Sample records for ghz nrao vla

  1. NRAO Makes Available VLA Sky Survey Maps

    NASA Astrophysics Data System (ADS)

    1994-06-01

    An original and comprehensive data set potentially full of scientific surprises now is available to astronomers, students and the public through the information superhighway. Radio images of the sky produced by the Very Large Array radio telescope -- one of the premier astronomical instruments in the world -- as part of a massive survey now are stored in an electronic repository avail- able over the Internet computer communications network. "Each of these sensitive new sky maps shows about a thou- sand radio-emitting objects, most of which have never been seen before," said Dr. J. J. Condon, leader of the National Radio As- tronomy Observatory (NRAO) survey team. "We are releasing them as soon as they are completed because they contain more data than we could possibly analyze by ourselves." "By using electronic distribution, we can open this tre- mendous resource of information for computer analysis by all as- tronomers immediately, without waiting for traditional publication," Condon added. The radio images are copyright NRAO/ AUI. Permission is granted for use of the material without charge for scholarly, educational and private non-commercial purposes. "It is entirely conceivable -- even probable -- that valuable discoveries will be made by students or amateur astrono- mers who devote the time to study these maps carefully," said team member Dr. W. D. Cotton. "Making this new information available electronically means that more people can participate in adding to its scientific value." The maps are a product of the NRAO VLA Sky Survey (NVSS), which began its observational phase in September of 1993 and will cover 82 percent of the sky when completed by the end of 1996. The NVSS is expected to produce a catalog of more than two million ra- dio-emitting objects in the sky, and it is the first sky survey sensitive to linearly polarized emission from radio sources beyond our own Milky Way galaxy. "The NVSS is being made as a service to the entire astronomical

  2. The VLA Low-band Ionosphere and Transient Experiment (VLITE)

    NASA Astrophysics Data System (ADS)

    Clarke, Tracy; Peters, Wendy; Brisken, Walter; Giacintucci, Simona; Kassim, Namir; Polisensky, Emil; Helmboldt, Joseph; Richards, Emily E.; Erickson, Alan; Ray, Paul S.; Kerr, Matthew T.; Deneva, Julia; Coburn, William; Huber, Robert; Long, Jeff

    2018-01-01

    The VLA Low-band Ionosphere and Transient Experiment (VLITE, http://vlite.nrao.edu/ ) is a commensal low-frequency observing system that has been operational on the National Radio Astronomy Observatory's Karl G. Jansky Very Large Array (VLA) since late 2014. The separate optical paths of the prime-focus sub-GHz dipole feeds and the Cassegrain-focus 1-50 GHz feeds allow both systems to operate simultaneously with independent correlators. The initial 2.5 years of VLITE operation provided real-time correlation of 10 antennas across the 320-384 MHz band with a total observing time approaching 12,000 hours. During the summer of 2017, VLITE was upgraded to a total of 16 antennas (more than doubling the number of baselines) with enhanced correlator capabilities to enable correlation of the on-the-fly observing mode being used for the new NRAO VLA Sky Survey (VLASS).We present an overview of the VLITE system, including highlights of the complexities of a commensal observing program, sparse-array challenges, and scientific capabilities from our science-ready data pipeline. In the longer term, we seek a path to broadband expansion across all VLA antennas to develop a powerful new LOw Band Observatory (LOBO).

  3. NRAO Names New Head of New Mexico Operations

    NASA Astrophysics Data System (ADS)

    2001-10-01

    The National Radio Astronomy Observatory (NRAO) has named Jim Ulvestad the new Assistant Director for New Mexico Operations in Socorro, New Mexico, effective December 15. As Assistant Director, Ulvestad will oversee the operation and management of two of NRAO's principal research facilities, the Very Large Array (VLA) and the Very Long Baseline Array (VLBA). He succeeds W. Miller Goss, who is stepping down as Assistant Director after serving in that capacity since 1988. Jim Ulvestad Ulvestad "We are delighted that Jim will assume this vital position for our observatory," said NRAO Director Paul Vanden Bout. "His solid background as a researcher, his broad knowledge of the astronomical community and his detailed understanding of the VLA and the VLBA will help us keep these facilities at the cutting edge of science in the coming years." Vanden Bout also praised Goss, who will remain on the observatory's research staff, for his leadership of the VLA and VLBA over the past 14 years. "Miller's goal always was to make these radio telescopes the most productive possible tools for science, and to serve the scientific community with distinction. He succeeded, and the excellent reputation of NRAO's Socorro Operations among scientists is a tribute to his efforts," Vanden Bout said. "I look forward to continuing to work with NRAO's outstanding New Mexico staff in a new capacity," Ulvestad said. "I am confident they will meet the challenge of operating the most scientifically productive ground-based telescope of the last 20 years, at the same time that we are dramatically expanding the technical capabilities of the VLA and planning for improvements to the VLBA," he added. Ulvestad, currently NRAO's Deputy Assistant Director in Socorro, joined the observatory in 1996 after spending 12 years on the staff of NASA's Jet Propulsion Laboratory (JPL) in Pasadena, CA. He received his Ph.D in astronomy from the University of Maryland and worked as a postdoctoral research associate at

  4. VLITE Surveys the Sky: A 340 MHz Companion to the VLA Sky Survey (VLASS)

    NASA Astrophysics Data System (ADS)

    Peters, Wendy; Clarke, Tracy; Brisken, Walter; Cotton, William; Richards, Emily E.; Giacintucci, Simona; Kassim, Namir

    2018-01-01

    The VLA Low Band Ionosphere and Transient Experiment (VLITE; nrao.edu/> ) is a commensal observing system on the Karl G. Janksy Very Large Array (VLA) which was developed by the Naval Research Laboratory and NRAO. A 64 MHz sub-band from the prime focus 240-470 MHz dipoles is correlated during nearly all regular VLA observations. VLITE uses dedicated samplers and fibers, as well as a custom designed, real-time DiFX software correlator, and requires no additional resources from the VLA system running the primary science program. The experiment has been operating since November 2014 with 10 antennas; a recent expansion in summer 2017 increased that number to 16 and more than doubled the number of baselines.The VLA Sky Survey (VLASS; nrao.edu/science/surveys/vlass >), is an ongoing survey of the entire sky visible to the VLA at a frequency of 2-4 GHz. The observations are made using an "on-the-fly" (OTF) continuous RA scanning technique which fills in the sky by observing along rows of constant declination. VLITE breaks the data into 2-second integrations and correlates these at a central position every 1.5 degrees. All data for each correlator position is imaged separately, corrected and weighted by an appropriately elongated primary beam model, and then combined in the image plane to create a mosaic of the sky. A catalog of the sources is extracted to provide a 340 MHz sky model.We present preliminary images and catalogs from the 2017 VLASS observations which began in early September, 2017, and continued on a nearly daily basis throughout the fall. In addition to providing a unique sky model at 340 MHz, these data complement VLASS by providing spectral indices for all cataloged sources.

  5. The NRAO Observing for University Classes Program

    NASA Astrophysics Data System (ADS)

    Cannon, John M.; Van Moorsel, Gustaaf A.

    2017-01-01

    The NRAO "Observing for University Classes" program is a tremendous resource for instructors of courses in observational astronomy. As a service to the astronomical and educational communities, the NRAO offers small amounts of observing time on the Very Large Array (VLA) and the Very Long Baseline Array to such instructors. The data can be used by students and faculty to demonstrate radio astronomy theory with modern data products. Further, the results may lead to publication; this is a unique opportunity for faculty members to integrate research into the classroom. Previous experience with NRAO facilities is required for instructors; individuals without radio astronomy experience can take advantage of other NRAO educational opportunities (e.g., the Synthesis Imaging Workshop) prior to using the program. No previous experience with radio astronomy data is required for students; this is the primary target audience of the program. To demonstrate concept, this poster describes three different VLA observing programs that have been completed using the "Observing for University Classes" resource at Macalester College; undergraduate students have published the results of all three of these programs. Other recent "Observing for University Classes" programs are also described.

  6. The VLA Sky Survey

    NASA Astrophysics Data System (ADS)

    Lacy, Mark; VLASS Survey Team, VLASS Survey Science Group

    2018-01-01

    The VLA Sky Survey (VLASS), which began in September 2017, is a seven year project to image the entire sky north of Declination -40 degrees in three epochs. The survey is being carried out in I,Q and U polarization at a frequency of 2-4GHz, and a resolution of 2.5 arcseconds, with each epoch being separated by 32 months. Raw data from the survey, along with basic "quicklook" images are made freely available shortly after observation. Within a few months, NRAO will begin making available further basic data products, including refined images and source lists. In this talk I shall describe the science goals and methodology of the survey, the current survey status, and some early results, along with plans for collaborations with external groups to produce enhanced, high level data products.

  7. VLA Hosts "Flag Across America"

    NASA Astrophysics Data System (ADS)

    2001-11-01

    The National Radio Astronomy Observatory (NRAO) hosted the runners and support personnel of the "Americans United Flag Across America" run as the transcontinental memorial and fundraising effort came through New Mexico. The flag run arrived at NRAO's Very Large Array (VLA) radio telescope west of Socorro, NM, early in the post-Midnight morning of Monday, November 5, and departed after sunrise that morning en route to the Arizona border. Drivers, runners and support personnel stayed overnight at the VLA. During the night, a "VLA Night Owl Run" kept the flag moving around the VLA area until the westward trek resumed after dawn. The run began Oct. 11, one month after the terrorist attacks on New York and Washington. Organized by employees of American and United Airlines to honor the flight crews lost in those attacks, to show support for U.S. troops and to raise funds to help the victims' families, the run will take an American flag from Boston Logan Airport to Los Angeles International Airport. The Boston-to-Los Angeles trip represents the intended journey of American Flight 11 and United Flight 175, both of which were crashed by terrorists into the World Trade Center. "Our observatory was proud to host this group and honored that they brought this flag through our facility," said Miller Goss, NRAO's director of VLA operations. The runners carried a flag that flew in a U.S. F-16 over Iraq in support of Operation Southern Watch on Oct. 2, and has visited Ground Zero in Manhattan. The flag is scheduled to arrive in Los Angeles on Veterans Day, Nov. 11. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.

  8. GBT, VLA Team Up to Produce New Image of Orion Nebula

    NASA Astrophysics Data System (ADS)

    2002-01-01

    Combining the best features of the National Science Foundation's (NSF) new Robert C. Byrd Green Bank Telescope (GBT) in West Virginia with those of the NSF's Very Large Array (VLA) in New Mexico, astronomers have produced a vastly improved radio image of the Orion Nebula and developed a valuable new technique for studying star formation and other astrophysical processes. GBT-VLA Image of Orion Nebula GBT-VLA Image of Orion Nebula "Our GBT image of the Orion Nebula is the best image ever produced with a single-dish radio telescope and it illustrates the superb performance of this new telescope," said Debra Shepherd, of the National Radio Astronomy Observatory (NRAO) in Socorro, NM. "By combining data from the GBT with that from the VLA, we get an image that reflects reality far better than images from the separate telescopes could do," she added. Shepherd worked with Ron Maddalena from NRAO in Green Bank and Joe McMullin, from NRAO in Socorro. The astronomers presented their work to the American Astronomical Society meeting in Washington, DC. Single-dish radio telescopes such as the GBT, dedicated in 2000, are able to capture the large-scale structure of objects such as the Orion Nebula. However, they are unable to discern the fine detail revealed by multi-antenna arrays such as the VLA. Conversely, a VLA-like array is "blind" to the larger-scale structures. Combining the data from both types of radio telescopes to produce an image showing both large- and small-scale structures in the same celestial object has been a difficult, laborious task. "We are developing new observing techniques and software to make this task much easier and quicker," said McMullin. "We now have achieved in hours what used to take months or even longer to do, but we are producing an observational tool that will allow astronomers to make much higher-fidelity images that will greatly improve our understanding of several important astronomical processes," McMullin added. For this observation

  9. The Path from VLITE to ngLOBO: A Roadmap for Evolving a Low Frequency Commensal System from the JVLA to the ngVLA

    NASA Astrophysics Data System (ADS)

    Kassim, Namir E.; Clarke, Tracy; Giacintucci, Simona; Helmboldt, Joseph; Ray, Paul S.; Peters, Wendy; Polisensky, Emil; hicks, Brian C.; Brisken, Walter; hyman, Scott D.; Deneva, Julia; Kerr, Matthew T.; Taylor, Gregory; Dowell, Jayce; Schinzel, Frank K.

    2018-01-01

    The VLA Low-band Ionosphere and Transient Experiment (VLITE, nrao.edu/>) is a commensal observing system on the NRAO Karl G. Jansky Very Large Array (VLA). The separate optical path of the prime-focus sub-GHz dipole feeds and the Cassegrain-focus GHz feeds provided an opportunity to expand the simultaneous frequency operation of the VLA through joint observations across both systems. 16 VLA antennas are outfitted with dedicated samplers and use spare fibers to transport the 320-384 MHz band to the VLITE CPU-based correlator. Initial goals included exploring the scientific potential of a commensal low frequency system for ionospheric remote sensing, astrophysics and transients. VLITE operates at nearly 70% wall time with roughly 6200 hours of VLA time recorded each year.Several papers at this meeting review VLITE science and early results. Here we consider how the project could evolve in the future. Over the next 10 years, a straightforward evolutionary path calls for an expansion of VLITE to all 27 VLA antennas and to the maximum available low band receiver bandwidth (224-480 MHz). The GPU-based correlator for this LOw Band Observatory (LOBO) would also incorporate lower frequency signals from the new VLA 74 MHz system, including from VLA dishes (60-80 MHz) and standalone Long Wavelength Array (LWA) aperture array stations (20-80 MHz).In the longer term, we look towards leveraging the vast infrastructure of the ngVLA to include a commensal low frequency capability, called ngLOBO. As described in our community white paper (Taylor et al. 2018; arXiv:1708.00090), ngLOBO has three primary scientific missions: (1) Radio Large Synoptic Survey Telescope (Radio-LSST): one naturally wide beam, commensal with ngVLA, will conduct a continuous synoptic survey of large swaths of the sky for both slow and fast transients; (2) This same commensal beam will provide complementary low frequency images of all ngVLA targets when such data enhances their value. (3

  10. A 20 GHz bright sample for δ > 72° - II. Multifrequency follow-up

    NASA Astrophysics Data System (ADS)

    Ricci, R.; Righini, S.; Verma, R.; Prandoni, I.; Carretti, E.; Mack, K.-H.; Massardi, M.; Procopio, P.; Zanichelli, A.; Gregorini, L.; Mantovani, F.; Gawroński, M. P.; Peel, M. W.

    2013-11-01

    We present follow-up observations at 5, 8 and 30 GHz of the K-band Northern Wide Survey (KNoWS) 20 GHz Bright Sample, performed with the 32-m Medicina radio telescope and the 32-m Toruń radio telescope. The KNoWS sources were selected in the Northern Polar Cap (δ > 72°) and have a flux density limit S20 GHz = 115 mJy. We include NRAO-VLA Sky Survey 1.4 GHz measurements to derive the source radio spectra between 1.4 and 30 GHz. Based on optical identifications, 68 per cent of the sources are quasars and 27 per cent are radio galaxies. A redshift measurement is available for 58 per cent of the sources. The radio spectral properties of the different source populations are found to be in agreement with those of other high-frequency-selected samples.

  11. UGC Galaxies Stronger than 25 MJy at 4.85 GHz

    NASA Astrophysics Data System (ADS)

    Condon, J. J.; Frayer, D. T.; Broderick, J. J.

    1995-11-01

    UGC galaxies in the declination band +5 degrees < delta < +75 degrees were identified by position coincidence with radio sources stronger than 25 mJy on the Green Bank 4.85 GHz sky maps. Candidate identifications were confirmed or rejected with the aid of published aperture-synthesis maps (including those in the companion directory UGC20CM.DIR) and new 4.86 GHz VLA D-array maps having 15 or 18 arcsec FWHM resolution. The 4.86 GHz maps in this directory cover both confirmed identifications and candidates rejected because of confusion, low flux density, etc. For more information on this study, please see the following references: Condon, J. J., Frayer, D. T., and Broderick, J. J. 1991, AJ, 101, 362. The image(s) and related TeX file come from the NRAO CDROM "Images From the Radio Universe" (c. 1992 National Radio Astronomy Observatory, used with permission).

  12. The VLA Sky Survey (VLASS): Overview and First Results

    NASA Astrophysics Data System (ADS)

    Myers, Steven T.; VLASS Survey Team, Survey Science Group (SSG)

    2018-01-01

    The VLA Sky Survey (VLASS) is a 5520 hour spectropolarimetric synoptic survey covering the 33885 square degrees of the sky above Declination -40 degrees from 2-4 GHz at 2.5" angular resolution using the upgraded Karl G. Jansky Very Large Array (VLA). Over the survey duration of 7 years, each area of the sky will be covered in 3 epochs spaced 32 months apart, to a projected depth of 0.12mJy/beam rms noise per epoch and 0.07mJy/beam for 3 epochs combined. The VLASS employs on-the-fly mosaicking (OTFM) to rapidly scan the sky with a net speed of approximately 20 sq. degrees per hour. The high-level science goals for the survey include the identification and precise location of radio transients, the measurement of magnetic fields in our galaxy and beyond, and the study of radio emission from galaxies and active galactic nuclei throughout the Universe. The ability of the VLASS to see through dust allows us to unveil phenomena such as hidden cosmic explosions, emission from deep within our galaxy, and supermassive black holes buried within host galaxies.The VLASS was proposed in 2014 by our community-led Survey Science Group (SSG). VLASS Pilot observations were taken in mid-2016, and the first epoch covering half the area (VLASS1.1) commenced in September 2017. The raw data from the VLASS are available in the NRAO archive immediately with no proprietary period. The Basic Data Products (BDP) that will be produced by the survey team are public and will additionally include: calibrated visibility data, quick-look continuum images (with a goal of posting to the archive within 1 week of observation), single-epoch and cumulative combined-epoch images, spectral image cubes, and basic object catalogs. Single-epoch and cumulative images are in intensity and linear polarization (Stokes IQU). In addition to the BDP provided by NRAO and served through the NRAO archive, there are plans for Enhanced Data Products and Services to be provided by the community in partnership with the

  13. Technology Advances at the NRAO Green Bank Telescope

    NASA Astrophysics Data System (ADS)

    Lockman, Felix James

    2015-08-01

    The 100 meter diameter Green Bank Telescope, with its large frequency coverage, great sensitivity, all-sky tracking, and location at a protected, radio-quiet site, offers a unique platform for technological advances in astronomical instrumentation that can yield an immediate scientific payoff.MUSTANG-1.5 is a feedhorn-coupled bolometer array for 3mm that has recently been installed on the telescope. It has 64 pixels (expandable to 223) and offers sensitivity to angular scales from 9" to more than 3' over a band from 75 GHz to 105 GHz. Its capabilities for science at 3mm are complimentary to, and in some cases superior to, those offered by ALMA. MUSTANG-1.5 is a collaboration between UPenn., NIST, NRAO, and other institutions.ARGUS is a 16-pixel focal plane array for millimeter spectroscopy that will be in use on the GBT in 2015. The array architecture is designed as a scalable technology pathfinder for larger arrays, but by itself it will provide major capabilities for spectroscopy from 75-107 GHz with 8" angular resolution over a wide field-of-view. It is a collaboration between Stanford Univ., Caltech, JPL, Univ. Maryland, Univ. Miami, and NRAO.FLAG is a prototype phased array receiver operating at 21cm wavelength that is under development for the GBT. It will produce multiple beams over a wide field of view with a sensitivity competitive with that of single-pixel receivers, allowing rapid astronomical surveys. FLAG is a collaboration between BYU, WVU, and NRAO.Also under development is a mm-wave phased array receiver for the GBT, designed to operate near 90 GHz as a prototype for very large format phased array receivers in the 3mm band. It is a collaboration between UMass and BYU.VEGAS is the new spectrometer for the GBT, offering multiple configurations well matched to GBT receivers from 1 to 100 GHz and suitable for use with focal plane arrays. It is a collaboration between UCal (Berkeley) and NRAO.The new receivers and spectrometers create extremely big data

  14. Update on the Commensal VLA Low-band Ionospheric and Transient Experiment (VLITE)

    NASA Astrophysics Data System (ADS)

    Kassim, Namir E.; Clarke, Tracy E.; Ray, Paul S.; Polisensky, Emil; Peters, Wendy M.; Giacintucci, Simona; Helmboldt, Joseph F.; Hyman, Scott D.; Brisken, Walter; Hicks, Brian; Deneva, Julia S.

    2017-01-01

    The JVLA Low-band Ionospheric and Transient Experiment (VLITE) is a commensal observing system on the NRAO JVLA. The separate optical path of the prime-focus sub-GHz dipole feeds and the Cassegrain-focus GHz feeds provided an opportunity to expand the simultaneous frequency operation of the JVLA through joint observations across both systems. The low-band receivers on 10 JVLA antennas are outfitted with dedicated samplers and use spare fibers to transport the 320-384 MHz band to the VLITE correlator. The initial phase of VLITE uses a custom-designed real-time DiFX software correlator to produce autocorrelations, as well as parallel and cross-hand cross-correlations from the linear dipole feeds. NRL and NRAO have worked together to explore the scientific potential of the commensal low frequency system for ionospheric remote sensing, astrophysics and transients. VLITE operates at nearly 70% wall time with roughly 6200 hours of JVLA time recorded each year.VLITE data are used in real-time for ionospheric research and are transferred daily to NRL for processing in the astrophysics and transient pipelines. These pipelines provide automated radio frequency interference excision, calibration, imaging and self-calibration of data.We will review early scientific results from VLITE across all three science focus areas, including the ionosphere, slow (> 1 sec) transients, and astrophysics. We also discuss the future of the project, that includes its planned expansion to eVLITE including the addition of more antennas, and a parallel capability to search for fast (< 1 sec), dispersed transients, such as Fast Radio Bursts and Rotating Radio Transients. We will also present early results of commissioning tests to utilize VLITE data products to complement NRAO’s 3 GHz VLA Sky Survey (VLASS). Revised pipelines are under development for operation during the on-the-fly operation mode of the sky survey.

  15. NRAO Astronomer Wins Prestigious Guggenheim Fellowship

    NASA Astrophysics Data System (ADS)

    2010-04-01

    Dr. Dale Frail, an astronomer at the National Radio Astronomy Observatory (NRAO) in Socorro, New Mexico, has been awarded a prestigious Guggenheim Fellowship, according to the John Simon Guggenheim Memorial Foundation. The Guggenheim Foundation describes its fellowships as "mid-career" awards "intended for men and women who have already demonstrated exceptional capacity for productive scholarship or exceptional creative ability in the arts." Frail, 48, has worked at the NRAO for more than 20 years, first as a postdoctoral fellow, and then as a staff scientist. He received his bachelor's degree in physics from Acadia University in Nova Scotia, and his Ph.D in astronomy from the University of Toronto. Frail is best known for his landmark contributions to the understanding of gamma ray bursts, making critical measurements that provided key insights into the mechanisms of these superenergetic and once-mysterious explosions. He also has made important contributions to the understanding of other astronomical phenomena, including pulsars and their neighborhoods, supernova remnants, and magnetars. In 1992, he was the co-discoverer, with Alex Wolszczan, of the first planets outside our own solar system. "We congratulate Dale on this well-deserved honor that recognizes not only his past achievements but also his potential for exciting scientific work in the future," said Dr. Fred K.Y. Lo, NRAO Director. "We're very proud to see one of our scientists receive such a great honor," Lo added. Frail is one of 180 recipients of this year's Guggenheim Fellowships, chosen from some 3,000 applicants. The fellowships were established in 1925 and past recipients include photographer Ansel Adams, author Saul Bellow, former Secretary of State Henry Kissinger, and chemist Linus Pauling. 102 Guggenheim Fellows have subsequently won Nobel Prizes, and others have received Pulitzer Prizes and other honors. As a Guggenheim Fellow, Frail intends to intensify his research in the areas of pulsars

  16. NRAO Teams With NASA Gamma-Ray Satellite

    NASA Astrophysics Data System (ADS)

    2007-06-01

    The National Radio Astronomy Observatory (NRAO) is teaming with NASA's upcoming Gamma-ray Large Area Space Telescope (GLAST) to allow astronomers to use both the orbiting facility and ground-based radio telescopes to maximize their scientific payoff. Under the new, streamlined process, astronomers can compete for coordinated observing time and support from both GLAST and NRAO's radio telescopes. GLAST satellite Artist's rendering of the GLAST spacecraft in orbit above the Earth. CREDIT: General Dynamics C4 Systems Click on Image for Larger File Images of NRAO Telescopes Robert C. Byrd Green Bank Telescope Very Long Baseline Array Very Large Array Atacama Large Millimeter/submillimeter Array GLAST is scheduled for launch no earlier than December 14. It will perform a survey of the entire sky at gamma-ray wavelengths every 3 hours using its primary instrument, the Large Area Telescope (LAT). NRAO operates the Very Large Array (VLA) in New Mexico, the continent-wide Very Long Baseline Array (VLBA), and the Robert C. Byrd Green Bank Telescope (GBT) in West Virginia. The NRAO is a research facility of the National Science Foundation (NSF). "Coordinated gamma-ray and radio observations of celestial objects will greatly enhance the ability to fully understand those objects. Astronomy today requires such multiwavelength studies, and this agreement paves the way for exciting, cutting-edge research," said Fred K.Y. Lo, NRAO Director. GLAST will be vastly more capable than previous gamma-ray satellites, and will carry an instrument, the GLAST Burst Monitor, specifically designed to detect gamma-ray bursts. GLAST observers will study objects such as active galaxies, pulsars, and supernova remnants, which are also readily studied with radio telescopes. By working together, NASA's GLAST mission and NSF's NRAO facilities can study flares from blazars over the widest possible range of energies, which is crucial to understanding how black holes, notorious for drawing matter in, can

  17. VLA Imaging of Protoplanetary Environments

    NASA Technical Reports Server (NTRS)

    Wilner, David J.

    2004-01-01

    We summarize the major accomplishments of our program to use high angular resolution observations at millimeter wavelengths to probe the structure of protoplanetary disks in nearby regions of star formation. The primary facilities used in this work were the Very Large Array (VLA) of the National Radio Astronomy Observatories (NRAO) located in New Mexico, and the recently upgraded Australia Telescope Compact Array (ATCA), located in Australia (to access sources in the far southern sky). We used these facilities to image thermal emission from dust particles in disks at long millimeter wavelengths, where the emission is optically thin and probes the full disk volume, including the inner regions of planet formation that remain opaque at shorter wavelengths. The best resolution obtained with the VLA is comparable to the size scales of the orbits of giant planets in our Solar System (< 10 AU).

  18. VizieR Online Data Catalog: VLA-COSMOS 3 GHz Large Project (Smolcic+, 2017)

    NASA Astrophysics Data System (ADS)

    Smolcic, V.; Novak, M.; Bondi, M.; Ciliegi, P.; Mooley, K. P.; Schinnerer, E.; Zamorani, G.; Navarrete, F.; Bourke, S.; Karim, A.; Vardoulaki, E.; Leslie, S.; Delhaize, J.; Carilli, C. L.; Myers, S. T.; Baran, N.; Delvecchio, I.; Miettinen, O.; Banfield, J.; Balokovic, M.; Bertoldi, F.; Capak, P.; Frail, D. A.; Hallinan, G.; Hao, H.; Herrera Ruiz, N.; Horesh, A.; Ilbert, O.; Intema, H.; Jelic, V.; Klockner, H.-R.; Krpan, J.; Kulkarni, S. R.; McCracken, H.; Laigle, C.; Middleberg, E.; Murphy, E.; Sargent, M.; Scoville, N. Z.; Sheth, K.

    2016-10-01

    The catalog contains sources selected down to a 5σ(σ~2.3uJy/beam) threshold. This catalog can be used for statistical analyses, accompanied with the corrections given in the data & catalog release paper. All completeness & bias corrections and source counts presented in the paper were calculated using this sample. The total fraction of spurious sources in the COSMOS 2 sq.deg. is below 2.7% within this catalog. However, an increase of spurious sources up to 24% at 5.0=5.5 for single component sources (MULTI=0). The total fraction of spurious sources in the COSMOS 2 sq.deg. within such a selected sample is below 0.4%, and the fraction of spurious sources is below 3% even at the lowest S/N (=5.5). Catalog Notes: 1. Maximum ID is 10966 although there are 10830 sources. Some IDs were removed by joining them into multi-component sources. 2. Peak surface brightness of sources [uJy/beam] is not reported, but can be obtained by multiplying SNR with RMS. 3. High NPIX usually indicates extended or very bright sources. 4. Reported positional errors on resolved and extended sources should be considered lower limits. 5. Multicomponent sources have errors and S/N column values set to -99.0 Additional data information: Catalog date: 21-Mar-2016 Source extractor: BLOBCAT v1.2 (http://blobcat.sourceforge.net/) Observations: 384 hours, VLA, S-band (2-4GHz), A+C array, 192 pointings Imaging software: CASA v4.2.2 (https://casa.nrao.edu/) Imaging algorithm: Multiscale multifrequency synthesis on single pointings Mosaic size: 30000x30000 pixels (3.3 GB) Pixel size: 0.2x0.2 arcsec2 Median rms noise in the COSMOS 2 sq.deg.: 2.3uJy/beam Beam is circular with FWHM=0.75 arcsec Bandwidth-smearing peak correction: 0% (no corrections applied) Resolved criteria: Sint/Speak>1+6*snr^(-1.44) Total area covered

  19. The Caltech-NRAO Stripe 82 Survey (CNSS) Paper. I. The Pilot Radio Transient Survey in 50 Deg.(exp. 2)

    NASA Technical Reports Server (NTRS)

    Mooley, K. P.; Hallinan, G.; Bourke, S.; Horesh, A.; Myers, S. T.; Frail, D. A.; Kulkarni, S. R.; Levitan, D. B.; Kasliwal, M. M.; Cenko, S. B.; hide

    2016-01-01

    We have commenced a multiyear program, the Caltech-NRAO Stripe 82 Survey (CNSS), to search for radio transients with the Jansky VLA in the Sloan Digital Sky Survey Stripe 82 region. The CNSS will deliver five epochs over the entire approx. 270 deg.(exp. 2) of Stripe 82, an eventual deep combined map with an rms noise of approx. 40 proper motion epoch y and catalogs at a frequency of 3 GHz, and having a spatial resolution of 3 inches. This first paper presents the results from an initial pilot survey of a 50 deg.(exp. 2) region of Stripe 82, involving four epochs spanning logarithmic timescales between 1 week and 1.5 yr, with the combined map having a median rms noise of 35 proper motion epoch y. This pilot survey enabled the development of the hardware and software for rapid data processing, as well as transient detection and follow-up, necessary for the full 270 deg.(exp. 2) survey. Data editing, calibration, imaging, source extraction, cataloging, and transient identification were completed in a semi-automated fashion within 6 hr of completion of each epoch of observations, using dedicated computational hardware at the NRAO in Socorro and custom-developed data reduction and transient detection pipelines. Classification of variable and transient sources relied heavily on the wealth of multiwavelength legacy survey data in the Stripe 82 region, supplemented by repeated mapping of the region by the Palomar Transient Factory. A total of 3.9(+0.5%/-0.9%) of the few thousand detected point sources werefound to vary by greater than 30%, consistent with similar studies at 1.4 and 5 GHz. Multiwavelength photometric data and light curves suggest that the variability is mostly due to shock-induced flaring in the jets of active galactic nuclei (AGNs). Although this was only a pilot survey, we detected two bona fide transients, associated with an RS CVn binary and a dKe star. Comparison with existing legacy survey data (FIRST, VLA-Stripe 82) revealed additional highly

  20. VLA's Sharpened Vision Shows Details of Still-Forming Star

    NASA Astrophysics Data System (ADS)

    2001-01-01

    Using a new observing capability of the National Science Foundation's Very Large Array (VLA) radio telescope, astronomers have discovered a solar-system-sized disk of gas and dust feeding material onto a young star with 8 to 10 times the mass of the Sun. This is the first time an inner "accretion disk" has been seen around such a massive star. The VLA images also revealed the inner portion of an energetic outflow of material powered by the accretion disk. Artist's conception "Disks and outflows in young stars increase dramatically in mass and energy as the mass of the young star increases. We don't know if the same process is at work in all young stars or how the disks can both power an outflow that extends more than 15 light-years and also start the process of forming planets," said Debra Shepherd, of the National Radio Astronomy Observatory (NRAO) in Socorro, New Mexico. "By studying the birth of massive young stars, we're pushing the limits of our understanding and trying to learn if there are critical differences between the outflows from high and low mass young stars," she added Shepherd and Mark Claussen, also from the NRAO in Socorro, and Stan Kurtz of the National Autonomous University in Mexico, presented their findings today at the American Astronomical Society's meeting in San Diego, CA. The scientists made the discovery using the VLA connected by a newly- operational fiber-optic link to one of the radio-telescope antennas of the NSF's Very Long Baseline Array (VLBA), located at Pie Town, NM, 32 miles away from the VLA. Linking the VLA to the Pie Town antenna almost doubled the resolving power, or ability to see fine detail, available to the astronomers. "We could not have seen these structures without using the Pie Town antenna connected to the VLA," said Claussen. Work on the VLA-Pie Town fiber-optic link, financed by the NSF and Associated Universities, Inc., which operates NRAO for the NSF, began in late 1997. The linked facilities first were

  1. Searching for MHz Transients with the VLA Low-band Ionosphere and Transient Experiment (VLITE)

    NASA Astrophysics Data System (ADS)

    Polisensky, Emil; Peters, Wendy; Giacintucci, Simona; Clarke, Tracy; Kassim, Namir E.; hyman, Scott D.; van der Horst, Alexander; Linford, Justin; Waldron, Zach; Frail, Dale

    2018-01-01

    NRL and NRAO have expanded the low frequency capabilities of the VLA through the VLA Low-band Ionosphere and Transient Experiment (VLITE, http://vlite.nrao.edu/ ), effectively making the instrument two telescopes in one. VLITE is a commensal observing system that harvests data from the prime focus in parallel with normal Cassegrain focus observing on a subset of VLA antennas. VLITE provides over 6000 observing hours per year in a > 5 square degree field-of-view using 64 MHz bandwidth centered on 352 MHz. By operating in parallel, VLITE offers invaluable low frequency data to targeted observations of transient sources detected at higher frequencies. With arcsec resolution and mJy sensitivity, VLITE additionally offers great potential for blind searches of rarer radio-selected transients. We use catalog matching software on the imaging products from the daily astrophysics pipeline and the LOFAR Transients Pipeline (TraP) on repeated observations of the same fields to search for coherent and incoherent astronomical transients on timescales of a few seconds to years. We present the current status of the VLITE transient science program from its initial deployment on 10 antennas in November 2014 through its expansion to 16 antennas in the summer of 2017. Transient limits from VLITE’s first year of operation (Polisensky et al. 2016) are updated per the most recent analysis.

  2. NRAO Image Gallery

    Science.gov Websites

    Go Home NRAO: National Radio Astronomy Observatory Search NRAO... Go Home About NRAO Research Facilities Contact Us Careers Director's Office Maps & Directions Learn & Explore Radio Astronomy Brochures & Posters Presentations Essential Radio Astronomy Ask an Astronomer Astronomers Home >

  3. An Operations Concept for the Next Generation VLA

    NASA Astrophysics Data System (ADS)

    Kepley, Amanda; McKinnon, Mark; Selina, Rob; Murphy, Eric Joseph; ngVLA project

    2018-01-01

    This poster presents an operations plan for the next generation VLA (ngVLA), which is a proposed 214 element interferometer operating from ~1-115GHz, located in the southwestern United States. The operations requirements for this instrument are driven by the large number of antennas spread out over a multi-state area and a cap on the operations budget of 3 times that of the current VLA. These constraints require that the maintenance is a continuous process and that individual antennas are self-sufficient, making flexible subarrays crucial. The ngVLA will produce science ready data products for its users, building on the pioneering work being currently done at ALMA and the JVLA. Finally, the ngVLA will adopt a user support model similar to those at other large facilities (ALMA, HST, JWST, etc).

  4. Surveying the Sky at Low Frequencies with the Commensal VLITE System

    NASA Astrophysics Data System (ADS)

    Clarke, Tracy; Kassim, Namir E.; Richards, Emily; Peters, Wendy; Polisensky, Emil

    2017-05-01

    We present details of a new commensal observing program on NRAO's Karl G. Jansky Very Large Array (VLA). The VLA Low-band Ionosphere and Transient Experiment (VLITE) provides a simultaneous sub-GHz data stream during all Cassegrain (1-50 GHz) observations. This unique low frequency opportunity opens up over 6000 hours per year of VLA observing time to the low frequency community. In the first 2 1/4 years of operation, VLITE processed images cover regions containing 2,322 unique exoplanets in 62,000 individual scans. VLITE observations provide a large database to observe samples of nearby stellar systems, enabling a powerful means of monitoring these systems for stellar activity as well as emission from exoplanets.

  5. ALMA and VLA observations of the HD 141569 system

    NASA Astrophysics Data System (ADS)

    White, Jacob Aaron; Boley, A. C.; MacGregor, M. A.; Hughes, A. M.; Wilner, D. J.

    2018-03-01

    We present VLA 9 mm (33 GHz) and archival ALMA 2.9 mm (103 GHz) observations of the HD 141569 system. The VLA observations achieve a resolution of 0.25 arcsec (˜28 au) and a sensitivity of 4.7 μJy beam- 1. We find (1) a 52 ± 5 μJy point source at the location of HD 141569A that shows potential variability, (2) the detected flux is contained within the SED-inferred central clearing of the disc meaning the spectral index of the dust disc is steeper than previously inferred, and (3) the M dwarf companions are also detected and variable. Previous lower resolution VLA observations (semester 14A) found a higher flux density, interpreted as solely dust emission. When combined with ALMA observations, the VLA 14A observations suggested the spectral index, and grain size distribution of HD 141569's disc was shallow and an outlier among debris systems. Using archival ALMA observations of HD 141569 at 0.87 and 2.9 mm, we find a dust spectral index of αmm = 1.81 ± 0.20. The VLA 16A flux corresponds to a brightness temperature of ˜5 × 106 K, suggesting strong non-disc emission is affecting the inferred grain properties. The VLA 16A flux density of the M2V companion HD 141569B is 149 ± 9 μJy, corresponding to a brightness temperature of ˜2 × 108 K and suggesting significant stellar variability when compared to the VLA14A observations, which are smaller by a factor of ˜6.

  6. National Science Board Approves VLA Expansion

    NASA Astrophysics Data System (ADS)

    2001-11-01

    The National Science Board, the governing body for the National Science Foundation (NSF), has approved an expansion project for the Very Large Array (VLA) radio telescope in New Mexico. The board recommended an NSF award of approximately 58.3 million for the project over the next decade. The action came at the Board's meeting in Washington on Nov. 15. The Very Large Array The Very Large Array "This approval means that the VLA, already the most scientifically productive ground-based telescope in all of astronomy, will remain at the cutting edge of astrophysical research through the coming decades," said Paul Vanden Bout, director of the National Radio Astronomy Observatory (NRAO). The expansion project will replace aging equipment left over from the VLA's construction during the 1970s with modern technology, improving the VLA's scientific capabilities more than tenfold. Using the existing 27 dish antennas, each weighing 230 tons, the Expanded VLA will have greatly improved ability to image distant celestial objects and to decipher the physical nature of those objects. In addition to the 58.3 million NSF allocation, the governments of Canada and Mexico plan to provide funding for the VLA expansion. The VLA Expansion Project was formally proposed to the NSF, which owns the VLA, last year. Also last year, the project received a strong endorsement from the Astronomy and Astrophysics Survey Committee of the National Research Council, the working arm of the National Academies of Sciences and Engineering. That committee had been given the task of setting nationwide priorities for astronomy spending over the next decade. The Survey Committee report listed the Expanded VLA as an important contributor to new understanding in three high-priority research areas for the next decade: studies of star and planet formation; research into black holes; and unraveling details about the "dawn of the modern universe." Dedicated in 1980, the VLA is the most powerful, flexible and widely

  7. U.S.-Canadian Partnership in Radio Astronomy Valuable for Science, NRAO Director Says

    NASA Astrophysics Data System (ADS)

    2001-10-01

    The United States and Canada intend to collaborate on two of the most important radio astronomy projects of the new century - the Atacama Large Millimeter Array (ALMA) and the Expanded Very Large Array (EVLA), astronomers from both countries announced today. "This cooperative program - the North American Partnership in Radio Astronomy - involves the key projects that will dominate radio astronomy world-wide," said Paul Vanden Bout, director of the National Radio Astronomy Observatory (NRAO). "This partnership will multiply the efforts of both nations' astronomers for the benefit of science. It builds on a long tradition of cooperative efforts in radio astronomy, and will ensure that we continue that tradition into the new millennium," Vanden Bout said. The U.S.-Canada radio astronomy partnership is outlined in two letters of intent signed recently. The first, between the U.S. National Science Foundation (NSF) and Canada's National Research Council (NRC), states that both agencies will use their best efforts to obtain the necessary funding for construction and operation of ALMA. The second, between the National Radio Astronomy Observatory, funded by the NSF, and the Herzberg Institute of Astrophysics, funded by the NRC, forms a partnership in the EVLA. The VLA Expansion Project is a two-phase program designed to improve the scientific capabilities of the VLA tenfold by replacing 1970s-vintage equipment with modern technologies and adding new radio-telescope antennas to the existing 27-antenna array. Dedicated in 1980, the VLA has been used for more than 10,000 observing projects covering nearly every area of astrophysics. It is the most powerful, flexible and widely-used radio telescope in the world. The Expanded VLA will provide the improved observational capabilities needed to meet the research challenges of the coming years. In addition to the participation by Canada, funds have been pledged by Mexico. Both Mexico and Germany have funded VLA improvements in the

  8. Students Use VLA to Make Startling Brown-Dwarf Discovery

    NASA Astrophysics Data System (ADS)

    2001-03-01

    A group of summer students making a long-shot astronomical gamble with the National Science Foundation's (NSF) Very Large Array (VLA) have found the first radio emission ever detected from a brown dwarf, an enigmatic object that is neither a star nor a planet, but something in between. Their surprising discovery is forcing experts to re-think their theories about how brown dwarfs work. The Very Large Array "Many astronomers are surprised at this discovery, because they didn't expect such strong radio emission from this object," said Shri Kulkarni, a Caltech professor who was on the team that first discovered a brown dwarf in 1995, and advisor to one of the students. "What is so cool is that this is research that probably nobody else would have tried to do because of its low chance of success. That made it ideal for summer students -- we had almost nothing to lose," said Kate Becker, a student at Oberlin College in Ohio. "The radio emission these students discovered coming from this brown dwarf is 10,000 times stronger than anyone expected," said Dale Frail, an astronomer at the National Radio Astronomy Observatory (NRAO) in Socorro, NM. "This student project is going to open up a whole new area of research for the VLA," Frail added. The students, in addition to Becker, are: Edo Berger from Caltech; Steven Ball from New Mexico Tech in Socorro, NM; Melanie Clarke from Carleton College in Northfield, MN; Therese Fukuda from the University of Denver; Ian Hoffman from the University of New Mexico in Albuquerque; Richard Mellon from The Pennsylvania State University; Emmanuel Momjian from the University of Kentucky; Nathanial Murphy from Amherst College in Amherst, MA; Stacey Teng from the University of Maryland; Timothy Woodruff from Southwestern University in Georgetown, TX; Ashley Zauderer from Agnes Scott College in Decatur, GA; and Robert Zavala from New Mexico State University in Las Cruces, NM. Frail also is an author of the research paper, published in the March

  9. THE ABUNDANCE OF X-SHAPED RADIO SOURCES. I. VLA SURVEY OF 52 SOURCES WITH OFF-AXIS DISTORTIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roberts, David H.; Cohen, Jake P.; Lu, Jing

    Cheung identified a sample of 100 candidate X-shaped radio galaxies using the NRAO FIRST survey; these are small-axial-ratio extended radio sources with off-axis emission. Here, we present radio images of 52 of these sources that have been made from archival Very Large Array data with resolution of about 1″. Fifty-one of the 52 were observed at 1.4 GHz, 7 were observed at 1.4 and 5 GHz, and 1 was observed only at 5 GHz. We also present overlays of the Sloan Digital Sky Survey red images for 48 of the sources, and DSS II overlays for the remainder. Optical counterpartsmore » have been identified for most sources, but there remain a few empty fields. Our higher resolution VLA images along with FIRST survey images of the sources in the sample reveal that extended extragalactic radio sources with small axial ratios are largely (60%) cases of double radio sources with twin lobes that have off-axis extensions, usually with inversion-symmetric structure. The available radio images indicate that at most 20% of sources might be genuine X-shaped radio sources that could have formed by a restarting of beams in a new direction following an interruption and axis flip. The remaining 20% are in neither of these categories. The implications of this result for the gravitational wave background are discussed in Roberts et al.« less

  10. VLA Reveals a Close Pair of Potential Planetary Systems

    NASA Astrophysics Data System (ADS)

    1998-09-01

    blocks of planets. Until 1993, however, the VLA could not do so because it had no receivers that worked at the required wavelength, 7 mm. Rodriguez, an experienced VLA observer interested in how planetary systems form, obtained a $1 million grant in 1992 from Mexico's National Science and Technology Foundation (Spanish acronym CONACyT) to allow the National Radio Astronomy Observatory (NRAO) to build such receivers for 13 of the VLA's 27 230-ton dish antennas. Those receivers were built and installed in 1993 and 1994, and now are used by numerous observers, including Rodriguez. With these receivers, the VLA images show 10 times more detail than any previous observations at these wavelengths. "This research proves how valuable these receivers are in increasing the scientific capability of the VLA," said Miller Goss, NRAO's director of VLA operations. "In fact, this type of work is one reason the U.S. National Science Foundation is providing the money to equip the rest of the VLA's antennas with the same kind of receivers." The additional receivers will greatly improve the quality of images for complex objects, including planetary systems in formation, said NRAO astronomer Rick Perley. "We plan a major upgrade to all aspects of the VLA in the next few years," Perley said. "The VLA upgrade will mean that astronomers using this wavelength can find about 60 times more objects of any particular type and make better images of them. That improves the chances of finding rare objects, which often are the signposts pointing to new insights into physics." The VLA is an instrument of the National Radio Astronomy Observatory, a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.

  11. The GOODS-N Jansky VLA 10 GHz Pilot Survey: Sizes of Star-forming μJY Radio Sources

    NASA Astrophysics Data System (ADS)

    Murphy, Eric J.; Momjian, Emmanuel; Condon, James J.; Chary, Ranga-Ram; Dickinson, Mark; Inami, Hanae; Taylor, Andrew R.; Weiner, Benjamin J.

    2017-04-01

    Our sensitive ({σ }{{n}}≈ 572 {nJy} {{beam}}-1), high-resolution (FWHM {θ }1/2=0\\buildrel{\\prime\\prime}\\over{.} 22≈ 2 {kpc} {at} z≳ 1), 10 GHz image covering a single Karl G. Jansky Very Large Array (VLA) primary beam (FWHM {{{\\Theta }}}1/2≈ 4\\buildrel{ \\prime}\\over{.} 25) in the GOODS-N field contains 32 sources with {S}{{p}}≳ 2 μ {Jy} {{beam}}-1 and optical and/or near-infrared (OIR) counterparts. Most are about as large as the star-forming regions that power them. Their median FWHM major axis is < {θ }{{M}}> =167+/- 32 {mas}≈ 1.2+/- 0.28 {kpc}, with rms scatter ≈ 91 {mas}≈ 0.79 {kpc}. In units of the effective radius {r}{{e}} that encloses half their flux, these radio sizes are < {r}{{e}}> ≈ 69+/- 13 {mas}≈ 509+/- 114 {pc}, with rms scatter ≈ 38 {mas}≈ 324 {pc}. These sizes are smaller than those measured at lower radio frequencies, but agree with dust emission sizes measured at mm/sub-mm wavelengths and extinction-corrected Hα sizes. We made a low-resolution ({θ }1/2=1\\buildrel{\\prime\\prime}\\over{.} 0) image with ≈ 10× better brightness sensitivity, in order to detect extended sources and measure matched-resolution spectral indices {α }1.4 {GHz}10 {GHz}. It contains six new sources with {S}{{p}}≳ 3.9 μ {Jy} {{beam}}-1 and OIR counterparts. The median redshift of all 38 sources is < z> =1.24+/- 0.15. The 19 sources with 1.4 GHz counterparts have a median spectral index of < {α }1.4 {GHz}10 {GHz}> =-0.74+/- 0.10, with rms scatter ≈ 0.35. Including upper limits on α for sources not detected at 1.4 GHz flattens the median to < {α }1.4 {GHz}10 {GHz}> ≳ -0.61, suggesting that the μJy radio sources at higher redshifts—and hence those selected at higher rest-frame frequencies—may have flatter spectra. If the non-thermal spectral index is {α }{NT}≈ -0.85, the median thermal fraction of sources selected at median rest-frame frequency ≈ 20 {GHz} is ≳48%.

  12. VizieR Online Data Catalog: AR Sco VLA radio observations (Stanway+, 2018)

    NASA Astrophysics Data System (ADS)

    Stanway, E. R.; Marsh, T. R.; Chote, P.; Gaensicke, B. T.; Steeghs, D.; Wheatley, P. J.

    2018-02-01

    Time series VLA radio observations were undertaken of the highly variable white dwarf binary AR Scorpii. These were analysed for periodicity, spectral behaviour and other characteristics. Here we present time series data in the Stokes I parameter at three frequencies. These were centred at 1.5GHz (1GHz bandwidth), 5GHz (2GHz bandwidth) and 9GHz (2GHz bandwidth). The AR Sco binary is unresolved at these frequencies. In the case of the 1.5GHz data, fluxes have been deconvolved with those of a neighbouring object. (3 data files).

  13. The Search for Cosmic Company: SETI on ngVLA

    NASA Astrophysics Data System (ADS)

    Croft, Steve; Siemion, Andrew; Hellbourg, Greg

    2018-01-01

    "Are we alone?" is one of the most profound human questions. The unprecedented capabilities of next generation radio telescopes, including ngVLA, will allow us to probe hitherto unexplored regions of parameter space, placing meaningful limits on the prevalence of technological civilizations in the Universe, or perhaps making one of the most significant discoveries in the history of science.Through both targeted and commensal observations, ngVLA data will be searched for signatures of technology (including narrow-band, Doppler-drifting, and more complex signals) that can be localized to particular positions on the sky. ngVLA provides critical capabilities in the 10 – 100 GHz range, a region of the spectrum used by many human technologies, to survey the sky at sensitivities unmatched by other facilities.

  14. VLA Expansion Project Gets Strong Endorsement From National Committee

    NASA Astrophysics Data System (ADS)

    2000-05-01

    A project to expand the National Science Foundation's famed Very Large Array (VLA) radio telescope, improving its scientific capabilities tenfold, has received strong endorsement from a prestigous national panel of astronomers given the task of setting priorities for astronomical projects in the next decade. The Astronomy and Astrophysics Survey Committee, established by the National Research Council, the working arm of the National Academy of Sciences, gave the VLA Expansion one of the top ratings among proposed ground-based observatory projects in a report issued today. Center of the VLA "This ranking by the Survey Committee, which heard from hundreds of astronomers around the country, shows that the astronomical community places great importance on expanding the VLA," said Paul Vanden Bout, Director of the National Radio Astronomy Observatory (NRAO). "The VLA is a unique and critical resource for the world's astronomers, and the VLA Expansion Project will ensure that scientists have a state-of-the-art tool to meet the astronomical research challenges of the 21st Century," Vanden Bout added. The Survey Committee report listed the Expanded VLA as an important contributor to new understanding in three high-priority research areas for the next decade: studies of star and planet formation; research into black holes; and unraveling details about the "dawn of the modern universe." The VLA Expansion Project will use modern electronics and computer technology to greatly improve the VLA's ability to observe faint celestial objects and to analyze their radio emissions. A set of eight new dish antennas, added to the current 27-antenna system, will allow the VLA to produce images with ten times greater detail. The project will build on the VLA's current infrastructure, including its 230-ton dish antennas, the railroad tracks for moving those antennas, and the existing buildings and access roads. The Expanded VLA will be operated by the same skilled staff present today

  15. A VLA (Very Large Array) Search for 5 GHz Radio Transients and Variables at Low Galactic Latitudes

    NASA Technical Reports Server (NTRS)

    Ofek, E. O.; Frail, D. A.; Breslauer, B.; Kulkarni, S. R.; Chandra, P.; Gal-Yam, A.; Kasliwal, M. M.; Gehrels, N.

    2012-01-01

    We present the results of a 5GHz survey with the Very Large Array (VLA) and the expanded VLA, designed to search for short-lived (approx < 1 day) transients and to characterize the variability of radio sources at milli-Jansky levels. A total sky area of 2.66 sq. deg, spread over 141 fields at low Galactic latitudes (b approx equals 6 - 8 deg) was observed 16 times with a cadence that was chosen to sample timescales of days, months and years. Most of the data were reduced, analyzed and searched for transients in near real time. Interesting candidates were followed up using visible light telescopes (typical delays of 1 - 2 hr) and the X-Ray Telescope on board the Swift satellite. The final processing of the data revealed a single possible transient with a flux density of f(sub v) approx equals 2.4mJy. This implies a transients sky surface density of kappa(f(sub v) > 1.8mJy) = 0.039(exp +0.13,+0.18) (sub .0.032,.0.038) / sq. deg (1, 2 sigma confidence errors). This areal density is consistent with the sky surface density of transients from the Bower et al. survey extrapolated to 1.8mJy. Our observed transient areal density is consistent with a Neutron Stars (NSs) origin for these events. Furthermore, we use the data to measure the sources variability on days to years time scales, and we present the variability structure function of 5GHz sources. The mean structure function shows a fast increase on approximately 1 day time scale, followed by a slower increase on time scales of up to 10 days. On time scales between 10 - 60 days the structure function is roughly constant. We find that approx > 30% of the unresolved sources brighter than 1.8mJy are variable at the > 4-sigma confidence level, presumably due mainly to refractive scintillation.

  16. VLA radio upper limit on Type IIn Supernova 2007rt

    NASA Astrophysics Data System (ADS)

    Chandra, Poonam; Soderberg, Alicia

    2008-01-01

    Poonam Chandra and Alicia Soderberg report on behalf of a larger collaboration: We observed a Type IIn supernova SN 2007rt (CBET 1148) with the Very Large Array (VLA) in the 8.46 GHz band on 2008, January 12.55 UT. The observations were taken for total duration of one hour in the VLA B-configuration. We do not detect any radio emission at the supernova position (CBET 1148). The flux density at the supernova position is 9 ± 27 uJy.

  17. ngVLA Cryogenic Subsystem Concept

    NASA Astrophysics Data System (ADS)

    Wootten, Al; Urbain, Denis; Grammer, Wes; Durand, S.

    2018-01-01

    The VLA’s success over 35 years of operations stems in part from dramatically upgraded components over the years. The time has come to build a new array to lead the radio astronomical science into its next 40 years. To accomplish that, a next generation VLA (ngVLA) is envisioned to have 214 antennas with diameters of 18m. The core of the array will be centered at the current VLA location, but the arms will extend out to 1000km.The VLA cryogenic subsystem equipment and technology have remained virtually unchanged since the early 1980s. While adequate for a 27-antenna array, scaling the current system for an array of 214 antennas would be prohibitively expensive in terms of operating cost and maintenance. The overall goal is to limit operating cost to within three times the current level, despite having 8 times the number of antennas. To help realize this goal, broadband receivers and compact feeds will be utilized to reduce both the size and number of cryostats required. The current baseline front end concept calls for just two moderately-sized cryostats for the entire 1.2-116 GHz frequency range, as opposed to 8 in the VLA.For the ngVLA cryogenics, our objective is a well-optimized and efficient system that uses state-of-the-art technology to minimize per-antenna power consumption and maximize reliability. Application of modern technologies, such as variable-speed operation for the scroll compressors and cryocooler motor drives, allow the cooling capacity of the system to be dynamically matched to thermal loading in each cryostat. Significantly, power savings may be realized while the maintenance interval of the cryocoolers is also extended.Finally, a receiver designed to minimize thermal loading can produce savings directly translating to lower operating cost when variable-speed drives are used. Multi-layer insulation (MLI) on radiation shields and improved IR filters on feed windows can significantly reduce heat loading.Measurements done on existing cryogenic

  18. VLA Observations Confirm Origin of Gamma Ray Bursts in Short-Lived Stars

    NASA Astrophysics Data System (ADS)

    1998-06-01

    Radio telescope studies of the fiery afterglow of a Gamma Ray Burst have provided astronomers with the best clues yet about the origins of these tremendous cosmic cataclysms since their discovery more than 30 years ago. Observations with the National Science Foundation's (NSF) Very Large Array (VLA) radio telescope confirm that a blast seen to occur on March 29 had its origin in a star-forming region in a distant galaxy. "There are two leading theories for the causes of Gamma Ray Bursts," said Dale Frail of the NSF National Radio Astronomy Observatory (NRAO) in Socorro, NM. "According to one theory, the blasts occur in the death throes of pairs of old stars. The other requires them to arise from exploding, massive, short-lived stars that still reside within the star-forming gas and dust from which they formed. The VLA studies of the burst show that at least this one almost certainly occurred within a star-forming region. This result also explains why half of the Gamma Ray Burst afterglows are not detected by optical telescopes." Frail heads a VLA observing team including Greg Taylor, also of NRAO, and Shri Kulkarni of Caltech, that reported its findings to the American Astronomical Society meeting in San Diego, CA. The March 29 burst was seen clearly by radio telescopes (the accompanying image is GRB 980329 as seen by the VLA) but only very faintly with optical instruments. "That is extremely important," said Taylor. "This burst was very faint at visible wavelengths, brighter at infrared wavelengths and brighter still at radio wavelengths. This is a clear indication that the exploding object was surrounded by dust. Dust is most commonly found in star-forming regions." This strongly favors one of the two leading theories about Gamma Ray Bursts over the other. One explanation for these tremendously energetic fireballs is that a pair of superdense neutron stars collides. The other is that a single, very massive star explodes in a "hypernova," more powerful than a

  19. VizieR Online Data Catalog: The VLA Low-frequency Sky Survey at 74MHz (Perley+ 2006)

    NASA Astrophysics Data System (ADS)

    Perley, R. A.; Condon, J. J.; Cotton, W. D.; Cohen, A. S.; Lane, W. M.; Kassim, N. E.; Lazio, T. J. W.; Erickson, W. C.

    2006-08-01

    The VLA Low-Frequency Sky Survey (VLSS) is a 74MHz (4m) continuum survey covering the entire sky north of -30{deg} declination. Using the VLA in B- and BnA-configurations, we will map the entire survey region at a resolution of 80" and with an average rms noise of 0.1 Jy/beam. For a detailed description of the survey and its scientific motivations, please see the original proposal to the NRAO skeptical review committee. The VLSS is being made as a service to the astronomical community, and the principal data products are being released to the public as soon as they are produced and verified. Details and access to the images can be found at http://lwa.nrl.navy.mil/VLSS/ (1 data file).

  20. VizieR Online Data Catalog: The VLA Low-frequency Sky Survey at 74MHz (Cohen+ 2007)

    NASA Astrophysics Data System (ADS)

    Cohen, A. S.; Lane, W. M.; Cotton, W. D.; Kassim, N. E.; Lazio, T. J. W.; Perley, R. A.; Condon, J. J.; Erickson, W. C.

    2006-08-01

    The VLA Low-Frequency Sky Survey (VLSS) is a 74MHz (4m) continuum survey covering the entire sky north of -30{deg} declination. Using the VLA in B- and BnA-configurations, we will map the entire survey region at a resolution of 80" and with an average rms noise of 0.1 Jy/beam. For a detailed description of the survey and its scientific motivations, please see the original proposal to the NRAO skeptical review committee. The VLSS is being made as a service to the astronomical community, and the principal data products are being released to the public as soon as they are produced and verified. Details and access to the images can be found at http://lwa.nrl.navy.mil/VLSS/ (1 data file).

  1. VLA Detects Unexplained Radio Emission From Three Brown Dwarfs

    NASA Astrophysics Data System (ADS)

    2005-01-01

    Astronomers have discovered three brown dwarfs -- enigmatic objects that are neither stars nor planets -- emitting radio waves that scientists cannot explain. The three newly-discovered radio-emitting brown dwarfs were found as part of a systematic study of nearby brown dwarfs using the National Science Foundation's Very Large Array (VLA) radio telescope. The VLA The Very Large Array CREDIT: NRAO/AUI/NSF (Click on image for VLA gallery) Until 2001, scientists believed that brown dwarfs, which are intermediate in mass between stars and planets, could not emit detectable amounts of radio waves. That year, summer students at the VLA made the first discovery of radio emission from a brown dwarf. Subsequently, as many as a half- dozen more radio-emitting brown dwarfs were discovered. "It clearly had become time to make a systematic study and try to find out just what percentage of brown dwarfs are emitting radio waves," said Rachel Osten, an astronomer at the National Radio Astronomy Observatory (NRAO) in Charlottesville, Virginia. Osten was assisted in the project in the summer of 2004 by Lynnae Quick, a student at North Carolina Agricultural and Technical State University; Tim Bastian, also an astronomer at NRAO; and Suzanne Hawley, an astronomer at the University of Washington. The research team presented their results to the American Astronomical Society's meeting in San Diego, CA. The three new detections of radio-emitting brown dwarfs are just the first results from the systematic study, which aims to observe all the known brown dwarfs within about 45 light-years of Earth. "We want to be able to say definitively just how common radio emission is among brown dwarfs," Osten explained. The study involves observing 65 individual brown dwarfs, so these new detections represent just the beginning of the results expected from the study. Brown dwarfs are too big to be planets but too small to be true stars, as they have too little mass to trigger hydrogen fusion reactions

  2. VizieR Online Data Catalog: Gould's Belt Very Large Array survey. IV. Taurus (Dzib+, 2015)

    NASA Astrophysics Data System (ADS)

    Dzib, S. A.; Loinard, L.; Rodriguez, L. F.; Mioduszewski, A. J.; Ortiz-Leon, G. N.; Kounkel, M. A.; Pech, G.; Rivera, J. L.; Torres, R. M.; Boden, A. F.; Hartmann, L.; Evans, N. J., II; Briceno, C.; Tobin, J.

    2015-07-01

    The observations were obtained with the Karl G. Jansky VLA of the National Radio Astronomy Observatory (NRAO). Two frequency sub-bands, each 1GHz wide, and centered at 4.5 and 7.5GHz, respectively, were recorded simultaneously. The observations were obtained on three different time periods (February 25/26/28 to March 6; April 12/17/20/25, and April 30 to May 1/5/14/22 in 2011) typically separated from one another by a month. (2 data files).

  3. VLA radio upper limit on a Type IIn SN 2008B

    NASA Astrophysics Data System (ADS)

    Chandra, Poonam; Soderberg, Alicia

    2008-01-01

    Poonam Chandra and Alicia Soderberg report on behalf of a larger collaboration: We observed a Type IIn supernova SN 2008B (CBET 1194) with the Very Large Array (VLA) in the 8.46 GHz band on 2008, January 23.5 UT. The observations were taken for total duration of one hour in the VLA B-configuration. We do not detect any radio emission at the supernova position (CBET 1194). The flux density at the supernova position is 60 ± 28 uJy.

  4. Integrated Sachs-Wolfe effect from the cross correlation of WMAP 3year and the NRAO VLA sky survey data: New results and constraints on dark energy

    NASA Astrophysics Data System (ADS)

    Pietrobon, Davide; Balbi, Amedeo; Marinucci, Domenico

    2006-08-01

    We cross correlate the new 3 year Wilkinson Microwave Anistropy Probe (WMAP) cosmic microwave background data with the NRAO VLA Sky Survey radio galaxy data and find further evidence of late integrated Sachs-Wolfe (ISW) effect taking place at late times in cosmic history. Our detection makes use of a novel statistical method (P. Baldi, G. Kerkyacharian, D. Marinucci, and D. Picard, math.ST/0606154 and P. Baldi, G. Kerkyacharian, D. Marinucci, D. Picard, math.ST/0606599) based on a new construction of spherical wavelets, called needlets. The null hypothesis (no ISW) is excluded at more than 99.7% confidence. When we compare the measured cross correlation with the theoretical predictions of standard, flat cosmological models with a generalized dark energy component parameterized by its density, ΩDE, equation of state w and speed of sound cs2, we find 0.3≤ΩDE≤0.8 at 95% C.L., independently of cs2 and w. If dark energy is assumed to be a cosmological constant (w=-1), the bound on density shrinks to 0.41≤ΩDE≤0.79. Models without dark energy are excluded at more than 4σ. The bounds on w depend rather strongly on the assumed value of cs2. We find that models with more negative equation of state (such as phantom models) are a worse fit to the data in the case cs2=1 than in the case cs2=0.

  5. Science with the VLA Sky Survey (VLASS)

    NASA Astrophysics Data System (ADS)

    Murphy, Eric J.; Baum, Stefi Alison; Brandt, W. Niel; Chandler, Claire J.; Clarke, Tracy E.; Condon, James J.; Cordes, James M.; Deustua, Susana E.; Dickinson, Mark; Gugliucci, Nicole E.; Hallinan, Gregg; Hodge, Jacqueline; Lang, Cornelia C.; Law, Casey J.; Lazio, Joseph; Mao, Sui Ann; Myers, Steven T.; Osten, Rachel A.; Richards, Gordon T.; Strauss, Michael A.; White, Richard L.; Zauderer, Bevin; Extragalactic Science Working Group, Galactic Science Working Group, Transient Science Working Group

    2015-01-01

    The Very Large Array Sky Survey (VLASS) was initiated to develop and carry out a new generation large radio sky survey using the recently upgraded Karl G. Jansky Very Large Array. The proposed VLASS is a modern, multi-tiered survey with the VLA designed to provide a broad, cohesive science program with forefront scientific impact, capable of generating unexpected scientific discoveries, generating involvement from all astronomical communities, and leaving a lasting legacy value for decades.VLASS will observe from 2-4 GHz and is structured to combine comprehensive all sky coverage with sequentially deeper coverage in carefully identified parts of the sky, including the Galactic plane, and will be capable of informing time domain studies. This approach enables both focused and wide ranging scientific discovery through the coupling of deeper narrower tiers with increasing sky coverage at shallower depths, addressing key science issues and providing a statistical interpretational framework. Such an approach provides both astronomers and the citizen scientist with information for every accessible point of the radio sky, while simultaneously addressing fundamental questions about the nature and evolution of astrophysical objects.VLASS will follow the evolution of galaxies and their central black hole engines, measure the strength and topology of cosmic magnetic fields, unveil hidden explosions throughout the Universe, and chart our galaxy for stellar remnants and ionized bubbles. Multi-wavelength communities studying rare objects, the Galaxy, radio transients, or galaxy evolution out to the peak of the cosmic star formation rate density will equally benefit from VLASS.Early drafts of the VLASS proposal are available at the VLASS website (https://science.nrao.edu/science/surveys/vlass/vlass), and the final proposal will be posted in early January 2015 for community comment before undergoing review in March 2015. Upon approval, VLASS would then be on schedule to start

  6. Radio Transients in 1333 deg2 of the VLA Sky Survey Pilot

    NASA Astrophysics Data System (ADS)

    Dong, Dillon; Hallinan, Gregg; Myers, Steven T.; Mooley, Kunal; VLASS Survey Team, VLASS Survey Science Group (SSG)

    2018-01-01

    The VLA Sky Survey (VLASS) is an ongoing project by the NRAO to map ~34,000 deg2 of the sky at 3GHz, over 3 epochs spanning 6 years. In preparation for the full survey, a set of fields covering 2480 deg2 was recently observed as the VLASS pilot project. We searched 1333 deg2 of the VLASS pilot for radio transients with characteristic decay timescales between weeks and years, such as the synchrotron afterglows of supernovae, tidal disruption events, and long/short gamma ray bursts. These radio afterglows are thought to be roughly isotropic and extinction-free, allowing us to observe transients that would be missed by optical/high energy surveys due to obscuration or off-axis jetting.Within the searched area, we identified 215 VLASS sources that have no counterpart in the FIRST survey and have a projected distance of < 50kpc from the nearest galaxy by angular distance in the CLU and GWENs galaxy catalogs. By selection, these targets are predominently located near low redshift (z < 0.05) galaxies, allowing us to study their host environments with a sub-kiloparsec spatial resolution. Prioritizing based on visual association with SDSS galaxies, we imaged and/or took spectra of the host environment of 60 targets with the Low Resolution Imaging Spectrometer (LRIS) on Keck 1. In this talk, we present the radio and optical results for the most exciting VLASS transients.

  7. Radio-continuum survey of the Coma/A1367 supercluster. IV - 1.4 GHz observations of CGCG galaxies

    NASA Astrophysics Data System (ADS)

    del Castillo, E.; Gavazzi, G.; Jaffe, W.

    1988-05-01

    1.4 GHz radio-continuum observations of 148 CGCG galaxies in the Coma supercluster region were obtained with the VLA in C array configuration. Comparison with previous measurements at 0.6 GHz leads to an average spectral index >α< = 0.8. The structures of 29 galaxies in this region determined with high-resolution VLA (A array) observations are presented.

  8. A VLA radio continuum survey of active late-type giants in binary systems - Preliminary results

    NASA Technical Reports Server (NTRS)

    Drake, S. A.; Simon, T.; Linsky, J. L.

    1985-01-01

    Preliminary results of a 6 cm continuum survey using the NRAO VLA of binary systems with 10-100 day orbital period containing an 'active' giant component are reported. The results show that strong radio continuum emission at centimeter wavelengths is a common but not universal property of this class of stars. Possible correlations between radio luminosity and other properties, such as X-ray luminosity, rotational period, and type of companion are discussed. Several binary systems which have been detected for the first time as radio sources are reported, and sensitive upper limits are presented for five other systems, including Capella.

  9. VizieR Online Data Catalog: Gould's Belt VLA Survey. I. Ophiuchus complex (Dzib+, 2013)

    NASA Astrophysics Data System (ADS)

    Dzib, S. A.; Loinard, L.; Mioduszewski, A. J.; Rodriguez, L. F.; Ortiz-Leon, G. N.; Pech, G.; Rivera, J. L.; Torres, R. M.; Boden, A. F.; Hartmann, L.; Evans, N. J., II; Briceno, C.; Tobin, J.

    2015-03-01

    The observations were obtained with the Karl G. Jansky VLA of the National Radio Astronomy Observatory. Two frequency sub-bands, each 1GHz wide, and centered at 4.5 and 7.5GHz, respectively, were recorded simultaneously. The observations were obtained on three different epochs (2011 February 17/19, April 3/4, and May 4/6) typically separated from one another by a month. (3 data files).

  10. Jansky Very Large Array: technology advancing science

    NASA Astrophysics Data System (ADS)

    Carilli, Christopher

    2015-08-01

    Over the last decade, the NRAO has completed on time, and on budget, a major reconstruction of the Very Large Array. Building on existing infrastructure to maximize efficiency, the entire VLA electronics system, including correlator, receivers, data transmission, and monitor and control, have been replaced with state of the art systems. This complete rebuild establishes the new Jansky VLA, operating between 75MHz and 50GHz, as the most powerful radio telescope in the world for the coming decade.I will review the technical improvements of the array, including:- Correlator: Increased bandwidth from 100MHz to 8GHz, with thousands of spectral channels.- Receivers: replaced the previous narrow bands with receivers covering the full frequency range from 1 GHz to 50GHz. New systems are also being tested to cover from 50MHz to 400MHz.- Data transmission: 8GHz over optical fiber out to 30km.I will then highlight some of the science enabled by these improvements, including:- Large cosmic volume searches for atomic and molecular gas, from the nearby Universe to the most distant galaxies, plus kpc-scale imaging of the cool gas in distant starburst galaxies.- High resolution studies of star and planet formation.- Innovative interferometric searches for transient phenomena.- The first radio continuum deep fields with sensitivities < 1uJy, with full polarization for Faraday tomography.- Imaging radio-mode feedback in galaxies and clusters, and delineating the complex plasma physical processes involved on scales from a few kpc to hundreds of kpc.I will conclude with a few words about the major challenges facing such a new instrument. These challenges are all on the critical path toward any successful development of future facilities, such as the next generation VLA and SKA:- Big data: data volumes and post-processing are currently major bottlenecks in the turn-over from observation to science publication. NRAO is developing calibration and imaging pipelines to provide science

  11. Observations of 1E 1740.7-2942 with ROSAT and the VLA

    NASA Technical Reports Server (NTRS)

    Heindl, William A.; Prince, Thomas A.; Grunsfeld, John M.

    1994-01-01

    We have observed the Galactic black hole candidate 1E 1740.7-2942 in X-rays with both the ROSAT HRI and PSPC and at 1.5 and 4.9 GHz with the VLA. From the HRI observation we derive a position for 1E 1740.7-2942 of right ascension = 17 h 43 m 54.9 s, declination = -29 deg 44 min 45.3 sec (J2000), with a 90% confidence error circle of radius 8.5 min. Thermal bremsstrahlung fits to the PSPC data yield a column density of 1.12+1.51/-0.18 x 10(exp 23)/sq cm, consistent with earlier X-ray measurements. The VLA observation of 4.9 GHz revealed two sources. Source A, which is the core of a double aligned radio jet source (Mirabel et al. 1992), lies within the ROSAT error circle, further confirming its identification with 1E 1740.7-2942.

  12. Radio detection of SN 2006jd with the VLA

    NASA Astrophysics Data System (ADS)

    Chandra, Poonam; Soderberg, Alicia

    2007-11-01

    Poonam Chandra and Alicia Soderberg report on behalf of a larger collaboration: We observed Type IIn supernova SN 2006jd (CBET 673), recently shown to be very bright in X-rays (ATel 1290), with the VLA in 8.46 GHz band on 2007, November 21.28 UT. We detect radio emission at the SN position (IAUC 8762) with the flux density of 238 +/- 40 uJy.

  13. The Jansky VLA: Rebuilt for 21st Century Astronomy

    NASA Astrophysics Data System (ADS)

    Hallinan, Gregg

    2016-01-01

    At the start of this decade, the Very Large Array underwent a transformative upgrade. While retaining its original 27 antennas, the signal transmission and processing systems, originally developed and built in the 1970s, have been replaced with state of the art wideband receivers and a new data transmission system, as well as one of the most powerful correlators yet built. With a ten-fold increase in continuum sensitivity, up to 4 million frequency channels and complete frequency coverage from 1-50 GHz, the resulting increase in capability and versatility is analogous to the transition from photographic plate to CCD technology that revolutionized optical astronomy in the 1980s. Post upgrade, the Jansky VLA will be the most sensitive radio interferometer in the world for this decade, probing the sub-uJy radio sky for the first time, and will remain the most versatile, frequency-agile radio telescope for the foreseeable future. Underscoring this versatility, is the VLA's capability to trace both thermal and non-thermal emission over a wide range of spatial, time and velocity resolution. At the highest frequencies, this includes imaging cool gas in high redshift galaxies and dusty disks in nearby protoplanetary systems, while at the lowest frequencies tracing AGN activity and star formation back to the epoch of reionization. In the time domain, the VLA can respond to external triggers within 15 minutes to provide an instantaneous broadband radio spectrum of explosive events. I will review some of the exciting science emerging from the Jansky VLA as well as the range of science-ready data products that will make the VLA increasingly accessible to the wider astronomical community. Finally, I will briefly introduce the new VLA Sky Survey (VLASS), a community-driven project to image 80% of the sky over multiple epochs with the VLA, reaching a depth of ~70 uJy and detecting ~10 million radio sources at high spatial and spectral resolution with full polarization information.

  14. 78 FR 59844 - Operation in the 57-64 GHz Band

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-30

    .... With regard to the radio astronomy service and National Radio Astronomy Observatory (NRAO) concerns... analysis of potential harmful interference from 60 GHz devices to radio astronomy service. 20. Consistent with this experience, the Commission finds that interference to Radio Astronomy Service (RAS) stations...

  15. VLA radio upper limit on Type IIn Supernova 2007pk

    NASA Astrophysics Data System (ADS)

    Chandra, Poonam; Soderberg, Alicia

    2007-11-01

    Poonam Chandra and Alicia Soderberg report on behalf of a larger collaboration: We observed Type IIn supernova SN 2007pk (CBET 1129) with the VLA in 8.46 GHz band on 2007, November 12.20 UT, 1.89 days since discovery (CBET 1129). We do not detect radio emission from the SN position (CBET 1129). The flux density at the SN position is 11 +/-26 uJy.

