwave Limb Sounder measures several atmospheric chemical species (OH, HO2, H2O, O3, HCl, ClO, HOCl, BrO, HNO3, N2O, CO, HCN, CH3CN, volcanic SO2), cloud ice, temperature, and geopotential height to improve our understanding of stratospheric ozone chemistry, the interaction of composition and climate, and pollution in the upper troposphere. All measurements are made simultaneously and continuously, during both day and night. The instrument uses heterodyne radiometers that observe thermal emission from the atmospheric limb in broad spectral regions centered near 118, 190, 240, and 640 GHz, and 2.5 THz. It was launched July 15, 2004 on the National Aeronautics and Space Administration's Aura satellite and started full-up science operations on August 13, 2004. An atmospheric limb scan and radiometric calibration for all bands are performed routinely every 25 s. Vertical profiles are retrieved every 165 km along the suborbital track, covering 82 S to 82 N latitudes on each orbit. Instrument performance to date has been excellent; data have been made publicly available; and initial science results have been obtained.
NASA Technical Reports Server (NTRS)
Rosenkranz, Philip, W.; Staelin, David, H.
1995-01-01
This report summarizes the activities of two Atmospheric Infrared Sounder (AIRS) team members during the first half of 1995. Changes to the microwave first-guess algorithm have separated processing of Advanced Microwave Sounding Unit A (AMSU-A) from AMSU-B data so that the different spatial resolutions of the two instruments may eventually be considered. Two-layer cloud simulation data was processed with this algorithm. The retrieved water vapor column densities and liquid water are compared. The information content of AIRS data was applied to AMSU temperature profile retrievals in clear and cloudy atmospheres. The significance of this study for AIRS/AMSU processing lies in the improvement attributable to spatial averaging and in the good results obtained with a very simple algorithm when all of the channels are used. Uncertainty about the availability of either a Microwave Humidity Sensor (MHS) or AMSU-B for EOS has motivated consideration of possible low-cost alternative designs for a microwave humidity sensor. One possible configuration would have two local oscillators (compared to three for MHS) at 118.75 and 183.31 GHz. Retrieval performances of the two instruments were compared in a memorandum titled 'Comparative Analysis of Alternative MHS Configurations', which is attached.
Atmospheric effects on SMMR and SSM/I 37 GHz polarization difference over the Sahel
NASA Technical Reports Server (NTRS)
Choudhury, B. J.; Major, E. R.; Smith, E. A.; Becker, F.
1992-01-01
The atmospheric effects on the difference of vertically and horizontally polarized brightness temperatures, Delta(T) observed at 37 GHz frequency of the SMMR on board the Nimbus-7 satellite and SSM/I on board the DMSP-F8 satellite are studied over two 2.5 by 2.5 deg regions within the Sahel and Sudan zones of Africa from January 1985 to December 1986 through radiative transfer analysis using surface temperature, atmospheric water vapor, and cloud optical thickness. It is found that atmospheric effects alone cannot explain the observed temporal variation of Delta(T), although the atmosphere introduces important modulations on the observed seasonal variations of Delta(T) due to rather significant seasonal variation of precipitable water vapor. These Delta(T) data should be corrected for atmospheric effects before any quantitative analysis of land surface change over the Sahel and Sudan zones.
Design of a K/Q-Band Beacon Receiver for the Alphasat TDP#5 Experiment
NASA Technical Reports Server (NTRS)
Morse, Jacquelynne R.
2014-01-01
This paper describes the design and performance of a coherent KQ-band (2040 GHz) beacon receiver developed at NASA Glenn Research Center (GRC) that will be installed at the Politecnico di Milano (POLIMI) for use in the Alphasat Technology Demonstration Payload 5 (TDP5) beacon experiment. The goal of this experiment is to characterize rain fade attenuation at 40 GHz to improve the performance of existing statistical rain attenuation models in the Q-band. The ground terminal developed by NASA GRC utilizes an FFT-based frequency estimation receiver capable of characterizing total path attenuation effects due to gaseous absorption, clouds, rain, and scintillation. The receiver system has been characterized in the lab and demonstrates a system dynamic range performance of better than 58 dB at 1 Hz and better than 48 dB at 10 Hz rates.
NASA Technical Reports Server (NTRS)
Morse, Jacquelynne R.
2014-01-01
This paper describes the design and performance of a coherent KQ-band (2040 GHz) beacon receiver developed at NASA Glenn Research Center (GRC) that will be installed at the Politecnico di Milano (POLIMI) for use in the Alphasat Technology Demonstration Payload 5 (TDP5) beacon experiment. The goal of this experiment is to characterize rain fade attenuation at 40 GHz to improve the performance of existing statistical rain attenuation models in the Q-band. The ground terminal developed by NASA GRC utilizes an FFT-based frequency estimation receiver capable of characterizing total path attenuation effects due to gaseous absorption, clouds, rain, and scintillation. The receiver system has been characterized in the lab and demonstrates a system dynamic range performance of better than 58 dB at 1 Hz and better than 48 dB at 10 Hz rates.
Design of a K/Q-band Beacon Receiver for the Alphasat TDP#5 Experiment
NASA Technical Reports Server (NTRS)
Nessel, James A.; Zemba, Michael J.; Morse, Jacquelynne R.
2014-01-01
This paper describes the design and performance of a coherent K/Q-band (20/40GHz) beacon receiver developed at NASA Glenn Research Center (GRC) that will be installed at the Politecnico di Milano (POLIMI) for use in the Alphasat Technology Demonstration Payload #5 (TDP#5) beacon experiment. The goal of this experiment is to characterize rain fade attenuation at 40GHz to improve the performance of existing statistical rain attenuation models in the Q-band. The ground terminal developed by NASA GRC utilizes an FFT-based frequency estimation receiver capable of characterizing total path attenuation effects due to gaseous absorption, clouds, rain, and scintillation. The receiver system has been characterized in the lab and demonstrates a system dynamic range performance of better than 58dB at 1Hz and better than 48dB at 10Hz rates.
MSX Colors of Radio-Selected HII Regions in the Milky Way
NASA Astrophysics Data System (ADS)
Giveon, U.; Becker, R. H.; Helfand, D. J.; White, R. L.
2004-12-01
Investigation of the color properties of sources in the MSX catalog reveals two populations - a blue population composed of mainly evolved stars, masers and molecular clouds, and a red population composed mainly HII regions, planetary nebulae, and unclassified radio sources. We compare the MSX catalog to 5 GHz VLA maps of the first quadrant of the Galactic plane (350o
NASA Astrophysics Data System (ADS)
Dodson, Jason B.
Deep convective clouds (DCCs) play an important role in regulating global climate through vertical mass flux, vertical water transport, and radiation. For general circulation models (GCMs) to simulate the global climate realistically, they must simulate DCCs realistically. GCMs have traditionally used cumulus parameterizations (CPs). Much recent research has shown that multiple persistent unrealistic behaviors in GCMs are related to limitations of CPs. Two alternatives to CPs exist: the global cloud-resolving model (GCRM), and the multiscale modeling framework (MMF). Both can directly simulate the coarser features of DCCs because of their multi-kilometer horizontal resolutions, and can simulate large-scale meteorological processes more realistically than GCMs. However, the question of realistic behavior of simulated DCCs remains. How closely do simulated DCCs resemble observed DCCs? In this study I examine the behavior of DCCs in the Nonhydrostatic Icosahedral Atmospheric Model (NICAM) and Superparameterized Community Atmospheric Model (SP-CAM), the latter with both single-moment and double-moment microphysics. I place particular emphasis on the relationship between cloud vertical structure and convective environment. I also emphasize the transition between shallow clouds and mature DCCs. The spatial domains used are the tropical oceans and the contiguous United States (CONUS), the latter of which produces frequent vigorous convection during the summer. CloudSat is used to observe DCCs, and A-Train and reanalysis data are used to represent the large-scale environment in which the clouds form. The CloudSat cloud mask and radar reflectivity profiles for CONUS cumuliform clouds (defined as clouds with a base within the planetary boundary layer) during boreal summer are first averaged and compared. Both NICAM and SP-CAM greatly underestimate the vertical growth of cumuliform clouds. Then they are sorted by three large-scale environmental variables: total preciptable water (TPW), surface air temperature (SAT), and 500hPa vertical velocity (W500), representing the dynamical and thermodynamical environment in which the clouds form. The sorted CloudSat profiles are then compared with NICAM and SP-CAM profiles simulated with the Quickbeam CloudSat simulator. Both models have considerable difficulty representing the relationship of SAT and clouds over CONUS. For TPW and W500, shallow clouds transition to DCCs at higher values than observed. This may be an indication of the models' inability to represent the formation of DCCs in marginal convective environments. NICAM develops tall DCCs in highly favorable environments, but SP-CAM appears to be incapable of developing tall DCCs in almost any environment. The use of double moment microphysics in SP-CAM improves the frequency of deep clouds and their relationship with TPW, but not SAT. Both models underpredict radar reflectivity in the upper cloud of mature DCCs. SP-CAM with single moment microphysics has a particularly unrealistic DCC reflectivity profile, but with double moment microphysics it improves substantially. SP-CAM with double-moment microphysics unexpectedly appears to weaken DCC updraft strength as TPW increases, but otherwise both NICAM and SP-CAM represent the environment-versus-DCC relationships fairly realistically.
Low-Cost Dielectric Substrate for Designing Low Profile Multiband Monopole Microstrip Antenna
Ahsan, M. R.; Islam, M. T.; Habib Ullah, M.; Arshad, H.; Mansor, M. F.
2014-01-01
This paper proposes a small sized, low-cost multiband monopole antenna which can cover the WiMAX bands and C-band. The proposed antenna of 20 × 20 mm2 radiating patch is printed on cost effective 1.6 mm thick fiberglass polymer resin dielectric material substrate and fed by 4 mm long microstrip line. The finite element method based, full wave electromagnetic simulator HFSS is efficiently utilized for designing and analyzing the proposed antenna and the antenna parameters are measured in a standard far-field anechoic chamber. The experimental results show that the prototype of the antenna has achieved operating bandwidths (voltage stand wave ratio (VSWR) less than 2) 360 MHz (2.53–2.89 GHz) and 440 MHz (3.47–3.91 GHz) for WiMAX and 1550 MHz (6.28–7.83 GHz) for C-band. The simulated and measured results for VSWR, radiation patterns, and gain are well matched. Nearly omnidirectional radiation patterns are achieved and the peak gains are of 3.62 dBi, 3.67 dBi, and 5.7 dBi at 2.66 GHz, 3.65 GHz, and 6.58 GHz, respectively. PMID:25136648
Transitioning ISR architecture into the cloud
NASA Astrophysics Data System (ADS)
Lash, Thomas D.
2012-06-01
Emerging cloud computing platforms offer an ideal opportunity for Intelligence, Surveillance, and Reconnaissance (ISR) intelligence analysis. Cloud computing platforms help overcome challenges and limitations of traditional ISR architectures. Modern ISR architectures can benefit from examining commercial cloud applications, especially as they relate to user experience, usage profiling, and transformational business models. This paper outlines legacy ISR architectures and their limitations, presents an overview of cloud technologies and their applications to the ISR intelligence mission, and presents an idealized ISR architecture implemented with cloud computing.
NASA Astrophysics Data System (ADS)
Morrison, A. L.; Kay, J. E.; Chepfer, H.; Guzman, R.; Yettella, V.
2018-01-01
While the radiative influence of clouds on Arctic sea ice is known, the influence of sea ice cover on Arctic clouds is challenging to detect, separate from atmospheric circulation, and attribute to human activities. Providing observational constraints on the two-way relationship between sea ice cover and Arctic clouds is important for predicting the rate of future sea ice loss. Here we use 8 years of CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations) spaceborne lidar observations from 2008 to 2015 to analyze Arctic cloud profiles over sea ice and over open water. Using a novel surface mask to restrict our analysis to where sea ice concentration varies, we isolate the influence of sea ice cover on Arctic Ocean clouds. The study focuses on clouds containing liquid water because liquid-containing clouds are the most important cloud type for radiative fluxes and therefore for sea ice melt and growth. Summer is the only season with no observed cloud response to sea ice cover variability: liquid cloud profiles are nearly identical over sea ice and over open water. These results suggest that shortwave summer cloud feedbacks do not slow long-term summer sea ice loss. In contrast, more liquid clouds are observed over open water than over sea ice in the winter, spring, and fall in the 8 year mean and in each individual year. Observed fall sea ice loss cannot be explained by natural variability alone, which suggests that observed increases in fall Arctic cloud cover over newly open water are linked to human activities.
NASA Technical Reports Server (NTRS)
Martins, J. V.; Marshak, A.; Remer, L. A.; Rosenfeld, D.; Kaufman, Y. J.; Fernandez-Borda, R.; Koren, I.; Correia, A. L.; Zubko, V.; Artaxo, P.
2011-01-01
Cloud-aerosol interaction is a key issue in the climate system, affecting the water cycle, the weather, and the total energy balance including the spatial and temporal distribution of latent heat release. Information on the vertical distribution of cloud droplet microphysics and thermodynamic phase as a function of temperature or height, can be correlated with details of the aerosol field to provide insight on how these particles are affecting cloud properties and their consequences to cloud lifetime, precipitation, water cycle, and general energy balance. Unfortunately, today's experimental methods still lack the observational tools that can characterize the true evolution of the cloud microphysical, spatial and temporal structure in the cloud droplet scale, and then link these characteristics to environmental factors and properties of the cloud condensation nuclei. Here we propose and demonstrate a new experimental approach (the cloud scanner instrument) that provides the microphysical information missed in current experiments and remote sensing options. Cloud scanner measurements can be performed from aircraft, ground, or satellite by scanning the side of the clouds from the base to the top, providing us with the unique opportunity of obtaining snapshots of the cloud droplet microphysical and thermodynamic states as a function of height and brightness temperature in clouds at several development stages. The brightness temperature profile of the cloud side can be directly associated with the thermodynamic phase of the droplets to provide information on the glaciation temperature as a function of different ambient conditions, aerosol concentration, and type. An aircraft prototype of the cloud scanner was built and flew in a field campaign in Brazil.
NASA Astrophysics Data System (ADS)
Roberts, Greg; Calmer, Radiance; Sanchez, Kevin; Cayez, Grégoire; Nicoll, Kerianne; Hashimshoni, Eyal; Rosenfeld, Daniel; Ansmann, Albert; Sciare, Jean; Ovadneite, Jurgita; Bronz, Murat; Hattenberger, Gautier; Preissler, Jana; Buehl, Johannes; Ceburnis, Darius; O'Dowd, Colin
2016-04-01
Clouds are omnipresent in earth's atmosphere and constitute an important role in regulating the radiative budget of the planet. However, the response of clouds to climate change remains uncertain, in particular, with respect to aerosol-cloud interactions and feedback mechanisms between the biosphere and atmosphere. Aerosol-cloud interactions and their feedbacks are the main themes of the European project FP7 BACCHUS (Impact of Biogenic versus Anthropogenic Emissions on Clouds and Climate: towards a Holistic Understanding). The National Center for Meteorological Research (CNRM-GAME, Toulouse, France) conducted airborne experiments in Cyprus and Ireland in March and August 2015 respectively to link ground-based and satellite observations. Multiple RPAS (remotely piloted aircraft systems) were instrumented for a specific scientific focus to characterize the vertical distribution of aerosol, cloud microphysical properties, radiative fluxes, 3D wind vectors and meteorological state parameters. Flights below and within clouds were coordinated with satellite overpasses to perform 'top-down' closure of cloud micro-physical properties. Measurements of cloud condensation nuclei spectra at the ground-based site have been used to determine cloud microphyical properties using wind vectors and meteorological parameters measured by the RPAS at cloud base. These derived cloud properties have been validated by in-situ RPAS measurements in the cloud and compared to those derived by the Suomi-NPP satellite. In addition, RPAS profiles in Cyprus observed the layers of dust originating from the Arabian Peninsula and the Sahara Desert. These profiles generally show a well-mixed boundary layer and compare well with ground-based LIDAR observations.
Narrow-line region kinematics in Seyfert nuclei
NASA Astrophysics Data System (ADS)
Moore, David J.
1994-01-01
We present results of a study of narrow-line region (NLR) kinematics in Seyfert nuclei. This study has involved extensive modeling which includes collimated emission, radially dependent rotation and turbulence, explicit photoionization calculations, realistic treatments of both internal and external obscuration, and allows for gradients in the electron density and the radial velocity of clouds throughout the NLR. Line profiles of (O II) lambda 3727, (Ne III) lambda 3869, (O III) lambda 5007, (Fe VII) lambda 6087, (Fe X) lambda 6374, (O I) lambda 6300, H alpha lambda 6563, and (S II) lambda 6731 are calculated for a wide range of physical conditions throughout the NLR. The model profiles are compared with line profiles derived from data taken with the Mount Palomar 5 m Hale Telescope as well as from profiles taken from the literature. The scenario in agreement with the largest of observational considerations consists of clouds which are accelerating outward with v varies as square root of r (i.e., constant force) and ne varies as 1/r2. The cloud start out at the inner NLR radium with ne approximately equal to 106/cu cm and with a very large column density (1023 - 10(exp 24/sq cm). These clouds are uniformly accelerated from a few tens of km/sec to approximately less than 1,000 km/sec. When the clouds reached the outer NLR radius, they have ne approximately greater than 102/cu cm and a column density of 1021-1022/sq cm. The clouds maintain an ionization parameter of about 0.3 throughout the NLR.
3D Cloud Field Prediction using A-Train Data and Machine Learning Techniques
NASA Astrophysics Data System (ADS)
Johnson, C. L.
2017-12-01
Validation of cloud process parameterizations used in global climate models (GCMs) would greatly benefit from observed 3D cloud fields at the size comparable to that of a GCM grid cell. For the highest resolution simulations, surface grid cells are on the order of 100 km by 100 km. CloudSat/CALIPSO data provides 1 km width of detailed vertical cloud fraction profile (CFP) and liquid and ice water content (LWC/IWC). This work utilizes four machine learning algorithms to create nonlinear regressions of CFP, LWC, and IWC data using radiances, surface type and location of measurement as predictors and applies the regression equations to off-track locations generating 3D cloud fields for 100 km by 100 km domains. The CERES-CloudSat-CALIPSO-MODIS (C3M) merged data set for February 2007 is used. Support Vector Machines, Artificial Neural Networks, Gaussian Processes and Decision Trees are trained on 1000 km of continuous C3M data. Accuracy is computed using existing vertical profiles that are excluded from the training data and occur within 100 km of the training data. Accuracy of the four algorithms is compared. Average accuracy for one day of predicted data is 86% for the most successful algorithm. The methodology for training the algorithms, determining valid prediction regions and applying the equations off-track is discussed. Predicted 3D cloud fields are provided as inputs to the Ed4 NASA LaRC Fu-Liou radiative transfer code and resulting TOA radiances compared to observed CERES/MODIS radiances. Differences in computed radiances using predicted profiles and observed radiances are compared.
