Science.gov

Sample records for giant proteoglycan molecules

  1. Proteoglycans and more – from molecules to biology

    PubMed Central

    Heinegård, Dick

    2009-01-01

    In this article the organization and functional details of the extracellular matrix, with particular focus on cartilage, are described. All tissues contain a set of molecules that are arranged to contribute structural elements. Examples are fibril-forming collagens forming major fibrillar networks in most tissues. The assembly process is regulated by a number of proteins (thrombospondins, LRR-proteins, matrilins and other collagens) that can bind to the collagen molecule and in many cases remain bound to the formed fibre providing additional stability and enhancing networking to other structural networks. One such network is formed by collagen VI molecules assembled to beaded filaments in the matrix catalysed by interactions with small proteoglycans of the LRR-family, which remain bound to the filament providing for interactions via a linker of a matrilin to other matrix constituents like collagen fibres and the large proteoglycans, e.g. aggrecan in cartilage. Aggrecan is contributing an extreme anionic charge density to the extracellular matrix, which by osmotic effects leads to water retention and strive to swelling, resisted by the tensile properties of the collagen fibres. Aggrecan is bound via one end to hyaluronan, including such molecules retained at the cell surface, to form very large molecular entities that interact with other constituents of the matrix, e.g. fibulins that can form their own network. Other important interactions are those with cell surface receptors such as integrins, heparan sulphfate proteoglycans, hyaluronan receptors and others. Many of the molecules with an ability to interact with these receptors can also bind to molecules in the matrix and provide a bridge from the matrix to the cell and induce various responses. In pathology, there is an imbalance in matrix turnover with often excessive proteolytic breakdown. This results in the formation of protein fragments, where cleavage provides information on the active enzyme. Those

  2. Mammalian eyes and associated tissues contain molecules that are immunologically related to cartilage proteoglycan and link protein

    PubMed Central

    1982-01-01

    Monospecific antibodies to bovine nasal cartilage proteoglycan monomer and link protein were used to demonstrate that immunologically related molecules are present in the bovine eye and associated tissues. With immunofluorescence microscopy, reactions for both proteoglycan and link protein were observed in the sclera, the anterior uveal tract, and the endoneurium of the optic nerve of the central nervous system. Antibody to bovine nasal cartilage proteoglycan also reacted with some connective tissue sheaths of rectus muscle and the perineurium of the optic nerve of the central nervous system. Antibody to proteoglycan purified from rat brain cross-reacted with bovine nasal cartilage proteoglycan, indicating structural similarities between these proteoglycans. ELISA studies and crossed immunoelectrophoresis demonstrated that purified dermatan sulphate proteoglycans isolated from bovine sclera did not react with these antibodies but that the antibody to cartilage proteoglycan reacted with other molecules extracted from sclera. Two molecular species resembling bovine nasal link protein in size and reactivity with antibody were also demonstrated in scleral extracts: the larger molecule was more common. Antibody to link protein reacted with the media of arterial vessels demonstrating the localization of arterial link protein described earlier. Tissues that were unstained for either molecule included the connective tissue stroma of the iris, retina, vitreous body, cornea, and the remainder of the uveal tract. These observations clearly demonstrate that tissues other than cartilage contain molecules that are immunologically related to cartilage-derived proteoglycans and link proteins. PMID:7119004

  3. Trace Molecules in Giant Planet Atmospheres

    NASA Astrophysics Data System (ADS)

    Huestis, D. L.; Smith, G. P.

    2010-12-01

    Chemical kinetics matters in the upper atmospheres of giant planets in our solar system and in extrasolar systems. The composition of a volume of gas depends not only on where it is, but also on how it got there. The giant planets in our own solar system still have much to teach us about what we will be observing on extrasolar giant planets and how to interpret what we observe. Some molecules, such as CO, C2H2, C2H6, PH3, and NH3, which we call tracer molecules, provide remotely observable signatures of vertical transport. PH3 and NH3 especially have complicated thermochemistry and chemical kinetics that, until recently, have been poorly understood. Based on analysis of recent literature, we have identified new chemical mechanisms for interconverting NH3 and N2 and for interconverting PH3 and NH4-H2PO4.

  4. Giant magnetoresistance through a single molecule.

    PubMed

    Schmaus, Stefan; Bagrets, Alexei; Nahas, Yasmine; Yamada, Toyo K; Bork, Annika; Bowen, Martin; Beaurepaire, Eric; Evers, Ferdinand; Wulfhekel, Wulf

    2011-03-01

    Magnetoresistance is a change in the resistance of a material system caused by an applied magnetic field. Giant magnetoresistance occurs in structures containing ferromagnetic contacts separated by a metallic non-magnetic spacer, and is now the basis of read heads for hard drives and for new forms of random access memory. Using an insulator (for example, a molecular thin film) rather than a metal as the spacer gives rise to tunnelling magnetoresistance, which typically produces a larger change in resistance for a given magnetic field strength, but also yields higher resistances, which are a disadvantage for real device operation. Here, we demonstrate giant magnetoresistance across a single, non-magnetic hydrogen phthalocyanine molecule contacted by the ferromagnetic tip of a scanning tunnelling microscope. We measure the magnetoresistance to be 60% and the conductance to be 0.26G(0), where G(0) is the quantum of conductance. Theoretical analysis identifies spin-dependent hybridization of molecular and electrode orbitals as the cause of the large magnetoresistance.

  5. A Proteoglycan-Like Molecule Offers Insights Into Ground Substance Changes During Holothurian Intestinal Regeneration.

    PubMed

    Vázquez-Vélez, Gabriel E; Rodríguez-Molina, José F; Quiñones-Frías, Mónica C; Pagán, María; García-Arrarás, José E

    2016-06-01

    Extracellular matrix remodeling is an essential component of regenerative processes in metazoans. Among these animals, holothurians (sea cucumbers) are distinguished by their great regenerative capacities. We have previously shown that fibrous collagen as well as other fibrous components disappear from the connective tissue (CT) early during intestinal regeneration, and later return as the organ primordia form. We now report on changes of the nonfibrous component of the CT. We have used Alcian Blue staining and an antibody, Proteoglycan Like-1 (PGL-1), that recognizes a proteoglycan-like antigen to identify the presence of proteoglycans in normal and regenerating intestines. Our results show that early in regeneration, the ground substance resembles that of the mesentery, the structure from where the new intestine originates. As regeneration proceeds, Alcian Blue staining and PGL-1 labeling reorganize, so that by 4 weeks the normal intestinal CT pattern is achieved. Together with our previous findings, the data suggest that CT components that might be detrimental to regeneration disappear early on, while those that might be beneficial to regeneration, such as proteoglycans, are present throughout the regenerative process. © 2016 The Histochemical Society.

  6. Classical and quantum magnetism in giant Keplerate magnetic molecules.

    PubMed

    Müller, A; Luban, M; Schröder, C; Modler, R; Kögerler, P; Axenovich, M; Schnack, J; Canfield, P; Bud'ko, S; Harrison, N

    2001-09-17

    Complementary theoretical modeling methods are presented for the classical and quantum Heisenberg model to explain the magnetic properties of nanometer-sized magnetic molecules. Excellent quantitative agreement is achieved between our experimental data down to 0.1 K and for fields up to 60 Tesla and our theoretical results for the giant Keplerate species {Mo72Fe30}, by far the largest paramagnetic molecule synthesized to date.

  7. 4f wavefunction collapse and giant resonances in molecules

    NASA Astrophysics Data System (ADS)

    Robin, M. B.

    1985-08-01

    The effective potential for an f orbital in an atom reflects both the attractive Coulomb and repulsive centrifugal forces, resulting in a double-well potential. Transitions from nd orbitals to f¯ orbitals bound in the inner well of the effective potential are unique in their frequency, intensity and response to external perturbations, and are known as "giant resonances". In molecules, the role of the repulsive centrifugal force is played instead by orthogonality to bonding valence orbitals, in which case the inner-well wavefunctions then become antibonding valence MOs. In general, the expected molecular giant resonances resulting from transitions between d-like MOs and antibonding valence MOs of f symmetry are not seen because of strong valence/Rydberg mixing. However, in certain molecules having high symmetries and the proper electronic configurations, this upper-state mixing is symmetry forbidden, and so molecular giant resonances can appear. These d → f¯ molecular giant resonances are identified for the first time in the vacuum-ultraviolet spectra of cyclopropane, cyclohexane, neopentane and uranium hexafluoride.

  8. Giant faraday rotation in conjugated, rod-like molecules

    NASA Astrophysics Data System (ADS)

    Vleugels, Rick; Brullot, Ward; Verbiest, Thierry

    2016-09-01

    Faraday rotation is a magneto-optic phenomenon in which the polarization plane of light is rotated due to magnetically induced circular birefringence. It can be used in a variety of applications such as optical isolators, magnetic field sensors and current sensors. So far, most of the applications use inorganic, paramagnetic materials, which have Verdet constants up to millions of degrees per tesla per meter in the visible spectrum range. They are performant at telecommunication wavelengths, though with smaller Verdet constants, so thicker materials are used. Disadvantages of these materials are their magnetic saturation at low magnetic fields and their strong temperature dependency. Organic, diamagnetic materials on the contrary, saturate at much larger magnetic fields and are less temperature dependent. Furthermore, they also have the advantage of their flexibility and processability. Up to now, magneto-optical research on organic materials has mostly characterized materials with low magneto-optical activity in regions without absorption, but there are some exceptions. Some pi-conjugated polymers have been shown to have very large magneto-optic responses. Furthermore, a mesogenic, organic molecule has been reported with a very high Verdet constant. Conclusive explanations for these large Verdet constants are still lacking, but different possible hypotheses were proposed. In our ongoing search for organic materials with exceptional magneto-optical properties, we examined conjugated, rod-like molecules. Structural, these molecules show close resemblances with the earlier reported mesogenic, organic molecule. We measured giant Verdet constants for thin films of these molecules, reaching values almost as giant as the previous reported mesogenic molecule. These findings shed first preliminary light on a structure-activity relationship for giant Faraday rotation in diamagnetic organic materials.

  9. Giant molecules composed of polar molecules and atoms in mixed dimensions

    NASA Astrophysics Data System (ADS)

    Qi, Ran; Tan, Shina

    2014-05-01

    Two or three polar molecules, confined to one or two dimensions, can form stable bound states with a single atom living in three dimensions, if the molecule and the atom can interact resonantly such that their mixed dimensional scattering length is large. We call these bound states ``giant molecules'' since it's a molecule composed of smaller molecules and atoms. We study their properties using techniques including exact numerical solution, exact qunatum diffusion Monte Carlo (QMC), Born-Oppenheimer approximation (BOA), and semiclassical approximation. These bound states have a hierarchical structure reminiscent of the celestial systems.

  10. Structural Stability of Giant Polyoxomolybdate Molecules as Probed by EXAFS

    SciTech Connect

    Frenkel,A.; Frenkel, S.; Liu, T.

    2005-01-01

    Recent progress in synthesis of 'giant' polyoxomolybdate (POM) molecules that have a structure of hollow spheres or wheels and size of several nanometers in diameter has emphasized the need in their accurate structural investigation. Our temperature-dependent EXAFS studies demonstrated that the first generation POM molecules containing 132 Mo atoms, undergo irreversible structural transformations at ca. 500 K, while the recently synthesized second generation POM at ca. 400 K. The number of different structural units in these molecules can be accurately obtained from EXAFS analysis and compared with model structure calculations. In our method of analysis, we use theoretical calculations of pair radial distribution functions from the model structures as initial approximations to analyze the structures of these molecules. Our analysis allowed us to identify the new POM structure as a giant sphere, similar to the {l_brace}Mo{sub 132}{r_brace} structure but containing 522 Mo atoms. Our results also demonstrate that the structural rigidity of different building blocks of these molecules can be quantitatively probed by EXAFS.

  11. Proteoglycans in liver cancer

    PubMed Central

    Baghy, Kornélia; Tátrai, Péter; Regős, Eszter; Kovalszky, Ilona

    2016-01-01

    Proteoglycans are a group of molecules that contain at least one glycosaminoglycan chain, such as a heparan, dermatan, chondroitin, or keratan sulfate, covalently attached to the protein core. These molecules are categorized based on their structure, localization, and function, and can be found in the extracellular matrix, on the cell surface, and in the cytoplasm. Cell-surface heparan sulfate proteoglycans, such as syndecans, are the primary type present in healthy liver tissue. However, deterioration of the liver results in overproduction of other proteoglycan types. The purpose of this article is to provide a current summary of the most relevant data implicating proteoglycans in the development and progression of human and experimental liver cancer. A review of our work and other studies in the literature indicate that deterioration of liver function is accompanied by an increase in the amount of chondroitin sulfate proteoglycans. The alteration of proteoglycan composition interferes with the physiologic function of the liver on several levels. This article details and discusses the roles of syndecan-1, glypicans, agrin, perlecan, collagen XVIII/endostatin, endocan, serglycin, decorin, biglycan, asporin, fibromodulin, lumican, and versican in liver function. Specifically, glypicans, agrin, and versican play significant roles in the development of liver cancer. Conversely, the presence of decorin could potentially provide protective effects. PMID:26755884

  12. Transmembrane signaling proteoglycans.

    PubMed

    Couchman, John R

    2010-01-01

    Virtually all metazoan cells contain at least one and usually several types of transmembrane proteoglycans. These are varied in protein structure and type of polysaccharide, but the total number of vertebrate genes encoding transmembrane proteoglycan core proteins is less than 10. Some core proteins, including those of the syndecans, always possess covalently coupled glycosaminoglycans; others do not. Syndecan has a long evolutionary history, as it is present in invertebrates, but many other transmembrane proteoglycans are vertebrate inventions. The variety of proteins and their glycosaminoglycan chains is matched by diverse functions. However, all assume roles as coreceptors, often working alongside high-affinity growth factor receptors or adhesion receptors such as integrins. Other common themes are an ability to signal through their cytoplasmic domains, often to the actin cytoskeleton, and linkage to PDZ protein networks. Many transmembrane proteoglycans associate on the cell surface with metzincin proteases and can be shed by them. Work with model systems in vivo and in vitro reveals roles in growth, adhesion, migration, and metabolism. Furthermore, a wide range of phenotypes for the core proteins has been obtained in mouse knockout experiments. Here some of the latest developments in the field are examined in hopes of stimulating further interest in this fascinating group of molecules.

  13. Crystal engineering of giant molecules based on perylene diimide conjugated polyhedral oligomeric silsesquioxane nano-atom

    NASA Astrophysics Data System (ADS)

    Ren, He

    Molecular architectures and topologies are found contributing to the formation of supramolecular structures of giant molecules. Dr. Cheng's research group developed a diverse of giant molecules via precisely controlled chemistry synthetic routes. These giant molecules can be categorized into several different families, namely giant surfactants, giant shape amphiphiles and giant polyhedron. By analyzing the hierarchical structures of these carefully designed and precisely synthesized giant molecules, the structural factors which affect, or even dominates, in some cases, the formation of supramolecular structures are revealed in these intensive researches. The results will further contribute to the understanding of dependence of supramolecular structures on molecular designs as well as molecular topology, and providing a practical solution to the scaling up of microscopic molecular functionalities to macroscopic material properties. Molecular Nano Particles (MNPs), including fullerene (C60), POSS, Polyoxometalate (POM) and proteins etc., is defined and applied as a specific type of building blocks in the design and synthesis of giant molecules. The persistence in shape and symmetry is considered as one of the major properties of MNPs. This persistence will support the construction of giant molecules for further supramolecular structures' study by introducing specific shapes, or precisely located side groups which will facilitate self-assembling behaviors with pre-programmed secondary interactions. Dictating material physical properties by its chemical composition is an attractive yet currently failed approach in the study of materials. However, the pursuit of determining material properties by microscopic molecular level properties is never seized, and found its solution when the idea of crystal engineering is raised: should each atom in the material is located exactly where it is designed to be and is properly bonded, the property of the material is hence determined

  14. Precise Tetrahedral Giant Molecules Based on Polyhedral Oligosilsesquioxane (POSS) Nano-atoms

    NASA Astrophysics Data System (ADS)

    Huang, Mingjun; Hsu, Chih-Hao; Mei, Shan; Zhang, Wen-Bin; Cheng, Stephen Z. D.

