Sample records for ghz high power

  1. InP MMIC Chip Set for Power Sources Covering 80-170 GHz

    NASA Technical Reports Server (NTRS)

    Ngo, Catherine

    2001-01-01

    We will present a Monolithic Millimeter-wave Integrated Circuit (MMIC) chip set which provides high output-power sources for driving diode frequency multipliers into the terahertz range. The chip set was fabricated at HRL Laboratories using a 0.1-micrometer gate-length InAlAs/InGaAs/InP high electron mobility transistor (HEMT) process, and features transistors with an f(sub max) above 600 GHz. The HRL InP HEMT process has already demonstrated amplifiers in the 60-200 GHz range. In this paper, these high frequency HEMTs form the basis for power sources up to 170 GHz. A number of state-of-the-art InP HEMT MMICs will be presented. These include voltage-controlled and fixed-tuned oscillators, power amplifiers, and an active doubler. We will first discuss an 80 GHz voltage-controlled oscillator with 5 GHz of tunability and at least 17 mW of output power, as well as a 120 GHz oscillator providing 7 mW of output power. In addition, we will present results of a power amplifier which covers the full WRIO waveguide band (75-110 GHz), and provides 40-50 mW of output power. Furthermore, we will present an active doubler at 164 GHz providing 8% bandwidth, 3 mW of output power, and an unprecedented 2 dB of conversion loss for an InP HEMT MMIC at this frequency. Finally, we will demonstrate a power amplifier to cover 140-170 GHz with 15-25 mW of output power and 8 dB gain. These components can form a power source in the 155-165 GHz range by cascading the 80 GHz oscillator, W-band power amplifier, 164 GHz active doubler and final 140-170 GHz power amplifier for a stable, compact local oscillator subsystem, which could be used for atmospheric science or astrophysics radiometers.

  2. High Power SiGe X-Band (8-10 GHz) Heterojunction Bipolar Transistors and Amplifiers

    NASA Technical Reports Server (NTRS)

    Ma, Zhenqiang; Jiang, Ningyue; Ponchak, George E.; Alterovitz, Samuel A.

    2005-01-01

    Limited by increased parasitics and thermal effects as the device size becomes large, current commercial SiGe power HBTs are difficult to operate at X-band (8-12 GHz) with adequate power added efficiencies at high power levels. We found that, by changing the heterostructure and doping profile of SiGe HBTs, their power gain can be significantly improved without resorting to substantial lateral scaling. Furthermore, employing a common-base configuration with proper doping profile instead of a common-emitter configuration improves the power gain characteristics of SiGe HBTs, which thus permits these devices to be efficiently operated at X-band. In this paper, we report the results of SiGe power HBTs and MMIC power amplifiers operating at 8-10 GHz. At 10 GHz, 22.5 dBm (178 mW) RF output power with concurrent gain of 7.32 dB is measured at the peak power-added efficiency of 20.0% and the maximum RF output power of 24.0 dBm (250 mW) is achieved from a 20 emitter finger SiGe power HBT. Demonstration of single-stage X-band medium-power linear MMIC power amplifier is also realized at 8 GHz. Employing a 10-emitter finger SiGe HBT and on-chip input and output matching passive components, a linear gain of 9.7 dB, a maximum output power of 23.4 dBm and peak power added efficiency of 16% is achieved from the power amplifier. The MMIC exhibits very low distortion with third order intermodulation (IM) suppression C/I of -13 dBc at output power of 21.2 dBm and over 20dBm third order output intercept point (OIP3).

  3. Power-Amplifier Module for 145 to 165 GHz

    NASA Technical Reports Server (NTRS)

    Samoska, Lorene; Peralta, Alejandro

    2007-01-01

    A power-amplifier module that operates in the frequency range of 145 to 165 GHz has been designed and constructed as a combination of (1) a previously developed monolithic microwave integrated circuit (MMIC) power amplifier and (2) a waveguide module. The amplifier chip was needed for driving a high-electron-mobility-transistor (HEMT) frequency doubler. While it was feasible to connect the amplifier and frequency-doubler chips by use of wire bonds, it was found to be much more convenient to test the amplifier and doubler chips separately. To facilitate separate testing, it was decided to package the amplifier and doubler chips in separate waveguide modules. Figure 1 shows the resulting amplifier module. The amplifier chip was described in "MMIC HEMT Power Amplifier for 140 to 170 GHz" (NPO-30127), NASA Tech Briefs, Vol. 27, No. 11, (November 2003), page 49. To recapitulate: This is a three-stage MMIC power amplifier that utilizes HEMTs as gain elements. The amplifier was originally designed to operate in the frequency range of 140 to 170 GHz. The waveguide module is based on a previously developed lower frequency module, redesigned to support operation in the frequency range of 140 to 220 GHz. Figure 2 presents results of one of several tests of the amplifier module - measurements of output power and gain as functions of input power at an output frequency of 150 GHz. Such an amplifier module has many applications to test equipment for power sources above 100 GHz.

  4. High power tests of an electroforming cavity operating at 11.424 GHz

    NASA Astrophysics Data System (ADS)

    Dolgashev, V. A.; Gatti, G.; Higashi, Y.; Leonardi, O.; Lewandowski, J. R.; Marcelli, A.; Rosenzweig, J.; Spataro, B.; Tantawi, S. G.; Yeremian, D. A.

    2016-03-01

    The achievement of ultra high accelerating gradients is mandatory in order to fabricate compact accelerators at 11.424 GHz for scientific and industrial applications. An extensive experimental and theoretical program to determine a reliable ultra high gradient operation of the future linear accelerators is under way in many laboratories. In particular, systematic studies on the 11.424 GHz frequency accelerator structures, R&D on new materials and the associated microwave technology are in progress to achieve accelerating gradients well above 120 MeV/m. Among the many, the electroforming procedure is a promising approach to manufacture high performance RF devices in order to avoid the high temperature brazing and to produce precise RF structures. We report here the characterization of a hard high gradient RF accelerating structure at 11.424 GHz fabricated using the electroforming technique. Low-level RF measurements and high power RF tests carried out at the SLAC National Accelerator Laboratory on this prototype are presented and discussed. In addition, we present also a possible layout where the water-cooling of irises based on the electroforming process has been considered for the first time.

  5. NASA seeking high-power 60-GHz IMPATT diodes

    NASA Technical Reports Server (NTRS)

    Haugland, E. J.

    1984-01-01

    Recent progress in the development of high-power 60 GHz GaAs IMPATT diodes for communication links with high-data-rate satellites is discussed. One of the advantages of GaAs over Si as the material for the diodes are that GaAs is likely to have a higher output and efficiency than Si despite recent advances in Si technology. It is therefore in GaAs technology that research is currently concentrating. Some of the design strategies of the various companies working on the technology are described, including a pill process, MOCVD growth, and the use of diethy zinc as a dopant. Reliability testing of the diodes will be performed by NASA. Some of the alternatives to solid state amplifiers are discussed, including optical and traveling wave tube technology (TWT).

  6. MMIC HEMT Power Amplifier for 140 to 170 GHz

    NASA Technical Reports Server (NTRS)

    Samoska, Lorene; Radisic, Vesna; Ngo, Catherine; Janke, Paul; Hu, Ming; Micovic, Miro

    2003-01-01

    A three-stage monolithic microwave integrated circuit (MMIC) power amplifier that features high-electron-mobility transistors (HEMTs) as gain elements is reviewed. This amplifier is designed to operate in the frequency range of 140 to 170 GHz, which contains spectral lines of several atmospheric molecular species plus subharmonics of other such spectral lines. Hence, this amplifier could serve as a prototype of amplifiers to be incorporated into heterodyne radiometers used in atmospheric science. The original intended purpose served by this amplifier is to boost the signal generated by a previously developed 164-GHz MMIC HEMT doubler and drive a 164-to-328-GHz doubler to provide a few milliwatts of power at 328 GHz.

  7. Extremely High Peak Power Obtained at 29 GHZ Microwave Pulse Generation

    NASA Astrophysics Data System (ADS)

    Rostov, V. V.; Gunin, A. V.; Romanchenko, I. V.; Pedos, M. S.; Rukin, S. N.; Sharypov, K. A.; Shunailov, S. A.; Ul'maskulov, M. R.; Yalandin, M. I.

    2017-12-01

    The paper presents research results on enhancing the peak power of microwave pulses with sub- and nanosecond length using a backward-wave oscillator (BWO) operating at 29 GHz frequency and possessing a reproducible phase structure. Experiments are conducted in two modes on a high-current electron accelerator with the required electron beam power. In the first (superradiation) mode, which utilizes the elongated slow-wave structure, the BWO peak power is 3 GW at 180 ns pulse duration (full width at halfmaximum, FWHM). In the second (quasi-stationary) mode, the BWO peak power reaches 600 MW at 2 ns pulse duration (FWHM). The phase spread from pulse to pulse can vary from units to several tens of percent in a nanosecond pulse mode. The experiments do not show any influence of microwave breakdown on the BWO power generation and radiation pulse duration.

  8. Medium power amplifiers covering 90 - 130 GHz for telescope local oscillators

    NASA Technical Reports Server (NTRS)

    Samoska, Lorene A.; Bryerton, Eric; Pukala, David; Peralta, Alejandro; Hu, Ming; Schmitz, Adele

    2005-01-01

    This paper describes a set of power amplifier (PA) modules containing InP High Electron Mobility Transistor (HEMT) Monolithic Millimeter-wave Integrated Circuit (MMIC) chips. The chips were designed and optimized for local oscillator sources in the 90-130 GHz band for the Atacama Large Millimeter Array telescope. The modules feature 20-45 mW of output power, to date the highest power from solid state HEMT MMIC modules above 110 GHz.

  9. High power klystrons for efficient reliable high power amplifiers

    NASA Astrophysics Data System (ADS)

    Levin, M.

    1980-11-01

    This report covers the design of reliable high efficiency, high power klystrons which may be used in both existing and proposed troposcatter radio systems. High Power (10 kW) klystron designs were generated in C-band (4.4 GHz to 5.0 GHz), S-band (2.5 GHz to 2.7 GHz), and L-band or UHF frequencies (755 MHz to 985 MHz). The tubes were designed for power supply compatibility and use with a vapor/liquid phase heat exchanger. Four (4) S-band tubes were developed in the course of this program along with two (2) matching focusing solenoids and two (2) heat exchangers. These tubes use five (5) tuners with counters which are attached to the focusing solenoids. A reliability mathematical model of the tube and heat exchanger system was also generated.

  10. High-Power Testing of 11.424-GHz Dielectric-Loaded Accelerating Structures

    NASA Astrophysics Data System (ADS)

    Gold, Steven; Gai, Wei

    2001-10-01

    Argonne National Laboratory has previously described the design, construction, and bench testing of an X-band traveling-wave accelerating structure loaded with a permittivity=20 dielectric (P. Zou et al., Rev. Sci. Instrum. 71, 2301, 2000.). We describe a new program to build a test accelerator using this structure. The accelerator will be powered by the high-power 11.424-GHz radiation from the magnicon facility at the Naval Research Laboratory ( O.A. Nezhevenko et al., Proc. PAC 2001, in press). The magnicon is expected to provide up to 30 MW from each of two WR-90 output waveguide arms in pulses of up to 1 microsecond duration, permitting tests up to a gradient of 40 MV/m. Still higher power pulses (100-500 MW) may be available at the output of an active pulse compressor driven by the magnicon ( A.L. Vikharev et al., Proc. 9th Workshop on Advanced Accelerator Concepts.).

  11. Spacecraft mass trade-offs versus radio-frequency power and antenna size at 8 GHz and 32 GHz

    NASA Technical Reports Server (NTRS)

    Gilchriest, C. E.

    1987-01-01

    The purpose of this analysis is to help determine the relative merits of 32 GHz over 8 GHz for future deep space communications. This analysis is only a piece of the overall analysis and only considers the downlink communication mass, power, and size comparisons for 8 and 32 GHz. Both parabolic antennas and flat-plate arrays are considered. The Mars Sample Return mission is considered in some detail as an example of the tradeoffs involved; for this mission the mass, power, and size show a definite advantage of roughly 2:1 in using the 32 GHz over 8 GHz.

  12. The 20 GHz GaAs monolithic power amplifier module development

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The development of a 20 GHz GaAs FET monlithic power amplifier module for advanced communication applications is described. Four-way power combing of four 0.6 W amplifier modules is used as the baseline approach. For this purpose, a monolithic four-way traveling-wave power divider/combiner was developed. Over a 20 GHz bandwidth (10 to 30 GHz), an insertion loss of no more than 1.2 dB was measured for a pair of back-to-back connected divider/combiners. Isolation between output ports is better than 20 dB, and VSWRs are better than 21:1. A distributed amplifier with six 300 micron gate width FETs and gate and drain transmission line tapers has been designed, fabricated, and evaluated for use as an 0.6 W module. This amplifier has achieved state-of-the-art results of 0.5 W output power with at least 4 dB gain across the entire 2 to 21 GHz frequency range. An output power of 2 W was achieved at a measurement frequency of 18 GHz when four distributed amplifiers were power-combined using a pair of traveling-wave divider/combiners. Another approach is the direct common-source cascading of three power FET stages. An output power of up to 2W with 12 dB gain and 20% power-added efficiency has been achieved with this approach (at 17 GHz). The linear gain was 14 dB at 1 W output. The first two stages of the three-stage amplifier have achieved an output power of 1.6 W with 9 dB gain and 26% power-added efficiency at 16 GHz.

  13. Initial results for a 170 GHz high power ITER waveguide component test stand

    NASA Astrophysics Data System (ADS)

    Bigelow, Timothy; Barker, Alan; Dukes, Carl; Killough, Stephen; Kaufman, Michael; White, John; Bell, Gary; Hanson, Greg; Rasmussen, Dave

    2014-10-01

    A high power microwave test stand is being setup at ORNL to enable prototype testing of 170 GHz cw waveguide components being developed for the ITER ECH system. The ITER ECH system will utilize 63.5 mm diameter evacuated corrugated waveguide and will have 24 >150 m long runs. A 170 GHz 1 MW class gyrotron is being developed by Communications and Power Industries and is nearing completion. A HVDC power supply, water-cooling and control system has been partially tested in preparation for arrival of the gyrotron. The power supply and water-cooling system are being designed to operate for >3600 second pulses to simulate the operating conditions planned for the ITER ECH system. The gyrotron Gaussian beam output has a single mirror for focusing into a 63.5 mm corrugated waveguide in the vertical plane. The output beam and mirror are enclosed in an evacuated duct with absorber for stray radiation. Beam alignment with the waveguide is a critical task so a combination of mirror tilt adjustments and a bellows for offsets will be provided. Analysis of thermal patterns on thin witness plates will provide gyrotron mode purity and waveguide coupling efficiency data. Pre-prototype waveguide components and two dummy loads are available for initial operational testing of the gyrotron. ORNL is managed by UT-Battelle, LLC, for the U.S. Dept. of Energy under Contract DE-AC-05-00OR22725.

  14. A 0.4-2.3 GHz broadband power amplifier extended continuous class-F design technology

    NASA Astrophysics Data System (ADS)

    Chen, Peng; He, Songbai

    2015-08-01

    A 0.4-2.3 GHz broadband power amplifier (PA) extended continuous class-F design technology is proposed in this paper. Traditional continuous class-F PA performs in high-efficiency only in one octave bandwidth. With the increasing development of wireless communication, the PA is in demand to cover the mainstream communication standards' working frequencies from 0.4 GHz to 2.2 GHz. In order to achieve this objective, the bandwidths of class-F and continuous class-F PA are analysed and discussed by Fourier series. Also, two criteria, which could reduce the continuous class-F PA's implementation complexity, are presented and explained to investigate the overlapping area of the transistor's current and voltage waveforms. The proposed PA design technology is based on the continuous class-F design method and divides the bandwidth into two parts: the first part covers the bandwidth from 1.3 GHz to 2.3 GHz, where the impedances are designed by the continuous class-F method; the other part covers the bandwidth from 0.4 GHz to 1.3 GHz, where the impedance to guarantee PA to be in high-efficiency over this bandwidth is selected and controlled. The improved particle swarm optimisation is employed for realising the multi-impedances of output and input network. A PA based on a commercial 10 W GaN high electron mobility transistor is designed and fabricated to verify the proposed design method. The simulation and measurement results show that the proposed PA could deliver 40-76% power added efficiency and more than 11 dB power gain with more than 40 dBm output power over the bandwidth from 0.4-2.3 GHz.

  15. Waveguide Power-Amplifier Module for 80 to 150 GHz

    NASA Technical Reports Server (NTRS)

    Samoska, Lorene; Weinreb, Sander; Peralta, Alejandro

    2006-01-01

    A waveguide power-amplifier module capable of operating over the frequency range from 80 to 150 GHz has been constructed. The module comprises a previously reported power amplifier packaged in a waveguide housing that is compatible with WR-8 waveguides. (WR- 8 is a standard waveguide size for the nominal frequency range from 90 to 140 GHz.) The waveguide power-amplifier module is robust and can be bolted to test equipment and to other electronic circuits with which the amplifier must be connected for normal operation.

  16. Development of a 670 GHz Extended Interaction Klystron Power Amplifier

    DTIC Science & Technology

    2011-03-01

    Klystron Power Amplifier 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR( S ) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT...avelengths,” /40/EIK%20Tec W%20Wavelen oyski, R. Dobbs, act, High Power ction Klystron ,” Conf., Montere opments to the M or Modeling Cod 2005). ic...Research Projects Agency or the Department of Defense. Development of a 670 GHz Extended Interaction Klystron Power Amplifier David Chernin Science

  17. Area-Efficient 60 GHz +18.9 dBm Power Amplifier with On-Chip Four-Way Parallel Power Combiner in 65-nm CMOS

    NASA Astrophysics Data System (ADS)

    Farahabadi, Payam Masoumi; Basaligheh, Ali; Saffari, Parvaneh; Moez, Kambiz

    2017-06-01

    This paper presents a compact 60-GHz power amplifier utilizing a four-way on-chip parallel power combiner and splitter. The proposed topology provides the capability of combining the output power of four individual power amplifier cores in a compact die area. Each power amplifier core consists of a three-stage common-source amplifier with transformer-coupled impedance matching networks. Fabricated in 65-nm CMOS process, the measured gain of the 0.19-mm2 power amplifier at 60 GHz is 18.8 and 15 dB utilizing 1.4 and 1.0 V supply. Three-decibel band width of 4 GHz and P1dB of 16.9 dBm is measured while consuming 424 mW from a 1.4-V supply. A maximum saturated output power of 18.3 dBm is measured with the 15.9% peak power added efficiency at 60 GHz. The measured insertion loss is 1.9 dB at 60 GHz. The proposed power amplifier achieves the highest power density (power/area) compared to the reported 60-GHz CMOS power amplifiers in 65 nm or older CMOS technologies.

  18. Efficient EM Simulation of GCPW Structures Applied to a 200-GHz mHEMT Power Amplifier MMIC

    NASA Astrophysics Data System (ADS)

    Campos-Roca, Yolanda; Amado-Rey, Belén; Wagner, Sandrine; Leuther, Arnulf; Bangert, Axel; Gómez-Alcalá, Rafael; Tessmann, Axel

    2017-05-01

    The behaviour of grounded coplanar waveguide (GCPW) structures in the upper millimeter-wave range is analyzed by using full-wave electromagnetic (EM) simulations. A methodological approach to develop reliable and time-efficient simulations is proposed by investigating the impact of different simplifications in the EM modelling and simulation conditions. After experimental validation with measurements on test structures, this approach has been used to model the most critical passive structures involved in the layout of a state-of-the-art 200-GHz power amplifier based on metamorphic high electron mobility transistors (mHEMTs). This millimeter-wave monolithic integrated circuit (MMIC) has demonstrated a measured output power of 8.7 dBm for an input power of 0 dBm at 200 GHz. The measured output power density and power-added efficiency (PAE) are 46.3 mW/mm and 4.5 %, respectively. The peak measured small-signal gain is 12.7 dB (obtained at 196 GHz). A good agreement has been obtained between measurements and simulation results.

  19. Miniature MMIC Low Mass/Power Radiometer Modules for the 180 GHz GeoSTAR Array

    NASA Technical Reports Server (NTRS)

    Kangaslahti, Pekka; Tanner, Alan; Pukala, David; Lambrigtsen, Bjorn; Lim, Boon; Mei, Xiaobing; Lai, Richard

    2010-01-01

    We have developed and demonstrated miniature 180 GHz Monolithic Microwave Integrated Circuit (MMIC) radiometer modules that have low noise temperature, low mass and low power consumption. These modules will enable the Geostationary Synthetic Thinned Aperture Radiometer (GeoSTAR) of the Precipitation and All-weather Temperature and Humidity (PATH) Mission for atmospheric temperature and humidity profiling. The GeoSTAR instrument has an array of hundreds of receivers. Technology that was developed included Indium Phosphide (InP) MMIC Low Noise Amplifiers (LNAs) and second harmonic MMIC mixers and I-Q mixers, surface mount Multi-Chip Module (MCM) packages at 180 GHz, and interferometric array at 180 GHz. A complete MMIC chip set for the 180 GHz receiver modules (LNAs and I-Q Second harmonic mixer) was developed. The MMIC LNAs had more than 50% lower noise temperature (NT=300K) than previous state-of-art and MMIC I-Q mixers demonstrated low LO power (3 dBm). Two lots of MMIC wafers were processed with very high DC transconductance of up to 2800 mS/mm for the 35 nm gate length devices. Based on these MMICs a 180 GHz Multichip Module was developed that had a factor of 100 lower mass/volume (16x18x4.5 mm3, 3g) than previous generation 180 GHz receivers.

  20. The 20 GHz power GaAs FET development

    NASA Technical Reports Server (NTRS)

    Crandell, M.

    1986-01-01

    The development of power Field Effect Transistors (FET) operating in the 20 GHz frequency band is described. The major efforts include GaAs FET device development (both 1 W and 2 W devices), and the development of an amplifier module using these devices.

  1. Ku and K band GaN High Power Amplifier MMICs

    DTIC Science & Technology

    2017-03-20

    end Ku-band HPA operates from 13 to 14.5 GHz and delivers 48 Watts of output power with 43% PAE. A high-end Ku-band HPA operates from 15.5 to 18 GHz and...delivers 25 Watts of output power with 45% PAE. A K-band HPA operates from 19.5 to 22 GHz and delivers 18 Watts of output power with 29% PAE...15.5 and 18 GHz. The circuit is a three-stage reactively-matched amplifier. A photograph of a fabricated high-end Ku-band GaN HPA is shown as an

  2. Observations of electron heating during 28 GHz microwave power application in proto-MPEX

    DOE PAGES

    Biewer, Theodore M.; Bigelow, Tim S.; Caneses Marin, Juan F.; ...

    2018-02-01

    The Prototype Material Plasma Exposure Experiment at the Oak Ridge National Laboratory utilizes a variety of power systems to generate and deliver a high heat flux plasma onto the surface of material targets. In the experiments described here, a deuterium plasma is produced via a ~100 kW, 13.56 MHz RF helicon source, to which ~20 kW of 28 GHz microwave power is applied. The electron density and temperature profiles are measured using a Thomson scattering (TS) diagnostic, and indicate that the electron density is centrally peaked. In the core of the plasma column, the electron density is higher than themore » cut-off density (~0.9 × 1019 m -3) for the launched mixture of X- and O-mode electron cyclotron heating waves to propagate. TS measurements indicate electron temperature increases from ~5 eV to ~20 eV during 28 GHz power application when the neutral deuterium pressure is reduced below 0.13 Pa (~1 mTorr.).« less

  3. Observations of electron heating during 28 GHz microwave power application in proto-MPEX

    NASA Astrophysics Data System (ADS)

    Biewer, T. M.; Bigelow, T. S.; Caneses, J. F.; Diem, S. J.; Green, D. L.; Kafle, N.; Rapp, J.; Proto-MPEX Team

    2018-02-01

    The Prototype Material Plasma Exposure Experiment at the Oak Ridge National Laboratory utilizes a variety of power systems to generate and deliver a high heat flux plasma onto the surface of material targets. In the experiments described here, a deuterium plasma is produced via a ˜100 kW, 13.56 MHz RF helicon source, to which ˜20 kW of 28 GHz microwave power is applied. The electron density and temperature profiles are measured using a Thomson scattering (TS) diagnostic, and indicate that the electron density is centrally peaked. In the core of the plasma column, the electron density is higher than the cut-off density (˜0.9 × 1019 m-3) for the launched mixture of X- and O-mode electron cyclotron heating waves to propagate. TS measurements indicate electron temperature increases from ˜5 eV to ˜20 eV during 28 GHz power application when the neutral deuterium pressure is reduced below 0.13 Pa (˜1 mTorr.).

  4. Flexible low-power RF nanoelectronics in the GHz regime using CVD MoS2

    NASA Astrophysics Data System (ADS)

    Yogeesh, Maruthi

    Two-dimensional (2D) materials have attracted substantial interest for flexible nanoelectronics due to the overall device mechanical flexibility and thickness scalability for high mechanical performance and low operating power. In this work, we demonstrate the first MoS2 RF transistors on flexible substrates based on CVD-grown monolayers, featuring record GHz cutoff frequency (5.6 GHz) and saturation velocity (~1.8×106 cm/s), which is significantly superior to contemporary organic and metal oxide thin-film transistors. Furthermore, multicycle three-point bending results demonstrated the electrical robustness of our flexible MoS2 transistors after 10,000 cycles of mechanical bending. Additionally, basic RF communication circuit blocks such as amplifier, mixer and wireless AM receiver have been demonstrated. These collective results indicate that MoS2 is an ideal advanced semiconducting material for low-power, RF devices for large-area flexible nanoelectronics and smart nanosystems owing to its unique combination of large bandgap, high saturation velocity and high mechanical strength.

  5. High Power Broadband Millimeter Wave TWTs

    NASA Astrophysics Data System (ADS)

    James, Bill G.

    1998-04-01

    In the early 1980's the requirement for high power broadband millimeter wave sources encouraged the development of microwave vacuum device amplifiers for radar and communication systems. Many government funded programs were implemented for the development of high power broadband millimeter wave amplifiers that would meet the needs of the high power community. The tube design capable of meeting these goals was the slow wave coupled cavity traveling wave device, which had a proven technology base at the lower frequencies (X Band). However scaling this technology to the millimeter frequencies had severe shortcomings in both thermal and manufacturing design. These shortcomings were overcome with the development of the Ladder Circuit technology. In conjunction with the circuit development high power electron beam systems had to be developed for the generation of high rf powers. These beam systems had to be capable of many megawatts of beam power density and high current densities. The cathode technology required to be capable of operating at current densities of 10 amperes per square centimeter at long pulse lengths and high duty cycle. Since the introduction of the Ladder Circuit technology a number of high power broadband millimeter wave amplifiers have been developed and deployed in operating radar and communication systems. Broadband millimeter wave sources have been manufactured in the frequency range from 27 GHz to 100 GHz with power levels ranging from 100 watts CW to 10 kilowatts Peak at W band over a 2 GHz bandwidth. Also a 50 kW peak power and 10 kW average power device at Ka band with 2 GHz bandwidth has been developed. Today the power levels achieved by these devices are nearing the limits of this technology; therefore to gain a significant increase in power at the millimeter wave frequencies, other technologies will have to be considered, particularly fast wave devices. This paper will briefly review the ladder circuit technology and present the designs of

  6. High power microwave components for space communications satellite

    NASA Technical Reports Server (NTRS)

    Jankowski, H.; Geia, A.

    1972-01-01

    Analyzed, developed, and tested were high power microwave components for communications satellites systems. Included were waveguide and flange configurations with venting, a harmonic filter, forward and reverse power monitors, electrical fault sensors, and a diplexer for two channel simultaneous transmission. The assembly of 8.36 GHz components was bench tested, and then operated for 60 hours at 3.5 kW CW in a high vacuum. The diplexer was omitted from this test pending a modification of its end irises. An RF leakage test showed only that care is required at flange junctions; all other components were RF tight. Designs were extrapolated for 12 GHz and 2.64 GHz high power satellite systems.

  7. High efficiency and output power from second- and third-harmonic millimeter-wave InP-TED oscillators at frequencies above 170 GHz

    NASA Astrophysics Data System (ADS)

    Rydberg, Anders

    1990-10-01

    InP TED (transferred electron device) oscillators have been experimentally investigated for frequencies between 170 and 279 GHz. It has been found that output powers of more than 7 and 0.2 mW are possible at 180 and 272 GHz using second- and third-harmonic mode operation, respectively. Conversion efficiencies of more than 13 percent and 0.3 percent between fundamental and second harmonic and fundamental and third harmonic, respectively, have been found. The conversion efficiencies are comparable to GaAs TEDs. The output powers, conversion efficiencies, and tuning ranges (more than 22 percent) are the largest reported for InP TEDs at these frequencies. The output power at third harmonic was sufficient for supplying a superconducting mixer with local oscillator power.

  8. An FDMA system concept for 30/20 GHz high capacity domestic satellite service

    NASA Technical Reports Server (NTRS)

    Berk, G.; Jean, P. N.; Rotholz, E.; White, B. E.

    1982-01-01

    The paper summarizes a feasibility study of a multibeam FDMA satellite system operating in the 30/20 GHz band. The system must accommodate a very high volume of traffic within the restrictions of a 5 kW solar cell array and a 2.5 GHz bandwidth. Multibeam satellite operation reduces the DC power demand and allows reuse of the available bandwidth. Interferences among the beams are brought to acceptable levels by appropriate frequency assignments. A transponder design is presented; it is greatly simplified by the application of a regional concept. System analysis shows that MSK modulation is appropriate for a high-capacity system because it conserves the frequency spectrum. Rain attenuation, a serious problem in this frequency band, is combatted with sufficient power margins and with coding. Link budgets, cost analysis, and weight and power calculations are also discussed. A satellite-routed FDMA system compares favorably in performance and cost with a satellite-switched TDMA system.

  9. Lightning control system using high power microwave FEL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shiho, M.; Watanbe, A.; Kawasaki, S.

    A research project for developing a thunder lightning control system using an induction linac based high power microwave free electron laser (FEL) started at JAERI The system will produce weakly ionized plasma rod in the atmosphere by high power microwaves and control a lightning path, away from , e. g., nuclear power stations and rocket launchers. It has been known that about MW/cm{sup 2} power density is enough for the atmospheric breakdown in the microwave region, and which means high power microwave FEL with GW level output power is feasible for atmospheric breakdown, and accordingly is feasible for thunder lightningmore » control tool with making a conductive plasma channel in the atmosphere. From the microwave attenuation consideration in the atmosphere, FEL of 35GHz(0.13dB/km), 90GHz(0.35dB/km), 140GHz(1.7dB/km), and of 270 GHz(4.5dB/km) are the best candidates for the system. Comparing with other proposed lightning control system using visible or ultraviolet laser, the system using microwave has an advantage that microwave suffers smaller attenuation by rain or snow which always exist in the real atmospheric circumstances when lightning occurs.« less

  10. Waveguide Power Combiner Demonstration for Multiple High Power Millimeter Wave TWTAs

    NASA Technical Reports Server (NTRS)

    Wintucky, Edwin G.; Simons, Rainee N.; Lesny, Gary G.; Glass, Jeffrey L.

    2004-01-01

    NASA is presently developing nuclear reactor technologies, under Project Prometheus, which will provide spacecraft with greatly increased levels of sustained onboard power and thereby dramatically enhance the capability for future deep space exploration. The first mission planned for use of this high power technology is the Jupiter Icy Moons Orbiter (JIMO). In addition to electric propulsion and science, there will also be unprecedented onboard power available for deep space communications. A 32 GHz transmitter with 1 kW of RF output power is being considered to enable the required very high data transmission rates. One approach to achieving the 1 kW RF power, now being investigated at NASA GRC, is the possible power combining of a number of 100-1 50 W TWTs now under development. The work presented here is the results of a proof-of-concept demonstration of the power combining Ka-band waveguide circuit design and test procedure using two Ka- band TWTAs (Varian model VZA6902V3 and Logimetrics model A440/KA-1066), both of which were previously employed in data uplink evaluation terminals at 29.36 GHz for the NASA Advanced Communications Technology Satellite (ACTS) program. The characterization of the individual TWTAs and power combining demonstration were done over a 500 MHz bandwidth from 29.1 to 29.6 GHz to simulate the Deep Space Network (DSN) bandwidth of 3 1.8 to 32.3 GHz. Figures 1-3 show some of the power transfer and gain measurements of the TWTAs using a swept signal generator (Agilent 83640b) for the RF input. The input and output powers were corrected for circuit insertion losses due to the waveguide components. The RF saturated powers of both ACTS TWTAs were on the order of 120 W, which is comparable to the expected output powers of the 32 GHz TWTs. Additional results for the individual TWTAs will be presented (AM/AM, AM/PM conversion and gain compression), some of which were obtained from swept frequency and power measurements using a vector network

  11. Superconducting ECR ion source: From 24-28 GHz SECRAL to 45 GHz fourth generation ECR

    NASA Astrophysics Data System (ADS)

    Zhao, H. W.; Sun, L. T.; Guo, J. W.; Zhang, W. H.; Lu, W.; Wu, W.; Wu, B. M.; Sabbi, G.; Juchno, M.; Hafalia, A.; Ravaioli, E.; Xie, D. Z.

    2018-05-01

    The development of superconducting ECR source with higher magnetic fields and higher microwave frequency is the most straight forward path to achieve higher beam intensity and higher charge state performance. SECRAL, a superconducting third generation ECR ion source, is designed for 24-28 GHz microwave frequency operation with an innovative magnet configuration of sextupole coils located outside the three solenoids. SECRAL at 24 GHz has already produced a number of record beam intensities, such as 40Ar12+ 1.4 emA, 129Xe26+ 1.1 emA, 129Xe30+ 0.36 emA, and 209Bi31+ 0.68 emA. SECRAL-II, an upgraded version of SECRAL, was built successfully in less than 3 years and has recently been commissioned at full power of a 28 GHz gyrotron and three-frequency heating (28 + 45 + 18 GHz). New record beam intensities for highly charged ion production have been achieved, such as 620 eμA 40Ar16+, 15 eμA 40Ar18+, 146 eμA 86Kr28+, 0.5 eμA 86Kr33+, 53 eμA 129Xe38+, and 17 eμA 129Xe42+. Recent beam test results at SECRAL and SECRAL II have demonstrated that the production of more intense highly charged heavy ion beams needs higher microwave power and higher frequency, as the scaling law predicted. A 45 GHz superconducting ECR ion source FECR (a first fourth generation ECR ion source) is being built at IMP. FECR will be the world's first Nb3Sn superconducting-magnet-based ECR ion source with 6.5 T axial mirror field, 3.5 T sextupole field on the plasma chamber inner wall, and 20 kW at a 45 GHz microwave coupling system. This paper will focus on SECRAL performance studies at 24-28 GHz and technical design of 45 GHz FECR, which demonstrates a technical path for highly charged ion beam production from 24 to 28 GHz SECRAL to 45 GHz FECR.

  12. Texture-enhanced Al-Cu electrodes on ultrathin Ti buffer layers for high-power durable 2.6 GHz SAW filters

    NASA Astrophysics Data System (ADS)

    Fu, Sulei; Wang, Weibiao; Xiao, Li; Lu, Zengtian; Li, Qi; Song, Cheng; Zeng, Fei; Pan, Feng

    2018-04-01

    Achieving high resistance to acoustomigration and electromigration in the electrodes used in high-power and high-frequency surface acoustic wave (SAW) filters is important to mobile communications development. In this study, the effects of the Ti buffer layers on the textures and acoustomigration and electromigration resistances of the Al-Cu electrodes were studied comprehensively. The results demonstrate that both power durability and electromigration lifetime are positively correlated with the Al-Cu electrode texture quality. Ultrathin (˜2 nm) Ti can lead to the strongest Al-Cu (111) textured electrodes, with a full width at half maximum of the rocking curve of 2.09°. This represents a remarkable enhancement of the power durability of high-frequency 2.6 GHz SAW filters from 29 dBm to 35 dBm. It also produces lifetime almost 7 times longer than those of electrodes without Ti buffer layers in electromigration tests. X-ray diffraction and transmission electron microscopy analyses revealed that these improved acoustomigration and electromigration resistances can be attributed primarily to the reductions in overall and large-angle grain boundaries in the highly Al-Cu (111) textured electrodes. Furthermore, the growth mechanism of highly Al-Cu texture films is discussed in terms of surface-interface energy balance.

  13. Ku-band high efficiency GaAs MMIC power amplifiers

    NASA Technical Reports Server (NTRS)

    Tserng, H. Q.; Witkowski, L. C.; Wurtele, M.; Saunier, Paul

    1988-01-01

    The development of Ku-band high efficiency GaAs MMIC power amplifiers is examined. Three amplifier modules operating over the 13 to 15 GHz frequency range are to be developed. The first MMIC is a 1 W variable power amplifier (VPA) with 35 percent efficiency. On-chip digital gain control is to be provided. The second MMIC is a medium power amplifier (MPA) with an output power goal of 1 W and 40 percent power-added efficiency. The third MMIC is a high power amplifier (HPA) with 4 W output power goal and 40 percent power-added efficiency. An output power of 0.36 W/mm with 49 percent efficiency was obtained on an ion implanted single gate MESFET at 15 GHz. On a dual gate MESFET, an output power of 0.42 W/mm with 27 percent efficiency was obtained. A mask set was designed that includes single stage, two stage, and three stage single gate amplifiers. A single stage 600 micron amplifier produced 0.4 W/mm output power with 40 percent efficiency at 14 GHz. A four stage dual gate amplifier generated 500 mW of output power with 20 dB gain at 17 GHz. A four-bit digital-to-analog converter was designed and fabricated which has an output swing of -3 V to +/- 1 V.

  14. Investigation on transmission and reflection characteristics of plasma array to 6 GHz high-power microwave

    NASA Astrophysics Data System (ADS)

    Yang, Liu; Yang, Zhongcun; Wan, Jianing; Liu, Hao

    2016-10-01

    For the safety of electronic equipment, a double-layer barrier of cylindrical plasma array was designed, and its protective performance to high-power microwave (HPM) were analyzed and the protective performance experiment was conducted. Combining the density distribution characteristic of the discharge plasma, the shielding effectiveness of the double-layer plasma on 6GHz HPM pulse was studied. The experiment results indicate that the protective effectiveness of two layers plasma array is better than that of one layer. Two layers plasma array can make the peak electric field of transmission waveform less than interference threshold of electronic equipment to achieve better protection effectiveness. Transmission attenuation of one layer and two layers plasma array to HPM can reach -6.6066dB and -24.9357dB. The results also show that for the existence of multiple reflection, even the plasma electron density is not high enough, it can realize a strong attenuation. The experiment results in this paper are of great significance in protecting against HPM and electromagnetic pulse.

  15. A smart repetitive-rate wideband high power microwave source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Wei; Zhang, Jun; Qian, Bao-liang

    2016-01-15

    A smart repetitive-rate wideband High Power Microwave (HPM) source based on the A6 Magnetron with Diffraction Output is described in this paper. The length of the HPM source is 30 cm and its weight is 35 kg. Computer simulations show that the source can produce microwave with central frequency of 1.91 GHz and bandwidth of about 11%. Experimental measurements show that the output microwave power from the source reaches in maximum 110 MW when the input electric power from the pulsed driver is ∼500 MW, which gives the power conversion efficiency 22%. Central frequency of the output HPM in the experiment is 1.94 GHz withmore » the bandwidth ranging from 1.82 GHz to 2.02 GHz. The jitter of the output HPM power is lower than 3 dB when the source operates in the repetition mode with 50 Hz rate.« less

  16. A high-efficiency tunable TEM-TE11 mode converter for high-power microwave applications

    NASA Astrophysics Data System (ADS)

    Wang, Xiao-Yu; Fan, Yu-Wei; Shu, Ting; Yuan, Cheng-wei; Zhang, Qiang

    2017-03-01

    The tunable high power microwave source (HPM's) is considered to be an important research direction. However, the corresponding mode converter has been researched little. In this paper, a high-efficiency tunable mode converter (HETMC) is investigated for high-power microwave applications. The HETMC that is consisted of coaxial inner and outer conductors, with four metal plates arranged radially, at 90° in the coaxial gap, and matching rods can transform coaxial transverse electromagnetic (TEM) mode to TE11 coaxial waveguide mode. The results show that adjusting the length of the downstream plate, and the distance between the rods installed upstream and the closest edges of the plates, can improve the conversion efficiency and bandwidth remarkably. Moreover, when the frequency ranges from 1.63 GHz to 2.12 GHz, the conversion efficiency is above 95% between 1.63 GHz and 2.12 GHz with a bandwidth of 26.1%. Besides, the unwished reflection and transmission can be eliminated effectively in the HETMC.

  17. Concentric Parallel Combining Balun for Millimeter-Wave Power Amplifier in Low-Power CMOS with High-Power Density

    NASA Astrophysics Data System (ADS)

    Han, Jiang-An; Kong, Zhi-Hui; Ma, Kaixue; Yeo, Kiat Seng; Lim, Wei Meng

    2016-11-01

    This paper presents a novel balun for a millimeter-wave power amplifier (PA) design to achieve high-power density in a 65-nm low-power (LP) CMOS process. By using a concentric winding technique, the proposed parallel combining balun with compact size accomplishes power combining and unbalance-balance conversion concurrently. For calculating its power combination efficiency in the condition of various amplitude and phase wave components, a method basing on S-parameters is derived. Based on the proposed parallel combining balun, a fabricated 60-GHz industrial, scientific, and medical (ISM) band PA with single-ended I/O achieves an 18.9-dB gain and an 8.8-dBm output power at 1-dB compression and 14.3-dBm saturated output power ( P sat) at 62 GHz. This PA occupying only a 0.10-mm2 core area has demonstrated a high-power density of 269.15 mW/mm2 in 65 nm LP CMOS.

  18. 80-GHz MMIC HEMT Voltage-Controlled Oscillator

    NASA Technical Reports Server (NTRS)

    Samoska, Lorene; Radisic, Vesna; Micovic, Miro; Hu, Ming; Janke, Paul; Ngo, Catherine; Nguyen, Loi

    2003-01-01

    A voltage-controlled oscillator (VCO) that operates in the frequency range from 77.5 to 83.5 GHz has been constructed in the form of a monolithic microwave integrated circuit (MMIC) that includes high-electron-mobility transistors (HEMTs). This circuit is a prototype of electronically tunable signal sources in the 75-to-110-GHz range, needed for communication, imaging, and automotive radar applications, among others. This oscillator (see Figure 1) includes two AlInAs/GaInAs/InP HEMTs. One HEMT serves mainly as an oscillator gain element. The other HEMT serves mainly as a varactor for controlling the frequency: the frequency-control element is its gate-to-source capacitance, which is varied by changing its gate supply voltage. The gain HEMT is biased for class-A operation (meaning that current is conducted throughout the oscillation cycle). Grounded coplanar waveguides are used as impedance-matching transmission lines, the input and output matching being chosen to sustain oscillation and maximize output power. Air bridges are placed at discontinuities to suppress undesired slot electromagnetic modes. A high density of vias is necessary for suppressing a parallel-plate electromagnetic mode that is undesired because it can propagate energy into the MMIC substrate. Previous attempts at constructing HEMT-based oscillators yielded circuits with relatively low levels of output power and narrow tuning ranges. For example, one HEMT VCO reported in the literature had an output power of 7 dBm (.5 mW) and a tuning range 2-GHz wide centered approximately at a nominal frequency of 77 GHz. In contrast, as shown in Figure 2, the present MMIC HEMT VCO puts out a power of 12.5 dBm (.18 mW) or more over the 6-GHz-wide frequency range from 77.5 to 83.5 GHz

  19. High Efficiency Power Combining of Ka-Band TWTs for High Data Rate Communications

    NASA Technical Reports Server (NTRS)

    Wintucky, E. G.; Simons, R. N.; Vaden, K. R.; Lesny, G. G.; Glass, J. L.

    2006-01-01

    Future NASA deep space exploration missions are expected in some cases to require telecommunication systems capable of operating at very high data rates (potentially 1 Gbps or more) for the transmission back to Earth of large volumes of scientific data, which means high frequency transmitters with large bandwidth. Among the Ka band frequencies of interest are the present 500 MHz Deep Space Network (DSN) band of 31.8 to 32.3 GHz and a broader band at 37-38 GHz allocated for space science [1]. The large distances and use of practical antenna sizes dictate the need for high transmitter power of up to 1 kW or more. High electrical efficiency is also a requirement. The approach investigated by NASA GRC is a novel wave guide power combiner architecture based on a hybrid magic-T junction for combining the power output from multiple TWTs [1,2]. This architecture was successfully demonstrated and is capable of both high efficiency (90-95%, depending on frequency) and high data rate transmission (up to 622 Mbps) in a two-way power combiner circuit for two different pairs of Ka band TWTs at two different frequency bands. One pair of TWTs, tested over a frequency range of 29.1 to 29.6 GHz, consisted of two 110-115W TWTs previously used in uplink data transmission evaluation terminals in the NASA Advanced Communications Technology Satellite (ACTS) program [1,2]. The second pair was two 100W TWTs (Boeing 999H) designed for high efficiency operation (greater than 55%) over the DSN frequency band of 31.8 to 32.3 GHz [3]. The presentation will provide a qualitative description of the wave guide circuit, results for power combining and data transmission measurements, and results of computer modeling of the magic-T and alternative hybrid junctions for improvements in efficiency and power handling capability. The power combiner results presented here are relevant not only to NASA deep space exploration missions, but also to other U.S. Government agency programs.

  20. High Power High Efficiency Ka-Band Power Combiners for Solid-State Devices

    NASA Technical Reports Server (NTRS)

    Freeman, Jon C.; Wintucky, Edwin G.; Chevalier, Christine T.

    2006-01-01

    Wide-band power combining units for Ka-band are simulated for use as MMIC amplifier applications. Short-slot couplers as well as magic-tees are the basic elements for the combiners. Wide bandwidth (5 GHz) and low insertion (approx.0.2 dB) and high combining efficiencies (approx.90 percent) are obtained.

  1. Development of a High-Power Wideband Amplifier on the Basis of a Free-Electron Maser Having an Operating Frequency Near 30 GHz: Modeling and Results of the Initial Experiments

    NASA Astrophysics Data System (ADS)

    Bandurkin, I. V.; Donets, D. E.; Kaminsky, A. K.; Kuzikov, S. V.; Perel'shteyn, E. A.; Peskov, N. Yu.; Savilov, A. V.; Sedykh, S. N.

    2017-01-01

    We develop a high-power wideband amplifier based on a free-electron maser for particle acceleration, which will be operated in the 30 GHz frequency band, on the basis of the LIU-3000 linear induction accelerator forming an electron beam with an electron energy of 0.8 MeV, a current of 250 A, and a pulse duration of 200 ns. As the operating regime, we chose the regime of grazing of dispersion curves, since, according to the modeling performed, it allows one to ensure an instantaneous amplification band of about 5-7% in an undulator with regular winding for an output radiation power at a level of 20 MW and a gain of 30-35 dB. The results of the first experiments studying this FEM-based scheme are presented, in which the specified power level is achieved in the range around 30 GHz, and fast tuning of ±0.5 GHz in the band of variations in the frequency of the master magnetron is demonstrated. Modeling shows that the use of the non-resonance trapping/braking regime, which is realized in an undulator with profiled parameters, allows one to expect an increase in the radiation power of up to 35-40 MW with simultaneous widening of the amplification band up to 30% under the conditions of the LIU-3000 experiments.

  2. Recessed Slant Gate AlGaN/GaN High Electron Mobility Transistors with 20.9 W/mm at 10 GHz

    NASA Astrophysics Data System (ADS)

    Pei, Yi; Chu, Rongming; Fichtenbaum, Nicholas A.; Chen, Zhen; Brown, David; Shen, Likun; Keller, Stacia; DenBaars, Steven P.; Mishra, Umesh K.

    2007-12-01

    A recessed slant gate processing has been used in AlGaN/GaN high electron mobility transistors (HEMTs) to mitigate the electric field, minimize the dispersion and increase the breakdown voltage. More than one order of magnitude of decrease in gate leakage has been observed by recessing the slant gate. For a 0.65 μm gate-length device, an extrinsic fT of 18 GHz and extrinsic fMAX of 52 GHz at a drain bias of 25 V were achieved. At 10 GHz, a state-of-the-art power density of 20.9 W/mm, with a power-added efficiency (PAE) of 40% at a drain bias of 83 V, was demonstrated.

  3. A 32-GHz solid-state power amplifier for deep space communications

    NASA Technical Reports Server (NTRS)

    Wamhof, P. D.; Rascoe, D. L.; Lee, K. A.; Lansing, F. S.

    1994-01-01

    A 1.5-W solid-state power amplifier (SSPA) has been demonstrated as part of an effort to develop and evaluate state-of-the-art transmitter and receiver components at 32 and 35 GHz for future deep space missions. Output power and efficiency measurements for a monolithic millimeter-wave integrated circuit (MMIC)-based SSPA are reported. Technical design details for the various modules and a thermal analysis are discussed, as well as future plans.

  4. Remote powering platform for implantable sensor systems at 2.45 GHz.

    PubMed

    Kazanc, Onur; Yilmaz, Gurkan; Maloberti, Franco; Dehollain, Catherine

    2014-01-01

    Far-field remotely powered sensor systems enable long distance operation for low-power sensor systems. In this work, we demonstrate a remote powering platform with a miniaturized antenna and remote powering base station operating at 2.45 GHz. The rectenna, which is the energy receiving and conversion element of the sensor system, is designed and measured. The measurements for the tag are performed within 15 cm distance from the remote powering base station. The realized gain of the tag antenna is measured as -3.3 dB, which is 0.5 dB close to the simulations, where simulated realized gain is -2.8 dB.

  5. A High Efficiency Multiple-Anode 260-340 GHz Frequency Tripler

    NASA Technical Reports Server (NTRS)

    Maestrini, Alain; Tripon-Canseliet, Charlotte; Ward, John S.; Gill, John J.; Mehdi, Imran

    2006-01-01

    We report on the fabrication at the Jet Propulsion Laboratory of a fixed-tuned split-block waveguide balanced frequency tripler working in the 260-340 GHz band. This tripler will be the first stage of a x3x3x3 multiplier chain to 2.7 THz (the last stages of which are being fabricated at JPL) and is therefore optimized for high power operation. The multiplier features six GaAs Schottky planar diodes in a balanced configuration integrated on a GaAs membrane. Special attention was put on splitting the input power as evenly as possible among the diodes in order to ensure that no diode is overdriven. Preliminary RF tests indicate that the multiplier covers the expected bandwidth and that the efficiency is in the range 1.5-7.5 % with 100 mW of input power.

  6. Submillimeter sources for radiometry using high power Indium Phosphide Gunn diode oscillators

    NASA Technical Reports Server (NTRS)

    Deo, Naresh C.

    1990-01-01

    A study aimed at developing high frequency millimeter wave and submillimeter wave local oscillator sources in the 60-600 GHz range was conducted. Sources involved both fundamental and harmonic-extraction type Indium Phosphide Gunn diode oscillators as well as varactor multipliers. In particular, a high power balanced-doubler using varactor diodes was developed for 166 GHz. It is capable of handling 100 mW input power, and typically produced 25 mW output power. A high frequency tripler operating at 500 GHz output frequency was also developed and cascaded with the balanced-doubler. A dual-diode InP Gunn diode combiner was used to pump this cascaded multiplier to produce on the order of 0.5 mW at 500 GHz. In addition, considerable development and characterization work on InP Gunn diode oscillators was carried out. Design data and operating characteristics were documented for a very wide range of oscillators. The reliability of InP devices was examined, and packaging techniques to enhance the performance were analyzed. A theoretical study of a new class of high power multipliers was conducted for future applications. The sources developed here find many commercial applications for radio astronomy and remote sensing.

  7. Conceptual definition of a high voltage power supply test facility

    NASA Technical Reports Server (NTRS)

    Biess, John J.; Chu, Teh-Ming; Stevens, N. John

    1989-01-01

    NASA Lewis Research Center is presently developing a 60 GHz traveling wave tube for satellite cross-link communications. The operating voltage for this new tube is - 20 kV. There is concern about the high voltage insulation system and NASA is planning a space station high voltage experiment that will demonstrate both the 60 GHz communications and high voltage electronics technology. The experiment interfaces, requirements, conceptual design, technology issues and safety issues are determined. A block diagram of the high voltage power supply test facility was generated. It includes the high voltage power supply, the 60 GHz traveling wave tube, the communications package, the antenna package, a high voltage diagnostics package and a command and data processor system. The interfaces with the space station and the attached payload accommodations equipment were determined. A brief description of the different subsystems and a discussion of the technology development needs are presented.

  8. MMIC DHBT Common-Base Amplifier for 172 GHz

    NASA Technical Reports Server (NTRS)

    Paidi, Vamsi; Griffith, Zack; Wei, Yun; Dahlstrom, Mttias; Urteaga, Miguel; Rodwell, Mark; Samoska, Lorene; Fung, King Man; Schlecht, Erich

    2006-01-01

    Figure 1 shows a single-stage monolithic microwave integrated circuit (MMIC) power amplifier in which the gain element is a double-heterojunction bipolar transistor (DHBT) connected in common-base configuration. This amplifier, which has been demonstrated to function well at a frequency of 172 GHz, is part of a continuing effort to develop compact, efficient amplifiers for scientific instrumentation, wide-band communication systems, and radar systems that will operate at frequencies up to and beyond 180 GHz. The transistor is fabricated from a layered structure formed by molecular beam epitaxy in the InP/InGaAs material system. A highly doped InGaAs base layer and a collector layer are fabricated from the layered structure in a triple mesa process. The transistor includes two separate emitter fingers, each having dimensions of 0.8 by 12 m. The common-base configuration was chosen for its high maximum stable gain in the frequency band of interest. The input-matching network is designed for high bandwidth. The output of the transistor is matched to a load line for maximum saturated output power under large-signal conditions, rather than being matched for maximum gain under small-signal conditions. In a test at a frequency of 172 GHz, the amplifier was found to generate an output power of 7.5 mW, with approximately 5 dB of large-signal gain (see Figure 2). Moreover, the amplifier exhibited a peak small-signal gain of 7 dB at a frequency of 176 GHz. This performance of this MMIC single-stage amplifier containing only a single transistor represents a significant advance in the state of the art, in that it rivals the 170-GHz performance of a prior MMIC three-stage, four-transistor amplifier. [The prior amplifier was reported in "MMIC HEMT Power Amplifier for 140 to 170 GHz" (NPO-30127), NASA Tech Briefs, Vol. 27, No. 11 (November 2003), page 49.] This amplifier is the first heterojunction- bipolar-transistor (HBT) amplifier built for medium power operation in this

  9. High power RF coaxial switch

    NASA Technical Reports Server (NTRS)

    Caro, E. R. (Inventor)

    1980-01-01

    A coaxial switch capable of operating in a vacuum with high RF power in the 1.2 GHz range without multipactor breakdown, and without relying on pressurization with an inert gas is described. The RF carrying conductors of the switch are surrounded with a high grade solid dielectric, thus eliminating any gaps in which electrons can accelerate.

  10. Sub-GHz-resolution C-band Nyquist-filtering interleaver on a high-index-contrast photonic integrated circuit.

    PubMed

    Zhuang, Leimeng; Zhu, Chen; Corcoran, Bill; Burla, Maurizio; Roeloffzen, Chris G H; Leinse, Arne; Schröder, Jochen; Lowery, Arthur J

    2016-03-21

    Modern optical communications rely on high-resolution, high-bandwidth filtering to maximize the data-carrying capacity of fiber-optic networks. Such filtering typically requires high-speed, power-hungry digital processes in the electrical domain. Passive optical filters currently provide high bandwidths with low power consumption, but at the expense of resolution. Here, we present a passive filter chip that functions as an optical Nyquist-filtering interleaver featuring sub-GHz resolution and a near-rectangular passband with 8% roll-off. This performance is highly promising for high-spectral-efficiency Nyquist wavelength division multiplexed (N-WDM) optical super-channels. The chip provides a simple two-ring-resonator-assisted Mach-Zehnder interferometer, which has a sub-cm2 footprint owing to the high-index-contrast Si3N4/SiO2 waveguide, while manifests low wavelength-dependency enabling C-band (> 4 THz) coverage with more than 160 effective free spectral ranges of 25 GHz. This device is anticipated to be a critical building block for spectrally-efficient, chip-scale transceivers and ROADMs for N-WDM super-channels in next-generation optical communication networks.

  11. Use of an untuned cavity for absolute power measurements of the harmonics above 100 GHz from an IMPATT oscillator

    NASA Astrophysics Data System (ADS)

    Llewellyn-Jones, D. T.; Knight, R. J.; Gebbie, H. A.

    1980-07-01

    A new technique of measuring absolute power exploiting an untuned cavity and Fourier spectroscopy has been used to examine the power spectrum of the harmonics and other overtones produced by a 95 GHz IMPATT oscillator. The conditions which favor the production of a rich harmonic spectrum are not those which maximize the fundamental power. Under some conditions of mismatch at the fundamental frequency it is possible to produce over 200 microW of harmonic power in the 100-200 GHz region comparable with the fundamental power from the oscillator.

  12. High power broadband millimeter wave TWTs

    NASA Astrophysics Data System (ADS)

    James, Bill G.

    1999-05-01

    In the early 1980's the requirement for high power broadband millimeter wave sources encouraged the development of microwave vacuum device amplifiers for radar and communication systems. Many government funded programs were implemented for the development of high power broadband millimeter wave amplifiers that would meet the needs of the high power community. The tube design capable of meeting these goals was the slow wave coupled cavity traveling wave device, which had a proven technology base at the lower frequencies (X Band). However scaling this technology to the millimeter frequencies had severe shortcomings in both thermal and manufacturing design. These shortcomings were overcome with the development of the Ladder Circuit technology. In conjunction with the circuit development high power electron beam systems had to be developed for the generation of high rf powers. These beam systems had to be capable of many megawatts of beam power density and high current densities. The cathode technology required to be capable of operating at current densities of 10 amperes per square centimeter at long pulse lengths and high duty cycle. Since the introduction of the Ladder Circuit technology a number of high power broadband millimeter wave amplifiers have been developed using this technology, and have been deployed in operating radar and communication systems. Broadband millimeter wave sources have been manufactured in the frequency range from 27 GHz to 100 GHz with power levels ranging from 100 watts to 50 kilowatts. Today the power levels achieved by these devices are nearing the limits of this technology; therefore to gain a significant increase in power at the millimeter wave frequencies other technologies will have to be considered particularly fast wave devices. This paper will briefly review the ladder circuit technology and present the designs of a number of broadband high power devices developed at Ka and W band. The discussion will include the beam systems

  13. A 250 GHz Gyrotron with a 3 GHz Tuning Bandwidth for Dynamic Nuclear Polarization

    PubMed Central

    Barnes, Alexander B.; Nanni, Emilio A.; Herzfeld, Judith; Griffin, Robert G.; Temkin, Richard J.

    2012-01-01

    We describe the design and implementation of a novel tunable 250 GHz gyrotron oscillator with >10 W output power over most of a 3 GHz band and >35 W peak power. The tuning bandwidth and power are sufficient to generate a >1 MHz nutation frequency across the entire nitroxide EPR lineshape for cross effect DNP, as well as to excite solid effect transitions utilizing other radicals, without the need for sweeping the NMR magnetic field. Substantially improved tunability is achieved by implementing a long (23 mm) interaction cavity that can excite higher order axial modes by changing either the magnetic field of the gyrotron or the cathode potential. This interaction cavity excites the rotating TE5,2,q mode, and an internal mode converter outputs a high-quality microwave beam with >94% Gaussian content. The gyrotron was integrated into a DNP spectrometer, resulting in a measured DNP enhancement of 54 on the membrane protein bacteriorhodopsin. PMID:22743211

  14. Calibration of a 35-GHz Airborne Cloud Radar: Lessons Learned and Intercomparison with a 94-GHz Airborne Cloud Radar

    NASA Astrophysics Data System (ADS)

    Ewald, Florian; Gross, Silke; Hagen, Martin; Hirsch, Lutz; Delanoë, Julien

    2017-04-01

    Clouds play an important role in the climate system since they have a profound influence on Earth's radiation budget and the water cycle. Uncertainties associated with their spatial characteristics as well as their microphysics still introduce large uncertainties in climate change predictions. In recent years, our understanding of the inner workings of clouds has been greatly advanced by the deployment of cloud profiling microwave radars from ground as well as from space like CloudSat or the upcoming EarthCARE satellite mission. In order to validate and assess the limitations of these spaceborne missions, a well-calibrated, airborne cloud radar with known sensitivity to clouds is indispensable. Within this context, the German research aircraft HALO was equipped with the high-power (30kW peak power) cloud radar operating at 35 GHz and a high spectral resolution lidar (HSRL) system at 532 nm. During a number of flight experiments over Europe and over the tropical and extra-tropical North-Atlantic, several radar calibration efforts have been made using the ocean surface backscatter. Moreover, CloudSat underflights have been conducted to compare the radar reflectivity and measurement sensitivity between the air- and spaceborne instruments. Additionally, the influence of different radar wavelengths was explored with joint flights of HALO and the French Falcon 20 aircraft, which was equipped with the RASTA cloud radar at 94 GHz and a HSRL at 355 nm. In this presentation, we will give an overview of lessons learned from different calibration strategies using the ocean surface backscatter. Additional measurements of signal linearity and signal saturation will complement this characterization. Furthermore, we will focus on the coordinated airborne measurements regarding the different sensitivity for clouds at 35 GHz and 94 GHz. By using the highly sensitive lidar signals, we show if the high-power cloud radar at 35 GHz can be used to validate spaceborne and airborne

  15. Review on high current 2.45 GHz electron cyclotron resonance sources (invited).

    PubMed

    Gammino, S; Celona, L; Ciavola, G; Maimone, F; Mascali, D

    2010-02-01

    The suitable source for the production of intense beams for high power accelerators must obey to the request of high brightness, stability, and reliability. The 2.45 GHz off-resonance microwave discharge sources are the ideal device to generate the requested beams, as they produce multimilliampere beams of protons, deuterons, and monocharged ions, remaining stable for several weeks without maintenance. A description of different technical designs will be given, analyzing their strength, and weakness, with regard to the extraction system and low energy beam transport line, as the presence of beam halo is detrimental for the accelerator.

  16. Theoretical analysis and Vsim simulation of a low-voltage high-efficiency 250 GHz gyrotron

    NASA Astrophysics Data System (ADS)

    An, Chenxiang; Zhang, Dian; Zhang, Jun; Zhong, Huihuang

    2018-02-01

    Low-voltage, high-frequency gyrotrons with hundreds of watts of power are useful in radar, magnetic resonance spectroscopy and plasma diagnostic applications. In this paper, a 10 kV, 478 W, 250 GHz gyrotron with an efficiency of nearly 40% and a pitch ratio of 1.5 was designed through linear and nonlinear numerical analyses and Vsim particle-in-cell (PIC) simulation. Vsim is a highly efficient parallel PIC code, but it has seldom been used to carry out electron beam wave interaction simulations of gyro-devices. The setting up of the parameters required for the Vsim simulations of the gyrotron is presented. The results of Vsim simulations agree well with that of nonlinear numerical calculation. The commercial software Vsim7.2 completed the 3D gyrotron simulation in 80 h using a 20 core, 2.2 GHz personal computer with 256 GBytes of memory.

  17. A study of 60 GHz intersatellite link applications

    NASA Technical Reports Server (NTRS)

    Anzic, G.; Connolly, D. J.; Haugland, E. J.; Kosmahl, H. G.; Chitwood, J. S.

    1983-01-01

    Applications of intersatellite links operating at 60 GHz are reviewed. Likely scenarios, ranging from transmission of moderate and high data rates over long distances to low data rates over short distances are examined. A limited parametric tradeoff is performed with system variables such as radiofrequency power, receiver noise temperature, link distance, data rate, and antenna size. Present status is discussed and projections are given for both electron tube and solid state transmitter technologies. Monolithic transmit and receive module technology, already under development at 20 to 30 GHz, is reviewed and its extension to 60 GHz, and possible applicability is discussed.

  18. A study of 60 GHz intersatellite link applications

    NASA Astrophysics Data System (ADS)

    Anzic, G.; Connolly, D. J.; Haugland, E. J.; Kosmahl, H. G.; Chitwood, J. S.

    Applications of intersatellite links operating at 60 GHz are reviewed. Likely scenarios, ranging from transmission of moderate and high data rates over long distances to low data rates over short distances are examined. A limited parametric tradeoff is performed with system variables such as radiofrequency power, receiver noise temperature, link distance, data rate, and antenna size. Present status is discussed and projections are given for both electron tube and solid state transmitter technologies. Monolithic transmit and receive module technology, already under development at 20 to 30 GHz, is reviewed and its extension to 60 GHz, and possible applicability is discussed.

  19. Multiscale Thermo-Mechanical Design and Analysis of High Frequency and High Power Vacuum Electron Devices

    NASA Astrophysics Data System (ADS)

    Gamzina, Diana

    Diana Gamzina March 2016 Mechanical and Aerospace Engineering Multiscale Thermo-Mechanical Design and Analysis of High Frequency and High Power Vacuum Electron Devices Abstract A methodology for performing thermo-mechanical design and analysis of high frequency and high average power vacuum electron devices is presented. This methodology results in a "first-pass" engineering design directly ready for manufacturing. The methodology includes establishment of thermal and mechanical boundary conditions, evaluation of convective film heat transfer coefficients, identification of material options, evaluation of temperature and stress field distributions, assessment of microscale effects on the stress state of the material, and fatigue analysis. The feature size of vacuum electron devices operating in the high frequency regime of 100 GHz to 1 THz is comparable to the microstructure of the materials employed for their fabrication. As a result, the thermo-mechanical performance of a device is affected by the local material microstructure. Such multiscale effects on the stress state are considered in the range of scales from about 10 microns up to a few millimeters. The design and analysis methodology is demonstrated on three separate microwave devices: a 95 GHz 10 kW cw sheet beam klystron, a 263 GHz 50 W long pulse wide-bandwidth sheet beam travelling wave tube, and a 346 GHz 1 W cw backward wave oscillator.

  20. AlGaInN laser diode technology for GHz high-speed visible light communication through plastic optical fiber and water

    NASA Astrophysics Data System (ADS)

    Najda, Stephen P.; Perlin, Piotr; Suski, Tadek; Marona, Lucja; Leszczyński, Mike; Wisniewski, Przemek; Czernecki, Robert; Kucharski, Robert; Targowski, Grzegorz; Watson, Malcolm A.; White, Henry; Watson, Scott; Kelly, Antony E.

    2016-02-01

    AlGaInN ridge waveguide laser diodes are fabricated to achieve single-mode operation with optical powers up to 100 mW at ˜420 nm for visible free-space, underwater, and plastic optical fiber communication. We report high-frequency operation of AlGaInN laser diodes with data transmission up to 2.5 GHz for free-space and underwater communication and up to 1.38 GHz through 10 m of plastic optical fiber.

  1. Continuous-Wave Operation of a 460-GHz Second Harmonic Gyrotron Oscillator

    PubMed Central

    Hornstein, Melissa K.; Bajaj, Vikram S.; Griffin, Robert G.; Temkin, Richard J.

    2007-01-01

    We report the regulated continuous-wave (CW) operation of a second harmonic gyrotron oscillator at output power levels of over 8 W (12.4 kV and 135 mA beam voltage and current) in the TE0,6,1 mode near 460 GHz. The gyrotron also operates in the second harmonic TE2,6,1 mode at 456 GHz and in the TE2,3,1 fundamental mode at 233 GHz. CW operation was demonstrated for a one-hour period in the TE0,6,1 mode with better than 1% power stability, where the power was regulated using feedback control. Nonlinear simulations of the gyrotron operation agree with the experimentally measured output power and radio-frequency (RF) efficiency when cavity ohmic losses are included in the analysis. The output radiation pattern was measured using a pyroelectric camera and is highly Gaussian, with an ellipticity of 4%. The 460-GHz gyrotron will serve as a millimeter-wave source for sensitivity-enhanced nuclear magnetic resonance (dynamic nuclear polarization) experiments at a magnetic field of 16.4 T. PMID:17710187

  2. High power, high frequency helix TWT's

    NASA Astrophysics Data System (ADS)

    Sloley, H. J.; Willard, J.; Paatz, S. R.; Keat, M. J.

    The design and performance characteristics of a 34-GHz pulse tube capable of 75 W peak power output at 30 percent duty cycle and a broadband CW tube are presented. Particular attention is given to the engineering problems encountered during the development of the tubes, including the suppression of backward wave oscillation, the design of electron guns for small-diameter high-current beams, and the thermal capability of small helix structures. The discussion also covers the effects of various design parameters and choice of engineering materials on the ultimate practical limit of power and gain at the operating frequencies. Measurements are presented for advanced experimental tubes.

  3. RF-MEMS for future mobile applications: experimental verification of a reconfigurable 8-bit power attenuator up to 110 GHz

    NASA Astrophysics Data System (ADS)

    Iannacci, J.; Tschoban, C.

    2017-04-01

    RF-MEMS technology is proposed as a key enabling solution for realising the high-performance and highly reconfigurable passive components that future communication standards will demand. In this work, we present, test and discuss a novel design concept for an 8-bit reconfigurable power attenuator, manufactured using the RF-MEMS technology available at the CMM-FBK, in Italy. The device features electrostatically controlled MEMS ohmic switches in order to select/deselect the resistive loads (both in series and shunt configuration) that attenuate the RF signal, and comprises eight cascaded stages (i.e. 8-bit), thus implementing 256 different network configurations. The fabricated samples are measured (S-parameters) from 10 MHz to 110 GHz in a wide range of different configurations, and modelled/simulated with Ansys HFSS. The device exhibits attenuation levels (S21) in the range from  -10 dB to  -60 dB, up to 110 GHz. In particular, S21 shows flatness from 15 dB down to 3-5 dB and from 10 MHz to 50 GHz, as well as fewer linear traces up to 110 GHz. A comprehensive discussion is developed regarding the voltage standing wave ratio, which is employed as a quality indicator for the attenuation levels. The margins of improvement at design level which are needed to overcome the limitations of the presented RF-MEMS device are also discussed.

  4. The 20 GHz spacecraft IMPATT solid state transmitter

    NASA Technical Reports Server (NTRS)

    Best, T.; Ngan, Y. C.

    1986-01-01

    The engineering development of a solid-state transmitter amplifier operating in the 20-GHz frequency range is described. This effort involved a multitude of disciplines including IMPATT device development, circulator design, multiple-diode circuit design, and amplifier integration and test. The objective was to develop a transmitter amplifier demonstrating the feasibility of providing an efficient, reliable, lightweight solid-state transmitter to be flown on a 30 to 20 GHz communication demonstration satellite. The work was done under contract from NASA/Lewis Research Center for a period of three years. The result was the development of a GaAs IMPACT diode amplifier capable of an 11-W CW output power and a 2-dB bandwidth of 300 MHz. GaAs IMPATT diodes incorporating diamond heatsink and double-Read doping profile capable of 5.3-W CW oscillator output power and 15.5% efficiency were developed. Up to 19% efficiency was also observed for an output power level of 4.4 W. High performance circulators with a 0.2 dB inserting loss and bandwidth of 5 GHz have also been developed. These represent a significant advance in both device and power combiner circuit technologies in K-band frequencies.

  5. NASA developments in solid state power amplifiers

    NASA Technical Reports Server (NTRS)

    Leonard, Regis F.