The Importance of High Frequency Observations for the SKA
NASA Astrophysics Data System (ADS)
Welch, William J.
2007-12-01
The plan for the Square Kilometer Array (SKA) is one or more very large arrays operating in two or more contiguous frequency bands: roughly 15 - 90 MHz, 120 - 500 MHz, and 500 MHz - 25 GHz. The last band may be further divided into roughly 500 MHz - 1.5 GHz and 1.5 - 25 GHz. Construction costs may delay or forgo one or more of these bands. We argue that the entire high frequency band is of special importance for astronomy both in the local universe and at great distances and early times. One of the Key Science Projects, the Cradle of Life, requires high sensitivity and resolution at frequencies up to 20 GHz for the study of forming disks around new stars with disk opacities too great for millimeter wave observations. The larger issue of star formation, a poorly understood area, will also benefit from high sensitivity observations at short cm wavelengths. Magnetic field measurements through the Zeeman effect in the densest star forming gas are best done using tracers such as CCS at frequencies of 11 and 22 GHz. The wide frequency range of the SKA permits the observation of multiple rotational transitions of long chain molecules, providing accurate measures of both gas densities and temperatures. The wide field of view will permit large scale surveys of entire star forming clouds revealing, at high resolution, the formation of clusters of pre-protostellar stars and class 0-2 protostars in line radiation. The continuum cm wave radiation will reveal the growth of grains in disks. On the larger scale, observations of CO at high redshifts will trace the evolution of star formation and the formation of metals back to the Epic of Reionization.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kalesse, Heike; Szyrmer, Wanda; Kneifel, Stefan
In this paper, Radar Doppler spectra measurements are exploited to study a riming event when precipitating ice from a seeder cloud sediment through a supercooled liquid water (SLW) layer. The focus is on the "golden sample" case study for this type of analysis based on observations collected during the deployment of the Atmospheric Radiation Measurement Program's (ARM) mobile facility AMF2 at Hyytiälä, Finland, during the Biogenic Aerosols – Effects on Clouds and Climate (BAECC) field campaign. The presented analysis of the height evolution of the radar Doppler spectra is a state-of-the-art retrieval with profiling cloud radars in SLW layers beyondmore » the traditional use of spectral moments. Dynamical effects are considered by following the particle population evolution along slanted tracks that are caused by horizontal advection of the cloud under wind shear conditions. In the SLW layer, the identified liquid peak is used as an air motion tracer to correct the Doppler spectra for vertical air motion and the ice peak is used to study the radar profiles of rimed particles. A 1-D steady-state bin microphysical model is constrained using the SLW and air motion profiles and cloud top radar observations. The observed radar moment profiles of the rimed snow can be simulated reasonably well by the model, but not without making several assumptions about the ice particle concentration and the relative role of deposition and aggregation. In conclusion, this suggests that in situ observations of key ice properties are needed to complement the profiling radar observations before process-oriented studies can effectively evaluate ice microphysical parameterizations.« less
TRMM and Its Connection to the Global Water Cycle
NASA Technical Reports Server (NTRS)
Kummerow, Christian; Hong, Ye
1999-01-01
The importance of quantitative knowledge of tropical rainfall, its associated latent heating and variability is summarized in the context of the global hydrologic cycle. Much of the tropics is covered by oceans. What land exists, is covered largely by rainforests that are only thinly populated. The only way to adequately measure the global tropical rainfall for climate and general circulation models is from space. The TRMM orbit is inclined 35' leading to good sampling in the tropics and a rapid precession to study the diurnal cycle of precipitation. The precipitation instrument complement consists of the first rain radar to be flown in space (PR), a multi-channel passive microwave sensor (TMI) and a five-channel VIS/IR (VIRS) sensor. The precipitation radar operates at a frequency of 13.6 GHz. The swath width is 220 km, with a horizontal resolution of 4 km and the vertical resolution of 250 in. The minimum detectable signal from the precipitation radar has been measured at 17 dBZ. The TMI instrument is designed similar to the SSM/I with two important changes. The 22.235 GHz water vapor absorption channel of the SSM/I was moved to 21.3 GHz in order to avoid saturation in the tropics and 10.7 GHz V&H polarized channels were added to expand the dynamic range of rainfall estimates. The resolution of the TMI varies from 4.6 km at 85 GHz to 36 km at 10.7 GHz. The visible and infrared sensor (VIRS) measures radiation at 0.63, 1.6, 3.75, 10.8 and 12.0 microns. The spatial resolution of all five VIRS channels is 2 km at nadir. In addition to the three primary rainfall instruments, TRMM will also carry a Lightning Imaging Sensor (LIS) and a Clouds and the Earth's Radiant Energy System (CERES) instrument.
Searching for Dark Matter Annihilation in the Smith High-Velocity Cloud
NASA Technical Reports Server (NTRS)
Drlica-Wagner, Alex; Gomez-Vargas, German A.; Hewitt, John W.; Linden, Tim; Tibaldo, Luigi
2014-01-01
Recent observations suggest that some high-velocity clouds may be confined by massive dark matter halos. In particular, the proximity and proposed dark matter content of the Smith Cloud make it a tempting target for the indirect detection of dark matter annihilation. We argue that the Smith Cloud may be a better target than some Milky Way dwarf spheroidal satellite galaxies and use gamma-ray observations from the Fermi Large Area Telescope to search for a dark matter annihilation signal. No significant gamma-ray excess is found coincident with the Smith Cloud, and we set strong limits on the dark matter annihilation cross section assuming a spatially extended dark matter profile consistent with dynamical modeling of the Smith Cloud. Notably, these limits exclude the canonical thermal relic cross section (approximately 3 x 10 (sup -26) cubic centimeters per second) for dark matter masses less than or approximately 30 gigaelectronvolts annihilating via the B/B- bar oscillation or tau/antitau channels for certain assumptions of the dark matter density profile; however, uncertainties in the dark matter content of the Smith Cloud may significantly weaken these constraints.
Searching For Dark Matter Annihilation In The Smith High-Velocity Cloud
Drlica-Wagner, Alex; Gómez-Vargas, Germán A.; Hewitt, John W.; ...
2014-06-27
Recent observations suggest that some high-velocity clouds may be confined by massive dark matter halos. In particular, the proximity and proposed dark matter content of the Smith Cloud make it a tempting target for the indirect detection of dark matter annihilation. We argue that the Smith Cloud may be a better target than some Milky Way dwarf spheroidal satellite galaxies and use γ-ray observations from the Fermi Large Area Telescope to search for a dark matter annihilation signal. No significant γ-ray excess is found coincident with the Smith Cloud, and we set strong limits on the dark matter annihilation crossmore » section assuming a spatially extended dark matter profile consistent with dynamical modeling of the Smith Cloud. Notably, these limits exclude the canonical thermal relic cross section (~3 × 10 -26 cm3 s -1) for dark matter masses . 30 GeV annihilating via the b¯b or τ⁺τ⁻ channels for certain assumptions of the dark matter density profile; however, uncertainties in the dark matter content of the Smith Cloud may significantly weaken these constraints.« less
NASA Technical Reports Server (NTRS)
Hughes, E. J.; Yorks, J.; Krotkov, N. A.; da Silva, A. M.; Mcgill, M.
2016-01-01
An eruption of Italian volcano Mount Etna on 3 December 2015 produced fast-moving sulfur dioxide (SO2) and sulfate aerosol clouds that traveled across Asia and the Pacific Ocean, reaching North America in just 5 days. The Ozone Profiler and Mapping Suite's Nadir Mapping UV spectrometer aboard the U.S. National Polar-orbiting Partnership satellite observed the horizontal transport of the SO2 cloud. Vertical profiles of the colocated volcanic sulfate aerosols were observed between 11.5 and 13.5 km by the new Cloud Aerosol Transport System (CATS) space-based lidar aboard the International Space Station. Backward trajectory analysis estimates the SO2 cloud altitude at 7-12 km. Eulerian model simulations of the SO2 cloud constrained by CATS measurements produced more accurate dispersion patterns compared to those initialized with the back trajectory height estimate. The near-real-time data processing capabilities of CATS are unique, and this work demonstrates the use of these observations to monitor and model volcanic clouds.
NASA Technical Reports Server (NTRS)
Hughes, E. J.; Yorks, J.; Krotkov, N. A.; Da Silva, A. M.; McGill, M.
2016-01-01
An eruption of Italian volcano Mount Etna on 3 December 2015 produced fast-moving sulfur dioxide (SO2) and sulfate aerosol clouds that traveled across Asia and the Pacific Ocean, reaching North America in just 5days. The Ozone Profiler and Mapping Suite's Nadir Mapping UV spectrometer aboard the U.S. National Polar-orbiting Partnership satellite observed the horizontal transport of the SO2 cloud. Vertical profiles of the colocated volcanic sulfate aerosols were observed between 11.5 and 13.5 km by the new Cloud Aerosol Transport System (CATS) space-based lidar aboard the International Space Station. Backward trajectory analysis estimates the SO2 cloud altitude at 7-12 km. Eulerian model simulations of the SO2 cloud constrained by CATS measurements produced more accurate dispersion patterns compared to those initialized with the back trajectory height estimate. The near-real-time data processing capabilities of CATS are unique, and this work demonstrates the use of these observations to monitor and model volcanic clouds.
Diagnosing AIRS Sampling with CloudSat Cloud Classes
NASA Technical Reports Server (NTRS)
Fetzer, Eric; Yue, Qing; Guillaume, Alexandre; Kahn, Brian
2011-01-01
AIRS yield and sampling vary with cloud state. Careful utilization of collocated multiple satellite sensors is necessary. Profile differences between AIRS and ECMWF model analyses indicate that AIRS has high sampling and excellent accuracy for certain meteorological conditions. Cloud-dependent sampling biases may have large impact on AIRS L2 and L3 data in climate research. MBL clouds / lower tropospheric stability relationship is one example. AIRS and CloudSat reveal a reasonable climatology in the MBL cloud regime despite limited sampling in stratocumulus. Thermodynamic parameters such as EIS derived from AIRS data map these cloud conditions successfully. We are working on characterizing AIRS scenes with mixed cloud types.
NASA Astrophysics Data System (ADS)
Gu, B.; Yang, P.; Kuo, C. P.; Mlawer, E. J.
2017-12-01
Evaluation of RRTMG and Fu-Liou RTM Performance against LBLRTM-DISORT Simulations and CERES Data in terms of Ice Clouds Radiative Effects Boyan Gu1, Ping Yang1, Chia-Pang Kuo1, Eli J. Mlawer2 Department of Atmospheric Sciences, Texas A&M University, College Station, TX 77843, USA Atmospheric and Environmental Research (AER), Lexington, MA 02421, USA Ice clouds play an important role in climate system, especially in the Earth's radiation balance and hydrological cycle. However, the representation of ice cloud radiative effects (CRE) remains significant uncertainty, because scattering properties of ice clouds are not well considered in general circulation models (GCM). We analyze the strengths and weakness of the Rapid Radiative Transfer Model for GCM Applications (RRTMG) and Fu-Liou Radiative Transfer Model (RTM) against rigorous LBLRTM-DISORT (a combination of Line-By-Line Radiative Transfer Model and Discrete Ordinate Radiative Transfer Model) calculations and CERES (Clouds and the Earth's Radiant Energy System) flux observations. In total, 6 US standard atmospheric profiles and 42 atmospheric profiles from Atmospheric and Environmental Research (AER) Company are used to evaluate the RRTMG and Fu-Liou RTM by LBLRTM-DISORT calculations from 0 to 3250 cm-1. Ice cloud radiative effect simulations with RRTMG and Fu-Liou RTM are initialized using the ice cloud properties from MODIS collection-6 products. Simulations of single layer ice cloud CRE by RRTMG and LBLRTM-DISORT show that RRTMG, neglecting scattering, overestimates the TOA flux by about 0-15 W/m2 depending on the cloud particle size and optical depth, and the most significant overestimation occurs when the particle effective radius is small (around 10 μm) and the cloud optical depth is intermediate (about 1-10). The overestimation reduces significantly when the similarity rule is applied to RRTMG. We combine ice cloud properties from MODIS Collection-6 and atmospheric profiles from the Modern-Era Retrospective Analysis for Research and Applications-2 (MERRA2) reanalysis to simulate ice cloud CRE, which is compared with CERES observations.
A-Train Observations of Young Volcanic Eruption Clouds
NASA Astrophysics Data System (ADS)
Carn, S. A.; Prata, F.; Yang, K.; Rose, W. I.
2011-12-01
NASA's A-Train satellite constellation (including Aqua, CloudSat, CALIPSO, and Aura) has been flying in formation since 2006, providing unprecedented synergistic observations of numerous volcanic eruption clouds in various stages of development. Measurements made by A-Train sensors include total column SO2 by the Ozone Monitoring Instrument (OMI) on Aura, upper tropospheric and stratospheric (UTLS) SO2 column by the Atmospheric Infrared Sounder (AIRS) on Aqua and Microwave Limb Sounder (MLS) on Aura, ash mass loading from AIRS and the Moderate resolution Imaging Spectroradiometer (MODIS) on Aqua, UTLS HCl columns and ice water content (IWC) from MLS, aerosol vertical profiles from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) instrument aboard CALIPSO, and hydrometeor profiles from the Cloud Profiling Radar (CPR) on CloudSat. The active vertical profiling capability of CALIPSO, CloudSat and MLS sychronized with synoptic passive sensing of trace gases and aerosols by OMI, AIRS and MODIS provides a unique perspective on the structure and composition of volcanic clouds. A-Train observations during the first hours of atmospheric residence are particularly valuable, as the fallout, segregation and stratification of material in this period determines the concentration and altitude of constituents that remain to be advected downwind. This represents the eruption 'source term' essential for dispersion modeling, and hence for aviation hazard mitigation. In this presentation we show examples of A-Train data collected during recent eruptions including Chaitén (May 2008), Kasatochi (August 2008), Redoubt (March 2009), Eyjafjallajökull (April 2010) and Cordón Caulle (June 2011). We interpret the observations using the canonical three-stage view of volcanic cloud development [e.g., Rose et al., 2000] from initial rapid ash fallout to far-field dispersion of fine ash, gas and aerosol, and results from numerical modeling of volcanic plumes [e.g., Textor et al., 2003] and discuss the degree to which the observations validate existing theory and models. We also describe plans for advanced SO2 and ash retrieval algorithms that will exploit the synergy between UV and IR sensors in the A-Train for improved quantification of ash and SO2 loading by volcanic eruptions.
NASA Astrophysics Data System (ADS)
Gong, Jie; Wu, Dong L.
2017-02-01
Scattering differences induced by frozen particle microphysical properties are investigated, using the vertically (V) and horizontally (H) polarized radiances from the Global Precipitation Measurement (GPM) Microwave Imager (GMI) 89 and 166 GHz channels. It is the first study on frozen particle microphysical properties on a global scale that uses the dual-frequency microwave polarimetric signals.From the ice cloud scenes identified by the 183.3 ± 3 GHz channel brightness temperature (Tb), we find that the scattering by frozen particles is highly polarized, with V-H polarimetric differences (PDs) being positive throughout the tropics and the winter hemisphere mid-latitude jet regions, including PDs from the GMI 89 and 166 GHz TBs, as well as the PD at 640 GHz from the ER-2 Compact Scanning Submillimeter-wave Imaging Radiometer (CoSSIR) during the TC4 campaign. Large polarization dominantly occurs mostly near convective outflow regions (i.e., anvils or stratiform precipitation), while the polarization signal is small inside deep convective cores as well as at the remote cirrus region. Neglecting the polarimetric signal would easily result in as large as 30 % error in ice water path retrievals. There is a universal bell curve
in the PD-TBV relationship, where the PD amplitude peaks at ˜ 10 K for all three channels in the tropics and increases slightly with latitude (2-4 K). Moreover, the 166 GHz PD tends to increase in the case where a melting layer is beneath the frozen particles aloft in the atmosphere, while 89 GHz PD is less sensitive than 166 GHz to the melting layer. This property creates a unique PD feature for the identification of the melting layer and stratiform rain with passive sensors.Horizontally oriented non-spherical frozen particles are thought to produce the observed PD because of different ice scattering properties in the V and H polarizations. On the other hand, turbulent mixing within deep convective cores inevitably promotes the random orientation of these particles, a mechanism that works effectively in reducing the PD. The current GMI polarimetric measurements themselves cannot fully disentangle the possible mechanisms.
NASA Technical Reports Server (NTRS)
Gong, Jie; Wu, Dongliang
2017-01-01
Scattering differences induced by frozen particle microphysical properties are investigated, using the vertically (V) and horizontally (H) polarized radiances from the Global Precipitation Measurement (GPM) Microwave Imager (GMI) 89 and 166GHz channels. It is the first study on global frozen particle microphysical properties that uses the dual-frequency microwave polarimetric signals. From the ice cloud scenes identified by the 183.3 3GHz channel brightness temperature (TB), we find that the scatterings of frozen particles are highly polarized with V-H polarimetric differences (PD) being positive throughout the tropics and the winter hemisphere mid-latitude jet regions, including PDs from the GMI 89 and 166GHz TBs, as well as the PD at 640GHz from the ER-2 Compact Scanning Submillimeter-wave Imaging Radiometer (CoSSIR) during the TC4 campaign. Large polarization dominantly occurs mostly near convective outflow region (i.e., anvils or stratiform precipitation), while the polarization signal is small inside deep convective cores as well as at the remote cirrus region. Neglecting the polarimetric signal would result in as large as 30 error in ice water path retrievals. There is a universal bell-curve in the PD TB relationship, where the PD amplitude peaks at 10K for all three channels in the tropics and increases slightly with latitude. Moreover, the 166GHz PD tends to increase in the case where a melting layer is beneath the frozen particles aloft in the atmosphere, while 89GHz PD is less sensitive than 166GHz to the melting layer. This property creates a unique PD feature for the identification of the melting layer and stratiform rain with passive sensors. Horizontally oriented non-spherical frozen particles are thought to produce the observed PD because of different ice scattering properties in the V and H polarizations. On the other hand, changes in the ice microphysical habitats or orientation due to turbulence mixing can also lead to a reduced PD in the deep convective cores. The current GMI polarimetric measurements themselves cannot fully disentangle the possible mechanisms.
Constraints on the Profiles of Total Water PDF in AGCMs from AIRS and a High-Resolution Model
NASA Technical Reports Server (NTRS)
Molod, Andrea
2012-01-01
Atmospheric general circulation model (AGCM) cloud parameterizations generally include an assumption about the subgrid-scale probability distribution function (PDF) of total water and its vertical profile. In the present study, the Atmospheric Infrared Sounder (AIRS) monthly-mean cloud amount and relative humidity fields are used to compute a proxy for the second moment of an AGCM total water PDF called the RH01 diagnostic, which is the AIRS mean relative humidity for cloud fractions of 0.1 or less. The dependence of the second moment on horizontal grid resolution is analyzed using results from a high-resolution global model simulation.The AIRS-derived RH01 diagnostic is generally larger near the surface than aloft, indicating a narrower PDF near the surface, and varies with the type of underlying surface. High-resolution model results show that the vertical structure of profiles of the AGCM PDF second moment is unchanged as the grid resolution changes from 200 to 100 to 50 km, and that the second-moment profiles shift toward higher values with decreasing grid spacing.Several Goddard Earth Observing System, version 5 (GEOS-5), AGCM simulations were performed with several choices for the profile of the PDF second moment. The resulting cloud and relative humidity fields were shown to be quite sensitive to the prescribed profile, and the use of a profile based on the AIRS-derived proxy results in improvements relative to observational estimates. The AIRS-guided total water PDF profiles, including their dependence on underlying surface type and on horizontal resolution, have been implemented in the version of the GEOS-5 AGCM used for publicly released simulations.