  16. How Do Multiple-Star Systems Form? VLA Study Reveals "Smoking Gun"

    NASA Astrophysics Data System (ADS)

    2006-12-01

    Astronomers have used the National Science Foundation's Very Large Array (VLA) radio telescope to image a young, multiple-star system with unprecedented detail, yielding important clues about how such systems are formed. Most Sun-sized or larger stars in the Universe are not single, like our Sun, but are members of multiple-star systems. Astronomers have been divided on how such systems can form, producing competing theoretical models for this process. Multiple Star Formation Graphic Proposed Formation Process for L1551 IRS5 CREDIT: Bill Saxton, NRAO/AUI/NSF Click on image for page of graphics and full information The new VLA study produced a "smoking gun" supporting one of the competing models, said Jeremy Lim, of the Institute of Astronomy & Astrophysics, Academia Sinica, in Taipei, Taiwan, whose study, done with Shigehisa Takakuwa of the National Astronomical Observatory of Japan, is published in the December 10 issue of the Astrophysical Journal. Ironically, their discovery of a third, previously-unknown, young star in the system may support a second theoretical model. "There may be more than one way to make a multiple-star system," Lim explained. The astronomers observed an object called L1551 IRS5, young, still-forming protostars enshrouded in a cloud of gas and dust, some 450 light-years from Earth in the direction of the constellation Taurus. Invisible to optical telescopes because of the gas and dust, this object was discovered in 1976 by astronomers using infrared telescopes. A VLA study in 1998 showed two young stars orbiting each other, each surrounded by a disk of dust that may, in time, congeal into a system of planets. Lim and Takakuwa re-examined the system, using improved technical capabilities that greatly boosted the quality of their images. "In the earlier VLA study, only half of the VLA's 27 antennas had receivers that could collect the radio waves, at a frequency of 43 GigaHertz (GHz), coming from the dusty disks. When we re-observed this

  17. The second MIT-Green Bank 5 GHz survey

    NASA Astrophysics Data System (ADS)

    Langston, Glen I.; Heflin, Michael B.; Conner, Sam R.; Lehar, Joseph; Carilli, Chris L.; Burke, Bernard F.

    1990-03-01

    The MHT-Green Bank II (MG II) 5-GHz survey covers 1.51 sr of sky in the right ascension range 4-21 h between +17 and +39.15 deg declination (J2000.0). The final MG II catalog contains 6182 sources detected with a signal-to-noise ratio greater than 5. The MG II flux density limit is 41 mJy. The catalog was produced from two separate north and south surveys with the NRAO 91-m transit telescope. Spectral indices are computed for sources identified in the NRAO 1400-MHz Survey (Condon and Broderick, 1985). A comparison of the spectral-index distributions for sources above and below 10 deg Galactic latitude is presented.

  18. 9C spectral-index distributions and source-count estimates from 15 to 93 GHz - a re-assessment

    NASA Astrophysics Data System (ADS)

    Waldram, E. M.; Bolton, R. C.; Riley, J. M.; Pooley, G. G.

    2018-01-01

    In an earlier paper (2007), we used follow-up observations of a sample of sources from the 9C survey at 15.2 GHz to derive a set of spectral-index distributions up to a frequency of 90 GHz. These were based on simultaneous measurements made at 15.2 GHz with the Ryle telescope and at 22 and 43 GHz with the Karl G. Jansky Very Large Array (VLA). We used these distributions to make empirical estimates of source counts at 22, 30, 43, 70 and 90 GHz. In a later paper (2013), we took data at 15.7 GHz from the Arcminute Microkelvin Imager (AMI) and data at 93.2 GHz from the Combined Array for Research in Millimetre-wave Astronomy (CARMA) and estimated the source count at 93.2 GHz. In this paper, we re-examine the data used in both papers and now believe that the VLA flux densities we measured at 43 GHz were significantly in error, being on average only about 70 per cent of their correct values. Here, we present strong evidence for this conclusion and discuss the effect on the source-count estimates made in the 2007 paper. The source-count prediction in the 2013 paper is also revised. We make comparisons with spectral-index distributions and source counts from other telescopes, in particular with a recent deep 95 GHz source count measured by the South Pole Telescope. We investigate reasons for the problem of the low VLA 43-GHz values and find a number of possible contributory factors, but none is sufficient on its own to account for such a large deficit.

  19. Socorro Students Translate NRAO Web Pages Into Spanish

    NASA Astrophysics Data System (ADS)

    2002-07-01

    Six Socorro High School students are spending their summer working at the National Radio Astronomy Observatory (NRAO) on a unique project that gives them experience in language translation, World Wide Web design, and technical communication. Under the project, called "Un puente a los cielos," the students are translating many of NRAO's Web pages on astronomy into Spanish. "These students are using their bilingual skills to help us make basic information about astronomy and radio telescopes available to the Spanish-speaking community," said Kristy Dyer, who works at NRAO as a National Science Foundation postdoctoral fellow and who developed the project and obtained funding for it from the National Aeronautics and Space Administration. The students are: Daniel Acosta, 16; Rossellys Amarante, 15; Sandra Cano, 16; Joel Gonzalez, 16; Angelica Hernandez, 16; and Cecilia Lopez, 16. The translation project, a joint effort of NRAO and the NM Tech physics department, also includes Zammaya Moreno, a teacher from Ecuador, Robyn Harrison, NRAO's education officer, and NRAO computer specialist Allan Poindexter. The students are translating NRAO Web pages aimed at the general public. These pages cover the basics of radio astronomy and frequently-asked questions about NRAO and the scientific research done with NRAO's telescopes. "Writing about science for non-technical audiences has to be done carefully. Scientific concepts must be presented in terms that are understandable to non-scientists but also that remain scientifically accurate," Dyer said. "When translating this type of writing from one language to another, we need to preserve both the understandability and the accuracy," she added. For that reason, Dyer recruited 14 Spanish-speaking astronomers from Argentina, Mexico and the U.S. to help verify the scientific accuracy of the Spanish translations. The astronomers will review the translations. The project is giving the students a broad range of experience. "They are

  20. THE VLA-COSMOS SURVEY. IV. DEEP DATA AND JOINT CATALOG

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schinnerer, E.; Sargent, M. T.; Bondi, M.

    2010-06-15

    In the context of the VLA-COSMOS Deep project, additional VLA A array observations at 1.4 GHz were obtained for the central degree of the COSMOS field and combined with the existing data from the VLA-COSMOS Large project. A newly constructed Deep mosaic with a resolution of 2.''5 was used to search for sources down to 4{sigma} with 1{sigma} {approx} 12 {mu}Jy beam{sup -1} in the central 50' x 50'. This new catalog is combined with the catalog from the Large project (obtained at 1.''5 x 1.''4 resolution) to construct a new Joint catalog. All sources listed in the new Jointmore » catalog have peak flux densities of {>=}5{sigma} at 1.''5 and/or 2.''5 resolution to account for the fact that a significant fraction of sources at these low flux levels are expected to be slightly resolved at 1.''5 resolution. All properties listed in the Joint catalog, such as peak flux density, integrated flux density, and source size, are determined in the 2.''5 resolution Deep image. In addition, the Joint catalog contains 43 newly identified multi-component sources.« less

  1. VLITE-Fast: A Real-time, 350 MHz Commensal VLA Survey for Fast Transients

    NASA Astrophysics Data System (ADS)

    Kerr, Matthew; Ray, Paul S.; Kassim, Namir E.; Clarke, Tracy; Deneva, Julia; Polisensky, Emil

    2018-01-01

    The VLITE (VLA Low Band Ionosphere and Transient Experiment; http://vlite.nrao.edu) program operates commensally during all Very Large Array observations, collecting data from 320 to 384 MHz. Recently expanded to include 16 antennas, the large field of view and huge time on sky offer good coverage of the transient, low-frequency sky. We describe the VLITE-Fast system, a GPU-based signal processor capable of detecting short (<1s) transients in real time and triggering recording of baseband voltage for offline imaging. In the case of Fast Radio Bursts, this offers the opportunity for discovering host galaxies of non-repeating FRBs, and in the case of single pulses, the identification of pulsar positions for dedicated follow-up. We describe the observing system, techniques for mitigating interference, and initial results from searches for FRBs.

  2. VizieR Online Data Catalog: GRB 160509A VLA monitoring campain results (Laskar+, 2016)

    NASA Astrophysics Data System (ADS)

    Laskar, T.; Alexander, K. D.; Berger, E.; Fong, W.-F.; Margutti, R.; Shivvers, I.; Williams, P. K. G.; Kopac, D.; Kobayashi, S.; Mundell, C.; Gomboc, A.; Zheng, W.; Menten, K. M.; Graham, M. L.; Filippenko, A. V.

    2017-04-01

    GRB 160509A was discovered by the Fermi LAT on 2016 May 09 at 08:59:04.36 UTC (Longo+ 2016GCN..19403...1L). We observed the afterglow with the VLA starting at 0.36 days. We tracked the flux density of the afterglow over multiple epochs spanning 1.2-33.5GHz, using 3C48, 3C286, and 3C147 as flux and bandpass calibrators, and J2005+7752 as the gain calibrator. Our VLA observations spanning 0.36-20 days after the burst clearly reveal the presence of multiple spectral components in the radio afterglow. (1 data file).

  3. From the Beginning: Archiving the History of NRAO and US Radio Astronomy

    NASA Astrophysics Data System (ADS)

    Bouton, E. N.

    2005-12-01

    In 2006 the National Radio Astronomy Observatory will celebrate its 50th anniversary. Before 2003, there were neither archives nor a formal archiving program at NRAO; institutional records were located at any of the four NRAO sites in four different states, and there was no record of the materials that we had. In mid-2003, the long-time NRAO librarian retired and began part time work as NRAO's first archivist. With the completion of an addition to the headquarters building in Charlottesville in spring 2005, the fledgling NRAO Archives moved into a new 1400 sq ft space. In addition to NRAO materials, the Archives also collects papers of individuals. Grote Reber, who built the first radio telescope in his backyard in Wheaton IL in 1937, had in 1995, donated many of his personal papers to NRAO, and these papers have been indexed and are available to researchers. We continue to receive additional materials from his estate in Tasmania. The complete papers of John Kraus, author, researcher, and professor in radio astronomy and engineering at Ohio State University for many years, were donated to the NRAO Archives by his son and estate executor in spring 2005. The NRAO Archives has also mounted Web resources with texts written by Nan Dieter Conklin and by Doc Ewen describing their work in the developing years of US radio astronomy. This talk will present the highlights of how, on a limited budget but with broad support of NRAO staff, the NRAO Archives has begun a program to gather and organize materials on institutional history as well as the personal papers and recollections of contributors to US radio astronomy history.

  4. Antenna Electronics Concept for the Next-Generation Very Large Array

    NASA Astrophysics Data System (ADS)

    Beasley, Anthony J.; Jackson, Jim; Selina, Robert

    2017-01-01

    The National Radio Astronomy Observatory (NRAO), in collaboration with its international partners, completed two major projects over the past decade: the sensitivity upgrade for the Karl Jansky Very Large Array (VLA) and the construction of the Atacama Large Millimeter/Sub-Millimeter Array (ALMA). The NRAO is now considering the scientific potential and technical feasibility of a next-generation VLA (ngVLA) with an emphasis on thermal imaging at milli-arcsecond resolution. The preliminary goals for the ngVLA are to increase both the system sensitivity and angular resolution of the VLA tenfold and to cover a frequency range of 1.2-116 GHz.A number of key technical challenges have been identified for the project. These include cost-effective antenna manufacturing (in the hundreds), suitable wide-band feed and receiver designs, broad-band data transmission, and large-N correlators. Minimizing the overall operations cost is also a fundamental design requirement.The designs of the antenna electronics, reference distribution system, and data transmission system are anticipated to be major construction and operations cost drivers for the facility. The electronics must achieve a high level of performance, while maintaining low operation and maintenance costs and a high level of reliability. Additionally, due to the uncertainty in the feasibility of wideband receivers, advancements in digitizer technology, and budget constraints, the hardware system architecture should be scalable to the number of receiver bands and the speed and resolution of available digitizers.Here, we present the projected performance requirements of the ngVLA, a proposed block diagram for the instrument’s electronics systems, parameter tradeoffs within the system specifications, and areas of technical risk where technical advances may be required for successful production and installation.

  5. NRAO Response to NSF Senior Review of Astronomy Facilities

    NASA Astrophysics Data System (ADS)

    2006-11-01

    The National Science Foundation's (NSF) Astronomy Senior Review Committee report (pdf file), released today, made major recommendations for restructuring the NSF's ground-based astronomy efforts, including significant changes for the National Radio Astronomy Observatory (NRAO). The committee's report urged that leadership in radio astronomy, including millimeter- and submillimeter-wave observatories, "remain centered at NRAO as it is, by far, the largest radio astronomy organization in the world." The report praised the record of management of NRAO and the scientific capabilities of the Atacama Large Millimeter/submillimeter Array (ALMA), the Expanded Very Large Array (EVLA), the Robert C. Byrd Green Bank Telescope (GBT), and the Very Long Baseline Array (VLBA). However, the report also recommended that some reductions and changes occur at the NRAO by 2011. Specifically, the report recommended that: (a) VLBA operations make a transition to a significant reliance on international funding or risk closure; (b) GBT operations costs be reduced; and (c) NRAO scientific staff costs be reduced. "The Senior Review Committee had the very difficult task of reconciling the needs of current facilities and funding new facilities for the future of astronomy. We appreciate their efforts and look forward to working with the NSF to ensure that the valuable and unique research capabilities of our NRAO telescopes continue to serve the astronomical community," said Dr. Fred K.Y. Lo, NRAO Director. The VLBA provides the greatest angular resolution, or ability to see fine detail, of any telescope in the world, greatly exceeding the capabilities of the Hubble Space Telescope and the future Square Kilometre Array. The committee recognized that, "if the VLBA is closed, a unique capability would likely be lost for decades." "The VLBA is used by scientists from around the world because of its unique capabilities. It has produced landmark research milestones and the committee recognized in its

  6. ESO Demonstration Project with the NRAO 12-m Antenna

    NASA Astrophysics Data System (ADS)

    Heald, R.; Karban, R.

    2000-03-01

    During the months of September through November 1999, an ALMA joint demonstration project between the European Southern Observatory (ESO) and the National Radio Astronomy Observatory (NRAO) was carried out in Socorro/New Mexico. During this period, Robert Karban (ESO) and Ron Heald (NRAO) worked together on the ESO Demonstration Project. The project integrated ESO software and existing NRAO software (a prototype for the future ALMA control software) to control the motion of the Kitt Peak 12-m antenna. ESO software from the VLT provided the operator interface and coordinate transformation software, while Pat Wallace's TPOINT provided the pointing- model software.

  7. First Light with the NRAO Transient Event Capture Hardware

    NASA Astrophysics Data System (ADS)

    Langston, Glen; Rumberg, B.; Brandt, P.

    2007-12-01

    The design, implementation and testing of the first NRAO Event Capture data acquisition system is presented. The NRAO in Green Bank is developing a set of new data acquisition systems based on the U.C. Berkeley CASPER IBOB/ADC/BEE2 hardware. We describe the hardware configuration and initial experiences with the development system. We present first astronomical tests of the Event Capture system, using the 43m telescope (140ft). These observations were carried out at 900 MHz. The observations were made on 2007 July 8 and 9 towards the Crab pulsar, the galactic center, the Moon and two test observations while the 43m was pointed at Zenith (straight up). The Event Capture is one of several on-going FPGA based data acquisition projects being implemented for the Robert C. Byrd Green Bank Telescope (GBT) and for the 43m telescopes. The NRAO Configurable Instrument Collaboration for Agile Data Acquisition (CICADA) program is described at: http://wikio.nrao.edu/bin/view/CICADA

  8. 10C survey of radio sources at 15.7 GHz - II. First results

    NASA Astrophysics Data System (ADS)

    AMI Consortium; Davies, Mathhew L.; Franzen, Thomas M. O.; Waldram, Elizabeth M.; Grainge, Keith J. B.; Hobson, Michael P.; Hurley-Walker, Natasha; Lasenby, Anthony; Olamaie, Malak; Pooley, Guy G.; Riley, Julia M.; Rodríguez-Gonzálvez, Carmen; Saunders, Richard D. E.; Scaife, Anna M. M.; Schammel, Michel P.; Scott, Paul F.; Shimwell, Timothy W.; Titterington, David J.; Zwart, Jonathan T. L.

    2011-08-01

    In a previous paper (Paper I), the observational, mapping and source-extraction techniques used for the Tenth Cambridge (10C) Survey of Radio Sources were described. Here, the first results from the survey, carried out using the Arcminute Microkelvin Imager Large Array (LA) at an observing frequency of 15.7 GHz, are presented. The survey fields cover an area of ≈27 deg2 to a flux-density completeness of 1 mJy. Results for some deeper areas, covering ≈12 deg2, wholly contained within the total areas and complete to 0.5 mJy, are also presented. The completeness for both areas is estimated to be at least 93 per cent. The 10C survey is the deepest radio survey of any significant extent (≳0.2 deg2) above 1.4 GHz. The 10C source catalogue contains 1897 entries and is available online. The source catalogue has been combined with that of the Ninth Cambridge Survey to calculate the 15.7-GHz source counts. A broken power law is found to provide a good parametrization of the differential count between 0.5 mJy and 1 Jy. The measured source count has been compared with that predicted by de Zotti et al. - the model is found to display good agreement with the data at the highest flux densities. However, over the entire flux-density range of the measured count (0.5 mJy to 1 Jy), the model is found to underpredict the integrated count by ≈30 per cent. Entries from the source catalogue have been matched with those contained in the catalogues of the NRAO VLA Sky Survey and the Faint Images of the Radio Sky at Twenty-cm survey (both of which have observing frequencies of 1.4 GHz). This matching provides evidence for a shift in the typical 1.4-GHz spectral index to 15.7-GHz spectral index of the 15.7-GHz-selected source population with decreasing flux density towards sub-mJy levels - the spectra tend to become less steep. Automated methods for detecting extended sources, developed in Paper I, have been applied to the data; ≈5 per cent of the sources are found to be extended

  9. The VLA-COSMOS 3 GHz Large Project: The infrared-radio correlation of star-forming galaxies and AGN to z ≲ 6

    NASA Astrophysics Data System (ADS)

    Delhaize, J.; Smolčić, V.; Delvecchio, I.; Novak, M.; Sargent, M.; Baran, N.; Magnelli, B.; Zamorani, G.; Schinnerer, E.; Murphy, E. J.; Aravena, M.; Berta, S.; Bondi, M.; Capak, P.; Carilli, C.; Ciliegi, P.; Civano, F.; Ilbert, O.; Karim, A.; Laigle, C.; Le Fèvre, O.; Marchesi, S.; McCracken, H. J.; Salvato, M.; Seymour, N.; Tasca, L.

    2017-06-01

    We examine the behaviour of the infrared-radio correlation (IRRC) over the range 0 GHz observations with the Karl G. Jansky Very Large Array (VLA) and infrared data from the Herschel Space Observatory in the 2 deg2 COSMOS field. We distinguish between objects where emission is believed to arise solely from star-formation, and those where an active galactic nucleus (AGN) is thought to be present. We account for non-detections in the radio or in the infrared using a doubly-censored survival analysis. We find that the IRRC of star-forming galaxies, quantified by the infrared-to-1.4 GHz radio luminosity ratio (qTIR), decreases with increasing redshift: qTIR(z) = (2.88 ± 0.03)(1 + z)- 0.19 ± 0.01. This is consistent with several previous results from the literature. Moderate-to-high radiative luminosity AGN do not follow the same qTIR(z) trend as star-forming galaxies, having a lower normalisation and steeper decrease with redshift. We cannot rule out the possibility that unidentified AGN contributions only to the radio regime may be steepening the observed qTIR(z) trend of the star-forming galaxy population. We demonstrate that the choice of the average radio spectral index directly affects the normalisation, as well as the derived trend with redshift of the IRRC. An increasing fractional contribution to the observed 3 GHz flux by free-free emission of star-forming galaxies may also affect the derived evolution. However, we find that the standard (M82-based) assumption of the typical radio spectral energy distribution (SED) for star-forming galaxies is inconsistent with our results. This suggests a more complex shape of the typical radio SED for star-forming galaxies, and that imperfect K corrections in the radio may govern the derived trend of decreasing qTIR with increasing redshift. A more detailed understanding of the radio spectrum is therefore required for robust K corrections in the radio and to fully understand the

  10. New Surveys of the Universe with the Jansky Very Large Array (VLA) and the Very Long Baseline Array (VLBA)

    NASA Astrophysics Data System (ADS)

    Myers, Steven T.

    2013-01-01

    The Jansky Very Large Array is a recently completed upgrade to the VLA that has significantly expanded its capabilities through replacement of the receivers, electronics, signal paths, and correlator with cutting-edge technology. This enhancement provides significantly increased continuum sensitivity and spectral survey speeds (by factors of 100 or more in select cases) from 1-50 GHz and in key bands below 1 GHz. Concurrently, we are greatly enhancing the sensitivity of the Very Long Baseline Array. A suite of ever more ambitious radio sky survey programs undertaken with these new instruments address science goals central to answering the questions posed by Astro2010, and will undoubtedly incite new inquiries. The science themes of the Jansky VLA and the VLBA are: illuminating the obscured, probing the magnetic, sounding the transient, and charting the evolving Universe. New observations will allow us to image young stars in massive black holes in dust enshrouded environments, measure the strength and topology of the cosmic magnetic field, follow the rapid evolution of energetic phenomena, and to study the formation and evolution of stars, galaxies, AGN, and the Universe itself. We can follow the evolution of gas and galaxies and particles and fields through cosmic time to bridge the eras from cosmic dawn to the dawn of new worlds. I will describe the salient features of the Jansky VLA and the VLBA for cosmological survey work, and summarize the multi-wavelength aspects in regard to those with ALMA and next generation optical, infrared, X-ray and Gamma-ray telescopes. Example data taken from Janksy VLA and upgraded VLBA commissioning tests and early science will illustrate these features. I also describe evolution of the VLA and VLBA and their capabilities for future surveys that will lead towards the next decade, into the era of the LSST and the SKA.

  11. 75 FR 9850 - Tank Level Probing Radars in the Frequency Band 77-81 GHz

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-04

    ... National Radio Astronomy Observatory (NRAO) states that it would not object to the Ohmart/VEGA waiver if it Frequency Band of Operation. Authorized operations in the 77-81 GHz band currently include radio astronomy... operations in this band would have on authorized services. Regarding radio astronomy, the Commission observes...

  12. VizieR Online Data Catalog: Gould's Belt VLA survey. V. Perseus region (Pech+, 2016)

    NASA Astrophysics Data System (ADS)

    Pech, G.; Loinard, L.; Dzib, S. A.; Mioduszewski, A. J.; Rodriguez, L. F.; Ortiz-Leon, G. N.; Rivera, J. L.; Torres, R. M.; Boden, A. F.; Hartman, L.; Kounkel, M. A.; Evans, N. J., II; Briceno, C.; Tobin, J.; Zapata, L. A.

    2018-01-01

    The observations were collected with the VLA of the National Radio Astronomy Observatory in B and BnA configurations. Two frequency subbands, each 1 GHz wide and centered at 4.5 and 7.5 GHz, respectively, were recorded simultaneously. The observations were obtained in three sessions, on 2011 March 06/13, April 14/25, and May 01/02/10/19/22, typically separated from one another by a month. This dual-frequency, multiepoch strategy was chosen to enable the characterization of the spectral index and variability of the detected sources, as well as to help with the identification of the emission mechanisms. (3 data files).

  13. VizieR Online Data Catalog: 2FGL sources observed between 5-9GHz (Schinzel+, 2015)

    NASA Astrophysics Data System (ADS)

    Schinzel, F. K.; Petrov, L.; Taylor, G. B.; Mahony, E. K.; Edwards, P. G.; Kovalev, Yu. Y.

    2015-04-01

    A list of 216 target fields were observed with the Very Large Array (VLA). The instantaneous bandwidth was split into two parts, with one half centered at 5.0GHz (4.5-5.5GHz) and the other centered at 7.3GHz (6.8-7.8GHz); on 2012 October 26 and 2012 November 3. See section 2.1 During the first campaign with the Australia Telescope Compact Array (ATCA), from 2012 September 19-20, we observed 411 2FGL unassociated sources in a decl. range of [-90°, +10°] at 5.5 and 9GHz. The details of that observing campaign and results have been reported by Petrov et al. (2013, J/MNRAS/432/1294). We detected a total of 424 point sources. In a second ATCA campaign on 2013 September 25-28, we re-observed sources that were detected at 5GHz, but were not detected at 9GHz. See section 2.2. Follow-up observations of 149 targets selected from the VLA and ATCA survey above -30° decl. were conducted with the Very Long Baseline Array (VLBA) between 2013 Feb-Aug (VCS7 project; 4.128-4.608 and 7.392-7.872GHz simultaneously) and in 2013 Jun-Dec (campaign S5272; 7.392-7.872GHz only). See section 2.3. For sources with decl. below -30° we added 21 objects to the on-going LCS campaign (Petrov et al. 2011, J/MNRAS/414/2528) in 2013 Mar-2013 Jun at 8.200-8.520GHz. See section 2.4. (7 data files).

  14. Searching the Nearest Stars for Exoplanetary Radio Emission: VLA and LOFAR Observations

    NASA Astrophysics Data System (ADS)

    Knapp, Mary; Winterhalter, Daniel; Lazio, Joseph

    2016-10-01

    Six of the eight solar system planets and one moon (Ganymede) exhibit present-day dynamo magnetic fields. To date, however, there are no conclusive detections of exoplanetary magnetic fields. Low frequency radio emission via the cyclotron maser instability (CMI) from interactions between a planet and the solar/stellar wind is the most direct means of detecting and characterizing planetary/exoplanetary magnetic fields. We have undertaken a survey of the very nearest stars in low frequency radio (30 MHz - 4 GHz) in order to search for yet-undiscovered planets. The closest stars are chosen in order to reduce the attenuation of the magnetospheric radio signal by distance dilution, thereby increasing the chances of making a detection if a planet with a strong magnetic field is present. The VLA telescope (P-band: 230-470 MHz, L-band: 1-2 GHz, S-band: 2-4 GHz) and LOFAR telescope (LBA: 30-75 MHz) have been used to conduct this survey.This work focuses on VLA and LOFAR observations of an M-dwarf binary system: GJ 725. We present upper limits on radio flux as a function of frequency. Since the peak emission frequency of CMI-type emission is the local plasma frequency in the emission region, the peak frequency of planetary radio emission is a direct proxy for the magnetic field strength of the planet. Our spectral irradiance upper limits therefore represent upper limits on the magnetic field strengths of any planets in the GJ 725 system.Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

  15. Antenna Electronics Concept for the Next-Generation Very Large Array

    NASA Astrophysics Data System (ADS)

    Shillue, Bill; Jackson, James; Selina, Rob

    2018-01-01

    The National Radio Astronomy Observatory (NRAO) is considering the scientific potential and technical feasibility of a next-generation VLA (ngVLA) with an emphasis on thermal imaging at milliarcsecond resolution. The preliminary goals for the ngVLA are to increase both the system sensitivity and angular resolution of the VLA tenfold and to cover a frequency range of 1.2-116 GHz.The design of the antenna electronics, reference signal distribution, and data transmission systems will be construction and operations cost drivers for the facility. The electronics must achieve a high level of performance, while maintaining low operation and maintenance costs and a high level of reliability. With the size of the array, design effort on manufacturability and integration of components can lead to reduced lifecycle costs. With current uncertainty in the feasibility of wideband receivers, and advancements in digitizer technology, the architecture should be scalable to the number of receiver bands and the speed and resolution of available digitizer ICs. The focus of the presentation will be a proposed architecture for the electronics system, parameter tradeoffs within the system specification, and areas where technical advances are required when compared to existing array designs.

  16. VizieR Online Data Catalog: Panchromatic observations of PTF11qcj (Corsi+, 2014)

    NASA Astrophysics Data System (ADS)

    Corsi, A.; Ofek, E. O.; Gal-Yam, A.; Frail, D. A.; Kulkarni, S. R.; Fox, D. B.; Kasliwal, M. M.; Sullivan, M.; Horesh, A.; Carpenter, J.; Maguire, K.; Arcavi, I.; Cenko, S. B.; Cao, Y.; Mooley, K.; Pan, Y.-C.; Sesar, B.; Sternberg, A.; Xu, D.; Bersier, D.; James, P.; Bloom, J. S.; Nugent, P. E.

    2016-02-01

    On 2011 November 1, we discovered PTF11qcj in an R-band image from the 48 inch Samuel Oschin telescope at Palomar Observatory (P48), which is routinely used by the Palomar Transient Factory (PTF). Subsequent observations with the P48 were conducted with the Mould-R and Gunn-g filters. Photometry (Table2) was performed relative to the SDSS r-band and g-band magnitudes of stars in the field. Multi-color optical (gri) optical light curves were also obtained using the Palomar 60 inch telescope (P60) and the RATCAM optical imager on the robotic 2m Liverpool Telescope (LT) located at the Roque de Los Muchachos Observatory on La Palma. On 2011 November 15, we started a long-term monitoring campaign of PTF11qcj (along with calibrators J1327+4326 and 3C 286) with the Karl G. Jansky Very Large Array (VLA; http://public.nrao.edu/telescopes/vla) in its D, DnC, C, CnB, and A configurations, under our Target of Opportunity programs (VLA/11A-227, VLA/11B-034, VLA/11B-247, VLA/12B-195; PI: A. Corsi). The light curves of PTF11qcj at frequencies of 2.5GHz, 3.5GHz, 5GHz, 7.4GHz, 13.5GHz, 16GHz are reported in Table3. We also observed the field of PTF11qcj (together with the test calibrator J1203+480) using the Combined Array for Research in Millimeter-wave Astronomy (CARMA; http://www.mmarray.org/), at a frequency of 93GHz. The data collected on 2011 November 19 and 2011 November 26 (CARMA program no. c0857; PI: A. Horesh) both resulted in a detection of PTF11qcj (Table3). We have carried out an X-ray monitoring campaign of PTF11qcj with Chandra and Swift. All our Swift-XRT observations yielded non detections (see Table 4), while Chandra detected PTF11qcj in three epochs (DDT proposals nos. 501793, 501794, 501797; PI: A. Corsi). The results of our X-ray follow-up are reported in Table4. We observed the position of PTF11qcj with Spitzer on two epochs (on 2012 March 28.747 and 2012 June 25.643; Table5; DDT proposal no. 31731; PI: A. Corsi). On 2012 March 28 (Table5), we also observed

  17. Recent VLA Measurements of CME-Induced Faraday Rotation

    NASA Astrophysics Data System (ADS)

    Kooi, Jason; Thomas, Najma; Guy, Michael; Spangler, Steven R.

    2018-01-01

    Observations of Faraday rotation, the change in polarization position angle of linearly polarized radiation as it propagates through a magnetized plasma, have been used for decades to determine the strength and structure of the coronal magnetic field and plasma density. Similarly, observations of Faraday rotation through a coronal mass ejection (CME) have the potential to improve our understanding of the CME’s plasma structure. We report recent results from simultaneous white-light coronagraph and radio observations made of a CME in July 2015. We made radio observations using the Karl G. Jansky Very Large Array (VLA) at 1 - 2 GHz frequencies of a set of cosmic radio sources through the solar corona at heliocentric distances that ranged between 8 - 23 solar radii. A unique aspect of these observations is that the CME occulted several of these radio sources and, therefore, our Faraday rotation measurements provide information on the plasma structure in different regions of the CME. We successfully measured CME-induced Faraday rotation along multiple lines of sight because we made special arrangements with the staff at the National Radio Astronomy Observatory to trigger VLA observations when a candidate CME appeared low in the corona in near real-time images from the Large Angle and Spectrometric Coronagraph (LASCO) C2 instrument.

  18. Radio continuum of galaxies with H2O megamaser disks: 33 GHz VLA data

    NASA Astrophysics Data System (ADS)

    Kamali, F.; Henkel, C.; Brunthaler, A.; Impellizzeri, C. M. V.; Menten, K. M.; Braatz, J. A.; Greene, J. E.; Reid, M. J.; Condon, J. J.; Lo, K. Y.; Kuo, C. Y.; Litzinger, E.; Kadler, M.

    2017-09-01

    Context. Galaxies with H2O megamaser disks are active galaxies in whose edge-on accretion disks 22 GHz H2O maser emission has been detected. Because their geometry is known, they provide a unique view into the properties of active galactic nuclei. Aims: The goal of this work is to investigate the nuclear environment of galaxies with H2O maser disks and to relate the maser and host galaxy properties to those of the radio continuum emission of the galaxy. Methods: The 33 GHz (9 mm) radio continuum properties of 24 galaxies with reported 22 GHz H2O maser emission from their disks are studied in the context of the multiwavelength view of these sources. The 29-37 GHz Ka-band observations are made with the Karl Jansky Very Large Array in B, CnB, or BnA configurations, achieving a resolution of 0.2-0.5 arcsec. Hard X-ray data from the Swift/BAT survey and 22 μm infrared data from WISE, 22 GHz H2O maser data and 1.4 GHz data from NVSS and FIRST surveys are also included in the analysis. Results: Eighty-seven percent (21 out of 24) galaxies in our sample show 33 GHz radio continuum emission at levels of 4.5-240σ. Five sources show extended emission (deconvolved source size larger than 2.5 times the major axis of the beam), including one source with two main components and one with three main components. The remaining detected 16 sources (and also some of the above-mentioned targets) exhibit compact cores within the sensitivity limits. Little evidence is found for extended jets (>300 pc) in most sources. Either they do not exist, or our chosen frequency of 33 GHz is too high for a detection of these supposedly steep spectrum features. In NGC 4388, we find an extended jet-like feature that appears to be oriented perpendicular to the H2O megamaser disk. NGC 2273 is another candidate whose radio continuum source might be elongated perpendicular to the maser disk. Smaller 100-300 pc sized jets might also be present, as is suggested by the beam-deconvolved morphology of our

  19. Cygnus A super-resolved via convex optimization from VLA data

    NASA Astrophysics Data System (ADS)

    Dabbech, A.; Onose, A.; Abdulaziz, A.; Perley, R. A.; Smirnov, O. M.; Wiaux, Y.

    2018-05-01

    We leverage the Sparsity Averaging Re-weighted Analysis approach for interferometric imaging, that is based on convex optimization, for the super-resolution of Cyg A from observations at the frequencies 8.422 and 6.678 GHz with the Karl G. Jansky Very Large Array (VLA). The associated average sparsity and positivity priors enable image reconstruction beyond instrumental resolution. An adaptive Preconditioned primal-dual algorithmic structure is developed for imaging in the presence of unknown noise levels and calibration errors. We demonstrate the superior performance of the algorithm with respect to the conventional CLEAN-based methods, reflected in super-resolved images with high fidelity. The high-resolution features of the recovered images are validated by referring to maps of Cyg A at higher frequencies, more precisely 17.324 and 14.252 GHz. We also confirm the recent discovery of a radio transient in Cyg A, revealed in the recovered images of the investigated data sets. Our MATLAB code is available online on GitHub.

  20. VLA observations of mass loss from T Tauri stars

    NASA Technical Reports Server (NTRS)

    Cohen, M.; Bieging, J. H.; Schwartz, P. R.

    1982-01-01

    Six of 24 pre-main sequence stars surveyed with the VLA have been found to emit at 4.885 GHz. Radio maps of the six stars, V410 Tau, T Tau, DG Tau, LkH-alpha 101, L1551 IRS5, and Z CMa, show unresolved cores of less than 0.5 arcsec in most cases, along with 1-2 arcsec, faint, extended structures. Mass loss rates, derived under the assumption of uniform spherical winds, range from approximately 3 x 10 to the -7th to about 4 x 10 to the -5th solar masses/year. Because the flows are highly anisotropic, however, these estimates are to be taken only as likely upper limits.

  1. VLA Will Receive Galileo Probe Signals To Measure Jupiter's Winds

    NASA Astrophysics Data System (ADS)

    1995-11-01

    atmospheric properties. The VLA observations will record the shift in frequency of the probe's radio signal as Jupiter's winds buffet the probe. This Doppler shift in frequency will allow scientists to calculate the wind speeds. Scientists expect the 746-pound probe to send information about Jupiter's atmosphere for up to 75 minutes during its parachute-slowed descent. Preston and Folkner, who are working with Jose Navarro of the National Radio Astronomy Observatory (NRAO) in Socorro, NM, expect to receive the probe's signals with the VLA for the first 20 or 30 minutes of the descent. The technical difficulties in directly receiving the probe's signal are challenging. The probe has only a 25-watt radio transmitter. The probe's directional antenna is aimed at the main Galileo spacecraft, nearly 90 degrees away from the direction of the Earth. This effectively reduces the power to 7 watts or less toward the Earth. At Jupiter, the probe is more than half a billion miles distant from Earth. Only a large radio telescope is capable of receiving this faint signal, more than 100,000 times weaker than the faintest signal a home FM radio can pick up. Even using a radio telescope as large as the VLA, the scientists may have to wait for the main Galileo spacecraft to send the probe's data back to Earth before they can recover the signals they recorded. With the relayed data in hand, they can "reconstruct" the probe's radio signal and use that reconstructed signal to help their computers find the weak recorded signal on the VLA tapes. A preliminary relay of the probe's data from the main spacecraft is planned in December. During its descent, the Galileo probe will send information about the chemical composition of Jupiter's atmosphere at different altitudes. It is expected to encounter winds of up to 200 m.p.h.

  2. A SEARCH FOR RAPIDLY SPINNING PULSARS AND FAST TRANSIENTS IN UNIDENTIFIED RADIO SOURCES WITH THE NRAO 43 METER TELESCOPE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmidt, Deborah; Crawford, Fronefield; Gilpin, Claire

    2013-04-15

    We have searched 75 unidentified radio sources selected from the NRAO VLA Sky Survey catalog for the presence of rapidly spinning pulsars and short, dispersed radio bursts. The sources are radio bright, have no identifications or optical source coincidences, are more than 5% linearly polarized, and are spatially unresolved in the catalog. If these sources are fast-spinning pulsars (e.g., sub-millisecond pulsars), previous large-scale pulsar surveys may have missed detection due to instrumental and computational limitations, eclipsing effects, or diffractive scintillation. The discovery of a sub-millisecond pulsar would significantly constrain the neutron star equation of state and would have implications formore » models predicting a rapid slowdown of highly recycled X-ray pulsars to millisecond periods from, e.g., accretion disk decoupling. These same sources were previously searched unsuccessfully for pulsations at 610 MHz with the Lovell Telescope at Jodrell Bank. This new search was conducted at a different epoch with a new 800 MHz backend on the NRAO 43 m Telescope at a center frequency of 1200 MHz. Our search was sensitive to sub-millisecond pulsars in highly accelerated binary systems and to short transient pulses. No periodic or transient signals were detected from any of the target sources. We conclude that diffractive scintillation, dispersive smearing, and binary acceleration are unlikely to have prevented detection of the large majority of the sources if they are pulsars, though we cannot rule out eclipsing, nulling or intermittent emission, or radio interference as possible factors for some non-detections. Other (speculative) possibilities for what these sources might include radio-emitting magnetic cataclysmic variables or older pulsars with aligned magnetic and spin axes.« less

  3. New Mexico Fiber-Optic Link Marks Giant Leap Toward Future of Radio Astronomy

    NASA Astrophysics Data System (ADS)

    1998-12-01

    SOCORRO, NM -- Scientists and engineers at the National Radio Astronomy Observatory (NRAO) have made a giant leap toward the future of radio astronomy by successfully utilizing the Very Large Array (VLA) radio telescope in conjunction with an antenna of the continent-wide Very Long Baseline Array (VLBA) using the longest fiber-optic data link ever demonstrated in radio astronomy. The 65-mile fiber link will allow scientists to use the two National Science Foundation (NSF) facilities together in real time, and is the first step toward expanding the VLA to include eight proposed new radio-telescope antennas throughout New Mexico. LEFT: Miller Goss, NRAO's director of VLA/VLBA Operations, unveils graphic showing success of the Pie Town-VLA fiber link. The project, funded by the NSF and Associated Universities, Inc. (AUI), which operates NRAO for the NSF, links the VLA and the VLBA antenna in Pie Town, NM, using a Western New Mexico Telephone Co. fiber-optic cable. The successful hookup was announced at a ceremony that also marked the 10th anniversary of NRAO's Operations Center in Socorro. "Linking the Pie Town antenna to the VLA quadruples the VLA's ability to make detailed images of astronomical objects," said Paul Vanden Bout, NRAO's Director. "This alone makes the link an advance for science, but its greater importance is that it clearly demonstrates the technology for improving the VLA's capabilities even more in the future." "Clearly, the big skies and wide open spaces in New Mexico create near perfect conditions for the incredible astronomical assets located in our state. This new fiber-optic link paves the way for multiplying the already breathtaking scientific capabilities of the VLA," Senator Pete Domenici (R-NM) said. The VLA is a system of 27 radio-telescope antennas distributed over the high desert west of Socorro, NM, in the shape of a giant "Y." Made famous in movies, commercials and numerous published photos, the VLA has been one of the most productive

  4. NRAO Astronomer Wins Max-Planck Research Award

    NASA Astrophysics Data System (ADS)

    2005-04-01

    Dr. Christopher Carilli, a National Radio Astronomy Observatory (NRAO) astronomer in Socorro, New Mexico, has been chosen to receive the prestigious Max Planck Research Award from the Alexander von Humboldt Foundation and the Max Planck Society in Germany. Christopher Carilli Dr. Christopher Carilli Click on image for more photos CREDIT: NRAO/AUI/NSF Carilli, a radio astronomer, and German particle physicist Christof Wetterich are the 2005 recipients of the award, conferred on "one researcher working in Germany and one working abroad who have already gained an international reputation and who are expected to produce outstanding achievements in the framework of international collaboration," according to an announcement from the Humboldt Foundation. "This is a great honor for Chris, and we are proud to see him receive such important international recognition for the excellence of his research," said NRAO Director Fred K.Y. Lo. Carilli's research has focused on studying very distant galaxies in the early Universe, and a quest to find the first luminous objects, such as stars or galaxies, to emerge. His most recent interests focus on unveiling the mysteries of what cosmologists call the "Epoch of Reionization," when the first stars and galaxies ionized the neutral hydrogen that pervaded the young Universe. Carilli and his research colleagues have used NRAO's Very Large Array and other radio telescopes to discover that the molecular raw material for star formation already was present in a galaxy seen as it was about 800 million years after the Big Bang, less than 1/16 the current age of the Universe. The Max Planck Research Award provides 750,000 Euros (currently about $900,000), to be used over five years, for research. The funding is provided by the German Ministry of Education and Research. Carilli will use the funding to support young researchers and to build scientific instrumentation, with a focus on fostering radio studies of cosmic reionization and the first

  5. The Star Formation in Radio Survey: Jansky Very Large Array 33 GHz Observations of Nearby Galaxy Nuclei and Extranuclear Star-forming Regions

    NASA Astrophysics Data System (ADS)

    Murphy, E. J.; Dong, D.; Momjian, E.; Linden, S.; Kennicutt, R. C., Jr.; Meier, D. S.; Schinnerer, E.; Turner, J. L.

    2018-02-01

    We present 33 GHz imaging for 112 pointings toward galaxy nuclei and extranuclear star-forming regions at ≈2″ resolution using the Karl G. Jansky Very Large Array (VLA) as part of the Star Formation in Radio Survey. A comparison with 33 GHz Robert C. Byrd Green Bank Telescope single-dish observations indicates that the interferometric VLA observations recover 78% ± 4% of the total flux density over 25″ regions (≈kpc scales) among all fields. On these scales, the emission being resolved out is most likely diffuse non-thermal synchrotron emission. Consequently, on the ≈30–300 pc scales sampled by our VLA observations, the bulk of the 33 GHz emission is recovered and primarily powered by free–free emission from discrete H II regions, making it an excellent tracer of massive star formation. Of the 225 discrete regions used for aperture photometry, 162 are extranuclear (i.e., having galactocentric radii r G ≥ 250 pc) and detected at >3σ significance at 33 GHz and in Hα. Assuming a typical 33 GHz thermal fraction of 90%, the ratio of optically-thin 33 GHz to uncorrected Hα star formation rates indicates a median extinction value on ≈30–300 pc scales of A Hα ≈ 1.26 ± 0.09 mag, with an associated median absolute deviation of 0.87 mag. We find that 10% of these sources are “highly embedded” (i.e., A Hα ≳ 3.3 mag), suggesting that on average, H II regions remain embedded for ≲1 Myr. Finally, we find the median 33 GHz continuum-to-Hα line flux ratio to be statistically larger within r G < 250 pc relative to the outer disk regions by a factor of 1.82 ± 0.39, while the ratio of 33 GHz to 24 μm flux densities is lower by a factor of 0.45 ± 0.08, which may suggest increased extinction in the central regions.

  6. Radio emission from dusty galaxies observed by AKARI

    NASA Astrophysics Data System (ADS)

    Pepiak, A.; Pollo, A.; Takeuchi, T. T.; Solarz, A.; Jurusik, W.

    2014-10-01

    We probe radio-infrared correlation for two samples of extragalactic sources from the local Universe from the AKARI All-Sky Catalogue. The first, smaller sample (1053 objects) was constructed by the cross-correlation of the AKARI/FIS All-Sky Survey Bright Source Catalogue, the AKARI IRC All-Sky Survey Point Source Catalogue and the NRAO VLA Sky Survey, i.e. it consists of sources detected in the mid- and far-infrared by AKARI, and at the 1.4 GHz radio frequency by NRAO. The second, larger sample (13,324 objects) was constructed by the cross-correlation of only the AKARI/FIS All-Sky Survey Bright Source Catalogue and the NRAO VLA Sky Survey, i.e. it consists of sources detected in the far-infrared and radio, without a condition to be detected in the mid-infrared. Additionally, all objects in both samples were identified as galaxies in the NED and/or SIMBAD databases, and a part of them is known to host active galactic nuclei (AGNs). For the present analysis, we have restricted our samples only to sources with known redshift z. In this paper, we analyse the far-infrared-radio correlation for both of these samples. We compare the ratio of infrared and radio emission from normal star-forming dusty galaxies and AGNs in both samples. For the smaller sample we obtained =2.14 for AGNs and =2.27 for normal galaxies, while for the larger sample =2.15 for AGNs and =2.22 for normal galaxies. An average value of the slope in both samples is ~2.2, which is consistent with the previous measurements from the literature.

  7. NRAO Astronomer Honored by American Astronomical Society

    NASA Astrophysics Data System (ADS)

    2011-01-01

    Dr. Scott Ransom, an astronomer at the National Radio Astronomy Observatory (NRAO), received the American Astronomical Society's (AAS) Helen B. Warner Prize on January 11, at the society's meeting in Seattle, Washington. The prize is awarded annually for "a significant contribution to observational or theoretical astronomy during the five years preceding the award." Presented by AAS President Debra Elmegreen, the prize recognized Ransom "for his astrophysical insight and innovative technical leadership enabling the discovery of exotic, millisecond and young pulsars and their application for tests of fundamental physics." "Scott has made landmark contributions to our understanding of pulsars and to using them as elegant tools for investigating important areas of fundamental physics. We are very proud that his scientific colleagues have recognized his efforts with this prize," said NRAO Director Fred K.Y. Lo. A staff astronomer at the NRAO since 2004, Ransom has led efforts using the National Science Foundation's Green Bank Telescope and other facilities to study pulsars and use them to make advances in areas of frontier astrophysics such as gravitational waves and particle physics. In 2010, he was on a team that discovered the most massive pulsar yet known, a finding that had implications for the composition of pulsars and details of nuclear physics, gravitational waves, and gamma-ray bursts. Ransom also is a leader in efforts to find and analyze rapidly-rotating millisecond pulsars to make the first direct detection of the gravitational waves predicted by Albert Einstein. In other work, he has advanced observational capabilities for finding millisecond pulsars in globular clusters of stars and investigated how millisecond pulsars are formed. A graduate of the United States Military Academy at West Point, NY, Ransom served as an artillery officer in the U.S. Army. After leaving the Army, he earned a Ph.D. at Harvard University in 2001, and was a postdoctoral fellow

  8. NRAO Salutes Past, Looks to Future In 50th-Anniversary Science Meeting

    NASA Astrophysics Data System (ADS)

    2007-06-01

    Radio telescopes now in operation or under construction will be indispensible to scientists wrestling with the big, unanswered questions of 21st-Century astrophysics. That was the conclusion of a wide-ranging scientific meeting held in Charlottesville, Virginia, June 18-21, to mark the 50th anniversary of the National Radio Astronomy Observatory (NRAO). 1957 Dedication Dedication of NRAO, 17 October 1957. Left to right: R.M. Emberson, L.V. Berkner, G.A. Nay, J.W. Findlay (seated in front of 140ft telescope model), N.L. Ashton, D.S. Heeschen, H. Hockenberry. CREDIT: NRAO/AUI/NSF Click on Image for Larger File ALMA Artist's conception of completed ALMA. CREDIT: NRAO/AUI/ESO Click on Image for Larger File (2.4 MB) Nearly 200 scientists from around the world heard presentations about the frontiers of astrophysics and how the challenges at those frontiers will be met. In specialties as disparate as seeking the nature of the mysterious Dark Energy that is speeding the Universe's expansion to unraveling the details of how stars and planets are formed, more than 70 presenters looked toward future research breakthroughs. "NRAO's telescopes have made landmark contributions to the vast explosion of astronomical knowledge of the past half- century, and we look eagerly to making even more important contributions in the coming decades," said Fred K.Y. Lo, NRAO's director. Over the four days of the meeting, discussions ranged from recollections of radio astronomy's pioneering days of vacuum-tube equipment and paper chart recorders to the design of telescopes that will produce amounts of data that will strain today's computers. Presenters pointed out that, in the coming decades, radio telescope observations will advance not only astronomy but also fields of basic physics such as gravitational radiation, particle physics, and the fundamental physical constants. "This meeting provided a great overview of where astrophysics stands today and where the challenges and opportunities of

  9. VizieR Online Data Catalog: 22GHz image of 3C 273 (Bruni+, 2017)

    NASA Astrophysics Data System (ADS)

    Bruni, G.; Gomez, J. L.; Casadio, C.; Lobanov, A.; Kovalev, Y. Y.; Sokolovsky, K. V.; Lisakov, M. M.; Bach, U.; Marscher, A.; Jorstad, S.; Anderson, J. M.; Krichbaum, T. P.; Savolainen, T.; Vega-Garcia, L.; Fuentes, A.; Zensus, J. A.; Alberdi, A.; Lee, S.-S.; Lu, R.-S.; Perez-Torres, M.; Ros, E.

    2017-07-01

    A global ground array of 22 antennas was used to perform observations, including VLBA (Sc, Hn, Nl, Fd, La, Kp, Pt, Ov, Br, Mk), EVN (Hh, Mc, Nt, Tr, Jb, Ef, Ys), Long Baseline Array (-LBA- At, Mp, Ho, Cd), and two Kvazar antennas (Sv, Zc), plus Kalyazin (managed by ASC, Russia), and Green Bank (NRAO, USA). The observations took place on January 18-19, 2014, for a total of 16.8 hours, and at three different frequencies: 15GHz, 22GHz, and 43GHz. RA was involved only for the 22GHz part, while for the other bands only the VLBA was used. Both the Green Bank and Pushchino tracking station took part in the experiment. A RA-compatible total bandwidth of 32MHz, split into two 16-MHz IFs, was used. RA was scheduled to observe three consecutive 9.5 minute scans every 1.25 hours, to allow for antenna cooling. (2 data files).

  10. Studying Star Formation in the Central Molecular Zone using 22 GHz Water and 6.7 GHz Methanol Masers

    NASA Astrophysics Data System (ADS)

    Rickert, Matthew; Yusef-Zadeh, Farhad; Ott, Juergen; Meier, David S.; SWAG

    2016-01-01

    The inner 400 pc of our Galaxy, or the so-called the central molecular zone (CMZ), has a unique environment with a large mass of dense, warm molecular gas. One of the premier questions is how star formation (SF) differs in this unique environment from elsewhere in the Galaxy. We intend to address this issue by identifying improved numbers and locations of early sites of SF. We have conducted high resolution surveys of the CMZ, looking for early SF indicators such as 22 GHz water and 6.7 GHz methanol masers. We present the initial water maser results from the SWAG survey and methanol results from the first full VLA survey of 6.7 GHz methanol masers in the CMZ. These surveys span beyond the inner 1.2ο x 0.5ο of the Galaxy, including Sgr B through Sgr C. The improved spatial and spectral resolutions (~26" and 2 km s-1) and sensitivity (RMS ~10 mJy beam-1) of our ATCA observations have allowed us to identify over 140 water maser candidates in the SWAG survey. This is a factor of 3 more than detected from prior surveys of the CMZ. The preliminary distribution of these candidates appears to be uniform along Galactic longitude. Should this distribution persist for water masers associated with star formation (as opposed to those produced by evolved stars), then this result would imply a more uniform distribution of recent SF activity in the CMZ. Prior works have shown that 2/3 of the molecular gas mass is located at positive Galactic longitudes, and young stellar objects (YSOs) identified by IR SEDs are located predominantly at negative Galactic longitudes. A combination of these results can provide insight on the evolution of SF within the CMZ. We are currently comparing the water maser positions to other catalogs (ex. OH/IR stars) in order to distinguish between the mechanisms producing these masers. We are also currently working on determining the distribution of 6.7 GHz methanol masers. These masers do not contain the same ambiguity as water masers as to their source

  11. First Science Verification of the VLA Sky Survey Pilot

    NASA Astrophysics Data System (ADS)

    Cavanaugh, Amy

    2017-01-01

    My research involved analyzing test images by Steve Myers for the upcoming VLA Sky Survey. This survey will cover the entire sky visible from the VLA site in S band (2-4 GHz). The VLA will be in B configuration for the survey, as it was when the test images were produced, meaning a resolution of approximately 2.5 arcseconds. Conducted using On-the-Fly mode, the survey will have a speed of approximately 20 deg2 hr-1 (including overhead). New Python imaging scripts are being developed and improved to process the VLASS images. My research consisted of comparing a continuum test image over S band (from the new imaging scripts) to two previous images of the same region of the sky (from the CNSS and FIRST surveys), as well as comparing the continuum image to single spectral windows (from the new imaging scripts and of the same sky region). By comparing our continuum test image to images from CNSS and FIRST, we tested on-the-Fly mode and the imaging script used to produce our images. Another goal was to test whether individual spectral windows could be used in combination to calculate spectral indices close to those produced over S band (based only on our continuum image). Our continuum image contained 64 sources as opposed to the 99 sources found in the CNSS image. The CNSS image also had lower noise level (0.095 mJy/beam compared to 0.119 mJy/beam). Additionally, when our continuum image was compared to the CNSS image, separation showed no dependence on total flux density (in our continuum image). At lower flux densities, sources in our image were brighter than the same ones in the CNSS image. When our continuum image was compared to the FIRST catalog, the spectral index difference showed no dependence on total flux (in our continuum image). In conclusion, the quality of our images did not completely match the quality of the CNSS and FIRST images. More work is needed in developing the new imaging scripts.

  12. Key Science Goals for a Next-generation Very Large Array

    NASA Astrophysics Data System (ADS)

    Murphy, Eric Joseph; ngVLA Science Advisory Council and all ngVLA Science Working Groups

    2018-01-01

    Inspired by dramatic discoveries from the Jansky VLA and ALMA, a plan to pursue a large collecting area radio interferometer that will open new discovery space from proto-planetary disks to distant galaxies is being developed by NRAO and the science community. Building on the superb cm observing conditions and existing infrastructure of the VLA site, the current vision of the ngVLA will be an interferometric array with more than 10 times the effective collecting area and spatial resolution of the current VLA and ALMA, that will operating at frequencies spanning ~1.2. – 116 GHz. The ngVLA will be optimized for observations at wavelengths between the exquisite performance of ALMA at submm wavelengths, and the future SKA-1 at decimeter to meter wavelengths, thus lending itself to be highly complementary with these facilities. As such, the ngVLA will open a new window on the universe through ultra-sensitive imaging of thermal line and continuum emission down to milliarcecond resolution, as well as deliver unprecedented broad band continuum polarimetric imaging of non-thermal processes. The ngVLA will be the only facility in the world that can tackle a broad range of outstanding scientific questions in modern astronomy by simultaneously delivering the capability to: unveil the formation of Solar System analogues; probe the initial conditions for planetary systems and life with astrochemistry; characterize the assembly, structure, and evolution of galaxies from the first billion years to the present; use pulsars in the Galactic center as fundamental tests of gravity; and understand the formation and evolution of stellar and supermassive blackholes in the era of multi-messenger astronomy.

  13. Radio variability in the Phoenix Deep Survey at 1.4 GHz

    NASA Astrophysics Data System (ADS)

    Hancock, P. J.; Drury, J. A.; Bell, M. E.; Murphy, T.; Gaensler, B. M.

    2016-09-01

    We use archival data from the Phoenix Deep Survey to investigate the variable radio source population above 1 mJy beam-1 at 1.4 GHz. Given the similarity of this survey to other such surveys we take the opportunity to investigate the conflicting results which have appeared in the literature. Two previous surveys for variability conducted with the Very Large Array (VLA) achieved a sensitivity of 1 mJy beam-1. However, one survey found an areal density of radio variables on time-scales of decades that is a factor of ˜4 times greater than a second survey which was conducted on time-scales of less than a few years. In the Phoenix deep field we measure the density of variable radio sources to be ρ = 0.98 deg-2 on time-scales of 6 months to 8 yr. We make use of Wide-field Infrared Survey Explorer infrared cross-ids, and identify all variable sources as an active galactic nucleus of some description. We suggest that the discrepancy between previous VLA results is due to the different time-scales probed by each of the surveys, and that radio variability at 1.4 GHz is greatest on time-scales of 2-5 yr.

  14. VLA telemetry performance with concatenated coding for Voyager at Neptune

    NASA Technical Reports Server (NTRS)

    Dolinar, S. J., Jr.

    1988-01-01

    Current plans for supporting the Voyager encounter at Neptune include the arraying of the Deep Space Network (DSN) antennas at Goldstone, California, with the National Radio Astronomy Observatory's Very Large Array (VLA) in New Mexico. Not designed as a communications antenna, the VLA signal transmission facility suffers a disadvantage in that the received signal is subjected to a gap or blackout period of approximately 1.6 msec once every 5/96 sec control cycle. Previous analyses showed that the VLA data gaps could cause disastrous performance degradation in a VLA stand-alone system and modest degradation when the VLA is arrayed equally with Goldstone. New analysis indicates that the earlier predictions for concatenated code performance were overly pessimistic for most combinations of system parameters, including those of Voyager-VLA. The periodicity of the VLA gap cycle tends to guarantee that all Reed-Solomon codewords will receive an average share of erroneous symbols from the gaps. However, large deterministic fluctuations in the number of gapped symbols from codeword to codeword may occur for certain combinations of code parameters, gap cycle parameters, and data rates. Several mechanisms for causing these fluctuations are identified and analyzed. Even though graceful degradation is predicted for the Voyager-VLA parameters, catastrophic degradation greater than 2 dB can occur for a VLA stand-alone system at certain non-Voyager data rates inside the range of the actual Voyager rates. Thus, it is imperative that all of the Voyager-VLA parameters be very accurately known and precisely controlled.

  15. The Next-Generation Very Large Array: Technical Overview

    NASA Astrophysics Data System (ADS)

    McKinnon, Mark; Selina, Rob

    2018-01-01

    As part of its mandate as a national observatory, the NRAO is looking toward the long range future of radio astronomy and fostering the long term growth of the US astronomical community. NRAO has sponsored a series of science and technical community meetings to consider the science mission and design of a next-generation Very Large Array (ngVLA), building on the legacies of the Atacama Large Millimeter/submillimeter Array (ALMA) and the Very Large Array (VLA).The basic ngVLA design emerging from these discussions is an interferometric array with approximately ten times the sensitivity and ten times higher spatial resolution than the VLA and ALMA radio telescopes, optimized for operation in the wavelength range 0.3cm to 3cm. The ngVLA would open a new window on the Universe through ultra-sensitive imaging of thermal line and continuum emission down to milli-arcsecond resolution, as well as unprecedented broadband continuum polarimetric imaging of non-thermal processes. The specifications and concepts for major ngVLA system elements are rapidly converging.We will provide an overview of the current system design of the ngVLA. The concepts for major system elements such as the antenna, receiving electronics, and central signal processing will be presented. We will also describe the major development activities that are presently underway to advance the design.

  16. VizieR Online Data Catalog: Radio follow-up on 3FGL unassociated sources (Schinzel+, 2017)

    NASA Astrophysics Data System (ADS)

    Schinzel, F. K.; Petrov, L.; Taylor, G. B.; Edwards, P. G.

    2017-11-01

    The 3FGL catalog covers the entire sky, thus we performed follow-up observations at two radio interferometric arrays: The Australia Telescope Compact Array (ATCA) in the Southern Hemisphere for observing sources with declinations in the range [-90,+10] and the Jansky Very Large Array (VLA) in the Northern Hemisphere for observing sources with declinations [0,+90]. ATCA observations were made in three campaigns: A3 started on 2014 April 7 and lasted for 30hr, A4 started on 2014 September 23 and lasted for 66hr, and A5 started on 2015 April 4 and lasted for 8hr. Observations in all three campaigns were recorded simultaneously in two bands centered at 5.5 and 9.0GHz. A total of 322 unassociated 3FGL fields with decl. above 0° were selected for observations with NRAO's Jansky VLA in this campaign (V2). Additionally, we observed the location of 2FGL J0423.4+5612, for which no data were recorded in our previous VLA survey. We reanalyzed our previous campaign V1 (Schinzel+ 2015, J/ApJS/217/4). The observations were conducted using the C-Band receiver covering the frequency range 4-8GHz. The observing time of 10hr was split into five segments. The first four segments were observed between 2015 March 16 and 21 under time approved through the NASA Fermi Guest Investigator program; an additional hour to complete the program was observed on 2015 April 16. See section 2 for further details. (5 data files).

  17. The Very Large Array Data Processing Pipeline

    NASA Astrophysics Data System (ADS)

    Kent, Brian R.; Masters, Joseph S.; Chandler, Claire J.; Davis, Lindsey E.; Kern, Jeffrey S.; Ott, Juergen; Schinzel, Frank K.; Medlin, Drew; Muders, Dirk; Williams, Stewart; Geers, Vincent C.; Momjian, Emmanuel; Butler, Bryan J.; Nakazato, Takeshi; Sugimoto, Kanako

    2018-01-01

    We present the VLA Pipeline, software that is part of the larger pipeline processing framework used for the Karl G. Jansky Very Large Array (VLA), and Atacama Large Millimeter/sub-millimeter Array (ALMA) for both interferometric and single dish observations.Through a collection of base code jointly used by the VLA and ALMA, the pipeline builds a hierarchy of classes to execute individual atomic pipeline tasks within the Common Astronomy Software Applications (CASA) package. Each pipeline task contains heuristics designed by the team to actively decide the best processing path and execution parameters for calibration and imaging. The pipeline code is developed and written in Python and uses a "context" structure for tracking the heuristic decisions and processing results. The pipeline "weblog" acts as the user interface in verifying the quality assurance of each calibration and imaging stage. The majority of VLA scheduling blocks above 1 GHz are now processed with the standard continuum recipe of the pipeline and offer a calibrated measurement set as a basic data product to observatory users. In addition, the pipeline is used for processing data from the VLA Sky Survey (VLASS), a seven year community-driven endeavor started in September 2017 to survey the entire sky down to a declination of -40 degrees at S-band (2-4 GHz). This 5500 hour next-generation large radio survey will explore the time and spectral domains, relying on pipeline processing to generate calibrated measurement sets, polarimetry, and imaging data products that are available to the astronomical community with no proprietary period. Here we present an overview of the pipeline design philosophy, heuristics, and calibration and imaging results produced by the pipeline. Future development will include the testing of spectral line recipes, low signal-to-noise heuristics, and serving as a testing platform for science ready data products.The pipeline is developed as part of the CASA software package by an

  18. New Technologies Promise Dramatic Increase In Capabilities of the Very Large Array

    NASA Astrophysics Data System (ADS)

    1996-06-01

    The National Science Foundation's Very Large Array (VLA) radio telescope in New Mexico is an exceedingly powerful scientific instrument, and has transformed many areas of astronomy in its more than 15 years of operation. It has been used by more astronomers and has produced more scientific papers than any other radio telescope. Though its position as one of the world's premier radio telescopes will remain unchallenged for a long time, new technologies could increase its scientific capabilities greater than tenfold. Details were presented today to the American Astronomical Society's meeting in Madison, Wisconsin. An enhanced VLA, incorporating state-of-the-art technologies, would provide scientists with a number of important, new capabilities, including detailed investigations of the physics of solar radio bursts; improved radar probes of planets, asteroids and comets; the ability to image protoplanetary disks around young stars; more rapid response and effective observations of transient events such as supernovae; new types of information about gas both within our own Galaxy and in other galaxies; and greatly improved ability to study clusters of galaxies and extremely distant objects in the Universe. In addition, the enhanced VLA will serve as an improved partner with the Very Long Baseline Array (VLBA), a continent-wide radio telescope, also part of the National Radio Astronomy Observatory (NRAO). "The VLA upgrade proposes an essentially new instrument, created from two existing instruments, with power and capability far exceeding that of either one alone," said Rick Perley, NRAO Project Scientist for the VLA Upgrade Project. "It builds on the existing staff and infrastructure and would hardly affect operations costs. In today's fiscal climate, this provides the benefit of a `new' instrument with outstanding scientific capability at the least cost," Perley added. The VLA was built in the 1970s and dedicated in 1980. At the time of its completion, it was a state

  19. Detecting Extrasolar Planets With Millimeter-Wave Observatories

    NASA Astrophysics Data System (ADS)

    1996-01-01

    . Another important advantage is that, at millimeter wavelengths, the star's brightness poses less of a problem for observers because, while it is still brighter than a planet, the difference in brightness between the two is far less. Because of the physical nature of the objects themselves, protoplanets in different stages of formation could readily be detected by advanced millimeter-wave observatories. The observatories that could provide these advantages are the Millimeter Array (MMA), a proposed 40-antenna millimeter-wave telescope that could be operational by 2005, and an upgraded version of the existing Very Large Array (VLA), a 27-antenna radio telescope in New Mexico. The MMA is a radio telescope designed to operate at wavelengths from 11.5 millimeters down to 0.5 millimeters, or frequencies from 26 to 650 GHz. It will use 40 precision antennas, each 8 meters in diameter, all operating in concert to produce extremely high- resolution images. As is done with the existing VLA and VLBA radio telescopes, the signals from all the MMA antennas will be processed in a special-purpose computer called a correlator. The processing of the signals corrects for atmospheric propagation effects and for the fact that the "synthesized telescope" is in fact made up of individual antennas. Planning for the MMA began as early as 1983, and a number of scientific workshops have allowed U.S. researchers to make known their needs for a millimeter-wave observatory to serve a wide variety of specialties. The National Science Foundation (NSF) provided initial design funding to NRAO in 1995 for MMA studies. Currently, MMA efforts are centered on selecting an appropriate site, which must be very high, dry and flat. A site at 16,500 feet elevation in northern Chile is now being tested. Hawaii's Mauna Kea is also under consideration. If funding is approved for the MMA, the instrument could be in operation by the year 2005. The MMA is expected to be an international instrument, with funding from

  20. Astronomers to Mark 20th Anniversary of the Very Large Array

    NASA Astrophysics Data System (ADS)

    2000-07-01

    On August 23, scientists will mark the 20th anniversary of the National Science Foundation's Very Large Array (VLA), the most powerful, flexible and widely-used radio telescope in the world. "Twenty years ago, the VLA brought dramatic new observing capabilities to the world's astronomers, and today there is hardly a branch of astronomy that has not been profoundly impacted by the prolific research output of this radio telescope," said Dr. Paul Vanden Bout, Director of the National Radio Astronomy Observatory (NRAO). The anniversary will be marked in a ceremony at NRAO's Array Operations Center in Socorro, NM. The keynote speaker for this ceremony will be U.S. Senator Pete V. Domenici, R-NM. Also speaking will be Dr. Rita Colwell, NSF Director; Dr. Anneila Sargent, president-elect of the American Astronomical Society; Vanden Bout; Dr. Riccardo Giacconi, president of Associated Universities, Inc. (AUI); Dr. Paul Martin, chairman of the AUI board of trustees; and Dr. Miller Goss, NRAO's director of VLA/VLBA operations. "More than 2,200 researchers from hundreds of institutions around the world have used the VLA for more than 10,000 observing projects," said Vanden Bout. "Research conducted at the VLA has had a major impact across the entire breadth of astronomy, from nearby objects such as the Sun and planets of our own Solar System, to forming galaxies and quasars billions of light-years away in the farthest reaches of the Universe," Vanden Bout added. Major discoveries made by the VLA have ranged from the surprising detection of water ice on Mercury, the nearest planet to the Sun, to the first detection of radio emission from a Gamma Ray Burster in 1997. The VLA also discovered the first "Einstein Ring" gravitational lens in 1987, and the first "microquasar" within our own Milky Way Galaxy in 1994. Over the past two decades, the VLA also has made major contributions to our understanding of active regions on the Sun, the physics of superfast "cosmic jets" of material

  1. 90 GHz and 150 GHz Observations of the Orion M42 Region. A Submillimeter to Radio Analysis

    NASA Technical Reports Server (NTRS)

    Dicker, S. R.; Mason, B. S.; Korngut, P. M.; Cotton, W. D.; Compiegne, M.; Devlin, M. J.; Martin, P. G.; Ade, P. A. R; Benford, D. J.; Irwin, K. D.; hide

    2009-01-01

    We have used the new 90GHz MUSTANG camera on the Robert C. Green Bank Telescope (GBT)to map the bright Huygens region of the star-forming region M42 with a resolution of 9" and a sensitivity of 2.8 mJy/beam. Ninety GHz is an interesting transition frequency, as MUSTANG detects both the free-free emission characteristic of the H II region created by the Trapezium stars, normally seen at lower frequencies, and thermal dust emission from the background OMCI molecular cloud, normally mapped at higher frequencies. We also present similar data from the 150 GHz GISMO camera taken on the IRAM 30 m telescope. This map has 15" resolution. By combining the MUSTANG data with 1.4, 8. and 31 GHz radio data from the VLA and GBT, we derive a new estimate of the emission measure averaged electron temperature of T(sub e) = 11376+/-1050 K by an original method relating free-free emission intensities at optically thin and optically thick frequencies. Combining Infrared Space Observatory-long wavelength spectrometer (ISO-LWS) data with our data, we derive a new estimate of the dust temperature and spectral emissivity index within the 80" ISO-LWS beam toward Orion KL/BN, T(sub d) = 42+/-3 K and Beta(sub d) = 1.3+/-0.1. We show that both T(sub d) and Beta(sub d) decrease when going from the H II region and excited OMCI interface to the denser UV shielded part OMCI (Orion KL/BN, Orion S). With a model consisting of only free-free and thermal dust emission, we are able to fit data taken at frequencies from 1.5 GHz to 854 GHz (350 micrometers).

  2. Role of VLA-4 and VLA-5 in ex vivo maintenance of human and pig hematopoiesis in human stroma-supported long-term cultures.

    PubMed

    Giovino, Maria A; Wang, Hui; Sykes, Megan; Yang, Yong-Guang

    2005-03-01

    The advantage of recipient hematopoiesis over that of xenogeneic donors poses a fundamental obstacle to the induction of xenograft tolerance through mixed hematopoietic chimerism. Here we explore the role of beta1 integrins in maintenance of human vs porcine hematopoiesis within a human hematopoietic environment. Porcine and human c-kit+ bone marrow cells were purified and cultured on human bone marrow stroma for 6 weeks. The role of VLA-4 and VLA-5 in the maintenance of porcine vs human hematopoiesis in this human stroma-supported long-term bone marrow culture (LTBMC) system was evaluated by using blocking mAbs that bind to both species. Blocking VLA-4 with HP2/1 inhibited both human and porcine hematopoiesis, whereas anti-VLA-5 (SAM-1) suppressed the function of human, but not porcine, hematopoietic cells. In mixed LTBMC of porcine and human cells on a human stroma, porcine hematopoietic cells were at a competitive disadvantage, as seen by a rapid decline in cellularity, including clonogenic progenitors. This disadvantage was substantially overcome by the addition of SAM-1. Furthermore, human, but not porcine, cell adhesion to human fibronectin was inhibited by arginine-glycine-aspartic acid (RGD) peptides. Taken together, these results indicate that VLA-4 plays critical role for porcine hematopoiesis in a human hematopoietic environment, and raise the possibility that porcine VLA-5 might be unable to bind the respective human ligand and/or to initiate adequate post-ligand-binding signaling. Thus, VLA-5 may provide a potential target for developing approaches to improve porcine hematopoiesis in human recipients.

  3. Zeeman Effect observations toward 36 GHz methanol masers in the Galactic Center

    NASA Astrophysics Data System (ADS)

    Potvin, Justin A.; Momjian, Emmanuel; Pratim Sarma, Anuj

    2017-01-01

    We present observations of 36 GHz Class I methanol masers taken with the Karl G. Jansky Very Large Array (VLA) in the B configuration with the aim of detecting the Zeeman Effect. We targeted several 36 GHz Class I methanol masers associated with supernova remnants (SNRs) toward the Galactic Center. Each source was observed in dual circular polarizations for three hours. The observed spectral profiles of the masers are complex, with several components blended in velocity. In only one case was the Stokes V maser profile prominent enough to reveal a 2-sigma hint of a magnetic field of zBlos = 14.56 +/- 5.60 Hz; we have chosen to express our results in terms of zBlos since the Zeeman splitting factor (z) for 36 GHz methanol masers has not been measured. There are several hints that these spectra would reveal significant magnetic fields if they could be spatially and spectrally resolved.

  4. NRAO Scientists on Team Receiving International Astronautics Award

    NASA Astrophysics Data System (ADS)

    2005-10-01

    The International Academy of Astronautics (IAA) is presenting an award to a pioneering team of scientists and engineers who combined an orbiting radio-astronomy satellite with ground-based radio telescopes around the world to produce a "virtual telescope" nearly three times the size of the Earth. The team, which includes two scientists from the National Radio Astronomy Observatory (NRAO), will receive the award in a ceremony Sunday, October 16, in Fukuoka, Japan. VSOP Satellite and Ground Telescopes Artist's conception of HALCA satellite and ground observatories together making "virtual telescope" (blue) about three times the size of Earth. CREDIT: ISAS, JAXA (Click on image for larger version) The IAA chose the VLBI Space Observatory Program (VSOP), an international collaboration, to receive its 2005 Laurels for Team Achievement Award, which recognizes "extraordinary performance and achievement by a team of scientists, engineers and managers in the field of Astronautics to foster its peaceful and international use." VSOP team members named in the IAA award include NRAO astronomers Edward Fomalont, of Charlottesville, Virginia, and Jonathan Romney, of Socorro, New Mexico. "This is a well-deserved award for an international team whose hard work produced a scientific milestone that yielded impressive results and provides a foundation for more advances in the future," said Dr. Fred K.Y Lo, NRAO Director. The VSOP program used a Japanese satellite, HALCA (Highly Advanced Laboratory for Communications and Astronomy), that included an 8-meter (26-foot) radio telescope. HALCA was launched in 1997 and made astronomical observations in conjunction with ground-based radio telescopes from 14 countries. Five tracking stations, including one at NRAO's Green Bank, West Virginia, facility, received data from HALCA which later was combined with data from the ground-based telescopes to produce images more detailed than those that could have been made by ground-based systems alone

  5. The Zeeman effect or linear birefringence? VLA polarimetric spectral line observations of H2O masers

    NASA Astrophysics Data System (ADS)

    Zhao, Jun-Hui; Goss, W. M.; Diamond, P.

    We present line profiles of the four Stokes parameters of H2O masers at 22 GHz observed with the VLA in full polarimetric spectral line mode. With careful calibration, the instrumental effects such as linear leakage and the difference of antenna gain between RCP and LCP, can be minimized. Our measurements show a few percent linear polarization. Weak circular polarization was detected at a level of 0.1 percent of the peak intensity. A large uncertainty in the measurements of weak circular polarization is caused by telescope pointing errors. The observed polarization of H2O masers can be interpreted as either the Zeeman effect or linear birefringence.

  6. The chemokine SDF-1 activates the integrins LFA-1, VLA-4, and VLA-5 on immature human CD34(+) cells: role in transendothelial/stromal migration and engraftment of NOD/SCID mice.

    PubMed

    Peled, A; Kollet, O; Ponomaryov, T; Petit, I; Franitza, S; Grabovsky, V; Slav, M M; Nagler, A; Lider, O; Alon, R; Zipori, D; Lapidot, T

    2000-06-01

    Hematopoietic stem cell homing and engraftment require several adhesion interactions, which are not fully understood. Engraftment of nonobese/severe combined immunodeficiency (NOD/SCID) mice by human stem cells is dependent on the major integrins very late activation antigen-4 (VLA-4); VLA-5; and to a lesser degree, lymphocyte function associated antigen-1 (LFA-1). Treatment of human CD34(+) cells with antibodies to either VLA-4 or VLA-5 prevented engraftment, and treatment with anti-LFA-1 antibodies significantly reduced the levels of engraftment. Activation of CD34(+) cells, which bear the chemokine receptor CXCR4, with stromal derived factor 1 (SDF-1) led to firm adhesion and transendothelial migration, which was dependent on LFA-1/ICAM-1 (intracellular adhesion molecule-1) and VLA-4/VCAM-1 (vascular adhesion molecule-1). Furthermore, SDF-1-induced polarization and extravasation of CD34(+)/CXCR4(+) cells through the extracellular matrix underlining the endothelium was dependent on both VLA-4 and VLA-5. Our results demonstrate that repopulating human stem cells functionally express LFA-1, VLA-4, and VLA-5. Furthermore, this study implies a novel approach to further advance clinical transplantation.