    1990-01-01

    Over the last ten years, NASA has undertaken an extensive program aimed at development of solid state power amplifiers for space applications. Historically, the program may be divided into three phases. The first efforts were carried out in support of the advanced communications technology satellite (ACTS) program, which is developing an experimental version of a Ka-band commercial communications system. These first amplifiers attempted to use hybrid technology. The second phase was still targeted at ACTS frequencies, but concentrated on monolithic implementations, while the current, third phase, is a monolithic effort that focusses on frequencies appropriate for other NASA programs and stresses amplifier efficiency. The topics covered include: (1) 20 GHz hybrid amplifiers; (2) 20 GHz monolithic MESFET power amplifiers; (3) Texas Instruments' (TI) 20 GHz variable power amplifier; (4) TI 20 GHz high power amplifier; (5) high efficiency monolithic power amplifiers; (6) GHz high efficiency variable power amplifier; (7) TI 32 GHz monolithic power amplifier performance; (8) design goals for Hughes' 32 GHz variable power amplifier; and (9) performance goals for Hughes' pseudomorphic 60 GHz power amplifier.

  6. GaAs-based JFET and PHEMT technologies for ultra-low-power microwave circuits operating at frequencies up to 2.4 GHz

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baca, A.G.; Hietala, V.M.; Greenway, D.

    1998-05-01

    In this work the authors report results of narrowband amplifiers designed for milliwatt and submilliwatt power consumption using JFET and pseudomorphic high electron mobility transistors (PHEMT) GaAs-based technologies. Enhancement-mode JFETs were used to design both a hybrid amplifier with off-chip matching as well as a monolithic microwave integrated circuit (MMIC) with on-chip matching. The hybrid amplifier achieved 8--10 dB of gain at 2.4 GHz and 1 mW. The MMIC achieved 10 dB of gain at 2.4 GHz and 2 mW. Submilliwatt circuits were also explored by using 0.25 {micro}m PHEMTs. 25 {micro}W power levels were achieved with 5 dB ofmore » gain for a 215 MHz hybrid amplifier. These results significantly reduce power consumption levels achievable with the JFETs or prior MESFET, heterostructure field effect transistor (HFET), or Si bipolar results from other laboratories.« less

  7. 2.4 GHz CMOS power amplifier with mode-locking structure to enhance gain.

    PubMed

    Lee, Changhyun; Park, Changkun

    2014-01-01

    We propose a mode-locking method optimized for the cascode structure of an RF CMOS power amplifier. To maximize the advantage of the typical mode-locking method in the cascode structure, the input of the cross-coupled transistor is modified from that of a typical mode-locking structure. To prove the feasibility of the proposed structure, we designed a 2.4 GHz CMOS power amplifier with a 0.18 μm RFCMOS process for polar transmitter applications. The measured power added efficiency is 34.9%, while the saturated output power is 23.32 dBm. The designed chip size is 1.4 × 0.6 mm(2).

  8. Results of RIKEN superconducting electron cyclotron resonance ion source with 28 GHz.

    PubMed

    Higurashi, Y; Ohnishi, J; Nakagawa, T; Haba, H; Tamura, M; Aihara, T; Fujimaki, M; Komiyama, M; Uchiyama, A; Kamigaito, O

    2012-02-01

    We measured the beam intensity of highly charged heavy ions and x-ray heat load for RIKEN superconducting electron cyclotron resonance ion source with 28 GHz microwaves under the various conditions. The beam intensity of Xe(20+) became maximum at B(min) ∼ 0.65 T, which was ∼65% of the magnetic field strength of electron cyclotron resonance (B(ECR)) for 28 GHz microwaves. We observed that the heat load of x-ray increased with decreasing gas pressure and field gradient at resonance zone. It seems that the beam intensity of highly charged heavy ions with 28 GHz is higher than that with 18 GHz at same RF power.

  9. A 57GHz overmoded coaxial relativistic backward wave oscillator with high conversion efficiency and pure TM01 mode output

    NASA Astrophysics Data System (ADS)

    Chen, Siyao; Zhang, Jun; Bai, Zhen

    2017-10-01

    A 57GHz overmoded relativistic backward wave oscillator (RBWO) operating on the quasi-TEM mode with pure TM01 mode output is presented in this paper, by using outer trapezoidal slow wave structure (SWS) with large distance between inner and outer conductors. The large overmoded ratio can be obtained in coaxial devices to improve power handling capacity, while the large distance between inner and outer conductors can guarantee the electron beam transmit effectively. The 8π/9 mode of quasi-TEM synchronously interacts with the electron beam, while the TM01 mode diffracted by the quasi-TEM mode outputs. The existence of TM01 6π/9 mode in SWS can extract energy from the quasi-TEM mode (which has a high value of Qe) thus increasing the power handling capacity. Particle-in-cell simulation shows that generation with high power 560 MW and efficiency 43.5% is obtained under the diode voltage 520 kV and current 2.47 kA. And the microwave has the pure frequency spectrum of 56.8 GHz radiates in the pure TM01 mode (about 98%).

  10. A low power and low phase-noise 91 96 GHz VCO in 90 nm CMOS

    NASA Astrophysics Data System (ADS)

    Lin, Yo-Sheng; Lan, Kai-Siang; Chuang, Ming-Yuan; Lin, Yu-Ching

    2018-06-01

    This paper reports a 94 GHz CMOS voltage-controlled oscillator (VCO) using both the negative capacitance (NC) technique and series-peaking output power and phase noise (PN) enhancement technique. NC is achieved by adding two variable LC networks to the source nodes of the active circuit of the VCO. NMOSFET varicaps are adopted as the required capacitors of the LC networks. In comparison with the conventional one, the proposed active circuit substantially decreases the input capacitance (Cin) to zero or even a negative value. This leads to operation (or oscillation) frequency (OF) increase and tuning range (TR) enhancement of the VCO. The VCO dissipates 8.3 mW at 1 V supply. The measured TR of the VCO is 91 96 GHz, close to the simulated (92.1 96.7 GHz) and the calculated one (92.2 98.2 GHz). In addition, at 1 MHz offset from 95.16 GHz, the VCO attains an excellent PN of - 98.3 dBc/Hz. This leads to a figure-of-merit (FOM) of -188.5 dBc/Hz, a remarkable result for a V- or W-band CMOS VCO. The chip size of the VCO is 0.75 × 0.42 mm2, i.e. 0.315 mm2.

  11. High Performance Power Amplifiers Utilizing Novel Balun Design Techniques

    NASA Astrophysics Data System (ADS)

    Stameroff, Alexander Nicholas

    In this PhD. research, a new power amplifier architecture is introduced. This work develops the push-pull architecture into a multifunctional matching network and combiner to create a high power, high efficiency, linear power amplifier (PA) that operates over a wide bandwidth. The traditional push-pull architecture uses an input balun to split a single ended signal into a differential signal, amplify it, and recombine it. This new technique realizes this architecture as a planar, hybrid, PA in X band. The first contribution of this work is the development of planar Marchand baluns that operate over a wide bandwidth. An analysis technique is developed and broadside coupled, Marchand baluns in an inhomogeneous medium are employed. These baluns operate over a bandwidth from 5 to 26 GHz with amplitude and phase imbalances less than 0.5 dB and 5 °, respectively. The even and odd mode behavior of the Marchand balun is utilized to provide harmonic matching for the PA. The balun inherently presents an open circuit to common mode signals at its center frequency. This is utilized to match the second harmonic to an open circuit condition. A band-stop filter is used as a harmonic trap to match the third harmonic to a short circuit. This achieves inverse class F matching for high efficiency operation. This network simultaneously acts as a combiner and matching network for high power and efficiency. A prototype PA was fabricated to prove this concept and achieves a saturated output power, Psat, greater than 33 dBm and a power added efficiency, PAE, greater than 62% over the bandwidth from 9.7 to 10.3 GHz. This technique was refined to operate over a wide bandwidth. The harmonic trap was removed and the out-of-band behavior of the balun was used to provide the short circuit matching at the third harmonic. A prototype PA was fabricated that achieved a 1 dB compressed power, P1dB, and PAE greater than 40 dBm and 55% respectively over the band from 8 to 12 GHz. Finally, the

  12. Review of Millimeter-Wave Integrated Circuits With Low Power Consumption for High Speed Wireless Communications

    NASA Astrophysics Data System (ADS)

    Ellinger, Frank; Fritsche, David; Tretter, Gregor; Leufker, Jan Dirk; Yodprasit, Uroschanit; Carta, C.

    2017-01-01

    In this paper we review high-speed radio-frequency integrated circuits operating up to 210 GHz and present selected state-of-the-art circuits with leading-edge performance, which we have designed at our chair. The following components are discussed employing bipolar complementary metal oxide semiconductors (BiCMOS) technologies: a 200 GHz amplifier with 17 dB gain and around 9 dB noise figure consuming only 18 mW, a 200 GHz down mixer with 5.5 dB conversion gain and 40 mW power consumption, a 190 GHz receiver with 47 dB conversion gain and 11 dB noise figure and a 60 GHz power amplifier with 24.5 dBm output power and 12.9 % power added efficiency (PAE). Moreover, we report on a single-core flash CMOS analogue-to-digital converter (ADC) with 3 bit resolution and a speed of 24 GS/s. Finally, we discuss a 60 GHz on-off keying (OOK) BiCMOS transceiver chip set. The wireless transmission of data with 5 Gb/s at 42 cm distance between transmitter and receiver was verified by experiments. The complete transceiver consumes 396 mW.

  13. Microwave ablation at 10.0 GHz achieves comparable ablation zones to 1.9 GHz in ex vivo bovine liver.

    PubMed

    Luyen, Hung; Gao, Fuqiang; Hagness, Susan C; Behdad, Nader

    2014-06-01

    We demonstrate the feasibility of using high-frequency microwaves for tissue ablation by comparing the performance of a 10 GHz microwave ablation system with that of a 1.9 GHz system. Two sets of floating sleeve dipole antennas operating at these frequencies were designed and fabricated for use in ex vivo experiments with bovine livers. Combined electromagnetic and transient thermal simulations were conducted to analyze the performance of these antennas. Subsequently, a total of 16 ablation experiments (eight at 1.9 GHz and eight at 10.0 GHz) were conducted at a power level of 42 W for either 5 or 10 min. In all cases, the 1.9 and 10 GHz experiments resulted in comparable ablation zone dimensions. Temperature monitoring probes revealed faster heating rates in the immediate vicinity of the 10.0 GHz antenna compared to the 1.9 GHz antenna, along with a slightly delayed onset of heating farther from the 10 GHz antenna, suggesting that heat conduction plays a greater role at higher microwave frequencies in achieving a comparably sized ablation zone. The results obtained from these experiments agree very well with the combined electromagnetic/thermal simulation results. These simulations and experiments show that using lower frequency microwaves does not offer any significant advantages, in terms of the achievable ablation zones, over using higher frequency microwaves. Indeed, it is demonstrated that high-frequency microwave antennas may be used to create reasonably large ablation zones. Higher frequencies offer the advantage of smaller antenna size, which is expected to lead to less invasive interstitial devices and may possibly lead to the development of more compact multielement arrays with heating properties not available from single-element antennas.

  14. 2.4 GHz CMOS Power Amplifier with Mode-Locking Structure to Enhance Gain

    PubMed Central

    2014-01-01

    We propose a mode-locking method optimized for the cascode structure of an RF CMOS power amplifier. To maximize the advantage of the typical mode-locking method in the cascode structure, the input of the cross-coupled transistor is modified from that of a typical mode-locking structure. To prove the feasibility of the proposed structure, we designed a 2.4 GHz CMOS power amplifier with a 0.18 μm RFCMOS process for polar transmitter applications. The measured power added efficiency is 34.9%, while the saturated output power is 23.32 dBm. The designed chip size is 1.4 × 0.6 mm2. PMID:25045755

  15. Fabrication of Very High Efficiency 5.8 GHz Power Amplifiers using AlGaN HFETs on SiC Substrates for Wireless Power Transmission

    NASA Technical Reports Server (NTRS)

    Sullivan, Gerry

    2001-01-01

    For wireless power transmission using microwave energy, very efficient conversion of the DC power into microwave power is extremely important. Class E amplifiers have the attractive feature that they can, in theory, be 100% efficient at converting, DC power to RF power. Aluminum gallium nitride (AlGaN) semiconductor material has many advantageous properties, relative to silicon (Si), gallium arsenide (GaAs), and silicon carbide (SiC), such as a much larger bandgap, and the ability to form AlGaN/GaN heterojunctions. The large bandgap of AlGaN also allows for device operation at higher temperatures than could be tolerated by a smaller bandgap transistor. This could reduce the cooling requirements. While it is unlikely that the AlGaN transistors in a 5.8 GHz class E amplifier can operate efficiently at temperatures in excess of 300 or 400 C, AlGaN based amplifiers could operate at temperatures that are higher than a GaAs or Si based amplifier could tolerate. Under this program, AlGaN microwave power HFETs have been fabricated and characterized. Hybrid class E amplifiers were designed and modeled. Unfortunately, within the time frame of this program, good quality HFETs were not available from either the RSC laboratories or commercially, and so the class E amplifiers were not constructed.

  16. Demonstration of a High-Order Mode Input Coupler for a 220-GHz Confocal Gyrotron Traveling Wave Tube

    NASA Astrophysics Data System (ADS)

    Guan, Xiaotong; Fu, Wenjie; Yan, Yang

    2018-02-01

    A design of high-order mode input coupler for 220-GHz confocal gyrotron travelling wave tube is proposed, simulated, and demonstrated by experimental tests. This input coupler is designed to excite confocal TE 06 mode from rectangle waveguide TE 10 mode over a broadband frequency range. Simulation results predict that the optimized conversion loss is about 2.72 dB with a mode purity excess of 99%. Considering of the gyrotron interaction theory, an effective bandwidth of 5 GHz is obtained, in which the beam-wave coupling efficiency is higher than half of maximum. The field pattern under low power demonstrates that TE 06 mode is successfully excited in confocal waveguide at 220 GHz. Cold test results from the vector network analyzer perform good agreements with simulation results. Both simulation and experimental results illustrate that the reflection at input port S11 is sensitive to the perpendicular separation of two mirrors. It provides an engineering possibility for estimating the assembly precision.

  17. 24-Way Radial Power Combiner/Divider for 31 to 36 GHz

    NASA Technical Reports Server (NTRS)

    Epp, Larry; Hoppe, Daniel; Khan, Abdur; Kelley, Daniel

    2008-01-01

    The figure shows a prototype radial power-combining waveguide structure, capable of operation at frequencies from 31 to 36 GHz, that features an unusually large number (N = 24) of combining (input) ports. The combination of wide-band operation and large N is achieved by incorporating several enhancements over a basic radial power-combiner design. In addition, the structure can be operated as a power divider by reversing the roles of the input and output ports. In this structure, full-height waveguides at the combining ports are matched in impedance to reduced-height radial waveguides inside the combiner base. This match is effected by impedance-transforming stepped waveguide sections. This matching scheme is essential to achievement of large N because N is limited by the height of the waveguides in the base. Power is coupled from the 24 reduced- height radial waveguides into the TE01 mode of a circular waveguide in the base with the help of a matching post at the bottom of the base. ( TE signifies transverse electric, the first subscript is the azimuthal mode number, and the second subscript is the radial mode number.) More specifically, the matching post matches the reflections from the walls of the 24 reduced-height waveguides and enables the base design to exceed the bandwidth requirement. After propagating along the circular waveguide, the combined power is coupled, via a mode transducer, to a rectangular waveguide output port. The mode transducer is divided into three sections, each sized and shaped as part of an overall design to satisfy the mode-conversion and output-coupling requirements while enabling the circular waveguide to be wide enough for combining the 24 inputs over the frequency range of 31 to 36 GHz. During the design process, it was found that two different rectangular waveguide outputs could be accommodated through modification of only the first section of the mode converter, thereby enabling operation in multiple frequency ranges.

  18. Experimental study of a 1 MW, 170 GHz gyrotron oscillator

    NASA Astrophysics Data System (ADS)

    Kimura, Takuji

    A detailed experimental study is presented of a 1 MW, 170 GHz gyrotron oscillator whose design is consistent with the ECH requirements of the International Thermonuclear Experimental Reactor (ITER) for bulk heating and current drive. This work is the first to demonstrate that megawatt power level at 170 GHz can be achieved in a gyrotron with high efficiency for plasma heating applications. Maximum output power of 1.5 MW is obtained at 170.1 GHz in 85 kV, 50A operation for an efficiency of 35%. Although the experiment at MIT is conducted with short pulses (3 μs), the gyrotron is designed to be suitable for development by industry for continuous wave operation. The peak ohmic loss on the cavity wall for 1 MW of output power is calculated to be 2.3 kW/cm2, which can be handled using present cooling technology. Mode competition problems in a highly over-moded cavity are studied to maximize the efficiency. Various aspects of electron gun design are examined to obtain high quality electron beams with very low velocity spread. A triode magnetron injection gun is designed using the EGUN simulation code. A total perpendicular velocity spread of less than 8% is realized by designing a low- sensitivity, non-adiabatic gun. The RF power is generated in a short tapered cavity with an iris step. The operating mode is the TE28,8,1 mode. A mode converter is designed to convert the RF output to a Gaussian beam. Power and efficiency are measured in the design TE28,8,1 mode at 170.1 GHz as well as the TE27,8,1 mode at 166.6 GHz and TE29,8,1 mode at 173.5 GHz. Efficiencies between 34%-36% are consistently obtained over a wide range of operating parameters. These efficiencies agree with the highest values predicted by the multimode simulations. The startup scenario is investigated and observed to agree with the linear theory. The measured beam velocity ratio is consistent with EGUN simulation. Interception of reflected beam by the mod-anode is measured as a function of velocity ratio

  19. A portable high power microwave source with permanent magnets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Wei; Zhang, Jun; Li, Zhi-qiang

    A high power microwave source with permanent magnets is proposed in this paper. The source has the length 330 mm, maximum diameter 350 mm, and total weight 50 kg, including 25 kg of permanent magnets. 1 GW of microwave power with Gaussian radiation pattern and 24% of microwave power generation efficiency in a pulse duration of 75 ns are obtained in the experiment. Operating frequency of the source is 2.32 GHz. Such a small size, light weight, and highly stable in operation source will be used in portable repetitive high power microwave generation systems.

  20. Power combination of a self-coherent high power microwave source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, Xiaolu, E-mail: yanxl-dut@163.com; Zhang, Xiaoping; Li, Yangmei

    2015-09-15

    In our previous work, generating two phase-locked high power microwaves (HPMs) in a single self-coherent HPM device has been demonstrated. In this paper, after optimizing the structure of the previous self-coherent source, we design a power combiner with a folded phase-adjustment waveguide to realize power combination between its two sub-sources. Further particle-in-cell simulation of the combined source shows that when the diode voltage is 687 kV and the axial magnetic field is 0.8 T, a combined output microwave with 3.59 GW and 9.72 GHz is generated. The impedance of the combined device is 36 Ω and the total power conversion efficiency is 28%.

  1. Ferroelectric switch for a high-power Ka-band active pulse compressor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hirshfield, Jay L.

    2013-12-18

    Results are presented for design of a high-power microwave switch for operation at 34.3 GHz, intended for use in an active RF pulse compressor. The active element in the switch is a ring of ferroelectric material, whose dielectric constant can be rapidly changed by application of a high-voltage pulse. As envisioned, two of these switches would be built into a pair of delay lines, as in SLED-II at SLAC, so as to allow 30-MW μs-length Ka-band pulses to be compressed in time by a factor-of-9 and multiplied in amplitude to generate 200 MW peak power pulses. Such high-power pulses couldmore » be used for testing and evaluation of high-gradient mm-wave accelerator structures, for example. Evaluation of the switch design was carried out with an X-band (11.43 GHz) prototype, built to incorporate all the features required for the Ka-band version.« less

  2. Experimental high gradient testing of a 17.1 GHz photonic band-gap accelerator structure

    DOE PAGES

    Munroe, Brian J.; Zhang, JieXi; Xu, Haoran; ...

    2016-03-29

    In this paper, we report the design, fabrication, and high gradient testing of a 17.1 GHz photonic band-gap (PBG) accelerator structure. Photonic band-gap (PBG) structures are promising candidates for electron accelerators capable of high-gradient operation because they have the inherent damping of high order modes required to avoid beam breakup instabilities. The 17.1 GHz PBG structure tested was a single cell structure composed of a triangular array of round copper rods of radius 1.45 mm spaced by 8.05 mm. The test assembly consisted of the test PBG cell located between conventional (pillbox) input and output cells, with input power ofmore » up to 4 MW from a klystron supplied via a TM 01 mode launcher. Breakdown at high gradient was observed by diagnostics including reflected power, downstream and upstream current monitors and visible light emission. The testing procedure was first benchmarked with a conventional disc-loaded waveguide structure, which reached a gradient of 87 MV=m at a breakdown probability of 1.19 × 10 –1 per pulse per meter. The PBG structure was tested with 100 ns pulses at gradient levels of less than 90 MV=m in order to limit the surface temperature rise to 120 K. The PBG structure reached up to 89 MV=m at a breakdown probability of 1.09 × 10 –1 per pulse per meter. These test results show that a PBG structure can simultaneously operate at high gradients and low breakdown probability, while also providing wakefield damping.« less

  3. High-Power, High-Frequency Si-Based (SiGe) Transistors Developed

    NASA Technical Reports Server (NTRS)

    Ponchak, George E.

    2002-01-01

    Future NASA, DOD, and commercial products will require electronic circuits that have greater functionality and versatility but occupy less space and cost less money to build and integrate than current products. System on a Chip (SOAC), a single semiconductor substrate containing circuits that perform many functions or containing an entire system, is widely recognized as the best technology for achieving low-cost, small-sized systems. Thus, a circuit technology is required that can gather, process, store, and transmit data or communications. Since silicon-integrated circuits are already used for data processing and storage and the infrastructure that supports silicon circuit fabrication is very large, it is sensible to develop communication circuits on silicon so that all the system functions can be integrated onto a single wafer. Until recently, silicon integrated circuits did not function well at the frequencies required for wireless or microwave communications, but with the introduction of small amounts of germanium into the silicon to make silicon-germanium (SiGe) transistors, silicon-based communication circuits are possible. Although microwavefrequency SiGe circuits have been demonstrated, there has been difficulty in obtaining the high power from their transistors that is required for the amplifiers of a transmitter, and many researchers have thought that this could not be done. The NASA Glenn Research Center and collaborators at the University of Michigan have developed SiGe transistors and amplifiers with state-of-the-art output power at microwave frequencies from 8 to 20 GHz. These transistors are fabricated using standard silicon processing and may be integrated with CMOS integrated circuits on a single chip. A scanning electron microscope image of a typical SiGe heterojunction bipolar transistor is shown in the preceding photomicrograph. This transistor achieved a record output power of 550 mW and an associated power-added efficiency of 33 percent at 8

  4. Heterodyne detection of the 752.033-GHz H2O rotational absorption line

    NASA Technical Reports Server (NTRS)

    Dionne, G. F.; Fitzgerald, J. F.; Chang, T. S.; Litvak, M. M.; Fetterman, H. R.

    1980-01-01

    A tunable high resolution two stage heterodyne radiometer was developed for the purpose of investigating the intensity and lineshape of the 752.033 GHz rotational transition of water vapor. Single-sideband system noise temperatures of approximately 45,000 K were obtained using a sensitive GaAs Schottky diode as the first stage mixer. First local oscillator power was supplied by a CO2 laser pumped formic acid laser (761.61 GHz), generating an X-band IF signal with theoretical line center at 9.5744 GHz. Second local oscillator power was provided by means of a 3 GHz waveguide cavity filter with only 9 dB insertion loss. In absorption measurements of the H2O taken from a laboratory simulation of a high altitude rocket plume, the center frequency of the 752 GHz line was determined to within 1 MHz of the reported value. A rotational temperature 75 K, a linewidth 5 MHz and a Doppler shift 3 MHz were measured with the line-of-sight intersecting the simulated-plume axis at a distance downstream of 30 nozzle diameters. These absorption data were obtained against continuum background radiation sources at temperatures of 1175 and 300 K.

  5. Perpendicularly magnetized YIG-film resonators and waveguides with high operating power

    DOE PAGES

    Balinskiy, M.; Mongolov, B.; Gutierrez, D.; ...

    2016-12-27

    We propose a novel technique for building YIG film-based resonators and waveguides for high power operating microwave devices. Our approach is based on the effect of total internal reflection (TIR) at the interface between the non-metalized and metalized regions of YIG film, which take place for forward volume magnetostatic spin waves in perpendicularly magnetized YIG films. Prototype resonators and waveguides were designed, fabricated, and tested. The obtained experimental data demonstrate high quality factor of 50 dB and a high power operation up to +15 dBm in the frequency range from 1.8 GHz to 5.1 GHz. Application of such resonators andmore » waveguides in electrically tunable microwave oscillators promises an extremely low phase noises about - 135 dB/Hz at 10 kHz offset.« less

  6. Tunable All-Solid-State Local Oscillators to 1900 GHz

    NASA Technical Reports Server (NTRS)

    Ward, John; Chattopadhyay, Goutam; Maestrini, Alain; Schlecht, Erich; Gill, John; Javadi, Hamid; Pukala, David; Maiwald, Frank; Mehdi, Imran

    2004-01-01

    We present a status report of an ongoing effort to develop robust tunable all-solid-state sources up to 1900 GHz for the Heterodyne Instrument for the Far Infrared (HIFI) on the Herschel Space Observatory. GaAs based multi-chip power amplifier modules at W-band are used to drive cascaded chains of multipliers. We have demonstrated performance from chains comprised of four doublers up to 1600 GHz as well as from a x2x3x3 chain to 1900 GHz. Measured peak output power of 23 (micro)W at 1782 GHz and 2.6 (micro)W at 1900 GHz has been achieved when the multipliers are cooled to 120K. The 1900 GHz tripler was pumped with a four anode tripler that produces a peak of 4 mW at 630 GHz when cooled to 120 K. We believe that these sources can now be used to pump hot electron bolometer (HEB) heterodyne mixers.ter (HEB) heterodyne mixers.

  7. Monolithic control components for high power mm-waves

    NASA Astrophysics Data System (ADS)

    Armstrong, A.; Goodrich, J.; Moroney, W.; Wheeler, D.

    1985-09-01

    Monolithic PIN diode arrays are shown to provide significant advances in switching ratios, bandwidth, and high-power capability for millimeter control applications The PIN diodes are arranged in a series/parallel configuration and form an electronically controlled window for switching RF power by applying DC voltage. At Ka band, an SPST switch using the window array (WINAR) design typically has 0.6 dB insertion loss and 22 dB isolation over the 26.5 to 40.0 GHz band. The switch has over 500 W peak power and 25 W average power capability.

  8. Research on calorimeter for high-power microwave measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ye, Hu; Ning, Hui; Yang, Wensen

    2015-12-15

    Based on measurement of the volume increment of polar liquid that is a result of heating by absorbed microwave energy, two types of calorimeters with coaxial capacitive probes for measurement of high-power microwave energy are designed in this paper. The first is an “inline” calorimeter, which is placed as an absorbing load at the end of the output waveguide, and the second is an “offline” calorimeter that is placed 20 cm away from the radiation horn of the high-power microwave generator. Ethanol and high density polyethylene are used as the absorbing and housing materials, respectively. Results from both simulations andmore » a “cold test” on a 9.3 GHz klystron show that the “inline” calorimeter has a measurement range of more than 100 J and an energy absorption coefficient of 93%, while the experimental results on a 9.3 GHz relativistic backward-wave oscillator show that the device’s power capacity is approximately 0.9 GW. The same experiments were also carried out for the “offline” calorimeter, and the results indicate that it can be used to eliminate the effects of the shock of the solenoid on the measurement curves and that the device has a higher power capacity of 2.5 GW. The results of the numerical simulations, the “cold tests,” and the experiments show good agreement.« less

  9. Research on calorimeter for high-power microwave measurements.

    PubMed

    Ye, Hu; Ning, Hui; Yang, Wensen; Tian, Yanmin; Xiong, Zhengfeng; Yang, Meng; Yan, Feng; Cui, Xinhong

    2015-12-01

    Based on measurement of the volume increment of polar liquid that is a result of heating by absorbed microwave energy, two types of calorimeters with coaxial capacitive probes for measurement of high-power microwave energy are designed in this paper. The first is an "inline" calorimeter, which is placed as an absorbing load at the end of the output waveguide, and the second is an "offline" calorimeter that is placed 20 cm away from the radiation horn of the high-power microwave generator. Ethanol and high density polyethylene are used as the absorbing and housing materials, respectively. Results from both simulations and a "cold test" on a 9.3 GHz klystron show that the "inline" calorimeter has a measurement range of more than 100 J and an energy absorption coefficient of 93%, while the experimental results on a 9.3 GHz relativistic backward-wave oscillator show that the device's power capacity is approximately 0.9 GW. The same experiments were also carried out for the "offline" calorimeter, and the results indicate that it can be used to eliminate the effects of the shock of the solenoid on the measurement curves and that the device has a higher power capacity of 2.5 GW. The results of the numerical simulations, the "cold tests," and the experiments show good agreement.

  10. Traveling-Wave Maser for 32 GHz

    NASA Technical Reports Server (NTRS)

    Shell, James; Clauss, Robert

    2009-01-01

    The figure depicts a traveling-wave ruby maser that has been designed (though not yet implemented in hardware) to serve as a low-noise amplifier for reception of weak radio signals in the frequency band of 31.8 to 32.3 GHz. The design offers significant improvements over previous designs of 32-GHz traveling-wave masers. In addition, relative to prior designs of 32-GHz amplifiers based on high-electron-mobility transistors, this design affords higher immunity to radio-frequency interference and lower equivalent input noise temperature. In addition to the basic frequency-band and low-noise requirements, the initial design problem included a requirement for capability of operation in a closed-cycle helium refrigerator at a temperature .4 K and a requirement that the design be mechanically simplified, relative to prior designs, in order to minimize the cost of fabrication and assembly. Previous attempts to build 32- GHz traveling-wave masers involved the use of metallic slow-wave structures comprising coupled transverse electromagnetic (TEM)-mode resonators that were subject to very tight tolerances and, hence, were expensive to fabricate and assemble. Impedance matching for coupling signals into and out of these earlier masers was very difficult. A key feature of the design is a slow-wave structure, the metallic portions of which would be mechanically relatively simple in that, unlike in prior slow-wave structures, there would be no internal metal steps, irises, or posts. The metallic portions of the slow-wave structure would consist only of two rectangular metal waveguide arms. The arms would contain sections filled with the active material (ruby) alternating with evanescent-wave sections. This structure would be transparent in both the signal-frequency band (the aforementioned range of 31.8 to 32.3 GHz) and the pump-frequency band (65.75 to 66.75 GHz), and would impose large slowing factors in both frequency bands. Resonant ferrite isolators would be placed in the

  11. Sixty GHz IMPATT diode development

    NASA Technical Reports Server (NTRS)

    Ma, Y. E.; Chen, J.; Benko, E.; Barger, M. J.; Nghiem, H.; Trinh, T. Q.; Kung, J.

    1985-01-01

    The objective of this program is to develop 60 GHz GaAs IMPATT Diodes suitable for communications applications. The performance goal of the 60 GHz IMPATT is 1W CW output power with a conversion efficiency of 15 percent and 10 year life time. During the course of the program, double drift (DD) GaAs IMPATT Diodes have been developed resulting in the state of the art performance at V band frequencies. A CW output power of 1.12 W was demonstrated at 51.9 GHz with 9.7 percent efficiency. The best conversion efficiency achieved was 15.3 percent. V band DD GaAs IMPATTs were developed using both small signal and large signal analyses. GaAs wafers of DD flat, DD hybrid, and DD Read profiles using molecular beam epitaxy (MBE) were developed with excellent doping profile control. Wafer evaluation was routinely made by the capacitance versus voltage (C-V) measurement. Ion mass spectrometry (SIMS) analysis was also used for more detailed profile evaluation.

  12. AlGaN/GaN-HEMTs with a breakdown voltage higher than 100 V and maximum oscillation frequency f{sub max} as high as 100 GHz

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mokerov, V. G., E-mail: vgmokerov@yandex.ru; Kuznetsov, A. L.; Fedorov, Yu. V.

    2009-04-15

    The N-Al{sub 0.27}Ga{sub 0.73}N/GaN High Electron Mobility Transistors (HEMTs) with different gate lengths L{sub g} (ranging from 170 nm to 0.5 {mu}m) and gate widths W{sub s} (ranging from 100 to 1200 {mu}m) have been studied. The S parameters have been measured; these parameters have been used to determine the current-gain cutoff frequency f{sub t}, the maximum oscillation frequency f{sub max}, and the power gain MSG/MAG and Mason's coefficients were investigated in the frequency range from 10 MHz to 67 GHz in relation to the gate length and gate width. It was found that the frequencies f{sub t} and f{submore » max} attain their maximum values of f{sub t} = 48 GHz and f{sub max} = 100 GHz at L{sub g} = 170 nm and W{sub g} = 100 {mu}m. The optimum values of W{sub g} and output power P out of the basic transistors have been determined for different frequencies of operation. It has also been demonstrated that the 170 nm Al{sub 0.27}Ga{sub 0.73}N/GaN HEMT technology provides both good frequency characteristics and high breakdown voltages and is very promising for high-frequency applications (up to 40 GHz)« less

  13. High sensitivity broadband 360GHz passive receiver for TeraSCREEN

    NASA Astrophysics Data System (ADS)

    Wang, Hui; Oldfield, Matthew; Maestrojuán, Itziar; Platt, Duncan; Brewster, Nick; Viegas, Colin; Alderman, Byron; Ellison, Brian N.

    2016-05-01

    TeraSCREEN is an EU FP7 Security project aimed at developing a combined active, with frequency channel centered at 360 GHz, and passive, with frequency channels centered at 94, 220 and 360 GHz, imaging system for border controls in airport and commercial ferry ports. The system will include automatic threat detection and classification and has been designed with a strong focus on the ethical, legal and practical aspects of operating in these environments and with the potential threats in mind. Furthermore, both the passive and active systems are based on array receivers with the active system consisting of a 16 element MIMO FMCW radar centered at 360 GHz with a bandwidth of 30 GHz utilizing a custom made direct digital synthesizer. The 16 element passive receiver system at 360 GHz uses commercial Gunn diode oscillators at 90 GHz followed by custom made 90 to 180 GHz frequency doublers supplying the local oscillator for 360 GHz sub-harmonic mixers. This paper describes the development of the passive antenna module, local oscillator chain, frequency mixers and detectors used in the passive receiver array of this system. The complete passive receiver chain is characterized in this paper.

  14. Present developments and status of electron sources for high power gyrotron tubes and free electron masers

    NASA Astrophysics Data System (ADS)

    Thumm, M.

    1997-02-01

    Gyrotron oscillators are mainly used as high power mm-wave sources for start-up, electron cyclotron heating (ECH) and diagnostics of magnetically confined plasmas for controlled thermonuclear fusion research. 140 GHz (110 GHz) gyrotrons with output power Pout = 0.55 MW (0.93 MW), pulse length τ = 3.0 s (2.0 s) and efficiency η = 40% (38%) are commercially available. Total efficiencies around 50% have been achieved using single-stage depressed collectors. Diagnostic gyrotrons deliver Pout = 40 kW with τ = 40 μs at frequencies up to 650 GHz ( η≥4%). Recently, gyrotron oscillators have also been successfully used in materials processing, for example sintering of high performance, structural and functional ceramics. Such technological applications require gyrotrons with f≥24 GHz, Pout = 10-100 kW, CW, η≥30%. This paper reports on recent achievements in the development of very high power mm-wave gyrotron oscillators for long pulse or CW operation. In addition a short overview of the present development status of gyrotrons for technological applications, gyroklystron amplifiers, gyro-TWT amplifiers, cyclotron autoresonance masers (CARMs) and free electron masers (FEMs) is given. The most impressive FEM output parameters are: Pout = 2GW, τ = 20 ns, η = 13% at 140 GHz (LLNL) and Pout = 15 kW, τ = 20 μs, η = 5% in the range from 120 to 900 GHz (UCSB). In gyro-devices, magnetron injection guns (MIGs) operating in the temperature limited current regime have thus far been used most successfully. Diode guns as well as triode guns with a modulating anode are employed. Tests of a MIG operated under space-charge limited conditions have been not very successful. Electrostatic CW FEMs are driven by thermionic Pierce guns whereas pulsed high power devices employ many types of accelerators as drivers for example pulse-line accelerators, microtrons and induction or rf linacs, using field and photo emission cathodes.

  15. High power test of a wideband diplexer with short-slotted metal half mirrors for electron cyclotron current drive system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saigusa, M.; Atsumi, K.; Yamaguchi, T.

    2014-02-12

    The wideband high power diplexer has been developed for combining and fast switching of high power millimeter waves generated by a dual frequency gyrotron. The actual diplexer was tested at the frequency band of 170 GHz in low power. After adjusting a resonant frequency of diplexer for the gyrotron frequency, the evacuated wideband diplexer with short-slotted metal half mirrors was tested at an incident power of about 150 kW, a pulse duration of 30 ms and a frequency band of 170.2–170.3 GHz. Any discharge damage was not observed in the diplexer.

  16. TWT design requirements for 30/20 GHz digital communications' satellite

    NASA Technical Reports Server (NTRS)

    Stankiewicz, N.; Anzic, G.

    1979-01-01

    The rapid growth of communication traffic (voice, data, and video) requires the development of additional frequency bands before the 1990's. The frequencies currently in use for satellite communications at 6/4 GHz are crowded and demands for 14/12 GHz systems are increasing. Projections are that these bands will be filled to capacity by the late 1980's. The next higher frequency band allocated for satellite communications is at 30/20 GHz. For interrelated reasons of efficiency, power level, and system reliability criteria, a candidate for the downlink amplifier in a 30/20 GHz communications' satellite is a dual mode traveling wave tube (TWT) equipped with a highly efficient depressed collector. A summary is given of the analyses which determine the TWT design requirements. The overall efficiency of such a tube is then inferred from a parametric study and from experimental data on multistaged depressed collectors. The expected TWT efficiency at 4 dB below output saturation is 24 percent in the high mode and 22 percent in the low mode.

  17. 47 CFR 15.253 - Operation within the bands 46.7-46.9 GHz and 76.0-77.0 GHz.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...-77.0 GHz is restricted to vehicle-mounted field disturbance sensors used as vehicle radar systems... the radiating structure. (c) The power density of any emissions outside the operating band shall... GHz shall not exceed the general limits in § 15.209. (2) Radiated emissions outside the operating band...

  18. Investigation of a metallic photonic crystal high power microwave mode converter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Dong, E-mail: mr20001@sina.com; Qin, Fen; Xu, Sha

    2015-02-15

    It is demonstrated that an L band metallic photonic crystal TEM-TE{sub 11} mode converter is suitable for narrow band high power microwave application. The proposed mode converter is realized by partially filling metallic photonic crystals along azimuthal direction in a coaxial transmission line for phase-shifting. A three rows structure is designed and simulated by commercial software CST Microwave Studio. Simulation results show that its conversion efficiency is 99% at the center frequency 1.58 GHz. Over the frequency range of 1.56-1.625 GHz, the conversion efficiency exceeds 90 %, with a corresponding bandwidth of 4.1 %. This mode converter has a gigawattmore » level power handling capability which is suitable for narrow band high power microwave application. Using magnetically insulated transmission line oscillator(MILO) as a high power microwave source, particle-in-cell simulation is carried out to test the performance of the mode converter. The expected TE{sub 11} mode microwave output is obtained and the MILO works well. Mode conversion performance of the converter is tested by far-field measurement method. And the experimental result confirms the validity of our design. Then, high power microwave experiment is carried out on a Marx-driven Blumlein water line pulsed power accelerator. Microwave frequency, radiated pattern and power are measured in the far-field region and the results agree well with simulation results. The experiment also reveals that no microwave breakdown or pulse shortening took place in the experimental setup.« less

  19. The 20 GHz spacecraft FET solid state transmitter

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The engineering development of a solid state transmitter amplifier operating in the 20 GHz frequency band using GaAs field effect transistors (FETs) was detailed. The major efforts include GaAs FET device development, single-ended amplifier stage, balanced amplifier stage, cascaded stage and radial combiner designs, and amplifier integration and test. A multistage GaAs FET amplifier capable of 8.2 W CW output over the 17.9 to 19.1 GHz frequency band was developed. The GaAs FET devices developed represent state of the art FET power device technology. Further device improvements are necessary to increase the bandwidth to 2.5 GHz, improve dc-to-RF efficiency, and increase power capability at the device level. Higher power devices will simplify the amplifier combining scheme, reducing the size and weight of the overall amplifier.

  20. RF Design of a High Average Beam-Power SRF Electron Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sipahi, Nihan; Biedron, Sandra; Gonin, Ivan

    2016-06-01

    There is a significant interest in developing high-average power electron sources, particularly in the area of electron sources integrated with Superconducting Radio Frequency (SRF) systems. For these systems, the electron gun and cathode parts are critical components for stable intensity and high-average powers. In this initial design study, we will present the design of a 9-cell accelerator cavity having a frequency of 1.3 GHz and the corresponding field optimization studies.

  1. 170 GHz Uni-Traveling Carrier Photodiodes for InP-based photonic integrated circuits.

    PubMed

    Rouvalis, E; Chtioui, M; van Dijk, F; Lelarge, F; Fice, M J; Renaud, C C; Carpintero, G; Seeds, A J

    2012-08-27

    We demonstrate the capability of fabricating extremely high-bandwidth Uni-Traveling Carrier Photodiodes (UTC-PDs) using techniques that are suitable for active-passive monolithic integration with Multiple Quantum Well (MQW)-based photonic devices. The devices achieved a responsivity of 0.27 A/W, a 3-dB bandwidth of 170 GHz, and an output power of -9 dBm at 200 GHz. We anticipate that this work will deliver Photonic Integrated Circuits with extremely high bandwidth for optical communications and millimetre-wave applications.

  2. High Power Intermodulation Measurements up to 30 W of High Temperature Superconducting Filters

    NASA Technical Reports Server (NTRS)

    Wilker, Charles; Carter, Charles F., III; Shen, Zhi-Yuan

    1999-01-01

    We have demonstrated a high power intermodulation measurement set-up capable of delivering 30 W in each of two fundamental tones. For closely spaced frequencies (less than 35 MHz), the dynamic range of the measurement is limited by the nonlinear performance of the mixer in the front end of the HP71210C spectrum analyzer. A tunable TE(sub 011) mode copper cavity was fabricated in which one of the endwalls could be adjusted shifting its resonant frequency between 5.7 and 6.6 GHz. Since the Q-value of this cavity is high, greater than 10(exp 4), and its bandwidth is small, less than 1 MHz, it can be used to attenuate the two fundamental tones relative to one of the harmonic tones, which greatly enhances the dynamic range of the measurement. This set-up can be used to measure the two-tone intermodulation distortion of any passive microwave device, e.g. a HTS filter, a connector, a cable, etc., over a frequency range of 5.9 to 6.4 GHz and a power range of 0.1 to 30 W. The third order intercept (TOI) of a prototype HTS filter measured at powers up to 30 W was +81.3 dBm.

  3. Efficient Low-Voltage Operation of a CW Gyrotron Oscillator at 233 GHz.

    PubMed

    Hornstein, Melissa K; Bajaj, Vikram S; Griffin, Robert G; Temkin, Richard J

    2007-02-01

    The gyrotron oscillator is a source of high average power millimeter-wave through terahertz radiation. In this paper, we report low beam power and high-efficiency operation of a tunable gyrotron oscillator at 233 GHz. The low-voltage operating mode provides a path to further miniaturization of the gyrotron through reduction in the size of the electron gun, power supply, collector, and cooling system, which will benefit industrial and scientific applications requiring portability. Detailed studies of low-voltage operation in the TE(2) (,) (3) (,) (1) mode reveal that the mode can be excited with less than 7 W of beam power at 3.5 kV. During CW operation with 3.5-kV beam voltage and 50-mA beam current, the gyrotron generates 12 W of RF power at 233.2 GHz. The EGUN electron optics code describes the low-voltage operation of the electron gun. Using gun-operating parameters derived from EGUN simulations, we show that a linear theory adequately predicts the low experimental starting currents.

  4. Efficient Low-Voltage Operation of a CW Gyrotron Oscillator at 233 GHz

    PubMed Central

    Hornstein, Melissa K.; Bajaj, Vikram S.; Griffin, Robert G.; Temkin, Richard J.

    2007-01-01

    The gyrotron oscillator is a source of high average power millimeter-wave through terahertz radiation. In this paper, we report low beam power and high-efficiency operation of a tunable gyrotron oscillator at 233 GHz. The low-voltage operating mode provides a path to further miniaturization of the gyrotron through reduction in the size of the electron gun, power supply, collector, and cooling system, which will benefit industrial and scientific applications requiring portability. Detailed studies of low-voltage operation in the TE2,3,1 mode reveal that the mode can be excited with less than 7 W of beam power at 3.5 kV. During CW operation with 3.5-kV beam voltage and 50-mA beam current, the gyrotron generates 12 W of RF power at 233.2 GHz. The EGUN electron optics code describes the low-voltage operation of the electron gun. Using gun-operating parameters derived from EGUN simulations, we show that a linear theory adequately predicts the low experimental starting currents. PMID:17687412

  5. High Power Local Oscillator Sources for 1-2 THz

    NASA Technical Reports Server (NTRS)

    Mehdi, Imran; Thomas, Bertrand; Lin, Robert; Maestrini, Alain; Ward, John; Schlecht, Erich; Gill, John; Lee, Choonsup; Chattopadhyay, Goutam; Maiwald, Frank

    2010-01-01

    Recent results from the Heterodyne Instrument for Far-Infrared (HIFI) on the Herschel Space Telescope have confirmed the usefulness of high resolution spectroscopic data for a better understanding of our Universe. This paper will explore the current status of tunable local oscillator sources beyond HIFI and provide demonstration of how power combining of GaAs Schottky diodes can be used to increase both power and upper operating frequency for heterodyne receivers. Availability of power levels greater than 1 watt in the W-band now makes it possible to design a 1900 GHz source with more than 100 microwatts of expected output power.

  6. 93-133 GHz Band InP High-Electron-Mobility Transistor Amplifier with Gain-Enhanced Topology

    NASA Astrophysics Data System (ADS)

    Sato, Masaru; Shiba, Shoichi; Matsumura, Hiroshi; Takahashi, Tsuyoshi; Nakasha, Yasuhiro; Suzuki, Toshihide; Hara, Naoki

    2013-04-01

    In this study, we developed a new type of high-frequency amplifier topology using 75-nm-gate-length InP-based high-electron-mobility transistors (InP HEMTs). To enhance the gain for a wide frequency range, a common-source common-gate hybrid amplifier topology was proposed. A transformer-based balun placed at the input of the amplifier generates differential signals, which are fed to the gate and source terminals of the transistor. The amplified signal is outputted at the drain node. The simulation results show that the hybrid topology exhibits a higher gain from 90 to 140 GHz than that of the conventional common-source or common-gate amplifier. The two-stage amplifier fabricated using the topology exhibits a small signal gain of 12 dB and a 3-dB bandwidth of 40 GHz (93-133 GHz), which is the largest bandwidth and the second highest gain reported among those of published 120-GHz-band amplifiers. In addition, the measured noise figure was 5 dB from 90 to 100 GHz.

  7. 50 MHz-10 GHz low-power resistive feedback current-reuse mixer with inductive peaking for cognitive radio receiver.

    PubMed

    Vitee, Nandini; Ramiah, Harikrishnan; Chong, Wei-Keat; Tan, Gim-Heng; Kanesan, Jeevan; Reza, Ahmed Wasif

    2014-01-01

    A low-power wideband mixer is designed and implemented in 0.13 µm standard CMOS technology based on resistive feedback current-reuse (RFCR) configuration for the application of cognitive radio receiver. The proposed RFCR architecture incorporates an inductive peaking technique to compensate for gain roll-off at high frequency while enhancing the bandwidth. A complementary current-reuse technique is used between transconductance and IF stages to boost the conversion gain without additional power consumption by reusing the DC bias current of the LO stage. This downconversion double-balanced mixer exhibits a high and flat conversion gain (CG) of 14.9 ± 1.4 dB and a noise figure (NF) better than 12.8 dB. The maximum input 1-dB compression point (P1dB) and maximum input third-order intercept point (IIP3) are -13.6 dBm and -4.5 dBm, respectively, over the desired frequency ranging from 50 MHz to 10 GHz. The proposed circuit operates down to a supply headroom of 1 V with a low-power consumption of 3.5 mW.

  8. The 30-GHz monolithic receive module

    NASA Technical Reports Server (NTRS)

    Sokolov, V.; Geddes, J.; Bauhahn, P.

    1983-01-01

    Key requirements for a 30 GHz GaAs monolithic receive module for spaceborne communication antenna feed array applications include an overall receive module noise figure of 5 dB, a 30 dB RF to IF gain with six levels of intermediate gain control, a five-bit phase shifter, and a maximum power consumption of 250 mW. The RF designs for each of the four submodules (low noise amplifier, some gain control, phase shifter, and RF to IF sub-module) are presented. Except for the phase shifter, high frequency, low noise FETs with sub-half micron gate lengths are employed in the submodules. For the gain control, a two stage dual gate FET amplifier is used. The phase shifter is of the passive switched line type and consists of 5-bits. It uses relatively large gate width FETs (with zero drain to source bias) as the switching elements. A 20 GHz local oscillator buffer amplifier, a FET compatible balanced mixer, and a 5-8 GHz IF amplifier constitute the RF/IF sub-module. Phase shifter fabrication using ion implantation and a self-aligned gate technique is described. Preliminary RF results obtained on such phase shifters are included.

  9. Polarimetric measurements of natural surfaces at 95 GHz

    NASA Astrophysics Data System (ADS)

    Chang, Paul S.; McIntosh, Robert E.

    1992-08-01

    A high power 95 GHz radar system, developed at the University of Massachusetts, was used to make polarimetric measurements of natural surfaces. Over the two year period of this grant, the following items were accomplished: (1) The 95 GHz radar was configured into a unique system capable of simultaneously making coherent and incoherent Mueller matrix measurements; (2) The equivalence of the coherent and noncoherent measurement technique was demonstrated; (3) The polarimetric properties of various foliage targets were characterized. These included the weeping willow, the sugar maple, and the white pine tree species; (4) The polarimetric properties of various snowcover types were characterized; and (5) Mueller matrix models for wet and dry snow were developed.

  10. Low-Power Testing of Losses in Millimeter-Wave Transmission Lines for High-Power Applications

    PubMed Central

    Han, S. T.; Comfoltey, E. N.; Shapiro, M. A.; Sirigiri, J. R.; Tax, D. S.; Temkin, R. J.; Woskov, P. P.; Rasmussen, D. A.

    2008-01-01

    We report the measurement of small losses in transmission line (TL) components intended for high-power millimeter-wave applications. Measurements were made using two different low-power techniques: a coherent technique using a vector network analyzer (VNA) and an incoherent technique using a radiometer. The measured loss in a 140 GHz 12.7 mm diameter TL system, consisting of 1.7 m of circular corrugated waveguide and three miter bends, is dominated by the miter bend loss. The measured loss was 0.3±0.1 dB per miter bend using a VNA; and 0.22±0.1 dB per miter bend using a radiometer. Good agreement between the two measurement techniques implies that both are useful for measuring small losses. To verify the methodology, the VNA technique was employed to measure the extremely small transmission loss in a 170 GHz ITER prototype TL system consisting of three lengths of 1 m, 63.5 mm diameter, circular corrugated waveguide and two miter bends. The measured loss of 0.05±0.02 dB per miter bend may be compared with the theoretical loss of 0.027 dB per miter bend. These results suggest that low-power testing of TL losses, utilizing a small, simple TL system and a VNA, is a reliable method for evaluating performance of low-loss millimeter-wave TL components intended for use in high-power applications. PMID:19081774

  11. Synchrotron Spectral Curvature from 22 MHZ to 23 GHZ

    NASA Technical Reports Server (NTRS)

    Kogut, Alan J.

    2012-01-01

    We combine surveys of the radio sky at frequencies 22 MHz to 1.4 GHz with data from the ARCADE-2 instrument at frequencies 3 GHz to 10 GHz to characterize the frequency spectrum of diffuse synchrotron emission in the Galaxy. The radio spectrum steepens with frequency from 22 MHz to 10 GHz. The projected spectral index at 23 GHz derived from the low-frequency data agrees well with independent measurements using only data at frequencies 23 GHz and above. Comparing the spectral index at 23 GHz to the value from previously published analyses allows extension of the model to higher frequencies. The combined data are consistent with a power-law index beta = -2.64 +/-= 0.03 at 0.31 GHz, steepening by an amount of Delta-beta = 0.07 every octave in frequency. Comparison of the radio data to models including the cosmic-ray energy spectrum suggests that any break in the synchrotron spectrum must occur at frequencies above 23 GHz.

  12. First Season QUIET Observations: Measurements of CMB Polarization Power Spectra at 43 GHz in the Multipole Range 25 <= ell <= 475

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bischoff, C.; /Chicago U., EFI /Harvard-Smithsonian Ctr. Astrophys.; Brizius, A.

    2010-12-01

    The Q/U Imaging ExperimenT (QUIET) employs coherent receivers at 43GHz and 95GHz, operating on the Chajnantor plateau in the Atacama Desert in Chile, to measure the anisotropy in the polarization of the CMB. QUIET primarily targets the B modes from primordial gravitational waves. The combination of these frequencies gives sensitivity to foreground contributions from diffuse Galactic synchrotron radiation. Between 2008 October and 2010 December, over 10,000 hours of data were collected, first with the 19-element 43-GHz array (3458 hours) and then with the 90-element 95-GHz array. Each array observes the same four fields, selected for low foregrounds, together covering {approx}more » 1000 square degrees. This paper reports initial results from the 43-GHz receiver which has an array sensitivity to CMB fluctuations of 69 {mu}K{radical}s. The data were extensively studied with a large suite of null tests before the power spectra, determined with two independent pipelines, were examined. Analysis choices, including data selection, were modified until the null tests passed. Cross correlating maps with different telescope pointings is used to eliminate a bias. This paper reports the EE, BB, and EB power spectra in the multipole range {ell} = 25-475. With the exception of the lowest multipole bin for one of the fields, where a polarized foreground, consistent with Galactic synchrotron radiation, is detected with 3-{sigma} significance, the E-mode spectrum is consistent with the {Lambda}CDM model, confirming the only previous detection of the first acoustic peak. The B-mode spectrum is consistent with zero, leading to a measurement of the tensor-to-scalar ratio of r = 0.35{sub -0.87}{sup +1.06}. The combination of a new time-stream 'double-demodulation' technique, Mizuguchi-Dragone optics, natural sky rotation, and frequent boresight rotation leads to the lowest level of systematic contamination in the B-mode power so far reported, below the level of r = 0.1.« less

  13. A Low Power 2.4 GHz CMOS Mixer Using Forward Body Bias Technique for Wireless Sensor Network

    NASA Astrophysics Data System (ADS)

    Yin, C. J.; Murad, S. A. Z.; Harun, A.; Ramli, M. M.; Zulkifli, T. Z. A.; Karim, J.

    2018-03-01

    Wireless sensor network (WSN) is a highly-demanded application since the evolution of wireless generation which is often used in recent communication technology. A radio frequency (RF) transceiver in WSN should have a low power consumption to support long operating times of mobile devices. A down-conversion mixer is responsible for frequency translation in a receiver. By operating a down-conversion mixer at a low supply voltage, the power consumed by WSN receiver can be greatly reduced. This paper presents a development of low power CMOS mixer using forward body bias technique for wireless sensor network. The proposed mixer is implemented using CMOS 0.13 μm Silterra technology. The forward body bias technique is adopted to obtain low power consumption. The simulation results indicate that a low power consumption of 0.91 mW is achieved at 1.6 V supply voltage. Moreover, the conversion gain (CG) of 21.83 dB, the noise figure (NF) of 16.51 dB and the input-referred third-order intercept point (IIP3) of 8.0 dB at 2.4 GHz are obtained. The proposed mixer is suitable for wireless sensor network.

  14. Arbitrary waveform modulated pulse EPR at 200 GHz

    NASA Astrophysics Data System (ADS)

    Kaminker, Ilia; Barnes, Ryan; Han, Songi

    2017-06-01

    We report here on the implementation of arbitrary waveform generation (AWG) capabilities at ∼200 GHz into an Electron Paramagnetic Resonance (EPR) and Dynamic Nuclear Polarization (DNP) instrument platform operating at 7 T. This is achieved with the integration of a 1 GHz, 2 channel, digital to analog converter (DAC) board that enables the generation of coherent arbitrary waveforms at Ku-band frequencies with 1 ns resolution into an existing architecture of a solid state amplifier multiplier chain (AMC). This allows for the generation of arbitrary phase- and amplitude-modulated waveforms at 200 GHz with >150 mW power. We find that the non-linearity of the AMC poses significant difficulties in generating amplitude-modulated pulses at 200 GHz. We demonstrate that in the power-limited regime of ω1 < 1 MHz phase-modulated pulses were sufficient to achieve significant improvements in broadband (>10 MHz) spin manipulation in incoherent (inversion), as well as coherent (echo formation) experiments. Highlights include the improvement by one order of magnitude in inversion bandwidth compared to that of conventional rectangular pulses, as well as a factor of two in improvement in the refocused echo intensity at 200 GHz.

  15. High Efficiency Ka-Band Solid State Power Amplifier Waveguide Power Combiner

    NASA Technical Reports Server (NTRS)

    Wintucky, Edwin G.; Simons, Rainee N.; Chevalier, Christine T.; Freeman, Jon C.

    2010-01-01

    A novel Ka-band high efficiency asymmetric waveguide four-port combiner for coherent combining of two Monolithic Microwave Integrated Circuit (MMIC) Solid State Power Amplifiers (SSPAs) having unequal outputs has been successfully designed, fabricated and characterized over the NASA deep space frequency band from 31.8 to 32.3 GHz. The measured combiner efficiency is greater than 90 percent, the return loss greater than 18 dB and input port isolation greater than 22 dB. The manufactured combiner was designed for an input power ratio of 2:1 but can be custom designed for any arbitrary power ratio. Applications considered are NASA s space communications systems needing 6 to 10 W of radio frequency (RF) power. This Technical Memorandum (TM) is an expanded version of the article recently published in Institute of Engineering and Technology (IET) Electronics Letters.

  16. Development of a high-temperature oven for the 28 GHz electron cyclotron resonance ion source.

    PubMed

    Ohnishi, J; Higurashi, Y; Kidera, M; Ozeki, K; Nakagawa, T

    2014-02-01

    We have been developing the 28 GHz ECR ion source in order to accelerate high-intensity uranium beams at the RIKEN RI-beam Factory. Although we have generated U(35+) beams by the sputtering method thus far, we began developing a high-temperature oven with the aim of increasing and stabilizing the beams. Because the oven method uses UO2, a crucible must be heated to a temperature higher than 2000 °C to supply an appropriate amount of UO2 vapor to the ECR plasma. Our high-temperature oven uses a tungsten crucible joule-heated with DC current of approximately 450 A. Its inside dimensions are ϕ11 mm × 13.5 mm. Since the crucible is placed in a magnetic field of approximately 3 T, it is subject to a magnetic force of approximately 40 N. Therefore, we used ANSYS to carefully design the crucible, which was manufactured by machining a tungsten rod. We could raise the oven up to 1900 °C in the first off-line test. Subsequently, UO2 was loaded into the crucible, and the oven was installed in the 28 GHz ECR ion source and was tested. As a result, a U(35+) beam current of 150 μA was extracted successfully at a RF power of approximately 3 kW.

  17. High-Frequency Wireless Communications System: 2.45-GHz Front-End Circuit and System Integration

    ERIC Educational Resources Information Center

    Chen, M.-H.; Huang, M.-C.; Ting, Y.-C.; Chen, H.-H.; Li, T.-L.

    2010-01-01

    In this article, a course on high-frequency wireless communications systems is presented. With the 145-MHz baseband subsystem available from a prerequisite course, the present course emphasizes the design and implementation of the 2.45-GHz front-end subsystem as well as system integration issues. In this curriculum, the 2.45-GHz front-end…

  18. High Power Squeeze Type Phase Shifter at W-Band

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hill, Marc E

    2000-09-28

    We describe the design, fabrication and bench-study of a mm-wave phase-shifter employed as a high power recirculator for a traveling wave resonator circuit. The OFE copper phase shifter was prepared by electro-discharge machining. Measured phase-shifter characteristics are presented and compared with theory. The phase-shifter was employed in a traveling wave circuit at 91.4 GHz with circulating power of 0.2 MW and subjected to fields greater than 10 MV/m without evidence of breakdown.

  19. The ETA-II induction linac as a high-average-power FEL driver

    NASA Astrophysics Data System (ADS)

    Nexsen, W. E.; Atkinson, D. P.; Barrett, D. M.; Chen, Y.-J.; Clark, J. C.; Griffith, L. V.; Kirbie, H. C.; Newton, M. A.; Paul, A. C.; Sampayan, S.; Throop, A. L.; Turner, W. C.

    1990-10-01

    The Experimental Test Accelerator II (ETA-II) is the first induction linac designed specifically to FEL requirements. It is primarily intended to demonstrate induction accelerator technology for high-average-power, high-brightness electron beams, and will be used to drive a 140 and 250 GHz microwave FEL for plasma heating experiments in the Microwave Tokamak Experiment (MTX) at LLNL. Its features include high-vacuum design which allows the use of an intrinsically bright dispenser cathode, induction cells designed to minimize BBU growth rate, and careful attention to magnetic alignment to minimize radial sweep due to beam corkscrew. The use of magnetic switches allows high-average-power operation. At present ETA-II is being used to drive 140 GHz plasma heating experiments. These experiments require nominal beam parameters of 6 MeV energy, 2 kA current, 20 ns pulse width and a brightness of 1 × 108 A/(m rad)2 at the wiggler with a pulse repetition frequency (prf) of 0.5 Hz. Future 250 GHz experiments require beam parameters of 10 MeV energy, 3 kA current, 50 ns pulse width and a brightness of 1 × 108 A/(m rad)2 with a 5 kHz prf for 0.5 s. In this paper we discuss the present status of ETA-II parameters and the phased development program necessary to satisfy these future requirements.

  20. A high-overtone bulk acoustic wave resonator-oscillator-based 4.596 GHz frequency source: Application to a coherent population trapping Cs vapor cell atomic clock.

    PubMed

    Daugey, Thomas; Friedt, Jean-Michel; Martin, Gilles; Boudot, Rodolphe

    2015-11-01

    This article reports on the design and characterization of a high-overtone bulk acoustic wave resonator (HBAR)-oscillator-based 4.596 GHz frequency source. A 2.298 GHz signal, generated by an oscillator constructed around a thermally controlled two-port aluminum nitride-sapphire HBAR resonator with a Q-factor of 24,000 at 68 °C, is frequency multiplied by 2-4.596 GHz, half of the Cs atom clock frequency. The temperature coefficient of frequency of the HBAR is measured to be -23 ppm/ °C at 2.298 GHz. The measured phase noise of the 4.596 GHz source is -105 dB rad(2)/Hz at 1 kHz offset and -150 dB rad(2)/Hz at 100 kHz offset. The 4.596 GHz output signal is used as a local oscillator in a laboratory-prototype Cs microcell-based coherent population trapping atomic clock. The signal is stabilized onto the atomic transition frequency by tuning finely a voltage-controlled phase shifter implemented in the 2.298 GHz HBAR-oscillator loop, preventing the need for a high-power-consuming direct digital synthesis. The short-term fractional frequency stability of the free-running oscillator is 1.8 × 10(-9) at one second integration time. In locked regime, the latter is improved in a preliminary proof-of-concept experiment at the level of 6.6 × 10(-11) τ(-1/2) up to a few seconds and found to be limited by the signal-to-noise ratio of the detected CPT resonance.

  1. A high-overtone bulk acoustic wave resonator-oscillator-based 4.596 GHz frequency source: Application to a coherent population trapping Cs vapor cell atomic clock

    NASA Astrophysics Data System (ADS)

    Daugey, Thomas; Friedt, Jean-Michel; Martin, Gilles; Boudot, Rodolphe

    2015-11-01

    This article reports on the design and characterization of a high-overtone bulk acoustic wave resonator (HBAR)-oscillator-based 4.596 GHz frequency source. A 2.298 GHz signal, generated by an oscillator constructed around a thermally controlled two-port aluminum nitride-sapphire HBAR resonator with a Q-factor of 24 000 at 68 °C, is frequency multiplied by 2-4.596 GHz, half of the Cs atom clock frequency. The temperature coefficient of frequency of the HBAR is measured to be -23 ppm/ °C at 2.298 GHz. The measured phase noise of the 4.596 GHz source is -105 dB rad2/Hz at 1 kHz offset and -150 dB rad2/Hz at 100 kHz offset. The 4.596 GHz output signal is used as a local oscillator in a laboratory-prototype Cs microcell-based coherent population trapping atomic clock. The signal is stabilized onto the atomic transition frequency by tuning finely a voltage-controlled phase shifter implemented in the 2.298 GHz HBAR-oscillator loop, preventing the need for a high-power-consuming direct digital synthesis. The short-term fractional frequency stability of the free-running oscillator is 1.8 × 10-9 at one second integration time. In locked regime, the latter is improved in a preliminary proof-of-concept experiment at the level of 6.6 × 10-11 τ-1/2 up to a few seconds and found to be limited by the signal-to-noise ratio of the detected CPT resonance.

  2. GHz low noise short wavelength infrared (SWIR) photoreceivers

    NASA Astrophysics Data System (ADS)

    Bai, Xiaogang; Yuan, Ping; McDonald, Paul; Boisvert, Joseph; Chang, James; Woo, Robyn; Labios, Eduardo; Sudharsanan, Rengarajan; Krainak, Michael; Yang, Guangning; Sun, Xiaoli; Lu, Wei; McIntosh, Dion; Zhou, Qiugui; Campbell, Joe

    2011-06-01

    Next generation LIDAR mapping systems require multiple channels of sensitive photoreceivers that operate in the wavelength region of 1.06 to 1.55 microns, with GHz bandwidth and sensitivity less than 300 fW/√Hz. Spectrolab has been developing high sensitivity photoreceivers using InAlAs impact ionization engineering (I2E) avalanche photodiodes (APDs) structures for this application. APD structures were grown using metal organic vapor epitaxy (MOVPE) and mesa devices were fabricated using these structures. We have achieved low excess noise at high gain in these APD devices; an impact ionization parameter, k, of about 0.15 has been achieved at gains >20 using InAlAs/InGaAlAs as a multiplier layer. Electrical characterization data of these devices show dark current less than 2 nA at a gain of 20 at room temperature; and capacitance of 0.4 pF for a typical 75 micron diameter APD. Photoreceivers were built by integrating I2E APDs with a low noise GHz transimpedance amplifier (TIA). The photoreceivers showed a bandwidth of 1 GHz and a noise equivalent power (NEP) of 150 fW/rt(Hz) at room temperature.

  3. High-speed 850 nm VCSELs with 28 GHz modulation bandwidth for short reach communication

    NASA Astrophysics Data System (ADS)

    Westbergh, Petter; Safaisini, Rashid; Haglund, Erik; Gustavsson, Johan S.; Larsson, Anders; Joel, Andrew

    2013-03-01

    We present results from our new generation of high performance 850 nm oxide confined vertical cavity surface-emitting lasers (VCSELs). With devices optimized for high-speed operation under direct modulation, we achieve record high 3dB modulation bandwidths of 28 GHz for ~4 μm oxide aperture diameter VCSELs, and 27 GHz for devices with a ~7 μm oxide aperture diameter. Combined with a high-speed photoreceiver, the ~7 μm VCSEL enables error-free transmission at data rates up to 47 Gbit/s at room temperature, and up to 40 Gbit/s at 85°C.

  4. The Atacama Cosmology Telescope: A Measurement of the Cosmic Microwave Background Power Spectrum at 148 AND 218 GHz from the 2008 Southern Survey

    NASA Technical Reports Server (NTRS)

    Das, Sudeep; Marriage, Tobias A.; Ade, Peter A. R.; Aguirre, Paula; Amiri, Mandana; Appel, John W.; Barrientos, L. Felipe; Battistelli, Elia A.; Bond, J. Richard; Brown, Ben; hide

    2010-01-01

    We present measurements of the cosmic microwave background (CMB) power spectrum made by the Atacama Cosmology Telescope at 148 GHz and 218 GHz, as well as the cross-frequency spectrum between the two channels. Our results dearly show the second through the seventh acoustic peaks in the CMB power spectrum. The measurements of these higher-order peaks provide an additional test of the ACDM cosmological model. At l > 3000, we detect power in excess of the primary anisotropy spectrum of the CMB. At lower multipoles 500 < l < 3000, we find evidence for gravitational lensing of the CMB in the power spectrum at the 2.8(sigma) level. We also detect a low level of Galactic dust in our maps, which demonstrates that we can recover known faint, diffuse signals.

  5. Real100G.RF: A Fully Packaged 240 GHz Transmitter with In-Antenna Power Combining in 0.13 μm SiGe Technology

    NASA Astrophysics Data System (ADS)

    Malz, Stefan; Goettel, Benjamin; Eisenbeis, Joerg; Boes, Florian; Grzyb, Janusz; Vazquez, Pedro Rodriguez; Zwick, Thomas; Pfeiffer, Ullrich R.

    2017-09-01

    This paper reports on the research activities during the first phase of the project Real100G.RF, which is part of the German Research Foundation (DFG) priority programm SPP1655. The project's main objective is to research silicon-based wireless communication above 200 GHz to enable data rates in excess of 100 gigabit per second (Gbps). To that end, this paper presents a fully packaged 240 GHz RF transmitter front-end with power combining antenna in 0.13 μm SiGe technology. The design of circuit building blocks, passives, antenna and high-speed packaging is discussed. Communication measurements show data rates of 8 Gbps with an EVM of 12.4% using 16-QAM, 24 Gbps with 26.5% EVM using QPSK and 30 Gbps with 27.9% EVM using 8-PSK.

  6. Four-to-one power combiner for 20 GHz phased array antenna using RADC MMIC phase shifters

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The design and microwave simulation of two-to-one microstrip power combiners is described. The power combiners were designed for use in a four element phase array receive antenna subarray at 20 GHz. Four test circuits are described which were designed to enable testing of the power combiner and the four element phased array antenna. Test Circuit 1 enables measurement of the two-to-one power combiner. Test Circuit 2 enables measurement of the four-to-one power combiner. Test Circuit 3 enables measurement of a four element antenna array without phase shifting MMIC's in order to characterize the power combiner with the antenna patch-to-microstrip coaxial feedthroughs. Test circuit 4 is the four element phased array antenna including the RADC MMIC phase shifters and appropriate interconnects to provide bias voltages and control phase bits.

  7. 338-GHz Semiconductor Amplifier Module

    NASA Technical Reports Server (NTRS)

    Samoska, Lorene A.; Gaier, Todd C.; Soria, Mary M.; Fung, King Man; Rasisic, Vesna; Deal, William; Leong, Kevin; Mei, Xiao Bing; Yoshida, Wayne; Liu, Po-Hsin; hide

    2010-01-01

    Research findings were reported from an investigation of new gallium nitride (GaN) monolithic millimeter-wave integrated circuit (MMIC) power amplifiers (PAs) targeting the highest output power and the highest efficiency for class-A operation in W-band (75-110 GHz). W-band PAs are a major component of many frequency multiplied submillimeter-wave LO signal sources. For spectrometer arrays, substantial W-band power is required due to the passive lossy frequency multipliers.

  8. Plasma-Based Tunable High Frequency Power Limiter

    NASA Astrophysics Data System (ADS)

    Semnani, Abbas; Macheret, Sergey; Peroulis, Dimitrios

    2016-09-01

    Power limiters are often employed to protect sensitive receivers from being damaged or saturated by high-power incoming waves. Although wideband low-power limiters based on semiconductor technology are widely available, the options for high-power frequency-selective ones are very few. In this work, we study the application of a gas discharge tube (GDT) integrated in an evanescent-mode (EVA) cavity resonator as a plasma-based power limiter. Plasmas can inherently handle higher power in comparison with semiconductor diodes. Also, using a resonant structure provides the ability of having both lower threshold power and frequency-selective limiting, which are important if only a narrowband high-power signal is targeted. Higher input RF power results in stronger discharge in the GDT and consequently higher electron density which results in larger reflection. It is also possible to tune the threshold power by pre-ionizing the GDT with a DC bias voltage. As a proof of concept, a 2-GHz EVA resonator loaded by a 90-V GDT was fabricated and measured. With reasonable amount of insertion loss, the limiting threshold power was successfully tuned from 8.3 W to 590 mW when the external DC bias was varied from 0 to 80 V. The limiter performed well up to 100 W of maximum available input power.