NASA Astrophysics Data System (ADS)
Kulikov, M. Y.; Krasil'nikov, A. A.; Shvetsov, A. A.; Mukhin, D. N.; Fedoseev, L. I.; Ryskin, V. G.; Belikovich, M. V.; Karashtin, D. A.; Kukin, L. M.; Feigin, A. M.
2012-04-01
At the present time we carry out the experimental campaign aimed to study the response of middle atmosphere on current sudden stratospheric warming above Nizhny Novgorod, Russia (56N, 44E). The equipment consists of two room-temperature radiometers which specially have been designed to detect emission ozone line at 110.8 GHz and atmospheric radiation in the frequency range 52.5 - 54.5 GHz accordingly. Two digital fast Fourier transform spectroanalyzers developed by "Acqiris" are employed for signal analysis in the intermediate frequency range 0.05-1 GHz with the effective resolution 61 KHz. For retrieval vertical profiles of ozone and temperature from radiometric data we apply novel method based on Bayesian approach to inverse problems which assumes a construction of probability distribution of the characteristics of retrieved profiles with taking into account measurement noise and available a priori information about possible distributions of ozone and temperature in the middle atmosphere. Here we are going to introduce the fist results of the campaign in comparison with Aura MLS data and temperature maps from High Resolution Transport Model MIMOSA. The work was done under support of the RFBR (projects 11-05-97050 and 12-05-00999).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seo, Seong-Heon; Wi, H. M.; Lee, W. R.
2013-08-15
Frequency modulation reflectometer has been developed to measure the plasma density profile of the Korea Superconducting Tokamak Advanced Research tokamak. Three reflectometers are operating in extraordinary polarization mode in the frequency range of Q band (33.6–54 GHz), V band (48–72 GHz), and W band (72–108 GHz) to measure the density up to 7 × 10{sup 19} m{sup −3} when the toroidal magnetic field is 2 T on axis. The antenna is installed inside of the vacuum vessel. A new vacuum window is developed by using 50 μm thick mica film and 0.1 mm thick gold gasket. The filter bank ofmore » low pass filter, notch filter, and Faraday isolator is used to reject the electron cyclotron heating high power at attenuation of 60 dB. The full frequency band is swept in 20 μs. The mixer output is directly digitized with sampling rate of 100 MSamples/s. The phase is obtained by using wavelet transform. The whole hardware and software system is described in detail and the measured density profile is presented as a result.« less
Radio outbursts in extragalactic sources
NASA Astrophysics Data System (ADS)
Kinzel, Wayne Morris
Three aspects of the flux density variability of extragalactic radio sources were examined: millimeter wavelength short timescale variability, the spectral evolution of outbursts, and whether the outbursts are periodically spaced. Observations of extragalactic radio sources were conducted using the Five College Radio Astronomy Observatory between January and June 1985 at 88.2 GHz and during June and July 1985 at 40.0 GHz. Many of the sources exhibited significant flux density variations during the observing span. In addition, the most rapid variations observed were comparable with those reported in previous works. Two sources, 0355+50 and OJ287, both exhibited outbursts whose rise and fall timescales were less than a month. An anomalous flux density dropout was observed in 3C446 and was interpreted as an occultation event. Data at five frequencies between 2.7 and 89.6 GHz from the Dent-Balonek monitoring program were used to investigate the spectral evolution of eight outbursts. Outburst profile fitting was used to deconvolve the individual outbursts from one another at each frequency. The fit profiles were used to generate multiple epoch spectra to investigate the evolution of the outbursts. A phase residual minimization method was used to examine four sources for periodic behavior.
NASA Astrophysics Data System (ADS)
Tapia, V.; González, A.; Finger, R.; Mena, F. P.; Monasterio, D.; Reyes, N.; Sánchez, M.; Bronfman, L.
2017-03-01
We present the design, implementation, and characterization of the optics of ALMA Band 1, the lowest frequency band in the most advanced radio astronomical telescope. Band 1 covers the broad frequency range from 35 to 50 GHz, with the goal of minor degradation up to 52 GHz. This is, up to now, the largest fractional bandwidth of all ALMA bands. Since the optics is the first subsystem of any receiver, low noise figure and maximum aperture efficiency are fundamental for best sensitivity. However, a conjunction of several factors (small cryostat apertures, mechanical constraints, and cost limitations) makes extremely challenging to achieve these goals. To overcome these problems, the optics presented here includes two innovative solutions, a compact optimized-profile corrugated horn and a modified Fresnel lens. The horn profile was optimized for optimum performance and easy fabrication by a single-piece manufacturing process in a lathe. In this way, manufacturability is eased when compared with traditional fabrication methods. To minimize the noise contribution of the optics, a one-step zoned lens was designed. Its parameters were carefully optimized to maximize the frequency coverage and reduce losses. The optical assembly reported here fully complies with ALMA specifications.
NASA Technical Reports Server (NTRS)
Stephens, Graeme L.; Vane, Deborah G.; Boain, Ronald; Mace, Gerald; Sassen, Kenneth; Wang, Zhien; Illingworth, Anthony; OConnor, Ewan; Rossow, William; Durden, Stephen L.;
2001-01-01
CloudSat is a satellite experiment designed to measure the vertical structure of clouds from space. The expected launch of CloudSat is planned for 2004 and, once launched, CloudSat will orbit in formation as part of a constellation of satellites including NASA's Aqua and Aura satellites, a NASA-CNES lidar satellite (P-C) and a CNES satellite carrying a polarimeter (PARASOL). A unique feature that CloudSat brings to this constellation is the ability to fly a precise orbit enabling the fields of view of the CloudSat radar to be overlapped with the P-C lidar footprint and the other measurements of the EOS constellation. The precision of this overlap creates a unique multi-satellite observing system for studying the atmospheric processes essential to the hydrological cycle. The vertical profile of cloud properties provided by CloudSat fills a critical gap in the investigation of feedback mechanisms linking clouds to climate. Measuring the vertical profile of cloud properties requires a combination of active and passive instruments, and this will be achieved by combining the radar data of CloudSat with active and passive data from other sensors of the constellation. This paper describes the underpinning science, and gives an overview of the mission, and provides some idea of the expected products and anticipated application of these products. Notably, the CloudSat mission is expected to provide new knowledge about global cloudiness, stimulating new areas of research on clouds including data assimilation and cloud parameterization. The mission also provides an important opportunity to demonstrate active sensor technology for future scientific and tactical applications. The CloudSat mission is a partnership between NASA/JPL, the Canadian Space Agency, Colorado State University, the US Air Force, and the US Department of Energy.
Powerful Hurricane Irma Seen in 3D by NASA's CloudSat
2017-09-08
NASA's CloudSat satellite flew over Hurricane Irma on Sept. 6, 2017 at 1:45 p.m. EDT (17:45 UTC) as the storm was approaching Puerto Rico in the Atlantic Ocean. Hurricane Irma contained estimated maximum sustained winds of 185 miles per hour (160 knots) with a minimum pressure of 918 millibars. CloudSat transected the eastern edge of Hurricane Irma's eyewall, revealing details of the storm's cloud structure beneath its thick canopy of cirrus clouds. The CloudSat Cloud Profiling Radar excels in detecting the organization and placement of cloud layers beneath a storm's cirrus canopy, which are not readily detected by other satellite sensors. The CloudSat overpass reveals the inner details beneath the cloud tops of this large system; intense areas of convection with moderate to heavy rainfall (deep red and pink colors), cloud-free areas (moats) in between the inner and outer cloud bands of Hurricane Irma and cloud top heights averaging around 9 to 10 miles (15 to 16 kilometers). Lower values of reflectivity (areas of green and blue) denote smaller-sized ice and water particle sizes typically located at the top of a storm system (in the anvil area). The Cloud Profiling Radar loses signal at around 3 miles (5 kilometers) in height (in the melting layer) due to water (ice) particles larger than 0.12 inches (3 millimeters) in diameter. Moderate to heavy rainfall occurs in these areas where signal weakening is detectable. Smaller cumulus and cumulonimbus cloud types are evident as CloudSat moves farther south, beneath the thick cirrus canopy. An animation is available at https://photojournal.jpl.nasa.gov/catalog/PIA21947
Subtropical Low Cloud Responses to Central and Eastern Pacific El Nino Events
NASA Astrophysics Data System (ADS)
Rapp, A. D.; Bennartz, R.; Jiang, J. H.; Kato, S.; Olson, W. S.; Pinker, R. T.; Su, H.; Taylor, P. C.
2014-12-01
The eastern Pacific El Niño event in 2006-2007 and the central Pacific El Niño event during 2009-2010 exhibit opposite responses in the top of atmosphere (TOA) cloud radiative effects. These responses are driven by differences in large-scale circulation that result in significant low cloud anomalies in the subtropical southeastern Pacific. Both the vertical profile of cloud fraction and cloud water content are reduced during the eastern Pacific El Niño; however, the shift in the distribution of cloud characteristics and the physical processes underlying these changes need further analysis. The NASA Energy and Water Cycle Study (NEWS) Clouds and Radiation Working Group will use a synthesis of NEWS data products, A-Train satellite measurements, reanalysis, and modeling approaches to further explore the differences in the low cloud response to changes in the large-scale forcing, as well as try to understand the physical mechanism driving the observed changes in the low clouds for the 2006/07 and 2009/10 distinct El Niño events. The distributions of cloud macrophysical, microphysical, and radiative properties over the southeast Pacific will first be compared for these two events using a combination of MODIS, CloudSat/CALIPSO, and CERES data. Satellite and reanalysis estimates of changes in the vertical temperature and moisture profiles, lower tropospheric stability, winds, and surface heat fluxes are then used to identify the drivers for observed differences in the clouds and TOA radiative effects.
Overview of MPLNET Version 3 Cloud Detection
NASA Technical Reports Server (NTRS)
Lewis, Jasper R.; Campbell, James; Welton, Ellsworth J.; Stewart, Sebastian A.; Haftings, Phillip
2016-01-01
The National Aeronautics and Space Administration Micro Pulse Lidar Network, version 3, cloud detection algorithm is described and differences relative to the previous version are highlighted. Clouds are identified from normalized level 1 signal profiles using two complementary methods. The first method considers vertical signal derivatives for detecting low-level clouds. The second method, which detects high-level clouds like cirrus, is based on signal uncertainties necessitated by the relatively low signal-to-noise ratio exhibited in the upper troposphere by eye-safe network instruments, especially during daytime. Furthermore, a multitemporal averaging scheme is used to improve cloud detection under conditions of a weak signal-to-noise ratio. Diurnal and seasonal cycles of cloud occurrence frequency based on one year of measurements at the Goddard Space Flight Center (Greenbelt, Maryland) site are compared for the new and previous versions. The largest differences, and perceived improvement, in detection occurs for high clouds (above 5 km, above MSL), which increase in occurrence by over 5%. There is also an increase in the detection of multilayered cloud profiles from 9% to 19%. Macrophysical properties and estimates of cloud optical depth are presented for a transparent cirrus dataset. However, the limit to which the cirrus cloud optical depth could be reliably estimated occurs between 0.5 and 0.8. A comparison using collocated CALIPSO measurements at the Goddard Space Flight Center and Singapore Micro Pulse Lidar Network (MPLNET) sites indicates improvements in cloud occurrence frequencies and layer heights.
Signatures of Hydrometeor Species from Airborne Passive Microwave Data for Frequencies 10-183 GHz
NASA Technical Reports Server (NTRS)
Cecil, Daniel J.; Leppert, Kenneth, II
2014-01-01
There are 2 basic precipitation retrieval methods using passive microwave measurements: (1) Emission-based: Based on the tendency of liquid precipitation to cause an increase in brightness temperature (BT) primarily at frequencies below 22 GHz over a radiometrically cold background, often an ocean background (e.g., Spencer et al. 1989; Adler et al. 1991; McGaughey et al. 1996); and (2) Scattering-based: Based on the tendency of precipitation-sized ice to scatter upwelling radiation, thereby reducing the measured BT over a relatively warmer (usually land) background at frequencies generally 37 GHz (e.g., Spencer et al. 1989; Smith et al. 1992; Ferraro and Marks 1995). Passive microwave measurements have also been used to detect intense convection (e.g., Spencer and Santek 1985) and for the detection of hail (e.g., Cecil 2009; Cecil and Blankenship 2012; Ferraro et al. 2014). The Global Precipitation Measurement (GPM) mission expands upon the successful Tropical Rainfall Measurement Mission program to provide global rainfall and snowfall observations every 3 hours (Hou et al. 2014). One of the instruments on board the GPM Core Observatory is the GPM Microwave Imager (GMI) which is a conically-scanning microwave radiometer with 13 channels ranging from 10-183 GHz. Goal of this study: Determine the signatures of various hydrometeor species in terms of BTs measured at frequencies used by GMI by using data collected on 3 case days (all having intense/severe convection) during the Mid-latitude Continental Convective Clouds Experiment conducted over Oklahoma in 2011.
NASA Astrophysics Data System (ADS)
Di Natale, Gianluca; Palchetti, Luca; Bianchini, Giovanni; Del Guasta, Massimo
2017-03-01
The possibility separating the contributions of the atmospheric state and ice clouds by using spectral infrared measurements is a fundamental step to quantifying the cloud effect in climate models. A simultaneous retrieval of cloud and atmospheric parameters from infrared wideband spectra will allow the disentanglement of the spectral interference between these variables. In this paper, we describe the development of a code for the simultaneous retrieval of atmospheric state and ice cloud parameters, and its application to the analysis of the spectral measurements acquired by the Radiation Explorer in the Far Infrared - Prototype for Applications and Development (REFIR-PAD) spectroradiometer, which has been in operation at Concordia Station on the Antarctic Plateau since 2012. The code performs the retrieval with a computational time that is comparable with the instrument acquisition time. Water vapour and temperature profiles and the cloud optical and microphysical properties, such as the generalised effective diameter and the ice water path, are retrieved by exploiting the 230-980 cm-1 spectral band. To simulate atmospheric radiative transfer, the Line-By-Line Radiative Transfer Model (LBLRTM) has been integrated with a specifically developed subroutine based on the δ-Eddington two-stream approximation, whereas the single-scattering properties of cirrus clouds have been derived from a database for hexagonal column habits. In order to detect ice clouds, a backscattering and depolarisation lidar, co-located with REFIR-PAD has been used, allowing us to infer the position and the cloud thickness to be used in the retrieval. A climatology of the vertical profiles of water vapour and temperature has been performed by using the daily radiosounding available at the station at 12:00 UTC. The climatology has been used to build an a priori profile correlation to constrain the fitting procedure. An optimal estimation method with the Levenberg-Marquardt approach has been used to perform the retrieval. In most cases, the retrieved humidity and temperature profiles show a good agreement with the radiosoundings, demonstrating that the simultaneous retrieval of the atmospheric state is not biased by the presence of cirrus clouds. Finally, the retrieved cloud parameters allow us to study the relationships between cloud temperature and optical depth and between effective particle diameter and ice water content. These relationships are similar to the statistical correlations measured on the Antarctic coast at Dumont d'Urville and in the Arctic region.
Observing Ice in Clouds from Space
NASA Technical Reports Server (NTRS)
Ackerman, S.; Star, D. O'C.; Skofronick-Jackson, G.; Evans, F.; Wang, J. R.; Norris, P.; daSilva, A.; Soden, B.
2006-01-01
There are many satellite observations of cloud top properties and the liquid and rain content of clouds, however, we do not yet quantitatively understand the processes that control the water budget of the upper troposphere where ice is the predominant phase, and how these processes are linked to precipitation processes and the radiative energy budget. The ice in clouds in the upper troposphere either melts into rain or is detrained, and persists, as cirrus clouds affecting the hydrological and energy cycle, respectively. Fully modeling the Earth's climate and improving weather and climate forecasts requires accurate satellite measurements of various cloud properties at the temporal and spatial scales of cloud processes. These properties include cloud horizontal and vertical structure, cloud water content and some measure of particle sizes and shapes. The uncertainty in knowledge of these ice characteristics is reflected in the large discrepancies in model simulations of the upper tropospheric water budget. Model simulations are sensitive to the partition of ice between precipitation and outflow processes, i.e., to the parameterization of ice clouds and ice processes. One barrier to achieving accurate global ice cloud properties is the lack of adequate observations at millimeter and submillimeter wavelengths (183-874 GHz). Recent advances in instrumentation have allowed for the development and implementation of an airborne submillimeter-wave radiometer. The brightness temperatures at these frequencies are especially sensitive to cirrus ice particle sizes (because they are comparable to the wavelength). This allows for more accurate ice water path estimates when multiple channels are used to probe into the cloud layers. Further, submillimeter wavelengths offer simplicity in the retrieval algorithms because they do not probe into the liquid and near surface portions of clouds, thus requiring only one term of the radiative transfer equation (ice scattering) to relate brightness temperatures to ice. The next step is a satellite mission designed to acquire global Earth radiance measurements in the submillimeter-wave region, thus bridging the measurement gap between microwave sounders and shorter-wavelength infrared and visible sensors. This presentation provides scientific justification and an approach to measuring ice water path and particle size from a satellite platform that spans a range encompassing both the hydrologically active and radiatively active components of cloud systems.
NASA Astrophysics Data System (ADS)
Krisna, Trismono C.; Wendisch, Manfred; Ehrlich, André; Jäkel, Evelyn; Werner, Frank; Weigel, Ralf; Borrmann, Stephan; Mahnke, Christoph; Pöschl, Ulrich; Andreae, Meinrat O.; Voigt, Christiane; Machado, Luiz A. T.