  7. 90 GHz Observations of M87 and Hydra A

    NASA Technical Reports Server (NTRS)

    Cotton, W. D.; Mason, B. S.; Dicker, S. R.; Korngut, P. M.; Devlin, M. J.; Aquirre, J.; Benford, D. J.; Moseley, S. H.; Staguhn, J. G.; Irwin, K. D.; hide

    2009-01-01

    This paper presents new observations of the active galactic nuclei M87 and Hydra A at 90 GHz made with the MUSTANG array on the Green Bank Telescope at 8"5 resolution. A spectral analysis is performed combining this new data and archival VLA 7 data on these objects at longer wavelengths. This analysis can detect variations in spectral index and curvature expected from energy losses in the radiating particles. M87 shows only weak evidence for steepening of the spectrum along the jet suggesting either re-acceleration of the relativistic particles in the jet or insufficient losses to affect the spectrum at 90 GHz. The jets in Hydra A show strong steepening as they move from the nucleus suggesting unbalanced losses of the higher energy relativistic particles. The difference between these two sources may be accounted for by the lengths over which the jets are observable, 2 kpc for M87 and 45 kpc for Hydra A.

  8. Variability Search in GALFACTS

    NASA Astrophysics Data System (ADS)

    Kania, Joseph; Wenger, Trey; Ghosh, Tapasi; Salter, Christopher J.

    2015-01-01

    The Galactic ALFA Continuum Transit Survey (GALFACTS) is an all-Arecibo-sky survey using the seven-beam Arecibo L-band Feed Array (ALFA). The Survey is centered at 1.375 GHz with 300-MHz bandwidth, and measures all four Stokes parameters. We are looking for compact sources that vary in intensity or polarization on timescales of about a month via intra-survey comparisons and long term variations through comparisons with the NRAO VLA Sky Survey. Data processing includes locating and rejecting radio frequency interference, recognizing sources, two-dimensional Gaussian fitting to multiple cuts through the same source, and gain corrections. Our Python code is being used on the calibrations sources observed in conjunction with the survey measurements to determine the calibration parameters that will then be applied to data for the main field.

  9. Temporal Variation of HCO+ 1_0 Galactic Absorption Lines Toward NRAO 150 and BL Lac

    NASA Astrophysics Data System (ADS)

    Han, Junghwan; Yun, Youngjoo; Park, Yong-Sun

    2017-12-01

    We present observations of HCO^+ 1-0 absorption lines toward two extragalactic compact radio sources, NRAO 150 and BL Lac with the Korean VLBI Network in order to investigate their time variation over 20 years by Galactic foreground clouds. It is found that the line shape of -17 km s^{-1} component changed marginally during 1993-1998 period and has remained unaltered thereafter for NRAO 150. Its behavior is different from that of H_2CO 1_{10}-1_{11}, suggesting chemical differentiation on ˜ 20 AU scale, the smallest ever seen. On the other hand, BL Lac exhibits little temporal variation for the HCO^+ and H_2CO lines. Our observation also suggests that Korea VLBI Network performs reliably in the spectrum mode in that the shapes of the new HCO^+ 1-0 spectra are in good agreement with the previous ones to an accuracy of a few percent except the time varying component toward NRAO 150.

  10. VLA observations of unidentified Leiden-Berkeley Deep-Survey sources - Luminosity and redshift dependence of spectral properties

    NASA Technical Reports Server (NTRS)

    Kapahi, Vijay K.; Kulkarni, Vasant K.

    1990-01-01

    VLA observations of a complete subset of the Leiden-Berkeley Deep Survey sources that have S(1.4 GHz) greater than 10 mJy and are not optically identified down to F=22 mag are reported. By comparing the spectral and structural properties of the sources with samples from the literature, an attempt was made to disentangle the luminosity and redshift dependence of the spectral indices of extended emission in radio galaxies and of the incidence of compact steep-spectrum sources. It is found that the fraction of compact sources among those with a steep spectrum is related primarily to redshift, being much larger at high redshifts for sources of similar radio luminosity. Only a weak and marginally significant dependence of spectral indices of the extended sources on luminosity and redshift is found in samples selected at 1.4 and 2.7 GHz. It is pointed out that the much stronger correlation of spectral indices with luminosity may be arising partly from spectral curvature, and partly due to the preferential inclusion of very steep-spectrum sources from high redshift in low-frequency surveys.

  11. Simultaneous Solar Maximum Mission and Very Large Array (VLA) observations of solar active regions

    NASA Technical Reports Server (NTRS)

    Lang, K. R.

    1985-01-01

    Simultaneous observations of solar active regions with the Solar Maximum Mission (SMM) Satellite and the Very Large Array (VLA) have been obtained and analyzed. Combined results enhance the scientific return for beyond that expeted from using either SMM or VLA alone. A total of two weeks of simultaneous SMM/VLA data were obtained. The multiple wavelength VLA observations were used to determine the temperature and magnetic structure at different heights within coronal loops. These data are compared with simultaneous SMM observations. Several papers on the subject are in progress. They include VLA observations of compact, transient sources in the transition region; simultaneous SMM/VLA observations of the coronal loops in one active region and the evolution of another one; and sampling of the coronal plasma using thermal cyclotron lines (magnetic field - VLA) and soft X ray spectral lines (electron density and electron temperaure-SMM).

  12. Young Galaxy Surrounded by Material Needed to Make Stars, VLA Reveals

    NASA Astrophysics Data System (ADS)

    2001-01-01

    Astronomers using the National Science Foundation's Very Large Array (VLA) radio telescope have discovered a massive reservoir of cold gas from which a primeval galaxy formed its first stars. Looking more than 12 billion years into the past, the scientists found that the young galaxy experiencing a "burst" of star formation was surrounded by enough cold molecular gas to make 100 billion suns. Optical and Radio Images of APM 08279+5255 at About the Same Scale "This is the first time anyone has seen the massive reservoir of cold gas required for these incredible 'starbursts' to produce a galaxy," said Chris Carilli, an astronomer at the NSF's National Radio Astronomy Observatory (NRAO) in Socorro, NM. "There is much more gas here than we anticipated," Carilli added. The research team was led by Padeli Papadoupoulos of Leiden Observatory in the Netherlands and also included Rob Ivison of University College London and Geraint Lewis of the Anglo-Australian Observatory in Australia. The scientists reported their findings in the January 4 edition of the journal Nature. The astronomers found the gas when studying a quasar called APM 08279+5255, discovered in 1998. Observations with optical and infrared telescopes revealed that the quasar, a young galaxy with a voracious black hole at its center, was forming new stars rapidly in a starburst. At a distance of more than 12 billion light-years, the quasar is seen as it was more than 12 billion years ago, just a billion or so years after the Big Bang. "This thing is at the edge of the dark ages," before the first stars in the universe were born, said Carilli. The year after its discovery, APM 08279+5255 was found to have warm carbon monoxide (CO) gas near its center, heated by the energy released as the galaxy's black hole devours material. The VLA observations revealed cold CO gas much more widely distributed than its warmer counterpart. Based on observations of closer objects, the astronomers presume the CO gas is accompanied

  13. Identification of γ-ray emission from 3C 345 and NRAO 512

    DOE PAGES

    Schinzel, F. K.; Sokolovsky, K. V.; D’Ammando, F.; ...

    2011-08-09

    For more than 15 years, since the days of the Energetic Gamma-Ray Experiment Telescope (EGRET) on board the Compton Gamma-Ray Observatory (CGRO; 1991–2000), it has remained an open question why the prominent blazar 3C 345 was not reliably detected at γ-ray energies ≥ 20 MeV. Recently a bright γ-ray source (0FGL J1641.4+3939/1FGL J1642.5+3947), potentially associated with 3C 345, was detected by the Large Area Telescope (LAT) on Fermi. Multiwavelength observations from radio bands to X-rays (mainly GASP-WEBT and Swift) of possible counterparts (3C 345, NRAO 512, B3 1640 + 396) were combined with 20 months of Fermi-LAT monitoring data (Augustmore » 2008 – April 2010) to associate and identify the dominating γ-ray emitting counterpart of 1FGL J1642.5+3947. The source 3C 345 is identified as the main contributor for this γ-ray emitting region. However, after November 2009 (15 months), a significant excess of photons from the nearby quasar NRAO 512 started to contribute and thereafter was detected with increasing γ-ray activity, possibly adding flux to 1FGL J1642.5+3947. As a result, for the same time period and during the summer of 2010, an increase of radio, optical and X-ray activity of NRAO 512 was observed. No γ-ray emission from B3 1640 + 396 was detected.« less

  14. 1.4 GHz continuum sources in the Cancer cluster

    NASA Technical Reports Server (NTRS)

    Salpeter, E. E.; Dickey, J. M.

    1987-01-01

    Results of 1.4-GHz continuum observations are presented for 11 VLA fields, using the D-configuration, which contain the A group of the Cnc cluster (CC). Sixteen Zwicky spiral galaxies in the CC were detected, but no ellipticals, confirming the finding that spiral galaxies with close companions tend to have enhanced radio emission. Over 200 continuum sources beyond the CC are tabulated. The spectral index (relative to 610 MHz) is given for many of the sources, including some of the Zwicky galaxies. There is a suggestion for a nonuniform number surface-density distribution of the sources, not correlated with the CC. Possible predictions of such nonuniformities, from assumptions on 'super-superclusters', are discussed.

  15. The proposed NRAO millimeter array and its use for solar studies

    NASA Technical Reports Server (NTRS)

    Kundu, Mukul R.

    1986-01-01

    A brief summary is given of the proposed National Radio Astronomy Observatory (NRAO) Millimeter Array discussed at a workshop held in Green Bank, W. Va., September 30 to October 2, 1985. A brief description of the solar studies that can be made with such an array is provided.

  16. Hubble Sees Stars and a Stripe in Celestial Fireworks

    NASA Image and Video Library

    2017-12-08

    Release date: July 1, 2008 This image is a composite of visible (or optical), radio, and X-ray data of the full shell of the supernova remnant from SN 1006. The radio data show much of the extent that the X-ray image shows. In contrast, only a small linear filament in the northwest corner of the shell is visible in the optical data. The object has an angular size of roughly 30 arcminutes (0.5 degree, or about the size of the full moon), and a physical size of 60 light-years (18 parsecs) based on its distance of nearly 7,000 light-years. The small green box along the bright filament at the top of the image corresponds to the dimensions of the Hubble release image. The optical data was obtained at the University of Michigan's 0.9-meter Curtis Schmidt telescope at the National Science Foundation's Cerro Tololo Inter-American Observatory (CTIO) near La Serena, Chile. H-alpha, continuum-subtracted data were provided by F. Winkler (Middlebury COllege) et al. The X-ray data were acquired from the Chandra X-ray Observatory's AXAF CCD Imaging Spectrometer (ACIS) at 0.5-3keV, and were provided by J. Hughes (Rutgers University) et al. The radio data, supplied by K. Dyer (NRAO, Socorro) et al., were a composite from the National Radio Astronomy Observatory's Very Large Array (NRAO/VLA) in Socorro, New Mexico, along with the Green Bank Telescope (GBT) in Green Bank, West Virginia. Data of the supernova remnant were blended on a visible-light stellar background created using the Digitized Sky Survey's Anglo-Australian Observatory (AAO2) blue and red plates. Photo Credit: NASA, ESA, and Z. Levay (STScI) Science Credit: Radio: NRAO/AUI/NSF GBT+VLA 1.4 GHz mosaic (Dyer, Maddalena and Cornwell, NRAO); X-ray: NASA/CXC/Rutgers/G. Cassam-Chenai and J. Hughes et al.; Optical: F.Winkler/Middlebury College and NOAO/AURA/NSF; and DSS To learn more about the Hubble Space Telescope go here: www.nasa.gov/mission_pages/hubble/main/index.html NASA Goddard Space Flight Center is home to the

  17. A CHANDRA-VLA INVESTIGATION OF THE X-RAY CAVITY SYSTEM AND RADIO MINI-HALO IN THE GALAXY CLUSTER RBS 797

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doria, Alberto; Gitti, Myriam; Brighenti, Fabrizio

    2012-07-01

    We present a study of the cavity system in the galaxy cluster RBS 797 based on Chandra and Very Large Array (VLA) data. RBS 797 (z = 0.35) is one of the most distant galaxy clusters in which two pronounced X-ray cavities have been discovered. The Chandra data confirm the presence of a cool core and indicate a higher metallicity along the cavity directions. This is likely due to the active galactic nucleus outburst, which lifts cool metal-rich gas from the center along the cavities, as seen in other systems. We find indications that the cavities are hotter than themore » surrounding gas. Moreover, the new Chandra images show bright rims contrasting with the deep, X-ray deficient cavities. The likely cause is that the expanding 1.4 GHz radio lobes have displaced the gas, compressing it into a shell that appears as bright cool arms. Finally, we show that the large-scale radio emission detected with our VLA observations may be classified as a radio mini-halo, powered by the cooling flow, as it nicely follows the trend P{sub radio} versus P{sub CF} predicted by the reacceleration model.« less

  18. VLA observations of unidentified Leiden-Berkeley Deep-Survey sources - Luminosity and redshift dependence of spectral properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kapahi, V.K.; Kulkarni, V.K.

    1990-05-01

    VLA observations of a complete subset of the Leiden-Berkeley Deep Survey sources that have S(1.4 GHz) greater than 10 mJy and are not optically identified down to F=22 mag are reported. By comparing the spectral and structural properties of the sources with samples from the literature, an attempt was made to disentangle the luminosity and redshift dependence of the spectral indices of extended emission in radio galaxies and of the incidence of compact steep-spectrum sources. It is found that the fraction of compact sources among those with a steep spectrum is related primarily to redshift, being much larger at highmore » redshifts for sources of similar radio luminosity. Only a weak and marginally significant dependence of spectral indices of the extended sources on luminosity and redshift is found in samples selected at 1.4 and 2.7 GHz. It is pointed out that the much stronger correlation of spectral indices with luminosity may be arising partly from spectral curvature, and partly due to the preferential inclusion of very steep-spectrum sources from high redshift in low-frequency surveys. 54 refs.« less

  19. VLA Measurements of Faraday Rotation through Coronal Mass Ejections

    NASA Astrophysics Data System (ADS)

    Kooi, Jason E.; Fischer, Patrick D.; Buffo, Jacob J.; Spangler, Steven R.

    2017-04-01

    Coronal mass ejections (CMEs) are large-scale eruptions of plasma from the Sun, which play an important role in space weather. Faraday rotation is the rotation of the plane of polarization that results when a linearly polarized signal passes through a magnetized plasma such as a CME. Faraday rotation is proportional to the path integral through the plasma of the electron density and the line-of-sight component of the magnetic field. Faraday-rotation observations of a source near the Sun can provide information on the plasma structure of a CME shortly after launch. We report on simultaneous white-light and radio observations made of three CMEs in August 2012. We made sensitive Very Large Array (VLA) full-polarization observations using 1 - 2 GHz frequencies of a constellation of radio sources through the solar corona at heliocentric distances that ranged from 6 - 15 R_{⊙}. Two sources (0842+1835 and 0900+1832) were occulted by a single CME, and one source (0843+1547) was occulted by two CMEs. In addition to our radioastronomical observations, which represent one of the first active hunts for CME Faraday rotation since Bird et al. ( Solar Phys., 98, 341, 1985) and the first active hunt using the VLA, we obtained white-light coronagraph images from the Large Angle and Spectrometric Coronagraph (LASCO) C3 instrument to determine the Thomson-scattering brightness [BT], providing a means to independently estimate the plasma density and determine its contribution to the observed Faraday rotation. A constant-density force-free flux rope embedded in the background corona was used to model the effects of the CMEs on BT and Faraday rotation. The plasma densities (6 - 22×103 cm^{-3}) and axial magnetic-field strengths (2 - 12 mG) inferred from our models are consistent with the modeling work of Liu et al. ( Astrophys. J., 665, 1439, 2007) and Jensen and Russell ( Geophys. Res. Lett., 35, L02103, 2008), as well as previous CME Faraday-rotation observations by Bird et al

  20. VLA-4 antagonists: potent inhibitors of lymphocyte migration.

    PubMed

    Yang, Ginger X; Hagmann, William K

    2003-05-01

    Circulating lymphocytes normally migrate through extravascular spaces in relatively low numbers as important members of the immunosurveillance process. That is until signals are received by endothelial cells that there is an underlying infection or inflammatory condition. These vascular surface cells in turn overexpress and present ligands to circulating lymphocyte adhesion molecules. Upon encountering this higher density of ligands, lymphocytes, which had been leisurely rolling along the vascular surface, now become more firmly attached, change shape, and migrate through tight junctions to the sites of infection or inflammation. If the initiating events are not resolved and the condition becomes chronic, there can be a sustained extravasation of lymphocytes that can exacerbate the inflammatory condition, which in turn will continue to recruit more inflammatory cells resulting in unwanted tissue destruction. It is for the attenuation of this cycle of sustained inflammatory cell recruitment that very late activating antigen-4 (VLA-4) antagonists are being developed. Most lymphocytes, except neutrophils, express VLA-4 on their surface and they interact with endothelial vascular cell adhesion molecule-1 (VCAM-1). It is this interaction that VLA-4 antagonists are intended to disrupt, thus, putting an end to the cycle of chronic inflammation, which is the hallmark of many diseases. This review will provide an update of VLA-4 antagonists that have appeared since early 2001 and will discuss some of the issues, both positive and negative, that may be encountered in their development. Copyright 2003 Wiley Periodicals, Inc.

  1. Observations of M87 and Hydra A at 90 GHz

    NASA Technical Reports Server (NTRS)

    Cotton, W. D.; Mason, B. S.; Dicker, S.; Korngut, P.; Devlin, M. J.; Aquirre, J.; Benford, D.; Moseley, H.; Staguhn, J.; Irwin, K.; hide

    2009-01-01

    This paper presents new observations of the AGNs M87 and Hydra A at 90 GHz made with the MUSTANG bolometer array on the Green Bank Telescope at 8.5" resolution. A spectral analysis is performed combining this new data and archival VLA data or1 these objects at longer wavelengths. This analysis can detect variations in spectral index and curvature expected from energy losses in the radiating particles. L187 shows only weak evidence for steepening of the spectrum along the jet suggesting either re-acceleration of the relativistic particles in the jet or insufficient losesto affect the spectrum at 90 GHz The jets in Hydra A show strong steepening as they move from the nucleus suggesting unbalanced losses of the higher energy relativistic particles The difference between these two sources may be accounted for by the different lengths over which the jets are observable, 2 kpc for 5187 and 45 kpc for Hydra A. Subject headings: galaxies: jets, galaxies: active, radio continuum, galaxies: individual (M87. Hydra A),

  2. Accretions Disks Around Class O Protostars: The Case of VLA 1623

    NASA Astrophysics Data System (ADS)

    Pudritz, Ralph E.; Wilson, Christine D.; Carlstrom, John E.; Lay, Oliver P.; Hills, Richard E.; Ward-Thompson, Derek

    1996-10-01

    Continuum emission at 220 and 355 GHz from the prototype class 0 source VLA 1623 has been detected using the James Clerk Maxwell Telescope-Caltech Submillimeter Observatory interferometer. Gaussian fits to the data place an upper limit of 70 AU on the half-width at half-maximum radius of the emission, which implies an upper limit of ~175 AU for the cutoff radius of the circumstellar disk in the system. In the context of existing collapse models, this disk could be magnetically supported on the largest scales and have an age of ~6 x 104 yr, consistent with previous suggestions that class 0 sources are quite young. The innermost region of the disk within ~6 AU is likely to be in centrifugal support, which is likely large enough to provide a drive for the outflow according to current theoretical models. Alternatively, if 175 AU corresponds to the centrifugal radius of the disk, the age of the system is ~2 x 105 yr, closer to age estimates for class I sources.

  3. The Expanded Very Large Array: A Radio Telescope for the 21st Century

    NASA Astrophysics Data System (ADS)

    2000-06-01

    The world's most productive and widely-used radio telescope, the National Science Foundation's Very Large Array (VLA), can be improved tenfold with an expansion project proposed by the National Radio Astronomy Observatory (NRAO). "This project will ensure that the scientific community has a state-of-the-art research tool to meet the astronomical research challenges of the 21st Century," said Paul Vanden Bout, NRAO Director. Aerial View of the VLA Plans for the Expanded VLA (EVLA) and its potential for new scientific contributions were described today in a series of presentations at the American Astronomical Society's meeting in Rochester, NY. The EVLA project plans to replace dated equipment left over from the VLA's original construction in the 1970s and add eight new radio- telescope dish antennas to the current, 27-dish system. It received a strong endorsement last month when the Astronomy and Astrophysics Survey Committee of the National Academy of Sciences gave the project one of its highest ratings as a priority for the next decade in its report entitled "Astronomy and Astrophysics in the New Millennium." "The Survey Committee's endorsement shows that the astronomical research community strongly supports the Expanded VLA," said NRAO astronomer Jim Ulvestad, who spoke to reporters at the AAS meeting. "The VLA has long been a unique and critical resource for all of astronomy, and we look forward to turning it into a dramatic, new research tool." The VLA Expansion Project will use modern electronics and computer technology to greatly improve the VLA's ability to observe faint celestial objects and to analyze their radio emissions. A set of eight new dish antennas, added to the current 27-antenna system, will allow the VLA to produce images with ten times greater detail. The project will build on the VLA's current infrastructure, including its 230-ton dish antennas, the railroad tracks for moving those antennas, and the existing buildings and access roads. The

  4. Getting the Big Picture: Design Considerations for a ngVLA Short Spacing Array

    NASA Astrophysics Data System (ADS)

    Mason, Brian Scott; Cotton, William; Condon, James; Kepley, Amanda; Selina, Rob; Murphy, Eric Joseph

    2018-01-01

    The Next Generation VLA (ngVLA) aims to provide a revolutionary increase in cm-wavelength collecting area and sensitivity while at the same time providing excellent image fidelity for a broad spectrum of science cases. Likely ngVLA configurations currently envisioned provide sensitivity over a very wide range of spatial scales. The antenna diameter (notionally 18 meters) fundamentally limits the largest angular scales that can be reached. One simple and powerful way to image larger angular scales is to build a complementary interferometer comprising a smaller number of smaller-diameter dishes.We have investigated the requirements that such an array would need to meet in order to usefully scientifically complement the ngVLA; this poster presents the results of our investigation.

  5. Dust Polarization toward Embedded Protostars in Ophiuchus with ALMA. I. VLA 1623

    NASA Astrophysics Data System (ADS)

    Sadavoy, Sarah I.; Myers, Philip C.; Stephens, Ian W.; Tobin, John; Commerçon, Benoît; Henning, Thomas; Looney, Leslie; Kwon, Woojin; Segura-Cox, Dominique; Harris, Robert

    2018-06-01

    We present high-resolution (∼30 au) ALMA Band 6 dust polarization observations of VLA 1623. The VLA 1623 data resolve compact ∼40 au inner disks around the two protobinary sources, VLA 1623-A and VLA 1623-B, and also an extended ∼180 au ring of dust around VLA 1623-A. This dust ring was previously identified as a large disk in lower-resolution observations. We detect highly structured dust polarization toward the inner disks and the extended ring with typical polarization fractions ≈1.7% and ≈2.4%, respectively. The two components also show distinct polarization morphologies. The inner disks have uniform polarization angles aligned with their minor axes. This morphology is consistent with expectations from dust scattering. By contrast, the extended dust ring has an azimuthal polarization morphology not previously seen in lower-resolution observations. We find that our observations are well-fit by a static, oblate spheroid model with a flux-frozen, poloidal magnetic field. We propose that the polarization traces magnetic grain alignment likely from flux freezing on large scales and magnetic diffusion on small scales. Alternatively, the azimuthal polarization may be attributed to grain alignment by the anisotropic radiation field. If the grains are radiatively aligned, then our observations indicate that large (∼100 μm) dust grains grow quickly at large angular extents. Finally, we identify significant proper motion of VLA 1623 using our observations and those in the literature. This result indicates that the proper motion of nearby systems must be corrected for when combining ALMA data from different epochs.

  6. VizieR Online Data Catalog: Gould's Belt VLA survey. III. Orion region (Kounkel+, 2014)

    NASA Astrophysics Data System (ADS)

    Kounkel, M.; Hartmann, L.; Loinard, L.; Mioduszewski, A. J.; Dzib, S. A.; Ortiz-Leon, G. N.; Rodriguez, L. F.; Pech, G.; Rivera, J. L.; Torres, R. M.; Boden, A. F.; Evans, N. J., II; Briceno, C.; Tobin, J.

    2015-09-01

    Fields in the Orion A and B molecular clouds were observed with the Karl G. Jansky Very Large Array (VLA) in its A configuration. The 210 individual fields have been split into 7 maps, with 30 fields being observed per map, as follows: 12 in λ Ori, 3 in L1622, 27 are shared between NGC 2068 and NGC 2071, 14 are shared between NGC 2023 and NGC 2024, 11 in σ Ori, 109 in the Orion Nebula Cluster (ONC), 16 in L1641-N, 8 in L1641-C, and 10 in L1641-S (see Figures 1-7). All the maps were imaged closely in time, and a total of three epochs separated by approximately a full month were acquired in summer 2011. Assuming a FWHM diameter of the primary beam of 10' and 6' at 4.5 and 7.5GHz respectively, the total area covered by our observations is 2.26 and 1.35deg2, respectively. (2 data files).

  7. VizieR Online Data Catalog: MOJAVE XV. VLBA 15GHz obs. of AGN jets 1996-2016 (Lister+, 2018)

    NASA Astrophysics Data System (ADS)

    Lister, M. L.; Aller, M. F.; Aller, H. D.; Hodge, M. A.; Homan, D. C.; Kovalev, Y. Y.; Pushkarev, A. B.; Savolainen, T.

    2018-03-01

    The VLBA maps in this paper are of 437 compact, radio-loud AGNs observed as part of the MOJAVE program. The data consist of 5321 observations of 437 AGNs in the 15GHz band, obtained between 1996 January 19 and 2016 December 26 with the VLBA in full polarization mode (Table 2). Most of the VLBA observations (86%) were carried out as part of the MOJAVE program (Paper V; Lister+ 2009, J/AJ/137/3718), while the remainder were downloaded from the NRAO archive. Most of the AGNs have between 5 and 15 VLBA observation epochs, although a substantial number have considerably more epochs. (3 data files).

  8. High-Tech 'Heart' of New-Generation Radio Telescope Passes First Test

    NASA Astrophysics Data System (ADS)

    2008-08-01

    The Expanded Very Large Array (EVLA), part of the National Radio Astronomy Observatory (NRAO), took a giant step toward completion on August 7 with successful testing of advanced digital hardware designed to combine signals from its upgraded radio-telescope antennas to produce high resolution images of celestial objects. Successful Moment NRAO Crew Views Successful Computer Display Of WIDAR "First Fringes" Seated, front to back: Barry Clark, Ken Sowinski, Michael Rupen, Kevin Ryan. Standing, front to rear: Mark McKinnon, Rick Perley, Hichem Ben Frej. CREDIT: Dave Finley, NRAO/AUI/NSF Click on image for larger file. By upgrading the 1970s-era electronics of its original Very Large Array (VLA), NRAO is creating a major new radio telescope that is ten times more sensitive than before. Using the EVLA, astronomers will observe fainter and more-distant objects than previously possible and use vastly improved analysis tools to decipher their physics. The heart of the new electronics that makes this transformation possible is a high-performance, special-purpose supercomputer, called the WIDAR Correlator. It has been designed and is being built by the National Research Council of Canada at the Dominion Radio Astrophysical Observatory (DRAO) of the Herzberg Institute for Astrophysics, and serves as Canada's contribution to the EVLA project. The design of the correlator incorporates an NRC-patented new digital electronic architecture. The successful test, at the VLA site 50 miles west of Socorro, New Mexico, used prototype correlator electronics to combine the signals from two upgraded VLA antennas to turn them into a single, high-resolution telescope system, called an interferometer. The technical term for this achievement is called "first fringes." Each upgraded EVLA antenna produces 100 times more data than an original VLA antenna. When all 27 antennas are upgraded, they will pump data into the WIDAR correlator at a rate equal to 48 million digital telephone calls. To

  9. A search for extended radio emission from selected compact galaxy groups

    NASA Astrophysics Data System (ADS)

    Nikiel-Wroczyński, B.; Urbanik, M.; Soida, M.; Beck, R.; Bomans, D. J.

    2017-07-01

    Context. Studies on compact galaxy groups have led to the conclusion that a plenitude of phenomena take place in between galaxies that form them. However, radio data on these objects are extremely scarce and not much is known concerning the existence and role of the magnetic field in intergalactic space. Aims: We aim to study a small sample of galaxy groups that look promising as possible sources of intergalactic magnetic fields; for example data from radio surveys suggest that most of the radio emission is due to extended, diffuse structures in and out of the galaxies. Methods: We used the Effelsberg 100 m radio telescope at 4.85 GHz and NRAO VLA Sky Survey (NVSS) data at 1.40 GHz. After subtraction of compact sources we analysed the maps searching for diffuse, intergalactic radio emission. Spectral index and magnetic field properties were derived. Results: Intergalactic magnetic fields exist in groups HCG 15 and HCG 60, whereas there are no signs of them in HCG 68. There are also hints of an intergalactic bridge in HCG 44 at 4.85 GHz. Conclusions: Intergalactic magnetic fields exist in galaxy groups and their energy density may be comparable to the thermal (X-ray) density, suggesting an important role of the magnetic field in the intra-group medium, wherever it is detected.

  10. VizieR Online Data Catalog: Extragalactic peaked-spectrum radio sources (Callingham+, 2017)

    NASA Astrophysics Data System (ADS)

    Callingham, J. R.; Ekers, R. D.; Gaensler, B. M.; Line, J. L. B.; Hurley-Walker, N.; Sadler, E. M.; Tingay, S. J.; Hancock, P. J.; Bell, M. E.; Dwarakanath, K. S.; For, B.-Q.; Franzen, T. M. O.; Hindson, L.; Johnston-Hollitt, M.; Kapinska, A. D.; Lenc, E.; McKinley, B.; Morgan, J.; Offringa, A. R.; Procopio, P.; Staveley-Smith, L.; Wayth, R. B.; Wu, C.; Zheng, Q.

    2017-09-01

    The GaLactic and Extragalactic All-sky Murchison Widefield Array (GLEAM) extragalactic catalog represents a significant advance in selecting peaked-spectrum sources, since it is constituted of sources that were contemporaneously surveyed with the widest fractional radio bandwidth to date, with 20 flux density measurements between 72 and 231MHz. We also use the NRAO VLA Sky Survey (NVSS; Condon+ 1998, VIII/65) and the Sydney University Molonglo Sky Survey (SUMSS; See Mauch+ 2008, VIII/81). Since the combination of NVSS and SUMSS cover the entire GLEAM survey and are an order of magnitude more sensitive, this study is sensitive to peaked-spectrum sources that peak anywhere between 72MHz and 843MHz/1.4GHz. The GLEAM survey was formed from observations conducted by the Murchison Widefield Array (MWA), which surveyed the sky between 72 and 231MHz from 2013 August to 2014 July (Wayth+ 2015PASA...32...25W - see also VIII/100). (5 data files).

  11. MOJAVE. XV. VLBA 15 GHz Total Intensity and Polarization Maps of 437 Parsec-scale AGN Jets from 1996 to 2017

    NASA Astrophysics Data System (ADS)

    Lister, M. L.; Aller, M. F.; Aller, H. D.; Hodge, M. A.; Homan, D. C.; Kovalev, Y. Y.; Pushkarev, A. B.; Savolainen, T.

    2018-01-01

    We present 5321 mas-resolution total intensity and linear polarization maps of 437 active galactic nuclei (AGNs) obtained with the VLBA at 15 GHz as part of the MOJAVE survey, and also from the NRAO data archive. The former is a long-term program to study the structure and evolution of powerful parsec-scale outflows associated with AGNs. The targeted AGNs are drawn from several flux-limited radio and γ-ray samples, and all have correlated VLBA flux densities greater than ∼50 mJy at 15 GHz. Approximately 80% of these AGNs are associated with γ-ray sources detected by the Fermi LAT instrument. The vast majority were observed with the VLBA on 5–15 occasions between 1996 January 19 and 2016 December 26, at intervals ranging from a month to several years, with the most typical sampling interval being six months. A detailed analysis of the linear and circular polarization evolutions of these AGN jets is presented in the other papers in this series.

  12. Performance of the image statistics decoder in conjunction with the Goldstone-VLA array

    NASA Technical Reports Server (NTRS)

    Wang, H. C.; Pitt, G. H., III

    1989-01-01

    During Voyager's Neptune encounter, the National Radio Astronomy Observatory's Very Large Array (VLA) will be arrayed with Goldstone antennas to receive the transmitted telemetry data from the spacecraft. The telemetry signal from the VLA will drop out periodically, resulting in a periodic drop in the received signal-to-noise ratio (SNR). The Image Statistics Decoder (ISD), which assumes a correlation between pixels, can improve the bit error rate (BER) for images during these dropout periods. Simulation results have shown that the ISD, in conjunction with the Goldstone-VLA array can provide a 3-dB gain for uncompressed images at a BER of 5.0 x 10(exp -3).

  13. Debris Disk Studies with the ngVLA

    NASA Astrophysics Data System (ADS)

    Wilner, David; Matthews, Brenda; Matra, Luca; Kennedy, Grant; Wyatt, Mark; Greaves, Jane

    2018-01-01

    We discuss the potential for the ngVLA to advance understanding of debris disks around main-sequence stars. Since the dust-producing planetesimals that replenish these disks through collisions persist only in stable regions like belts and resonances, their locations and physical properties encode essential information about the formation of exoplanetary systems and their dynamical evolution. Observations at long millimeter wavelengths can play a special role because the large grains that dominate the emission are faithful tracers of the dust-producing planetesimals, unlike small grains seen at shorter wavelengths that are rapidly redistributed by stellar radiation and winds. Sensitive observations of debris disks with the ngVLA can (1) reveal structures resulting from otherwise inaccessible planets on wide orbits, (2) test collisional models using spectral slopes to constrain mm/cm grain size distributions, and (3) for select sources, probe the water content of exocomets using the 21 cm HI line.

  14. Research Center Renaming Will Honor Senator Domenici

    NASA Astrophysics Data System (ADS)

    2008-05-01

    New Mexico Tech and the National Radio Astronomy Observatory (NRAO) will rename the observatory's research center on the New Mexico Tech campus to honor retiring U.S. Senator Pete V. Domenici in a ceremony on May 30. The building that serves as the scientific, technical, and administrative center for the Very Large Array (VLA) and Very Long Baseline Array (VLBA) radio telescopes will be named the "Pete V. Domenici Science Operations Center." The building previously was known simply as the "Array Operations Center." Sen. Pete V. Domenici Sen. Pete V. Domenici "The new name recognizes the strong and effective support for science that has been a hallmark of Senator Domenici's long career in public service," said Dr. Fred Lo, NRAO Director. New Mexico Tech President Daniel H. Lopez said Sen. Domenici has always been a supporter of science and research in Socorro and throughout the state. "He's been a statesman for New Mexico, the nation -- and without exaggeration -- for the world," Lopez said. "Anyone with that track record deserves this recognition." Van Romero, Tech vice president of research and economic development, has served as the university's main lobbyist in Washington, D.C., for more than a decade. He said Sen. Domenici has always been receptive to new ideas and willing to take risks. "Over the years, Sen. Domenici has always had time to listen to our needs and goals," Romero said. "He has served as a champion of New Mexico Tech's causes and we owe him a debt of gratitude for all his efforts over the decades." Originally dedicated in 1988, the center houses offices and laboratories that support VLA and VLBA operations. The center also supports work on the VLA modernization project and on the international Atacama Large Millimeter/submillimeter Array (ALMA) project. Work on ALMA at the Socorro center and at the ALMA Test Facility at the VLA site west of Socorro has focused on developing and testing equipment to be deployed at the ALMA site in Chile's Atacama

  15. Short term variations in Jupiter's synchrotron radiation derived from VLA data analysis

    NASA Astrophysics Data System (ADS)

    Kita, H.; Misawa, H.; Tsuchiya, F.; Morioka, A.

    2011-12-01

    Jupiter's synchrotron radiation (JSR) is the emission from relativistic electrons in the strong magnetic field of the inner magnetosphere, and it is the most effective prove for remote sensing of Jupiter's radiation belt from the Earth. Although JSR has been thought to be stable for a long time, intensive observations for JSR have made after the collisions of comet P/SL9 to Jupiter in 1994, and these observations revealed short term variations of JSR on time scale of days to weeks. However, the mechanisms which cause the short term variations of total flux density and brightness distribution have not been revealed well. In order to reveal the mechanism of short term variations of JSR more precisely, we have made radio image analysis using the NRAO (National Radio Astronomy Observatory) archived data of the VLA [*]. Brice and McDonough [1973, Icarus] proposed a scenario for the short term variations: i.e, the solar UV/EUV heating for Jupiter's upper atmosphere drives neutral wind perturbations and then the induced dynamo electric field leads to enhancement of radial diffusion. It is also suggested that induced dynamo electric field produce dawn-dusk electric potential difference, which cause dawn-dusk asymmetry in electron spatial distribution and emission distribution. So far the following results have been indicated for the short term variations. Miyoshi et al. [1999, GRL] showed that a short term variation event at 2.3GHz is well correlate to solar UV/EUV flux variations. Tsuchiya et al. [2010, Adv. Geosci.] showed that JSR at 325MHz and 785MHz have short term variations. These JSR observations confirmed the existence of the short term variation which is caused by solar UV/EUV. However, the effect of solar UV/EUV heating on the spatial distribution of JSR has never been confirmed, so this study is the first attempt to confirm the solar UV/EUV effect on spatial distribution of JSR. We have selected the data observed from 28th Jan. to 5th Feb. 2000 at 327MHz

  16. VizieR Online Data Catalog: SDSS Stripe 82 VLA 1-2GHz survey (Heywood+, 2016)

    NASA Astrophysics Data System (ADS)

    Heywood, I.; Jarvis, M. J.; Baker, A. J.; Bannister, K. W.; Carvalho, C. S.; Hardcastle, M.; Hilton, M.; Moodley, K.; Smirnov, O. M.; Smith, D. J. B.; White, S. V.; Wollack, E. J.

    2017-11-01

    The data (Project code: 13B-272) were taken with the array in the CnB configuration. Standard wide-band mode was employed with the correlator splitting the 1-2GHz of frequency coverage into 16 spectral windows (SPWs) with 64x1MHz channels each, and an integration time per visibility point of 3s. A total of 1368 target pointings were scheduled, 608 and 760 in the eastern and western regions, respectively, coincident with the two eastern and western areas of the existing Hodge et al. (2011, Cat. J/AJ/142/3) data. (2 data files).

  17. Goldstone/VLA 3.5cm Mars Radar Observations - "Stealths" and South Polar Regions

    NASA Astrophysics Data System (ADS)

    Butler, Bryan; Chizek, M. R.; Slade, M. A.; Haldemann, A. F.; Muhleman, D. O.; Mao, T. F.

    2006-09-01

    The opposition of Mars in 2003 provided a fantastic opportunity to use the combined Goldstone/VLA radar to probe the surface with the highest resolution ever obtained on Mars with that instrument (as good as 70 km). Observations were made on August 11, 19, 28, and September 8. Details of data reduction and analysis of the radar echoes from the volcanic regions of the planet are presented in a companion paper in these proceedings (Chizek et al.). We will present results related to "Stealth" (and other radar-dark regions of the planet, including the Argyre and Hellas Planitiae, and a region to the west of the Elysium Mons caldera), and the south polar residual and seasonal ice caps. The size, shape, and reflectivity characteristics of Stealth and "mega-Stealth" (Edgett et al. 1997) are reaffirmed, with a better viewing geometry of the western extent of the feature than had been obtained previously. It had been speculated previously that Hellas Planitia should also be radar dark - this is confirmed by our imaging, though the reflectivity is not as low as for Stealth. We find a new radar dark area to the west of Elysium Mons, which is likely an ash fall from that volcano (similar to the relationship between Stealth and the Tharsis volcanoes). The south polar residual ice cap is a very bright reflector, as seen previously, but we now also see a very bright reflection from the seasonal cap, not seen previously. The cap is not uniformly bright, however, and the extent of the bright reflection does not correspond to that expected from the retreat of the cap as measured either from albedo or thermal emission characteristics. The NRAO is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.

  18. NRAO Welcomes Taiwan as a New North American ALMA Partner

    NASA Astrophysics Data System (ADS)

    2008-12-01

    The National Radio Astronomy Observatory (NRAO) has announced a formal agreement enabling Taiwanese astronomers to participate in the North American component of the international ALMA partnership, alongside American and Canadian astronomers. Taiwan's efforts will be led by the Academia Sinica Institute of Astronomy and Astrophysics (ASIAA). ALMA, the Atacama Large Millimeter/submillimeter Array, is the most ambitious ground-based astronomical observatory in history. Currently under construction in Chile’s Atacama Desert at an altitude of 16,500 feet, it promises to revolutionize our understanding of the formation of planets, stars, and galaxies when it begins full science operations early in the next decade. The agreement, signed by the Taipei Economic and Cultural Representative Office and the American Institute in Taiwan, provides for approximately $20 million in ALMA construction funding through the National Science Council (NSC), Taiwan’s equivalent to the US National Science Foundation (NSF) and Canada's National Research Council (NRC), which have jointly funded North America's existing contribution to the international ALMA project. Activities under the agreement will include joint research projects, development projects, collaboration on construction, support of observatory operations and other forms of cooperation. Access to ALMA observing time will be shared, as will membership on advisory committees. “Taiwan is a world-class center for submillimeter-wavelength astronomical research, and we’re delighted that the ALMA project and all its future users will benefit from the resources and expertise that Taiwan’s deepening participation brings to this great, global endeavor,” said Dr. Fred Lo, NRAO's director. This new agreement increases and diversifies Taiwan’s Academia Sinica investment in ALMA beyond the levels achieved through its participation in the East Asian component of the ALMA partnership, which is led by the National Astronomical

  19. VizieR Online Data Catalog: The MIT-Green Bank 5GHz Survey (Bennett+, 1986-91)

    NASA Astrophysics Data System (ADS)

    Bennett, C. L.; Lawrence, C. R.; Burke, B. F.; Hewitt, J. N.; Mahoney, J.

    2003-08-01

    The MIT-Green Bank 5GHz survey catalog was produced from four separate surveys with the National Radio Astronomy Observatory (NRAO) 91m transit telescope (Bennett et al., 1986ApJS...61....1B (MG1); Langston et al., 1990ApJS...72..621L (MG2); Griffith et al., 1990ApJS...74..129G (MG3); Griffith et al. 1991ApJS...75..801G (MG4)). The sky coverage of the various surveys is: 00h < RAB < 24h, -00d30'13" < DECB < +19d29'47" for MG1; 04h < RAJ < 21h, +17.0d < DECJ < +39d09' for MG2; 16h30m < RAB < 05h, +17d < DECB < +39d09' for MG3; and 15h30m < RAB < 02h30m, +37.00d < DECB < +50d58'48" for MG4; where RAB and DECB refer to B1950 coordinates, and RAJ and DECJ refer to J2000 coordinates. The catalog contains 20344 sources detected with a signal-to-noise ratio greater than 5 and 3836 possible detections (MG1) with a signal-to-noise ratio less than 5. Spectral indices are computed for MG1 sources also identified in the Texas 365MHz survey (Douglas et al. 1980), and for MG1-MG4 sources also identified in the NRAO 1400MHz Survey (Condon and Broderick 1985). (1 data file).

  20. VizieR Online Data Catalog: The MIT-Green Bank 5GHz Survey (Bennett+, 1986-91)

    NASA Astrophysics Data System (ADS)

    Bennett, C. L.; Lawrence, C. R.; Burke, B. F.; Hewitt, J. N.; Mahoney, J.

    1999-04-01

    The MIT-Green Bank 5 GHz survey catalog was produced from four separate surveys with the National Radio Astronomy Observatory (NRAO) 91m transit telescope (Bennett et al., 1986ApJS...61....1B (MG1); Langston et al., 1990ApJS...72..621L (MG2); Griffith et al., 1990ApJS...74..129G (MG3); Griffith et al. 1991ApJS...75..801G (MG4)). The sky coverage of the various surveys is: 00h < RAB < 24h, -00d30'13" < DECB < +19d29'47" for MG1; 04h < RAJ < 21h, +17.0d < DECJ < +39d09' for MG2; 16h30m < RAB < 05h, +17d < DECB < +39d09' for MG3; and 15h30m < RAB < 02h30m, +37.00d < DECB < +50d58'48" for MG4; where RAB and DECB refer to B1950 coordinates, and RAJ and DECJ refer to J2000 coordinates. The catalog contains 20344 sources detected with a signal-to-noise ratio greater than 5 and 3836 possible detections (MG1) with a signal-to-noise ratio less than 5. Spectral indices are computed for MG1 sources also identified in the Texas 365 MHz survey (Douglas et al. 1980), and for MG1-MG4 sources also identified in the NRAO 1400 MHz Survey (Condon and Broderick 1985). (1 data file).

  1. VizieR Online Data Catalog: MGIV (Fourth MIT-Green Bank) 5GHz Survey (Griffith+ 1991)

    NASA Astrophysics Data System (ADS)

    Griffith, M.; Langston, G.; Heflin, M.; Conner, S.; Burke, B.

    1998-10-01

    The MIT-Green Bank IV (MG IV) 5 GHz survey covers 0.504 sr of sky in the right ascension range 15.5 to 2.5 hours, between +37.00 and +50.98 degrees declination (B1950). The final MG IV catalog contains 3427 sources detected with a signal-to-noise ratio greater than 5. The catalog was produced from two separate north and south surveys with the National Radio Astronomy Observatory (NRAO) 91m transit telescope. The north survey was produced from data collected while scanning the telescope north from +39.0 to +50.98 degrees declination and the south survey from data collected from scans from +48.98 to +37.00 degrees declination. The completeness and reliability of the final source list is checked by examination of north and south source lists in a twice observed comparison region, lying between +39.15 and +48.83 degrees declination and excluding the area between +/-10 degrees Galactic latitude. The comparison region covers 0.270 sr of sky and contains 1094 sources. In this region, the MG IV catalog contains 423 sources brighter than 90 mJy and is shown to be 99.1 +/- 1.2% complete at this flux density level. Spectral indices are computed for sources identified in the NRAO 1400 MHz Survey (published by Condon and Broderick in 1985). A comparison of the spectral index distributions between +/- 10 and outside of +/- 10 degrees Galactic latitude is presented. (1 data file).

  2. A VLA gravitational lens survey

    NASA Technical Reports Server (NTRS)

    Hewitt, J. N.; Turner, E. L.; Burke, B. F.; Lawrence, C. R.; Bennett, C. L.

    1987-01-01

    A VLA survey designed to detect gravitational lensing on sub-arc second and arc second scales is described, and preliminary results of radio data are presented. In particular, it is found that the density of matter in the form of a uniform comoving number density of 10 to the 11th - 10 to the 12th solar mass compact objects, luminous or dark, must be substantially less than the critical density. Data obtained for the radio source 1042+178 are briefly examined.

  3. International Agreement Will Advance Radio Astronomy

    NASA Astrophysics Data System (ADS)

    2007-12-01

    Two of the world's leading astronomical institutions have formalized an agreement to cooperate on joint efforts for the technical and scientific advancement of radio astronomy. The National Radio Astronomy Observatory (NRAO) in the United States and the Max-Planck Institute for Radioastronomy (MPIfR) in Germany concluded a Memorandum of Understanding outlining planned collaborative efforts to enhance the capabilities of each other's telescopes and to expand their cooperation in scientific research. The VLBA The VLBA CREDIT: NRAO/AUI/NSF In the first project pursued under this agreement, the MPIfR will contribute $299,000 to upgrade the continent-wide Very Long Baseline Array's (VLBA) capability to receive radio emissions at a frequency of 22 GHz. This improvement will enhance the VLBA's scientific productivity and will be particularly important for cutting-edge research in cosmology and enigmatic cosmic objects such as gamma-ray blazars. "This agreement follows many years of cooperation between our institutions and recognizes the importance of international collaboration for the future of astronomical research," said Fred K.Y. Lo, NRAO Director. "Our two institutions have many common research goals, and joining forces to keep all our telescopes at the forefront of technology will be highly beneficial for the science," said Anton Zensus, Director at MPIfR. In addition to the VLBA, the NRAO operates the Very Large Array (VLA) in New Mexico and the Robert C. Byrd Green Bank Telescope (GBT) in West Virginia. The MPIfR operates the 100-meter Effelsberg Radio Telescope in Germany and the 12-meter APEX submillimeter telescope in 5100 m altitude in the Cilean Atacama desert (together with the European Southern Observatory and the Swedish Onsala Space Observatory). With the 100-meter telescope, it is part of the VLBA network in providing transatlantic baselines. Both institutions are members of a global network of telescopes (the Global VLBI Network) that uses simultaneous

  4. VLA Radio Observations of the HST Frontier Fields Cluster Abell 2744: The Discovery of New Radio Relics

    NASA Astrophysics Data System (ADS)

    Pearce, C. J. J.; van Weeren, R. J.; Andrade-Santos, F.; Jones, C.; Forman, W. R.; Brüggen, M.; Bulbul, E.; Clarke, T. E.; Kraft, R. P.; Medezinski, E.; Mroczkowski, T.; Nonino, M.; Nulsen, P. E. J.; Randall, S. W.; Umetsu, K.

    2017-08-01

    Cluster mergers leave distinct signatures in the intracluster medium (ICM) in the form of shocks and diffuse cluster radio sources that provide evidence for the acceleration of relativistic particles. However, the physics of particle acceleration in the ICM is still not fully understood. Here we present new 1-4 GHz Jansky Very Large Array (VLA) and archival Chandra observations of the HST Frontier Fields Cluster Abell 2744. In our new VLA images, we detect the previously known ˜2.1 Mpc radio halo and ˜1.5 Mpc radio relic. We carry out a radio spectral analysis from which we determine the relic’s injection spectral index to be {α }{inj}=-1.12+/- 0.19. This corresponds to a shock Mach number of { M }={2.05}-0.19+0.31 under the assumption of diffusive shock acceleration. We also find evidence for spectral steepening in the post-shock region. We do not find evidence for a significant correlation between the radio halo’s spectral index and ICM temperature. In addition, we observe three new polarized diffuse sources and determine two of these to be newly discovered giant radio relics. These two relics are located in the southeastern and northwestern outskirts of the cluster. The corresponding integrated spectral indices measure -1.81 ± 0.26 and -0.63 ± 0.21 for the SE and NW relics, respectively. From an X-ray surface brightness profile we also detect a possible density jump of R={1.39}-0.22+0.34 co-located with the newly discovered SE relic. This density jump would correspond to a shock front Mach number of { M }={1.26}-0.15+0.25.

  5. Interagency telemetry arraying for Voyager-Neptune encounter

    NASA Technical Reports Server (NTRS)

    Brown, D. W.; Brundage, W. D.; Ulvestad, J. S.; Kent, S. S.; Bartos, K. P.

    1990-01-01

    The reception capability of the Deep Space Network (DSN) has been improved over the years by increasing both the size and number of antennas at each complex to meet spacecraft-support requirements. However, even more aperture was required for the final planetary encounters of the Voyager 2 spacecraft. This need was met by arraying one radio astronomy observatory with the DSN complex in the United States and another with the complex in Australia. Following a review of augmentation for the Uranus encounter, both the preparation at the National Radio Astronomy (NRAO) Very Large Array (VLA) and the Neptune encounter results for the Parkes-Canberra and VLA-Goldstone arrays are presented.

  6. Imaging Cold Gas to 1 kpc scales in high-redshift galaxies with the ngVLA

    NASA Astrophysics Data System (ADS)

    Casey, Caitlin; Narayanan, Desika; Dave, Romeel; Hung, Chao-Ling; Champagne, Jaclyn; Carilli, Chris Luke; Decarli, Roberto; Murphy, Eric J.; Popping, Gergo; Riechers, Dominik; Somerville, Rachel S.; Walter, Fabian

    2017-01-01

    The next generation Very Large Array (ngVLA) will revolutionize our understanding of the distant Universe via the detection of cold molecular gas in the first galaxies. Its impact on studies of galaxy characterization via detailed gas dynamics will provide crucial insight on dominant physical drivers for star-formation in high redshift galaxies, including the exchange of gas from scales of the circumgalactic medium down to resolved clouds on mass scales of ~10^5 M_sun. In this study, we employ a series of high-resolution, cosmological, hydrodynamic zoom simulations from the MUFASA simulation suite and a CASA simulator to generate mock ngVLA observations. Based on a direct comparison between the inferred results from our mock observations and the cosmological simulations, we investigate the capabilities of ngVLA to constrain the mode of star formation, dynamical mass, and molecular gas kinematics in individual high-redshift galaxies using cold gas tracers like CO(1-0) and CO(2-1). Using the Despotic radiative transfer code that encompasses simultaneous thermal and statistical equilibrium in calculating the molecular and atomic level populations, we generate parallel mock observations of high-J transitions of CO and C+ from ALMA for comparison. The factor of 100 times improvement in mapping speed for the ngVLA beyond the Jansky VLA and the proposed ALMA Band 1 will make these detailed, high-resolution imaging and kinematic studies routine at z=2 and beyond.

  7. Radio Telescopes to Keep Sharp Eye on Mars Lander

    NASA Astrophysics Data System (ADS)

    2008-05-01

    Laboratory will get the relayed information," Ghigo added. In Socorro, scientists will collect signals from Phoenix with antennas of the continent-wide Very Long Baseline Array (VLBA), which produces the sharpest images of any astronomical instrument in existence. They will use the VLBA's ability to mark the position of objects in the sky with pinpoint precision to reconstruct the craft's location relative to other spacecraft at Mars to within about 100 feet, despite its great distance from Earth. The VLBA observations will demonstrate NRAO's capability to provide extremely precise measurements of spacecraft positions. This capability may be used to improve the navigational accuracy of future interplanetary missions. NRAO telescopes have contributed to the success of several previous space missions. The VLBA Very Long Baseline Array CREDIT: NRAO/AUI/NSF In 1989, the Very Large Array (VLA) received signals from the Voyager 2 spacecraft as it flew by the distant planet Neptune. The combined collecting area of the 27 VLA antennas and their sensitive receivers made possible a higher data-transmission rate from the spacecraft, thus enabling scientists to obtain more images of Neptune, its rings, and its moons. In 1995, the VLA captured signals from the Galileo spaccraft's probe as the probe dived into the giant planet Jupiter's atmosphere. Like Phoenix, the Galileo probe was designed to send its information to the main spacecraft, which would then relay the signal to Earth. However, the VLA's direct reception of the probe's signal measured the Doppler shift in the signal's frequency and made measurements of Jovian wind speeds 10 times more accurate than they otherwise would have been. In 2005, the GBT and the VLBA snagged the signal from the Huygens probe as it descended into the atmosphere of Saturn's moon Titan. The Doppler measurements of wind speeds made by NRAO and other radio telescopes provided the only wind data from the mission, because of a malfunction in communication

  8. The VLA Sky Survey (VLASS): Description and Science Goals

    NASA Astrophysics Data System (ADS)

    Lacy, Mark; Baum, Stefi Alison; Chandler, Claire J.; Chatterjee, Shami; Murphy, Eric J.; Myers, Steven T.; VLASS Survey Science Group

    2016-01-01

    The VLA Sky Survey (VLASS) will cover 80% of the sky to a target depth of 70muJy in the 2-4GHz S-band of the Karl G. Jansky Very Large Array. With a resolution of 2.5 arcseconds, it will deliver the highest angular resolution of any wide area radio survey. Each area of the survey will be observed in three epochs spaced by 32 months in order to investigate the transient radio source population over an unprecedented combination of depth and area, resulting in a uniquely powerful search for hidden explosions in the Universe. The survey will be carried out in full polarization, allowing the characterization of the magneto-ionic medium in AGN and intervening galaxies over a wide range of redshifts, and the study of Faraday rotating foregrounds such as ionized bubbles in the Milky Way. The high angular resolution will allow us to make unambiguous identifications of nearly 10 million radio sources, comprised of both extragalactic objects and more nearby radio sources in the Milky Way, through matching to wide area optical/IR surveys such as SDSS, PanSTARRS, DES, LSST, EUCLID, WFIRST and WISE. Integral to the VLASS plan is an Education and Public Outreach component that will seek to inform and educate both the scientific community and the general public about radio astronomy through the use of social media, citizen science and educational activities. We will discuss opportunities for community involvement in VLASS, including the development of Enhanced Data Products and Services that will greatly increase the scientific utility of the survey.

  9. Kinematics of the inner thousand AU region around the young massive star AFGL 2591-VLA3: a massive disk candidate?

    NASA Astrophysics Data System (ADS)

    Wang, K.-S.; van der Tak, F. F. S.; Hogerheijde, M. R.

    2012-07-01

    Context. Recent detections of disks around young high-mass stars support the idea of massive star formation through accretion rather than coalescence, but the detailed kinematics in the equatorial region of the disk candidates is not well known, which limits our understanding of the accretion process. Aims: This paper explores the kinematics of the gas around a young massive star with millimeter-wave interferometry to improve our understanding of the formation of massive stars though accretion. Methods: We use Plateau de Bure interferometric images to probe the environment of the nearby (~1 kpc) and luminous (~20 000 L⊙) high-mass (10-16 M⊙) young star AFGL 2591-VLA3 in continuum and in lines of HDO, H_218O and SO2 in the 115 and 230 GHz bands. Radiative transfer calculations are employed to investigate the kinematics of the source. Results: At ~0.5″ (500 AU) resolution, the line images clearly resolve the velocity field of the central compact source (diameter of ~800 AU) and show linear velocity gradients in the northeast-southwest direction. Judging from the disk-outflow geometry, the observed velocity gradient results from rotation and radial expansion in the equatorial region of VLA3. Radiative transfer calculations suggest that the velocity field is consistent with sub-Keplerian rotation plus Hubble-law like expansion. The line profiles of the observed molecules suggest a layered structure, with HDO emission arising from the disk mid-plane, H_218O from the warm mid-layer, and SO2 from the upper disk. Conclusions: We propose AFGL 2591-VLA3 as a new massive disk candidate, with peculiar kinematics. The rotation of this disk is sub-Keplerian, probably due to magnetic braking, while the stellar wind may be responsible for the expansion of the disk. The expansion motion may also be an indirect evidence of disk accretion in the very inner region because of the conservation of angular momentum. The sub-Keplerian rotation discovered in our work suggests that

  10. Radio Identifications of UGC Galaxies - Starbursts and Monsters

    NASA Astrophysics Data System (ADS)

    Condon, J. J.; Broderick, J. J.

    1995-11-01

    Radio identifications of galaxies in the Uppsala General Catalogue of Galaxies with delta < +82 degrees were made from the Green Bank 1400 MHz sky maps. Every source having peak flux density S(P) >= 150 mJy in the approximately 12 arcmin FWHM map point-source response and position < 5 arcmin in both coordinates from the optical position of any UGC galaxy was considered a candidate identification to ensure that very extended (up to 1 Mpc) and asymmetric sources would not be missed. Maps in the literature or new 1.49 GHz VLA C-array maps made with 18 arcsec FWHM resolution were used to confirm or reject candidate identifications. The maps in this directory include both confirmed identifications and candidates rejected because of confusion or low flux density. For more information on this study, please see the following reference: Condon, J. J., and Broderick, J. J., 1988, AJ, 96, 30. The images and related TeX file come from the NRAO CDROM "Images From the Radio Universe" (c. 1992 National Radio Astronomy Observatory, used with permission).

  11. A Sensitive VLA Search for Small-Scale Glycine Emission Toward OMC-1

    NASA Technical Reports Server (NTRS)

    Hollis, J. M.; Pedelty, J. A.; Snyder, L. E.; Jewell, P. R.; Lovas, F. J.; Palmer, Patrick; Liu, S.-Y.

    2002-01-01

    We have conducted a deep Q-band (lambda-7 mm) search with the Very Large Array (VLA) toward OMC-1 for the lowest energy conformation (conformer I) of glycine (NH2CH2COOH) in four rotational transitions: the 6(sub 15)- 5(sub 14), 6(sub 24)-5(sub 23), 7(sub 17- 6(sub 16), and 7(sub 07)-6(sub 06). Our VLA observations sample the smallest-scale structures to date in the search for glycine toward OMC-1. No glycine emission features were detected. Thus if glycine exists in OMC-1, either it is below our detection limit, or it is more spatially extended than other large molecules in this source, or it is primarily in its high energy form (conformer II). Our VLA glycine fractional abundance limits in OMC-1 are comparable to those determined from previous IRAM 30m measurements -- somewhat better or worse depending on the specific source model -- and the entire approximately 1 foot primary beam of the VLA was searched while sensitive to an areal spatial scale approximately 150 times smaller than the 24 inch beam of the IRAM single-element telescope. In the course of this work, we detected and imaged the 4(sub 14)-3(sub 13) A and E transitions of methyl formate (HCOOCH3) and also the 2(sub 02) - 1(sub 01) transition of formic acid (HCOOH). Since formic acid is a possible precursor to glycine, our glycine limits and formic acid results provide a constraint on this potential formation chemistry route for glycine in OMC-1.

  12. Quantitative structure activity relationship studies of piperazinyl phenylalanine derivatives as VLA-4/VCAM-1 inhibitors.

    PubMed

    Bhargava, Dinesh; Karthikeyan, C; Moorthy, N S H N; Trivedi, Piyush

    2009-09-01

    QSAR study was carried out for a series of piperazinyl phenylalanine derivatives exhibiting VLA-4/VCAM-1 inhibitory activity to find out the structural features responsible for the biological activity. The QSAR study was carried out on V-life Molecular Design Suite software and the derived best QSAR model by partial least square (forward) regression method showed 85.67% variation in biological activity. The statistically significant model with high correlation coefficient (r2=0.85) was selected for further study and the resulted validation parameters of the model, crossed squared correlation coefficient (q2=0.76 and pred_r2=0.42) show the model has good predictive ability. The model showed that the parameters SaaNEindex, SsClcount slogP,and 4PathCount are highly correlated with VLA-4/VCAM-1 inhibitory activity of piperazinyl phenylalanine derivatives. The result of the study suggests that the chlorine atoms in the molecule and fourth order fragmentation patterns in the molecular skeleton favour VLA-4/VCAM-1 inhibition shown by the title compounds whereas lipophilicity and nitrogen bonded to aromatic bond are not conducive for VLA-4/VCAM-1 inhibitory activity.

  13. ngVLA Key Science Goal 1: Unveiling the Formation of Solar System Analogues

    NASA Astrophysics Data System (ADS)

    Liu, Shangfei; Ricci, Luca; Isella, Andrea; Li, Hui; Li, Shengtai

    2018-01-01

    The annular gaps and other substructures discovered in several protoplanetary disks by ALMA and optical/NIR telescopes are reminiscent of the interaction between newborn planets and the circumstellar material. The comparison with theoretical models indicates that these structures might indeed result from the gravitational interaction between the circumstellar disk and Saturn-mass planets orbiting at tens of AU from the parent star. The same observations also revealed that the submm-wave dust continuum emission arising within 10-30 AU from the star is optically thick. The large optical depth prevents us from accurately measuring the dust density and, therefore, image planet-driven density perturbations. A natural solution to this problem consists in imaging disks at wavelengths of 3mm and longer, where the dust continuum emission from the innermost disk regions is optically thin, but still bright enough to be detected. These wavelengths are covered by the VLA, which, however, lacks the angular resolution and sensitivity to efficiently search for signatures of planets orbiting in the innermost and densest disk regions. Thanks to its much larger collecting area, resolving power, and image quality the Next Generation VLA (ngVLA) will transform the study of planet formation. we present the results of a recent study aimed at investigating the potential of the ngVLA of discovering disk sub-structures, such as gaps and azimuthal asymmetries, generated by the interaction with low-mass forming planets at < 10 au from the star.

  14. VLA Discovers Giant Rings Around Galaxy Cluster

    NASA Astrophysics Data System (ADS)

    2006-11-01

    Astronomers using the National Science Foundation's Very Large Array (VLA) radio telescope have discovered giant, ring-like structures around a cluster of galaxies. The discovery provides tantalizing new information about how such galaxy clusters are assembled, about magnetic fields in the vast spaces between galaxy clusters, and possibly about the origin of cosmic rays. Radio-Optical Image of Cluster Galaxy Cluster Abell 3376 (Radio/Optical) CREDIT: Joydeep Bagchi, IUCAA, NRAO/AUI/NSF Above, a combined radio/optical image shows the galaxy cluster Abell 3376 in visible light (blue) and radio (red) images. The giant radio arcs surrounding the cluster were discovered using the Very Large Array. The visible-light image is from the Digitized Sky survey. Below, an X-ray image of Abell 3376 made using the European Space Agency's XMM-Newton telescope shows a spectacular, bullet-shaped region of X-rays coming from gas heated to 60 million degrees Kelvin. The bullet shape results from the supersonic collision of a smaller smaller galaxy subcluster with the main body of the larger cluster. Click on images for larger version. X-Ray Image of Cluster Galaxy Cluster Abell 3376 (X-Ray) CREDIT: Joydeep Bagchi, IUCAA, ESA "These giant, radio-emitting rings probably are the result of shock waves caused by violent collisions of smaller groups of galaxies within the cluster," said Joydeep Bagchi, of the Inter-University Centre for Astronomy and Astrophysics in Pune, India, who led an international research team. The scientists reported their findings in the November 3 edition of the journal Science. The newly-discovered ring segments, some 6 million light-years across, surround a galaxy cluster called Abell 3376, more than 600 million light-years from Earth. They were revealed because fast-moving electrons emitted radio waves as they spiraled around magnetic field lines in intergalactic space. "Even from this large distance, the feeble radio waves were easily picked up by the VLA

  15. End-to-end operations at the National Radio Astronomy Observatory

    NASA Astrophysics Data System (ADS)

    Radziwill, Nicole M.

    2008-07-01

    In 2006 NRAO launched a formal organization, the Office of End to End Operations (OEO), to broaden access to its instruments (VLA/EVLA, VLBA, GBT and ALMA) in the most cost-effective ways possible. The VLA, VLBA and GBT are mature instruments, and the EVLA and ALMA are currently under construction, which presents unique challenges for integrating software across the Observatory. This article 1) provides a survey of the new developments over the past year, and those planned for the next year, 2) describes the business model used to deliver many of these services, and 3) discusses the management models being applied to ensure continuous innovation in operations, while preserving the flexibility and autonomy of telescope software development groups.

  16. Very Large Array Retooling for 21st-Century Science

    NASA Astrophysics Data System (ADS)

    2008-02-01

    An international project to make the world's most productive ground-based telescope 10 times more capable has reached its halfway mark and is on schedule to provide astronomers with an extremely powerful new tool for exploring the Universe. The National Science Foundation's Very Large Array (VLA) radio telescope now has half of its giant, 230-ton dish antennas converted to use new, state-of-the-art digital electronics to replace analog equipment that has served since the facility's construction during the 1970s. VLA and Radio Galaxy VLA Antennas Getting Modern Electronics To Meet New Scientific Challenges CREDIT: NRAO/AUI/NSF Click on image for more information, higher-resolution files "We're taking a facility that has made landmark discoveries in astronomy for three decades and making it 10 times more powerful, at a cost that's a fraction of its total value, by replacing outdated technology with modern equipment," said Mark McKinnon, project manager for the Expanded VLA (EVLA). Rick Perley, EVLA project scientist, added: "When completed in 2012, the EVLA will be 10 times more sensitive, cover more frequencies, and provide far greater analysis capabilities than the current VLA. In addition, it will be much simpler to use, making its power available to a wider range of scientists." The EVLA will give scientists new power and flexibility to meet the numerous challenges of 21st-Century astrophysics. The increased sensitivity will reveal the earliest epochs of galaxy formation, back to within a billion years of the Big Bang, or 93 percent of the look-back time to the beginning of the Universe. It will have the resolution to peer deep into the dustiest star-forming clouds, imaging protoplanetary disks around young stars on scales approaching that of the formation of terrestrial planets. The EVLA will provide unique capabilities to study magnetic fields in the Universe, to image regions near massive black holes, and to systematically track changes in transient objects

  17. Multi-messenger studies of compact binary mergers in the in the ngVLA era

    NASA Astrophysics Data System (ADS)

    Corsi, Alessandra

    2018-01-01

    We explore some of the scientific opportunities that the next generation Very Large Array (ngVLA) will open in the field of multi-messenger time-domain astronomy. We focus on compact binary mergers, golden astrophysical targets of ground-based gravitational wave (GW) detectors such as advanced LIGO. A decade from now, a large number of these mergers is likely to be discovered by a world-wide network of GW detectors. We discuss how a radio array with 10 times the sensitivity of the current Karl G. Jansky VLA and 10 times the resolution, would enable resolved radio continuum studies of binary merger hosts, probing regions of the galaxy undergoing star formation (which can be heavily obscured by dust and gas), AGN components, and mapping the offset distribution of the mergers with respect to the host galaxy light. For compact binary mergers containing at least one neutron star (NS), from which electromagnetic counterparts are expected to exist, we show how the ngVLA would enable direct size measurements of the relativistic merger ejecta and probe, for the first time directly, their dynamics.

  18. Overexpression of VLA-4 in glial-restricted precursors enhances their endothelial docking and induces diapedesis in a mouse stroke model.

    PubMed

    Jablonska, Anna; Shea, Daniel J; Cao, Suyi; Bulte, Jeff Wm; Janowski, Miroslaw; Konstantopoulos, Konstantinos; Walczak, Piotr

    2018-05-01

    The loss of oligodendrocytes after stroke is one of the major causes of secondary injury. Glial-restricted progenitors (GRPs) have remylenating potential after intraparenchymal cerebral transplantation. The intraarterial (IA) injection route is an attractive gateway for global brain delivery, but, after IA infusion, naive GRPs fail to bind to the cerebral vasculature. The aim of this study was to test whether overexpression of Very Late Antigen-4 (VLA-4) increases endothelial docking and cerebral homing of GRPs in a stroke model. Mouse GRPs were co-transfected with DNA plasmids encoding VLA-4 subunits (α4, β1). The adhesion capacity and migration were assessed using a microfluidic assay. In vivo imaging of the docking and homing of IA-infused cells was performed using two-photon microscopy in a mouse middle cerebral artery occlusion (MCAO) model. Compared to naïve GRPs, transfection of GRPs with VLA-4 resulted in >60% higher adhesion (p < 0.05) to both purified Vascular Cell Adhesion Molecule-11 (VCAM-11) and TNFα-induced endothelial VCAM-1. VLA-4 + GRPs displayed a higher migration in response to a chemoattractant gradient. Following IA infusion, VLA-4 + GRPs adhered to the vasculature at three-fold greater numbers than naïve GRPs. Multi-photon imaging confirmed that VLA-4 overexpression increases the efficiency of GRP docking and leads to diapedesis after IA transplantation. This strategy may be further exploited to increase the efficacy of cellular therapeutics.

  19. Intermediate-Mass Black Holes in Globular Cluster Systems

    NASA Astrophysics Data System (ADS)

    Wrobel, J. M.; Miller-Jones, J. C. A.; Nyland, K. E.; Maccarone, T. J.

    2018-01-01

    Theory suggests that globular clusters (GCs) of stars can host intermediate-mass black holes (IMBHs) with masses of about 100 to 100,000 solar masses. We invoke a semi-empirical model to predict the mass of an IMBH that, if undergoing accretion in the long-lived hard X-ray state, is consistent with the synchrotron radio luminosity of a GC. We apply this model to extant images from the Karl G. Jansky Very Large Array (VLA) and to simulated images from the Next Generation Very Large Array (ngVLA). Guided by our VLA results for M81's system of 206 probable GCs at a distance of 3.6 Mpc, we consider using the ngVLA to study the hundreds of globular cluster systems out to a distance of 25 Mpc. With its sensitivity, spatial resolution, and field of view, we conclude that the ngVLA at 2cm will efficiently probe IMBH masses for tens of thousands of GCs. Finding IMBHs in GCs could validate a formation channel for seed BHs in the early universe, underpin gravitational wave predictions for space missions, and test scaling relations between stellar systems and the central BHs they host. The NRAO is a facility of the NSF, operated under cooperative agreement by AUI, Inc.

  20. The H I chronicles of little things BCDs II: The origin of IC 10's H I structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ashley, Trisha; Simpson, Caroline E.; Pokhrel, Nau Raj

    In this paper we analyze Very Large Array (VLA) telescope and Green Bank Telescope (GBT) atomic hydrogen (H I) data for the LITTLE THINGS (Local Irregulars That Trace Luminosity Extremes, The H I Nearby Galaxy Survey; https://science.nrao.edu/science/surveys/littlethings) blue compact dwarf galaxy IC 10. The VLA data allow us to study the detailed H I kinematics and morphology of IC 10 at high resolution while the GBT data allow us to search the surrounding area at high sensitivity for tenuous H I. IC 10's H I appears highly disturbed in both the VLA and GBT H I maps with a kinematicallymore » distinct northern H I extension, a kinematically distinct southern plume, and several spurs in the VLA data that do not follow the general kinematics of the main disk. We discuss three possible origins of its H I structure and kinematics in detail: a current interaction with a nearby companion, an advanced merger, and accretion of intergalactic medium. We find that IC 10 is most likely an advanced merger or a galaxy undergoing accretion.« less

  1. The History of Radio Astronomy and the National Radio Astronomy Observatory: Evolution Toward Big Science

    NASA Astrophysics Data System (ADS)

    Malphrus, Benjamin Kevin

    1990-01-01

    The purpose of this study is to examine the sequence of events that led to the establishment of the NRAO, the construction and development of instrumentation and the contributions and discovery events and to relate the significance of these events to the evolution of the sciences of radio astronomy and cosmology. After an overview of the resources, a brief discussion of the early days of the science is given to set the stage for an examination of events that led to the establishment of the NRAO. The developmental and construction phases of the major instruments including the 85-foot Tatel telescope, the 300-foot telescope, the 140-foot telescope, and the Green Bank lnterferometer are examined. The technical evolution of these instruments is traced and their relevance to scientific programs and discovery events is discussed. The history is told in narrative format that is interspersed with technical and scientific explanations. Through the use of original data technical and scientific information of historical concern is provided to elucidate major developments and events. An interpretive discussion of selected programs, events and technological developments that epitomize the contributions of the NRAO to the science of radio astronomy is provided. Scientific programs conducted with the NRAO instruments that were significant to galactic and extragalactic astronomy are presented. NRAO research programs presented include continuum and source surveys, mapping, a high precision verification of general relativity, and SETI programs. Cosmic phenomena investigated in these programs include galactic and extragalactic HI and HII, emission nebula, supernova remnants, cosmic masers, giant molecular clouds, radio stars, normal and radio galaxies, and quasars. Modern NRAO instruments including the VLA and VLBA and their scientific programs are presented in the final chapter as well as plans for future NRAO instruments such as the GBT.

  2. VLA radio upper limit on Type IIn Supernova 2008S

    NASA Astrophysics Data System (ADS)

    Chandra, Poonam; Soderberg, Alicia

    2008-02-01

    Poonam Chandra and Alicia Soderberg report on behalf of a larger collaboration: We observed type IIn supernova SN 2008S (CBET 1234) with the Very Large Array (VLA) on 2008, February 10.62 UT. We do not detect any radio emission at the supernova position (CBET 1234). The flux density at the supernova position is -62 +/- 36 uJy.

  3. Mobilization of Hematopoietic Stem and Progenitor Cells Using Inhibitors of CXCR4 and VLA-4

    PubMed Central

    Rettig, Michael P.; Ansstas, George; DiPersio, John F.

    2012-01-01

    Successful hematopoietic stem cell transplant (HSCT) requires the infusion of a sufficient number of hematopoietic stem/progenitor cells (HSPCs) that are capable of homing to the bone marrow cavity and regenerating durable trilineage hematopoiesis in a timely fashion. Stem cells harvested from peripheral blood are the most commonly used graft source in HSCT. While granulocyte colony-stimulating factor (G-CSF) is the most frequently used agent for stem cell mobilization, the use of G-CSF alone results in suboptimal stem cell yields in a significant proportion of patients. Both the chemokine receptor CXCR4 and the integrin α4β1 (VLA-4) play important roles in the homing and retention of HSPCs within the bone marrow microenvironment. Preclinical and/or clinical studies have shown that targeted disruption of the interaction of CXCR4 or VLA-4 with their ligands results in the rapid and reversible mobilization of hematopoietic stem cells into the peripheral circulation and is synergistic when combined with G-CSF. In this review we discuss the development of small molecule CXCR4 and VLA-4 inhibitors and how they may improve the utility and convenience of peripheral blood stem cell transplantation. PMID:21886173

  4. VLA observations of dwarf M flare stars and magnetic stars

    NASA Technical Reports Server (NTRS)

    Willson, R. F.; Lang, K. R.; Foster, P.