  9. High-Performance Solid-State W-Band Power Amplifiers

    NASA Technical Reports Server (NTRS)

    Gaier, Todd; Samoska, Lorene; Wells, Mary; Ferber, Robert; Pearson, John; Campbell, April; Peralta, Alejandro; Swift, Gerald; Yocum, Paul; Chung, Yun

    2003-01-01

    The figure shows one of four solid-state power amplifiers, each capable of generating an output power greater than or equal to 240 mW over one of four overlapping frequency bands from 71 to 106 GHz. (The bands are 71 to 84, 80 to 92, 88 to 99, and 89 to 106 GHz.) The amplifiers are designed for optimum performance at a temperature of 130 K. These amplifiers were developed specifically for incorporation into frequency-multiplier chains in local oscillators in a low-noise, far-infrared receiving instrument to be launched into outer space to make astrophysical observations. The designs of these amplifiers may also be of interest to designers and manufacturers of terrestrial W-band communication and radar systems. Each amplifier includes a set of six high-electron-mobility transistor (HEMT) GaAs monolithic microwave integrated-circuit (MMIC) chips, microstrip cavities, and other components packaged in a housing made from A-40 silicon-aluminum alloy. This alloy was chosen because, for the original intended spacecraft application, it offers an acceptable compromise among the partially competing requirements for high thermal conductivity, low mass, and low thermal expansion. Problems that were solved in designing the amplifiers included designing connectors and packages to fit the available space; designing microstrip signal-power splitters and combiners; matching of impedances across the frequency bands; matching of the electrical characteristics of those chips installed in parallel power-combining arms; control and levelling of output power across the bands; and designing the MMICs, microstrips, and microstrip cavities to suppress tendencies toward oscillation in several modes, both inside and outside the desired frequency bands.

  10. 35 GHz mode-locking of 1.3 μm quantum dot lasers

    NASA Astrophysics Data System (ADS)

    Kuntz, M.; Fiol, G.; Lämmlin, M.; Bimberg, D.; Thompson, M. G.; Tan, K. T.; Marinelli, C.; Penty, R. V.; White, I. H.; Ustinov, V. M.; Zhukov, A. E.; Shernyakov, Yu. M.; Kovsh, A. R.

    2004-08-01

    35GHz passive mode-locking of 1.3μm (InGa)As/GaAs quantum dot lasers is reported. Hybrid mode-locking was achieved at frequencies up to 20GHz. The minimum pulse width of the Fourier-limited pulses was 7ps with a peak power of 6mW. Low uncorrelated timing jitter below 1ps was found in cross correlation experiments. High-frequency operation of the lasers was eased by a ridge waveguide design that includes etching through the active layer.

  11. Rectenna Technology Program: Ultra light 2.45 GHz rectenna 20 GHz rectenna

    NASA Technical Reports Server (NTRS)

    Brown, William C.

    1987-01-01

    The program had two general objectives. The first objective was to develop the two plane rectenna format for space application at 2.45 GHz. The resultant foreplane was a thin-film, etched-circuit format fabricated from a laminate composed of 2 mil Kapton F sandwiched between sheets of 1 oz copper. The thin-film foreplane contains half wave dipoles, filter circuits, rectifying Schottky diode, and dc bussing lead. It weighs 160 grams per square meter. Efficiency and dc power output density were measured at 85% and 1 kw/sq m, respectively. Special testing techniques to measure temperature of circuit and diode without perturbing microwave operation using the fluoroptic thermometer were developed. A second objective was to investigate rectenna technology for use at 20 GHz and higher frequencies. Several fabrication formats including the thin-film scaled from 2.45 GHz, ceramic substrate and silk-screening, and monolithic were investigated, with the conclusion that the monolithic approach was the best. A preliminary design of the monolithic rectenna structure and the integrated Schottky diode were made.

  12. A spectral radiance comparison of a noise tube and a HgXe arc lamp between 60 GHz and 600 GHz

    NASA Technical Reports Server (NTRS)

    Heaney, J. B.; Stewart, K. P.; Boucarut, R. A.; Moller, K. D.; Zoeller, R.

    1987-01-01

    The relative spectral radiance of a noise tube, model TN-167, designed for the frequency range 90-140 GHz (3.3 mm to 2.1 mm) was compared to that from a 200-watt high pressure HgXe arc lamp over the wavelength region from 0.5 to about 5 mm. A Michelson Fourier transform spectrometer and a lamellar grating instrument were used in conjunction with liquid helium-cooled bolometers of NEP 10 to the -12th to 10 to the -14th watt/(Hz) exp 1/2 to measure relative spectral radiant power. With this instrumental arrangement, the noise tube exhibited a very sharp low frequency cutoff at about 2.2/cm. The HgXe arc lamp emitted more radiant power than the noise tube in the wavelength region below 3 mm (100 GHz) down to 0.5 mm. Above 3 mm, the noise tube had a stronger output. The noise tube spectral radiance shifted to lower frequencies when the input current was lowered from 125 mA to 50 mA.

  13. Development of a tactical high-power microwave source using the Plasma Electron Microwave Source (PEMS) concept

    NASA Astrophysics Data System (ADS)

    Dandl, R. A.; Guest, G. E.; Jory, H. R.

    1990-12-01

    The AMPHED facility was used to perform feasibility experiments to explore the generation of high-power microwave pulses from energy stored in a magnetic mirror plasma. The facility uses an open-ended magnetic mirror driven by pulsed or cw c- and x-band sources. Microwave horns were constructed to couple in the frequency range of 2.4 to 4 GHz to whistler waves in the plasma. Spontaneous bursts of microwave radiation in the range of 3 to 5 GHz were observed in the experiments. But the power levels were lower than expected for the whistler wave interaction. It is probable that the hot-electron energy densities achieved were not high enough to approach the threshold of the desired interaction.

  14. A high-overtone bulk acoustic wave resonator-oscillator-based 4.596 GHz frequency source: Application to a coherent population trapping Cs vapor cell atomic clock

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daugey, Thomas; Friedt, Jean-Michel; Martin, Gilles

    2015-11-15

    This article reports on the design and characterization of a high-overtone bulk acoustic wave resonator (HBAR)-oscillator-based 4.596 GHz frequency source. A 2.298 GHz signal, generated by an oscillator constructed around a thermally controlled two-port aluminum nitride-sapphire HBAR resonator with a Q-factor of 24 000 at 68 °C, is frequency multiplied by 2–4.596 GHz, half of the Cs atom clock frequency. The temperature coefficient of frequency of the HBAR is measured to be −23 ppm/ °C at 2.298 GHz. The measured phase noise of the 4.596 GHz source is −105 dB rad{sup 2}/Hz at 1 kHz offset and −150 dB rad{sup 2}/Hz at 100more » kHz offset. The 4.596 GHz output signal is used as a local oscillator in a laboratory-prototype Cs microcell-based coherent population trapping atomic clock. The signal is stabilized onto the atomic transition frequency by tuning finely a voltage-controlled phase shifter implemented in the 2.298 GHz HBAR-oscillator loop, preventing the need for a high-power-consuming direct digital synthesis. The short-term fractional frequency stability of the free-running oscillator is 1.8 × 10{sup −9} at one second integration time. In locked regime, the latter is improved in a preliminary proof-of-concept experiment at the level of 6.6 × 10{sup −11} τ{sup −1/2} up to a few seconds and found to be limited by the signal-to-noise ratio of the detected CPT resonance.« less

  15. High-peak-power microwave pulses: effects on heart rate and blood pressure in unanesthetized rats.

    PubMed

    Jauchem, J R; Frei, M R

    1995-10-01

    Exposure sources capable of generating high-peak-power microwave pulses, with relatively short pulse widths, have recently been developed. Studies of the effect of these sources on the cardiovascular systems of animals have not been reported previously. We exposed 14 unanesthetized male Sprague-Dawley rats to 10 high-peak-power microwave pulses generated by a transformer-energized megawatt pulsed output (TEMPO) microwave source, at frequencies ranging from 1.2-1.8 GHz. Peak power densities were as high as 51.6 kW/cm2. At 14 d prior to irradiation, the animals were implanted with chronic aortic cannulae. With appropriate shielding of the transducer, blood pressure recordings were obtained during microwave pulsing. In a preliminary series of exposures at 1.7-1.8 GHz (peak power density 3.3-6.5 kW/cm2), an immediate but transient increase in mean arterial blood pressure (significant) and decrease in heart rate (non-significant) were observed. A loud noise was associated with each pulse produced by the TEMPO; this factor was subsequently attenuated. In a second series of exposures at 1.2-1.4 GHz (peak power density 14.6-51.6 kW/cm2), there were no significant changes in mean arterial blood pressure or heart rate during microwave exposure. The earlier significant increase in blood pressure that occurred during microwave exposure appeared to be related to the sharp noise produced by the TEMPO source. After appropriate sound attenuation, there were no significant effects of exposure to the microwave pulses.

  16. High field Q slope and the effect of low-temperature baking at 3 GHz

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ciovati, G.; Eremeev, G.; Hannon, F.

    Here, a strong degradation of the unloaded quality factor with field, called high field Q-slope, is commonly observed above Bmore » $$_{p}$$ $$\\cong$$ 100 mT in elliptical superconducting niobium cavities at 1.3 GHz and 1.5 GHz. In the present experiments several 3 GHz niobium cavities were measured up to and above B$$_{p}$$ $$\\cong$$100 mT. The measurements show that a high field Q-slope phenomenon limits the field reach at this frequency, that the high field Q-slope onset field depends weakly on the frequency, and that the high field Q-slope can be removed by the typical empirical solution of electropolishing followed by heating to 120 $$^{\\circ}$$C for 48 hrs. In addition, one of the cavities reached a quench field of 174~mT and its field dependence of the quality factor was compared against global heating predicted by a thermal feedback model.« less

  17. High field Q slope and the effect of low-temperature baking at 3 GHz

    DOE PAGES

    Ciovati, G.; Eremeev, G.; Hannon, F.

    2018-01-29

    Here, a strong degradation of the unloaded quality factor with field, called high field Q-slope, is commonly observed above Bmore » $$_{p}$$ $$\\cong$$ 100 mT in elliptical superconducting niobium cavities at 1.3 GHz and 1.5 GHz. In the present experiments several 3 GHz niobium cavities were measured up to and above B$$_{p}$$ $$\\cong$$100 mT. The measurements show that a high field Q-slope phenomenon limits the field reach at this frequency, that the high field Q-slope onset field depends weakly on the frequency, and that the high field Q-slope can be removed by the typical empirical solution of electropolishing followed by heating to 120 $$^{\\circ}$$C for 48 hrs. In addition, one of the cavities reached a quench field of 174~mT and its field dependence of the quality factor was compared against global heating predicted by a thermal feedback model.« less

  18. Third order intermodulation distortion in HTS Josephson Junction downconverter at 12GHz

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suzuki, Katsumi; Hayashi, Kunihiko; Fujimoto, Manabu

    1994-12-31

    Here the authors first report on the microwave characteristics of the third order intermodulation distortion(IMD3) in High-Tc Superconductor (HTS) Josephson Junction (JJ) Downconverter at 12GHz. They have successfully developed high quality nonlinear YBCO microbridge Josephson junctions for such an active MMIC as a mixer with RF, LO, IF and bias filters, which have been fabricated on (100) MgO substrates with 20mm x 20mm x 0.5mm dimensions. The minimum conversion loss of the JJ mixer is 11 dB at very small local microwave input power LO= {minus}20dBm which is two order less than Schottky diode mixer. Consequently, this small optimum LOmore » power gives the small RF input power at which the output IF power of the YBCO mixer saturates. Two-tone third-order intercept point(IP3) performance is a significantly important figure of merit typically used to define linearity of devices and circuits. The RF input power = {minus}15dBm at the IP3 point is obtained for the YBCO mixer at 15K and LO = 10.935GHz with {minus}22dBm. The have successfully measured the dependence of IMD3 on temperature, bias current and LO power.« less

  19. On the averaging area for incident power density for human exposure limits at frequencies over 6 GHz

    NASA Astrophysics Data System (ADS)

    Hashimoto, Yota; Hirata, Akimasa; Morimoto, Ryota; Aonuma, Shinta; Laakso, Ilkka; Jokela, Kari; Foster, Kenneth R.

    2017-04-01

    Incident power density is used as the dosimetric quantity to specify the restrictions on human exposure to electromagnetic fields at frequencies above 3 or 10 GHz in order to prevent excessive temperature elevation at the body surface. However, international standards and guidelines have different definitions for the size of the area over which the power density should be averaged. This study reports computational evaluation of the relationship between the size of the area over which incident power density is averaged and the local peak temperature elevation in a multi-layer model simulating a human body. Three wave sources are considered in the frequency range from 3 to 300 GHz: an ideal beam, a half-wave dipole antenna, and an antenna array. 1D analysis shows that averaging area of 20 mm  ×  20 mm is a good measure to correlate with the local peak temperature elevation when the field distribution is nearly uniform in that area. The averaging area is different from recommendations in the current international standards/guidelines, and not dependent on the frequency. For a non-uniform field distribution, such as a beam with small diameter, the incident power density should be compensated by multiplying a factor that can be derived from the ratio of the effective beam area to the averaging area. The findings in the present study suggest that the relationship obtained using the 1D approximation is applicable for deriving the relationship between the incident power density and the local temperature elevation.

  20. A 1- to 10-GHz downconverter for high-resolution microwave survey

    NASA Technical Reports Server (NTRS)

    Mcwatters, D.

    1994-01-01

    A downconverter was designed, built, and tested for the High Resolution Microwave Survey project. The input frequency range is 1 to 10 GHz with instantaneous bandwidth of 350 MHz and dynamic range of 125 dB/Hz. Requirements were derived for the local oscillators and special design techniques were implemented to achieve the high degree of spectral purity required.

  1. The ETA-2 induction linac as a high average power FEL driver

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nexsen, W.E.; Atkinson, D.P.; Barrett, D.M.

    1989-10-16

    The Experimental Test Accelerator-II (ETA-II) is the first induction linac designed specifically to FEL requirements. It primarily is intended to demonstrate induction accelerator technology for high average power, high brightness electron beams, and will be used to drive a 140 and 250 GHz microwave FEL for plasma heating experiments in the Microwave Tokamak Experiment (MTX) at LLNL. Its features include high vacuum design which allows the use of an intrinsically bright dispenser cathode, induction cells designed to minimize BBU growth rate, and careful attention to magnetic alignment to minimize radial sweep due to beam corkscrew. The use of magnetic switchesmore » allows high average power operation. At present ETA-II is being used to drive 140 GHz plasma heating experiments. These experiments require nominal beam parameters of 6 Mev energy, 2kA current, 20ns pulse width and a brightness of 1 {times} 10{sup 8} A/(m-rad){sup 2} at the wiggler with a pulse repetition frequency (PRF) of 0.5 Hz. Future 250 GHz experiments require beam parameters of 10 Mev energy, 3kA current, 50ns pulse width and a brightness of 1 {times} 10{sup 8} A/(m-rad){sup 2} with a 5 kHz PRF for 0.5 sec. In this paper we discuss the present status of ETA-II parameters and the phased development program necessary to satisfy these future requirements. 13 refs., 9 figs., 1 tab.« less

  2. Use of the 37-38 GHz and 40-40.5 GHz Ka-bands for Deep Space Communications

    NASA Technical Reports Server (NTRS)

    Morabito, David; Hastrup, Rolf

    2004-01-01

    This paper covers a wide variety of issues associated with the implementation and use of these frequency bands for deep space communications. Performance issues, such as ground station pointing stability, ground antenna gain, antenna pattern, and propagation effects such as due to atmospheric, charged-particle and space loss at 37 GHz, will be addressed in comparison to the 32 GHz Ka-band deep space allocation. Issues with the use of and competition for this spectrum also will be covered. The state of the hardware developed (or proposed) for operating in this frequency band will be covered from the standpoint of the prospects for achieving higher data rates that could be accommodated in the available bandwidth. Hardware areas to be explored include modulators, digital-to-analog converters, filters, power amplifiers, receivers, and antennas. The potential users of the frequency band will be explored as well as their anticipated methods to achieve the potential high data rates and the implications of the competition for bandwidth.

  3. Dual-polarization 8.45 GHz traveling-wave maser

    NASA Technical Reports Server (NTRS)

    Quinn, R. B.

    1987-01-01

    An 8.5 GHz dual-channel, dual-polarization traveling-wave maser (TWM) amplifier was installed in the XKR solar system radar cone at DSS 14. The TWM is based on the Blk IIA 8.45 GHz maser structure, with two of the four maser stages being used for each channel, and each maser half then followed by a high-performance GaAs FET amplifier to achieve the desired net gain. A shortened low-noise input waveguide and an orthogonal-mode junction which is cooled to 4.5 K feeds each amplifier chain. The rotation of an external polarizer permits the polarization of each channel to be defined as either linear or circular. A circular waveguide switch was also developed to provide for noise calibration and to protect the maser from incident transmitter power.

  4. 180-GHz Interferometric Imager

    NASA Technical Reports Server (NTRS)

    Kangaslahti, Pekka P.; Lim, Boon H.; O'Dwyer, Ian J.; Soria, Mary M.; Owen, Heather R.; Gaier, Todd C.; Lambrigtsen, Bjorn, H.; Tanner, Alan B.; Ruf, Christopher

    2011-01-01

    A 180-GHz interferometric imager uses compact receiver modules, combined high- and low-gain antennas, and ASIC (application specific integrated circuit) correlator technology, enabling continuous, all-weather observations of water vapor with 25-km resolution and 0.3-K noise in 15 minutes of observation for numerical weather forecasting and tropical storm prediction. The GeoSTAR-II prototype instrument is broken down into four major subsystems: the compact, low-noise receivers; sub-array modules; IF signal distribution; and the digitizer/correlator. Instead of the single row of antennas adopted in GeoSTAR, this version has four rows of antennas on a coarser grid. This dramatically improves the sensitivity in the desired field of view. The GeoSTAR-II instrument is a 48-element, synthetic, thinned aperture radiometer operating at 165-183 GHz. The instrument has compact receivers integrated into tiles of 16 elements in a 4x4 arrangement. These tiles become the building block of larger arrays. The tiles contain signal distribution for bias controls, IF signal, and local oscillator signals. The IF signals are digitized and correlated using an ASIC correlator to minimize power consumption. Previous synthetic aperture imagers have used comparatively large multichip modules, whereas this approach uses chip-scale modules mounted on circuit boards, which are in turn mounted on the distribution manifolds. This minimizes the number of connectors and reduces system mass. The use of ASIC technology in the digitizers and correlators leads to a power reduction close to an order of magnitude.

  5. Broadband rectangular TEn0 mode exciter with H-plane power dividers for 100 GHz confocal gyro-devices.

    PubMed

    Yao, Yelei; Wang, Jianxun; Li, Hao; Liu, Guo; Luo, Yong

    2017-07-01

    A generic approach to excite TE n0 (n ≥ 1) modes in a rectangular waveguide for confocal gyro-devices is proposed. The exciter consists of a 3 dB H-plane power divider (n ≥ 3) and a mode-converting section. The injection power is split into two in-phase signals with equal amplitudes which simultaneously excite the secondary waveguide via two sets of multiple slots. Both the position and width of the slot are symmetrically distributed with respect to the center line for each set of slots. The slot width complies with a geometry sequence, with adjacent slots being spaced a quarter wavelength apart to cancel the backward wave out. A TE 40 mode exciter at 100 GHz is numerically simulated and optimized, achieving a 1 dB and a 3 dB transmission bandwidth of 18.2 and 21 GHz, respectively. The prototype is fabricated and measured. The cold test is carried out utilizing two identical back-to-back connected mode exciters, and the measured performances are in good agreement with the numerical simulation results when taking into account the wall loss and assembly tolerance.

  6. Preliminary experimental investigation of a complex dual-band high power microwave source.

    PubMed

    Zhang, Xiaoping; Li, Yangmei; Li, Zhiqiang; Zhong, Huihuang; Qian, Baoliang

    2015-10-01

    In order to promote the power conversion efficiency of a magnetically insulated transmission line oscillator (MILO) and obtain microwaves in dual bands, an axially extracted C-band virtual cathode oscillator (VCO) with multiple resonant cavities is introduced to partially utilize the load current of an S-band MILO. The formed novel dual-band high power microwave source called MILO and VCO is investigated with simulation and experimentally. A dual-band radiation antenna is designed to effectively radiate microwaves generated by the MILO and the VCO, respectively, while avoiding them being influenced by the microwave reflection and diffraction. The preliminary experimental results measured by the dual-band diagnostic system show that both the MILO and the VCO operate normally under repeated shots. A microwave of 2.1 GHz, 1.70 GW is generated from the MILO and a 0.37 GW microwave at frequencies of 4.1 GHz and 3.8 GHz is generated from the VCO under the condition of about 440 kV and 35 kA. Compared with a single MILO (10.6%), a MILO and VCO achieves higher total power and efficiency (13.4%) in both S and C bands, indicating that the load current of the MILO partially couples into the beam-wave interaction in the VCO and then contributes to the output microwaves. However, more works are needed regarding the spectrum purification of the VCO and promotion of the output power of both the MILO and the VCO.

  7. 42GHz ECRH assisted Plasma Breakdown in tokamak SST-1

    NASA Astrophysics Data System (ADS)

    Shukla, B. K.; Pradhan, S.; Patel, Paresh; Babu, Rajan; Patel, Jatin; Patel, Harshida; Dhorajia, Pragnesh; Tanna, V.; Atrey, P. K.; Manchanda, R.; Gupta, Manoj; Joisa, Shankar; Gupta, C. N.; Danial, Raju; Singh, Prashant; Jha, R.; Bora, D.

    2015-03-01

    In SST-1, 42GHz ECRH system has been commissioned to carry out breakdown and heating experiments at 0.75T and 1.5T operating toroidal magnetic fields. The 42GHz ECRH system consists of high power microwave source Gyrotron capable to deliver 500kW microwave power for 500ms duration, approximately 20 meter long transmission line and a mirror based launcher. The ECRH power in fundamental O-mode & second harmonic X-mode is launched from low field side (radial port) of the tokamak. At 0.75T operation, approximately 300 kW ECH power is launched in second harmonic X-mode and successful ECRH assisted breakdown is achieved at low loop_voltage ~ 3V. The ECRH power is launched around 45ms prior to loop voltage. The hydrogen pressure in tokamak is maintained ~ 1×10-5mbar and the pre-ionized density is ~ 4×1012/cc. At 1.5T operating toroidal magnetic field, the ECH power is launched in fundamental O-mode. The ECH power at fundamental harmonic is varied from 100 kW to 250 kW and successful breakdown is achieved in all ECRH shots. In fundamental harmonic there is no delay in breakdown while at second harmonic ~ 40ms delay is observed, which is normal in case of second harmonic ECRH assisted breakdown.

  8. Multi-mode multi-band power amplifier module with high low-power efficiency

    NASA Astrophysics Data System (ADS)

    Xuguang, Zhang; Jie, Jin

    2015-10-01

    Increasingly, mobile communications standards require high power efficiency and low currents in the low power mode. This paper proposes a fully-integrated multi-mode and multi-band power amplifier module (PAM) to meet these requirements. A dual-path PAM is designed for high-power mode (HPM), medium-power mode (MPM), and low-power mode (LPM) operations without any series switches for different mode selection. Good performance and significant current saving can be achieved by using an optimized load impedance design for each power mode. The PAM is tapeout with the InGaP/GaAs heterojunction bipolar transistor (HBT) process and the 0.18-μm complementary metal-oxide semiconductor (CMOS) process. The test results show that the PAM achieves a very low quiescent current of 3 mA in LPM. Meanwhile, across the 1.7-2.0 GHz frequency, the PAM performs well. In HPM, the output power is 28 dBm with at least 39.4% PAE and -40 dBc adjacent channel leakage ratio 1 (ACLR1). In MPM, the output power is 17 dBm, with at least 21.3% PAE and -43 dBc ACLR1. In LPM, the output power is 8 dBm, with at least 18.2% PAE and -40 dBc ACLR1. Project supported by the National Natural Science Foundation of China (No. 61201244).

  9. 0.5 V 5.8 GHz highly linear current-reuse voltage-controlled oscillator with back-gate tuning technique

    NASA Astrophysics Data System (ADS)

    Ikeda, Sho; Lee, Sang-Yeop; Ito, Hiroyuki; Ishihara, Noboru; Masu, Kazuya

    2015-04-01

    In this paper, we present a voltage-controlled oscillator (VCO), which achieves highly linear frequency tuning under a low supply voltage of 0.5 V. To obtain the linear frequency tuning of a VCO, the high linearity of the threshold voltage of a varactor versus its back-gate voltage is utilized. This enables the linear capacitance tuning of the varactor; thus, a highly linear VCO can be achieved. In addition, to decrease the power consumption of the VCO, a current-reuse structure is employed as a cross-coupled pair. The proposed VCO was fabricated using a 65 nm Si complementary metal oxide semiconductor (CMOS) process. It shows the ratio of the maximum VCO gain (KVCO) to the minimum one to be 1.28. The dc power consumption is 0.33 mW at a supply voltage of 0.5 V. The measured phase noise at 10 MHz offset is -123 dBc/Hz at an output frequency of 5.8 GHz.

  10. Analysis and design of high-power and efficient, millimeter-wave power amplifier systems using zero degree combiners

    NASA Astrophysics Data System (ADS)

    Tai, Wei; Abbasi, Mortez; Ricketts, David S.

    2018-01-01

    We present the analysis and design of high-power millimetre-wave power amplifier (PA) systems using zero-degree combiners (ZDCs). The methodology presented optimises the PA device sizing and the number of combined unit PAs based on device load pull simulations, driver power consumption analysis and loss analysis of the ZDC. Our analysis shows that an optimal number of N-way combined unit PAs leads to the highest power-added efficiency (PAE) for a given output power. To illustrate our design methodology, we designed a 1-W PA system at 45 GHz using a 45 nm silicon-on-insulator process and showed that an 8-way combined PA has the highest PAE that yields simulated output power of 30.6 dBm and 31% peak PAE.

  11. High-Efficiency Ka-Band Waveguide Two-Way Asymmetric Power Combiner

    NASA Technical Reports Server (NTRS)

    Wintucky, E. G.; Simons, R. N.; Freeman, J. C.; Chevalier, C. T.

    2011-01-01

    NASA is planning a number of Space Exploration, Earth Observation and Space Science missions where Ka-band solid-state power amplifiers (SSPAs) could have a role. Monolithic microwave integrated circuit (MMIC) based SSPAs with output powers on the order of 10 W at Ka-band frequencies would be adequate to satisfy the data transmission rate requirements at the distances involved. MMICs are a type of integrated circuit fabricated on a GaAs wafer, which operates at micro wave frequencies and performs the function of signal amplification. The highest power Ka-band (31.8 to 32.3 GHz) SSPA to have flown in space had an output power of 2.6 W with an overall efficiency of 14.3 percent. This SSPA was built around discrete GaAs pHEMT (high electron mobility transistor) devices and flew aboard the Deep Space One spacecraft. State-of-the-art GaAs pHEMT-based MMIC power amplifiers (PAs) can deliver RF power at Ka-band frequencies anywhere from 3 W with a power added efficiency (PAE) of 32 percent to 6 W with a PAE of 26 percent. However, to achieve power levels higher than 6 W, the output of several MMIC PAs would need to be combined using a high-efficiency power combiner. Conventional binary waveguide power combiners, based on short-slot and magic-T circuits, require MMIC PAs with identical amplitude and phase characteristics for high combining efficiency. However, due to manufacturing process variations, the output powers of the MMIC PAs tend to be unequal, and hence the need to develop unequal power combiners. A two-way asymmetric magic-T based power combiner for MMIC power amplifiers, which can take in unequal inputs, has been successfully designed, fabricated, and characterized over NASA s Deep Space Network (DSN) frequency range of 31.8 to 32.3 GHz. The figure is a transparent view of the a sym - metric combiner that shows the 4-port configuration and the internal structure. The rod, post, and iris are positioned by design to achieve the desired asymmetric power ratio

  12. High-power microwave production by gyroharmonic conversion and co-generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LaPointe, M.A.; Yoder, R.B.; Wang, M.

    1997-03-01

    An rf accelerator that adds significant gyration energy to a relativistic electron beam, and mechanisms for extracting coherent radiation from the beam, are described. The accelerator is a cyclotron autoresonance accelerator (CARA), underlying theory and experimental tests of which are reviewed. The measurements illustrate the utility of CARA in preparing beams for high harmonic gyro interactions. Examples of preparation of gyrating axis-encircling beams of {approximately}400kV, 25 A with 1{lt}a{lt}2 using a 2.856 GHz CARA are discussed. Generation of MW-level harmonic power emanating from a beam prepared in CARA into an output cavity structure is predicted by theory. First measurements ofmore » intense superradiant 2nd through 6th harmonic emission from a CARA beam are described. Gyroharmonic conversion (GHC) at MW power levels into an appropriate resonator can be anticipated, in view of the results described here. Another radiation mechanism, closely related to GHC, is also described. This mechanism, dubbed {open_quotes}co-generation,{close_quotes} is based on the fact that the lowest TE{sub sm} mode in a cylindrical waveguide at frequency sw with group velocity nearly identical to group velocity for the TE{sub 11} mode at frequency w is that with s=7, m=2. This allows coherent radiation to be generated at the 7th harmonic co-existent with CARA and in the self-same rf structure. Conditions are found where co-generation of 7th harmonic power at 20 GHz is possible with overall efficiency greater than 80{percent}. It is shown that operation of a cw co-generator can take place without need of a power supply for the gun. Efficiency for a multi-MW 20 GHz co-generator is predicted to be high enough to compete with other sources, even after taking into account the finite efficiency of the rf driver required for CARA. {copyright} {ital 1997 American Institute of Physics.}« less

  13. Atmospheric propagation and combining of high-power lasers.

    PubMed

    Nelson, W; Sprangle, P; Davis, C C

    2016-03-01

    In this paper, we analyze beam combining and atmospheric propagation of high-power lasers for directed-energy (DE) applications. The large linewidths inherent in high-power fiber and slab lasers cause random phase and intensity fluctuations that occur on subnanosecond time scales. Coherently combining these high-power lasers would involve instruments capable of precise phase control and operation at rates greater than ∼10  GHz. To the best of our knowledge, this technology does not currently exist. This presents a challenging problem when attempting to phase lock high-power lasers that is not encountered when phase locking low-power lasers, for example, at milliwatt power levels. Regardless, we demonstrate that even if instruments are developed that can precisely control the phase of high-power lasers, coherent combining is problematic for DE applications. The dephasing effects of atmospheric turbulence typically encountered in DE applications will degrade the coherent properties of the beam before it reaches the target. Through simulations, we find that coherent beam combining in moderate turbulence and over multikilometer propagation distances has little advantage over incoherent combining. Additionally, in cases of strong turbulence and multikilometer propagation ranges, we find nearly indistinguishable intensity profiles and virtually no difference in the energy on the target between coherently and incoherently combined laser beams. Consequently, we find that coherent beam combining at the transmitter plane is ineffective under typical atmospheric conditions.

  14. Development of a thermionic magnicon amplifier at 11.4 GHz. Final report for period May 16, 1995 - May 15, 2001

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gold, Steven H.; Fliflet, Arne W.

    2001-08-25

    This is the final report on the research program ''Development of a Thermionic Magnicon Amplifier at 11.4 GHz,'' which was carried out by the Plasma Physics Division of the Naval Research Laboratory. Its goal was to develop a high-power, frequency-doubling X-band magnicon amplifier, an advanced scanning-beam amplifier, for use in future linear colliders. The final design parameters were 61 MW at 11.424 GHz, 59 dB gain, 59% efficiency, 1 microsecond pulselength and 10 Hz repetition rate. At the conclusion of this program, the magnicon was undergoing high-power conditioning, having already demonstrated high-power operation, phase stability, a linear drive curve, amore » small operational frequency bandwidth and a spectrally pure, single-mode output.« less

  15. A W-band integrated power module using MMIC MESFET power amplifiers and varactor doublers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ho, T.C.; Chen, Seng Woon; Pande, K.

    1993-12-01

    A high-performance integrated power module using U-band MMIC MESFET power amplifiers in conjunction with W-band MMIC high efficiency varactor doublers has been developed for millimeter-wave system applications. This paper presents the design, fabrication, and performance of this W-band integrated power module. Measured results of the complete integrated power module show an output power of 90 mW with an overall associated gain of 29.5 dB at 94 GHz. A saturated power of over 95 mW was also achieved. These results represent the highest reported power and gain at W-band using MESFET and varactor frequency doubling technologies. This integrated power module ismore » suitable for the future 94 GHz missile seeker applications.« less

  16. Design of pulsed guiding magnetic field for high power microwave generators.

    PubMed

    Ju, J-C; Zhang, H; Zhang, J; Shu, T; Zhong, H-H

    2014-09-01

    In this paper, we present a comprehensive study on designing solenoid together with the corresponding power supply system to excite pulsed magnetic field required for high power microwave generators. Particularly, a solenoid is designed and the excited magnetic field is applied to a Ku-band overmoded Cerenkov generator. It is found in experiment that the electron beam is properly guided by the magnetic field and a 1.1 GW high power microwave is achieved at a central frequency of 13.76 GHz. Pulsed solenoid system has the advantages of compactness and low energy consumption, which are of great interest for repetitive operation. The reported studies and results can be generalized to other applications which require magnetic fields.

  17. A high efficiency C-band internally-matched harmonic tuning GaN power amplifier

    NASA Astrophysics Data System (ADS)

    Lu, Y.; Zhao, B. C.; Zheng, J. X.; Zhang, H. S.; Zheng, X. F.; Ma, X. H.; Hao, Y.; Ma, P. J.

    2016-09-01

    In this paper, a high efficiency C-band gallium nitride (GaN) internally-matched power amplifier (PA) is presented. This amplifier consists of 2-chips of self-developed GaN high-electron mobility transistors (HEMTs) with 16 mm total gate width on SiC substrate. New harmonic manipulation circuits are induced both in the input and output matching networks for high efficiency matching at fundamental and 2nd-harmonic frequency, respectively. The developed amplifier has achieved 72.1% power added efficiency (PAE) with 107.4 W output power at 5 GHz. To the best of our knowledge, this amplifier exhibits the highest PAE in C-band GaN HEMT amplifiers with over 100 W output power. Additionally, 1000 hours' aging test reveals high reliability for practical applications.

  18. One GHz digitizer for space based laser altimeter

    NASA Technical Reports Server (NTRS)

    Staples, Edward J.

    1991-01-01

    This is the final report for the research and development of the one GHz digitizer for space based laser altimeter. A feasibility model was designed, built, and tested. Only partial testing of essential functions of the digitizer was completed. Hybrid technology was incorporated which allows analog storage (memory) of the digitally sampled data. The actual sampling rate is 62.5 MHz, but executed in 16 parallel channels, to provide an effective sampling rate of one GHz. The average power consumption of the one GHz digitizer is not more than 1.5 Watts. A one GHz oscillator is incorporated for timing purposes. This signal is also made available externally for system timing. A software package was also developed for internal use (controls, commands, etc.) and for data communication with the host computer. The digitizer is equipped with an onboard microprocessor for this purpose.

  19. Continuous-wave EPR at 275 GHz: Application to high-spin Fe 3+ systems

    NASA Astrophysics Data System (ADS)

    Mathies, G.; Blok, H.; Disselhorst, J. A. J. M.; Gast, P.; van der Meer, H.; Miedema, D. M.; Almeida, R. M.; Moura, J. J. G.; Hagen, W. R.; Groenen, E. J. J.

    2011-05-01

    The 275 GHz electron-paramagnetic-resonance spectrometer we reported on in 2004 has been equipped with a new probe head, which contains a cavity especially designed for operation in continuous-wave mode. The sensitivity and signal stability that is achieved with this new probe head is illustrated with 275 GHz continuous-wave spectra of a 1 mM frozen solution of the complex Fe(III)-ethylenediamine tetra-acetic acid and of 10 mM frozen solutions of the protein rubredoxin, which contains Fe 3+ in its active site, from three different organisms. The high quality of the spectra of the rubredoxins allows the determination of the zero-field-splitting parameters with an accuracy of 0.5 GHz. The success of our approach results partially from the enhanced absolute sensitivity, which can be reached using a single-mode cavity. At least as important is the signal stability that we were able to achieve with the new probe head.

  20. Preliminary experimental investigation of a complex dual-band high power microwave source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Xiaoping, E-mail: zhangxiaoping@nudt.edu.cn; Li, Yangmei; Li, Zhiqiang

    2015-10-15

    In order to promote the power conversion efficiency of a magnetically insulated transmission line oscillator (MILO) and obtain microwaves in dual bands, an axially extracted C-band virtual cathode oscillator (VCO) with multiple resonant cavities is introduced to partially utilize the load current of an S-band MILO. The formed novel dual-band high power microwave source called MILO and VCO is investigated with simulation and experimentally. A dual-band radiation antenna is designed to effectively radiate microwaves generated by the MILO and the VCO, respectively, while avoiding them being influenced by the microwave reflection and diffraction. The preliminary experimental results measured by themore » dual-band diagnostic system show that both the MILO and the VCO operate normally under repeated shots. A microwave of 2.1 GHz, 1.70 GW is generated from the MILO and a 0.37 GW microwave at frequencies of 4.1 GHz and 3.8 GHz is generated from the VCO under the condition of about 440 kV and 35 kA. Compared with a single MILO (10.6%), a MILO and VCO achieves higher total power and efficiency (13.4%) in both S and C bands, indicating that the load current of the MILO partially couples into the beam-wave interaction in the VCO and then contributes to the output microwaves. However, more works are needed regarding the spectrum purification of the VCO and promotion of the output power of both the MILO and the VCO.« less

  1. Measurements of the Low Frequency Gain Fluctuations of a 30 GHz High-Electron-Mobility-Transistor Cryogenic Amplifier

    NASA Technical Reports Server (NTRS)

    Jarosik, Norman

    1994-01-01

    Low frequency gain fluctuations of a 30 GHz cryogenic HEMT amplifier have been measured with the input of the amplifier connected to a 15 K load. Effects of fluctuations of other components of the test set-up were eliminated by use of a power-power correlation technique. Strong correlation between output power fluctuations of the amplifier and drain current fluctuations of the transistors comprising the amplifier are observed. The existence of these correlations introduces the possibility of regressing some of the excess noise from the HEMT amplifier's output using the measured drain currents.

  2. High power narrow-band fiber-based ASE source.

    PubMed

    Schmidt, O; Rekas, M; Wirth, C; Rothhardt, J; Rhein, S; Kliner, A; Strecker, M; Schreiber, T; Limpert, J; Eberhardt, R; Tünnermann, A

    2011-02-28

    In this paper we describe a high power narrow-band amplified spontaneous emission (ASE) light source at 1030 nm center wavelength generated in an Yb-doped fiber-based experimental setup. By cutting a small region out of a broadband ASE spectrum using two fiber Bragg gratings a strongly constrained bandwidth of 12±2 pm (3.5±0.6 GHz) is formed. A two-stage high power fiber amplifier system is used to boost the output power up to 697 W with a measured beam quality of M2≤1.34. In an additional experiment we demonstrate a stimulated Brillouin scattering (SBS) suppression of at least 17 dB (theoretically predicted ~20 dB), which is only limited by the dynamic range of the measurement and not by the onset of SBS when using the described light source. The presented narrow-band ASE source could be of great interest for brightness scaling applications by beam combination, where SBS is known as a limiting factor.

  3. Building an LO source at 1036 GHz for a receiver

    NASA Technical Reports Server (NTRS)

    Erickson, Neal R.

    1995-01-01

    The goal of the UMass work on this grant was to build an LO source at 1036 GHz for a receiver which was to be built at JPL. The 1 THz source will consist of a high power Gunn oscillator at 86 GHz followed by a cascaded pair of planar diode doublers and finally a whisker contacted tripler. All multipliers will use single mode waveguide mounts. This use of single mode waveguide even for the final mount is a departure from the original plan, and reflects the progress that has been made in fabricating small structures. The advantages to the use of waveguide over a quasi-optical approach are that the complete system is much more compact, and much easier to use.

  4. A 140 GHz Pulsed EPR/212 MHz NMR Spectrometer for DNP Studies

    PubMed Central

    Smith, Albert A.; Corzilius, Björn; Bryant, Jeffrey A.; DeRocher, Ronald; Woskov, Paul P.; Temkin, Richard J.; Griffin, Robert G.

    2012-01-01

    We described a versatile spectrometer designed for the study of dynamic nuclear polarization (DNP) at low temperatures and high fields. The instrument functions both as an NMR spectrometer operating at 212 MHz (1H frequency) with DNP capabilities, and as a pulsed-EPR operating at 140 GHz. A coiled TE011 resonator acts as both an NMR coil and microwave resonator, and a double balanced (1H, 13C) radio frequency circuit greatly stabilizes the NMR performance. A new 140 GHz microwave bridge has also been developed, which utilizes a four-phase network and ELDOR channel at 8.75 GHz, that is then multiplied and mixed to obtain 140 GHz microwave pulses with an output power of 120 mW. Nutation frequencies obtained are as follows: 6 MHz on S = ½ electron spins, 100 kHz on 1H, and 50 kHz on 13C. We demonstrate basic EPR, ELDOR, ENDOR, and DNP experiments here. Our solid effect DNP results demonstrate an enhancement of 144 and sensitivity gain of 310 using OX063 trityl at 80 K and an enhancement of 157 and maximum sensitivity gain of 234 using Gd-DOTA at 20 K, which is significantly better performance than previously reported at high fields (>3 T). PMID:22975246

  5. A 140 GHz pulsed EPR/212 MHz NMR spectrometer for DNP studies

    NASA Astrophysics Data System (ADS)

    Smith, Albert A.; Corzilius, Björn; Bryant, Jeffrey A.; DeRocher, Ronald; Woskov, Paul P.; Temkin, Richard J.; Griffin, Robert G.

    2012-10-01

    We described a versatile spectrometer designed for the study of dynamic nuclear polarization (DNP) at low temperatures and high fields. The instrument functions both as an NMR spectrometer operating at 212 MHz (1H frequency) with DNP capabilities, and as a pulsed-EPR operating at 140 GHz. A coiled TE011 resonator acts as both an NMR coil and microwave resonator, and a double balanced (1H, 13C) radio frequency circuit greatly stabilizes the NMR performance. A new 140 GHz microwave bridge has also been developed, which utilizes a four-phase network and ELDOR channel at 8.75 GHz, that is then multiplied and mixed to obtain 140 GHz microwave pulses with an output power of 120 mW. Nutation frequencies obtained are as follows: 6 MHz on S = 1/2 electron spins, 100 kHz on 1H, and 50 kHz on 13C. We demonstrate basic EPR, ELDOR, ENDOR, and DNP experiments here. Our solid effect DNP results demonstrate an enhancement of 144 and sensitivity gain of 310 using OX063 trityl at 80 K and an enhancement of 157 and maximum sensitivity gain of 234 using Gd-DOTA at 20 K, which is significantly better performance than previously reported at high fields (⩾3 T).

  6. Demonstration of a Submillimeter-Wave HEMT Oscillator Module at 330 GHz

    NASA Technical Reports Server (NTRS)

    Radisic, Vesna; Deal, W. R.; Mei, X. B.; Yoshida, Wayne; Liu, P. H.; Uyeda, Jansen; Lai, Richard; Samoska, Lorene; Fung, King Man; Gaier, Todd; hide

    2010-01-01

    In this work, radial transitions have been successfully mated with a HEMT-based MMIC (high-electron-mobility-transistor-based monolithic microwave integrated circuit) oscillator circuit. The chip has been assembled into a WR2.2 waveguide module for the basic implementation with radial E-plane probe transitions to convert the waveguide mode to the MMIC coplanar waveguide mode. The E-plane transitions have been directly integrated onto the InP substrate to couple the submillimeter-wave energy directly to the waveguides, thus avoiding wire-bonds in the RF path. The oscillator demonstrates a measured 1.7 percent DC-RF efficiency at the module level. The oscillator chip uses 35-nm-gate-length HEMT devices, which enable the high frequency of oscillation, creating the first demonstration of a packaged waveguide oscillator that operates over 300 GHz and is based on InP HEMT technology. The oscillator chip is extremely compact, with dimensions of only 1.085 x 320 sq mm for a total die size of 0.35 sq mm. This fully integrated, waveguide oscillator module, with an output power of 0.27 mW at 330 GHz, can provide low-mass, low DC-power-consumption alternatives to existing local oscillator schemes, which require high DC power consumption and large mass. This oscillator module can be easily integrated with mixers, multipliers, and amplifiers for building high-frequency transmit and receive systems at submillimeter wave frequencies. Because it requires only a DC bias to enable submillimeter wave output power, it is a simple and reliable technique for generating power at these frequencies. Future work will be directed to further improving the applicability of HEMT transistors to submillimeter wave and terahertz applications. Commercial applications include submillimeter-wave imaging systems for hidden weapons detection, airport security, homeland security, and portable low-mass, low-power imaging systems

  7. A 75 GHz regenerative dynamic frequency divider with active transformer using InGaAs/InP HBT technology

    NASA Astrophysics Data System (ADS)

    Wang, Xi; Zhang, Bichan; Zhao, Hua; Su, Yongbo; Muhammad, Asif; Guo, Dong; Jin, Zhi

    2017-08-01

    This letter presents a high speed 2:1 regenerative dynamic frequency divider with an active transformer fabricated in 0.7 μm InP DHBT technology with {f}{{T}} of 165 GHz and {f}\\max of 230 GHz. The circuit includes a two-stage active transformer, input buffer, divider core and output buffer. The core part of the frequency divider is composed of a double-balanced active mixer (widely known as the Gilbert cell) and a regenerative feedback loop. The active transformer with two stages can contribute to positive gain and greatly improve phase difference. Instead of the passive transformer, the active one occupies a much smaller chip area. The area of the chip is only 469× 414 μ {{{m}}}2 and it entirely consumes a total DC power of only 94.6 mW from a single -4.8 V DC supply. The measured results present that the divider achieves an operating frequency bandwidth from 75 to 80 GHz, and performs a -23 dBm maximum output power at 37.5 GHz with a 0 dBm input signal of 75 GHz.

  8. A low-power, high-efficiency Ka-band TWTA

    NASA Technical Reports Server (NTRS)

    Curren, A. N.; Dayton, J. A., Jr.; Palmer, R. W.; Force, D. A.; Tamashiro, R. N.; Wilson, J. F.; Dombro, L.; Harvey, W. L.

    1991-01-01

    A NASA-sponsored program is described for developing a high-efficiency low-power TWTA operating at 32 GHz and meeting the requirements for the Cassini Mission to study Saturn. The required RF output power of the helix TWT is 10 watts, while the dc power from the spacecraft is limited to about 30 watts. The performance level permits the transmission to earth of all mission data. Several novel technologies are incorporated into the TWT to achieve this efficiency including an advanced dynamic velocity taper characterized by a nonlinear reduction in pitch in the output helix section and a multistage depressed collector employing copper electrodes treated for secondary electron-emission suppression. Preliminary program results are encouraging: RF output power of 10.6 watts is obtained at 14-mA beam current and 5.2-kV helix voltage with overall TWT efficiency exceeding 40 percent.

  9. A low-power, high-efficiency Ka-band TWTA

    NASA Astrophysics Data System (ADS)

    Curren, A. N.; Dayton, J. A., Jr.; Palmer, R. W.; Force, D. A.; Tamashiro, R. N.; Wilson, J. F.; Dombro, L.; Harvey, W. L.

    1991-11-01

    A NASA-sponsored program is described for developing a high-efficiency low-power TWTA operating at 32 GHz and meeting the requirements for the Cassini Mission to study Saturn. The required RF output power of the helix TWT is 10 watts, while the dc power from the spacecraft is limited to about 30 watts. The performance level permits the transmission to earth of all mission data. Several novel technologies are incorporated into the TWT to achieve this efficiency including an advanced dynamic velocity taper characterized by a nonlinear reduction in pitch in the output helix section and a multistage depressed collector employing copper electrodes treated for secondary electron-emission suppression. Preliminary program results are encouraging: RF output power of 10.6 watts is obtained at 14-mA beam current and 5.2-kV helix voltage with overall TWT efficiency exceeding 40 percent.

  10. 200-GHz and 50-GHz AWG channelized linewidth dependent transmission of weak-resonant-cavity FPLD injection-locked by spectrally sliced ASE.

    PubMed

    Lin, Gong-Ru; Cheng, Tzu-Kang; Chi, Yu-Chieh; Lin, Gong-Cheng; Wang, Hai-Lin; Lin, Yi-Hong

    2009-09-28

    In a weak-resonant-cavity Fabry-Perot laser diode (WRC-FPLD) based DWDM-PON system with an array-waveguide-grating (AWG) channelized amplified spontaneous emission (ASE) source located at remote node, we study the effect of AWG filter bandwidth on the transmission performances of the 1.25-Gbit/s directly modulated WRC-FPLD transmitter under the AWG channelized ASE injection-locking. With AWG filters of two different channel spacings at 50 and 200 GHz, several characteristic parameters such as interfered reflection, relatively intensity noise, crosstalk reduction, side-mode-suppressing ratio and power penalty of BER effect of the WRC-FPLD transmitted data are compared. The 200-GHz AWG filtered ASE injection minimizes the noises of WRC-FPLD based ONU transmitter, improving the power penalty of upstream data by -1.6 dB at BER of 10(-12). In contrast, the 50-GHz AWG channelized ASE injection fails to promote better BER but increases the power penalty by + 1.5 dB under back-to-back transmission. A theoretical modeling elucidates that the BER degradation up to 4 orders of magnitude between two injection cases is mainly attributed to the reduction on ASE injection linewidth, since which concurrently degrades the signal-to-noise and extinction ratios of the transmitted data stream.

  11. A broadband high-efficiency Doherty power amplifier using symmetrical devices

    NASA Astrophysics Data System (ADS)

    Cheng, Zhiqun; Zhang, Ming; Li, Jiangzhou; Liu, Guohua

    2018-04-01

    This paper proposes a method for broadband and high-efficiency amplification of Doherty power amplifier (DPA) using symmetric devices. In order to achieve the perfect load modulation, the carrier amplifier output circuit total power length is designed to odd multiple of 90°, and the peak amplifier output total power length is designed to even multiple of 180°. The proposed method is demonstrated by designing a broadband high-efficiency DPA using identical 10-W packaged GaN HEMT devices. Measurement results show that over 51% drain efficiency is achieved at 6-dB back-off power, over the frequency band of 1.9–2.4 GHz. Project supported by the National Natural Science Foundation of China (No. 60123456), the Zhejiang Provincial Natural Science Foundation of China (No. LZ16F010001), and the Zhejiang Provincial Public Technology Research Project (No. 2016C31070).

  12. EEG changes as heat stress reactions in rats irradiated by high intensity 35 GHz millimeter waves.

    PubMed

    Xie, Taorong; Pei, Jian; Cui, Yibin; Zhang, Jie; Qi, Hongxing; Chen, Shude; Qiao, Dengjiang

    2011-06-01

    As the application of millimeter waves for civilian and military use increases, the possibility of overexposure to millimeter waves will also increase. This paper attempts to evaluate stress reactions evoked by 35 GHz millimeter waves. The stress reactions in Sprague-Dawley (SD) rats were quantitatively studied by analyzing electroencephalogram (EEG) changes induced by overexposure to 35 GHz millimeter waves. The relative changes in average energy of the EEG and its wavelet decompositions were used for extracting the stress reaction indicators. Incident average power densities (IAPDs) of 35 GHz millimeter waves from 0.5 W cm(-2) to 7.5 W cm(-2) were employed to investigate the relation between irradiation dose and the stress reactions in the rats. Different stress reaction periods evoked by irradiation were quantitatively evaluated by EEG results. The results illustrate that stress reactions are more intense during the first part of the irradiation than during the later part. The skin temperature increase produced by millimeter wave irradiation is the principle reason for stress reactions and skin injuries. As expected, at the higher levels of irradiation, the reaction time decreases and the reaction intensity increases.

  13. High field Q slope and the effect of low-temperature baking at 3 GHz

    NASA Astrophysics Data System (ADS)

    Ciovati, G.; Eremeev, G.; Hannon, F.

    2018-01-01

    A strong degradation of the unloaded quality factor with field, called high field Q slope, is commonly observed above Bp ≅100 mT in elliptical superconducting niobium cavities at 1.3 and 1.5 GHz. In the present experiments several 3 GHz niobium cavities were measured up to and above Bp ≅100 mT . The measurements show that a high field Q slope phenomenon limits the field reach at this frequency, that the high field Q slope onset field depends weakly on the frequency, and that the high field Q slope can be removed by the typical empirical solution of electropolishing followed by heating to 120°C for 48 hrs. In addition, one of the cavities reached a quench field of 174 mT and its field dependence of the quality factor was compared against global heating predicted by a thermal feedback model.

  14. Electron cyclotron heating/current-drive system using high power tubes for QUEST spherical tokamak

    NASA Astrophysics Data System (ADS)

    Onchi, Takumi; Idei, H.; Hasegawa, M.; Nagata, T.; Kuroda, K.; Hanada, K.; Kariya, T.; Kubo, S.; Tsujimura, T. I.; Kobayashi, S.; Quest Team

    2017-10-01

    Electron cyclotron heating (ECH) is the primary method to ramp up plasma current non-inductively in QUEST spherical tokamak. A 28 GHz gyrotron is employed for short pulses, where the radio frequency (RF) power is about 300 kW. Current ramp-up efficiency of 0.5 A/W has been obtained with focused beam of the second harmonic X-mode. A quasi-optical polarizer unit has been newly installed to avoid arcing events. For steady-state tokamak operation, 8.56 GHz klystron with power of 200 kW is used as the CW-RF source. The high voltage power supply (54 kV/13 A) for the klystron has been built recently, and initial bench test of the CW-ECH system is starting. The array of insulated-gate bipolar transistor works to quickly cut off the input power for protecting the klystron. This work is supported by JSPS KAKENHI (15H04231), NIFS Collaboration Research program (NIFS13KUTR085, NIFS17KUTR128), and through MEXT funding for young scientists associated with active promotion of national university reforms.

  15. Design concepts for a high-impedance narrow-band 42 GHz power TWT using a fundamental/forward ladder-based circuit

    NASA Technical Reports Server (NTRS)

    Karp, A.

    1980-01-01

    A low-cost, narrowband, millimeter wave space communications TWT design was studied. Cold test interaction structure scale models were investigated and analyses were undertaken to predict the electrical and thermal response of the hypothetical 200 W TWT at 42 GHz and 21 kV beam voltage. An intentionally narrow instantaneous bandwidth (1%, with the possibility of electronic tuning of the center frequency over several percent) was sought with a highly dispersive, high impedance "forward wave' interaction structure based on a ladder (for economy in fabrication) and nonspace harmonic interaction, for a high gain rate and a short, economically focused tube. The "TunneLadder' interaction structure devised combines ladder properties with accommodation for a pencil beam. Except for the impedance and bandwidth, there is much in common with the millimeter wave helix TWTs which provided the ideal of diamond support rods. The benefits of these are enhanced in the TunneLadder case because of spatial separation of beam interception and RF current heating.

  16. Study of 42 and 85 GHz coupled cavity traveling-wave tubes for space use

    NASA Technical Reports Server (NTRS)

    Kennedy, J. B.; Tammaru, I.; Wolcott, P. S.

    1977-01-01

    Designs were formulated for four CW, millimeter wavelength traveling-wave tubes having high efficiency and long life. Three of these tubes, in the 42 to 44 GHz frequency region, develop power outputs of 100 to 300 watts with overall efficiencies of typically 45 percent. Another tube, which covers the frequency range of 84 to 86 GHz, provides a power output of 200 watts at 25 percent efficiency. The cathode current density in each design was 1A/sq cm. Each tube includes: metal-ceramic construction, periodic permanent magnet focusing, a two step velocity taper, an electron beam refocusing section, and a radiation cooled three-stage depressed collector. The electrical and mechanical design for each tube type is discussed in detail. The results of thermal and mechanical analyses are presented.

  17. Design and RF measurements of a 5 GHz 500 kW window for the ITER LHCD system

    NASA Astrophysics Data System (ADS)

    Hillairet, J.; Achard, J.; Bae, Y. S.; Bernard, J. M.; Dechambre, N.; Delpech, L.; Ekedahl, A.; Faure, N.; Goniche, M.; Kim, J.; Larroque, S.; Magne, R.; Marfisi, L.; Namkung, W.; Park, H.; Park, S.; Poli, S.; Vulliez, K.

    2014-02-01

    CEA/IRFM is conducting R&D efforts in order to validate the critical RF components of the 5 GHz ITER LHCD system, which is expected to transmit 20 MW of RF power to the plasma. Two 5 GHz 500 kW BeO pill-box type window prototypes have been manufactured in 2012 by the PMB Company, in close collaboration with CEA/IRFM. Both windows have been validated at low power, showing good agreement between measured and modeling, with a return loss better than 32 dB and an insertion loss below 0.05 dB. This paper reports on the window RF design and the low power measurements. The high power tests up to 500kW have been carried out in March 2013 in collaboration with NFRI. Results of these tests are also reported.

  18. The Future RFI Environment Above 30 GHz

    NASA Astrophysics Data System (ADS)

    Clegg, Andrew W.

    1995-12-01

    Encompassing 30 - 300 GHz, the millimeter wave (mmW) band offers relief from spectrum crowding at lower frequencies, large available bandwidth, favorable propagation characteristics for certain applications, and relatively high directivity with small antennas. The FCC has recently proposed regulatory changes to foster commercial development of the mmW band. Impending actions include: Designating the 46.7-46.9 GHz and 76-77 GHz bands for unlicensed vehicular radar systems. Potentially tens of millions of vehicles will be equipped with radars to provide ``intelligent cruise control" capability and driver blind-spot warnings. Unwanted emissions from vehicular radar systems may produce harmful interference to passive systems operating in protected bands. Opening the 59-64 GHz band, in which propagation is limited to short distances due to high atmospheric attenuation, to general unlicensed devices. A likely application for this band is wireless local area computer networks. The neighboring bands of 58.2 - 59 and 64 - 65 GHz are allocated to the passive services. Changes still under consideration include: Opening the 116 - 117 GHz band, co-located with an existing passive allocation, for licensed (116 - 116.5 GHz) and general unlicensed (116.5 - 117 GHz) devices. The opening (for licensed and unlicensed services) of nearly 5 GHz of additional spectrum space which neighbors passive allocations and poses a potential interference problem from out-of-band emissions. The status of the FCC's actions concerning the mmW band will be updated. An attempt will be made to predict the RFI environment in the mmW band assuming the likely applications for each of the reallocated bands. Particular emphasis will be placed on the impact of the FCC's actions on current and planned remote sensing and radio astronomy operations.

  19. Distilling perfect GHZ states from two copies of non-GHZ-diagonal mixed states

    NASA Astrophysics Data System (ADS)

    Wang, Xin-Wen; Tang, Shi-Qing; Yuan, Ji-Bing; Zhang, Deng-Yu

    2017-06-01

    It has been shown that a nearly pure Greenberger-Horne-Zeilinger (GHZ) state could be distilled from a large (even infinite) number of GHZ-diagonal states that can be obtained by depolarizing general multipartite mixed states (non-GHZ-diagonal states) through sequences of (probabilistic) local operations and classical communications. We here demonstrate that perfect GHZ states can be extracted, with certain probabilities, from two copies of non-GHZ-diagonal mixed states when some conditions are satisfied. This result implies that it is not necessary to depolarize these entangled mixed states to the GHZ-diagonal type, and that they are better than GHZ-diagonal states for distillation of pure GHZ states. We find a wide class of multipartite entangled mixed states that fulfill the requirements. Moreover, we display that the obtained result can be applied to practical noisy environments, e.g., amplitude-damping channels. Our findings provide an important complementarity to conventional GHZ-state distillation protocols (designed for GHZ-diagonal states) in theory, as well as having practical applications.

  20. Heterodyne detection at 300 GHz using neon indicator lamp glow discharge detector.

    PubMed

    Aharon Akram, Avihai; Rozban, Daniel; Kopeika, Natan S; Abramovich, Amir

    2013-06-10

    A miniature neon indicator lamp, also known as a glow discharge detector (GDD), costing about 50 cents, was found to be an excellent room temperature terahertz radiation detector. Proof-of-concept 300 GHz heterodyne detection using GDD is demonstrated in this paper. Furthermore, a comparison to direct detection was carried out as well. Previous results with the GDD at 10 GHz showed 40 times better sensitivity using heterodyne detection compared to direct detection. Preliminary results at 300 GHz showed better sensitivity by a factor of 20 with only 56 μW local-oscillator power using heterodyne compared to direct detection. The higher the local-oscillator power (P(lo)), the better the sensitivity of the detector. Further improvement can be achieved by employing better quasi-optical design.

  1. A C-band 55% PAE high gain two-stage power amplifier based on AlGaN/GaN HEMT

    NASA Astrophysics Data System (ADS)

    Zheng, Jia-Xin; Ma, Xiao-Hua; Lu, Yang; Zhao, Bo-Chao; Zhang, Hong-He; Zhang, Meng; Cao, Meng-Yi; Hao, Yue

    2015-10-01

    A C-band high efficiency and high gain two-stage power amplifier based on AlGaN/GaN high electron mobility transistor (HEMT) is designed and measured in this paper. The input and output impedances for the optimum power-added efficiency (PAE) are determined at the fundamental and 2nd harmonic frequency (f0 and 2f0). The harmonic manipulation networks are designed both in the driver stage and the power stage which manipulate the second harmonic to a very low level within the operating frequency band. Then the inter-stage matching network and the output power combining network are calculated to achieve a low insertion loss. So the PAE and the power gain is greatly improved. In an operation frequency range of 5.4 GHz-5.8 GHz in CW mode, the amplifier delivers a maximum output power of 18.62 W, with a PAE of 55.15% and an associated power gain of 28.7 dB, which is an outstanding performance. Project supported by the National Key Basic Research Program of China (Grant No. 2011CBA00606), Program for New Century Excellent Talents in University, China (Grant No. NCET-12-0915), and the National Natural Science Foundation of China (Grant No. 61334002).

  2. A 94 GHz RF Electronics Subsystem for the CloudSat Cloud Profiling Radar

    NASA Technical Reports Server (NTRS)

    LaBelle, Remi C.; Girard, Ralph; Arbery, Graham

    2003-01-01

    The CloudSat spacecraft, scheduled for launch in 2004, will carry the 94 GHz Cloud Profiling Radar (CPR) instrument. The design, assembly and test of the flight Radio Frequency Electronics Subsystem (RFES) for this instrument has been completed and is presented here. The RFES consists of an Upconverter (which includes an Exciter and two Drive Amplifiers (DA's)), a Receiver, and a Transmitter Calibrator assembly. Some key performance parameters of the RFES are as follows: dual 100 mW pulse-modulated drive outputs at 94 GHz, overall Receiver noise figure < 5.0 dB, a highly stable W-band noise source to provide knowledge accuracy of Receiver gain of < 0.4 dB over the 2 year mission life, and a W-band peak power detector to monitor the transmitter output power to within 0.5 dB over life. Some recent monolithic microwave integrated circuit (MMIC) designs were utilized which implement the DA's in 0.1 micron GaAs high electron-mobility transistor (HEMT) technology and the Receiver low-noise amplifier (LNA) in 0.1 micron InP HEMT technology.

  3. A 1-W, 30-ghz, CPW Amplifier for ACTS Small Terminal Uplink

    NASA Technical Reports Server (NTRS)

    Taub, Susan R.; Simons, Rainee N.

    1992-01-01

    The progress is described of the development of a 1 W, 30 GHz, coplanar waveguide (CPW) amplifier for the Advanced Communication Technology Satellite (ACTS)Small Terminal Uplink. The amplifier is based on Texas Instruments' monolithic microwave integrated circuit (MMIC) amplifiers; a three stage, low power amplifier, and a single stage, high power amplifier. The amplifiers have a power output of 190 mW and 0.710 W, gain of 23 and 4.2 dB, and efficiencies of 30.2 and 24 percent for the three stage and one stage amplifiers, respectively. The chips are to be combined via a CPW power divider/combiner circuit to yield the desired 1 W of output power.

  4. A reliable, compact, and repetitive-rate high power microwave generation system.

    PubMed

    Li, Wei; Li, Zhi-qiang; Sun, Xiao-liang; Zhang, Jun

    2015-11-01

    A compact high power microwave (HPM) generation system is described in this paper. The main parts of the HPM system are a Marx generator with a pulse forming line and a magnetron with diffraction output. The total weight and length of the system are 250 kg and 120 cm, respectively. The output microwave power of the HPM system at 550 kV of applied voltage and 0.33 T of magnetic field reaches 1 GW at 2.32 GHz of central frequency with 38 ns of pulse duration, 23% of power conversion efficiency, and Gaussian radiation pattern. In the bursts operation, both time and amplitude jitters are less than 4 ns and lower than 1.5 dB, respectively.

  5. High-power broadband plasma maser with magnetic self-insulation

    NASA Astrophysics Data System (ADS)

    Litvin, Vitaliy O.; Loza, Oleg T.

    2018-01-01

    Presented in this paper are the results of a particle-in-cell modelling of a novel high-power microwave (HPM) source which combines the properties of two devices. The first prototype is a magnetically insulated transmission line oscillator (MILO), an HPM self-oscillator which does not need an external magnetic field and irradiates a narrow spectrum depending on its iris-loaded slow-wave structure. The second prototype is a plasma maser, a Cherenkov HPM amplifier driven by a high-current relativistic electron beam propagating in a strong external magnetic field in plasma which acts as a slow-wave structure. The radiation frequency of plasma masers mainly depends on an easily variable plasma concentration; hence, their spectrum may overlap a few octaves. The plasma-based HPM device described in this paper operates without an external magnetic field: it looks like an MILO in which the iris-loaded slow-wave structure is substituted by a hollow plasma tube. The small pulse duration of ˜1.5 ns prevents a feedback rise in the 20-cm long generation section so that the device operates as a noise amplifier. Unlike conventional ultra wideband generators, the spectrum depends not only on the pulse duration but mainly on plasma, so the operation frequency of the device ranges within 12 GHz. For irradiated frequencies above 2 GHz, the total pulse energy efficiency of 7% is demonstrated at the HPM power level ˜1 GW.

  6. Oscillations up to 712 GHz in InAs/AlSb resonant-tunneling diodes

    NASA Technical Reports Server (NTRS)

    Brown, E. R.; Parker, C. D.; Mahoney, L. J.; Molvar, K. M.; Soderstrom, J. R.

    1991-01-01

    Oscillations have been obtained at frequencies from 100 to 712 GHz in InAs/AlSb double-barrier resonant-tunneling diodes at room temperature. The measured power density at 360 GHz was 90 W/sq cm, which is 50 times that generated by GaAs/AlAs diodes at essentially the same frequency. The oscillation at 712 GHz represents the highest frequency reported to date from a solid-state electronic oscillator at room temperature.

  7. A quasioptical resonant-tunneling-diode oscillator operating above 200 GHz

    NASA Technical Reports Server (NTRS)

    Brown, E. R.; Parker, C. D.; Molvar, K. M.; Calawa, A. R.; Manfra, M. J.

    1992-01-01

    We have fabricated and characterized a quasioptically stabilized resonant-tunneling-diode (RTD) oscillator having attractive performance characteristics for application as a radiometric local oscillator. The fundamental frequency of the oscillator is tunable from about 200 to 215 GHz, the instantaneous linewidth is between 10 and 20 kHz, and the output power across the tuning band is about 50 micro-W. The narrow linewidth and fine tuning of the frequency are made possible by a scanning semiconfocal open cavity which acts as the high-Q resonator for the oscillator. The cavity is compact, portable, and insensitive to vibration and temperature variation. The total dc power consumption (RTD plus bias supply) is only 10 mW. The present oscillator provides the highest power obtained to date from an RTD above 200 GHz. We attribute this partly to the use of the quasioptical resonator, but primarily to the quality of the RTD. It is fabricated from the In(0.53)Ga(0.47)As/AlAs materials system, which historically has yielded the best overall resonant-tunneling characteristics of any material system. The RTD active area is 4 sq microns, and the room-temperature peak current density and peak-to-valley current ratio are 2.5x10(exp 5) A cm(exp -2) and 9, respectively. The RTD is mounted in a WR-3 standard-height rectangular waveguide and is contacted across the waveguide by a fine wire that protrudes through a via hole in a Si3N4 'honeycomb' overlayer. We estimate that the theoretical maximum frequency of oscillation of this RTD is approximately 1.1 THz, and that scaled-down versions of the same quasioptical oscillator design should operate in a fundamental mode up to frequencies of at least 500 GHz.

  8. High Efficiency mm-Wave Transmitter Array

    DTIC Science & Technology

    2016-09-01

    SECURITY CLASSIFICATION OF: High efficiency, high power transmitters integrated in silicon at 45, 94 and 138 GHz were developed. Our approach...employs CMOS-SOI and SiGe HBT unit amplifiers, power -combined in free-space using antenna arrays to attain high power levels. In the baseline approach...the-art were made. At 45GHz, a single CMOS chip produced an RF power of 630mW, which yielded an EIRP of 1. REPORT DATE (DD-MM-YYYY) 4. TITLE AND

  9. Ka-Band TWT High-Efficiency Power Combiner for High-Rate Data Transmission

    NASA Technical Reports Server (NTRS)

    Wintucky, Edwin G.; Simons, Rainee; Vaden, Karl R.; Lesny, Gary G.; Glass, Jeffrey L.

    2007-01-01

    A four-port magic-T hybrid waveguide junction serves as the central component of a high-efficiency two-way power combiner circuit for transmitting a high-rate phase-modulated digital signal at a carrier frequency in the Ka-band (between 27 and 40 GHz). This power combiner was developed to satisfy a specific requirement to efficiently combine the coherent outputs of two traveling-wavetube (TWT) amplifiers that are typically characterized by power levels on the order of 100 W or more. In this application, the use of a waveguide-based power combiner (instead of a coaxial-cable- or microstrip-based power combiner, for example) is dictated by requirements for low loss, high power-handling capability, and broadband response. Combiner efficiencies were typically 90 percent or more over both the linear and saturated output power regions of operation of the TWTs . Figure 1 depicts the basic configuration of the magic-T hybrid junction. The coherent outputs of the two TWTs enter through ports 1 and 4. As a result of the orientations of the electromagnetic fields, which also provides a needed high port-to-port isolation, of these two input signals and the interior design of the magic-T junction, the input powers are divided so as to add in phase at one output port (port 2), and to be opposite in phase and hence cancel each other at the opposite coplanar output port (port 3). The net result is that the output power at port 2 is essentially double that of the output of one TWT, minus the power lost in the magic-T hybrid junction. Optimum performance as a high-efficiency power combiner thus requires a balance of both power and phase at the input ports of the magic-T. Replicas of this two-way combiner can be arranged in a binary configuration to obtain a 2n-way (where n is an integer) combiner. For example, Figure 2 illustrates the use of three two-way combiners to combine the outputs of four TWTs.

  10. Maximum powers of low-loss series-shunt FET RF switches

    NASA Astrophysics Data System (ADS)

    Yang, Z.; Hu, X.; Yang, J.; Simin, G.; Shur, M.; Gaska, R.

    2009-02-01

    Low-loss high-power single pole single throw (SPST) monolithic RF switch based on AlGaN/GaN heterojunction field effect transistors (HFETs) demonstrate the insertion loss and isolation of 0.15 dB and 45.9 dB at 0.5 GHz and 0.23 dB and 34.3 dB at 2 GHz. Maximum switching powers are estimated +47 dBm or higher. Factors determining the maximum switching powers are analyzed. Design principles to obtain equally high switching powers in the ON and OFF-states are developed.