2018-04-01
Solar radiation reflected by cirrus and deep convective clouds (DCCs) was measured by the Spectral Modular Airborne Radiation Measurement System (SMART) installed on the German High Altitude and Long Range Research Aircraft (HALO) during the Mid-Latitude Cirrus (ML-CIRRUS) and the Aerosol, Cloud, Precipitation, and Radiation Interaction and Dynamic of Convective Clouds System - Cloud Processes of the Main Precipitation Systems in Brazil: A Contribution to Cloud Resolving Modelling and to the Global Precipitation Measurement (ACRIDICON-CHUVA) campaigns. On particular flights, HALO performed measurements closely collocated with overpasses of the Moderate Resolution Imaging Spectroradiometer (MODIS) aboard the Aqua satellite. A cirrus cloud located above liquid water clouds and a DCC topped by an anvil cirrus are analyzed in this paper. Based on the nadir spectral upward radiance measured above the two clouds, the optical thickness τ and particle effective radius reff of the cirrus and DCC are retrieved using a radiance ratio technique, which considers the cloud thermodynamic phase, the vertical profile of cloud microphysical properties, the presence of multilayer clouds, and the heterogeneity of the surface albedo. For the cirrus case, the comparison of τ and reff retrieved on the basis of SMART and MODIS measurements yields a normalized mean absolute deviation of up to 1.2 % for τ and 2.1 % for reff. For the DCC case, deviations of up to 3.6 % for τ and 6.2 % for reff are obtained. The larger deviations in the DCC case are mainly attributed to the fast cloud evolution and three-dimensional (3-D) radiative effects. Measurements of spectral upward radiance at near-infrared wavelengths are employed to investigate the vertical profile of reff in the cirrus. The retrieved values of reff are compared with corresponding in situ measurements using a vertical weighting method. Compared to the MODIS observations, measurements of SMART provide more information on the vertical distribution of particle sizes, which allow reconstructing the profile of reff close to the cloud top. The comparison between retrieved and in situ reff yields a normalized mean absolute deviation, which ranges between 1.5 and 10.3 %, and a robust correlation coefficient of 0.82.
NASA Astrophysics Data System (ADS)
Ameri, Edris; Esmaeli, Seyed Hassan; Sedighy, Seyed Hassan
2018-05-01
A planar low cost and thin metasurface is proposed to achieve ultra-wideband radar cross section (RCS) reduction with stable performance with respect to polarization and incident angles. This metasurface is composed of two different artificial magnetic conductor unit cells arranged in a chessboard like configuration. These unit cells have a Jerusalem cross pattern with different thicknesses, which results in wideband out-phase reflection and RCS reduction, consequently. The designed metasurface reduces RCS more than 10-dB from 13.6 GHz to 45.5 GHz (108% bandwidth) and more than 20-dB RCS from 15.2 GHz to 43.6 GHz (96.6%). Moreover, the 10-dB RCS reduction bandwidth is very stable (more than 107%) for both TE and TM polarizations. The good agreement between simulations and measurement results proves the design, properly. The ultra-wide bandwidth, low cost, low profile, and stable performance of this metasurface prove its high capability compared with the state-of-the-art references.
Electron temperature profiles in axial field 2.45 GHz ECR ion source with a ceramic chamber
NASA Astrophysics Data System (ADS)
Abe, K.; Tamura, R.; Kasuya, T.; Wada, M.
2017-08-01
An array of electrostatic probes was arranged on the plasma electrode of a 2.45 GHz microwave driven axial magnetic filter field type negative hydrogen (H-) ion source to clarify the spatial plasma distribution near the electrode. The measured spatial distribution of electron temperature indicated the lower temperature near the extraction hole of the plasma electrode corresponding to the effectiveness of the axial magnetic filter field geometry. When the ratio of electron saturation current to the ion saturation current was plotted as a function of position, the obtained distribution showed a higher ratio near the hydrogen gas inlet through which ground state hydrogen molecules are injected into the source. Though the efficiency in producing H- ions is smaller for a 2.45 GHz source than a source operated at 14 GHz, it gives more volume to measure spatial distributions of various plasma parameters to understand fundamental processes that are influential on H- production in this type of ion sources.
VizieR Online Data Catalog: Gould's Belt VLA Survey. II. Serpens region (Ortiz-Leon+, 2015)
NASA Astrophysics Data System (ADS)
Ortiz-Leon, G. N.; Loinard, L.; Mioduszewski, A. J.; Dzib, S. A.; Rodriguez, L. F.; Pech, G.; Rivera, J. L.; Torres, R. M.; Boden, A. F.; Hartmann, L.; Evans, N. J., II; Briceno, C.; Tobin, J.; Kounkel, M. A.; Gonzalez-Lopezlira, R. A.
2015-09-01
The Serpens molecular cloud and the Serpens South cluster were observed in the same observing sessions on three different epochs (2011 June 17, July 19, and September 12 UT), using 25 and 4 pointings, respectively, with the Jansky Very Large Array (JVLA) at 4.5 and 4.5GHz. The W40 region, on the other hand, was only observed on two epochs (2011 June 17 and July 16), using 13 pointings. (3 data files).
Sub-arcsecond imaging of the water emission in Arp 220⋆ ⋆⋆
König, S.; Martín, S.; Muller, S.; Cernicharo, J.; Sakamoto, K.; Zschaechner, L. K.; Humphreys, E. M. L.; Mroczkowski, T.; Krips, M.; Galametz, M.; Aalto, S.; Vlemmings, W. H. T.; Ott, J.; Meier, D. S.; Fuente, A.; García-Burillo, S.; Neri, R.
2017-01-01
Aims Extragalactic observations of water emission can provide valuable insights into the excitation of the interstellar medium. In particular they allow us to investigate the excitation mechanisms in obscured nuclei, i.e. whether an active galactic nucleus or a starburst dominate. Methods We use sub-arcsecond resolution observations to tackle the nature of the water emission in Arp 220. ALMA Band 5 science verification observations of the 183 GHz H2O 313−220 line, in conjunction with new ALMA Band 7 H2O 515−422 data at 325 GHz, and supplementary 22 GHz H2O 616 − 523 VLA observations, are used to better constrain the parameter space in the excitation modelling of the water lines. Results We detect 183 GHz H2O and 325 GHz water emission towards the two compact nuclei at the center of Arp 220, being brighter in Arp 220 West. The emission at these two frequencies is compared to previous single-dish data and does not show evidence of variability. The 183 and 325 GHz lines show similar spectra and kinematics, but the 22 GHz profile is significantly different in both nuclei due to a blend with an NH3 absorption line. Conclusions Our findings suggest that the most likely scenario to cause the observed water emission in Arp 220 is a large number of independent masers originating from numerous star-forming regions. PMID:29151605
Atmospheric Profiles, Clouds and the Evolution of Sea Ice Cover in the Beaufort and Chukchi Seas
2014-09-30
developed by incorporating the proposed IR sensors and ground-sky temperature difference algorithm into a tethered balloon borne payload (Figure 3...into the cloud base. RESULTS FROM FY 2014 • A second flight of the tethered balloon -borne IR cloud margin sensor was conducted in Colorado on...Figure 3: Tethered balloon -borne IR sensing payload IR Cloud Margin Sensor Figure 4: First successful flight validation of the IR cloud
Mechem, David B.; Giangrande, Scott E.
2018-03-01
Here, the controls on precipitation onset and the transition from shallow cumulus to congestus are explored using a suite of 16 large–eddy simulations based on the 25 May 2011 event from the Midlatitude Continental Convective Clouds Experiment (MC3E). The thermodynamic variables in the model are relaxed at various timescales to observationally constrained temperature and moisture profiles in order to better reproduce the observed behavior of precipitation onset and total precipitation. Three of the simulations stand out as best matching the precipitation observations and also perform well for independent comparisons of cloud fraction, precipitation area fraction, and evolution of cloud topmore » occurrence. All three simulations exhibit a destabilization over time, which leads to a transition to deeper clouds, but the evolution of traditional stability metrics by themselves is not able to explain differences in the simulations. Conditionally sampled cloud properties (in particular, mean cloud buoyancy), however, do elicit differences among the simulations. The inability of environmental profiles alone to discern subtle differences among the simulations and the usefulness of conditionally sampled model quantities argue for hybrid observational/modeling approaches. These combined approaches enable a more complete physical understanding of cloud systems by combining observational sampling of time–varying three–dimensional meteorological quantities and cloud properties, along with detailed representation of cloud microphysical and dynamical processes from numerical models.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mechem, David B.; Giangrande, Scott E.
Here, the controls on precipitation onset and the transition from shallow cumulus to congestus are explored using a suite of 16 large–eddy simulations based on the 25 May 2011 event from the Midlatitude Continental Convective Clouds Experiment (MC3E). The thermodynamic variables in the model are relaxed at various timescales to observationally constrained temperature and moisture profiles in order to better reproduce the observed behavior of precipitation onset and total precipitation. Three of the simulations stand out as best matching the precipitation observations and also perform well for independent comparisons of cloud fraction, precipitation area fraction, and evolution of cloud topmore » occurrence. All three simulations exhibit a destabilization over time, which leads to a transition to deeper clouds, but the evolution of traditional stability metrics by themselves is not able to explain differences in the simulations. Conditionally sampled cloud properties (in particular, mean cloud buoyancy), however, do elicit differences among the simulations. The inability of environmental profiles alone to discern subtle differences among the simulations and the usefulness of conditionally sampled model quantities argue for hybrid observational/modeling approaches. These combined approaches enable a more complete physical understanding of cloud systems by combining observational sampling of time–varying three–dimensional meteorological quantities and cloud properties, along with detailed representation of cloud microphysical and dynamical processes from numerical models.« less
NASA Astrophysics Data System (ADS)
Mechem, David B.; Giangrande, Scott E.
2018-03-01
Controls on precipitation onset and the transition from shallow cumulus to congestus are explored using a suite of 16 large-eddy simulations based on the 25 May 2011 event from the Midlatitude Continental Convective Clouds Experiment (MC3E). The thermodynamic variables in the model are relaxed at various timescales to observationally constrained temperature and moisture profiles in order to better reproduce the observed behavior of precipitation onset and total precipitation. Three of the simulations stand out as best matching the precipitation observations and also perform well for independent comparisons of cloud fraction, precipitation area fraction, and evolution of cloud top occurrence. All three simulations exhibit a destabilization over time, which leads to a transition to deeper clouds, but the evolution of traditional stability metrics by themselves is not able to explain differences in the simulations. Conditionally sampled cloud properties (in particular, mean cloud buoyancy), however, do elicit differences among the simulations. The inability of environmental profiles alone to discern subtle differences among the simulations and the usefulness of conditionally sampled model quantities argue for hybrid observational/modeling approaches. These combined approaches enable a more complete physical understanding of cloud systems by combining observational sampling of time-varying three-dimensional meteorological quantities and cloud properties, along with detailed representation of cloud microphysical and dynamical processes from numerical models.
NASA Astrophysics Data System (ADS)
Martin, William G. K.; Hasekamp, Otto P.
2018-01-01
In previous work, we derived the adjoint method as a computationally efficient path to three-dimensional (3D) retrievals of clouds and aerosols. In this paper we will demonstrate the use of adjoint methods for retrieving two-dimensional (2D) fields of cloud extinction. The demonstration uses a new 2D radiative transfer solver (FSDOM). This radiation code was augmented with adjoint methods to allow efficient derivative calculations needed to retrieve cloud and surface properties from multi-angle reflectance measurements. The code was then used in three synthetic retrieval studies. Our retrieval algorithm adjusts the cloud extinction field and surface albedo to minimize the measurement misfit function with a gradient-based, quasi-Newton approach. At each step we compute the value of the misfit function and its gradient with two calls to the solver FSDOM. First we solve the forward radiative transfer equation to compute the residual misfit with measurements, and second we solve the adjoint radiative transfer equation to compute the gradient of the misfit function with respect to all unknowns. The synthetic retrieval studies verify that adjoint methods are scalable to retrieval problems with many measurements and unknowns. We can retrieve the vertically-integrated optical depth of moderately thick clouds as a function of the horizontal coordinate. It is also possible to retrieve the vertical profile of clouds that are separated by clear regions. The vertical profile retrievals improve for smaller cloud fractions. This leads to the conclusion that cloud edges actually increase the amount of information that is available for retrieving the vertical profile of clouds. However, to exploit this information one must retrieve the horizontally heterogeneous cloud properties with a 2D (or 3D) model. This prototype shows that adjoint methods can efficiently compute the gradient of the misfit function. This work paves the way for the application of similar methods to 3D remote sensing problems.
NASA Astrophysics Data System (ADS)
Henze, D.; Noone, D.
2017-12-01
A third of the world's biomass burning aerosol (BBA) particles are generated in southern Africa, and these particles are swept into the midlevel troposphere over the southeast Atlantic Ocean. The presence of these aerosols over the marine environment of the south east Atlantic offers a unique natural laboratory for studying aerosol effects on climate, and specifically a modification to the hydrologic cycle and microphysical characteristics of clouds. Different rates of condensation with high aerosol numbers change the precipitation rates in drizzling stratiform clouds, while the mixing of aerosols into the cloud layer is synonymous with entrainment from above cloud top near the top of the subtropical inversion. To better understanding the magnitude of the aerosol influence on southeast Atlantic boundary layer clouds we analyze the cloud-top entrainment and drizzle as a function of aerosol loading to determine the impact of BBA. Entrainment was determined from mixing line analysis based on profile measurements of moist static energy, total water, and the two most common heavy isotopes of water - HDO and H218O. Data was collected on the P-3 Orion aircraft during the NASA 2017 ORACLES campaign. Using these measurements, a box model was constructed using the combined conservation laws associated with all four of these quantities to estimate the entrainment and rainout of cloud liquid. The population of profiles sampled by the aircraft over the course of the 30 day mission spans varying concentrations of BBA. Initial plots of the water isotope mixing lines show where and to what degree the BBA air mass has mixed into the boundary layer air mass from above. This is demonstrated by the fact that the mixing end-members are the same for the different areas sampled, but the rate at which the various mixing lines are traversed as a function of altitude varies. Further, the mixing lines as a function of height traverse back and forth between end members multiple times over one profile. This suggests that air masses are mixing by `layering' into each other, and helps us to better represent entrainment in our box model. Meanwhile, isotope ratios measured below vs above the cloud layer show that the air above the clouds is depleted of heavy water isotopes in comparison to below - the degree of depletion could correspond to drizzle amount.
Wideband characterization of printed circuit board materials up to 50 ghz
NASA Astrophysics Data System (ADS)
Rakov, Aleksei
A traveling-wave technique developed a few years ago in the Missouri S&T EMC Laboratory has been employed until now for characterization of PCB materials over a broad frequency range up to 30 GHz. This technique includes measuring S-parameters of the specially designed PCB test vehicles. An extension of the frequency range of printed circuit board laminate dielectric and copper foil characterization is an important problem. In this work, a new PCB test vehicle design for operating up to 50 GHz has been proposed. As the frequency range of measurements increases, the analysis of errors and uncertainties in measuring dielectric properties becomes increasingly important. Formulas for quantification of two major groups of errors, repeatability (manufacturing variability) and reproducibility (systematic) errors, in extracting dielectric constant (DK) and dissipation factor (DK) have been derived, and computations for a number of cases are presented. Conductor (copper foil) surface roughness of PCB interconnects is an important factor, which affects accuracy of DK and DF measurements. This work describes a new algorithm for semi-automatic characterization of copper foil profiles on optical or scanning electron microscopy (SEM) pictures of signal traces. The collected statistics of numerous copper foil roughness profiles allows for introducing a new metric for roughness characterization of PCB interconnects. This is an important step to refining the measured DK and DF parameters from roughness contributions. The collected foil profile data and its analysis allow for developing "design curves", which could be used by SI engineers and electronics developers in their designs.
NASA Astrophysics Data System (ADS)
Lawson, P.; Stamnes, K.; Stamnes, J.; Zmarzly, P.; O'Connor, D.; Koskulics, J.; Hamre, B.
2008-12-01
A tethered balloon system specifically designed to collect microphysical data in mixed-phase clouds was deployed in Arctic stratus clouds during May 2008 near Ny-Alesund, Svalbard, at 79 degrees North Latitude. This is the first time a tethered balloon system with a cloud particle imager (CPI) that records high-resolution digital images of cloud drops and ice particles has been operated in cloud. The custom tether supplies electrical power to the instrument package, which in addition to the CPI houses a 4-pi short-wavelength radiometer and a met package that measures temperature, humidity, pressure, GPS position, wind speed and direction. The instrument package was profiled vertically through cloud up to altitudes of 1.6 km. Since power was supplied to the instrument package from the ground, it was possible to keep the balloon package aloft for extended periods of time, up to 9 hours at Ny- Ålesund, which was limited only by crew fatigue. CPI images of cloud drops and the sizes, shapes and degree of riming of ice particles are shown throughout vertical profiles of Arctic stratus clouds. The images show large regions of mixed-phase cloud from -8 to -2 C. The predominant ice crystal habits in these regions are needles and aggregates of needles. The amount of ice in the mixed-phase clouds varied considerably and did not appear to be a function of temperature. On some occasions, ice was observed near cloud base at -2 C with supercooled cloud above to - 8 C that was devoid of ice. Measurements of shortwave radiation are also presented. Correlations between particle distributions and radiative measurements will be analyzed to determine the effect of these Arctic stratus clouds on radiative forcing.
Jalali, Mahdi; Sedghi, Tohid; Shafei, Shahin
2014-01-01
A novel configuration of a printed monopole antenna with a very compact size for satisfying WLAN operations at the 5.2/5.8 GHz and also for X-band operations at the 10 GHz has been proposed. The antenna includes a simple square-shaped patch as the radiator, the rotated U-shaped conductor back plane element with embedded strip on it, and the partial rectangular ground surface. By using the rotated U-shaped conductor-backed plane with proper values, good impedance matching and improvement in bandwidth can be achieved, at the lower and upper bands. The impedance bandwidth for S 11 < −10 dB is about 1.15 GHz for 5 GHz band and 5.3 GHz for X-band. The measured peak gains are about 1.9 dBi at WLAN-band and 4.2 dBi at X-band. The experimental results represent that the realized antenna with good omnidirectional radiation characteristics, enough impedance bandwidth, and reasonable gains can be appropriate for various applications of the future developed technologies and handheld devices. PMID:24711732
Remote sensing of cirrus cloud vertical size profile using MODIS data
NASA Astrophysics Data System (ADS)
Wang, Xingjuan; Liou, K. N.; Ou, Steve S. C.; Mace, G. G.; Deng, M.
2009-05-01
This paper describes an algorithm for inferring cirrus cloud top and cloud base effective particle sizes and cloud optical thickness from the Moderate Resolution Imaging Spectroradiometer (MODIS) 0.645, 1.64 and 2.13, and 3.75 μm band reflectances/radiances. This approach uses a successive minimization method based on a look-up library of precomputed reflectances/radiances from an adding-doubling radiative transfer program, subject to corrections for Rayleigh scattering at the 0.645 μm band, above-cloud water vapor absorption, and 3.75 μm thermal emission. The algorithmic accuracy and limitation of the retrieval method were investigated by synthetic retrievals subject to the instrument noise and the perturbation of input parameters. The retrieval algorithm was applied to three MODIS cirrus scenes over the Atmospheric Radiation Measurement Program's southern Great Plain site, north central China, and northeast Asia. The reliability of retrieved cloud optical thicknesses and mean effective particle sizes was evaluated by comparison with MODIS cloud products and qualitatively good correlations were obtained for all three cases, indicating that the performance of the vertical sizing algorithm is comparable with the MODIS retrieval program. Retrieved cloud top and cloud base ice crystal effective sizes were also compared with those derived from the collocated ground-based millimeter wavelength cloud radar for the first case and from the Cloud Profiling Radar onboard CloudSat for the other two cases. Differences between retrieved and radar-derived cloud properties are discussed in light of assumptions made in the collocation process and limitations in radar remote sensing characteristics.