    1988-01-01

    The VLA has been used to search for 6 cm emission from 16 nearby dwarf M stars, leading to the detection of only one of them - Gliese 735. The dwarf M flare stars AD Leonis and YZ Canis Minoris were also monitored at 6 cm and 20 cm wavelength in order to study variability. Successive oppositely circularly polarized bursts were detected from AD Leo at 6 cm, suggesting the presence of magnetic fields of both magnetic polarities. An impulsive 20-cm burst from YZ CMi preceded slowly varying 6-cm emission. The VLA was also used, unsuccessfully, to search for 6-cm emission from 13 magnetic Ap stars, all of which exhibit kG magnetic fields. Although the Ap magnetic stars have strong dipolar magnetic fields, the failure to detect gyroresonant radiation suggests that these stars do not have hot, dense coronae. The quiescent microwave emission from GL 735 is probably due to nonthermal radiation, since unusually high (H = 50 kG or greater) surface magnetic fields are inferred under the assumption that the 6-cm radiation is the gyroresonant radiation of thermal electrons.

  5. The Southwest Configuration for the Next Generation Very Large Array

    NASA Astrophysics Data System (ADS)

    Irwin Kellermann, Kenneth; Carilli, Chris; Condon, James; Cotton, William; Murphy, Eric Joseph; Nyland, Kristina

    2018-01-01

    We discuss the planned array configuration for the Next Generation Very Large Array (ngVLA). The configuration, termed the "Southwest Array," consists of 214 antennas each 18 m in diameter, distributed over the Southwest United States and Northern Mexico. The antenna locations have been set applying rough real-world constraints, such as road, fiber, and power access. The antenna locations will be fixed, with roughly 50% of the antennas in a "core" of 2 km diameter, located at the site of the JVLA. Another 30% of the antennas will be distributed over the Plains of San Augustin to a diameter of 30 km, possibly along, or near, the current JVLA arms. The remaining 20% of the antennas will be distributed in a rough two-arm spiral pattern to the South and East, out to a maximum distance of 500 km, into Texas, Arizona, and Chihuahua. Years of experience with the VLA up to 50 GHz, plus intensive antenna testing up to 250 GHz for the ALMA prototype antennas, verify the VLA site as having very good observing conditions (opacity, phase stability), up to 115 GHz (ngVLA Memo No. 1). Using a suite of tools implemented in CASA, we have made extensive imaging simulations with this configuration. We find that good imaging performance can be obtained through appropriate weighting of the visibilities, for resolutions ranging from that of the core of the array (1" at 30 GHz), out to the longest baselines (10 mas at 30 GHz), with a loss of roughly a factor of two in sensitivity relative to natural weighting (ngVLA Memo No. 16). The off-set core, located on the northern edge of the long baseline configuration, provides excellent sensitivity even on the longest baselines. We are considering, in addition, a compact configuration of 16 close-packed 6 m antennas to obtain uv-coverage down to baselines ~ 10 m for imaging large scale structure, as well as a configuration including 9 stations distributed to continental scales.

  6. Implementation Status of a Ultra-Wideband Receiver Package for the next-generation Very Large Array

    NASA Astrophysics Data System (ADS)

    Lazio, T. Joseph W.; Velazco, Jose; Soriano, Melissa; Hoppe, Daniel; Russell, Damon; D'Addario, Larry; Long, Ezra; Bowen, James; Samoska, Lorene; Janzen, Andrew

    2017-01-01

    The next-generation Very Large Array (ngVLA) is a concept for a radio astronomical interferometric array operating in the frequency range 1.2 GHz to 116 GHz and designed to provide substantial improvements in sensitivity, angular resolution, and frequency coverage above the current Very Large Array (VLA). As notional design goals, it would have a continuous frequency coverage of 1.2 GHz to 48 GHz and be 10 times more sensitive than the VLA (and 25 times more sensitive than a 34 m diameter antenna of the Deep Space Network [DSN]). One of the key goals for the ngVLA is to reduce the operating costs without sacrificing performance. We are designing an ultra-wideband receiver package designed to operate across the 8 to 48 GHz frequency range, which can be contrasted to the current VLA, which covers this frequency range with five receiver packages. Reducing the number of receiving systems required to cover the full frequency range would reduce operating costs, and the objective of this work is to develop a prototype integrated feed-receiver package with a sensitivity performance comparable to current narrower band systems on radio telescopes and the DSN, but with a design that meets the requirement of low long-term operational costs. The ultra-wideband receiver package consists of a feed horn, low-noise amplifier (LNA), and down-converters to analog intermediate frequencies. Key features of this design are a quad-ridge feed horn with dielectric loading and a cryogenic receiver with a noise temperature of no more than 30 K at the low end of the band. We will report on the status of this receiver package development including the feed design and LNA implementation. We will present simulation studies of the feed horn including the insertion of dielectric components for improved illumination efficiencies across the band of interest. In addition, we will show experimental results of low-noise 35nm InP HEMT amplifier testing performed across the 8-50 GHz frequency range

  7. Tumor necrosis factor-{alpha} enhanced fusions between oral squamous cell carcinoma cells and endothelial cells via VCAM-1/VLA-4 pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Kai; Zhu, Fei; Zhang, Han-zhong

    Fusion between cancer cells and host cells, including endothelial cells, may strongly modulate the biological behavior of tumors. However, no one is sure about the driving factors and underlying mechanism involved in such fusion. We hypothesized in this study that inflammation, one of the main characteristics in tumor microenvironment, serves as a prominent catalyst for fusion events. Our results showed that oral cancer cells can fuse spontaneously with endothelial cells in co-culture and inflammatory cytokine tumor necrosis factor-{alpha} (TNF-{alpha}) increased fusion of human umbilical vein endothelium cells and oral cancer cells by up to 3-fold in vitro. Additionally, human oralmore » squamous cell carcinoma cell lines and 35 out of 50 (70%) oral squamous carcinoma specimens express VLA-4, an integrin, previously implicated in fusions between human peripheral blood CD34-positive cells and murine cardiomyocytes. Expression of VCAM-1, a ligand for VLA-4, was evident on vascular endothelium of oral squamous cell carcinoma. Moreover, immunocytochemistry and flow cytometry analysis revealed that expression of VCAM-1 increased obviously in TNF-{alpha}-stimulated endothelial cells. Anti-VLA-4 or anti-VCAM-1 treatment can decrease significantly cancer-endothelial adhesion and block such fusion. Collectively, our results suggested that TNF-{alpha} could enhance cancer-endothelial cell adhesion and fusion through VCAM-1/VLA-4 pathway. This study provides insights into regulatory mechanism of cancer-endothelial cell fusion, and has important implications for the development of novel therapeutic strategies for prevention of metastasis. -- Highlights: Black-Right-Pointing-Pointer Spontaneous oral cancer-endothelial cell fusion. Black-Right-Pointing-Pointer TNF-{alpha} enhanced cell fusions. Black-Right-Pointing-Pointer VCAM-1/VLA-4 expressed in oral cancer. Black-Right-Pointing-Pointer TNF-{alpha} increased expression of VCAM-1 on endothelial cells. Black

  8. LOFAR discovery of an ultra-steep radio halo and giant head-tail radio galaxy in Abell 1132

    NASA Astrophysics Data System (ADS)

    Wilber, A.; Brüggen, M.; Bonafede, A.; Savini, F.; Shimwell, T.; van Weeren, R. J.; Rafferty, D.; Mechev, A. P.; Intema, H.; Andrade-Santos, F.; Clarke, A. O.; Mahony, E. K.; Morganti, R.; Prandoni, I.; Brunetti, G.; Röttgering, H.; Mandal, S.; de Gasperin, F.; Hoeft, M.

    2018-01-01

    Low-Frequency Array (LOFAR) observations at 144 MHz have revealed large-scale radio sources in the unrelaxed galaxy cluster Abell 1132. The cluster hosts diffuse radio emission on scales of ∼650 kpc near the cluster centre and a head-tail (HT) radio galaxy, extending up to 1 Mpc, south of the cluster centre. The central diffuse radio emission is not seen in NRAO VLA FIRST Survey, Westerbork Northern Sky Survey, nor in C & D array VLA observations at 1.4 GHz, but is detected in our follow-up Giant Meterwave Radio Telescope (GMRT) observations at 325 MHz. Using LOFAR and GMRT data, we determine the spectral index of the central diffuse emission to be α = -1.75 ± 0.19 (S ∝ να). We classify this emission as an ultra-steep spectrum radio halo and discuss the possible implications for the physical origin of radio haloes. The HT radio galaxy shows narrow, collimated emission extending up to 1 Mpc and another 300 kpc of more diffuse, disturbed emission, giving a full projected linear size of 1.3 Mpc - classifying it as a giant radio galaxy (GRG) and making it the longest HT found to date. The head of the GRG coincides with an elliptical galaxy (SDSS J105851.01+564308.5) belonging to Abell 1132. In our LOFAR image, there appears to be a connection between the radio halo and the GRG. The turbulence that may have produced the halo may have also affected the tail of the GRG. In turn, the GRG may have provided seed electrons for the radio halo.

  9. Early VLA and AMI-LA Radio Detections of the Nova V392 Per

    NASA Astrophysics Data System (ADS)

    Linford, J. D.; Bright, J.; Chomiuk, L.; Fender, R.; van der Horst, A.; Mioduszewski, A.; Sokoloski, J.; Rupen, M.; Nelson, T.; Mukai, K.

    2018-05-01

    We report radio observations of the young nova V392 Per (ATel #11588, ATel #11590, ATel #11601, ATel #11605, and ATel #11617) with the Karl G. Janksy Very Large Array (VLA) and the Arcminute Microkelvin Imager Large Array (AMI-LA).

  10. VizieR Online Data Catalog: Spectral flux densities from 50MHz to 50GHz (Perley+, 2017)

    NASA Astrophysics Data System (ADS)

    Perley, R. A.; Butler, B. J.

    2017-06-01

    The VLA observations were made in five observing sessions: 1998 Mar 07-08, 1998 Oct 04-05, 2014 Oct 11-12, 2016 Jan 25-26 and 2016 Jan 27. The first two of these sessions were taken under Project ID AK461. These data were taken with the original VLA correlator, with 1.6MHz bandwidth. All other data were taken with the new Jansky VLA system. (3 data files).

  11. A VLA Study of High-redshift GRBs. I. Multiwavelength Observations and Modeling of GRB 140311A

    NASA Astrophysics Data System (ADS)

    Laskar, Tanmoy; Berger, Edo; Chornock, Ryan; Margutti, Raffaella; Fong, Wen-fai; Zauderer, B. Ashley

    2018-05-01

    We present the first results from a recently concluded study of GRBs at z ≳ 5 with the Karl G. Jansky Very Large Array (VLA). Spanning 1 to 85.5 GHz and 7 epochs from 1.5 to 82.3 days, our observations of GRB 140311A are the most detailed joint radio and millimeter observations of a GRB afterglow at z ≳ 5 to date. In conjunction with optical/near-IR and X-ray data, the observations can be understood in the framework of radiation from a single blast wave shock with energy {E}{{K},{iso}}≈ 8.5× {10}53 erg expanding into a constant density environment with density, {n}0≈ 8 {cm}}-3. The X-ray and radio observations require a jet break at {t}jet}≈ 0.6 days, yielding an opening angle of {θ }jet}≈ 4^\\circ and a beaming-corrected blast wave kinetic energy of {E}{{K}}≈ 2.2× {10}50 erg. The results from our radio follow-up and multiwavelength modeling lend credence to the hypothesis that detected high-redshift GRBs may be more tightly beamed than events at lower redshift. We do not find compelling evidence for reverse shock emission, which may be related to fast cooling driven by the moderately high circumburst density.

  12. Distilling perfect GHZ states from two copies of non-GHZ-diagonal mixed states

    NASA Astrophysics Data System (ADS)

    Wang, Xin-Wen; Tang, Shi-Qing; Yuan, Ji-Bing; Zhang, Deng-Yu

    2017-06-01

    It has been shown that a nearly pure Greenberger-Horne-Zeilinger (GHZ) state could be distilled from a large (even infinite) number of GHZ-diagonal states that can be obtained by depolarizing general multipartite mixed states (non-GHZ-diagonal states) through sequences of (probabilistic) local operations and classical communications. We here demonstrate that perfect GHZ states can be extracted, with certain probabilities, from two copies of non-GHZ-diagonal mixed states when some conditions are satisfied. This result implies that it is not necessary to depolarize these entangled mixed states to the GHZ-diagonal type, and that they are better than GHZ-diagonal states for distillation of pure GHZ states. We find a wide class of multipartite entangled mixed states that fulfill the requirements. Moreover, we display that the obtained result can be applied to practical noisy environments, e.g., amplitude-damping channels. Our findings provide an important complementarity to conventional GHZ-state distillation protocols (designed for GHZ-diagonal states) in theory, as well as having practical applications.

  13. Radio Non-Detection of the Currently Outbursting Transient Source in NGC 6440

    NASA Astrophysics Data System (ADS)

    Tetarenko, A. J.; Bahramian, A.; Sivakoff, G. R.; Heinke, C. O.; Shaw, A. W.; Wijnands, R.; Degenaar, N.; Miller-Jones, J. C. A.; Kuulkers, R. Plotkin E.; Chomiuk, L.; Strader, J.; Tremou, E.; Kennea, J. A.; Altamirano, D.; in't Zand, J. J. M.; Deller, A.; Maccarone, T. J.

    2017-10-01

    We report follow-up VLA radio observations of NGC 6440, which has recently shown evidence of transient X-ray activity (ATel #10821, #10826). Our VLA observations occurred on 2017 Oct 11, with scans on source between 01:07:09 - 02:48:18 UTC (MJD = 58037.0466 - 58037.1169), in X band (8 - 12 GHz).

  14. The novel Lyme borreliosis vaccine VLA15 shows broad protection against Borrelia species expressing six different OspA serotypes.

    PubMed

    Comstedt, Pär; Schüler, Wolfgang; Meinke, Andreas; Lundberg, Urban

    2017-01-01

    We have previously shown that the Outer surface protein A (OspA) based Lyme borreliosis vaccine VLA15 induces protective immunity in mice. Herein, we report the induction of protective immunity by VLA15 with mouse models using ticks infected with B. burgdorferi (OspA serotype 1), B. afzelii (OspA serotype 2) and B. bavariensis (OspA serotype 4) or with in vitro grown B. garinii (OspA serotype 5 and 6) for challenge. For B. garinii (OspA serotype 3), we have developed a growth inhibition assay using chicken complement and functional antibodies targeting B. garinii (OspA serotype 3) could be demonstrated after immunization with VLA15. Furthermore, following three priming immunizations, a booster dose was administered five months later and the induction of immunological memory could be confirmed. Thus, the antibody titers after the booster dose were increased considerably compared to those after primary immunization. In addition, the half-lives of anti-OspA serotype specific antibodies after administration of the booster immunization were longer than after primary immunization. Taken together, we could show that VLA15 induced protection in mice against challenge with four different clinically relevant Borrelia species (B. burgdorferi, B. afzelii, B. garinii and B. bavariensis) expressing five of the six OspA serotypes included in the vaccine. The protection data is supported by functional assays showing efficacy against spirochetes expressing any of the six OspA serotypes (1 to 6). To our knowledge, this is the first time a Lyme borreliosis vaccine has been able to demonstrate such broad protection in preclinical studies. These new data provide further promise for the clinical development of VLA15 and supports our efforts to provide a new Lyme borreliosis vaccine available for global use.

  15. On the Hipparcos Link to the ICRF derived from VLA and MERLIN radio astrometry

    NASA Astrophysics Data System (ADS)

    Hering, R.; Walter, H. G.

    2007-06-01

    Positions and proper motions obtained from observations by the very large array (VLA) and the multi-element radio-linked interferometer network (MERLIN) are used to establish the link of the Hipparcos Celestial Reference Frame (HCRF) to the International Celestial Reference Frame (ICRF). The VLA and MERLIN data are apparently the latest ones published in the literature. Their mean epoch at around 2001 is about 10 years after the epoch of the Hipparcos catalogue and, therefore, the data are considered suitable to check the Hipparcos link established at epoch 1991.25. The parameters of the link, i.e., the angles of frame orientation and the angular rates of frame rotation, are estimated by fitting these parameters to the differences of the optical and radio positions and proper motions of stars common to the Hipparcos catalogue and the VLA and MERLIN data. Both the estimates of the angles of orientation and the angular rates of rotation show nearly consistent but insignificant results for all samples of stars treated. We conclude that not only the size of the samples of 9 15 stars is too small, but also that the accuracy of the radio positions and, above all, of the radio proper motions is insufficient, the latter being based on early-epoch star positions of low accuracy. The present observational data at epoch 2001 suggest that maintenance of the Hipparcos frame is not feasible at this stage.

  16. Observations of a nearby filament of galaxy clusters with the Sardinia Radio Telescope

    NASA Astrophysics Data System (ADS)

    Vacca, Valentina; Murgia, M.; Loi, F. Govoni F.; Vazza, F.; Finoguenov, A.; Carretti, E.; Feretti, L.; Giovannini, G.; Concu, R.; Melis, A.; Gheller, C.; Paladino, R.; Poppi, S.; Valente, G.; Bernardi, G.; Boschin, W.; Brienza, M.; Clarke, T. E.; Colafrancesco, S.; Enßlin, T.; Ferrari, C.; de Gasperin, F.; Gastaldello, F.; Girardi, M.; Gregorini, L.; Johnston-Hollitt, M.; Junklewitz, H.; Orrù, E.; Parma, P.; Perley, R.; Taylor, G. B.

    2018-05-01

    We report the detection of diffuse radio emission which might be connected to a large-scale filament of the cosmic web covering a 8° × 8° area in the sky, likely associated with a z≈0.1 over-density traced by nine massive galaxy clusters. In this work, we present radio observations of this region taken with the Sardinia Radio Telescope. Two of the clusters in the field host a powerful radio halo sustained by violent ongoing mergers and provide direct proof of intra-cluster magnetic fields. In order to investigate the presence of large-scale diffuse radio synchrotron emission in and beyond the galaxy clusters in this complex system, we combined the data taken at 1.4 GHz with the Sardinia Radio Telescope with higher resolution data taken with the NRAO VLA Sky Survey. We found 28 candidate new sources with a size larger and X-ray emission fainter than known diffuse large-scale synchrotron cluster sources for a given radio power. This new population is potentially the tip of the iceberg of a class of diffuse large-scale synchrotron sources associated with the filaments of the cosmic web. In addition, we found in the field a candidate new giant radio galaxy.

  17. The CD44-initiated pathway of T-cell extravasation uses VLA-4 but not LFA-1 for firm adhesion

    PubMed Central

    Siegelman, Mark H.; Stanescu, Diana; Estess, Pila

    2000-01-01

    Leukocytes extravasate from the blood in response to physiologic or pathologic demands by means of complementary ligand interactions between leukocytes and endothelial cells. The multistep model of leukocyte extravasation involves an initial transient interaction (“rolling” adhesion), followed by secondary (firm) adhesion. We recently showed that binding of CD44 on activated T lymphocytes to endothelial hyaluronan (HA) mediates a primary adhesive interaction under shear stress, permitting extravasation at sites of inflammation. The mechanism for subsequent firm adhesion has not been elucidated. Here we demonstrate that the integrin VLA-4 is used in secondary adhesion after CD44-mediated primary adhesion of human and mouse T cells in vitro, and by mouse T cells in an in vivo model. We show that clonal cell lines and polyclonally activated normal T cells roll under physiologic shear forces on hyaluronate and require VCAM-1, but not ICAM-1, as ligand for subsequent firm adhesion. This firm adhesion is also VLA-4 dependent, as shown by antibody inhibition. Moreover, in vivo short-term homing experiments in a model dependent on CD44 and HA demonstrate that superantigen-activated T cells require VLA-4, but not LFA-1, for entry into an inflamed peritoneal site. Thus, extravasation of activated T cells initiated by CD44 binding to HA depends upon VLA-4–mediated firm adhesion, which may explain the frequent association of these adhesion receptors with diverse chronic inflammatory processes. PMID:10712440

  18. Constraints on submicrojansky radio number counts based on evolving VLA-COSMOS luminosity functions

    NASA Astrophysics Data System (ADS)

    Novak, M.; Smolčić, V.; Schinnerer, E.; Zamorani, G.; Delvecchio, I.; Bondi, M.; Delhaize, J.

    2018-06-01

    We present an investigation of radio luminosity functions (LFs) and number counts based on the Karl G. Jansky Very Large Array-COSMOS 3 GHz Large Project. The radio-selected sample of 7826 galaxies with robust optical/near-infrared counterparts with excellent photometric coverage allows us to construct the total radio LF since z 5.7. Using the Markov chain Monte Carlo algorithm, we fit the redshift dependent pure luminosity evolution model to the data and compare it with previously published VLA-COSMOS LFs obtained on individual populations of radio-selected star-forming galaxies and galaxies hosting active galactic nuclei classified on the basis of presence or absence of a radio excess with respect to the star-formation rates derived from the infrared emission. We find they are in excellent agreement, thus showing the reliability of the radio excess method in selecting these two galaxy populations at radio wavelengths. We study radio number counts down to submicrojansky levels drawn from different models of evolving LFs. We show that our evolving LFs are able to reproduce the observed radio sky brightness, even though we rely on extrapolations toward the faint end. Our results also imply that no new radio-emitting galaxy population is present below 1 μJy. Our work suggests that selecting galaxies with radio flux densities between 0.1 and 10 μJy will yield a star-forming galaxy in 90-95% of the cases with a high percentage of these galaxies existing around a redshift of z 2, thus providing useful constraints for planned surveys with the Square Kilometer Array and its precursors.

  19. VizieR Online Data Catalog: Radio obs. of NGC 6251 jet (Tseng+, 2016)

    NASA Astrophysics Data System (ADS)

    Tseng, C.-Y.; Asada, K.; Nakamura, M.; Pu, H.-Y.; Algaba, J.-C.; Lo, W.-P.

    2017-05-01

    We conducted European VLBI Network (EVN) observations of NGC 6251 on 2013 March 10 at 1.6GHz with the stations at Badary, Svetloe, Zelenchukskaya (Russia), Effelsberg (Germany), Jodrell Bank (UK), Medicina, Noto (Italy), Onsala (Sweden), Shanghai, Urumqi (China), Torun (Poland), and Westerbork (Netherlands). Archival Very Long Baseline Array (VLBA) data at 5GHz are used and calibrated in the same manner as the EVN data. Also, 12 epochs of the VLBA data at 15GHz are obtained from the MOJAVE database (Lister+ 2009, J/AJ/137/3718). Observations were conducted during 1998-2013. We also use a published VLA image of NGC 6251 at 1.4GHz to compare with the VLBI measurements in Section 4.1. The image, as well as the calibration processes, is shown in Sambruna+ (2004A&A...414..885S). Observations were conducted on 1995 August 15 using the full VLA in its A-configuration. The beam is restored to be circular with an FWHM of 2". (1 data file).

  20. VizieR Online Data Catalog: MRCR-SUMSS Ultra-steep-spectrum (USS) sample (Broderick+, 2007)

    NASA Astrophysics Data System (ADS)

    Broderick, J. W.; Bryant, J. J.; Hunstead, R. W.; Sadler, E. M.; Murphy, T.

    2008-09-01

    This paper introduces a new program to find high-redshift radio galaxies in the Southern hemisphere through ultra-steep spectrum (USS) selection. We define a sample of 234 USS radio sources with spectral indices {alpha}843408<=-1.0 (S{nu}{prop.to}{nu}alpha) and flux densities S408>=200mJy in a region of 0.35sr, chosen by cross-correlating the revised 408MHz Molonglo Reference Catalogue, the 843MHz Sydney University Molonglo Sky Survey and the 1400MHz NRAO VLA Sky Survey in the overlap region -40{deg}

  1. Nearby Quasars Result From Galactic Encounters, VLA Studies Indicate

    NASA Astrophysics Data System (ADS)

    1998-12-01

    Astronomers using the National Science Foundation's Very Large Array (VLA) radio telescope have found previously unseen evidence that galaxy collisions trigger energetic quasar activity in relatively nearby galaxies. New radio images of galaxies with bright quasar cores show that, though the galaxies appear normal in visible-light images, their gas has been disrupted by encounters with other galaxies. "This is what theorists have believed for years, but even the best images from optical telescopes, including the Hubble Space Telescope, failed to show any direct evidence of interactions with other galaxies in many cases," said Jeremy Lim, of the Academia Sinica Institute of Astronomy & Astrophysics in Taipei, Taiwan. Lim, along with Paul Ho of the Harvard-Smithsonian Center for Astrophysics in Cambridge, MA, reported their findings in the January 1 issue of Astrophysical Journal Letters. Quasars are among the most luminous objects in the universe, and generally are believed to be powered by material being drawn into a supermassive black hole at the center of a galaxy, releasing large amounts of energy. Many quasars are found at extremely great distances from Earth, billions of light-years away. Because the light from these quasars took billions of years to reach our telescopes, we see them as they were when they were much younger objects. These distant quasars are thought to "turn on" when the host galaxy's central black hole is "fueled" by material drawn in during an early stage of the galaxy's development, before the galaxy "settles down" to a more sedate life. However, other galaxies with quasar cores are much closer, and thus are older, more mature galaxies. Their quasar activity has been attributed to encounters with nearby galaxies -- encounters that disrupt material and provide new "fuel" to the black hole. The problem for this scenario was the lack of evidence for such galactic encounters in optical images of many nearby quasars. "Our VLA studies are the

  2. New Galaxies From Old? VLA Observations Strengthen the Case

    NASA Astrophysics Data System (ADS)

    1996-01-01

    Astronomers using the Very Large Array (VLA) radio telescope have found some of the best evidence to date that small, new galaxies can form from material pulled out of older galaxies. The new observations seriously weaken models of galactic evolution that attempt to explain the various types of galaxies seen in the universe as the result of different, but independent, processes. Steve Gottesman of the University of Florida in Gainesville, Tim Hawarden of the Joint Astronomy Center in Hilo, Hawaii, Caroline Simpson of Florida International University in Miami and Benjamin Malphrus of Morehead State University in Morehead, Kentucky, presented the results today to the American Astronomical Society meeting in San Antonio, TX. The astronomers used the VLA, a facility of the National Science Foundation, to study a galaxy system some 180 million light-years distant in the constellation Centaurus called NGC 5291. NGC 5291 is a peculiar spiral galaxy that appears to be interacting with a nearby object called the Seashell. The VLA observations show a large, elongated cloud of neutral hydrogen gas surrounding NGC 5291 and the Seashell. Within that gas cloud there are several concentrations. These mostly coincide with faint "knots" which were first seen on optical photographs taken twenty years ago with the UK Schmidt Telescope in Australia for the ESO/SRC Southern Sky Survey. In a detailed study at that time, using the 4-meter Anglo-Australian Telescope (AAT) and the 65m Parkes radio telescope, the knots were shown to be giant star-forming regions and the system was found to contain an extremely large cloud of gas. Though details were lacking then, astronomers suggested that the larger knots would turn out to be galaxies either in the process of formation or recently formed from the material of the parent system. Subsequently, similar suggestions were made about concentrations of material in the "tidal tails" ejected by galactic collisions elsewhere in the sky, but it was not

  3. Application of the Nonballistic Model to the Black Hole Candidate XTE J1752-223 and the Quasar NRAO 150

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, T. Y.; Gong, B. P., E-mail: bpgong@mail.hust.edu.cn

    2017-02-01

    Optical and radio observations of the black hole candidate XTE J1752-223 have exhibited a slightly curved motion of the jet components, which is associated with its radio light curve. In addition, observations of the quasar NRAO 150 have revealed a core–jet structure wobbling with a high angular speed. In this paper, the phenomena displayed in these two different sources are interpreted as the precession of a bent jet. In such a scenario, hot spots reproduced at different separations from the core precess on the same precession cone, in which different components correspond to different propagation times to the observer. Bymore » fitting the kinematics of the components of XTE J1752-223 and its light curve with a curved pattern of precession period 314 days, we find that the propagation time can make an earlier event appear later, and the jet axis can oscillate during its precession. Simulating the quasar NRAO 150 with the same scenario reveals that the knots at larger separation from the core precess at a slower speed than those closer in. A possible mechanism relating to the cooling time of a component is proposed. These three new results are of importance in understanding the physics underlying the curved jet as well as the activity of the central engine of different black hole systems.« less

  4. The HI Chronicles of LITTLE THINGS BCDs: VII Zw 403’s External Gas Cloud

    NASA Astrophysics Data System (ADS)

    Ashley, Trisha L.; Simpson, Caroline E.; Elmegreen, Bruce; Johnson, Megan C.; Pokhrel, Nau Raj

    2017-01-01

    Blue compact dwarf (BCD) galaxies are characterized by their concentrated bursts of star formation. Yet, for many BCDs, it is unclear what has triggered this activity. VII Zw 403 is a well-known BCD that is relatively isolated from other galaxies. Using the high angular and velocity resolution Very Large Array (VLA) atomic hydrogen (HI) data from the LITTLE THINGS1 survey, we study the detailed kinematics and morphology of VII Zw 403’s HI gas. High sensitivity HI Green Bank Telescope (GBT) observations were also used to search the surrounding area for companion galaxies and extended HI emission, but they did not result in detections of either. The VLA data show a kinematically and morphologically disturbed HI disk. From the VLA HI data cubes, we have separated out most of the emission from what is likely an external gas cloud that is in the line of sight of the HI disk. This external gas cloud appears to be accreting onto the disk and could trigger a future burst of star formation. 1Local Irregulars That Trace Luminosity Extremes, The HI Nearby Galaxy Survey; https://science.nrao.edu/science/surveys/ littlethings

  5. 18 centimeter VLBI observations of the quasar NRAO 140 during and after a low-frequency outburst

    NASA Astrophysics Data System (ADS)

    Marscher, Alan P.; Broderick, John J.; Padrielli, Lucia; Bartel, Norbert; Romney, Jonathan D.

    1987-08-01

    The authors have observed the quasar NRAO 140 using an eight station very long baseline array at 18 cm in 1984 April and a seven station array at 6 cm in 1984 May. They compare both the map and the data at 18 cm with those obtained by Marscher and Broderick in 1981 October. The latter coincided with a ≡25% outburst in flux density at wavelengths greater than ≡30 cm. The analysis indicates that a component ≡5 milli-arc seconds southeast of the "core" dropped significantly in brightness between 1981 October and 1984 April. The authors identify this component as the likely site of the low-frequency variations.

  6. Simultaneous Solar Maximum Mission (SMM) and Very Large Array (VLA) observations of solar active regions

    NASA Technical Reports Server (NTRS)

    Willson, Robert F.

    1991-01-01

    Very Large Array observations at 20 cm wavelength can detect the hot coronal plasma previously observed at soft x ray wavelengths. Thermal cyclotron line emission was detected at the apex of coronal loops where the magnetic field strength is relatively constant. Detailed comparison of simultaneous Solar Maximum Mission (SMM) Satellite and VLA data indicate that physical parameters such as electron temperature, electron density, and magnetic field strength can be obtained, but that some coronal loops remain invisible in either spectral domain. The unprecedent spatial resolution of the VLA at 20 cm wavelength showed that the precursor, impulsive, and post-flare components of solar bursts originate in nearby, but separate loops or systems of loops.. In some cases preburst heating and magnetic changes are observed from loops tens of minutes prior to the impulsive phase. Comparisons with soft x ray images and spectra and with hard x ray data specify the magnetic field strength and emission mechanism of flaring coronal loops. At the longer 91 cm wavelength, the VLA detected extensive emission interpreted as a hot 10(exp 5) K interface between cool, dense H alpha filaments and the surrounding hotter, rarefield corona. Observations at 91 cm also provide evidence for time-correlated bursts in active regions on opposite sides of the solar equator; they are attributed to flare triggering by relativistic particles that move along large-scale, otherwise-invisible, magnetic conduits that link active regions in opposite hemispheres of the Sun.

  7. Functional and clinical relevance of VLA-4 (CD49d/CD29) in ibrutinib-treated chronic lymphocytic leukemia.

    PubMed

    Tissino, Erika; Benedetti, Dania; Herman, Sarah E M; Ten Hacken, Elisa; Ahn, Inhye E; Chaffee, Kari G; Rossi, Francesca Maria; Dal Bo, Michele; Bulian, Pietro; Bomben, Riccardo; Bayer, Elisabeth; Härzschel, Andrea; Gutjahr, Julia Christine; Postorino, Massimiliano; Santinelli, Enrico; Ayed, Ayed; Zaja, Francesco; Chiarenza, Annalisa; Pozzato, Gabriele; Chigaev, Alexandre; Sklar, Larry A; Burger, Jan A; Ferrajoli, Alessandra; Shanafelt, Tait D; Wiestner, Adrian; Del Poeta, Giovanni; Hartmann, Tanja Nicole; Gattei, Valter; Zucchetto, Antonella

    2018-02-05

    The Bruton's tyrosine kinase (BTK) inhibitor ibrutinib, which antagonizes B cell receptor (BCR) signals, demonstrates remarkable clinical activity in chronic lymphocytic leukemia (CLL). The lymphocytosis experienced by most patients under ibrutinib has previously been attributed to inhibition of BTK-dependent integrin and chemokine cues operating to retain the tumor cells in nodal compartments. Here, we show that the VLA-4 integrin, as expressed by CD49d-positive CLL, can be inside-out activated upon BCR triggering, thus reinforcing the adhesive capacities of CLL cells. In vitro and in vivo ibrutinib treatment, although reducing the constitutive VLA-4 activation and cell adhesion, can be overcome by exogenous BCR triggering in a BTK-independent manner involving PI3K. Clinically, in three independent ibrutinib-treated CLL cohorts, CD49d expression identifies cases with reduced lymphocytosis and inferior nodal response and behaves as independent predictor of shorter progression-free survival, suggesting the retention of CD49d-expressing CLL cells in tissue sites via activated VLA-4. Evaluation of CD49d expression should be incorporated in the characterization of CLL undergoing therapy with BCR inhibitors. © 2018 Tissino et al.

  8. Functional and clinical relevance of VLA-4 (CD49d/CD29) in ibrutinib-treated chronic lymphocytic leukemia

    PubMed Central

    Tissino, Erika; Benedetti, Dania; Herman, Sarah E.M.; ten Hacken, Elisa; Rossi, Francesca Maria; Dal Bo, Michele; Bulian, Pietro; Bomben, Riccardo; Bayer, Elisabeth; Härzschel, Andrea; Gutjahr, Julia Christine; Postorino, Massimiliano; Santinelli, Enrico; Zaja, Francesco; Pozzato, Gabriele; Chigaev, Alexandre; Sklar, Larry A.; Burger, Jan A.; Ferrajoli, Alessandra; Shanafelt, Tait D.; Wiestner, Adrian; Del Poeta, Giovanni; Hartmann, Tanja Nicole

    2018-01-01

    The Bruton’s tyrosine kinase (BTK) inhibitor ibrutinib, which antagonizes B cell receptor (BCR) signals, demonstrates remarkable clinical activity in chronic lymphocytic leukemia (CLL). The lymphocytosis experienced by most patients under ibrutinib has previously been attributed to inhibition of BTK-dependent integrin and chemokine cues operating to retain the tumor cells in nodal compartments. Here, we show that the VLA-4 integrin, as expressed by CD49d-positive CLL, can be inside-out activated upon BCR triggering, thus reinforcing the adhesive capacities of CLL cells. In vitro and in vivo ibrutinib treatment, although reducing the constitutive VLA-4 activation and cell adhesion, can be overcome by exogenous BCR triggering in a BTK-independent manner involving PI3K. Clinically, in three independent ibrutinib-treated CLL cohorts, CD49d expression identifies cases with reduced lymphocytosis and inferior nodal response and behaves as independent predictor of shorter progression-free survival, suggesting the retention of CD49d-expressing CLL cells in tissue sites via activated VLA-4. Evaluation of CD49d expression should be incorporated in the characterization of CLL undergoing therapy with BCR inhibitors. PMID:29301866

  9. Cold Gas in High-z Galaxies: The CO Gas Excitation Ladder and the need for the ngVLA

    NASA Astrophysics Data System (ADS)

    Casey, Caitlin M.; Champagne, Jaclyn; Narayanan, Desika; Davé, Romeel; Hung, Chao-Ling; Carilli, Chris; Murphy, Eric Joseph; Decarli, Roberto; Popping, Gergo; Riechers, Dominik A.; Somerville, Rachel; Walter, Fabian

    2018-01-01

    We will present updated results on a community study led to understand the observable molecular gas properties of high-z galaxies. This work uses a series of high-resolution, hydrodynamic, cosmological zoom-in simulations from MUFASA, the Despotic radiative transfer code that uses simultaneous thermal and statistical equilibrium in calculating molecular and atomic level populations, and a CASA simulator which generates mock ngVLA and ALMA observations. Our work reveals a stark contrast in gas characteristics (geometry and kinematics) as measured from low-J transitions of CO to high-J transitions, demonstrating the need for the ngVLA in probing the cold gas reservoir in the highest-redshift galaxies.

  10. The Interaction Affinity between Vascular Cell Adhesion Molecule-1 (VCAM-1) and Very Late Antigen-4 (VLA-4) Analyzed by Quantitative FRET

    PubMed Central

    Wu, Shu-Han; Karmenyan, Artashes; Chiou, Arthur

    2015-01-01

    Very late antigen-4 (VLA-4), a member of integrin superfamily, interacts with its major counter ligand vascular cell adhesion molecule-1 (VCAM-1) and plays an important role in leukocyte adhesion to vascular endothelium and immunological synapse formation. However, irregular expressions of these proteins may also lead to several autoimmune diseases and metastasis cancer. Thus, quantifying the interaction affinity of the VCAM-1/VLA-4 interaction is of fundamental importance in further understanding the nature of this interaction and drug discovery. In this study, we report an ‘in solution’ steady state organic fluorophore based quantitative fluorescence resonance energy transfer (FRET) assay to quantify this interaction in terms of the dissociation constant (Kd). We have used, in our FRET assay, the Alexa Fluor 488-VLA-4 conjugate as the donor, and Alexa Fluor 546-VCAM-1 as the acceptor. From the FRET signal analysis, Kd of this interaction was determined to be 41.82 ± 2.36 nM. To further confirm our estimation, we have employed surface plasmon resonance (SPR) technique to obtain Kd = 39.60 ± 1.78 nM, which is in good agreement with the result obtained by FRET. This is the first reported work which applies organic fluorophore based ‘in solution’ simple quantitative FRET assay to obtain the dissociation constant of the VCAM-1/VLA-4 interaction, and is also the first quantification of this interaction. Moreover, the value of Kd can serve as an indicator of abnormal protein-protein interactions; hence, this assay can potentially be further developed into a drug screening platform of VLA-4/VCAM-1 as well as other protein-ligand interactions. PMID:25793408

  11. Sky Survey Provides New Radio View of Universe

    NASA Astrophysics Data System (ADS)

    2004-10-01

    Astronomers using the National Science Foundation's Very Large Array (VLA) have overcome longstanding technical hurdles to map the sky at little-explored radio frequencies that may provide a tantalizing look deep into the early Universe. The scientists have released images and data covering half of the sky visible from the VLA, and hope to complete their survey within a year. Radio Galaxies A "rogues' gallery" of radio galaxy types seen in the VLSS. CREDIT: NRAO/AUI/NSF (Click on Image for Graphics Page) The VLA Low-frequency Sky Survey (VLSS) is producing sky images made at an observing frequency of 74 MHz, a far lower frequency than used for most current radio-astronomy research. "Because of the Earth's ionosphere, such a low frequency has proven very difficult for high-quality imaging, and it is only in the past few years that we have developed the techniques that make a project like the VLSS possible," said Rick Perley, of the National Radio Astronomy Observatory (NRAO) in Socorro, NM. Because the high-quality VLSS images will give astronomers a look at the Universe through what essentially is a new "window," they expect the images to reveal some rare and important objects. "We expect to find very distant radio galaxies -- galaxies spewing jets of material at nearly light speed and powered by supermassive black holes," said Joseph Lazio of the Naval Research Laboratory in Washington, DC. "By determining just how distant these radio galaxies are, we will learn how early the black holes formed in the history of the Universe," he added. Another tantalizing possibility is that the low-frequency images may reveal "halos" and "relics" produced by collisions of galaxies in clusters. If the halos and relics are found in the distant, and thus early, Universe, it will give scientists important clues about the timetable for formation of large-scale structure. In addition, the astronomers hope that the VLSS images may show previously-undiscovered pulsars -- superdense

  12. Millimeter wave absorption in the nonhuman primate eye at 35 GHz and 94 GHz.

    PubMed

    Chalfin, Steven; D'Andrea, John A; Comeau, Paul D; Belt, Michael E; Hatcher, Donald J

    2002-07-01

    The purpose of this study was to evaluate anterior segment bioeffects of pulsed 35 GHz and 94 GHz microwave exposure in the nonhuman primate eye. Five juvenile rhesus monkeys (Macaca mulatta) underwent baseline anterior segment ocular assessment consisting of slit lamp examination, corneal topography, specular microscopy, and pachymetry. These studies were repeated after exposure of one eye to pulsed 35 GHz or 94 GHz microwaves at varied fluences, with the other eye serving as a control. The mean fluence required to produce a threshold corneal lesion (faint epithelial edema and fluorescein staining) was 7.5 J cm(-2) at 35 GHz and 5 J cm(-2) at 94 GHz. Transient changes in corneal topography and pachymetry were noted at these fluences. Endothelial cell counts remained unchanged. Threshold corneal injury from 35 GHz and 94 GHz microwave exposure is produced at fluences below those previously reported for CO2 laser radiation. These data may help elucidate the mechanism of thermal injury to the cornea, and resolve discrepancies between IEEE C95.1 (1999), NCRP (1986), and ICNIRP (1998) safety standards for exposure to non-ionizing radiation at millimeter wavelengths.

  13. Electronically Tuned Local Oscillators for the NOEMA Interferometer

    NASA Astrophysics Data System (ADS)

    Mattiocco, Francois; Garnier, Olivier; Maier, Doris; Navarrini, Alessandro; Serres, Patrice

    2016-03-01

    We present an overview of the electronically tuned local oscillator (LO) system developed at the Institut de RadioAstronomie millimetrique (IRAM) for the superconductor-insulator-superconductor (SIS) receivers of the NOrthern Extended Millimeter Array interferometer (NOEMA). We modified the frequency bands and extended the bandwidths of the LO designs developed by the National Radio Astronomy Observatory (NRAO) for the Atacama Large Millimeter Array (ALMA) project to cover the four NOEMA LO frequency ranges 82-108.3 GHz (Band 1), 138.6-171.3 GHz (Band 2), 207.7-264.4 GHz (Band 3), and 283-365 GHz (Band 4). The NOEMA LO system employs commercially available MMICs and GaAs millimeter MMICs from NRAO which are micro-assembled into active multiplied chain (AMC) and power amplifier (PA) modules. We discuss the problem of the LO spurious harmonics and of the LO signal directly multiplied by the SIS mixers that add extra noise and lead to detections of unwanted spectral lines from higher order sidebands. A waveguide filter in the LO path is used to reduce the higher order harmonics level of the LO at the output of the final frequency multiplier, thus mitigating the undesired effects and improving the system noise temperature.

  14. A Complete VLA Census of the ~7000 Milky Way HII Regions

    NASA Astrophysics Data System (ADS)

    Armentrout, William Paul; Anderson, Loren; Wenger, Trey V.; Balser, Dana; Bania, Thomas

    2018-01-01

    How many HII regions are in the Milky Way? Even with the success of recent surveys, we still do not have an adequate answer to this fundamental question. HII regions are the archetypical tracers of Galactic high-mass star formation, but population synthesis modeling indicates that their detection throughout the Galaxy is incomplete, biased toward the most luminous and nearby complexes. Using mid-infrared (MIR) data from the WISE satellite, we identified over 8000 HII regions and candidates, all of which share the characteristic morphology of 12 micron emission enveloping a core of 22 micron emission. Of these, nearly 4000 candidates have no detectable radio continuum emission from Galactic plane surveys and therefore their classification is unknown. These “radio quiet” candidates could represent a significant population of faint HII regions which are ionized by B-stars and/or are especially distant, or they might not be HII regions at all.We present here a survey of radio quiet HII regions in the second and third Galactic quadrants with the Very Large Array. This was the first systematic study of radio quiet HII region candidates. Nearly 60% of the 145 sources observed were detected by the VLA at X-band (10 GHz) to sub-mJy sensitivities. Coupled with their MIR morphologies, detection of continuum strongly indicate they are HII regions. If 60% of radio quiet candidates throughout the Galaxy prove to be HII regions, the number of expected HII regions in the Milky Way would more than double. Constraining the total number of HII regions within the Milky Way will feed back into stellar population synthesis modeling, informing both the high-mass tail of the Galactic star formation rate and the role of high-mass stars in the evolution of the ISM. We estimate there are between 6500 and 7000 HII regions in Milky Way created by a star of type B2 or earlier.

  15. Deep VLA Observations of the Cluster 1RXS J0603.3+4214 in the Frequency Range of 1–2 GHz

    DOE PAGES

    Rajpurohit, K.; Hoeft, M.; van Weeren, R. J.; ...

    2018-01-08

    Here, we report L-band VLA observations of 1RXS J0603.3+4214, a cluster that hosts a bright radio relic, known as the Toothbrush, and an elongated giant radio halo. These new observations allow us to study the surface brightness distribution down to 1 arcsec resolution with very high sensitivity. Our images provide an unprecedented detailed view of the Toothbrush, revealing enigmatic filamentary structures. To study the spectral index distribution, we complement our analysis with published LOFAR and GMRT observations. The bright "brush" of the Toothbrush shows a prominent narrow ridge to its north with a sharp outer edge. The spectral index at the ridge is in the range –0.70 ≤ α ≤ –0.80. We suggest that the ridge is caused by projection along the line of sight. With a simple toy model for the smallest region of the ridge, we conclude that the magnetic field is below 5 μG and varies significantly across the shock front. Our model indicates that the actual Mach number is higher than that obtained from the injection index and agrees well with the one derived from the overall spectrum, namelymore » $${ \\mathcal M }={3.78}_{-0.2}^{+0.3}$$. The radio halo shows an average spectral index of α = –1.16 ± 0.05 and a slight gradient from north to south. The southernmost part of the halo is steeper and possibly related to a shock front. Excluding the southernmost part, the halo morphology agrees very well with the X-ray morphology. A power-law correlation is found between the radio and X-ray surface brightness.« less

  16. Deep VLA Observations of the Cluster 1RXS J0603.3+4214 in the Frequency Range of 1–2 GHz

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rajpurohit, K.; Hoeft, M.; van Weeren, R. J.

    Here, we report L-band VLA observations of 1RXS J0603.3+4214, a cluster that hosts a bright radio relic, known as the Toothbrush, and an elongated giant radio halo. These new observations allow us to study the surface brightness distribution down to 1 arcsec resolution with very high sensitivity. Our images provide an unprecedented detailed view of the Toothbrush, revealing enigmatic filamentary structures. To study the spectral index distribution, we complement our analysis with published LOFAR and GMRT observations. The bright "brush" of the Toothbrush shows a prominent narrow ridge to its north with a sharp outer edge. The spectral index at the ridge is in the range –0.70 ≤ α ≤ –0.80. We suggest that the ridge is caused by projection along the line of sight. With a simple toy model for the smallest region of the ridge, we conclude that the magnetic field is below 5 μG and varies significantly across the shock front. Our model indicates that the actual Mach number is higher than that obtained from the injection index and agrees well with the one derived from the overall spectrum, namelymore » $${ \\mathcal M }={3.78}_{-0.2}^{+0.3}$$. The radio halo shows an average spectral index of α = –1.16 ± 0.05 and a slight gradient from north to south. The southernmost part of the halo is steeper and possibly related to a shock front. Excluding the southernmost part, the halo morphology agrees very well with the X-ray morphology. A power-law correlation is found between the radio and X-ray surface brightness.« less

  17. Deep VLA Observations of the Cluster 1RXS J0603.3+4214 in the Frequency Range of 1–2 GHz

    NASA Astrophysics Data System (ADS)

    Rajpurohit, K.; Hoeft, M.; van Weeren, R. J.; Rudnick, L.; Röttgering, H. J. A.; Forman, W. R.; Brüggen, M.; Croston, J. H.; Andrade-Santos, F.; Dawson, W. A.; Intema, H. T.; Kraft, R. P.; Jones, C.; Jee, M. James

    2018-01-01

    We report L-band VLA observations of 1RXS J0603.3+4214, a cluster that hosts a bright radio relic, known as the Toothbrush, and an elongated giant radio halo. These new observations allow us to study the surface brightness distribution down to 1 arcsec resolution with very high sensitivity. Our images provide an unprecedented detailed view of the Toothbrush, revealing enigmatic filamentary structures. To study the spectral index distribution, we complement our analysis with published LOFAR and GMRT observations. The bright “brush” of the Toothbrush shows a prominent narrow ridge to its north with a sharp outer edge. The spectral index at the ridge is in the range ‑0.70 ≤ α ≤ ‑0.80. We suggest that the ridge is caused by projection along the line of sight. With a simple toy model for the smallest region of the ridge, we conclude that the magnetic field is below 5 μG and varies significantly across the shock front. Our model indicates that the actual Mach number is higher than that obtained from the injection index and agrees well with the one derived from the overall spectrum, namely { M }={3.78}-0.2+0.3. The radio halo shows an average spectral index of α = ‑1.16 ± 0.05 and a slight gradient from north to south. The southernmost part of the halo is steeper and possibly related to a shock front. Excluding the southernmost part, the halo morphology agrees very well with the X-ray morphology. A power-law correlation is found between the radio and X-ray surface brightness.

  18. CHANDRA, KECK, and VLA Observations of the Crab Nebula During the 2011-April Gamma-Ray Flare

    DOE PAGES

    Weisskopf, Martin C.; Tennant, Allyn F.; Arons, Jonathan; ...

    2013-02-15

    In this paper, we present results from our analysis of Chandra X-Ray Observatory, W. M. Keck Observatory, and Karl G. Jansky Very Large Array (VLA) images of the Crab Nebula that were contemporaneous with the γ-ray flare of 2011 April. Despite hints in the X-ray data, we find no evidence for statistically significant variations that pinpoint the specific location of the flares within the Nebula. The Keck observations extend this conclusion to the "inner knot," i.e., the feature within an arcsecond of the pulsar. The VLA observations support this conclusion. Lastly, we also discuss theoretical implications of the γ-ray flaresmore » and suggest that the most dramatic γ-ray flares are due to radiation-reaction-limited synchrotron emission associated with sudden, dissipative changes in the current system sustained by the central pulsar.« less

  19. The Cold Gas History of the Universe as seen by the ngVLA

    NASA Astrophysics Data System (ADS)

    Riechers, Dominik A.; Carilli, Chris Luke; Casey, Caitlin; da Cunha, Elisabete; Hodge, Jacqueline; Ivison, Rob; Murphy, Eric J.; Narayanan, Desika; Sargent, Mark T.; Scoville, Nicholas; Walter, Fabian

    2017-01-01

    The Next Generation Very Large Array (ngVLA) will fundamentally advance our understanding of the formation processes that lead to the assembly of galaxies throughout cosmic history. The combination of large bandwidth with unprecedented sensitivity to the critical low-level CO lines over virtually the entire redshift range will open up the opportunity to conduct large-scale, deep cold molecular gas surveys, mapping the fuel for star formation in galaxies over substantial cosmic volumes. Informed by the first efforts with the Karl G. Jansky Very Large Array (COLDz survey) and the Atacama Large (sub)Millimeter Array (ASPECS survey), we here present initial predictions and possible survey strategies for such "molecular deep field" observations with the ngVLA. These investigations will provide a detailed measurement of the volume density of molecular gas in galaxies as a function of redshift, the "cold gas history of the universe". This will crucially complement studies of the neutral gas, star formation and stellar mass histories with large low-frequency arrays, the Large UV/Optical/Infrared Surveyor, and the Origins Space Telescope, providing the means to obtain a comprehensive picture of galaxy evolution through cosmic times.

  20. The Surprising Complexity of Diffuse and Translucent Clouds Toward SGR B2: Diatomics and COMs from 4 GHz to 1.2 THz

    NASA Astrophysics Data System (ADS)

    McGuire, Brett A.; Corby, Joanna F.; Martin-Drumel, Marie-Aline; Schilke, P.; McCarthy, Michael C.; Remijan, Anthony

    2017-06-01

    Many diffuse and translucent clouds lie along the line of sight between Earth and the Galactic Center that can be probed through molecular absorption at characteristic velocities. We highlight results of a study of diffuse and translucent clouds along the line of sight to Sgr B2, including SOFIA observations of SH near 1.4 THz and GBT PRIMOS observations from 4 to 50 GHz. We find significant variation in the chemical conditions within these clouds, and the abundances do not appear to correlate with the total optical depth. Additionally, from the GBT observations, we report the first detections of multiple complex organic molecules (COMs) in diffuse and translucent clouds, including CH_3CN, HC_3N, CH_3CHO, and NH_2CHO. We compare the GBT results to complementary observations of SH, H_2S, and others at mm, sub-mm, and THz frequencies from the NRAO 12m, Herschel HIFI, and SOFIA facilities, and comment on the insights into interstellar sulfur chemistry which is currently not well constrained.

  1. Polarization Science with the ngVLA: magnetic fields and dust properties in cores, disks and on larger scales

    NASA Astrophysics Data System (ADS)

    Matthews, Brenda; Hull, Chat

    2018-01-01

    Polarization capabilities of the ngVLA will enable exploration of a wide range of phenomena including: (1) magnetic fields in protostellar cores and protoplanetary disks via polarized emission from magnetically aligned dust grains and spectral lines, including in regions optically thick at ALMA wavelengths; (2) polarization from dust scattering in disks, (3) spectral-line polarization from the Zeeman and Goldreich-Kylafis effects, and (4) magnetic fields in protostellar jets and OB-star-forming cores via synchrotron emission.We will discuss each of these science drivers in turn, with a particular emphasis on why the ngVLA provides a unique means of probing dust properties in the midplane of protoplanetary disks and hence the building blocks of planets in the innermost regions of disks.

  2. T cell costimulation via the integrin VLA-4 inhibits the actin-dependent centralization of signaling microclusters containing the adaptor SLP-76.

    PubMed

    Nguyen, Ken; Sylvain, Nicholas R; Bunnell, Stephen C

    2008-06-01

    Antigen-dependent T cell activation drives the formation of signaling microclusters containing the adaptor SLP-76. Costimulatory integrins regulate SLP-76 phosphorylation and could influence SLP-76 microclusters in the integrin-rich periphery of the immune synapse. We report that costimulation by the integrin VLA-4 (alpha4beta1) required SLP-76 domains implicated in microcluster assembly. Pro-adhesive ligands enlarged the contact and increased the number of SLP-76 microclusters regardless of their costimulatory potential. Costimulatory VLA-4 ligands also prevented the centralization of SLP-76, promoted microcluster persistence, prolonged lateral interactions between SLP-76 and its upstream kinase, ZAP-70, and retained SLP-76 in tyrosine-phosphorylated peripheral structures. SLP-76 centralization was driven by dynamic actin polymerization and was correlated with inward actin flows. VLA-4 ligation retarded these flows, even in the absence of SLP-76. These data suggest a widely applicable model of costimulation, in which integrins promote sustained signaling by attenuating cytoskeletal movements that drive the centralization and inactivation of SLP-76 microclusters.

  3. Coronal Magnetography of Solar Active Regions Using Coordinated SOHO/CDS and VLA Observations

    NASA Technical Reports Server (NTRS)

    Brosius, Jeffrey W.

    1999-01-01

    The purpose of this project is to apply the coronal magnetographic technique to SOHO (Solar Heliospheric Observatory) /CDS (Coronal Diagnostic Spectrometer) EUV (Extreme Ultraviolet Radiation) and coordinated VLA microwave observations of solar active regions to derive the strength and structure of the coronal magnetic field. A CDS observing plan was developed for obtaining spectra needed to derive active region differential emission measures (DEMs) required for coronal magnetography. VLA observations were proposed and obtained. SOHO JOP 100 was developed, tested, approved, and implemented to obtain coordinated CDS (Coronal Diagnostic Spectrometer)/EIT (Ultraviolet Imaging Telescope)/ VLA (Very Large Array)/ TRACE (Transition Region and Coronal Explorer)/ SXT (Solar X Ray Telescope) observations of active regions on April 12, May 9, May 13, and May 23. Analysis of all four data sets began, with heaviest concentration on COS data. It is found that 200-pixel (14 A in NIS1) wavelength windows are appropriate for extracting broadened Gaussian line profile fit parameters for lines including Fe XIV at 334.2, Fe XVI at 335.4, Fe XVI at 360.8, and Mg IX at 368.1 over the 4 arcmin by 4 arcmin CDS field of view. Extensive efforts were focused on learning and applying were focused on learning and applying CDS software, and including it in new IDL procedures to carry out calculations relating to coronal magnetography. An important step is to extract Gaussian profile fits to all the lines needed to derive the DEM in each spatial pixel of any given active region. The standard CDS absolute intensity calibration software was applied to derived intensity images, revealing that ratios between density-insensitive lines like Fe XVI 360.8/335.4 yield good agreement with theory. However, the resulting absolute intensities of those lines are very high, indicating that revisions to the CDS absolute intensity calibrations remain to be included in the CDS software, an essential step to

  4. Archiving of interferometric radio and mm/submm data at the National Radio Astronomy Observatory

    NASA Astrophysics Data System (ADS)

    Lacy, Mark

    2018-06-01

    Modern radio interferometers such as ALMA and the VLA are capable of producing ~1TB/day of data for processing into image products of comparable size. Besides the shear volume of data, the products themselves can be complicated and are sometimes hard to map into standard astronomical archive metadata. We also face similar issues to those faced by archives at other wavelengths, namely the role of archives as the basis of reprocessing platforms and facilities, and the validation and ingestion of user-derived products. In this talk I shall discuss the plans of NRAO in these areas over the next decade.

  5. CHILES Con Pol: Probing galaxy evolution, the dark Universe, and cosmic magnetism with a deep 1000 hour Jansky VLA survey

    NASA Astrophysics Data System (ADS)

    Hales, Christopher A.; Chiles Con Pol Collaboration

    2014-04-01

    We recently started a 1000 hour campaign to observe 0.2 square degrees of the COSMOS field in full polarization continuum at 1.4 GHz with the Jansky VLA, as part of a joint program with the spectral line COSMOS HI Large Extragalactic Survey (CHILES). When complete, we expect our CHILES Continuum Polarization (CHILES Con Pol) survey to reach an unprecedented SKA-era sensitivity of 0.7 uJy per 4 arcsecond FWHM beam. Here we present the key goals of CHILES Con Pol, which are to (i) produce a source catalog of legacy value to the astronomical community, (ii) measure differential source counts in total intensity, linear polarization, and circular polarization in order to constrain the redshift and luminosity distributions of source populations, (iii) perform a novel weak lensing study using radio polarization as an indicator of intrinsic alignment to better study dark energy and dark matter, and (iv) probe the unknown origin of cosmic magnetism by measuring the strength and structure of intergalactic magnetic fields in the filaments of large scale structure. The CHILES Con Pol source catalog will be a useful resource for upcoming wide-field surveys by acting as a training set for machine learning algorithms, which can then be used to identify and classify radio sources in regions lacking deep multiwavelength coverage.

  6. System calibration of the 1.4 GHz and 5 GHz radiometers for soil moisture remote sensing

    NASA Technical Reports Server (NTRS)

    Wang, J.; Shiue, J.; Gould, W.; Fuchs, J.; Hirschmann, E.; Glazar, W.

    1980-01-01

    Two microwave radiometers at the frequencies of 1.4 GHz and 5 GHz were mounted on a mobile tower and used for a remote sensing of soil moisture experiment at a Beltsville Agriculture Research Center test site. The experiment was performed in October 1979 over both bare field and fields covered with grass, soybean, and corn. The calibration procedure for the radiometer systems which forms the basis of obtaining the final radiometric data product is described. It is estimated from the calibration results that the accuracy of the 1.4 GHz radiometric measurements is about + or - 3 K. The measured 5 GHz brightness temperatures over bare fields with moisture content greater than 10 percent by dry weight are about 8 K lower than those taken simultaneously at 1.4 GHz. This could be due to either (1) a 5 GHz antenna side lobe seeing the cold brightness of the sky, or (2) the thermal microwave emission from a soil being less sensitive to surface roughness at 5 GHz than at 1.4 GHz.

  7. Resolving Planet Formation in the Era of ALMA and Extreme AO Report on the joint ESO/NRAO Conference

    NASA Astrophysics Data System (ADS)

    Dent, W. R. F.; Hales, A.; Milli, J.

    2016-12-01

    ALMA in its long-baseline configuration, as well as new optical/near-infrared adaptive optics instruments such as SPHERE and GPI, are now able to achieve spatial resolutions considerably better than 0.1 arcseconds. These facilities are enabling us to observe for the first time the regions around young stars where planets form. Already, complex structures including holes, spiral waves and extreme asymmetries are being found in these protoplanetary discs. To discuss these newly-imaged phenomena, and to enable cross-fertilisation of ideas between the two wavelength ranges, a joint ESO/NRAO workshop was held in Santiago. We present here a summary and some highlights of the meeting.

  8. A VLA Search for Radio Signals from M31 and M33

    NASA Astrophysics Data System (ADS)

    Gray, Robert H.; Mooley, Kunal

    2017-03-01

    Observing nearby galaxies would facilitate the search for artificial radio signals by sampling several billions of stars simultaneously, but few efforts have been made to exploit this opportunity. An added attraction is that the Milky Way is the second largest member of the Local Group, so our galaxy might be a probable target for hypothetical broadcasters in nearby galaxies. We present the first relatively high spectral resolution (<1 kHz) 21 cm band search for intelligent radio signals of complete galaxies in the Local Group with the Jansky VLA, observing the galaxies M31 (Andromeda) and M33 (Triangulum)—the first and third largest members of the group, respectively—sampling more stars than any prior search of this kind. We used 122 Hz channels over a 1 MHz spectral window in the target galaxy velocity frame of reference, and 15 Hz channels over a 125 kHz window in our local standard of rest. No narrowband signals were detected above a signal-to-noise ratio of 7, suggesting the absence of continuous narrowband flux greater than approximately 0.24 and 1.33 Jy in the respective spectral windows illuminating our part of the Milky Way during our observations in 2014 December and 2015 January. This is also the first study in which the upgraded VLA has been used for SETI.

  9. A radio spectral index map and catalogue at 147-1400 MHz covering 80 per cent of the sky

    NASA Astrophysics Data System (ADS)

    de Gasperin, F.; Intema, H. T.; Frail, D. A.

    2018-03-01

    The radio spectral index is a powerful probe for classifying cosmic radio sources and understanding the origin of the radio emission. Combining data at 147 MHz and 1.4 GHz from the TIFR GMRT Sky Survey (TGSS) and the NRAO VLA Sky Survey (NVSS), we produced a large-area radio spectral index map of ˜80 per cent of the sky (Dec. > - 40 deg), as well as a radio spectral index catalogue containing 1396 515 sources, of which 503 647 are not upper or lower limits. Almost every TGSS source has a detected counterpart, while this is true only for 36 per cent of NVSS sources. We released both the map and the catalogue to the astronomical community. The catalogue is analysed to discover systematic behaviours in the cosmic radio population. We find a differential spectral behaviour between faint and bright sources as well as between compact and extended sources. These trends are explained in terms of radio galaxy evolution. We also confirm earlier reports of an excess of steep-spectrum sources along the galactic plane. This corresponds to 86 compact and steep-spectrum source in excess compared to expectations. The properties of this excess are consistent with normal non-recycled pulsars, which may have been missed by pulsation searches due to larger than average scattering along the line of sight.

  10. Radiometric correction of atmospheric path length fluctuations in interferometric experiments. [in radio astronomy

    NASA Technical Reports Server (NTRS)

    Resch, G. M.; Hogg, D. E.; Napier, P. J.

    1984-01-01

    To support very long baseline interferometric experiments, a system has been developed for estimating atmospheric water vapor path delay. The system consists of dual microwave radiometers, one operating at 20.7 GHz and the other at 31.4 GHz. The measured atmospheric brightness temperatures at these two frequencies yield the estimate of the precipitable water present in both vapor and droplets. To determine the accuracy of the system, a series of observations were undertaken, comparing the outputs of two water vapor radiometers with the phase variation observed with two connected elements of the very large array (VLA). The results show that: (1) water vapor fluctuations dominate the residual VLA phase and (2) the microwave radiometers can measure and correct these effects. The rms phase error after correction is typically 15 deg at a wavelength of 6 cm, corresponding to an uncertainty in the path delay of 0.25 cm. The residual uncertainty is consistent with the stability of the microwave radiometer but is still considerably larger than the stability of the VLA. The technique is less successful under conditions of heavy cloud.

  11. The Extraordinary Outburst in the Massive Protostellar System NGC 6334I-MM1: Emergence of Strong 6.7 GHz Methanol Masers

    NASA Astrophysics Data System (ADS)

    Hunter, T. R.; Brogan, C. L.; MacLeod, G. C.; Cyganowski, C. J.; Chibueze, J. O.; Friesen, R.; Hirota, T.; Smits, D. P.; Chandler, C. J.; Indebetouw, R.

    2018-02-01

    We report the first sub-arcsecond VLA imaging of 6 GHz continuum, methanol maser, and excited-state hydroxyl maser emission toward the massive protostellar cluster NGC 6334I following the recent 2015 outburst in (sub)millimeter continuum toward MM1, the strongest (sub)millimeter source in the protocluster. In addition to detections toward the previously known 6.7 GHz Class II methanol maser sites in the hot core MM2 and the UCHII region MM3 (NGC 6334F), we find new maser features toward several components of MM1, along with weaker features ∼1″ north, west, and southwest of MM1, and toward the nonthermal radio continuum source CM2. None of these areas have heretofore exhibited Class II methanol maser emission in three decades of observations. The strongest MM1 masers trace a dust cavity, while no masers are seen toward the strongest dust sources MM1A, 1B, and 1D. The locations of the masers are consistent with a combination of increased radiative pumping due to elevated dust grain temperature following the outburst, the presence of infrared photon propagation cavities, and the presence of high methanol column densities as indicated by ALMA images of thermal transitions. The nonthermal radio emission source CM2 (2″ north of MM1) also exhibits new maser emission from the excited 6.035 and 6.030 GHz OH lines. Using the Zeeman effect, we measure a line-of-sight magnetic field of +0.5 to +3.7 mG toward CM2. In agreement with previous studies, we also detect numerous methanol and excited OH maser spots toward the UCHII region MM3, with predominantly negative line-of-sight magnetic field strengths of ‑2 to ‑5 mG and an intriguing south–north field reversal.

  12. Endothelium adhesion molecules ICAM-1, ICAM-2, VCAM-1 and VLA-4 expression in leprosy.

    PubMed

    de Sousa, Juarez; Sousa Aarão, Tinara Leila; Rodrigues de Sousa, Jorge; Hirai, Kelly Emi; Silva, Luciana Mota; Dias, Leonidas Braga; Oliveira Carneiro, Francisca Regina; Fuzii, Hellen Thais; Quaresma, Juarez Antonio Simões

    2017-03-01

    Leprosy triggers a complex relationship between the pathogen and host immune response. Endothelium plays an important role in this immune response by directly influencing cell migration to infected tissues. The objective of this work is to investigate the possible role of endothelium in M. leprae infection, correlating the characteristics of endothelial markers with the expression pattern of cytokines. Thirty-six skin biopsy samples were cut into 5-μm thick sections and stained with hematoxylin-eosin and Ziehl-Neelsen for morphological analysis and then submitted to immunohistochemical analysis using monoclonal antibodies against ICAM-1, ICAM-2, VCAM-1, and VLA-4. Immunostaining for ICAM-1 showed a significantly larger number of stained endothelial cells in the tuberculoid leprosy (9.92 ± 1.11 cells/mm 2 ) when compared to lepromatous samples (5.87 ± 1.01 cells/mm 2 ) and ICAM-2 revealed no significant difference in the number of endothelial cells expressing this marker between the tuberculoid (13.21 ± 1.27 cells/mm 2 ) and lepromatous leprosy (14.3 ± 1.02 cells/mm 2 ). VCAM-1-immunostained showed 18.28 ± 1.46/mm 2 cells in tuberculoid leprosy and 10.67 ± 1.25 cells/mm 2 in the lepromatous leprosy. VLA-4 exhibited 22.46 ± 1.38 cells/mm 2 in the tuberculoid leprosy 16.04 ± 1.56 cells/mm 2 in the lepromatous leprosy. Samples with characteristics of the tuberculoid leprosy exhibited a larger number of cells stained with ICAM-1, VCAM-1 and VLA-4, demonstrating the importance of these molecules in the migration and selection of cells that reach the inflamed tissue. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Superconducting ECR ion source: From 24-28 GHz SECRAL to 45 GHz fourth generation ECR

    NASA Astrophysics Data System (ADS)

    Zhao, H. W.; Sun, L. T.; Guo, J. W.; Zhang, W. H.; Lu, W.; Wu, W.; Wu, B. M.; Sabbi, G.; Juchno, M.; Hafalia, A.; Ravaioli, E.; Xie, D. Z.

    2018-05-01

    The development of superconducting ECR source with higher magnetic fields and higher microwave frequency is the most straight forward path to achieve higher beam intensity and higher charge state performance. SECRAL, a superconducting third generation ECR ion source, is designed for 24-28 GHz microwave frequency operation with an innovative magnet configuration of sextupole coils located outside the three solenoids. SECRAL at 24 GHz has already produced a number of record beam intensities, such as 40Ar12+ 1.4 emA, 129Xe26+ 1.1 emA, 129Xe30+ 0.36 emA, and 209Bi31+ 0.68 emA. SECRAL-II, an upgraded version of SECRAL, was built successfully in less than 3 years and has recently been commissioned at full power of a 28 GHz gyrotron and three-frequency heating (28 + 45 + 18 GHz). New record beam intensities for highly charged ion production have been achieved, such as 620 eμA 40Ar16+, 15 eμA 40Ar18+, 146 eμA 86Kr28+, 0.5 eμA 86Kr33+, 53 eμA 129Xe38+, and 17 eμA 129Xe42+. Recent beam test results at SECRAL and SECRAL II have demonstrated that the production of more intense highly charged heavy ion beams needs higher microwave power and higher frequency, as the scaling law predicted. A 45 GHz superconducting ECR ion source FECR (a first fourth generation ECR ion source) is being built at IMP. FECR will be the world's first Nb3Sn superconducting-magnet-based ECR ion source with 6.5 T axial mirror field, 3.5 T sextupole field on the plasma chamber inner wall, and 20 kW at a 45 GHz microwave coupling system. This paper will focus on SECRAL performance studies at 24-28 GHz and technical design of 45 GHz FECR, which demonstrates a technical path for highly charged ion beam production from 24 to 28 GHz SECRAL to 45 GHz FECR.

  14. Chilean Teachers Begin Exchange Program Visit in Magdalena

    NASA Astrophysics Data System (ADS)

    2007-01-01

    Two teachers from the town of San Pedro de Atacama, in the northern desert of the South American nation of Chile, arrive in Magdalena, New Mexico, Sunday, January 28, for a two-week visit that is part of a Sister Cities program sponsored by Associated Universities, Inc. (AUI), the nonprofit research corporation that operates the National Radio Astronomy Observatory (NRAO). They will be accompanied by their town's mayor. Myriam Nancy Rivera Mercado, Head of the high school in San Pedro, Gabriela Fernanda Rodriguez Moraleda, a tourism teacher there, and San Pedro Mayor Sandra Berna Martinez will begin a visit that includes classroom observations in the Magdalena schools, a reception hosted by the Magdalena Village Council, and a Mayor's Breakfast with Magdalena Mayor Jim Wolfe. They also will meet local residents, tour the Bosque del Apache National Wildlife Refuge with a second-grade class, visit an area ranch, tour the Very Large Array (VLA) radio telescope, and see Socorro's Community Arts Party. "These teachers will learn much about New Mexico, the United States, and our educational system, and will take this new knowledge back to their students and their community," said NRAO Education Officer Robyn Harrison. The visit is part of a Sister Cities program initiated and funded by AUI, which operates the NRAO for the U.S. National Science Foundation. Radio astronomy is a common link between San Pedro de Atacama and Magdalena. San Pedro is near the site of the Atacama Large Millimeter/submillimeter Array (ALMA), an international telescope project now under construction with funding by major partners in North America, Europe, and Japan. Magdalena is near the site of NRAO's VLA radio telescope. In Magdalena, the Village Council and Mayor Wolfe formalized their participation in the Sister Cities program last September, and San Pedro ratified the program in December. In San Pedro, the ceremony ratifying the agreement was attended by U.S. Ambassador to Chile Craig K

  15. Spacecraft mass trade-offs versus radio-frequency power and antenna size at 8 GHz and 32 GHz

    NASA Technical Reports Server (NTRS)

    Gilchriest, C. E.

    1987-01-01

    The purpose of this analysis is to help determine the relative merits of 32 GHz over 8 GHz for future deep space communications. This analysis is only a piece of the overall analysis and only considers the downlink communication mass, power, and size comparisons for 8 and 32 GHz. Both parabolic antennas and flat-plate arrays are considered. The Mars Sample Return mission is considered in some detail as an example of the tradeoffs involved; for this mission the mass, power, and size show a definite advantage of roughly 2:1 in using the 32 GHz over 8 GHz.

  16. 47 CFR 25.136 - Licensing provisions for user transceivers in the 1.6/2.4 GHz, 1.5/1.6 GHz, and 2 GHz Mobile...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Applications and Licenses Earth Stations § 25.136 Licensing provisions for user transceivers in the 1.6/2.4 GHz... specified in § 25.213, earth stations operating in the 1.6/2.4 GHz and 1.5/1.6 GHz Mobile Satellite Services... aircraft unless the earth station has a direct physical connection to the aircraft cabin or cockpit...

  17. 47 CFR 25.136 - Licensing provisions for user transceivers in the 1.6/2.4 GHz, 1.5/1.6 GHz, and 2 GHz Mobile...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Applications and Licenses Earth Stations § 25.136 Licensing provisions for user transceivers in the 1.6/2.4 GHz... specified in § 25.213, earth stations operating in the 1.6/2.4 GHz and 1.5/1.6 GHz Mobile Satellite Services... aircraft unless the earth station has a direct physical connection to the aircraft cabin or cockpit...

  18. 47 CFR 25.136 - Licensing provisions for user transceivers in the 1.6/2.4 GHz, 1.5/1.6 GHz, and 2 GHz Mobile...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Applications and Licenses Earth Stations § 25.136 Licensing provisions for user transceivers in the 1.6/2.4 GHz... specified in § 25.213, earth stations operating in the 1.6/2.4 GHz and 1.5/1.6 GHz Mobile-Satellite Services... aircraft unless the earth station has a direct physical connection to the aircraft cabin or cockpit...

  19. Broadband radio spectro-polarimetric observations of high-Faraday-rotation-measure AGN

    NASA Astrophysics Data System (ADS)

    Pasetto, Alice; Carrasco-González, Carlos; O'Sullivan, Shane; Basu, Aritra; Bruni, Gabriele; Kraus, Alex; Curiel, Salvador; Mack, Karl-Heinz

    2018-06-01

    We present broadband polarimetric observations of a sample of high-Faraday-rotation-measure (high-RM) active galactic nuclei (AGN) using the Karl. G. Jansky Very Large Array (JVLA) telescope from 1 to 2 GHz, and 4 to 12 GHz. The sample (14 sources) consists of very compact sources (linear resolution smaller than ≈5 kpc) that are unpolarized at 1.4 GHz in the NRAO VLA Sky Survey (NVSS). Total intensity data have been modeled using a combination of synchrotron components, revealing complex structure in their radio spectra. Depolarization modeling, through the so-called qu-fitting (the modeling of the fractional quantities of the Stokes Q and U parameters), has been performed on the polarized data using an equation that attempts to simplify the process of fitting many different depolarization models. These models can be divided into two major categories: external depolarization (ED) and internal depolarization (ID) models. Understanding which of the two mechanisms is the most representative would help the qualitative understanding of the AGN jet environment and whether it is embedded in a dense external magneto-ionic medium or if it is the jet-wind that causes the high RM and strong depolarization. This could help to probe the jet magnetic field geometry (e.g., helical or otherwise). This new high-sensitivity data shows a complicated behavior in the total intensity and polarization radio spectrum of individual sources. We observed the presence of several synchrotron components and Faraday components in their total intensity and polarized spectra. For the majority of our targets (12 sources), the depolarization seems to be caused by a turbulent magnetic field. Thus, our main selection criteria (lack of polarization at 1.4 GHz in the NVSS) result in a sample of sources with very large RMs and depolarization due to turbulent magnetic fields local to the source. These broadband JVLA data reveal the complexity of the polarization properties of this class of radio sources

  20. Microwave continuum measurements and estimates of mass loss rates for cool giants and supergiants

    NASA Technical Reports Server (NTRS)

    Drake, S. A.; Linsky, J. L.