  11. Impact of High Power Interference Sources in Planning and Deployment of Wireless Sensor Networks and Devices in the 2.4 GHz Frequency Band in Heterogeneous Environments

    PubMed Central

    Iturri, Peio López; Nazábal, Juan Antonio; Azpilicueta, Leire; Rodriguez, Pablo; Beruete, Miguel; Fernández-Valdivielso, Carlos; Falcone, Francisco

    2012-01-01

    In this work, the impact of radiofrequency radiation leakage from microwave ovens and its effect on 802.15.4 ZigBee-compliant wireless sensor networks operating in the 2.4 GHz Industrial Scientific Medical (ISM) band is analyzed. By means of a novel radioplanning approach, based on electromagnetic field simulation of a microwave oven and determination of equivalent radiation sources applied to an in-house developed 3D ray launching algorithm, estimation of the microwave oven's power leakage is obtained for the complete volume of an indoor scenario. The magnitude and the variable nature of the interference is analyzed and the impact in the radio link quality in operating wireless sensors is estimated and compared with radio channel measurements as well as packet measurements. The measurement results reveal the importance of selecting an adequate 802.15.4 channel, as well as the Wireless Sensor Network deployment strategy within this type of environment, in order to optimize energy consumption and increase the overall network performance. The proposed method enables one to estimate potential interference effects in devices operating within the 2.4 GHz band in the complete scenario, prior to wireless sensor network deployment, which can aid in achieving the most optimal network topology. PMID:23202228

  12. Architecture Analysis of Wireless Power Transmission for Lunar Outposts

    DTIC Science & Technology

    2015-09-01

    through his work on wireless communication using radio wave propagation for both transmitting and receiving high frequency electricity using a focusing...Administration nm nanometers NRC National Research Council PGT platform generic technologies PMAD power management and distribution RF radio frequency xiv...GHz (Marzwell 2008). While the slot antenna can handle frequencies between 70 GHz and 150 GHz, it has been optimized for 94 GHz and has a radio

  13. GHz laser-free time-resolved transmission electron microscopy: A stroboscopic high-duty-cycle method.

    PubMed

    Qiu, Jiaqi; Ha, Gwanghui; Jing, Chunguang; Baryshev, Sergey V; Reed, Bryan W; Lau, June W; Zhu, Yimei

    2016-02-01

    A device and a method for producing ultrashort electron pulses with GHz repetition rates via pulsing an input direct current (dc) electron beam are provided. The device and the method are based on an electromagnetic-mechanical pulser (EMMP) that consists of a series of transverse deflecting cavities and magnetic quadrupoles. The EMMP modulates and chops the incoming dc electron beam and converts it into pico- and sub-pico-second electron pulse sequences (pulse trains) at >1GHz repetition rates, as well as controllably manipulates the resulting pulses. Ultimately, it leads to negligible electron pulse phase-space degradation compared to the incoming dc beam parameters. The temporal pulse length and repetition rate for the EMMP can be continuously tunable over wide ranges. Applying the EMMP to a transmission electron microscope (TEM) with any dc electron source (e.g. thermionic, Schottky, or field-emission source), a GHz stroboscopic high-duty-cycle TEM can be realized. Unlike in many recent developments in time-resolved TEM that rely on a sample pumping laser paired with a laser launching electrons from a photocathode to probe the sample, there is no laser in the presented experimental set-up. This is expected to be a significant relief for electron microscopists who are not familiar with laser systems. The EMMP and the sample are externally driven by a radiofrequency (RF) source synchronized through a delay line. With no laser pumping the sample, the problem of the pump laser induced residual heating/damaging the sample is eliminated. As many RF-driven processes can be cycled indefinitely, sampling rates of 1-50GHz become accessible. Such a GHz stroboscopic TEM would open up a new paradigm for in situ and in operando experiments to study samples externally driven electromagnetically. Complementary to the lower (MHz) repetition rates experiments enabled by laser photocathode TEM, new experiments in the multi-GHz regime will be enabled by the proposed RF design

  14. A low-power, high-throughput maximum-likelihood convolutional decoder chip for NASA's 30/20 GHz program

    NASA Technical Reports Server (NTRS)

    Mccallister, R. D.; Crawford, J. J.

    1981-01-01

    It is pointed out that the NASA 30/20 GHz program will place in geosynchronous orbit a technically advanced communication satellite which can process time-division multiple access (TDMA) information bursts with a data throughput in excess of 4 GBPS. To guarantee acceptable data quality during periods of signal attenuation it will be necessary to provide a significant forward error correction (FEC) capability. Convolutional decoding (utilizing the maximum-likelihood techniques) was identified as the most attractive FEC strategy. Design trade-offs regarding a maximum-likelihood convolutional decoder (MCD) in a single-chip CMOS implementation are discussed.

  15. A 5.2/5.8 GHz Dual Band On-Off Keying Transmitter Design for Bio-Signal Transmission

    NASA Astrophysics Data System (ADS)

    Wu, Chang-Hsi; You, Hong-Cheng; Huang, Shun-Zhao

    2018-02-01

    An architecture of 5.2/5.8-GHz dual-band on-off keying (DBOOK) modulated transmitter is designed in a 0.18-μm CMOS technology. The proposed DBOOK transmitter is used in the biosignal transmission system with high power efficiency and small area. To reduce power consumption and enhance output swing, two pairs of center-tapped transformers are used as both LC tank and source grounding choke for the designed voltage controlled oscillator (VCO). Switching capacitances are used to achieve dual band operations, and a complemented power combiner is used to merge the differential output power of VCO to a single-ended output. Besides, the linearizer circuits are used in the proposed power amplifier with wideband output matching to improve the linearity both at 5.2/5.8-GHz bands. The designed DBOOK transmitter is implemented by dividing it into two chips. One chip implements the dual-band switching VCO and power combiner, and the other chip implements a linear power amplifier including dual-band operation. The first chip drives an output power of 2.2mW with consuming power of 5.13 mW from 1.1 V supply voltage. With the chip size including pad of 0.61 × 0.91 m2, the measured data rate and transmission efficiency attained are 100 Mb/s and 51 pJ/bit, respectively. The second chip, for power enhanced mode, exhibits P1 dB of -9 dBm, IIP3 of 1 dBm, the output power 1 dB compression point of 12.42 dBm, OIP3 of about 21 dBm, maximum output power of 17.02/16.18 dBm, and power added efficiency of 17.13/16.95% for 5.2/ 5.8 GHz. The chip size including pads is 0:693 × 1:084mm2.

  16. A reliable, compact, and repetitive-rate high power microwave generation system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Wei; Li, Zhi-qiang; Sun, Xiao-liang

    2015-11-15

    A compact high power microwave (HPM) generation system is described in this paper. The main parts of the HPM system are a Marx generator with a pulse forming line and a magnetron with diffraction output. The total weight and length of the system are 250 kg and 120 cm, respectively. The output microwave power of the HPM system at 550 kV of applied voltage and 0.33 T of magnetic field reaches 1 GW at 2.32 GHz of central frequency with 38 ns of pulse duration, 23% of power conversion efficiency, and Gaussian radiation pattern. In the bursts operation, both timemore » and amplitude jitters are less than 4 ns and lower than 1.5 dB, respectively.« less

  17. 47 CFR 15.253 - Operation within the bands 46.7-46.9 GHz and 76.0-77.0 GHz.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...-77.0 GHz is restricted to vehicle-mounted field disturbance sensors used as vehicle radar systems... operation is as a vehicle-mounted field disturbance sensor. Operation under the provisions of this section...-mounted field disturbance sensors, if the vehicle is in motion the power density of any emission within...

  18. A 220-GHz SIS Mixer Tightly Integrated With a Sub-Hundred-Microwatt SiGe IF Amplifier

    NASA Astrophysics Data System (ADS)

    Montazeri, Shirin; Grimes, Paul K.; Tong, Cheuk-Yu Edward; Bardin, Joseph C.

    2016-01-01

    Future kilopixel-scale heterodyne focal plane arrays based on superconductor-insulator-superconductor (SIS) mixers will require submilliwatt power consumption low-noise amplifiers (LNAs) which are tightly integrated with the mixers. In this paper, an LNA that is optimized for direct connection to a 220-GHz SIS mixer chip and requires less than 100 μW of dc power is reported. The amplifier design process is described, and measurement results are presented. It is shown that, when pumped at local oscillator frequencies between 214 and 226 GHz, the mixer/amplifier module achieves a double-sideband system noise temperature between 35 and 50 K over the 3.3-6 GHz IF frequency range while requiring just 90 μW of dc power. Moreover, the potential to further reduce the power consumption is explored and successful operation is demonstrated for LNA power consumption as low as 60 μW.

  19. A contribution to the design of wideband tunable second harmonic mode millimeter-wave InP-TED oscillators above 110 GHz

    NASA Astrophysics Data System (ADS)

    Rydberg, Anders

    1990-03-01

    Second harmonic InP-TED oscillators are investigated for frequencies above 110 GHz using different mounts and TED's. It is found that state of the art output powers, comparable to Schottky-varactor multipliers, of more than 2 mW can be generated above 190 GHz by reducing the capsule parasitics. Output power up to 216 GHz are observed. The tuning range above 110 GHz is found to be more than 40 percent. Using theoretical waveguide models the tuning behavior of the oscillators is also investigated.

  20. A high-efficiency low-voltage class-E PA for IoT applications in sub-1 GHz frequency range

    NASA Astrophysics Data System (ADS)

    Zhou, Chenyi; Lu, Zhenghao; Gu, Jiangmin; Yu, Xiaopeng

    2017-10-01

    We present and propose a complete and iterative integrated-circuit and electro-magnetic (EM) co-design methodology and procedure for a low-voltage sub-1 GHz class-E PA. The presented class-E PA consists of the on-chip power transistor, the on-chip gate driving circuits, the off-chip tunable LC load network and the off-chip LC ladder low pass filter. The design methodology includes an explicit design equation based circuit components values' analysis and numerical derivation, output power targeted transistor size and low pass filter design, and power efficiency oriented design optimization. The proposed design procedure includes the power efficiency oriented LC network tuning, the detailed circuit/EM co-simulation plan on integrated circuit level, package level and PCB level to ensure an accurate simulation to measurement match and first pass design success. The proposed PA is targeted to achieve more than 15 dBm output power delivery and 40% power efficiency at 433 MHz frequency band with 1.5 V low voltage supply. The LC load network is designed to be off-chip for the purpose of easy tuning and optimization. The same circuit can be extended to all sub-1 GHz applications with the same tuning and optimization on the load network at different frequencies. The amplifier is implemented in 0.13 μm CMOS technology with a core area occupation of 400 μm by 300 μm. Measurement results showed that it provided power delivery of 16.42 dBm at antenna with efficiency of 40.6%. A harmonics suppression of 44 dBc is achieved, making it suitable for massive deployment of IoT devices. Project supported by the National Natural Science Foundation of China (No. 61574125) and the Industry Innovation Project of Suzhou City of China (No. SYG201641).

  1. High power plasma heating experiments on the Proto-MPEX facility

    NASA Astrophysics Data System (ADS)

    Bigelow, T. S.; Beers, C. J.; Biewer, T. M.; Caneses, J. F.; Caughman, J. B. O.; Diem, S. J.; Goulding, R. H.; Green, D. L.; Kafle, N.; Rapp, J.; Showers, M. A.

    2017-10-01

    Work is underway to maximize the power delivered to the plasma that is available from heating sources installed on the Prototype Materials Plasma Exposure eXperiment (Proto-MPEX) at ORNL. Proto-MPEX is a linear device that has a >100 kW, 13.56 MHz helicon plasma generator available and is intended for material sample exposure to plasmas. Additional plasma heating systems include a 10 kW 18 GHz electron cyclotron heating (ECH) system, a 25 kW 8 MHz ion cyclotron heating ICH system, and a 200 kW 28 GHz electron Bernstein wave (EBW) and ECH system. Most of the heating systems have relatively good power transmission efficiency, however, the 28 GHz EBW system has a lower efficiency owing to stringent requirements on the microwave launch characteristics for EBW coupling combined with the lower output mode purity of the early-model gyrotron in use and its compact mode converter system. A goal for the Proto-MPEX is to have a combined heating power of 200 kW injected into the plasma. Infrared emission diagnostics of the target plate combined with Thomson Scattering, Langmuir probe, and energy analyzer measurements near the target are utilized to characterize the plasmas and coupling efficiency of the heating systems. ORNL is managed by UT-Battelle, LLC, for the U.S. DOE under contract DE-AC-05-00OR22725.

  2. High-power narrow-linewidth quasi-CW diode-pumped TEM00 1064 nm Nd:YAG ring laser.

    PubMed

    Liu, Yuan; Wang, Bao-shan; Xie, Shi-yong; Bo, Yong; Wang, Peng-yuan; Zuo, Jun-wei; Xu, Yi-ting; Xu, Jia-lin; Peng, Qin-jun; Cui, Da-fu; Xu, Zu-yan

    2012-04-01

    We demonstrated a high average power, narrow-linewidth, quasi-CW diode-pumped Nd:YAG 1064 nm laser with near-diffraction-limited beam quality. A symmetrical three-mirror ring cavity with unidirectional operation elements and an etalon was employed to realize the narrow-linewidth laser output. Two highly efficient laser modules and a 90° quartz rotator for birefringence compensation were used for the high output power. The maximum average output power of 62.5 W with the beam quality factor M(2) of 1.15 was achieved under a pump power of 216 W at a repetition rate of 500 Hz, corresponding to the optical-to-optical conversion efficiency of 28.9%. The linewidth of the laser at the maximum output power was measured to be less than 0.2 GHz.

  3. Cryogenic 160-GHz MMIC Heterodyne Receiver Module

    NASA Technical Reports Server (NTRS)

    Samoska, Lorene A.; Soria, Mary M.; Owen, Heather R.; Dawson, Douglas E.; Kangaslahti, Pekka P.; Gaier, Todd C.; Voll, Patricia; Lau, Judy; Sieth, Matt; Church, Sarah

    2011-01-01

    A cryogenic 160-GHz MMIC heterodyne receiver module has demonstrated a system noise temperature of 100 K or less at 166 GHz. This module builds upon work previously described in Development of a 150-GHz MMIC Module Prototype for Large-Scale CMB Radiation (NPO-47664), NASA Tech Briefs, Vol. 35, No. 8 (August 2011), p. 27. In the original module, the local oscillator signal was saturating the MMIC low-noise amplifiers (LNAs) with power. In order to suppress the local oscillator signal from reaching the MMIC LNAs, the W-band (75 110 GHz) signal had to be filtered out before reaching 140 170 GHz. A bandpass filter was developed to cover 120 170 GHz, using microstrip parallel-coupled lines to achieve the desired filter bandwidth, and ensure that the unwanted W-band local oscillator signal would be sufficiently suppressed. With the new bandpass filter, the entire receiver can work over the 140 180-GHz band, with a minimum system noise temperature of 460 K at 166 GHz. The module was tested cryogenically at 20 K ambient temperature, and it was found that the receiver had a noise temperature of 100 K over an 8-GHz bandwidth. The receiver module now includes a microstrip bandpass filter, which was designed to have a 3-dB bandwidth of approximately 120-170 GHz. The filter was fabricated on a 3-mil-thick alumina substrate. The filter design was based on a W-band filter design made at JPL and used in the QUIET (Q/U Imaging ExperimenT) radiometer modules. The W-band filter was scaled for a new center frequency of 150 GHz, and the microstrip segments were changed accordingly. Also, to decrease the bandwidth of the resulting scaled design, the center gaps between the microstrip lines were increased (by four micrometers in length) compared to the gaps near the edges. The use of the 150-GHz bandpass filter has enabled the receiver module to function well at room temperature. The system noise temperature was measured to be less than 600 K (at room temperature) from 154 to 168 GHz

  4. 100 GHz FMCW Radar Module Based on Broadband Schottky-diode Transceiver

    NASA Astrophysics Data System (ADS)

    Jiang, Shu; Xu, Jinping; Dou, Jiangling; Wang, Wenbo

    2018-04-01

    We report on a W-band frequency-modulated continuous-wave (FMCW) radar module with fractional bandwidth over 10 %. To improve flatness over large operation bandwidth, the radar module is developed with focus on the 90-101 GHz modular transceiver, for which accurate modeling of Schottky diode in combination with an integrated design method are proposed in this work. Moreover, the nonlinearity compensation approach is introduced to further optimize the range resolution. To verify the design method and RF performance of the radar module, both measurements of critical components and ISAR imaging experiments are performed. The results demonstrate that high resolution in range and azimuth dimensions can be achieved based on the radar module, of which the receiving gain flatness and transmitting power flatness are better than ±1.3 dB and ±0.7 dB over 90 101 GHz, respectively.

  5. First On-Wafer Power Characterization of MMIC Amplifiers at Sub-Millimeter Wave Frequencies

    NASA Technical Reports Server (NTRS)

    Fung, A. K.; Gaier, T.; Samoska, L.; Deal, W. R.; Radisic, V.; Mei, X. B.; Yoshida, W.; Liu, P. S.; Uyeda, J.; Barsky, M.; hide

    2008-01-01

    Recent developments in semiconductor technology have enabled advanced submillimeter wave (300 GHz) transistors and circuits. These new high speed components have required new test methods to be developed for characterizing performance, and to provide data for device modeling to improve designs. Current efforts in progressing high frequency testing have resulted in on-wafer-parameter measurements up to approximately 340 GHz and swept frequency vector network analyzer waveguide measurements to 508 GHz. On-wafer noise figure measurements in the 270-340 GHz band have been demonstrated. In this letter we report on on-wafer power measurements at 330 GHz of a three stage amplifier that resulted in a maximum measured output power of 1.78mW and maximum gain of 7.1 dB. The method utilized demonstrates the extension of traditional power measurement techniques to submillimeter wave frequencies, and is suitable for automated testing without packaging for production screening of submillimeter wave circuits.

  6. High-performance 16-way Ku-band radial power combiner based on the TE01-circular waveguide mode

    NASA Astrophysics Data System (ADS)

    Montejo-Garai, José R.; Saracho-Pantoja, Irene O.; Ruiz-Cruz, Jorge A.; Rebollar, Jesús M.

    2018-03-01

    This work presents a 16-way Ku-band radial power combiner for high power and high frequency applications, using the very low loss TE01 circular waveguide mode. The accomplished design shows an excellent performance: the experimental prototype has a return loss better than 30 dB, with a balance for the amplitudes of (±0.15 dB) and (±2.5°) for the phases, in a 16.7% fractional bandwidth (2 GHz centered at 12 GHz). For obtaining these outstanding specifications, required, for instance, in high-frequency amplification or on plasma systems, a rigorous step-by-step procedure is presented. First, a high-purity mode transducer has been designed, from the TE10 mode in the rectangular waveguide to the TE01 mode in the circular waveguide, with very high attenuation (>50 dB) for the other propagating and evanescent modes in the circular waveguide. This transducer has been manufactured and measured in a back-to-back configuration, validating the design process. Second, an E-plane 16-way radial power divider has been designed, where the power is coupled from the 16 non-reduced-height radial standard waveguides into the TE01 circular waveguide mode, improving the insertion loss response and removing the usual tapered transformers of previous designs limiting the power handling. Finally, both the transducer and the divider have been assembled to make the final radial combiner. The prototype has been carefully manufactured, showing very good agreement between the measurements and the full-wave simulations.

  7. Single-dish high sensitivity determination of solar limb emission at 22 and 44 GHz

    NASA Technical Reports Server (NTRS)

    Costa, J. E. R.; Homor, J. L.; Kaufmann, P.

    1986-01-01

    A large number of solar maps were obtained with the use of Itapetinga 45 ft antenna at 22 GHz and 44 GHz. A statistical study of these maps, reduced using original techniques, permitted the establishment of the solar radius with great accuracy at the two frequencies. It is found that 22 GHz and 44 BHz radiation originates at 16,00 km and 12,500 km above the photosphere, respectively. Excess emission due to active regions was clearly identified at lower solar latitudes above and below the equator, extending up to 26,000 km and 16,500 km above the photosphere, at 22 GHs and 44 GHz, respectively.

  8. A high-power synthesized ultrawideband radiation source

    NASA Astrophysics Data System (ADS)

    Efremov, A. M.; Koshelev, V. I.; Plisko, V. V.; Sevostyanov, E. A.

    2017-09-01

    A high-power ultrawideband radiation source has been developed which is capable of synthesizing electromagnetic pulses with different frequency bands in free space. To this end, a new circuit design comprising a four-channel former of bipolar pulses of durations 2 and 3 ns has been elaborated and conditions for the stable operation of gas gaps of independent channels without external control pulses have been determined. Each element of the 2 × 2 array of combined antennas is driven from an individual channel of the pulse former. Antennas excited by pulses of the same duration are arranged diagonally. Two radiation synthesis modes have been examined: one aimed to attain ultimate field strength and the other aimed to attain an ultimate width of the radiation spectrum. The modes were changed by changing the time delay between the 2-ns and 3-ns pulses. For the first mode, radiation pulses with a frequency band of 0.2-0.8 GHz and an effective potential of 500 kV have been obtained. The synthesized radiation pulses produced in the second mode had an extended frequency band (0.1-1 GHz) and an effective potential of 220 kV. The pulse repetition frequency was 100 Hz.

  9. 10 GHz dual loop opto-electronic oscillator without RF-amplifiers

    NASA Astrophysics Data System (ADS)

    Zhou, Weimin; Okusaga, Olukayode; Nelson, Craig; Howe, David; Carter, Gary

    2008-02-01

    We report the first demonstration of a 10 GHz dual-fiber-loop Opto-Electronic Oscillator (OEO) without RF-amplifiers. Using a recently developed highly efficient RF-Photonic link with RF-to-RF gain facilitated by a high power laser, highly efficient optical modulator and high power phototectectors, we have built an amplifier-less OEO that eliminates the phase noise produced by the electronic amplifier. The dual-loop approach can provide additional gain and reduce unwanted multi-mode spurs. However, we have observed RF phase noise produced by the high power laser include relative intensity noise (RIN) and noise related to the laser's electronic control system. In addition, stimulated Brillouin scattering limits the fiber loop's length to ~2km at the 40mW laser power needed to provide the RF gain which limits the system's quality factor, Q. We have investigated several different methods for solving these problems. One promising technique is the use of a multi-longitudinal-mode laser to carry the RF signal, maintaining the total optical power but reducing the optical power of each mode to eliminate the Brillouin scattering in a longer fiber thereby reducing the phase noise of the RF signal produced by the OEO. This work shows that improvement in photonic components increases the potential for more RF system applications such as an OEO's with higher performance and new capabilities.

  10. High power millimeter wave experiment of ITER relevant electron cyclotron heating and current drive system.

    PubMed

    Takahashi, K; Kajiwara, K; Oda, Y; Kasugai, A; Kobayashi, N; Sakamoto, K; Doane, J; Olstad, R; Henderson, M

    2011-06-01

    High power, long pulse millimeter (mm) wave experiments of the RF test stand (RFTS) of Japan Atomic Energy Agency (JAEA) were performed. The system consists of a 1 MW/170 GHz gyrotron, a long and short distance transmission line (TL), and an equatorial launcher (EL) mock-up. The RFTS has an ITER-relevant configuration, i.e., consisted by a 1 MW-170 GHz gyrotron, a mm wave TL, and an EL mock-up. The TL is composed of a matching optics unit, evacuated circular corrugated waveguides, 6-miter bends, an in-line waveguide switch, and an isolation valve. The EL-mock-up is fabricated according to the current design of the ITER launcher. The Gaussian-like beam radiation with the steering capability of 20°-40° from the EL mock-up was also successfully proved. The high power, long pulse power transmission test was conducted with the metallic load replaced by the EL mock-up, and the transmission of 1 MW/800 s and 0.5 MW/1000 s was successfully demonstrated with no arcing and no damages. The transmission efficiency of the TL was 96%. The results prove the feasibility of the ITER electron cyclotron heating and current drive system. © 2011 American Institute of Physics

  11. THE KCAL VERA 22 GHz CALIBRATOR SURVEY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petrov, L.; Honma, M.; Shibata, S. M., E-mail: Leonid.Petrov@lpetrov.net

    2012-02-15

    We observed a sample of 1536 sources with correlated flux densities brighter than 200 mJy at 8 GHz with the very long baseline interferometry (VLBI) array VLBI Exploration of Radio Astrometry at 22 GHz. One half of the target sources has been detected. The detection limit was around 200 mJy. We derived the correlated flux densities of 877 detected sources in three ranges of projected baseline lengths. The objective of these observations was to determine the suitability of given sources as phase calibrators for dual-beam and phase-referencing observations at high frequencies. Preliminary results indicate that the number of compact extragalacticmore » sources at 22 GHz brighter than a given correlated flux density level is two times less than that at 8 GHz.« less

  12. Development of a 500 GHz Optoelectronic Modulator Using Superconducting Transmission Lines

    DTIC Science & Technology

    1992-08-31

    for operation in the multi- hundred-GHz regime, as well as high-power picosecond switching and the newly developed Semiconductor Optical, Temporal...bulk dielectric constants in the near infrared and millimeter-wave regimes that are essentially equal.J31 We have shown that encapsulating a...dielectric constant was found to be 11.60 (+/- 0.02). This value agrees remarkably well with the bulk value of GaAs at 1.3 4m, 11.62 [3]. The

  13. Design and experiment of a cross-shaped mode converter for high-power microwave applications.

    PubMed

    Peng, Shengren; Yuan, Chengwei; Zhong, Huihuang; Fan, Yuwei

    2013-12-01

    A compact mode converter, which is capable of converting a TM01 mode into a circularly polarized TE11 mode, was developed and experimentally studied with high-power microwaves. The converter, consisting of two turnstile junctions, is very short along the wave propagation direction, and therefore is suitable for designing compact and axially aligned high-power microwave radiation systems. In this paper, the principle of a converter working at 1.75 GHz is demonstrated, as well as the experimental results. The experimental and simulation results are in good agreement. At the center frequency, the conversion efficiency is more than 95%, the measured axial ratio is about 0.4 dB, and the power-handing capacity is excess of 1.9 GW.

  14. A high-efficiency 59- to 64-GHz TWT for intersatellite communications

    NASA Technical Reports Server (NTRS)

    Wilson, Jeffrey D.; Ramins, Peter; Force, Dale A.; Limburg, Helen C.; Tammaru, Ivo

    1991-01-01

    The design of a 75-W, 59- to 64- GHz TWT with a predicted overall efficiency in excess of 40 percent is described. This intersatellite communications TWT, designated Model 961HA, employs a coupled-cavity slow-wave structure with a two-step velocity taper and an isotropic graphite multistage depressed collector (MDC). Because the RF efficiency of this TWT is less than 8 percent, an MDC design providing a very high collector efficiency was necessary to achieve the overall efficiency goal of 40 percent.

  15. Graphene FETs Based on High Resolution Nanoribbons for HF Low Power Applications

    NASA Astrophysics Data System (ADS)

    Mele, David; Mehdhbi, Sarah; Fadil, Dalal; Wei, Wei; Ouerghi, Abdelkarim; Lepilliet, Sylvie; Happy, Henri; Pallecchi, Emiliano

    2018-03-01

    In this paper we present high frequency field effect transistors based on graphene nanoribbons arrays (GNRFETs). The nanoribbons serve as a channel for the transistors and are fabricated with a process based on e-beam lithography and dry etching of high mobility hydrogen intercalated epitaxial graphene. The widths of the nanoribbons vary from 50 to 20 nm, less than half those measured in previous reports for GNRFETs. Hall measurements reveal that the devices are p-doped, with mobility on the order of 2300 cm2/Vs. From DC characteristics, we find that the maximum ratio IMAX/IMIN is 5 obtained at 50 nm ribbons width. The IV characteristics of the GNRFETs are slightly non-linear at high bias without a full saturation. Therefore, despite the aggressive scaling of the graphene nanoribbon width, a bandgap is still not observed in our measurements. The high frequency performances of our GNRFETs are already significant at low bias. At 300 mV drain source voltage, the highest intrinsic (extrinsic) cut-off frequency ft reaches 82 (18) GHz and the extrinsic maximum oscillation frequency fmax is 20 GHz, which is promising for low power applications.

  16. Development of gallium arsenide high-speed, low-power serial parallel interface modules: Executive summary

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Final report to NASA LeRC on the development of gallium arsenide (GaAS) high-speed, low power serial/parallel interface modules. The report discusses the development and test of a family of 16, 32 and 64 bit parallel to serial and serial to parallel integrated circuits using a self aligned gate MESFET technology developed at the Honeywell Sensors and Signal Processing Laboratory. Lab testing demonstrated 1.3 GHz clock rates at a power of 300 mW. This work was accomplished under contract number NAS3-24676.

  17. Terahertz quantum-cascade lasers as high-power and wideband, gapless sources for spectroscopy.

    PubMed

    Röben, Benjamin; Lü, Xiang; Hempel, Martin; Biermann, Klaus; Schrottke, Lutz; Grahn, Holger T

    2017-07-10

    Terahertz (THz) quantum-cascade lasers (QCLs) are powerful radiation sources for high-resolution and high-sensitivity spectroscopy with a discrete spectrum between 2 and 5 THz as well as a continuous coverage of several GHz. However, for many applications, a radiation source with a continuous coverage of a substantially larger frequency range is required. We employed a multi-mode THz QCL operated with a fast ramped injection current, which leads to a collective tuning of equally-spaced Fabry-Pérot laser modes exceeding their separation. A continuous coverage over 72 GHz at about 4.7 THz was achieved. We demonstrate that the QCL is superior to conventional sources used in Fourier transform infrared spectroscopy in terms of the signal-to-noise ratio as well as the dynamic range by one to two orders of magnitude. Our results pave the way for versatile THz spectroscopic systems with unprecedented resolution and sensitivity across a wide frequency range.

  18. Future mobile satellite communication concepts at 20/30 GHz

    NASA Technical Reports Server (NTRS)

    Barton, S. K.; Norbury, J. R.

    1990-01-01

    The outline of a design of a system using ultra small earth stations (picoterminals) for data traffic at 20/30 GHz is discussed. The picoterminals would be battery powered, have an RF transmitter power of 0.5 W, use a 10 cm square patch antenna, and have a receiver G/T of about -8 dB/K. Spread spectrum modulation would be required (due to interference consideration) to allow a telex type data link (less than 200 bit/s data rate) from the picoterminal to the hub station of the network and about 40 kbit/s on the outbound patch. An Olympus type transponder at 20/30 GHz could maintain several thousand simultaneous picoterminal circuits. The possibility of demonstrating a picoterminal network with voice traffic using Olympus is discussed together with fully mobile systems based on this concept.

  19. Statistical results from the Virginia Tech propagation experiment using the Olympus 12, 20, and 30 GHz satellite beacons

    NASA Technical Reports Server (NTRS)

    Stutzman, Warren L.; Safaai-Jazi, A.; Pratt, Timothy; Nelson, B.; Laster, J.; Ajaz, H.

    1993-01-01

    Virginia Tech has performed a comprehensive propagation experiment using the Olympus satellite beacons at 12.5, 19.77, and 29.66 GHz (which we refer to as 12, 20, and 30 GHz). Four receive terminals were designed and constructed, one terminal at each frequency plus a portable one with 20 and 30 GHz receivers for microscale and scintillation studies. Total power radiometers were included in each terminal in order to set the clear air reference level for each beacon and also to predict path attenuation. More details on the equipment and the experiment design are found elsewhere. Statistical results for one year of data collection were analyzed. In addition, the following studies were performed: a microdiversity experiment in which two closely spaced 20 GHz receivers were used; a comparison of total power and Dicke switched radiometer measurements, frequency scaling of scintillations, and adaptive power control algorithm development. Statistical results are reported.

  20. Millimeter wave absorption in the nonhuman primate eye at 35 GHz and 94 GHz.

    PubMed

    Chalfin, Steven; D'Andrea, John A; Comeau, Paul D; Belt, Michael E; Hatcher, Donald J

    2002-07-01

    The purpose of this study was to evaluate anterior segment bioeffects of pulsed 35 GHz and 94 GHz microwave exposure in the nonhuman primate eye. Five juvenile rhesus monkeys (Macaca mulatta) underwent baseline anterior segment ocular assessment consisting of slit lamp examination, corneal topography, specular microscopy, and pachymetry. These studies were repeated after exposure of one eye to pulsed 35 GHz or 94 GHz microwaves at varied fluences, with the other eye serving as a control. The mean fluence required to produce a threshold corneal lesion (faint epithelial edema and fluorescein staining) was 7.5 J cm(-2) at 35 GHz and 5 J cm(-2) at 94 GHz. Transient changes in corneal topography and pachymetry were noted at these fluences. Endothelial cell counts remained unchanged. Threshold corneal injury from 35 GHz and 94 GHz microwave exposure is produced at fluences below those previously reported for CO2 laser radiation. These data may help elucidate the mechanism of thermal injury to the cornea, and resolve discrepancies between IEEE C95.1 (1999), NCRP (1986), and ICNIRP (1998) safety standards for exposure to non-ionizing radiation at millimeter wavelengths.

  1. 670-GHz Down- and Up-Converting HEMT-Based Mixers

    NASA Technical Reports Server (NTRS)

    Schlecht, Enrich T.; Chattopadhyay, Goutam; Lin, Robert H.; Sin, Seth; Deal, William; Rodriquez, Bryan; Bayuk, Brian; Leong, Kevin; Mei, Gerry

    2012-01-01

    A large category of scientific investigation takes advantage of the interactions of signals in the frequency range from 300 to 1,000 GHz and higher. This includes astronomy and atmospheric science, where spectral observations in this frequency range give information about molecular abundances, pressures, and temperatures of small-sized molecules such as water. Additionally, there is a minimum in the atmospheric absorption at around 670 GHz that makes this frequency useful for terrestrial imaging, radar, and possibly communications purposes. This is because 670 GHz is a good compromise for imaging and radar applications between spatial resolution (for a given antenna size) that favors higher frequencies, and atmospheric losses that favor lower frequencies. A similar trade-off applies to communications link budgets: higher frequencies allow smaller antennas, but incur a higher loss. All of these applications usually require converting the RF (radio frequency) signal at 670 GHz to a lower IF (intermediate frequency) for processing. Further, transmitting for communication and radar generally requires up-conversion from IF to the RF. The current state-of-the-art device for performing the frequency conversion is based on Schottky diode mixers for both up and down conversion in this frequency range for room-temperature operation. Devices that can operate at room temperature are generally required for terrestrial, military, and planetary applications that cannot tolerate the mass, bulk, and power consumption of cryogenic cooling. The technology has recently advanced to the point that amplifiers in the region up to nearly 1,000 GHz are feasible. Almost all of these have been based on indium phosphide pseudomorphic high-electron mobility transistors (pHEMTs), in the form of monolithic microwave integrated circuits (MMICs). Since the processing of HEMT amplifiers is quite differ en t from that of Schottky diodes, use of Schottky mixers requires separate MMICs for the mixers

  2. The Use of a 28 GHz Gyrotron for EBW Startup Experiments on MAST

    NASA Astrophysics Data System (ADS)

    Caughman, J. B.; Bigelow, T. S.; Diem, S. J.; Peng, Y. K. M.; Rasmussen, D. A.; Shevchenko, V.; Hawes, J.; Lloyd, B.

    2009-11-01

    The use of electron Bernstein waves for non-inductive plasma current startup in MAST has recently been demonstrated [1]. The injection of 100 kW at 28 GHz generated plasma currents of up to 33 kA without the use of solenoid flux, and limited solenoid assist resulted in up to 55 kA of plasma current. A higher power 28 GHz gyrotron, with power levels of up to 300 kW for 0.5 seconds, is currently being commissioned. It is being used to investigate the scaling of startup current with microwave power and power profile as a function of time. Power modulation experiments are also being explored. Gyrotron performance and experimental results will be presented. [4pt] [1] V. Shevchenko, et al., Proceedings of the 15^th Joint Workshop on ECE and ECRH, Yosimite, USA, p. 68 (2009)

  3. Wideband tunable 140 GHz second-harmonic InP-TED oscillator

    NASA Astrophysics Data System (ADS)

    Rydberg, A.; Kollberg, E.

    1986-07-01

    A second-harmonic InP-TED oscillator, with an output power of more than 3 dBm at 144 GHz and tunable over a 10 percent frequency range, has been developed. The design incorporates two waveguide resonators. One resonator determines the fundamental frequency of oscillation and the other optimizes the second-harmonic output power.

  4. Design and experiment of a directional coupler for X-band long pulse high power microwaves.

    PubMed

    Bai, Zhen; Li, Guolin; Zhang, Jun; Jin, Zhenxing

    2013-03-01

    Higher power and longer pulse are the trend of the development of high power microwave (HPM), and then some problems emerge in measuring the power of HPM because rf breakdown is easier to occur under the circumstance of high power (the level of gigawatt) and long pulse (about 100 ns). In order to measure the power of the dominant TM₀₁ mode of an X-band long pulse overmoded HPM source, a directional coupler with stable coupling coefficient, high directivity, and high power handling capacity in wide band is investigated numerically and experimentally. At the central frequency 9.4 GHz, the simulation results show that the coupling coefficient is -59.6 dB with the directivity of 35 dB and the power handling capacity of 2 GW. The coupling coefficient is calibrated to be accordant with the simulation results. The high power tests are performed on an X-band long pulse HPM source, whose output mode is mainly TM₀₁ mode, and the results show that the measured power and waveform of the directional coupler have a good consistency with the far-field measuring results.

  5. The 20 GHz circularly polarized, high temperature superconducting microstrip antenna array

    NASA Technical Reports Server (NTRS)

    Morrow, Jarrett D.; Williams, Jeffery T.; Long, Stuart A.; Wolfe, John C.

    1994-01-01

    The primary goal was to design and characterize a four-element, 20 GHz, circularly polarized microstrip patch antenna fabricated from YBa2Cu3O(x) superconductor. The purpose is to support a high temperature superconductivity flight communications experiment between the space shuttle orbiter and the ACTS satellite. This study is intended to provide information into the design, construction, and feasibility of a circularly polarized superconducting 20 GHz downlink or cross-link antenna. We have demonstrated that significant gain improvements can be realized by using superconducting materials for large corporate fed array antennas. In addition, we have shown that when constructed from superconducting materials, the efficiency, and therefore the gain, of microstrip patches increases if the substrate is not so thick that the dominant loss mechanism for the patch is radiation into the surface waves of the conductor-backed substrate. We have considered two design configurations for a superconducting 20 GHz four-element circularly polarized microstrip antenna array. The first is the Huang array that uses properly oriented and phased linearly polarized microstrip patch elements to realize a circularly polarized pattern. The second is a gap-coupled array of circularly polarized elements. In this study we determined that although the Huang array operates well on low dielectric constant substrates, its performance becomes extremely sensitive to mismatches, interelement coupling, and design imperfections for substrates with high dielectric constants. For the gap-coupled microstrip array, we were able to fabricate and test circularly polarized elements and four-element arrays on LaAlO3 using sputtered copper films. These antennas were found to perform well, with relatively good circular polarization. In addition, we realized a four-element YBa2Cu3O(x) array of the same design and measured its pattern and gain relative to a room temperature copper array. The patterns were

  6. Compact 2.45 GHz ECR Ion Source for generation of singly-charged ions

    NASA Astrophysics Data System (ADS)

    Fatkullin, Riyaz; Bogomolov, Sergey; Kuzmenkov, Konstantin; Efremov, Andrey

    2018-04-01

    2.45 GHz ECR ion sources are widely used for production of protons, single charged heavy ions and secondary radioactive ion beams. This paper describes the development of a compact ECR ion source based on 2.45 GHz coaxial resonator. The first results of extracted current measurements at different resonator configuration as a function of UHF frequency, power and gas flow are presented.

  7. 0.15 {mu}m InGaAs/AlGaAs/GaAs HEMT production process for high performance and high yield v-band power MMICs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lai, R.; Biedenbender, M.; Lee, J.

    1995-12-31

    The authors present a unique high yield, high performance 0.15 {mu}m HEMT production process which supports fabrication of MMW power MMICs up to 70 GHz. This process has been transferred successfully from an R&D process to TRW`s GaAs production line. This paper reports the on-wafer test results of more than 1300 V-band MMIC PA circuits measured over 24 wafers. The best 2-stage V-band power MMICs have demonstrated state-of-the-art performance with 9 dB power gain, 20% PAE and 330 mW output power. An excellent RF yield of 60% was achieved with an 8 dB power gain and 250 mW output powermore » specification.« less

  8. 30/20 GHz spacecraft GaAs FET solid state transmitter for trunking and customer-premise-service application

    NASA Technical Reports Server (NTRS)

    Saunier, P.; Nelson, S.

    1983-01-01

    Sixteen 30 dB 0.5 W amplifier modules were combined to satisfy the requirement for a graceful degradation. If one module fails, the output power drops by only 0.43 dB. Also, by incorporating all the gain stages within the combiner the overall combining efficiency is maximized. A 16 way waveguide divider combiner was developed to minimize the insertion loss associated with such a large corporate feed structure. Tests showed that the 16 way insertion loss was less than 0.5 dB. To minimize loss, a direct transition from waveguide to microstrip, using a finline on duroid substrate, was developed. The FETs fabricated on MBE grown material, demonstrated superior performances. For example, a 600 micrometer device was capable of 320 mW output power with 5 dB gain and 26.6% efficiency at 21 GHz. The 16 module amplifier gave 8.95 W saturated output power with 30 dB gain. The overall efficiency was 9%. The 3 dB bandwidth was 2.5 GHz. At 17.7 GHz the amplifier had 5 W output power and at 20.2 GHz it still had 4.4 W.

  9. Design of 2.5 GHz broad bandwidth microwave bandpass filter at operating frequency of 10 GHz using HFSS

    NASA Astrophysics Data System (ADS)

    Jasim, S. E.; Jusoh, M. A.; Mahmud, S. N. S.; Zamani, A. H.

    2018-04-01

    Development of low losses, small size and broad bandwidth microwave bandpass filter operating at higher frequencies is an active area of research. This paper presents a new route used to design and simulate microwave bandpass filter using finite element modelling and realized broad bandwidth, low losses, small dimension microwave bandpass filter operating at 10 GHz frequency using return loss method. The filter circuit has been carried out using Computer Aid Design (CAD), Ansoft HFSS software and designed with four parallel couple line model and small dimension (10 × 10 mm2) using LaAlO3 substrate. The response of the microwave filter circuit showed high return loss -50 dB at operating frequency at 10.4 GHz and broad bandwidth of 2.5 GHz from 9.5 to 12 GHz. The results indicate the filter design and simulation using HFSS is reliable and have the opportunity to transfer from lab potential experiments to the industry.

  10. High-power, single-longitudinal-mode terahertz-wave generation pumped by a microchip Nd:YAG laser [Invited].

    PubMed

    Hayashi, Shin'ichiro; Nawata, Koji; Sakai, Hiroshi; Taira, Takunori; Minamide, Hiroaki; Kawase, Kodo

    2012-01-30

    We report on the development of a high-peak-power, single-longitudinal-mode and tunable injection-seeded terahertz-wave parametric generator using MgO:LiNbO3, which operates at room temperature. The high peak power (> 120 W) is enough to allow easy detection by commercial and calibrated pyroelectric detectors, and the spectral resolution (< 10 GHz) is the Fourier transform limit of the sub-nanosecond terahertz-wave pulse. The tunability (1.2-2.8 THz) and the small footprint size (A3 paper, 29.7 × 42 cm) are suitable for a variety of applications.

  11. Computer Analysis of Spectrum Anomaly in 32-GHz Traveling-Wave Tube for Cassini Mission

    NASA Technical Reports Server (NTRS)

    Dayton, James A., Jr.; Wilson, Jeffrey D.; Kory, Carol L.

    1999-01-01

    Computer modeling of the 32-GHz traveling-wave tube (TWT) for the Cassini Mission was conducted to explain the anomaly observed in the spectrum analysis of one of the flight-model tubes. The analysis indicated that the effect, manifested as a weak signal in the neighborhood of 35 GHz, was an intermodulation product of the 32-GHz drive signal with a 66.9-GHz oscillation induced by coupling to the second harmonic'signal. The oscillation occurred only at low- radiofrequency (RF) drive power levels that are not expected during the Cassini Mission. The conclusion was that the anomaly was caused by a generic defect inadvertently incorporated in the geometric design of the slow-wave circuit and that it would not change as the TWT aged. The most probable effect of aging on tube performance would be a reduction in the electron beam current. The computer modeling indicated that although not likely to occur within the mission lifetime, a reduction in beam current would reduce or eliminate the anomaly but would do so at the cost of reduced RF output power.

  12. Spatial Power Combining Amplifier for Ground and Flight Applications

    NASA Astrophysics Data System (ADS)

    Velazco, J. E.; Taylor, M.

    2016-11-01

    Vacuum-tube amplifiers such as klystrons and traveling-wave tubes are the workhorses of high-power microwave radiation generation. At JPL, vacuum tubes are extensively used in ground and flight missions for radar and communications. Vacuum tubes use electron beams as the source of energy to achieve microwave power amplification. Such electron beams operate at high kinetic energies and thus require high voltages to function. In addition, vacuum tubes use compact cavity and waveguide structures that hold very intense radio frequency (RF) fields inside. As the operational frequency is increased, the dimensions of these RF structures become increasingly smaller. As power levels and operational frequencies are increased, the highly intense RF fields inside of the tubes' structures tend to arc and create RF breakdown. In the case of very high-power klystrons, electron interception - also known as body current - can produce thermal runaway of the cavities that could lead to the destruction of the tube. The high voltages needed to power vacuum tubes tend to require complicated and cumbersome power supplies. Consequently, although vacuum tubes provide unmatched high-power microwaves, they tend to arc, suffer from thermal issues, and require failure-prone high-voltage power supplies. In this article, we present a new concept for generating high-power microwaves that we refer to as the Spatial Power Combining Amplifier (SPCA). The SPCA is very compact, requires simpler, lower-voltage power supplies, and uses a unique power-combining scheme wherein power from solid-state amplifiers is coherently combined. It is a two-port amplifier and can be used inline as any conventional two-port amplifier. It can deliver its output power to a coaxial line, a waveguide, a feed, or to any microwave load. A key feature of this new scheme is the use of higher-order-mode microwave structures to spatially divide and combine power. Such higher-order-mode structures have considerably larger cross

  13. A high power microwave triggered RF opening switch.

    PubMed

    Beeson, S; Dickens, J; Neuber, A

    2015-03-01

    A 4-port S-band waveguide structure was designed and fabricated such that a signal of any amplitude (less than 1 MW) can be switched from a normally closed state, <0.5 dB insertion loss (IL), to an open state >30 dB IL by initiating plasma in a gas cell situated at the junction of this waveguide and one propagating a megawatt level magnetron pulse. The 90/10 switching time is as low as 20 ns with a delay of ∼30 ns between the onset of the high power microwave pulse and the initial drop of the signal. Two ports of this device are for the high power triggering pulse while the other two ports are for the triggered signal in a Moreno-like coupler configuration. In order to maintain high isolation, these two sets of waveguides are rotated 90° from each other with a TE111 resonator/plasma cell located at the intersection. This manuscript describes the design and optimization of this structure using COMSOL 4.4 at the design frequency of 2.85 GHz, comparison of simulated scattering parameters with measured "cold tests" (testing without plasma), and finally the temporal waveforms of this device being used to successfully switch a low power CW signal from 2 W to <5 mW on a sub-microsecond timescale.

  14. Large-Area Monolayer MoS2 for Flexible Low-Power RF Nanoelectronics in the GHz Regime.

    PubMed

    Chang, Hsiao-Yu; Yogeesh, Maruthi Nagavalli; Ghosh, Rudresh; Rai, Amritesh; Sanne, Atresh; Yang, Shixuan; Lu, Nanshu; Banerjee, Sanjay Kumar; Akinwande, Deji

    2016-03-02

    Flexible synthesized MoS2 transistors are advanced to perform at GHz speeds. An intrinsic cutoff frequency of 5.6 GHz is achieved and analog circuits are realized. Devices are mechanically robust for 10,000 bending cycles. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Double mushroom 1.55-μm waveguide photodetectors for integrated E-band (60-90 GHz) wireless transmitter modules

    NASA Astrophysics Data System (ADS)

    Rymanov, Vitaly; Tekin, Tolga; Stöhr, Andreas

    2012-03-01

    High data rate photonic wireless systems operating at millimeter wave carrier frequencies are considered as a disruptive technology e.g. for reach extension in optical access networks and for mobile backhauling. Recently, we demonstrated 60 GHz photonic wireless systems with record data rates up to 27 Gbit/s. Because of the oxygen absorption at 60 GHz, it is beneficial for fixed wireless systems with spans exceeding 1 km to operate at even higher frequencies. Here, the recently regulated 10 GHz bandwidth within the E-band (60-90 GHz) is of particular interest, covering the 71-76 GHz and 81-86 GHz allocations for multi-gigabit wireless transmission. For this purpose, wideband waveguide photodetectors with high external quantum efficiency are required. Here, we report on double mushroom 1.55 μm waveguide photodetectors for integration in an E-band wireless transmitter module. The developed photodetector consists of a partially p-doped, partly non-intentionally doped absorbing layer centered in a mushroom-type optical waveguide, overcoming the compromise between the junction capacitance and the series resistance. For efficient fiber-chip coupling, a second mushroom-type passive optical waveguide is used. In contrast to the conventional shallow ridge waveguide approach, the mushroom-type passive waveguide allows to shift the center of the optical mode further away from the top surface, thus reducing waveguide losses due to the surface roughness. Experimentally, a very flat frequency response with a deviation up to +/-1 dB in the entire E-band has been found together with an output power level of -15.7 dBm at 10 mA photocurrent and at a frequency of 73 GHz.

  16. Improvements in Speed and Functionality of a 670-GHz Imaging Radar

    NASA Technical Reports Server (NTRS)

    Dengler, Robert J.; Cooper, Ken B.; Mehdi, Imran; Siegel, Peter H.; Tarsala, Jan A.; Bryllert, Thomas E.

    2011-01-01

    Significant improvements have been made in the instrument originally described in a prior NASA Tech Briefs article: Improved Speed and Functionality of a 580-GHz Imaging Radar (NPO-45156), Vol. 34, No. 7 (July 2010), p. 51. First, the wideband YIG oscillator has been replaced with a JPL-designed and built phase-locked, low-noise chirp source. Second, further refinements to the data acquisition and signal processing software have been performed by moving critical code sections to C code, and compiling those sections to Windows DLLs, which are then invoked from the main LabVIEW executive. This system is an active, single-pixel scanned imager operating at 670 GHz. The actual chirp signals for the RF and LO chains were generated by a pair of MITEQ 2.5 3.3 GHz chirp sources. Agilent benchtop synthesizers operating at fixed frequencies around 13 GHz were then used to up-convert the chirp sources to 15.5 16.3 GHz. The resulting signals were then multiplied 36 times by a combination of off-the-shelf millimeter- wave components, and JPL-built 200- GHz doublers and 300- and 600-GHz triplers. The power required to drive the submillimeter-wave multipliers was provided by JPL-built W-band amplifiers. The receive and transmit signal paths were combined using a thin, high-resistivity silicon wafer as a beam splitter. While the results at present are encouraging, the system still lacks sufficient speed to be usable for practical applications in a contraband detection. Ideally, an image acquisition speed of ten seconds, or a factor of 30 improvement, is desired. However, the system improvements to date have resulted in a factor of five increase in signal acquisition speed, as well as enhanced signal processing algorithms, permitting clearer imaging of contraband objects hidden underneath clothing. In particular, advances in three distinct areas have enabled these performance enhancements: base source phase noise reduction, chirp rate, and signal processing. Additionally, a second

  17. The Most Compact Bright Radio-loud AGNs. II. VLBA Observations of 10 Sources at 43 and 86 GHz

    NASA Astrophysics Data System (ADS)

    Cheng, X.-P.; An, T.; Hong, X.-Y.; Yang, J.; Mohan, P.; Kellermann, K. I.; Lister, M. L.; Frey, S.; Zhao, W.; Zhang, Z.-L.; Wu, X.-C.; Li, X.-F.; Zhang, Y.-K.

    2018-01-01

    Radio-loud active galactic nuclei (AGNs), hosting powerful relativistic jet outflows, provide an excellent laboratory for studying jet physics. Very long baseline interferometry (VLBI) enables high-resolution imaging on milli-arcsecond (mas) and sub-mas scales, making it a powerful tool to explore the inner jet structure, shedding light on the formation, acceleration, and collimation of AGN jets. In this paper, we present Very Long Baseline Array observations of 10 radio-loud AGNs at 43 and 86 GHz that were selected from the Planck catalog of compact sources and are among the brightest in published VLBI images at and below 15 GHz. The image noise levels in our observations are typically 0.3 and 1.5 mJy beam‑1 at 43 and 86 GHz, respectively. Compared with the VLBI data observed at lower frequencies from the literature, our observations with higher resolutions (with the highest resolution being up to 0.07 mas at 86 GHz and 0.18 mas at 43 GHz) and at higher frequencies detected new jet components at sub-parsec scales, offering valuable data for studies of the physical properties of the innermost jets. These include the compactness factor of the radio structure (the ratio of core flux density to total flux density), and core brightness temperature ({T}{{b}}). In all these sources, the compact core accounts for a significant fraction (> 60 % ) of the total flux density. Their correlated flux density at the longest baselines is higher than 0.16 Jy. The compactness of these sources make them good phase calibrators of millimeter-wavelength ground-based and space VLBI.

  18. High Speed Laser with 100 Ghz Resonance Frequency

    DTIC Science & Technology

    2014-02-28

    applications, such as opto - electronic oscillators . Recently, however, by optimizing the detuning frequency and injection ratio, we have shown enhanced...semiconductor lasers has been limited by relaxation oscillation frequency to < 40 GHz. By using strong optical injection locking, we report resonance...direct modulation bandwidth of semiconductor lasers. In a typical laser, the relaxation oscillation [resonance] frequency is a figure-of-merit that is a

  19. Superconductive hot-electron-bolometer mixer receiver for 800-GHz operation

    NASA Astrophysics Data System (ADS)

    Kawamura, J.; Blundell, R.; Tong, C.-Y. E.; Papa, D. C.; Hunter, T. R.; Paine, S. N.; Patt, F.; Gol'Tsman, G.; Cherednichenko, S.; Voronov, B.; Gershenzon, E.

    2000-04-01

    In this paper, we describe a superconductive hot-electron-bolometer mixer receiver designed to operate in the partially transmissive 350-μm atmospheric window. The receiver employs an NbN thin-film microbridge as the mixer element, in which the main cooling mechanism of the hot electrons is through electron-phonon interaction. At a local-oscillator frequency of 808 GHz, the measured double-sideband receiver noise temperature is Trx=970 K, across a 1-GHz intermediate-frequency bandwidth centered at 1.8 GHz. We have measured the linearity of the receiver and the amount of local-oscillator power incident on the mixer for optimal operation, which is PLO ≈ 1 microwatt. This receiver was used in making observations as a facility instrument at the Heinrich Hertz Telescope, Mt. Graham, AZ, during the 1998-1999 winter observing season.

  20. Broadband Characterization of a 100 to 180 GHz Amplifier

    NASA Technical Reports Server (NTRS)

    Kangaslahti, Pekka; Deal, W. R.; Mei, X. B.; Lai, R.

    2007-01-01

    Atmospheric science and weather forecasting require measurements of the temperature and humidity vs. altitude. These sounding measurements are obtained at frequencies close to the resonance frequencies of oxygen (118 GHz) and water (183 GHz) molecules. We have characterized a broadband amplifier that will increase the sensitivity of sounding and other instruments at these frequencies. This study demonstrated for the first t1me continuous low noise amplification from 100 to 180 GHz. The measured InP monolithic millimeter-wave Integrated circuit (MMIC) amplifier had more than 18 dB of gain from 100 to 180 GHz and 15 dB of gain up to 220 GHz. This is the widest bandwidth low noise amplifier result at these frequencies to date. The circuit was fabricated in Northrop Grumman Corporation 35 nm InP high electron mobility transistor (HEMT).

  1. a 33GHZ and 95GHZ Cloud Profiling Radar System (cprs): Preliminary Estimates of Particle Size in Precipitation and Clouds.

    NASA Astrophysics Data System (ADS)

    Sekelsky, Stephen Michael

    1995-11-01

    The Microwave Remote Sensing Laboratory (MIRSL) st the University of Massachusetts has developed a unique single antenna, dual-frequency polarimetric Cloud Profiling Radar System (CPRS). This project was funded by the Department of Energy's Atmospheric Radiation Measurement (ARM) program, and was intended to help fill the void of ground-based remote sensors capable of characterizing cloud microphysical properties. CPRS is unique in that it can simultaneously measure the complex power backscattered from clouds at 33 GHz and 95 GHz through the same aperture. Both the 33 GHz and 95 GHz channels can transmit pulse-to-pulse selectable vertical or horizontal polarization, and simultaneously record both the copolarized and crosspolarized backscatter. CPRS Doppler, polarimetric and dual-wavelength reflectivity measurements combined with in situ cloud measurements should lead to the development of empirical models that can more accurately classify cloud-particle phase and habit, and make better quantitative estimates of particle size distribution parameters. This dissertation describes the CPRS hardware, and presents colocated 33 GHz and 95 GHz measurements that illustrate the use of dual-frequency measurements to estimate particle size when Mie scattering, is observed in backscatter from rain and ice-phase clouds. Polarimetric measurements are presented as a means of discriminating cloud phase (ice-water) and estimating crystal shape in cirrus clouds. Polarimetric and dual-wavelength observations of insects are also presented with a brief discussion of their impact on the interpretation of precipitation and liquid cloud measurements. In precipitation, Diermendjian's equations for Mie backscatter (1) and the Marshal-Palmer drop-size distribution are used to develop models relating differences in the reflectivity and mean velocity at 33 GHz and 95 GHz to the microphysical parameters of rain. These models are then used to estimate mean droplet size from CPRS measurements of

  2. Research and development on advanced silicon carbide thin film growth techniques and fabrication of high power and microwave frequency silicon carbide-based device structures

    NASA Astrophysics Data System (ADS)

    Davis, Robert F.

    1990-12-01

    The RF operation of MESFETs and bipolar transistors fabricated from both alpha- and beta-SiC have been modeled. The results show that SiC has considerable promise for producing microwave power MESFETs with RF output power capability greater (approx. 4 times) than can be obtained with any of the commonly used semiconductors (e.g., GaAs), this due to the high breakdown field of SiC that allows high bias voltage to be applied. These device modeling efforts have been used as a guide to design a new MESFET mask set with a aS micron gate length and reduced gate pad area. For the first time, positive gain was observed for a SiC transistor at microwave frequencies. The highest values for Ft and Fmax were 2.9 GHz and 1.9 GHz, respectively. The highest current and power gains observed at 1.0 GHz were 8.5 dB and 7 db, respectively. Avalanche characteristics for a 6H-SiC IMPATT were observed for the first time. Heteroepitaxial growth of Ti on (0001) 6H-SiC has been achieved at room and elevated temperatures. Current voltage measurements display shifts toward ohmic behavior after annealing at 400 C. Molecular beam epitaxy equipment has been designed and commissioned.

  3. Thermal-Mechanical Study of 3.9 GHz CW Coupler and Cavity for LCLS-II Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gonin, Ivan; Harms, Elvin; Khabiboulline, Timergali

    2017-05-01

    Third harmonic system was originally developed by Fermilab for FLASH facility at DESY and then was adopted and modified by INFN for the XFEL project [1-3]. In contrast to XFEL project, all cryomodules in LCLS-II project will operate in CW regime with higher RF average power for 1.3 GHz and 3.9 GHz cavities and couplers. Design of the cavity and fundamental power coupler has been modified to satisfy LCLS-II requirements. In this paper we discuss the results of COMSOL thermal and mechanical analysis of the 3.9 GHz coupler and cavity to verify proposed modifica-tion of the design. For the dressedmore » cavity we present simulations of Lorentz force detuning, helium pressure sensitivity df/dP and major mechanical resonances.« less

  4. Global Sky Model (GSM): A Model of Diffuse Galactic Radio Emission from 10 MHz to 100 GHz

    NASA Astrophysics Data System (ADS)

    de Oliveira-Costa, Angelica; Tegmark, Max; Gaensler, B. M.; Jonas, Justin; Landecker, T. L.; Reich, Patricia

    2010-11-01

    Understanding diffuse Galactic radio emission is interesting both in its own right and for minimizing foreground contamination of cosmological measurements. Cosmic Microwave Background experiments have focused on frequencies > 10 GHz, whereas 21 cm tomography of the high redshift universe will mainly focus on < 0.2 GHz, for which less is currently known about Galactic emission. Motivated by this, we present a global sky model derived from all publicly available total power large-area radio surveys, digitized with optical character recognition when necessary and compiled into a uniform format, as well as the new Villa Elisa data extending the 1.4 GHz map to the entire sky. We quantify statistical and systematic uncertainties in these surveys by comparing them with various global multi-frequency model fits. We find that a principal component based model with only three components can fit the 11 most accurate data sets (at 10, 22, 45 & 408 MHz and 1.4, 2.3, 23, 33, 41, 61, 94 GHz) to an accuracy around 1%-10% depending on frequency and sky region. The data compilation and software returning a predicted all-sky map at any frequency from 10 MHz to 100 GHz are publicly available at the link below.

  5. Monolithic Microwave Integrated Circuits (MMIC) Broadband Power Amplifiers (Part 2)

    DTIC Science & Technology

    2013-07-01

    2 Figure 2. A 2-GHz load-pull simulation of output power (Pcomp-6 x 65 µm PHEMT). ..............2 Figure 3. A 2-GHz load-pull simulation of PAE (6...5. MMIC 1–5 GHz output power and PAE performance simulation (1, 2, 3, and 4 GHz...load-pull simulation of PAE (6 x 50 µm PHEMT). .......................................7 Figure 9. MMIC 10–19 GHz broadband power amplifier linear

  6. Numerical design and analysis of parasitic mode oscillations for 95 GHz gyrotron beam tunnel

    NASA Astrophysics Data System (ADS)

    Kumar, Nitin; Singh, Udaybir; Yadav, Vivek; Kumar, Anil; Sinha, A. K.

    2013-05-01

    The beam tunnel, equipped with the high lossy ceramics, is designed for 95 GHz gyrotron. The geometry of the beam tunnel is optimized considering the maximum RF absorption (ideally 100%) and the suppression of parasitic oscillations. The excitation of parasitic modes is a concerning problem for high frequency, high power gyrotrons. Considering the problem of parasitic mode excitation in beam tunnel, a detail analysis is performed for the suppression of these kinds of modes. Trajectory code EGUN and CST Microwave Studio are used for the simulations of electron beam trajectory and electromagnetic analysis, respectively.

  7. System calibration of the 1.4 GHz and 5 GHz radiometers for soil moisture remote sensing

    NASA Technical Reports Server (NTRS)

    Wang, J.; Shiue, J.; Gould, W.; Fuchs, J.; Hirschmann, E.; Glazar, W.

    1980-01-01

    Two microwave radiometers at the frequencies of 1.4 GHz and 5 GHz were mounted on a mobile tower and used for a remote sensing of soil moisture experiment at a Beltsville Agriculture Research Center test site. The experiment was performed in October 1979 over both bare field and fields covered with grass, soybean, and corn. The calibration procedure for the radiometer systems which forms the basis of obtaining the final radiometric data product is described. It is estimated from the calibration results that the accuracy of the 1.4 GHz radiometric measurements is about + or - 3 K. The measured 5 GHz brightness temperatures over bare fields with moisture content greater than 10 percent by dry weight are about 8 K lower than those taken simultaneously at 1.4 GHz. This could be due to either (1) a 5 GHz antenna side lobe seeing the cold brightness of the sky, or (2) the thermal microwave emission from a soil being less sensitive to surface roughness at 5 GHz than at 1.4 GHz.

  8. A 380 GHz SIS receiver using Nb/AlO(x)/Nb junctions for a radioastronomical balloon-borne experiment: PRONAOS

    NASA Technical Reports Server (NTRS)

    Febvre, P.; Feautrier, P.; Robert, C.; Pernot, J. C.; Germont, A.; Hanus, M.; Maoli, R.; Gheudin, M.; Beaudin, G.; Encrenaz, P.

    1992-01-01

    The superheterodyne detection technique used for the spectrometer instrument of the PRONAOS project will provide a very high spectral resolution (delta nu/nu = 10(exp -6)). The most critical components are those located at the front-end of the receiver: their contribution dominates the total noise of the receiver. Therefore, it is important to perform accurate studies for specific components, such as mixers and multipliers working in the submillimeter wave range. Difficulties in generating enough local oscillator (LO) power at high frequencies make SIS mixers very desirable for operation above 300 GHz. The low LO power requirements and the low noise temperature of these mixers are the primary reason for building an SIS receiver. This paper reports the successful fabrication of small (less than or equal to 1 sq micron) Nb/Al-O(x)/Nb junctions and arrays with excellent I-V characteristics and very good reliability, resulting in a low noise receiver performance measured in the 368/380 GHz frequency range.

  9. Theoretical comparison of maser materials for a 32-GHz maser amplifier

    NASA Technical Reports Server (NTRS)

    Lyons, James R.

    1988-01-01

    The computational results of a comparison of maser materials for a 32 GHz maser amplifier are presented. The search for a better maser material is prompted by the relatively large amount of pump power required to sustain a population inversion in ruby at frequencies on the order of 30 GHz and above. The general requirements of a maser material and the specific problems with ruby are outlined. The spin Hamiltonian is used to calculate energy levels and transition probabilities for ruby and twelve other materials. A table is compiled of several attractive operating points for each of the materials analyzed. All the materials analyzed possess operating points that could be superior to ruby. To complete the evaluation of the materials, measurements of inversion ratio and pump power requirements must be made in the future.

  10. The 30/20 GHz demonstration system SSUS-D/BSE

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The systems consisting of a 30/20 GHz communication satellite featuring a multiple fixed beam and scanning beam antenna, SS-TDMA, onboard processing and high power TWT's and IMPATT amplifiers, a trunking space-diversity Earth station, a customer premise system (CPS) portable Earth station and a Master Control Station. Hardware, software and personnel are included to build and launch one satellite and to carry on a two year experimentation and demonstration period of advanced Ka-band systems concepts and technology. Included are first level plans identifying all tasks, a schedule for system development and an assessment of critical technology and risk and a preliminary experiments plan.

  11. Operation of a 500 MHz high temperature superconducting NMR: towards an NMR spectrometer operating beyond 1 GHz.

    PubMed

    Yanagisawa, Y; Nakagome, H; Tennmei, K; Hamada, M; Yoshikawa, M; Otsuka, A; Hosono, M; Kiyoshi, T; Takahashi, M; Yamazaki, T; Maeda, H

    2010-04-01

    We have begun a project to develop an NMR spectrometer that operates at frequencies beyond 1 GHz (magnetic field strength in excess of 23.5 T) using a high temperature superconductor (HTS) innermost coil. As the first step, we developed a 500 MHz NMR with a Bi-2223 HTS innermost coil, which was operated in external current mode. The temporal magnetic field change of the NMR magnet after the coil charge was dominated by (i) the field fluctuation due to a DC power supply and (ii) relaxation in the screening current in the HTS tape conductor; effect (i) was stabilized by the 2H field-frequency lock system, while effect (ii) decreased with time due to relaxation of the screening current induced in the HTS coil and reached 10(-8)(0.01 ppm)/h on the 20th day after the coil charge, which was as small as the persistent current mode of the NMR magnet. The 1D (1)H NMR spectra obtained by the 500 MHz LTS/HTS magnet were nearly equivalent to those obtained by the LTS NMR magnet. The 2D-NOESY, 3D-HNCO and 3D-HNCACB spectra were achieved for ubiquitin by the 500 MHz LTS/HTS magnet; their quality was closely equivalent to that achieved by a conventional LTS NMR. Based on the results of numerical simulation, the effects of screening current-induced magnetic field changes are predicted to be harmless for the 1.03 GHz NMR magnet system. 2010 Elsevier Inc. All rights reserved.

  12. A 205GHz Amplifier in 90nm CMOS Technology

    DTIC Science & Technology

    2017-03-01

    San Jose State University San Jose, CA, USA       Abstract: This paper presents a 205GHz amplifier drawing 43.4mA from a 0.9V power supply with...10.5dB power gain, Psat of -1.6dBm, and P1dB ≈ -5.8dBm in a standard 90nm CMOS process. Moreover, the design employs internal (layout-based) /external...reported in [2]. In this paper, two neutralization techniques, internal and external approaches, have been implemented to achieve higher power

  13. Experimental results of superimposing 9.9 GHz extraordinary mode microwaves on 2.45 GHz ECRIS plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nishiokada, Takuya, E-mail: nishiokada@nf.eie.eng.osaka-u.ac.jp; Nagaya, Tomoki; Hagino, Shogo

    2016-02-15

    Efficient production of multicharged ions has been investigated on the tandem-type ECRIS in Osaka University. According to the consideration of the accessibility conditions of microwaves to resonance and cutoff regions, it was suggested that the upper hybrid resonance (UHR) heating contributed to enhancement of ion beam intensity. In order to enhance multicharged ion beams efficiently, injecting higher frequency microwave with extraordinary (X-mode) toward UHR region has been tried. In this study, 2.45 GHz frequency microwaves are used for conventional ECR discharge, and 9.9 GHz frequency microwaves with X-mode are superimposed for UHR heating. The effects of additive microwave injection aremore » investigated experimentally in terms of plasma parameters and electron energy distribution function (EEDF) measured by Langmuir probe and ion beam current. As the results show, it is confirmed that the electrons in the high energy region are affected by 9.9 GHz X-mode microwave injection from the detailed analysis of EEDF.« less

  14. Experimental results of superimposing 9.9 GHz extraordinary mode microwaves on 2.45 GHz ECRIS plasma.

    PubMed

    Nishiokada, Takuya; Nagaya, Tomoki; Hagino, Shogo; Otsuka, Takuro; Muramatsu, Masayuki; Sato, Fuminobu; Kitagawa, Atsushi; Kato, Yushi

    2016-02-01

    Efficient production of multicharged ions has been investigated on the tandem-type ECRIS in Osaka University. According to the consideration of the accessibility conditions of microwaves to resonance and cutoff regions, it was suggested that the upper hybrid resonance (UHR) heating contributed to enhancement of ion beam intensity. In order to enhance multicharged ion beams efficiently, injecting higher frequency microwave with extraordinary (X-mode) toward UHR region has been tried. In this study, 2.45 GHz frequency microwaves are used for conventional ECR discharge, and 9.9 GHz frequency microwaves with X-mode are superimposed for UHR heating. The effects of additive microwave injection are investigated experimentally in terms of plasma parameters and electron energy distribution function (EEDF) measured by Langmuir probe and ion beam current. As the results show, it is confirmed that the electrons in the high energy region are affected by 9.9 GHz X-mode microwave injection from the detailed analysis of EEDF.

  15. High Current Density Cathodes for Future Vacuum Electronics Applications

    DTIC Science & Technology

    2008-05-30

    Tube - device for generating high levels of RF power DARPA Defense Advanced Research Agency PBG Photonic band gap W- Band 75-111 GHz dB Decibels GHz...Extended interaction klystron 1. Introduction All RF vacuum electron sources require a high quality electron beam for efficient operation. Research on...with long life. Pres- ently, only thermionic dispenser cathodes are practical for high power RF sources. Typical thermi- onic cathodes consists of a

  16. Advanced ACTPol Low-Frequency Array: Readout and Characterization of Prototype 27 and 39 GHz Transition Edge Sensors

    NASA Astrophysics Data System (ADS)

    Koopman, B. J.; Cothard, N. F.; Choi, S. K.; Crowley, K. T.; Duff, S. M.; Henderson, S. W.; Ho, S. P.; Hubmayr, J.; Gallardo, P. A.; Nati, F.; Niemack, M. D.; Simon, S. M.; Staggs, S. T.; Stevens, J. R.; Vavagiakis, E. M.; Wollack, E. J.