Aircraft millimeter-wave passive sensing of cloud liquid water and water vapor during VOCALS-REx
Zuidema, P.; Leon, D.; Pazmany, A.; ...
2012-01-05
Routine liquid water path measurements and water vapor path are valuable for process studies of the cloudy marine boundary layer and for the assessment of large-scale models. The VOCALS Regional Experiment respected this goal by including a small, inexpensive, upwardpointing millimeter-wavelength passive radiometer on the fourteen research flights of the NCAR C-130 plane, the Gband (183 GHz) Vapor Radiometer (GVR). The radiometer permitted above-cloud retrievals of the free-tropospheric water vapor path (WVP). Retrieved free-tropospheric (abovecloud) water vapor paths possessed a strong longitudinal gradient, with off-shore values of one to twomm and nearcoastal values reaching tenmm. The VOCALS-REx free troposphere wasmore » drier than that of previous years. Cloud liquid water paths (LWPs) were retrieved from the sub-cloud and cloudbase aircraft legs through a combination of the GVR, remotely-sensed cloud boundary information, and insitu thermodynamic data. The absolute (between-leg) and relative (within-leg) accuracy of the LWP retrievals at 1 Hz (≈100 m) resolution was estimated at 20 gm -2 and 3 gm -2 respectively for well-mixed conditions, and 25 gm -2 absolute uncertainty for decoupled conditions where the input WVP specification was more uncertain. Retrieved liquid water paths matched adiabatic values derived from coincident cloud thickness measurements exceedingly well. A significant contribution of the GVR dataset was the extended information on the thin clouds, with 62% (28 %) of the retrieved LWPs <100 (40) gm -2. Coastal LWPs values were lower than those offshore. For the four dedicated 20° S flights, the mean (median) coastal LWP was 67 (61) gm -2, increasing to 166 (120) gm -2 1500 km offshore. Finally, the overall LWP cloud fraction from thirteen research flights was 63 %, higher than that of adiabatic LWPs at 40 %, but lower than the lidar-determined cloud cover of 85 %, further testifying to the frequent occurrence of thin clouds.« less
CATS Cloud and Aerosol Level 2 Heritage Edition Data Products.
NASA Astrophysics Data System (ADS)
Rodier, S. D.; Vaughan, M.; Yorks, J. E.; Palm, S. P.; Selmer, P. A.; Hlavka, D. L.; McGill, M. J.; Trepte, C. R.
2017-12-01
The Cloud-Aerosol Transport System (CATS) instrument was developed at NASA's Goddard Space Flight Center (GSFC) and deployed to the International Space Station (ISS) in January 2015. The CATS elastic backscatter lidars have been operating continuously in one of two science modes since February 2015. One of the primary science objectives of CATS is to continue the CALIPSO aerosol and cloud profile data record to provide continuity of lidar climate observations during the transition from CALIPSO to EarthCARE. To accomplish this, the CATS project at NASA's Goddard Space Flight Center (GSFC) and the CALIPSO project at NASA's Langley Research Center (LaRC) closely collaborated to develop and deliver a full suite of CALIPSO-like level 2 data products using the latest version of the CALIPSO level 2 Version 4 algorithms for the CATS data acquired while operating in science mode 1 (Multi-beam backscatter detection at 1064 and 532 nm, with depolarization measurement at both wavelengths). In this work, we present the current status of the CATS Heritage (i.e. CALIPSO-like) level 2 data products derived from the recent released CATS Level 1B V2-08 data. Extensive comparisons are performed between the three data sets (CALIPSO V4.10 Level 2, CATS Level 2 Operational V2-00 and CATS Heritage V1.00) for cloud and aerosol measurements (e.g., cloud-top height cloud-phase, cloud-layer occurrence frequency and cloud-aerosol discrimination) along the ISS path. In addition, global comparisons (between 52°S and 52°N) of aerosol extinction profiles derived from the CATS Level 2 Operational products and CALIOP V4 Level 2 products are presented. Comparisons of aerosol optical depths retrieved from active sensors (CATS and CALIOP) and passive sensors (MODIS) will provide context for the extinction profile comparisons.
CloudSat Anomaly Recovery and Operational Lessons Learned
NASA Technical Reports Server (NTRS)
Witkowski, Mona; Vane, Deborah; Livermore, Thomas; Rokey, Mark; Barthuli, Marda; Gravseth, Ian J.; Pieper, Brian; Rodzinak, Aaron; Silva, Steve; Woznick, Paul;
2012-01-01
In April 2011, NASA's pioneering cloud profiling radar satellite, CloudSat, experienced a battery anomaly that placed it into emergency mode and rendered it operations incapable. All initial attempts to recover the spacecraft failed as the resultant power limitations could not support even the lowest power mode. Originally part of a six-satellite constellation known as the "A-Train", CloudSat was unable to stay within its assigned control box, posing a threat to other A-Train satellites. CloudSat needed to exit the constellation, but with the tenuous power profile, conducting maneuvers was very risky. The team was able to execute a complex sequence of operations which recovered control, conducted an orbit lower maneuver, and returned the satellite to safe mode, within one 65 minute sunlit period. During the course of the anomaly recovery, the team developed several bold, innovative operational strategies. Details of the investigation into the root-cause and the multiple approaches to revive CloudSat are examined. Satellite communication and commanding during the anomaly are presented. A radical new system of "Daylight Only Operations" (DO-OP) was developed, which cycles the payload and subsystem components off in tune with earth eclipse entry and exit in order to maintain positive power and thermal profiles. The scientific methodology and operational results behind the graduated testing and ramp-up to DO-OP are analyzed. In November 2011, the CloudSat team successfully restored the vehicle to consistent operational collection of cloud radar data during sunlit portions of the orbit. Lessons learned throughout the six-month return-to-operations recovery effort are discussed and offered for application to other R&D satellites, in the context of on-orbit anomaly resolution efforts.
NASA Astrophysics Data System (ADS)
Sato, T.; Kasaba, Y.; Takahashi, Y.; Murata, I.; Uno, T.; Tokimasa, N.; Sakamoto, M.
2008-12-01
We conducted ground-based observation of Jupiter with the liquid crystal tunable filter (LCTF) and EM-CCD camera in two methane absorption bands (700-757nm, 872-950nm at 3 nm step: total of 47 wavelengths) to derive detailed Jupiter's vertical cloud structure. The 2-meter reflector telescope at Nishi-Harima astronomical observatory in Japan was used for our observation on 26-30 May, 2008. After a series of image processing (composition of high quality images in each wavelength and geometry calibration), we converted observed intensity to absolute reflectivity at each pixel using standard star. As a result, we acquired Jupiter's data cubes with high-spatial resolution (about 1") and narrow band imaging (typically 7nm) in each methane absorption band by superimposing 30 Jupiter's images obtained in short exposure time (50 ms per one image). These data sets enable us to probe different altitudes of Jupiter from 100 mbar down to 1bar level with higher vertical resolution than using convectional interference filters. To interpret observed center-limb profiles, we developed radiative transfer code based on layer adding doubling algorithm to treat multiple scattering of solar light theoretically and extracted information on aerosol altitudes and optical properties using two-cloud model. First, we fit 5 different profiles simultaneously in continuum data (745-757 nm) to retrieve information on optical thickness of haze and single scattering albedo of cloud. Second, we fit 15 different profiles around 727nm methane absorption band and 13 different profiles around 890 nm methane absorption band to retrieve information on the aerosol altitude location and optical thickness of cloud. In this presentation, we present the results of these modeling simulations and discuss the latitudinal variations of Jupiter's vertical cloud structure.
NASA Technical Reports Server (NTRS)
Molthan, A. L.; Haynes, J. A.; Case, J. L.; Jedlovec, G. L.; Lapenta, W. M.
2008-01-01
As computational power increases, operational forecast models are performing simulations with higher spatial resolution allowing for the transition from sub-grid scale cloud parameterizations to an explicit forecast of cloud characteristics and precipitation through the use of single- or multi-moment bulk water microphysics schemes. investments in space-borne and terrestrial remote sensing have developed the NASA CloudSat Cloud Profiling Radar and the NOAA National Weather Service NEXRAD system, each providing observations related to the bulk properties of clouds and precipitation through measurements of reflectivity. CloudSat and NEXRAD system radars observed light to moderate snowfall in association with a cold-season, midlatitude cyclone traversing the Central United States in February 2007. These systems are responsible for widespread cloud cover and various types of precipitation, are of economic consequence, and pose a challenge to operational forecasters. This event is simulated with the Weather Research and Forecast (WRF) Model, utilizing the NASA Goddard Cumulus Ensemble microphysics scheme. Comparisons are made between WRF-simulated and observed reflectivity available from the CloudSat and NEXRAD systems. The application of CloudSat reflectivity is made possible through the QuickBeam radiative transfer model, with cautious application applied in light of single scattering characteristics and spherical target assumptions. Significant differences are noted within modeled and observed cloud profiles, based upon simulated reflectivity, and modifications to the single-moment scheme are tested through a supplemental WRF forecast that incorporates a temperature dependent snow crystal size distribution.
HoloGondel: in situ cloud observations on a cable car in the Swiss Alps using a holographic imager
NASA Astrophysics Data System (ADS)
Beck, Alexander; Henneberger, Jan; Schöpfer, Sarah; Fugal, Jacob; Lohmann, Ulrike
2017-02-01
In situ observations of cloud properties in complex alpine terrain where research aircraft cannot sample are commonly conducted at mountain-top research stations and limited to single-point measurements. The HoloGondel platform overcomes this limitation by using a cable car to obtain vertical profiles of the microphysical and meteorological cloud parameters. The main component of the HoloGondel platform is the HOLographic Imager for Microscopic Objects (HOLIMO 3G), which uses digital in-line holography to image cloud particles. Based on two-dimensional images the microphysical cloud parameters for the size range from small cloud particles to large precipitation particles are obtained for the liquid and ice phase. The low traveling velocity of a cable car on the order of 10 m s-1 allows measurements with high spatial resolution; however, at the same time it leads to an unstable air speed towards the HoloGondel platform. Holographic cloud imagers, which have a sample volume that is independent of the air speed, are therefore well suited for measurements on a cable car. Example measurements of the vertical profiles observed in a liquid cloud and a mixed-phase cloud at the Eggishorn in the Swiss Alps in the winters 2015 and 2016 are presented. The HoloGondel platform reliably observes cloud droplets larger than 6.5 µm, partitions between cloud droplets and ice crystals for a size larger than 25 µm and obtains a statistically significantly size distribution for every 5 m in vertical ascent.
NASA Astrophysics Data System (ADS)
Chu, C.; Sun-Mack, S.; Chen, Y.; Heckert, E.; Doelling, D. R.
2017-12-01
In Langley NASA, Clouds and the Earth's Radiant Energy System (CERES) and Moderate Resolution Imaging Spectroradiometer (MODIS) are merged with Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) on the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) and CloudSat Cloud Profiling Radar (CPR). The CERES merged product (C3M) matches up to three CALIPSO footprints with each MODIS pixel along its ground track. It then assigns the nearest CloudSat footprint to each of those MODIS pixels. The cloud properties from MODIS, retrieved using the CERES algorithms, are included in C3M with the matched CALIPSO and CloudSat products along with radiances from 18 MODIS channels. The dataset is used to validate the CERES retrieved MODIS cloud properties and the computed TOA and surface flux difference using MODIS or CALIOP/CloudSAT retrieved clouds. This information is then used to tune the computed fluxes to match the CERES observed TOA flux. A visualization tool will be invaluable to determine the cause of these large cloud and flux differences in order to improve the methodology. This effort is part of larger effort to allow users to order the CERES C3M product sub-setted by time and parameter as well as the previously mentioned visualization capabilities. This presentation will show a new graphical 3D-interface, 3D-CERESVis, that allows users to view both passive remote sensing satellites (MODIS and CERES) and active satellites (CALIPSO and CloudSat), such that the detailed vertical structures of cloud properties from CALIPSO and CloudSat are displayed side by side with horizontally retrieved cloud properties from MODIS and CERES. Similarly, the CERES computed profile fluxes whether using MODIS or CALIPSO and CloudSat clouds can also be compared. 3D-CERESVis is a browser-based visualization tool that makes uses of techniques such as multiple synchronized cursors, COLLADA format data and Cesium.
A Mission to Observe Ice in Clouds from Space
NASA Technical Reports Server (NTRS)
Ackerman, S.; O'CStarr, D.; Skofronick-Jackson, G.; Evans, F.; Wang, J. R.; Racette, P.; Norris, P.; daSilva, A.; Soden, B.
2006-01-01
To date there have been multiple satellite missions to observe and retrieve cloud top properties and the liquid in, and precipitation from, clouds. There are currently a few missions that attempt to measure cloud ice properties as a byproduct of other observations. However, we do not yet quantitatively understand the processes that control the water budget of the upper troposphere where ice is the predominant phase, and how these processes are linked to precipitation processes and the radiative energy budget. The ice in clouds either melts into rain or is detrained, and persists, as cirrus clouds affecting the hydrological and energy cycle, respectively. Fully modeling the Earth's climate and improving weather and climate forecasts requires accurate satellite measurements of various cloud properties at the temporal and spatial scales of cloud processes. The uncertainty in knowledge of these ice characteristics is reflected in the large discrepancies in model simulations of the upper tropospheric water budget. Model simulations are sensitive to the partition of ice between precipitation and outflow processes, i.e., to the parameterization of ice clouds and ice processes. This presentation will describe the Submillimeter-wave InfraRed Ice Cloud Experiment (SIRICE) concept, a satellite mission designed to acquire global Earth radiance measurements in the infrared and submillimeter-wave region (183-874 GHz). If successful, this mission will bridge the measurement gap between microwave sounders and shorter-wavelength infrared and visible sensors. The brightness temperatures at submillimeter-wave frequencies are especially sensitive to cirrus ice particle sizes (because they are comparable to the wavelength). This allows for more accurate ice water path estimates when multiple channels are used to probe into the cloud layers. Further, submillimeter wavelengths offer simplicity in the retrieval algorithms because they do not probe into the liquid and near surface portions of clouds, thus requiring only one term of the radiative transfer equation (ice scattering) to relate brightness temperatures to ice. Scientific justification and the SIRICE approach to measuring ice water path and particle size that span a range encompassing both the hydrologically active and radiatively active components of cloud systems will be presented.
ARM - Midlatitude Continental Convective Clouds Microwave Radiometer Profiler (jensen-mwr)
Jensen, Mike
2012-02-01
A major component of the Mid-latitude Continental Convective Clouds Experiment (MC3E) field campaign was the deployment of an enhanced radiosonde array designed to capture the vertical profile of atmospheric state variables (pressure, temperature, humidity wind speed and wind direction) for the purpose of deriving the large-scale forcing for use in modeling studies. The radiosonde array included six sites (enhanced Central Facility [CF-1] plus five new sites) launching radiosondes at 3-6 hour sampling intervals. The network will cover an area of approximately (300)2 km2 with five outer sounding launch sites and one central launch location. The five outer sounding launch sites are: S01 Pratt, KS [ 37.7oN, 98.75oW]; S02 Chanute, KS [37.674, 95.488]; S03 Vici, Oklahoma [36.071, -99.204]; S04 Morris, Oklahoma [35.687, -95.856]; and S05 Purcell, Oklahoma [34.985, -97.522]. Soundings from the SGP Central Facility during MC3E can be retrieved from the regular ARM archive. During routine MC3E operations 4 radiosondes were launched from each of these sites (approx. 0130, 0730, 1330 and 1930 UTC). On days that were forecast to be convective up to four additional launches were launched at each site (approx. 0430, 1030, 1630, 2230 UTC). There were a total of approximately 14 of these high frequency launch days over the course of the experiment. These files contain brightness temperatures observed at Purcell during MC3E. The measurements were made with a 5 channel (22.235, 23.035, 23.835, 26.235, 30.000GHz) microwave radiometer at one minute intervals. The results have been separated into daily files and the day of observations is indicated in the file name. All observations were zenith pointing. Included in the files are the time variables base_time and time_offset. These follow the ARM time conventions. Base_time is the number seconds since January 1, 1970 at 00:00:00 for the first data point of the file and time_offset is the offset in seconds from base_time.
Searching for Bio-Precursors and Complex Organic Molecules in Space using the GBT
NASA Technical Reports Server (NTRS)
Cordiner, M.; Charnley, S.; Kisiel, Z.
2012-01-01
Using the latest microwave receiver technology, large organic molecules with abundances as low as approx. 10(exp -11) times that of molecular hydrogen are detectable in cold interstellar clouds via their rotational emission line spectra. We report new observations to search for complex molecules, including molecules of possible pre-biotic importance, using the newly-commissioned Kband focal plane array (KFPA) of the NRAO Robert C. Byrd Green Bank Telescope. Spectra are presented of the dense molecular cloud TMC-1, showing strict upper limits on the level of emission from nitrogen-bearing rings pyrimidine, quinoline and iso-quinoline, carbon-chain oxides C60, C70, HC60 and HC70, and the carbon-chain anion C4H-. The typical RMS brightness temperature noise levels we achieved are approx. 1 mK at around 20 GHz.
NASA Astrophysics Data System (ADS)
Gorodetskaya, Irina; Maahn, Maximilan; Gallée, Hubert; Souverijns, Niels; Gossart, Alexandra; Kneifel, Stefan; Crewell, Susanne; Van Lipzig, Nicole
2017-04-01
Occasional very intense snowfall events over Dronning Maud Land (DML) region in East Antarctica, contributed significantly to the entire Antarctic ice sheet surface mass balance (SMB) during the last years. The meteorological-cloud-precipitation observatory running at the Princess Elisabeth station (PE) in the DML escarpment zone since 2009 (HYDRANT/AEROCLOUD projects), provides unique opportunity to estimate contribution of precipitation to the local snow accumulation and new data for evaluating precipitation in climate models. Our previous work using PE measurements showed that occasional intense precipitation events determine the total local yearly SMB and account for its large interannual variability. Here we use radar measurements to evaluate precipitation in a regional climate model with a special focus on intense precipitation events together with the large-scale atmospheric dynamics responsible for these events. The coupled snow-atmosphere regional climate model MAR (Modèle Atmosphérique Régional) is used to simulate climate and SMB in DML at 5-km horizontal resolution during 2012 using initial and boundary conditions from the European Centre for Medium-range Weather Forecasts (ECMWF) Interim re-analysis atmospheric and oceanic fields. Two evaluation approaches are used: observations-to-model and model-to-observations. In the first approach, snowfall rate (S) is derived from the MRR (vertically profiling 24-GHz precipitation radar) effective reflectivity factor (Ze) at 400 m agl using various Ze-S relationships for dry snow. The uncertainty in Ze-S relationships is constrained using snow particle size distribution from Snow Video Imager - Precipitation Imaging Package (SVI/PIP) and information about particle shapes. For the second approach we apply the Passive and Active Microwave radiative TRAnsfer model (PAMTRA), which allows direct comparison of the radar-measured and climate model-based vertical profiles of the radar Ze and Doppler velocity. In MAR, the mass and terminal velocity of snow particles are defined as for the graupel-like snowflakes of hexagonal type, determining single scattering properties for snow hydrometeors used as input (along with cloud particle properties and atmospheric parameters) into PAMTRA. MAR simulates well the timing of major synoptic-scale precipitation events, while overestimating snowfall rate during the intense precipitation events beyond the Ze-S relationship uncertainty. This bias is also evident in significantly longer tail of the frequency distribution towards high values for MAR synthetic Ze near the surface compared to PE radar. This bias can be related to the differences both in the amount and type of snowflakes reaching the surface. The most intense precipitation event contributing almost 50% to the local yearly SMB occurred on 6 November 2012 and was associated with an atmospheric river. MAR model produced more than twice as much precipitation compared to PE radar measurements on this event. Reasons for this high bias are investigated by looking at the moisture transports, cloud properties (ice/liquid occurrence and cloud vertical structure), and precipitation formation efficiency especially related to the mixed-phase clouds (the Bergeron-Findeisen process).