    2014-03-01

    The assembly of building blocks with specific shape and symmetry in 3D space is a long-lasting topic in scientific research. If ``nano-atoms'' are placed on the apexes of a rigid polyhedron linker to form a larger faceted giant molecule, such molecules would amplify the symmetry of the linkers and result in giant polyhedra molecules. When four POSS cages are linked to the apex of a tetrahedron, we obtain a giant tetrahedron. Depending on the linkers, it can be a semi-rigid or a rigid giant polyhedron. An interesting approach is to utilize the sp3-carbon or adamantane core to introduce the Td symmetry, and utilize ``click reaction'' to connect four hydrophobic isobutyl-POSS (BPOSS) at four corners. Our preliminary results show that the giant tetrahedron Tetra-4BPOSS forms an interdigitated diamondoid structure. In these giant polyhedra, we can use different ``nano-atoms'' with different functional groups, which may also act as an additional factor to affect the final ordered structures. The progresses of our research lead to three hydrophobic and one hydrophilic HPOSS (HPOSS represents seven hydroxyl group functionalized POSS), and two hydrophobic BPOSS and two hydrophilic HPOSS.

  15. Toward Controlled Hierarchical Heterogeneities in Giant Molecules with Precisely Arranged Nano Building Blocks

    PubMed Central

    2016-01-01

    Herein we introduce a unique synthetic methodology to prepare a library of giant molecules with multiple, precisely arranged nano building blocks, and illustrate the influence of minute structural differences on their self-assembly behaviors. The T8 polyhedral oligomeric silsesquioxane (POSS) nanoparticles are orthogonally functionalized and sequentially attached onto the end of a hydrophobic polymer chain in either linear or branched configuration. The heterogeneity of primary chemical structure in terms of composition, surface functionality, sequence, and topology can be precisely controlled and is reflected in the self-assembled supramolecular structures of these giant molecules in the condensed state. This strategy offers promising opportunities to manipulate the hierarchical heterogeneities of giant molecules via precise and modular assemblies of various nano building blocks. PMID:27163025

  16. Intracellular proteoglycans.

    PubMed Central

    Kolset, Svein Olav; Prydz, Kristian; Pejler, Gunnar

    2004-01-01

    Proteoglycans (PGs) are proteins with glycosaminoglycan chains, are ubiquitously expressed and have a wide range of functions. PGs in the extracellular matrix and on the cell surface have been the subject of extensive structural and functional studies. Less attention has so far been given to PGs located in intracellular compartments, although several reports suggest that these have biological functions in storage granules, the nucleus and other intracellular organelles. The purpose of this review is, therefore, to present some of these studies and to discuss possible functions linked to PGs located in different intracellular compartments. Reference will be made to publications relevant for the topics we present. It is beyond the scope of this review to cover all publications on PGs in intracellular locations. PMID:14759226

  17. Matrix molecule influence on chondrocyte phenotype and proteoglycan 4 expression by alginate-embedded zonal chondrocytes and mesenchymal stem cells.

    PubMed

    Coates, Emily E; Riggin, Corinne N; Fisher, John P

    2012-12-01

    Articular cartilage resists load and provides frictionless movement at joint surfaces. The tissue is organized into the superficial, middle, deep, and calcified zones throughout its depth, each which serve distinct functions. Proteoglycan 4 (PRG4), found in the superficial zone, is a critical component of the joint's lubricating mechanisms. Maintenance of both the chondrocyte and zonal chondrocyte phenotype remain challenges for in vitro culture and tissue engineering. Here we investigate the expression of PRG4 mRNA and protein by primary bovine superficial zone chondrocytes, middle/deep zone chondrocytes, and mesenchymal stem cells encapsulated in alginate hydrogels with hyaluronic acid (HA) and chondroitin sulfate (CS) additives. Chondrogenic phenotype and differentiation markers are evaluated by mRNA expression, histochemical, and immunohistochemical staining. Results show middle/deep cells express no measurable PRG4 mRNA by day 7. In contrast, superficial zone cells express elevated PRG4 mRNA throughout culture time. This expression can be significantly enhanced up to 15-fold by addition of both HA and CS to scaffolds. Conversely, PRG4 mRNA expression is downregulated (up to 5-fold) by CS and HA in differentiating MSCs, possibly due to build up of entrapped protein. HA and CS demonstrate favorable effects on chondrogenesis by upregulating transcription factor Sox9 mRNA (up to 4.6-fold) and downregulating type I collagen mRNA (up to 18-fold). Results highlight the important relationship between matrix components and expression of critical lubricating proteins in an engineered cartilage scaffold. Copyright © 2012 Orthopaedic Research Society.

  18. Exact and quasi exact numerical methods for giant magnetic molecules

    NASA Astrophysics Data System (ADS)

    Schnack, Jürgen

    2012-02-01

    The determination of the energy spectra of large magnetic molecules is a demanding numerical problem. In this contribution we demonstrate that theory has advanced very much in recent years. We first show that it is possible to diagonalize the Heisenberg Hamiltonian by employing the spin-rotational symmetry SU(2) in combination with arbitrary point-group symmetries [1]. This goes far beyond earlier approaches and enables us to evaluate thermodynamic observables such as the magnetization and spectroscopic data for molecules as large as the famous ferric wheel Fe10 with a Hilbert space dimension of more than 60 Millions. Then we explain how the finite-temperature Lanczos method can be applied to magnetic molecules in order to determine thermodynamic functions for Hilbert spaces as large as up to 1 Billion [2]. The new method enables us to discuss the magnetic properties of the highly frustrated Keplerate molecule W72V30 which behaves like a finite size Kagome lattice antiferromagnet. [4pt] [1] R. Schnalle and J. Schnack, Int. Rev. Phys. Chem. 29 (2010) 403; R. Schnalle, J. Schnack, Phys. Rev. B 79 (2009) 104419. [0pt] [2] J. Schnack, O. Wendland, Eur. Phys. J. B 78 (2010) 535-541.

  19. The hyaluronan and proteoglycan link proteins: Organizers of the brain extracellular matrix and key molecules for neuronal function and plasticity.

    PubMed

    Oohashi, Toshitaka; Edamatsu, Midori; Bekku, Yoko; Carulli, Daniela

    2015-12-01

    The hyaluronan and proteoglycanbinding link protein (Hapln) is a key molecule in the formation and control of hyaluronan-based condensed perineuronal matrix in the adult brain. This review summarizes the recent advances in understanding the role of Haplns in the formation and control of two distinct types of perineuronal matrices, one for "classical" PNN and the other for the specialized extracellular matrix (ECM) at the node of Ranvier in the central nervous system (CNS). We introduce the structural components of each ECM organization including the basic concept of supramolecular structure named "HLT model". We furthermore summarize the developmental and physiological role of perineuronal ECMs from the studies of Haplns and related molecules. Finally, we also discuss the potential mechanism modulating PNNs in the adult CNS. This layer of organized matrices may exert a direct effect via core protein or sugar moiety from the structure or by acting as a binding site for biologically active molecules, which are important for neuronal plasticity and saltatory conduction. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Proteoglycans in Normal and Healing Skin

    PubMed Central

    Smith, Margaret Mary; Melrose, James

    2015-01-01

    Significance: Proteoglycans have a distinct spatial localization in normal skin and are essential for the correct structural development, organization, hydration, and functional properties of this tissue. The extracellular matrix (ECM) is no longer considered to be just an inert supportive material but is a source of directive, spatial and temporal, contextual information to the cells via components such as the proteoglycans. There is a pressing need to improve our understanding of how these important molecules functionally interact with other matrix structures, cells and cellular mediators in normal skin and during wound healing. Recent Advances: New antibodies to glycosaminoglycan side chain components of skin proteoglycans have facilitated the elucidation of detailed localization patterns within skin. Other studies have revealed important proliferative activities of proteinase-generated fragments of proteoglycans and other ECM components (matricryptins). Knockout mice have further established the functional importance of skin proteoglycans in the assembly and homeostasis of the normal skin ECM. Critical Issues: Our comprehension of the molecular and structural complexity of skin as a complex, dynamic, constantly renewing, layered connective tissue is incomplete. The impact of changes in proteoglycans on skin pathology and the wound healing process is recognized as an important area of pathobiology and is an area of intense investigation. Future Directions: Advanced technology is allowing the development of new artificial skins. Recent knowledge on skin proteoglycans can be used to incorporate these molecules into useful adjunct therapies for wound healing and for maintenance of optimal tissue homeostasis in aging skin. PMID:25785238

  1. Epitopes of proteoglycans eliciting an anti-proteoglycan response in chronic immune synovitis

    SciTech Connect

    Yoo, J.U.; Kresina, T.F.; Malemud, C.J.; Goldberg, V.M.

    1987-02-01

    This study details the immune response to cartilage proteoglycan in experimental chronic IgG-induced immune synovitis. With the use of radioimmunoassay, antibodies reactive with purified rabbit proteoglycan monomer were observed in nine of nine rabbits with immune synovitis. IgG-immunized but nonsynovitic control animals with no pathology showed no antibody response. A panel of murine monoclonal antibodies with defined specificity towards rabbit proteoglycan were utilized to characterize the epitope specificity of the immune synovitis polyclonal anti-proteoglycan response. One murine monoclonal antibody, 6C11, inhibited the binding of the polyclonal antisera to proteoglycan in all nine animals with significant (>40/sup 5/) inhibition in six of nine rabbits. Further inhibition studies utilizing DEAE-cellulose-resolved proteoglycan tryptic peptides revealed that peptides poor in chondroitin sulfate were strong inhibitors of binding of the polyclonal antibodies to the proteoglycan substrate. In particular, keratan sulfate-containing tryptic peptides were most inhibitory on a per weight basis. These results indicate that, in chromic IgG-induced immune synovitis, anti-proteoglycan antibodies elicited are heterogeneous with regard to specificity, but a relatively large proportion predominantly recognized a portion of the proteoglycan molecule containing core protein and associated keratan sulfate.

  2. Processing of giant graphene molecules by soft-landing mass spectrometry.

    PubMed

    Räder, Hans Joachim; Rouhanipour, Ali; Talarico, Anna Maria; Palermo, Vincenzo; Samorì, Paolo; Müllen, Klaus

    2006-04-01

    The processability of giant (macro)molecules into ultrapure and highly ordered structures at surfaces is of fundamental importance for studying chemical, physical and biological phenomena, as well as their exploitation as active units in the fabrication of hybrid devices. The possibility of handling larger and larger molecules provides access to increasingly complex functions. Unfortunately, larger molecules commonly imply lower processability due to either their low solubility in liquid media or the occurrence of thermal cracking during vacuum sublimation. The search for novel strategies to process and characterize giant building blocks is therefore a crucial goal in materials science. Here we describe a new general route to process, at surfaces, extraordinarily large molecules, that is, synthetic nanographenes, into ultrapure crystalline architectures. Our method relies on the soft-landing of ions generated by solvent-free matrix-assisted laser desorption/ionization (MALDI). The nanographenes are transferred to the gas phase, purified and adsorbed at surfaces. Scanning tunnelling microscopy reveals the formation of ordered nanoscale semiconducting supramolecular architectures. The unique flexibility of this approach allows the growth of ultrapure crystalline films of various systems, including organic, inorganic and biological molecules, and therefore it can be of interest for technological applications in the fields of electronics, (bio)catalysis and nanomedicine.

  3. Exact ground state properties of the classical Heisenberg model for giant magnetic molecules

    SciTech Connect

    Axenovich, Maria; Luban, Marshall

    2001-03-01

    We find the exact ground state energy and magnetic moment for an arbitrary magnetic field H of the classical Heisenberg model of spins on the vertices of an icosidodecahedron. This model provides an accurate description of the magnetic properties of the giant paramagnetic molecule {l_brace}Mo{sub 72}Fe{sub 30}{r_brace} in which 30 Fe{sup 3+} ions are coupled via antiferromagnetic exchange. The strong frustration of the magnetic interaction in the molecule is relaxed when the angle between nearest-neighbor spins is 120{sup o}. We predict that the magnetic moment is linear with H until saturating at a critical field H{sub c}, and this is consistent with the results of a recent experiment at 0.46 K. We derive our results using a graph-theoretical construction and a special property, three-colorability, of the icosidodecahedron. We also consider spins on the vertices of an octahedron, icosahedron, and dodecahedron.

  4. Giant Acceleration of Diffusion Observed in a Single-Molecule Experiment on F1-ATPase

    NASA Astrophysics Data System (ADS)

    Hayashi, Ryunosuke; Sasaki, Kazuo; Nakamura, Shuichi; Kudo, Seishi; Inoue, Yuichi; Noji, Hiroyuki; Hayashi, Kumiko

    2015-06-01

    The giant acceleration (GA) of diffusion is a universal phenomenon predicted by the theoretical analysis given by Reimann et al. [Phys. Rev. Lett. 87, 010602 (2001)]. Here we apply the theory of the GA of diffusion to a single-molecule experiment on a rotary motor protein, F1 , which is a component of Fo F1 adenosine triphosphate synthase. We discuss the energetic properties of F1 and identify a high energy barrier of the rotary potential to be 20 kBT , with the condition that the adenosine diphosphates are tightly bound to the F1 catalytic sites. To conclude, the GA of diffusion is useful for measuring energy barriers in nonequilibrium and single-molecule experiments.

  5. Giant Magnetoresistance in Carbon Nanotubes with Single-Molecule Magnets TbPc2.

    PubMed

    Krainov, Igor V; Klier, Janina; Dmitriev, Alexander P; Klyatskaya, Svetlana; Ruben, Mario; Wernsdorfer, Wolfgang; Gornyi, Igor V

    2017-07-25

    We present experimental results and a theoretical model for the gate-controlled spin-valve effect in carbon nanotubes with side-attached single-molecule magnets TbPc2 (Terbium(III) bis-phthalocyanine). These structures show a giant magnetoresistance up to 1000% in experiments on single-wall nanotubes that are tunnel-coupled to the leads. The proposed theoretical model combines the spin-dependent Fano effect with Coulomb blockade and predicts a spin-spin interaction between the TbPc2 molecules, mediated by conducting electrons via the charging effect. This gate-tuned interaction is responsible for the stable magnetic ordering of the inner spins of the molecules in the absence of magnetic field. In the case of antiferromagnetic arrangement, electrons with either spin experience the scattering by the molecules, which results in blocking the linear transport. In strong magnetic fields, the Zeeman energy exceeds the effective antiferromagnetic coupling and one species of electrons is not scattered by molecules, which leads to a much lower total resistance at the resonant values of gate voltage, and hence to a supramolecular spin-valve effect.