    2018-05-01

    Advanced ACTPol (AdvACT) is a third-generation polarization upgrade to the Atacama Cosmology Telescope, designed to observe the cosmic microwave background (CMB). AdvACT expands on the 90 and 150 GHz transition edge sensor (TES) bolometer arrays of the ACT Polarimeter (ACTPol), adding both high-frequency (HF, 150/230 GHz) and low-frequency (LF, 27/39 GHz) multichroic arrays. The addition of the high- and low-frequency detectors allows for the characterization of synchrotron and spinning dust emission at the low frequencies and foreground emission from galactic dust and dusty star-forming galaxies at the high frequencies. The increased spectral coverage of AdvACT will enable a wide range of CMB science, such as improving constraints on dark energy, the sum of the neutrino masses, and the existence of primordial gravitational waves. The LF array will be the final AdvACT array, replacing one of the MF arrays for a single season. Prior to the fabrication of the final LF detector array, we designed and characterized prototype TES bolometers. Detector geometries in these prototypes are varied in order to inform and optimize the bolometer designs for the LF array, which requires significantly lower noise levels and saturation powers (as low as {˜ } 1 pW) than the higher-frequency detectors. Here we present results from tests of the first LF prototype TES detectors for AdvACT, including measurements of the saturation power, critical temperature, thermal conductance, and time constants. We also describe the modifications to the time-division SQUID readout architecture compared to the MF and HF arrays.

  17. All-solid-state radiometers for environmental studies to 700 GHz

    NASA Technical Reports Server (NTRS)

    Zimmermann, Ralph; Zimmermann, Ruediger; Zimmermann, Peter

    1992-01-01

    We report results with an all-solid-state radiometer for measurements of the ClO molecule at 649 GHz. The project is part of a program to provide low-noise, low-weight, low-power radiometers for space operation, and special effort has been expended on the development of high-efficiency solid-state frequency multipliers and Schottky-barrier mixers with low local oscillator power requirements. The best measured system noise temperature was 1750 K with the mixer and preamplifier cooled to 77 K. The mixer diode was easily pumped into saturation, indicating that the design has excellent prospects of operating at higher frequencies - our present design goal being 1 THz. We comment on the principal design features of such systems and will report on stratospheric measurements performed with this system.

  18. 35 GHz integrated circuit rectifying antenna with 33 percent efficiency

    NASA Technical Reports Server (NTRS)

    Yoo, T.-W.; Chang, K.

    1991-01-01

    A 35 GHz integrated circuit rectifying antenna (rectenna) has been developed using a microstrip dipole antenna and beam-lead mixer diode. Greater than 33 percent conversion efficiency has been achieved. The circuit should have applications in microwave/millimeter-wave power transmission and detection.

  19. Wideband Circularly Polarized Printed Ring Slot Antenna for 5 GHz – 6 GHz

    NASA Astrophysics Data System (ADS)

    Nasrun Osman, Mohamed; Rahim, Mohamad Helmi A.; Jusoh, Muzammil; Sabapathy, Thennarasan; Rahim, Mohamad Kamal A.; Norlyana Azemi, Saidatul

    2018-03-01

    This paper presents the design of circularly polarized printed slot antenna operating at 5 – 6 GHz. The proposed antenna consists of L-shaped feedline on the top of structure and circular ring slot positioned at the ground plane underneath the substrate as a radiator. A radial and narrow slot in the ground plane provides coupling between the L-shaped feedline and circular ring slot. The circular polarization is realized by implementing the slits perturbation located diagonally to perturb the current flow on the slot structure. The antenna prototype is fabricated on FR4 substrate. The simulated and measured results are compared and analyzed to demonstrate the performance of the antenna. Good measured of simulated results are obtained at the targeted operating frequency. The simulated -10dB reflection coefficient bandwidths and axial ratio are 750 MHz and 165 MHz, respectively. The investigation on the affect of the important parameters towards the reflection coefficient and axial are also presented. The proposed antenna is highly potential to be used for wireless local area network (WLAN) and wireless power transfer (WPT).

  20. Packaging of microwave integrated circuits operating beyond 100 GHz

    NASA Technical Reports Server (NTRS)

    Samoska, L.; Daniel, E.; Sokolov, V.; Sommerfeldt, S.; Bublitz, J.; Olson, K.; Gilbert, B.; Chow, D.

    2002-01-01

    Several methods of packaging high speed (75-330 GHz) InP HEMT MMIC devices are discussed. Coplanar wirebonding is presented with measured insertion loss of less than 0.5dB and return loss better than -17 dB from DC to 110 GHz. A motherboard/daughterboard packaging scheme is presented which supports minimum loss chains of MMICs using this coplanar wirebonding method. Split waveguide block packaging approaches are presented in G-band (140-220 GHz) with two types of MMIC-waveguide transitions: E-plane probe andantipodal finline.

  1. A low noise 665 GHz SIS quasi-particle waveguide receiver

    NASA Technical Reports Server (NTRS)

    Kooi, J. W.; Walker, C. K.; Leduc, H. G.; Hunter, T. R.; Benford, D. J.; Phillips, T. G.

    1993-01-01

    Recent results on a 565-690 GHz SIS heterodyne receiver employing a 0.36 micron(sup 2) Nb/AlOx/Nb SIS tunnel junction with high quality circular non-contacting back short and E-plane tuners in a full height wave guide mount are reported. No resonant tuning structures were incorporated in the junction design at this time, even though such structures are expected to help the performance of the receiver. The receiver operates to at least the gap frequency of Niobium, approximately 680 GHz. Typical receiver noise temperatures from 565-690 GHz range from 160K to 230K with a best value of 185K DSB at 648 GHz. With the mixer cooled from 4.3K to 2K the measured receiver noise temperatures decreased by approximately 15 percent, giving roughly 180K DSB from 660 to 680 GHz. The receiver has a full 1 GHz IF pass band and was successfully installed at the Caltech Submillimeter Observatory in Hawaii.

  2. Gas spectroscopy system with 245 GHz transmitter and receiver in SiGe BiCMOS

    NASA Astrophysics Data System (ADS)

    Schmalz, Klaus; Rothbart, Nick; Borngräber, Johannes; Yilmaz, Selahattin Berk; Kissinger, Dietmar; Hübers, Heinz-Wilhelm

    2017-02-01

    The implementation of an integrated mm-wave transmitter (TX) and receiver (RX) in SiGe BiCMOS or CMOS technology offers a path towards a compact and low-cost system for gas spectroscopy. Previously, we have demonstrated TXs and RXs for spectroscopy at 238 -252 GHz and 495 - 497 GHz using external phase-locked loops (PLLs) with signal generators for the reference frequency ramps. Here, we present a more compact system by using two external fractional-N PLLs allowing frequency ramps for the TX and RX, and for TX with superimposed frequency shift keying (FSK) or reference frequency modulation realized by a direct digital synthesizer (DDS) or an arbitrary waveform generator. The 1.9 m folded gas absorption cell, the vacuum pumps, as well as the TX and RX are placed on a portable breadboard with dimensions of 75 cm x 45 cm. The system performance is evaluated by high-resolution absorption spectra of gaseous methanol at 13 Pa for 241 - 242 GHz. The 2f (second harmonic) content of the absorption spectrum of the methanol was obtained by detecting the IF power of RX using a diode power sensor connected to a lock-in amplifier. The reference frequency modulation reveals a higher SNR (signal-noise-ratio) of 98 within 32 s acquisition compared to 66 for FSK. The setup allows for jumping to preselected frequency regions according to the spectral signature thus reducing the acquisition time by up to one order of magnitude.

  3. A role for high frequency superconducting devices in free space power transmission systems

    NASA Technical Reports Server (NTRS)

    Christian, Jose L., Jr.; Cull, Ronald C.

    1988-01-01

    Major advances in space power technology are being made in photovoltaic, solar thermal, and nuclear systems. Despite these advances, the power systems required by the energy and power intensive mission of the future will be massive due to the large collecting surfaces, large thermal management systems, and heavy shielding. Reducing this mass on board the space vehicle can result in significant benefits because of the high cost of transporting and moving mass about in space. An approach to this problem is beaming the power from a point where the massiveness of the power plant is not such a major concern. The viability of such an approach was already investigated. Efficient microwave power beam transmission at 2.45 GHz was demonstrated over short range. Higher frequencies are desired for efficient transmission over several hundred or thousand kilometers in space. Superconducting DC-RF conversion as well as RF-DC conversion offers exciting possibilities. Multivoltage power conditioning for multicavity high power RF tubes could be eliminated since only low voltages are required for Josephson junctions. Small, high efficiency receivers may be possible using the reverse Josephson effects. A conceptual receiving antenna design using superconducting devices to determine possible system operating efficiency is assessed. If realized, these preliminary assessments indicate a role for superconducting devices in millimeter and submillimeter free space power transmission systems.

  4. VizieR Online Data Catalog: ACT high significance 148 and 218GHz sources (Marsden+, 2014)

    NASA Astrophysics Data System (ADS)

    Marsden, D.; Gralla, M.; Marriage, T. A.; Switzer, E. R.; Partridge, B.; Massardi, M.; Morales, G.; Addison, G.; Bond, J. R.; Crichton, D.; Das, S.; Devlin, M.; Dunner, R.; Hajian, A.; Hilton, M.; Hincks, A.; Hughes, J. P.; Irwin, K.; Kosowsky, A.; Menanteau, F.; Moodley, K.; Niemack, M.; Page, L.; Reese, E. D.; Schmitt, B.; Sehgal, N.; Sievers, J.; Staggs, S.; Swetz, D.; Thornton, R.; Wollack, E.

    2014-11-01

    The ACT experiment (Swetz et al., 2011ApJS..194...41S) is situated on the slopes of Cerro Toco in the Atacama Desert of Chile at an elevation of 5190m. ACT's latitude gives access to both the northern and southern celestial hemispheres. Observations occurred simultaneously in three frequency bands, at 148GHz (2.0mm), 218GHz (1.4mm) and 277GHz (1.1mm) with angular resolutions of roughly 1.4 , 1.0 and 0.9-arcmin, respectively. (1 data file).

  5. All solid-state high power microwave source with high repetition frequency.

    PubMed

    Bragg, J-W B; Sullivan, W W; Mauch, D; Neuber, A A; Dickens, J C

    2013-05-01

    An all solid-state, megawatt-class high power microwave system featuring a silicon carbide (SiC) photoconductive semiconductor switch (PCSS) and a ferrimagnetic-based, coaxial nonlinear transmission line (NLTL) is presented. A 1.62 cm(2), 50 kV 4H-SiC PCSS is hard-switched to produce electrical pulses with 7 ns full width-half max (FWHM) pulse widths at 2 ns risetimes in single shot and burst-mode operation. The PCSS resistance drops to sub-ohm when illuminated with approximately 3 mJ of laser energy at 355 nm (tripled Nd:YAG) in a single pulse. Utilizing a fiber optic based optical delivery system, a laser pulse train of four 7 ns (FWHM) signals was generated at 65 MHz repetition frequency. The resulting electrical pulse train from the PCSS closely follows the optical input and is utilized to feed the NLTL generating microwave pulses with a base microwave-frequency of about 2.1 GHz at 65 MHz pulse repetition frequency (prf). Under typical experimental conditions, the NLTL produces sharpened output risetimes of 120 ps and microwave oscillations at 2-4 GHz that are generated due to damped gyromagnetic precession of the ferrimagnetic material's axially pre-biased magnetic moments. The complete system is discussed in detail with its output matched into 50 Ω, and results covering MHz-prf in burst-mode operation as well as frequency agility in single shot operation are discussed.

  6. Planck intermediate results: XXX. The angular power spectrum of polarized dust emission at intermediate and high Galactic latitudes

    DOE PAGES

    Adam, R.; Ade, P. A. R.; Aghanim, N.; ...

    2016-02-09

    The polarized thermal emission from diffuse Galactic dust is the main foreground present in measurements of the polarization of the cosmic microwave background (CMB) at frequencies above 100 GHz. In this study we exploit the uniqueness of the Planck HFI polarization data from 100 to 353 GHz to measure the polarized dust angular power spectra C ℓ EE and C ℓ BB over the multipole range 40 ℓ ∝ ℓ α, with exponents α EE,BB = -2.42 ± 0.02. The amplitudes of the polarization power spectra vary with the average brightness in a way similar to the intensity power spectra.more » The frequency dependence of the dust polarization spectra is consistent with modified blackbody emission with β d = 1.59 and T d = 19.6 K down to the lowest Planck HFI frequencies. We find a systematic difference between the amplitudes of the Galactic B- and E-modes, C ℓ BB/C ℓ EE = 0.5. We verify that these general properties are preserved towards high Galactic latitudes with low dust column densities. We show that even in the faintest dust-emitting regions there are no “clean” windows in the sky where primordial CMB B-mode polarization measurements could be made without subtraction of foreground emission. Finally, we investigate the level of dust polarization in the specific field recently targeted by the BICEP2 experiment. Extrapolation of the Planck 353 GHz data to 150 GHz gives a dust power D ℓ BB ≡ ℓ(ℓ+1)C ℓ BB/(2π) of 1.32 × 10 -2 μK CMB 2 over the multipole range of the primordial recombination bump (40 -2 μK CMB 2 and there is an additional uncertainty (+0.28, -0.24) × 10 -2 μK CMB 2 from the extrapolation. Finally, this level is the same magnitude as reported by BICEP2 over this ℓ range, which highlights the need for assessment of the polarized dust signal even in the cleanest windows of the sky.« less

  7. Characteristics of a four element gyromagnetic nonlinear transmission line array high power microwave source.

    PubMed

    Johnson, J M; Reale, D V; Krile, J T; Garcia, R S; Cravey, W H; Neuber, A A; Dickens, J C; Mankowski, J J

    2016-05-01

    In this paper, a solid-state four element array gyromagnetic nonlinear transmission line high power microwave system is presented as well as a detailed description of its subsystems and general output capabilities. This frequency agile S-band source is easily adjusted from 2-4 GHz by way of a DC driven biasing magnetic field and is capable of generating electric fields of 7.8 kV/m at 10 m correlating to 4.2 MW of RF power with pulse repetition frequencies up to 1 kHz. Beam steering of the array at angles of ±16.7° is also demonstrated, and the associated general radiation pattern is detailed.

  8. Characteristics of a four element gyromagnetic nonlinear transmission line array high power microwave source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, J. M., E-mail: jared.johnson@ttu.edu; Reale, D. V.; Garcia, R. S.

    2016-05-15

    In this paper, a solid-state four element array gyromagnetic nonlinear transmission line high power microwave system is presented as well as a detailed description of its subsystems and general output capabilities. This frequency agile S-band source is easily adjusted from 2-4 GHz by way of a DC driven biasing magnetic field and is capable of generating electric fields of 7.8 kV/m at 10 m correlating to 4.2 MW of RF power with pulse repetition frequencies up to 1 kHz. Beam steering of the array at angles of ±16.7° is also demonstrated, and the associated general radiation pattern is detailed.

  9. High Power Amplifier and Power Supply

    NASA Technical Reports Server (NTRS)

    Duong, Johnny; Stride, Scot; Harvey, Wayne; Haque, Inam; Packard, Newton; Ng, Quintin; Ispirian, Julie Y.; Waian, Christopher; Janes, Drew

    2008-01-01

    A document discusses the creation of a high-voltage power supply (HVPS) that is able to contain voltages up to -20 kV, keep electrical field strengths to below 200 V/mil (approximately equal to 7.87 kV/mm), and can provide a 200-nanosecond rise/fall time focus modulator swinging between cathode potential of 16.3 kV and -19.3 kV. This HVPS can protect the 95-GHz, pulsed extended interaction klystron (EIK) from arcs/discharges from all sources, including those from within the EIK fs vacuum envelope. This innovation has a multi-winding pulse transformer design, which uses new winding techniques to provide the same delays and rise/fall times (less than 10 nanoseconds) at different potential levels ranging from -20 kV to -16 kV. Another feature involves a high-voltage printed-wiring board that was corona-free at -20 kV DC with a 3- kV AC swing. The corona-free multilayer high-voltage board is used to simulate fields of less than 200 V/mil (approximately equal to 7.87 kV/mm) at 20 kV DC. Drive techniques for the modulator FETs (field-effect transistors) (four to 10 in a series) were created to change states (3,000-V swing) without abrupt steps, while still maintaining required delays and transition times. The packing scheme includes a potting mold to house a ten-stage modulator in the space that, in the past, only housed a four-stage modulator. Problems keeping heat down were solved using aluminum oxide substrate in the high-voltage section to limit temperature rise to less than 10 while withstanding -20 kV DC voltage and remaining corona-free.

  10. A 311-GHz Fundamental Oscillator Using InP HBT Technology

    NASA Technical Reports Server (NTRS)

    Gaier, Todd; Fung, King Man; Samoska, Lorene; Radisic, Vesna; Sawdai, Donald; Scott, Dennis; Deal, W.R.

    2010-01-01

    amount of feedback than the common-emitter design, therefore preserving device gain, and was chosen for the oscillator design. The submillimeter-wave region offers several advantages for sensors and communication systems, such as high resolution and all-weather imaging due to the short-wavelength, and improved communication speeds by access to greater frequency bandwidth. This oscillator circuit is a prototype of the first HBT oscillator operating above 300 GHz. Additional development is necessary to increase the output power of the circuit for radar and imaging applications.

  11. Three MMIC Amplifiers for the 120-to-200 GHz Frequency Band

    NASA Technical Reports Server (NTRS)

    Samoska, Lorene; Schmitz, Adele

    2009-01-01

    Closely following the development reported in the immediately preceding article, three new monolithic microwave integrated circuit (MMIC) amplifiers that would operate in the 120-to-200-GHz frequency band have been designed and are under construction at this writing. The active devices in these amplifiers are InP high-electron-mobility transistors (HEMTs). These amplifiers (see figure) are denoted the LSLNA150, the LSA200, and the LSA185, respectively. Like the amplifiers reported in the immediately preceding article, the LSLNA150 (1) is intended to be a prototype of low-noise amplifiers (LNAs) to be incorporated into spaceborne instruments for sensing cosmic microwave background radiation and (2) has potential for terrestrial use in electronic test equipment, passive millimeter-wave imaging systems, radar receivers, communication receivers, and systems for detecting hidden weapons. The HEMTs in this amplifier were fabricated according to 0.08- m design rules of a commercial product line of InP HEMT MMICs at HRL Laboratories, LLC, with a gate geometry of 2 fingers, each 15 m wide. On the basis of computational simulations, this amplifier is designed to afford at least 15 dB of gain, with a noise figure of no more than about 6 dB, at frequencies from 120 to 160 GHz. The measured results of the amplifier are shown next to the chip photo, with a gain of 16 dB at 150 GHz. Noise figure work is ongoing. The LSA200 and the LSA185 are intended to be prototypes of transmitting power amplifiers for use at frequencies between about 180 and about 200 GHz. These amplifiers have also been fabricated according to rules of the aforesaid commercial product line of InP HEMT MMICs, except that the HEMTs in these amplifiers are characterized by a gate geometry of 4 fingers, each 37 m wide. The measured peak performance of the LSA200 is characterized by a gain of about 1.4 dB at a frequency of 190 GHz; the measured peak performance of the LSA185 is characterized by a gain of about 2

  12. Imaging of SNR IC443 and W44 with the Sardinia Radio Telescope at 1.5 and 7 GHz

    NASA Astrophysics Data System (ADS)

    Egron, E.; Pellizzoni, A.; Iacolina, M. N.; Loru, S.; Marongiu, M.; Righini, S.; Cardillo, M.; Giuliani, A.; Mulas, S.; Murtas, G.; Simeone, D.; Concu, R.; Melis, A.; Trois, A.; Pilia, M.; Navarrini, A.; Vacca, V.; Ricci, R.; Serra, G.; Bachetti, M.; Buttu, M.; Perrodin, D.; Buffa, F.; Deiana, G. L.; Gaudiomonte, F.; Fara, A.; Ladu, A.; Loi, F.; Marongiu, P.; Migoni, C.; Pisanu, T.; Poppi, S.; Saba, A.; Urru, E.; Valente, G.; Vargiu, G. P.

    2017-09-01

    Observations of supernova remnants (SNRs) are a powerful tool for investigating the later stages of stellar evolution, the properties of the ambient interstellar medium and the physics of particle acceleration and shocks. For a fraction of SNRs, multiwavelength coverage from radio to ultra-high energies has been provided, constraining their contributions to the production of Galactic cosmic rays. Although radio emission is the most common identifier of SNRs and a prime probe for refining models, high-resolution images at frequencies above 5 GHz are surprisingly lacking, even for bright and well-known SNRs such as IC443 and W44. In the frameworks of the Astronomical Validation and Early Science Program with the 64-m single-dish Sardinia Radio Telescope, we provided, for the first time, single-dish deep imaging at 7 GHz of the IC443 and W44 complexes coupled with spatially resolved spectra in the 1.5-7 GHz frequency range. Our images were obtained through on-the-fly mapping techniques, providing antenna beam oversampling and resulting in accurate continuum flux density measurements. The integrated flux densities associated with IC443 are S1.5 GHz = 134 ± 4 Jy and S7 GHz = 67 ± 3 Jy. For W44, we measured total flux densities of S1.5 GHz = 214 ± 6 Jy and S7 GHz = 94 ± 4 Jy. Spectral index maps provide evidence of a wide physical parameter scatter among different SNR regions: a flat spectrum is observed from the brightest SNR regions at the shock, while steeper spectral indices (up to ˜ 0.7) are observed in fainter cooling regions, disentangling in this way different populations and spectra of radio/gamma-ray-emitting electrons in these SNRs.

  13. Design of a 2.4-GHz CMOS monolithic fractional-N frequency synthesizer

    NASA Astrophysics Data System (ADS)

    Shu, Keliu

    The wireless communication technology and market have been growing rapidly since a decade ago. The high demand market is a driving need for higher integration in the wireless transceivers. The trend is to achieve low-cost, small form factor and low power consumption. With the ever-reducing feature size, it is becoming feasible to integrate the RF front-end together with the baseband in the low-cost CMOS technology. The frequency synthesizer is a key building block in the RF front-end of the transceivers. It is used as a local oscillator for frequency translation and channel selection. The design of a 2.4-GHz low-power frequency synthesizer in 0.35mum CMOS is a challenging task mainly due to the high-speed prescaler. In this dissertation, a brief review of conventional PLL and frequency synthesizers is provided. Design techniques of a 2.4-GHz monolithic SigmaDelta fractional-N frequency synthesizer are investigated. Novel techniques are proposed to tackle the speed and integration bottlenecks of high-frequency PLL. A low-power and inherently glitch-free phase-switching prescaler and an on-chip loop filter with capacitance multiplier are developed. Compared with the existing and popular dual-path topology, the proposed loop filter reduces circuit complexity and its power consumption and noise are negligible. Furthermore, a third-order three-level digital SigmaDelta modulator topology is employed to reduce the phase noise generated by the modulator. Suitable PFD and charge-pump designs are employed to reduce their nonlinearity effects and thus minimize the folding of the SigmaDelta modulator-shaped phase noise. A prototype of the fractional-N synthesizer together with some standalone building blocks is designed and fabricated in TSMC 0.35mum CMOS through MOSIS. The prototype frequency synthesizer and standalone prescaler and loop filter are characterized. The feasibility and practicality of the proposed prescaler and loop filter are experimentally verified.

  14. The 60 GHz IMPATT diode development

    NASA Technical Reports Server (NTRS)

    Dat, Rovindra; Ayyagari, Murthy; Hoag, David; Sloat, David; Anand, Yogi; Whitely, Stan

    1986-01-01

    The objective is to develop 60 GHz IMPATT diodes suitable for communications applications. The performance goals of the 60 GHz IMPATT is 1W CW output power with a conversion efficiency of 15 percent and 10-year lifetime. The final design of the 60 GHz IMPATT structure evolved from computer simulations performed at the University of Michigan. The initial doping profile, involving a hybrid double-drift (HDD) design, was derived from a drift-diffusion model that used the static velocity-field characteristics for GaAs. Unfortunately, the model did not consider the effects of velocity undershoot and delay of the avalanche process due to energy relaxation. Consequently, the initial devices were oscillating at a much lower frequency than anticipated. With a revised simulation program that included the two effects given above, a second HDD profile was generated and was used as a basis for fabrication efforts. In the area of device fabrication, significant progress was made in epitaxial growth and characterization, wafer processing, and die assembly. The organo-metallic chemical vapor deposition (OMCVD) was used. Starting with a baseline X-Band IMPATT technology, appropriate processing steps were modified to satisfy the device requirements at V-Band. In terms of efficiency and reliability, the device requirements dictate a reduction in its series resistance and thermal resistance values. Qualitatively, researchers were able to reduce the diodes' series resistance by reducing the thickness of the N+ GaAs substrate used in its fabrication.

  15. Timing noise measurement of 320 GHz optical pulses using an improved optoelectronic harmonic mixer.

    PubMed

    Tsuchida, Hidemi

    2006-03-01

    An improved optoelectronic harmonic mixer (OEHM) has been employed for measuring the timing noise of 320 GHz optical pulses that are generated from a 160 GHz mode-locked laser diode by the temporal Talbot effect. The OEHM makes use of a low-drive voltage LiNbO3 modulator and a W-band unitraveling carrier photodiode for converting the 320 GHz pulse intensity into a low-frequency electrical signal. The time domain demodulation technique has been used for the precise evaluation of phase noise power spectral density. The rms timing jitter has been estimated to be 311 fs for the 10 Hz-18.6 MHz bandwidth.

  16. High-efficiency 20 GHz traveling wave tube development for space communications

    NASA Technical Reports Server (NTRS)

    Aldana, S. L.; Tamashiro, R. N.

    1991-01-01

    A 75 watt CW high efficiency helix TWT operating at 20 GHz was developed for satellite communication systems. The purpose was to extend the performance capabilities of helix TWTs by using recent technology developments. The TWT described is a unique design because high overall efficiency is obtained with a low perveance beam. In the past, low perveance designs resulted in low beam efficiencies. However, due to recent breakthoughs in diamond rod technology and in collector electrode materials, high efficiencies can now be achieved with low perveance beams. The advantage of a low perveance beam is a reduction in space charge within the beam which translates to more efficient collector operation. In addition, this design incorporates textured graphite electrodes which further enhance collector operation by suppressing backstreaming secondaries. The diamond supported helix circuit features low RF losses, high interaction impedance, good thermal handling capability and has been designed to compensate for the low perveance beam. One more discussed tube feature is the use of a velocity taper in the output helix that achieves low signal distortion while maintaining high efficiency.

  17. High current multicharged metal ion source using high power gyrotron heating of vacuum arc plasma.

    PubMed

    Vodopyanov, A V; Golubev, S V; Khizhnyak, V I; Mansfeld, D A; Nikolaev, A G; Oks, E M; Savkin, K P; Vizir, A V; Yushkov, G Yu

    2008-02-01

    A high current, multi charged, metal ion source using electron heating of vacuum arc plasma by high power gyrotron radiation has been developed. The plasma is confined in a simple mirror trap with peak magnetic field in the plug up to 2.5 T, mirror ratio of 3-5, and length variable from 15 to 20 cm. Plasma formed by a cathodic vacuum arc is injected into the trap either (i) axially using a compact vacuum arc plasma gun located on axis outside the mirror trap region or (ii) radially using four plasma guns surrounding the trap at midplane. Microwave heating of the mirror-confined, vacuum arc plasma is accomplished by gyrotron microwave radiation of frequency 75 GHz, power up to 200 kW, and pulse duration up to 150 micros, leading to additional stripping of metal ions by electron impact. Pulsed beams of platinum ions with charge state up to 10+, a mean charge state over 6+, and total (all charge states) beam current of a few hundred milliamperes have been formed.

  18. Ocular Effects of Exposure to 40, 75, and 95 GHz Millimeter Waves

    NASA Astrophysics Data System (ADS)

    Kojima, Masami; Suzuki, Yukihisa; Sasaki, Kensuke; Taki, Masao; Wake, Kanako; Watanabe, Soichi; Mizuno, Maya; Tasaki, Takafumi; Sasaki, Hiroshi

    2018-05-01

    The objective of this study was to develop a model of ocular damage induced by 40, 75, and 95 GHz continuous millimeter waves (MMW), thereby allowing assessment of the clinical course of ocular damage resulting from exposure to thermal damage-inducing MMW. This study also examined the dependence of ocular damage on incident power density. Pigmented rabbit eyes were exposed to 40, 75, and 95 GHz MMW from a spot-focus-type lens antenna. Slight ocular damage was observed 10 min after MMW exposure, including reduced cornea thickness and reduced transparency. Diffuse fluorescein staining around the pupillary area indicated corneal epithelial injury. Slit-lamp examination 1 day after MMW exposure revealed a round area of opacity, accompanied by fluorescence staining, in the central pupillary zone. Corneal edema, indicative of corneal stromal damage, peaked 1 day after MMW exposure, with thickness gradually subsiding to normal. Three days after exposure, ocular conditions had almost normalized, though corneal thickness was slightly greater than that before exposure. The 50% probability of ocular damage (DD50) was in the order 40 > 95 ≈ 75 GHz at the same incident power densities.

  19. Low noise 874 GHz receivers for the International Submillimetre Airborne Radiometer (ISMAR)

    NASA Astrophysics Data System (ADS)

    Hammar, A.; Sobis, P.; Drakinskiy, V.; Emrich, A.; Wadefalk, N.; Schleeh, J.; Stake, J.

    2018-05-01

    We report on the development of two 874 GHz receiver channels with orthogonal polarizations for the International Submillimetre Airborne Radiometer. A spline horn antenna and dielectric lens, a Schottky diode mixer circuit, and an intermediate frequency (IF) low noise amplifier circuit were integrated in the same metallic split block housing. This resulted in a receiver mean double sideband (DSB) noise temperature of 3300 K (minimum 2770 K, maximum 3400 K), achieved at an operation temperature of 40 °C and across a 10 GHz wide IF band. A minimum DSB noise temperature of 2260 K at 20 °C was measured without the lens. Three different dielectric lens materials were tested and compared with respect to the radiation pattern and noise temperature. All three lenses were compliant in terms of radiation pattern, but one of the materials led to a reduction in noise temperature of approximately 200 K compared to the others. The loss in this lens was estimated to be 0.42 dB. The local oscillator chains have a power consumption of 24 W and consist of custom-designed Schottky diode quadruplers (5% power efficiency in operation, 8%-9% peak), commercial heterostructure barrier varactor (HBV) triplers, and power amplifiers that are pumped by using a common dielectric resonator oscillator at 36.43 GHz. Measurements of the radiation pattern showed a symmetric main beam lobe with full width half maximum <5° and side lobe levels below -20 dB. Return loss of a prototype of the spline horn and lens was measured using a network analyzer and frequency extenders to 750-1100 GHz. Time-domain analysis of the reflection coefficients shows that the reflections are below -25 dB and are dominated by the external waveguide interface.

  20. A wide-range 22-GHz LC-based CMOS voltage-controlled oscillator

    NASA Astrophysics Data System (ADS)

    Gharbieh, Karam; Ranneh, Mohammed; Abugharbieh, Khaldoon

    2018-06-01

    This work presents a novel voltage-controlled oscillator (VCO) design and simulations that combine a varactor bank with a transformer in the LC tank to achieve a high-frequency range. While the varactor bank is responsible for changing the capacitance in the LC tank, the transformer acts as a means to change the value of the inductance, hence allowing tune-ability in the two main components of the VCO. A control mechanism utilises a mixed-mode circuit consisting of comparators and a state machine. It allows efficient tuning of the VCO by controlling the capacitance and transformer in the LC tank. The VCO has a 10.75-22.43 GHz frequency range and the VCO gain, KVCO, is kept at a low value ranging from 98.6 to 175.7 MHz/V. The simulated phase noise is -111 dBc/Hz at 1 MHz offset from the 10.75 GHz oscillation frequency. The circuit is designed and simulated in 28 nm CMOS technology and uses a 1 V supply drawing a typical power of 14.74 mW.

  1. Vertical InAs nanowire wrap gate transistors with f(t) > 7 GHz and f(max) > 20 GHz.

    PubMed

    Egard, M; Johansson, S; Johansson, A-C; Persson, K-M; Dey, A W; Borg, B M; Thelander, C; Wernersson, L-E; Lind, E

    2010-03-10

    In this letter we report on high-frequency measurements on vertically standing III-V nanowire wrap-gate MOSFETs (metal-oxide-semiconductor field-effect transistors). The nanowire transistors are fabricated from InAs nanowires that are epitaxially grown on a semi-insulating InP substrate. All three terminals of the MOSFETs are defined by wrap around contacts. This makes it possible to perform high-frequency measurements on the vertical InAs MOSFETs. We present S-parameter measurements performed on a matrix consisting of 70 InAs nanowire MOSFETs, which have a gate length of about 100 nm. The highest unity current gain cutoff frequency, f(t), extracted from these measurements is 7.4 GHz and the maximum frequency of oscillation, f(max), is higher than 20 GHz. This demonstrates that this is a viable technique for fabricating high-frequency integrated circuits consisting of vertical nanowires.

  2. 47 CFR 25.136 - Licensing provisions for user transceivers in the 1.6/2.4 GHz, 1.5/1.6 GHz, and 2 GHz Mobile...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Applications and Licenses Earth Stations § 25.136 Licensing provisions for user transceivers in the 1.6/2.4 GHz... specified in § 25.213, earth stations operating in the 1.6/2.4 GHz and 1.5/1.6 GHz Mobile Satellite Services... aircraft unless the earth station has a direct physical connection to the aircraft cabin or cockpit...

  3. 47 CFR 25.136 - Licensing provisions for user transceivers in the 1.6/2.4 GHz, 1.5/1.6 GHz, and 2 GHz Mobile...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Applications and Licenses Earth Stations § 25.136 Licensing provisions for user transceivers in the 1.6/2.4 GHz... specified in § 25.213, earth stations operating in the 1.6/2.4 GHz and 1.5/1.6 GHz Mobile Satellite Services... aircraft unless the earth station has a direct physical connection to the aircraft cabin or cockpit...

  4. 47 CFR 25.136 - Licensing provisions for user transceivers in the 1.6/2.4 GHz, 1.5/1.6 GHz, and 2 GHz Mobile...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Applications and Licenses Earth Stations § 25.136 Licensing provisions for user transceivers in the 1.6/2.4 GHz... specified in § 25.213, earth stations operating in the 1.6/2.4 GHz and 1.5/1.6 GHz Mobile-Satellite Services... aircraft unless the earth station has a direct physical connection to the aircraft cabin or cockpit...

  5. 225-255-GHz InP DHBT Frequency Tripler MMIC Using Complementary Split-Ring Resonator

    NASA Astrophysics Data System (ADS)

    Li, Xiao; Zhang, Yong; Li, Oupeng; Sun, Yan; Lu, Haiyan; Cheng, Wei; Xu, Ruimin

    2017-02-01

    In this paper, a novel design of frequency tripler monolithic microwave integrated circuit (MMIC) using complementary split-ring resonator (CSRR) is proposed based on 0.5-μm InP DHBT process. The CSRR-loaded microstrip structure is integrated in the tripler as a part of impedance matching network to suppress the fundamental harmonic, and another frequency tripler based on conventional band-pass filter is presented for comparison. The frequency tripler based on CSRR-loaded microstrip generates an output power between -8 and -4 dBm from 228 to 255 GHz when the input power is 6 dBm. The suppression of fundamental harmonic is better than 20 dBc at 77-82 GHz input frequency within only 0.15 × 0.15 mm2 chip area of the CSRR structure on the ground layer. Compared with the frequency tripler based on band-pass filter, the tripler using CSRR-loaded microstrip obtains a similar suppression level of unwanted harmonics and higher conversion gain within a much smaller chip area. To our best knowledge, it is the first time that CSRR is used for harmonic suppression of frequency multiplier at such high frequency band.

  6. Electrostatic Vibration Energy Harvester Pre-charged Wirelessly at 2.45 GHz

    NASA Astrophysics Data System (ADS)

    Saddi, Z.; Takhedmit, H.; Karami, A.; Basset, P.; Cirio, L.

    2016-11-01

    This paper reports the design, fabrication and experiments of an electrostatic vibration harvester (e-VEH), pre-charged wirelessly for the first time by using an electromagnetic waves harvester at 2.4 GHz. The rectenna uses the Cockcroft-Walton voltage doubler rectifier. It is designed and optimized to operate at low power densities and provides high voltage levels: 0.5 V at 0.5 μW/cm2 and 0.8 V at 1 μW/cm2 The e-VEH uses the Bennet doubler as conditioning circuit. Experiments show 23 V voltage across the transducer terminal when the harvester is excited at 25 Hz by 1.5 g of external acceleration. An accumulated energy of 275 μJ and a maximum power of 0.4 μW are available for the load.

  7. Radiofrequency testing of satellite segment of simulated 30/20 GHz satellite communications system

    NASA Technical Reports Server (NTRS)

    Leonard, R. F.; Kerczewski, R.

    1985-01-01

    A laboratory communications system has been developed that can serve as a test bed for the evaluation of advanced microwave (30/20 GHz) components produced under NASA technology programs. The system will ultimately permit the transmission of a stream of high-rate (220 Mbps) digital data from the originating user, through a ground terminal, through a hardware-simulated satellite, to a receiving ground station, to the receiving user. This report contains the results of radiofrequency testing of the satellite portion of that system. Data presented include output spurious responses, attainable signal-to-noise ratios, a baseline power budget, usable frequency bands, phase and amplitude response data for each of the frequency bands, and the effects of power level variation.

  8. JVLA 1.5 GHz Continuum Observation of CLASH Clusters. I. Radio Properties of the BCGs

    NASA Astrophysics Data System (ADS)

    Yu, Heng; Tozzi, Paolo; van Weeren, Reinout; Liuzzo, Elisabetta; Giovannini, Gabriele; Donahue, Megan; Balestra, Italo; Rosati, Piero; Aravena, Manuel

    2018-02-01

    We present high-resolution (∼1″), 1.5 GHz continuum observations of the brightest cluster galaxies (BCGs) of 13 CLASH (Cluster Lensing And Supernova survey with Hubble) clusters at 0.18< z< 0.69 with the Karl G. Jansky Very Large Array (JVLA). Radio emission is clearly detected and characterized for 11 BCGs, while for two of them we obtain only upper limits to their radio flux (< 0.1 mJy at 5σ confidence level). We also consider five additional clusters whose BCG is detected in FIRST or NVSS. We find radio powers in the range from 2× {10}23 to ∼ {10}26 {{W}} {{Hz}}-1 and radio spectral indices {α }1.530 (defined as the slope between 1.5 and 30 GHz) distributed from ∼ -1 to ‑0.25 around the central value < α > =-0.68. The radio emission from the BCGs is resolved in three cases (Abell 383, MACS J1931, and RX J2129), and unresolved or marginally resolved in the remaining eight cases observed with JVLA. In all the cases the BCGs are consistent with being powered by active galactic nuclei. The radio power shows a positive correlation with the BCG star formation rate, and a negative correlation with the central entropy of the surrounding intracluster medium (ICM) except in two cases (MACS J1206 and CL J1226). Finally, over the restricted range in radio power sampled by the CLASH BCGs, we observe a significant scatter between the radio power and the average mechanical power stored in the ICM cavities.

  9. Development of High Power Vacuum Tubes for Accelerators and Plasma Heating

    NASA Astrophysics Data System (ADS)

    Srivastava, Vishnu

    2012-11-01

    High pulsed power magnetrons and klystrons for medical and industrial accelerators, and high CW power klystrons and gyrotrons for plasma heating in tokamak, are being developed at CEERI. S-band 2.0MW pulsed tunable magnetrons of centre frequency 2856MHz and 2998 MHz were developed, and S-band 2.6MW pulsed tunable magnetron is being developed for medical LINAC, and 3MW pulsed tunable magnetron is being developed for industrial accelerator. S-band (2856MHz), 5MW pulsed klystron was developed for particle accelerator, and S-band 6MW pulsed klystron is under development for 10MeV industrial accelerator. 350MHz, 100kW (CW) klystron is being developed for proton accelerator, and C-band 250kW (CW) klystron is being developed for plasma heating. 42GHz, 200kW (CW/Long pulse) gyrotron is under development for plasma heating. Plasma filled tubes are also being developed for switching. 25kV/1kA and 40kV/3kA thyratrons were developed for high voltage high current switching in pulse modulators for magnetrons and klystrons. 25kV/3kA Pseudospark switch of current rise time of 1kA/|a-sec and pulse repetition rate of 500Hz is being developed. Plasma assisted high power microwave device is also being investigated.

  10. Amplifier Module for 260-GHz Band Using Quartz Waveguide Transitions

    NASA Technical Reports Server (NTRS)

    Padmanabhan, Sharmila; Fung, King Man; Kangaslahti, Pekka P.; Peralta, Alejandro; Soria, Mary M.; Pukala, David M.; Sin, Seth; Samoska, Lorene A.; Sarkozy, Stephen; Lai, Richard

    2012-01-01

    Packaging of MMIC LNA (monolithic microwave integrated circuit low-noise amplifier) chips at frequencies over 200 GHz has always been problematic due to the high loss in the transition between the MMIC chip and the waveguide medium in which the chip will typically be used. In addition, above 200 GHz, wire-bond inductance between the LNA and the waveguide can severely limit the RF matching and bandwidth of the final waveguide amplifier module. This work resulted in the development of a low-loss quartz waveguide transition that includes a capacitive transmission line between the MMIC and the waveguide probe element. This capacitive transmission line tunes out the wirebond inductance (where the wire-bond is required to bond between the MMIC and the probe element). This inductance can severely limit the RF matching and bandwidth of the final waveguide amplifier module. The amplifier module consists of a quartz E-plane waveguide probe transition, a short capacitive tuning element, a short wire-bond to the MMIC, and the MMIC LNA. The output structure is similar, with a short wire-bond at the output of the MMIC, a quartz E-plane waveguide probe transition, and the output waveguide. The quartz probe element is made of 3-mil quartz, which is the thinnest commercially available material. The waveguide band used is WR4, from 170 to 260 GHz. This new transition and block design is an improvement over prior art because it provides for better RF matching, and will likely yield lower loss and better noise figure. The development of high-performance, low-noise amplifiers in the 180-to- 700-GHz range has applications for future earth science and planetary instruments with low power and volume, and astrophysics array instruments for molecular spectroscopy. This frequency band, while suitable for homeland security and commercial applications (such as millimeter-wave imaging, hidden weapons detection, crowd scanning, airport security, and communications), also has applications to

  11. To the theory of high-power gyrotrons with uptapered resonators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dumbrajs, O.; Nusinovich, G. S.

    In high-power gyrotrons it is desirable to combine an optimal resonator length with the optimal value of the resonator quality factor. In resonators with the constant radius of the central part, the possibilities of this combination are limited because the quality factor of the resonator sharply increases with its length. Therefore the attempts to increase the length for maximizing the efficiency leads to such increase in the quality factor which makes the optimal current too small. Resonators with slightly uptapered profiles offer more flexibility in this regard. In such resonators, one can separate optimization of the interaction length from optimizationmore » of the quality factor because the quality factor determined by diffractive losses can be reduced by increasing the angle of uptapering. In the present paper, these issues are analyzed by studying as a typical high-power 17 GHz gyrotron which is currently under development in Europe for ITER (http://en.wikipedia.org/wiki/ITER). The effect of a slight uptapering of the resonator wall on the efficiency enhancement and the purity of the radiation spectrum in the process of the gyrotron start-up and power modulation are studied. Results show that optimal modification of the shape of a slightly uptapered resonator may result in increasing the gyrotron power from 1052 to 1360 kW.« less

  12. Short-lived solar burst spectral component at f approximately 100 GHz

    NASA Technical Reports Server (NTRS)

    Kaufmann, P.; Correia, E.; Costa, J. E. R.; Vaz, A. M. Z.

    1986-01-01

    A new kind of burst emission component was discovered, exhibiting fast and distinct pulses (approx. 60 ms durations), with spectral peak emission at f approx. 100 GHz, and onset time coincident to hard X-rays to within approx. 128 ms. These features pose serious constraints for the interpretation using current models. One suggestion assumes the f approx. 100 GHz pulses emission by synchrotron mechanism of electrons accelerated to ultrarelativistic energies. The hard X-rays originate from inverse Compton scattering of the electrons on the synchrotron photons. Several crucial observational tests are needed for the understanding of the phenomenon, requiring high sensitivity and high time resolution (approx. 1 ms) simultaneous to high spatial resolution (0.1 arcsec) at f approx. 110 GHz and hard X-rays.

  13. The Advanced ACTPol 27/39 GHz Array

    NASA Astrophysics Data System (ADS)

    Simon, S. M.; Beall, J. A.; Cothard, N. F.; Duff, S. M.; Gallardo, P. A.; Ho, S. P.; Hubmayr, J.; Koopman, B. J.; McMahon, J. J.; Nati, F.; Niemack, M. D.; Staggs, S. T.; Vavagiakis, E. M.; Wollack, E. J.

    2018-05-01

    Advanced ACTPol (AdvACT) will observe the temperature and polarization of the cosmic microwave background (CMB) at multiple frequencies and high resolution to place improved constraints on inflation, dark matter, and dark energy. Foregrounds from synchrotron and dust radiation are a source of contamination that must be characterized and removed across a wide range of frequencies. AdvACT will thus observe at five frequency bands from 27 to 230 GHz. We discuss the design of the pixels and feedhorns for the 27/39 GHz multichroic array for AdvACT, which will target the synchrotron radiation that dominates at these frequencies. To gain 35% in mapping speed in the 39 GHz band where the foreground signals are faintest, the pixel number was increased through reducing the pixel diameter to 1.08λ at the lowest frequency, which represents a 22% decrease in size compared to our previously most tightly packed pixels.

  14. High Performance 0.1 μm GaAs Pseudomorphic High Electron Mobility Transistors with Si Pulse-Doped Cap Layer for 77 GHz Car Radar Applications

    NASA Astrophysics Data System (ADS)

    Kim, Sungwon; Noh, Hunhee; Jang, Kyoungchul; Lee, JaeHak; Seo, Kwangseok

    2005-04-01

    In this study, 0.1 μm double-recessed T-gate GaAs pseudomorphic high electron mobility transistors (PHEMT’s), in which an InGaAs layer and a Si pulse-doped layer in the cap structure are inserted, have been successfully fabricated. This cap structure improves ohmic contact. The ohmic contact resistance is as small as 0.07 Ωmm, consequently the source resistance is reduced by about 20% compared to that of a conventional cap structure. This device shows good DC and microwave performance such as an extrinsic transconductance of 620 mS/mm, a maximum saturated drain current of 780 mA/mm, a cut-off frequency fT of 140 GHz and a maximum oscillation frequency of 260 GHz. The reverse breakdown is 5.7 V at a gate current density of 1 mA/mm. The maximum available gain is about 7 dB at 77 GHz. It is well suited for car radar monolithic microwave integrated circuits (MMICs).

  15. Solar power satellite system sizing tradeoffs

    NASA Technical Reports Server (NTRS)

    Arndt, G. D.; Monford, L. G.

    1981-01-01

    Technical and economic tradeoffs of smaller solar power satellite systems configured with larger antennas, reduced output power, and smaller rectennas, are considered. The differential costs in electricity for seven antenna/rectenna configurations operating at 2.45 GHz and five satellite systems operating at 5.8 GHz are calculated. Two 2.45 GHz configurations dependent upon the ionospheric power density limit are chosen as examples. If the ionospheric limit could be increased to 54 mW sq/cm from the present 23 mW sq/cm level, a 1.53 km antenna satellite operating at 2.45 GHz would provide 5.05 GW of output power from a 6.8 km diameter rectenna. This system gives a 54 percent reduction in rectenna area relative to the reference solar power satellite system at a modest 17 percent increase in electricity costs. At 5.8 GHz, an 0.75 km antenna providing 2.72 GW of power from a 5.8 km diameter rectenna is selected for analysis. This configuration would have a 67 percent reduction in rectenna area at a 36 percent increase in electricity costs. Ionospheric, atmospheric, and thermal limitations are discussed. Antenna patterns for three configurations to show the relative main beam and sidelobe characteristics are included.

  16. Spectral variation of high power microwave pulse propagating in a self-generated plasma

    NASA Technical Reports Server (NTRS)

    Ren, A.; Kuo, S. P.; Kossey, Paul

    1995-01-01

    A systematic study to understand the spectral variation of a high power microwave pulse propagating in a self-generated plasma is carried out. It includes the theoretical formulation, experimental demonstration, and computer simulations and computer experiments. The experiment of pulse propagation is conducted in a vacuum chamber filled with dry air (approximately 0.2 torr); the chamber is made of a 2 ft. cube of Plexiglas. A rectangular microwave pulse (1 microsec pulse width and 3.27 GHz carrier frequency) is fed into the cube through an S band microwave horn placed at one side of the chamber. A second S-band horn placed at the opposite side of the chamber is used to receive the transmitted pulse. The spectra of the incident pulse and transmitted pulse are then compared. As the power of the incident pulse is only slightly (less than 15%) above the breakdown threshold power of the background air, the peak of the spectrum of the transmitted pulse is upshifted from the carrier frequency 3.27 GHz of the incident pulse. However, as the power of the incident pulse exceeds the breakdown threshold power of the background air by 30%, a different phenomenon appears. The spectrum of the transmitted pulse begins to have two peaks. One is upshifted and the other one downshifted from the single peak location of the incident pulse. The amount of frequency downshift is comparable to that of the upshifted frequency. A theoretical model describing the experiment of pulse propagation in a self-generated plasma is developed. There are excellent agreements between the experimental results and computer simulations based on this theoretical model, which is also used to further carry out computer experiments identifying the role of plasma introduced wave loss on the result of frequency downshift phenomenon.

  17. A power scalable PLL frequency synthesizer for high-speed Δ—Σ ADC

    NASA Astrophysics Data System (ADS)

    Siyang, Han; Baoyong, Chi; Xinwang, Zhang; Zhihua, Wang

    2014-08-01

    A 35-130 MHz/300-360 MHz phase-locked loop frequency synthesizer for Δ—Σ analog-to-digital converter (ADC) in 65 nm CMOS is presented. The frequency synthesizer can work in low phase-noise mode (300-360 MHz) or in low-power mode (35-130 MHz) to satisfy the ADC's requirements. To switch between these two modes, a high frequency GHz LC VCO followed by a divided-by-four frequency divider and a low frequency ring VCO followed by a divided-by-two frequency divider are integrated on-chip. The measured results show that the frequency synthesizer achieves a phase-noise of -132 dBc/Hz at 1 MHz offset and an integrated RMS jitter of 1.12 ps with 1.74 mW power consumption from a 1.2 V power supply in low phase-noise mode. In low-power mode, the frequency synthesizer achieves a phase-noise of -112 dBc/Hz at 1 MHz offset and an integrated RMS jitter of 7.23 ps with 0.92 mW power consumption from a 1.2 V power supply.

  18. A high capacity data centre network: simultaneous 4-PAM data at 20 Gbps and 2 GHz phase modulated RF clock signal over a single VCSEL carrier

    NASA Astrophysics Data System (ADS)

    Isoe, G. M.; Wassin, S.; Gamatham, R. R. G.; Leitch, A. W. R.; Gibbon, T. B.

    2017-11-01

    Optical fibre communication technologies are playing important roles in data centre networks (DCNs). Techniques for increasing capacity and flexibility for the inter-rack/pod communications in data centres have drawn remarkable attention in recent years. In this work, we propose a low complexity, reliable, alternative technique for increasing DCN capacity and flexibility through multi-signal modulation onto a single mode VCSEL carrier. A 20 Gbps 4-PAM data signal is directly modulated on a single mode 10 GHz bandwidth VCSEL carrier at 1310 nm, therefore, doubling the network bit rate. Carrier spectral efficiency is further maximized by modulating its phase attribute with a 2 GHz reference frequency (RF) clock signal. We, therefore, simultaneously transmit a 20 Gbps 4-PAM data signal and a phase modulated 2 GHz RF signal using a single mode 10 GHz bandwidth VCSEL carrier. It is the first time a single mode 10 GHz bandwidth VCSEL carrier is reported to simultaneously transmit a directly modulated 4-PAM data signal and a phase modulated RF clock signal. A receiver sensitivity of -10. 52 dBm was attained for a 20 Gbps 4-PAM VCSEL transmission. The 2 GHz phase modulated RF clock signal introduced a power budget penalty of 0.21 dB. Simultaneous distribution of both data and timing signals over shared infrastructure significantly increases the aggregated data rate at different optical network units within the DCN, without expensive optics investment. We further demonstrate on the design of a software-defined digital signal processing assisted receiver to efficiently recover the transmitted signal without employing costly receiver hardware.

  19. Design of a Wideband 900 GHz Balanced Frequency Tripler for Radioastronomy

    NASA Technical Reports Server (NTRS)

    Tripon-Canseliet, Charlotte; Maestrini, Alain; Mehdi, Imran

    2004-01-01

    We report on the design of a fix-tuned split-block waveguide balanced frequency tripler working nominally at 900GHz. It uses a GaAs Schottky planar diode pair in a balanced configuration. The circuit will be fabricated with JPL membrane technology in order to minimize dielectric loading. The multiplier is bias-less to dramatically ease the mounting and the operating procedure. At room temperature, the expected output power is 50- 130 (micro)W in the band 800-970 GHz when the tripler is pumped with 4mW. By modifying the waveguide input and output matching circuit, the multiplier can be tuned to operate at lower frequencies.

  20. The GOODS-N Jansky VLA 10 GHz Pilot Survey: Sizes of Star-forming μJY Radio Sources

    NASA Astrophysics Data System (ADS)

    Murphy, Eric J.; Momjian, Emmanuel; Condon, James J.; Chary, Ranga-Ram; Dickinson, Mark; Inami, Hanae; Taylor, Andrew R.; Weiner, Benjamin J.

    2017-04-01

    Our sensitive ({σ }{{n}}≈ 572 {nJy} {{beam}}-1), high-resolution (FWHM {θ }1/2=0\\buildrel{\\prime\\prime}\\over{.} 22≈ 2 {kpc} {at} z≳ 1), 10 GHz image covering a single Karl G. Jansky Very Large Array (VLA) primary beam (FWHM {{{\\Theta }}}1/2≈ 4\\buildrel{ \\prime}\\over{.} 25) in the GOODS-N field contains 32 sources with {S}{{p}}≳ 2 μ {Jy} {{beam}}-1 and optical and/or near-infrared (OIR) counterparts. Most are about as large as the star-forming regions that power them. Their median FWHM major axis is < {θ }{{M}}> =167+/- 32 {mas}≈ 1.2+/- 0.28 {kpc}, with rms scatter ≈ 91 {mas}≈ 0.79 {kpc}. In units of the effective radius {r}{{e}} that encloses half their flux, these radio sizes are < {r}{{e}}> ≈ 69+/- 13 {mas}≈ 509+/- 114 {pc}, with rms scatter ≈ 38 {mas}≈ 324 {pc}. These sizes are smaller than those measured at lower radio frequencies, but agree with dust emission sizes measured at mm/sub-mm wavelengths and extinction-corrected Hα sizes. We made a low-resolution ({θ }1/2=1\\buildrel{\\prime\\prime}\\over{.} 0) image with ≈ 10× better brightness sensitivity, in order to detect extended sources and measure matched-resolution spectral indices {α }1.4 {GHz}10 {GHz}. It contains six new sources with {S}{{p}}≳ 3.9 μ {Jy} {{beam}}-1 and OIR counterparts. The median redshift of all 38 sources is < z> =1.24+/- 0.15. The 19 sources with 1.4 GHz counterparts have a median spectral index of < {α }1.4 {GHz}10 {GHz}> =-0.74+/- 0.10, with rms scatter ≈ 0.35. Including upper limits on α for sources not detected at 1.4 GHz flattens the median to < {α }1.4 {GHz}10 {GHz}> ≳ -0.61, suggesting that the μJy radio sources at higher redshifts—and hence those selected at higher rest-frame frequencies—may have flatter spectra. If the non-thermal spectral index is {α }{NT}≈ -0.85, the median thermal fraction of sources selected at median rest-frame frequency ≈ 20 {GHz} is ≳48%.

  1. Ultra High Power and Efficiency Space Traveling-Wave Tube Amplifier Power Combiner with Reduced Size and Mass for NASA Missions

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.; Wintucky, Edwin G.; Wilson, Jeffrey D.; Force, Dale A.

    2009-01-01

    In the 2008 International Microwave Symposium (IMS) Digest version of our paper, recent advances in high power and efficiency space traveling-wave tube amplifiers (TWTAs) for NASA s space-to-Earth communications are presented. The RF power and efficiency of a new K-Band amplifier are 40 W and 50 percent and that of a new Ka-Band amplifier are 200 W and 60 percent. An important figure-of-merit, which is defined as the ratio of the RF power output to the mass (W/kg) of a TWT, has improved by a factor of ten over the previous generation Ka-Band devices. In this extended paper, a high power, high efficiency Ka-band combiner for multiple TWTs, based on a novel hybrid magic-T waveguide circuit design, is presented. The measured combiner efficiency is as high as 90 percent. In addition, at the design frequency of 32.05 GHz, error-free uncoded BPSK/QPSK data transmission at 8 megabits per second (Mbps), which is typical for deep space communications is demonstrated. Furthermore, QPSK data transmission at 622 Mbps is demonstrated with a low bit error rate of 2.4x10(exp -8), which exceeds the deep space state-of-the-art data rate transmission capability by more than two orders of magnitude. A potential application of the TWT combiner is in deep space communication systems for planetary exploration requiring transmitter power on the order of a kilowatt or higher.

  2. 37 GHz Methanol Masers : Horsemen of the Apocalypse for the Class II Methanol Maser Phase?

    NASA Astrophysics Data System (ADS)

    Ellingsen, S. P.; Breen, S. L.; Sobolev, A. M.; Voronkov, M. A.; Caswell, J. L.; Lo, N.

    2011-12-01

    We report the results of a search for class II methanol masers at 37.7, 38.3, and 38.5 GHz toward a sample of 70 high-mass star formation regions. We primarily searched toward regions known to show emission either from the 107 GHz class II methanol maser transition, or from the 6.035 GHz excited OH transition. We detected maser emission from 13 sources in the 37.7 GHz transition, eight of these being new detections. We detected maser emission from three sources in the 38 GHz transitions, one of which is a new detection. We find that 37.7 GHz methanol masers are only associated with the most luminous 6.7 and 12.2 GHz methanol maser sources, which in turn are hypothesized to be the oldest class II methanol sources. We suggest that the 37.7 GHz methanol masers are associated with a brief evolutionary phase (of 1000-4000 years) prior to the cessation of class II methanol maser activity in the associated high-mass star formation region.

  3. Development of 20 GHz monolithic transmit modules

    NASA Technical Reports Server (NTRS)

    Higgins, J. A.

    1988-01-01

    The history of the development of a transmit module for the band 17.7 to 20.2 GHz is presented. The module was to monolithically combine, on one chip, five bits of phase shift, a buffer amplifier and a power amplifier to produce 200 mW to the antenna element. The approach taken was MESFET ion implanted device technology. A common pinch-off voltage was decided upon for each application. The beginning of the total integration phases revealed hitherto unencountered hazards of large microwave circuit integration which were successfully overcome. Yield and customer considerations finally led to two separate chips, one containing the power amplifiers and the other containing the complete five bit phase shifter.

  4. 154 GHz collective Thomson scattering in LHD

    NASA Astrophysics Data System (ADS)

    Tanaka, K.; Nishiura, M.; Kubo, S.; Shimozuma, T.; Saito, T.; Moseev, D.; Abramovic, I.

    2018-01-01

    Collective Thomson scattering (CTS) was developed by using a 154 GHz gyrotron, and the first data has been obtained. Already, 77 GHz CTS has worked successfully. However, in order to access higher density region, 154 GHz option enhances the usability that reduces the refraction effect, which deteriorates in the local measurements. The system in the down converted frequency was almost identical to the system for 77 GHz. Probing beam, a notch filter, a mixer, and a local oscillator in the receiver system for 77 GHz option were replaced to those for the 154 GHz option. 154 GHz gyrotron was originally prepared for the second harmonic electron cyclotron heating (ECRH) at 2.75 T. However, scattering signal was masked by the second harmonic electron cyclotron emission (ECE) at 2.75 T. Therefore, 154 GHz CTS was operated at 1.375 T with fourth harmonic ECE, and an acceptable signal to noise ratio was obtained. There is a signature of fast ion components with neutral beam (NB) injection. In addition, the CTS spectrum became broader in hydrogen discharge than in deuterium discharge, as the theoretical CTS spectrum expects. This observation indicates a possibility to identify ion species ratio by the 154 GHz CTS diagnostic.

  5. KEY COMPARISON: CCEM.RF-K9: International comparison of thermal noise standards between 12.4 GHz and 18 GHz (GT-RF/99-1)

    NASA Astrophysics Data System (ADS)

    Allal, Djamel; Achkar, Joseph

    2006-01-01

    An international comparison of thermal noise-power measurements has been carried out among five national metrology institutes between 12.4 GHz and 18 GHz. Four transfer standards were measured. The following national institutes participated: BNM-LCIE (France), NPL (United Kingdom), PTB (Germany), NIST (United States of America) and VNIIFTRI (Russia). The Bureau National de Métrologie-Laboratoire Central des Industries Electriques (France) acted as the pilot laboratory for the comparison. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCEM, according to the provisions of the CIPM Mutual Recognition Arrangement (MRA).

  6. Towards a 1 MW, 170 GHz gyrotron design for fusion application

    NASA Astrophysics Data System (ADS)

    Kumar, Anil; Kumar, Nitin; Singh, Udaybir; Bhattacharya, Ranajoy; Yadav, Vivek; Sinha, A. K.

    2013-03-01

    The electrical design of different components of 1 MW, 170 GHz gyrotron such as, magnetron injection gun, cylindrical interaction cavity and collector and RF window is presented in this article. Recently, a new project related to the development of 170 GHz, 1 MW gyrotron has been started for the Indian Tokamak. TE34,10 mode is selected as the operating mode after studied the problem of mode competition. The triode type geometry is selected for the design of magnetron injection gun (MIG) to achieve the required beam parameters. The maximum transverse velocity spread of 3.28% at the velocity ratio of 1.34 is obtained in simulations for a 40 A, 80 kV electron beam. The RF output power of more than 1 MW with 36.5% interaction efficiency without depressed collector is predicted by simulation in single-mode operation at 170 GHz frequency. The simulated single-stage depressed collector of the gyrotron predicted the overall device efficiencies >55%. Due to the very good thermal conductivity and very weak dependency of the dielectric parameters on temperature, PACVD diamond is selected for window design for the transmission of RF power. The in-house developed code MIGSYN and GCOMS are used for initial geometry design of MIG and mode selection respectively. Commercially available simulation tools MAGIC and ANSYS are used for beam-wave interaction and mechanical analysis respectively.

  7. Resonant tunnelling diode based high speed optoelectronic transmitters

    NASA Astrophysics Data System (ADS)

    Wang, Jue; Rodrigues, G. C.; Al-Khalidi, Abdullah; Figueiredo, José M. L.; Wasige, Edward

    2017-08-01

    Resonant tunneling diode (RTD) integration with photo detector (PD) from epi-layer design shows great potential for combining terahertz (THz) RTD electronic source with high speed optical modulation. With an optimized layer structure, the RTD-PD presented in the paper shows high stationary responsivity of 5 A/W at 1310 nm wavelength. High power microwave/mm-wave RTD-PD optoelectronic oscillators are proposed. The circuitry employs two RTD-PD devices in parallel. The oscillation frequencies range from 20-44 GHz with maximum attainable power about 1 mW at 34/37/44GHz.

  8. Status of experiments at LLNL on high-power X-band microwave generators

    NASA Astrophysics Data System (ADS)

    Houck, Timothy L.; Westenskow, Glen A.

    1994-05-01

    The Microwave Source Facility at the Lawrence Livermore National Laboratory (LLNL) is studying the application of induction accelerator technology to high-power microwave generators suitable for linear collider power sources. We report on the results of two experiments, both using the Choppertron's 11.4 GHz modulator and a 5-MeV, 1-kA induction beam. The first experimental configuration has a single traveling-wave output structure designed to produce in excess of 300 MW in a single fundamental waveguide. This output structure consists of 12 individual cells, the first two incorporating de-Q-ing circuits to dampen higher order resonant modes. The second experiment studies the feasibility of enhancing beam to microwave power conversion by accelerating a modulated beam with induction cells. Referred to as the `reacceleration experiment,' this experiment consists of three traveling-wave output structures designed to produce about 125 MW per output and two induction cells located between the outputs. Status of current and planned experiments are presented.

  9. Analysis of Poloidal Asymmetric Density Behaviors in SOL Induced by 4.6-GHz Lower Hybrid Launcher Power in EAST

    NASA Astrophysics Data System (ADS)

    Li, Y. C.; Ding, B. J.; Li, M. H.; Wang, M.; Liu, L.; Wang, X. J.; Xu, H. D.; Shan, J. F.; Liu, F. K.

    2018-02-01

    On the experimental advanced superconducting tokamak (EAST), a series of striations, including a few strong emissivity striations and several low emissivity striations, were observed in front of the 4.6-GHz lower hybrid (LH) launcher with the visible video camera for the LH power discharge. These striations indicate that LH may create significant poloidal scrape-off layer (SOL) density profile asymmetries in front of the LH launcher. These poloidal asymmetric density behaviors are further confirmed with the edge density measured by two Langmuir probes installed at the top and bottom of the LH launcher. The measured density depends on LH power injection and magnetic field direction. A 2D diffusive convective model was used to study the mechanisms of the observed striations and poloidal asymmetric density. The simulation results qualitatively match with the measured density, indicating these poloidal asymmetric effects are ascribed to the LHW-induced E LH × B t drift.

  10. A new class of solar burst with MM-wave emission but only at the highest frequency (90 GHz)

    NASA Technical Reports Server (NTRS)

    Kaufmann, P.; Correia, E.; Costa, J. E. R.; Vaz, A. M. Z.; Dennis, B. R.

    1984-01-01

    High sensitivity and high time resolution solar observations at 90 GHz (lambda = 3.3 mm) have identified a unique impulsive burst on May 21, 1984 with emission that was more intense at this frequency than at lower frequencies. The first major time structure of the burst was over 10 times more intense at 90 GHz than at 30 GHz, 7 GHz, or 2.8 GHz.Only 6 seconds later, the 30 GHz impulsive structures started to be observed but still with lower intensity than at 90 GHz. Hard X-ray time structures at energies above 25 keV were almost identical to the 90 GHZ structures (to better than one second). All 90 GHz major time structures consisted of trains of multiple subsecond pulses with rise times as short as 0.03 sec and amplitudes large compared to the mean flux. When detectable, the 30 GHz subsecond pulses had smaller relative amplitude and were in phase with the corresponding 90 GHz pulses.

  11. Power combination of two phase-locked high power microwave beams from a new coaxial microwave source based on dual beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Yangmei; Zhang, Xiaoping, E-mail: plinafly@163.com; Zhang, Jiande

    2014-10-15

    The new coaxial high power microwave source based on dual beams has demonstrated two phase-locked output microwave beams generated by its two sub-sources. In order to achieve a single higher output power, we present a three-port waveguide-based power combiner to combine the two microwave beams. Particle-in-cell simulation results show that when the diode voltage is 675 kV and the guiding magnetic field is 0.8 T, a combined microwave with an average power of about 4.0 GW and a frequency of 9.74 GHz is generated; the corresponding power conversion efficiency is 29%. The combination effect of the combiner is further validated in the diodemore » voltage range from 675 kV to 755 kV as well as in the pulse regime. The simulations indicate that the maximum surface axial electric field strength of the electrodynamic structure is 720 kV/cm, which is relatively low corresponding to an output power of 4.0 GW. The stable combined output suggests the probability of long-pulse operation for the combined source.« less

  12. A cooled 1- to 2-GHz balanced HEMT amplifier

    NASA Technical Reports Server (NTRS)

    Ortiz, Gerardo G.; Padin, Steven

    1991-01-01

    The design details and measurement results for a cooled L-band (1 to 2 GHz) balanced high electron mobility transistor (HEMT) amplifier are presented. The amplifier uses commercially available packaged HEMT devices (Fujitsu FHR02FH). At a physical temperature of 12 K, the amplifier achieves noise temperatures between 3 and 6 K over the 1 to 2 GHz band. The associated gain is approximately 20 dB.

  13. Beyond G-band : a 235 GHz InP MMIC amplifier

    NASA Technical Reports Server (NTRS)

    Dawson, Douglas; Samoska, Lorene; Fung, A. K.; Lee, Karen; Lai, Richard; Grundbacher, Ronald; Liu, Po-Hsin; Raja, Rohit

    2005-01-01

    We present results on an InP monolithic millimeter- wave integrated circuit (MMIC) amplifier having 10-dB gain at 235 GHz. We designed this circuit and fabricated the chip in Northrop Grumman Space Technology's (NGST) 0.07- m InP high electron mobility transistor (HEMT) process. Using a WR3 (220-325 GHz) waveguide vector network analyzer system interfaced to waveguide wafer probes, we measured this chip on-wafer for -parameters. To our knowledge, this is the first time a WR3 waveguide on-wafer measurement system has been used to measure gain in a MMIC amplifier above 230 GHz.

  14. Analyses of advanced concepts in multi-stage gyro-amplifiers and startup in high power gyro-oscillators

    NASA Astrophysics Data System (ADS)

    Sinitsyn, Oleksandr V.

    Gyrotrons are well recognized sources of high-power coherent electromagnetic radiation. The power that gyrotrons can radiate in the millimeter- and submillimeter-wavelength regions exceeds the power of classical microwave tubes by many orders of magnitude. In this work, the author considers some problems related to the operation of gyro-devices and methods of their solution. In particular, the self-excitation conditions for parasitic backward waves and effect of distributed losses on the small-signal gain of gyro-TWTs are analyzed. The corresponding small-signal theory describing two-stage gyro-traveling-wave tubes (gyro-TWTs) with the first stage having distributed losses is presented. The theory is illustrated by using it for the description of operation of a Ka-band gyro-TWT designed at the Naval Research Laboratory. Also, the results of nonlinear studies of this tube are presented and compared with the ones obtained by the use of MAGY, a multi-frequency, self-consistent code developed at the University of Maryland. An attempt to build a large signal theory of gyro-TWTs with tapered geometry and magnetic field profile is made and first results are obtained for a 250 GHz gyro-TWT. A comparative small-signal analysis of conventional four-cavity and three-stage clustered-cavity gyroklystrons is performed. The corresponding point-gap models for these devices are presented. The efficiency, gain, bandwidth and gain-bandwidth product are analyzed for each scheme. Advantages of the clustered-cavity over the conventional design are discussed. The startup scenarios in high-power gyrotrons and the most important physical effects associated with them are considered. The work presents the results of startup simulations for a 140 GHz, MW-class gyrotron developed by Communications and Power Industries (CPI) for electron-cyclotron resonance heating (ECRH) and current drive experiments on the "Wendelstein 7-X" stellarator plasma. Also presented are the results for a 110 GHz, 1

  15. THz photonic wireless links with 16-QAM modulation in the 375-450 GHz band.

    PubMed

    Jia, Shi; Yu, Xianbin; Hu, Hao; Yu, Jinlong; Guan, Pengyu; Da Ros, Francesco; Galili, Michael; Morioka, Toshio; Oxenløwe, Leif K

    2016-10-17

    We propose and experimentally demonstrate THz photonic wireless communication systems with 16-QAM modulation in the 375-450 GHz band. The overall throughput reaches as high as 80 Gbit/s by exploiting four THz channels with 5 Gbaud 16-QAM baseband modulation per channel. We create a coherent optical frequency comb (OFC) for photonic generation of multiple THz carriers based on photo-mixing in a uni-travelling carrier photodiode (UTC-PD). The OFC configuration also allows us to generate reconfigurable THz carriers with low phase noise. The multiple-channel THz radiation is received by using a Schottky mixer based electrical receiver after 0.5 m free-space wireless propagation. 2-channel (40 Gbit/s) and 4-channel (80 Gbit/s) THz photonic wireless links with 16-QAM modulation are reported in this paper, and the bit error rate (BER) performance for all channels in both cases is below the hard decision forward error correction (HD-FEC) threshold of 3.8e-3 with 7% overhead. In addition, we also successfully demonstrate hybrid photonic wireless transmission of 40 Gbit/s 16-QAM signal at carrier frequencies of 400 GHz and 425 GHz over 30 km standard single mode fiber (SSMF) between the optical baseband signal transmitter and the THz wireless transmitter with negligible induced power penalty.