Observations of high droplet number concentrations in Southern Ocean boundary layer clouds
NASA Astrophysics Data System (ADS)
Chubb, T.; Huang, Y.; Jensen, J.; Campos, T.; Siems, S.; Manton, M.
2015-09-01
Data from the standard cloud physics payload during the NSF/NCAR High-performance Instrumented Airborne Platform for Environmental Research (HIAPER) Pole-to-Pole Observations (HIPPO) campaigns provide a snapshot of unusual wintertime microphysical conditions in the boundary layer over the Southern Ocean. On 29 June 2011, the HIAPER sampled the boundary layer in a region of pre-frontal warm air advection between 58 and 48° S to the south of Tasmania. Cloud droplet number concentrations were consistent with climatological values in the northernmost profiles but were exceptionally high for wintertime in the Southern Ocean at 100-200 cm-3 in the southernmost profiles. Sub-micron (0.06
Planck 2015 results. IV. Low Frequency Instrument beams and window functions
NASA Astrophysics Data System (ADS)
Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartolo, N.; Battaner, E.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bock, J. J.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Bucher, M.; Burigana, C.; Butler, R. C.; Calabrese, E.; Cardoso, J.-F.; Catalano, A.; Chamballu, A.; Christensen, P. R.; Colombi, S.; Colombo, L. P. L.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Dickinson, C.; Diego, J. M.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Ducout, A.; Dupac, X.; Efstathiou, G.; Elsner, F.; Enßlin, T. A.; Eriksen, H. K.; Fergusson, J.; Finelli, F.; Forni, O.; Frailis, M.; Franceschi, E.; Frejsel, A.; Galeotta, S.; Galli, S.; Ganga, K.; Giard, M.; Giraud-Héraud, Y.; Gjerløw, E.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Hansen, F. K.; Hanson, D.; Harrison, D. L.; Henrot-Versillé, S.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hovest, W.; Huffenberger, K. M.; Hurier, G.; Jaffe, A. H.; Jaffe, T. R.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kiiveri, K.; Kisner, T. S.; Knoche, J.; Kunz, M.; Kurki-Suonio, H.; Lähteenmäki, A.; Lamarre, J.-M.; Lasenby, A.; Lattanzi, M.; Lawrence, C. R.; Leahy, J. P.; Leonardi, R.; Lesgourgues, J.; Levrier, F.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; Lindholm, V.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Maggio, G.; Maino, D.; Mandolesi, N.; Mangilli, A.; Maris, M.; Martin, P. G.; Martínez-González, E.; Masi, S.; Matarrese, S.; Mazzotta, P.; McGehee, P.; Meinhold, P. R.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra, S.; Montier, L.; Morgante, G.; Mortlock, D.; Moss, A.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; Novikov, D.; Novikov, I.; Paci, F.; Pagano, L.; Paoletti, D.; Partridge, B.; Pasian, F.; Patanchon, G.; Pearson, T. J.; Perdereau, O.; Perotto, L.; Perrotta, F.; Pettorino, V.; Piacentini, F.; Pierpaoli, E.; Pietrobon, D.; Pointecouteau, E.; Polenta, G.; Pratt, G. W.; Prézeau, G.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renzi, A.; Rocha, G.; Rosset, C.; Rossetti, M.; Roudier, G.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Santos, D.; Savelainen, M.; Scott, D.; Seiffert, M. D.; Shellard, E. P. S.; Spencer, L. D.; Stolyarov, V.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Tuovinen, J.; Umana, G.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vassallo, T.; Vielva, P.; Villa, F.; Wade, L. A.; Wandelt, B. D.; Watson, R.; Wehus, I. K.; Yvon, D.; Zacchei, A.; Zonca, A.
2016-09-01
This paper presents the characterization of the in-flight beams, the beam window functions, and the associated uncertainties for the Planck Low Frequency Instrument (LFI). The structure of the paper is similar to that presented in the 2013 Planck release; the main differences concern the beam normalization and the delivery of the window functions to be used for polarization analysis. The in-flight assessment of the LFI main beams relies on measurements performed during observations of Jupiter. By stacking data from seven Jupiter transits, the main beam profiles are measured down to -25 dB at 30 and 44 GHz, and down to -30 dB at 70 GHz. It has been confirmed that the agreement between the simulated beams and the measured beams is better than 1% at each LFI frequency band (within the 20 dB contour from the peak, the rms values are 0.1% at 30 and 70 GHz; 0.2% at 44 GHz). Simulated polarized beams are used for the computation of the effective beam window functions. The error budget for the window functions is estimated from both main beam and sidelobe contributions, and accounts for the radiometer band shapes. The total uncertainties in the effective beam window functions are 0.7% and 1% at 30 and 44 GHz, respectively (at ℓ ≈ 600); and 0.5% at 70 GHz (at ℓ ≈ 1000).
Planck 2015 results: IV. Low Frequency Instrument beams and window functions
Ade, P. A. R.; Aghanim, N.; Ashdown, M.; ...
2016-09-20
This article presents the characterization of the in-flight beams, the beam window functions, and the associated uncertainties for the Planck Low Frequency Instrument (LFI). The structure of the paper is similar to that presented in the 2013 Planck release; the main differences concern the beam normalization and the delivery of the window functions to be used for polarization analysis. The in-flight assessment of the LFI main beams relies on measurements performed during observations of Jupiter. By stacking data from seven Jupiter transits, the main beam profiles are measured down to -25 dB at 30 and 44 GHz, and down tomore » -30 dB at 70 GHz. It has been confirmed that the agreement between the simulated beams and the measured beams is better than 1% at each LFI frequency band (within the 20 dB contour from the peak, the rms values are 0.1% at 30 and 70 GHz; 0.2% at 44 GHz). Simulated polarized beams are used for the computation of the effective beam window functions. The error budget for the window functions is estimated from both main beam and sidelobe contributions, and accounts for the radiometer band shapes. The total uncertainties in the effective beam window functions are 0.7% and 1% at 30 and 44 GHz, respectively (at ℓ ≈ 600); and 0.5% at 70 GHz (at ℓ ≈ 1000).« less
NASA Astrophysics Data System (ADS)
Barker, H. W.; Korolev, A. V.; Hudak, D. R.; Strapp, J. W.; Strawbridge, K. B.; Wolde, M.
2008-04-01
Reflectivities recorded by the W-band Cloud Profiling Radar (CPR) aboard NASA's CloudSat satellite and some of CloudSat's retrieval products are compared to Ka-band radar reflectivities and in situ cloud properties gathered by instrumentation on the NRC's Convair-580 aircraft. On 20 February 2007, the Convair flew several transects along a 60 nautical mile stretch of CloudSat's afternoon ground track over southern Quebec. On one of the transects it was well within CloudSat's radar's footprint while in situ sampling a mixed phase boundary layer cloud. A cirrus cloud was also sampled before and after overpass. Air temperature and humidity profiles from ECMWF reanalyses, as employed in CloudSat's retrieval stream, agree very well with those measured by the Convair. The boundary layer cloud was clearly visible, to the eye and lidar, and dominated the region's solar radiation budget. It was, however, often below or near the Ka-band's distance-dependent minimum detectable signal. In situ samples at overpass revealed it to be composed primarily of small, supercooled droplets at the south end and increasingly intermixed with ice northward. Convair and CloudSat CPR reflectivities for the low cloud agree well, but while CloudSat properly ascribed it as overcast, mixed phase, and mostly liquid near the south end, its estimates of liquid water content LWC (and visible extinction coefficient κ) and droplet effective radii are too small and large, respectively. The cirrus consisted largely of irregular crystals with typical effective radii ˜150 μm. While both CPR reflectivities agree nicely, CloudSat's estimates of crystal number concentrations are too large by a factor of 5. Nevertheless, distributions of ice water content and κ deduced from in situ data agree quite well with values retrieved from CloudSat algorithms.
The Radiative Effects of Martian Water Ice Clouds on the Local Atmospheric Temperature Profile
NASA Technical Reports Server (NTRS)
Colaprete, Anthony; Toon, Owen B.
2000-01-01
Mars Pathfinder made numerous discoveries, one of which was a deep temperature inversion that extended from about 15 km down to 8 km above the surface. It has been suggested by Haberle et al. (1999. J. Geophys. Res. 104, 8957-8974.) that radiative cooling by a water ice cloud may generate such an inversion. Clouds can strongly affect the local air temperature due to their ability to radiate efficiently in the infrared and due to the low air mass of the martian atmosphere, which allows the temperature to change during the relatively short lifetime of a cloud. We utilize a time-dependent microphysical aerosol model coupled to a radiative--convective model to explore the effects water ice clouds have on the local martian temperature profile. We constrain the dust and water vapor abundance using data from the Viking Missions and Mars Pathfinder. Water t ice clouds with visible optical depths of r > 0.1 form readily in these simulations. These clouds alter the local air temperature directly, through infrared cooling, and indirectly, by redistributing atmospheric dust. With this model we are able to reproduce the temperature inversions observed by Mars Pathfinder and Mars Global t Surveyor 2000 Academic Press
Aerosol effect on the evolution of the thermodynamic properties of warm convective cloud fields
Dagan, Guy; Koren, Ilan; Altaratz, Orit; Heiblum, Reuven H.
2016-01-01
Convective cloud formation and evolution strongly depend on environmental temperature and humidity profiles. The forming clouds change the profiles that created them by redistributing heat and moisture. Here we show that the evolution of the field’s thermodynamic properties depends heavily on the concentration of aerosol, liquid or solid particles suspended in the atmosphere. Under polluted conditions, rain formation is suppressed and the non-precipitating clouds act to warm the lower part of the cloudy layer (where there is net condensation) and cool and moisten the upper part of the cloudy layer (where there is net evaporation), thereby destabilizing the layer. Under clean conditions, precipitation causes net warming of the cloudy layer and net cooling of the sub-cloud layer (driven by rain evaporation), which together act to stabilize the atmosphere with time. Previous studies have examined different aspects of the effects of clouds on their environment. Here, we offer a complete analysis of the cloudy atmosphere, spanning the aerosol effect from instability-consumption to enhancement, below, inside and above warm clouds, showing the temporal evolution of the effects. We propose a direct measure for the magnitude and sign of the aerosol effect on thermodynamic instability. PMID:27929097
Aerosol effect on the evolution of the thermodynamic properties of warm convective cloud fields.
Dagan, Guy; Koren, Ilan; Altaratz, Orit; Heiblum, Reuven H
2016-12-08
Convective cloud formation and evolution strongly depend on environmental temperature and humidity profiles. The forming clouds change the profiles that created them by redistributing heat and moisture. Here we show that the evolution of the field's thermodynamic properties depends heavily on the concentration of aerosol, liquid or solid particles suspended in the atmosphere. Under polluted conditions, rain formation is suppressed and the non-precipitating clouds act to warm the lower part of the cloudy layer (where there is net condensation) and cool and moisten the upper part of the cloudy layer (where there is net evaporation), thereby destabilizing the layer. Under clean conditions, precipitation causes net warming of the cloudy layer and net cooling of the sub-cloud layer (driven by rain evaporation), which together act to stabilize the atmosphere with time. Previous studies have examined different aspects of the effects of clouds on their environment. Here, we offer a complete analysis of the cloudy atmosphere, spanning the aerosol effect from instability-consumption to enhancement, below, inside and above warm clouds, showing the temporal evolution of the effects. We propose a direct measure for the magnitude and sign of the aerosol effect on thermodynamic instability.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rosenfeld, Daniel
Quantifying the aerosol/cloud-mediated radiative effect at a global scale requires simultaneous satellite retrievals of cloud condensation nuclei (CCN) concentrations and cloud base updraft velocities (Wb). Hitherto, the inability to do so has been a major cause of high uncertainty regarding anthropogenic aerosol/cloud-mediated radiative forcing. This can be addressed by the emerging capability of estimating CCN and Wb of boundary layer convective clouds from an operational polar orbiting weather satellite. Our methodology uses such clouds as an effective analog for CCN chambers. The cloud base supersaturation (S) is determined by Wb and the satellite-retrieved cloud base drop concentrations (Ndb), which ismore » the same as CCN(S). Developing and validating this methodology was possible thanks to the ASR/ARM measurements of CCN and vertical updraft profiles. Validation against ground-based CCN instruments at the ARM sites in Oklahoma, Manaus, and onboard a ship in the northeast Pacific showed a retrieval accuracy of ±25% to ±30% for individual satellite overpasses. The methodology is presently limited to boundary layer not raining convective clouds of at least 1 km depth that are not obscured by upper layer clouds, including semitransparent cirrus. The limitation for small solar backscattering angles of <25º restricts the satellite coverage to ~25% of the world area in a single day. This methodology will likely allow overcoming the challenge of quantifying the aerosol indirect effect and facilitate a substantial reduction of the uncertainty in anthropogenic climate forcing.« less
NASA Astrophysics Data System (ADS)
Smeltzer, C. D.; Wang, Y.; Koshak, W. J.
2014-12-01
Vertical profiles and emission lifetimes of lightning nitrogen oxides (LNOx) are derived using the Ozone Monitoring Instrument (OMI). Approximately 200 million flashes, over a 10 year climate period, from the United States National Lighting Detection Network (NLDN), are aggregated with OMI cloud top height to determine the vertical LNOx structure. LNOx lifetime is determined as function of LNOx signal in a 36 kilometer vertical column from the time of the last known flash to depletion of the LNOx signal. Environmental Protection Agency (EPA) Air Quality Station (AQS) surface data further support these results by demonstrating as much as a 200% increase in surface level NO2 during strong thunderstorm events and a lag as long as 5 to 8 hours from the lightning event to the peak surface event, indicating a evolutional process. Analysis of cloud resolving chemical transport model (REAM Cloud) demonstrates that C-shaped LNOx profiles, which agree with OMI vertical profile observations, evolve due to micro-scale convective meteorology given inverted C-shaped LNOx emission profiles as determined from lightning radio telemetry. It is shown, both in simulations and in observations, that the extent to which the LNOx vertical distribution is C-shaped and the lifetime of LNOx is proportional to the shear-strength of the thunderstorm. Micro-scale convective meteorology is not adequately parameterized in global scale and regional scale chemical transport models (CTM). Therefore, these larger scale CTMs ought to use a C-shape emissions profile to best reproduce observations until convective parameterizations are updated. These findings are used to simulate decadal LNOx and lightning ozone climatology over the Continental United States (CONUS) from 2004-2014.
Earlinet validation of CATS L2 product
NASA Astrophysics Data System (ADS)
Proestakis, Emmanouil; Amiridis, Vassilis; Kottas, Michael; Marinou, Eleni; Binietoglou, Ioannis; Ansmann, Albert; Wandinger, Ulla; Yorks, John; Nowottnick, Edward; Makhmudov, Abduvosit; Papayannis, Alexandros; Pietruczuk, Aleksander; Gialitaki, Anna; Apituley, Arnoud; Muñoz-Porcar, Constantino; Bortoli, Daniele; Dionisi, Davide; Althausen, Dietrich; Mamali, Dimitra; Balis, Dimitris; Nicolae, Doina; Tetoni, Eleni; Luigi Liberti, Gian; Baars, Holger; Stachlewska, Iwona S.; Voudouri, Kalliopi-Artemis; Mona, Lucia; Mylonaki, Maria; Rita Perrone, Maria; João Costa, Maria; Sicard, Michael; Papagiannopoulos, Nikolaos; Siomos, Nikolaos; Burlizzi, Pasquale; Engelmann, Ronny; Abdullaev, Sabur F.; Hofer, Julian; Pappalardo, Gelsomina
2018-04-01
The Cloud-Aerosol Transport System (CATS) onboard the International Space Station (ISS), is a lidar system providing vertically resolved aerosol and cloud profiles since February 2015. In this study, the CATS aerosol product is validated against the aerosol profiles provided by the European Aerosol Research Lidar Network (EARLINET). This validation activity is based on collocated CATS-EARLINET measurements and the comparison of the particle backscatter coefficient at 1064nm.
Propagation of a Toroidal Magnetic Cloud through the Inner Heliosphere
NASA Astrophysics Data System (ADS)
Romashets, Eugene; Vandas, Marek
2003-09-01
An analytical solution for a potential magnetic field with arbitrary intensity around a toroidal magnetic cloud has been found. The background external field may have a gradient. The solution is used for calculation of magnetic cloud propagation. Obtained velocity profiles show a good agreement with in situ observations near the Earth's orbit.
A Decade of Global Lidar Cloud and Aerosol Profiling
NASA Astrophysics Data System (ADS)
Winker, D. M.
2016-12-01
The CALIPSO satellite was developed as a collaboration between NASA and CNES with the objective of globally profiling aerosols and clouds for the first time. Launched in April 2006, CALIPSO has now flown for a decade as part of the A-train satellite constellation, producing an unprecedented 3D observational record and more than a thousand publications to date. Originally planned as a three-year mission, the unanticipated duration of the CALIPSO mission has allowed the characterization of seasonal and interannual variability of aerosols and clouds. This presentation will discuss highlights among the scientific findings from CALIPSO, including contributions to our understanding of Earth's climate and climate change.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krčo, Marko; Goldsmith, Paul F., E-mail: marko@astro.cornell.edu
2016-05-01
We present a geometry-independent method for determining the shapes of radial volume density profiles of astronomical objects whose geometries are unknown, based on a single column density map. Such profiles are often critical to understand the physics and chemistry of molecular cloud cores, in which star formation takes place. The method presented here does not assume any geometry for the object being studied, thus removing a significant source of bias. Instead, it exploits contour self-similarity in column density maps, which appears to be common in data for astronomical objects. Our method may be applied to many types of astronomical objectsmore » and observable quantities so long as they satisfy a limited set of conditions, which we describe in detail. We derive the method analytically, test it numerically, and illustrate its utility using 2MASS-derived dust extinction in molecular cloud cores. While not having made an extensive comparison of different density profiles, we find that the overall radial density distribution within molecular cloud cores is adequately described by an attenuated power law.« less
Scanning Cloud Radar Observations at the ARM sites
NASA Astrophysics Data System (ADS)
Kollias, P.; Clothiaux, E. E.; Shupe, M.; Widener, K.; Bharadwaj, N.; Miller, M. A.; Verlinde, H.; Luke, E. P.; Johnson, K. L.; Jo, I.; Tatarevic, A.; Lamer, K.