  6. Giant pumping of single-file water molecules in a carbon nanotube.

    PubMed

    Wang, Y; Zhao, Y J; Huang, J P

    2011-11-17

    Achieving a fast, unidirectional flow of single-file water molecules (UFSWM) across nanochannels is important for membrane-based water purification or seawater desalination. For this purpose, electro-osmosis methods are recognized as a very promising approach and have been extensively discussed in the literature. Utilizing molecular dynamics simulations, here we propose a design for pumping water molecules in a single-walled carbon nanotube in the presence of a linearly gradient electric (GE) field. Such a GE field is inspired by GE fields generated from charged ions located adjacent to biological membrane water nanochannels that can conduct water in and out of cells and can be experimentally achieved by using the charged tip of an atomic force microscope. As a result, the maximum speed of the UFSWM can be 1 or 2 orders of magnitude larger than that in a uniform electric (UE) field. Also, inverse transportation of water molecules does not exist in case of the GE field but can appear for the UE field. Thus, the GE field yields a much more efficient UFSWM than the UE field. The giant pumping ability as revealed is attributed to the nonzero net electrostatic force acting on each water molecule confined in the nanotube. These observations have significance for the design of nanoscale devices for readily achieving controllable UFSWM at high speed.

  7. Spin dynamics of the giant polyoxometalate molecule {Mn₄₀W₂₂₄} studied by NMR.

    PubMed

    Furukawa, Y; Fang, X; Kögerler, P

    2014-05-14

    (7)Li nuclear magnetic resonance (NMR) studies have been performed to investigate magnetic properties and spin dynamics of Mn(3+) (S = 2) spins in the giant polyoxometalate molecule {Mn₄₀W₂₂₄}. The (7)Li-NMR line width is proportional to the external magnetic field H as expected in a paramagnetic state above 3 K. Below this temperature the line width shows a sudden increase and is almost independent of H, which indicates freezing of the local Mn(3+) spins. The temperature dependence of T₁ for both (1)H and (7)Li reveals slow spin dynamics at low temperatures, consistent with spin freezing. The slow spin dynamics is also evidenced by the observation of a peak of 1/T₂ around 3 K, where the fluctuation frequency of spins is of the order of ∼200 kHz. An explicit form of the temperature dependence of the fluctuation frequency of Mn(3+) spins is derived from the nuclear relaxation data.

  8. Endocan: a novel circulating proteoglycan.

    PubMed

    Kali, Arunava; Shetty, K S Rathan

    2014-01-01

    Endocan is a novel endothelium derived soluble dermatan sulfate proteoglycan. It has the property of binding to a wide range of bioactive molecules associated with cellular signaling and adhesion and thus regulating proliferation, differentiation, migration, and adhesion of different cell types in health and disease. An increase in tissue expression or serum level of endocan reflects endothelial activation and neovascularization which are prominent pathophysiological changes associated with inflammation and tumor progression. Consequently, endocan has been used as a blood-based and tissue-based biomarker for various cancers and inflammation and has shown promising results.

  9. Heparan Sulfate Proteoglycans

    PubMed Central

    Sarrazin, Stephane; Lamanna, William C.; Esko, Jeffrey D.

    2011-01-01

    Heparan sulfate proteoglycans are found at the cell surface and in the extracellular matrix, where they interact with a plethora of ligands. Over the last decade, new insights have emerged regarding the mechanism and biological significance of these interactions. Here, we discuss changing views on the specificity of protein–heparan sulfate binding and the activity of HSPGs as receptors and coreceptors. Although few in number, heparan sulfate proteoglycans have profound effects at the cellular, tissue, and organismal level. PMID:21690215

  10. Synthesis of extremely large mesoporous activated carbon and its unique adsorption for giant molecules

    SciTech Connect

    Tamai, Hisashi; Kakii, Takuhiro; Hirota, Yoshifumi

    1996-02-01

    The steam invigoration of pitches (softening points 85 and 280{degrees}C) homogenized with 1-3 wt% of organo rare0earth metal complexes such as Ln(C{sub 5}H{sub 5}){sub 3} or Ln(acac) (Ln=Y, Yb) at 930{degrees}C provided activated carbons with an extremely high mesopore ration, >70%. The resulted activated carbon selectively adsorbs giant molecules such as Vitamin B{sub 12}, blue acid 90 dye, dextran, nystatin, and humic acid, reflecting their large mesopore volumes. To understand what kind of carbon skeleton in pitch is suited for generation of high mesopore ration, the steam invigoration of a series of condensed polynuclear aromatics (COPNA) resins prepared from naphthlene, anthracene, phenanthrene, pyrene, or perylene and p-xylene-{alpha},{alpha}{prime}-diol were conducted in the presence of rare-earth metal complexes. As a result, COPNA resins containing phenanthrene, perylene, and pyrene generated large mesopore volume. 35 refs., 16 figs., 11 tabs.

  11. The structural basis for giant enhancement enabling single-molecule Raman scattering

    PubMed Central

    Wang, Zhenjia; Pan, Shanlin; Krauss, Todd D.; Du, Hui; Rothberg, Lewis J.

    2003-01-01

    We find that giant surface-enhanced Raman scattering for adsorbates on silver surfaces is present only on surfaces that exhibit self-similar fractal topology as inferred from atomic force microscopy. The fractal character results in localizing the energy of incident photons to volumes of a few nanometers on a side, millions of times smaller than the diffraction limit. Consistent with this finding, we have found an enhancement in spontaneous Raman cross section of >13 orders of magnitude for adsorbates on silver surfaces demonstrated to be fractal. The location of “hot spots” on the fractal surfaces is found to be hypersensitive to incident wavelength and polarization even though the observed Raman scattering is strictly linear in incident intensity. These observations are consistent with localization of the photon energy facilitated by the disordered nature of fractal organization through interference between the incident wave and scattered radiation from silver nanoparticle surface plasmons. We also present a surface preparation method that consistently produces fractal topologies that support single-molecule Raman scattering. PMID:12840144

  12. [Biological activities of exogenous polysaccharides via controlling endogenous proteoglycan metabolism in vascular endothelial cells].

    PubMed

    Sato, Tomoko; Yamamoto, Chika; Fujiwara, Yasuyuki; Kaji, Toshiyuki

    2008-05-01

    Proteoglycan contains glycosmainoglycans, which are endogenous sulfated polysaccharides, in the molecule. The metabolism of proteoglycans regulates cell behavior and cellular events. It is possible that exogenous polysaccharide-related molecules exhibit their biological activities by two mechanisms. One is the interaction with cells and the other is the interaction with growth factors/cytokines that regulate proteoglycans. In this review, we describe sodium spirulan, a sulfated polysaccharide obtained from a hot-water extract of the blue-green alga Spirulina platensis, as an exogenous polysaccharide that stimulates the release of proteoglycans from vascular endothelial cells. Factors that regulate endothelial proteoglycan metabolism are also being described as possible target molecules of exogenous polysaccharides. Further research is required to obtain exogenous polysaccharide-related molecules that exhibit useful biological activities through controlling endothelial proteoglycan metabolism for protection against vascular lesions such as atheroslcerosis.

  13. Traffic lights for axon growth: proteoglycans and their neuronal receptors.

    PubMed

    Shen, Yingjie

    2014-02-15

    Axon growth is a central event in the development and post-injury plasticity of the nervous system. Growing axons encounter a wide variety of environmental instructions. Much like traffic lights in controlling the migrating axons, chondroitin sulfate proteoglycans (CSPGs) and heparan sulfate proteoglycans (HSPGs) often lead to "stop" and "go" growth responses in the axons, respectively. Recently, the LAR family and NgR family molecules were identified as neuronal receptors for CSPGs and HSPGs. These discoveries provided molecular tools for further study of mechanisms underlying axon growth regulation. More importantly, the identification of these proteoglycan receptors offered potential therapeutic targets for promoting post-injury axon regeneration.

  14. Heterogeneity of the chondroitin sulfate portion of phosphacan/6B4 proteoglycan regulates its binding affinity for pleiotrophin/heparin binding growth-associated molecule.

    PubMed

    Maeda, Nobuaki; He, Jue; Yajima, Yuki; Mikami, Tadahisa; Sugahara, Kazuyuki; Yabe, Tomio

    2003-09-12

    PTP zeta is a receptor-type protein-tyrosine phosphatase that is synthesized as a chondroitin sulfate proteoglycan and uses pleiotrophin as a ligand. The chondroitin sulfate portion of this receptor is essential for high affinity binding to pleiotrophin. Here, we purified phosphacan, which corresponds to the extracellular domain of PTP zeta, from postnatal day 7 (P7) and P12 rat cerebral cortex (PG-P7 and PG-P12, respectively) and from P20 rat whole brain (PG-P20). The chondroitin sulfate of these preparations displayed immunologically and compositionally different structures. In particular, only PG-P20 reacted with the monoclonal antibody MO-225, which recognizes chondroitin sulfate containing the GlcA(2S)beta 1-3GalNAc(6S) disaccharide unit (D unit). Analysis of the chondroitinase digestion products revealed that GlcA beta 1-3GalNAc(4S) disaccharide unit (A unit) was the major component in these preparations and that PG-P20 contained 1.3% D unit, which was not detected in PG-P7 and PG-P12. Interaction analysis using a surface plasmon resonance biosensor indicated that PG-P20 had approximately 5-fold stronger affinity for pleiotrophin (dissociation constant (KD) = 0.14 nM) than PG-P7 and PG-P12, although all these preparations showed similar low affinity binding to pleiotrophin after chondroitinase ABC digestion (KD = 1.4 approximately 1.6 nM). We also found that shark cartilage chondroitin sulfate D containing approximately 20% D unit bound to pleiotrophin with moderate affinity (KD = 2.7 nM), whereas whale cartilage chondroitin sulfate A showed no binding to this growth factor. These results suggest that variation of chondroitin sulfate plays important roles in the regulation of signal transduction in the brain.

  15. Surface Proteoglycans as Mediators in Bacterial Pathogens Infections

    PubMed Central

    García, Beatriz; Merayo-Lloves, Jesús; Martin, Carla; Alcalde, Ignacio; Quirós, Luis M.; Vazquez, Fernando

    2016-01-01

    Infectious diseases remain an important global health problem. The interaction of a wide range of pathogen bacteria with host cells from many different tissues is frequently mediated by proteoglycans. These compounds are ubiquitous complex molecules which are not only involved in adherence and colonization, but can also participate in other steps of pathogenesis. To overcome the problem of microbial resistance to antibiotics new therapeutic agents could be developed based on the characteristics of the interaction of pathogens with proteoglycans. PMID:26941735

  16. The increased expression of CD11c and CD103 molecules in the neutrophils of the peripheral blood treated with a formula of bacterial ribosomes and proteoglycans of Klebsiella pneumoniae.

    PubMed

    Villa-Ambriz, Jessica; Rodríguez-Orozco, Alain R; Béjar-Lozano, Carlos; Cortés-Rojo, Christian

    2012-09-01

    To evaluate the effect of a preparation with bacterial ribosomes and proteoglycans from Klebsiella pneumoniae «R» on the in vitro expression of CD11c and CD103 molecules in neutrophils from peripheral blood. Isolation of neutrophils from peripheral blood with Ficoll-Paque, incubation with R and detection of CD11c and CD103 through flow cytometry. Six hours after the incubation period, CD11c expression increased significantly compared with the control with 125 and 500μg/ml of R (P=.017 and P=.006, respectively). CD103 expression induced with 125μg/ml of R after 6hours was significantly higher than that observed after 4hours at the same concentration (P=.014) and that found with 62.5μg/ml (P=.017) of R. The increased expression of CD11c and CD103 induced by R in the neutrophils could contribute to the R mechanism against respiratory pathogens. Copyright © 2012 SEPAR. Published by Elsevier Espana. All rights reserved.

  17. Proteoglycans and neuronal migration in the cerebral cortex during development and disease

    PubMed Central

    Maeda, Nobuaki

    2015-01-01

    Chondroitin sulfate proteoglycans and heparan sulfate proteoglycans are major constituents of the extracellular matrix and the cell surface in the brain. Proteoglycans bind with many proteins including growth factors, chemokines, axon guidance molecules, and cell adhesion molecules through both the glycosaminoglycan and the core protein portions. The functions of proteoglycans are flexibly regulated due to the structural variability of glycosaminoglycans, which are generated by multiple glycosaminoglycan synthesis and modifying enzymes. Neuronal cell surface proteoglycans such as PTPζ, neuroglycan C and syndecan-3 function as direct receptors for heparin-binding growth factors that induce neuronal migration. The lectican family, secreted chondroitin sulfate proteoglycans, forms large aggregates with hyaluronic acid and tenascins, in which many signaling molecules and enzymes including matrix proteases are preserved. In the developing cerebrum, secreted chondroitin sulfate proteoglycans such as neurocan, versican and phosphacan are richly expressed in the areas that are strategically important for neuronal migration such as the striatum, marginal zone, subplate and subventricular zone in the neocortex. These proteoglycans may anchor various attractive and/or repulsive cues, regulating the migration routes of inhibitory neurons. Recent studies demonstrated that the genes encoding proteoglycan core proteins and glycosaminoglycan synthesis and modifying enzymes are associated with various psychiatric and intellectual disorders, which may be related to the defects of neuronal migration. PMID:25852466

  18. Proteoglycan form and function: A comprehensive nomenclature of proteoglycans

    PubMed Central

    Iozzo, Renato V.; Schaefer, Liliana

    2016-01-01

    We provide a comprehensive classification of the proteoglycan gene families and respective protein cores. This updated nomenclature is based on three criteria: Cellular and subcellular location, overall gene/protein homology, and the utilization of specific protein modules within their respective protein cores. These three signatures were utilized to design four major classes of proteoglycans with distinct forms and functions: the intracellular, cell-surface, pericellular and extracellular proteoglycans. The proposed nomenclature encompasses forty-three distinct proteoglycan-encoding genes and many alternatively-spliced variants. The biological functions of these four proteoglycan families are critically assessed in development, cancer and angiogenesis, and in various acquired and genetic diseases where their expression is aberrant. PMID:25701227

  19. Recombinant production of proteoglycans and their bioactive domains.

    PubMed

    Lord, Megan S; Whitelock, John M

    2013-05-01

    Proteoglycans are ubiquitous dynamic molecules that are made up of a protein core to which specific linear glycosylation structures, known as glycosaminoglycans, have been covalently coupled. They have roles in many biological and pathological processes, which have been shown to be dependent on events involving the protein component and/or the glycosaminoglycan chains. This review focuses on the literature describing the recombinant expression and production of proteoglycans known to be present in the extracellular, cell surface and intracellular environments with an emphasis on how the structure of the molecule relates to its biological function and how this relationship has been explored using recombinant DNA technology for clinical applications.

  20. EDTA-insoluble, calcium-binding proteoglycan in bovine bone

    NASA Technical Reports Server (NTRS)

    Hashimoto, Y.; Lester, G. E.; Caterson, B.; Yamauchi, M.

    1995-01-01

    A calcium ion precipitable, trypsin-generated proteoglycan fragment has been isolated from the demineralized, EDTA-insoluble matrices of bone. The demineralized matrix was completely digested with trypsin, increasing concentrations of CaCl2 were added to the supernatant, and the resulting precipitates were analyzed. The amount of precipitate gradually increased with higher concentrations of calcium and was reversibly solubilized by EDTA. After molecular sieve and anion exchange chromatography, a proteoglycan-containing peak was obtained. Immunochemical analysis showed that this peak contained chondroitin 4-sulfate and possibly keratan sulfate. Amino acid analysis showed that this proteoglycan contained high amounts of aspartic acid/asparagine (Asx), serine (Ser), glutamic acid/glutamine (Glx), proline (Pro), and glycine (Gly); however, it contained little leucine (Leu) which suggests that it is not a member of the leucine-rich small proteoglycan family. In addition, significant amounts of phosphoserine (P-Ser) and hydroxyproline (Hyp) were identified in hydrolysates of this fraction. A single band (M(r) 59 kDa) was obtained on SDS-PAGE that stained with Stains-all but not with Coomassie Brilliant Blue R-250. If bone powder was trypsinized prior to demineralization, this proteoglycan-containing fraction was not liberated. Collectively, these results indicate that a proteoglycan occurs in the demineralized matrix that is precipitated with CaCl2 and is closely associated with both mineral and collagen matrices. Such a molecule might facilitate the structural network for the induction of mineralization in bone.