    1986-01-01

    Attention is given to the results of a sensitive, 6-cm radio continuum survey conducted with the NRAO VLA of 39 of the nearest single cool giants and supergiants of G0-M5 spectral types; the survey was conducted in order to obtain accurate measurements of the mass loss rates of ionized gas for a representative sample of such stars, in order to furnish constraints for, and a better understanding of, the total mass loss rates. The inferred angular diameters for the cool giant sources are noted to be twice as large as photospheric angular diameters, implying that these stars are surrounded by extended chromospheres containing warm partially ionized gas.

  1. 154 GHz collective Thomson scattering in LHD

    NASA Astrophysics Data System (ADS)

    Tanaka, K.; Nishiura, M.; Kubo, S.; Shimozuma, T.; Saito, T.; Moseev, D.; Abramovic, I.

    2018-01-01

    Collective Thomson scattering (CTS) was developed by using a 154 GHz gyrotron, and the first data has been obtained. Already, 77 GHz CTS has worked successfully. However, in order to access higher density region, 154 GHz option enhances the usability that reduces the refraction effect, which deteriorates in the local measurements. The system in the down converted frequency was almost identical to the system for 77 GHz. Probing beam, a notch filter, a mixer, and a local oscillator in the receiver system for 77 GHz option were replaced to those for the 154 GHz option. 154 GHz gyrotron was originally prepared for the second harmonic electron cyclotron heating (ECRH) at 2.75 T. However, scattering signal was masked by the second harmonic electron cyclotron emission (ECE) at 2.75 T. Therefore, 154 GHz CTS was operated at 1.375 T with fourth harmonic ECE, and an acceptable signal to noise ratio was obtained. There is a signature of fast ion components with neutral beam (NB) injection. In addition, the CTS spectrum became broader in hydrogen discharge than in deuterium discharge, as the theoretical CTS spectrum expects. This observation indicates a possibility to identify ion species ratio by the 154 GHz CTS diagnostic.

  2. Featured Image: New Detail in the Toothbrush Cluster

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2018-01-01

    This spectacular composite (click here for the full image) reveals the galaxy cluster 1RXS J0603.3+4214, known as the Toothbrush cluster due to the shape of its most prominent radio relic. Featured in a recent publication led by Kamlesh Rajpurohit (Thuringian State Observatory, Germany), this image contains new Very Large Array (VLA) 1.5-GHz observations (red) showing the radio emission within the cluster. This is composited with a Chandra view of the X-ray emitting gas of the cluster (blue) and an optical image of the background from Subaru data. The new deep VLA data totaling 26 hours of observations provides a detailed look at the complex structure within the Toothbrush relic, revealing enigmatic filaments and twists (see below). This new data will help us to explore the possible merger history of this cluster, which is theorized to have caused the unusual shapes we see today. For more information, check out the original article linked below.High resolution VLA 12 GHz image of the Toothbrush showing the complex, often filamentary structures. [Rajpurohit et al. 2018]CitationK. Rajpurohit et al 2018 ApJ 852 65. doi:10.3847/1538-4357/aa9f13

  3. The VLITE Post-Processing Pipeline

    NASA Astrophysics Data System (ADS)

    Richards, Emily E.; Clarke, Tracy; Peters, Wendy; Polisensky, Emil; Kassim, Namir E.

    2018-01-01

    A post-processing pipeline to adaptively extract and catalog point sources is being developed to enhance the scientific value and accessibility of data products generated by the VLA Low-band Ionosphere and Transient Experiment (VLITE; nrao.edu/>) on the Karl G. Jansky Very Large Array (VLA). In contrast to other radio sky surveys, the commensal observing mode of VLITE results in varying depths, sensitivities, and spatial resolutions across the sky based on the configuration of the VLA, location on the sky, and time on source specified by the primary observer for their independent science objectives. Therefore, previously developed tools and methods for generating source catalogs and survey statistics are not always appropriate for VLITE's diverse and growing set of data. A raw catalog of point sources extracted from every VLITE image will be created from source fit parameters stored in a queryable database. Point sources will be measured using the Python Blob Detector and Source Finder software (PyBDSF; Mohan & Rafferty 2015). Sources in the raw catalog will be associated with previous VLITE detections in a resolution- and sensitivity-dependent manner, and cross-matched to other radio sky surveys to aid in the detection of transient and variable sources. Final data products will include separate, tiered point source catalogs grouped by sensitivity limit and spatial resolution.

  4. Chandra and VLA Observations of Supermassive Black Hole Outbursts in M87

    NASA Astrophysics Data System (ADS)

    Forman, William; Jones, C.; Churazov, Eugene

    2013-07-01

    We discuss the effects of supermassive black hole (SMBH) outbursts on the hot atmospheres surrounding the central massive galaxies in groups and clusters, as observed with X-ray and radio observations. We focus on a detailed study of the supermassive black hole in M87 at the center of the Virgo cluster using Chandra and VLA observations. We summarize the outburst history and describe the clearly observed energy input from buoyant bubbles of relativistic plasma produced by the central SMBH, uplifted filaments of X-ray emitting gas, and the Mach 1.2 shock together balance the energy lost as gas radiatively cools.

  5. A critical role for both CD40 and VLA5 in angiotensin II-mediated thrombosis and inflammation.

    PubMed

    Senchenkova, Elena Y; Russell, Janice; Vital, Shantel A; Yildirim, Alper; Orr, A Wayne; Granger, D Neil; Gavins, Felicity N E

    2018-06-01

    Angiotensin II (Ang-II)-induced hypertension is associated with accelerated thrombus formation in arterioles and leukocyte recruitment in venules. The mechanisms that underlie the prothrombotic and proinflammatory responses to chronic Ang-II administration remain poorly understood. We evaluated the role of CD40/CD40 ligand (CD40L) signaling in Ang-II-mediated microvascular responses and assessed whether and how soluble CD40L (sCD40L) contributes to this response. Intravital video microscopy was performed to analyze leukocyte recruitment and dihydrorhodamine-123 oxidation in postcapillary venules. Thrombus formation in cremaster muscle arterioles was induced by using the light/dye endothelial cell injury model. Wild-type (WT), CD40 -/- , and CD40L -/- mice received Ang-II for 14 d via osmotic minipumps. Some mice were treated with either recombinant sCD40L or the VLA5 (very late antigen 5; α5β1) antagonist, ATN-161. Our results demonstrate that CD40 -/- , CD40L -/- , and WT mice that were treated with ATN-161 were protected against the thrombotic and inflammatory effects of Ang-II infusion. Infusion of sCD40L into CD40 -/- or CD40L -/- mice restored the prothrombotic effect of Ang-II infusion. Mice that were treated with ATN-161 and infused with sCD40L were protected against accelerated thrombosis. Collectively, these novel findings suggest that the mechanisms that underlie Ang-II-dependent thrombotic and inflammatory responses link to the signaling of CD40L via both CD40 and VLA5.-Senchenkova, E. Y., Russell, J., Vital, S. A., Yildirim, A., Orr, A. W., Granger, D. N., Gavins, F. N. E. A critical role for both CD40 and VLA5 in angiotensin II-mediated thrombosis and inflammation.

  6. 47 CFR 25.136 - Licensing provisions for user transceivers in the 1.6/2.4 GHz, 1.5/1.6 GHz, and 2 GHz Mobile...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    .../2.4 GHz Mobile-Satellite Service or 2 GHz Mobile-Satellite Service may not be operated on civil... rules and regulations in this Part and the applicable engineering standards. Prior to engaging in such...

  7. Statistics of the MASIV 5 GHZ VLA Scintillation Survey

    DTIC Science & Technology

    2007-10-01

    76, Epping, NSW, Australia, E-mail: david.jauncey@csiro.au James Lovell : School of Mathematics & Physics, University of Tasmania, GPO Box 252...Technology, Pasadena CA 91125, E-mail: jpm@astro.caltech.edu Hayley Bignall: Joint Institute for VLBI in Europe, Postbus 2, 7900 AA Dwingeloo, The...369, 449 [7] Lovell , J. E. J., et al., First Results from MASIV: The Microarcsecond Scintillation- induced Variability Survey, 2003, AJ, 126, 1699

  8. Evaluation of (68)Ga- and (177)Lu-DOTA-PEG4-LLP2A for VLA-4-Targeted PET Imaging and Treatment of Metastatic Melanoma.

    PubMed

    Beaino, Wissam; Nedrow, Jessie R; Anderson, Carolyn J

    2015-06-01

    Malignant melanoma is a highly aggressive cancer, and the incidence of this disease is increasing worldwide at an alarming rate. Despite advances in the treatment of melanoma, patients with metastatic disease still have a poor prognosis and low survival rate. New strategies, including targeted radiotherapy, would provide options for patients who become resistant to therapies such as BRAF inhibitors. Very late antigen-4 (VLA-4) is expressed on melanoma tumor cells in higher levels in more aggressive and metastatic disease and may provide an ideal target for drug delivery and targeted radiotherapy. In this study, we evaluated (177)Lu- and (68)Ga-labeled DOTA-PEG4-LLP2A as a VLA-4-targeted radiotherapeutic with a companion PET agent for diagnosis and monitoring metastatic melanoma treatment. DOTA-PEG4-LLP2A was synthesized by solid-phase synthesis. The affinity of (177)Lu- and (68)Ga-labeled DOTA-PEG4-LLP2A to VLA-4 was determined in B16F10 melanoma cells by saturation binding and competitive binding assays, respectively. Biodistribution of the LLP2A conjugates was determined in C57BL/6 mice bearing B16F10 subcutaneous tumors, while PET/CT imaging was performed in subcutaneous and metastatic models. (177)Lu-DOTA-PEG4-LLP2A showed high affinity to VLA-4 with a Kd of 4.1 ± 1.5 nM and demonstrated significant accumulation in the B16F10 melanoma tumor after 4 h (31.5 ± 7.8%ID/g). The tumor/blood ratio of (177)Lu-DOTA-PEG4-LLP2A was highest at 24 h (185 ± 26). PET imaging of metastatic melanoma with (68)Ga-DOTA-PEG4-LLP2A showed high uptake in sites of metastases and correlated with bioluminescence imaging of the tumors. These data demonstrate that (177)Lu-DOTA-PEG4-LLP2A has potential as a targeted therapeutic for treating melanoma as well as other VLA-4-expressing tumors. In addition, (68)Ga-DOTA-PEG4-LLP2A is a readily translatable companion PET tracer for imaging of metastatic melanoma.

  9. VLA Observation of Seyfert Galaxy MRK 6

    NASA Astrophysics Data System (ADS)

    Xu, C.; Baum, S. A.; O'Dea, C.; Colbert, E. J. M.

    1997-12-01

    We have obtained deep radio observation of the Seyfert 1.5 galaxy Mrk6 with all VLA configurations at 6 and 20 cm. We confirm the existence of two pairs of diffuse low surface brightness radio lobes at different scales and orientations. The larger pair of lobes extend ( ~ 40" or 20 kpc) ~ 30(deg) NW-SE, and is evidence of starburst-driven superwind as suggested in Baum et. al (1993). The outer lobes are roughly perpendicular to a set of inner lobes which extend ( ~ 4" or 2 kpc) E-W and are in turn perpendicular to the inner jets imaged by Kukula et. al (1996). Both pairs of lobes appear to have shell-like structures, as implied by the observed anti-symmetric emission morphology which might be due to limb brightening as a result of increasing optical depth at the line of sight. The width of each structure is comparable to the length of the next smaller structure suggesting a "self-similar" (and possibly dynamical) relationship between these structures. These nested "bubble-like" structures with different orientations pose a challenge to the current paradigm of energy transport in Seyfert galaxies.

  10. Radio Emission from the Exoplanetary System ɛ Eridani

    NASA Astrophysics Data System (ADS)

    Bastian, T. S.; Villadsen, J.; Maps, A.; Hallinan, G.; Beasley, A. J.

    2018-04-01

    As part of a wider search for radio emission from nearby systems known or suspected to contain extrasolar planets, ɛ Eridani was observed by the Jansky Very Large Array (VLA) in the 2–4 GHz and 4–8 GHz frequency bands. In addition, as part of a separate survey of thermal emission from solar-like stars, ɛ Eri was observed in the 8–12 GHz and the 12–18 GHz bands of the VLA. Quasi-steady continuum radio emission from ɛ Eri was detected in the three high-frequency bands at levels ranging from 67 to 83 μJy. No significant variability is seen in the quasi-steady emission. The emission in the 2–4 GHz emission, however, is shown to be the result of a circularly polarized (up to 50%) radio pulse or flare of a few minutes in duration that occurred at the beginning of the observation. We consider the astrometric position of the radio source in each frequency band relative to the expected position of the K2V star and the purported planet. The quasi-steady radio emission at frequencies ≥8 GHz is consistent with a stellar origin. The quality of the 4–8 GHz astrometry provides no meaningful constraint on the origin of the emission. The location of the 2–4 GHz radio pulse is >2.5σ from the star; however, based on the ephemeris of Benedict et al., it is not consistent with the expected location of the planet either. If the radio pulse has a planetary origin, then either the planetary ephemeris is incorrect or the emission originates from another planet.

  11. European VLBI network observations of fourteen GHz-peaked-spectrum radio sources at 5 GHz

    NASA Astrophysics Data System (ADS)

    Xiang, L.; Reynolds, C.; Strom, R. G.; Dallacasa, D.

    2006-08-01

    We present the results of EVN polarization observations of fourteen GHz-Peaked-Spectrum (GPS) radio sources at 5 GHz. These sources were selected from bright GPS source samples and we aimed at finding Compact Symmetric Objects (CSOs). We have obtained full polarization 5 GHz VLBI observations of 14 sources providing information on their source structure and spectral indices. The results show that two core-jet sources 1433-040 and DA193, out of 14 GPS sources, exhibit integrated fractional polarizations of 3.6% and 1.0% respectively. The other 12 sources have no clear detection of pc-scale polarization. The results confirm that the GPS sources generally have very low polarization at 5 GHz. The sources 1133+432, 1824+271 and 2121-014 are confirmed as CSOs. Three new CSOs 0914+114, 1518+046 and 2322-040 (tentative) have been classified on the basis of 5 GHz images and spectral indices. The sources 1333+589, 1751+278 and 2323+790 can be classified either as compact doubles, and then they are likely CSO candidates or core-jet sources; further observations are needed for an appropriate classification; 0554-026, 1433-040 and 1509+054 are core-jet sources. In addition, we estimate that a component in the jet of quasar DA193 has superluminal motion of 3.3±0.6 h-1 c in 5.5 years.

  12. VizieR Online Data Catalog: Star formation in active and normal galaxies (Tsai+, 2015)

    NASA Astrophysics Data System (ADS)

    Tsai, M.; Hwang, C.-Y.

    2015-11-01

    We selected 104 active galaxies from the lists of Melendez et al. (2010MNRAS.406..493M), Condon et al. 1991 (cat. J/ApJ/378/65), and Ho & Ulvestad 2001 (cat. J/ApJS/133/77). Most of the sources are identified as Active Galactic Nuclei (AGNs), and a few of them are classified as Luminous InfraRed Galaxies (LIRGs). We obtained 3.6 and 8μm infrared images of these galaxies from the Spitzer Archive (http://sha.ipac.caltech.edu/applications/Spitzer/SHA/) and 8GHz images from the VLA archive (http://archive.nrao.edu/archive/archiveimage.html). We also selected a nearby AGN sub-sample containing 21 radio-selected AGNs for further spatial analysis. We selected 25 nearby AGNs exhibiting no detected radio emission in order to compare with the results of the radio-selected sources. For comparison, we also selected normal galaxies with distances less than 15Mpc from the catalog of Tully 1994 (see cat. VII/145). We only selected the galaxies that have Spitzer archive data and are not identified as AGNs in either the Veron-Cetty & Veron 2006 (see cat. VII/258) AGN catalog or in the NED database (http://ned.ipac.caltech.edu/). Our results for the radio-selected and the non-radio-selected active galaxies are listed in Table1, and those for the normal galaxies are listed in Table2. (2 data files).

  13. a Look at Nitrile Chemistry in SGR B2(N) Using the Combined Power of the GBT and the VLA

    NASA Astrophysics Data System (ADS)

    Steber, Amanda; Zaleski, Daniel P.; Seifert, Nathan A.; Neill, Justin; Muckle, Matt; Pate, Brooks; Corby, Joanna F.; Remijan, Anthony

    2014-06-01

    Nitriles form the most prolific family of molecules known in the ISM, and laboratory work shows that radical-driven chemistry can account for the formation of a diverse set of nitrile and imine molecules. Broadband reaction screening of nitrile chemistry in a pulsed discharge nozzle coupled to a chirped-pulse Fourier transform rotational spectrometer has enabled detections of several new interstellar species including E- and Z-ethanimine and E-cyanomethanimine. The detections were made by direct comparisons of laboratory broadband rotational spectra with the Robert C. Byrd Green Bank Telescope (GBT) PRebiotic Interstellar MOlecule Survery (PRIMOS) survey towards Sgr B2(N), the most chemically complex interstellar region known. In order to probe nitrile chemistry in Sgr B2, we targeted low energy rotational transitions in the 18-21 GHz range of several nitriles with the Karl G. Jansky Very Large Array (VLA) at ˜1 arcsecond resolution. The data indicate that most nitriles and nitrile derivatives are co-spatial with shell shaped continuum features thought to be expanding ionization fronts. The CH2CN radical and imine species in particular are NOT associated with the hot core known as the "Large Molecule Heimat", where most large organic molecules are thought to reside. This result suggests radical driven nitrile chemistry may be promoted by near-UV radiation in moderate density regions of molecular clouds, and the data will be useful for evaluating possible formation mechanisms. R.A. Loomis et al. Ap. J. L., 765, (L9), 2013. D.P. Zaleski et al. Ap. J. L., 765, (L10), 2013.

  14. Frontiers of Radio Astronomy in the 2020s: The Next Generation Very Large Array

    NASA Astrophysics Data System (ADS)

    Murphy, Eric Joseph; ngVLA Project Office, ngVLA Science and Technical Advisory Councils, ngVLA Science Working Groups

    2018-01-01

    This talk will describe the current community-driven science goals, design, and planning status of a future large centimeter radio array: the ‘Next Generation Very Large Array’ (ngVLA). The ngVLA is being developed to observe at wavelengths between ALMA at submm wavelengths, and the future SKA-1 at few centimeter and longer wavelengths, opening a new window on the Universe through ultra-sensitive imaging of thermal line and continuum emission down to milliarcsecond resolution, and unprecedented broad band continuum polarimetric imaging of non-thermal processes. The current design for the array includes 10x more effective collecting area and 10x higher spatial resolution than the current JVLA or ALMA, carefully optimized for operation in the frequency range 10GHz to 50GHz, while still delivering world-leading sensitivity over the entire 1.2GHz to 116 GHz spectrum.With this array, new frontiers in modern astronomy can be reached, including direct imaging and chemical analysis of planet formation in the terrestrial-zone of nearby stars, studies of dust-obscured star formation and the cosmic baryon cycle down to pc-scales in the local Universe, and detailed imaging of molecular gas and galaxy formation into the epoch of reionization. Novel techniques for exploring temporal phenomena on timescales from milliseconds to years will also be implemented. The ngVLA will be situated in the desert southwest of the United States, centered on the current JVLA infrastructure, with multiple antennas anticipated in states/regions adjacent to NM, and in northern Mexico.A recently formed Project Office is working closely with the U.S. and international research community to design the array, and plan its construction beginning mid next decade. Recent significant funding for design and development brought forward by the NSF will enable detailed science case development and technology prototyping/risk reduction before the next U.S astronomy Decadal Survey.

  15. Development of an Ultra-Wideband Receiver for the North America Array

    NASA Astrophysics Data System (ADS)

    Velazco, J. E.; Soriano, M.; Hoppe, D.; Russell, D.; D'Addario, L.; Long, E.; Bowen, J.; Samoska, L.; Lazio, J.

    2016-11-01

    The North America Array (NAA) is a concept for a radio astronomical interferometric array operating in the 1.2 GHz to 116 GHz frequency range. It has been designed to provide substantial improvements in sensitivity, angular resolution, and frequency coverage beyond the current Karl G. Jansky Very Large Array (VLA). It will have a continuous frequency coverage of 1.2 GHz to 50 GHz and 70 to 116 GHz, and a total aperture 10 times more sensitive than the VLA (and 25 times more sensitive than a 34-m-diameter antenna of the Deep Space Network [DSN]). One of the key goals for the NAA is to reduce the operating costs without sacrificing performance. We are designing an ultra-wideband receiver package designed to operate across the 8 to 48 GHz frequency range in contrast to the current VLA, which covers this frequency range with five receiver packages. Reducing the number of receiving systems required to cover the full frequency range would reduce operating costs. To minimize implementation, operational, and maintenance costs, we are developing a receiver that is compact, simple to assemble, and that consumes less power. The objective of this work is to develop a prototype integrated feed-receiver package with a sensitivity performance comparable to current narrower-band systems on radio telescopes and the DSN, but with a design that meets the requirement of low long-term operational costs. The ultra-wideband receiver package consists of a feedhorn, low-noise amplifier (LNA), and downconverters to analog intermediate frequencies. Both the feedhorn and the LNA are cryogenically cooled. Key features of this design are a quad-ridge feedhorn with dielectric loading and a cryogenic receiver with a noise temperature of no more than 30°K at the low end of the band. In this article, we report on the status of this receiver package development, including the feed design and LNA implementation. We present simulation studies of the feed horn carried out to optimize illumination

  16. Kinematics of the SgrB2(N-LMH) Molecular Core

    NASA Technical Reports Server (NTRS)

    Hollis, J. M.; Pedelty, J. A.; Boboltz, D. A.; Liu, S.-Y.; Snyder, L. E.; Palmer, Patrick; Lovas, F. J.; Jewell, P. R.

    2003-01-01

    Ethyl cyanide (CH3CH2CN) emission and absorption have been imaged with the Very Large Array (VLA) toward SgrB2(N-LMH) by means of the 5(sub 15)-4(sub 14) rotational transition at 43.5 GHz (lambda approx. 7 mm). The 1.5" x 1.4" VLA beam shows two principal sources of ethyl cyanide emission: an unresolved source approx. 5" north of the LMH that is kinematically consistent with simple expansion, contraction, or small-scale turbulence, and the resolved LMH core source itself that shows kinematics indicating an edge-on rotating disk that extends 23" (approx. 0.1 pc) in the approximate east-west direction. A search for the 7(sub 07)-6(sub 06) rotational transition of the amino acid glycine (NH2CH2COOH) at 43.7 GHz toward SgrB2(N-LMH) gave negative results.

  17. Synchrotron Spectral Curvature from 22 MHZ to 23 GHZ

    NASA Technical Reports Server (NTRS)

    Kogut, Alan J.

    2012-01-01

    We combine surveys of the radio sky at frequencies 22 MHz to 1.4 GHz with data from the ARCADE-2 instrument at frequencies 3 GHz to 10 GHz to characterize the frequency spectrum of diffuse synchrotron emission in the Galaxy. The radio spectrum steepens with frequency from 22 MHz to 10 GHz. The projected spectral index at 23 GHz derived from the low-frequency data agrees well with independent measurements using only data at frequencies 23 GHz and above. Comparing the spectral index at 23 GHz to the value from previously published analyses allows extension of the model to higher frequencies. The combined data are consistent with a power-law index beta = -2.64 +/-= 0.03 at 0.31 GHz, steepening by an amount of Delta-beta = 0.07 every octave in frequency. Comparison of the radio data to models including the cosmic-ray energy spectrum suggests that any break in the synchrotron spectrum must occur at frequencies above 23 GHz.

  18. The Future RFI Environment Above 30 GHz

    NASA Astrophysics Data System (ADS)

    Clegg, Andrew W.

    1995-12-01

    Encompassing 30 - 300 GHz, the millimeter wave (mmW) band offers relief from spectrum crowding at lower frequencies, large available bandwidth, favorable propagation characteristics for certain applications, and relatively high directivity with small antennas. The FCC has recently proposed regulatory changes to foster commercial development of the mmW band. Impending actions include: Designating the 46.7-46.9 GHz and 76-77 GHz bands for unlicensed vehicular radar systems. Potentially tens of millions of vehicles will be equipped with radars to provide ``intelligent cruise control" capability and driver blind-spot warnings. Unwanted emissions from vehicular radar systems may produce harmful interference to passive systems operating in protected bands. Opening the 59-64 GHz band, in which propagation is limited to short distances due to high atmospheric attenuation, to general unlicensed devices. A likely application for this band is wireless local area computer networks. The neighboring bands of 58.2 - 59 and 64 - 65 GHz are allocated to the passive services. Changes still under consideration include: Opening the 116 - 117 GHz band, co-located with an existing passive allocation, for licensed (116 - 116.5 GHz) and general unlicensed (116.5 - 117 GHz) devices. The opening (for licensed and unlicensed services) of nearly 5 GHz of additional spectrum space which neighbors passive allocations and poses a potential interference problem from out-of-band emissions. The status of the FCC's actions concerning the mmW band will be updated. An attempt will be made to predict the RFI environment in the mmW band assuming the likely applications for each of the reallocated bands. Particular emphasis will be placed on the impact of the FCC's actions on current and planned remote sensing and radio astronomy operations.

  19. 77 FR 45503 - 4.9 GHz Band

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-01

    ... Docket No. 06-150; FCC 12-61] 4.9 GHz Band AGENCY: Federal Communications Commission. ACTION: Final rule... that exempted 4940-4990 MHz (4.9 GHz) band applicants from certified frequency coordination. Next, the Commission corrects the bandwidth of Channel 14 in the 4.9 GHz band plan from five megahertz to one megahertz...

  20. ngVLA Key Science Goal 5: Understanding the Formation and Evolution of Stellar and Supermassive Black Holes in the Era of Multi-Messenger Astronomy

    NASA Astrophysics Data System (ADS)

    Lazio, T. Joseph W.; Maccarone, Thomas J.; Chomiuk, Laura; ngVLA Science Working Group 2, ngVLA Science Working Group 4

    2018-01-01

    The ngVLA will be a powerful telescope for finding and studying black holes, surveying everything from the remnants of massive stars to the supermassive black holes that lurk in the centers of galaxies. High-resolution imaging abilities will allow the separation of low-luminosity black holes in the local Universe from background sources, thereby providing critical constraints on the formation and growth of black holes of all sizes. Its combination of sensitivity and angular resolution will provide new constraints on the physics of black hole accretion and jet formation. Combined with facilities across the spectrum and gravitational wave observatories, the ngVLA will provide crucial constraints on the interaction of supermassive black holes with their environments, with implications for the evolution of galaxies and the emission of gravitational waves from in-spiraling supermassive black holes. The ngVLA will identify the radio counterparts to transient sources discovered by gravitational wave, neutrino, and optical observatories, and its high-resolution, fast-mapping capabilities will make it the preferred instrument to pinpoint electromagnetic counterparts to events such as supermassive black hole mergers.Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

  1. 183-GHz Radiometer Handbook - November 2006

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MP Cadeddu

    2006-11-30

    The G-Band Vapor Radiometer (GVR) provides time-series measurements of brightness temperatures from four double sideband channels centered at ± 1, ± 3, ± 7, and ± 14 GHz around the 183.31-GHz water vapor line. Atmospheric emission in this spectral region is primarily due to water vapor, with some influence from liquid water. The 183.31 ± 14-GHz channel is particularly sensitive to the presence of liquid water. The sensitivity to water vapor of the 183.31-GHz line is approximately 30 times higher than at the frequencies of the two-channel microwave radiometer (MWR) for a precipitable water vapor (PWV) amount of less thanmore » 2.5 mm. Measurements from this nstrument are therefore especially useful during low-humidity conditions (PWV < 5 mm).« less

  2. A 94/183 GHz multichannel radiometer for Convair flights

    NASA Technical Reports Server (NTRS)

    Gagliano, J. A.; Stratigos, J. A.; Forsythe, R. E.; Schuchardt, J. M.

    1979-01-01

    A multichannel 94/183 GHz radiometer was designed, built, and installed on the NASA Convair 990 research aircraft to take data for hurricane penetration flights, SEASAT-A underflights for measuring rain and water vapor, and Nimbus-G underflights for new sea ice signatures and sea surface temperature data (94 GHz only). The radiometer utilized IF frequencies of 1, 5, and 8.75 GHz about the peak of the atmospheric water vapor absorption line, centered at 183.3 GHz, to gather data needed to determine the shape of the water molecule line. Another portion of the radiometer operated at 94 GHz and obtained data on the sea brightness temperature, sea ice signatures, and on areas of rain near the ocean surface. The radiometer used a multiple lens antenna/temperature calibration technique using 3 lenses and corrugated feed horns at 94 GHz and 183 GHz. Alignment of the feed beams at 94 GHz and 183 GHz was accomplished using a 45 deg oriented reflecting surface which permitted simultaneous viewing of the feeds on alternate cycles of the chopping intervals.

  3. Cryogenic 160-GHz MMIC Heterodyne Receiver Module

    NASA Technical Reports Server (NTRS)

    Samoska, Lorene A.; Soria, Mary M.; Owen, Heather R.; Dawson, Douglas E.; Kangaslahti, Pekka P.; Gaier, Todd C.; Voll, Patricia; Lau, Judy; Sieth, Matt; Church, Sarah

    2011-01-01

    A cryogenic 160-GHz MMIC heterodyne receiver module has demonstrated a system noise temperature of 100 K or less at 166 GHz. This module builds upon work previously described in Development of a 150-GHz MMIC Module Prototype for Large-Scale CMB Radiation (NPO-47664), NASA Tech Briefs, Vol. 35, No. 8 (August 2011), p. 27. In the original module, the local oscillator signal was saturating the MMIC low-noise amplifiers (LNAs) with power. In order to suppress the local oscillator signal from reaching the MMIC LNAs, the W-band (75 110 GHz) signal had to be filtered out before reaching 140 170 GHz. A bandpass filter was developed to cover 120 170 GHz, using microstrip parallel-coupled lines to achieve the desired filter bandwidth, and ensure that the unwanted W-band local oscillator signal would be sufficiently suppressed. With the new bandpass filter, the entire receiver can work over the 140 180-GHz band, with a minimum system noise temperature of 460 K at 166 GHz. The module was tested cryogenically at 20 K ambient temperature, and it was found that the receiver had a noise temperature of 100 K over an 8-GHz bandwidth. The receiver module now includes a microstrip bandpass filter, which was designed to have a 3-dB bandwidth of approximately 120-170 GHz. The filter was fabricated on a 3-mil-thick alumina substrate. The filter design was based on a W-band filter design made at JPL and used in the QUIET (Q/U Imaging ExperimenT) radiometer modules. The W-band filter was scaled for a new center frequency of 150 GHz, and the microstrip segments were changed accordingly. Also, to decrease the bandwidth of the resulting scaled design, the center gaps between the microstrip lines were increased (by four micrometers in length) compared to the gaps near the edges. The use of the 150-GHz bandpass filter has enabled the receiver module to function well at room temperature. The system noise temperature was measured to be less than 600 K (at room temperature) from 154 to 168 GHz

  4. A search for radio emission from Galactic supersoft X-ray sources

    NASA Astrophysics Data System (ADS)

    Ogley, R. N.; Chaty, S.; Crocker, M.; Eyres, S. P. S.; Kenworthy, M. A.; Richards, A. M. S.; Rodríguez, L. F.; Stirling, A. M.

    2002-03-01

    We have made a deep search for radio emission from all the northern hemisphere supersoft X-ray sources using the Very Large Array (VLA) and multi-element radio-linked interferometer network (MERLIN) telescopes, at 5 and 8.4GHz. Three previously undetected sources, T Pyx, V1974 Cygni and RX J0019.8+2156, were imaged in quiescence using the VLA in order to search for any persistent emission. No radio emission was detected in any of the VLA fields down to a typical 1σ rms noise of 20μJybeam-1, however, 17 new point sources were detected in the fields with 5-GHz fluxes between 100 and 1500μJy, giving an average 100-μJy source density of ~200deg-2, comparable to what was found in the MERLIN Hubble Deep Field survey. The persistent source AG Draconis was observed by MERLIN to provide a confirmation of previous VLA observations and to investigate the source at a higher resolution. The core is resolved at the milliarcsec scale into two components that have a combined flux of ~1mJy. It is possible that we are detecting nebulosity, which is becoming resolved out by the higher MERLIN resolution. We have investigated possible causes of radio emission from a wind environment, both directly from the secondary star, and also consequently, of the high X-ray luminosity from the white dwarf. There is an order of magnitude discrepancy between observed and modelled values that can be explained by the uncertainty in fundamental quantities within these systems.

  5. 160-190 GHz Monolithic Low Noise Amplifiers

    NASA Technical Reports Server (NTRS)

    Kok, Y. L.; Wang, H.; Huang, T. W.; Lai, R.; Chen, Y. C.; Sholley, M.; Block, T.; Streit, D. C.; Liu, P. H.; Allen, B. R.; hide

    1998-01-01

    This paper presents the results of two 160-190 GHz monolithic low noise amplifiers (LNAs) fabricated with 0.07-microns pseudomorphic (PM) InAlAs/InGaAs/InP HEMT technology using a reactive ion etch (RIE) via hole process. A peak small signal gain of 9 dB was measured at 188 GHz for the first LNA with a 3-dB bandwidth from 164 to 192 GHz while the second LNA has achieved over 6-dB gain from 142 to 180 GHz. The same design (second LNA) was also fabricated with 0.08-micron gate and a wet etch process, showing a small signal gain of 6 dB with noise figure 6 dB. All the measurement results were obtained via on-wafer probing. The LNA noise measurement at 170 GHz is also the first attempt at this frequency.

  6. Rectenna Technology Program: Ultra light 2.45 GHz rectenna 20 GHz rectenna

    NASA Technical Reports Server (NTRS)

    Brown, William C.

    1987-01-01

    The program had two general objectives. The first objective was to develop the two plane rectenna format for space application at 2.45 GHz. The resultant foreplane was a thin-film, etched-circuit format fabricated from a laminate composed of 2 mil Kapton F sandwiched between sheets of 1 oz copper. The thin-film foreplane contains half wave dipoles, filter circuits, rectifying Schottky diode, and dc bussing lead. It weighs 160 grams per square meter. Efficiency and dc power output density were measured at 85% and 1 kw/sq m, respectively. Special testing techniques to measure temperature of circuit and diode without perturbing microwave operation using the fluoroptic thermometer were developed. A second objective was to investigate rectenna technology for use at 20 GHz and higher frequencies. Several fabrication formats including the thin-film scaled from 2.45 GHz, ceramic substrate and silk-screening, and monolithic were investigated, with the conclusion that the monolithic approach was the best. A preliminary design of the monolithic rectenna structure and the integrated Schottky diode were made.

  7. The GBT PRIMOS Project - A Broadband Spectral Line Survey of SgrB2N from 300 MHz to 46 GHz

    NASA Astrophysics Data System (ADS)

    Remijan, Anthony J.; Hollis, J. M.; Jewell, P. R.; Lovas, F.; Corby, J.

    2013-01-01

    Broadband, very sensitive, high spectral resolution spectral line surveys in recent years have made profound impacts into the understanding of interstellar reaction processes and in the identification of new molecular material in astronomical environments. Molecular line surveys are studies of the spectra of astronomical sources over a wide and usually continuous range of frequencies in order to determine the chemical composition (i.e., "molecular inventory"), physical properties (temperature, density), and kinematics of such regions. The National Radio Astronomy Observatory's (NRAO) 100-m Robert C. Byrd Green Bank Telescope (GBT) PRebiotic Interstellar MOlecule Survey (PRIMOS) Legacy Project started in Jan 2008 and concluded in July 2011. The PRIMOS project recorded a nearly frequency-continuous astronomical spectrum from 300 MHz to 46 GHz towards the Sgr B2(N) molecular cloud, with the pointing position centered on the Large Molecule Heimat (LMH). The PRIMOS data have resulted in numerous new detections and discoveries in astrochemistry. The data have also been widely used to demonstrate advances in molecular astrophysics in a variety of venues and have been instrumental in training the next generation of astronomers and chemists. The GBT is the only telescope in the world capable of making these groundbreaking discoveries. This presentation will highlight the recent successes from the survey and how to access these publically-available observations.

  8. Microwave ablation at 10.0 GHz achieves comparable ablation zones to 1.9 GHz in ex vivo bovine liver.

    PubMed

    Luyen, Hung; Gao, Fuqiang; Hagness, Susan C; Behdad, Nader

    2014-06-01

    We demonstrate the feasibility of using high-frequency microwaves for tissue ablation by comparing the performance of a 10 GHz microwave ablation system with that of a 1.9 GHz system. Two sets of floating sleeve dipole antennas operating at these frequencies were designed and fabricated for use in ex vivo experiments with bovine livers. Combined electromagnetic and transient thermal simulations were conducted to analyze the performance of these antennas. Subsequently, a total of 16 ablation experiments (eight at 1.9 GHz and eight at 10.0 GHz) were conducted at a power level of 42 W for either 5 or 10 min. In all cases, the 1.9 and 10 GHz experiments resulted in comparable ablation zone dimensions. Temperature monitoring probes revealed faster heating rates in the immediate vicinity of the 10.0 GHz antenna compared to the 1.9 GHz antenna, along with a slightly delayed onset of heating farther from the 10 GHz antenna, suggesting that heat conduction plays a greater role at higher microwave frequencies in achieving a comparably sized ablation zone. The results obtained from these experiments agree very well with the combined electromagnetic/thermal simulation results. These simulations and experiments show that using lower frequency microwaves does not offer any significant advantages, in terms of the achievable ablation zones, over using higher frequency microwaves. Indeed, it is demonstrated that high-frequency microwave antennas may be used to create reasonably large ablation zones. Higher frequencies offer the advantage of smaller antenna size, which is expected to lead to less invasive interstitial devices and may possibly lead to the development of more compact multielement arrays with heating properties not available from single-element antennas.

  9. Continuum sources from the THOR survey between 1 and 2 GHz

    NASA Astrophysics Data System (ADS)

    Bihr, S.; Johnston, K. G.; Beuther, H.; Anderson, L. D.; Ott, J.; Rugel, M.; Bigiel, F.; Brunthaler, A.; Glover, S. C. O.; Henning, T.; Heyer, M. H.; Klessen, R. S.; Linz, H.; Longmore, S. N.; McClure-Griffiths, N. M.; Menten, K. M.; Plume, R.; Schierhuber, T.; Shanahan, R.; Stil, J. M.; Urquhart, J. S.; Walsh, A. J.

    2016-04-01

    We carried out a large program with the Karl G. Jansky Very Large Array (VLA): "THOR: The H I, OH, Recombination line survey of the Milky Way". We observed a significant portion (~100 deg2) of the Galactic plane in the first quadrant of the Milky Way in the 21 cm H I line, 4 OH transitions, 19 radio recombination lines, and continuum from 1 to 2 GHz. In this paper we present a catalog of the continuum sources in the first half of the survey (l = 14.0-37.9° and l = 47.1-51.2°, | b | ≤ 1.1°) at a spatial resolution of 10-25″, depending on the frequency and sky position with a spatially varying noise level of ~0.3-1 mJy beam-1. The catalog contains ~4400 sources. Around 1200 of these are spatially resolved, and ~1000 are possible artifacts, given their low signal-to-noise ratios. Since the spatial distribution of the unresolved objects is evenly distributed and not confined to the Galactic plane, most of them are extragalactic. Thanks to the broad bandwidth of the observations from 1 to 2 GHz, we are able to determine a reliable spectral index for ~1800 sources. The spectral index distribution reveals a double-peaked profile with maxima at spectral indices of α ≈ -1 and α ≈ 0, corresponding to steep declining and flat spectra, respectively. This allows us to distinguish between thermal and non-thermal emission, which can be used to determine the nature of each source. We examine the spectral index of ~300 known H II regions, for which we find thermal emission with spectral indices around α ≈ 0. In contrast, supernova remnants (SNR) show non-thermal emission with α ≈ -0.5 and extragalactic objects generally have a steeper spectral index of α ≈ -1. Using the spectral index information of the THOR survey, we investigate potential SNR candidates. We classify the radiation of four SNR candidates as non-thermal, and for the first time, we provide strong evidence for the SNR origin of these candidates. Full Table C.1 is only available at the CDS via

  10. VLA observations of the supernova remnant Puppus A at 327 and 1515 MHz

    NASA Technical Reports Server (NTRS)

    Dubner, G. M.; Braun, R.; Winkler, P. F.; Goss, W. M.

    1991-01-01

    Very Large Array radio images of Puppis A at 327 and 1515 MHz are presented. The observations were performed with the VLA in the C/D and B/C configurations, respectively. The angular resolution is about 77 arcsec x 43 arcsec. The observed radio shell shows signs of interaction between the expanding shock front and the inhomogeneous surrounding medium. An excellent correlation is found between radio and X-ray emission, mainly toward the NE border of the remnant. There is little correspondence between the optical and radio images, suggesting a different origin for the emission. A region of steeper radio spectral index is associated with the highly decelerated eastern periphery.

  11. Imaging Ionospheric/Plasmaspheric Disturbances Triggered by the 2017 Total Solar Eclipse with the Very Large Array

    NASA Astrophysics Data System (ADS)

    Helmboldt, Joseph; Schinzel, Frank K.; VLA Low-band Ionosphere and Transient Experiment (VLITE)

    2018-01-01

    Along with many Americans and several other observatories, the Karl G. Jansky Very Large Array (VLA) was observing the Sun before, during, and after the total solar eclipse on 21 August 2017. However, the VLA also simultaneously conducted a unique set of observations aimed at characterizing the effects of the eclipse on Earth’s ionosphere/plasmasphere. While most of the VLA antennas were pointed at the Sun, 12 were looking at the bright radio galaxy M87. These 12 antennas are part of the VLA Low-band Ionosphere and Transient Experiment (VLITE; http://vlite.nrao.edu), a dedicated backend that continuously captures, correlates, and analyzes data in the 320-384 MHz frequency range. In addition to traditional synthesis imaging, VLITE also characterizes fluctuations in ionospheric/plasmaspheric density via measured variations in visibility phases. When observing a bright cosmic source, this can be done with unmatched precision, the equivalent of ~1-10 ppm. To look for ionospheric/plasmaspheric disturbances tied to the eclipse, a specialized spectral decomposition was applied to the M87 VLITE data. This method exploits the fact that disturbed flux tubes within the plasmasphere appear as magnetic eastward-directed waves to the VLA because the plasmasphere is dynamically dominated by co-rotation. The phase speeds of these waves are proportional to distance, allowing for a reconstruction of the electron density gradient as a function of (slant) range and time. The time ranges spanned by the large-scale ionospheric depletion seen within concurrent Global Positioning System (GPS) data as a function of longitude were mapped to the flux tubes imaged with this method using the M87 observations. With the exception of some solar flare-induced fluctuations, the observed disturbances appear confined to this part of the range/time image. This strongly implies the disturbances resulted from the rapid depletion and slower recovery of the ionosphere/plasmasphere system brought on by

  12. 47 CFR 101.525 - 24 GHz system operations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false 24 GHz system operations. 101.525 Section 101.525 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES 24 GHz Service and Digital Electronic Message Service § 101.525 24 GHz system...

  13. VERY LARGE ARRAY OBSERVATIONS OF DG TAU'S RADIO JET: A HIGHLY COLLIMATED THERMAL OUTFLOW

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lynch, C.; Mutel, R. L.; Gayley, K. G.

    2013-03-20

    The active young protostar DG Tau has an extended jet that has been well studied at radio, optical, and X-ray wavelengths. We report sensitive new Very Large Array (VLA) full-polarization observations of the core and jet between 5 GHz and 8 GHz. Our high angular resolution observation at 8 GHz clearly shows an unpolarized inner jet with a size of 42 AU (0.''35) extending along a position angle similar to the optical-X ray outer jet. Using our nearly coeval 2012 VLA observations, we find a spectral index {alpha} = +0.46 {+-} 0.05, which combined with the lack of polarization ismore » consistent with bremsstrahlung (free-free) emission, with no evidence for a non-thermal coronal component. By identifying the end of the radio jet as the optical depth unity surface, and calculating the resulting emission measure, we find that our radio results are in agreement with previous optical line studies of electron density and consequent mass-loss rate. We also detect a weak radio knot at 5 GHz located 7'' from the base of the jet, coincident with the inner radio knot detected by Rodriguez et al. in 2009 but at lower surface brightness. We interpret this as due to expansion of post-shock ionized gas in the three years between observations.« less

  14. The 30 GHz communications satellite low noise receiver

    NASA Technical Reports Server (NTRS)

    Steffek, L. J.; Smith, D. W.

    1983-01-01

    A Ka-band low noise front end in proof of concept (POC) model form for ultimate spaceborne communications receiver deployment was developed. The low noise receiver consists of a 27.5 to 30.0 GHz image enhanced mixer integrated with a 3.7 to 6.2 GHz FET low noise IF amplifier and driven by a self contained 23.8 GHz phase locked local oscillator source. The measured level of receiver performance over the 27.3 to 30.0 GHz RF/3.7 to 6.2 GHz IF band includes 5.5 to 6.5 dB (typ) SSB noise figure, 20.5 + or - 1.5 dB conversion gain and +23 dBm minimum third order two tone intermodulation output intercept point.

  15. Rain rate and modeled fade distributions at 20 GHz and 30 GHz derived from five years of network rain gauge measurements

    NASA Technical Reports Server (NTRS)

    Goldhirsh, Julius; Krichevsky, Vladimir; Gebo, Norman

    1992-01-01

    Five years of rain rate and modeled slant path attenuation distributions at 20 GHz and 30 GHz derived from a network of 10 tipping bucket rain gages was examined. The rain gage network is located within a grid 70 km north-south and 47 km east-west in the Mid-Atlantic coast of the United States in the vicinity of Wallops Island, Virginia. Distributions were derived from the variable integration time data and from one minute averages. It was demonstrated that for realistic fade margins, the variable integration time results are adequate to estimate slant path attenuations at frequencies above 20 GHz using models which require one minute averages. An accurate empirical formula was developed to convert the variable integration time rain rates to one minute averages. Fade distributions at 20 GHz and 30 GHz were derived employing Crane's Global model because it was demonstrated to exhibit excellent accuracy with measured COMSTAR fades at 28.56 GHz.

  16. Tunable All-Solid-State Local Oscillators to 1900 GHz

    NASA Technical Reports Server (NTRS)

    Ward, John; Chattopadhyay, Goutam; Maestrini, Alain; Schlecht, Erich; Gill, John; Javadi, Hamid; Pukala, David; Maiwald, Frank; Mehdi, Imran

    2004-01-01

    We present a status report of an ongoing effort to develop robust tunable all-solid-state sources up to 1900 GHz for the Heterodyne Instrument for the Far Infrared (HIFI) on the Herschel Space Observatory. GaAs based multi-chip power amplifier modules at W-band are used to drive cascaded chains of multipliers. We have demonstrated performance from chains comprised of four doublers up to 1600 GHz as well as from a x2x3x3 chain to 1900 GHz. Measured peak output power of 23 (micro)W at 1782 GHz and 2.6 (micro)W at 1900 GHz has been achieved when the multipliers are cooled to 120K. The 1900 GHz tripler was pumped with a four anode tripler that produces a peak of 4 mW at 630 GHz when cooled to 120 K. We believe that these sources can now be used to pump hot electron bolometer (HEB) heterodyne mixers.ter (HEB) heterodyne mixers.

  17. VLA+WSRT HI Imaging of Two "Almost Dark" Galaxies

    NASA Astrophysics Data System (ADS)

    Ball, Catie; Singer, Quinton; Cannon, John M.; Leisman, Luke; Haynes, Martha P.; Adams, Elizabeth A.; Bernal Neira, David; Giovanelli, Riccardo; Hallenbeck, Gregory L.; Janesh, William; Janowiecki, Steven; Jozsa, Gyula; Rhode, Katherine L.; Salzer, John Joseph

    2017-01-01

    We present sensitive HI imaging of the "Almost Dark" galaxies AGC229385 and AGC229101. Selected from the ALFALFA survey, "Almost Dark" galaxies have significant HI reservoirs but lack an obvious stellar counterpart in survey-depth ground-based optical imaging. Deeper ground- and space-based imaging reveals very low surface brightness optical counterparts in both systems. The resulting M_HI/L_B ratios are among the highest ever measured for individual galaxies. Here we combine VLA and WSRT imaging of these two systems, allowing us to preserve surface brightness sensitivity while working at high angular resolution. The resulting maps of HI mass surface density, velocity field, and velocity dispersion are compared to deep optical and ultraviolet imaging. In both systems the highest column density HI gas is clumpy and resolved into multiple components. In the case of AGC229385, the kinematics are inconsistent with a simple rotating disk and may be the result of either an infall episode or an interaction between two HI-rich disks.Support for this work was provided by NSF grant 1211683 to JMC at Macalester College.

  18. Two-Stage, 90-GHz, Low-Noise Amplifier

    NASA Technical Reports Server (NTRS)

    Samoska, Lorene A.; Gaier, Todd C.; Xenos, Stephanie; Soria, Mary M.; Kangaslahti, Pekka P.; Cleary, Kieran A.; Ferreira, Linda; Lai, Richard; Mei, Xiaobing

    2010-01-01

    A device has been developed for coherent detection of the polarization of the cosmic microwave background (CMB). A two-stage amplifier has been designed that covers 75-110 GHz. The device uses the emerging 35-nm InP HEMT technology recently developed at Northrop Grumman Corporation primarily for use at higher frequencies. The amplifier has more than 18 dB gain and less than 35 K noise figure across the band. These devices have noise less than 30 K at 100 GHz. The development started with design activities at JPL, as well as characterization of multichip modules using existing InP. Following processing, a test campaign was carried out using single-chip modules at 100 GHz. Successful development of the chips will lead to development of multichip modules, with simultaneous Q and U Stokes parameter detection. This MMIC (monolithic microwave integrated circuit) amplifier takes advantage of performance improvements intended for higher frequencies, but in this innovation are applied at 90 GHz. The large amount of available gain ultimately leads to lower possible noise performance at 90 GHz.

  19. A compiled catalog of rotation measures of radio point sources

    NASA Astrophysics Data System (ADS)

    Xu, Jun; Han, Jin-Lin

    2014-08-01

    We compiled a catalog of Faraday rotation measures (RMs) for 4553 extragalactic radio point sources published in literature. These RMs were derived from multi-frequency polarization observations. The RM data are compared to those in the NRAO VLA Sky Survey (NVSS) RM catalog. We reveal a systematic uncertainty of about 10.0 ± 1.5 rad m-2 in the NVSS RM catalog. The Galactic foreground RM is calculated through a weighted averaging method by using the compiled RM catalog together with the NVSS RM catalog, with careful consideration of uncertainties in the RM data. The data from the catalog and the interface for the Galactic foreground RM calculations are publicly available on the webpage: http://zmtt.bao.ac.cn/RM/.

  20. VizieR Online Data Catalog: Rotation measures of radio point sources (Xu+, 2014)

    NASA Astrophysics Data System (ADS)

    Xu, J.; Han, J.-L.

    2015-04-01

    We compiled a catalog of Faraday rotation measures (RMs) for 4553 extragalactic radio point sources published in literature. These RMs were derived from multi-frequency polarization observations. The RM data are compared to those in the NRAO VLA Sky Survey (NVSS) RM catalog. We reveal a systematic uncertainty of about 10.0+/-1.5rad/m2 in the NVSS RM catalog. The Galactic foreground RM is calculated through a weighted averaging method by using the compiled RM catalog together with the NVSS RM catalog, with careful consideration of uncertainties in the RM data. The data from the catalog and the interface for the Galactic foreground RM calculations are publicly available on the webpage: http://zmtt.bao.ac.cn/RM/ . (2 data files).

  1. The nature of radio emission from distant galaxies

    NASA Astrophysics Data System (ADS)

    Richards, Eric A.

    I describe an observational program aimed at understanding the radio emission from distant, rapidly evolving galaxy populations. These observations were carried out at 1.4 and 8.5 GHz with the VLA centered on the Hubble Deep Field. Further MERLIN observations of the HDF region at 1.4 GHz provided an angular resolution of 0.2'' and when combined with the VLA data produced an image with an unprecedented rms noise of 4 μJy. All radio sources detected in the VLA complete sample are resolved with a median angular size of 1-2''. The differential count of the radio sources is marginally sub-Euclidean (γ = -2.4 +/- 0.1) and fluctuation analysis suggests nearly 60 sources per armin2 are present at the 1 μJy level. A correlation analysis indicates spatial clustering among the 371 radio sources on angular scales of 1-40 arcmin. Optical identifications are made primarily with bright (I = 22) disk systems composed of irregulars, peculiars, interacting/merging galaxies, and a few isolated field spirals. Available redshifts span the range 0.2-3. These clues coupled with the steep spectral index of the 1.4 GHz selected sample are indicative of diffuse synchrotron radiation in distant galactic disks. Thus the evolution in the microjansky radio population is driven principally by star-formation. I have isolated a number of optically faint radio sources (about 25% of the overall sample) which remain unidentified to I = 26-28 in the HDF and flanking optical fields. Several of these objects have extremely red counterparts and constitute a new class of radio sources which are candidate high redshift dusty protogalaxies.

  2. THE KCAL VERA 22 GHz CALIBRATOR SURVEY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petrov, L.; Honma, M.; Shibata, S. M., E-mail: Leonid.Petrov@lpetrov.net

    2012-02-15

    We observed a sample of 1536 sources with correlated flux densities brighter than 200 mJy at 8 GHz with the very long baseline interferometry (VLBI) array VLBI Exploration of Radio Astrometry at 22 GHz. One half of the target sources has been detected. The detection limit was around 200 mJy. We derived the correlated flux densities of 877 detected sources in three ranges of projected baseline lengths. The objective of these observations was to determine the suitability of given sources as phase calibrators for dual-beam and phase-referencing observations at high frequencies. Preliminary results indicate that the number of compact extragalacticmore » sources at 22 GHz brighter than a given correlated flux density level is two times less than that at 8 GHz.« less

  3. 14/12-GHz-band satellite communication services

    NASA Astrophysics Data System (ADS)

    Hayashi, Kunihiro; Nagaki, Kiyoaki; Mori, Yasuo

    1990-01-01

    Three new systems for integrated TV-relay services have been developed: Satellite Video Comunication Service (SVCS) and Satellite Digital Communication Service (SDCS), with Japan's 14/12-GHz-band commercial communication satellites. These systems have been in commercial use since May 1989. Usually SVCS and SDCS have been provided using Ka-band (30/20 GHz-band) of CS-2 and Cs-3. This paper provides an overview of the design, the performance, and the systems of the new 14/12-GHz-band satellite communication services.

  4. A Very Large Array Survey of Polar BAL Quasar Candidates

    NASA Astrophysics Data System (ADS)

    Olson, Kianna Alexandra; Brotherton, Michael S.; DiPompeo, Michael; Maithil, Jaya

    2018-06-01

    Polar broad absorption line quasars posses flat radio spectra and jets seen at small angles to the line of sight. Using the VLA we observed twelve polar broad absorption line quasar candidates at L (1.5GHz), C (4.5-5.5GHz), and X (8.5-9.5GHz) bands, and found that their cores display flat spectra. Compared to previous observations in the NVSS and First surveys, the peak flux densities all show significant variation σvar > 3, and brightness temperatures TB ≥ 1012K. Based on these findings, our quasars have the properties expected for objects that posses jets seen nearly pole on.

  5. VLA radio observations of AR Scorpii

    NASA Astrophysics Data System (ADS)

    Stanway, E. R.; Marsh, T. R.; Chote, P.; Gänsicke, B. T.; Steeghs, D.; Wheatley, P. J.

    2018-03-01

    Aims: AR Scorpii is unique amongst known white dwarf binaries in showing powerful pulsations extending to radio frequencies. Here we aim to investigate the multi-frequency radio emission of AR Sco in detail, in order to constrain its origin and emission mechanisms. Methods: We present interferometric radio frequency imaging of AR Sco at 1.5, 5 and 9 GHz, analysing the total flux and polarization behaviour of this source at high time resolution (10, 3 and 3 s), across a full 3.6 h orbital period in each band. Results: We find strong modulation of the radio flux on the orbital period and the orbital sideband of the white dwarf's spin period (also known as the "beat" period). This indicates that, like the optical flux, the radio flux arises predominantly from on or near the inner surface of the M-dwarf companion star. The beat-phase pulsations of AR Sco decrease in strength with decreasing frequency. They are strongest at 9 GHz and at an orbital phase 0.5. Unlike the optical emission from this source, radio emission from AR Sco shows weak linear polarization but very strong circular polarization, reaching 30% at an orbital phase 0.8. We infer the probable existence of a non-relativistic cyclotron emission component, which dominates at low radio frequencies. Given the required magnetic fields, this also likely arises from on or near the M-dwarf. A table of the flux time series is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/611/A66

  6. VizieR Online Data Catalog: The FIRST Survey Catalog, Version 2014Dec17 (Helfand+ 2015)

    NASA Astrophysics Data System (ADS)

    Helfand, D. J.; White, R. L.; Becker, R. H.

    2015-05-01

    The Faint Images of the Radio Sky at Twenty centimeters (FIRST) began in 1993. It uses the VLA (Very Large Array, a facility of the National Radio Observatory (NRAO)) at a frequency of 1.4GHz, and it is slated to 10,000 deg2 of the North and South Galactic Caps, to a sensitivity of about 1mJy with an angular resolution of about 5''. The images produced by an automated mapping pipeline have pixels of 1.8'', a typical rms of 0.15mJy, and a resolution of 5''; the images are available on the Internet (see the FIRST home page at http://sundog.stsci.edu/ for details). The source catalogue is derived from the images. This catalog from the 1993 through 2011 observations contains 946,432 sources from the north and south Galactic caps. It covers a total of 10,575 square degrees of the sky (8444 square degrees in the north and 2131 square degrees in the south). In this version of the catalog, images taken in the the new EVLA configuration have been re-reduced using shallower CLEAN thresholds in order to reduce the "CLEAN bias" in those images. Also, the EVLA images are not co-added with older VLA images to avoid problems resulting from the different frequencies and noise properties of the configurations. That leads to small gaps in the sky coverage at boundaries between the EVLA and VLA regions. As a result, the area covered by this release of the catalog is about 60 square degrees smaller than the earlier release of the catalog (13Jun05, also available here as the "first13.dat" file), and the total number of sources is reduced by nearly 25,000. The previous version of the catalog does have sources in the overlap regions, but their flux densities are considered unreliable due to calibration errors. The flux densities should be more accurate in this catalog, biases are smaller, and the incidence of spurious sources is also reduced. Over most of the survey area, the detection limit is 1 mJy. A region along the equatorial strip (RA=21.3 to 3.3hr, Dec=-1 to 1deg) has a deeper

  7. Astronomers Make First Images With Space Radio Telescope

    NASA Astrophysics Data System (ADS)

    1997-07-01

    Marking an important new milestone in radio astronomy history, scientists at the National Radio Astronomy Observatory (NRAO) in Socorro, New Mexico, have made the first images using a radio telescope antenna in space. The images, more than a million times more detailed than those produced by the human eye, used the new Japanese HALCA satellite, working in conjunction with the National Science Foundation's (NSF) Very Long Baseline Array (VLBA) and Very Large Array (VLA) ground-based radio telescopes. The landmark images are the result of a long-term NRAO effort supported by the National Aeronautics and Space Administration (NASA). "This success means that our ability to make detailed radio images of objects in the universe is no longer limited by the size of the Earth," said NRAO Director Paul Vanden Bout. "Astronomy's vision has just become much sharper." HALCA, launched on Feb. 11 by Japan's Institute of Space and Astronautical Science (ISAS), is the first satellite designed for radio astronomy imaging. It is part of an international collaboration led by ISAS and backed by NRAO; Japan's National Astronomical Observatory; NASA's Jet Propulsion Laboratory (JPL); the Canadian Space Agency; the Australia Telescope National Facility; the European VLBI Network and the Joint Institute for Very Long Baseline Interferometry in Europe. On May 22, HALCA observed a distant active galaxy called PKS 1519-273, while the VLBA and VLA also observed it. Data from the satellite was received by a tracking station at the NRAO facility in Green Bank, West Virginia. Tape-recorded data from the satellite and from the radio telescopes on the ground were sent to NRAO's Array Operations Center (AOC) in Socorro, NM. In Socorro, astronomers and computer scientists used a special-purpose computer to digitally combine the signals from the satellite and the ground telescopes to make them all work together as a single, giant radio telescope. This dedicated machine, the VLBA Correlator, built as

  8. Design of 2.5 GHz broad bandwidth microwave bandpass filter at operating frequency of 10 GHz using HFSS

    NASA Astrophysics Data System (ADS)

    Jasim, S. E.; Jusoh, M. A.; Mahmud, S. N. S.; Zamani, A. H.

    2018-04-01

    Development of low losses, small size and broad bandwidth microwave bandpass filter operating at higher frequencies is an active area of research. This paper presents a new route used to design and simulate microwave bandpass filter using finite element modelling and realized broad bandwidth, low losses, small dimension microwave bandpass filter operating at 10 GHz frequency using return loss method. The filter circuit has been carried out using Computer Aid Design (CAD), Ansoft HFSS software and designed with four parallel couple line model and small dimension (10 × 10 mm2) using LaAlO3 substrate. The response of the microwave filter circuit showed high return loss -50 dB at operating frequency at 10.4 GHz and broad bandwidth of 2.5 GHz from 9.5 to 12 GHz. The results indicate the filter design and simulation using HFSS is reliable and have the opportunity to transfer from lab potential experiments to the industry.

  9. EVLA Observations of PTF10vdl

    NASA Astrophysics Data System (ADS)

    Kasliwal, Mansi; Kulkarni, Shri; Arcavi, Iair; Gal-Yam, Avishay; Quimby, Robert; Ofek, Eran; Frail, Dale; Yuan, Fang; Akerlof, Carl; McKay, Time

    2010-09-01

    We triggered our NRAO Target Of Opportunity program "Exploring Transients in the Local Universe" and used the Expanded Very Large Array (EVLA) to observe the field of view toward PTF10vdl (ATEL#2862 an ATEL#2863), discovered by the Palomar Transient Factory . The EVLA observations were made on September 18.26 UT at a center frequency of 8.46 GHz.

  10. Quantum teleportation through noisy channels with multi-qubit GHZ states

    NASA Astrophysics Data System (ADS)

    Espoukeh, Pakhshan; Pedram, Pouria

    2014-08-01

    We investigate two-party quantum teleportation through noisy channels for multi-qubit Greenberger-Horne-Zeilinger (GHZ) states and find which state loses less quantum information in the process. The dynamics of states is described by the master equation with the noisy channels that lead to the quantum channels to be mixed states. We analytically solve the Lindblad equation for -qubit GHZ states where Lindblad operators correspond to the Pauli matrices and describe the decoherence of states. Using the average fidelity, we show that 3GHZ state is more robust than GHZ state under most noisy channels. However, GHZ state preserves same quantum information with respect to Einstein-Podolsky-Rosen and 3GHZ states where the noise is in direction in which the fidelity remains unchanged. We explicitly show that Jung et al.'s conjecture (Phys Rev A 78:012312, 2008), namely "average fidelity with same-axis noisy channels is in general larger than average fidelity with different-axes noisy channels," is not valid for 3GHZ and 4GHZ states.

  11. ngVLA Key Science Goal 2: Probing the Initial Conditions for Planetary Systems and Life with Astrochemistry

    NASA Astrophysics Data System (ADS)

    McGuire, Brett; ngVLA Science Working Group 1

    2018-01-01

    One of the most challenging aspects in understanding the origin and evolution of planets and planetary systems is tracing the influence of chemistry on the physical evolution of a system from a molecular cloud to a solar system. Existing facilities have already shown the stunning degree of molecular complexity present in these systems. The unique combination of sensitivity and spatial resolution offered by the ngVLA will permit the observation of both highly complex and very low-abundance chemical species that are exquisitely sensitive to the physical conditions and evolutionary history of their sources, which are out of reach of current observatories. In turn, by understanding the chemical evolution of these complex molecules, unprecedentedly detailed astrophysical insight can be gleaned from these astrochemical observations.This poster will overview a number of key science goals in astrochemistry which will be enabled by the ngVLA, including:1) imaging of the deepest, densest regions in protoplanetary disks and unveiling the physical history through isotopic ratios2) probing the ammonia snow line in these disks, thought to be the only viable tracer of the water snowline3) observations of the molecular content of giant planet atmospheres4) detections of new, complex molecules, potentially including the simplest amino acids and sugars5) tracing the origin of chiral excess in star-forming regions

  12. Sixty GHz IMPATT diode development

    NASA Technical Reports Server (NTRS)

    Ma, Y. E.; Chen, J.; Benko, E.; Barger, M. J.; Nghiem, H.; Trinh, T. Q.; Kung, J.

    1985-01-01

    The objective of this program is to develop 60 GHz GaAs IMPATT Diodes suitable for communications applications. The performance goal of the 60 GHz IMPATT is 1W CW output power with a conversion efficiency of 15 percent and 10 year life time. During the course of the program, double drift (DD) GaAs IMPATT Diodes have been developed resulting in the state of the art performance at V band frequencies. A CW output power of 1.12 W was demonstrated at 51.9 GHz with 9.7 percent efficiency. The best conversion efficiency achieved was 15.3 percent. V band DD GaAs IMPATTs were developed using both small signal and large signal analyses. GaAs wafers of DD flat, DD hybrid, and DD Read profiles using molecular beam epitaxy (MBE) were developed with excellent doping profile control. Wafer evaluation was routinely made by the capacitance versus voltage (C-V) measurement. Ion mass spectrometry (SIMS) analysis was also used for more detailed profile evaluation.

  13. Teleportation of a 3-dimensional GHZ State

    NASA Astrophysics Data System (ADS)

    Cao, Hai-Jing; Wang, Huai-Sheng; Li, Peng-Fei; Song, He-Shan

    2012-05-01

    The process of teleportation of a completely unknown 3-dimensional GHZ state is considered. Three maximally entangled 3-dimensional Bell states function as quantum channel in the scheme. This teleportation scheme can be directly generalized to teleport an unknown d-dimensional GHZ state.

  14. Researchers Use NRAO Telescope to Study Formation Of Chemical Precursors to Life

    NASA Astrophysics Data System (ADS)

    2006-08-01

    In just two years of work, an international research team has discovered eight new complex, biologically-significant molecules in interstellar space using the National Science Foundation's Robert C. Byrd Green Bank Telescope (GBT) in West Virginia. "This is a feat unprecedented in the 35-year history of searching for complex molecules in space and suggests that a universal prebiotic chemistry is at work," said Jan M. Hollis of the NASA Goddard Space Flight Center, leader of the research team. Chemistry Cycle The Cosmic Chemistry Cycle CREDIT: Bill Saxton, NRAO/AUI/NSF Full Size Image Files Interactive Graphic With "Mouseover" Text Blocks Chemical Cycle Graphic (above image, JPEG, 129K) Graphic With Text Blocks (JPEG, 165K) High-Res TIFF (44.2M) High-Res TIFF With Text Blocks (44.2M) Green Bank Telescope and Molecule Diagrams (JPEG, 58K) Green Bank Telescope and Molecule Diagrams (TIFF, 21M) New Molecules: Chemical Diagrams (PDF, 64K) The new discoveries are helping scientists unlock the secrets of how the molecular precursors to life can form in the giant clouds of gas and dust in which stars and planets are born. "The first of the many chemical processes that ultimately led to life on Earth probably took place even before our planet was formed. The GBT has taken the leading role in exploring the origin of biomolecules in interstellar clouds," said Phil Jewell of the National Radio Astronomy Observatory (NRAO). The eight new molecules discovered with the GBT bring the total to 141 different molecular species found in interstellar space. About 90 percent of those interstellar molecules contain carbon, which is required for a molecule to be classified as organic. The newly-discovered molecules all contain carbon and are composed of 6 to 11 atoms each. These results suggest, the scientists say, that chemical evolution occurs routinely in the gas and dust from which stars and planets eventually are born. The mass of an interstellar cloud is 99 percent gas and one

  15. High sensitivity broadband 360GHz passive receiver for TeraSCREEN

    NASA Astrophysics Data System (ADS)

    Wang, Hui; Oldfield, Matthew; Maestrojuán, Itziar; Platt, Duncan; Brewster, Nick; Viegas, Colin; Alderman, Byron; Ellison, Brian N.

    2016-05-01

    TeraSCREEN is an EU FP7 Security project aimed at developing a combined active, with frequency channel centered at 360 GHz, and passive, with frequency channels centered at 94, 220 and 360 GHz, imaging system for border controls in airport and commercial ferry ports. The system will include automatic threat detection and classification and has been designed with a strong focus on the ethical, legal and practical aspects of operating in these environments and with the potential threats in mind. Furthermore, both the passive and active systems are based on array receivers with the active system consisting of a 16 element MIMO FMCW radar centered at 360 GHz with a bandwidth of 30 GHz utilizing a custom made direct digital synthesizer. The 16 element passive receiver system at 360 GHz uses commercial Gunn diode oscillators at 90 GHz followed by custom made 90 to 180 GHz frequency doublers supplying the local oscillator for 360 GHz sub-harmonic mixers. This paper describes the development of the passive antenna module, local oscillator chain, frequency mixers and detectors used in the passive receiver array of this system. The complete passive receiver chain is characterized in this paper.

  16. The Unusual Wolf-Rayet Star EZ CMa

    NASA Technical Reports Server (NTRS)

    Skinner, Stephen L.

    2002-01-01

    The XMM-Newton observations were obtained on 29 - 30 October 2001 during the AO-1 Guest Observer program. Our X-ray analysis focused on data from the European Photon Imaging Camera (EPIC). The VLA observations were obtained during a 3.5 hour interval on 1999 Oct. 19 with the array in hybrid BnA configuration. Radio continuum data were acquired at five different frequencies 1.42 GHz (21 cm), 4.86 GHz (6 cm), 8.44 GHz (3.6 cm), 14.94 GHz (2 cm), and 22.46 GHz (1.3 cm). These radio data are unique since they provide an excellent snapshot picture of the dependence of the radio flux on frequency obtained over a short time interval and are thus immune to the variability effects which can distort results obtained from non-contemporaneous observations at different frequencies.

  17. HI emission from the red giant Y CVn with the VLA and FAST

    NASA Astrophysics Data System (ADS)

    Hoai, Do T.; Nhung, Pham T.; Matthews, Lynn D.; Gérard, Eric; Le Bertre, Thibaut

    2017-07-01

    Imaging studies with the Very Large Array (VLA) have revealed HI emission associated with the extended circumstellar shells of red giants. We analyze the spectral map obtained on Y CVn, a J-type carbon star on the Asymptotic Giant Branch. The HI line profiles can be interpreted with a model of a detached shell resulting from the interaction of a stellar outflow with the local interstellar medium. We reproduce the spectral map by introducing a distortion along a direction corresponding to the star’s motion in space. We then use this fitting to simulate observations expected from the Five-hundred-meter Aperture Spherical radio Telescope (FAST), and discuss its potential for improving our description of the outer regions of circumstellar shells.

  18. The Galactic Magnetic Field as Viewed from the VLA

    NASA Astrophysics Data System (ADS)

    van Eck, Cameron; Brown, Jo-Anne

    2009-05-01

    Interstellar magnetic fields play critical roles in many astrophysical processes. Yet despite their importance, our knowledge about magnetic fields in our Galaxy remains limited. For the field within the Milky Way much of what we do know comes from radio astronomy, through observations of polarization and Faraday rotation measures (RMs) of extragalactic sources and pulsars. A high angular density of RM measurements in several critical areas of the Galaxy is needed to clarify the Galactic magnetic field structure. Understanding the overall structure of the magnetic field will subsequently help us determine the origin and evolution of the field. In an effort to determine the overall structure of the field, Sun et al. (2008) produced 3 models of the Galactic magnetic field based on RM measurements available at the time. These models made distinct predictions for RMs in a region of the inner Galaxy at low Galactic latitude. Using observations made with the Very Large Array (VLA), we have determined RMs for sources in this critical region. In this talk we will present the results of our study and show how the RMs strongly support the ASS+RING model.

  19. Green Bank Telescope Observations of Interstellar Glycolaldehyde: Low Temperature Sugar

    NASA Technical Reports Server (NTRS)

    Hollis, J. M.; Jewell, P. R.; Lovas, F. J.; Remijan, A.

    2004-01-01

    Interstellar glycolaldehyde (CH20HCHO) has been detected with the 100-m Green Bank Telescope (GBT) toward the star-forming region Sagittarius B2(N) by means of the 1(sub 10)-1(sub 01),2(sub 11)-2(sub 02),3(sub 12)-3(sub 0), and 4(sub 13)-4(sub 04) rotational transitions at 13.48, 15.18, 17.98, and 22.14 GHz, respectively. An analysis of these four high signal- to-noise rotational transitions yields a glycolaldehyde state temperature of 8 K. Previously reported emission line detections of glycolaldehyde with the NRAO 12-m telescope at mm-wavelengths (71 GHz to 103 GHz) are characterized by a state temperature of -50 K. By comparison the GBT detections are surprisingly strong and seen in emission at 13.48 GHz, emission and absorption at 15.18 GHz, and absorption at 17.98 GHz and 22.14 GHz. We attribute the strong absorption observed by the GBT at the higher frequencies to the correspondingly smaller GBT beams coupling better to the continuum source(s) in Sagittarius B2(N). A possible model for the two-temperature regions of glycolaldehyde is discussed.

  20. Vibrationally excited water emission at 658 GHz from evolved stars

    NASA Astrophysics Data System (ADS)

    Baudry, A.; Humphreys, E. M. L.; Herpin, F.; Torstensson, K.; Vlemmings, W. H. T.; Richards, A. M. S.; Gray, M. D.; De Breuck, C.; Olberg, M.

    2018-01-01

    Context. Several rotational transitions of ortho- and para-water have been identified toward evolved stars in the ground vibrational state as well as in the first excited state of the bending mode (v2 = 1 in (0, 1, 0) state). In the latter vibrational state of water, the 658 GHz J = 11,0-10,1 rotational transition is often strong and seems to be widespread in late-type stars. Aims: Our main goals are to better characterize the nature of the 658 GHz emission, compare the velocity extent of the 658 GHz emission with SiO maser emission to help locate the water layers and, more generally, investigate the physical conditions prevailing in the excited water layers of evolved stars. Another goal is to identify new 658 GHz emission sources and contribute in showing that this emission is widespread in evolved stars. Methods: We have used the J = 11,0-10,1 rotational transition of water in the (0, 1, 0) vibrational state nearly 2400 K above the ground-state to trace some of the physical conditions of evolved stars. Eleven evolved stars were extracted from our mini-catalog of existing and potential 658 GHz sources for observations with the Atacama Pathfinder EXperiment (APEX) telescope equipped with the SEPIA Band 9 receiver. The 13CO J = 6-5 line at 661 GHz was placed in the same receiver sideband for simultaneous observation with the 658 GHz line of water. We have compared the ratio of these two lines to the same ratio derived from HIFI earlier observations to check for potential time variability in the 658 GHz line. We have compared the 658 GHz line properties with our H2O radiative transfer models in stars and we have compared the velocity ranges of the 658 GHz and SiO J = 2-1, v = 1 maser lines. Results: Eleven stars have been extracted from our catalog of known or potential 658 GHz evolved stars. All of them show 658 GHz emission with a peak flux density in the range ≈50-70 Jy (RU Hya and RT Eri) to ≈2000-3000 Jy (VY CMa and W Hya). Five Asymptotic Giant Branch (AGB

  1. Search for extraterrestrial intelligence/high resolution microwave survey team member

    NASA Technical Reports Server (NTRS)

    Steffes, Paul G.

    1993-01-01

    This semiannual status report describes activities conducted by the Principal Investigator during the first half of this third year of the NASA High Resolution Microwave Survey (HRMS) Investigator Working Group (IWG). As a (HRMS) Team Member with primary interest in the Sky Survey activity, this investigator attended IWG meetings at NASA/Ames and U.C.-Santa Cruz in Apr. and Aug. 1992, and has traveled independently to NRAO/Kitt Peak, Arizona (April 1993) and Woodbury, Georgia (July 1993). During the July 1993 visit to the Georgia Tech Research Corporation/Woodbury Research Facility, an experiment was conducted to study the effects of interference from C-band (3.7 - 4.2 GHz) geostationary spacecraft on the Sky Survey operation in that band. At the first IWG meeting in April of this year, results of a SETI observation conducted at the 203 GHz positronium hyperfine resonance using the NRAO facility at Kitt Peak, AZ, were presented, as well as updates on the development of the spaceborne RFI data bases developed for the project. At the second meeting, results of the study of interference from C-band geostationary spacecraft were presented. Likewise, a presentation was made at the accompanying 1993 Bioastronomy Symposium describing the SETI observation at the positronium hyperfine resonance.