  16. Planck intermediate results. XXX. The angular power spectrum of polarized dust emission at intermediate and high Galactic latitudes

    NASA Astrophysics Data System (ADS)

    Planck Collaboration; Adam, R.; Ade, P. A. R.; Aghanim, N.; Arnaud, M.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartlett, J. G.; Bartolo, N.; Battaner, E.; Benabed, K.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.; Bracco, A.; Bucher, M.; Burigana, C.; Butler, R. C.; Calabrese, E.; Cardoso, J.-F.; Catalano, A.; Challinor, A.; Chamballu, A.; Chary, R.-R.; Chiang, H. C.; Christensen, P. R.; Clements, D. L.; Colombi, S.; Colombo, L. P. L.; Combet, C.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Zotti, G.; Delabrouille, J.; Delouis, J.-M.; Désert, F.-X.; Dickinson, C.; Diego, J. M.; Dolag, K.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Ducout, A.; Dunkley, J.; Dupac, X.; Efstathiou, G.; Elsner, F.; Enßlin, T. A.; Eriksen, H. K.; Falgarone, E.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Frejsel, A.; Galeotta, S.; Galli, S.; Ganga, K.; Ghosh, T.; Giard, M.; Giraud-Héraud, Y.; Gjerløw, E.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Guillet, V.; Hansen, F. K.; Hanson, D.; Harrison, D. L.; Helou, G.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hivon, E.; Hobson, M.; Holmes, W. A.; Huffenberger, K. M.; Hurier, G.; Jaffe, A. H.; Jaffe, T. R.; Jewell, J.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Kneissl, R.; Knoche, J.; Knox, L.; Krachmalnicoff, N.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lamarre, J.-M.; Lasenby, A.; Lattanzi, M.; Lawrence, C. R.; Leahy, J. P.; Leonardi, R.; Lesgourgues, J.; Levrier, F.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Maffei, B.; Maino, D.; Mandolesi, N.; Mangilli, A.; Maris, M.; Martin, P. G.; Martínez-González, E.; Masi, S.; Matarrese, S.; Mazzotta, P.; Meinhold, P. R.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra, S.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Moss, A.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; Pagano, L.; Pajot, F.; Paladini, R.; Paoletti, D.; Partridge, B.; Pasian, F.; Patanchon, G.; Pearson, T. J.; Perdereau, O.; Perotto, L.; Perrotta, F.; Pettorino, V.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Popa, L.; Pratt, G. W.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Reach, W. T.; Rebolo, R.; Remazeilles, M.; Renault, C.; Renzi, A.; Ricciardi, S.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Rossetti, M.; Roudier, G.; Rouillé d'Orfeuil, B.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Santos, D.; Savelainen, M.; Savini, G.; Scott, D.; Soler, J. D.; Spencer, L. D.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sunyaev, R.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Tuovinen, J.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vibert, L.; Vielva, P.; Villa, F.; Wade, L. A.; Wandelt, B. D.; Watson, R.; Wehus, I. K.; White, M.; White, S. D. M.; Yvon, D.; Zacchei, A.; Zonca, A.

    2016-02-01

    The polarized thermal emission from diffuse Galactic dust is the main foreground present in measurements of the polarization of the cosmic microwave background (CMB) at frequencies above 100 GHz. In this paper we exploit the uniqueness of the Planck HFI polarization data from 100 to 353 GHz to measure the polarized dust angular power spectra CℓEE and CℓBB over the multipole range 40 <ℓ< 600 well away from the Galactic plane. These measurements will bring new insights into interstellar dust physics and allow a precise determination of the level of contamination for CMB polarization experiments. Despite the non-Gaussian and anisotropic nature of Galactic dust, we show that general statistical properties of the emission can be characterized accurately over large fractions of the sky using angular power spectra. The polarization power spectra of the dust are well described by power laws in multipole, Cℓ ∝ ℓα, with exponents αEE,BB = -2.42 ± 0.02. The amplitudes of the polarization power spectra vary with the average brightness in a way similar to the intensity power spectra. The frequency dependence of the dust polarization spectra is consistent with modified blackbody emission with βd = 1.59 and Td = 19.6 K down to the lowest Planck HFI frequencies. We find a systematic difference between the amplitudes of the Galactic B- and E-modes, CℓBB/CℓEE = 0.5. We verify that these general properties are preserved towards high Galactic latitudes with low dust column densities. We show that even in the faintest dust-emitting regions there are no "clean" windows in the sky where primordial CMB B-mode polarization measurements could be made without subtraction of foreground emission. Finally, we investigate the level of dust polarization in the specific field recently targeted by the BICEP2 experiment. Extrapolation of the Planck 353 GHz data to 150 GHz gives a dust power 𝒟ℓBB ≡ ℓ(ℓ+1)CℓBB/(2π) of 1.32 × 10-2 μKCMB2 over the multipole range

  17. 100 nm AlSb/InAs HEMT for ultra-low-power consumption, low-noise applications.

    PubMed

    Gardès, Cyrille; Bagumako, Sonia; Desplanque, Ludovic; Wichmann, Nicolas; Bollaert, Sylvain; Danneville, François; Wallart, Xavier; Roelens, Yannick

    2014-01-01

    We report on high frequency (HF) and noise performances of AlSb/InAs high electron mobility transistor (HEMT) with 100 nm gate length at room temperature in low-power regime. Extrinsic cut-off frequencies fT/f max of 100/125 GHz together with minimum noise figure NF(min) = 0.5 dB and associated gain G(ass) = 12 dB at 12 GHz have been obtained at drain bias of only 80 mV, corresponding to 4 mW/mm DC power dissipation. This demonstrates the great ability of AlSb/InAs HEMT for high-frequency operation combined with low-noise performances in ultra-low-power regime.

  18. K-band high power latching switch. [communication satellite system

    NASA Technical Reports Server (NTRS)

    Mlinar, M. J.; Piotrowski, W. S.; Raue, J. E.

    1980-01-01

    A 19 GHz waveguide latching switch with a bandwidth of 1400 MHz and an exceptionally low insertion loss of 0.25 dB was demonstrated. The RF and driver ferrites are separate structures and can be optimized individually. This analysis for each structure is separately detailed. Basically, the RF section features a dual turnstile junction. The circulator consists of a dielectric tube which contains two ferrite rods, and a dielectric spacer separating the ferrite parts along the center of symmetry of the waveguide to form two turnstiles. This subassembly is indexed and locked in the center of symmetry of a uniform junction of three waveguides by the metallic transformers installed in the top and bottom walls of the housing. The switching junction and its actuating circuitry met all RF performance objectives and all shock and vibration requirements with no physical damage or performance degradation. It exceeds thermal requirements by operating over a 100 C temperature range (-44 C to +56 C) and has a high power handling capability allowing up to 100 W of CW input power.

  19. The high-resolution structure of the Centaurus A nucleus at 2.3 and 8.4 GHz

    NASA Technical Reports Server (NTRS)

    Meier, David L.; Preston, Robert A.; Morabito, David D.; Skjerve, Lyle; Slade, Martin A.; Wehrle, Ann E.; Niell, Arthur E.; Jauncey, David L.; Batchelor, Robert; Tzioumis, Anastasios K.

    1989-01-01

    VLBI observations of the nucleus of Centaurus A have been made at two frequencies with an array of five Australian radio telescopes as part of the Southern Hemisphere VLBI Experiment. Observations were made at 2.3 GHz with all five antennas, while only two were employed at 8.4 GHz. At 2.3 GHz seven tracks in the (u,v) plane with coverage of 6-8 hr each were obtained, yielding significant information on the structure of the nuclear jet. At 8.4 GHz a compact unresolved core was detected as well. It is found that the source consists of the compact self-absorbed core, a jet containing a set of three knots extending from 100 to 160 mas from the core, and a very long, narrow component elongated along the same position angle as the knots. The allowable range for the position angle of the jet is 51 + or - 3 deg, in agreement with that of the radio and X-ray structure on arcsecond and arcminute scales. The jet has brightened at 2.3 GHz by about 4 Jy, a factor of nearly 3, since the early 1970s, 1.8 Jy of which has occurred in the last 2 yr with no discernable changes in structure.

  20. Advanced High Power mm-Wave Microwave Devices Final Report CRADA No. TC-0287-92

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shang, C. C.; Tomlin, T.

    The purpose of this CRADA was to improve existing high-average-power microwave devices and develop the next generation microwave devices for energy and defense applications. A Free Electron Maser was under test at the FOM Institute (Rijnhuizen) Netherlands with the goal of producing a lMW-long pulse to CW microwave output in the range 130GHz to 250GHz. The DC acceleration and beam transport system is eventually to be used in a depressed collector cotilguration requiring 99.8% beam transmission in order that the high voltage 2MV supply be required only to supply 20 milliamps of body current. A relativistic version of the Herrmannmore » optical theory originally developed for microwave tube beams was used to take into account thermal elections far out on the gaussian distribution tail that can translate into beam current well outside the ideal beam edge. This theory was applied to the FOM beamline design and predicts that the beam envelope containing 99.8% of the current can be successfully transported to the undulator for a wide range of assumed eminence values.« less

  1. 47 CFR 25.136 - Licensing provisions for user transceivers in the 1.6/2.4 GHz, 1.5/1.6 GHz, and 2 GHz Mobile...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    .../2.4 GHz Mobile-Satellite Service or 2 GHz Mobile-Satellite Service may not be operated on civil... rules and regulations in this Part and the applicable engineering standards. Prior to engaging in such...

  2. Choice of antenna geometry for microwave power transmission from solar power satellites

    NASA Technical Reports Server (NTRS)

    Potter, Seth D.

    1992-01-01

    A comparison is made between square and circular transmitting antennas for solar power satellite microwave power transmission. It is seen that the exclusion zone around the rectenna needed to protect populations from microwaves is smaller for a circular antenna operating at 2.45 GHz than it is for a square antenna at that frequency. If the frequency is increased, the exclusion zone size remains the same for a square antenna, but becomes even smaller for a circular antenna. Peak beam intensity is the same for both antennas if the frequency and antenna area are equal. The circular antenna puts a somewhat greater amount of power in the main lobe and somewhat less in the side lobes. Since rain attenuation and atmospheric heating remain problems above 10 GHz, it is recommended that future solar power satellite work concentrate on circular transmitting antennas at frequencies of roughly 10 GHz.

  3. Multi-MW K-Band Harmonic Multiplier: RF Source For High-Gradient Accelerator R & D

    NASA Astrophysics Data System (ADS)

    Solyak, N. A.; Yakovlev, V. P.; Kazakov, S. Yu.; Hirshfield, J. L.

    2009-01-01

    A preliminary design is presented for a two-cavity harmonic multiplier, intended as a high-power RF source for use in experiments aimed at developing high-gradient structures for a future collider. The harmonic multiplier is to produce power at selected frequencies in K-band (18-26.5 GHz) using as an RF driver an XK-5 S-band klystron (2.856 GHz). The device is to be built with a TE111 rotating mode input cavity and interchangeable output cavities running in the TEn11 rotating mode, with n = 7,8,9 at 19.992, 22.848, and 25.704 GHz. An example for a 7th harmonic multiplier is described, using a 250 kV, 20 A injected laminar electron beam; with 10 MW of S-band drive power, 4.7 MW of 20-GHz output power is predicted. Details are described of the magnetic circuit, cavities, and output coupler.

  4. Development of a 200 W CW high efficiency traveling wave tube at 12 GHz. [for use in communication technology satellites

    NASA Technical Reports Server (NTRS)

    Christensen, J. A.; Tammaru, I.

    1974-01-01

    The design, development, and test results are reported for an experimental PPM focused, traveling-wave tube that produces 235 watts of CW RF power over 85 MHz centered at 12.080 GHz. The tube uses a coupled cavity RF circuit with a velocity taper for greater than 30 percent basic efficiency. Overall efficiency of 51 percent is achieved by means of a nine stage depressed collector designed at NASA Lewis Research Center. This collector is cooled by direct radiation to deep space.

  5. RF Behavior of Cylindrical Cavity Based 240 GHz, 1 MW Gyrotron for Future Tokamak System

    NASA Astrophysics Data System (ADS)

    Kumar, Nitin; Singh, Udaybir; Bera, Anirban; Sinha, A. K.

    2017-11-01

    In this paper, we present the RF behavior of conventional cylindrical interaction cavity for 240 GHz, 1 MW gyrotron for futuristic plasma fusion reactors. Very high-order TE mode is searched for this gyrotron to minimize the Ohmic wall loading at the interaction cavity. The mode selection process is carried out rigorously to analyze the mode competition and design feasibility. The cold cavity analysis and beam-wave interaction computation are carried out to finalize the cavity design. The detail parametric analyses for interaction cavity are performed in terms of mode stability, interaction efficiency and frequency. In addition, the design of triode type magnetron injection gun is also discussed. The electron beam parameters such as velocity ratio and velocity spread are optimized as per the requirement at interaction cavity. The design studies presented here confirm the realization of CW, 1 MW power at 240 GHz frequency at TE46,17 mode.

  6. Demonstration of Multi-Gbps Data Rates at Ka-Band Using Software-Defined Modem and Broadband High Power Amplifier for Space Communications

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.; Wintucky, Edwin G.; Landon, David G.; Sun, Jun Y.; Winn, James S.; Laraway, Stephen; McIntire, William K.; Metz, John L.; Smith, Francis J.

    2011-01-01

    The paper presents the first ever research and experimental results regarding the combination of a software-defined multi-Gbps modem and a broadband high power space amplifier when tested with an extended form of the industry standard DVB-S2 and LDPC rate 9/10 FEC codec. The modem supports waveforms including QPSK, 8-PSK, 16-APSK, 32-APSK, 64-APSK, and 128-QAM. The broadband high power amplifier is a space qualified traveling-wave tube (TWT), which has a passband greater than 3 GHz at 33 GHz, output power of 200 W and efficiency greater than 60 percent. The modem and the TWTA together enabled an unprecedented data rate at 20 Gbps with low BER of 10(exp -9). The presented results include a plot of the received waveform constellation, BER vs. E(sub b)/N(sub 0) and implementation loss for each of the modulation types tested. The above results when included in an RF link budget analysis show that NASA s payload data rate can be increased by at least an order of magnitude (greater than 10X) over current state-of-practice, limited only by the spacecraft EIRP, ground receiver G/T, range, and available spectrum or bandwidth.

  7. Synthesis of oxide and nitride ceramics in high-power gyrotron discharge

    NASA Astrophysics Data System (ADS)

    Akhmadullina, N. S.; Skvortsova, N. N.; Obraztsova, E. A.; Stepakhin, V. D.; Konchekov, E. M.; Kargin, Yu F.; Shishilov, O. N.

    2017-12-01

    Synthesis of oxides, nitrides, and oxynitrides of silicon and aluminium by a pulsed microwave discharge in the mixtures of metal and dielectric powders is described. The microwave pulses were generated by high-power gyrotron (frequency 75 GHz, power up to 550 kW, pulse duration from 0.1 to 15ms). SiO2 + β-Si3N4 (1:1 by molar) and α-Al2O3 + AlN (2:1 by molar) mixtures with Mg (1 and 5wt%) were treated in air with microwave pulses with power of 250÷400 kW and duration of 2÷8 ms. It was found that the discharge cannot be initiated for both mixtures in absence of Mg at any pulse power and duration. When 1% of Mg was added, the discharge was observed for both mixtures under 8 ms pulses of 400 kW; however, the amounts of materials produced were not enough for analysis. With 5% of Mg the discharge was observed for both mixtures under 8 ms pulses of 350 kW, and products of the plasma-chemical processes in the Al2O3 + AlN mixture were analyzed.

  8. A highly linear power amplifier for WLAN

    NASA Astrophysics Data System (ADS)

    Jie, Jin; Jia, Shi; Baoli, Ai; Xuguang, Zhang

    2016-02-01

    A three-stage power amplifier (PA) for WLAN application in 2.4-2.5 GHz is presented. The proposed PA employs an adaptive bias circuit to adjust the operating point of the PA to improve the linearity of the PA. Two methods to short the 2nd harmonic circuit are compared in the area of efficiency and gain of the PA. The PA is taped out in the process of 2 μm InGaP/GaAs HBT and is tested by the evaluation board. The measured results show that 31.5 dB power gain and 29.3 dBm P1dB with an associated 40.4% power added efficiency (PAE) under the single tone stimulus. Up to 26.5 dBm output power can be achieved with an error vector magnitude (EVM) of lower than 3% under the 64QAM/OFDM WLAN stimulus. Project supported by the National Natural Science Foundation of China (No. 61201244) and the Natural Science Fund of SUES (No. E1-0501-14-0168).

  9. Figure of merit studies of beam power concepts for advanced space exploration

    NASA Technical Reports Server (NTRS)

    Miller, Gabriel; Kadiramangalam, Murali N.

    1990-01-01

    Surface to surface, millimeter wavelength beam power systems for power transmission on the lunar base were investigated. Qualitative/quantitative analyses and technology assessment of 35, 110 and 140 GHz beam power systems were conducted. System characteristics including mass, stowage volume, cost and efficiency as a function of range and power level were calculated. A simple figure of merit analysis indicates that the 35 GHz system would be the preferred choice for lunar base applications, followed closely by the 110 GHz system. System parameters of a 35 GHz beam power system appropriate for power transmission on a recent lunar base concept studied by NASA-Johnson and the necessary deployment sequence are suggested.

  10. The 30-GHz monolithic receive module

    NASA Technical Reports Server (NTRS)

    Bauhahn, P.; Geddes, J.; Sokolov, V.; Contolatis, T.

    1988-01-01

    The fourth year progress is described on a program to develop a 27.5 to 30 GHz GaAs monolithic receive module for spaceborne-communication antenna feed array applications, and to deliver submodules for experimental evaluation. Program goals include an overall receive module noise figure of 5 dB, a 30 dB RF to IF gain with six levels of intermediate gain control, a five bit phase shifter, and a maximum power consumption of 250 mW. Submicron gate length single and dual gate FETs are described and applied in the development of monolithic gain control amplifiers and low noise amplifiers. A two-stage monolithic gain control amplifier based on ion implanted dual gate MESFETs was designed and fabricated. The gain control amplifier has a gain of 12 dB at 29 GHz with a gain control range of over 13 dB. A two-stage monolithic low noise amplifier based on ion implanted MESFETs which provides 7 dB gain with 6.2 dB noise figure at 29 GHz was also developed. An interconnected receive module containing LNA, gain control, and phase shifter submodules was built using the LNA and gain control ICs as well as a monolithic phase shifter developed previously under this program. The design, fabrication, and evaluation of this interconnected receiver is presented. Progress in the development of an RF/IF submodule containing a unique ion implanted diode mixer diode and a broadband balanced mixer monolithic IC with on-chip IF amplifier and the initial design of circuits for the RF portion of a two submodule receiver are also discussed.

  11. 20/30 GHz satellite systems technology needs assessment. [for domestic communications

    NASA Technical Reports Server (NTRS)

    Stevens, G.; Wright, D.

    1978-01-01

    The paper surveys the system and market work done at NASA-Lewis with regard to exploring the potential of the 20/30 GHz bands for domestic satellite communications. The 20/30 GHz bands appear attractive economically and, with certain technology advances, appear to offer a virtually unlimited spectrum resource. This attractiveness is especially relevant to high density trunking where there is sufficient traffic to justify dual-station site diversity. Ongoing system and market studies actively involve satellite system suppliers and carriers as well as the government in a cooperative, mutually beneficial effort. It is considered that this is the approach most likely to result in a spectrum-efficient acceptable-risk high-capacity 30/30 GHz satellite system which is relevant to anticipated markets.

  12. Observations of tropospheric phase scintillations at 5 GHz on vertical paths

    NASA Technical Reports Server (NTRS)

    Armstrong, J. W.; Sramek, R. A.

    1982-01-01

    The article presents observations of turbulence-induced tropospheric phase fluctuations measured at 5 GHz on the near-vertical paths relevant to many astronomical and geophysical measurements. The data are summarized as phase power spectra, structure functions, and Allan variances. Comparisons to other microwave observations indicate relatively good agreement in both the level and shape of the power spectrum of these tropospheric phase fluctuations. Implications for precision Doppler tracking of spacecraft and geodesy/radio interferometry are discussed.

  13. Q-Band (37-41 GHz) Satellite Beacon Architecture for RF Propagation Experiments

    NASA Technical Reports Server (NTRS)

    Simmons, Rainee N.; Wintucky, Edwin G.

    2012-01-01

    In this paper, the design of a beacon transmitter that will be flown as a hosted payload on a geostationary satellite to enable propagation experiments at Q-band (37-41 GHz) frequencies is presented. The beacon uses a phased locked loop stabilized dielectric resonator oscillator and a solid-state power amplifier to achieve the desired output power. The satellite beacon antenna is configured as an offset-fed cut-paraboloidal reflector.

  14. The Nature of Radio Emission from Distant Galaxies: The 1.4 GHZ Observations

    NASA Astrophysics Data System (ADS)

    Richards, E. A.

    2000-04-01

    We have conducted a deep radio survey with the Very Large Array at 1.4 GHz of a region containing the Hubble Deep Field (HDF). This survey overlaps previous observations at 8.5 GHz allowing us to investigate the radio spectral properties of microjansky sources to flux densities greater than 40 μJy at 1.4 GHz and greater than 8 μJy at 8.5 GHz. A total of 371 sources have been cataloged at 1.4 GHz as part of a complete sample within 20' of the HDF. The differential source count for this region is only marginally sub-Euclidean and is given by n(S)=(8.3+/-0.4)S-2.4+/-0.1 sr-1 Jy-1. Above about 100 μJy the radio source count is systematically lower in the HDF as compared to other fields. We conclude that there is clustering in our radio sample on size scales of 1'-40'. The 1.4 GHz-selected sample shows that the radio spectral indices are preferentially steep (α1.4=0.85) and that the sources are moderately extended with average angular size θ=1.8". Optical identification with disk-type systems at z~0.1-1 suggests that synchrotron emission, produced by supernovae remnants, is powering the radio emission in the majority of sources. The 8.5 GHz sample contains primarily moderately flat spectrum sources (α8.5=0.35), with less than 15% inverted. We argue that we may be observing an increased fraction of optically thin bremsstrahlung over synchrotron radiation in these distant star-forming galaxies.

  15. Very high resolution observations of SS433 at 10.65 GHz

    NASA Technical Reports Server (NTRS)

    Geldzahler, B. J.; Downes, A. J. B.; Shaffer, D. B.

    1981-01-01

    Observations of SS433 made on June 12, 1979, from West Germany, Massachusetts, and West Virginia are discussed. It is noted that SS433 did not show fringes on any baseline although all the calibration sources were seen at their expected strengths. The measured total flux density of SS433 was found to be approximately 0.5 Jy, consistent with previous observations. The source was observed by on-offs at each telescope, which indicates that they were all pointed properly during the observations. The absence of fringes is not attributed to poor observing conditions or instrumental difficulties. It is concluded that if all the 10.65 GHz radiation emanates from a single component, then that component is at least 0.005 arcsec (approximately 10 to the 14th cm) in size. The measurements made on more sensitive intercontinental baselines indicate that there is no component of SS433 smaller than 0.001 arcsec emitting 10.65 GHz radiation above a level of 50 mJy.

  16. Planck 2013 results. VI. High Frequency Instrument data processing

    NASA Astrophysics Data System (ADS)

    Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Armitage-Caplan, C.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Battaner, E.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bobin, J.; Bock, J. J.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.; Bowyer, J. W.; Bridges, M.; Bucher, M.; Burigana, C.; Cardoso, J.-F.; Catalano, A.; Chamballu, A.; Chary, R.-R.; Chen, X.; Chiang, H. C.; Chiang, L.-Y.; Christensen, P. R.; Church, S.; Clements, D. L.; Colombi, S.; Colombo, L. P. L.; Combet, C.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Delouis, J.-M.; Désert, F.-X.; Dickinson, C.; Diego, J. M.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Dunkley, J.; Dupac, X.; Efstathiou, G.; Enßlin, T. A.; Eriksen, H. K.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Galeotta, S.; Ganga, K.; Giard, M.; Giardino, G.; Girard, D.; Giraud-Héraud, Y.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Gudmundsson, J. E.; Hansen, F. K.; Hanson, D.; Harrison, D.; Helou, G.; Henrot-Versillé, S.; Herent, O.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hou, Z.; Hovest, W.; Huffenberger, K. M.; Hurier, G.; Jaffe, A. H.; Jaffe, T. R.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Kneissl, R.; Knoche, J.; Knox, L.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lamarre, J.-M.; Lasenby, A.; Laureijs, R. J.; Lawrence, C. R.; Le Jeune, M.; Leonardi, R.; Leroy, C.; Lesgourgues, J.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; MacTavish, C. J.; Maffei, B.; Mandolesi, N.; Maris, M.; Marleau, F.; Marshall, D. J.; Martin, P. G.; Martínez-González, E.; Masi, S.; Massardi, M.; Matarrese, S.; Matthai, F.; Mazzotta, P.; McGehee, P.; Meinhold, P. R.; Melchiorri, A.; Melot, F.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra, S.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Mottet, S.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; North, C.; Noviello, F.; Novikov, D.; Novikov, I.; Orieux, F.; Osborne, S.; Oxborrow, C. A.; Paci, F.; Pagano, L.; Pajot, F.; Paladini, R.; Paoletti, D.; Pasian, F.; Patanchon, G.; Perdereau, O.; Perotto, L.; Perrotta, F.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Popa, L.; Poutanen, T.; Pratt, G. W.; Prézeau, G.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Racine, B.; Reach, W. T.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Ricciardi, S.; Riller, T.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Roudier, G.; Rowan-Robinson, M.; Rusholme, B.; Sanselme, L.; Santos, D.; Sauvé, A.; Savini, G.; Scott, D.; Shellard, E. P. S.; Spencer, L. D.; Starck, J.-L.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sureau, F.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Tavagnacco, D.; Techene, S.; Terenzi, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Umana, G.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vibert, L.; Vielva, P.; Villa, F.; Vittorio, N.; Wade, L. A.; Wandelt, B. D.; White, S. D. M.; Yvon, D.; Zacchei, A.; Zonca, A.

    2014-11-01

    Wedescribe the processing of the 531 billion raw data samples from the High Frequency Instrument (HFI), which we performed to produce six temperature maps from the first 473 days of Planck-HFI survey data. These maps provide an accurate rendition of the sky emission at 100, 143, 217, 353, 545, and 857GHz with an angular resolution ranging from 9.´7 to 4.´6. The detector noise per (effective) beam solid angle is respectively, 10, 6 , 12, and 39 μK in the four lowest HFI frequency channels (100-353GHz) and 13 and 14 kJy sr-1 in the 545 and 857 GHz channels. Relative to the 143 GHz channel, these two high frequency channels are calibrated to within 5% and the 353 GHz channel to the percent level. The 100 and 217 GHz channels, which together with the 143 GHz channel determine the high-multipole part of the CMB power spectrum (50 <ℓ < 2500), are calibrated relative to 143 GHz to better than 0.2%.

  17. 60-GHz integrated-circuit high data rate quadriphase shift keying exciter and modulator

    NASA Technical Reports Server (NTRS)

    Grote, A.; Chang, K.

    1984-01-01

    An integrated-circuit quadriphase shift keying (QPSK) exciter and modulator have demonstrated excellent performance directly modulating a carrier frequency of 60 GHz with an output phase error of less than 3 degrees and maximum amplitude error of 0.5 dB. The circuit consists of a 60-GHz Gunn VCO phase-locked to a low-frequency reference source, a 4th subharmonic mixer, and a QPSK modlator packaged into a small volume of 1.8 x 2.5 x 0.35 in. The use of microstrip has the advantages of small size, light-weight, and low-cost fabrication. The unit has the potential for multigigabit data rate applications.

  18. High-efficiency W-band hybrid integrated photoreceiver module using UTC-PD and pHEMT amplifier

    NASA Astrophysics Data System (ADS)

    Umezawa, T.; Katshima, K.; Kanno, A.; Akahane, K.; Matsumoto, A.; Yamamoto, N.; Kawanishi, T.

    2016-02-01

    A 100-GHz narrowband photoreceiver module integrated with a zero-bias operational uni-traveling-carrier photodiode (UTC-PD) and a GaAs-based pseudomorphic high-electron-mobility transistor (pHEMT) amplifier was fabricated and characterized. Both devices exhibited flat frequency response and outstanding overall performance. The UTC-PD showed a 3-dB bandwidth beyond 110 GHz while the pHEMT amplifier featured low power consumption and a gain of 24 dB over the 85-100 GHz range. A butterfly metal package equipped with a 1.0 mm (W) coaxial connector and a microstrip-coplanar waveguide conversion substrate was designed for low insertion loss and low return loss. The fabricated photoreceiver module demonstrated high conversion gain, a maximum output power of +9.5 dBm at 96 GHz, and DC-power consumption of 0.21 W.

  19. 270GHz SiGe BiCMOS manufacturing process platform for mmWave applications

    NASA Astrophysics Data System (ADS)

    Kar-Roy, Arjun; Preisler, Edward J.; Talor, George; Yan, Zhixin; Booth, Roger; Zheng, Jie; Chaudhry, Samir; Howard, David; Racanelli, Marco

    2011-11-01

    TowerJazz has been offering the high volume commercial SiGe BiCMOS process technology platform, SBC18, for more than a decade. In this paper, we describe the TowerJazz SBC18H3 SiGe BiCMOS process which integrates a production ready 240GHz FT / 270 GHz FMAX SiGe HBT on a 1.8V/3.3V dual gate oxide CMOS process in the SBC18 technology platform. The high-speed NPNs in SBC18H3 process have demonstrated NFMIN of ~2dB at 40GHz, a BVceo of 1.6V and a dc current gain of 1200. This state-of-the-art process also comes with P-I-N diodes with high isolation and low insertion losses, Schottky diodes capable of exceeding cut-off frequencies of 1THz, high density stacked MIM capacitors, MOS and high performance junction varactors characterized up to 50GHz, thick upper metal layers for inductors, and various resistors such as low value and high value unsilicided poly resistors, metal and nwell resistors. Applications of the SBC18H3 platform for millimeter-wave products for automotive radars, phased array radars and Wband imaging are presented.

  20. European VLBI network observations of fourteen GHz-peaked-spectrum radio sources at 5 GHz

    NASA Astrophysics Data System (ADS)

    Xiang, L.; Reynolds, C.; Strom, R. G.; Dallacasa, D.

    2006-08-01

    We present the results of EVN polarization observations of fourteen GHz-Peaked-Spectrum (GPS) radio sources at 5 GHz. These sources were selected from bright GPS source samples and we aimed at finding Compact Symmetric Objects (CSOs). We have obtained full polarization 5 GHz VLBI observations of 14 sources providing information on their source structure and spectral indices. The results show that two core-jet sources 1433-040 and DA193, out of 14 GPS sources, exhibit integrated fractional polarizations of 3.6% and 1.0% respectively. The other 12 sources have no clear detection of pc-scale polarization. The results confirm that the GPS sources generally have very low polarization at 5 GHz. The sources 1133+432, 1824+271 and 2121-014 are confirmed as CSOs. Three new CSOs 0914+114, 1518+046 and 2322-040 (tentative) have been classified on the basis of 5 GHz images and spectral indices. The sources 1333+589, 1751+278 and 2323+790 can be classified either as compact doubles, and then they are likely CSO candidates or core-jet sources; further observations are needed for an appropriate classification; 0554-026, 1433-040 and 1509+054 are core-jet sources. In addition, we estimate that a component in the jet of quasar DA193 has superluminal motion of 3.3±0.6 h-1 c in 5.5 years.

  1. Diode amplifier of modulated optical beam power

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D'yachkov, N V; Bogatov, A P; Gushchik, T I

    2014-11-30

    Analytical relations are obtained between characteristics of modulated light at the output and input of an optical diode power amplifier operating in the highly saturated gain regime. It is shown that a diode amplifier may act as an amplitude-to-phase modulation converter with a rather large bandwidth (∼10 GHz). The low sensitivity of the output power of the amplifier to the input beam power and its high energy efficiency allow it to be used as a building block of a high-power multielement laser system with coherent summation of a large number of optical beams. (lasers)

  2. 324GHz CMOS VCO Using Linear Superimposition Technique

    NASA Technical Reports Server (NTRS)

    Daquan, Huang; LaRocca, Tim R.; Samoska, Lorene A; Fung, Andy; Chang, Frank

    2007-01-01

    Terahertz (frequencies ranged from 300GHz to 3THz) imaging and spectroscopic systems have drawn increasing attention recently due to their unique capabilities in detecting and possibly analyzing concealed objects. The generation of terahertz signals is nonetheless nontrivial and traditionally accomplished by using either free-electron radiation, optical lasers, Gunn diodes or fundamental oscillation by using III-V based HBT/HEMT technology[1-3]... We have substantially extended the operation range of deep-scaled CMOS by using a linear superimposition method, in which we have realized a 324GHz VCO in 90nm digital CMOS with 4GHz tuning range under 1V supply voltage. This may also pave the way for ultra-high data rate wireless communications beyond that of IEEE 802.15.3c and reach data rates comparable to that of fiber optical communications, such as OC768 (40Gbps) and beyond.

  3. Experimental Investigation of 60 GHz Transmission Characteristics Between Computers on a Conference Table for WPAN Applications

    NASA Technical Reports Server (NTRS)

    Ponchak, George E.; Amadjikpe, Arnaud L.; Choudhury, Debabani; Papapolymerou, John

    2011-01-01

    In this paper, the first measurements of the received radiated power between antennas located on a conference table to simulate the environment of antennas embedded in laptop computers for 60 GHz Wireless Personal Area Network (WPAN) applications is presented. A high gain horn antenna and a medium gain microstrip patch antenna for two linear polarizations are compared. It is shown that for a typical conference table arrangement with five computers, books, pens, and coffee cups, the antennas should be placed a minimum of 5 cm above the table, but that a height of greater than 20 cm may be required to maximize the received power in all cases.

  4. Measurement of CIB power spectra over large sky areas from Planck HFI maps

    NASA Astrophysics Data System (ADS)

    Mak, Daisy Suet Ying; Challinor, Anthony; Efstathiou, George; Lagache, Guilaine

    2017-04-01

    We present new measurements of the power spectra of the cosmic infrared background (CIB) anisotropies using the Planck 2015 full-mission High frequency instrument data at 353, 545 and 857 GHz over 20 000 deg2. We use techniques similar to those applied for the cosmological analysis of Planck, subtracting dust emission at the power spectrum level. Our analysis gives stable solutions for the CIB power spectra with increasing sky coverage up to about 50 per cent of the sky. These spectra agree well with H I-cleaned spectra from Planck measured on much smaller areas of sky with low Galactic dust emission. At 545 and 857 GHz, our CIB spectra agree well with those measured from Herschel data. We find that the CIB spectra at ℓ ≳ 500 are well fitted by a power-law model for the clustered CIB, with a shallow index γcib = 0.53 ± 0.02. This is consistent with the CIB results at 217 GHz from the cosmological parameter analysis of Planck. We show that a linear combination of the 545 and 857 GHz Planck maps is dominated by the CIB fluctuations at multipoles ℓ ≳ 300.

  5. On-Wafer Measurement of a Silicon-Based CMOS VCO at 324 GHz

    NASA Technical Reports Server (NTRS)

    Samoska, Lorene; Man Fung, King; Gaier, Todd; Huang, Daquan; Larocca, Tim; Chang, M. F.; Campbell, Richard; Andrews, Michael

    2008-01-01

    The world s first silicon-based complementary metal oxide/semiconductor (CMOS) integrated-circuit voltage-controlled oscillator (VCO) operating in a frequency range around 324 GHz has been built and tested. Concomitantly, equipment for measuring the performance of this oscillator has been built and tested. These accomplishments are intermediate steps in a continuing effort to develop low-power-consumption, low-phase-noise, electronically tunable signal generators as local oscillators for heterodyne receivers in submillimeter-wavelength (frequency > 300 GHz) scientific instruments and imaging systems. Submillimeter-wavelength imaging systems are of special interest for military and law-enforcement use because they could, potentially, be used to detect weapons hidden behind clothing and other opaque dielectric materials. In comparison with prior submillimeter- wavelength signal generators, CMOS VCOs offer significant potential advantages, including great reductions in power consumption, mass, size, and complexity. In addition, there is potential for on-chip integration of CMOS VCOs with other CMOS integrated circuitry, including phase-lock loops, analog- to-digital converters, and advanced microprocessors.

  6. 100 nm AlSb/InAs HEMT for Ultra-Low-Power Consumption, Low-Noise Applications

    PubMed Central

    Bagumako, Sonia; Desplanque, Ludovic; Wichmann, Nicolas; Bollaert, Sylvain; Danneville, François; Wallart, Xavier

    2014-01-01

    We report on high frequency (HF) and noise performances of AlSb/InAs high electron mobility transistor (HEMT) with 100 nm gate length at room temperature in low-power regime. Extrinsic cut-off frequencies f T/f max of 100/125 GHz together with minimum noise figure NFmin = 0.5 dB and associated gain G ass = 12 dB at 12 GHz have been obtained at drain bias of only 80 mV, corresponding to 4 mW/mm DC power dissipation. This demonstrates the great ability of AlSb/InAs HEMT for high-frequency operation combined with low-noise performances in ultra-low-power regime. PMID:24707193

  7. 3-D printed 2.4 GHz rectifying antenna for wireless power transfer applications

    NASA Astrophysics Data System (ADS)

    Skinner, Matthew

    In this work, a 3D printed rectifying antenna that operates at the 2.4GHz WiFi band was designed and manufactured. The printed material did not have the same properties of bulk material, so the printed materials needed to be characterized. The antenna and rectifying circuit was printed out of Acrylonitrile Butadiene Styrene (ABS) filament and a conductive silver paste, with electrical components integrated into the circuit. Before printing the full rectifying antenna, each component was printed and evaluated. The printed antenna operated at the desired frequency with a return loss of -16 dBm with a bandwidth of 70MHz. The radiation pattern was measured in an anechoic chamber with good matching to the model. The rectifying circuit was designed in Ansys Circuit Simulation using Schottky diodes to enable the circuit to operate at lower input power levels. Two rectifying circuits were manufactured, one by printing the conductive traces with silver ink, and one with traces made from copper. The printed silver ink is less conductive than the bulk copper and therefore the output voltage of the printed rectifier was lower than the copper circuit. The copper circuit had an efficiency of 60% at 0dBm and the printed silver circuit had an efficiency of 28.6% at 0dBm. The antenna and rectifying circuits were then connected to each other and the performance was compared to a fully printed integrated rectifying antenna. The rectifying antennas were placed in front of a horn antenna while changing the power levels at the antenna. The efficiency of the whole system was lower than the individual components but an efficiency of 11% at 10dBm was measured.

  8. Offset frequency dynamics and phase noise properties of a self-referenced 10 GHz Ti:sapphire frequency comb.

    PubMed

    Heinecke, Dirk C; Bartels, Albrecht; Diddams, Scott A

    2011-09-12

    This paper shows the experimental details of the stabilization scheme that allows full control of the repetition rate and the carrier-envelope offset frequency of a 10 GHz frequency comb based on a femtosecond Ti:sapphire laser. Octave-spanning spectra are produced in nonlinear microstructured optical fiber, in spite of the reduced peak power associated with the 10 GHz repetition rate. Improved stability of the broadened spectrum is obtained by temperature-stabilization of the nonlinear optical fiber. The carrier-envelope offset frequency and the repetition rate are simultaneously frequency stabilized, and their short- and long-term stabilities are characterized. We also measure the transfer of amplitude noise of the pump source to phase noise on the offset frequency and verify an increased sensitivity of the offset frequency to pump power modulation compared to systems with lower repetition rate. Finally, we discuss merits of this 10 GHz system for the generation of low-phase-noise microwaves from the photodetected pulse train.

  9. Laboratory Heterodyne Spectrometers Operating at 100 and 300 GHZ

    NASA Astrophysics Data System (ADS)

    Maßen, Jakob; Wehres, Nadine; Hermanns, Marius; Lewen, Frank; Heyne, Bettina; Endres, Christian; Graf, Urs; Honingh, Netty; Schlemmer, Stephan

    2017-06-01

    Two new laboratory heterodyne emission spectrometers are presented that are currently used for high-resolution rotational spectroscopy of complex organic molecules. The room temperature heterodyne receiver operating between 80-110 GHz, as well as the SIS heterodyne receiver operating between 270-370 GHz allow access to two very important frequency regimes, coinciding with Bands 3 and 7 of the ALMA (Atacama Large Millimeter Array) telescope. Taking advantage of recent progresses in the field of mm/submm technology, we build these two spectrometers using an XFFFTS (eXtended Fast Fourier Transform Spectrometer) for spectral acquisition. The instantaneous bandwidth is 2.5 GHz in a single sideband, spread over 32768 channels. Thus, the spectral resolution is about 76 kHz per channel and thus comparable to high resolution spectra from telescopes. Both receivers are operated in double sideband mode resulting in a total instantaneous bandwidth of 5 GHz. The system performances, in particular the noise temperatures and stabilities are presented. Proof-of-concept is demonstrated by showing spectra of methyl cyanide obtained with both spectrometers. While the transition frequencies for this molecule are very well known, intensities of those transitions can also be determined with high accuracy using our new instruments. This additional information shall be exploited in future measurements to improve spectral predictions for astronomical observations. Other future prospects concern the study of more complex organic species, such as ethyl cyanide. These aspects of the new instruments as well as limitations of the two distinct receivers will be discussed.

  10. Progress in high-temperature oven development for 28 GHz electron cyclotron resonance ion source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ohnishi, J., E-mail: ohnishi@riken.jp; Higurashi, Y.; Nakagawa, T.

    2016-02-15

    We have been developing a high-temperature oven using UO{sub 2} in the 28 GHz superconducting electron cyclotron resonance ion source at RIKEN since 2013. A total of eleven on-line tests were performed. The longest operation time in a single test was 411 h, and the consumption rate of UO{sub 2} was approximately 2.4 mg/h. In these tests, we experienced several problems: the ejection hole of a crucible was blocked with UO{sub 2} and a crucible was damaged because of the reduction of tungsten strength at high temperature. In order to solve these problems, improvements to the crucible shape were mademore » by simulations using ANSYS.« less

  11. 12-GHz thin-film transistors on transferrable silicon nanomembranes for high-performance flexible electronics.

    PubMed

    Sun, Lei; Qin, Guoxuan; Seo, Jung-Hun; Celler, George K; Zhou, Weidong; Ma, Zhenqiang

    2010-11-22

    Multigigahertz flexible electronics are attractive and have broad applications. A gate-after-source/drain fabrication process using preselectively doped single-crystal silicon nanomembranes (SiNM) is an effective approach to realizing high device speed. However, further downscaling this approach has become difficult in lithography alignment. In this full paper, a local alignment scheme in combination with more accurate SiNM transfer measures for minimizing alignment errors is reported. By realizing 1 μm channel alignment for the SiNMs on a soft plastic substrate, thin-film transistors with a record speed of 12 GHz maximum oscillation frequency are demonstrated. These results indicate the great potential of properly processed SiNMs for high-performance flexible electronics.

  12. [Dependence of anti-inflammatory effects of high peak-power pulsed electromagnetic radiation of extremely high frequency on exposure parameters].

    PubMed

    Gapeev, A B; Mikhaĭlik, E N; Rubanik, A V; Cheremis, N K

    2007-01-01

    A pronounced anti-inflammatory effect of high peak-power pulsed electromagnetic radiation of extremely high frequency was shown for the first time in a model of zymosan-induced footpad edema in mice. Exposure to radiation of specific parameters (35, 27 GHz, peak power 20 kW, pulse widths 400-600 ns, pulse repetition frequency 5-500 Hz) decreased the exudative edema and local hyperthermia by 20% compared to the control. The kinetics and the magnitude of the anti-inflammatory effect were comparable with those induced by sodium diclofenac at a dose of 3 mg/kg. It was found that the anti-inflammatory effect linearly increased with increasing pulse width at a fixed pulse repetition frequency and had threshold dependence on the average incident power density of the radiation at a fixed pulse width. When animals were whole-body exposed in the far-field zone of radiator, the optimal exposure duration was 20 min. Increasing the average incident power density upon local exposure of the inflamed paw accelerated both the development of the anti-inflammatory effect and the reactivation time. The results obtained will undoubtedly be of great importance in the hygienic standardization of pulsed electromagnetic radiation and in further studies of the mechanisms of its biological action.

  13. Improving RF Transmit Power and Received Signal Strength in 2.4 GHz ZigBee Based Active RFID System with Embedded Method

    NASA Astrophysics Data System (ADS)

    Po'ad, F. A.; Ismail, W.; Jusoh, J. F.

    2017-08-01

    This paper describes the experiments and analysis conducted on 2.4 GHz embedded active Radio Frequency Identification (RFID) - Wireless Sensor Network (WSN) based system that has been developed for the purposes of location tracking and monitoring in indoor and outdoor environments. Several experiments are conducted to test the effectiveness and performance of the developed system and two of them is by measuring the Radio Frequency (RF) transmitting power and Received Signal Strength (RSS) to prove that the embedded active RFID tag is capable to generate higher transmit power during data transmission and able to provide better RSS reading compared to standalone RFID tag. Experiments are carried out on two RFID tags which are active RFID tag embedded with GPS and GSM (ER2G); and standalone RFID tag communicating with the same active RFID reader. The developed ER2G contributes 12.26 % transmit power and 6.47 % RSS reading higher than standalone RFID tag. The results conclude that the ER2G gives better performance compared to standalone RFID tag and can be used as guidelines for future design improvements.

  14. Electrostatic vibration energy harvester with 2.4-GHz Cockcroft-Walton rectenna start-up

    NASA Astrophysics Data System (ADS)

    Takhedmit, Hakim; Saddi, Zied; Karami, Armine; Basset, Philippe; Cirio, Laurent

    2017-02-01

    In this paper, we propose the design, fabrication and experiments of a macro-scale electrostatic vibration energy harvester (e-VEH), pre-charged wirelessly for the first time with a 2.4-GHz Cockcroft-Walton rectenna. The rectenna is designed and optimized to operate at low power densities and provide high voltage levels: 0.5 V at 0.76 μW/cm2 and 1 V at 1.53 μW/cm2. The e-VEH uses a Bennet doubler as a conditioning circuit. Experiments show a 23-V voltage across the transducer terminal, when the harvester is excited at 25 Hz by 1.5 g of external acceleration. An accumulated energy of 275 μJ and a maximum available power of 0.4 μW are achieved. xml:lang="fr"

  15. A Wide-Band High-Gain Compact SIS Receiver Utilizing a 300-μW SiGe IF LNA

    NASA Astrophysics Data System (ADS)

    Montazeri, Shirin; Grimes, Paul K.; Tong, Cheuk-Yu Edward; Bardin, Joseph C.

    2017-06-01

    Low-power low-noise amplifiers integrated with superconductor-insulator-superconductor (SIS) mixers are required to enable implementation of large-scale focal plane arrays. In this work, a 220-GHz SIS mixer has been integrated with a high-gain broad-band low-power IF amplifier into a compact receiver module. The low noise amplifier (LNA) was specifically designed to match to the SIS output impedance and contributes less than 7 K to the system noise temperature over the 4-8 GHz IF frequency range. A receiver noise temperature of 30-45 K was measured for a local oscillator frequency of 220 GHz over an IF spanning 4-8 GHz. The LNA power dissipation was only 300-μW. To the best of the authors' knowledge, this is the lowest power consumption reported for a high-gain wide-band LNA directly integrated with an SIS mixer.

  16. Power-Combined GaN Amplifier with 2.28-W Output Power at 87 GHz

    NASA Technical Reports Server (NTRS)

    Fung, King Man; Ward, John; Chattopadhyay, Goutam; Lin, Robert H.; Samoska, Lorene A.; Kangaslahti, Pekka P.; Mehdi, Imran; Lambrigtsen, Bjorn H.; Goldsmith, Paul F.; Soria, Mary M.; hide

    2011-01-01

    Future remote sensing instruments will require focal plane spectrometer arrays with higher resolution at high frequencies. One of the major components of spectrometers are the local oscillator (LO) signal sources that are used to drive mixers to down-convert received radio-frequency (RF) signals to intermediate frequencies (IFs) for analysis. By advancing LO technology through increasing output power and efficiency, and reducing component size, these advances will improve performance and simplify architecture of spectrometer array systems. W-band power amplifiers (PAs) are an essential element of current frequency-multiplied submillimeter-wave LO signal sources. This work utilizes GaN monolithic millimeter-wave integrated circuit (MMIC) PAs developed from a new HRL Laboratories LLC 0.15- m gate length GaN semiconductor transistor. By additionally waveguide power combining PA MMIC modules, the researchers here target the highest output power performance and efficiency in the smallest volume achievable for W-band.

  17. GHz Yb:KYW oscillators in time-resolved spectroscopy

    NASA Astrophysics Data System (ADS)

    Li, Changxiu; Krauß, Nico; Schäfer, Gerhard; Ebner, Lukas; Kliebisch, Oliver; Schmidt, Johannes; Winnerl, Stephan; Hettich, Mike; Dekorsy, Thomas

    2018-02-01

    A high-speed asynchronous optical sampling system (ASOPS) based on Yb:KYW oscillators with 1-GHz repetition rate is reported. Two frequency-offset-stabilized diode-pumped Yb:KYW oscillators are employed as pump and probe source, respectively. The temporal resolution of this system within 1-ns time window is limited to 500 fs and the noise floor around 10-6 (ΔR/R) close to the shot-noise level is obtained within an acquisition time of a few seconds. Coherent acoustic phonons are investigated by measuring multilayer semiconductor structures with multiple quantum wells and aluminum/silicon membranes in this ASOPS system. A wavepacket-like phonon sequence at 360 GHz range is detected in the semiconductor structures and a decaying sequence of acoustic oscillations up to 200 GHz is obtained in the aluminum/silicon membranes. Coherent acoustic phonons generated from semiconductor structures are further manipulated by a double pump scheme through pump time delay control.

  18. 77 FR 45503 - 4.9 GHz Band

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-01

    ... Docket No. 06-150; FCC 12-61] 4.9 GHz Band AGENCY: Federal Communications Commission. ACTION: Final rule... that exempted 4940-4990 MHz (4.9 GHz) band applicants from certified frequency coordination. Next, the Commission corrects the bandwidth of Channel 14 in the 4.9 GHz band plan from five megahertz to one megahertz...

  19. Generation of efficient 33 GHz optical combs using cascaded stimulated Brillouin scattering effects in optical fiber

    NASA Astrophysics Data System (ADS)

    Al-Mansoori, M. H.; Al-Sheriyani, A.; Al-Nassri, S.; Hasoon, F. N.

    2017-06-01

    In this paper, we demonstrate a multi-wavelength Brillouin-erbium fiber laser (BEFL) with ~33 GHz frequency spacing using cascaded stimulated Brillouin scattering effects in optical fiber. The proposed laser structure exhibits a stable output channel with a tuning range of 19 nm, from 1549 nm to 1568 nm. The number of stable output channels produced is six channels with a triple-Brillouin frequency spacing. The output channels exhibit high output power and high optical signal-to-noise ratios (OSNRs). The laser structure has the potential to be used as a multi-wavelength source for optical communication systems.

  20. Effect of 9. 6-GHz pulsed microwaves on the orb web spinning ability of the cross spider (Araneus diadematus)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liddle, C.G.; Putnam, J.P.; Lewter, O.L.

    1986-01-01

    Eight cross spiders (Araneus diadematus) were exposed overnight (16 h) during web-building activity to pulsed 9.6-GHz microwaves at average power densities of 10, 1, and 0.1 mW/sq. cm. (estimated SARs 40, 4, and 0.4 mW/g). Under these conditions, 9.6-GHz pulsed microwaves did not affect the web-spinning ability of the cross spider.

  1. Q-Band (37 to 41 GHz) Satellite Beacon Architecture for RF Propagation Experiments

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.; Wintucky, Edwin G.

    2014-01-01

    In this paper, the design of a beacon transmitter that will be flown as a hosted payload on a geostationary satellite to enable propagation experiments at Q-band (37 to 41 GHz) frequencies is presented. The beacon uses a phased locked loop stabilized dielectric resonator oscillator and a solid-state power amplifier to achieve the desired output power. The satellite beacon antenna is configured as an offset-fed cutparaboloidal reflector.

  2. A 1 GHz integrated circuit with carbon nanotube interconnects and silicon transistors.

    PubMed

    Close, Gael F; Yasuda, Shinichi; Paul, Bipul; Fujita, Shinobu; Wong, H-S Philip

    2008-02-01

    Due to their excellent electrical properties, metallic carbon nanotubes are promising materials for interconnect wires in future integrated circuits. Simulations have shown that the use of metallic carbon nanotube interconnects could yield more energy efficient and faster integrated circuits. The next step is to build an experimental prototype integrated circuit using carbon nanotube interconnects operating at high speed. Here, we report the fabrication of the first stand-alone integrated circuit combining silicon transistors and individual carbon nanotube interconnect wires on the same chip operating above 1 GHz. In addition to setting a milestone by operating above 1 GHz, this prototype is also a tool to investigate carbon nanotubes on a silicon-based platform at high frequencies, paving the way for future multi-GHz nanoelectronics.

  3. 183-GHz Radiometer Handbook - November 2006

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MP Cadeddu

    2006-11-30

    The G-Band Vapor Radiometer (GVR) provides time-series measurements of brightness temperatures from four double sideband channels centered at ± 1, ± 3, ± 7, and ± 14 GHz around the 183.31-GHz water vapor line. Atmospheric emission in this spectral region is primarily due to water vapor, with some influence from liquid water. The 183.31 ± 14-GHz channel is particularly sensitive to the presence of liquid water. The sensitivity to water vapor of the 183.31-GHz line is approximately 30 times higher than at the frequencies of the two-channel microwave radiometer (MWR) for a precipitable water vapor (PWV) amount of less thanmore » 2.5 mm. Measurements from this nstrument are therefore especially useful during low-humidity conditions (PWV < 5 mm).« less

  4. 30 nm T-gate enhancement-mode InAlN/AlN/GaN HEMT on SiC substrates for future high power RF applications

    NASA Astrophysics Data System (ADS)

    Murugapandiyan, P.; Ravimaran, S.; William, J.

    2017-08-01

    The DC and RF performance of 30 nm gate length enhancement mode (E-mode) InAlN/AlN/GaN high electron mobility transistor (HEMT) on SiC substrate with heavily doped source and drain region have been investigated using the Synopsys TCAD tool. The proposed device has the features of a recessed T-gate structure, InGaN back barrier and Al2O3 passivated device surface. The proposed HEMT exhibits a maximum drain current density of 2.1 A/mm, transconductance {g}{{m}} of 1050 mS/mm, current gain cut-off frequency {f}{{t}} of 350 GHz and power gain cut-off frequency {f}\\max of 340 GHz. At room temperature the measured carrier mobility (μ), sheet charge carrier density ({n}{{s}}) and breakdown voltage are 1580 cm2/(V \\cdot s), 1.9× {10}13 {{cm}}-2, and 10.7 V respectively. The superlatives of the proposed HEMTs are bewitching competitor or future sub-millimeter wave high power RF VLSI circuit applications.

  5. A 20 GHz bright sample for δ > 72° - II. Multifrequency follow-up

    NASA Astrophysics Data System (ADS)

    Ricci, R.; Righini, S.; Verma, R.; Prandoni, I.; Carretti, E.; Mack, K.-H.; Massardi, M.; Procopio, P.; Zanichelli, A.; Gregorini, L.; Mantovani, F.; Gawroński, M. P.; Peel, M. W.

    2013-11-01

    We present follow-up observations at 5, 8 and 30 GHz of the K-band Northern Wide Survey (KNoWS) 20 GHz Bright Sample, performed with the 32-m Medicina radio telescope and the 32-m Toruń radio telescope. The KNoWS sources were selected in the Northern Polar Cap (δ > 72°) and have a flux density limit S20 GHz = 115 mJy. We include NRAO-VLA Sky Survey 1.4 GHz measurements to derive the source radio spectra between 1.4 and 30 GHz. Based on optical identifications, 68 per cent of the sources are quasars and 27 per cent are radio galaxies. A redshift measurement is available for 58 per cent of the sources. The radio spectral properties of the different source populations are found to be in agreement with those of other high-frequency-selected samples.

  6. A 94/183 GHz multichannel radiometer for Convair flights

    NASA Technical Reports Server (NTRS)

    Gagliano, J. A.; Stratigos, J. A.; Forsythe, R. E.; Schuchardt, J. M.

    1979-01-01

    A multichannel 94/183 GHz radiometer was designed, built, and installed on the NASA Convair 990 research aircraft to take data for hurricane penetration flights, SEASAT-A underflights for measuring rain and water vapor, and Nimbus-G underflights for new sea ice signatures and sea surface temperature data (94 GHz only). The radiometer utilized IF frequencies of 1, 5, and 8.75 GHz about the peak of the atmospheric water vapor absorption line, centered at 183.3 GHz, to gather data needed to determine the shape of the water molecule line. Another portion of the radiometer operated at 94 GHz and obtained data on the sea brightness temperature, sea ice signatures, and on areas of rain near the ocean surface. The radiometer used a multiple lens antenna/temperature calibration technique using 3 lenses and corrugated feed horns at 94 GHz and 183 GHz. Alignment of the feed beams at 94 GHz and 183 GHz was accomplished using a 45 deg oriented reflecting surface which permitted simultaneous viewing of the feeds on alternate cycles of the chopping intervals.

  7. Interaction of an ultrarelativistic electron bunch train with a W-band accelerating structure: High power and high gradient

    DOE PAGES

    Wang, D.; Antipov, S.; Jing, C.; ...

    2016-02-05

    Electron beam interaction with high frequency structures (beyond microwave regime) has a great impact on future high energy frontier machines. We report on the generation of multimegawatt pulsed rf power at 91 GHz in a planar metallic accelerating structure driven by an ultrarelativistic electron bunch train. This slow-wave wakefield device can also be used for high gradient acceleration of electrons with a stable rf phase and amplitude which are controlled by manipulation of the bunch train. To achieve precise control of the rf pulse properties, a two-beam wakefield interferometry method was developed in which the rf pulse, due to themore » interference of the wakefields from the two bunches, was measured as a function of bunch separation. As a result, measurements of the energy change of a trailing electron bunch as a function of the bunch separation confirmed the interferometry method.« less

  8. Studying Star Formation in the Central Molecular Zone using 22 GHz Water and 6.7 GHz Methanol Masers

    NASA Astrophysics Data System (ADS)

    Rickert, Matthew; Yusef-Zadeh, Farhad; Ott, Juergen; Meier, David S.; SWAG

    2016-01-01

    The inner 400 pc of our Galaxy, or the so-called the central molecular zone (CMZ), has a unique environment with a large mass of dense, warm molecular gas. One of the premier questions is how star formation (SF) differs in this unique environment from elsewhere in the Galaxy. We intend to address this issue by identifying improved numbers and locations of early sites of SF. We have conducted high resolution surveys of the CMZ, looking for early SF indicators such as 22 GHz water and 6.7 GHz methanol masers. We present the initial water maser results from the SWAG survey and methanol results from the first full VLA survey of 6.7 GHz methanol masers in the CMZ. These surveys span beyond the inner 1.2ο x 0.5ο of the Galaxy, including Sgr B through Sgr C. The improved spatial and spectral resolutions (~26" and 2 km s-1) and sensitivity (RMS ~10 mJy beam-1) of our ATCA observations have allowed us to identify over 140 water maser candidates in the SWAG survey. This is a factor of 3 more than detected from prior surveys of the CMZ. The preliminary distribution of these candidates appears to be uniform along Galactic longitude. Should this distribution persist for water masers associated with star formation (as opposed to those produced by evolved stars), then this result would imply a more uniform distribution of recent SF activity in the CMZ. Prior works have shown that 2/3 of the molecular gas mass is located at positive Galactic longitudes, and young stellar objects (YSOs) identified by IR SEDs are located predominantly at negative Galactic longitudes. A combination of these results can provide insight on the evolution of SF within the CMZ. We are currently comparing the water maser positions to other catalogs (ex. OH/IR stars) in order to distinguish between the mechanisms producing these masers. We are also currently working on determining the distribution of 6.7 GHz methanol masers. These masers do not contain the same ambiguity as water masers as to their source

  9. Miniature Packaging Concept for LNAs in the 200-300 GHz Range

    NASA Technical Reports Server (NTRS)

    Samoska, Lorene; Fung, Andy; Varonen, Mikko; Lin, Robert; Peralta, Alejandro; Soria, Mary; Lee, Choonsup; Padmanabhan, Sharmila; Sarkozy, Stephen; Lai, Richard

    2016-01-01

    In this work, we describe new miniaturized low noise amplifier modules which we developed for incorporation in small-scale satellites or Cubesats, and which exhibit similar or better performance compared to previously reported LNAs in the literature. We have targeted the WR4 (170-260 GHz) and WR3 (220-325 GHz) waveguide bands for the module development. The modules include two different methods of E-plane probes which have been developed for low loss, and stability at high frequencies. MMIC LNAs were also developed for these frequency ranges and fabricated in Northrop Grumman Corporation's 35 nm InP HEMT technology, and we have experimentally verified that noise performance is lower than reported in prior work. The best results include a miniature LNA module with 550K noise at 224 GHz, and a wideband LNA module with 15 dB gain from 230-280 GHz.

  10. 60-GHz Millimeter-wave Over Fiber with Directly Modulated Dual-mode Laser Diode

    PubMed Central

    Tsai, Cheng-Ting; Lin, Chi-Hsiang; Lin, Chun-Ting; Chi, Yu-Chieh; Lin, Gong-Ru

    2016-01-01

    A directly modulated dual-mode laser diode (DMLD) with third-order intermodulation distortion (IMD3) suppression is proposed for a 60-GHz millimeter-wave over fiber (MMWoF) architecture, enabling new fiber-wireless communication access to cover 4-km single-mode-fiber (SMF) and 3-m wireless 16-QAM OFDM transmissions. By dual-mode injection-locking, the throughput degradation of the DMLD is mitigated with saturation effect to reduce its threshold, IMD3 power and relative intensity noise to 7.7 mA, −85 dBm and −110.4 dBc/Hz, respectively, providing huge spurious-free dynamic range of 85.8 dB/Hz2/3. This operation suppresses the noise floor of the DMLD carried QPSK-OFDM spectrum by 5 dB. The optical receiving power is optimized to restrict the power fading effect for improving the bit error rate to 1.9 × 10−3 and the receiving power penalty to 1.1 dB. Such DMLD based hybrid architecture for 60-GHz MMW fiber-wireless access can directly cover the current optical and wireless networks for next-generation indoor and short-reach mobile communications. PMID:27297267

  11. A novel tri-band T-junction impedance-transforming power divider with independent power division ratios

    PubMed Central

    Zhuang, Zheng; Wang, Weimin; Liu, Yuanan

    2017-01-01

    In this paper, a novel L network (LN) is presented, which is composed of a frequency-selected section (FSS) and a middle stub (MS). Based on the proposed LN, a tri-band T-junction power divider (TTPD) with impedance transformation and independent power division ratios is designed. Moreover, the closed-form design theory of the TTPD is derived based on the transmission line theory and circuit theory. Finally, a microstrip prototype of the TTPD is simulated, fabricated, and measured. The design is for three arbitrarily chosen frequencies, 1 GHz, 1.6 GHz, and 2.35 GHz with the independent power division ratios of 0.5, 0.7, and 0.9. The measured results show that the fabricated prototype is consistent with the simulation, which demonstrates the effectiveness of this proposed design. PMID:28586372

  12. 802GHz integrated horn antennas imaging array

    NASA Technical Reports Server (NTRS)

    Ali-Ahmad, Walid Y.; Rebeiz, Gabriel M.; Dave, Hemant; Chin, Gordon

    1991-01-01

    Pattern measurements at 802GHz of a single element in 256-element integrated horn imaging array are presented. The integrated-horn antenna consists of a dipole-antenna suspended on a 1-micron dielectric membrane inside a pyramidal cavity etched in silicon. The theoretical far-field patterns, calculated using reciprocity and Floquet-modes representation of the free-space field, agree well with the measured far-field patterns at 802GHz. The associated directivity for a 1.40 lambda horn aperture, calculated from the measured E and H-plane patterns is 12.3dB + or - 0.2dB. This work demonstrates that high-efficiency integrated-horn antennas are easily scalable to terahertz frequencies and could be used for radio-astronomical and plasma-diagnostic applications.

  13. High voltage-high power components for large space power distribution systems

    NASA Technical Reports Server (NTRS)

    Renz, D. D.

    1984-01-01

    Space power components including a family of bipolar power switching transistors, fast switching power diodes, heat pipe cooled high frequency transformers and inductors, high frequency conduction cooled transformers, high power-high frequency capacitors, remote power controllers and rotary power transfer devices were developed. Many of these components such as the power switching transistors, power diodes and the high frequency capacitor are commercially available. All the other components were developed to the prototype level. The dc/dc series resonant converters were built to the 25 kW level.

  14. 160-190 GHz Monolithic Low Noise Amplifiers

    NASA Technical Reports Server (NTRS)

    Kok, Y. L.; Wang, H.; Huang, T. W.; Lai, R.; Chen, Y. C.; Sholley, M.; Block, T.; Streit, D. C.; Liu, P. H.; Allen, B. R.; hide

    1998-01-01

    This paper presents the results of two 160-190 GHz monolithic low noise amplifiers (LNAs) fabricated with 0.07-microns pseudomorphic (PM) InAlAs/InGaAs/InP HEMT technology using a reactive ion etch (RIE) via hole process. A peak small signal gain of 9 dB was measured at 188 GHz for the first LNA with a 3-dB bandwidth from 164 to 192 GHz while the second LNA has achieved over 6-dB gain from 142 to 180 GHz. The same design (second LNA) was also fabricated with 0.08-micron gate and a wet etch process, showing a small signal gain of 6 dB with noise figure 6 dB. All the measurement results were obtained via on-wafer probing. The LNA noise measurement at 170 GHz is also the first attempt at this frequency.

  15. A 6.7 GHz Methanol Maser Survey at High Galactic Latitudes

    NASA Astrophysics Data System (ADS)

    Yang, Kai; Chen, Xi; Shen, Zhi-Qiang; Li, Xiao-Qiong; Wang, Jun-Zhi; Jiang, Dong-Rong; Li, Juan; Dong, Jian; Wu, Ya-Jun; Qiao, Hai-Hua; Ren, Zhiyuan

    2017-09-01

    We performed a systematic 6.7 GHz Class II methanol maser survey using the Shanghai Tianma Radio Telescope toward targets selected from the all-sky Wide-Field Infrared Survey Explorer (WISE) point catalog. In this paper, we report the results from the survey of those at high Galactic latitudes, I.e., | b| > 2°. Of 1473 selected WISE point sources at high latitude, 17 point positions that were actually associated with 12 sources were detected with maser emission, reflecting the rarity (1%-2%) of methanol masers in the region away from the Galactic plane. Out of the 12 sources, 3 are detected for the first time. The spectral energy distribution at infrared bands shows that these new detected masers occur in the massive star-forming regions. Compared to previous detections, the methanol maser changes significantly in both spectral profiles and flux densities. The infrared WISE images show that almost all of these masers are located in the positions of the bright WISE point sources. Compared to the methanol masers at the Galactic plane, these high-latitude methanol masers provide good tracers for investigating the physics and kinematics around massive young stellar objects, because they are believed to be less affected by the surrounding cluster environment.

  16. The 20 GHz solid state transmitter design, impatt diode development and reliability assessment

    NASA Technical Reports Server (NTRS)

    Picone, S.; Cho, Y.; Asmus, J. R.

    1984-01-01

    A single drift gallium arsenide (GaAs) Schottky barrier IMPATT diode and related components were developed. The IMPATT diode reliability was assessed. A proof of concept solid state transmitter design and a technology assessment study were performed. The transmitter design utilizes technology which, upon implementation, will demonstrate readiness for development of a POC model within the 1982 time frame and will provide an information base for flight hardware capable of deployment in a 1985 to 1990 demonstrational 30/20 GHz satellite communication system. Life test data for Schottky barrier GaAs diodes and grown junction GaAs diodes are described. The results demonstrate the viability of GaAs IMPATTs as high performance, reliable RF power sources which, based on the recommendation made herein, will surpass device reliability requirements consistent with a ten year spaceborne solid state power amplifier mission.

  17. Scattering volume in the collective Thomson scattering measurement using high power gyrotron in the LHD

    NASA Astrophysics Data System (ADS)

    Kubo, S.; Nishiura, M.; Tanaka, K.; Moseev, D.; Ogasawara, S.; Shimozuma, T.; Yoshimura, Y.; Igami, H.; Takahashi, H.; Tsujimura, T. I.; Makino, R.

    2016-06-01

    High-power gyrotrons prepared for the electron cyclotron heating at 77 GHz has been used for a collective Thomson scattering (CTS) study in LHD. Due to the difficulty in removing fundamental and/or second harmonic resonance in the viewing line of sight, the subtraction of the background ECE from measured signal was performed by modulating the probe beam power from a gyrotron. The separation of the scattering component from the background has been performed successfully taking into account the response time difference between both high-energy and bulk components. The other separation was attempted by fast scanning the viewing beam across the probing beam. It is found that the intensity of the scattered spectrum corresponding to the bulk and high energy components were almost proportional to the calculated scattering volume in the relatively low density region, while appreciable background scattered component remains even in the off volume in some high density cases. The ray-trace code TRAVIS is used to estimate the change in the scattering volume due to probing and receiving beam deflection effect.

  18. 30-100-GHz inductors and transformers for millimeter-wave (Bi)CMOS integrated circuits

    NASA Astrophysics Data System (ADS)

    Dickson, T. O.; Lacroix, M.-A.; Boret, S.; Gloria, D.; Beerkens, R.; Voinigescu, S. P.

    2005-01-01

    Silicon planar and three-dimensional inductors and transformers were designed and characterized on-wafer up to 100 GHz. Self-resonance frequencies (SRFs) beyond 100 GHz were obtained, demonstrating for the first time that spiral structures are suitable for applications such as 60-GHz wireless local area network and 77-GHz automotive RADAR. Minimizing area over substrate is critical to achieving high SRF. A stacked transformer is reported with S21 of -2.5 dB at 50 GHz, and which offers improved performance and less area (30 μm × 30 μm) than planar transformers or microstrip couplers. A compact inductor model is described, along with a methodology for extracting model parameters from simulated or measured y-parameters. Millimeter-wave SiGe BiCMOS mixer and voltage-controlled-oscillator circuits employing spiral inductors are presented with better or comparable performance to previously reported transmission-line-based circuits.

  19. ALTERATION OF CIRCULATING ANTIBODY RESPONSE OF MICE EXPOSED TO 9-GHZ PULSED MICROWAVES

    EPA Science Inventory

    A significant increase was observed in the circulating antibody titers of mice exposed to 9-GHz pulsed microwaves at an average power density of 10 mW/sq. cm., two hours per day for five days compared with sham-irradiated animals. The mice were previously immunized with type III ...

  20. Parametric Instabilities During High Power Helicon Wave Injection on DIII-D

    NASA Astrophysics Data System (ADS)

    Porkolab, M.; Pinsker, R. I.