  1. EDTA-insoluble, calcium-binding proteoglycan in bovine bone

    NASA Technical Reports Server (NTRS)

    Hashimoto, Y.; Lester, G. E.; Caterson, B.; Yamauchi, M.

    1995-01-01

    A calcium ion precipitable, trypsin-generated proteoglycan fragment has been isolated from the demineralized, EDTA-insoluble matrices of bone. The demineralized matrix was completely digested with trypsin, increasing concentrations of CaCl2 were added to the supernatant, and the resulting precipitates were analyzed. The amount of precipitate gradually increased with higher concentrations of calcium and was reversibly solubilized by EDTA. After molecular sieve and anion exchange chromatography, a proteoglycan-containing peak was obtained. Immunochemical analysis showed that this peak contained chondroitin 4-sulfate and possibly keratan sulfate. Amino acid analysis showed that this proteoglycan contained high amounts of aspartic acid/asparagine (Asx), serine (Ser), glutamic acid/glutamine (Glx), proline (Pro), and glycine (Gly); however, it contained little leucine (Leu) which suggests that it is not a member of the leucine-rich small proteoglycan family. In addition, significant amounts of phosphoserine (P-Ser) and hydroxyproline (Hyp) were identified in hydrolysates of this fraction. A single band (M(r) 59 kDa) was obtained on SDS-PAGE that stained with Stains-all but not with Coomassie Brilliant Blue R-250. If bone powder was trypsinized prior to demineralization, this proteoglycan-containing fraction was not liberated. Collectively, these results indicate that a proteoglycan occurs in the demineralized matrix that is precipitated with CaCl2 and is closely associated with both mineral and collagen matrices. Such a molecule might facilitate the structural network for the induction of mineralization in bone.

  2. Soybean-fragmented proteoglycans against skin aging.

    PubMed

    Barba, Clara; Alonso, Cristina; Sánchez, Isabel; Suñer, Elisa; Sáez-Martín, L C; Coderch, Luisa

    2017-08-01

    The majority of age-dependent skin changes happen in the dermis layer inducing changes in skin collagen and in the proteoglycans. The main aim of this work is to study the efficacy of a Proteum serum, containing soybean-fragmented proteoglycans, against skin aging. In vitro tests were performed to evaluate the Proteum serum ability on activating the production of collagen and proteoglycans. An in vivo long-term study was performed to determine the efficacy of the Proteum serum when applied on skin. Protection of healthy skin against detergent-induced dermatitis and the antioxidant properties of the applied Proteum serum were also studied. The in vitro tests demonstrated that the Proteum serum was able to elevate the production of molecules which are essential for supporting the dermal extracellular matrix organization. These results were correlated by the in vivo measurements where a clear trend on improving the measured skin parameters due to the Proteum serum application was found. A beneficial effect of the Proteum serum was demonstrated with an improvement in the skin roughness and a reinforcement of the skin barrier function. Moreover, a significant protector effect on human stratum corneum against lipids peroxides (LPO) was demonstrated.

  3. Proteoglycans and orthodontic tooth movement.

    PubMed

    Waddington, R J; Embery, G

    2001-12-01

    Proteoglycans represent an important and diverse family of extracellular matrix components within the connective tissues of the periodontium. This review focuses on the function and metabolism of the various proteoglycans in periodontal tissues, such as alveolar bone and periodontal ligament, and considers their potential fate in response to an orthodontic force. Such considerations provide an important background in evaluating the potential for proteoglycan metabolites, alongside other connective tissue metabolites, as biomarkers for assessing the deep-seated metabolic changes and as a diagnostic tool in monitoring orthodontic tooth movement.

  4. Thymus cDNA library survey uncovers novel features of immune molecules in Chinese giant salamander Andrias davidianus.

    PubMed

    Zhu, Rong; Chen, Zhong-Yuan; Wang, Jun; Yuan, Jiang-Di; Liao, Xiang-Yong; Gui, Jian-Fang; Zhang, Qi-Ya

    2014-10-01

    A ranavirus-induced thymus cDNA library was constructed from Chinese giant salamander, the largest extant amphibian species. Among the 137 putative immune-related genes derived from this library, these molecules received particular focus: immunoglobulin heavy chains (IgM, IgD, and IgY), IFN-inducible protein 6 (IFI6), and T cell receptor beta chain (TCRβ). Several unusual features were uncovered: IgD displays a structure pattern distinct from those described for other amphibians by having only four constant domains plus a hinge region. A unique IgY form (IgY(ΔFc)), previously undescribed in amphibians, is present in serum. Alternative splicing is observed to generate IgH diversification. IFI6 is newly-identified in amphibians, which occurs in two forms divergent in subcelluar distribution and antiviral activity. TCRβ immunoscope profile follows the typical vertebrate pattern, implying a polyclonal T cell repertoire. Collectively, the pioneering survey of ranavirus-induced thymus cDNA library from Chinese giant salamander reveals immune components and characteristics in this primitive amphibian.

  5. Proteoglycan synthesis in flat cell-free cultures of chick embryo retinal neurons and photoreceptors.

    PubMed

    Needham, L K; Adler, R; Hewitt, A T

    1988-04-01

    Extracellular matrix and cell surface proteoglycans are thought to play important roles in neural development and regeneration. Central nervous system proteoglycans have been isolated and characterized from rat and sheep brain and from chick neural retina. An experimental advantage offered by the latter tissue is that it is avascular and can be isolated free of connective tissue and pigment epithelium. Therefore, proteoglycans synthesized by this tissue are derived exclusively from neural cells. However, it has not yet been determined whether neurons and photoreceptors contribute to proteoglycan synthesis or whether these molecules are largely glial in origin. In the present study we have addressed this question using cultures of chick neural retinal cells free of flat, glial-like cells. Proteoglycans synthesized by cultures of retinal neurons, photoreceptors, and undifferentiated, process-free round cells from 8-day embryonic chick neural retina were metabolically labeled in vitro using [35S]sulfate and [3H]glucosamine as precursors. Radiolabeled proteoglycans accumulated in the medium, and could also be extracted from the cell layer by sequential treatments with Triton X-100 and with guanidine HCl. The proteoglycans were isolated by ion-exchange chromatography, and characterized by gel filtration chromatography and by susceptibility to degradation by enzymatic and chemical treatments. Overall, heparan sulfate proteoglycans were the predominant type of proteoglycan synthesized in vitro by the cultured neural retinal cells at this developmental stage. The medium and the Triton extract contained different proportions of both chondroitin sulfate and heparan sulfate proteoglycans, while heparan sulfate was the only proteoglycan recovered from the guanidine extract. These studies demonstrate that heparan sulfate and chondroitin sulfate proteoglycans are actively synthesized by cultures of neural retinal cells free of flat, glial-like cells.

  6. Giant Suppression of Photobleaching for Single Molecule Detection via the Purcell Effect

    DTIC Science & Technology

    2013-11-18

    the molecule dissipates energy to emit another photon (spontaneous emission, or fluorescence, with rate kf) or to heat (intrinsic nonradiative process...enhancement gives rise to both enhanced radiation and enhanced nonradiation (energy dissipation due to Ohmic losses). The enhancement of

  7. Structure and properties of an under-sulfated heparan sulfate proteoglycan synthesized by a rat hepatoma cell line

    PubMed Central

    1984-01-01

    A rat hepatoma cell line was shown to synthesize heparan sulfate and chondroitin sulfate proteoglycans. Unlike cultured hepatocytes, the hepatoma cells did not deposit these proteoglycans into an extracellular matrix, and most of the newly synthesized heparan sulfate proteoglycans were secreted into the culture medium. Heparan sulfate proteoglycans were also found associated with the cell surface. These proteoglycans could be solubilized by mild trypsin or detergent treatment of the cells but could not be displaced from the cells by incubation with heparin. The detergent-solubilized heparan sulfate proteoglycan had a hydrophobic segment that enabled it to bind to octyl- Sepharose. This segment could conceivably anchor the molecule in the lipid interior of the plasma membrane. The size of the hepatoma heparan sulfate proteoglycans was similar to that of proteoglycans isolated from rat liver microsomes or from primary cultures of rat hepatocytes. Ion-exchange chromatography on DEAE-Sephacel indicated that the hepatoma heparan sulfate proteoglycans had a lower average charge density than the rat liver heparan sulfate proteoglycans. The lower charge density of the hepatoma heparan sulfate can be largely attributed to a reduced number of N-sulfated glucosamine units in the polysaccharide chain compared with that of rat liver heparan sulfate. Hepatoma heparan sulfate proteoglycans purified from the culture medium had a considerably lower affinity for fibronectin-Sepharose compared with that of rat liver heparan sulfate proteoglycans. Furthermore, the hepatoma proteoglycan did not bind to the neoplastic cells, whereas heparan sulfate from normal rat liver bound to the hepatoma cells in a time-dependent reaction. The possible consequences of the reduced sulfation of the heparan sulfate proteoglycan produced by the hepatoma cells are discussed in terms of the postulated roles of heparan sulfate in the regulation of cell growth and extracellular matrix formation. PMID

  8. Proteoglycan Signaling Co–receptors: Roles in Cell Adhesion, Migration and Invasion

    PubMed Central

    Mythreye, Karthikeyan; Blobe, Gerard C.

    2009-01-01

    Signaling co-receptors are diverse, multifunctional components of most major signaling pathways, with roles in mediating and regulating signaling in both physiological and pathophysiological circumstances. Many of these signaling co-receptors, including CD44, glypicans, neuropilins, syndecans and TβRIII/betaglycan are also proteoglycans. Like other co-receptors, these proteoglycan signaling co–receptors can bind multiple ligands, promoting the formation of receptor signaling complexes and regulating signaling at the cell surface. The proteoglycan signaling co-receptors can also function as structural molecules to regulate adhesion, cell migration, morphogenesis and differentiation. Through a balance of these signaling and structural roles, proteoglycan signaling co-receptors can have either tumor promoting or tumor suppressing functions. Defining the role and mechanism of action of these proteoglycan signaling co-receptors should enable more effective targeting of these co-receptors and their respective pathways for the treatment of human disease. PMID:19427900

  9. The Basement Membrane Proteoglycans Perlecan and Agrin: Something Old, Something New.

    PubMed

    McCarthy, Kevin J

    2015-01-01

    Several members of the proteoglycan family are integral components of basement membranes; other proteoglycan family members interact with or bind to molecular residents of the basement membrane. Proteoglycans are polyfunctional molecules, for they derive their inherent bioactivity from the amino acid motifs embedded in the core protein structure as well as the glycosaminoglycan (GAG) chains that are covalently attached to the core protein. The presence of the covalently attached GAG chains significantly expands the "partnering" potential of proteoglycans, permitting them to interact with a broad spectrum of targets, including growth factors, cytokines, chemokines, and morphogens. Thus proteoglycans in the basement membrane are poised to exert diverse effects on the cells intimately associated with basement membranes.

  10. Giant factory caught contaminating the environment - Dust and molecules expelled by eta Carinae

    NASA Astrophysics Data System (ADS)

    Loinard, Laurent; Menten, Karl; Urquhart, James

    2014-04-01

    eta Carinae is one of the most massive stellar sources in the Milky Way and, in many respects, a remarkable astronomical object. It entered the hall of fame of astronomy in the mid 19th century when it underwent a major outburst, temporarily becoming the second brightest star at visible wavelengths in the entire sky. Known as the Great Eruption, this event led to the ejection of at least ten solar masses of material, now distributed in a bipolar nebula called the Homunculus. The material in the Homunculus provides us with a rare example of an ejecta that has not yet mixed with the ambient interstellar medium. Dust and molecules have formed out of this ejected material, and recent APEX and Herschel observations have shown that the chemical composition of the molecular component reflects the peculiar elemental abundances in the Homunuculus. Thus, eta Carinae provides us a unique opportunity to study directly the material injected into the interstellar medium by an evolved massive star, as well as the processes of dust and molecule formation occurring in situ in the ejecta. Here, we propose to constrain the spatial distribution and the physical conditions of the molecular components using sensitive H52 ATCA observations of the N2H+(1-0) line. These ATCA observations will constitute an important step toward a complete understanding of the origin of the molecular component around eta Carinae, that will have important repercussions for our comprehension of the latest phases of massive stellar evolution in general.

  11. Deciphering the origin of giant magnetic anisotropy and fast quantum tunnelling in Rhenium(IV) single-molecule magnets

    PubMed Central

    Singh, Saurabh Kumar; Rajaraman, Gopalan

    2016-01-01

    Single-molecule magnets represent a promising route to achieve potential applications such as high-density information storage and spintronics devices. Among others, 4d/5d elements such as Re(IV) ion are found to exhibit very large magnetic anisotropy, and inclusion of this ion-aggregated clusters yields several attractive molecular magnets. Here, using ab intio calculations, we unravel the source of giant magnetic anisotropy associated with the Re(IV) ions by studying a series of mononuclear Re(IV) six coordinate complexes. The low-lying doublet states are found to be responsible for large magnetic anisotropy and the sign of the axial zero-field splitting parameter (D) can be categorically predicted based on the position of the ligand coordination. Large transverse anisotropy along with large hyperfine interactions opens up multiple relaxation channels leading to a fast quantum tunnelling of the magnetization (QTM) process. Enhancing the Re-ligand covalency is found to significantly quench the QTM process. PMID:26883278

  12. Deciphering the origin of giant magnetic anisotropy and fast quantum tunnelling in Rhenium(IV) single-molecule magnets

    NASA Astrophysics Data System (ADS)

    Singh, Saurabh Kumar; Rajaraman, Gopalan

    2016-02-01

    Single-molecule magnets represent a promising route to achieve potential applications such as high-density information storage and spintronics devices. Among others, 4d/5d elements such as Re(IV) ion are found to exhibit very large magnetic anisotropy, and inclusion of this ion-aggregated clusters yields several attractive molecular magnets. Here, using ab intio calculations, we unravel the source of giant magnetic anisotropy associated with the Re(IV) ions by studying a series of mononuclear Re(IV) six coordinate complexes. The low-lying doublet states are found to be responsible for large magnetic anisotropy and the sign of the axial zero-field splitting parameter (D) can be categorically predicted based on the position of the ligand coordination. Large transverse anisotropy along with large hyperfine interactions opens up multiple relaxation channels leading to a fast quantum tunnelling of the magnetization (QTM) process. Enhancing the Re-ligand covalency is found to significantly quench the QTM process.

  13. Dual immunofluorescence staining of proteoglycans in human temporal bones.

    PubMed

    Markaryan, Adam; Nelson, Erik G; Kohut, Robert I; Hinojosa, Raul

    2011-07-01

    Immunofluorescence staining methods have been developed to study the distribution of macromolecules in archival formalin-fixed celloidin-embedded human temporal bone tissues. The aim of this study was to investigate the feasibility of utilizing this approach to evaluate the codistribution of more than one molecule of interest in a single tissue section. Retrospective study of proteoglycan codistribution in archival human temporal bone tissues. The chondroitin sulfate and keratan sulfate proteoglycans were selected for evaluating this methodology. Human tissues with known proteoglycan staining patterns were studied as controls. Thirty-one formalin-fixed celloidin-embedded archival human temporal bones were evaluated, and the observations in 11 specimens are described. A dual immunofluorescence staining method was developed using primary antibodies of differing isotypes and secondary antibodies labeled with fluorophores having nonoverlapping emission characteristics. The specificity of the dual immunofluorescence technique for chondroitin sulfate and keratan sulfate proteoglycans was demonstrated in control tissues and confirmed through inhibition studies. The normal human tectorial membrane exhibited intense chondroitin sulfate staining. Cochlear and vestibular hair cells exhibited predominantly keratan sulfate staining. Keratan sulfate staining predominated in spiral ganglion cell bodies and fibers. Alterations in the normal distribution pattern of proteoglycans were observed in cases of presbycusis and otosclerosis. The dual immunofluorescence staining methodology can be used to study archival formalin-fixed celloidin-embedded human temporal bone tissues. This technique may be applied to the evaluation of other molecules in archival human temporal bone tissues and lead to improvement in our understanding of the function of these molecules and their role in disease processes. Copyright © 2011 The American Laryngological, Rhinological, and Otological Society, Inc.