  2. VLA-4 integrin concentrates at the peripheral supramolecular activation complex of the immune synapse and drives T helper 1 responses

    NASA Astrophysics Data System (ADS)

    Mittelbrunn, María; Molina, Ana; Escribese, María M.; Yáñez-Mó, María; Escudero, Ester; Ursa, Ángeles; Tejedor, Reyes; Mampaso, Francisco; Sánchez-Madrid, Francisco

    2004-07-01

    The integrin 41 (VLA-4) not only mediates the adhesion and transendothelial migration of leukocytes, but also provides costimulatory signals that contribute to the activation of T lymphocytes. However, the behavior of 41 during the formation of the immune synapse is currently unknown. Here, we show that 41 is recruited to both human and murine antigen-dependent immune synapses, when the antigen-presenting cell is a B lymphocyte or a dendritic cell, colocalizing with LFA-1 at the peripheral supramolecular activation complex. However, when conjugates are formed in the presence of anti-4 antibodies, VLA-4 colocalizes with the CD3- chain at the center of the synapse. In addition, antibody engagement of 4 integrin promotes polarization toward a T helper 1 (Th1) response in human in vitro models of CD4+ T cell differentiation and naïve T cell priming by dendritic cells. The in vivo administration of anti-4 integrin antibodies also induces an immune deviation to Th1 response that dampens a Th2-driven autoimmune nephritis in Brown Norway rats. These data reveal a regulatory role of 4 integrins on T lymphocyte-antigen presenting cell cognate immune interactions.

  3. Radiometric measurements over bare and vegetated fields at 1.4 GHz and 5 GHz frequencies. [Beltsville Agricultural Research Center, Maryland

    NASA Technical Reports Server (NTRS)

    Wang, J. R.; Mcmurtrey, J. E., III; Engman, E. T.; Jackson, T. J.; Schmugge, T. J.; Gould, W. I.; Glazar, W. S.; Fuchs, J. E. (Principal Investigator)

    1981-01-01

    Microwave emission from bare and vegetated fields was measured with dual polarized radiometers at 1.4 GHz and 5 GHz frequencies. The measured brightness temperatures over bare fields are shown to compare favorably with those calculated from radiative transfer theory with two constant parameters characterizing surface roughness effect. The presence of vegetation cover is found to reduce the sensitivity to soil moisture variation. This sensitivity reduction is generally pronounced the denser, the vegetation cover and the higher the frequency of observation. The effect of vegetation cover is also examined with respect to the measured polarization factor at both frequencies. With the exception of dry corn fields, the measured polarization factor over vegetated fields is found appreciably reduced compared to that over bare fields. A much larger reduction in this factor is found at 5GHz than at 1.4GHz frequency.

  4. Astronomers' Do-It-Yourself Project Opening A New Window on the Universe

    NASA Astrophysics Data System (ADS)

    1999-05-01

    Rolling up their sleeves to build and install new equipment for the National Science Foundation's (NSF) Very Large Array (VLA) radio telescope, a team of astronomers has opened a new window on the universe, revealing tantalizing new information about the explosions of massive stars, the workings of galaxies with supermassive black holes at their centers, and clusters of galaxies. "We're going back to the region of wavelengths where Karl Jansky started radio astronomy in 1932," said Namir Kassim, of the Naval Research Laboratory (NRL), in Washington, D.C. "This is one of the most poorly explored regions of the electromagnetic spectrum, yet it offers tremendous potential to learn exciting new information about everything from the Sun and planets to galaxy clusters and the universe itself," Kassim said. Kassim, along with Rick Perley of the National Radio Astronomy Observatory (NRAO) in Socorro, NM; William Erickson, a professor emeritus at the University of Maryland; and Joseph Lazio, also of NRL, presented results of their observations with the new VLA system at the American Astronomical Society's meeting in Chicago. The new system uses the 27 dish antennas of the VLA, each 25 meters (82 feet) in diameter, to receive cosmic radio emissions at a frequency of 74 MHz, or a wavelength of about four meters. This frequency, lower than that of the FM broadcast band, is far below the usual frequencies, 1- 50 GHz, used for radio astronomy. "Though the region of 15-150 MHz is where Jansky and Grote Reber did the first radio-astronomy work in the 1930s and 1940s, it has long been neglected because of technical difficulties of working in that region," said Perley. Still, the astronomers said, there is much to be learned by studying the universe at these wavelengths. "There are phenomena associated with the Sun and planets, with other objects in our own Milky Way Galaxy, and with other galaxies and clusters of galaxies, and potentially ancient emission from the Universe itself

  5. New VLA Images Unlocking Galactic Mysteries

    NASA Astrophysics Data System (ADS)

    2008-01-01

    Astronomers have produced a scientific gold mine of detailed, high-quality images of nearby galaxies that is yielding important new insights into many aspects of galaxies, including their complex structures, how they form stars, the motions of gas in the galaxies, the relationship of "normal" matter to unseen "dark matter," and many others. An international team of scientists used more than 500 hours of observations with the National Science Foundation's Very Large Array (VLA) radio telescope to produce detailed sets of images of 34 galaxies at distances from 6 to 50 million light-years from Earth. Their project, called The HI Nearby Galaxy Survey, or THINGS, required two years to produce nearly one TeraByte of data. HI ("H-one") is an astronomical term for atomic hydrogen gas. The astronomers presented their initial findings to the American Astronomical Society's (AAS) meeting in Austin, Texas. "Studying the radio waves emitted by atomic hydrogen gas in galaxies is an extremely powerful way to learn what's going on in nearby galaxies. The THINGS survey uses that tool to provide sets of images of the highest quality and sensitivity for a substantial sample of galaxies of different types," said Fabian Walter, of the Max-Planck Institute for Astronomy in Heidelberg, Germany. IC2574M74 Dwarf galaxy IC2574, left, and spiral galaxy M74, in THINGS images. Credit: Walter et al., NRAO/AUI/NSF Click images for high-resolution files (33 KB & 25 KB) Spiral Galaxies in THINGS Most of the galaxies studied in the THINGS survey also have been observed at other wavelengths, including Spitzer space telescope infrared images and GALEX ultraviolet images. This combination provides an unprecedented resource for unravelling the mystery of how a galaxy's gaseous material influences its overall evolution. Analysis of THINGS data already has yielded numerous scientific payoffs. For example, one study has shed new light on astronomers' understanding of the gas-density threshold required to

  6. Broadband Characterization of a 100 to 180 GHz Amplifier

    NASA Technical Reports Server (NTRS)

    Kangaslahti, Pekka; Deal, W. R.; Mei, X. B.; Lai, R.

    2007-01-01

    Atmospheric science and weather forecasting require measurements of the temperature and humidity vs. altitude. These sounding measurements are obtained at frequencies close to the resonance frequencies of oxygen (118 GHz) and water (183 GHz) molecules. We have characterized a broadband amplifier that will increase the sensitivity of sounding and other instruments at these frequencies. This study demonstrated for the first t1me continuous low noise amplification from 100 to 180 GHz. The measured InP monolithic millimeter-wave Integrated circuit (MMIC) amplifier had more than 18 dB of gain from 100 to 180 GHz and 15 dB of gain up to 220 GHz. This is the widest bandwidth low noise amplifier result at these frequencies to date. The circuit was fabricated in Northrop Grumman Corporation 35 nm InP high electron mobility transistor (HEMT).

  7. 47 CFR 15.253 - Operation within the bands 46.7-46.9 GHz and 76.0-77.0 GHz.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...-77.0 GHz is restricted to vehicle-mounted field disturbance sensors used as vehicle radar systems... the radiating structure. (c) The power density of any emissions outside the operating band shall... GHz shall not exceed the general limits in § 15.209. (2) Radiated emissions outside the operating band...

  8. JVLA detection of H1743-322 in its hard state

    NASA Astrophysics Data System (ADS)

    Mooley, K. P.; Tendulkar, S. P.; Walton, D. J.; Fuerst, F.; Harrison, F. A.; Tomsick, J. A.

    2014-09-01

    We carried out radio observations of the blackhole X-ray binary H1743-322 (IGR J17464-3213, ATel#6474) with the Jansky VLA in the X-band (8-12 GHz). The on-source observations were carried out between 2014 Sep 20, 23:56:26 UT and 2014 Sep 21, 00:18:22 UT.

  9. High Redshift Radio Galaxies: Laboratories for Massive Galaxy and Cluster Formation in the Early Universe

    DTIC Science & Technology

    2010-01-01

    Lyα (blue, resolution ∼1”) obtained with ESO’s very Large Telescope (VLT), delineating the gaseous nebula and radio 8 GHz contours (red, resolution...0.3”) obtained with NRAO’s VLA, delineating the non-thermal radio emission. The gaseous nebula extends for >200 kpc and is comparable in size with the

  10. a 33GHZ and 95GHZ Cloud Profiling Radar System (cprs): Preliminary Estimates of Particle Size in Precipitation and Clouds.

    NASA Astrophysics Data System (ADS)

    Sekelsky, Stephen Michael

    1995-11-01

    The Microwave Remote Sensing Laboratory (MIRSL) st the University of Massachusetts has developed a unique single antenna, dual-frequency polarimetric Cloud Profiling Radar System (CPRS). This project was funded by the Department of Energy's Atmospheric Radiation Measurement (ARM) program, and was intended to help fill the void of ground-based remote sensors capable of characterizing cloud microphysical properties. CPRS is unique in that it can simultaneously measure the complex power backscattered from clouds at 33 GHz and 95 GHz through the same aperture. Both the 33 GHz and 95 GHz channels can transmit pulse-to-pulse selectable vertical or horizontal polarization, and simultaneously record both the copolarized and crosspolarized backscatter. CPRS Doppler, polarimetric and dual-wavelength reflectivity measurements combined with in situ cloud measurements should lead to the development of empirical models that can more accurately classify cloud-particle phase and habit, and make better quantitative estimates of particle size distribution parameters. This dissertation describes the CPRS hardware, and presents colocated 33 GHz and 95 GHz measurements that illustrate the use of dual-frequency measurements to estimate particle size when Mie scattering, is observed in backscatter from rain and ice-phase clouds. Polarimetric measurements are presented as a means of discriminating cloud phase (ice-water) and estimating crystal shape in cirrus clouds. Polarimetric and dual-wavelength observations of insects are also presented with a brief discussion of their impact on the interpretation of precipitation and liquid cloud measurements. In precipitation, Diermendjian's equations for Mie backscatter (1) and the Marshal-Palmer drop-size distribution are used to develop models relating differences in the reflectivity and mean velocity at 33 GHz and 95 GHz to the microphysical parameters of rain. These models are then used to estimate mean droplet size from CPRS measurements of

  11. ngVLA Key Science Goal 3: Charting the Assembly, Structure, and Evolution of Galaxies Over Cosmic Time

    NASA Astrophysics Data System (ADS)

    Riechers, Dominik A.; Bolatto, Alberto D.; Carilli, Chris; Casey, Caitlin M.; Decarli, Roberto; Murphy, Eric Joseph; Narayanan, Desika; Walter, Fabian; ngVLA Galaxy Assembly through Cosmic Time Science Working Group, ngVLA Galaxy Ecosystems Science Working Group

    2018-01-01

    The Next Generation Very Large Array (ngVLA) will fundamentally advance our understanding of the formation processes that lead to the assembly of galaxies throughout cosmic history. The combination of large bandwidth with unprecedented sensitivity to the critical low-level CO lines over virtually the entire redshift range will open up the opportunity to conduct large-scale, deep cold molecular gas surveys, mapping the fuel for star formation in galaxies over substantial cosmic volumes. Imaging of the sub-kiloparsec scale distribution and kinematic structure of molecular gas in both normal main-sequence galaxies and large starbursts back to early cosmic epochs will reveal the physical processes responsible for star formation and black hole growth in galaxies over a broad range in redshifts. In the nearby universe, the ngVLA has the capability to survey the structure of the cold, star-forming interstellar medium at parsec-resolution out to the Virgo cluster. A range of molecular tracers will be accessible to map the motion, distribution, and physical and chemical state of the gas as it flows in from the outer disk, assembles into clouds, and experiences feedback due to star formation or accretion into central super-massive black holes. These investigations will crucially complement studies of the star formation and stellar mass histories with the Large UV/Optical/Infrared Surveyor and the Origins Space Telescope, providing the means to obtain a comprehensive picture of galaxy evolution through cosmic times.

  12. 80-GHz MMIC HEMT Voltage-Controlled Oscillator

    NASA Technical Reports Server (NTRS)

    Samoska, Lorene; Radisic, Vesna; Micovic, Miro; Hu, Ming; Janke, Paul; Ngo, Catherine; Nguyen, Loi

    2003-01-01

    A voltage-controlled oscillator (VCO) that operates in the frequency range from 77.5 to 83.5 GHz has been constructed in the form of a monolithic microwave integrated circuit (MMIC) that includes high-electron-mobility transistors (HEMTs). This circuit is a prototype of electronically tunable signal sources in the 75-to-110-GHz range, needed for communication, imaging, and automotive radar applications, among others. This oscillator (see Figure 1) includes two AlInAs/GaInAs/InP HEMTs. One HEMT serves mainly as an oscillator gain element. The other HEMT serves mainly as a varactor for controlling the frequency: the frequency-control element is its gate-to-source capacitance, which is varied by changing its gate supply voltage. The gain HEMT is biased for class-A operation (meaning that current is conducted throughout the oscillation cycle). Grounded coplanar waveguides are used as impedance-matching transmission lines, the input and output matching being chosen to sustain oscillation and maximize output power. Air bridges are placed at discontinuities to suppress undesired slot electromagnetic modes. A high density of vias is necessary for suppressing a parallel-plate electromagnetic mode that is undesired because it can propagate energy into the MMIC substrate. Previous attempts at constructing HEMT-based oscillators yielded circuits with relatively low levels of output power and narrow tuning ranges. For example, one HEMT VCO reported in the literature had an output power of 7 dBm (.5 mW) and a tuning range 2-GHz wide centered approximately at a nominal frequency of 77 GHz. In contrast, as shown in Figure 2, the present MMIC HEMT VCO puts out a power of 12.5 dBm (.18 mW) or more over the 6-GHz-wide frequency range from 77.5 to 83.5 GHz

  13. Experimental results of superimposing 9.9 GHz extraordinary mode microwaves on 2.45 GHz ECRIS plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nishiokada, Takuya, E-mail: nishiokada@nf.eie.eng.osaka-u.ac.jp; Nagaya, Tomoki; Hagino, Shogo

    2016-02-15

    Efficient production of multicharged ions has been investigated on the tandem-type ECRIS in Osaka University. According to the consideration of the accessibility conditions of microwaves to resonance and cutoff regions, it was suggested that the upper hybrid resonance (UHR) heating contributed to enhancement of ion beam intensity. In order to enhance multicharged ion beams efficiently, injecting higher frequency microwave with extraordinary (X-mode) toward UHR region has been tried. In this study, 2.45 GHz frequency microwaves are used for conventional ECR discharge, and 9.9 GHz frequency microwaves with X-mode are superimposed for UHR heating. The effects of additive microwave injection aremore » investigated experimentally in terms of plasma parameters and electron energy distribution function (EEDF) measured by Langmuir probe and ion beam current. As the results show, it is confirmed that the electrons in the high energy region are affected by 9.9 GHz X-mode microwave injection from the detailed analysis of EEDF.« less

  14. Experimental results of superimposing 9.9 GHz extraordinary mode microwaves on 2.45 GHz ECRIS plasma.

    PubMed

    Nishiokada, Takuya; Nagaya, Tomoki; Hagino, Shogo; Otsuka, Takuro; Muramatsu, Masayuki; Sato, Fuminobu; Kitagawa, Atsushi; Kato, Yushi

    2016-02-01

    Efficient production of multicharged ions has been investigated on the tandem-type ECRIS in Osaka University. According to the consideration of the accessibility conditions of microwaves to resonance and cutoff regions, it was suggested that the upper hybrid resonance (UHR) heating contributed to enhancement of ion beam intensity. In order to enhance multicharged ion beams efficiently, injecting higher frequency microwave with extraordinary (X-mode) toward UHR region has been tried. In this study, 2.45 GHz frequency microwaves are used for conventional ECR discharge, and 9.9 GHz frequency microwaves with X-mode are superimposed for UHR heating. The effects of additive microwave injection are investigated experimentally in terms of plasma parameters and electron energy distribution function (EEDF) measured by Langmuir probe and ion beam current. As the results show, it is confirmed that the electrons in the high energy region are affected by 9.9 GHz X-mode microwave injection from the detailed analysis of EEDF.

  15. High-resolution imaging of SNR IC443 and W44 with the Sardinia Radio Telescope

    NASA Astrophysics Data System (ADS)

    Egron, E.; Pellizzoni, A.; Iacolina, M. N.; Loru, S.; Marongiu, M.; Righini, S.; Cardillo, M.; Giuliani, A.; Mulas, S.; Murtas, G.; Simeone, D.

    2017-02-01

    We present single-dish imaging of the well-known Supernova Remnants (SNRs) IC443 and W44 at 1.5 GHz and 7 GHz with the recently commissioned 64-m diameter Sardinia Radio Telescope (SRT). Our images were obtained through on-the-fly mapping techniques, providing antenna beam oversampling, automatic baseline subtraction and radio-frequency interference removal. It results in high-quality maps of the SNRs at 7 GHz, which are usually lacking and not easily achievable through interferometry at this frequency due to the very large SNR structures. SRT continuum maps of our targets are consistent with VLA maps carried out at lower frequencies (at 324 MHz and 1.4 GHz), providing a view of the complex filamentary morphology. New estimates of the total flux density are given within 3% and 5% error at 1.5 GHz and 7 GHz respectively, in addition to flux measurements in different regions of the SNRs.

  16. Power-Amplifier Module for 145 to 165 GHz

    NASA Technical Reports Server (NTRS)

    Samoska, Lorene; Peralta, Alejandro

    2007-01-01

    A power-amplifier module that operates in the frequency range of 145 to 165 GHz has been designed and constructed as a combination of (1) a previously developed monolithic microwave integrated circuit (MMIC) power amplifier and (2) a waveguide module. The amplifier chip was needed for driving a high-electron-mobility-transistor (HEMT) frequency doubler. While it was feasible to connect the amplifier and frequency-doubler chips by use of wire bonds, it was found to be much more convenient to test the amplifier and doubler chips separately. To facilitate separate testing, it was decided to package the amplifier and doubler chips in separate waveguide modules. Figure 1 shows the resulting amplifier module. The amplifier chip was described in "MMIC HEMT Power Amplifier for 140 to 170 GHz" (NPO-30127), NASA Tech Briefs, Vol. 27, No. 11, (November 2003), page 49. To recapitulate: This is a three-stage MMIC power amplifier that utilizes HEMTs as gain elements. The amplifier was originally designed to operate in the frequency range of 140 to 170 GHz. The waveguide module is based on a previously developed lower frequency module, redesigned to support operation in the frequency range of 140 to 220 GHz. Figure 2 presents results of one of several tests of the amplifier module - measurements of output power and gain as functions of input power at an output frequency of 150 GHz. Such an amplifier module has many applications to test equipment for power sources above 100 GHz.

  17. Arbitrary waveform modulated pulse EPR at 200 GHz

    NASA Astrophysics Data System (ADS)

    Kaminker, Ilia; Barnes, Ryan; Han, Songi

    2017-06-01

    We report here on the implementation of arbitrary waveform generation (AWG) capabilities at ∼200 GHz into an Electron Paramagnetic Resonance (EPR) and Dynamic Nuclear Polarization (DNP) instrument platform operating at 7 T. This is achieved with the integration of a 1 GHz, 2 channel, digital to analog converter (DAC) board that enables the generation of coherent arbitrary waveforms at Ku-band frequencies with 1 ns resolution into an existing architecture of a solid state amplifier multiplier chain (AMC). This allows for the generation of arbitrary phase- and amplitude-modulated waveforms at 200 GHz with >150 mW power. We find that the non-linearity of the AMC poses significant difficulties in generating amplitude-modulated pulses at 200 GHz. We demonstrate that in the power-limited regime of ω1 < 1 MHz phase-modulated pulses were sufficient to achieve significant improvements in broadband (>10 MHz) spin manipulation in incoherent (inversion), as well as coherent (echo formation) experiments. Highlights include the improvement by one order of magnitude in inversion bandwidth compared to that of conventional rectangular pulses, as well as a factor of two in improvement in the refocused echo intensity at 200 GHz.

  18. A 1.8 GHz Voltage-Controlled Oscillator using CMOS Technology

    NASA Astrophysics Data System (ADS)

    Maisurah, M. H. Siti; Emran, F. Nazif; Norman Fadhil, Idham M.; Rahim, A. I. Abdul; Razman, Y. Mohamed

    2011-05-01

    A Voltage-Controlled Oscillator (VCO) for 1.8 GHz application has been designed using a combination of both 0.13 μm and 0.35 μm CMOS technology. The VCO has a large tuning range, which is from 1.39 GHz to 1.91 GHz, using a control voltage from 0 to 3V. The VCO exhibits a low phase-noise at 1.8 GHz which is around -119.8dBc/Hz at a frequency offset of 1 MHz.

  19. One GHz digitizer for space based laser altimeter

    NASA Technical Reports Server (NTRS)

    Staples, Edward J.

    1991-01-01

    This is the final report for the research and development of the one GHz digitizer for space based laser altimeter. A feasibility model was designed, built, and tested. Only partial testing of essential functions of the digitizer was completed. Hybrid technology was incorporated which allows analog storage (memory) of the digitally sampled data. The actual sampling rate is 62.5 MHz, but executed in 16 parallel channels, to provide an effective sampling rate of one GHz. The average power consumption of the one GHz digitizer is not more than 1.5 Watts. A one GHz oscillator is incorporated for timing purposes. This signal is also made available externally for system timing. A software package was also developed for internal use (controls, commands, etc.) and for data communication with the host computer. The digitizer is equipped with an onboard microprocessor for this purpose.

  20. Revolutionizing Our Understanding of AGN Feedback and its Importance to Galaxy Evolution in the Era of the Next Generation Very Large Array

    NASA Astrophysics Data System (ADS)

    Nyland, Kristina; Harwood, Jeremy; Jagannathan, Preshanth; Mukherjee, Dipanjan; Lacy, Mark; Morabito, Leah; Maksym, W. Peter; Kimball, Amy; Alatalo, Katherine; Bicknell, Geoff; Patil, Pallavi; Emonts, Bjorn

    2018-01-01

    Energetic feedback by Active Galactic Nuclei (AGNs) likely plays an important evolutionary role in the regulation of star formation (SF) on galactic scales. However, the effects of this feedback under different host galaxy conditions and environments remain unknown due to the scarcity of observational examples of this process in action given the limitations of current telescopes. The Next Generation Very Large Array (ngVLA) will serve as a transformational new tool in our understanding of how radio jets affect their surroundings. Current plans for the ngVLA consist of an array of 214 18m antennas with baselines out to 500 km operating over a frequency range of 1-115 GHz. By combining deep, broadband continuum data with measurements of the atomic and/or molecular gas content and kinematics, the ngVLA will quantify the energetic impact of radio jets hosted by gas-rich galaxies as the jets interact with the star-forming gas reservoirs of their hosts. Here, we evaluate the progress in our understanding of AGN feedback and its connection to galaxy evolution that may be accomplished with the unique capabilities of the ngVLA. Our analysis includes simulations of ngVLA observations of redshifted analogs of nearby AGNs with diverse properties, along with examples of opportunities for multiwavelength synergies with current and future next-generation instruments that are currently under development.

  1. A low noise 665 GHz SIS quasi-particle waveguide receiver

    NASA Technical Reports Server (NTRS)

    Kooi, J. W.; Walker, C. K.; Leduc, H. G.; Hunter, T. R.; Benford, D. J.; Phillips, T. G.

    1993-01-01

    Recent results on a 565-690 GHz SIS heterodyne receiver employing a 0.36 micron(sup 2) Nb/AlOx/Nb SIS tunnel junction with high quality circular non-contacting back short and E-plane tuners in a full height wave guide mount are reported. No resonant tuning structures were incorporated in the junction design at this time, even though such structures are expected to help the performance of the receiver. The receiver operates to at least the gap frequency of Niobium, approximately 680 GHz. Typical receiver noise temperatures from 565-690 GHz range from 160K to 230K with a best value of 185K DSB at 648 GHz. With the mixer cooled from 4.3K to 2K the measured receiver noise temperatures decreased by approximately 15 percent, giving roughly 180K DSB from 660 to 680 GHz. The receiver has a full 1 GHz IF pass band and was successfully installed at the Caltech Submillimeter Observatory in Hawaii.

  2. A New 95 GHz Methanol Maser Catalog. I. Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Wenjin; Xu, Ye; Lu, Dengrong

    The Purple Mountain Observatory 13.7 m radio telescope has been used to search for 95 GHz (8{sub 0}–7{sub 1}A{sup +}) class I methanol masers toward 1020 Bolocam Galactic Plane Survey (BGPS) sources, leading to 213 detections. We have compared the line width of the methanol and HCO{sup +} thermal emission in all of the methanol detections, and on that basis, we find that 205 of the 213 detections are very likely to be masers. This corresponds to an overall detection rate of 95 GHz methanol masers toward our BGPS sample of 20%. Of the 205 detected masers, 144 (70%) aremore » new discoveries. Combining our results with those of previous 95 GHz methanol maser searches, a total of 481 95 GHz methanol masers are now known. We have compiled a catalog listing the locations and properties of all known 95 GHz methanol masers.« less

  3. Relative performance of 8.5-GHz and 32-GHz telemetry links on the basis of total data return per pass

    NASA Technical Reports Server (NTRS)

    Koerner, M. A.

    1986-01-01

    The performance of X-band (8.5-GHz) and 32-GHz telemetry links is compared on the basis of the total data return per DSN station pass. Differences in spacecraft transmitter efficiency, transmit circuit loss, and transmitting antenna area efficiency and pointing loss are not considered in these calculations. Thus, the performance differentials calculated in this memo are those produced by a DSN 70-m station antenna gain and clear weather receiving system noise temperature and by weather. These calculations show that, assuming mechanical compensation of the DSN 70-m antenna for 32-GHz operation, a performance advantage for 32 GHz over X-band of 8.2 dB can be achieved for at least one DSN station location. Even if only Canberra and Madrid are used, a performance advantage of 7.7 dB can be obtained for at least one DSN station location. A system using a multiple beam feed (electronic compensation) should achieve similar results.

  4. 47 CFR 15.252 - Operation of wideband vehicular radar systems within the bands 16.2-17.7 GHz and 23.12-29.0 GHz.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 1 2011-10-01 2011-10-01 false Operation of wideband vehicular radar systems within the bands 16.2-17.7 GHz and 23.12-29.0 GHz. 15.252 Section 15.252 Telecommunication FEDERAL..., Additional Provisions § 15.252 Operation of wideband vehicular radar systems within the bands 16.2-17.7 GHz...

  5. 47 CFR 15.252 - Operation of wideband vehicular radar systems within the bands 16.2-17.7 GHz and 23.12-29.0 GHz.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 1 2013-10-01 2013-10-01 false Operation of wideband vehicular radar systems within the bands 16.2-17.7 GHz and 23.12-29.0 GHz. 15.252 Section 15.252 Telecommunication FEDERAL..., Additional Provisions § 15.252 Operation of wideband vehicular radar systems within the bands 16.2-17.7 GHz...

  6. 47 CFR 15.252 - Operation of wideband vehicular radar systems within the bands 16.2-17.7 GHz and 23.12-29.0 GHz.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 1 2014-10-01 2014-10-01 false Operation of wideband vehicular radar systems within the bands 16.2-17.7 GHz and 23.12-29.0 GHz. 15.252 Section 15.252 Telecommunication FEDERAL..., Additional Provisions § 15.252 Operation of wideband vehicular radar systems within the bands 16.2-17.7 GHz...

  7. 47 CFR 15.252 - Operation of wideband vehicular radar systems within the bands 16.2-17.7 GHz and 23.12-29.0 GHz.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 1 2012-10-01 2012-10-01 false Operation of wideband vehicular radar systems within the bands 16.2-17.7 GHz and 23.12-29.0 GHz. 15.252 Section 15.252 Telecommunication FEDERAL..., Additional Provisions § 15.252 Operation of wideband vehicular radar systems within the bands 16.2-17.7 GHz...

  8. Detection of 17 GHz radio emission from X-ray-bright points

    NASA Technical Reports Server (NTRS)

    Kundu, M. R.; Shibasaki, K.; Enome, S.; Nitta, N.

    1994-01-01

    Using observations made with the Nobeyama radio heliograph (NRH) at 17 GHz and the Yohkoh/SXT experiment, we report the first detection of 17 GHz signatures of coronal X-ray-bright points (XBPs). This is also the first reported detection of flaring bright points in microwaves. We have detected four BPs at 17 GHz out of eight identified in SXT data on 1992 July 31, for which we looked for 17 GHz emission. For one XBP located in a quiet mixed-polarity region, the peak times at 17 GHz and X-rays are very similar, and both are long-lasting-about 2 hr in duration. There is a second BP (located near an active region) which is most likely flaring also, but the time profiles in the two spectral domains are not similar. The other two 17 GHz BPs are quiescent with fluctuations superposed upon them. For the quiet region XBP, the gradual, long-lasting, and unpolarized emission suggests that the 17 GHz emission is thermal.

  9. MMIC HEMT Power Amplifier for 140 to 170 GHz

    NASA Technical Reports Server (NTRS)

    Samoska, Lorene; Radisic, Vesna; Ngo, Catherine; Janke, Paul; Hu, Ming; Micovic, Miro

    2003-01-01

    A three-stage monolithic microwave integrated circuit (MMIC) power amplifier that features high-electron-mobility transistors (HEMTs) as gain elements is reviewed. This amplifier is designed to operate in the frequency range of 140 to 170 GHz, which contains spectral lines of several atmospheric molecular species plus subharmonics of other such spectral lines. Hence, this amplifier could serve as a prototype of amplifiers to be incorporated into heterodyne radiometers used in atmospheric science. The original intended purpose served by this amplifier is to boost the signal generated by a previously developed 164-GHz MMIC HEMT doubler and drive a 164-to-328-GHz doubler to provide a few milliwatts of power at 328 GHz.

  10. THE VLA-COSMOS PERSPECTIVE ON THE INFRARED-RADIO RELATION. I. NEW CONSTRAINTS ON SELECTION BIASES AND THE NON-EVOLUTION OF THE INFRARED/RADIO PROPERTIES OF STAR-FORMING AND ACTIVE GALACTIC NUCLEUS GALAXIES AT INTERMEDIATE AND HIGH REDSHIFT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sargent, M. T.; Schinnerer, E.; MartInez-Sansigre, A.

    2010-02-01

    VLA 1.4 GHz ({sigma}{approx} 0.012 mJy) and MIPS 24 and 70 {mu}m ({sigma}{approx} 0.02 and 1.7 mJy, respectively) observations covering the 2 deg{sup 2} COSMOS field are combined with an extensive multiwavelength data set to study the evolution of the infrared (IR)-radio relation at intermediate and high redshift. With {approx}4500 sources-of which {approx}30% have spectroscopic redshifts-the current sample is significantly larger than previous ones used for the same purpose. Both monochromatic IR/radio flux ratios (q {sub 24} and q {sub 70}), as well as the ratio of the total IR and the 1.4 GHz luminosity (q {sub TIR}), are usedmore » as indicators for the IR/radio properties of star-forming galaxies and active galactic nuclei (AGNs). Using a sample jointly selected at IR and radio wavelengths in order to reduce selection biases, we provide firm support for previous findings that the IR-radio relation remains unchanged out to at least z{approx} 1.4. Moreover, based on data from {approx}150 objects we also find that the local relation likely still holds at zin [2.5, 5]. At redshift z< 1.4, we observe that radio-quiet AGNs populate the locus of the IR-radio relation in similar numbers as star-forming sources. In our analysis, we employ the methods of survival analysis in order to ensure a statistically sound treatment of flux limits arising from non-detections. We determine the observed shift in average IR/radio properties of IR- and radio-selected populations and show that it can reconcile apparently discrepant measurements presented in the literature. Finally, we also investigate variations of the IR/radio ratio with IR and radio luminosity and find that it hardly varies with IR luminosity but is a decreasing function of radio luminosity.« less

  11. Optimal GHZ Paradox for Three Qubits

    NASA Astrophysics Data System (ADS)

    Ren, Changliang; Su, Hong-Yi; Xu, Zhen-Peng; Wu, Chunfeng; Chen, Jing-Ling

    2015-08-01

    Quatum nonlocality as a valuable resource is of vital importance in quantum information processing. The characterization of the resource has been extensively investigated mainly for pure states, while relatively less is know for mixed states. Here we prove the existence of the optimal GHZ paradox by using a novel and simple method to extract an optimal state that can saturate the tradeoff relation between quantum nonlocality and the state purity. In this paradox, the logical inequality which is formulated by the GHZ-typed event probabilities can be violated maximally by the optimal state for any fixed amount of purity (or mixedness). Moreover, the optimal state can be described as a standard GHZ state suffering flipped color noise. The maximal amount of noise that the optimal state can resist is 50%. We suggest our result to be a step toward deeper understanding of the role played by the AVN proof of quantum nonlocality as a useful physical resource.

  12. InP MMIC Chip Set for Power Sources Covering 80-170 GHz

    NASA Technical Reports Server (NTRS)

    Ngo, Catherine

    2001-01-01

    We will present a Monolithic Millimeter-wave Integrated Circuit (MMIC) chip set which provides high output-power sources for driving diode frequency multipliers into the terahertz range. The chip set was fabricated at HRL Laboratories using a 0.1-micrometer gate-length InAlAs/InGaAs/InP high electron mobility transistor (HEMT) process, and features transistors with an f(sub max) above 600 GHz. The HRL InP HEMT process has already demonstrated amplifiers in the 60-200 GHz range. In this paper, these high frequency HEMTs form the basis for power sources up to 170 GHz. A number of state-of-the-art InP HEMT MMICs will be presented. These include voltage-controlled and fixed-tuned oscillators, power amplifiers, and an active doubler. We will first discuss an 80 GHz voltage-controlled oscillator with 5 GHz of tunability and at least 17 mW of output power, as well as a 120 GHz oscillator providing 7 mW of output power. In addition, we will present results of a power amplifier which covers the full WRIO waveguide band (75-110 GHz), and provides 40-50 mW of output power. Furthermore, we will present an active doubler at 164 GHz providing 8% bandwidth, 3 mW of output power, and an unprecedented 2 dB of conversion loss for an InP HEMT MMIC at this frequency. Finally, we will demonstrate a power amplifier to cover 140-170 GHz with 15-25 mW of output power and 8 dB gain. These components can form a power source in the 155-165 GHz range by cascading the 80 GHz oscillator, W-band power amplifier, 164 GHz active doubler and final 140-170 GHz power amplifier for a stable, compact local oscillator subsystem, which could be used for atmospheric science or astrophysics radiometers.

  13. Summary of interference measurements at selected radio observatories

    NASA Technical Reports Server (NTRS)

    Tarter, Jill C.

    1990-01-01

    Results are presented from a series of RF interference (RFI) observations conducted during 1989 and 1990 at selected radio astronomy observatories in order to choose a site for the SETI, where the local and orbital RFI would be as benign as possible for observations of weak electromagnetic signals. These observatories included the DSS13 at Goldstone (California), the Arecibo Observatory (Puerto Rico), the Algonquin Radio Observatory in Ottawa (Canada), the Ohio State University Radio Observatory in Columbus (Ohio), and the NRAO in Green Bank (West Virginia). The observations characterize the RFI environment at these sites from 1 to 10 GHz, using radio astronomy antennas, feeds, and receivers; SETI signal processors; and stand-alone equipment built specifically for this purpose. The results served as part of the basis for the selection (by the NASA SETI Microwave Observing Project) of NRAO as the site of choice for SETI observations.

  14. The 30/20 GHz communications system functional requirements

    NASA Technical Reports Server (NTRS)

    Siperko, C. M.; Frankfort, M.; Markham, R.; Wall, M.

    1981-01-01

    The characteristics of 30/20 GHz usage in satellite systems to be used in support of projected communication requirements of the 1990's are defined. A requirements analysis which develops projected market demand for satellite services by general and specialized carriers and an analysis of the impact of propagation and system constraints on 30/20 GHz operation are included. A set of technical performance characteristics for the 30/20 GHz systems which can serve the resulting market demand and the experimental program necessary to verify technical and operational aspects of the proposed systems is also discussed.

  15. A study of 60 GHz intersatellite link applications

    NASA Technical Reports Server (NTRS)

    Anzic, G.; Connolly, D. J.; Haugland, E. J.; Kosmahl, H. G.; Chitwood, J. S.

    1983-01-01

    Applications of intersatellite links operating at 60 GHz are reviewed. Likely scenarios, ranging from transmission of moderate and high data rates over long distances to low data rates over short distances are examined. A limited parametric tradeoff is performed with system variables such as radiofrequency power, receiver noise temperature, link distance, data rate, and antenna size. Present status is discussed and projections are given for both electron tube and solid state transmitter technologies. Monolithic transmit and receive module technology, already under development at 20 to 30 GHz, is reviewed and its extension to 60 GHz, and possible applicability is discussed.

  16. A study of 60 GHz intersatellite link applications

    NASA Astrophysics Data System (ADS)

    Anzic, G.; Connolly, D. J.; Haugland, E. J.; Kosmahl, H. G.; Chitwood, J. S.

    Applications of intersatellite links operating at 60 GHz are reviewed. Likely scenarios, ranging from transmission of moderate and high data rates over long distances to low data rates over short distances are examined. A limited parametric tradeoff is performed with system variables such as radiofrequency power, receiver noise temperature, link distance, data rate, and antenna size. Present status is discussed and projections are given for both electron tube and solid state transmitter technologies. Monolithic transmit and receive module technology, already under development at 20 to 30 GHz, is reviewed and its extension to 60 GHz, and possible applicability is discussed.

  17. ALMA and VLA observations of emission from the environment of Sgr A*

    NASA Astrophysics Data System (ADS)

    Yusef-Zadeh, F.; Schödel, R.; Wardle, M.; Bushouse, H.; Cotton, W.; Royster, M. J.; Kunneriath, D.; Roberts, D. A.; Gallego-Cano, E.

    2017-10-01

    We present 44 and 226 GHz observations of the Galactic Centre within 20 arcsec of Sgr A*. Millimetre continuum emission at 226 GHz is detected from eight stars that have previously been identified at near-IR and radio wavelengths. We also detect a 5.8 mJy source at 226 GHz coincident with the magnetar SGR J1745-29 located 2.39 arcsec SE of Sgr A* and identify a new 2.5 arcsec × 1.5 arcsec halo of mm emission centred on Sgr A*. The X-ray emission from this halo has been detected previously and is interpreted in terms of a radiatively inefficient accretion flow. The mm halo surrounds an EW linear feature that appears to arise from Sgr A* and coincides with the diffuse X-ray emission and a minimum in the near-IR extinction. We argue that the millimetre emission is produced by synchrotron emission from relativistic electrons in equipartition with an ˜1.5 mG magnetic field. The origin of this is unclear but its coexistence with hot gas supports scenarios in which the gas is produced by the interaction of winds either from the fast moving S-stars, the photoevaporation of low-mass YSO discs or by a jet-driven outflow from Sgr A*. The spatial anti-correlation of the X-ray, radio and mm emission from the halo and the low near-IR extinction provides a compelling evidence of an outflow sweeping up the interstellar material, creating a dust cavity within 2 arcsec of Sgr A*. Finally, the radio and mm counterparts to eight near-IR identified stars within ˜10 arcsec of Sgr A* provide accurate astrometry to determine the positional shift between the peak emission at 44 and 226 GHz.

  18. Measurements of the radar cross section and Inverse Synthetic Aperture Radar (ISAR) images of a Piper Navajo at 9.5 GHz and 49 GHz

    NASA Astrophysics Data System (ADS)

    Dinger, R.; Kinzel, G.; Lam, W.; Jones, S.

    1993-01-01

    Studies were conducted of the enhanced radar cross section (RCS) and improved inverse synthetic aperture radar (ISAR) image quality that may result at millimeter-wave (mmw) frequencies. To study the potential for mmw radar in these areas, a program was initiated in FY-90 to design and fabricate a 49.0- to 49.5-GHz stepped-frequency radar. After conducting simultaneous measurements of the RCS of an airborne Piper Navajo twin-engine aircraft at 9.0 and 49.0 GHz, the RCS at 49.0 GHz was always found to be higher than at 9.0 GHz by an amount that depended on the target aspect angle. The largest increase was 19 dB and was measured at nose-on incidence; at other angles of incidence, the increase ranged from 3 to 10 dB. The increase averaged over a 360-degree aspect-angle change was 7.2 dB. The 49.0-GHz radar has demonstrated a capability to gather well-calibrated millimeter-wave RCS data of flying targets. In addition, the successful ISAR images obtainable with short aperture time suggest that 49.0-GHz radar may have a role to play in noncooperative target identification (NCTI).

  19. 47 CFR 25.139 - NGSO FSS coordination and information sharing between MVDDS licensees in the 12.2 GHz to 12.7 GHz...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ....2 GHz to 12.7 GHz band. (a) NGSO FSS licensees shall maintain a subscriber database in a format that... database to enable the MVDDS licensee to determine whether the proposed MVDDS transmitting site meets the...

  20. THE CELESTIAL REFERENCE FRAME AT 24 AND 43 GHz. I. ASTROMETRY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lanyi, G. E.; Jacobs, C. S.; Naudet, C. J.

    2010-05-15

    We present astrometric results for compact extragalactic objects observed with the Very Long Baseline Array at radio frequencies of 24 and 43 GHz. Data were obtained from ten 24 hr observing sessions made over a five-year period. These observations were motivated by the need to extend the International Celestial Reference Frame (ICRF) to higher radio frequencies to enable improved deep space navigation after 2016 and to improve state-of-the-art astrometry. Source coordinates for 268 sources were estimated at 24 GHz and for 131 sources at 43 GHz. The median formal uncertainties of right ascension and declination at 24 GHz are 0.08more » and 0.15 mas, respectively. Median formal uncertainties at 43 GHz are 0.20 and 0.35 mas, respectively. Weighted root-mean-square differences between the 24 and 43 GHz positions and astrometric positions based on simultaneous 2.3 and 8.4 GHz Very Long Baseline Interferometry observations, such as the ICRF, are less than about 0.3 mas in both coordinates. With observations over five years we have achieved a precision at 24 GHz approaching that of the ICRF but unaccounted systematic errors limit the overall accuracy of the catalogs.« less

  1. Treatment of Multiple Myeloma with VLA4-targeted Nanoparticles Delivering Novel c-MYC Inhibitor Prodrug

    DTIC Science & Technology

    2012-09-01

    subunits. The a4~1 integrin (CD49d or VLA-4) is expressed by both normal and malignant plasma cells ( Pals ST, 2007) and is over-expressed in drug...100 0 Hf ’ 101 10’ 1o’ 101 102 1o’ 0 1d’ 10° U266 1’! 300 300 9 ~ 300 2.7 31 91 0 (.) "’ 200 200 200 u 100 100 100 1 o’ 10’ 1o" 0 10° 101...Cell. 2002; 11 0(6):673-687. 23. Pals , S.T., de Gorter, D.J., and Spaargaren, M. Lymphoma dissemination: the other face of lymphocyte homing. Blood

  2. Double dipole antenna SIS receivers at 100 and 400 GHz

    NASA Technical Reports Server (NTRS)

    Skalare, A.; Vandestadt, H.; Degraauw, T.; Panhuyzen, R. A.; Dierichs, M. M. T. M.

    1992-01-01

    Antenna patterns were measured between 95 and 120 GHz for a double dipole antenna / ellipsoidal lens combination. The structure produces a non-astigmatic beam with low side lobe levels over that whole band. A heterodyne SIS receiver based on this concept gave a best noise temperature of 145 K DSB at 98 GHz. Measurements were also made with a 400 GHz heterodyne SIS receiver, using a double dipole antenna in conjunction with a hyperhemispherical lens. The best noise temperature was 220 K DSB at 402 GHz. On-chip stubs were used to tune out the SIS junction capacitance.

  3. Traveling-Wave Maser for 32 GHz

    NASA Technical Reports Server (NTRS)

    Shell, James; Clauss, Robert

    2009-01-01

    The figure depicts a traveling-wave ruby maser that has been designed (though not yet implemented in hardware) to serve as a low-noise amplifier for reception of weak radio signals in the frequency band of 31.8 to 32.3 GHz. The design offers significant improvements over previous designs of 32-GHz traveling-wave masers. In addition, relative to prior designs of 32-GHz amplifiers based on high-electron-mobility transistors, this design affords higher immunity to radio-frequency interference and lower equivalent input noise temperature. In addition to the basic frequency-band and low-noise requirements, the initial design problem included a requirement for capability of operation in a closed-cycle helium refrigerator at a temperature .4 K and a requirement that the design be mechanically simplified, relative to prior designs, in order to minimize the cost of fabrication and assembly. Previous attempts to build 32- GHz traveling-wave masers involved the use of metallic slow-wave structures comprising coupled transverse electromagnetic (TEM)-mode resonators that were subject to very tight tolerances and, hence, were expensive to fabricate and assemble. Impedance matching for coupling signals into and out of these earlier masers was very difficult. A key feature of the design is a slow-wave structure, the metallic portions of which would be mechanically relatively simple in that, unlike in prior slow-wave structures, there would be no internal metal steps, irises, or posts. The metallic portions of the slow-wave structure would consist only of two rectangular metal waveguide arms. The arms would contain sections filled with the active material (ruby) alternating with evanescent-wave sections. This structure would be transparent in both the signal-frequency band (the aforementioned range of 31.8 to 32.3 GHz) and the pump-frequency band (65.75 to 66.75 GHz), and would impose large slowing factors in both frequency bands. Resonant ferrite isolators would be placed in the

  4. VizieR Online Data Catalog: Radio haloes in nearby galaxies (Heesen+, 2018)

    NASA Astrophysics Data System (ADS)

    Heesen, V.; Krause, M.; Beck, R.; Adebahr, B.; Bomans, D. J.; Carretti, E.; Dumke, M.; Heald, G.; Irwin, J.; Koribalski, B. S.; Mulcahy, D. D.; Westmeier, T.; Dettmar, R.-J.

    2018-02-01

    We present radio continuum observations of 12 nearby (D=2-27Mpc) edge-on galaxies at two different frequencies, namely at 1.4 and 5GHz (one galaxy at 8.5GHz instead of 5GHz). Our sample includes 11 late-type spiral (Sb or Sc) galaxies and one Magellanic-type barred galaxy (SBm), which are all highly inclined (i>=76°). As part of our study we have obtained several additional radio continuum maps. We make these maps publicly available (as well as all the other radio continuum maps in the paper). For 4 galaxies (NGC 55, 253, 891 and 4631) we have used single-dish maps, to correct for the missing zero-spacing flux where necessary. The Effelsberg maps of NGC 253 and 4631 were already presented in Heesen et al. (2009A&A...494..563H) and Mora & Krause (2013A&A...560A..42M), respectively, and the Effelsberg map of NGC 891 was already presented in Dumke (1997, PhD thesis, University of Bonn). We present these maps for completeness. The 4.80-GHz map of NGC 55 obtained with the 64-m Parkes telescope is so far unpublished. Furthermore, we show two maps of NGC 4631 at 1.35 and 1.65GHz observed with the VLA in D- configuration (R. Beck 2016, priv. comm.). The data were observed in August 1996, with 12 h on-source (ID: AG486) and reduced in standard fashion with AIPS. The maps have an angular resolution of 52 arcsec, so that we did not use them in the analysis, but they also show the halo of this galaxy very well. Lastly, we obtained maps of three further edge-on galaxies observed with the VLA (NGC 4157, 4217 and 4634). We reduced the data as described in Section 2, but since we had only one frequency available and no spectral index map, we did not use them in the analysis. The maps of NGC 4157 and 4217 were created by re-reducing archive data (IDs AI23, AF85, AH457 and AS392 for NGC 4157 and ID AM573 for NGC 4217). The map of NGC 4634 was created by using so far unpublished data from the VLA (ID: AD538). (3 data files).

  5. Observed Faraday Effects in Damped Lyα Absorbers and Lyman Limit Systems: The Magnetized Environment of Galactic Building Blocks at Redshift = 2

    NASA Astrophysics Data System (ADS)

    Farnes, J. S.; Rudnick, L.; Gaensler, B. M.; Haverkorn, M.; O'Sullivan, S. P.; Curran, S. J.

    2017-06-01

    Protogalactic environments are typically identified using quasar absorption lines and can manifest as Damped Lyman-alpha Absorbers (DLAs) and Lyman Limit Systems (LLSs). We use radio observations of Faraday effects to test whether these galactic building blocks host a magnetized medium, by combining DLA and LLS detections with 1.4 GHz polarization data from the NRAO VLA Sky Survey (NVSS). We obtain a control, a DLA, and an LLS sample consisting of 114, 19, and 27 lines of sight, respectively. Using a Bayesian framework and weakly informative priors, we are unable to detect either coherent or random magnetic fields in DLAs: the regular coherent fields must be ≤slant 2.8 μG, and the lack of depolarization suggests the weakly magnetized gas in DLAs is non-turbulent and quiescent. However, we find a mild suggestive indication that LLSs have coherent magnetic fields, with a 71.5% probability that LLSs have higher | {RM}| than a control, although this is sensitive to the redshift distribution. We also find a strong indication that LLSs host random magnetic fields, with a 95.5% probability that LLS lines of sight have lower polarized fractions than a control. The regular coherent fields within the LLSs must be ≤slant 2.4 μG, and the magnetized gas must be highly turbulent with a typical turbulent length scale on the order of ≈5-20 pc. Our results are consistent with the standard dynamo paradigm, whereby magnetism in protogalaxies increases in coherence over cosmic time, and with a hierarchical galaxy formation scenario, with the DLAs and LLSs exploring different stages of magnetic field evolution in galaxies.

  6. ngVLA Key Science Goal 4: Using Pulsars in the Galactic Center as Fundamental Tests of Gravity

    NASA Astrophysics Data System (ADS)

    Bower, Geoffrey C.; Chatterjee, Shami; Cordes, James; Demorest, Paul; Dexter, Jason; Kramer, Michael; Lazio, Joseph; Ransom, Scott; Wharton, Robert; ngVLA Science Working Group 4

    2018-01-01

    monitor pulsars. The ngVLA with its enhanced sensitivity at radio frequencies between 10 and 30 GHz will be unique in its capability to open a new door for the study of pulsars in the GC.

  7. Gigantic Cosmic Corkscrew Reveals New Details About Mysterious Microquasar

    NASA Astrophysics Data System (ADS)

    2004-10-01

    Making an extra effort to image a faint, gigantic corkscrew traced by fast protons and electrons shot out from a mysterious microquasar paid off for a pair of astrophysicists who gained new insights into the beast's inner workings and also resolved a longstanding dispute over the object's distance. Microquasar SS 433 VLA Image of Microquasar SS 433 CREDIT: Blundell & Bowler, NRAO/AUI/NSF (Click on Image for Larger Version) The astrophysicists used the National Science Foundation's Very Large Array (VLA) radio telescope to capture the faintest details yet seen in the plasma jets emerging from the microquasar SS 433, an object once dubbed the "enigma of the century." As a result, they have changed scientists' understanding of the jets and settled the controversy over its distance "beyond all reasonable doubt," they said. SS 433 is a neutron star or black hole orbited by a "normal" companion star. The powerful gravity of the neutron star or black hole draws material from the stellar wind of its companion into an accretion disk of material tightly circling the dense central object prior to being pulled onto it. This disk propels jets of fast protons and electrons outward from its poles at about a quarter of the speed of light. The disk in SS 433 wobbles like a child's top, causing its jets to trace a corkscrew in the sky every 162 days. The new VLA study indicates that the speed of the ejected particles varies over time, contrary to the traditional model for SS 433. "We found that the actual speed varies between 24 percent to 28 percent of light speed, as opposed to staying constant," said Katherine Blundell, of the University of Oxford in the United Kingdom. "Amazingly, the jets going in both directions change their speeds simultaneously, producing identical speeds in both directions at any given time," Blundell added. Blundell worked with Michael Bowler, also of Oxford. The scientists' findings have been accepted by the Astrophysical Journal Letters. SS 433 New VLA

  8. A 94/183 GHz aircraft radiometer system for Project Storm Fury

    NASA Technical Reports Server (NTRS)

    Gagliano, J. A.; Stratigos, J. A.; Forsythe, R. E.; Schuchardt, J. M.; Welch, J. M.; Gallentine, D. O.

    1980-01-01

    A radiometer design suitable for use in NASA's WB-57F aircraft to collect data from severe storm regions was developed. The design recommended was a 94/183 GHz scanning radiometer with 3 IF channels on either side of the 183.3 GHz water vapor line and a single IF channel for a low loss atmospheric window channel at 94 GHz. The development and construction of the 94/183 GHz scanning radiometer known as the Advanced Microwave Moisture Sounder (AMMS) is presented. The radiometer scans the scene below the aircraft over an angle of + or - 45 degrees with the beamwidth of the scene viewed of approximately 2 degrees at 94 GHz and 1 degree at 183 GHz. The AMMS data collection system consists of a microcomputer used to store the radiometer data on the flight cartridge recorder, operate the stepper motor driven scanner, and collect housekeeping data such as thermistor temperature readings and aircraft time code.

  9. 47 CFR 25.143 - Licensing provisions for the 1.6/2.4 GHz mobile-satellite service and 2 GHz mobile-satellite...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... distress communications. (1) Stations operating in the 1.6/2.4 GHz Mobile-Satellite Service and 2 GHz... 321(b) and 359 of the Communications Act of 1934. Licensees are advised that these provisions give priority to radio communications or signals relating to ships in distress and prohibits a charge for the...

  10. 47 CFR 25.143 - Licensing provisions for the 1.6/2.4 GHz mobile-satellite service and 2 GHz mobile-satellite...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... distress communications. (1) Stations operating in the 1.6/2.4 GHz Mobile-Satellite Service and 2 GHz... 321(b) and 359 of the Communications Act of 1934. Licensees are advised that these provisions give priority to radio communications or signals relating to ships in distress and prohibits a charge for the...

  11. 47 CFR 25.143 - Licensing provisions for the 1.6/2.4 GHz mobile-satellite service and 2 GHz mobile-satellite...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... distress communications. (1) Stations operating in the 1.6/2.4 GHz Mobile-Satellite Service and 2 GHz... 321(b) and 359 of the Communications Act of 1934. Licensees are advised that these provisions give priority to radio communications or signals relating to ships in distress and prohibits a charge for the...

  12. Packaging of microwave integrated circuits operating beyond 100 GHz

    NASA Technical Reports Server (NTRS)

    Samoska, L.; Daniel, E.; Sokolov, V.; Sommerfeldt, S.; Bublitz, J.; Olson, K.; Gilbert, B.; Chow, D.

    2002-01-01

    Several methods of packaging high speed (75-330 GHz) InP HEMT MMIC devices are discussed. Coplanar wirebonding is presented with measured insertion loss of less than 0.5dB and return loss better than -17 dB from DC to 110 GHz. A motherboard/daughterboard packaging scheme is presented which supports minimum loss chains of MMICs using this coplanar wirebonding method. Split waveguide block packaging approaches are presented in G-band (140-220 GHz) with two types of MMIC-waveguide transitions: E-plane probe andantipodal finline.

  13. VizieR Online Data Catalog: 6 & 1.3cm deep VLA obs. toward 58 high-mass SFRs (Rosero+, 2016)

    NASA Astrophysics Data System (ADS)

    Rosero, V.; Hofner, P.; Claussen, M.; Kurtz, S.; Cesaroni, R.; Araya, E. D.; Carrasco-Gonzalez, C.; Rodriguez, L. F.; Menten, K. M.; Wyrowski, F.; Loinard, L.; Ellingsen, S. P.

    2017-01-01

    VLA continuum observations (project codes 10B-124 and 13B-210) at 6 and 1.3cm were made for all sources in the sample. The 6cm observations were made in the A configuration between 2011 June and August, providing a typical angular resolution of about 0.4". The 1.3cm observations were made in the B configuration, acquiring the first half of the data between 2010 November and 2011 May, and the second half between 2013 November and 2014 January. (2 data files).

  14. 47 CFR 15.251 - Operation within the bands 2.9-3.26 GHz, 3.267-3.332 GHz, 3.339-3.3458 GHz, and 3.358-3.6 GHz.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ..., and 3.358-3.6 GHz. (a) Operation under the provisions of this section is limited to automatic vehicle identification systems (AVIS) which use swept frequency techniques for the purpose of automatically identifying transportation vehicles. (b) The field strength anywhere within the frequency range swept by the signal shall not...

  15. 47 CFR 15.251 - Operation within the bands 2.9-3.26 GHz, 3.267-3.332 GHz, 3.339-3.3458 GHz, and 3.358-3.6 GHz.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ..., and 3.358-3.6 GHz. (a) Operation under the provisions of this section is limited to automatic vehicle identification systems (AVIS) which use swept frequency techniques for the purpose of automatically identifying transportation vehicles. (b) The field strength anywhere within the frequency range swept by the signal shall not...

  16. 47 CFR 15.251 - Operation within the bands 2.9-3.26 GHz, 3.267-3.332 GHz, 3.339-3.3458 GHz, and 3.358-3.6 GHz.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ..., and 3.358-3.6 GHz. (a) Operation under the provisions of this section is limited to automatic vehicle identification systems (AVIS) which use swept frequency techniques for the purpose of automatically identifying transportation vehicles. (b) The field strength anywhere within the frequency range swept by the signal shall not...

  17. 47 CFR 15.251 - Operation within the bands 2.9-3.26 GHz, 3.267-3.332 GHz, 3.339-3.3458 GHz, and 3.358-3.6 GHz.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ..., and 3.358-3.6 GHz. (a) Operation under the provisions of this section is limited to automatic vehicle identification systems (AVIS) which use swept frequency techniques for the purpose of automatically identifying transportation vehicles. (b) The field strength anywhere within the frequency range swept by the signal shall not...

  18. Detection of 183 GHz H2O megamaser emission towards NGC 4945

    NASA Astrophysics Data System (ADS)

    Humphreys, E. M. L.; Vlemmings, W. H. T.; Impellizzeri, C. M. V.; Galametz, M.; Olberg, M.; Conway, J. E.; Belitsky, V.; De Breuck, C.

    2016-08-01

    Aims: The aim of this work is to search Seyfert 2 galaxy NGC 4945, a well-known 22 GHz water megamaser galaxy, for H2O (mega)maser emission at 183 GHz. Methods: We used APEX SEPIA Band 5 (an ALMA Band 5 receiver on the APEX telescope) to perform the observations. Results: We detected 183 GHz H2O maser emission towards NGC 4945 with a peak flux density of ~3 Jy near the galactic systemic velocity. The emission spans a velocity range of several hundred km s-1. We estimate an isotropic luminosity of >1000 L⊙, classifying the emission as a megamaser. A comparison of the 183 GHz spectrum with that observed at 22 GHz suggests that 183 GHz emission also arises from the active galactic nucleus (AGN) central engine. If the 183 GHz emission originates from the circumnuclear disk, then we estimate that a redshifted feature at 1084 km s-1 in the spectrum should arise from a distance of 0.022 pc from the supermassive black hole (1.6 × 105 Schwarzschild radii), I.e. closer than the water maser emission previously detected at 22 GHz. This is only the second time 183 GHz maser emission has been detected towards an AGN central engine (the other galaxy being NGC 3079). It is also the strongest extragalactic millimetre/submillimetre water maser detected to date. Conclusions: Strong millimetre 183 GHz H2O maser emission has now been shown to occur in an external galaxy. For NGC 4945, we believe that the maser emission arises, or is dominated by, emission from the AGN central engine. Emission at higher velocity, I.e. for a Keplerian disk closer to the black hole, has been detected at 183 GHz compared with that for the 22 GHz megamaser. This indicates that millimetre/submillimetre H2O masers can indeed be useful for tracing out more of AGN central engine structures and dynamics than previously probed. Future observations using ALMA Band 5 should unequivocally determine the origin of the emission in this and other galaxies.

  19. Theoretical and observational planetary physics

    NASA Technical Reports Server (NTRS)

    Caldwell, J.

    1986-01-01

    This program supports NASA's deep space exploration missions, particularly those to the outer Solar System, and also NASA's Earth-orbital astronomy missions, using ground-based observations, primarily with the NASA IRTF at Mauna Kea, Hawaii, and also with such instruments as the Kitt Peak 4 meter Mayall telescope and the NRAO VLA facility in Socorro, New Mexico. An important component of the program is the physical interpretation of the observations. There were two major scientific discoveries resulting from 8 micrometer observations of Jupiter. The first is that at that wavelength there are two spots, one near each magnetic pole, which are typically the brightest and therefore warmest places on the planet. The effect is clearly due to precipitating high energy magnetospheric particles. A second ground-based discovery is that in 1985, Jupiter exhibited low latitude (+ or - 18 deg.) stratospheric wave structure.

  20. New Limits on Extragalactic Magnetic Fields from Rotation Measures

    NASA Astrophysics Data System (ADS)

    Pshirkov, M. S.; Tinyakov, P. G.; Urban, F. R.

    2016-05-01

    We take advantage of the wealth of rotation measures data contained in the NRAO VLA Sky Survey catalog to derive new, statistically robust, upper limits on the strength of extragalactic magnetic fields. We simulate the extragalactic magnetic field contribution to the rotation measures for a given field strength and correlation length, by assuming that the electron density follows the distribution of Lyman-α clouds. Based on the observation that rotation measures from distant radio sources do not exhibit any trend with redshift, while the extragalactic contribution instead grows with distance, we constrain fields with Jeans' length coherence length to be below 1.7 nG at the 2 σ level, and fields coherent across the entire observable Universe below 0.65 nG. These limits do not depend on the particular origin of these cosmological fields.

  1. Observatories Combine to Crack Open the Crab Nebula

    NASA Image and Video Library

    2017-12-08

    Astronomers have produced a highly detailed image of the Crab Nebula, by combining data from telescopes spanning nearly the entire breadth of the electromagnetic spectrum, from radio waves seen by the Karl G. Jansky Very Large Array (VLA) to the powerful X-ray glow as seen by the orbiting Chandra X-ray Observatory. And, in between that range of wavelengths, the Hubble Space Telescope's crisp visible-light view, and the infrared perspective of the Spitzer Space Telescope. This composite image of the Crab Nebula, a supernova remnant, was assembled by combining data from five telescopes spanning nearly the entire breadth of the electromagnetic spectrum: the Very Large Array, the Spitzer Space Telescope, the Hubble Space Telescope, the XMM-Newton Observatory, and the Chandra X-ray Observatory. Credits: NASA, ESA, NRAO/AUI/NSF and G. Dubner (University of Buenos Aires) #nasagoddard #space #science

  2. The Advanced ACTPol 27/39 GHz Array

    NASA Astrophysics Data System (ADS)

    Simon, S. M.; Beall, J. A.; Cothard, N. F.; Duff, S. M.; Gallardo, P. A.; Ho, S. P.; Hubmayr, J.; Koopman, B. J.; McMahon, J. J.; Nati, F.; Niemack, M. D.; Staggs, S. T.; Vavagiakis, E. M.; Wollack, E. J.

    2018-05-01

    Advanced ACTPol (AdvACT) will observe the temperature and polarization of the cosmic microwave background (CMB) at multiple frequencies and high resolution to place improved constraints on inflation, dark matter, and dark energy. Foregrounds from synchrotron and dust radiation are a source of contamination that must be characterized and removed across a wide range of frequencies. AdvACT will thus observe at five frequency bands from 27 to 230 GHz. We discuss the design of the pixels and feedhorns for the 27/39 GHz multichroic array for AdvACT, which will target the synchrotron radiation that dominates at these frequencies. To gain 35% in mapping speed in the 39 GHz band where the foreground signals are faintest, the pixel number was increased through reducing the pixel diameter to 1.08λ at the lowest frequency, which represents a 22% decrease in size compared to our previously most tightly packed pixels.

  3. The magnetic field structure around protostars. Submillimetre polarimetry of VLA 1623 and S 106-IR/FIR.

    NASA Astrophysics Data System (ADS)

    Holland, W. S.; Greaves, J. S.; Ward-Thompson, D.; Andre, P.

    1996-05-01

    We present 800μm polarization observations of the young low-mass candidate protostar VLA 1623, and of the high-mass young stellar object S 106-IR and its companion candidate protostar S 106-FIR. The polarized emission due to aligned dust grains has been used to derive the magnetic field direction around both sources. In the case of VLA 1623 we find that the field direction is almost exactly perpendicular to the extremely well-collimated CO outflow. This suggests that the large-scale magnetic field in the cloud cannot be responsible for the collimation of the outflow. However, the data may be consistent with a recent magneto-hydrodynamic model where the field follows stream lines through the central plane of a `cored apple' accretion structure. In S 106 our observations indicate a magnetic field along the dust lane connecting the IR/FIR sources, and perpendicular to the bipolar HII region. A model consistent both with these data, and previous Zeeman measurements, is presented, in which the large-scale magnetic field is poloidal, but is either twisted into a toroidal morphology, or highly `pinched-in', in the flattened dust lane. We also present a synopsis of recent submillimetre polarimetry observations of young disk/outflow sources. For high-mass objects, the data are consistent with super-critical collapse models, and there is evidence for varying degrees of field compression. There is also a correlation of net field orientation with source distance, which is explained by the inclusion of varying amounts of ambient cloud material within the telescope beam. For the few low-mass objects for which data is available, the polarization is less affected by ambient material, and there is some evidence that different outflow models may apply in different sources.

  4. 47 CFR 25.250 - Sharing between NGSO MSS Feeder links Earth Stations in the 19.3-19.7 GHz and 29.1-29.5 GHz Bands.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 2 2014-10-01 2014-10-01 false Sharing between NGSO MSS Feeder links Earth....250 Sharing between NGSO MSS Feeder links Earth Stations in the 19.3-19.7 GHz and 29.1-29.5 GHz Bands. (a) NGSO MSS applicants shall be licensed to operate in the 29.1-29.5 GHz band for Earth-to-space...

  5. 47 CFR 25.250 - Sharing between NGSO MSS Feeder links Earth Stations in the 19.3-19.7 GHz and 29.1-29.5 GHz Bands.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 2 2013-10-01 2013-10-01 false Sharing between NGSO MSS Feeder links Earth....250 Sharing between NGSO MSS Feeder links Earth Stations in the 19.3-19.7 GHz and 29.1-29.5 GHz Bands. (a) NGSO MSS applicants shall be licensed to operate in the 29.1-29.5 GHz band for Earth-to-space...

  6. 47 CFR 25.250 - Sharing between NGSO MSS Feeder links Earth Stations in the 19.3-19.7 GHz and 29.1-29.5 GHz Bands.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 2 2012-10-01 2012-10-01 false Sharing between NGSO MSS Feeder links Earth....250 Sharing between NGSO MSS Feeder links Earth Stations in the 19.3-19.7 GHz and 29.1-29.5 GHz Bands. (a) NGSO MSS applicants shall be licensed to operate in the 29.1-29.5 GHz band for Earth-to-space...

  7. 47 CFR 25.250 - Sharing between NGSO MSS Feeder links Earth Stations in the 19.3-19.7 GHz and 29.1-29.5 GHz Bands.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Sharing between NGSO MSS Feeder links Earth....250 Sharing between NGSO MSS Feeder links Earth Stations in the 19.3-19.7 GHz and 29.1-29.5 GHz Bands. (a) NGSO MSS applicants shall be licensed to operate in the 29.1-29.5 GHz band for Earth-to-space...

  8. 47 CFR 25.250 - Sharing between NGSO MSS Feeder links Earth Stations in the 19.3-19.7 GHz and 29.1-29.5 GHz Bands.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 2 2011-10-01 2011-10-01 false Sharing between NGSO MSS Feeder links Earth....250 Sharing between NGSO MSS Feeder links Earth Stations in the 19.3-19.7 GHz and 29.1-29.5 GHz Bands. (a) NGSO MSS applicants shall be licensed to operate in the 29.1-29.5 GHz band for Earth-to-space...

  9. Calibration of a 35-GHz Airborne Cloud Radar: Lessons Learned and Intercomparison with a 94-GHz Airborne Cloud Radar

    NASA Astrophysics Data System (ADS)

    Ewald, Florian; Gross, Silke; Hagen, Martin; Hirsch, Lutz; Delanoë, Julien

    2017-04-01

    Clouds play an important role in the climate system since they have a profound influence on Earth's radiation budget and the water cycle. Uncertainties associated with their spatial characteristics as well as their microphysics still introduce large uncertainties in climate change predictions. In recent years, our understanding of the inner workings of clouds has been greatly advanced by the deployment of cloud profiling microwave radars from ground as well as from space like CloudSat or the upcoming EarthCARE satellite mission. In order to validate and assess the limitations of these spaceborne missions, a well-calibrated, airborne cloud radar with known sensitivity to clouds is indispensable. Within this context, the German research aircraft HALO was equipped with the high-power (30kW peak power) cloud radar operating at 35 GHz and a high spectral resolution lidar (HSRL) system at 532 nm. During a number of flight experiments over Europe and over the tropical and extra-tropical North-Atlantic, several radar calibration efforts have been made using the ocean surface backscatter. Moreover, CloudSat underflights have been conducted to compare the radar reflectivity and measurement sensitivity between the air- and spaceborne instruments. Additionally, the influence of different radar wavelengths was explored with joint flights of HALO and the French Falcon 20 aircraft, which was equipped with the RASTA cloud radar at 94 GHz and a HSRL at 355 nm. In this presentation, we will give an overview of lessons learned from different calibration strategies using the ocean surface backscatter. Additional measurements of signal linearity and signal saturation will complement this characterization. Furthermore, we will focus on the coordinated airborne measurements regarding the different sensitivity for clouds at 35 GHz and 94 GHz. By using the highly sensitive lidar signals, we show if the high-power cloud radar at 35 GHz can be used to validate spaceborne and airborne

  10. Exploring the engines of molecular outflows. Radio continuum and H_2_O maser observations.

    NASA Astrophysics Data System (ADS)

    Tofani, G.; Felli, M.; Taylor, G. B.; Hunter, T. R.

    1995-09-01

    We present A-configuration VLA observations of the 22GHz H_2_O maser line and 8.4GHz continuum emission of 22 selected CO bipolar outflows associated with water masers. These observations allow us to study the region within 10^4^AU of the engine powering the outflow. The positions of the maser spots are compared with those of ultra-compact (UC) continuum sources found in our observations, with IRAS data and with data from the literature on the molecular outflows. Weak unresolved continuum sources are found in several cases associated with the maser. Most probably they represent the ionized envelope surrounding the young stellar object (YSO) which powers the maser and the outflow. These weak radio continuum sources are not necessarily associated with the IRAS sources, which are more representative of the global emission from the star forming region. A comparison of the velocity pattern of the CO outflow with those of the maser spots detected with the VLA is also made. Asymmetries in the H_2_O velocities are found on opposite sides of the YSO, suggesting that the outflow acceleration begins from the YSO itself. In a few cases we find evidence for two outflows in different evolutionary stages. The H_2_O masers in these sources are always found at the centre of the younger outflow. The degree of variability of each maser is derived from single dish observations obtained with the Medicina radiotelescope before and after the VLA observations. Velocity drifts of some features are interpreted as acceleration of the maser.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cotton, W. D.; Mason, B. S.; Dicker, S. R.

    This paper presents new observations of the active galactic nuclei M87 and Hydra A at 90 GHz made with the MUSTANG array on the Green Bank Telescope at 8.''5 resolution. A spectral analysis is performed combining this new data and archival VLA{sup 7}The VLA is operated by the National Radio Astronomy Observatory, which is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc. data on these objects at longer wavelengths. This analysis can detect variations in spectral index and curvature expected from energy losses in the radiating particles. M87 shows only weak evidence formore » steepening of the spectrum along the jet suggesting either re-acceleration of the relativistic particles in the jet or insufficient losses to affect the spectrum at 90 GHz. The jets in Hydra A show strong steepening as they move from the nucleus suggesting unbalanced losses of the higher energy relativistic particles. The difference between these two sources may be accounted for by the lengths over which the jets are observable, 2 kpc for M87 and 45 kpc for Hydra A.« less

  12. Ka-band (32 GHz) allocations for deep space

    NASA Technical Reports Server (NTRS)

    Degroot, N. F.

    1987-01-01

    At the 1979 World Administrative Conference, two new bands were allocated for deep space telecommunications: 31.8 to 32.3 GHz, space-to-Earth, and 34.2 to 34.7 GHz, Earth-to-space. These bands provide opportunity for further development of the Deep Space Network and its support of deep space research. The history of the process by which JPL/NASA developed the rationale, technical background, and statement of requirement for the bands are discussed. Based on this work, United States proposals to the conference included the bands, and subsequent U.S. and NASA participation in the conference led to successful allocations for deep space telecommunications in the 30 GHz region of the spectrum. A detailed description of the allocations is included.

  13. A very deep IRAS survey. III - VLA observations

    NASA Astrophysics Data System (ADS)

    Hacking, Perry; Condon, J. J.; Houck, J. R.; Beichman, C. A.

    1989-04-01

    The 60-micron fluxes and positions of sources (primarily starburst galaxies) found in a deep IRAS survey by Hacking and Houck (1987) are compared with 1.49 HGz maps made by the Very Large Array. The radio results are consistent with radio measurements of brighter IRAS galaxies and provide evidence that infrared cirrus does not contaminate the 60-micron sample. The flux-independent ratio of infrared to radio flux densities implies that the 1.4 GHz luminosity function for spiral galaxies is evolving at less than (1 + z) to the power of 4 relative to the 60-micron luminosity function.

  14. 146-GHz millimeter-wave radio-over-fiber photonic wireless transmission system.

    PubMed

    Fice, M J; Rouvalis, E; van Dijk, F; Accard, A; Lelarge, F; Renaud, C C; Carpintero, G; Seeds, A J

    2012-01-16

    We report the experimental implementation of a wireless transmission system with a 146-GHz carrier frequency which is generated by optical heterodyning the two modes from a monolithically integrated quantum dash dual-DFB source. The monolithic structure of the device and the inherent low noise characteristics of quantum dash gain material allow us to demonstrate the transmission of a 1 Gbps ON-OFF keyed data signal with the two wavelengths in a free-running state at 146-GHz carrier wave frequency. The tuning range of the device fully covers the W-band (75 - 110 GHz) and the F-band (90 - 140 GHz).

  15. The 30-GHz monolithic receive module

    NASA Technical Reports Server (NTRS)

    Sokolov, V.; Geddes, J.; Bauhahn, P.

    1983-01-01

    Key requirements for a 30 GHz GaAs monolithic receive module for spaceborne communication antenna feed array applications include an overall receive module noise figure of 5 dB, a 30 dB RF to IF gain with six levels of intermediate gain control, a five-bit phase shifter, and a maximum power consumption of 250 mW. The RF designs for each of the four submodules (low noise amplifier, some gain control, phase shifter, and RF to IF sub-module) are presented. Except for the phase shifter, high frequency, low noise FETs with sub-half micron gate lengths are employed in the submodules. For the gain control, a two stage dual gate FET amplifier is used. The phase shifter is of the passive switched line type and consists of 5-bits. It uses relatively large gate width FETs (with zero drain to source bias) as the switching elements. A 20 GHz local oscillator buffer amplifier, a FET compatible balanced mixer, and a 5-8 GHz IF amplifier constitute the RF/IF sub-module. Phase shifter fabrication using ion implantation and a self-aligned gate technique is described. Preliminary RF results obtained on such phase shifters are included.

  16. LITTLE THINGS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hunter, Deidre A.; Herrmann, Kimberly A.; Johnson, Megan

    We present LITTLE THINGS (Local Irregulars That Trace Luminosity Extremes, The H I Nearby Galaxy Survey), which is aimed at determining what drives star formation in dwarf galaxies. This is a multi-wavelength survey of 37 dwarf irregular and 4 blue compact dwarf galaxies that is centered around H I-line data obtained with the National Radio Astronomy Observatory (NRAO) Very Large Array (VLA). The H I-line data are characterized by high sensitivity ({<=}1.1 mJy beam{sup -1} per channel), high spectral resolution ({<=}2.6 km s{sup -1}), and high angular resolution ({approx}6''). The LITTLE THINGS sample contains dwarf galaxies that are relatively nearbymore » ({<=}10.3 Mpc; 6'' is {<=}300 pc), that were known to contain atomic hydrogen, the fuel for star formation, and that cover a large range in dwarf galactic properties. We describe our VLA data acquisition, calibration, and mapping procedures, as well as H I map characteristics, and show channel maps, moment maps, velocity-flux profiles, and surface gas density profiles. In addition to the H I data we have GALEX UV and ground-based UBV and H{alpha} images for most of the galaxies, and JHK images for some. Spitzer mid-IR images are available for many of the galaxies as well. These data sets are available online.« less

  17. 47 CFR 15.251 - Operation within the bands 2.9-3.26 GHz, 3.267-3.332 GHz, 3.339-3.3458 GHz, and 3.358-3.6 GHz.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... exceed 3000 microvolts/meter/MHz at 3 meters in any direction. Further, an AVIS, when in its operating position, shall not produce a field strength greater than 400 microvolts/meter/MHz at 3 meters in any... maximum of 100 microvolts/meter/MHz at 3 meters, measured from 30 MHz to 20 GHz for the complete system...