    2017-10-01

    High power helicon (whistler) waves at a frequency of 0.47 GHz are being considered for efficient off-axis current generation in high performance DIII-D plasmas and in K-Star [3]. The need for deploying helicon waves for current profile control has been noted in previous publications since penetration to the core of reactor grade plasmas is easier than with lower hybrid slow waves (LHCD) which suffer from accessibility limitations and strong electron Landau absorption in fusion grade high temperature plasmas. In this work we show that under typical experimental conditions in present day tokamaks with 1 MW of RF power coupled per antenna, the associated perpendicular electric fields of the order of 40 kV/m can drive strong parametric decay instabilities near the lower hybrid layer. The EXB and polarization drift velocities which are the dominant driver of the PDI can be comparable to the speed of sound in the outer plasma layers, a key measure of driving PDI instabilities. Here we calculate growth rates and convective thresholds for PDIs, and we find that decay waves into hot ion lower hybrid waves and ion cyclotron quasi modes dominate in the vicinity of the lower hybrid layer, possibly leading to pump depletion. Such instabilities in future reactor grade high temperature plasmas are less likely.

  1. Towards coherent combining of X-band high power microwaves: phase-locked long pulse radiations by a relativistic triaxial klystron amplifier.

    PubMed

    Ju, Jinchuan; Zhang, Jun; Qi, Zumin; Yang, Jianhua; Shu, Ting; Zhang, Jiande; Zhong, Huihuang

    2016-08-02

    The radio-frequency breakdown due to ultrahigh electric field strength essentially limits power handling capability of an individual high power microwave (HPM) generator, and this issue becomes more challenging for high frequency bands. Coherent power combining therefore provides an alternative approach to achieve an equivalent peak power of the order of ∼100 GW, which consequently provides opportunities to explore microwave related physics at extremes. The triaxial klystron amplifier (TKA) is a promising candidate for coherent power combing in high frequency bands owing to its intrinsic merit of high power capacity, nevertheless phase-locked long pulse radiation from TKA has not yet been obtained experimentally as the coaxial structure of TKA can easily lead to self-excitation of parasitic modes. In this paper, we present investigations into an X-band TKA capable of producing 1.1 GW HPMs with pulse duration of about 103 ns at the frequency of 9.375 GHz in experiment. Furthermore, the shot-to-shot fluctuation standard deviation of the phase shifts between the input and output microwaves is demonstrated to be less than 10°. The reported achievements open up prospects for accomplishing coherent power combining of X-band HPMs in the near future, and might also excite new development interests concerning high frequency TKAs.

  2. High resolution, wide field of view, real time 340GHz 3D imaging radar for security screening

    NASA Astrophysics Data System (ADS)

    Robertson, Duncan A.; Macfarlane, David G.; Hunter, Robert I.; Cassidy, Scott L.; Llombart, Nuria; Gandini, Erio; Bryllert, Tomas; Ferndahl, Mattias; Lindström, Hannu; Tenhunen, Jussi; Vasama, Hannu; Huopana, Jouni; Selkälä, Timo; Vuotikka, Antti-Jussi

    2017-05-01

    The EU FP7 project CONSORTIS (Concealed Object Stand-Off Real-Time Imaging for Security) is developing a demonstrator system for next generation airport security screening which will combine passive and active submillimeter wave imaging sensors. We report on the development of the 340 GHz 3D imaging radar which achieves high volumetric resolution over a wide field of view with high dynamic range and a high frame rate. A sparse array of 16 radar transceivers is coupled with high speed mechanical beam scanning to achieve a field of view of 1 x 1 x 1 m3 and a 10 Hz frame rate.

  3. Planning assistance for the 30/20 GHz program, volume 2

    NASA Technical Reports Server (NTRS)

    Al-Kinani, G.; Frankfort, M.; Kaushal, D.; Markham, R.; Siperko, C.; Wall, M.

    1981-01-01

    In the baseline concept development the communications payload on Flight 1 was specified to consist of on-board trunking and emergency communications systems (ECS). On Flight 2 the communications payloads consisted of trunking and CPS on-board systems, the CPS capability replacing the Flight 1 ECS. No restriction was placed on the launch vehicle size. Constraints placed on multiple concept development effort were that launch vehicle size for Concept 1 was restricted to SUSS-D and for Concept 2 a SUSS-A. The design concept development was based on satisfying the baseline requirements set forth in the SOW for a single demonstration flight system. Key constraints on contractors were cost and launch vehicle size. Five major areas of new technology development were reviewed: (1) 30 GHz low noise receivers; (2) 20 GHz Power Amplifiers; (3) SS-TDMA switch; (4) Baseband Processor; (5) Multibeam Antennas.

  4. Transmission Line for 258 GHz Gyrotron DNP Spectrometry

    NASA Astrophysics Data System (ADS)

    Bogdashov, Alexandr A.; Belousov, Vladimir I.; Chirkov, Alexey V.; Denisov, Gregory G.; Korchagin, Vyacheslav V.; Kornishin, Sergey Yu.; Tai, Evgeny M.

    2011-06-01

    We describe the design and test results of the transmission line for liquid-state (LS) and solid-state (SS) DNP spectrometers with the second-harmonic 258.6 GHz gyrotron at the Institute of the Biophysical Chemistry Center of Goethe University (Frankfurt). The 13-meter line includes a mode converter, HE11 waveguides, 4 mitre bends, a variable polarizer-attenuator, directional couplers, a water-flow calorimeter and a mechanical switch. A microwave power of about 15 W was obtained in the pure HE11 mode at the spectrometer inputs.

  5. An Optimized 2.4GHz RF Power Amplifier Performance for WLAN System

    NASA Astrophysics Data System (ADS)

    Ali, Mohammed H.; Chakrabarty, C. K.; Abdalla, Ahmed N.; Hock, Goh C.

    2013-06-01

    Recently, the design of RF power amplifiers (PAs) for modern wireless systems are faced with a difficult tradeoff for example, cellphone; battery lifetime is largely determined by the power efficiency of the PA and high spectral efficiency which have ability to transmit data at the highest possible rate for a given channel bandwidth. This paper presents the design a multi stage class AB power Amplifier with high power added efficiency (PAE) and acceptable linearity for the WLAN applications. The open-circuited third harmonic control circuit enhances the efficiency of the PA without deteriorating the linearity of class-AB mode of the PA. The voltage and current waveforms are simulated to evaluate the appropriate operation for the modes. The effectiveness of the proposed controller has been verified by comparing proposed method with another methods using simulation study under a variety of conditions. The proposed circuit operation for a WLAN signals delivers a power-added efficiency (PAE) of 37.6% is measured at 31.6-dBm output power while dissipating 34.61 mA from a 1.8V supply. Finally, the proposed PA is show a good and acceptable result for the WLAN system.

  6. 47 CFR 101.525 - 24 GHz system operations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false 24 GHz system operations. 101.525 Section 101.525 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES 24 GHz Service and Digital Electronic Message Service § 101.525 24 GHz system...

  7. Temperature peaking at beginning of breakdown in 2.45 GHz pulsed off-resonance electron cyclotron resonance ion source hydrogen plasma

    NASA Astrophysics Data System (ADS)

    Cortázar, O. D.; Megía-Macías, A.; Vizcaíno-de-Julián, A.

    2012-10-01

    An experimental study of temperature and density evolution during breakdown in off-resonance ECR hydrogen plasma is presented. Under square 2.45 GHz microwave excitation pulses with a frequency of 50 Hz and relative high microwave power, unexpected transient temperature peaks that reach 18 eV during 20 μs are reported at very beginning of plasma breakdown. Decays of such peaks reach final stable temperatures of 5 eV at flat top microwave excitation pulse. Evidence of interplay between incoming power and duty cycle giving different kind of plasma parameters evolutions engaged to microwave coupling times is observed. Under relative high power conditions where short microwave coupling times are recorded, high temperature peaks are measured. However, for lower incoming powers and longer coupling times, temperature evolves gradually to a higher final temperature without peaking. On the other hand, the early instant where temperature peaks are observed also suggest a possible connection with preglow processes during breakdown in ECRIS plasmas.

  8. Center for High-Frequency Microelectronics

    DTIC Science & Technology

    1992-08-31

    34 IEEE Transactions on Electron Devices, 38, No. 6, pp. 1324-1333, June 1991. 185. C. C. Chen, R. K. Mains and G. I. Haddad, " High - Power Generation in...Weiss, J. Hu and W.-P. Hong, "Electronic 0 Properties of Power High Electron Mobility Transistors," Conference on Ballistic Electrons for Transistors...method at higher frequencies than previously believed. - Calculations of high - power generation modes in Si IMPATT devices in the 100-200 GHz range have

  9. 11-GHz waveguide Nd:YAG laser CW mode-locked with single-layer graphene.

    PubMed

    Okhrimchuk, Andrey G; Obraztsov, Petr A

    2015-06-08

    We report stable, passive, continuous-wave (CW) mode-locking of a compact diode-pumped waveguide Nd:YAG laser with a single-layer graphene saturable absorber. The depressed cladding waveguide in the Nd:YAG crystal is fabricated with an ultrafast laser inscription method. The saturable absorber is formed by direct deposition of CVD single-layer graphene on the output coupler. The few millimeter-long cavity provides generation of 16-ps pulses with repetition rates in the GHz range (up to 11.3 GHz) and 12 mW average power. Stable CW mode-locking operation is achieved by controlling the group delay dispersion in the laser cavity with a Gires-Tournois interferometer.

  10. 11-GHz waveguide Nd:YAG laser CW mode-locked with single-layer graphene

    PubMed Central

    Okhrimchuk, Andrey G.; Obraztsov, Petr A.

    2015-01-01

    We report stable, passive, continuous-wave (CW) mode-locking of a compact diode-pumped waveguide Nd:YAG laser with a single-layer graphene saturable absorber. The depressed cladding waveguide in the Nd:YAG crystal is fabricated with an ultrafast laser inscription method. The saturable absorber is formed by direct deposition of CVD single-layer graphene on the output coupler. The few millimeter-long cavity provides generation of 16-ps pulses with repetition rates in the GHz range (up to 11.3 GHz) and 12 mW average power. Stable CW mode-locking operation is achieved by controlling the group delay dispersion in the laser cavity with a Gires–Tournois interferometer. PMID:26052678

  11. Longevity of microwave-treated (2. 45 GHz continuous wave) honey bees in observation hives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gary, N.E.; Westerdahl, B.B.

    1981-12-15

    Adult honey bees were exposed for 30 min to 2.45 GHz of continuous wave microwave radiation at power densities ranging from 3 to 50 mW/cm/sup 2/. After exposure, bees were returned to glass-walled observation hives, and their longevity was compared with that of control bees. No significant differences were found between microwave- and sham-treated bees at any of the power densities tested.

  12. The 30 GHz communications satellite low noise receiver

    NASA Technical Reports Server (NTRS)

    Steffek, L. J.; Smith, D. W.

    1983-01-01

    A Ka-band low noise front end in proof of concept (POC) model form for ultimate spaceborne communications receiver deployment was developed. The low noise receiver consists of a 27.5 to 30.0 GHz image enhanced mixer integrated with a 3.7 to 6.2 GHz FET low noise IF amplifier and driven by a self contained 23.8 GHz phase locked local oscillator source. The measured level of receiver performance over the 27.3 to 30.0 GHz RF/3.7 to 6.2 GHz IF band includes 5.5 to 6.5 dB (typ) SSB noise figure, 20.5 + or - 1.5 dB conversion gain and +23 dBm minimum third order two tone intermodulation output intercept point.

  13. Anti-inflammatory effects of low-intensity extremely high-frequency electromagnetic radiation: frequency and power dependence.

    PubMed

    Gapeyev, A B; Mikhailik, E N; Chemeris, N K

    2008-04-01

    Using a model of acute zymosan-induced footpad edema in NMRI mice, the frequency and power dependence of anti-inflammatory effect of low-intensity extremely high-frequency electromagnetic radiation (EHF EMR) was found. Single whole-body exposure of animals to EHF EMR at the intensity of 0.1 mW/cm(2) for 20 min at 1 h after zymosan injection reduced both the footpad edema and local hyperthermia on average by 20% at the frequencies of 42.2, 51.8, and 65 GHz. Some other frequencies from the frequency range of 37.5-70 GHz were less effective or not effective at all. At fixed frequency of 42.2 GHz and intensity of 0.1 mW/cm(2), the effect had bell-shaped dependence on exposure duration with a maximum at 20-40 min. Reduction of intensity to 0.01 mW/cm(2) resulted in a change of the effect dependence on exposure duration to a linear one. Combined action of cyclooxygenase inhibitor sodium diclofenac and EHF EMR exposure caused a partial additive effect of decrease in footpad edema. Combined action of antihistamine clemastine and EHF EMR exposure caused a dose-dependent abolishment of the anti-inflammatory effect of EHF EMR. The results obtained suggest that arachidonic acid metabolites and histamine are involved in realization of anti-inflammatory effects of low-intensity EHF EMR. (c) 2007 Wiley-Liss, Inc.

  14. The Atacama Cosmology Telescope: Extragalactic Sources at 148 GHz in the 2008 Survey

    NASA Technical Reports Server (NTRS)

    Marriage, T. A.; Juin, J. B.; Lin, Y. T.; Marsden, D.; Nolta, M. R.; Partridge, B.; Ade, P. A. R.; Aguirre, P.; Amiri, M.; Appel, J. W.; hide

    2011-01-01

    We report on extragalactic sources detected in a 455 square-degree map of the southern sky made with data at a frequency of 148 GHz from the Atacama Cosmology Telescope 2008 observing season. We provide a catalog of 157 sources with flux densities spanning two orders of magnitude: from 15 mJy to 1500 mJy. Comparison to other catalogs shows that 98% of the ACT detections correspond to sources detected at lower radio frequencies. Three of the sources appear to be associated with the brightest cluster galaxies of low redshift X-ray selected galaxy clusters. Estimates of the radio to mm-wave spectral indices and differential counts of the sources further bolster the hypothesis that they are nearly all radio sources, and that their emission is not dominated by re-emission from warm dust. In a bright (> 50 mJy) 148 GHz-selected sample with complete cross-identifications from the Australia Telescope 20 GHz survey, we observe an average steepening of the spectra between .5, 20, and 148 GHz with median spectral indices of alp[ha (sub 5-20) = -0.07 +/- 0.06, alpha (sub 20-148) -0.39 +/- 0.04, and alpha (sub 5-148) = -0.20 +/- 0.03. When the measured spectral indices are taken into account, the 148 GHz differential source counts are consistent with previous measurements at 30 GHz in the context of a source count model dominated by radio sources. Extrapolating with an appropriately rescaled model for the radio source counts, the Poisson contribution to the spatial power spectrum from synchrotron-dominated sources with flux density less than 20 mJy is C(sup Sync) = (2.8 +/- 0.3) x 1O (exp-6) micro K(exp 2).

  15. The 20/30 GHz satellite systems technology needs assessment

    NASA Technical Reports Server (NTRS)

    Stevens, G.; Wright, D.

    1978-01-01

    Rain attenuation in the 20/30 GHz bands, and the resultant impact on system user costs were estimated for a variety of satellite communication system concepts. Results of previous and current NASA Lewis contractual and in-house studies on system design are reported as well as market studies conducted to evaluate the concepts and test their relevancy against forecasted market needs. The 20/30 GHz bands appear attractive economically and, with certain technology, appear to offer a virtually unlimited spectrum resource. This attractiveness is especially relevant to high density trunking where there is sufficient traffic to justify dual-station site diversity.

  16. Rain rate and modeled fade distributions at 20 GHz and 30 GHz derived from five years of network rain gauge measurements

    NASA Technical Reports Server (NTRS)

    Goldhirsh, Julius; Krichevsky, Vladimir; Gebo, Norman

    1992-01-01

    Five years of rain rate and modeled slant path attenuation distributions at 20 GHz and 30 GHz derived from a network of 10 tipping bucket rain gages was examined. The rain gage network is located within a grid 70 km north-south and 47 km east-west in the Mid-Atlantic coast of the United States in the vicinity of Wallops Island, Virginia. Distributions were derived from the variable integration time data and from one minute averages. It was demonstrated that for realistic fade margins, the variable integration time results are adequate to estimate slant path attenuations at frequencies above 20 GHz using models which require one minute averages. An accurate empirical formula was developed to convert the variable integration time rain rates to one minute averages. Fade distributions at 20 GHz and 30 GHz were derived employing Crane's Global model because it was demonstrated to exhibit excellent accuracy with measured COMSTAR fades at 28.56 GHz.

  17. Passively mode-locked Raman fiber laser with 100 GHz repetition rate

    NASA Astrophysics Data System (ADS)

    Schröder, Jochen; Coen, Stéphane; Vanholsbeeck, Frédérique; Sylvestre, Thibaut

    2006-12-01

    We experimentally demonstrate the operation of a passively mode-locked Raman fiber ring laser with an ultrahigh repetition rate of 100GHz and up to 430mW of average output power. This laser constitutes a simple wavelength versatile pulsed optical source. Stable mode locking is based on dissipative four-wave mixing with a single fiber Bragg grating acting as the mode-locking element.

  18. Transmit/receive 3-20 GHz 1.2 mW packaged double-pole-16-throw switching matrix for radar-based target detection

    NASA Astrophysics Data System (ADS)

    Azhari, Afreen; Kuwano, Yuki; Xiao, Xia; Kikkawa, Takamaro

    2018-01-01

    A 3-20 GHz transmit/receive (T/R) double-pole-16-throw (DP16T) switching matrix has been developed on a printed circuit board (PCB) to control sixteen antennas in a radar-based portable breast-cancer detection system. The DP16T switch consists of four 65 nm CMOS 0.01-20 GHz double-pole-four-throw (DP4T) switches. The proposed switch increase the number of T/R combinations to 224 from the 196 of a conventional switching matrix in order to construct high-resolution images. Using this switch and a 4 × 4 slot antenna array, a 10 × 10 mm2 aluminum target was detected with an 8-GHz-center-frequency Gaussian monocycle pulse. The power consumption of the switch is only 1.2 mW. To the best of the authors’ knowledge, this is the first T/R radio frequency (RF) DP16T switching matrix, which was realized with four CMOS DP4T switches on a PCB and was measured with RF PCB connectors.

  19. High power long pulse microwave generation from a metamaterial structure with reverse symmetry

    NASA Astrophysics Data System (ADS)

    Lu, Xueying; Stephens, Jacob C.; Mastovsky, Ivan; Shapiro, Michael A.; Temkin, Richard J.

    2018-02-01

    Experimental operation of a high power microwave source with a metamaterial (MTM) structure is reported at power levels to 2.9 MW at 2.4 GHz in full 1 μs pulses. The MTM structure is formed by a waveguide that is below cutoff for TM modes. The waveguide is loaded by two axial copper plates machined with complementary split ring resonators, allowing two backward wave modes to propagate in the S-Band. A pulsed electron beam of up to 490 kV, 84 A travels down the center of the waveguide, midway between the plates. The electron beam is generated by a Pierce gun and is focused by a lens into a solenoidal magnetic field. The MTM plates are mechanically identical but are placed in the waveguide with reverse symmetry. Theory indicates that both Cherenkov and Cherenkov-cyclotron beam-wave interactions can occur. High power microwave generation was studied by varying the operating parameters over a wide range, including the electron beam voltage, the lens magnetic field, and the solenoidal field. Frequency tuning with a magnetic field and beam voltage was studied to discriminate between operation in the Cherenkov mode and the Cherenkov-cyclotron mode. Both modes were observed, but pulses above 1 MW of output power were only seen in the Cherenkov-cyclotron mode. A pair of steering coils was installed prior to the interaction space to initiate the cyclotron motion of the electron beam and thus encourage the Cherenkov-cyclotron high power mode. This successfully increased the output power from 2.5 MW to 2.9 MW (450 kV, 74 A, 9% efficiency).

  20. A 30/20 GHz FSS feasibility study

    NASA Technical Reports Server (NTRS)

    1987-01-01

    The near term feasibility of direct-to-subscriber services were determined using the 30/20 GHz Fixed Satellite Service (FSS) frequency bands. Those technologies which need to be further developed before such a system can be implemented, were identified. To determine this feasibility, dozens of potential applications were examined for their near-term viability, and the subscriber base of three promising applications were estimated. The system requirements, terminal design, and satellite architecture were all investigated to determine whether a 30/20 GHz FSS system is technically and economically feasible by mid-1990s. It was concluded that such a system is feasible, although maturation of some technologies is needed. This system would likely consist of one or two multibeam satellites serving hub/spoke networks of simple user terminals and more complex, mutli-channel terminals of the service providers. Rain compensation would be accomplished non-adaptively through the use of coding, nonuniform satellite TWT power that is a function of a beam's anticipated downlink fading, and signal regeneration of traffic to the wettest climate regions. It was estimated that a potential market of almost two million users could exist in in the mid-1990s time frame for home banking and financial services via Ka-band satellites.

  1. Technologies for Lunar Surface Power Systems Power Beaming and Transfer

    NASA Astrophysics Data System (ADS)

    Marzwell, Neville; Pogorzelski, Ronald J.; Chang, Kai; Little, Frank

    2008-01-01

    Wireless power transmission within a given working area is required or enabling for many NASA Exploration Systems. Fields of application include robotics, habitats, autonomous rendezvous and docking, life support, EVA, and many others. In robotics applications, for example, the robots must move in the working area without being hampered by power cables and, meanwhile, obtain a continuous and constant power from a power transmitter. The development of modern technology for transmitting electric power over free space has been studied for several decades, but its use in a system has been mainly limited to low power, 1-2 Vdc output voltage at a transmission distance of few meters for which relatively less than 0.5 mW/cm2 is required (e.g., Radio frequency identification RFID). Most of the rectenna conversion efficiency research to date has concentrated in low GHz frequency range of 2.45 to 10 GHz, with some work at 35 GHz. However, for space application, atmospheric adsorbtion is irrelevant and higher frequency systems with smaller transmit and receive apertures may be appropriate. For high power, most of the work on rectennas has concentrated on optimizing the conversion efficiency of the microwave rectifier element; the highest power demonstrated was 35 kW of power over a distance of 1.5 km. The objective of this paper is to establish the manner in which a very large number of very low power microwave devices can be synchronized to provide a beam of microwaves that can be used to efficiently and safely transport a significant amount of power to a remote location where it can be converted to dc (or ac) power by a ``rectenna.'' The proposed system is based on spatial power combining of the outputs of a large number of devices synchronized by mutual injection locking. We have demonstrated at JPL that such power could be achieved by combining 25 sources in a configuration that allows for convenient steering of the resulting beam of microwaves. Retrodirective beam

  2. Demonstration of a 140-GHz 1-kW Confocal Gyro-Traveling-Wave Amplifier

    PubMed Central

    Joye, Colin D.; Shapiro, Michael A.; Sirigiri, Jagadishwar R.; Temkin, Richard J.

    2009-01-01

    The theory, design, and experimental results of a wideband 140-GHz 1-kW pulsed gyro-traveling-wave amplifier (gyro-TWA) are presented. The gyro-TWA operates in the HE06 mode of an overmoded quasi-optical waveguide using a gyrating electron beam. The electromagnetic theory, interaction theory, design processes, and experimental procedures are described in detail. At 37.7 kV and a 2.7-A beam current, the experiment has produced over 820 W of peak power with a –3-dB bandwidth of 0.8 GHz and a linear gain of 34 dB at 34.7 kV. In addition, the amplifier produced a –3-dB bandwidth of over 1.5 GHz (1.1%) with a peak power of 570 W from a 38.5-kV 2.5-A electron beam. The electron beam is estimated to have a pitch factor of 0.55–0.6, a radius of 1.9 mm, and a calculated perpendicular momentum spread of approximately 9%. The gyro-amplifier was nominally operated at a pulselength of 2 μs but was tested to amplify pulses as short as 4 ns with no noticeable pulse broadening. Internal reflections in the amplifier were identified using these short pulses by time-domain reflectometry. The demonstrated performance of this amplifier shows that it can be applied to dynamic nuclear polarization and electron paramagnetic resonance spectroscopy. PMID:20054451

  3. Gigawatt peak power generation in a relativistic klystron amplifier driven by 1 kW seed-power

    NASA Astrophysics Data System (ADS)

    Wu, Y.; Xie, H. Q.; Li, Z. H.; Zhang, Y. J.; Ma, Q. S.

    2013-11-01

    An S-band high gain relativistic klystron amplifier driven by kW-level RF power is proposed and studied experimentally. In the device, the RF lossy material is introduced to suppress higher mode excitation. An output power of 1.95 GW with a gain of 62.8 dB is obtained in the simulation. Under conditions of an input RF power of 1.38 kW, a microwave pulse with power of 1.9 GW, frequency of 2.86 GHz, and duration of 105 ns is generated in the experiment, and the corresponding gain is 61.4 dB.

  4. Two-Stage, 90-GHz, Low-Noise Amplifier

    NASA Technical Reports Server (NTRS)

    Samoska, Lorene A.; Gaier, Todd C.; Xenos, Stephanie; Soria, Mary M.; Kangaslahti, Pekka P.; Cleary, Kieran A.; Ferreira, Linda; Lai, Richard; Mei, Xiaobing

    2010-01-01

    A device has been developed for coherent detection of the polarization of the cosmic microwave background (CMB). A two-stage amplifier has been designed that covers 75-110 GHz. The device uses the emerging 35-nm InP HEMT technology recently developed at Northrop Grumman Corporation primarily for use at higher frequencies. The amplifier has more than 18 dB gain and less than 35 K noise figure across the band. These devices have noise less than 30 K at 100 GHz. The development started with design activities at JPL, as well as characterization of multichip modules using existing InP. Following processing, a test campaign was carried out using single-chip modules at 100 GHz. Successful development of the chips will lead to development of multichip modules, with simultaneous Q and U Stokes parameter detection. This MMIC (monolithic microwave integrated circuit) amplifier takes advantage of performance improvements intended for higher frequencies, but in this innovation are applied at 90 GHz. The large amount of available gain ultimately leads to lower possible noise performance at 90 GHz.

  5. Design and Demonstration of a 30 GHz 16-bit Superconductor RSFQ Microprocessor

    DTIC Science & Technology

    2015-03-10

    for Public Release; Distribution Unlimited Final Report: Design and Demonstration of a 30 GHz 16-bit Superconductor RSFQ Microprocessor The views...P.O. Box 12211 Research Triangle Park, NC 27709-2211 Superconductor technology, RSFQ, RQL, processor design, arithmetic units, high-performance...Demonstration of a 30 GHz 16-bit Superconductor RSFQ Microprocessor Report Title The major objective of the project was to design and demonstrate operation

  6. Investigating the effective range of vacuum ultraviolet-mediated breakdown in high-power microwave metamaterials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Chien-Hao, E-mail: cliu82@wisc.edu; Neher, Joel D., E-mail: jdneher@wisc.edu; Booske, John H., E-mail: booske@engr.wisc.edu

    2014-10-14

    Metamaterials and periodic structures operating under high-power excitations are susceptible to breakdown. It was recently demonstrated that a localized breakdown created in a given region of a periodic structure can facilitate breakdown in other regions of the structure where the intensity of the incident electromagnetic fields may not be high enough to cause breakdown under normal circumstances. It was also demonstrated that this phenomenon is due to the generation of vacuum ultraviolet radiation at the location of the initial discharge, which propagates to the neighboring regions (e.g., other unit cells in a periodic structure) and facilitates the generation of amore » discharge at a lower incident power level. In this paper, we present the results of an experimental study conducted to determine the effective range of this physical phenomenon for periodic structures that operate in air and in pure nitrogen gas at atmospheric pressure levels. It is demonstrated that when breakdown is induced in a periodic structure using a high-power pulse with a frequency of 9.382 GHz, duration of 0.8 μs, and peak power level of 25 kW, this phenomenon is highly likely to happen in radii of approximately 16–17 mm from the location of the initial discharge under these test conditions. The results of this study are significant in designing metamaterials and periodic structures for high-power microwave applications as they suggest that a localized discharge created in such a periodic structure with a periodicity less than 16–17 mm can spread over a large surface and result in a distributed discharge.« less

  7. A Novel Oscillating Rectenna for Wireless Microwave Power Transmission

    NASA Technical Reports Server (NTRS)

    McSpadden, J. O.; Dickinson, R. M.; Fan, L.; Chang, K.

    1998-01-01

    A new concept for solid state wireless microwave power transmission is presented. A 2.45 GHz rectenna element that was designed for over 85% RF to dc power conversion efficiency has been used to oscillate at 3.3 GHz with an approximate 1% dc to RF conversion efficiency.

  8. High-speed photodiodes for InP-based photonic integrated circuits.

    PubMed

    Rouvalis, E; Chtioui, M; Tran, M; Lelarge, F; van Dijk, F; Fice, M J; Renaud, C C; Carpintero, G; Seeds, A J

    2012-04-09

    We demonstrate the feasibility of monolithic integration of evanescently coupled Uni-Traveling Carrier Photodiodes (UTC-PDs) having a bandwidth exceeding 100 GHz with Multimode Interference (MMI) couplers. This platform is suitable for active-passive, butt-joint monolithic integration with various Multiple Quantum Well (MQW) devices for narrow linewidth millimeter-wave photomixing sources. The fabricated devices achieved a high 3-dB bandwidth of up to 110 GHz and a generated output power of more than 0 dBm (1 mW) at 120 GHz with a flat frequency response over the microwave F-band (90-140 GHz).

  9. Experimental results for a 1.5 MW, 110 GHz gyrotron oscillator with reduced mode competition

    NASA Astrophysics Data System (ADS)

    Choi, E. M.; Marchewka, C. D.; Mastovsky, I.; Sirigiri, J. R.; Shapiro, M. A.; Temkin, R. J.

    2006-02-01

    A new result from a 110GHz gyrotron at MIT is reported with an output power of 1.67MW and an efficiency of 42% when operated at 97kV and 41A for 3μs pulses in the TE22,6 mode. These results are a major improvement over results obtained with an earlier cavity design, which produced 1.43MW of power at 37% efficiency. These new results were obtained using a cavity with a reduced output taper angle and a lower ohmic loss when compared with the earlier cavity. The improved operation is shown experimentally to be the result of reduced mode competition from the nearby TE19,7 mode. The reduced mode competition agrees well with an analysis of the startup scenario based on starting current simulations. The present results should prove useful in planning long pulse and CW versions of the 110GHz gyrotron.

  10. The ETA-II linear induction accelerator and IMP wiggler: A high-average-power millimeter-wave free-electron-laser for plasma heating

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allen, S.L.; Scharlemann, E.T.

    1992-05-01

    We have constructed a 140-GHz free-electron laser to generate high-average-power microwaves for heating the MTX tokamak plasma. A 5.5-m steady-state wiggler (intense Microwave Prototype-IMP) has been installed at the end of the upgraded 60-cell ETA-II accelerator, and is configured as an FEL amplifier for the output of a 140-GHz long-pulse gyrotron. Improvements in the ETA-II accelerator include a multicable-feed power distribution network, better magnetic alignment using a stretched-wire alignment technique (SWAT). and a computerized tuning algorithm that directly minimizes the transverse sweep (corkscrew motion) of the electron beam. The upgrades were first tested on the 20-cell, 3-MeV front end ofmore » ETA-II and resulted in greatly improved energy flatness and reduced corkscrew motion. The upgrades were then incorporated into the full 60-cell configuration of ETA-II, along with modifications to allow operation in 50-pulse bursts at pulse repetition frequencies up to 5 kHz. The pulse power modifications were developed and tested on the High Average Power Test Stand (HAPTS), and have significantly reduced the voltage and timing jitter of the MAG 1D magnetic pulse compressors. The 2-3 kA. 6-7 MeV beam from ETA-II is transported to the IMP wiggler, which has been reconfigured as a laced wiggler, with both permanent magnets and electromagnets, for high magnetic field operation. Tapering of the wiggler magnetic field is completely computer controlled and can be optimized based on the output power. The microwaves from the FEL are transmitted to the MTX tokamak by a windowless quasi-optical microwave transmission system. Experiments at MTX are focused on studies of electron-cyclotron-resonance heating (ECRH) of the plasma. We summarize here the accelerator and pulse power modifications, and describe the status of ETA-II, IMP, and MTX operations.« less

  11. All-printed diode operating at 1.6 GHz

    PubMed Central

    Sani, Negar; Robertsson, Mats; Cooper, Philip; Wang, Xin; Svensson, Magnus; Andersson Ersman, Peter; Norberg, Petronella; Nilsson, Marie; Nilsson, David; Liu, Xianjie; Hesselbom, Hjalmar; Akesso, Laurent; Fahlman, Mats; Crispin, Xavier; Engquist, Isak; Berggren, Magnus; Gustafsson, Göran

    2014-01-01

    Printed electronics are considered for wireless electronic tags and sensors within the future Internet-of-things (IoT) concept. As a consequence of the low charge carrier mobility of present printable organic and inorganic semiconductors, the operational frequency of printed rectifiers is not high enough to enable direct communication and powering between mobile phones and printed e-tags. Here, we report an all-printed diode operating up to 1.6 GHz. The device, based on two stacked layers of Si and NbSi2 particles, is manufactured on a flexible substrate at low temperature and in ambient atmosphere. The high charge carrier mobility of the Si microparticles allows device operation to occur in the charge injection-limited regime. The asymmetry of the oxide layers in the resulting device stack leads to rectification of tunneling current. Printed diodes were combined with antennas and electrochromic displays to form an all-printed e-tag. The harvested signal from a Global System for Mobile Communications mobile phone was used to update the display. Our findings demonstrate a new communication pathway for printed electronics within IoT applications. PMID:25002504

  12. THE CELESTIAL REFERENCE FRAME AT 24 AND 43 GHz. II. IMAGING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Charlot, P.; Boboltz, D. A.; Fey, A. L.

    2010-05-15

    We have measured the submilliarcsecond structure of 274 extragalactic sources at 24 and 43 GHz in order to assess their astrometric suitability for use in a high-frequency celestial reference frame (CRF). Ten sessions of observations with the Very Long Baseline Array have been conducted over the course of {approx}5 years, with a total of 1339 images produced for the 274 sources. There are several quantities that can be used to characterize the impact of intrinsic source structure on astrometric observations including the source flux density, the flux density variability, the source structure index, the source compactness, and the compactness variability.more » A detailed analysis of these imaging quantities shows that (1) our selection of compact sources from 8.4 GHz catalogs yielded sources with flux densities, averaged over the sessions in which each source was observed, of about 1 Jy at both 24 and 43 GHz, (2) on average the source flux densities at 24 GHz varied by 20%-25% relative to their mean values, with variations in the session-to-session flux density scale being less than 10%, (3) sources were found to be more compact with less intrinsic structure at higher frequencies, and (4) variations of the core radio emission relative to the total flux density of the source are less than 8% on average at 24 GHz. We conclude that the reduction in the effects due to source structure gained by observing at higher frequencies will result in an improved CRF and a pool of high-quality fiducial reference points for use in spacecraft navigation over the next decade.« less

  13. Dual-functional on-chip AlGaAs/GaAs Schottky diode for RF power detection and low-power rectenna applications.

    PubMed

    Hashim, Abdul Manaf; Mustafa, Farahiyah; Rahman, Shaharin Fadzli Abd; Rahman, Abdul Rahim Abdul

    2011-01-01

    A Schottky diode has been designed and fabricated on an n-AlGaAs/GaAs high-electron-mobility-transistor (HEMT) structure. Current-voltage (I-V) measurements show good device rectification, with a Schottky barrier height of 0.4349 eV for Ni/Au metallization. The differences between the Schottky barrier height and the theoretical value (1.443 eV) are due to the fabrication process and smaller contact area. The RF signals up to 1 GHz are rectified well by the fabricated Schottky diode and a stable DC output voltage is obtained. The increment ratio of output voltage vs input power is 0.2 V/dBm for all tested frequencies, which is considered good enough for RF power detection. Power conversion efficiency up to 50% is obtained at frequency of 1 GHz and input power of 20 dBm with series connection between diode and load, which also shows the device's good potential as a rectenna device with further improvement. The fabricated n-AlGaAs/GaAs Schottky diode thus provides a conduit for breakthrough designs for RF power detectors, as well as ultra-low power on-chip rectenna device technology to be integrated in nanosystems.

  14. 14/12-GHz-band satellite communication services

    NASA Astrophysics Data System (ADS)

    Hayashi, Kunihiro; Nagaki, Kiyoaki; Mori, Yasuo

    1990-01-01

    Three new systems for integrated TV-relay services have been developed: Satellite Video Comunication Service (SVCS) and Satellite Digital Communication Service (SDCS), with Japan's 14/12-GHz-band commercial communication satellites. These systems have been in commercial use since May 1989. Usually SVCS and SDCS have been provided using Ka-band (30/20 GHz-band) of CS-2 and Cs-3. This paper provides an overview of the design, the performance, and the systems of the new 14/12-GHz-band satellite communication services.

  15. Optical-fiber-connected 300-GHz FM-CW radar system

    NASA Astrophysics Data System (ADS)

    Kanno, Atsushi; Sekine, Norihiko; Kasamatsu, Akifumi; Yamamoto, Naokatsu; Kawanishi, Tetsuya

    2017-05-01

    300-GHz frequency-modulated continuous-wave (FM-CW) radar system operated by radio over fiber technologies is configured and demonstrated. Centralized signal generator, which is based on an optical frequency comb generation, provides high-precise FM-CW radar signal. The optical signal is easy to be transported to radar heads through an optical fiber network. Optical-modulator-based optical frequency comb generator is utilized as an optical frequency multiplier from a microwave signal to a 300-GHz terahertz signal by an optical modulation technique. In the study, we discuss the configuration of the network, signal generator and remote radar head for terahertz-wave multi-static radar system.

  16. High-Temperature RF Probe Station For Device Characterization Through 500 deg C and 50 GHz

    NASA Technical Reports Server (NTRS)

    Schwartz, Zachary D.; Downey, Alan N.; Alterovitz, Samuel A.; Ponchak, George E.; Williams, W. D. (Technical Monitor)

    2003-01-01

    A high-temperature measurement system capable of performing on-wafer microwave testing of semiconductor devices has been developed. This high temperature probe station can characterize active and passive devices and circuits at temperatures ranging from room temperature to above 500 C. The heating system uses a ceramic heater mounted on an insulating block of NASA shuttle tile material. The temperature is adjusted by a graphical computer interface and is controlled by the software-based feedback loop. The system is used with a Hewlett-Packard 8510C Network Analyzer to measure scattering parameters over a frequency range of 1 to 50 GHz. The microwave probes, cables, and inspection microscope are all shielded to protect from heat damage. The high temperature probe station has been successfully used to characterize gold transmission lines on silicon carbide at temperatures up to 540 C.

  17. Mars Reconnaissance Orbiter Ka-band (32 GHz) Demonstration: Cruise Phase Operations

    NASA Technical Reports Server (NTRS)

    Shambayati, Shervin; Morabito, David; Border, James S.; Davarian, Faramaz; Lee, Dennis; Mendoza, Ricardo; Britcliffe, Michael; Weinreb, Sander

    2006-01-01

    The X-band (8.41 GHz) frequency currently used for deep space telecommunications is too narrow (50 MHz) to support future high rate missions. Because of this NASA has decided to transition to Ka-band (32 GHz) frequencies. As weather effects cause much larger fluctuations on Ka-band than on X-band, the traditional method of using a few dBs of margin to cover these fluctuations is wasteful of power for Ka-band; therefore, a different operations concept is needed for Ka-band links. As part of the development of the operations concept for Ka-band, NASA has implemented a fully functioning Ka-band communications suite on its Mars Reconnaissance Orbiter (MRO). This suite will be used during the primary science phase to develop and refine the Ka-band operations concept for deep space missions. In order to test the functional readiness of the spacecraft and the Deep Space Network's (DSN) readiness to support the demonstration activities a series of passes over DSN 34-m Beam Waveguide (BWG) antennas were scheduled during the cruise phase of the mission. MRO was launched on August 12, 2005 from Kennedy Space Center, Cape Canaveral, Florida, USA and went into Mars Orbit on March 10, 2006. A total of ten telemetry demonstration and one high gain antenna (HGA) calibration passes were allocated to the Ka-band demonstration. Furthermore, a number of "shadow" passes were also scheduled where, during a regular MRO track over a Ka-band capable antenna, Ka-band was identically configured as the X-band and tracked by the station. In addition, nine Ka-band delta differential one way ranging ((delta)DOR) passes were scheduled. During these passes, the spacecraft and the ground system were put through their respective paces. Among the highlights of these was setting a single day record for data return from a deep space spacecraft (133 Gbits) achieved during one 10-hour pass; achieving the highest data rate ever from a planetary mission (6 Mbps) and successfully demonstrating Ka-band DDOR

  18. Towards coherent combining of X-band high power microwaves: phase-locked long pulse radiations by a relativistic triaxial klystron amplifier

    PubMed Central

    Ju, Jinchuan; Zhang, Jun; Qi, Zumin; Yang, Jianhua; Shu, Ting; Zhang, Jiande; Zhong, Huihuang

    2016-01-01

    The radio-frequency breakdown due to ultrahigh electric field strength essentially limits power handling capability of an individual high power microwave (HPM) generator, and this issue becomes more challenging for high frequency bands. Coherent power combining therefore provides an alternative approach to achieve an equivalent peak power of the order of ∼100 GW, which consequently provides opportunities to explore microwave related physics at extremes. The triaxial klystron amplifier (TKA) is a promising candidate for coherent power combing in high frequency bands owing to its intrinsic merit of high power capacity, nevertheless phase-locked long pulse radiation from TKA has not yet been obtained experimentally as the coaxial structure of TKA can easily lead to self-excitation of parasitic modes. In this paper, we present investigations into an X-band TKA capable of producing 1.1 GW HPMs with pulse duration of about 103 ns at the frequency of 9.375 GHz in experiment. Furthermore, the shot-to-shot fluctuation standard deviation of the phase shifts between the input and output microwaves is demonstrated to be less than 10°. The reported achievements open up prospects for accomplishing coherent power combining of X-band HPMs in the near future, and might also excite new development interests concerning high frequency TKAs. PMID:27481661

  19. The Star Formation in Radio Survey: Jansky Very Large Array 33 GHz Observations of Nearby Galaxy Nuclei and Extranuclear Star-forming Regions

    NASA Astrophysics Data System (ADS)

    Murphy, E. J.; Dong, D.; Momjian, E.; Linden, S.; Kennicutt, R. C., Jr.; Meier, D. S.; Schinnerer, E.; Turner, J. L.

    2018-02-01

    We present 33 GHz imaging for 112 pointings toward galaxy nuclei and extranuclear star-forming regions at ≈2″ resolution using the Karl G. Jansky Very Large Array (VLA) as part of the Star Formation in Radio Survey. A comparison with 33 GHz Robert C. Byrd Green Bank Telescope single-dish observations indicates that the interferometric VLA observations recover 78% ± 4% of the total flux density over 25″ regions (≈kpc scales) among all fields. On these scales, the emission being resolved out is most likely diffuse non-thermal synchrotron emission. Consequently, on the ≈30–300 pc scales sampled by our VLA observations, the bulk of the 33 GHz emission is recovered and primarily powered by free–free emission from discrete H II regions, making it an excellent tracer of massive star formation. Of the 225 discrete regions used for aperture photometry, 162 are extranuclear (i.e., having galactocentric radii r G ≥ 250 pc) and detected at >3σ significance at 33 GHz and in Hα. Assuming a typical 33 GHz thermal fraction of 90%, the ratio of optically-thin 33 GHz to uncorrected Hα star formation rates indicates a median extinction value on ≈30–300 pc scales of A Hα ≈ 1.26 ± 0.09 mag, with an associated median absolute deviation of 0.87 mag. We find that 10% of these sources are “highly embedded” (i.e., A Hα ≳ 3.3 mag), suggesting that on average, H II regions remain embedded for ≲1 Myr. Finally, we find the median 33 GHz continuum-to-Hα line flux ratio to be statistically larger within r G < 250 pc relative to the outer disk regions by a factor of 1.82 ± 0.39, while the ratio of 33 GHz to 24 μm flux densities is lower by a factor of 0.45 ± 0.08, which may suggest increased extinction in the central regions.

  20. Measurements of the cosmic microwave background temperature at 1.47 GHz

    NASA Technical Reports Server (NTRS)

    Bensadoun, M.; Bersanelli, M.; De Amici, G.; Kogut, A.; Levin, S. M.; Limon, M.; Smoot, G. F.; Witebsky, C.

    1993-01-01

    We have used a radio-frequency-gain total-power radiometer to measure the intensity of the cosmic microwave background (CMB) at a frequency of 1.47 GHz (20.4 cm wavelength) from White Mountain, California in 1988 September and from the South Pole in 1989 December. The CMB thermodynamic temperature, T(CMB), is 2.27 +/- 0.25 K (68 percent confidence limit) measured from White Mountain and 2.26 +/- 0.20 K from the South Pole site. The combined result is 2.26 +/- 0.19 K. The correction for Galactic emission has been derived from scaled low-frequency maps and constitutes the main source of error. The atmospheric signal is extrapolated from our zenith scan measurements at higher frequencies. These results are consistent with our previous measurement at 1.41 GHz and about 2.5 sigma from the 2.74 +/- 0.01 K global average CMB temperature.

  1. 90 GHz and 150 GHz Observations of the Orion M42 Region. A Submillimeter to Radio Analysis

    NASA Technical Reports Server (NTRS)

    Dicker, S. R.; Mason, B. S.; Korngut, P. M.; Cotton, W. D.; Compiegne, M.; Devlin, M. J.; Martin, P. G.; Ade, P. A. R; Benford, D. J.; Irwin, K. D.; hide

    2009-01-01

    We have used the new 90GHz MUSTANG camera on the Robert C. Green Bank Telescope (GBT)to map the bright Huygens region of the star-forming region M42 with a resolution of 9" and a sensitivity of 2.8 mJy/beam. Ninety GHz is an interesting transition frequency, as MUSTANG detects both the free-free emission characteristic of the H II region created by the Trapezium stars, normally seen at lower frequencies, and thermal dust emission from the background OMCI molecular cloud, normally mapped at higher frequencies. We also present similar data from the 150 GHz GISMO camera taken on the IRAM 30 m telescope. This map has 15" resolution. By combining the MUSTANG data with 1.4, 8. and 31 GHz radio data from the VLA and GBT, we derive a new estimate of the emission measure averaged electron temperature of T(sub e) = 11376+/-1050 K by an original method relating free-free emission intensities at optically thin and optically thick frequencies. Combining Infrared Space Observatory-long wavelength spectrometer (ISO-LWS) data with our data, we derive a new estimate of the dust temperature and spectral emissivity index within the 80" ISO-LWS beam toward Orion KL/BN, T(sub d) = 42+/-3 K and Beta(sub d) = 1.3+/-0.1. We show that both T(sub d) and Beta(sub d) decrease when going from the H II region and excited OMCI interface to the denser UV shielded part OMCI (Orion KL/BN, Orion S). With a model consisting of only free-free and thermal dust emission, we are able to fit data taken at frequencies from 1.5 GHz to 854 GHz (350 micrometers).

  2. Design of a high power TM01 mode launcher optimized for manufacturing by milling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dal Forno, Massimo

    2016-12-15

    Recent research on high-gradient rf acceleration found that hard metals, such as hard copper and hard copper-silver, have lower breakdown rate than soft metals. Traditional high-gradient accelerating structures are manufactured with parts joined by high-temperature brazing. The high temperature used in brazing makes the metal soft; therefore, this process cannot be used to manufacture structures out of hard metal alloys. In order to build the structure with hard metals, the components must be designed for joining without high-temperature brazing. One method is to build the accelerating structures out of two halves, and join them by using a low-temperature technique, atmore » the symmetry plane along the beam axis. The structure has input and output rf power couplers. We use a TM01 mode launcher as a rf power coupler, which was introduced during the Next Linear Collider (NLC) work. The part of the mode launcher will be built in each half of the structure. This paper presents a novel geometry of a mode launcher, optimized for manufacturing by milling. The coupler was designed for the CERN CLIC working frequency f = 11.9942 GHz; the same geometry can be scaled to any other frequency.« less

  3. A 3.2-GHz fully integrated low-phase noise CMOS VCO with self-biasing current source for the IEEE 802.11a/hiperLAN WLAN standard

    NASA Astrophysics Data System (ADS)

    Quemada, C.; Adin, I.; Bistue, G.; Berenguer, R.; Mendizabal, J.

    2005-06-01

    A 3.3V, fully integrated 3.2-GHz voltage-controlled oscillator (VCO) is designed in a 0.18μm CMOS technology for the IEE 802.11a/HiperLAN WLAN standard for the UNII band from 5.15 to 5.35 GHz. The VCO is tunable between 2.85 GHz and 3.31 GHz. NMOS architecture with self-biasing current of the tank source is chosen. A startup circuit has been employed to avoid zero initial current. Current variation is lower than 1% for voltage supply variations of 10%. The use of a self-biasing current source in the tank provides a greater safety in the transconductance value and allows running along more extreme point operation The designed VCO displays a phase noise and output power of -98dBc/Hz (at 100 KHz offset frequency) and 0dBm respectively. This phase noise has been obtained with inductors of 2.2nH and quality factor of 12 at 3.2 GHz, and P-N junction varactors whose quality factor is estimated to exceed 40 at 3.2 GHz. These passive components have been fabricated, measured and modeled previously. The core of the VCO consumes 33mW DC power.

  4. An Integrated 520-600 GHz Sub-Harmonic Mixer and Tripler Combination Based on GaAs MMIC Membrane Planar Schottky Diodes

    NASA Technical Reports Server (NTRS)

    Thomas, B.; Gill, J.; Maestrini, A.; Lee, C.; Lin, R.; Sin, S.; Peralta, A.; Mehdi, I.

    2011-01-01

    We present here the design, development and test of an integrated sub-millimeter front-end featuring a 520-600 GHz sub-harmonic mixer and a 260-300 GHz frequency tripler in a single cavity. Both devices used GaAs MMIC membrane planar Schottky diode technology. The sub-harmonic mixer/tripler circuit has been tested using conventional machined as well as silicon micro-machined blocks. Measurement results on the metal block give best DSB mixer noise temperature of 2360 K and conversion losses of 7.7 dB at 520 GHz. Preliminary results on the silicon micro-machined blocks give a DSB mixer noise temperature of 4860 K and conversion losses of 12.16 dB at 540 GHz. The LO input power required to pump the integrated tripler/sub-harmonic mixer for both packages is between 30 and 50 mW

  5. An Integrated 520-600 GHz Sub-Harmonic Mixer and Tripler Combination Based on GaAs MMIC Membrane Planar Schottky Diodes

    NASA Technical Reports Server (NTRS)

    Thomas, B.; Gill, J.; Maestrini, A.; Lee, C.; Lin, R.; Sin, S.; Peralta, A.; Mehdi, I.

    2010-01-01

    We present here the design, development and test of an integrated sub-millimeter front-end featuring a 520-600 GHz sub-harmonic mixer and a 260-300 GHz frequency tripler in a single cavity. Both devices used GaAs MMIC membrane planar Schottky diode technology. The sub-harmonic mixer/tripler circuit has been tested using conventional machined as well as silicon micro-machined blocks. Measurement results on the metal block give best DSB mixer noise temperature of 2360 K and conversion losses of 7.7 dB at 520 GHz. Preliminary results on the silicon micro-machined blocks give a DSB mixer noise temperature of 4860 K and conversion losses of 12.16 dB at 540 GHz. The LO input power required to pump the integrated tripler/sub-harmonic mixer for both packages is between 30 and 50 mW.

  6. A 33 GHz Survey of Local Major Mergers: Estimating the Sizes of the Energetically Dominant Regions from High-resolution Measurements of the Radio Continuum

    NASA Astrophysics Data System (ADS)

    Barcos-Muñoz, L.; Leroy, A. K.; Evans, A. S.; Condon, J.; Privon, G. C.; Thompson, T. A.; Armus, L.; Díaz-Santos, T.; Mazzarella, J. M.; Meier, D. S.; Momjian, E.; Murphy, E. J.; Ott, J.; Sanders, D. B.; Schinnerer, E.; Stierwalt, S.; Surace, J. A.; Walter, F.

    2017-07-01

    We present Very Large Array observations of the 33 GHz radio continuum emission from 22 local ultraluminous and luminous infrared (IR) galaxies (U/LIRGs). These observations have spatial (angular) resolutions of 30-720 pc (0.″07-0.″67) in a part of the spectrum that is likely to be optically thin. This allows us to estimate the size of the energetically dominant regions. We find half-light radii from 30 pc to 1.7 kpc. The 33 GHz flux density correlates well with the IR emission, and we take these sizes as indicative of the size of the region that produces most of the energy. Combining our 33 GHz sizes with unresolved measurements, we estimate the IR luminosity and star formation rate per area and the molecular gas surface and volume densities. These quantities span a wide range (4 dex) and include some of the highest values measured for any galaxy (e.g., {{{Σ }}}{SFR}33 {GHz}≤slant {10}4.1 {M}⊙ {{yr}}-1 {{kpc}}-2). At least 13 sources appear Compton thick ({N}{{H}}33 {GHz}≥slant {10}24 {{cm}}-2). Consistent with previous work, contrasting these data with observations of normal disk galaxies suggests a nonlinear and likely multivalued relation between star formation rate and molecular gas surface density, though this result depends on the adopted CO-to-H2 conversion factor and the assumption that our 33 GHz sizes apply to the gas. Eleven sources appear to exceed the luminosity surface density predicted for starbursts supported by radiation pressure and supernova feedback; however, we note the need for more detailed observations of the inner disk structure. U/LIRGs with higher surface brightness exhibit stronger [C II] 158 μm deficits, consistent with the suggestion that high energy densities drive this phenomenon.

  7. GHz laser-free time-resolved transmission electron microscopy: A stroboscopic high-duty-cycle method

    DOE PAGES

    Qiu, Jiaqi; Zhu, Yimei; Ha, Gwanghui; ...

    2015-11-10

    In this study, a device and a method for producing ultrashort electron pulses with GHz repetition rates via pulsing an input direct current (dc) electron beam are provided. The device and the method are based on an electromagnetic-mechanical pulser (EMMP) that consists of a series of transverse deflecting cavities and magnetic quadrupoles. The EMMP modulates and chops the incoming dc electron beam and converts it into pico- and sub-pico-second electron pulse sequences (pulse trains) at >1 GHz repetition rates, as well as controllably manipulates the resulting pulses. Ultimately, it leads to negligible electron pulse phase-space degradation compared to the incomingmore » dc beam parameters. The temporal pulse length and repetition rate for the EMMP can be continuously tunable over wide ranges.« less

  8. Feasiblity study for a 34 GHz (Ka band) gyroamplifier

    NASA Technical Reports Server (NTRS)

    Stone, D. S.; Bier, R. E.; Caplan, M.; Huey, H. E.; Pirkle, D. R.; Robinson, J. D.; Thompson, L.

    1984-01-01

    The feasibility of using a gyroklystron power tube as the final amplifier in a 400 kW CW 34 GHz transmitter on the Goldstone Antenna is investigated. A conceptual design of the gyroklystron and the transmission line connecting it with the antenna feed horn is presented. The performance characteristics of the tube and transmission line are compared to the transmitter requirements for a deep space radar system. Areas of technical risk for a follow-on hardware development program for the gyroklystron amplifier and overmoded transmission line components are discussed.

  9. Quantum teleportation through noisy channels with multi-qubit GHZ states

    NASA Astrophysics Data System (ADS)

    Espoukeh, Pakhshan; Pedram, Pouria

    2014-08-01

    We investigate two-party quantum teleportation through noisy channels for multi-qubit Greenberger-Horne-Zeilinger (GHZ) states and find which state loses less quantum information in the process. The dynamics of states is described by the master equation with the noisy channels that lead to the quantum channels to be mixed states. We analytically solve the Lindblad equation for -qubit GHZ states where Lindblad operators correspond to the Pauli matrices and describe the decoherence of states. Using the average fidelity, we show that 3GHZ state is more robust than GHZ state under most noisy channels. However, GHZ state preserves same quantum information with respect to Einstein-Podolsky-Rosen and 3GHZ states where the noise is in direction in which the fidelity remains unchanged. We explicitly show that Jung et al.'s conjecture (Phys Rev A 78:012312, 2008), namely "average fidelity with same-axis noisy channels is in general larger than average fidelity with different-axes noisy channels," is not valid for 3GHZ and 4GHZ states.

  10. Highly efficient X-range AlGaN/GaN power amplifier

    NASA Astrophysics Data System (ADS)

    Tural'chuk, P. A.; Kirillov, V. V.; Osipov, P. E.; Vendik, I. B.; Vendik, O. G.; Parnes, M. D.

    2017-09-01

    The development of microwave power amplifiers (PAs) based on transistors with an AlGaN/GaN heterojunction are discussed in terms of the possible enhancement of their efficiency. The main focus is on the synthesis of the transforming circuits, which ensure the reactive load at the second- and third-harmonic frequencies and complex impedance at the fundamental frequency. This makes it possible to optimize the complex operation mode of a PA; i.e., to reduce the scattering power and enhance the efficiency. A microwave PA based on the Schottky-barrier-gate field-effect transistor with 80 electrodes based on the GaN pHEMT transistor with a gate length of 0.25 nm and a gate width of 125 nm is experimentally investigated. The amplifier has a pulse output power of 35 W and a power-added efficiency of at least 50% at a working frequency of 9 GHz.

  11. 2.45 GHz Rectenna Designed for Wireless Sensors Operating at 500 C

    NASA Technical Reports Server (NTRS)

    Ponchak, George E.; Schwartz, Zachary D.; Jordan, Jennifer L.; Downey, Alan N.; Neudeck, Philip G.

    2004-01-01

    High temperature wireless sensors that operate at 500 C are required for aircraft engine monitoring and performance improvement These sensors would replace currently used hard-wired sensors and lead to a substantial reduction in mass. However, even if the sensor output data is transmitted wirelessly to a receiver in the cooler part of the engine, and the associated cables are eliminated, DC power cables are still required to operate the sensors and power the wireless circuits. To solve this problem, NASA is developing a rectenna, a circuit that receives RF power and converts it to DC power. The rectenna would be integrated with the wireless sensor, and the RF transmitter that powers the rectenna would be located in the cooler part of the engine. In this way, no cables to or from the sensors are required. Rectennas haw been demonstrated at ambient room temperature, but to date, no high temperature rectennas haw been reported. In this paper, we report the first rectenna designed for 2.45 GHz operation at 500 C. The circuit consists of a microstrip dipole antenna, a stripline impedance matching circuit, and a stripline low pass filter to prevent transmission of higher harmonics created by the rectifying diode fabricated on an Alumina substrate. The rectifying diode is the gate to source junction of a 6H Sic MESFET and the capacitor and load resistor are chip elements that are each bonded to the Alumina substrate. Each element and the hybrid, rectenna circuit haw been characterized through 500 C.

  12. Average radio spectral energy distribution of highly star-forming galaxies

    NASA Astrophysics Data System (ADS)

    Tisanić, K.; Smolčić, V.; Delhaize, J.; Novak, M.; Intema, H.; Delvecchio, I.; Schinnerer, E.; Zamorani, G.

    2018-05-01

    The infrared-radio correlation (IRRC) offers a way to assess star formation from radio emission. Multiple studies found the IRRC to decrease with increasing redshift. This may in part be due to the lack of knowledge about the possible radio spectral energy distributions (SEDs) of star-forming galaxies. We constrain the radio SED of a complete sample of highly star-forming galaxies (SFR > 100 M⊙/ yr) based on the VLA-COSMOS 1.4 GHz Joint and 3 GHz Large Project catalogs. We reduce archival GMRT 325 MHz and 610 MHz observations, broadening the rest-frame frequency range to 0.3-15 GHz. Employing survival analysis and fitting a double power law SED, we find that the slope steepens from a spectral index of α1 = 0.51+/-0.04 below 4.5 GHz to α2 = 0.98+/-0.07 above 4.5 GHz. Our results suggest that the use of a K-correction assuming a single power-law radio SED for star forming galaxies is likely not the root cause of the IRRC trend.

  13. HIGH-TIME-RESOLUTION MEASUREMENTS OF THE POLARIZATION OF THE CRAB PULSAR AT 1.38 GHz

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Słowikowska, Agnieszka; Stappers, Benjamin W.; Harding, Alice K.

    2015-01-20

    Using the Westerbork Synthesis Radio Telescope, we obtained high-time-resolution measurements of the full polarization of the Crab pulsar. At a resolution of 1/8192 of the 34 ms pulse period (i.e., 4.1 μs), the 1.38 GHz linear-polarization measurements are in general agreement with previous lower-time-resolution 1.4 GHz measurements of linear polarization in the main pulse (MP), in the interpulse (IP), and in the low-frequency component (LFC). We find the MP and IP to be linearly polarized at about 24% and 21% with no discernible difference in polarization position angle. However, contrary to theoretical expectations and measurements in the visible, we find nomore » evidence for significant variation (sweep) in the polarization position angle over the MP, the IP, or the LFC. We discuss the implications, which appear to be in contradiction to theoretical expectations. We also detect weak circular polarization in the MP and IP, and strong (≈20%) circular polarization in the LFC, which also exhibits very strong (≈98%) linear polarization at a position angle of 40° from that of the MP or IP. The properties are consistent with the LFC, which is a low-altitude component, and the MP and IP, which are high-altitude caustic components. Current models for the MP and IP emission do not readily account for the absence of pronounced polarization changes across the pulse. We measure IP and LFC pulse phases relative to the MP consistent with recent measurements, which have shown that the phases of these pulse components are evolving with time.« less

  14. Time-Varying Vocal Folds Vibration Detection Using a 24 GHz Portable Auditory Radar.

    PubMed

    Hong, Hong; Zhao, Heng; Peng, Zhengyu; Li, Hui; Gu, Chen; Li, Changzhi; Zhu, Xiaohua

    2016-07-28

    Time-varying vocal folds vibration information is of crucial importance in speech processing, and the traditional devices to acquire speech signals are easily smeared by the high background noise and voice interference. In this paper, we present a non-acoustic way to capture the human vocal folds vibration using a 24-GHz portable auditory radar. Since the vocal folds vibration only reaches several millimeters, the high operating frequency and the 4 × 4 array antennas are applied to achieve the high sensitivity. The Variational Mode Decomposition (VMD) based algorithm is proposed to decompose the radar-detected auditory signal into a sequence of intrinsic modes firstly, and then, extract the time-varying vocal folds vibration frequency from the corresponding mode. Feasibility demonstration, evaluation, and comparison are conducted with tonal and non-tonal languages, and the low relative errors show a high consistency between the radar-detected auditory time-varying vocal folds vibration and acoustic fundamental frequency, except that the auditory radar significantly improves the frequency-resolving power.

  15. Teleportation of a 3-dimensional GHZ State

    NASA Astrophysics Data System (ADS)

    Cao, Hai-Jing; Wang, Huai-Sheng; Li, Peng-Fei; Song, He-Shan

    2012-05-01

    The process of teleportation of a completely unknown 3-dimensional GHZ state is considered. Three maximally entangled 3-dimensional Bell states function as quantum channel in the scheme. This teleportation scheme can be directly generalized to teleport an unknown d-dimensional GHZ state.

  16. 45-110 GHz Quad-Ridge Horn With Stable Gain and Symmetric Beam

    NASA Astrophysics Data System (ADS)

    Manafi, Sara; Al-Tarifi, Muhannad; Filipovic, Dejan S.

    2017-09-01

    A quad-ridge horn antenna with stabilized gain and minimum difference between Eand H-plane half-power beamwidths (HPBWs) is demonstrated for operation over 45-110 GHz bandwidth. Multistep flaring and corrugations on a finite ground plane are applied to obtain stable radiation patterns with 16-dBi minimum gain over the entire range. The computational studies are validated through measurements of a 3-D printed prototype using the direct metal laser sintering (DMLS) process. Accurate fabrication with achieved surface roughness of < 1.7 μm of the fabricated antenna is verified with digital microscope. The obtained gain variation, VSWR, and HPBW variation with rotation and over 45-110 GHz bandwidth are below 1.7 dB, 1.7:1, and 9°, respectively. This work demonstrates that the DMLS is a viable fabrication process for wideband horn antennas at millimeter-wave frequencies.

  17. 12.2-GHz methanol maser MMB follow-up catalogue - IV. Longitude range 20°-60°

    NASA Astrophysics Data System (ADS)

    Breen, S. L.; Ellingsen, S. P.; Caswell, J. L.; Green, J. A.; Voronkov, M. A.; Avison, A.; Fuller, G. A.; Quinn, L. J.

    2016-07-01

    This is the fourth and final instalment of a series of catalogues presenting 12.2-GHz methanol maser observations made towards each of the 6.7-GHz methanol masers detected in the Methanol Multibeam (MMB) survey. This final portion of the survey covers the 20°-60° longitude range, increasing the 12.2-GHz follow-up range to the full MMB coverage of 186° ≥ l ≤ 60° and |b| ≤ 2°. Towards a total of 260 6.7-GHz MMB methanol masers (we were unable to observe five of the MMB sources in this longitude range) we detect 116 12.2-GHz masers counterparts, 64 of which were discovered in this survey. Including data from the literature, we find that there are 12.2-GHz methanol masers towards 47.1 per cent of the 6.7-GHz methanol masers in this portion of the Galaxy. Across the entire MMB survey range, we find a detection rate of 45.3 per cent. We find that the detection rate of 12.2-GHz methanol masers as a function of Galactic longitude is not uniform and there is an excess of masers with broad velocity ranges at longitudes near 30° and 330°. Comparing the occurrence of 12.2-GHz methanol masers with MMB-targeted CO observations has shown that those outflows associated with a 12.2-GHz source have a larger average dynamical time-scale than those associated with only 6.7-GHz methanol masers, supporting the notion that the 12.2-GHz masers are associated with a later phase of high-mass star formation.

  18. Solid-State Powered X-band Accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Othman, Mohamed A.K.; Nann, Emilio A.; Dolgashev, Valery A.

    2017-03-06

    In this report we disseminate the hot test results of an X-band 100-W solid state amplifier chain for linear accelerator (linac) applications. Solid state power amplifiers have become increasingly attractive solutions for achieving high power in radar and maritime applications. Here the performance of solid state amplifiers when driving an RF cavity is investigated. Commercially available, matched and fully-packaged GaN on SiC HEMTs are utilized, comprising a wideband driver stage and two power stages. The amplifier chain has a high poweradded- efficiency and is able to supply up to ~1.2 MV/m field gradient at 9.2 GHz in a simple testmore » cavity, with a peak power exceeding 100 W. These findings set forth the enabling technology for solid-state powered linacs.« less

  19. Construction of Power Receiving Rectenna Using Mars- In-Situ Materials; A Low Energy Materials Processing Approach

    NASA Technical Reports Server (NTRS)

    Curreri, Peter A.; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    It is highly desirable to have a non-nuclear power rich option for the human exploration of Mars. Utilizing a Solar Electric Propulsion, SEP, / Power Beaming architecture for a non-nuclear power option for a human Mars base potentially avoids the weather and dust sensitivities of the surface photovoltaic option. Further from Mars areosynchronous orbit near year round power can be provided. Mission analysis, however, concludes that ultra high (245 GHz) frequencies or laser transmission technologies are required for Mars landed mass competitiveness with the surface photovoltaic option if the receiving rectifying antenna "rectenna" is transported from Earth. It is suggested in this paper that producing rectenna in situ on Mars surface might make a more conventional 5.8 GHz system competitive with surface PV. The premium of a competitive, robust, continuous base power might make the development of a 10 plus MWe class SEP for human Mars mission a more attractive non-nuclear option.

  20. Power SiGe Heterojunction Bipolar Transistors (HBTs) Fabricated by Fully Self-Aligned Double Mesa Technology

    NASA Technical Reports Server (NTRS)

    Lu, Liang-Hung; Mohammadi, Saeed; Ma, Zhen-Qiang; Ponchak, George E.; Alterovitz, Samuel A.; Strohm, Karl M.; Luy, Johann-Friedrich; Downey, Alan (Technical Monitor)

    2001-01-01

    Multifinger SiGe HBTs have been fabricated using a novel fully self-aligned double-mesa technology. With the novel process technology, a common-emitter 2x2x30 sq micrometer device exhibits high maximum oscillating frequency (f(sub max)) and cut-off frequency (f(sub T)) of 78 and 37 GHz, respectively. In class-A operation, a multifinger device with l0x2x30 sq micrometer emitter is expected to provide an output power of 25.6 dBm with a gain of 10 dB and a maximum power added efficiency (PAE) of 30.33% at 8 GHz.

  1. High quality factor manganese-doped aluminum lumped-element kinetic inductance detectors sensitive to frequencies below 100 GHz

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, G.; Johnson, B. R.; Abitbol, M. H.

    Aluminum lumped-element kinetic inductance detectors (LEKIDs) sensitive to millimeter-wave photons have been shown to exhibit high quality factors, making them highly sensitive and multiplexable. The superconducting gap of aluminum limits aluminum LEKIDs to photon frequencies above 100 GHz. Manganese-doped aluminum (Al-Mn) has a tunable critical temperature and could therefore be an attractive material for LEKIDs sensitive to frequencies below 100 GHz if the internal quality factor remains sufficiently high when manganese is added to the film. To investigate, we measured some of the key properties of Al-Mn LEKIDs. A prototype eight-element LEKID array was fabricated using a 40 nm thickmore » film of Al-Mn deposited on a 500 μm thick high-resistivity, float-zone silicon substrate. The manganese content was 900 ppm, the measured T c = 694 ± 1mK, and the resonance frequencies were near 150 MHz. Using measurements of the forward scattering parameter S 21 at various bath temperatures between 65 and 250 mK, we determined that the Al-Mn LEKIDs we fabricated have internal quality factors greater than 2 × 10 5, which is high enough for millimeter-wave astrophysical observations. In the dark conditions under which these devices were measured, the fractional frequency noise spectrum shows a shallow slope that depends on bath temperature and probe tone amplitude, which could be two-level system noise. In conclusion, the anticipated white photon noise should dominate this level of low-frequency noise when the detectors are illuminated with millimeter-waves in future measurements. The LEKIDs responded to light pulses from a 1550 nm light-emitting diode, and we used these light pulses to determine that the quasiparticle lifetime is 60 μs.« less

  2. High quality factor manganese-doped aluminum lumped-element kinetic inductance detectors sensitive to frequencies below 100 GHz

    DOE PAGES

    Jones, G.; Johnson, B. R.; Abitbol, M. H.; ...

    2017-05-29

    Aluminum lumped-element kinetic inductance detectors (LEKIDs) sensitive to millimeter-wave photons have been shown to exhibit high quality factors, making them highly sensitive and multiplexable. The superconducting gap of aluminum limits aluminum LEKIDs to photon frequencies above 100 GHz. Manganese-doped aluminum (Al-Mn) has a tunable critical temperature and could therefore be an attractive material for LEKIDs sensitive to frequencies below 100 GHz if the internal quality factor remains sufficiently high when manganese is added to the film. To investigate, we measured some of the key properties of Al-Mn LEKIDs. A prototype eight-element LEKID array was fabricated using a 40 nm thickmore » film of Al-Mn deposited on a 500 μm thick high-resistivity, float-zone silicon substrate. The manganese content was 900 ppm, the measured T c = 694 ± 1mK, and the resonance frequencies were near 150 MHz. Using measurements of the forward scattering parameter S 21 at various bath temperatures between 65 and 250 mK, we determined that the Al-Mn LEKIDs we fabricated have internal quality factors greater than 2 × 10 5, which is high enough for millimeter-wave astrophysical observations. In the dark conditions under which these devices were measured, the fractional frequency noise spectrum shows a shallow slope that depends on bath temperature and probe tone amplitude, which could be two-level system noise. In conclusion, the anticipated white photon noise should dominate this level of low-frequency noise when the detectors are illuminated with millimeter-waves in future measurements. The LEKIDs responded to light pulses from a 1550 nm light-emitting diode, and we used these light pulses to determine that the quasiparticle lifetime is 60 μs.« less

  3. Ku-band field-effect power transistors

    NASA Technical Reports Server (NTRS)

    Taylor, G. C.; Huang, H. C.