  14. Glycosaminoglycan and proteoglycan in skin aging.

    PubMed

    Lee, Dong Hun; Oh, Jang-Hee; Chung, Jin Ho

    2016-09-01

    Glycosaminoglycans (GAGs) and proteoglycans (PGs) are abundant structural components of the extracellular matrix in addition to collagen fibers. Hyaluronic acid (HA), one of GAGs, forms proteoglycan aggregates, which are large complexes of HA and HA-binding PGs. Their crosslinking to other matrix proteins such as the collagen network results in the formation of supermolecular structures and functions to increase tissue stiffness. Skin aging can be classified as intrinsic aging and photoaging based on the phenotypes and putative mechanism. While intrinsic aging is characterized by a thinned epidermis and fine wrinkles caused by advancing age, photoaging is characterized by deep wrinkles, skin laxity, telangiectasias, and appearance of lentigines and is mainly caused by chronic sun exposure. The major molecular mechanism governing skin aging processes has been attributed to the loss of mature collagen and increased matrix metalloproteinase expression. However, various strategies focusing on collagen turnover remain unsatisfactory for the reversal or prevention of skin aging. Although the expression of GAGs and PGs in the skin and their regulatory mechanisms are not fully understood, we and others have elucidated various changes in GAGs and PGs in aged skin, suggesting that these molecules are important contributors to skin aging. In this review, we focus on skin-abundant GAGs and PGs and their changes in human skin during the skin aging process. Copyright © 2016 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.

  15. Electrophoresis of /sup 35/S-labeled proteoglycans of polyacrylamide-agarose composite gels and their visualization by fluorography

    SciTech Connect

    Carney, S.L.; Bayliss, M.T.; Collier, J.M.; Muir, H.

    1986-01-01

    Techniques for the electrophoresis of /sup 35/S-labeled proteoglycans on polyacrylamide-agarose gel slabs and subsequent fixation, impregnation, and fluorography of such electrophoretograms have been developed. The procedure permits the examination of newly synthesized proteoglycan subspecies using a rapid technique, previously unavailable for these labeled molecules.

  16. Self-Assembly of a Giant Tetrahedral 3 d-4 f Single-Molecule Magnet within a Polyoxometalate System.

    PubMed

    Ibrahim, Masooma; Mereacre, Valeriu; Leblanc, Nicolas; Wernsdorfer, Wolfgang; Anson, Christopher E; Powell, Annie K

    2015-12-14

    A giant tetrahedral heterometallic polyoxometalate (POM) [Dy30 Co8 Ge12 W108 O408 (OH)42 (OH2 )30 ](56-) , which shows single-molecule magnet (SMM) behavior, is described. This hybrid contains the largest number of 4f ions of any polyoxometalate (POM) reported to date and is the first to incorporate two different 3d-4f and 4f coordination cluster assemblies within same POM framework.

  17. Heparan Sulfate Proteoglycans: A GAGgle of Skeletal-Hematopoietic Regulators

    PubMed Central

    Rodgers, Kathryn D.; San Antonio, James D.; Jacenko, Olena

    2008-01-01

    Summary This review summarizes our current understanding of the presence and function of heparan sulfate proteoglycans (HSPGs) in skeletal development and hematopoiesis. Although proteoglycans (PGs) comprise a large and diverse group of cell surface and matrix molecules, we chose to focus on HSPGs owing to their many proposed functions in skeletogenesis and hematopoiesis. Specifically, we discuss how HSPGs play predominant roles in establishing and regulating niches during skeleto-hematopoietic development by participating in distinct developmental processes such as patterning, compartmentalization, growth, differentiation, and maintenance of tissues. Special emphasis is placed on our novel hypothesis that mechanistically links endochondral skeletogenesis to the establishment of the hematopoietic stem cell (HSC) niche in the marrow. HSPGs may contribute to these developmental processes through their unique abilities to establish and mediate morphogen, growth factor, and cytokine gradients, facilitate signaling, provide structural stability to tissues, and act as molecular filters and barriers. PMID:18629873

  18. Phosphorylation of proteoglycans from human articular cartilage

    SciTech Connect

    Anderson, R.S.; Schwartz, E.R.

    1984-01-01

    Previous studies have shown that sulfated proteoglycans from human articular and epiphyseal cartilage were phosphorylated. These macromolecules contribute to the stiffness and resiliency of this tissue. We demonstrate here that the phosphate moieties are an integral part of proteoglycan subunits. Specifically, evidence is presented which indicates that proteoglycan monomers contain 3 to 4 phosphate moieties per core protein and that these appear to exist as phosphoserine residues. Furthermore, the data illustrate that human articular cartilage also contains more than 20 different phosphoproteins, some of which are closely associated with proteoglycan aggregates. Proteoglycan subunits were purified from extracts of articular cartilage or from media fractions which had been used to label tissue specimens with 32P-orthophosphate. Chemical and radiographic analyses revealed that the phosphate concentration with respect to sulfate and uronic acid content remained constant when purified proteoglycan monomers were subjected to equilibrium ultracentrifugation and size-exclusion chromatography. That the phosphate moieties were bound to proteoglycan monomers via monoester linkages was indicated by the release of 32P-orthophosphate from proteoglycan subunits incubated under mild alkaline conditions or reacted with acid or alkaline phosphatases. Identification of serine residues in the core protein as the sites of phosphorylation was made by autoradiography of thin layer plates on which hydrolyzed samples of purified 32P-proteoglycan subunits had been subjected to 2-dimensional electrophoresis/chromatography. Quantification of 3 to 4 phosphate moieties per core protein of 200,000 daltons was made by chemical analysis of inorganic phosphate released from proteoglycans by acid hydrolysis.

  19. The collaggrecan: Synthesis and visualization of an artificial proteoglycan.

    PubMed

    Raspanti, Mario; Caravà, Elena; Sgambato, Antonella; Natalello, Antonino; Russo, Laura; Cipolla, Laura

    2016-05-01

    An artificial aggrecan-like proteoglycan has been designed and synthesized in vitro. At variance with natural proteoglycans, whose glycosaminoglycan chains are always O-linked via a tetrasaccharide bridge to the serine residues of a specific protein core, the present structure consists of chondroitin-6-sulfate chains directly bound to the lysine and hydroxylysine residues of a collagen molecule backbone. The resulting macromolecule has been characterized by histochemistry, atomic force microscopy and FTIR. The number of variables involved (e.g., length and type of the collagen backbone, glycosaminoglycan species, sulfation type and pattern, molecular weight, number and length of side chains, etc.) makes possible to conceive an almost endless variety of artificial proteoglycans, each precisely tailored to a specific functional role. In addition to their use as biomaterials, glycated collagens interact with cells in complex ways and a previous study has already shown the ability of a glycated collagen to redirect fibroblastoma cells from proliferation to differentiation. The research is still underway.

  20. Chondroitin sulphate proteoglycan and embryonic brain enlargement in the chick.

    PubMed

    Gato, A; Moro, J A; Alonso, M I; Pastor, J F; Represa, J J; Barbosa, E

    1993-07-01

    Previous studies of the early development of the neural tube have shown the existence of an intraneural fluid, which causes a positive pressure inside this primordium, and seems to play a key role in the early development of the central nervous system. In the present study we investigated the composition and synthesis of this intraneural fluid. By using a sequential method, which includes fixation with glutaraldehyde plus cetylpyridinium chloride, opening the neural cavity after critical point drying and scanning electron microscopy analysis, we found a water-soluble extracellular matrix that filled up the brain vesicles of chick embryos at the earliest stages of the neural tube. An ultrastructural study of the neural epithelium during these stages revealed the existence of a secretion process in the neural cells toward the apical side, the future neural cavity. An immunocytochemical study to assess the nature of the secreted material has shown that the intraneural matrix contains chondroitin sulphate proteoglycan, which appeared homogeneously distributed throughout the neural cavity. Our findings demonstrate that the intraneural liquid is a fluid of complex composition and includes chondroitin sulphate proteoglycan as an osmotically active molecule. This suggests a morphogenetic role for the proteoglycan during early brain enlargement. The neural ectoderm is a polarized epithelium from early developmental stages and secretes the intraneural matrix.

  1. Giant increase in the metal-enhanced fluorescence of organic molecules in nanoporous alumina templates and large molecule-specific red/blue-shift of the fluorescence peak.

    PubMed

    Sarkar, S; Kanchibotla, B; Nelson, J D; Edwards, J D; Anderson, J; Tepper, G C; Bandyopadhyay, S

    2014-10-08

    The fluorescence of organic fluorophore molecules is enhanced when they are placed in contact with certain metals (Al, Ag, Cu, Au, etc.) whose surface plasmon waves couple into the radiative modes of the molecules and increase the radiative efficiency. Here, we report a hitherto unknown size dependence of this metal-enhanced fluorescence (MEF) effect in the nanoscale. When the molecules are deposited in nanoporous anodic alumina films with exposed aluminum at the bottom of the pores, they form organic nanowires standing on aluminum nanoparticles whose plasmon waves have much larger amplitudes. This increases the MEF strongly, resulting in several orders of magnitude increase in the fluorescence intensity of the organic fluorophores. The increase in intensity shows an inverse superlinear dependence on nanowire diameter because the nanowires also act as plasmonic "waveguides" that concentrate the plasmons and increase the coupling of the plasmons with the radiative modes of the molecules. Furthermore, if the nanoporous template housing the nanowires has built-in electric fields due to space charges, a strong molecule-specific red- or blue-shift is induced in the fluorescence peak owing to a renormalization of the dipole moment of the molecule. This can be exploited to detect minute amounts of target molecules in a mixture using their optical signature (fluorescence) despite the presence of confounding background signals. It can result in a unique new technology for biosensing and chemical sensing.

  2. Renal localization of heparan sulfate proteoglycan by immunohistochemistry.

    PubMed Central

    Klein, D. J.; Oegema, T. R.; Eisenstein, R.; Furcht, L.; Michael, A. F.; Brown, D. M.

    1983-01-01

    Glomerular localization of heparan sulfate proteoglycan (HS-proteoglycan) has been studied immunohistochemically with a highly purified antiserum to bovine aorta HS-proteoglycan core protein. The specificity of the antiserum was enhanced by consecutive fibronectin and chondroitin sulfate-dermatan sulfate proteoglycan (CS-DS proteoglycan) affinity chromatography. The affinity-purified HS-proteoglycan antibody lacked cross-reactivity by enzyme-linked immunosorbent assays (ELISA) with CS-DS proteoglycan, fibronectin, laminin, and Type IV collagen. Reactivity of the antiserum with HS-proteoglycan antigen by ELISA was inhibited by HS core protein derived from CsCl density gradient centrifugation after heparinase treatment of the HS-proteoglycan. Immunofluorescent reactivity of the HS-proteoglycan antiserum was observed with bovine glomerular basement membrane, renal interstitium, Bowman's capsule, renal arterioles, and bovine aorta. No staining was seen with rat, mouse, or human glomeruli. Images Figure 4 Figure 5 PMID:6222657

  3. Electron-microscopic and electrophoretic studies of bovine femoral-head cartilage proteoglycan fractions.

    PubMed Central

    Thornton, D J; Nieduszynski, I A; Oates, K; Sheehan, J K

    1986-01-01

    Proteoglycans (A1D1) extracted from bovine femoral-head cartilage were examined by electron microscopy using benzyldimethylammonium chloride as a spreading agent. The preparation contained a mixture of particles, some with a 'beaded' structure and a contiguous filamentous 'tail' at one end and others which appeared as round 'blobs', some of which also had filamentous tails. Previous electron-microscopic studies of proteoglycan monomers have indicated that their length distributions were apparently unimodal, a finding that contrasted with agarose/polyacrylamide-gel-electrophoresis results, which generally indicated two bands. In the present study proteoglycans isolated from the slowly migrating electrophoretic band were shown to be predominantly the larger molecules of beaded appearance, whereas the rapidly migrating proteoglycans were predominantly molecules with the 'blob-like' appearance. Gel-filtration, isopycnic-density-gradient-centrifugation and rate-zonal-centrifugation techniques were evaluated as means of proteoglycan fractionation by electron microscopy and agarose-gel electrophoresis. Rate-zonal centrifugation in mixed-salt gradients of caesium chloride/4 M-guanidinium chloride yielded the most effective fractionation. Images Fig. 1. Fig. 3. Fig. 4. Fig. 5. Fig. 6. PMID:3827853

  4. Contributions of Chondroitin Sulfate Proteoglycans to Neurodevelopment, Injury, and Cancer

    PubMed Central

    Silver, Daniel J.; Silver, Jerry

    2014-01-01

    Chondroitin sulfate proteoglycans (CSPGs) are a diverse family of extracellular matrix (ECM) molecules that make significant contributions to the patterning and routing of migrating neural cells and extending axons. Three distinct modes of migration mediation have been observed, which result from the relative abundance and positioning of expressed CSPGs, the profile of CSPG receptors expressed by the motile cell types, and the overall way in which the CSPGs integrate into and stabilize the neural ECM. Here we discuss recent findings that help to clarify the molecular mechanisms that underlie these distinct migration-regulating properties as they pertain to neural development, CNS injury, and gliomagenesis. PMID:24762654

  5. Contributions of chondroitin sulfate proteoglycans to neurodevelopment, injury, and cancer.

    PubMed

    Silver, Daniel J; Silver, Jerry

    2014-08-01

    Chondroitin sulfate proteoglycans (CSPGs) are a diverse family of extracellular matrix (ECM) molecules that make significant contributions to the patterning and routing of migrating neural cells and extending axons. Three distinct modes of migration mediation result from the relative abundance and positioning of expressed CSPGs, the profile of CSPG receptors expressed by the motile cell types, and the overall way in which the CSPGs integrate into and stabilize the neural ECM. Here we discuss recent findings that help to clarify the molecular mechanisms that underlie these distinct migration-regulating properties as they pertain to neural development, CNS injury, and gliomagenesis. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Multinucleated giant cells generation induced by interferon-gamma. Changes in the expression and distribution of the intercellular adhesion molecule-1 during macrophages fusion and multinucleated giant cell formation.