  18. The 20 GHz GaAs monolithic power amplifier module development

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The development of a 20 GHz GaAs FET monlithic power amplifier module for advanced communication applications is described. Four-way power combing of four 0.6 W amplifier modules is used as the baseline approach. For this purpose, a monolithic four-way traveling-wave power divider/combiner was developed. Over a 20 GHz bandwidth (10 to 30 GHz), an insertion loss of no more than 1.2 dB was measured for a pair of back-to-back connected divider/combiners. Isolation between output ports is better than 20 dB, and VSWRs are better than 21:1. A distributed amplifier with six 300 micron gate width FETs and gate and drain transmission line tapers has been designed, fabricated, and evaluated for use as an 0.6 W module. This amplifier has achieved state-of-the-art results of 0.5 W output power with at least 4 dB gain across the entire 2 to 21 GHz frequency range. An output power of 2 W was achieved at a measurement frequency of 18 GHz when four distributed amplifiers were power-combined using a pair of traveling-wave divider/combiners. Another approach is the direct common-source cascading of three power FET stages. An output power of up to 2W with 12 dB gain and 20% power-added efficiency has been achieved with this approach (at 17 GHz). The linear gain was 14 dB at 1 W output. The first two stages of the three-stage amplifier have achieved an output power of 1.6 W with 9 dB gain and 26% power-added efficiency at 16 GHz.

  19. VLA Observations of the AGILE Cygnus Region Source Field Following its May 2008 Re-brightening in Gamma-rays, II: An Update

    NASA Astrophysics Data System (ADS)

    Cheung, C. C.

    2008-06-01

    The AGILE team (Chen et al. ATel #1585) has detected a new flare (occurring on June 20/21, 2008) from AGL2021+4029, the variable gamma-ray source in the Cygnus region. The error circles of this new June flare and that of the newly reported position of the persistent source, both unfortunately, lie outside of the r~0.5 deg field we targeted with the VLA (ATel #1584) following the May 2008 rebrightening (Giuliani et al.

  20. A VLA 3.6 centimeter survey of N-type carbon stars

    NASA Technical Reports Server (NTRS)

    Luttermoser, Donald G.; Brown, Alexander

    1992-01-01

    The results are presented of a VLA-continuum survey of 7 N-type carbon stars at 3.6 cm. Evidence exists for hot plasma around such stars; the IUE satellite detected emission lines of singly ionized metals in the optically brightest carbon stars, which in solar-type stars indicate the existence of a chromosphere. In the past, these emission lines were used to constrain the lower portion of the archetypical chromospheric model of N-type carbon stars, that of TX Psc. Five of the survey stars are semiregular (1 SRa and 4 SRb) variables and two are irregular (Lb) variables. Upper limits of about 0.07 mJy are set of the SRb and Lb variables and the lone SRa (V Hya) was detected with a flux of 0.22 mJy. The upper limits for the six stars that are not detected indicate that the temperature in their winds is less than 10,000 K. Various scenarios for the emission from V Hya are proposed, and it is suggested that the radio continuum is shock-related (either due to pulsation or the suspected bipolar jet) and not due to a supposed accretion disk around an unseen companion.

  1. A Study of Dielectric Properties of Proteinuria between 0.2 GHz and 50 GHz

    PubMed Central

    Mun, Peck Shen; Ting, Hua Nong; Ong, Teng Aik; Wong, Chew Ming; Ng, Kwan Hong; Chong, Yip Boon

    2015-01-01

    This paper investigates the dielectric properties of urine in normal subjects and subjects with chronic kidney disease (CKD) at microwave frequency of between 0.2 GHz and 50 GHz. The measurements were conducted using an open-ended coaxial probe at room temperature (25°C), at 30°C and at human body temperature (37°C). There were statistically significant differences in the dielectric properties of the CKD subjects compared to those of the normal subjects. Statistically significant differences in dielectric properties were observed across the temperatures for normal subjects and CKD subjects. Pearson correlation test showed the significant correlation between proteinuria and dielectric properties. The experimental data closely matched the single-pole Debye model. The relaxation dispersion and relaxation time increased with the proteinuria level, while decreasing with the temperature. As for static conductivity, it increased with proteinuria level and temperature. PMID:26066351

  2. Multifrequency VLA observations of PKS 0745 - 191 - The archetypal 'cooling flow' radio source?

    NASA Technical Reports Server (NTRS)

    Baum, S. A.; O'Dea, C. P.

    1991-01-01

    Ninety-, 20-, 6- and 2-cm VLA observations of the high-radio-luminosity cooling-flow radio source PKS 0745 - 191 are presented. The radio source was found to have a core with a very steep spectrum (alpha is approximately -1.5) and diffuse emission with an even steeper spectrum (alpha is approximately -1.5 to -2.3) without clear indications of the jets, hotspots, or double lobes found in the other radio sources of comparable luminosity. It is inferred that the energy to power the radio source comes from the central engine, but the source's structure may be heavily influenced by the past history of the galaxy and the inflowing intracluster medium. It is shown that, while the radio source is energetically unimportant for the cluster as a whole, it is important on the scale of the cooling flow. The mere existence of cosmic rays and magnetic fields within a substantial fraction of the volume inside the cooling radius has important consequences for cooling-flow models.

  3. First Space VLBI Observations and Images Using the VLBA and VSOP

    NASA Astrophysics Data System (ADS)

    Romney, J. D.; Benson, J. M.; Claussen, M. J.; Desai, K. M.; Flatters, C.; Mioduszewski, A. J.; Ulvestad, J. S.

    1997-12-01

    The National Radio Astronomy Observatory (NRAO) is a participant in the VSOP Space VLBI mission, an international collaboration led by Japan's Institute of Space and Astronautical Science. NRAO has committed up to 30% of scheduled observing time on the Very Long Baseline Array (VLBA), and corresponding correlation resources, to Space VLBI observations. The NRAO Space VLBI Project, funded by NASA, has been working for several years to complete the necessary enhancements to the VLBA correlator and the AIPS image processing system. These developments were completed by the time of the successful launch of the VSOP mission's Halca spacecraft on 1997 February 12. As part of the in-orbit checkout phase, the first Space VLBI fringes from a VLBA observation were detected on 1997 June 12, and the VSOP mission's first images, in both the 1.6- and 5-GHz bands, were obtained shortly thereafter. In-orbit test observations continued through early September, with the first General Observing Time (GOT) scientific observations beginning in July. Through mid-October, a total of 20 Space VLBI observations, comprising 190 hours, had been completed at the VLBA correlator. This paper reviews the unique features of correlation and imaging of Space VLBI observations. These include, for correlation, the ephemeris for an orbiting VLBI ``station'' which is not fixed on the surface of the earth, and the requirement to close the loop on the phase-transfer process from a frequency standard on the ground to the spacecraft. Images from a number of early tests and scientific observations are presented. NRAO's user-support program, providing expert assistance in data analysis to Space VLBI observers, is also described.

  4. VLA Ammonia Observations of IRAS 16253-2429: A Very Young and Low Mass Protostellar System

    NASA Technical Reports Server (NTRS)

    Wiseman, Jennifer J.

    2011-01-01

    IRAS l6253-2429. the source of the Wasp-Waist Nebula seen in Spitzer IRAC images, is an isolated very low luminosity ("VeLLO") Class 0 protostar in the nearby rho Ophiuchi cloud. We present VLA ammonia mapping observations of the dense gas envelope feeding the central core accreting system. We find a flattened envelope perpendicular to the outflow axis, and gas cavities that appear to cradle the outflow lobes as though carved out by the flow and associated (apparently precessing) jet. Based on the NH3 (1,1) and (2,2) emission distribution, we derive the mass, velocity fields and temperature distribution for the envelope. We discuss the combined evidence for this source as possibly one of the youngest and lowest mass sources in formation yet known.

  5. 0.5-45GHz Simultaneous Transmit and Receive (STAR) Antenna System for Electronic Attack

    DTIC Science & Technology

    2016-03-17

    0.5-45GHz Simultaneous Transmit and Receive (STAR) Antenna System for Electronic Attack Mohamed Elmansouri, Prathap Valaleprasannakumar, Elie...Colorado, US, 80309 Abstract: A shared antenna aperture for simultaneous transmit and receive (STAR) operating from 0.5 to 45GHz with isolation...50dB over the entire band is discussed. The co-located antenna aperture system is designed across 4 overlapping bands: 0.5-2.5GHz, 2-7GHz, 6-19GHz

  6. A 77-118 GHz RESONANCE-FREE SEPTUM POLARIZER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Yen-Lin; Chiueh, Tzihong; Teng, Hsiao-Feng, E-mail: chiuehth@phys.ntu.edu.tw

    2014-03-01

    Measurements of polarized radiation often reveal specific physical properties of emission sources, such as the strengths and orientations of magnetic fields offered by synchrotron radiation and Zeeman line emission, and the electron density distribution caused by free-free emission. Polarization-capable, millimeter/sub-millimeter telescopes are normally equipped with either septum polarizers or ortho-mode transducers (OMT) to detect polarized radiation. Though the septum polarizer is limited to a significantly narrower bandwidth than the OMT, it possesses advantageous features unparalleled by the OMT when it comes to determining astronomical polarization measurements. We design an extremely wide-band circular waveguide septum polarizer, covering 42% bandwidth, from 77more » GHz to 118 GHz, without any undesired resonance, challenging the conventional bandwidth limit. Stokes parameters, constructed from the measured data between 77 GHz and 115 GHz, show that the leakage from I to Q and U is below ±2%, and the Q – U mutual leakage is below ±1%. Such a performance is comparable to other modern polarizers, but the bandwidth of this polarizer can be at least twice as wide. This extremely wide-band design removes the major weakness of the septum polarizer and opens up a new window for future astronomical polarization measurements.« less

  7. A 20-GHz IMPATT transmitter

    NASA Technical Reports Server (NTRS)

    Chan, J. L.; Sun, C.

    1983-01-01

    The engineering development of a solid state transmitter amplifier operating in the 20 GHz frequency band. The development effort involved a variety of disciplines including IMPATT device development, circulator design, simple and multiple diode circuits designs, and amplifier integration and test.

  8. The 20 GHz spacecraft FET solid state transmitter

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The engineering development of a solid state transmitter amplifier operating in the 20 GHz frequency band using GaAs field effect transistors (FETs) was detailed. The major efforts include GaAs FET device development, single-ended amplifier stage, balanced amplifier stage, cascaded stage and radial combiner designs, and amplifier integration and test. A multistage GaAs FET amplifier capable of 8.2 W CW output over the 17.9 to 19.1 GHz frequency band was developed. The GaAs FET devices developed represent state of the art FET power device technology. Further device improvements are necessary to increase the bandwidth to 2.5 GHz, improve dc-to-RF efficiency, and increase power capability at the device level. Higher power devices will simplify the amplifier combining scheme, reducing the size and weight of the overall amplifier.

  9. THINGS: THE H I NEARBY GALAXY SURVEY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walter, Fabian; Bigiel, Frank; Leroy, Adam

    2008-12-15

    We present 'The H I Nearby Galaxy Survey (THINGS)', a high spectral ({<=}5.2 km s{sup -1}) and spatial ({approx}6'') resolution survey of H I emission in 34 nearby galaxies obtained using the NRAO Very Large Array (VLA). The overarching scientific goal of THINGS is to investigate fundamental characteristics of the interstellar medium (ISM) related to galaxy morphology, star formation, and mass distribution across the Hubble sequence. Unique characteristics of the THINGS database are the homogeneous sensitivity as well as spatial and velocity resolution of the H I data, which is at the limit of what can be achieved with themore » VLA for a significant number of galaxies. A sample of 34 objects at distances 2 {approx}< D {approx}< 15 Mpc (resulting in linear resolutions of {approx}100 to 500 pc) are targeted in THINGS, covering a wide range of star formation rates ({approx}10{sup -3} to 6 M{sub sun} yr{sup -1}), total H I masses M{sub HI} (0.01 to 14 x 10{sup 9} M{sub sun}), absolute luminosities M{sub B} (-11.5 to -21.7 mag), and metallicities (7.5 to 9.2 in units of 12+log[O/H]). We describe the setup of the VLA observations, the data reduction procedures, and the creation of the final THINGS data products. We present an atlas of the integrated H I maps, the velocity fields, the second moment (velocity dispersion) maps and individual channel maps of each THINGS galaxy. The THINGS data products are made publicly available through a dedicated webpage. Accompanying THINGS papers (in this issue of the Astronomical Journal) address issues such as the small-scale structure of the ISM, the (dark) matter distribution in THINGS galaxies, and the processes leading to star formation.« less

  10. Low-cost 20-22 GHz MIC active receiver/radiometer

    NASA Technical Reports Server (NTRS)

    Mollenkopf, Steven; Katehi, Linda P. B.; Rebeiz, Gabriel M.

    1995-01-01

    A microwave integrated circuit active receiver is built and tested at 19-25 GHz. The receiver consists of a planar CPW-fed double folded-slot antenna coupled to a six-stage MESFET (metal semiconductor field effect transistors) amplifier and followed by a planar Schottky-diode detector. The folded-slot antenna on a GaAs half-space results in a wide frequency bandwidth suitable for MMIC amplifiers. The measured system performance show a video responsivity close to 1 GV/W at 20 GHz with a 3-dB bandwidth of 1500 MHz. A novel method which uses the planar video detector after the amplifier stages as an RF (radio frequency) mixer is used to measure the noise-figure of the direct detection radiometer. The system noise figure is 4.8 dB at 22 GHz. The radiometer sensitivity to a hot/cold load is 3.8 mu V/K. The measured antenna patterns show a 90% Gaussicity at 20-22 GHz. The active MIC receiver can be integrated monolithically for low-cost applications and is well suited for millimeter-wave linear imaging arrays.

  11. Mermin inequalities for GHZ contradictions in many-qutrit systems

    NASA Astrophysics Data System (ADS)

    Lawrence, Walter

    In view of recent experimental interest in multi-qutrit entanglement properties, we provide here new Mermin inequalities for use in experimental tests of many-qutrit GHZ contradictions, first predicted only recently (2013). Mermin inequalities refer here to Bell-like inequalities in which the quantum predictions are not probabilistic, thus elevating hidden variables to the status of EPR elements of reality. Earlier Bell inequalities for qutrits predate the discovery of GHZ contradictions, are based on non-concurrent observable sets, and hence cannot establish GHZ contradictions. The current Mermin inequalities are derived from those concurrent observable sets which produce GHZ contradictions, with the following results: (i) There is an operator M defined for every N >= 4 , built on two measurement bases, whose quantum eigenvalue grows as 2N, maximum classical value more slowly (1 .879N), with quantum to classical ratio being never less than 1.39, and (ii) For N = 3 , there is an M3, built on three local measurement bases, whose quantum to classical ratio is 3/2.

  12. A 250 GHz Gyrotron with a 3 GHz Tuning Bandwidth for Dynamic Nuclear Polarization

    PubMed Central

    Barnes, Alexander B.; Nanni, Emilio A.; Herzfeld, Judith; Griffin, Robert G.; Temkin, Richard J.

    2012-01-01

    We describe the design and implementation of a novel tunable 250 GHz gyrotron oscillator with >10 W output power over most of a 3 GHz band and >35 W peak power. The tuning bandwidth and power are sufficient to generate a >1 MHz nutation frequency across the entire nitroxide EPR lineshape for cross effect DNP, as well as to excite solid effect transitions utilizing other radicals, without the need for sweeping the NMR magnetic field. Substantially improved tunability is achieved by implementing a long (23 mm) interaction cavity that can excite higher order axial modes by changing either the magnetic field of the gyrotron or the cathode potential. This interaction cavity excites the rotating TE5,2,q mode, and an internal mode converter outputs a high-quality microwave beam with >94% Gaussian content. The gyrotron was integrated into a DNP spectrometer, resulting in a measured DNP enhancement of 54 on the membrane protein bacteriorhodopsin. PMID:22743211

  13. Coma cluster ultradiffuse galaxies are not standard radio galaxies

    NASA Astrophysics Data System (ADS)

    Struble, Mitchell F.

    2018-02-01

    Matching members in the Coma cluster catalogue of ultradiffuse galaxies (UDGs) from SUBARU imaging with a very deep radio continuum survey source catalogue of the cluster using the Karl G. Jansky Very Large Array (VLA) within a rectangular region of ∼1.19 deg2 centred on the cluster core reveals matches consistent with random. An overlapping set of 470 UDGs and 696 VLA radio sources in this rectangular area finds 33 matches within a separation of 25 arcsec; dividing the sample into bins with separations bounded by 5, 10, 20 and 25 arcsec finds 1, 4, 17 and 11 matches. An analytical model estimate, based on the Poisson probability distribution, of the number of randomly expected matches within these same separation bounds is 1.7, 4.9, 19.4 and 14.2, each, respectively, consistent with the 95 per cent Poisson confidence intervals of the observed values. Dividing the data into five clustercentric annuli of 0.1° and into the four separation bins, finds the same result. This random match of UDGs with VLA sources implies that UDGs are not radio galaxies by the standard definition. Those VLA sources having integrated flux >1 mJy at 1.4 GHz in Miller, Hornschemeier and Mobasher without SDSS galaxy matches are consistent with the known surface density of background radio sources. We briefly explore the possibility that some unresolved VLA sources near UDGs could be young, compact, bright, supernova remnants of Type Ia events, possibly in the intracluster volume.

  14. RADIO OBSERVATIONS OF THE STAR FORMATION ACTIVITIES IN THE NGC 2024 FIR 4 REGION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Minho; Kang, Miju; Lee, Jeong-Eun, E-mail: minho@kasi.re.kr

    Star formation activities in the NGC 2024 FIR 4 region were studied by imaging centimeter continuum sources and water maser sources using several archival data sets from the Very Large Array. The continuum source VLA 9 is elongated in the northwest–southeast direction, consistent with the FIR 4 bipolar outflow axis, and has a flat spectrum in the 6.2–3.6 cm interval. The three water maser spots associated with FIR 4 are also distributed along the outflow axis. One of the spots is located close to VLA 9, and another one is close to an X-ray source. Examinations of the positions ofmore » compact objects in this region suggest that the FIR 4 cloud core contains a single low-mass protostar. VLA 9 is the best indicator of the protostellar position. VLA 9 may be a radio thermal jet driven by this protostar, and it is unlikely that FIR 4 contains a high-mass young stellar object (YSO). A methanol 6.7 GHz maser source is located close to VLA 9, at a distance of about 100 AU. The FIR 4 protostar must be responsible for the methanol maser action, which suggests that methanol class II masers are not necessarily excited by high-mass YSOs. Also discussed are properties of other centimeter continuum sources in the field of view and the water masers associated with FIR 6n. Some of the continuum sources are radio thermal jets, and some are magnetically active young stars.« less

  15. 47 CFR 25.225 - Geographic Service Requirements for 17/24 GHz Broadcasting Satellite Service.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Requirements for 17/24 GHz Broadcasting Satellite Service. (a) Each operator of a 17/24 GHz BSS space station... GHz BSS space station subject to paragraph (a) of this section must design and configure its space... operator of a 17/24 GHz BSS space station that is used to provide video programming directly to consumers...

  16. 47 CFR 25.225 - Geographic Service Requirements for 17/24 GHz Broadcasting Satellite Service.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Requirements for 17/24 GHz Broadcasting Satellite Service. (a) Each operator of a 17/24 GHz BSS space station... GHz BSS space station subject to paragraph (a) of this section must design and configure its space... operator of a 17/24 GHz BSS space station that is used to provide video programming directly to consumers...

  17. 47 CFR 25.225 - Geographic Service Requirements for 17/24 GHz Broadcasting Satellite Service.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Requirements for 17/24 GHz Broadcasting Satellite Service. (a) Each operator of a 17/24 GHz BSS space station... GHz BSS space station subject to paragraph (a) of this section must design and configure its space... operator of a 17/24 GHz BSS space station that is used to provide video programming directly to consumers...

  18. 47 CFR 25.225 - Geographic Service Requirements for 17/24 GHz Broadcasting Satellite Service.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Requirements for 17/24 GHz Broadcasting Satellite Service. (a) Each operator of a 17/24 GHz BSS space station... GHz BSS space station subject to paragraph (a) of this section must design and configure its space... operator of a 17/24 GHz BSS space station that is used to provide video programming directly to consumers...

  19. 47 CFR 25.225 - Geographic Service Requirements for 17/24 GHz Broadcasting Satellite Service.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Requirements for 17/24 GHz Broadcasting Satellite Service. (a) Each operator of a 17/24 GHz BSS space station... GHz BSS space station subject to paragraph (a) of this section must design and configure its space... operator of a 17/24 GHz BSS space station that is used to provide video programming directly to consumers...

  20. Karl G. Jansky very large array observations of cold dust and molecular gas in starbursting quasar host galaxies at z ∼ 4.5

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wagg, J.; Carilli, C. L.; Lentati, L.

    2014-03-10

    We present Karl G. Jansky Very Large Array (VLA) observations of 44 GHz continuum and CO J = 2-1 line emission in BRI 1202–0725 at z = 4.7 (a starburst galaxy and quasar pair) and BRI 1335–0417 at z = 4.4 (also hosting a quasar). With the full 8 GHz bandwidth capabilities of the upgraded VLA, we study the (rest-frame) 250 GHz thermal dust continuum emission for the first time along with the cold molecular gas traced by the low-J CO line emission. The measured CO J = 2-1 line luminosities of BRI 1202–0725 are L{sub CO}{sup ′}=(8.7±0.8)×10{sup 10} Kmore » km s{sup –1} pc{sup 2} and L{sub CO}{sup ′}=(6.0 ± 0.5)×10{sup 10} K km s{sup –1} pc{sup 2} for the submillimeter galaxy (SMG) and quasar, respectively, which are equal to previous measurements of the CO J = 5-4 line luminosities implying thermalized line emission, and we estimate a combined cold molecular gas mass of ∼9×10{sup 10} M {sub ☉}. In BRI 1335–0417 we measure L{sub CO}{sup ′}=(7.3±0.6)×10{sup 10} K km s{sup –1} pc{sup 2}. We detect continuum emission in the SMG BRI 1202–0725 North (S {sub 44} {sub GHz} = 51 ± 6 μJy), while the quasar is detected with S {sub 44} {sub GHz} = 24 ± 6 μJy and in BRI 1335–0417 we measure S {sub 44} {sub GHz} = 40 ± 7 μJy. Combining our continuum observations with previous data at (rest-frame) far-infrared and centimeter wavelengths, we fit three-component models in order to estimate the star formation rates. This spectral energy distribution fitting suggests that the dominant contribution to the observed 44 GHz continuum is thermal dust emission, while either thermal free-free or synchrotron emission contributes less than 30%.« less

  1. Creating Sister Cities: An Exchange Across Hemispheres

    NASA Astrophysics Data System (ADS)

    Adams, M. T.; Cabezon, S. A.; Hardy, E.; Harrison, R. J.

    2008-06-01

    Sponsored by Associated Universities, Inc. (AUI) and the National Radio Astronomy Observatory (NRAO), this project creates a cultural and educational exchange program between communities in South and North America, linking San Pedro de Atacama in Chile and Magdalena, New Mexico in the United States. Both communities have similar demographics, are in relatively undeveloped regions of high-elevation desert, and are located near major international radio astronomy research facilities. The Atacama Large Millimeter/submillimeter Array (ALMA) is just 40 km east of San Pedro; the Very Large Array (VLA) is just 40 km west of Magdalena. In February 2007, the Mayor of San Pedro and two teachers visited Magdalena for two weeks; in July 2007 three teachers from Magdalena will visit San Pedro. These visits enable the communities to lay the foundation for a permanent, unique partnership. The teachers are sharing expertise and teaching methodologies for physics and astronomy. In addition to creating science education opportunities, this project offers students linguistic and cultural connections. The town of San Pedro, Chile, hosts nearly 100,000 tourists per year, and English language skills are highly valued by local students. Through exchanges enabled by email and distance conferencing, San Pedro and Magdalena students will improve English and Spanish language skills while teaching each other about science and their respective cultures. This poster describes the AUI/NRAO Sister Cities program, including the challenges of cross-cultural communication and the rewards of interpersonal exchanges between continents and cultures.

  2. 77 FR 45558 - 4.9 GHz Band

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-01

    ...The Commission allocated the 4940-4990 MHz (4.9 GHz) band in 2002 for fixed and mobile use and dedicated the band for public safety broadband communications. In the ten years since, the band has gone underutilized. The purpose of these proposed rules is to invigorate and maximize use of the 4.9 GHz band and attract more users while improving spectrum efficiency. The Commission seeks comment on formal coordination requirements, expanded eligibility, how the band can complement the 700 MHz public safety broadband network, technical rule changes, aeronautical mobile operations, interoperability standards, and deployment reporting.

  3. 324GHz CMOS VCO Using Linear Superimposition Technique

    NASA Technical Reports Server (NTRS)

    Daquan, Huang; LaRocca, Tim R.; Samoska, Lorene A; Fung, Andy; Chang, Frank

    2007-01-01

    Terahertz (frequencies ranged from 300GHz to 3THz) imaging and spectroscopic systems have drawn increasing attention recently due to their unique capabilities in detecting and possibly analyzing concealed objects. The generation of terahertz signals is nonetheless nontrivial and traditionally accomplished by using either free-electron radiation, optical lasers, Gunn diodes or fundamental oscillation by using III-V based HBT/HEMT technology[1-3]... We have substantially extended the operation range of deep-scaled CMOS by using a linear superimposition method, in which we have realized a 324GHz VCO in 90nm digital CMOS with 4GHz tuning range under 1V supply voltage. This may also pave the way for ultra-high data rate wireless communications beyond that of IEEE 802.15.3c and reach data rates comparable to that of fiber optical communications, such as OC768 (40Gbps) and beyond.

  4. Beyond G-band : a 235 GHz InP MMIC amplifier

    NASA Technical Reports Server (NTRS)

    Dawson, Douglas; Samoska, Lorene; Fung, A. K.; Lee, Karen; Lai, Richard; Grundbacher, Ronald; Liu, Po-Hsin; Raja, Rohit

    2005-01-01

    We present results on an InP monolithic millimeter- wave integrated circuit (MMIC) amplifier having 10-dB gain at 235 GHz. We designed this circuit and fabricated the chip in Northrop Grumman Space Technology's (NGST) 0.07- m InP high electron mobility transistor (HEMT) process. Using a WR3 (220-325 GHz) waveguide vector network analyzer system interfaced to waveguide wafer probes, we measured this chip on-wafer for -parameters. To our knowledge, this is the first time a WR3 waveguide on-wafer measurement system has been used to measure gain in a MMIC amplifier above 230 GHz.

  5. Average radio spectral energy distribution of highly star-forming galaxies

    NASA Astrophysics Data System (ADS)

    Tisanić, K.; Smolčić, V.; Delhaize, J.; Novak, M.; Intema, H.; Delvecchio, I.; Schinnerer, E.; Zamorani, G.

    2018-05-01

    The infrared-radio correlation (IRRC) offers a way to assess star formation from radio emission. Multiple studies found the IRRC to decrease with increasing redshift. This may in part be due to the lack of knowledge about the possible radio spectral energy distributions (SEDs) of star-forming galaxies. We constrain the radio SED of a complete sample of highly star-forming galaxies (SFR > 100 M⊙/ yr) based on the VLA-COSMOS 1.4 GHz Joint and 3 GHz Large Project catalogs. We reduce archival GMRT 325 MHz and 610 MHz observations, broadening the rest-frame frequency range to 0.3-15 GHz. Employing survival analysis and fitting a double power law SED, we find that the slope steepens from a spectral index of α1 = 0.51+/-0.04 below 4.5 GHz to α2 = 0.98+/-0.07 above 4.5 GHz. Our results suggest that the use of a K-correction assuming a single power-law radio SED for star forming galaxies is likely not the root cause of the IRRC trend.

  6. 47 CFR 101.527 - Construction requirements for 24 GHz operations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... it. (d) The frequencies associated with incumbent authorizations, licensed on a SMSA basis, that have... SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES 24 GHz Service and Digital Electronic Message Service § 101.527 Construction requirements for 24 GHz operations. (a) Each licensee must make a showing of...

  7. 47 CFR 101.527 - Construction requirements for 24 GHz operations.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... it. (d) The frequencies associated with incumbent authorizations, licensed on a SMSA basis, that have... SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES 24 GHz Service and Digital Electronic Message Service § 101.527 Construction requirements for 24 GHz operations. (a) Each licensee must make a showing of...

  8. 47 CFR 101.527 - Construction requirements for 24 GHz operations.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... it. (d) The frequencies associated with incumbent authorizations, licensed on a SMSA basis, that have... SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES 24 GHz Service and Digital Electronic Message Service § 101.527 Construction requirements for 24 GHz operations. (a) Each licensee must make a showing of...

  9. 47 CFR 101.527 - Construction requirements for 24 GHz operations.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... it. (d) The frequencies associated with incumbent authorizations, licensed on a SMSA basis, that have... SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES 24 GHz Service and Digital Electronic Message Service § 101.527 Construction requirements for 24 GHz operations. (a) Each licensee must make a showing of...

  10. 47 CFR 101.527 - Construction requirements for 24 GHz operations.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... it. (d) The frequencies associated with incumbent authorizations, licensed on a SMSA basis, that have... SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES 24 GHz Service and Digital Electronic Message Service § 101.527 Construction requirements for 24 GHz operations. (a) Each licensee must make a showing of...

  11. 47 CFR 27.806 - 1.4 GHz service licenses subject to competitive bidding.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 2 2011-10-01 2011-10-01 false 1.4 GHz service licenses subject to competitive bidding. 27.806 Section 27.806 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES MISCELLANEOUS WIRELESS COMMUNICATIONS SERVICES 1.4 GHz Band § 27.806 1.4 GHz service...

  12. 47 CFR 27.806 - 1.4 GHz service licenses subject to competitive bidding.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false 1.4 GHz service licenses subject to competitive bidding. 27.806 Section 27.806 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES MISCELLANEOUS WIRELESS COMMUNICATIONS SERVICES 1.4 GHz Band § 27.806 1.4 GHz service...

  13. Results of RIKEN superconducting electron cyclotron resonance ion source with 28 GHz.

    PubMed

    Higurashi, Y; Ohnishi, J; Nakagawa, T; Haba, H; Tamura, M; Aihara, T; Fujimaki, M; Komiyama, M; Uchiyama, A; Kamigaito, O

    2012-02-01

    We measured the beam intensity of highly charged heavy ions and x-ray heat load for RIKEN superconducting electron cyclotron resonance ion source with 28 GHz microwaves under the various conditions. The beam intensity of Xe(20+) became maximum at B(min) ∼ 0.65 T, which was ∼65% of the magnetic field strength of electron cyclotron resonance (B(ECR)) for 28 GHz microwaves. We observed that the heat load of x-ray increased with decreasing gas pressure and field gradient at resonance zone. It seems that the beam intensity of highly charged heavy ions with 28 GHz is higher than that with 18 GHz at same RF power.

  14. Low-Noise Amplifier for 100 to 180 GHz

    NASA Technical Reports Server (NTRS)

    Kangaslahti, Pekka; Pukala, David; Fung, King Man; Gaier, Todd; Mei, Xiaobing; Lai, Richard; Deal, William

    2009-01-01

    A three-stage monolithic millimeter-wave integrated-circuit (MMIC) amplifier designed to exhibit low noise in operation at frequencies from about 100 to somewhat above 180 GHz has been built and tested. This is a prototype of broadband amplifiers that have potential utility in diverse applications, including measurement of atmospheric temperature and humidity and millimeter-wave imaging for inspecting contents of opaque containers. Figure 1 depicts the amplifier as it appears before packaging. Figure 2 presents data from measurements of the performance of the amplifier as packaged in a WR-05 waveguide and tested in the frequency range from about 150 to about 190 GHz. The amplifier exhibited substantial gain throughout this frequency range. Especially notable is the fact that at 165 GHz, the noise figure was found to be 3.7 dB, and the noise temperature was found to be 370 K: This is less than half the noise temperature of the prior state of the art.

  15. GHz Yb:KYW oscillators in time-resolved spectroscopy

    NASA Astrophysics Data System (ADS)

    Li, Changxiu; Krauß, Nico; Schäfer, Gerhard; Ebner, Lukas; Kliebisch, Oliver; Schmidt, Johannes; Winnerl, Stephan; Hettich, Mike; Dekorsy, Thomas

    2018-02-01

    A high-speed asynchronous optical sampling system (ASOPS) based on Yb:KYW oscillators with 1-GHz repetition rate is reported. Two frequency-offset-stabilized diode-pumped Yb:KYW oscillators are employed as pump and probe source, respectively. The temporal resolution of this system within 1-ns time window is limited to 500 fs and the noise floor around 10-6 (ΔR/R) close to the shot-noise level is obtained within an acquisition time of a few seconds. Coherent acoustic phonons are investigated by measuring multilayer semiconductor structures with multiple quantum wells and aluminum/silicon membranes in this ASOPS system. A wavepacket-like phonon sequence at 360 GHz range is detected in the semiconductor structures and a decaying sequence of acoustic oscillations up to 200 GHz is obtained in the aluminum/silicon membranes. Coherent acoustic phonons generated from semiconductor structures are further manipulated by a double pump scheme through pump time delay control.

  16. X-ray study of a sample of FR0 radio galaxies: unveiling the nature of the central engine

    NASA Astrophysics Data System (ADS)

    Torresi, E.; Grandi, P.; Capetti, A.; Baldi, R. D.; Giovannini, G.

    2018-06-01

    Fanaroff-Riley type 0 radio galaxies (FR0s) are compact radio sources that represent the bulk of the radio-loud active galactic nuclei (AGN) population, but they are still poorly understood. Pilot studies on these sources have been already performed at radio and optical wavelengths: here we present the first X-ray study of a sample of 19 FR0 radio galaxies selected from the Sloan Digital Sky Survey/NRAO VLA Sky Survey/Faint Images of the Radio Sky at Twenty-cm sample of Best & Heckman, with redshift ≤0.15, radio size ≤10 kpc, and optically classified as low-excitation galaxies. The X-ray spectra are modelled with a power-law component absorbed by Galactic column density with, in some cases, a contribution from thermal extended gas. The X-ray photons are likely produced by the jet as attested by the observed correlation between X-ray (2-10 keV) and radio (5 GHz) luminosities, similar to Fanaroff-Riley type I radio galaxies (FRIs). The estimated Eddington-scaled luminosities indicate a low accretion rate. Overall, we find that the X-ray properties of FR0s are indistinguishable from those of FRIs, thus adding another similarity between AGN associated with compact and extended radio sources. A comparison between FR0s and low-luminosity BL Lacs rules out important beaming effects in the X-ray emission of the compact radio galaxies. FR0s have different X-ray properties with respect to young radio sources (e.g. gigahertz-peaked spectrum/compact steep spectrum sources), generally characterized by higher X-ray luminosities and more complex spectra. In conclusion, the paucity of extended radio emission in FR0s is probably related to the intrinsic properties of their jets that prevent the formation of extended structures, and/or to intermittent activity of their engines.

  17. Chemical Complexity in Local Diffuse and Translucent Clouds: Ubiquitous Linear C3H and CH3CN, a Detection of HC3N and an Upper Limit on the Abundance of CH2CN

    NASA Astrophysics Data System (ADS)

    Liszt, Harvey; Gerin, Maryvonne; Beasley, Anthony; Pety, Jerome

    2018-04-01

    We present Jansky Very Large Array observations of 20–37 GHz absorption lines from nearby Galactic diffuse molecular gas seen against four cosmologically distant compact radio continuum sources. The main new observational results are that l-C3H and CH3CN are ubiqitous in the local diffuse molecular interstellar medium at {\\text{}}{A}{{V}} ≲ 1, while HC3N was seen only toward B0415 at {\\text{}}{A}{{V}} > 4 mag. The linear/cyclic ratio is much larger in C3H than in C3H2 and the ratio CH3CN/HCN is enhanced compared to TMC-1, although not as much as toward the Horsehead Nebula. More consequentially, this work completes a long-term program assessing the abundances of small hydrocarbons (CH, C2H, linear and cyclic C3H and C3 {{{H}}}2, and C4H and C4H‑) and the CN-bearing species (CN, HCN, HNC, HC3N, HC5N, and CH3CN): their systematics in diffuse molecular gas are presented in detail here. We also observed but did not strongly constrain the abundances of a few oxygen-bearing species, most prominently HNCO. We set limits on the column density of CH2CN, such that the anion CH2CN‑ is only viable as a carrier of diffuse interstellar bands if the N(CH2CN)/N(CH2CN‑) abundance ratio is much smaller in this species than in any others for which the anion has been observed. We argue that complex organic molecules (COMS) are not present in clouds meeting a reasonable definition of diffuse molecular gas, i.e., {\\text{}}{A}{{V}} ≲ 1 mag. Based on observations obtained with the NRAO Jansky Very Large Array (VLA).

  18. Microwave imaging of a solar limb flare - Comparison of spectra and spatial geometry with hard X-rays

    NASA Technical Reports Server (NTRS)

    Schmahl, E. J.; Kundu, M. R.; Dennis, B. R.

    1985-01-01

    A solar limb flare was mapped using the Very Large Array (VLA) together with hard X-ray (HXR) spectral and spatial observations of the Solar Maximum Mission satellite. Microwave flux records from 2.8 to 19.6 GHz were instrumental in determining the burst spectrum, which has a maximum at 10 GHz. The flux spectrum and area of the burst sources were used to determine the number of electrons producing gyrosynchrotron emission, magnetic field strength, and the energy distribution of gyrosynchrotron-emitting electrons. Applying the thick target model to the HXR spectrum, the number of high energy electrons responsible for the X-ray bursts was found to be 10 to the 36th, and the electron energy distribution was approximately E exp -5, significantly different from the parameters derived from the microwave observations. The HXR imaging observations exhibit some similiarities in size and structure o the first two burst sources mapped with the VLA. However, during the initial burst, the HXR source was single and lower in the corona than the double 6 cm source. The observations are explained in terms of a single loop with an isotropic high-energy electron distribution which produced the microwaves, and a larger beamed component which produced the HXR at the feet of the loop.

  19. A cooled 1- to 2-GHz balanced HEMT amplifier

    NASA Technical Reports Server (NTRS)

    Ortiz, Gerardo G.; Padin, Steven

    1991-01-01

    The design details and measurement results for a cooled L-band (1 to 2 GHz) balanced high electron mobility transistor (HEMT) amplifier are presented. The amplifier uses commercially available packaged HEMT devices (Fujitsu FHR02FH). At a physical temperature of 12 K, the amplifier achieves noise temperatures between 3 and 6 K over the 1 to 2 GHz band. The associated gain is approximately 20 dB.

  20. MMIC DHBT Common-Base Amplifier for 172 GHz

    NASA Technical Reports Server (NTRS)

    Paidi, Vamsi; Griffith, Zack; Wei, Yun; Dahlstrom, Mttias; Urteaga, Miguel; Rodwell, Mark; Samoska, Lorene; Fung, King Man; Schlecht, Erich

    2006-01-01

    Figure 1 shows a single-stage monolithic microwave integrated circuit (MMIC) power amplifier in which the gain element is a double-heterojunction bipolar transistor (DHBT) connected in common-base configuration. This amplifier, which has been demonstrated to function well at a frequency of 172 GHz, is part of a continuing effort to develop compact, efficient amplifiers for scientific instrumentation, wide-band communication systems, and radar systems that will operate at frequencies up to and beyond 180 GHz. The transistor is fabricated from a layered structure formed by molecular beam epitaxy in the InP/InGaAs material system. A highly doped InGaAs base layer and a collector layer are fabricated from the layered structure in a triple mesa process. The transistor includes two separate emitter fingers, each having dimensions of 0.8 by 12 m. The common-base configuration was chosen for its high maximum stable gain in the frequency band of interest. The input-matching network is designed for high bandwidth. The output of the transistor is matched to a load line for maximum saturated output power under large-signal conditions, rather than being matched for maximum gain under small-signal conditions. In a test at a frequency of 172 GHz, the amplifier was found to generate an output power of 7.5 mW, with approximately 5 dB of large-signal gain (see Figure 2). Moreover, the amplifier exhibited a peak small-signal gain of 7 dB at a frequency of 176 GHz. This performance of this MMIC single-stage amplifier containing only a single transistor represents a significant advance in the state of the art, in that it rivals the 170-GHz performance of a prior MMIC three-stage, four-transistor amplifier. [The prior amplifier was reported in "MMIC HEMT Power Amplifier for 140 to 170 GHz" (NPO-30127), NASA Tech Briefs, Vol. 27, No. 11 (November 2003), page 49.] This amplifier is the first heterojunction- bipolar-transistor (HBT) amplifier built for medium power operation in this

  1. 37 GHz Methanol Masers : Horsemen of the Apocalypse for the Class II Methanol Maser Phase?

    NASA Astrophysics Data System (ADS)

    Ellingsen, S. P.; Breen, S. L.; Sobolev, A. M.; Voronkov, M. A.; Caswell, J. L.; Lo, N.

    2011-12-01

    We report the results of a search for class II methanol masers at 37.7, 38.3, and 38.5 GHz toward a sample of 70 high-mass star formation regions. We primarily searched toward regions known to show emission either from the 107 GHz class II methanol maser transition, or from the 6.035 GHz excited OH transition. We detected maser emission from 13 sources in the 37.7 GHz transition, eight of these being new detections. We detected maser emission from three sources in the 38 GHz transitions, one of which is a new detection. We find that 37.7 GHz methanol masers are only associated with the most luminous 6.7 and 12.2 GHz methanol maser sources, which in turn are hypothesized to be the oldest class II methanol sources. We suggest that the 37.7 GHz methanol masers are associated with a brief evolutionary phase (of 1000-4000 years) prior to the cessation of class II methanol maser activity in the associated high-mass star formation region.

  2. TWT design requirements for 30/20 GHz digital communications' satellite

    NASA Technical Reports Server (NTRS)

    Stankiewicz, N.; Anzic, G.

    1979-01-01

    The rapid growth of communication traffic (voice, data, and video) requires the development of additional frequency bands before the 1990's. The frequencies currently in use for satellite communications at 6/4 GHz are crowded and demands for 14/12 GHz systems are increasing. Projections are that these bands will be filled to capacity by the late 1980's. The next higher frequency band allocated for satellite communications is at 30/20 GHz. For interrelated reasons of efficiency, power level, and system reliability criteria, a candidate for the downlink amplifier in a 30/20 GHz communications' satellite is a dual mode traveling wave tube (TWT) equipped with a highly efficient depressed collector. A summary is given of the analyses which determine the TWT design requirements. The overall efficiency of such a tube is then inferred from a parametric study and from experimental data on multistaged depressed collectors. The expected TWT efficiency at 4 dB below output saturation is 24 percent in the high mode and 22 percent in the low mode.

  3. Very Large Array Multiband Monitoring Observations of M31*

    NASA Astrophysics Data System (ADS)

    Yang, Yang; Li, Zhiyuan; Sjouwerman, Loránt O.; Yuan, Feng; Shen, Zhi-Qiang

    2017-08-01

    The Andromeda galaxy (M31) hosts one of the nearest and most quiescent supermassive black holes, which provides a rare, but promising opportunity for studying the physics of black hole accretion at the lowest state. We have conducted a multifrequency, multi-epoch observing campaign, using the Karl G. Jansky Very Large Array (VLA) in its extended configurations in 2011-2012, to advance our knowledge of the still poorly known radio properties of M31*. For the first time, we detect M31* at 10, 15, and 20 GHz and measure its spectral index, α ≈ -0.45 ± 0.08 (S ν ∝ ν α ), over the frequency range of 5-20 GHz. The relatively steep spectrum suggests that the observed radio flux is dominated by the optically thin part of a putative jet, which is located at no more than a few thousand Schwarzschild radii from the black hole. On the other hand, our sensitive radio images show little evidence for an extended component, perhaps except for several parsec-scale “plumes,” the nature of which remains unclear. Our data also reveal significant (a few tens of percent) flux variation of M31* at 6 GHz, on timescales of hours to days. Furthermore, a curious decrease of the mean flux density, by ˜50%, is found between VLA observations taken during 2002-2005 and our new observations, which might be associated with a substantial increase in the mean X-ray flux of M31* starting in 2006.

  4. Very Large Array Multiband Monitoring Observations of M31*

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Yang; Li, Zhiyuan; Sjouwerman, Loránt O.

    The Andromeda galaxy (M31) hosts one of the nearest and most quiescent supermassive black holes, which provides a rare, but promising opportunity for studying the physics of black hole accretion at the lowest state. We have conducted a multifrequency, multi-epoch observing campaign, using the Karl G. Jansky Very Large Array (VLA) in its extended configurations in 2011–2012, to advance our knowledge of the still poorly known radio properties of M31*. For the first time, we detect M31* at 10, 15, and 20 GHz and measure its spectral index, α ≈ −0.45 ± 0.08 (S{sub ν} ∝ ν {sup α}), overmore » the frequency range of 5–20 GHz. The relatively steep spectrum suggests that the observed radio flux is dominated by the optically thin part of a putative jet, which is located at no more than a few thousand Schwarzschild radii from the black hole. On the other hand, our sensitive radio images show little evidence for an extended component, perhaps except for several parsec-scale “plumes,” the nature of which remains unclear. Our data also reveal significant (a few tens of percent) flux variation of M31* at 6 GHz, on timescales of hours to days. Furthermore, a curious decrease of the mean flux density, by ∼50%, is found between VLA observations taken during 2002–2005 and our new observations, which might be associated with a substantial increase in the mean X-ray flux of M31* starting in 2006.« less

  5. The 60 GHz IMPATT diode development

    NASA Technical Reports Server (NTRS)

    Dat, Rovindra; Ayyagari, Murthy; Hoag, David; Sloat, David; Anand, Yogi; Whitely, Stan

    1986-01-01

    The objective is to develop 60 GHz IMPATT diodes suitable for communications applications. The performance goals of the 60 GHz IMPATT is 1W CW output power with a conversion efficiency of 15 percent and 10-year lifetime. The final design of the 60 GHz IMPATT structure evolved from computer simulations performed at the University of Michigan. The initial doping profile, involving a hybrid double-drift (HDD) design, was derived from a drift-diffusion model that used the static velocity-field characteristics for GaAs. Unfortunately, the model did not consider the effects of velocity undershoot and delay of the avalanche process due to energy relaxation. Consequently, the initial devices were oscillating at a much lower frequency than anticipated. With a revised simulation program that included the two effects given above, a second HDD profile was generated and was used as a basis for fabrication efforts. In the area of device fabrication, significant progress was made in epitaxial growth and characterization, wafer processing, and die assembly. The organo-metallic chemical vapor deposition (OMCVD) was used. Starting with a baseline X-Band IMPATT technology, appropriate processing steps were modified to satisfy the device requirements at V-Band. In terms of efficiency and reliability, the device requirements dictate a reduction in its series resistance and thermal resistance values. Qualitatively, researchers were able to reduce the diodes' series resistance by reducing the thickness of the N+ GaAs substrate used in its fabrication.

  6. Development of 24GHz Rectenna for Receiving and Rectifying Modulated Waves

    NASA Astrophysics Data System (ADS)

    Shinohara, Naoki; Hatano, Ken

    2014-11-01

    In this paper, we show experimental results of RF-DC conversion with modulated 24GHz waves. We have already developed class-F MMIC rectenna with resonators for higher harmonics at no modulated 24GHz microwave for RF energy transfer. Dimensions of the MMIC rectifying circuit is 1 mm × 3 mm on GaAs. Maximum RF-DC conversion efficiency is measured 47.9% for a 210 mW microwave input of 24 GHz with a 120 Ω load. The class-F rectenna is based on a single shunt full-wave rectifier. For future application of a simultaneous energy and information transfer system or an energy harvesting from broadcasting waves, input microwave will be modulated. In this paper, we show an experimental result of RF-DC conversion of the class-F rectenna with 24GHz waves modulated by 16QAM as 1st modulation and OFDM as 2nd modulation.

  7. Miniature Packaging Concept for LNAs in the 200-300 GHz Range

    NASA Technical Reports Server (NTRS)

    Samoska, Lorene; Fung, Andy; Varonen, Mikko; Lin, Robert; Peralta, Alejandro; Soria, Mary; Lee, Choonsup; Padmanabhan, Sharmila; Sarkozy, Stephen; Lai, Richard

    2016-01-01

    In this work, we describe new miniaturized low noise amplifier modules which we developed for incorporation in small-scale satellites or Cubesats, and which exhibit similar or better performance compared to previously reported LNAs in the literature. We have targeted the WR4 (170-260 GHz) and WR3 (220-325 GHz) waveguide bands for the module development. The modules include two different methods of E-plane probes which have been developed for low loss, and stability at high frequencies. MMIC LNAs were also developed for these frequency ranges and fabricated in Northrop Grumman Corporation's 35 nm InP HEMT technology, and we have experimentally verified that noise performance is lower than reported in prior work. The best results include a miniature LNA module with 550K noise at 224 GHz, and a wideband LNA module with 15 dB gain from 230-280 GHz.

  8. Cross-impact study of foreign satellite communications on NASA's 30/20 GHz program

    NASA Technical Reports Server (NTRS)

    1980-01-01

    A comprehensive traffic demand forecast and a scenario for the transition process from current satellite systems to more advanced systems of the 1990's are presented. Systems configurations with and without the use of 30/20 GHz are described and these two alternatives are compared. It is concluded that: (1) the use of 30/20 GHz will result in increased satellite capacity, which will be needed to satisfy demand; (2) the use of 30/20 GHz will decrease the transmission cost, especially for broadband communications; (3) in some areas, particularly Europe and Japan but also the U.S., 30/20 GHz is the only available frequency band for customer premise Earth stations because of the dense terrestrial microwave networks; and (4) the development of 30/20 GHz technology will improve U.S. markets for equipment and satellites in many world regions.

  9. Cross-impact study of foreign satellite communications on NASA's 30/20 GHz program

    NASA Astrophysics Data System (ADS)

    1980-08-01

    A comprehensive traffic demand forecast and a scenario for the transition process from current satellite systems to more advanced systems of the 1990's are presented. Systems configurations with and without the use of 30/20 GHz are described and these two alternatives are compared. It is concluded that: (1) the use of 30/20 GHz will result in increased satellite capacity, which will be needed to satisfy demand; (2) the use of 30/20 GHz will decrease the transmission cost, especially for broadband communications; (3) in some areas, particularly Europe and Japan but also the U.S., 30/20 GHz is the only available frequency band for customer premise Earth stations because of the dense terrestrial microwave networks; and (4) the development of 30/20 GHz technology will improve U.S. markets for equipment and satellites in many world regions.

  10. Monitoring global vegetation using Nimbus-7 37 GHz data - Some empirical relations

    NASA Technical Reports Server (NTRS)

    Choudhury, B. J.; Tucker, C. J.

    1987-01-01

    The difference of the vertically and horizontally polarized brightness temperatures observed by the 37 GHz channel of the SMMR on board the Nimbus-7 satellite are correlated temporally with three indicators of vegetation density, namely the temporal variation of the atmospheric CO2 concentration at Mauna Loa (Hawaii), rainfall over the Sahel and the normalized difference vegetation index derived from the AVHRR on board the NOAA-7 satellite. SMMR 37 GHz and AVHRR provide complementary data sets for monitoring global vegetation, the 37 GHz data being more suitable for arid and semiarid regions as these data are more sensitive to changes in sparse vegetation. The 37-GHz data might be useful for understanding desertification and indexing Co2 exchange between the biosphere and the atmosphere.

  11. A new class of solar burst with MM-wave emission but only at the highest frequency (90 GHz)

    NASA Technical Reports Server (NTRS)

    Kaufmann, P.; Correia, E.; Costa, J. E. R.; Vaz, A. M. Z.; Dennis, B. R.

    1984-01-01

    High sensitivity and high time resolution solar observations at 90 GHz (lambda = 3.3 mm) have identified a unique impulsive burst on May 21, 1984 with emission that was more intense at this frequency than at lower frequencies. The first major time structure of the burst was over 10 times more intense at 90 GHz than at 30 GHz, 7 GHz, or 2.8 GHz.Only 6 seconds later, the 30 GHz impulsive structures started to be observed but still with lower intensity than at 90 GHz. Hard X-ray time structures at energies above 25 keV were almost identical to the 90 GHZ structures (to better than one second). All 90 GHz major time structures consisted of trains of multiple subsecond pulses with rise times as short as 0.03 sec and amplitudes large compared to the mean flux. When detectable, the 30 GHz subsecond pulses had smaller relative amplitude and were in phase with the corresponding 90 GHz pulses.

  12. 47 CFR 101.537 - 24 GHz band subject to competitive bidding.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false 24 GHz band subject to competitive bidding. 101.537 Section 101.537 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES 24 GHz Service and Digital Electronic Message Service § 101.537...

  13. 30-100-GHz inductors and transformers for millimeter-wave (Bi)CMOS integrated circuits

    NASA Astrophysics Data System (ADS)

    Dickson, T. O.; Lacroix, M.-A.; Boret, S.; Gloria, D.; Beerkens, R.; Voinigescu, S. P.

    2005-01-01

    Silicon planar and three-dimensional inductors and transformers were designed and characterized on-wafer up to 100 GHz. Self-resonance frequencies (SRFs) beyond 100 GHz were obtained, demonstrating for the first time that spiral structures are suitable for applications such as 60-GHz wireless local area network and 77-GHz automotive RADAR. Minimizing area over substrate is critical to achieving high SRF. A stacked transformer is reported with S21 of -2.5 dB at 50 GHz, and which offers improved performance and less area (30 μm × 30 μm) than planar transformers or microstrip couplers. A compact inductor model is described, along with a methodology for extracting model parameters from simulated or measured y-parameters. Millimeter-wave SiGe BiCMOS mixer and voltage-controlled-oscillator circuits employing spiral inductors are presented with better or comparable performance to previously reported transmission-line-based circuits.

  14. A Deterministic and Random Propagation Study with the Design of an Open Path 320 GHz to 340 GHz Transmissometer

    NASA Astrophysics Data System (ADS)

    Scally, Lawrence J.

    This program was implemented by Lawrence J. Scally for a Ph.D. under the EECE department at the University of Colorado at Boulder with most funding provided by the U.S. Army. Professor Gasiewski is the advisor and guider for the entire program; he has a strong history decades ago in this type of program. This program is developing a more advanced than previous years transmissometer, called Terahertz Atmospheric and Ionospheric Propagation, Absorption and Scattering System (TAIPAS), on an open path between the University of Colorado EE building roof and the mesa on owned by National Institute of Standards and Technology (NIST); NIST has invested money, location and support for the program. Besides designing and building the transmissometer, that has never be accomplished at this level, the system also analyzes the atmospheric propagation of frequencies by scanning between 320 GHz and 340 GHz, which includes the peak absorption frequency at 325.1529 GHz due to water absorption. The processing and characterization of the deterministic and random propagation characteristics of the atmosphere in the real world was significantly started; this will be executed with varies aerosols for decades on the permanently mounted system that is accessible 24/7 via a network over the CU Virtual Private Network (VPN).

  15. The 18/30 GHz fixed communications system service demand assessment. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    Gabriszeski, T.; Reiner, P.; Rogers, J.; Terbo, W.

    1979-01-01

    The total demand for voice, video, and data communications services, and satellite transmission services at the 4/6 GHz, 12/14 GHz, and 18/30 GHz frequencies is discussed. Major study objectives, overall methodology, results, and general observations about a satellite systems market characteristics and trends are summarized.

  16. 12.2-GHz methanol maser MMB follow-up catalogue - IV. Longitude range 20°-60°

    NASA Astrophysics Data System (ADS)

    Breen, S. L.; Ellingsen, S. P.; Caswell, J. L.; Green, J. A.; Voronkov, M. A.; Avison, A.; Fuller, G. A.; Quinn, L. J.

    2016-07-01

    This is the fourth and final instalment of a series of catalogues presenting 12.2-GHz methanol maser observations made towards each of the 6.7-GHz methanol masers detected in the Methanol Multibeam (MMB) survey. This final portion of the survey covers the 20°-60° longitude range, increasing the 12.2-GHz follow-up range to the full MMB coverage of 186° ≥ l ≤ 60° and |b| ≤ 2°. Towards a total of 260 6.7-GHz MMB methanol masers (we were unable to observe five of the MMB sources in this longitude range) we detect 116 12.2-GHz masers counterparts, 64 of which were discovered in this survey. Including data from the literature, we find that there are 12.2-GHz methanol masers towards 47.1 per cent of the 6.7-GHz methanol masers in this portion of the Galaxy. Across the entire MMB survey range, we find a detection rate of 45.3 per cent. We find that the detection rate of 12.2-GHz methanol masers as a function of Galactic longitude is not uniform and there is an excess of masers with broad velocity ranges at longitudes near 30° and 330°. Comparing the occurrence of 12.2-GHz methanol masers with MMB-targeted CO observations has shown that those outflows associated with a 12.2-GHz source have a larger average dynamical time-scale than those associated with only 6.7-GHz methanol masers, supporting the notion that the 12.2-GHz masers are associated with a later phase of high-mass star formation.

  17. Controlled Teleportation of a Qudit State by Partially Entangled GHZ States

    NASA Astrophysics Data System (ADS)

    Wang, Jin-wei; Shu, Lan; Mo, Zhi-wen; Zhang, Zhi-hua

    2014-08-01

    In this paper, we propose a controlled teleportation scheme which communicates an arbitrary ququart state via two sets of partially entangled GHZ state. The necessary measurements and operations are given detailedly. Furthmore the scheme is generalized to teleport a qudit state via s sets of partially entangled GHZ state.

  18. VizieR Online Data Catalog: S4 1030+61 VLBA observations, 2009-2014 (Kravchenko+, 2016)

    NASA Astrophysics Data System (ADS)

    Kravchenko, E. V.; Kovalev, Y. Y.; Hovatta, T.; Ramakrishnan, V.

    2018-02-01

    The source S4 1030+61 was observed (code S2087E) with the VLBA of the National Radio Astronomy Observatory (NRAO) during four sessions: 2010-05-24, 2010-07-09, 2010-08-28 and 2010-10-18 (noted as 'epochs' below). We supplemented our analysis with the data obtained within the MOJAVE programme. Observations are done at 15.4GHz with VLBA at 10 epochs: 2009-06-25, 2009-12-26, 2010-12-24, 2011-04-11, 2011-05-26, 2011-07-15, 2012-01-02, 2012-03-27, 2012-11-11 and 2013-07-08. Public data (http://www.astro.caltech.edu/ovroblazars/) of S4 1030+61 observations within the OVRO 40-m Telescope monitoring programme were used in the analysis. Observations are done at 15GHz in a 3GHz bandwidth from 2008-06-20 to 2014-01-21 about twice per week. The γ-ray fluxes in the range 0.1-200GeV were obtained with the LAT onboard the space Fermi γ-ray observatory from 2008-08-04 to 2014-02-23. (3 data files).

  19. Discovery of a Giant Radio Halo in a New Planck Galaxy Cluster PLCKG171.9-40.7

    NASA Technical Reports Server (NTRS)

    Giacintucci, Simona; Kale, Ruta; Wik, Daniel R.; Venturi, Tiziana; Markevitch, Maxim

    2013-01-01

    We report the discovery of a giant radio halo in a new, hot, X-ray luminous galaxy cluster recently found by Planck, PLCKG171.9-40.7. The radio halo was found using Giant Metrewave Radio Telescope observations at 235 MHz and 610 MHz, and in the 1.4 GHz data from a NRAO Very Large Array Sky Survey pointing that we have reanalyzed. The diffuse radio emission is coincident with the cluster X-ray emission, has an extent of approx.1 Mpc and a radio power of approx. 5×10(exp 24)W/Hz at 1.4 GHz. Its integrated radio spectrum has a slope of alpha approx. = 1.8 between 235 MHz and 1.4 GHz, steeper than that of a typical giant halo. The analysis of the archival XMMNewton X-ray data shows that the cluster is hot (approx. 10 keV) and disturbed, consistent with X-ray selected clusters hosting radio halos. This is the first giant radio halo discovered in one of the new clusters found by Planck.

  20. A Ka-band (32 GHz) beacon link experiment (KABLE) with Mars Observer

    NASA Technical Reports Server (NTRS)

    Riley, A. L.; Hansen, D. M.; Mileant, A.; Hartop, R. W.

    1987-01-01

    A proposal for a Ka-Band (32 GHz) Link Experiment (KABLE) with the Mars Observer mission was submitted to NASA. The experiment will rely on the fourth harmonic of the spacecraft X-band transmitter to generate a 33.6 GHz signal. The experiment will rely also on the Deep Space Network (DSN) receiving station equipped to simultaneously receive X- and Ka-band signals. The experiment will accurately measure the spacecraft-to-Earth telecommunication link performance at Ka-band and X-band (8.4 GHz).

  1. 802GHz integrated horn antennas imaging array

    NASA Technical Reports Server (NTRS)

    Ali-Ahmad, Walid Y.; Rebeiz, Gabriel M.; Dave, Hemant; Chin, Gordon

    1991-01-01

    Pattern measurements at 802GHz of a single element in 256-element integrated horn imaging array are presented. The integrated-horn antenna consists of a dipole-antenna suspended on a 1-micron dielectric membrane inside a pyramidal cavity etched in silicon. The theoretical far-field patterns, calculated using reciprocity and Floquet-modes representation of the free-space field, agree well with the measured far-field patterns at 802GHz. The associated directivity for a 1.40 lambda horn aperture, calculated from the measured E and H-plane patterns is 12.3dB + or - 0.2dB. This work demonstrates that high-efficiency integrated-horn antennas are easily scalable to terahertz frequencies and could be used for radio-astronomical and plasma-diagnostic applications.

  2. 22 GHz VLBI Survey: Status Report and Preliminary Results

    NASA Technical Reports Server (NTRS)

    Moellenbrock, G.; Fujisawa, K.; Preston, R.; Gurvits, L.; Dewey, R.; Hirabayashi, H.; Inoue, M.; Jauncey, D.; Migenes, V.; Roberts, D.; hide

    1994-01-01

    A ground-based VLBI survey to measure the visibilities and correlated flux densities in continuum at 22 GHz of more than 140 extragalactic radio sources has been conducted with baselines up to approximately 11 000 km. The project has been designed to help in preparation of target lists for VSOP and Radioastron Space VLBI missions as well as providing observational data for statistical study of structural properties at 22 GHz on sub-milliarcsecond scales for this large sample of extragalactic sources.

  3. Reduction and Analysis of GALFACTS Data in Search of Compact Variable Sources

    NASA Astrophysics Data System (ADS)

    Wenger, Trey; Barenfeld, S.; Ghosh, T.; Salter, C.

    2012-01-01

    The Galactic ALFA Continuum Transit Survey (GALFACTS) is an all-Arecibo sky, full-Stokes survey from 1225 to 1525 MHz using the multibeam Arecibo L-band Feed Array (ALFA). Using data from survey field N1, the first field covered by GALFACTS, we are searching for compact sources that vary in intensity and/or polarization. The multistep procedure for reducing the data includes radio frequency interference (RFI) removal, source detection, Gaussian fitting in multiple dimensions, polarization leakage calibration, and gain calibration. We have developed code to analyze and calculate the calibration parameters from the N1 calibration sources, and apply these to the data of the main run. For detected compact sources, our goal is to compare results from multiple passes over a source to search for rapid variability, as well as to compare our flux densities with those from the NRAO VLA Sky Survey (NVSS) to search for longer time-scale variations.

  4. Observations of the new gravitational lens system UM 673 = Q 0142-100

    NASA Astrophysics Data System (ADS)

    Surdej, J.; Magain, P.; Swings, J.-P.; Borgeest, U.; Courvoisier, T. J.-L.; Kayer, R.; Kellermann, K. I.; Kuhr, H.; Refsdal, S.

    1988-06-01

    The authors have recently initiated a high resolution direct imaging survey of a selected sample of highly luminous quasars (HLQs). The observations are carried out with the 2.2 m telescope at ESO, and with the VLA at the NRAO, New Mexico. Following the first observing run at ESO, the authors have reported the discovery of a new gravitational lens system for the HLQ UM 673 = Q 0142-100. Additional observations supporting this interpretation are discussed here. Application of gravitational optometry to this system is given: a value of M0 = 2.4×1011M_sun; is derived for the mass of the lensing galaxy located between UM 673 A and B and a most likely estimate of Δt = 7 weeks is found for the expected delay between the arrival times of a similar variability event in the two lensed images of the quasar (H0 = 75 km s-1Mpc-1, q0 = 0).

  5. Using Hyperfine Structure Limits to Characterize the Formaldehyde Maser in G32.74-0.07

    NASA Astrophysics Data System (ADS)

    Araya, Esteban; Nazmus Sakib, Md; Olmi, Luca; Hofner, Peter; Kurtz, Stan; Hoffman, Ian M.; Linz, Hendrik

    2018-06-01

    Formaldehyde (H2CO) masers are a rare variety of astrophysical masers, but they have the virtue of exclusively tracing the interiors of high-mass star forming regions. We report observations conducted with the 305m Arecibo Telescope and the Karl G. Jansky Very Large Array (VLA) of the 6 cm H2CO maser in the region of high-mass star formation G32.74-0.07. This maser is among the narrowest H2CO masers known, and thus it is an excellent candidate to study the excitation of the hyperfine components of the transition. The Arecibo and VLA results are consistent, the maser flux density observed with Arecibo is recovered in the VLA image within the rms noise of the spectra, and the fitted line widths of the two observations agree to within formal errors. Our high signal-to-noise (~7 mJy rms) and high spectral resolution (0.05 km/s) observations allow us to set strong limits on the hyperfine structure of the line. The line profile is consistent with unsaturated emission, with a maser gain of approximately 3, and an amplified background radio continuum of ~1 mJy. VLA observations confirm the presence of a continuum source at the location of the maser. The continuum source is characterized by a spectral index of +0.9 at 5 GHz, which is indicative of thermal Bremsstrahlung in the optically thick/thin transition.

  6. Development of a 150-GHz MMIC Module Prototype for Large-Scale CMB Radiation

    NASA Technical Reports Server (NTRS)

    Kangaslahti, Pekka P.; Samoska, Lorene A.; Gaier, Todd C.; Soria, Mary M.; Lau, Judy M.; Sieth, Matthew M.; VanWinkle, Daniel; Tantawi, Sami

    2011-01-01

    HEMT-based receiver arrays with excellent noise and scalability are already starting to be manufactured at 100 GHz, but the advances in technology should make it possible to develop receiver modules with even greater operation frequency up to 200 GHz. A prototype heterodyne amplifier module has been developed for operation from 140 to 170 GHz using monolithic millimeter-wave integrated circuit (MMIC) low-noise InP high electron mobility transistor (HEMT) amplifiers. The compact, scalable module is centered on the 150-GHz atmospheric window using components known to operate well at these frequencies. Arrays equipped with hundreds of these modules can be optimized for many different astrophysical measurement techniques, including spectroscopy and interferometry. This module is a heterodyne receiver module that is extremely compact, and makes use of 35-nm InP HEMT technology, and which has been shown to have excellent noise temperatures when cooled cryogenically to 30 K. This reduction in system noise over prior art has been demonstrated in commercial mixers (uncooled) at frequencies of 160-180 GHz. The module is expected to achieve a system noise temperature of 60 K when cooled. An MMIC amplifier module has been designed to demonstrate the feasibility of expanding heterodyne amplifier technology to the 140 to 170-GHz frequency range for astronomical observations. The miniaturization of many standard components and the refinement of RF interconnect technology have cleared the way to mass-production of heterodyne amplifier receivers, making it a feasible technology for many large-population arrays. This work furthers the recent research efforts in compact coherent receiver modules, including the development of the Q/U Imaging ExperimenT (QUIET) modules centered at 40 and 90 GHz, and the production of heterodyne module prototypes at 90 GHz.

  7. Nuevas observaciones de 3C10 con el VLA*: estudio de la expansión

    NASA Astrophysics Data System (ADS)

    Reynoso, E. M.; Moffett, D. A.:; Dubner, G. M.; Giacani, E. B.; Reynolds, S. P.; Goss, W. M.; Dickel, J.

    Se presentan nuevos resultados sobre la expansión del remanente de la supernova de Tycho a lo largo de un intervalo de 10.9 años, comparando nuevas observaciones tomadas con el VLA a 1375 y 1635 MHz durante 1994 y 1995, con observaciones previas realizadas entre 1983 y 1984 (Dickel y col. ~1991 AJ 101, 2151), usando las mismas configuraciones, anchos de banda, calibradores y tiempos de integración. El coeficiente de expansión se calcula para sectores radiales de 4o de ancho cada uno, ajustando la correlación cruzada de las derivadas de los perfiles promedio para cada época. A partir de la expansión medida, se estima el índice (parámetro de expansión) de la ley potencial R∝ tm como m≡ d ln R/d ln t . Este valor se compara con coeficientes teóricos para diferentes fases evolutivas de remanentes de supernova.

  8. Simulation of 100-300 GHz solid-state harmonic sources

    NASA Technical Reports Server (NTRS)

    Zybura, Michael F.; Jones, J. Robert; Jones, Stephen H.; Tait, Gregory B.

    1995-01-01

    Accurate and efficient simulations of the large-signal time-dependent characteristics of second-harmonic Transferred Electron Oscillators (TEO's) and Heterostructure Barrier Varactor (HBV) frequency triplers have been obtained. This is accomplished by using a novel and efficient harmonic-balance circuit analysis technique which facilitates the integration of physics-based hydrodynamic device simulators. The integrated hydrodynamic device/harmonic-balance circuit simulators allow TEO and HBV circuits to be co-designed from both a device and a circuit point of view. Comparisons have been made with published experimental data for both TEO's and HBV's. For TEO's, excellent correlation has been obtained at 140 GHz and 188 GHz in second-harmonic operation. Excellent correlation has also been obtained for HBV frequency triplers operating near 200 GHz. For HBV's, both a lumped quasi-static equivalent circuit model and the hydrodynamic device simulator have been linked to the harmonic-balance circuit simulator. This comparison illustrates the importance of representing active devices with physics-based numerical device models rather than analytical device models.

  9. Vertical InAs nanowire wrap gate transistors with f(t) > 7 GHz and f(max) > 20 GHz.

    PubMed

    Egard, M; Johansson, S; Johansson, A-C; Persson, K-M; Dey, A W; Borg, B M; Thelander, C; Wernersson, L-E; Lind, E

    2010-03-10

    In this letter we report on high-frequency measurements on vertically standing III-V nanowire wrap-gate MOSFETs (metal-oxide-semiconductor field-effect transistors). The nanowire transistors are fabricated from InAs nanowires that are epitaxially grown on a semi-insulating InP substrate. All three terminals of the MOSFETs are defined by wrap around contacts. This makes it possible to perform high-frequency measurements on the vertical InAs MOSFETs. We present S-parameter measurements performed on a matrix consisting of 70 InAs nanowire MOSFETs, which have a gate length of about 100 nm. The highest unity current gain cutoff frequency, f(t), extracted from these measurements is 7.4 GHz and the maximum frequency of oscillation, f(max), is higher than 20 GHz. This demonstrates that this is a viable technique for fabricating high-frequency integrated circuits consisting of vertical nanowires.

  10. The B3-VLA CSS sample. VIII. New optical identifications from the Sloan Digital Sky Survey The ultraviolet-optical spectral energy distribution of the young radio sources

    NASA Astrophysics Data System (ADS)

    Fanti, C.; Fanti, R.; Zanichelli, A.; Dallacasa, D.; Stanghellini, C.

    2011-04-01

    Context. Compact steep-spectrum radio sources and giga-hertz peaked spectrum radio sources (CSS/GPS) are generally considered to be mostly young radio sources. In recent years we studied at many wavelengths a sample of these objects selected from the B3-VLA catalog: the B3-VLA CSS sample. Only ≈60% of the sources were optically identified. Aims: We aim to increase the number of optical identifications and study the properties of the host galaxies of young radio sources. Methods: We cross-correlated the CSS B3-VLA sample with the Sloan Digital Sky Survey (SDSS), DR7, and complemented the SDSS photometry with available GALEX (DR 4/5 and 6) and near-IR data from UKIRT and 2MASS. Results: We obtained new identifications and photometric redshifts for eight faint galaxies and for one quasar and two quasar candidates. Overall we have 27 galaxies with SDSS photometry in five bands, for which we derived the ultraviolet-optical spectral energy distribution (UV-O-SED). We extended our investigation to additional CSS/GPS selected from the literature. Most of the galaxies show an excess of ultra-violet (UV) radiation compared with the UV-O-SED of local radio-quiet ellipticals. We found a strong dependence of the UV excess on redshift and analyzed it assuming that it is generated either from the nucleus (hidden quasar) or from a young stellar population (YSP). We also compare the UV-O-SEDs of our CSS/GPS sources with those of a selection of large size (LSO) powerful radio sources from the literature. Conclusions: If the major process of the UV excess is caused by a YSP, our conclusion is that it is the result of the merger process that also triggered the onset of the radio source with some time delay. We do not see evidence for a major contribution from a YSP triggered by the radio sources itself. Appendices A-G are only available in electronic form at http://www.aanda.org

  11. Tracing the Baryon Cycle within Nearby Galaxies with a next-generation VLA

    NASA Astrophysics Data System (ADS)

    Kepley, Amanda A.; Leroy, Adam; Murphy, Eric J.; ngVLA Baryon Cycle Science Working Group

    2017-01-01

    The evolution of galaxies over cosmic time is shaped by the cycling of baryons through these systems, namely the inflow of atomic gas, the formation of molecular structures, the birth of stars, and the expulsion of gas due to associated feedback processes. The best way to study this cycle in detail are observations of nearby galaxies. These systems provide a complete picture of baryon cycling over a wide range of astrophysical conditions. In the next decade, higher resolution/sensitivity observations of such galaxies will fundamentally improve our knowledge of galaxy formation and evolution, allowing us to better interpret higher redshift observations of sources that were rapidly evolving at epochs soon after the Big Bang. In particular, the centimeter-to-millimeter part of the spectrum provides critical diagnostics for each of the key baryon cycling processes and access to almost all phases of gas in galaxies: cool and cold gas (via emission and absorption lines), ionized gas (via free-free continuum and recombination lines), cosmic rays and hot gas (via synchrotron emission and the Sunyaev-Zeldovich effect). This poster highlights a number of key science problems in this area whose solutions require a next-generation radio-mm interferometer such as the next-generation VLA.

  12. ALMA Partners Award Prototype Antenna Contracts in Europe and the USA

    NASA Astrophysics Data System (ADS)

    2000-03-01

    prototype antennas will be delivered to the NRAO VLA site in October and November of 2001, respectively. Preparations for ALMA prototype testing are already underway at the VLA site. Three pads are being constructed for the antennas to rest on. An ALMA control room within the VLA control building is being established. About ten full-time ALMA staff will be involved in the testing. Additionally, ALMA project members from around the U.S. and the world will visit the VLA site to participate in the test program. The two prototype antennas will first be tested separately. Following that, the two will be linked together and tested as an interferometer. Millimeter-wave astronomy is the study of the universe in the spectral region between what is traditionally considered radio waves and infrared radiation. In this realm, ALMA will study the structure of the early universe and the evolution of galaxies; gather crucial data on the formation of stars, protoplanetary disks, and planets; and provide new insights on the familiar objects of our own solar system. ALMA is an international partnership between the United States (National Science Foundation) and Europe. European participants include the member states of the European Southern Observatory (Belgium, Denmark, France, Germany, Italy, the Netherlands, Sweden and Switzerland), the Centre National de la Recherche Scientifique (CNRS) in France, the Max-Planck Gesellschaft (Germany), the Netherlands Foundation for Research in Astronomy, the United Kingdom Particle Physics and Astronomy Research Council (PPARC), the Oficina de Ciencia Y Tecnologia/Instituto Geografico Nacional OCYT/IGN (Spain) and the Swedish Natural Science Research Council (NFR). The project is currently in a Design and Development phase governed by a Memorandum of Understanding between the United States and Europe. Negotiations are currently underway to add Canada to the United States team. Note [1] This Press Release is published simultaneously by the U.S. National

  13. GHz low noise short wavelength infrared (SWIR) photoreceivers

    NASA Astrophysics Data System (ADS)

    Bai, Xiaogang; Yuan, Ping; McDonald, Paul; Boisvert, Joseph; Chang, James; Woo, Robyn; Labios, Eduardo; Sudharsanan, Rengarajan; Krainak, Michael; Yang, Guangning; Sun, Xiaoli; Lu, Wei; McIntosh, Dion; Zhou, Qiugui; Campbell, Joe

    2011-06-01

    Next generation LIDAR mapping systems require multiple channels of sensitive photoreceivers that operate in the wavelength region of 1.06 to 1.55 microns, with GHz bandwidth and sensitivity less than 300 fW/√Hz. Spectrolab has been developing high sensitivity photoreceivers using InAlAs impact ionization engineering (I2E) avalanche photodiodes (APDs) structures for this application. APD structures were grown using metal organic vapor epitaxy (MOVPE) and mesa devices were fabricated using these structures. We have achieved low excess noise at high gain in these APD devices; an impact ionization parameter, k, of about 0.15 has been achieved at gains >20 using InAlAs/InGaAlAs as a multiplier layer. Electrical characterization data of these devices show dark current less than 2 nA at a gain of 20 at room temperature; and capacitance of 0.4 pF for a typical 75 micron diameter APD. Photoreceivers were built by integrating I2E APDs with a low noise GHz transimpedance amplifier (TIA). The photoreceivers showed a bandwidth of 1 GHz and a noise equivalent power (NEP) of 150 fW/rt(Hz) at room temperature.