2012-12-01
Recently, the DOE Atmospheric Radiation Measurement (ARM) program upgraded its fixed and mobile facilities with the acquisition of state-of-the-art scanning, dual-wavelength, polarimetric, Doppler cloud radars. The scanning ARM cloud radars (SACR's) are the most expensive and significant radar systems at all ARM sites and eight SACR systems will be operational at ARM sites by the end of 2013. The SACR's are the primary instruments for the detection of 3D cloud properties (boundaries, volume cloud fractional coverage, liquid water content, dynamics, etc.) beyond the soda-straw (profiling) limited view. Having scanning capabilities with two frequencies and polarization allows more accurate probing of a variety of cloud systems (e.g., drizzle and shallow, warm rain), better correction for attenuation, use of attenuation for liquid water content retrievals, and polarimetric and dual-wavelength ratio characterization of non-spherical particles for improved ice crystal habit identification. Examples of SACR observations from four ARM sites are presented here: the fixed sites at Southern Great Plains (SGP) and North Slope of Alaska (NSA), and the mobile facility deployments at Graciosa Island, Azores and Cape Cod, Massachusetts. The 3D cloud structure is investigated both at the macro-scale (20-50 km) and cloud-scale (100-500 m). Doppler velocity measurements are corrected for velocity folding and are used either to describe the in-cloud horizontal wind profile or the 3D vertical air motions.
NASA Technical Reports Server (NTRS)
Ghan, Stephen J.; Rissman, Tracey A.; Ellman, Robert; Ferrare, Richard A.; Turner, David; Flynn, Connor; Wang, Jian; Ogren, John; Hudson, James; Jonsson, Haflidi H.;
2006-01-01
If the aerosol composition and size distribution below cloud are uniform, the vertical profile of cloud condensation nuclei (CCN) concentration can be retrieved entirely from surface measurements of CCN concentration and particle humidification function and surface-based retrievals of relative humidity and aerosol extinction or backscatter. This provides the potential for long-term measurements of CCN concentrations near cloud base. We have used a combination of aircraft, surface in situ, and surface remote sensing measurements to test various aspects of the retrieval scheme. Our analysis leads us to the following conclusions. The retrieval works better for supersaturations of 0.1% than for 1% because CCN concentrations at 0.1% are controlled by the same particles that control extinction and backscatter. If in situ measurements of extinction are used, the retrieval explains a majority of the CCN variance at high supersaturation for at least two and perhaps five of the eight flights examined. The retrieval of the vertical profile of the humidification factor is not the major limitation of the CCN retrieval scheme. Vertical structure in the aerosol size distribution and composition is the dominant source of error in the CCN retrieval, but this vertical structure is difficult to measure from remote sensing at visible wavelengths.
Intercomparison Between Microwave Radiometer and Radiosonding Data
NASA Astrophysics Data System (ADS)
Toanca, Florica; Stefan, Sabina
2014-05-01
The aim of this study is to compare relative humidity and temperature vertical profiles measured by ground based Microwave Radiometer (MWR) RPG HATPRO installed at the Romanian Atmospheric Observatory (Magurele, 44.35 N, 26.03 E) and by radio-sounding (RS) (Baneasa, 44.30 N, 26.04 E) provided by National Meteorological Administration. MWR uses passive microwave detection in the 22.335 to 31.4 GHz and 51to 58 GHz bands to obtain the vertical profiles of temperature and relative humidity up to 10km with a temporal resolution of several minutes. The reliability of atmospheric temperature and relative humidity profiles retrieved continuously by the MWR for the winter and summer of year 2013 was studied. The study was conducted, comparing the temperature and humidity profiles from the MWR with the ones from the radio soundings at 0:00 a.m. Two datasets of the humidity show a fairly good agreement for the interval between ground and 1.5 km in the January month for winter and up to 2 km in the July month for summer. Above 2 km, for the both seasons, the humidity profiles present in most of the selected cases the same trend evolution. The temperature vertical profiles agreed in 95% of the cases during summer and 85% during winter. It is very important for intercomparison that for both seasons almost all temperature vertical profiles highlight temperature inversions. Two cases have been analyzed in order to find possible explanations for the discrepancies between vertical profiles, focusing on advantages and disadvantages of MWR measurements.
NASA Technical Reports Server (NTRS)
Hood, Robbie E.; Radley, C.D.; LaFontaine, F.J.
2008-01-01
Inland flooding from tropical cyclones can be a significant factor in storm-related deaths in the United States and other countries. Information collected during NASA tropical cyclone field studies suggest surface water and flooding induced by tropical cyclone precipitation can be detected and therefore monitored using passive microwave airborne radiometers. In particular, the 10.7 GHz frequency of the NASA Advanced Microwave Precipitation Radiometer (AMPR) flown on the NASA ER-2 has demonstrated high resolution detection of anomalous surface water and flooding in numerous situations. This presentation will highlight the analysis of three cases utilizing primarily satellite and airborne radiometer data. Radiometer data from the 1998 Third Convection and Moisture Experiment (CAMEX-3) are utilized to detect surface water during landfalling Hurricane Georges in both the Dominican Republic and Louisiana. A third case is landfalling Tropical Storm Gert in Eastern Mexico during the Tropical Cloud Systems and Processes (TCSP) experiment in 2005. AMPR data are compared to topographic data and vegetation indices to evaluate the significance of the surface water signature visible in the 10.7 GHz information. The results of this study suggest the benefit of an aircraft 10 GHz radiometer to provide real-time observations of surface water conditions as part of a multi-sensor flood monitoring network.
The New Microwave Temperature and Humidity Profiler (MTHP) Airborne Instrument
NASA Astrophysics Data System (ADS)
Lim, B.; Bendig, R.; Denning, R.; Pandian, P.; Read, W. G.; Tanner, A.
2016-12-01
The Jet Propulsion Laboratory (JPL) has developed a next generation sensor, the Microwave Temperature and Humidity Profiler (MTHP) for use on airborne platforms. The instrument measures the 60 GHz oxygen band and 183 GHz water vapor band, and scans ahead of the aircraft flight path, allowing for atmospheric retrievals above and below the aircraft, to generate vertical profiles. The millimeter wave microwave receivers utilize low noise amplifiers made on the 35 nm indium phosphide (InP) High Electron Mobility Transistors (HEMTs) process that offer low noise figures ( 4 dB). Continuous calibration is performed with a novel rotating drum, through an aperture matched to the measurement frequencies, with two external targets - one at ambient and another heated to 55oC. The instrument performs a scan of the vertical structure of the atmosphere and calibration targets every 1.5 seconds The instrument has recently flown on the Gulfstream 2 in June 2016 and participated in the NCAR ARISTO C-130 flight test campaign in August 2016. The performance of the instrument during these campaigns, will be presented.
Wang, G; Peebles, W A; Doyle, E J; Crocker, N A; Wannberg, C; Lau, C; Hanson, G R; Doane, J L
2017-10-01
The present design concept for the ITER low-field-side reflectometer transmission line (TL) consists of an ∼40 m long, 6.35 cm diameter helically corrugated waveguide (WG) together with ten 90° miter bends. This paper presents an evaluation of the TL performance at low frequencies (33-50 GHz) where the predicted HE 11 mode ohmic and mode conversion losses start to increase significantly. Quasi-optical techniques were used to form a near Gaussian beam to efficiently couple radiation in this frequency range into the WG. It was observed that the output beams from the guide remained linearly polarized with cross-polarization power levels of ∼1.5%-3%. The polarization rotation due to the helical corrugations was in the range ∼1°-3°. The radiated beam power profiles typically show excellent Gaussian propagation characteristics at distances >20 cm from the final exit aperture. The round trip propagation loss was found to be ∼2.5 dB at 50 GHz and ∼6.5 dB at 35 GHz, showing an inverse increase with frequency. This was consistent with updated calculations of miter bend and ohmic losses. At low frequencies (33-50 GHz), the mode purity remained very good at the exit of the waveguide, and the losses are perfectly acceptable for operation in ITER. The primary challenge may come from the future addition of a Gaussian telescope and other filter components within the corrugated guide, which will likely introduce additional perturbations to the beam profile and an increase in mode-conversion loss.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Guiding; Peebles, W. A.; Doyle, E. J.
The present design concept for the ITER low-field-side reflectometer transmission line (TL) consists of an ~40 m long, 6.35 cm diameter helically corrugated waveguide (WG) together with ten 90° miter bends. This paper presents an evaluation of the TL performance at low frequencies (33-50 GHz) where the predicted HE11 mode ohmic and mode conversion losses start to increase significantly. Quasi-optical techniques were used to form a near Gaussian beam to efficiently couple radiation in this frequency range into the WG. We observed that the output beams from the guide remained linearly polarized with cross-polarization power levels of ~1.5%-3%. The polarizationmore » rotation due to the helical corrugations was in the range ~1°-3°. The radiated beam power profiles typically show excellent Gaussian propagation characteristics at distances >20 cm from the final exit aperture. The round trip propagation loss was found to be ~2.5 dB at 50 GHz and ~6.5 dB at 35 GHz, showing an inverse increase with frequency. This was consistent with updated calculations of miter bend and ohmic losses. At low frequencies (33-50 GHz), the mode purity remained very good at the exit of the waveguide, and the losses are perfectly acceptable for operation in ITER. Finally, the primary challenge may come from the future addition of a Gaussian telescope and other filter components within the corrugated guide, which will likely introduce additional perturbations to the beam profile and an increase in mode-conversion loss.« less
NASA Astrophysics Data System (ADS)
Oschlisniok, J.; Tellmann, S.; Pätzold, M.; Häusler, B.; Andert, T.; Bird, M.; Remus, S.
2012-09-01
The planet Venus is shrouded within a roughly 20 km thick cloud layer, which extends from the lower to the middle atmosphere (ca. 50 - 70 km). While the clouds are mostly composed of sulfuric acid droplets, a haze layer of sulfuric acid vapor exists below the clouds. Within the cloud and the sub - cloud region Radio signal strength variations (intensity scintillations) caused by atmospheric waves and a decrease in the signal intensity caused by absorption by H2SO4 are observed by radio occultation experiments. The Venus Express spacecraft is orbiting Venus since 2006. The Radio Science Experiment VeRa probes the atmosphere with radio signals at 3.6 cm (XBand) and 13 cm (S-Band) wavelengths. The disturbance of the radio signal intensity is used to investigate the cloud region with respect to atmospheric waves. The absorption of the signal is used to determine the abundance of H2SO4 near the cloud base. This way a detailed study of the H2SO4 abundance within the cloud and sub - cloud region is possible. Results from the intensity scintillations within the cloud deck are presented and compared with gravity wave studies based on temperature variations inferred from VeRa soundings. Vertical absorptivity profiles and resulting sulfuric acid vapor profiles are presented and compared with previous missions. A distinct latitudinal dependence and a southern northern symmetry are clearly visible.
Validation of CERES-MODIS Arctic cloud properties using CloudSat/CALIPSO and ARM NSA observations
NASA Astrophysics Data System (ADS)
Giannecchini, K.; Dong, X.; Xi, B.; Minnis, P.; Kato, S.
2011-12-01
The traditional passive satellite studies of cloud properties in the Arctic are often affected by the complex surface features present across the region. Nominal visual and thermal contrast exists between Arctic clouds and the snow- and ice-covered surfaces beneath them, which can lead to difficulties in satellite retrievals of cloud properties. However, the addition of active sensors to the A-Train constellation of satellites has increased the availability of validation sources for cloud properties derived from passive sensors in the data-sparse high-latitude regions. In this study, Arctic cloud fraction and cloud heights derived from the NASA CERES team (CERES-MODIS) have been compared with CloudSat/CALIPSO and DOE ARM NSA radar-lidar observations over Barrow, AK, for the two-year period from 2007 to 2008. An Arctic-wide comparison of cloud fraction and height between CERES-MODIS and CloudSat/CALIPSO was then conducted for the same time period. The CERES-MODIS cloud properties, which include cloud fraction and cloud effective heights, were retrieved using the 4-channel VISST (Visible Infrared Solar-Infrared Split-window Technique) [Minnis et al.,1995]. CloudSat/CALIPSO cloud fraction and cloud-base and -top heights were from version RelB1 data products determined by both the 94 GHz radar onboard CloudSat and the lidar on CALIPSO with a vertical resolution of 30 m below 8.2 km and 60 m above. To match the surface and satellite observations/retrievals, the ARM surface observations were averaged into 3-hour intervals centered at the time of the satellite overpass, while satellite observations were averaged within a 3°x3° grid box centered on the Barrow site. The preliminary results have shown that all observed CFs have peaks during April-May and September-October, and dips during winter months (January-February) and summer months (June-July) during the study period of 2007-2008. ARM radar-lidar and CloudSat/CALIPSO show generally good agreement in CF (0.79 vs. 0.74), while CERES-MODIS derived values are much lower (0.60). CERES-MODIS derived cloud effective height (2.7 km) falls between the CloudSat/CALIPSO derived cloud base (0.6 km) and top (6.4 km) and the ARM ceilometers and MMCR derived cloud base (0.9 km) and radar derived cloud top (5.8 km). When extended to the entire Arctic, although the CERES-MODIS and Cloudsat/CALIPSO derived annual mean CFs agree within a few percents, there are significant differences over several regions, and the maximum cloud heights derived from CloudSat/CALIPSO (13.4 km) and CERES-MODIS (10.7 km) show the largest disagreement during early spring.
Precipitating Condensation Clouds in Substellar Atmospheres
NASA Technical Reports Server (NTRS)
Ackerman, Andrew S.; Marley, Mark S.; Gore, Warren J. (Technical Monitor)
2000-01-01
We present a method to calculate vertical profiles of particle size distributions in condensation clouds of giant planets and brown dwarfs. The method assumes a balance between turbulent diffusion and precipitation in horizontally uniform cloud decks. Calculations for the Jovian ammonia cloud are compared with previous methods. An adjustable parameter describing the efficiency of precipitation allows the new model to span the range of predictions from previous models. Calculations for the Jovian ammonia cloud are found to be consistent with observational constraints. Example calculations are provided for water, silicate, and iron clouds on brown dwarfs and on a cool extrasolar giant planet.
NASA Technical Reports Server (NTRS)
Petty, Grant W.
1990-01-01
A reasonably rigorous basis for understanding and extracting the physical information content of Special Sensor Microwave/Imager (SSM/I) satellite images of the marine environment is provided. To this end, a comprehensive algebraic parameterization is developed for the response of the SSM/I to a set of nine atmospheric and ocean surface parameters. The brightness temperature model includes a closed-form approximation to microwave radiative transfer in a non-scattering atmosphere and fitted models for surface emission and scattering based on geometric optics calculations for the roughened sea surface. The combined model is empirically tuned using suitable sets of SSM/I data and coincident surface observations. The brightness temperature model is then used to examine the sensitivity of the SSM/I to realistic variations in the scene being observed and to evaluate the theoretical maximum precision of global SSM/I retrievals of integrated water vapor, integrated cloud liquid water, and surface wind speed. A general minimum-variance method for optimally retrieving geophysical parameters from multichannel brightness temperature measurements is outlined, and several global statistical constraints of the type required by this method are computed. Finally, a unified set of efficient statistical and semi-physical algorithms is presented for obtaining fields of surface wind speed, integrated water vapor, cloud liquid water, and precipitation from SSM/I brightness temperature data. Features include: a semi-physical method for retrieving integrated cloud liquid water at 15 km resolution and with rms errors as small as approximately 0.02 kg/sq m; a 3-channel statistical algorithm for integrated water vapor which was constructed so as to have improved linear response to water vapor and reduced sensitivity to precipitation; and two complementary indices of precipitation activity (based on 37 GHz attenuation and 85 GHz scattering, respectively), each of which are relatively insensitive to variations in other environmental parameters.
NASA Astrophysics Data System (ADS)
Sanchez, K.; Roberts, G.; Calmer, R.; Nicoll, K.; Hashimshoni, E.; Rosenfeld, D.; Ovadnevaite, J.; Preissler, J.; Ceburnis, D.; O'Dowd, C. D. D.; Russell, L. M.
2017-12-01
Top-down and bottom-up aerosol-cloud shortwave radiative flux closures were conducted at the Mace Head atmospheric research station in Galway, Ireland in August 2015. Instrument platforms include ground-based, unmanned aerial vehicles (UAV), and satellite measurements of aerosols, clouds and meteorological variables. The ground-based and airborne measurements of aerosol size distributions and cloud condensation nuclei (CCN) concentration were used to initiate a 1D microphysical aerosol-cloud parcel model (ACPM). UAVs were equipped for a specific science mission, with an optical particle counter for aerosol distribution profiles, a cloud sensor to measure cloud extinction, or a 5-hole probe for 3D wind vectors. These are the first UAV measurements at Mace Head. ACPM simulations are compared to in-situ cloud extinction measurements from UAVs to quantify closure in terms of cloud shortwave radiative flux. Two out of seven cases exhibit sub-adiabatic vertical temperature profiles within the cloud, which suggests that entrainment processes affect cloud microphysical properties and lead to an overestimate of simulated cloud shortwave radiative flux. Including an entrainment parameterization and explicitly calculating the entrainment fraction in the ACPM simulations both improved cloud-top radiative closure. Entrainment reduced the difference between simulated and observation-derived cloud-top shortwave radiative flux (δRF) by between 25 W m-2 and 60 W m-2. After accounting for entrainment, satellite-derived cloud droplet number concentrations (CDNC) were within 30% of simulated CDNC. In cases with a well-mixed boundary layer, δRF is no greater than 20 W m-2 after accounting for cloud-top entrainment, and up to 50 W m-2 when entrainment is not taken into account. In cases with a decoupled boundary layer, cloud microphysical properties are inconsistent with ground-based aerosol measurements, as expected, and δRF is as high as 88 W m-2, even high (> 30 W m-2) after accounting for cloud-top entrainment. This work demonstrates the need to take in-situ measurements of aerosol properties for cases where the boundary layer is decoupled as well as consider cloud-top entrainment to accurately model stratocumulus cloud radiative flux.
NASA Astrophysics Data System (ADS)
Sanchez, K.; Roberts, G.; Calmer, R.; Nicoll, K.; Hashimshoni, E.; Rosenfeld, D.; Ovadnevaite, J.; Preissler, J.; Ceburnis, D.; O'Dowd, C. D. D.; Russell, L. M.