    PubMed

    Fais, S; Burgio, V L; Silvestri, M; Capobianchi, M R; Pacchiarotti, A; Pallone, F

    1994-11-01

    Multinucleated giant cells (MGC), interferon-gamma (IFN-gamma) production, and increased expression of adhesion molecules are features of granulomatous reactions. IFN-gamma induces the fusion of macrophages and the subsequent MGC generation in vitro. Moreover, IFN-gamma increases ICAM-1 expression on lymphoid cells and an important role for adhesion molecules in MGC generation has been proposed. The time course of the IFN-gamma-driven MGC generation was investigated in slide-chamber cultures of adherence-purified human monocytes. The fusion index, the monocytes clustering the total number of MGC were determined. The expression of intercellular cell adhesion molecule-1 (ICAM-1), LFA-1 and HLA-DR was investigated by immunohistochemistry. The effect of anti-ICAM-1, anti-LFA-1 and anti-HLA-DR monoclonal antibodies on IFN-gamma-induced MGC generation was also examined. IFN-gamma enhanced the generation of MGC in a dose- and time-dependent fashion. In all experiments, MGC formation was preceded by a sequence of changes in the morphology of cultured monocytes. Cell clustering occurred as early as 3 days after IFN-gamma stimulation and was followed by the adhesion of cells that eventually fused. Immunohistochemistry showed that ICAM-1 was increased by IFN-gamma and constantly polarized on a cell uropode. When monocytes clustered, ICAM-1 was localized on the membrane where the cell-to-cell contact occurred. In newly formed MGC, ICAM-1 stained in the center of the giant cell. The cellular distribution of LFA-1 on cultured monocytes was not modified by IFN-gamma. HLA-DR expectedly enhanced by IFN-gamma was mostly cytoplasmic and tended to disappear when MGC formed. Finally, anti-LFA-1 and anti-ICAM-1 monoclonal antibodies variably inhibited IFN-gamma-induced MGC generation. Taken together, these data add support to the concept that IFN-gamma is essential for MGC generation by promoting cell clustering and cell-to-cell adhesion. The present data also indicate that among the

  7. From Soccer-Ball and Rugby-Ball to Giant Fullerene Molecules:. a Scanning Tunneling Microscopy and Spectroscopy Study

    NASA Astrophysics Data System (ADS)

    Chen, Ting; Sarid, Dror

    Thin films of carbon fullerene molecules, Cn, prepared on metallic substrates are studied by scanning tunneling microscopy (STM) and atomic force microscopy (AFM) under both ambient and ultrahigh vacuum conditions. The STM and AFM images provide real-space atomic-resolution views of these fascinating molecules and their monolayer growth on metal surfaces which reflect both the intermolecular interactions and interactions with the underlying substrates.

  8. Glomerular mesangial cells in vitro synthesize an aggregating proteoglycan immunologically related to versican.

    PubMed Central

    Thomas, G J; Bayliss, M T; Harper, K; Mason, R M; Davies, M

    1994-01-01

    Recent studies have shown that mesangial cells derived from human adult glomeruli synthesize a number of 35S-labelled proteoglycans including a large chondroitin sulphate proteoglycan (CSPG), two dermatan sulphate proteoglycans (biglycan and decorin) and two heparan sulphate proteoglycans [Thomas, Mason and Davies (1991) Biochem. J. 277, 81-88]. In the present study we have examined the interaction of these proteoglycans with hyaluronan (HA) using associative gel chromatography. Only the large CSPG bound to HA, with 60% of those molecules in the medium and 80% of those in the cell layer being able to interact. Reduction and alkylation, or treatment of the monomer CSPG with proteinases, prevented the formation of aggregates, suggesting that the core protein was involved. The aggregates formed between purified CSPG and HA could be dissociated in the presence of HA-oligosaccharides of at least 10 monosaccharides in length. The inclusion of link protein with CSPG and HA promoted the formation of aggregates. Experiments with 3H-labelled mesangial-cell proteoglycans confirmed that only the large CSPG, with core protein molecular masses of 400 kDa and 500 kDa, interacted with HA. After chondroitin ABC lyase treatment of CSPG isolated from conditioned culture medium, several bands similar to those observed with 3H-labelled core proteins were identified using a polyclonal antiserum that recognizes versican. A monoclonal antibody recognizing the 1-C-6 epitope in the G1 and G2 globular regions of aggrecan did not recognize either mesangial-cell CSPG or bovine aortic versican. Northern-blot analysis confirmed that human mesangial cells express versican. Thus human mesangial large CSPG is a member of the versican family of proteoglycans. The interaction of CSPG and HA within the glomerulus may be important in glomerular cell migration and proliferation. Images Figure 5 Figure 6 Figure 7 PMID:8068022

  9. Viscoelasticity of Concentrated Proteoglycan Solutions

    NASA Astrophysics Data System (ADS)

    Meechai, Nispa; Jamieson, Alex; Blackwell, John; Carrino, David

    2001-03-01

    Proteoglycan Aggregate (PGA) is the principal macromolecular component of the energy-absorbing matrix of cartilage and tendon. Its brush-like supramolecular structure consists of highly-ionic subunits, non-covalently bound to a hyaluronate chain. We report viscoelastic behavior of concentrated solutions of PGA, purified by column fractionation to remove free subunits. At physiological ionic strength, these preparations exhibit a sol-to-gel transition when the concentration is increased above molecular overlap. The strain dependence of concentrated solutions shows a pronounced non-linearity above a critical strain, at which the storage modulus decreases suddenly, and the loss modulus exhibits a maximum. This response is similar to that observed for close-packed dispersions of soft spheres, when the applied strain is sufficient to move a sphere past its neighbors. At low and high ionic strength, the elasticity of solutions near the overlap concentration decreases. The former is interpreted as due to a decrease in intramolecular and intermolecular electrostatic repulsions, because of strong trapping of counterions within the PGA brush, the latter to salt-induced brush collapse.

  10. The extracellular matrix in cancer progression: Role of hyalectan proteoglycans and ADAMTS enzymes.

    PubMed

    Binder, Marley J; McCoombe, Scott; Williams, Elizabeth D; McCulloch, Daniel R; Ward, Alister C

    2017-01-28

    Remodelling of the extracellular matrix (ECM) has emerged as a key factor in cancer progression. Proteoglycans, including versican and other hyalectans, represent major structural elements of the ECM where they interact with other important molecules, including the glycosaminoglycan hyaluronan and the CD44 cell surface receptor. The hyalectan proteoglycans are regulated through cleavage by the proteolytic actions of A Disintegrin-like And Metalloproteinase domain with Thrombospondin-1 motif (ADAMTS) family members. Alteration in the balance between hyalectan proteoglycans and ADAMTS enzymes has been proposed to be a crucial factor in cancer progression either in a positive or negative manner depending on the context. Further complexity arises due to the formation of bioactive cleavage products, such as versikine, which may also play a role, and non-enzymatic functions for ADAMTS proteins. This research is providing fresh insights into cancer biology and opportunities for the development of new diagnostic and treatment strategies. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  11. Roles of Proteoglycans and Glycosaminoglycans in Wound Healing and Fibrosis

    PubMed Central

    Ghatak, Shibnath; Maytin, Edward V.; Mack, Judith A.; Hascall, Vincent C.; Atanelishvili, Ilia; Moreno Rodriguez, Ricardo; Markwald, Roger R.; Misra, Suniti

    2015-01-01

    A wound is a type of injury that damages living tissues. In this review, we will be referring mainly to healing responses in the organs including skin and the lungs. Fibrosis is a process of dysregulated extracellular matrix (ECM) production that leads to a dense and functionally abnormal connective tissue compartment (dermis). In tissues such as the skin, the repair of the dermis after wounding requires not only the fibroblasts that produce the ECM molecules, but also the overlying epithelial layer (keratinocytes), the endothelial cells, and smooth muscle cells of the blood vessel and white blood cells such as neutrophils and macrophages, which together orchestrate the cytokine-mediated signaling and paracrine interactions that are required to regulate the proper extent and timing of the repair process. This review will focus on the importance of extracellular molecules in the microenvironment, primarily the proteoglycans and glycosaminoglycan hyaluronan, and their roles in wound healing. First, we will briefly summarize the physiological, cellular, and biochemical elements of wound healing, including the importance of cytokine cross-talk between cell types. Second, we will discuss the role of proteoglycans and hyaluronan in regulating these processes. Finally, approaches that utilize these concepts as potential therapies for fibrosis are discussed. PMID:26448760

  12. Heparan sulfate proteoglycans in glomerular inflammation.

    PubMed

    Rops, Angelique L W M M; van der Vlag, Johan; Lensen, Joost F M; Wijnhoven, Tessa J M; van den Heuvel, Lambert P W J; van Kuppevelt, Toin H; Berden, Jo H M

    2004-03-01

    Heparan sulfate proteoglycans (HSPGs) are glycoproteins consisting of a core protein to which linear heparan sulfate side chains are covalently attached. These heparan sulfate side chains can be modified at different positions by several enzymes, which include N-deacetylases, N- and O-sulfotransferases, and an epimerase. These heparan sulfate modifications give rise to an enormous structural diversity, which corresponds to the variety of biologic functions mediated by heparan sulfate, including its role in inflammation. The HSPGs in the glomerular basement membrane (GBM), perlecan, agrin, and collagen XVIII, play an important role in the charge-selective permeability of the glomerular filter. In addition to these HSPGs, various cell types express HSPGs at their cell surface, which include syndecans, glypicans, CD44, and betaglycan. During inflammation, HSPGs, especially heparan sulfate, in the extracellular matrix (ECM) and at the surface of endothelial cells bind chemokines, which establishes a local concentration gradient recruiting leukocytes. Endothelial and leukocyte cell surface HSPGs also play a role in their direct adhesive interactions via other cell surface adhesion molecules, such as selectins and beta2 integrin. Activated leukocytes and endothelial cells exert heparanase activity, resulting in degradation of heparan sulfate moieties in the ECM, which facilitates leukocyte passage into tissues and the release of heparan sulfate-bound factors. In various renal inflammatory diseases the expression of agrin and GBM-associated heparan sulfate is decreased, while the expression of CD44 is increased. Heparan sulfate or heparin preparations affect inflammatory cell behavior and have promising therapeutic, anti-inflammatory properties by preventing leukocyte adhesion/influx and tissue damage.

  13. Characterization of proteoglycans synthesized by human adult glomerular mesangial cells in culture.

    PubMed Central

    Thomas, G J; Mason, R M; Davies, M

    1991-01-01

    1. The newly synthesized proteoglycans from human adult glomerular mesangial cells labelled in vitro for 24 h with [35S]sulphate have been characterized using biochemical and immunological techniques. 2. The following proteoglycans were identified (% of total synthesized). (i) A large chondroitin sulphate proteoglycan, CSPG-I, Mr approximately 1 x 10(6) (10.6%). This proteoglycan consisted of a protein core of Mr approximately 4 x 10(5) and glycosaminoglycan chains of Mr 2.5 x 10(4), and was present in both the cell layer and the culture medium. (ii) A major small dermatan sulphate proteoglycan, DSPG-I, Mr 3.5 x 10(5) (46%), which was mainly located in the culture medium. (iii) A second minor small dermatan sulphate, DSPG-II, Mr approximately 2 x 10(5) (9.8%). This molecule was exclusively located in the culture medium. (iv) A large heparan sulphate proteoglycan, HSPG-I, Mr 8 x 10(5) (3.3%). (v) A second large heparan sulphate proteoglycan HSPG-II, Mr approximately 6 x 10(5) (23%). HSPG-I and HSPG-II were extracted from both the culture medium and the cell layer. 3. Western blot analysis of the core proteins released by chondroitin ABC lyase treatment of DSPG-I and DSPG-II identified these dermatan sulphate proteoglycans as biglycan and decorin respectively. Both DSPG-I and DSPG-II had core proteins of Mr 45,000. 4. The cell-layer-associated forms of CSPG-I, HSPG-I and HSPG-II were accessible to limited trypsin treatment, bound to octyl-Sepharose and could be inserted into liposomes, indicating a possible cell membrane location. 5. Pulse-chase experiments indicated that the cell-layer-associated [35S]proteoglycans undergo limited metabolism to inorganic [35S]sulphate, the majority of which is accounted for by the degradation of HSPG-II and to a lesser extent DSPG-I. Images Fig. 1. Fig. 2. Fig. 3. Fig. 4. PMID:1854350

  14. Corneal proteoglycan changes under vitamin A deficiency

    SciTech Connect

    Twining, S.S.; Wilson, P.M.

    1986-05-01

    The vitamin A-deficient keratinized cornea is very susceptible to ulceration possibly due to altered stromal components. In this study the proteoglycans present in the corneal stroma of vitamin A-deficient, pair-fed and normal rabbits were compared. Rabbits after weaning were placed on a vitamin A deficient diet, the same diet with retinyl palmitate added (pair-fed) or normal rabbit chow. After 5 months, the corneas of the vitamin A-deficient animals became keratinized. The corneal components were then labeled by injection of /sup 3/H-leucine and Na/sup 35/SO/sub 4/ into the anterior chamber of the eyes on 3 successive days. On the 4th day the animals were sacrificed the corneas removed and dissected. The labeled corneal stromas were extracted with 4 M GuHCl and the components separated on a DEAE-Sepharose column. The proteoglycans were eluted with 0.5 M and 1.0 M NaCl. The 1.0 M NaCl fraction (mainly keratin sulfate proteoglycans) was increased 25% in the vitamin A-deficient corneas over that for the pair-fed and normal corneas. These proteoglycans from the deficient corneas gave a different elution pattern on Octyl-Sepharose eluted with a Triton X-100 gradient than those from the pair-fed corneas. The total labeled proteoglycans were similar in the stromas from the 3 types of rabbits. These results indicate the various corneal proteoglycan ratios differ under vitamin A deficiency conditions.

  15. Characterization of proteoglycans associated with mouse splenic AA amyloidosis.

    PubMed Central

    Stenstad, T; Magnus, J H; Husby, G

    1994-01-01

    We here report for the first time on the chemical characteristics of proteoglycans associated with mouse splenic reactive AA amyloid. Amyloid was induced in CBA/J mice by two different procedures; conventional casein treatment and by employing Freund's complete adjuvant, accelerated by Trypan Blue. Pulse-labelling was employed at distinct stages during amyloid development, followed by [35S]proteoglycan characterization of organ extracts. Repetitive 35S injections were also administered during the phase where amyloid deposition occurred most rapidly. Proteoglycans were extracted with guanidine in the presence of protease inhibitors and purified. The results showed that the production of proteoglycans is dramatically enhanced during amyloidogenesis, the glycosaminoglycan and proteoglycan accumulation being not only dependent on alterations in proteoglycan catabolism, but rather on increased synthesis. The increment could be demonstrated even at the stage before microscopic detection of amyloid deposits, clearly suggesting that the upregulation of proteoglycan expression precedes amyloid fibril formation. Two major proteoglycans were found to accumulate in advanced splenic amyloid; one a heparan sulphate proteoglycan of approx. 200 kDa with a core protein of 70 kDa, the other a chondroitin sulphate proteoglycan of smaller size. Moreover, free dermatan sulphate chains seemed to specifically accumulate in the organs during amyloid fibrillogenesis. We suggest that free glycosaminoglycans may be a specific feature of amyloidosis and that different proteoglycans and glycosaminoglycans play a role in formation and stabilization of amyloid fibrils in vivo. Images Figure 2 Figure 6 PMID:7980430

  16. Role of proteoglycans in the regulation of the skeletal muscle fibrotic response.

    PubMed

    Brandan, Enrique; Gutierrez, Jaime

    2013-09-01

    Myogenesis consists of a highly organized and regulated sequence of cellular processes aimed at forming or repairing muscle tissue. Several processes occur during myogenesis, including cell proliferation, migration, and differentiation. Cytokines, proteinases, cell adhesion molecules and growth factors are involved, either activating or inhibiting these events, and are modulated by a group of molecules called proteoglycans (PGs), which play critical roles in skeletal muscle physiology. Particularly interesting are some of the factors responsible for the fibrotic response associated with skeletal muscular dystrophies. Transforming growth factor-β and connective tissue growth factor have gained great attention as factors participating in the fibrotic response in skeletal muscle. This review is focused on the advances achieved in understanding the roles of proteoglycans as modulators of profibrotic growth factors in fibrosis associated with diseases such as skeletal muscle dystrophies.