  14. The 20 GHz spacecraft IMPATT solid state transmitter

    NASA Technical Reports Server (NTRS)

    Best, T.; Ngan, Y. C.

    1986-01-01

    The engineering development of a solid-state transmitter amplifier operating in the 20-GHz frequency range is described. This effort involved a multitude of disciplines including IMPATT device development, circulator design, multiple-diode circuit design, and amplifier integration and test. The objective was to develop a transmitter amplifier demonstrating the feasibility of providing an efficient, reliable, lightweight solid-state transmitter to be flown on a 30 to 20 GHz communication demonstration satellite. The work was done under contract from NASA/Lewis Research Center for a period of three years. The result was the development of a GaAs IMPACT diode amplifier capable of an 11-W CW output power and a 2-dB bandwidth of 300 MHz. GaAs IMPATT diodes incorporating diamond heatsink and double-Read doping profile capable of 5.3-W CW oscillator output power and 15.5% efficiency were developed. Up to 19% efficiency was also observed for an output power level of 4.4 W. High performance circulators with a 0.2 dB inserting loss and bandwidth of 5 GHz have also been developed. These represent a significant advance in both device and power combiner circuit technologies in K-band frequencies.

  15. Waveguide Power-Amplifier Module for 80 to 150 GHz

    NASA Technical Reports Server (NTRS)

    Samoska, Lorene; Weinreb, Sander; Peralta, Alejandro

    2006-01-01

    A waveguide power-amplifier module capable of operating over the frequency range from 80 to 150 GHz has been constructed. The module comprises a previously reported power amplifier packaged in a waveguide housing that is compatible with WR-8 waveguides. (WR- 8 is a standard waveguide size for the nominal frequency range from 90 to 140 GHz.) The waveguide power-amplifier module is robust and can be bolted to test equipment and to other electronic circuits with which the amplifier must be connected for normal operation.

  16. Oscillations up to 712 GHz in InAs/AlSb resonant-tunneling diodes

    NASA Technical Reports Server (NTRS)

    Brown, E. R.; Parker, C. D.; Mahoney, L. J.; Molvar, K. M.; Soderstrom, J. R.

    1991-01-01

    Oscillations have been obtained at frequencies from 100 to 712 GHz in InAs/AlSb double-barrier resonant-tunneling diodes at room temperature. The measured power density at 360 GHz was 90 W/sq cm, which is 50 times that generated by GaAs/AlAs diodes at essentially the same frequency. The oscillation at 712 GHz represents the highest frequency reported to date from a solid-state electronic oscillator at room temperature.

  17. Propagation handbook, frequencies above 10 GHz

    NASA Technical Reports Server (NTRS)

    Ippolito, Louis J.

    1988-01-01

    The progress and accomplishments in the developmet of the Fourth Edition of the NASA Propagation Effects Handbook for Satellite Systems Design, for frequencies 10 to 100 GHz, NASA Reference Publication 1082(04), dated May 1988, prepared by Westighouse Electric Corporation for the Jet Propulsion Laboratory are discussed.

  18. Continuous-Wave Operation of a 460-GHz Second Harmonic Gyrotron Oscillator

    PubMed Central

    Hornstein, Melissa K.; Bajaj, Vikram S.; Griffin, Robert G.; Temkin, Richard J.

    2007-01-01

    We report the regulated continuous-wave (CW) operation of a second harmonic gyrotron oscillator at output power levels of over 8 W (12.4 kV and 135 mA beam voltage and current) in the TE0,6,1 mode near 460 GHz. The gyrotron also operates in the second harmonic TE2,6,1 mode at 456 GHz and in the TE2,3,1 fundamental mode at 233 GHz. CW operation was demonstrated for a one-hour period in the TE0,6,1 mode with better than 1% power stability, where the power was regulated using feedback control. Nonlinear simulations of the gyrotron operation agree with the experimentally measured output power and radio-frequency (RF) efficiency when cavity ohmic losses are included in the analysis. The output radiation pattern was measured using a pyroelectric camera and is highly Gaussian, with an ellipticity of 4%. The 460-GHz gyrotron will serve as a millimeter-wave source for sensitivity-enhanced nuclear magnetic resonance (dynamic nuclear polarization) experiments at a magnetic field of 16.4 T. PMID:17710187

  19. Characteristics of ocular temperature elevations after exposure to quasi- and millimeter waves (18-40 GHz)

    NASA Astrophysics Data System (ADS)

    Kojima, Masami; Suzuki, Yukihisa; Tsai, Cheng-Yu; Sasaki, Kensuke; Wake, Kanako; Watanabe, Soichi; Taki, Masao; Kamimura, Yoshitsugu; Hirata, Akimasa; Sasaki, Kazuyuki; Sasaki, Hiroshi

    2015-04-01

    In order to investigate changes in ocular temperature in rabbit eyes exposed to different frequencies (18 to 40 GHz) of quasi-millimeter waves, and millimeter waves (MMW). Pigmented rabbits were anesthetized with both general and topical anesthesia, and thermometer probes (0.5 mm in diameter) were inserted into their cornea (stroma), lens (nucleus) and vitreous (center of vitreous). The eyes were exposed unilaterally to 200 mW/cm2 by horn antenna for 3 min at 18, 22 and 26.5 GHz using a K band exposure system or 26.5, 35 and 40 GHz using a Ka band exposure system. Changes in temperature of the cornea, lens and vitreous were measured with a fluoroptic thermometer. Since the ocular temperatures after exposure to 26.5 GHz generated by the K band and Ka band systems were similar, we assumed that experimental data from these 2 exposure systems were comparable. The highest ocular temperature was induced by 40 GHz MMW, followed by 35 GHz. The 26.5 and 22 GHz corneal temperatures were almost the same. The lowest temperature was recorded at 18 GHz. The elevation in ocular temperature in response to exposure to 200 mW/cm2 MMW is dependent on MMW frequency. MMW exposure induced heat is conveyed not only to the cornea but also the crystalline lens.

  20. The 18 and 30 GHz fixed service communication satellite system study: Executive summary

    NASA Technical Reports Server (NTRS)

    Bronstein, L. M.

    1979-01-01

    The use of the 18 and 30 GHz bands for fixed service satellite communications is examined. Primary objectives were to determine if satellite communication systems using this allocation (27.5 to 30.0 GHz uplink; 17.7 to 20.2 GHz downlink) can be cost competitive with alternate means of communication, and to determine what technological developments would be required to make these systems competitive. To meet these objectives, the cost and performance to be expected of 18 and 30 GHz hardware in the 1985 to 1990 era was assessed, selected trunking and direct to user concepts were optimized, and the cost of these systems was estimated. Finally, the technology developments required to make the most promising of the concepts competitive were identified.

  1. High School Students Discover Neutron Star Using Chandra and VLA Data

    NASA Astrophysics Data System (ADS)

    2000-12-01

    Three high school students, using data from NASA's Chandra X-ray Observatory and the National Science Foundation's Very Large Array (VLA), have found the first evidence of a neutron star in the nearby supernova remnant IC443, a system long studied by professional astronomers. This remarkable discovery has led the team to the national finals and a 1st place finish in the team competition at the Siemens-Westinghouse Science and Technology Competition held today in Washington, DC. Charles Olbert (age 18), Christopher Clearfield (age 18), and Nikolas Williams (age 16), all of the North Carolina School for Science and Mathematics (NCSSM) in Durham, NC, found a point-like source of X rays embedded in the remains of the stellar explosion, or supernova. Based on both the X-ray and radio data, the students determined that the central object in IC443 is most likely a young and rapidly rotating neutron star -- an object known as a "pulsar." "This is a really solid scientific finding," said Bryan Gaensler of the Massachusetts Institute of Technology, a noted pulsar expert who reviewed the paper for the team. "Everyone involved should be really proud of this accomplishment." Taking advantage of Chandra's superior angular resolution, the North Carolina students found the source embedded in IC443, a region known to be emitting particularly high-energy X rays. In a highly unusual situation, the students got access to the Chandra data from their science teacher, Dr. Jonathan Keohane. Keohane applied for the observation time while still associated with NASA's Goddard Space Flight Center. "The students really went through the whole analysis process themselves," said Keohane. "And, they even lived together all summer near the school to complete the research." In order to confirm the evidence from Chandra, the students turned to the National Radio Observatory's Dale Frail who gave the student team VLA data on IC443. While the radio data did not reveal any periodicity, the VLA

  2. Improvements in Speed and Functionality of a 670-GHz Imaging Radar

    NASA Technical Reports Server (NTRS)

    Dengler, Robert J.; Cooper, Ken B.; Mehdi, Imran; Siegel, Peter H.; Tarsala, Jan A.; Bryllert, Thomas E.

    2011-01-01

    Significant improvements have been made in the instrument originally described in a prior NASA Tech Briefs article: Improved Speed and Functionality of a 580-GHz Imaging Radar (NPO-45156), Vol. 34, No. 7 (July 2010), p. 51. First, the wideband YIG oscillator has been replaced with a JPL-designed and built phase-locked, low-noise chirp source. Second, further refinements to the data acquisition and signal processing software have been performed by moving critical code sections to C code, and compiling those sections to Windows DLLs, which are then invoked from the main LabVIEW executive. This system is an active, single-pixel scanned imager operating at 670 GHz. The actual chirp signals for the RF and LO chains were generated by a pair of MITEQ 2.5 3.3 GHz chirp sources. Agilent benchtop synthesizers operating at fixed frequencies around 13 GHz were then used to up-convert the chirp sources to 15.5 16.3 GHz. The resulting signals were then multiplied 36 times by a combination of off-the-shelf millimeter- wave components, and JPL-built 200- GHz doublers and 300- and 600-GHz triplers. The power required to drive the submillimeter-wave multipliers was provided by JPL-built W-band amplifiers. The receive and transmit signal paths were combined using a thin, high-resistivity silicon wafer as a beam splitter. While the results at present are encouraging, the system still lacks sufficient speed to be usable for practical applications in a contraband detection. Ideally, an image acquisition speed of ten seconds, or a factor of 30 improvement, is desired. However, the system improvements to date have resulted in a factor of five increase in signal acquisition speed, as well as enhanced signal processing algorithms, permitting clearer imaging of contraband objects hidden underneath clothing. In particular, advances in three distinct areas have enabled these performance enhancements: base source phase noise reduction, chirp rate, and signal processing. Additionally, a second

  3. Superconductive hot-electron-bolometer mixer receiver for 800-GHz operation

    NASA Astrophysics Data System (ADS)

    Kawamura, J.; Blundell, R.; Tong, C.-Y. E.; Papa, D. C.; Hunter, T. R.; Paine, S. N.; Patt, F.; Gol'Tsman, G.; Cherednichenko, S.; Voronov, B.; Gershenzon, E.

    2000-04-01

    In this paper, we describe a superconductive hot-electron-bolometer mixer receiver designed to operate in the partially transmissive 350-μm atmospheric window. The receiver employs an NbN thin-film microbridge as the mixer element, in which the main cooling mechanism of the hot electrons is through electron-phonon interaction. At a local-oscillator frequency of 808 GHz, the measured double-sideband receiver noise temperature is Trx=970 K, across a 1-GHz intermediate-frequency bandwidth centered at 1.8 GHz. We have measured the linearity of the receiver and the amount of local-oscillator power incident on the mixer for optimal operation, which is PLO ≈ 1 microwatt. This receiver was used in making observations as a facility instrument at the Heinrich Hertz Telescope, Mt. Graham, AZ, during the 1998-1999 winter observing season.

  4. 32 GHz Celestial Reference Frame Survey for Dec < -45 deg.

    NASA Astrophysics Data System (ADS)

    Horiuchi, Shinji; Phillips, Chris; Stevens, Jamie; Jacobs, Christopher; Sotuela, Ioana; Garcia miro, Cristina

    2013-04-01

    (We resubmit this proposal to extend from the previous semester. The 24 hour blocks for ATCA and Mopra were granted in May 2012 but canceled because fringe test before the scheduled experiment failed although fringes were detected between Mopra and Tidbinbilla. As it turned out ATCA had an issue with frequency standard, which has now been resolved.) We propose to conduct a LBA survey of compact radio sources at 32 GHz near the south pole region. This is the first attempt to fill the gap in the existing 32 GHz catalogue establish by NASA Deep Space Network toward completing the full sky celestial reference frame at 32 GHz. The catalogue will be used for future spacecraft navigation by NASA and other space agencies as well as for radio astronomical observations with southern radio telescope arrays such as ATCA and LBA.

  5. Relating SMMR 37 GHz polarization difference to precipitation and atmospheric carbon dioxide concentration - A reappraisal

    NASA Technical Reports Server (NTRS)

    Tucker, C. J.

    1992-01-01

    The relations of Scanning Multi-channel Microwave Radiometer (SMMR) 37 GHz polarization difference to precipitation and atmospheric carbon dioxide (CO2) concentrations are reviewed. Annual precipitation data, a surrogate for green leaf vegetation density, are compared with the coincident SMMR 37 GHz polarization difference from arid and semi-arid West Africa for 1982-85. The SMMR 37 GHz polarization difference was found to be poorly correlated with precipitation in arid and semi-arid zones, contrary to previous reports. Coincident SMMR 37 GHz polarization difference and atmospheric CO2 concentration data from July 1981 to June 1983 are also reviewed. Previously suggested relations of the SMMR 37 GHz polarization difference to atmospheric CO2 concentrations were found to be heavily biased by winter conditions in the Northern Hemisphere. The use of the SMMR 37 GHz polarization difference for determining green leaf vegetation density, net primary production, atmospheric CO2 draw-down and related processes is questioned.

  6. Control system renewal for efficient operation in RIKEN 18 GHz electron cyclotron resonance ion source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uchiyama, A., E-mail: a-uchi@riken.jp; Ozeki, K.; Higurashi, Y.

    A RIKEN 18 GHz electron cyclotron resonance ion source (18 GHz ECRIS) is used as an external ion source at the Radioactive Ion Beam Factory (RIBF) accelerator complex to produce an intense beam of medium-mass heavy ions (e.g., Ca and Ar). In most components that comprise the RIBF, the control systems (CSs) are integrated by the Experimental Physics and Industrial Control System (EPICS). On the other hand, a non-EPICS-based system has hardwired controllers, and it is used in the 18 GHz ECRIS CS as an independent system. In terms of efficient and effective operation, the 18 GHz ECRIS CS asmore » well as the RIBF CS should be renewed using EPICS. Therefore, we constructed an 18 GHz ECRIS CS by using programmable logic controllers with embedded EPICS technology. In the renewed system, an operational log system was developed as a new feature, for supporting of the 18 GHz ECRIS operation.« less

  7. Modeling of NASA's 30/20 GHz satellite communications system

    NASA Technical Reports Server (NTRS)

    Kwatra, S. C.; Maples, B. W.; Stevens, G. A.

    1984-01-01

    NASA is in the process of developing technology for a 30/20 GHz satellite communications link. Currently hardware is being assembled for a test transponder. A simulation package is being developed to study the link performance in the presence of interference and noise. This requires developing models for the components of the system. This paper describes techniques used to model the components for which data is available. Results of experiments performed using these models are described. A brief overview of NASA's 30/20 GHz communications satellite program is also included.

  8. Low-noise 115-GHz receiver using superconducting tunnel junctions

    NASA Technical Reports Server (NTRS)

    Pan, S.-K.; Feldman, M. J.; Kerr, A. R.; Timble, P.

    1983-01-01

    A 110-118-GHz receiver based on a superconducting quasiparticle tunnel junction mixer is described. The single-sideband noise temperature is as low as 68 + or - 3 K. This is nearly twice the sensitivity of any other receiver at this frequency. The receiver was designed using a low-frequency scale model in conjunction with the quantum mixer theory. A scaled version of the receiver for operation at 46 GHz has a single-sideband noise temperature of 55 K. The factors leading to the success of this design are discussed.

  9. Use of the 37-38 GHz and 40-40.5 GHz Ka-bands for Deep Space Communications

    NASA Technical Reports Server (NTRS)

    Morabito, David; Hastrup, Rolf

    2004-01-01

    This paper covers a wide variety of issues associated with the implementation and use of these frequency bands for deep space communications. Performance issues, such as ground station pointing stability, ground antenna gain, antenna pattern, and propagation effects such as due to atmospheric, charged-particle and space loss at 37 GHz, will be addressed in comparison to the 32 GHz Ka-band deep space allocation. Issues with the use of and competition for this spectrum also will be covered. The state of the hardware developed (or proposed) for operating in this frequency band will be covered from the standpoint of the prospects for achieving higher data rates that could be accommodated in the available bandwidth. Hardware areas to be explored include modulators, digital-to-analog converters, filters, power amplifiers, receivers, and antennas. The potential users of the frequency band will be explored as well as their anticipated methods to achieve the potential high data rates and the implications of the competition for bandwidth.

  10. VizieR Online Data Catalog: Ultra-compact HII regions & methanol masers. I. (Hu+, 2016)

    NASA Astrophysics Data System (ADS)

    Hu, B.; Menten, K. M.; Wu, Y.; Bartkiewicz, A.; Rygl, K.; Reid, M. J.; Urquhart, J. S.; Zheng, X.

    2017-03-01

    372 unique targets were selected from the following methanol maser surveys: the Methanol Multi-Beam catalog (MMB; Caswell & Breen 2010MNRAS.407.2599C; Green+ 2010-2012, VIII/96), the Arecibo Methanol Maser Galactic Plane Survey (AMGPS; Pandian+ 2011ApJ...730...55P), the Torun catalog of 6.7GHz methanol masers (Szymczak+ 2012, J/AN/333/634), and other individual observations of known 6.7GHz methanol masers or MSFRs (Caswell+ 1995MNRAS.272...96C; Walsh+ 1997, J/MNRAS/291/261; 1998, J/MNRAS/301/640; Xu+ 2008A&A...485..729X; Caswell 2009, J/other/PASA/26.454). The observations were conducted with the VLA in C-configuration using five sessions from 2012 February 28 to April 16. Spectral line data used 2048 channels across 8MHz, yielding a channel spacing of 3.90625kHz at the central frequency of 6.6685192GHz and a velocity resolution of 0.176km/s. The continuum observations employed two 1GHz sub-bands from 4.9840 to 6.0080GHz (the low band) and from 6.6245 to 7.6485GHz (the high band) and each sub-band was divided into 16 channels. (4 data files).

  11. The 30-GHz monolithic receive module

    NASA Technical Reports Server (NTRS)

    Bauhahn, P.; Geddes, J.; Sokolov, V.; Contolatis, T.

    1988-01-01

    The fourth year progress is described on a program to develop a 27.5 to 30 GHz GaAs monolithic receive module for spaceborne-communication antenna feed array applications, and to deliver submodules for experimental evaluation. Program goals include an overall receive module noise figure of 5 dB, a 30 dB RF to IF gain with six levels of intermediate gain control, a five bit phase shifter, and a maximum power consumption of 250 mW. Submicron gate length single and dual gate FETs are described and applied in the development of monolithic gain control amplifiers and low noise amplifiers. A two-stage monolithic gain control amplifier based on ion implanted dual gate MESFETs was designed and fabricated. The gain control amplifier has a gain of 12 dB at 29 GHz with a gain control range of over 13 dB. A two-stage monolithic low noise amplifier based on ion implanted MESFETs which provides 7 dB gain with 6.2 dB noise figure at 29 GHz was also developed. An interconnected receive module containing LNA, gain control, and phase shifter submodules was built using the LNA and gain control ICs as well as a monolithic phase shifter developed previously under this program. The design, fabrication, and evaluation of this interconnected receiver is presented. Progress in the development of an RF/IF submodule containing a unique ion implanted diode mixer diode and a broadband balanced mixer monolithic IC with on-chip IF amplifier and the initial design of circuits for the RF portion of a two submodule receiver are also discussed.

  12. A New Method to Separate Star-forming from AGN Galaxies at Intermediate Redshift: The Submillijansky Radio Population in the VLA-COSMOS Survey

    NASA Astrophysics Data System (ADS)

    Smolčić, V.; Schinnerer, E.; Scodeggio, M.; Franzetti, P.; Aussel, H.; Bondi, M.; Brusa, M.; Carilli, C. L.; Capak, P.; Charlot, S.; Ciliegi, P.; Ilbert, O.; Ivezić, Ž.; Jahnke, K.; McCracken, H. J.; Obrić, M.; Salvato, M.; Sanders, D. B.; Scoville, N.; Trump, J. R.; Tremonti, C.; Tasca, L.; Walcher, C. J.; Zamorani, G.

    2008-07-01

    We explore the properties of the submillijansky radio population at 20 cm by applying a newly developed optical color-based method to separate star-forming (SF) from active galactic nucleus (AGN) galaxies at intermediate redshifts (zlesssim 1.3). Although optical rest-frame colors are used, our separation method is shown to be efficient and not biased against dusty starburst galaxies. This classification method has been calibrated and tested on a local radio-selected optical sample. Given accurate multiband photometry and redshifts, it carries the potential to be generally applicable to any galaxy sample where SF and AGN galaxies are the two dominant populations. In order to quantify the properties of the submillijansky radio population, we have analyzed ~2,400 radio sources, detected at 20 cm in the VLA-COSMOS survey; 90% of these have submillijansky flux densities. We classify the objects into (1) star candidates, (2) quasi-stellar objects, (3) AGN, (4) SF, and (5) high-redshift (z > 1.3) galaxies. We find, for the composition of the submillijansky radio population, that SF galaxies are not the dominant population at submillijansky flux levels, as previously often assumed, but that they make up an approximately constant fraction of 30%-40% in the flux density range of ~50 μJy to 0.7 mJy. In summary, based on the entire VLA-COSMOS radio population at 20 cm, we find that the radio population at these flux densities is a mixture of roughly 30%-40% of SF and 50%-60% of AGN galaxies, with a minor contribution (~10%) of QSOs.

  13. 670-GHz Down- and Up-Converting HEMT-Based Mixers

    NASA Technical Reports Server (NTRS)

    Schlecht, Enrich T.; Chattopadhyay, Goutam; Lin, Robert H.; Sin, Seth; Deal, William; Rodriquez, Bryan; Bayuk, Brian; Leong, Kevin; Mei, Gerry

    2012-01-01

    A large category of scientific investigation takes advantage of the interactions of signals in the frequency range from 300 to 1,000 GHz and higher. This includes astronomy and atmospheric science, where spectral observations in this frequency range give information about molecular abundances, pressures, and temperatures of small-sized molecules such as water. Additionally, there is a minimum in the atmospheric absorption at around 670 GHz that makes this frequency useful for terrestrial imaging, radar, and possibly communications purposes. This is because 670 GHz is a good compromise for imaging and radar applications between spatial resolution (for a given antenna size) that favors higher frequencies, and atmospheric losses that favor lower frequencies. A similar trade-off applies to communications link budgets: higher frequencies allow smaller antennas, but incur a higher loss. All of these applications usually require converting the RF (radio frequency) signal at 670 GHz to a lower IF (intermediate frequency) for processing. Further, transmitting for communication and radar generally requires up-conversion from IF to the RF. The current state-of-the-art device for performing the frequency conversion is based on Schottky diode mixers for both up and down conversion in this frequency range for room-temperature operation. Devices that can operate at room temperature are generally required for terrestrial, military, and planetary applications that cannot tolerate the mass, bulk, and power consumption of cryogenic cooling. The technology has recently advanced to the point that amplifiers in the region up to nearly 1,000 GHz are feasible. Almost all of these have been based on indium phosphide pseudomorphic high-electron mobility transistors (pHEMTs), in the form of monolithic microwave integrated circuits (MMICs). Since the processing of HEMT amplifiers is quite differ en t from that of Schottky diodes, use of Schottky mixers requires separate MMICs for the mixers

  14. Solar transits radio measurements on 12 and 24 ghz - january 2013 campaign. (French Title: Transits solaires 12 et 24 ghz - campagne de mesures janvier 2013)

    NASA Astrophysics Data System (ADS)

    Palancade, J. P.

    2012-12-01

    Above 1GHz, the qualification of a receiving radio-equipment is not an easy task for radio amateurs. The available measurement equipments is generally not accessible most of the time for reasons such as price, availability and knowledge to use them. The results of these measurements are generally very sensitive to the way they are performed and each parameter has to be carefully controlled and taken into account to limit the range of possible results interpretation. Fortunately one of the best tool to check a microwave receiving installation is the sun. The most popular measurement used by amateur people is the comparison of the signal intensity between the sun and a cold sky region, by simply pointing the antenna (named Cs/Sun). The present study , after a short description of the home made radio equipment involved, aims to present the results of a measurements campaign of solar transits on 11.2 and 24 GHz during 28 consecutive days in January 2013. Preliminary results of the present study tend to show that if, the amplitude fluctuations recorded on 11.2 GHz can be correlated with radio solar flux variations, on 24 GHz, the same radio solar flux variations are hidden by meteorological events such as clouds coverage and probably hygrometry.

  15. Single-dish high sensitivity determination of solar limb emission at 22 and 44 GHz

    NASA Technical Reports Server (NTRS)

    Costa, J. E. R.; Homor, J. L.; Kaufmann, P.

    1986-01-01

    A large number of solar maps were obtained with the use of Itapetinga 45 ft antenna at 22 GHz and 44 GHz. A statistical study of these maps, reduced using original techniques, permitted the establishment of the solar radius with great accuracy at the two frequencies. It is found that 22 GHz and 44 BHz radiation originates at 16,00 km and 12,500 km above the photosphere, respectively. Excess emission due to active regions was clearly identified at lower solar latitudes above and below the equator, extending up to 26,000 km and 16,500 km above the photosphere, at 22 GHs and 44 GHz, respectively.

  16. The Nature of Radio Emission from Distant Galaxies: The 1.4 GHZ Observations

    NASA Astrophysics Data System (ADS)

    Richards, E. A.

    2000-04-01

    We have conducted a deep radio survey with the Very Large Array at 1.4 GHz of a region containing the Hubble Deep Field (HDF). This survey overlaps previous observations at 8.5 GHz allowing us to investigate the radio spectral properties of microjansky sources to flux densities greater than 40 μJy at 1.4 GHz and greater than 8 μJy at 8.5 GHz. A total of 371 sources have been cataloged at 1.4 GHz as part of a complete sample within 20' of the HDF. The differential source count for this region is only marginally sub-Euclidean and is given by n(S)=(8.3+/-0.4)S-2.4+/-0.1 sr-1 Jy-1. Above about 100 μJy the radio source count is systematically lower in the HDF as compared to other fields. We conclude that there is clustering in our radio sample on size scales of 1'-40'. The 1.4 GHz-selected sample shows that the radio spectral indices are preferentially steep (α1.4=0.85) and that the sources are moderately extended with average angular size θ=1.8". Optical identification with disk-type systems at z~0.1-1 suggests that synchrotron emission, produced by supernovae remnants, is powering the radio emission in the majority of sources. The 8.5 GHz sample contains primarily moderately flat spectrum sources (α8.5=0.35), with less than 15% inverted. We argue that we may be observing an increased fraction of optically thin bremsstrahlung over synchrotron radiation in these distant star-forming galaxies.

  17. High resolution measurements of the Sunyaev-Zel'dovich Effect in galaxy clusters at 90 GHz

    NASA Astrophysics Data System (ADS)

    Young, Alexander H.

    The MUltiplexed SQUID/TES Array at Ninety GHz (MUSTANG) is a 64-pixel array of transition-edge sensor (TES) bolometers built at the University of Pennsylvania (UPenn) for the Green Bank Telescope (GBT) in collaboration with a number of universities and government agencies such as NASA-GSFC, NRAO, and NIST. MUSTANG carried out observations between 2008 and 2013 and will soon be replaced by a new receiver (MUSTANG-1.5). MUSTANG-1.5 is a 223-pixel array of feedhorn-coupled polarimeters, which are read out with a novel microwave SQUID multiplexer. MUSTANG-1.5 offers many advantages over MUSTANG including more stable cryogenics, a larger field of view (5.5' compared to 42" for MUSTANG), and a significant improvement in sensitivity. These capabilities enable a far more comprehensive observing program. MUSTANG is aimed at measuring the distortion in the Cosmic Microwave Background (CMB) spectrum that arises due to the Sunyaev-Zel'dovich Effect (SZE). The SZE is the inverse Compton-scattering of CMB photons as they pass through the dense plasma in clusters of galaxies. The SZE is a nearly redshift-independent, complementary probe of the ICM to X-ray emission and combined analyses of both data sets provide a better understanding of astrophysical phenomena such as shocks, cold fronts, and Active Galactic Nucleus (AGN) outbursts. Understanding how substructure, especially in merging clusters, affects the scaling between SZE flux and total cluster mass is essential to placing tight constraints on cosmological parameters with SZE surveys. In this thesis, I present some of the last ever observations carried out by MUSTANG, which are centered on two massive galaxy clusters, MACS J0647.7+7015 and MACS J1206.2-0847. I discuss a model-fitting technique that has been used to quantitatively compare MUSTANG and lower resolution SZE data from Bolocam to study ICM pressure profiles. I report on the design, commissioning, and current status of MUSTANG-1.5 including the detectors

  18. Radio variability in complete samples of extragalactic radio sources at 1.4 GHz

    NASA Astrophysics Data System (ADS)

    Rys, S.; Machalski, J.

    1990-09-01

    Complete samples of extragalactic radio sources obtained in 1970-1975 and the sky survey of Condon and Broderick (1983) were used to select sources variable at 1.4 GHz, and to investigate the characteristics of variability in the whole population of sources at this frequency. The radio structures, radio spectral types, and optical identifications of the selected variables are discussed. Only compact flat-spectrum sources vary at 1.4 GHz, and all but four are identified with QSOs, BL Lacs, or other (unconfirmed spectroscopically) stellar objects. No correlation of degree of variability at 1.4 GHz with Galactic latitude or variability at 408 MHz has been found, suggesting that most of the 1.4-GHz variability is intrinsic and not caused by refractive scintillations. Numerical models of the variability have been computed.

  19. A two-stage monolithic buffer amplifier for 20 GHz satellite communication

    NASA Technical Reports Server (NTRS)

    Petersen, W. C.; Gupta, A. K.

    1983-01-01

    Design, fabrication, and test results of a two-stage GaAs monolithic buffer amplifier for 20 GHz satellite communication are described in this paper. A gain of 13 + or - 0.75 dB from 17.7 to 20.2 GHz was obtained from the 1.5 x 1.5 millimeter chip, which includes all necessary bias and dc blocking circuitry.

  20. Galaxy Evolution in the Reddest Possible Filter

    NASA Astrophysics Data System (ADS)

    Richards, E. A.

    We describe an observational programme aimed at understanding the radio emission from distant, rapidly evolving galaxy populations. These observations were carried out at 1.4 and 8.5 GHz with the VLA, centred on the Hubble Deep Field, obtaining limiting flux densities of 40 and 8 μJy respectively. The differential count of the radio sources is marginally sub-Euclidean to the completeness limits (γ = - 2.4 +/- 0.1) and fluctuation analysis suggests nearly 60 sources per arcmin^2 at the 1 μJy level. Using high-resolution 1.4 GHz observations obtained with MERLIN, we resolve all radio sources detected in the VLA complete sample and measure a median angular size for the microjansky radio population of 1-2``. This clue, coupled with the steep spectral index of the 1.4 GHz selected sample, suggests diffuse synchrotron radiation in z ~ 1 galactic discs. The wide-field HST and ground-based optical exposures show that the radio sources are identified primarily with disc systems composed of irregulars, peculiars, interacting/merging galaxies and a few isolated field spirals. Only 20% of the radio sources can be attributed to AGN - the majority are probably associated with starburst activity. The available redshifts range from 0.1 to 3, with a mean of about 0.8. We are plrobably witnessing a major episode of starburst activity in these luminous (L > L_*) systems, occasionally accompanied by an embedded AGN. About 20% of the radio sources remain unidentified to I = 26-28 in the HDF and flanking fields. Several of these objects have extremely red counterparts. We suggest that these are high-redshift dusty protogalaxies.

  1. Small jets in radio-loud hot DOGs

    NASA Astrophysics Data System (ADS)

    Lonsdale, C. J.; Whittle, M.; Trapp, A.; Patil, P.; Lonsdale, C. J.; Thorp, R.; Lacy, M.; Kimball, A. E.; Blain, A.; Jones, S.; Kim, M.

    2016-02-01

    We address the impact of young radio jets on the ISM and star formation in a sample of radiatively efficient, highly obscured, radio AGN with look back times that place them near the peak of the galaxy and BH building era, z˜ 1-3. By selecting systems with a high mid-infrared (MIR) luminosity we aim to identify radiatively efficient (``quasar-mode'' or ``radiative-mode") AGN in a peak fueling phase, and by selecting compact radio sources we favor young or re-generated radio jets which are confined within the hosts. By selecting AGN which are very red through the optical-MIR we favor highly obscured systems likely to have been recently merger-triggered and still in the pre-blow-out phase of AGN feedback into the surrounding ISM. ALMA imaging at 345 GHz of 49 sources has revealed that they are accretion dominated, relative to star formation, with luminosities reaching 1014 L⊙. Extensive VLA imaging at 8-10 GHz in both A-array and B-array for 155 sources reveals that the majority of these powerful radio systems are compact on < 2-5 kpc scales while some have resolved structures on 3-25 kpc scales, and a small number have giant radio lobes on hundreds of kpc scales. The majority of the GHz range radio SEDs are typical of optically thin synchrotron, however for the 34 sources with data at more than 2 frequencies, 40 % are likely to be CSS, GPS, or HFP sources. VLBA imaging of 62 sources reveals varied morphologies, from unresolved sources to complex multicomponent 1-10 mas scale structures. Data from ALMA, VLA, and VLBA

  2. Short-lived solar burst spectral component at f approximately 100 GHz

    NASA Technical Reports Server (NTRS)

    Kaufmann, P.; Correia, E.; Costa, J. E. R.; Vaz, A. M. Z.

    1986-01-01

    A new kind of burst emission component was discovered, exhibiting fast and distinct pulses (approx. 60 ms durations), with spectral peak emission at f approx. 100 GHz, and onset time coincident to hard X-rays to within approx. 128 ms. These features pose serious constraints for the interpretation using current models. One suggestion assumes the f approx. 100 GHz pulses emission by synchrotron mechanism of electrons accelerated to ultrarelativistic energies. The hard X-rays originate from inverse Compton scattering of the electrons on the synchrotron photons. Several crucial observational tests are needed for the understanding of the phenomenon, requiring high sensitivity and high time resolution (approx. 1 ms) simultaneous to high spatial resolution (0.1 arcsec) at f approx. 110 GHz and hard X-rays.

  3. 20/30 GHz satellite systems technology needs assessment. [for domestic communications

    NASA Technical Reports Server (NTRS)

    Stevens, G.; Wright, D.

    1978-01-01

    The paper surveys the system and market work done at NASA-Lewis with regard to exploring the potential of the 20/30 GHz bands for domestic satellite communications. The 20/30 GHz bands appear attractive economically and, with certain technology advances, appear to offer a virtually unlimited spectrum resource. This attractiveness is especially relevant to high density trunking where there is sufficient traffic to justify dual-station site diversity. Ongoing system and market studies actively involve satellite system suppliers and carriers as well as the government in a cooperative, mutually beneficial effort. It is considered that this is the approach most likely to result in a spectrum-efficient acceptable-risk high-capacity 30/30 GHz satellite system which is relevant to anticipated markets.

  4. Polarimetric measurements of natural surfaces at 95 GHz

    NASA Astrophysics Data System (ADS)

    Chang, Paul S.; McIntosh, Robert E.

    1992-08-01

    A high power 95 GHz radar system, developed at the University of Massachusetts, was used to make polarimetric measurements of natural surfaces. Over the two year period of this grant, the following items were accomplished: (1) The 95 GHz radar was configured into a unique system capable of simultaneously making coherent and incoherent Mueller matrix measurements; (2) The equivalence of the coherent and noncoherent measurement technique was demonstrated; (3) The polarimetric properties of various foliage targets were characterized. These included the weeping willow, the sugar maple, and the white pine tree species; (4) The polarimetric properties of various snowcover types were characterized; and (5) Mueller matrix models for wet and dry snow were developed.

  5. 32 GHz Celestial Reference Frame Survey for Dec < -45 deg.

    NASA Astrophysics Data System (ADS)

    Horiuchi, Shinji; Phillips, Chris; Stevens, Jamie; Jacobs, Christopher; Sotuela, Ioana; Garcia miro, Cristina

    2014-04-01

    (We resubmit this proposal to extend from the previous semester. The 24 hour blocks for ATCA and Mopra were granted in May 2012 but canceled because fringe test before the scheduled experiment failed although fringes were detected between Mopra and Tidbinbilla. During the last scheduled LBA session for this project we discovered ATCA/Mopra had an issue with frequency standard, which has now been resolved.) We propose to conduct a LBA survey of compact radio sources at 32 GHz near the south pole region. This is the first attempt to fill the gap in the existing 32 GHz catalogue establish by NASA Deep Space Network toward completing the full sky celestial reference frame at 32 GHz. The catalogue will be used for future spacecraft navigation by NASA and other space agencies as well as for radio astronomical observations with southern radio telescope arrays such as ATCA and LBA.

  6. Tree attenuation at 20 GHz: Foliage effects

    NASA Technical Reports Server (NTRS)

    Vogel, Wolfhard J.; Goldhirsh, Julius

    1993-01-01

    Static tree attenuation measurements at 20 GHz (K-Band) on a 30 deg slant path through a mature Pecan tree with and without leaves showed median fades exceeding approximately 23 dB and 7 dB, respectively. The corresponding 1% probability fades were 43 dB and 25 dB. Previous 1.6 GHz (L-Band) measurements for the bare tree case showed fades larger than those at K-Band by 3.4 dB for the median and smaller by approximately 7 dB at the 1% probability. While the presence of foliage had only a small effect on fading at L-Band (approximately 1 dB additional for the median to 1% probability range), the attenuation increase was significant at K-Band, where it increased by about 17 dB over the same probability range.

  7. Tree attenuation at 20 GHz: Foliage effects

    NASA Astrophysics Data System (ADS)

    Vogel, Wolfhard J.; Goldhirsh, Julius

    1993-08-01

    Static tree attenuation measurements at 20 GHz (K-Band) on a 30 deg slant path through a mature Pecan tree with and without leaves showed median fades exceeding approximately 23 dB and 7 dB, respectively. The corresponding 1% probability fades were 43 dB and 25 dB. Previous 1.6 GHz (L-Band) measurements for the bare tree case showed fades larger than those at K-Band by 3.4 dB for the median and smaller by approximately 7 dB at the 1% probability. While the presence of foliage had only a small effect on fading at L-Band (approximately 1 dB additional for the median to 1% probability range), the attenuation increase was significant at K-Band, where it increased by about 17 dB over the same probability range.

  8. Laboratory Heterodyne Spectrometers Operating at 100 and 300 GHZ

    NASA Astrophysics Data System (ADS)

    Maßen, Jakob; Wehres, Nadine; Hermanns, Marius; Lewen, Frank; Heyne, Bettina; Endres, Christian; Graf, Urs; Honingh, Netty; Schlemmer, Stephan

    2017-06-01

    Two new laboratory heterodyne emission spectrometers are presented that are currently used for high-resolution rotational spectroscopy of complex organic molecules. The room temperature heterodyne receiver operating between 80-110 GHz, as well as the SIS heterodyne receiver operating between 270-370 GHz allow access to two very important frequency regimes, coinciding with Bands 3 and 7 of the ALMA (Atacama Large Millimeter Array) telescope. Taking advantage of recent progresses in the field of mm/submm technology, we build these two spectrometers using an XFFFTS (eXtended Fast Fourier Transform Spectrometer) for spectral acquisition. The instantaneous bandwidth is 2.5 GHz in a single sideband, spread over 32768 channels. Thus, the spectral resolution is about 76 kHz per channel and thus comparable to high resolution spectra from telescopes. Both receivers are operated in double sideband mode resulting in a total instantaneous bandwidth of 5 GHz. The system performances, in particular the noise temperatures and stabilities are presented. Proof-of-concept is demonstrated by showing spectra of methyl cyanide obtained with both spectrometers. While the transition frequencies for this molecule are very well known, intensities of those transitions can also be determined with high accuracy using our new instruments. This additional information shall be exploited in future measurements to improve spectral predictions for astronomical observations. Other future prospects concern the study of more complex organic species, such as ethyl cyanide. These aspects of the new instruments as well as limitations of the two distinct receivers will be discussed.

  9. Astronomers Find Enormous Hole in the Universe

    NASA Astrophysics Data System (ADS)

    2007-08-01

    Astronomers have found an enormous hole in the Universe, nearly a billion light-years across, empty of both normal matter such as stars, galaxies, and gas, and the mysterious, unseen "dark matter." While earlier studies have shown holes, or voids, in the large-scale structure of the Universe, this new discovery dwarfs them all. Void Illustration Hole in Universe revealed by its effect on Cosmic Microwave Background radiation. CREDIT: Bill Saxton, NRAO/AUI/NSF, NASA Click on image for page of graphics and detailed information "Not only has no one ever found a void this big, but we never even expected to find one this size," said Lawrence Rudnick of the University of Minnesota. Rudnick, along with Shea Brown and Liliya R. Williams, also of the University of Minnesota, reported their findings in a paper accepted for publication in the Astrophysical Journal. Astronomers have known for years that, on large scales, the Universe has voids largely empty of matter. However, most of these voids are much smaller than the one found by Rudnick and his colleagues. In addition, the number of discovered voids decreases as the size increases. "What we've found is not normal, based on either observational studies or on computer simulations of the large-scale evolution of the Universe," Williams said. The astronomers drew their conclusion by studying data from the NRAO VLA Sky Survey (NVSS), a project that imaged the entire sky visible to the Very Large Array (VLA) radio telescope, part of the National Science Foundation's National Radio Astronomy Observatory (NRAO). Their careful study of the NVSS data showed a remarkable drop in the number of galaxies in a region of sky in the constellation Eridanus. "We already knew there was something different about this spot in the sky," Rudnick said. The region had been dubbed the "WMAP Cold Spot," because it stood out in a map of the Cosmic Microwave Background (CMB) radiation made by the Wilkinson Microwave Anisotopy Probe (WMAP) satellite

  10. The 20/30 GHz satellite systems technology needs assessment

    NASA Technical Reports Server (NTRS)

    Stevens, G.; Wright, D.

    1978-01-01

    Rain attenuation in the 20/30 GHz bands, and the resultant impact on system user costs were estimated for a variety of satellite communication system concepts. Results of previous and current NASA Lewis contractual and in-house studies on system design are reported as well as market studies conducted to evaluate the concepts and test their relevancy against forecasted market needs. The 20/30 GHz bands appear attractive economically and, with certain technology, appear to offer a virtually unlimited spectrum resource. This attractiveness is especially relevant to high density trunking where there is sufficient traffic to justify dual-station site diversity.

  11. Heterodyne detection of the 752.033-GHz H2O rotational absorption line

    NASA Technical Reports Server (NTRS)

    Dionne, G. F.; Fitzgerald, J. F.; Chang, T. S.; Litvak, M. M.; Fetterman, H. R.

    1980-01-01

    A tunable high resolution two stage heterodyne radiometer was developed for the purpose of investigating the intensity and lineshape of the 752.033 GHz rotational transition of water vapor. Single-sideband system noise temperatures of approximately 45,000 K were obtained using a sensitive GaAs Schottky diode as the first stage mixer. First local oscillator power was supplied by a CO2 laser pumped formic acid laser (761.61 GHz), generating an X-band IF signal with theoretical line center at 9.5744 GHz. Second local oscillator power was provided by means of a 3 GHz waveguide cavity filter with only 9 dB insertion loss. In absorption measurements of the H2O taken from a laboratory simulation of a high altitude rocket plume, the center frequency of the 752 GHz line was determined to within 1 MHz of the reported value. A rotational temperature 75 K, a linewidth 5 MHz and a Doppler shift 3 MHz were measured with the line-of-sight intersecting the simulated-plume axis at a distance downstream of 30 nozzle diameters. These absorption data were obtained against continuum background radiation sources at temperatures of 1175 and 300 K.

  12. 200-GHz and 50-GHz AWG channelized linewidth dependent transmission of weak-resonant-cavity FPLD injection-locked by spectrally sliced ASE.

    PubMed

    Lin, Gong-Ru; Cheng, Tzu-Kang; Chi, Yu-Chieh; Lin, Gong-Cheng; Wang, Hai-Lin; Lin, Yi-Hong

    2009-09-28

    In a weak-resonant-cavity Fabry-Perot laser diode (WRC-FPLD) based DWDM-PON system with an array-waveguide-grating (AWG) channelized amplified spontaneous emission (ASE) source located at remote node, we study the effect of AWG filter bandwidth on the transmission performances of the 1.25-Gbit/s directly modulated WRC-FPLD transmitter under the AWG channelized ASE injection-locking. With AWG filters of two different channel spacings at 50 and 200 GHz, several characteristic parameters such as interfered reflection, relatively intensity noise, crosstalk reduction, side-mode-suppressing ratio and power penalty of BER effect of the WRC-FPLD transmitted data are compared. The 200-GHz AWG filtered ASE injection minimizes the noises of WRC-FPLD based ONU transmitter, improving the power penalty of upstream data by -1.6 dB at BER of 10(-12). In contrast, the 50-GHz AWG channelized ASE injection fails to promote better BER but increases the power penalty by + 1.5 dB under back-to-back transmission. A theoretical modeling elucidates that the BER degradation up to 4 orders of magnitude between two injection cases is mainly attributed to the reduction on ASE injection linewidth, since which concurrently degrades the signal-to-noise and extinction ratios of the transmitted data stream.

  13. Fin-line PIN-diode attenuators and switches for 94 GHz range

    NASA Astrophysics Data System (ADS)

    Meinel, H.; Callsen, H.

    1982-06-01

    The letter reports new results of fin-line PIN-diode attenuators and switches for the 94 GHz range. Design and performance of SPST and SPDT switches - single pole single throw and single pole double throw, respectively - will be presented. The attenuation of the SPST switch, for example, can be adjusted between 2 and 35 dB over the entire waveguide band from 75 to 110 GHz.

  14. GHz Modulation of GaAs-Based Bipolar Cascade VCSELs (Preprint)

    DTIC Science & Technology

    2006-11-01

    VCSELs were grown on n+ GaAs substrates by molecular beam epitaxy . The laser cavities consist of 1-, 2-, or 3-stage 52λ microcavi- ties, each containing...AFRL-SN-WP-TP-2006-128 GHz MODULATION OF GaAs-BASED BIPOLAR CASCADE VCSELs (PREPRINT) W.J. Siskaninetz, R.G. Bedford, T.R. Nelson, Jr., J.E...TITLE AND SUBTITLE GHz MODULATION OF GaAs-BASED BIPOLAR CASCADE VCSELs (PREPRINT) 5c. PROGRAM ELEMENT NUMBER 69199F 5d. PROJECT NUMBER 2002 5e

  15. A 17 GHz molecular rectifier

    PubMed Central

    Trasobares, J.; Vuillaume, D.; Théron, D.; Clément, N.

    2016-01-01

    Molecular electronics originally proposed that small molecules sandwiched between electrodes would accomplish electronic functions and enable ultimate scaling to be reached. However, so far, functional molecular devices have only been demonstrated at low frequency. Here, we demonstrate molecular diodes operating up to 17.8 GHz. Direct current and radio frequency (RF) properties were simultaneously measured on a large array of molecular junctions composed of gold nanocrystal electrodes, ferrocenyl undecanethiol molecules and the tip of an interferometric scanning microwave microscope. The present nanometre-scale molecular diodes offer a current density increase by several orders of magnitude compared with that of micrometre-scale molecular diodes, allowing RF operation. The measured S11 parameters show a diode rectification ratio of 12 dB which is linked to the rectification behaviour of the direct current conductance. From the RF measurements, we extrapolate a cut-off frequency of 520 GHz. A comparison with the silicon RF-Schottky diodes, architecture suggests that the RF-molecular diodes are extremely attractive for scaling and high-frequency operation. PMID:27694833

  16. An economical state-dependent telecloning for a multiparticle GHZ state

    NASA Astrophysics Data System (ADS)

    Meng, Fan-Xu; Yu, Xu-Tao; Zhang, Zai-Chen

    2018-03-01

    The scheme for a 1-3 economical state-dependent telecloning of a multiparticle GHZ state is proposed. It shows that every one of spatially separated three receivers obtains one copy which is dependent on original state. Fidelity can hit to the optimal fidelity 5/6. Meantime, we also propose a 1-3 asymmetric economical telecloning of a particular multiparticle GHZ state by parameterizing coefficients of state in the channel. The three fidelities can reach the best match that is the same as the symmetric case. Furthermore, the above two schemes can be generalized into the case of 1-M(M=2k+1,k>0) telecloning of a multiparticle GHZ state. Satisfying some certain conditions, optimal fidelities with 1/2+(M+1)/4M can be obtained. As without ancilla in the channel, the number of entangled particles is less than one in current schemes and fidelities can be optimal if the original state is an equatorial state.

  17. LOFAR, VLA, and Chandra observations of the Toothbrush Galaxy Cluster

    DOE PAGES

    van Weeren, R. J.; Brunetti, G.; Bruggen, M.; ...

    2016-02-22

    We present deep LOFAR observations between 120 {181 MHz of the `Toothbrush' (RX J0603.3+4214), a cluster that contains one of the brightest radio relic sources known. Our LOFAR observations exploit a new and novel calibration scheme to probe 10 times deeper than any previous study in this relatively unexplored part of the spectrum. The LOFAR observations, when combined with VLA, GMRT, and Chandra X-ray data, provide new information about the nature of cluster merger shocks and their role in re-accelerating relativistic particles. We derive a spectral index of α = -0:8±0:1 at the northern edge of the main radio relic,more » steepening towards the south to α ≈ -2. The spectral index of the radio halo is remarkably uniform (α = -1:16, with an intrinsic scatter of ≤ 0:04). The observed radio relic spectral index gives a Mach number of M = 2:8 +0:5 -0:3, assuming diffusive shock acceleration (DSA). However, the gas density jump at the northern edge of the large radio relic implies a much weaker shock (M≈1:2, with an upper limit ofM≈1:5). The discrepancy between the Mach numbers calculated from the radio and X-rays can be explained if either (i) the relic traces a complex shock surface along the line of sight, or (ii) if the radio relic emission is produced by a re-accelerated population of fossil particles from a radio galaxy. Our results highlight the need for additional theoretical work and numerical simulations of particle acceleration and re-acceleration at cluster merger shocks.« less

  18. First imagery generated by near-field real-time aperture synthesis passive millimetre wave imagers at 94 GHz and 183 GHz

    NASA Astrophysics Data System (ADS)

    Salmon, Neil A.; Mason, Ian; Wilkinson, Peter; Taylor, Chris; Scicluna, Peter

    2010-10-01

    The first passive millimetre wave (PMMW) imagery is presented from two proof-of-concept aperture synthesis demonstrators, developed to investigate the use of aperture synthesis for personnel security screening and all weather flying at 94 GHz, and satellite based earth observation at 183 GHz [1]. Emission from point noise sources and discharge tubes are used to examine the coherence on system baselines and to measure the point spread functions, making comparisons with theory. Image quality is examined using near field aperture synthesis and G-matrix calibration imaging algorithms. The radiometric sensitivity is measured using the emission from absorbers at elevated temperatures acting as extended sources and compared with theory. Capabilities of the latest Field Programmable Gate Arrays (FPGA) technologies for aperture synthesis PMMW imaging in all-weather and security screening applications are examined.

  19. 338-GHz Semiconductor Amplifier Module

    NASA Technical Reports Server (NTRS)

    Samoska, Lorene A.; Gaier, Todd C.; Soria, Mary M.; Fung, King Man; Rasisic, Vesna; Deal, William; Leong, Kevin; Mei, Xiao Bing; Yoshida, Wayne; Liu, Po-Hsin; hide

    2010-01-01

    Research findings were reported from an investigation of new gallium nitride (GaN) monolithic millimeter-wave integrated circuit (MMIC) power amplifiers (PAs) targeting the highest output power and the highest efficiency for class-A operation in W-band (75-110 GHz). W-band PAs are a major component of many frequency multiplied submillimeter-wave LO signal sources. For spectrometer arrays, substantial W-band power is required due to the passive lossy frequency multipliers.

  20. ALMA Achieves Major Milestone With Antenna-Link Success

    NASA Astrophysics Data System (ADS)

    2007-03-01

    The Atacama Large Millimeter/submillimeter Array (ALMA), an international telescope project, reached a major milestone on March 2, when two ALMA prototype antennas were first linked together as an integrated system to observe an astronomical object. The milestone achievement, technically termed "First Fringes," came at the ALMA Test Facility (ATF) on the grounds of the National Radio Astronomy Observatory's (NRAO) Very Large Array (VLA) radio telescope in New Mexico. NRAO is a facility of the National Science Foundation (NSF), managed by Associated Universities, Incorporated (AUI). AUI also is designated by NSF as the North American Executive for ALMA. ALMA Test Facility ALMA Test Facility, New Mexico: VertexRSI antenna, left; AEC antenna, right. CREDIT: Drew Medlin, NRAO/AUI/NSF Click on image for page of graphics and full information Faint radio waves emitted by the planet Saturn were collected by the two ALMA antennas, then processed by new, state-of-the-art electronics to turn the two antennas into a single, high-resolution telescope system, called an interferometer. Such pairs of antennas are the basic building blocks of multi-antenna imaging systems such as ALMA and the VLA. In such a system, each antenna is combined electronically with every other antenna to form a multitude of pairs. Each pair contributes unique information that is used to build a highly-detailed image of the astronomical object under observation. When completed in 2012, ALMA will have 66 antennas. The successful Saturn observation began at 7:13 p.m., U.S. Mountain Time Friday (0213 UTC Saturday). The planet's radio emissions at a frequency of 104 GigaHertz (GHz) were tracked by the ALMA system for more than an hour. "Our congratulations go to the dedicated team of scientists, engineers and technicians who produced this groundbreaking achievement for ALMA. Much hard work and many long hours went into this effort, and we appreciate it all. This team should be very proud today," said NRAO

  1. The 18/30 GHz fixed communications system service demand assessment. Volume 2: Main text

    NASA Technical Reports Server (NTRS)

    Gabriszeski, T.; Reiner, P.; Rogers, J.; Terbo, W.

    1979-01-01

    The total demand for communications services, and satellite transmission services at the 4/6 GHz, 12/14 GHz, and 18/30 GHz frequencies is assessed. The services are voice, video, and data services. Traffic demand, by service, is distributed by geographical regions, population density, and distance between serving points. Further distribution of traffic is made among four major end user groups: business, government, institutions and private individuals. A traffic demand analysis is performed on a typical metropolitan city to examine service distribution trends. The projected cost of C and Ku band satellite systems are compared on an individual service basis to projected terrestrial rates. Separation of traffic between transmission systems, including 18/30 GHz systems, is based on cost, user, and technical considerations.

  2. Structured surface reflector design for oblique incidence beam splitter at 610 GHz.

    PubMed

    Defrance, F; Casaletti, M; Sarrazin, J; Wiedner, M C; Gibson, H; Gay, G; Lefèvre, R; Delorme, Y

    2016-09-05

    An iterative alternate projection-based algorithm is developed to design structured surface reflectors to operate as beam splitters at GHz and THz frequencies. To validate the method, a surface profile is determined to achieve a reflector at 610 GHz that generates four equal-intensity beams towards desired directions of ±12.6° with respect to the specular reflection axis. A prototype is fabricated and the beam splitter behavior is experimentally demonstrated. Measurements confirm a good agreement (within 1%) with computer simulations using Feko, validating the method. The beam splitter at 610 GHz has a measured efficiency of 78% under oblique incidence illumination that ensures a similar intensity between the four reflected beams (variation of about 1%).

  3. 47 CFR 25.222 - Blanket Licensing provisions for Earth Stations on Vessels (ESVs) receiving in the 10.95-11.2 GHz...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... on Vessels (ESVs) receiving in the 10.95-11.2 GHz (space-to-Earth), 11.45-11.7 GHz (space-to-Earth), 11.7-12.2 GHz (space-to-Earth) bands and transmitting in the 14.0-14.5 GHz (Earth-to-space) band... the 10.95-11.2 GHz (space-to-Earth), 11.45-11.7 GHz (space-to-Earth), 11.7-12.2 GHz (space-to-Earth...

  4. A VLA radio-continuum survey of a sample of confirmed and marginal barium stars

    NASA Technical Reports Server (NTRS)

    Drake, Stephen A.; Simon, Theodore; Linsky, Jeffrey L.

    1987-01-01

    Results are reported from a 6-cm VLA survey of five confirmed Ba II stars and eight mild Ba II stars, undertaken to search for evidence of gyrosynchrotron emission or thermal emission from the primary star's wind that is enhanced or photoionized by a white dwarf companion. Of these 13 stars, only Beta UMi was detected as a possible radio source at a flux level of 0.11 mJy (3sigma). The 6-cm radio luminosities (L6) of the other stars are as small as log L6 less than or equal to 14.0 and are an order of magnitude or more lower than the average levels found in RS CVn systems, but are consistent with the L6 upper limits previously found for stars of spectral type similar to the Ba II stars and normal elemental abundances. The upper limit to the radio luminosity for the possible mild Ba II star 56 Peg, when combined with its previously known X-ray luminosity, may provide useful constraints on the various models that have been proposed for this interesting object, once its orbital period is known.

  5. A 0.4-2.3 GHz broadband power amplifier extended continuous class-F design technology

    NASA Astrophysics Data System (ADS)

    Chen, Peng; He, Songbai

    2015-08-01

    A 0.4-2.3 GHz broadband power amplifier (PA) extended continuous class-F design technology is proposed in this paper. Traditional continuous class-F PA performs in high-efficiency only in one octave bandwidth. With the increasing development of wireless communication, the PA is in demand to cover the mainstream communication standards' working frequencies from 0.4 GHz to 2.2 GHz. In order to achieve this objective, the bandwidths of class-F and continuous class-F PA are analysed and discussed by Fourier series. Also, two criteria, which could reduce the continuous class-F PA's implementation complexity, are presented and explained to investigate the overlapping area of the transistor's current and voltage waveforms. The proposed PA design technology is based on the continuous class-F design method and divides the bandwidth into two parts: the first part covers the bandwidth from 1.3 GHz to 2.3 GHz, where the impedances are designed by the continuous class-F method; the other part covers the bandwidth from 0.4 GHz to 1.3 GHz, where the impedance to guarantee PA to be in high-efficiency over this bandwidth is selected and controlled. The improved particle swarm optimisation is employed for realising the multi-impedances of output and input network. A PA based on a commercial 10 W GaN high electron mobility transistor is designed and fabricated to verify the proposed design method. The simulation and measurement results show that the proposed PA could deliver 40-76% power added efficiency and more than 11 dB power gain with more than 40 dBm output power over the bandwidth from 0.4-2.3 GHz.

  6. Lightning and 85-GHz MCSs in the Global Tropics

    NASA Technical Reports Server (NTRS)

    Toracinta, E. Richard; Zipser, E. J.

    1999-01-01

    Numerous observations of tropical convection show that tropical continental mesoscale convective systems (MCSs) are much more prolific lightning producers than their oceanic counterparts. Satellite-based climatologies using 85-GHz passive microwave ice-scattering signatures from the Special Sensor Microwave/Imager (SSM/I) indicate that MCSs of various size and intensity are found throughout the global tropics. In contrast, global lightning distributions show a strong land bias with an order of magnitude difference between land and ocean lightning. This is somewhat puzzling, since 85-GHz ice-scattering and the charge separation processes that lead to lightning are both thought to depend upon the existence of large graupel particles. The fact that low 85-GHz brightness temperatures are observed in tropical oceanic MCSs containing virtually no lightning leads to the postulate that tropical oceanic and tropical continental MCSs have fundamentally different hydrometeor profiles through the mixed phase region of the cloud (0 C <= T <= 20 C). Until recently, validation of this postulate has not been practicable on a global scale. Recent deployment of the Tropical Rainfall Measuring Mission (TRMM) satellite presents a unique opportunity for MCS studies. The multi-sensor instrument ensemble aboard TRMM, including a multi-channel microwave radiometer, the Lightning Imaging Sensor (LIS), and the first space-borne radar, facilitates high-resolution case studies of MCS structure throughout the global tropics. An important precursor, however, is to better understand the distribution of MCSs and lightning in the tropics. With that objective in mind, this research undertakes a systematic comparison of 85-GHz-defined MCSs and lightning over the global tropics for a full year, as an initial step toward quantifying differences between land and ocean convective systems.

  7. Market capture by 30/20 GHz satellite systems. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    Gamble, R. B.; Saporta, L.

    1981-01-01

    Demand for 30/20 GHz satellite systems over the next two decades is projected. Topics include a profile of the communications market, switched, dedicated, and packet transmission modes, deferred and real-time traffic, quality and reliability considerations, the capacity of competing transmission media, and scenarios for the growth and development of 30/20 GHz satellite communications.

  8. Market capture by 30/20 GHz satellite systems. Volume 1: Executive summary

    NASA Astrophysics Data System (ADS)

    Gamble, R. B.; Saporta, L.

    1981-04-01

    Demand for 30/20 GHz satellite systems over the next two decades is projected. Topics include a profile of the communications market, switched, dedicated, and packet transmission modes, deferred and real-time traffic, quality and reliability considerations, the capacity of competing transmission media, and scenarios for the growth and development of 30/20 GHz satellite communications.

  9. Miniature MMIC Low Mass/Power Radiometer Modules for the 180 GHz GeoSTAR Array

    NASA Technical Reports Server (NTRS)

    Kangaslahti, Pekka; Tanner, Alan; Pukala, David; Lambrigtsen, Bjorn; Lim, Boon; Mei, Xiaobing; Lai, Richard

    2010-01-01

    We have developed and demonstrated miniature 180 GHz Monolithic Microwave Integrated Circuit (MMIC) radiometer modules that have low noise temperature, low mass and low power consumption. These modules will enable the Geostationary Synthetic Thinned Aperture Radiometer (GeoSTAR) of the Precipitation and All-weather Temperature and Humidity (PATH) Mission for atmospheric temperature and humidity profiling. The GeoSTAR instrument has an array of hundreds of receivers. Technology that was developed included Indium Phosphide (InP) MMIC Low Noise Amplifiers (LNAs) and second harmonic MMIC mixers and I-Q mixers, surface mount Multi-Chip Module (MCM) packages at 180 GHz, and interferometric array at 180 GHz. A complete MMIC chip set for the 180 GHz receiver modules (LNAs and I-Q Second harmonic mixer) was developed. The MMIC LNAs had more than 50% lower noise temperature (NT=300K) than previous state-of-art and MMIC I-Q mixers demonstrated low LO power (3 dBm). Two lots of MMIC wafers were processed with very high DC transconductance of up to 2800 mS/mm for the 35 nm gate length devices. Based on these MMICs a 180 GHz Multichip Module was developed that had a factor of 100 lower mass/volume (16x18x4.5 mm3, 3g) than previous generation 180 GHz receivers.

  10. Origin of Enigmatic Galactic-center Filaments Revealed

    NASA Astrophysics Data System (ADS)

    2004-06-01

    Twenty years ago, astronomers discovered a number of enigmatic radio-emitting filaments concentrated near the center of the Milky Way Galaxy. These features initially defied explanation, but a new study of radio images of the Galactic center may point to their possible source. By combining data from the National Science Foundation's Very Large Array (VLA) and Robert C. Byrd Green Bank Telescope (GBT) astronomer Farhad Yusef-Zadeh of Northwestern University has found evidence that at least some of the filaments spring from the concentrated star-formation regions that populate the Galactic center. Galatic Center Combined VLA and GBT image (green) of the Galactic center, with red inset of GBT data only (red). Bright region on right is location of supermassive black hole. Linear filaments are visible above this area. CREDIT: NRAO/AUI/NSF Yusef-Zadeh, et.al. (Click on Image for Larger Version) Yusef-Zadeh presented his findings at the Denver, Colorado, meeting of the American Astronomical Society. William Cotton of the National Radio Astronomy Observatory (NRAO) in Charlottesville, Virginia, and William Hewitt of Northwestern University also contributed to this research. "Astronomers have long puzzled over the cause of these striking features," said Yusef-Zadeh, "and the turbulent nature of the Galactic center has made detailed analysis difficult. With new multi-wavelength radio images of the Galactic center, however, we can finally see a link between areas of starburst activity and these long-linear filaments." The filaments, which range from 10 to 100 light-years in length and are perhaps little more than 1 to 3 light-years across, occur only in a very narrow area, within approximately two degrees of the Galactic center (which translates to approximately 900 light-years across). Early theories about the origin of these filaments suggested that they were somehow related to the Milky Way’s own magnetic field. This was due to the fact that the first filaments detected

  11. THE CELESTIAL REFERENCE FRAME AT 24 AND 43 GHz. II. IMAGING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Charlot, P.; Boboltz, D. A.; Fey, A. L.

    2010-05-15

    We have measured the submilliarcsecond structure of 274 extragalactic sources at 24 and 43 GHz in order to assess their astrometric suitability for use in a high-frequency celestial reference frame (CRF). Ten sessions of observations with the Very Long Baseline Array have been conducted over the course of {approx}5 years, with a total of 1339 images produced for the 274 sources. There are several quantities that can be used to characterize the impact of intrinsic source structure on astrometric observations including the source flux density, the flux density variability, the source structure index, the source compactness, and the compactness variability.more » A detailed analysis of these imaging quantities shows that (1) our selection of compact sources from 8.4 GHz catalogs yielded sources with flux densities, averaged over the sessions in which each source was observed, of about 1 Jy at both 24 and 43 GHz, (2) on average the source flux densities at 24 GHz varied by 20%-25% relative to their mean values, with variations in the session-to-session flux density scale being less than 10%, (3) sources were found to be more compact with less intrinsic structure at higher frequencies, and (4) variations of the core radio emission relative to the total flux density of the source are less than 8% on average at 24 GHz. We conclude that the reduction in the effects due to source structure gained by observing at higher frequencies will result in an improved CRF and a pool of high-quality fiducial reference points for use in spacecraft navigation over the next decade.« less

  12. The HI Chronicles of LITTLE THINGS BCDs. III. Gas Clouds in and around Mrk 178, VII Zw 403, and NGC 3738

    NASA Astrophysics Data System (ADS)

    Ashley, Trisha; Simpson, Caroline E.; Elmegreen, Bruce G.; Johnson, Megan; Pokhrel, Nau Raj

    2017-03-01

    In most blue compact dwarf (BCD) galaxies, it remains unclear what triggers their bursts of star formation. We study the H I of three relatively isolated BCDs, Mrk 178, VII Zw 403, and NGC 3738, in detail to look for signatures of star formation triggers, such as gas cloud consumption, dwarf-dwarf mergers, and interactions with companions. High angular and velocity resolution atomic hydrogen (H I) data from the Very Large Array (VLA) dwarf galaxy H I survey, Local Irregulars That Trace Luminosity Extremes, The H I Nearby Galaxy Survey (LITTLE THINGS), allow us to study the detailed kinematics and morphologies of the BCDs in H I. We also present high-sensitivity H I maps from the NRAO Green Bank Telescope (GBT) of each BCD to search their surrounding regions for extended tenuous emission or companions. The GBT data do not show any distinct galaxies obviously interacting with the BCDs. The VLA data indicate several possible star formation triggers in these BCDs. Mrk 178 likely has a gas cloud impacting the southeast end of its disk or it is experiencing ram pressure stripping. VII Zw 403 has a large gas cloud in its foreground or background that shows evidence of accreting onto the disk. NGC 3738 has several possible explanations for its stellar morphology and H I morphology and kinematics: an advanced merger, strong stellar feedback, or ram pressure stripping. Although apparently isolated, the H I data of all three BCDs indicate that they may be interacting with their environments, which could be triggering their bursts of star formation.

  13. Experimental study of a 1 MW, 170 GHz gyrotron oscillator

    NASA Astrophysics Data System (ADS)

    Kimura, Takuji

    A detailed experimental study is presented of a 1 MW, 170 GHz gyrotron oscillator whose design is consistent with the ECH requirements of the International Thermonuclear Experimental Reactor (ITER) for bulk heating and current drive. This work is the first to demonstrate that megawatt power level at 170 GHz can be achieved in a gyrotron with high efficiency for plasma heating applications. Maximum output power of 1.5 MW is obtained at 170.1 GHz in 85 kV, 50A operation for an efficiency of 35%. Although the experiment at MIT is conducted with short pulses (3 μs), the gyrotron is designed to be suitable for development by industry for continuous wave operation. The peak ohmic loss on the cavity wall for 1 MW of output power is calculated to be 2.3 kW/cm2, which can be handled using present cooling technology. Mode competition problems in a highly over-moded cavity are studied to maximize the efficiency. Various aspects of electron gun design are examined to obtain high quality electron beams with very low velocity spread. A triode magnetron injection gun is designed using the EGUN simulation code. A total perpendicular velocity spread of less than 8% is realized by designing a low- sensitivity, non-adiabatic gun. The RF power is generated in a short tapered cavity with an iris step. The operating mode is the TE28,8,1 mode. A mode converter is designed to convert the RF output to a Gaussian beam. Power and efficiency are measured in the design TE28,8,1 mode at 170.1 GHz as well as the TE27,8,1 mode at 166.6 GHz and TE29,8,1 mode at 173.5 GHz. Efficiencies between 34%-36% are consistently obtained over a wide range of operating parameters. These efficiencies agree with the highest values predicted by the multimode simulations. The startup scenario is investigated and observed to agree with the linear theory. The measured beam velocity ratio is consistent with EGUN simulation. Interception of reflected beam by the mod-anode is measured as a function of velocity ratio

  14. Multi-year slant path rain fade statistics at 28.56 and 19.04 GHz for Wallops Island, Virginia

    NASA Technical Reports Server (NTRS)

    Goldhirsh, J.

    1979-01-01

    Multiyear rain fade statistics at 28.56 GHz and 19.04 GHz were compiled for the region of Wallops Island, Virginia covering the time periods, 1 April 1977 through 31 March 1978, and 1 September 1978 through 31 August 1979. The 28.56 GHz attenuations were derived by monitoring the beacon signals from the COMSTAR geosynchronous satellite, D sub 2 during the first year, and satellite, D sub 3, during the second year. Although 19.04 GHz beacons exist aboard these satellites, statistics at this frequency were predicted using the 28 GHz fade data, the measured rain rate distribution, and effective path length concepts. The prediction method used was tested against radar derived fade distributions and excellent comparisons were noted. For example, the rms deviations between the predicted and test distributions were less than or equal to 0.2dB or 4% at 19.04 GHz. The average ratio between the 28.56 GHz and 19.04 GHz fades were also derived for equal percentages of time resulting in a factor of 2.1 with a .05 standard deviation.

  15. 3He Abundances in Planetary Nebulae

    NASA Astrophysics Data System (ADS)

    Guzman-Ramirez, Lizette

    2017-10-01

    Determination of the 3He isotope is important to many fields of astrophysics, including stellar evolution, chemical evolution, and cosmology. The isotope is produced in stars which evolve through the planetary nebula phase. Planetary nebulae are the final evolutionary phase of low- and intermediate-mass stars, where the extensive mass lost by the star on the asymptotic giant branch is ionised by the emerging white dwarf. This ejecta quickly disperses and merges with the surrounding ISM. 3He abundances in planetary nebulae have been derived from the hyperfine transition of the ionised 3He, 3He+, at the radio rest frequency 8.665 GHz. 3He abundances in PNe can help test models of the chemical evolution of the Galaxy. Many hours have been put into trying to detect this line, using telescopes like the Effelsberg 100m dish of the Max Planck Institute for Radio Astronomy, the National Radio Astronomy Observatory (NRAO) 140-foot telescope, the NRAO Very Large Array, the Arecibo antenna, the Green Bank Telescope, and only just recently, the Deep Space Station 63 antenna from the Madrid Deep Space Communications Complex.

  16. A 32 GHz microstrip array antenna for microspacecraft application

    NASA Technical Reports Server (NTRS)

    Huang, J.

    1994-01-01

    JPL/NASA is currently developing microspacecraft systems for future deep space applications. One of the frequency bands being investigated for microspacecraft is the Ka-band (32 GHz), which can be used with smaller equipment and provides a larger bandwidth. This article describes the successful development of a circularly polarized microstrip array with 28 dBic of gain at 32 GHz. This antenna, which is thin, flat, and small, can be surface-mounted onto the microspacecraft and, hence, takes very little volume and mass of the spacecraft. The challenges in developing this antenna are minimizing the microstrip antenna's insertion loss and maintaining a reasonable frequency bandwidth.

  17. Optical-fiber-connected 300-GHz FM-CW radar system

    NASA Astrophysics Data System (ADS)

    Kanno, Atsushi; Sekine, Norihiko; Kasamatsu, Akifumi; Yamamoto, Naokatsu; Kawanishi, Tetsuya

    2017-05-01

    300-GHz frequency-modulated continuous-wave (FM-CW) radar system operated by radio over fiber technologies is configured and demonstrated. Centralized signal generator, which is based on an optical frequency comb generation, provides high-precise FM-CW radar signal. The optical signal is easy to be transported to radar heads through an optical fiber network. Optical-modulator-based optical frequency comb generator is utilized as an optical frequency multiplier from a microwave signal to a 300-GHz terahertz signal by an optical modulation technique. In the study, we discuss the configuration of the network, signal generator and remote radar head for terahertz-wave multi-static radar system.

  18. 180-GHz Interferometric Imager

    NASA Technical Reports Server (NTRS)

    Kangaslahti, Pekka P.; Lim, Boon H.; O'Dwyer, Ian J.; Soria, Mary M.; Owen, Heather R.; Gaier, Todd C.; Lambrigtsen, Bjorn, H.; Tanner, Alan B.; Ruf, Christopher

    2011-01-01

    A 180-GHz interferometric imager uses compact receiver modules, combined high- and low-gain antennas, and ASIC (application specific integrated circuit) correlator technology, enabling continuous, all-weather observations of water vapor with 25-km resolution and 0.3-K noise in 15 minutes of observation for numerical weather forecasting and tropical storm prediction. The GeoSTAR-II prototype instrument is broken down into four major subsystems: the compact, low-noise receivers; sub-array modules; IF signal distribution; and the digitizer/correlator. Instead of the single row of antennas adopted in GeoSTAR, this version has four rows of antennas on a coarser grid. This dramatically improves the sensitivity in the desired field of view. The GeoSTAR-II instrument is a 48-element, synthetic, thinned aperture radiometer operating at 165-183 GHz. The instrument has compact receivers integrated into tiles of 16 elements in a 4x4 arrangement. These tiles become the building block of larger arrays. The tiles contain signal distribution for bias controls, IF signal, and local oscillator signals. The IF signals are digitized and correlated using an ASIC correlator to minimize power consumption. Previous synthetic aperture imagers have used comparatively large multichip modules, whereas this approach uses chip-scale modules mounted on circuit boards, which are in turn mounted on the distribution manifolds. This minimizes the number of connectors and reduces system mass. The use of ASIC technology in the digitizers and correlators leads to a power reduction close to an order of magnitude.

  19. An optically passive method that doubles the rate of 2-Ghz timing fiducials

    NASA Astrophysics Data System (ADS)

    Boni, R.; Kendrick, J.; Sorce, C.

    2017-08-01

    Solid-state optical comb-pulse generators provide a convenient and accurate method to include timing fiducials in a streak camera image for time base correction. Commercially available vertical-cavity surface-emitting lasers (VCSEL's) emitting in the visible currently in use can be modulated up to 2 GHz. An optically passive method is presented to interleave a time-delayed path of the 2-GHz comb with itself, producing a 4-GHz comb. This technique can be applied to VCSEL's with higher modulation rates. A fiber-delivered, randomly polarized 2-GHz VCSEL comb is polarization split into s-polarization and p-polarization paths. One path is time delayed relative to the other by twice the 2-GHz rate with +/-1-ps accuracy; the two paths then recombine at the fiber-coupled output. High throughput (>=90%) is achieved by carefully using polarization beam-splitting cubes, a total internal reflection beam-path-steering prism, and antireflection coatings. The glass path-length delay block and turning prism are optically contacted together. The beam polarizer cubes that split and recombine the paths are precision aligned and permanently cemented into place. We expect the palm-sized, inline fiber-coupled, comb-rate-doubling device to maintain its internal alignment indefinitely.

  20. Medium power amplifiers covering 90 - 130 GHz for telescope local oscillators

    NASA Technical Reports Server (NTRS)

    Samoska, Lorene A.; Bryerton, Eric; Pukala, David; Peralta, Alejandro; Hu, Ming; Schmitz, Adele

    2005-01-01

    This paper describes a set of power amplifier (PA) modules containing InP High Electron Mobility Transistor (HEMT) Monolithic Millimeter-wave Integrated Circuit (MMIC) chips. The chips were designed and optimized for local oscillator sources in the 90-130 GHz band for the Atacama Large Millimeter Array telescope. The modules feature 20-45 mW of output power, to date the highest power from solid state HEMT MMIC modules above 110 GHz.