2016-12-01
Top-down and bottom-up aerosol-cloud shortwave radiative flux closures were conducted at the Mace Head atmospheric research station in Galway, Ireland in August 2015. Instrument platforms include ground-based, unmanned aerial vehicles (UAV), and satellite measurements of aerosols, clouds and meteorological variables. The ground-based and airborne measurements of aerosol size distributions and cloud condensation nuclei (CCN) concentration were used to initiate a 1D microphysical aerosol-cloud parcel model (ACPM). UAVs were equipped for a specific science mission, with an optical particle counter for aerosol distribution profiles, a cloud sensor to measure cloud extinction, or a 5-hole probe for 3D wind vectors. These are the first UAV measurements at Mace Head. ACPM simulations are compared to in-situ cloud extinction measurements from UAVs to quantify closure in terms of cloud shortwave radiative flux. Two out of seven cases exhibit sub-adiabatic vertical temperature profiles within the cloud, which suggests that entrainment processes affect cloud microphysical properties and lead to an overestimate of simulated cloud shortwave radiative flux. Including an entrainment parameterization and explicitly calculating the entrainment fraction in the ACPM simulations both improved cloud-top radiative closure. Entrainment reduced the difference between simulated and observation-derived cloud-top shortwave radiative flux (δRF) by between 25 W m-2 and 60 W m-2. After accounting for entrainment, satellite-derived cloud droplet number concentrations (CDNC) were within 30% of simulated CDNC. In cases with a well-mixed boundary layer, δRF is no greater than 20 W m-2 after accounting for cloud-top entrainment, and up to 50 W m-2 when entrainment is not taken into account. In cases with a decoupled boundary layer, cloud microphysical properties are inconsistent with ground-based aerosol measurements, as expected, and δRF is as high as 88 W m-2, even high (> 30 W m-2) after accounting for cloud-top entrainment. This work demonstrates the need to take in-situ measurements of aerosol properties for cases where the boundary layer is decoupled as well as consider cloud-top entrainment to accurately model stratocumulus cloud radiative flux.
Retrieval of Cloud Properties for Partially Cloud-Filled Pixels During CRYSTAL-FACE
NASA Astrophysics Data System (ADS)
Nguyen, L.; Minnis, P.; Smith, W. L.; Khaiyer, M. M.; Heck, P. W.; Sun-Mack, S.; Uttal, T.; Comstock, J.
2003-12-01
Partially cloud-filled pixels can be a significant problem for remote sensing of cloud properties. Generally, the optical depth and effective particle sizes are often too small or too large, respectively, when derived from radiances that are assumed to be overcast but contain radiation from both clear and cloud areas within the satellite imager field of view. This study presents a method for reducing the impact of such partially cloud field pixels by estimating the cloud fraction within each pixel using higher resolution visible (VIS, 0.65mm) imager data. Although the nominal resolution for most channels on the Geostationary Operational Environmental Satellite (GOES) imager and the Moderate Resolution Imaging Spectroradiometer (MODIS) on Terra are 4 and 1 km, respectively, both instruments also take VIS channel data at 1 km and 0.25 km, respectively. Thus, it may be possible to obtain an improved estimate of cloud fraction within the lower resolution pixels by using the information contained in the higher resolution VIS data. GOES and MODIS multi-spectral data, taken during the Cirrus Regional Study of Tropical Anvils and Cirrus Layers - Florida Area Cirrus Experiment (CRYSTAL-FACE), are analyzed with the algorithm used for the Atmospheric Radiation Measurement Program (ARM) and the Clouds and Earth's Radiant Energy System (CERES) to derive cloud amount, temperature, height, phase, effective particle size, optical depth, and water path. Normally, the algorithm assumes that each pixel is either entirely clear or cloudy. In this study, a threshold method is applied to the higher resolution VIS data to estimate the partial cloud fraction within each low-resolution pixel. The cloud properties are then derived from the observed low-resolution radiances using the cloud cover estimate to properly extract the radiances due only to the cloudy part of the scene. This approach is applied to both GOES and MODIS data to estimate the improvement in the retrievals for each resolution. Results are compared with the radar reflectivity techniques employed by the NOAA ETL MMCR and the PARSL 94 GHz radars located at the CRYSTAL-FACE Eastern & Western Ground Sites, respectively. This technique is most likely to yield improvements for low and midlevel layer clouds that have little thermal variability in cloud height.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robert A. Houze, Jr.
2013-11-13
We examined cloud radar data in monsoon climates, using cloud radars at Darwin in the Australian monsoon, on a ship in the Bay of Bengal in the South Asian monsoon, and at Niamey in the West African monsoon. We followed on with a more in-depth study of the continental MCSs over West Africa. We investigated whether the West African anvil clouds connected with squall line MCSs passing over the Niamey ARM site could be simulated in a numerical model by comparing the observed anvil clouds to anvil structures generated by the Weather Research and Forecasting (WRF) mesoscale model at highmore » resolution using six different ice-phase microphysical schemes. We carried out further simulations with a cloud-resolving model forced by sounding network budgets over the Niamey region and over the northern Australian region. We have devoted some of the effort of this project to examining how well satellite data can determine the global breadth of the anvil cloud measurements obtained at the ARM ground sites. We next considered whether satellite data could be objectively analyzed to so that their large global measurement sets can be systematically related to the ARM measurements. Further differences were detailed between the land and ocean MCS anvil clouds by examining the interior structure of the anvils with the satellite-detected the CloudSat Cloud Profiling Radar (CPR). The satellite survey of anvil clouds in the Indo-Pacific region was continued to determine the role of MCSs in producing the cloud pattern associated with the MJO.« less
Probing a dusty magnetized plasma with self-excited dust-density waves
NASA Astrophysics Data System (ADS)
Tadsen, Benjamin; Greiner, Franko; Piel, Alexander
2018-03-01
A cloud of nanodust particles is created in a reactive argon-acetylene plasma. It is then transformed into a dusty magnetized argon plasma. Plasma parameters are obtained with the dust-density wave diagnostic introduced by Tadsen et al. [Phys. Plasmas 22, 113701 (2015), 10.1063/1.4934927]. A change from an open to a cylindrically enclosed nanodust cloud, which was observed earlier, can now be explained by a stronger electric confinement if a vertical magnetic field is present. Using two-dimensional extinction measurements and the inverse Abel transform to determine the dust density, a redistribution of the dust with increasing magnetic induction is found. The dust-density profile changes from being peaked around the central void to being peaked at an outer torus ring resulting in a hollow profile. As the plasma parameters cannot explain this behavior, we propose a rotation of the nanodust cloud in the magnetized plasma as the origin of the modified profile.
HIFI observations of water in the atmosphere of comet C/2008 Q3 (Garradd)
NASA Astrophysics Data System (ADS)
Hartogh, P.; Crovisier, J.; de Val-Borro, M.; Bockelée-Morvan, D.; Biver, N.; Lis, D. C.; Moreno, R.; Jarchow, C.; Rengel, M.; Emprechtinger, M.; Szutowicz, S.; Banaszkiewicz, M.; Bensch, F.; Blecka, M. I.; Cavalié, T.; Encrenaz, T.; Jehin, E.; Küppers, M.; Lara, L.-M.; Lellouch, E.; Swinyard, B. M.; Vandenbussche, B.; Bergin, E. A.; Blake, G. A.; Blommaert, J. A. D. L.; Cernicharo, J.; Decin, L.; Encrenaz, P.; de Graauw, T.; Hutsemekers, D.; Kidger, M.; Manfroid, J.; Medvedev, A. S.; Naylor, D. A.; Schieder, R.; Thomas, N.; Waelkens, C.; Roelfsema, P. R.; Dieleman, P.; Güsten, R.; Klein, T.; Kasemann, C.; Caris, M.; Olberg, M.; Benz, A. O.
2010-07-01
High-resolution far-infrared and sub-millimetre spectroscopy of water lines is an important tool to understand the physical and chemical properties of cometary atmospheres. We present observations of several rotational ortho- and para-water transitions in comet C/2008 Q3 (Garradd) performed with HIFI on Herschel. These observations have provided the first detection of the 212-101 (1669 GHz) ortho and 111-000 (1113 GHz) para transitions of water in a cometary spectrum. In addition, the ground-state transition 110-101 at 557 GHz is detected and mapped. By detecting several water lines quasi-simultaneously and mapping their emission we can constrain the excitation parameters in the coma. Synthetic line profiles are computed using excitation models which include excitation by collisions, solar infrared radiation, and radiation trapping. We obtain the gas kinetic temperature, constrain the electron density profile, and estimate the coma expansion velocity by analyzing the map and line shapes. We derive water production rates of 1.7-2.8 × 1028 s-1 over the range rh = 1.83-1.85 AU. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.Figure 5 is only available in electronic form at http://www.aanda.org
NASA Astrophysics Data System (ADS)
Vaillant de Guélis, Thibault; Chepfer, Hélène; Noel, Vincent; Guzman, Rodrigo; Winker, David M.; Plougonven, Riwal
2017-12-01
Measurements of the longwave cloud radiative effect (LWCRE) at the top of the atmosphere assess the contribution of clouds to the Earth warming but do not quantify the cloud property variations that are responsible for the LWCRE variations. The CALIPSO space lidar observes directly the detailed profile of cloud, cloud opacity, and cloud cover. Here we use these observations to quantify the influence of cloud properties on the variations of the LWCRE observed between 2008 and 2015 in the tropics and at global scale. At global scale, the method proposed here gives good results except over the Southern Ocean. We find that the global LWCRE variations observed over ocean are mostly due to variations in the opaque cloud properties (82%); transparent cloud columns contributed 18%. Variation of opaque cloud cover is the first contributor to the LWCRE evolution (58%); opaque cloud temperature is the second contributor (28%).
Physically-Retrieving Cloud and Thermodynamic Parameters from Ultraspectral IR Measurements
NASA Technical Reports Server (NTRS)
Zhou, Daniel K.; Smith, William L., Sr.; Liu, Xu; Larar, Allen M.; Mango, Stephen A.; Huang, Hung-Lung
2007-01-01
A physical inversion scheme has been developed, dealing with cloudy as well as cloud-free radiance observed with ultraspectral infrared sounders, to simultaneously retrieve surface, atmospheric thermodynamic, and cloud microphysical parameters. A fast radiative transfer model, which applies to the clouded atmosphere, is used for atmospheric profile and cloud parameter retrieval. A one-dimensional (1-d) variational multi-variable inversion solution is used to improve an iterative background state defined by an eigenvector-regression-retrieval. The solution is iterated in order to account for non-linearity in the 1-d variational solution. It is shown that relatively accurate temperature and moisture retrievals can be achieved below optically thin clouds. For optically thick clouds, accurate temperature and moisture profiles down to cloud top level are obtained. For both optically thin and thick cloud situations, the cloud top height can be retrieved with relatively high accuracy (i.e., error < 1 km). NPOESS Airborne Sounder Testbed Interferometer (NAST-I) retrievals from the Atlantic-THORPEX Regional Campaign are compared with coincident observations obtained from dropsondes and the nadir-pointing Cloud Physics Lidar (CPL). This work was motivated by the need to obtain solutions for atmospheric soundings from infrared radiances observed for every individual field of view, regardless of cloud cover, from future ultraspectral geostationary satellite sounding instruments, such as the Geosynchronous Imaging Fourier Transform Spectrometer (GIFTS) and the Hyperspectral Environmental Suite (HES). However, this retrieval approach can also be applied to the ultraspectral sounding instruments to fly on Polar satellites, such as the Infrared Atmospheric Sounding Interferometer (IASI) on the European MetOp satellite, the Cross-track Infrared Sounder (CrIS) on the NPOESS Preparatory Project and the following NPOESS series of satellites.
Microwave and hard X-ray observations of a solar flare with a time resolution of better than 100 MS
NASA Technical Reports Server (NTRS)
Kaufmann, P.; Strauss, F. M.; Costa, J. E. R.; Dennis, B. R.; Kiplinger, A.; Frost, K. J.; Orwig, L. E.
1982-01-01
Simultaneous microwave and X-ray observations are presented for a solar flare detected on 1980 May 8 starting at 1937 UT. The X-ray observations were made with the Hard X-Ray Burst Spectrometer on the Solar Maximum Mission and covered the energy range from 28-490 keV with a time resolution of 10 ms. The microwave observations were made with the 5 and 45 foot antennas at the Itapetinga Radio Observatory at frequencies of 7 and 22 GHz, with time resolutions of 100 ms and 1 ms respectively. Detailed correlation analysis of the different time profiles of the event show that the major impulsive in the X-ray flux preceded the corresponding microwave peaks at 22 GHz by about 240ms. For this particular burst the 22 GHz peaks preceded the 7 GHz by about 1.5s. Observed delays of the microwave peaks are too large for a simple electron beam model but they can be reconciled with the speeds of shock waves in a thermal model.
Microwave and hard X-ray observations of a solar flare with a time resolution better than 100 ms
NASA Technical Reports Server (NTRS)
Kaufmann, P.; Costa, J. E. R.; Dennis, B. R.; Frost, K. J.; Orwig, L. E.; Kiplinger, A.; Strauss, F. M.
1983-01-01
Simultaneous microwave and X-ray observations are presented for a solar flare detected on 1980 May 8 starting at 1937 UT. The X-ray observations were made with the Hard X-ray Burst Spectrometer on the Solar Maximum Mission and covered the energy range from 28-490 keV with a time resolution of 10 ms. The microwave observations were made with the 5 and 45 foot antennas at the Itapetinga Radio Obervatory at frequencies of 7 and 22 GHz, with time resolutions of 100 ms and 1 ms respectively. Detailed correlation analysis of the different time profiles of the event show that the major impulsive in the X-ray flux preceded the corresponding microwave peaks at 22 GHz by about 240 ms. For this particular burst the 22 GHz peaks preceded the 7 GHz by about 1.5s. Observed delays of the microwave peaks are too large for a simple electron beam model but they can be reconciled with the speeds of shock waves in a thermal model. Previously announced in STAR as N82-30215
NASA Astrophysics Data System (ADS)
Zernickel, A.
2015-05-01
Context. How massive stars (M>8 Ms) form and how they accrete gas is still an open research field, but it is known that their influence on the interstellar medium (ISM) is immense. Star formation involves the gravitational collapse of gas from scales of giant molecular clouds (GMCs) down to dense hot molecular cores (HMCs). Thus, it is important to understand the mass flows and kinematics in the ISM. Aims. This dissertation focuses on the detailed study of the region NGC 6334, located in the Galaxy at a distance of 1.7 kpc. It is aimed to trace the gas velocities in the filamentary, massive star-forming region NGC 6334 at several scales and to explain its dynamics. For that purpose, different scales are examined from 0.01-10 pc to collect information about the density, molecular abundance, temperature and velocity, and consequently to gain insights about the physio-chemical conditions of molecular clouds. The two embedded massive protostellar clusters NGC 6334I and I(N), which are at different stages of development, were selected to determine their infall velocities and mass accretion rates. Methods. This astronomical source was surveyed by a combination of different observatories, namely with the Submillimeter Array (SMA), the single-dish telescope Atacama Pathfinder Experiment (APEX), and the Herschel Space Observatory (HSO). It was mapped with APEX in carbon monoxide (13CO and C18O, J=2-1) at 220.4 GHz to study the filamentary structure and turbulent kinematics on the largest scales of 10 pc. The spectral line profiles are decomposed by Gaussian fitting and a dendrogram algorithm is applied to distinguish velocity-coherent structures and to derive statistical properties. The velocity gradient method is used to derive mass flow rates. The main filament was mapped with APEX in hydrogen cyanide (HCN) and oxomethylium (HCO+, J=3-2) at 267.6 GHz to trace the dense gas. To reproduce the position- velocity diagram (PVD), a cylindrical model with the radiative transfer code Line Modeling Engine (LIME) is created with a collapsing velocity field. Both clusters NGC 6334I and I(N) were observed with the interferometer SMA in HCN (J=4-3) at 354.5 GHz at the smallest scales of 0.01 pc. The combination of interferometric and multi-frequency single-dish data gives a wide range of rotational transitions, which probe the gas at different excitation conditions and optical depths. The molecule HCN and its isotopologues H13CN/HC15N trace radii of a HMC from 1.0-0.01 pc by a range of level energies (E=4-10^67 K) and optical depths (tau=100-0.1). The HMCs, which have a rich line spectra, are analyzed by using 1D (myXCLASS) and 3D numerical radiative transfer codes (RADMC-3D and LIME) in and outside of local thermodynamic equilibrium (LTE). Multiple components and the fragmentation of the clusters are modeled with these tools. Together with the optimization package MAGIX, the data are compared and reproduced with synthetic maps and spectra from these models. Results. 1. The main filament shows a velocity gradient from the end toward its center, where the most massive clumps accumulate at both ends, in accordance to predictions of a longitudinal contraction. The 3D structure is determined by taking the inclination and curvature of the filament into account, and the free-fall time is estimated to approximately 1 Myr; 2. The total gas mass is 2.3E5 Ms and the average temperature 20 K. The majority of the velocity gradients are aligned with the magnetic field, which runs perpendicular to the filaments. The calculation of the average Mach numbers yields a turbulence which is super-sonic (M_S=5.7) and sub-Alfvénic (M_A=0.86). In general, the derived scaling relations are in agreement with Larson's relations. 3. The SMA observations reveal multiple bipolar molecular outflows, blue asymmetric infall profiles, rotating cores and an ultra compact (UC) HII region in NGC 6334I which affects the surrounding gas. The average mass accretion rates are 1E-3 Ms/yr for the envelopes and 3E-4 Ms/yr for the cores, where the latter are derived from modified Bondi-Hoyle models. The orientation of the magnetic field is in NGC 6334I(N) consistent over all scales and most outflows are aligned perpendicular to it; 4. In the line surveys of the HMCs, 20 different molecules are identified with typical temperatures of 100 K. A cruel separation between the HMCs of the clusters is determined on the basis of the relative abundances. Conclusions. The combination of single-dish with interferometric data is helpful to constrain the parameter space of a model. The envelope hinders the determination of infall velocities in HMCs via line profiles. Systematic motions as a result of gravitational attraction are diffcult to find because of the turbulent nature of the ISM. The magnetic field energy in NGC 6334 is as important as the kinetic energy and regulates partly the direction of the inflowing gas and thus the geometry and collapse of the molecular clouds. NGC 6334 is heavily affected by the HII regions (produced by the OB stars), and the free-fall time and mass surface density suggest that it classifies as a starburst system.
CloudSat Image of Tropical Thunderstorms Over Africa
NASA Technical Reports Server (NTRS)
2006-01-01
[figure removed for brevity, see original site] Figure 1 CloudSat image of a horizontal cross-section of tropical clouds and thunderstorms over east Africa. The red colors are indicative of highly reflective particles such as water (rain) or ice crystals, which the blue indicates thinner clouds (such as cirrus). The flat green/blue lines across the bottom represent the ground signal. The vertical scale on the CloudS at Cloud Profiling Radar image is approximately 30 kilometers (19 miles). The brown line below the image indicates the relative elevation of the land surface. The inset image shows the CloudSat track relative to a Moderate Resolution Imaging Spectroradiometer (MODIS) visible image taken at nearly the same time.