  17. Utilization of Glycosaminoglycans/Proteoglycans as Carriers for Targeted Therapy Delivery

    PubMed Central

    Misra, Suniti; Hascall, Vincent C.; Atanelishvili, Ilia; Moreno Rodriguez, Ricardo; Markwald, Roger R.; Ghatak, Shibnath

    2015-01-01

    The outcome of patients with cancer has improved significantly in the past decade with the incorporation of drugs targeting cell surface adhesive receptors, receptor tyrosine kinases, and modulation of several molecules of extracellular matrices (ECMs), the complex composite of collagens, glycoproteins, proteoglycans, and glycosaminoglycans that dictates tissue architecture. Cancer tissue invasive processes progress by various oncogenic strategies, including interfering with ECM molecules and their interactions with invasive cells. In this review, we describe how the ECM components, proteoglycans and glycosaminoglycans, influence tumor cell signaling. In particular this review describes how the glycosaminoglycan hyaluronan (HA) and its major receptor CD44 impact invasive behavior of tumor cells, and provides useful insight when designing new therapeutic strategies in the treatment of cancer. PMID:26448753

  18. Study of Large Multimeric Biomolecules by Single-Molecule Manipulation and Imaging

    NASA Astrophysics Data System (ADS)

    Lou, Kai; Wijeratne, Sitara S.; Martinez, Jerahme; Yeh, Hui-Chun; Moake, Joel; Dong, Jing-Fei; Farach-Carson, Mary C.; Kiang, Ching-Hwa

    2012-02-01

    Single-molecule manipulation enables us to study the properties of long chain, multimeric biomolecules. Perlecan, a giant secreted heparin sulfate proteoglycan, is a major component of basement membrane, bone stroma and blood vessels. It is involved in processes such as cell adhesion, migration and modulation of apoptosis. The changes in its synthesis and function are closely associated with many diseases, including cancer. Von Willebrand factor is a large multimeric protein circulating in blood, and is crucial for initiation of blood coagulation. We use atomic force microscope to obtain force curves and images of these proteins. We characterized the mechanical property of perlecan as well as the domain conformational changes of von Willebrand factor. The results demonstrate that single-molecule manipulation can probe directly the dynamics of large biomolecules that are usually not accessible with other methods.

  19. Human immunodeficiency virus type 1 induces cellular polarization, intercellular adhesion molecule-1 redistribution, and multinucleated giant cell generation in human primary monocytes but not in monocyte-derived macrophages.

    PubMed

    Fais, S; Borghi, P; Gherardi, G; Logozzi, M; Belardelli, F; Gessani, S

    1996-12-01

    In this study, we evaluated the effects of human immunodeficiency virus type 1 (HIV-1) on some morphologic and functional changes in cultured human monocytes/macrophages at different stages of differentiation. Freshly isolated monocytes infected with HIV-1 24 hours after seeding exhibited marked morphologic changes such as uropod formation, polarization of intercellular adhesion molecule-1 (ICAM-1) on the cytoplasmic projection, the redistribution of alpha-actinin on cell-membrane dots, and an increased release of soluble ICAM-1. These changes preceded the increase in monocyte-monocyte fusion and the formation of multinucleated giant cells. In contrast, HIV-1 infection did not affect monocyte-derived macrophages in terms of either cellular polarization or multinucleated giant cell formation. Immunocytochemistry showed that HIV-1 matrix protein was present mostly in bi- and trinucleated cells, which suggests that multinucleated giant cells may represent a long-lived and highly productive cellular source of HIV. The treatment of the HIV-1-infected monocytes with azidodeoxythymidine virtually abolished all viral-induced morphofunctional changes. On the whole, these results indicate that blood monocytes and differentiated macrophages may be affected differently by HIV infection, as monocytes seem to be much more prone to polarize, undergo homotypic fusion, and form multinucleated giant cells. These changes may confer to HIV-infected monocytes an increased ability to transmigrate through endothelia into tissues, whereas differentiated macrophages may have a predominant role as a widespread reservoir of HIV.

  20. Bone Proteoglycan Changes During Skeletal Unloading

    NASA Technical Reports Server (NTRS)

    Yamauchi, M.; Uzawa, K.; Pornprasertsuk, S.; Arnaud, S.; Grindeland, R.; Grzesik, W.

    1999-01-01

    Skeletal adaptability to mechanical loads is well known since the last century. Disuse osteopenia due to the microgravity environment is one of the major concerns for space travelers. Several studies have indicated that a retardation of the mineralization process and a delay in matrix maturation occur during the space flight. Mineralizing fibrillar type I collagen possesses distinct cross-linking chemistries and their dynamic changes during mineralization correlate well with its function as a mineral organizer. Our previous studies suggested that a certain group of matrix proteoglycans in bone play an inhibitory role in the mineralization process through their interaction with collagen. Based on these studies, we hypothesized that the altered mineralization during spaceflight is due in part to changes in matrix components secreted by cells in response to microgravity. In this study, we employed hindlimb elevation (tail suspension) rat model to study the effects of skeletal unloading on matrix proteoglycans in bone.

  1. Glycosaminoglycan Chain of Dentin Sialoprotein Proteoglycan

    PubMed Central

    Zhu, Q.; Sun, Y.; Prasad, M.; Wang, X.; Yamoah, A.K.; Li, Y.; Feng, J.; Qin, C.

    2010-01-01

    Dentin sialophosphoprotein (DSPP) is processed into dentin sialoprotein (DSP) and dentin phosphoprotein. A molecular variant of rat DSP, referred to as “HMW-DSP”, has been speculated to be a proteoglycan form of DSP. To determine if HMW-DSP is the proteoglycan form of DSP and to identify the glycosaminoglycan side-chain attachment site(s), we further characterized HMW-DSP. Chondroitinase ABC treatment reduced the migration rate for portions of rat HMW-DSP to the level of DSP. Disaccharide analysis showed that rat HMW-DSP contains glycosaminoglycan chains made of chondroitin-4-sulfate and has an average of 31-32 disaccharides/mol. These observations confirmed that HMW-DSP is the proteoglycan form of DSP (renamed “DSP-PG”). Edman degradation and mass spectrometric analyses of tryptic peptides from rat DSP-PG, along with substitution analyses of candidate Ser residues in mouse DSPP, confirmed that 2 glycosaminoglycan chains are attached to Ser241 and Ser253 in the rat, or Ser242 and Ser254 in the mouse DSPP sequence. PMID:20400719

  2. Type I collagen reduces the degradation of basal lamina proteoglycan by mammary epithelial cells

    PubMed Central

    1981-01-01

    When mouse mammary epithelial cells are cultured on a plastic substratum, no basal lamina forms. When cultured on a type I collagen gel, the rate of glycosaminoglycan (GAG) synthesis is unchanged, but the rate of GAG degradation is markedly reduced and a GAG-rich, basal lamina-like structure accumulates. This effect of collagen was investigated by comparing the culture distribution, nature, and metabolic stability of the 35S-GAG-containing molecules produced by cells on plastic and collagen. During 48 h of labeling with 35SO4, cultures on collagen accumulate 1.4-fold more 35S-GAG per microgram of DNA. In these cultures, most of the extracellular 35S-GAG is immobilized with the lamina and collagen gel, whereas in cultures on plastic all extracellular 35S-GAG is soluble. On both substrata, the cells produce several heparan sulfate-rich 35S-proteoglycan fractions that are distinct by Sepharose CL-4B chromatography. The culture types contain similar amounts of each fraction, except that collagen cultures contain nearly four times more of a fraction that is found largely bound to the lamina and collagen gel. During a chase this proteoglycan fraction is stable in cultures on collagen, but is extensively degraded in cultures on plastic. Thus, collagen-induced formation of a basal lamina correlates with reduced degradation and enhanced accumulation of a specific heparan sulfate-rich proteoglycan fraction. Immobilization and stabilization of basal laminar proteoglycan(s) by interstitial collagen may be a physiological mechanism of basal lamina maintenance and assembly. PMID:7298723

  3. Dermatan sulphate-rich proteoglycan associates with rat tail-tendon collagen at the d band in the gap region.

    PubMed Central

    Scott, J E; Orford, C R

    1981-01-01

    Rat tail tendon was stained with a cationic phthalocyanin dye, Cupromeronic Blue, in a 'critical-electrolyte-concentration' method [Scott (1980) Biochem. J. 187, 887-891] specifically to demonstrate proteoglycan by electron microscopy. Hyaluronidase digestion in the presence of proteinase inhibitors corroborated the results. Collagen was stained with uranyl acetate and/or phosphotungstic acid to demonstrate the banding pattern a-e in the D period. Proteoglycan was distributed about the collagen fibrils in an orthogonal array, the transverse elements of which were located almost exclusively at the d band, in the gap zone. The proteoglycan may inhibit (1) fibril radial growth by accretion of collagen molecules or fibril fusion, through interference with cross-linking, and (2) calcification by occupying the holes in the gap region later to be filled with hydroxyapatite. Images PLATE 1 PMID:7317031

  4. Proteoglycans as potential microenvironmental biomarkers for colon cancer.

    PubMed

    Suhovskih, Anastasia V; Aidagulova, Svetlana V; Kashuba, Vladimir I; Grigorieva, Elvira V

    2015-09-01

    Glycosylation changes occur widely in colon tumours, suggesting glycosylated molecules as potential biomarkers for colon cancer diagnostics. In this study, proteoglycans (PGs) expression levels and their transcriptional patterns are investigated in human colon tumours in vivo and carcinoma cells in vitro. According to RT-PCR analysis, normal and cancer colon tissues expressed a specific set of PGs (syndecan-1, perlecan, decorin, biglycan, versican, NG2/CSPG4, serglycin, lumican, CD44), while the expression of glypican-1, brevican and aggrecan was almost undetectable. Overall transcriptional activity of the PGs in normal and cancer tissues was similar, although expression patterns were different. Expression of decorin and perlecan was down-regulated 2-fold in colon tumours, while biglycan and versican expression was significantly up-regulated (6-fold and 3-fold, respectively). Expression of collagen1A1 was also increased 6-fold in colon tumours. However, conventional HCT-116 colon carcinoma and AG2 colon cancer-initiating cells did not express biglycan and decorin and were versican-positive and -negative, respectively, demonstrating an extracellular origin of the PGs in cancer tissue. Selective expression of heparan sulfate (HS) proteoglycans syndecan-1 and perlecan in the AG2 colon cancer-initiating cell line suggests these PGs as potential biomarkers for cancer stem cells. Overall transcriptional activity of the HS biosynthetic system was similar in normal and cancer tissues, although significant up-regulation of extracellular sulfatases SULF1/2 argues for a possible distortion of HS sulfation patterns in colon tumours. Taken together, the obtained results suggest versican, biglycan, collagen1A1 and SULF1/2 expression as potential microenvironmental biomarkers and/or targets for colon cancer diagnostics and treatment.

  5. Identification of chondroitin sulfate E proteoglycans and heparin proteoglycans in the secretory granules of human lung mast cells

    SciTech Connect

    Stevens, R.L.; Austen, K.F. ); Fox, C.C.; Lichtenstein, L.M. )

    1988-04-01

    The predominant subclasses of mast cells in both the rat and the mouse can be distinguished from one another by their preferential synthesis of {sup 35}S-labeled proteoglycans that contain either heparin or oversulfated chondroitin sulfate glycosaminoglycans. Although ({sup 35}S)heparin proteoglycans have been isolated from human lung mast cells of 40-70% purity and from a skin biopsy specimen of a patient with urticaria pigmentosa, no highly sulfated chondroitin sulfate proteoglycan has been isolated from any enriched or highly purified population of human mast cells. The authors demonstrate that human lung mast cells of 96% purity incorporate ({sup 35}S)sulfate into separate heparin and chondroitin sulfate proteoglycans in an {approx}2:1 ratio. As assessed by HPLC of the chondroitinase ABC digests, the chondroitin ({sup 35}S)sulfate proteoglycans isolated from these human lung mast cells contain the same unusual chondroitin sulfate E disaccharide that is present in proteoglycans produced by interleukin 3-dependent mucosal-like mouse mast cells. Both the chondroitin ({sup 35}S)sulfate E proteoglycans and the ({sup 35}S)heparin proteoglycans were exocytosed from the ({sup 35}S)sulfate-labeled cells via perturbation of the IgE receptor, indicating that both types of {sup 35}S-labeled proteoglycans reside in the secretory granules of these human lung mast cells.

  6. Identification of chondroitin sulfate E proteoglycans and heparin proteoglycans in the secretory granules of human lung mast cells.

    PubMed Central

    Stevens, R L; Fox, C C; Lichtenstein, L M; Austen, K F

    1988-01-01

    The predominant subclasses of mast cells in both the rat and the mouse can be distinguished from one another by their preferential synthesis of 35S-labeled proteoglycans that contain either heparin or oversulfated chondroitin sulfate glycosaminoglycans. Although [35S]heparin proteoglycans have been isolated from human lung mast cells of 40-70% purity and from a skin biopsy specimen of a patient with urticaria pigmentosa, no highly sulfated chondroitin sulfate proteoglycan has been isolated from any enriched or highly purified population of human mast cells. We here demonstrate that human lung mast cells of 96% purity incorporate [35S] sulfate into separate heparin and chondroitin sulfate proteoglycans in an approximately equal to 2:1 ratio. As assessed by HPLC of the chondroitinase ABC digests, the chondroitin [35S]sulfate proteoglycans isolated from these human lung mast cells contain the same unusual chondroitin sulfate E disaccharide that is present in proteoglycans produced by interleukin 3-dependent mucosal-like mouse mast cells. Both the chondroitin [35S]sulfate E proteoglycans and the [35S]heparin proteoglycans were exocytosed from the [35S]sulfate-labeled cells via perturbation of the IgE receptor, indicating that both types of 35S-labeled proteoglycans reside in the secretory granules of these human lung mast cells. PMID:3353378

  7. Collagens and proteoglycans of the cornea: importance in transparency and visual disorders.

    PubMed

    Massoudi, Dawiyat; Malecaze, Francois; Galiacy, Stephane D

    2016-02-01

    The cornea represents the external part of the eye and consists of an epithelium, a stroma and an endothelium. Due to its curvature and transparency this structure makes up approximately 70% of the total refractive power of the eye. This function is partly made possible by the particular organization of the collagen extracellular matrix contained in the corneal stroma that allows a constant refractive power. The maintenance of such an organization involves other molecules such as type V collagen, FACITs (fibril-associated collagens with interrupted triple helices) and SLRPs (small leucine-rich proteoglycans). These components play crucial roles in the preservation of the correct organization and function of the cornea since their absence or modification leads to abnormalities such as corneal opacities. Thus, the aim of this review is to describe the different corneal collagens and proteoglycans by highlighting their importance in corneal transparency as well as their implication in corneal visual disorders.

  8. Cartilage proteoglycans inhibit fibronectin-mediated adhesion

    NASA Astrophysics Data System (ADS)

    Rich, A. M.; Pearlstein, E.; Weissmann, G.; Hoffstein, S. T.

    1981-09-01

    Normal tissues and organs show, on histological examination, a pattern of cellular and acellular zones that is characteristic and unique for each organ or tissue. This pattern is maintained in health but is sometimes destroyed by disease. For example, in mobile joints, the articular surfaces consist of relatively acellular hyaline cartilage, and the joint space is enclosed by a capsule of loose connective tissue with a lining of fibroblasts and macrophages. In the normal joint these cells are confined to the synovial lining and the articular surface remains acellular. In in vitro culture, macrophages and their precursor monocytes are very adhesive, and fibroblasts can migrate and overgrow surfaces such as collagen or plastic used for tissue culture. The fibroblasts adhere to collagen by means of fibronectin, which they synthesize and secrete1. Because the collagen of cartilage is capable of binding serum fibronectin2 and fibronectin is present in cartilage during its development3, these cells should, in theory, slowly migrate from the synovial lining to the articular surface. It is their absence from the articular cartilage in normal circumstances, and then presence in such pathological states as rheumatoid arthritis, that is striking. We therefore set out to determine whether a component of cartilage could prevent fibroblast adherence in a defined adhesion assay. As normal cartilage is composed of 50% proteoglycans and 50% collagen by dry weight4, we tested the possibility that the proteoglycans in cartilage inhibit fibroblast adhesion to collagen. We present here evidence that fibroblast spreading and adhesion to collagenous substrates is inhibited by cartilage proteoglycans.