    1979-01-01

    A single stage amplifier was developed using an 8 gate, 1200 micrometer width device to give a gain of 3.3 + or - 0.1 dB over the 14.4 to 15.4 GHz band with an output power of 0.48 W and 15% minimum efficiency with 0.255 W of input power. With two 8 gate devices combined and matched on the device carrier, using a lumped element format, a gain of 3 dB was attained over the 14.5 to 15.5 GHz band with a maximum efficiency of 9.9% for an output power of 0.8 W.

  4. A 17 GHz molecular rectifier

    PubMed Central

    Trasobares, J.; Vuillaume, D.; Théron, D.; Clément, N.

    2016-01-01

    Molecular electronics originally proposed that small molecules sandwiched between electrodes would accomplish electronic functions and enable ultimate scaling to be reached. However, so far, functional molecular devices have only been demonstrated at low frequency. Here, we demonstrate molecular diodes operating up to 17.8 GHz. Direct current and radio frequency (RF) properties were simultaneously measured on a large array of molecular junctions composed of gold nanocrystal electrodes, ferrocenyl undecanethiol molecules and the tip of an interferometric scanning microwave microscope. The present nanometre-scale molecular diodes offer a current density increase by several orders of magnitude compared with that of micrometre-scale molecular diodes, allowing RF operation. The measured S11 parameters show a diode rectification ratio of 12 dB which is linked to the rectification behaviour of the direct current conductance. From the RF measurements, we extrapolate a cut-off frequency of 520 GHz. A comparison with the silicon RF-Schottky diodes, architecture suggests that the RF-molecular diodes are extremely attractive for scaling and high-frequency operation. PMID:27694833

  5. Design of 280 GHz feedhorn-coupled TES arrays for the balloon-borne polarimeter SPIDER

    NASA Astrophysics Data System (ADS)

    Hubmayr, Johannes; Austermann, Jason E.; Beall, James A.; Becker, Daniel T.; Benton, Steven J.; Bergman, A. Stevie; Bond, J. Richard; Bryan, Sean; Duff, Shannon M.; Duivenvoorden, Adri J.; Eriksen, H. K.; Filippini, Jeffrey P.; Fraisse, A.; Galloway, Mathew; Gambrel, Anne E.; Ganga, K.; Grigorian, Arpi L.; Gualtieri, Riccardo; Gudmundsson, Jon E.; Hartley, John W.; Halpern, M.; Hilton, Gene C.; Jones, William C.; McMahon, Jeffrey J.; Moncelsi, Lorenzo; Nagy, Johanna M.; Netterfield, C. B.; Osherson, Benjamin; Padilla, Ivan; Rahlin, Alexandra S.; Racine, B.; Ruhl, John; Rudd, T. M.; Shariff, J. A.; Soler, J. D.; Song, Xue; Ullom, Joel N.; Van Lanen, Jeff; Vissers, Michael R.; Wehus, I. K.; Wen, Shyang; Wiebe, D. V.; Young, Edward

    2016-07-01

    We describe 280 GHz bolometric detector arrays that instrument the balloon-borne polarimeter spider. A primary science goal of spider is to measure the large-scale B-mode polarization of the cosmic microwave background (cmb) in search of the cosmic-inflation, gravitational-wave signature. 280 GHz channels aid this science goal by constraining the level of B-mode contamination from galactic dust emission. We present the focal plane unit design, which consists of a 16x16 array of conical, corrugated feedhorns coupled to a monolithic detector array fabricated on a 150 mm diameter silicon wafer. Detector arrays are capable of polarimetric sensing via waveguide probe-coupling to a multiplexed array of transition-edge-sensor (TES) bolometers. The spider receiver has three focal plane units at 280 GHz, which in total contains 765 spatial pixels and 1,530 polarization sensitive bolometers. By fabrication and measurement of single feedhorns, we demonstrate 14.7° FHWM Gaussian-shaped beams with <1% ellipticity in a 30% fractional bandwidth centered at 280 GHz. We present electromagnetic simulations of the detection circuit, which show 94% band-averaged, single-polarization coupling efficiency, 3% reflection and 3% radiative loss. Lastly, we demonstrate a low thermal conductance bolometer, which is well-described by a simple TES model and exhibits an electrical noise equivalent power (NEP) = 2.6 x 10-17 W/√Hz, consistent with the phonon noise prediction.

  6. High efficiency fourth-harmonic generation from nanosecond fiber master oscillator power amplifier

    NASA Astrophysics Data System (ADS)

    Mu, Xiaodong; Steinvurzel, Paul; Rose, Todd S.; Lotshaw, William T.; Beck, Steven M.; Clemmons, James H.

    2016-03-01

    We demonstrate high power, deep ultraviolet (DUV) conversion to 266 nm through frequency quadrupling of a nanosecond pulse width 1064 nm fiber master oscillator power amplifier (MOPA). The MOPA system uses an Yb-doped double-clad polarization-maintaining large mode area tapered fiber as the final gain stage to generate 0.5-mJ, 10 W, 1.7- ns single mode pulses at a repetition rate of 20 kHz with measured spectral bandwidth of 10.6 GHz (40 pm), and beam qualities of Mx 2=1.07 and My 2=1.03, respectively. Using LBO and BBO crystals for the second-harmonic generation (SHG) and fourth-harmonic generation (FHG), we have achieved 375 μJ (7.5 W) and 92.5 μJ (1.85 W) at wavelengths of 532 nm and 266 nm, respectively. To the best of our knowledge these are the highest narrowband infrared, green and UV pulse energies obtained to date from a fully spliced fiber amplifier. We also demonstrate high efficiency SHG and FHG with walk-off compensated (WOC) crystal pairs and tightly focused pump beam. An SHG efficiency of 75%, FHG efficiency of 47%, and an overall efficiency of 35% from 1064 nm to 266 nm are obtained.

  7. Vibrationally excited water emission at 658 GHz from evolved stars

    NASA Astrophysics Data System (ADS)

    Baudry, A.; Humphreys, E. M. L.; Herpin, F.; Torstensson, K.; Vlemmings, W. H. T.; Richards, A. M. S.; Gray, M. D.; De Breuck, C.; Olberg, M.

    2018-01-01

    Context. Several rotational transitions of ortho- and para-water have been identified toward evolved stars in the ground vibrational state as well as in the first excited state of the bending mode (v2 = 1 in (0, 1, 0) state). In the latter vibrational state of water, the 658 GHz J = 11,0-10,1 rotational transition is often strong and seems to be widespread in late-type stars. Aims: Our main goals are to better characterize the nature of the 658 GHz emission, compare the velocity extent of the 658 GHz emission with SiO maser emission to help locate the water layers and, more generally, investigate the physical conditions prevailing in the excited water layers of evolved stars. Another goal is to identify new 658 GHz emission sources and contribute in showing that this emission is widespread in evolved stars. Methods: We have used the J = 11,0-10,1 rotational transition of water in the (0, 1, 0) vibrational state nearly 2400 K above the ground-state to trace some of the physical conditions of evolved stars. Eleven evolved stars were extracted from our mini-catalog of existing and potential 658 GHz sources for observations with the Atacama Pathfinder EXperiment (APEX) telescope equipped with the SEPIA Band 9 receiver. The 13CO J = 6-5 line at 661 GHz was placed in the same receiver sideband for simultaneous observation with the 658 GHz line of water. We have compared the ratio of these two lines to the same ratio derived from HIFI earlier observations to check for potential time variability in the 658 GHz line. We have compared the 658 GHz line properties with our H2O radiative transfer models in stars and we have compared the velocity ranges of the 658 GHz and SiO J = 2-1, v = 1 maser lines. Results: Eleven stars have been extracted from our catalog of known or potential 658 GHz evolved stars. All of them show 658 GHz emission with a peak flux density in the range ≈50-70 Jy (RU Hya and RT Eri) to ≈2000-3000 Jy (VY CMa and W Hya). Five Asymptotic Giant Branch (AGB

  8. ARCADE 2 Measurement of the Absolute Sky Brightness at 3-90 GHz

    NASA Technical Reports Server (NTRS)

    Fixsen, D. J.; Kogut, A.; Levin, S.; Limon, M.; Mirel, P.; Seiffert, M.; Singal, J.; Wollack, E.; Villela, T.; Wuensche, C. A.

    2011-01-01

    The ARCADE 2 instrument has measured the absolute temperature of the sky at frequencies 3, 8, 10, 30, and 90 GHz, uSing an open-aperture cryogenic instrument observing al balloon altitudes with no emissive windows between the beam-forming optics and the sky. An external blackbody calibrator provides an in situ reference. Systematic errors were greatly reduced by using differential radiometers and cooling all critical components to physical temperatures approximating the cosmic microwave background (CMB) temperature. A linear model is used to compare the output of each radiometer to a set of thermometers on the instrument. Small correction. are made for the residual emission from the flight train, balloon, atmosphere, and foreground Galactic emission. The ARCADE 2 data alone show an excess radio rise of 54 +/- 6 mK at 3.3 GHz in addition to a CMB temperature of 2.731 +/- 0.004 K. Combining the ARCADE 2 data with data from the literature shows an excess power-law spectrum of T = 24.1 +/- 2.1 (K)(v/v(sub o)(exp -2.599+/-0.036 from 22 MHz to 10 GHz (v(sub 0) = 310 MHz) in addition to a CMB temperature of 2.725 +/- 0.001 K.

  9. Power Amplifier Module with 734-mW Continuous Wave Output Power

    NASA Technical Reports Server (NTRS)

    Fung, King Man; Samoska, Lorene A.; Kangaslahti, Pekka P.; Lamgrigtsen, Bjorn H.; Goldsmith, Paul F.; Lin, Robert H.; Soria, Mary M.; Cooperrider, Joelle T.; Micovic, Moroslav; Kurdoghlian, Ara

    2010-01-01

    Research findings were reported from an investigation of new gallium nitride (GaN) monolithic millimeter-wave integrated circuit (MMIC) power amplifiers (PAs) targeting the highest output power and the highest efficiency for class-A operation in W-band (75-110 GHz). W-band PAs are a major component of many frequency multiplied submillimeter-wave LO signal sources. For spectrometer arrays, substantial W-band power is required due to the passive lossy frequency multipliers-to generate higher frequency signals in nonlinear Schottky diode-based LO sources. By advancing PA technology, the LO system performance can be increased with possible cost reductions compared to current GaAs PAs. High-power, high-efficiency GaN PAs are cross-cutting and can enable more efficient local oscillator distribution systems for new astrophysics and planetary receivers and heterodyne array instruments. It can also allow for a new, electronically scannable solid-state array technology for future Earth science radar instruments and communications platforms.

  10. Development of a 150-GHz MMIC Module Prototype for Large-Scale CMB Radiation

    NASA Technical Reports Server (NTRS)

    Kangaslahti, Pekka P.; Samoska, Lorene A.; Gaier, Todd C.; Soria, Mary M.; Lau, Judy M.; Sieth, Matthew M.; VanWinkle, Daniel; Tantawi, Sami

    2011-01-01

    HEMT-based receiver arrays with excellent noise and scalability are already starting to be manufactured at 100 GHz, but the advances in technology should make it possible to develop receiver modules with even greater operation frequency up to 200 GHz. A prototype heterodyne amplifier module has been developed for operation from 140 to 170 GHz using monolithic millimeter-wave integrated circuit (MMIC) low-noise InP high electron mobility transistor (HEMT) amplifiers. The compact, scalable module is centered on the 150-GHz atmospheric window using components known to operate well at these frequencies. Arrays equipped with hundreds of these modules can be optimized for many different astrophysical measurement techniques, including spectroscopy and interferometry. This module is a heterodyne receiver module that is extremely compact, and makes use of 35-nm InP HEMT technology, and which has been shown to have excellent noise temperatures when cooled cryogenically to 30 K. This reduction in system noise over prior art has been demonstrated in commercial mixers (uncooled) at frequencies of 160-180 GHz. The module is expected to achieve a system noise temperature of 60 K when cooled. An MMIC amplifier module has been designed to demonstrate the feasibility of expanding heterodyne amplifier technology to the 140 to 170-GHz frequency range for astronomical observations. The miniaturization of many standard components and the refinement of RF interconnect technology have cleared the way to mass-production of heterodyne amplifier receivers, making it a feasible technology for many large-population arrays. This work furthers the recent research efforts in compact coherent receiver modules, including the development of the Q/U Imaging ExperimenT (QUIET) modules centered at 40 and 90 GHz, and the production of heterodyne module prototypes at 90 GHz.

  11. Evaluation of Cathode Heater Assembly for 42 GHz, 200 kW Gyrotron

    NASA Astrophysics Data System (ADS)

    Sharma, S. K.; Singh, Narendra Kumar; Singh, Udaybir; Khatun, Hasina; Kumar, Nitin; Alaria, M. K.; Raju, R. S.; Jain, P. K.; Sinha, A. K.

    2014-09-01

    In this paper, the evaluation of cathode-heater assembly of magnetron injection gun (MIG) for 42 GHz, 200 kW gyrotron is presented. The cathode-heater assembly is purchased from M/S SEMICON.The cathode-heater assembly is experimentally studied in three different conditions; in a belljar system, during vacuum processing of MIG and during MIG testing to ensure the required rise of cathode surface temperature for pre-set heater power.

  12. Design of a Millimeter-Wave Concentrator for Beam Reception in High-Power Wireless Power Transfer

    NASA Astrophysics Data System (ADS)

    Fukunari, Masafumi; Wongsuryrat, Nat; Yamaguchi, Toshikazu; Nakamura, Yusuke; Komurasaki, Kimiya; Koizumi, Hiroyuki

    2017-02-01

    This study examined the performance of a developed taper-tube concentrator for 94-GHz millimeter-wave beam reception during wireless power transfer. The received energy is converted into kinetic energy of a working gas in the tube to drive an engine or thruster. The concentrator, which is assumed to have mirror reflection of millimeter waves in it, is designed to be shorter than conventional tapered waveguides of millimeter waves. A dimensionless design law of a concentrator is proposed based on geometric optics theory. Because the applicability of geometric optics theory is unclear, the ratio of its bore diameter to its wavelength was set as small compared to those in other possible applications. Then, the discrepancy between the designed and measured power reception was examined. Results show that the maximum discrepancy was as low as 7 % for the bore-to-wavelength ratio of 20 at the narrow end of the concentrator.

  13. High power radiators of ultra-short electromagnetic quasi-unipolar pulses

    NASA Astrophysics Data System (ADS)

    Fedorov, V. M.; Ostashev, V. E.; Tarakanov, V. P.; Ul'yanov, A. V.

    2017-05-01

    Results of creation, operation, and diagnostics of the high power radiators for ultra-short length electromagnetic pulses (USEMPs) with a quasi-unipolar profile, which have been developed in our laboratory, are presented. The radiating module contains: the ultra-wideband (UWB) antenna array, the exciting high voltage pulse semiconductor generator (a pulser), the power source and the control unit. The principles of antenna array with a high efficiency aperture about 0.9 were developed using joint four TEM-horns with shielding electrodes in every TEM-horn. Sizes of the antenna apertures were (16-60) cm. The pulsers produced by “FID Technology” company had the following parameters: 50 Ohm connector impedance, unipolar pulses voltages (10-100) kV, the rise-time (0.04-0.15) ns, and the width (0.2-1) ns. The modules radiate the USEMPs of (0.1-10) GHz spectrum, their repetition rate is (1-100) kHz, and the effective potential is E*R = (20-400) kV, producing the peak E-field into the far-zone of R-distance. Parameters of the USEMP waves were measured by a calibrated sensor with the following characteristics: the sensitivity 0.32V/(kV/m), the rise-time 0.03 ns, the duration up to 7 ns. The measurements were in agreement with the simulation results, which were obtained using the 3-D code “KARAT”. The USEMP waves with amplitudes (1-10) kV/m and the pulse repetition rate (0.5-100) kHz were successfully used to examine various electronic devices for an electromagnetic immunity.

  14. Photonic Generation of High Power, Ultrastable Microwave Signals by Vernier Effect in a Femtosecond Laser Frequency Comb.

    PubMed

    Saleh, Khaldoun; Millo, Jacques; Marechal, Baptiste; Dubois, Benoît; Bakir, Ahmed; Didier, Alexandre; Lacroûte, Clément; Kersalé, Yann

    2018-01-31

    Optical frequency division of an ultrastable laser to the microwave frequency range by an optical frequency comb has allowed the generation of microwave signals with unprecedently high spectral purity and stability. However, the generated microwave signal will suffer from a very low power level if no external optical frequency comb repetition rate multiplication device is used. This paper reports theoretical and experimental studies on the beneficial use of the Vernier effect together with the spectral selective filtering in a double directional coupler add-drop optical fibre ring resonator to increase the comb repetition rate and generate high power microwaves. The studies are focused on two selective filtering aspects: the high rejection of undesirable optical modes of the frequency comb and the transmission of the desirable modes with the lowest possible loss. Moreover, the conservation of the frequency comb stability and linewidth at the resonator output is particularly considered. Accordingly, a fibre ring resonator is designed, fabricated, and characterized, and a technique to stabilize the resonator's resonance comb is proposed. A significant power gain is achieved for the photonically generated beat note at 10 GHz. Routes to highly improve the performances of such proof-of-concept device are also discussed.

  15. Continuous-Wave Operation of a Frequency-Tunable 460-GHz Second-Harmonic Gyrotron for Enhanced Nuclear Magnetic Resonance

    PubMed Central

    Torrezan, Antonio C.; Han, Seong-Tae; Mastovsky, Ivan; Shapiro, Michael A.; Sirigiri, Jagadishwar R.; Temkin, Richard J.; Griffin, Robert G.; Barnes, Alexander B.

    2012-01-01

    The design, operation, and characterization of a continuous-wave (CW) tunable second-harmonic 460-GHz gyrotron are reported. The gyrotron is intended to be used as a submillimeter-wave source for 700-MHz nuclear magnetic resonance experiments with sensitivity enhanced by dynamic nuclear polarization. The gyrotron operates in the whispering-gallery mode TE11,2 and has generated 16 W of output power with a 13-kV 100-mA electron beam. The start oscillation current measured over a range of magnetic field values is in good agreement with theoretical start currents obtained from linear theory for successive high-order axial modes TE11,2,q. The minimum start current is 27 mA. Power and frequency tuning measurements as a function of the electron cyclotron frequency have also been carried out. A smooth frequency tuning range of 1 GHz was obtained for the operating second-harmonic mode either by magnetic field tuning or beam voltage tuning. Long-term CW operation was evaluated during an uninterrupted period of 48 h, where the gyrotron output power and frequency were kept stable to within ±0.7% and ±6 ppm, respectively, by a computerized control system. Proper operation of an internal quasi-optical mode converter implemented to transform the operating whispering-gallery mode to a Gaussian-like beam was also verified. Based on the images of the gyrotron output beam taken with a pyroelectric camera, the Gaussian-like mode content of the output beam was computed to be 92% with an ellipticity of 12%. PMID:23761938

  16. Continuous-Wave Operation of a Frequency-Tunable 460-GHz Second-Harmonic Gyrotron for Enhanced Nuclear Magnetic Resonance

    PubMed Central

    Torrezan, Antonio C.; Han, Seong-Tae; Mastovsky, Ivan; Shapiro, Michael A.; Sirigiri, Jagadishwar R.; Temkin, Richard J.; Barnes, Alexander B.; Griffin, Robert G.

    2011-01-01

    The design, operation, and characterization of a continuous-wave (CW) tunable second-harmonic 460-GHz gyrotron are reported. The gyrotron is intended to be used as a submillimeter-wave source for 700-MHz nuclear magnetic resonance experiments with sensitivity enhanced by dynamic nuclear polarization. The gyrotron operates in the whispering-gallery mode TE11,2 and has generated 16 W of output power with a 13-kV 100-mA electron beam. The start oscillation current measured over a range of magnetic field values is in good agreement with theoretical start currents obtained from linear theory for successive high-order axial modes TE11,2,q. The minimum start current is 27 mA. Power and frequency tuning measurements as a function of the electron cyclotron frequency have also been carried out. A smooth frequency tuning range of 1 GHz was obtained for the operating second-harmonic mode either by magnetic field tuning or beam voltage tuning. Long-term CW operation was evaluated during an uninterrupted period of 48 h, where the gyrotron output power and frequency were kept stable to within ±0.7% and ±6 ppm, respectively, by a computerized control system. Proper operation of an internal quasi-optical mode converter implemented to transform the operating whispering-gallery mode to a Gaussian-like beam was also verified. Based on the images of the gyrotron output beam taken with a pyroelectric camera, the Gaussian-like mode content of the output beam was computed to be 92% with an ellipticity of 12%. PMID:21243088

  17. Customer premise service study for 30/20 GHz satellite system

    NASA Technical Reports Server (NTRS)

    Milton, R. T.; Ross, D. P.; Harcar, A. R.; Freedenberg, P.; Schoen, D.

    1983-01-01

    Satellite systems in which the space segment operates in the 30/20 GHz frequency band are defined and compared as to their potential for providing various types of communications services to customer premises and the economic and technical feasibility of doing so. Technical tasks performed include: market postulation, definition of the ground segment, definition of the space segment, definition of the integrated satellite system, service costs for satellite systems, sensitivity analysis, and critical technology. Based on an analysis of market data, a sufficiently large market for services is projected so as to make the system economically viable. A large market, and hence a high capacity satellite system, is found to be necessary to minimize service costs, i.e., economy of scale is found to hold. The wide bandwidth expected to be available in the 30/20 GHz band, along with frequency reuse which further increases the effective system bandwidth, makes possible the high capacity system. Extensive ground networking is required in most systems to both connect users into the system and to interconnect Earth stations to provide spatial diversity. Earth station spatial diversity is found to be a cost effective means of compensating the large fading encountered in the 30/20 GHz operating band.

  18. Radiometric measurements over bare and vegetated fields at 1.4 GHz and 5 GHz frequencies. [Beltsville Agricultural Research Center, Maryland

    NASA Technical Reports Server (NTRS)

    Wang, J. R.; Mcmurtrey, J. E., III; Engman, E. T.; Jackson, T. J.; Schmugge, T. J.; Gould, W. I.; Glazar, W. S.; Fuchs, J. E. (Principal Investigator)

    1981-01-01

    Microwave emission from bare and vegetated fields was measured with dual polarized radiometers at 1.4 GHz and 5 GHz frequencies. The measured brightness temperatures over bare fields are shown to compare favorably with those calculated from radiative transfer theory with two constant parameters characterizing surface roughness effect. The presence of vegetation cover is found to reduce the sensitivity to soil moisture variation. This sensitivity reduction is generally pronounced the denser, the vegetation cover and the higher the frequency of observation. The effect of vegetation cover is also examined with respect to the measured polarization factor at both frequencies. With the exception of dry corn fields, the measured polarization factor over vegetated fields is found appreciably reduced compared to that over bare fields. A much larger reduction in this factor is found at 5GHz than at 1.4GHz frequency.

  19. Numerical investigations of self- and cross-phase modulation effects in high-power fiber amplifiers (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Zunoubi, Mohammad R.; Anderson, Brian; Naderi, Shadi A.; Madden, Timothy J.; Dajani, Iyad

    2017-03-01

    The development of high-power fiber lasers is of great interest due to the advantages they offer relative to other laser technologies. Currently, the maximum power from a reportedly single-mode fiber amplifier stands at 10 kW. Though impressive, this power level was achieved at the cost of a large spectral linewidth, making the laser unsuitable for coherent or spectral beam combination techniques required to reach power levels necessary for airborne tactical applications. An effective approach in limiting the SBS effect is to insert an electro-optic phase modulator at the low-power end of a master oscillator power amplifier (MOPA) system. As a result, the optical power is spread among spectral sidebands; thus raising the overall SBS threshold of the amplifier. It is the purpose of this work to present a comprehensive numerical scheme that is based on the extended nonlinear Schrodinger equations that allows for accurate analysis of phase modulated fiber amplifier systems in relation to the group velocity dispersion and Kerr nonlinearities and their effect on the coherent beam combining efficiency. As such, we have simulated a high-power MOPA system modulated via filtered pseudo-random bit sequence format for different clock rates and power levels. We show that at clock rates of ≥30 GHz, the combination of GVD and self-phase modulation may lead to a drastic drop in beam combining efficiency at the multi-kW level. Furthermore, we extend our work to study the effect of cross-phase modulation where an amplifier is seeded with two laser sources.

  20. High-power, continuous-wave, mid-infrared optical parametric oscillator based on MgO:sPPLT.

    PubMed

    Chaitanya Kumar, S; Ebrahim-Zadeh, M

    2011-07-01

    We report a stable, high-power, cw, mid-IR optical parametric oscillator using MgO-doped stoichiometric periodically poled LiTaO₃ (MgO:sPPLT) pumped by a Yb fiber laser at 1064 nm. The singly resonant oscillator (SRO), based on a 30 mm long crystal, is tunable over 430 nm from 3032 to 3462 nm and can generate as much as 5.5 W of mid-IR output power, with >4 W of over 60% of the tuning range and under reduced thermal effects, enabling room temperature operation. Idler power scaling measurements at ~3.3 μm are compared with an MgO-doped periodically poled LiNbO₃ cw SRO, confirming that MgO:sPPLT is an attractive material for multiwatt mid-IR generation. The idler output at 3299 nm exhibits a peak-to-peak power stability better than 12.8% over 5 h and frequency stability of ~1 GHz, while operating close to room temperature, and has a linewidth of ~0.2 nm, limited by the resolution of the wavemeter. The corresponding signal linewidth at 1570 nm is ~21 MHz.

  1. Investigation on heat transfer analysis and its effect on a multi-mode, beam-wave interaction for a 140 GHz, MW-class gyrotron

    NASA Astrophysics Data System (ADS)

    Liu, Qiao; Liu, Yinghui; Chen, Zhaowei; Niu, Xinjian; Li, Hongfu; Xu, Jianhua

    2018-04-01

    The interaction cavity of a 140 GHz, 1 MW continuous wave gyrotron developed in UESTC will be loaded with a very large heat load in the inner surface during operation. In order to reduce the heat, the axial wedge grooves of the outside surface of the cavity are considered and employed as the heat radiation structure. Thermoanalysis and structural analysis were discussed in detail to obtain the effects of heat on the cavity. In thermoanalysis, the external coolant-flow rates ranging from 20 L/min to 50 L/min were considered, and the distribution of wall loading was loaded as the heat flux source. In structural analysis, the cavity's deformation caused by the loads of heat and pressure was calculated. Compared with a non-deformed cavity, the effects of deformation on the performance of a cavity were discussed. For a cold-cavity, the results show that the quality factor would be reduced by 72, 89, 99 and 171 at the flow rates of 50 L/min, 40 L/min, 30 L/min and 20 L/min, respectively. Correspondingly, the cold-cavity frequencies would be decreased by 0.13 GHz, 0.15 GHz, 0.19 GHz and 0.38 GHz, respectively. For a hot-cavity, the results demonstrate that the output port frequencies would be dropped down, but the offset would be gradually decreased with increasing coolant-flow rate. Meanwhile, the output powers would be reduced dramatically with decreasing coolant-flow rate. In addition, when the coolant-flow rate reaches 40 L/min, the output power and the frequency are just reduced by 30 kW and 0.151 GHz, respectively.

  2. Key comparison SIM.EM.RF-K5b.CL: scattering coefficients by broad-band methods, 2 GHz-18 GHz — type N connector

    NASA Astrophysics Data System (ADS)

    Silva, H.; Monasterios, G.

    2016-01-01

    The first key comparison in microwave frequencies within the SIM (Sistema Interamericano de Metrología) region has been carried out. The measurands were the S-parameters of 50 ohm coaxial devices with Type-N connectors and were measured at 2 GHz, 9 GHz and 18 GHz. SIM.EM.RF-K5b.CL was the identification assigned and it was based on a parent CCEM key comparison named CCEM.RF-K5b.CL. For this reason, the measurements standards and their nominal values were selected accordingly, i.e. two one-port devices (a matched and a mismatched load) to cover low and high reflection coefficients and two attenuators (3dB and 20 dB) to cover low and high transmission coefficients. This key comparison has met the need for ensuring traceability in high-frequency measurements across America by linking SIM's results to CCEM. Six NMIs have participated in this comparison which was piloted by the Instituto Nacional de Tecnología Industrial (Argentina). A linking method of multivariate values was proposed and implemented in order to allow the linking of 2-dimensional results. KEY WORDS FOR SEARCH Main text To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCEM, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  3. Dual-Functional On-Chip AlGaAs/GaAs Schottky Diode for RF Power Detection and Low-Power Rectenna Applications

    PubMed Central

    Hashim, Abdul Manaf; Mustafa, Farahiyah; Rahman, Shaharin Fadzli Abd; Rahman, Abdul Rahim Abdul

    2011-01-01

    A Schottky diode has been designed and fabricated on an n-AlGaAs/GaAs high-electron-mobility-transistor (HEMT) structure. Current-voltage (I–V) measurements show good device rectification, with a Schottky barrier height of 0.4349 eV for Ni/Au metallization. The differences between the Schottky barrier height and the theoretical value (1.443 eV) are due to the fabrication process and smaller contact area. The RF signals up to 1 GHz are rectified well by the fabricated Schottky diode and a stable DC output voltage is obtained. The increment ratio of output voltage vs input power is 0.2 V/dBm for all tested frequencies, which is considered good enough for RF power detection. Power conversion efficiency up to 50% is obtained at frequency of 1 GHz and input power of 20 dBm with series connection between diode and load, which also shows the device’s good potential as a rectenna device with further improvement. The fabricated n-AlGaAs/GaAs Schottky diode thus provides a conduit for breakthrough designs for RF power detectors, as well as ultra-low power on-chip rectenna device technology to be integrated in nanosystems. PMID:22164066

  4. A 0.7 V 6.66-9.36 GHz wide tuning range CMOS LC VCO with small chip size

    NASA Astrophysics Data System (ADS)

    Chen, Jun-Da; Zhang, Jie

    2017-10-01

    The circuit designs are based on TSMC 0.18 μm CMOS standard technology model. The designed circuit uses transformer coupling technology in order to decrease chip area and increase the Q value. The switched-capacitor topology array enables the voltage-controlled oscillator (VCO) to be tuned between 6.66 and 9.36 GHz with 4.9 mW power consumption at supply voltage of 0.7 V, and the tuning range of the circuit can reach 33.7%. The measured phase noise is -110.5 dBc/Hz at 1 MHz offset from the carrier frequency of 7.113 GHz. The output power level is about -1.22 dBm. The figure-of-merit and figure-of-merit-with-tuning range of the VCO are about -180.7 and -191.25 dBc/Hz, respectively. The chip area is 0.429 mm2 excluding the pads. The presented ultra-wideband VCO leads to a better performance in terms of power consumption, tuning range, chip size and output power level for low supply voltage.

  5. Thermoregulatory responses of rats exposed to 9. 3-GHz radio-frequency radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frei, M.R.; Jauchem, J.R.; Heinmets, F.

    1987-10-15

    Ketamine-anesthetized Sprague-Dawley rats were exposed in H orientation to far-field 9.3-GHz continuous-wave (CW) and pulsed (2 microseconds 500 pps) radiofrequency radiation (RFR) at average power densities of 30 and 60 mW/sq. cm (whole-body average specific absorption rates of 9.3 and 18.6 W/kg, respectively). Irradiation was conducted to cyclicly increase colonic temperature from 38.5 to 39.5 C. Colonic, tympanic, and subcutaneous temperatures, ECG, blood pressure, and respiratory rate were continuously recorded during experimentation. At both power densities, the subcutaneous and tympanic temperature increases significantly exceeded the colonic temperature increase. At both exposure levels, heart rate increased significantly during irradiation and returnedmore » to baseline when exposure was discontinued. Blood pressure and respiratory rate did not significantly change during irradiation. There were no significant differences between the effects of CW and pulsed RFR exposure. The levels of subcutaneous heating and heart rate change were greater, and the times required to achieve and to recover from a 1 C colonic temperature increase were longer than in previous studies conducted at 2.8 GHz. Results of these studies indicate that the carrier frequency used during irradiation markedly affects the pattern of heat distribution and the physiological responses of RF-irradiated animals.« less

  6. 10C survey of radio sources at 15.7 GHz - II. First results

    NASA Astrophysics Data System (ADS)

    AMI Consortium; Davies, Mathhew L.; Franzen, Thomas M. O.; Waldram, Elizabeth M.; Grainge, Keith J. B.; Hobson, Michael P.; Hurley-Walker, Natasha; Lasenby, Anthony; Olamaie, Malak; Pooley, Guy G.; Riley, Julia M.; Rodríguez-Gonzálvez, Carmen; Saunders, Richard D. E.; Scaife, Anna M. M.; Schammel, Michel P.; Scott, Paul F.; Shimwell, Timothy W.; Titterington, David J.; Zwart, Jonathan T. L.

    2011-08-01

    In a previous paper (Paper I), the observational, mapping and source-extraction techniques used for the Tenth Cambridge (10C) Survey of Radio Sources were described. Here, the first results from the survey, carried out using the Arcminute Microkelvin Imager Large Array (LA) at an observing frequency of 15.7 GHz, are presented. The survey fields cover an area of ≈27 deg2 to a flux-density completeness of 1 mJy. Results for some deeper areas, covering ≈12 deg2, wholly contained within the total areas and complete to 0.5 mJy, are also presented. The completeness for both areas is estimated to be at least 93 per cent. The 10C survey is the deepest radio survey of any significant extent (≳0.2 deg2) above 1.4 GHz. The 10C source catalogue contains 1897 entries and is available online. The source catalogue has been combined with that of the Ninth Cambridge Survey to calculate the 15.7-GHz source counts. A broken power law is found to provide a good parametrization of the differential count between 0.5 mJy and 1 Jy. The measured source count has been compared with that predicted by de Zotti et al. - the model is found to display good agreement with the data at the highest flux densities. However, over the entire flux-density range of the measured count (0.5 mJy to 1 Jy), the model is found to underpredict the integrated count by ≈30 per cent. Entries from the source catalogue have been matched with those contained in the catalogues of the NRAO VLA Sky Survey and the Faint Images of the Radio Sky at Twenty-cm survey (both of which have observing frequencies of 1.4 GHz). This matching provides evidence for a shift in the typical 1.4-GHz spectral index to 15.7-GHz spectral index of the 15.7-GHz-selected source population with decreasing flux density towards sub-mJy levels - the spectra tend to become less steep. Automated methods for detecting extended sources, developed in Paper I, have been applied to the data; ≈5 per cent of the sources are found to be extended

  7. Globally Stable Microresonator Turing Pattern Formation for Coherent High-Power THz Radiation On-Chip

    NASA Astrophysics Data System (ADS)

    Huang, Shu-Wei; Yang, Jinghui; Yang, Shang-Hua; Yu, Mingbin; Kwong, Dim-Lee; Zelevinsky, T.; Jarrahi, Mona; Wong, Chee Wei

    2017-10-01

    In nonlinear microresonators driven by continuous-wave (cw) lasers, Turing patterns have been studied in the formalism of the Lugiato-Lefever equation with emphasis on their high coherence and exceptional robustness against perturbations. Destabilization of Turing patterns and the transition to spatiotemporal chaos, however, limit the available energy carried in the Turing rolls and prevent further harvest of their high coherence and robustness to noise. Here, we report a novel scheme to circumvent such destabilization, by incorporating the effect of local mode hybridizations, and we attain globally stable Turing pattern formation in chip-scale nonlinear oscillators with significantly enlarged parameter space, achieving a record-high power-conversion efficiency of 45% and an elevated peak-to-valley contrast of 100. The stationary Turing pattern is discretely tunable across 430 GHz on a THz carrier, with a fractional frequency sideband nonuniformity measured at 7.3 ×10-14 . We demonstrate the simultaneous microwave and optical coherence of the Turing rolls at different evolution stages through ultrafast optical correlation techniques. The free-running Turing-roll coherence, 9 kHz in 200 ms and 160 kHz in 20 minutes, is transferred onto a plasmonic photomixer for one of the highest-power THz coherent generations at room temperature, with 1.1% optical-to-THz power conversion. Its long-term stability can be further improved by more than 2 orders of magnitude, reaching an Allan deviation of 6 ×10-10 at 100 s, with a simple computer-aided slow feedback control. The demonstrated on-chip coherent high-power Turing-THz system is promising to find applications in astrophysics, medical imaging, and wireless communications.

  8. Injection locking of violet laser diodes with a 3.2 GHz offset frequency for driving Raman transitions in 43Ca+.

    PubMed

    Keitch, B C; Thomas, N R; Lucas, D M

    2013-03-15

    Two cw single-mode violet (397 nm) diode lasers are locked to a single external-cavity master diode laser by optical injection locking. A double-pass 1.6 GHz acousto-optic modulator is used to provide a 3.2 GHz offset frequency between the two slave lasers. We achieve up to 20 mW usable output in each slave beam, with as little as 25 μW of injection power at room temperature. An optical heterodyne measurement of the beat note between the two slave beams gives a linewidth of ≤10 Hz at 3.2 GHz. We also estimate the free-running linewidth of the master laser to be approximately 3 MHz by optical heterodyning with a similar device.

  9. Methods of Phase and Power Control in Magnetron Transmitters for Superconducting Accelerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kazadevich, G.; Johnson, R.; Neubauer, M.

    Various methods of phase and power control in magnetron RF sources of superconducting accelerators intended for ADS-class projects were recently developed and studied with conventional 2.45 GHz, 1 kW, CW magnetrons operating in pulsed and CW regimes. Magnetron transmitters excited by a resonant (injection-locking) phasemodulated signal can provide phase and power control with the rates required for precise stabilization of phase and amplitude of the accelerating field in Superconducting RF (SRF) cavities of the intensity-frontier accelerators. An innovative technique that can significantly increase the magnetron transmitter efficiency at the widerange power control required for superconducting accelerators was developed and verifiedmore » with the 2.45 GHz magnetrons operating in CW and pulsed regimes. High efficiency magnetron transmitters of this type can significantly reduce the capital and operation costs of the ADSclass accelerator projects.« less

  10. TlCaBaCuO high Tc superconducting microstrip ring resonators designed for 12 GHz

    NASA Technical Reports Server (NTRS)

    Subramanyam, G.; Kapoor, V. J.; Chorey, C. M.; Bhasin, K. B.

    1993-01-01

    Microwave properties of sputtered Tl-Ca-Ba-Cu-O thin films were investigated by designing, fabricating, and testing microstrip ring resonators. Ring resonators designed for 12 GHz fundamental resonance frequency, were fabricated and tested. From the unloaded Q values for the resonators, the surface resistance was calculated by separating the conductor losses from the total losses. The penetration depth was obtained from the temperature dependence of resonance frequency, assuming that the shift in resonance frequency is mainly due to the temperature dependence of penetration depth. The effective surface resistance at 12 GHz and 77 K was determined to be between 1.5 and 2.75 mOmega, almost an order lower than Cu at the same temperature and frequency. The effective penetration depth at 0 K is approximately 7000 A.

  11. A 1.8 GHz Voltage-Controlled Oscillator using CMOS Technology

    NASA Astrophysics Data System (ADS)

    Maisurah, M. H. Siti; Emran, F. Nazif; Norman Fadhil, Idham M.; Rahim, A. I. Abdul; Razman, Y. Mohamed

    2011-05-01

    A Voltage-Controlled Oscillator (VCO) for 1.8 GHz application has been designed using a combination of both 0.13 μm and 0.35 μm CMOS technology. The VCO has a large tuning range, which is from 1.39 GHz to 1.91 GHz, using a control voltage from 0 to 3V. The VCO exhibits a low phase-noise at 1.8 GHz which is around -119.8dBc/Hz at a frequency offset of 1 MHz.

  12. 1.05-GHz CMOS oscillator based on lateral- field-excited piezoelectric AlN contour- mode MEMS resonators.

    PubMed

    Zuo, Chengjie; Van der Spiegel, Jan; Piazza, Gianluca

    2010-01-01

    This paper reports on the first demonstration of a 1.05-GHz microelectromechanical (MEMS) oscillator based on lateral-field-excited (LFE) piezoelectric AlN contourmode resonators. The oscillator shows a phase noise level of -81 dBc/Hz at 1-kHz offset frequency and a phase noise floor of -146 dBc/Hz, which satisfies the global system for mobile communications (GSM) requirements for ultra-high frequency (UHF) local oscillators (LO). The circuit was fabricated in the AMI semiconductor (AMIS) 0.5-microm complementary metaloxide- semiconductor (CMOS) process, with the oscillator core consuming only 3.5 mW DC power. The device overall performance has the best figure-of-merit (FoM) when compared with other gigahertz oscillators that are based on film bulk acoustic resonator (FBAR), surface acoustic wave (SAW), and CMOS on-chip inductor and capacitor (CMOS LC) technologies. A simple 2-mask process was used to fabricate the LFE AlN resonators operating between 843 MHz and 1.64 GHz with simultaneously high Q (up to 2,200) and kt 2 (up to 1.2%). This process further relaxes manufacturing tolerances and improves yield. All these advantages make these devices suitable for post-CMOS integrated on-chip direct gigahertz frequency synthesis in reconfigurable multiband wireless communications.

  13. Development of a High Resolution Passive Microwave 3U Cubesat for High Resolution Temperature Sounding and Imaging at 118 GHz

    NASA Astrophysics Data System (ADS)

    Gasiewski, A. J.; Sanders, B. T.; Gallaher, D. W.; Periasamy, L.; Alvarenga, G.; Weaver, R.; Scambos, T. A.

    2014-12-01

    PolarCube is a 3U CubeSat based on the CU ALL-STAR bus hosting an eight-channel passive microwave scanning spectrometer operating at the 118.7503 GHz (1-) O2 resonance. The anticipated launch date is in late 2015. It is being designed to operate for 12 months on orbit to provide global 118-GHz spectral imagery of the Earth over a full seasonal cycle. The mission will focus on the study of Arctic vertical temperature structure and its relation to sea ice coverage, but include the secondary goals of assessing the potential for convective cloud mass detection and cloud top altitude measurement and hurricane warm core sounding. The principles used by PolarCube for sounding and cloud measurement have been well established in number of peer-reviewed papers, although measurements using the 118 GHz oxygen line over the dry polar regions (unaffected by water vapor) have never been demonstrated from space. The PolarCube channels are selected to probe clear-air emission over vertical levels from the surface to the lower stratosphere. Operational spaceborne microwave soundings have available for decades but using lower frequencies (50-57 GHz) and from higher altitudes. While the JPSS ATMS sensor provides global coverage at ~32 km resolution PolarCube will improve on this resolution by a factor of two (~16 km), thus facilitating a key science goal of mapping sea ice concentration and extent while obtaining temperature profile data. Additionally, we seek to correlate freeze-thaw line data from the NASA SMAP mission with atmospheric temperature structure to help understand the relationship between clouds, temperature, and surface energy fluxes during seasonal transitions. PolarCube will also provide the first demonstration of a very low cost passive microwave sounder that if operated in a fleet configuration would have the potential to fulfill the goals of the Precipitation Atmospheric Temperature and Humidity (PATH) mission, as defined in the NRC Decadal Survey.

  14. An optically passive method that doubles the rate of 2-Ghz timing fiducials

    NASA Astrophysics Data System (ADS)

    Boni, R.; Kendrick, J.; Sorce, C.

    2017-08-01

    Solid-state optical comb-pulse generators provide a convenient and accurate method to include timing fiducials in a streak camera image for time base correction. Commercially available vertical-cavity surface-emitting lasers (VCSEL's) emitting in the visible currently in use can be modulated up to 2 GHz. An optically passive method is presented to interleave a time-delayed path of the 2-GHz comb with itself, producing a 4-GHz comb. This technique can be applied to VCSEL's with higher modulation rates. A fiber-delivered, randomly polarized 2-GHz VCSEL comb is polarization split into s-polarization and p-polarization paths. One path is time delayed relative to the other by twice the 2-GHz rate with +/-1-ps accuracy; the two paths then recombine at the fiber-coupled output. High throughput (>=90%) is achieved by carefully using polarization beam-splitting cubes, a total internal reflection beam-path-steering prism, and antireflection coatings. The glass path-length delay block and turning prism are optically contacted together. The beam polarizer cubes that split and recombine the paths are precision aligned and permanently cemented into place. We expect the palm-sized, inline fiber-coupled, comb-rate-doubling device to maintain its internal alignment indefinitely.

  15. A New 95 GHz Methanol Maser Catalog. I. Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Wenjin; Xu, Ye; Lu, Dengrong

    The Purple Mountain Observatory 13.7 m radio telescope has been used to search for 95 GHz (8{sub 0}–7{sub 1}A{sup +}) class I methanol masers toward 1020 Bolocam Galactic Plane Survey (BGPS) sources, leading to 213 detections. We have compared the line width of the methanol and HCO{sup +} thermal emission in all of the methanol detections, and on that basis, we find that 205 of the 213 detections are very likely to be masers. This corresponds to an overall detection rate of 95 GHz methanol masers toward our BGPS sample of 20%. Of the 205 detected masers, 144 (70%) aremore » new discoveries. Combining our results with those of previous 95 GHz methanol maser searches, a total of 481 95 GHz methanol masers are now known. We have compiled a catalog listing the locations and properties of all known 95 GHz methanol masers.« less

  16. Relative performance of 8.5-GHz and 32-GHz telemetry links on the basis of total data return per pass

    NASA Technical Reports Server (NTRS)

    Koerner, M. A.

    1986-01-01

    The performance of X-band (8.5-GHz) and 32-GHz telemetry links is compared on the basis of the total data return per DSN station pass. Differences in spacecraft transmitter efficiency, transmit circuit loss, and transmitting antenna area efficiency and pointing loss are not considered in these calculations. Thus, the performance differentials calculated in this memo are those produced by a DSN 70-m station antenna gain and clear weather receiving system noise temperature and by weather. These calculations show that, assuming mechanical compensation of the DSN 70-m antenna for 32-GHz operation, a performance advantage for 32 GHz over X-band of 8.2 dB can be achieved for at least one DSN station location. Even if only Canberra and Madrid are used, a performance advantage of 7.7 dB can be obtained for at least one DSN station location. A system using a multiple beam feed (electronic compensation) should achieve similar results.

  17. The 30 GHz solid state amplifier for low cost low data rate ground terminals

    NASA Technical Reports Server (NTRS)

    Ngan, Y. C.; Quijije, M. A.

    1984-01-01

    This report details the development of a 20-W solid state amplifier operating near 30 GHz. The IMPATT amplifier not only met or exceeded all the program objectives, but also possesses the ability to operate in the pulse mode, which was not called for in the original contract requirements. The ability to operate in the pulse mode is essential for TDMA (Time Domain Multiple Access) operation. An output power of 20 W was achieved with a 1-dB instantaneous bandwidth of 260 MHz. The amplifier has also been tested in pulse mode with 50% duty for pulse lengths ranging from 200 ns to 2 micro s with 10 ns rise and fall times and no degradation in output power. This pulse mode operation was made possible by the development of a stable 12-diode power combiner/amplifier and a single-diode pulsed driver whose RF output power was switched on and off by having its bias current modulated via a fast-switching current pulse modulator. Essential to the overall amplifier development was the successful development of state-of-the-art silicon double-drift IMPATT diodes capable of reproducible 2.5 W CW output power with 12% dc-to-RF conversion efficiency. Output powers of as high as 2.75 W has been observed. Both the device and circuit design are amenable to low cost production.

  18. 47 CFR 15.252 - Operation of wideband vehicular radar systems within the bands 16.2-17.7 GHz and 23.12-29.0 GHz.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 1 2011-10-01 2011-10-01 false Operation of wideband vehicular radar systems within the bands 16.2-17.7 GHz and 23.12-29.0 GHz. 15.252 Section 15.252 Telecommunication FEDERAL..., Additional Provisions § 15.252 Operation of wideband vehicular radar systems within the bands 16.2-17.7 GHz...

  19. 47 CFR 15.252 - Operation of wideband vehicular radar systems within the bands 16.2-17.7 GHz and 23.12-29.0 GHz.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 1 2013-10-01 2013-10-01 false Operation of wideband vehicular radar systems within the bands 16.2-17.7 GHz and 23.12-29.0 GHz. 15.252 Section 15.252 Telecommunication FEDERAL..., Additional Provisions § 15.252 Operation of wideband vehicular radar systems within the bands 16.2-17.7 GHz...

  20. 47 CFR 15.252 - Operation of wideband vehicular radar systems within the bands 16.2-17.7 GHz and 23.12-29.0 GHz.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 1 2014-10-01 2014-10-01 false Operation of wideband vehicular radar systems within the bands 16.2-17.7 GHz and 23.12-29.0 GHz. 15.252 Section 15.252 Telecommunication FEDERAL..., Additional Provisions § 15.252 Operation of wideband vehicular radar systems within the bands 16.2-17.7 GHz...

  1. 47 CFR 15.252 - Operation of wideband vehicular radar systems within the bands 16.2-17.7 GHz and 23.12-29.0 GHz.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 1 2012-10-01 2012-10-01 false Operation of wideband vehicular radar systems within the bands 16.2-17.7 GHz and 23.12-29.0 GHz. 15.252 Section 15.252 Telecommunication FEDERAL..., Additional Provisions § 15.252 Operation of wideband vehicular radar systems within the bands 16.2-17.7 GHz...

  2. Detection of 17 GHz radio emission from X-ray-bright points

    NASA Technical Reports Server (NTRS)

    Kundu, M. R.; Shibasaki, K.; Enome, S.; Nitta, N.

    1994-01-01

    Using observations made with the Nobeyama radio heliograph (NRH) at 17 GHz and the Yohkoh/SXT experiment, we report the first detection of 17 GHz signatures of coronal X-ray-bright points (XBPs). This is also the first reported detection of flaring bright points in microwaves. We have detected four BPs at 17 GHz out of eight identified in SXT data on 1992 July 31, for which we looked for 17 GHz emission. For one XBP located in a quiet mixed-polarity region, the peak times at 17 GHz and X-rays are very similar, and both are long-lasting-about 2 hr in duration. There is a second BP (located near an active region) which is most likely flaring also, but the time profiles in the two spectral domains are not similar. The other two 17 GHz BPs are quiescent with fluctuations superposed upon them. For the quiet region XBP, the gradual, long-lasting, and unpolarized emission suggests that the 17 GHz emission is thermal.

  3. Harmonic Power Generation of IMPATT Diodes.

    DTIC Science & Technology

    1985-09-01

    Performance of Si and GaAs Diodes Taking into Account the Thermal Effect (f = 23 GHz). 136 2.8 CW Results for Second-Harmonic Performance of the Si Uniform...Diode Obtained by Matching l-. Resistance (f = 23 GHz). 138 2.9 CW Results for Second-Harmonic Performance of the Si Uniform Diode Taking into Account ...at V = 28 V, V = 8 V, and Jdc = kA/cm 3. 1 3 181 2.21 Power Output for pin Diode . Taking into Account Circuit Matching Only. 194 2.22 CW Power

  4. Design and simulation of a ~390 GHz seventh harmonic gyrotron using a large orbit electron beam

    NASA Astrophysics Data System (ADS)

    Li, Fengping; He, Wenlong; Cross, Adrian W.; Donaldson, Craig R.; Zhang, Liang; Phelps, Alan D. R.; Ronald, Kevin

    2010-04-01

    A ~390 GHz harmonic gyrotron based on a cusp electron gun has been designed and numerically modelled. The gyrotron operates at the seventh harmonic of the electron cyclotron frequency with the beam interacting with a TE71 waveguide mode. Theoretical as well as numerical simulation results using the 3D particle-in-cell code MAGIC are presented. The cusp gun generated an axis-encircling, annular shaped electron beam of energy 40 keV, current 1.5 A with a velocity ratio α of 3. Smooth cylindrical waveguides have been studied as the interaction cavities and their cavity Q optimized for 390 GHz operation. In the simulations ~600 W of output power at the design frequency has been demonstrated.

  5. Optimum concentric circular array antenna with high gain and side lobe reduction at 5.8 GHz

    NASA Astrophysics Data System (ADS)

    Zaid, Mohammed; Rafiqul Islam, Md; Habaebi, Mohamed H.; Zahirul Alam, AHM; Abdullah, Khaizuran

    2017-11-01

    The significance of high gain directional antennas stems from the need to cope up with the everyday progressing wireless communication systems. Due to low gain of the widely used microstrip antenna, combining multiple antennas in proper geometry increases the gain with good directive property. Over other array forms, this paper uses concentric circular array configuration for its compact structure and inherent symmetry in azimuth. This proposed array is composed of 9 elements on FR-4 substrate, which is designed for WLAN applications at 5.8GHz. Antenna Magus software is used for synthesis, while CST software is used for optimization. The proposed array is designed with optimum inter-element spacing and number of elements achieving a high directional gain of 15.7 dB compared to 14.2 dB of available literature, with a high reduction in side lobe level of -17.6 dB.

  6. High-Power, High-Temperature Superconductor Technology Development

    NASA Technical Reports Server (NTRS)

    Bhasin, Kul B.

    2005-01-01

    Since the first discovery of high-temperature superconductors (HTS) 10 years ago, the most promising areas for their applications in microwave systems have been as passive components for communication systems. Soon after the discovery, experiments showed that passive microwave circuits made from HTS material exceeded the performance of conventional devices for low-power applications and could be 10 times as small or smaller. However, for superconducting microwave components, high-power microwave applications have remained elusive until now. In 1996, DuPont and Com Dev Ltd. developed high-power superconducting materials and components for communication applications under a NASA Lewis Research Center cooperative agreement, NCC3-344 "High Power High Temperature Superconductor (HTS) Technology Development." The agreement was cost shared between the Defense Advanced Research Projects Agency's (DARPA) Technology Reinvestment Program Office and the two industrial partners. It has the following objectives: 1) Material development and characterization for high-power HTS applications; 2) Development and validation of generic high-power microwave components; 3) Development of a proof-of-concept model for a high-power six-channel HTS output multiplexer.

  7. Chirped Pulse Spectrometer Operating at 200 GHz

    NASA Astrophysics Data System (ADS)

    Hindle, Francis; Bray, Cédric; Hickson, Kevin; Fontanari, Daniele; Mouelhi, Meriem; Cuisset, Arnaud; Mouret, Gaël; Bocquet, Robin

    2018-01-01

    The combination of electronic sources operating at high frequencies and modern microwave instrumentation has enabled the recent development of chirped pulse spectrometers for the millimetre and THz bands. This type of instrument can operate at high resolution which is particularly suited to gas-phase rotational spectroscopy. The construction of a chirped pulse spectrometer operating at 200 GHz is described in detail while attention is paid to the phase stability and the data accumulation over many cycles. Validation using carbonyl sulphide has allowed the detection limit of the instrument to be established as function of the accumulation. A large number of OCS transitions were identified using a 10-GHz chirped pulse and include the six most abundant isotopologues, the weakest line corresponding to the fundamental R(17) transition of 16O13C33S with a line strength of 4.3 × 10-26 cm-1/(molecule cm-2). The linearity of the system response for different degrees of data accumulation and transition line strength was confirmed over four orders of magnitudes. A simple analysis of the time-domain data was demonstrated to provide the line-broadening coefficient without the need for conversion by a Fourier transform. Finally, the pulse duration is discussed and optimal values are given for both Doppler-limited and collisional regimes.

  8. Generation of large scale GHZ states with the interactions of photons and quantum-dot spins

    NASA Astrophysics Data System (ADS)

    Miao, Chun; Fang, Shu-Dong; Dong, Ping; Yang, Ming; Cao, Zhuo-Liang

    2018-03-01

    We present a deterministic scheme for generating large scale GHZ states in a cavity-quantum dot system. A singly charged quantum dot is embedded in a double-sided optical microcavity with partially reflective top and bottom mirrors. The GHZ-type Bell spin state can be created and two n-spin GHZ states can be perfectly fused to a 2n-spin GHZ state with the help of n ancilla single-photon pulses. The implementation of the current scheme only depends on the photon detection and its need not to operate multi-qubit gates and multi-qubit measurements. Discussions about the effect of the cavity loss, side leakage and exciton cavity coupling strength for the fidelity of generated states show that the fidelity can remain high enough by controlling system parameters. So the current scheme is simple and feasible in experiment.

  9. Observational demonstration of a high image rejection SIS mixer receiver using a new waveguide filter at 230 GHz

    NASA Astrophysics Data System (ADS)

    Hasegawa, Yutaka; Asayama, Shinichiro; Harada, Ryohei; Tokuda, Kazuki; Kimura, Kimihiro; Ogawa, Hideo; Onishi, Toshikazu

    2017-12-01

    A new sideband separation method was developed for use in millimeter-/submillimeter-band radio receivers using a novel waveguide frequency separation filter (FSF), which consists of two branch line hybrid couplers and two waveguide high-pass filters. The FSF was designed to allow the radio frequency (RF) signal to pass through to an output port when the frequency is higher than a certain value (225 GHz), and to reflect the RF signal back to another output port when the frequency is lower. The FSF is connected to two double sideband superconductor-insulator-superconductor (SIS) mixers, and an image rejection ratio (IRR) is determined by the FSF characteristics. With this new sideband separation method, we can achieve good and stable IRR without the balancing two SIS mixers such as is necessary for conventional sideband-separating SIS mixers. To demonstrate the applicability of this method, we designed and developed an FSF for simultaneous observations of the J = 2-1 rotational transition lines of three CO isotopes (12CO, 13CO, and C18O): the 12CO line is in the upper sideband and the others are in the lower sideband with an intermediate-frequency range of 4-8 GHz at the radio frequency of 220/230 GHz. This FSF was then installed in the receiver system of the 1.85 m radio telescope of Osaka Prefecture University, and was used during the 2014 observation season. The observation results indicate that the IRR of the proposed receiver is 25 dB or higher for the 12CO line, and no significant fluctuation larger than 1 dB in the IRR was observed throughout the season. These results demonstrate the practical utility of the FSF receiver for observations like extensive molecular cloud surveys in specified lines with a fixed frequency setting.

  10. Optimal GHZ Paradox for Three Qubits

    NASA Astrophysics Data System (ADS)

    Ren, Changliang; Su, Hong-Yi; Xu, Zhen-Peng; Wu, Chunfeng; Chen, Jing-Ling

    2015-08-01

    Quatum nonlocality as a valuable resource is of vital importance in quantum information processing. The characterization of the resource has been extensively investigated mainly for pure states, while relatively less is know for mixed states. Here we prove the existence of the optimal GHZ paradox by using a novel and simple method to extract an optimal state that can saturate the tradeoff relation between quantum nonlocality and the state purity. In this paradox, the logical inequality which is formulated by the GHZ-typed event probabilities can be violated maximally by the optimal state for any fixed amount of purity (or mixedness). Moreover, the optimal state can be described as a standard GHZ state suffering flipped color noise. The maximal amount of noise that the optimal state can resist is 50%. We suggest our result to be a step toward deeper understanding of the role played by the AVN proof of quantum nonlocality as a useful physical resource.

  11. Time-Varying Vocal Folds Vibration Detection Using a 24 GHz Portable Auditory Radar

    PubMed Central

    Hong, Hong; Zhao, Heng; Peng, Zhengyu; Li, Hui; Gu, Chen; Li, Changzhi; Zhu, Xiaohua

    2016-01-01

    Time-varying vocal folds vibration information is of crucial importance in speech processing, and the traditional devices to acquire speech signals are easily smeared by the high background noise and voice interference. In this paper, we present a non-acoustic way to capture the human vocal folds vibration using a 24-GHz portable auditory radar. Since the vocal folds vibration only reaches several millimeters, the high operating frequency and the 4 × 4 array antennas are applied to achieve the high sensitivity. The Variational Mode Decomposition (VMD) based algorithm is proposed to decompose the radar-detected auditory signal into a sequence of intrinsic modes firstly, and then, extract the time-varying vocal folds vibration frequency from the corresponding mode. Feasibility demonstration, evaluation, and comparison are conducted with tonal and non-tonal languages, and the low relative errors show a high consistency between the radar-detected auditory time-varying vocal folds vibration and acoustic fundamental frequency, except that the auditory radar significantly improves the frequency-resolving power. PMID:27483261

  12. The 30/20 GHz communications system functional requirements

    NASA Technical Reports Server (NTRS)

    Siperko, C. M.; Frankfort, M.; Markham, R.; Wall, M.

    1981-01-01

    The characteristics of 30/20 GHz usage in satellite systems to be used in support of projected communication requirements of the 1990's are defined. A requirements analysis which develops projected market demand for satellite services by general and specialized carriers and an analysis of the impact of propagation and system constraints on 30/20 GHz operation are included. A set of technical performance characteristics for the 30/20 GHz systems which can serve the resulting market demand and the experimental program necessary to verify technical and operational aspects of the proposed systems is also discussed.

  13. ATS-6 ascending: Near horizon measurements over water at 30 GHz

    NASA Technical Reports Server (NTRS)

    Vogel, W. J.; Straiton, A. W.; Fannin, B. M.

    1977-01-01

    The return of the ATS 6 satellite to a western longitude during the fall of 1976 presented a unique opportunity to perform low angle of elevation measurements at 30 GHz. For this purpose a receiver using a 1.5 m antenna was set up at Port Aransas, Texas, resulting in a propagation path entirely over water. The 30 GHz beacon was monitored daily for at least one hour from 8 September 1976 to 21 September 1976. During the time the elevation angle changed from 1.5 deg to 17.3 deg, the mean attenuation decreased from 20 dB to 2 dB and the standard deviation from over 6 dB to less than .2 dB. The deep fades at angles below 4 deg show significantly sharper nulls than peaks on a log scale. Spectra of the log amplitude fluctuations vary as the (-8/3) power of the spectral frequency in the limit. A flattening is noticeable at the low frequencies. A precipitation event at 8.5 deg elevation produced a 16 dB fade and significantly increased the variance.

  14. Measurements of the radar cross section and Inverse Synthetic Aperture Radar (ISAR) images of a Piper Navajo at 9.5 GHz and 49 GHz

    NASA Astrophysics Data System (ADS)

    Dinger, R.; Kinzel, G.; Lam, W.; Jones, S.

    1993-01-01

    Studies were conducted of the enhanced radar cross section (RCS) and improved inverse synthetic aperture radar (ISAR) image quality that may result at millimeter-wave (mmw) frequencies. To study the potential for mmw radar in these areas, a program was initiated in FY-90 to design and fabricate a 49.0- to 49.5-GHz stepped-frequency radar. After conducting simultaneous measurements of the RCS of an airborne Piper Navajo twin-engine aircraft at 9.0 and 49.0 GHz, the RCS at 49.0 GHz was always found to be higher than at 9.0 GHz by an amount that depended on the target aspect angle. The largest increase was 19 dB and was measured at nose-on incidence; at other angles of incidence, the increase ranged from 3 to 10 dB. The increase averaged over a 360-degree aspect-angle change was 7.2 dB. The 49.0-GHz radar has demonstrated a capability to gather well-calibrated millimeter-wave RCS data of flying targets. In addition, the successful ISAR images obtainable with short aperture time suggest that 49.0-GHz radar may have a role to play in noncooperative target identification (NCTI).

  15. 47 CFR 25.139 - NGSO FSS coordination and information sharing between MVDDS licensees in the 12.2 GHz to 12.7 GHz...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ....2 GHz to 12.7 GHz band. (a) NGSO FSS licensees shall maintain a subscriber database in a format that... database to enable the MVDDS licensee to determine whether the proposed MVDDS transmitting site meets the...

  16. Gas breakdown driven by L band short-pulse high-power microwave

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang Yiming; Yuan Chengwei; Qian Baoliang

    2012-12-15

    High power microwave (HPM) driven gas breakdown is a major factor in limiting the radiation and transmission of HPM. A method that HPM driven gas breakdown could be obtained by changing the aperture of horn antenna is studied in this paper. Changing the effective aperture of horn antenna can adjust the electric field in near field zone, leading to gas breakdown. With this method, measurements of air and SF{sub 6} breakdowns are carried out on a magnetically insulated transmission-line oscillators, which is capable of generating HPM with pulse duration of 30 ns, and frequency of 1.74 GHz. The typical breakdownmore » waveforms of air and SF{sub 6} are presented. Besides, the breakdown field strengths of the two gases are derived at different pressures. It is found that the effects of air and SF{sub 6} breakdown on the transmission of HPM are different: air breakdown mainly shortens the pulse width of HPM while SF{sub 6} breakdown mainly reduces the peak output power of HPM. The electric field threshold of SF{sub 6} is about 2.4 times larger than that of air. These differences suggest that gas properties have a great effect on the transmission characteristic of HPM in gases.« less

  17. THE CELESTIAL REFERENCE FRAME AT 24 AND 43 GHz. I. ASTROMETRY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lanyi, G. E.; Jacobs, C. S.; Naudet, C. J.

    2010-05-15

    We present astrometric results for compact extragalactic objects observed with the Very Long Baseline Array at radio frequencies of 24 and 43 GHz. Data were obtained from ten 24 hr observing sessions made over a five-year period. These observations were motivated by the need to extend the International Celestial Reference Frame (ICRF) to higher radio frequencies to enable improved deep space navigation after 2016 and to improve state-of-the-art astrometry. Source coordinates for 268 sources were estimated at 24 GHz and for 131 sources at 43 GHz. The median formal uncertainties of right ascension and declination at 24 GHz are 0.08more » and 0.15 mas, respectively. Median formal uncertainties at 43 GHz are 0.20 and 0.35 mas, respectively. Weighted root-mean-square differences between the 24 and 43 GHz positions and astrometric positions based on simultaneous 2.3 and 8.4 GHz Very Long Baseline Interferometry observations, such as the ICRF, are less than about 0.3 mas in both coordinates. With observations over five years we have achieved a precision at 24 GHz approaching that of the ICRF but unaccounted systematic errors limit the overall accuracy of the catalogs.« less

  18. The Atacama Cosmology Telescope: Cosmological Parameters from the 2008 Power Spectrum

    NASA Technical Reports Server (NTRS)

    Dunkley, J.; Hlozek, R.; Sievers, J.; Acquaviva, V.; Ade, P. A. R.; Aguirre, P.; Amiri, M.; Appel, J. W.; Barrientos, L. F.; Battistelli, E. S.; hide

    2011-01-01

    We present cosmological parameters derived from the angular power spectrum of the cosmic microwave background (CMB) radiation observed at 148 GHz and 218 GHz over 296 deg(exp 2) with the Atacama Cosmology Telescope (ACT) during its 2008 season. ACT measures fluctuations at scales 500 < l < 10,000. We fit a model for the lensed CMB, Sunyaev-Zel'dovich (SZ), and foreground contribution to the 148 GHz and 218 GHz power spectra, including thermal and kinetic SZ, Poisson power from radio and infrared point sources, and clustered power from infrared point sources. At l = 3000, about half the power at 148 GHz comes from primary CMB after masking bright radio sources. The power from thermal and kinetic SZ is estimated to be Beta(sub 3000) is identical to 6.8 +/- 2.9 mu K (exp 2), where Beta (sub l) is identical to l(l + 1) C(sub l)/2pi. The IR Poisson power at 148 GHz is Bewta(sub 3000) 7.8 +/- 0.7 muK(exp 2) (C(sub l) = 5.5 +/- 0.5 nK(exp 2)), and a clustered IR component is required with Beta (sub 3000) = 4.6 +/- 0.9 muK(exp 2), assuming an analytic model for its power spectrum shape. At 218 GHz only about 15% of the power, approximately 27 mu K(exp 2), is CMB anisotropy at l = 3000. The remaining 85% is attributed to IR sources (approximately 50% Poisson and 35% clustered), with spectral index alpha = 3.69 +/- 0.14 for flux scaling as S(nu) varies as nu(sup alpha). We estimate primary cosmological parameters from the less contaminated 148 GHz spectrum, marginalizing over SZ and source power. The ACDM cosmological model is a good fit to the data (chi square/dof = 29/46), and ACDM parameters estimated from ACT+Wilkinson Microwave Anisotropy Probe (WMAP) are consistent with the seven-year WMAP limits, with scale invariant n(sub s) = 1 excluded at 99.7% confidence level (CL) (3 sigma). A model with no CMB lensing is disfavored at 2.8 sigma. By measuring the third to seventh acoustic peaks, and probing the Silk damping regime, the ACT data improve limits on cosmological

  19. Lightning and 85-GHz MCSs in the Global Tropics

    NASA Technical Reports Server (NTRS)

    Toracinta, E. Richard; Zipser, E. J.

    1999-01-01

    Numerous observations of tropical convection show that tropical continental mesoscale convective systems (MCSs) are much more prolific lightning producers than their oceanic counterparts. Satellite-based climatologies using 85-GHz passive microwave ice-scattering signatures from the Special Sensor Microwave/Imager (SSM/I) indicate that MCSs of various size and intensity are found throughout the global tropics. In contrast, global lightning distributions show a strong land bias with an order of magnitude difference between land and ocean lightning. This is somewhat puzzling, since 85-GHz ice-scattering and the charge separation processes that lead to lightning are both thought to depend upon the existence of large graupel particles. The fact that low 85-GHz brightness temperatures are observed in tropical oceanic MCSs containing virtually no lightning leads to the postulate that tropical oceanic and tropical continental MCSs have fundamentally different hydrometeor profiles through the mixed phase region of the cloud (0 C <= T <= 20 C). Until recently, validation of this postulate has not been practicable on a global scale. Recent deployment of the Tropical Rainfall Measuring Mission (TRMM) satellite presents a unique opportunity for MCS studies. The multi-sensor instrument ensemble aboard TRMM, including a multi-channel microwave radiometer, the Lightning Imaging Sensor (LIS), and the first space-borne radar, facilitates high-resolution case studies of MCS structure throughout the global tropics. An important precursor, however, is to better understand the distribution of MCSs and lightning in the tropics. With that objective in mind, this research undertakes a systematic comparison of 85-GHz-defined MCSs and lightning over the global tropics for a full year, as an initial step toward quantifying differences between land and ocean convective systems.

  20. Multi-GHz Synchronous Waveform Acquisition With Real-Time Pattern-Matching Trigger Generation

    NASA Astrophysics Data System (ADS)

    Kleinfelder, Stuart A.; Chiang, Shiuh-hua Wood; Huang, Wei

    2013-10-01

    A transient waveform capture and digitization circuit with continuous synchronous 2-GHz sampling capability and real-time programmable windowed trigger generation has been fabricated and tested. Designed in 0.25 μm CMOS, the digitizer contains a circular array of 128 sample and hold circuits for continuous sample acquisition, and attains 2-GHz sample speeds with over 800-MHz analog bandwidth. Sample clock generation is synchronous, combining a phase-locked loop for high-speed clock generation and a high-speed fully-differential shift register for distributing clocks to all 128 sample circuits. Using two comparators per sample, the sampled voltage levels are compared against two reference levels, a high threshold and a low threshold, that are set via per-comparator digital to analog converters (DACs). The 256 per-comparator 5-bit DACs compensate for comparator offsets and allow for fine reference level adjustment. The comparator results are matched in 8-sample-wide windows against up to 72 programmable patterns in real time using an on-chip programmable logic array. Each 8-sample trigger window is equivalent to 4 ns of acquisition, overlapped sample by sample in a circular fashion through the entire 128-sample array. The 72 pattern-matching trigger criteria can be programmed to be any combination of High-above the high threshold, Low-below the low threshold, Middle-between the two thresholds, or “Don't Care”-any state is accepted. A trigger pattern of “HLHLHLHL,” for example, watches for a waveform that is oscillating at about 1 GHz given the 2-GHz sample rate. A trigger is flagged in under 20 ns if there is a match, after which sampling is stopped, and on-chip digitization can proceed via 128 parallel 10-bit converters, or off-chip conversion can proceed via an analog readout. The chip exceeds 11 bits of dynamic range, nets over 800-MHz -3-dB bandwidth in a realistic system, and jitter in the PLL-based sampling clock has been measured to be about 1 part