  9. Inhibition and enhancement of neural regeneration by chondroitin sulfate proteoglycans.

    PubMed

    Rauvala, Heikki; Paveliev, Mikhail; Kuja-Panula, Juha; Kulesskaya, Natalia

    2017-05-01

    The current dogma in neural regeneration research implies that chondroitin sulfate proteoglycans (CSPGs) inhibit plasticity and regeneration in the adult central nervous system (CNS). We argue that the role of the CSPGs can be reversed from inhibition to activation by developmentally expressed CSPG-binding factors. Heparin-binding growth-associated molecule (HB-GAM; also designated as pleiotrophin) has been studied as a candidate molecule that might modulate the role of CSPG matrices in plasticity and regeneration. Studies in vitro show that in the presence of soluble HB-GAM chondroitin sulfate (CS) chains of CSPGs display an enhancing effect on neurite outgrowth. Based on the in vitro studies, we suggest a model according to which the HB-GAM/CS complex binds to the neuron surface receptor glypican-2, which induces neurite growth. Furthermore, HB-GAM masks the CS binding sites of the neurite outgrowth inhibiting receptor protein tyrosine phosphatase sigma (PTPσ), which may contribute to the HB-GAM-induced regenerative effect. In vivo studies using two-photon imaging after local HB-GAM injection into prick-injury of the cerebral cortex reveal regeneration of dendrites that has not been previously demonstrated after injuries of the mammalian nervous system. In the spinal cord, two-photon imaging displays HB-GAM-induced axonal regeneration. Studies on the HB-GAM/CS mechanism in vitro and in vivo are expected to pave the way for drug development for injuries of brain and spinal cord.

  10. Targeting phosphatase-dependent proteoglycan switch for rheumatoid arthritis therapy

    PubMed Central

    Doody, Karen M.; Stanford, Stephanie M.; Sacchetti, Cristiano; Svensson, Mattias N. D.; Coles, Charlotte H.; Mitakidis, Nikolaos; Kiosses, William B.; Bartok, Beatrix; Fos, Camille; Cory, Esther; Sah, Robert L.; Liu-Bryan, Ru; Boyle, David L.; Arnett, Heather A.; Mustelin, Tomas; Corr, Maripat; Esko, Jeffrey D.; Tremblay, Michel L.; Firestein, Gary S.; Aricescu, A. Radu; Bottini, Nunzio

    2015-01-01

    Despite the availability of several therapies for rheumatoid arthritis (RA) that target the immune system, a large number of RA patients fail to achieve remission. Joint-lining cells, called fibroblast-like synoviocytes (FLS), become activated during RA and mediate joint inflammation and destruction of cartilage and bone. We identify RPTPσ, a transmembrane tyrosine phosphatase, as a therapeutic target for FLS-directed therapy. RPTPσ is reciprocally regulated by interactions with chondroitin sulfate or heparan sulfate containing extracellular proteoglycans in a mechanism called the proteoglycan switch. We show that the proteoglycan switch regulates FLS function. Incubation of FLS with a proteoglycan-binding RPTPσ decoy protein inhibited cell invasiveness and attachment to cartilage by disrupting a constitutive interaction between RPTPσ and the heparan sulfate proteoglycan syndecan-4. RPTPσ mediated the effect of proteoglycans on FLS signaling by regulating the phosphorylation and cytoskeletal localization of ezrin. Furthermore, administration of the RPTPσ decoy protein ameliorated in vivo human FLS invasiveness and arthritis severity in the K/BxN serum transfer model of RA. Our data demonstrate that FLS are regulated by an RPTPσ-dependent proteoglycan switch in vivo, which can be targeted for RA therapy. We envision that therapies targeting the proteoglycan switch or its intracellular pathway in FLS could be effective as a monotherapy or in combination with currently available immune-targeted agents to improve control of disease activity in RA patients. PMID:25995222

  11. Targeting phosphatase-dependent proteoglycan switch for rheumatoid arthritis therapy.

    PubMed

    Doody, Karen M; Stanford, Stephanie M; Sacchetti, Cristiano; Svensson, Mattias N D; Coles, Charlotte H; Mitakidis, Nikolaos; Kiosses, William B; Bartok, Beatrix; Fos, Camille; Cory, Esther; Sah, Robert L; Liu-Bryan, Ru; Boyle, David L; Arnett, Heather A; Mustelin, Tomas; Corr, Maripat; Esko, Jeffrey D; Tremblay, Michel L; Firestein, Gary S; Aricescu, A Radu; Bottini, Nunzio

    2015-05-20

    Despite the availability of several therapies for rheumatoid arthritis (RA) that target the immune system, a large number of RA patients fail to achieve remission. Joint-lining cells, called fibroblast-like synoviocytes (FLS), become activated during RA and mediate joint inflammation and destruction of cartilage and bone. We identify RPTPσ, a transmembrane tyrosine phosphatase, as a therapeutic target for FLS-directed therapy. RPTPσ is reciprocally regulated by interactions with chondroitin sulfate or heparan sulfate containing extracellular proteoglycans in a mechanism called the proteoglycan switch. We show that the proteoglycan switch regulates FLS function. Incubation of FLS with a proteoglycan-binding RPTPσ decoy protein inhibited cell invasiveness and attachment to cartilage by disrupting a constitutive interaction between RPTPσ and the heparan sulfate proteoglycan syndecan-4. RPTPσ mediated the effect of proteoglycans on FLS signaling by regulating the phosphorylation and cytoskeletal localization of ezrin. Furthermore, administration of the RPTPσ decoy protein ameliorated in vivo human FLS invasiveness and arthritis severity in the K/BxN serum transfer model of RA. Our data demonstrate that FLS are regulated by an RPTPσ-dependent proteoglycan switch in vivo, which can be targeted for RA therapy. We envision that therapies targeting the proteoglycan switch or its intracellular pathway in FLS could be effective as a monotherapy or in combination with currently available immune-targeted agents to improve control of disease activity in RA patients.

  12. Proteoglycan interactions with Sonic Hedgehog specify mitogenic responses

    PubMed Central

    Chan, Jennifer A.; Balasubramanian, Srividya; Witt, Rochelle M.; Nazemi, Kellie J.; Choi, Yoojin; Pazyra-Murphy, Maria F.; Walsh, Carolyn O.; Thompson, Margaret; Segal, Rosalind A.

    2009-01-01

    SUMMARY Sonic Hedgehog (Shh) has dual roles in vertebrate development, as it promotes progenitor cell proliferation and induces tissue patterning. Here we show mitogenic and patterning functions of Shh can be uncoupled from one another. Using a genetic approach to selectively inhibit Shh-proteoglycan interactions in a mouse model, we show binding of Shh to proteoglycans is required for proliferation of neural stem/precursor cells but not for tissue patterning. Shh-proteoglycan interactions regulate both spatial and temporal features of Shh signaling. Proteoglycans localize Shh to specialized mitogenic niches and also act at the single cell level to regulate the duration of Shh signaling, thereby promoting a gene expression program important for cell division. As activation of the Shh pathway is a feature of diverse human cancers, selective stimulation of proliferation by Shh-proteoglycan interactions may also figure prominently in neoplastic growth. PMID:19287388

  13. Proteoglycan interactions with Sonic Hedgehog specify mitogenic responses.

    PubMed

    Chan, Jennifer A; Balasubramanian, Srividya; Witt, Rochelle M; Nazemi, Kellie J; Choi, Yoojin; Pazyra-Murphy, Maria F; Walsh, Carolyn O; Thompson, Margaret; Segal, Rosalind A

    2009-04-01

    Sonic Hedgehog (Shh) has dual roles in vertebrate development, promoting progenitor cell proliferation and inducing tissue patterning. We found that the mitogenic and patterning functions of Shh can be uncoupled from one another. Using a genetic approach to selectively inhibit Shh-proteoglycan interactions in a mouse model, we found that binding of Shh to proteoglycans was required for proliferation of neural stem/precursor cells, but not for tissue patterning. Shh-proteoglycan interactions regulated both spatial and temporal features of Shh signaling. Proteoglycans localized Shh to specialized mitogenic niches and also acted at the single-cell level to regulate the duration of Shh signaling, thereby promoting a gene expression program that is important for cell division. Because activation of the Shh pathway is a feature of diverse human cancers, selective stimulation of proliferation by Shh-proteoglycan interactions may also figure prominently in neoplastic growth.

  14. Purification and characterization of heparan sulphate proteoglycan from bovine brain.

    PubMed Central

    Park, Y; Yu, G; Gunay, N S; Linhardt, R J

    1999-01-01

    A heparan sulphate proteoglycan was purified from adult bovine brain tissues and its structure was characterized. The major heparan sulphate proteoglycan from whole bovine brain had a molecular mass of >200 kDa on denaturing SDS/PAGE and a core protein size of 66 kDa following the removal of glycosaminoglycan chains. Fractionation on DEAE-Sephacel showed that this proteoglycan consisted of three major forms having high, intermediate and low overall charge. All core proteins were identical in size and reacted with heparan sulphate proteoglycan-stub antibody and an antibody made to a synthetic peptide based on rat glypican. The three forms of proteoglycans had identical peptide maps and their amino acid compositional analysis did not match any of the known glypicans. The internal sequence of a major peptide showed only 37.5% sequence similarity with human glypican 5. The glycosaminoglycan chain sizes of the three forms of this proteoglycan, determined after beta-elimination by PAGE, were identical. The disaccharide compositional analysis on the heparan sulphate chains from the three forms of the proteoglycan, determined by treatment with a mixture of heparin lyases followed by high-resolution capillary electrophoresis, showed that they differed primarily by degree of sulphation. The most highly sulphated proteoglycan isolated had a disaccharide composition similar to heparan sulphate glycosaminoglycans found in brain tissue. Based on their sensitivity to low pH nitrous acid treatment, the N-sulphate groups in these proteoglycans were found to be primarily in the smaller glycosaminoglycan chains. The heparan sulphate proteoglycans were also heavily glycosylated with O-linked glycans and no glycosylphosphatidylinositol anchor could be detected. PMID:10585858

  15. Deglycosylation of chondroitin sulfate proteoglycan and derived peptides

    SciTech Connect

    Campbell, S.C.; Krueger, R.C.; Schwartz, N.B. )

    1990-01-30

    In order to define the domain structure of proteoglycans as well as identify primary amino acid sequences specific for attachment of the various carbohydrate substituents, reliable techniques for deglycosylating proteoglycans are required. In this study, deglycosylation of cartilage chondroitin sulfate proteoglycan (CSPG) with minimal core protein cleavage was accomplished by digestion with chondroitinase ABC and keratanase, followed by treatment with anhydrous HF in pyridine. Nearly complete deglycosylation of secreted proteoglycan was verified within 45 min of HF treatment by loss of incorporated ({sup 3}H)glucosamine label from the proteoglycan as a function of time of treatment, as well as by direct analysis of carbohydrate content and xylosyltransferase acceptor activity of unlabeled core protein preparations. The deglycosylated CSPG preparations were homogeneous and of high molecular weight. Comparison of the intact deglycosylated core protein preparations with newly synthesized unprocessed precursors suggested that extensive proteolytic cleavage of the core protein did not occur during normal intracellular processing. Furthermore, peptide patterns generated after clostripain digestion of core protein precursor and of deglycosylated secreted proteoglycan were comparable. With the use of the clostripain digestion procedure, peptides were produced from unlabeled proteoglycan, and two predominant peptides from the most highly glycosylated regions were isolated, characterized, and deglycosylated. These peptides were found to follow similar kinetics of deglycosylation and to acquire xylose activity comparable to the intact core protein.

  16. Role of skeletal muscle proteoglycans during myogenesis.

    PubMed

    Brandan, Enrique; Gutierrez, Jaime

    2013-08-08

    Skeletal muscle formation during development and the adult mammal consists of a highly organised and regulated the sequence of cellular processes intending to form or repair muscle tissue. This sequence includes, cell proliferation, migration, and differentiation. Proteoglycans (PGs), macromolecules formed by a core protein and glycosaminoglycan chains (GAGs) present a great diversity of functions explained by their capacity to interact with different ligands and receptors forming part of their signalling complex and/or protecting them from proteolytic cleavage. Particularly attractive is the function of the different types of PGs present at the neuromuscular junction (NMJ). This review is focussed on the advances reached to understand the role of PGs during myogenesis and skeletal muscular dystrophies.

  17. Fate of a giant {Mo72Fe30}-type polyoxometalate cluster in an aqueous solution at higher temperature: understanding related Keplerate chemistry, from molecule to material.

    PubMed

    Mekala, Raju; Supriya, Sabbani; Das, Samar K

    2013-09-03

    When the giant icosahedral {Mo72Fe30} cluster containing compound [Mo72Fe30O252(CH3COO)12{Mo2O7(H2O)}2{H2Mo2O8(H2O)}(H2O)91]·150H2O (1) is refluxed in water for 36 h, it results in the formation of nanoiron molybdate, Fe2(MoO4)3, in the form of a yellow precipitate; this simple approach not only generates nanoferric molybdate at a moderate temperature but also helps to understand the stability of {Mo72Fe30} in terms of the linker-pentagon complementary relationship.

  18. Proteoglycans and their heterogeneous glycosaminoglycans at the atomic scale

    PubMed Central

    Sattelle, Benedict M.; Shakeri, Javad; Cliff, Matthew J.; Almond, Andrew

    2015-01-01

    Proteoglycan spatiotemporal organization underpins extracellular matrix biology but atomic scale glimpses of this microarchitecture are obscured by glycosaminoglycan size and complexity. To overcome this, multi-microsecond aqueous simulations of chondroitin and dermatan sulfates were abstracted into a prior coarse-grained model, which was extended to heterogeneous glycosaminoglycans and small leucine-rich proteoglycans. Exploration of relationships between sequence and shape led to hypotheses that proteoglycan size is dependent on glycosaminoglycan unit composition but independent of sequence permutation. Uronic acid conformational equilibria were modulated by adjacent hexosamine sulfonation and iduronic acid increased glycosaminoglycan chain volume and rigidity, while glucuronic acid imparted chain plasticity. Consequently, block copolymeric glycosaminoglycans contained microarchitectures capable of multivalent binding to growth factors and collagen, with potential for interactional synergy at greater chain number. The described atomic scale views of proteoglycans and heterogeneous glycosaminoglycans provide structural routes to understanding their fundamental signaling and mechanical biological roles and development of new biomaterials. PMID:25645947

  19. Interaction of the NG2 chondroitin sulfate proteoglycan with type VI collagen

    PubMed Central

    1990-01-01

    The NG2 chondroitin sulfate proteoglycan is a membrane-associated molecule of approximately 500 kD with a core glycoprotein of 300 kD. Both the complete proteoglycan and a smaller quantity of the 300-kD core are immunoprecipitable with polyclonal and monoclonal antibodies against purified NG2. From some cell lines, the antibodies coprecipitate NG2 and type VI collagen, the latter appearing on SDS- PAGE as components of 140 and 250 kD under reducing conditions. The immunoprecipitation of type VI collagen does not seem to be due to recognition of the collagen by the antibodies, but rather to binding of the collagen to NG2. Studies on the NG2-type VI collagen complex suggest that binding between the two molecules is mediated by protein- protein interactions rather than by ionic interactions involving the glycosaminoglycans. Immunofluorescence double labeling in frozen sections of embryonic rat shows that NG2 and type VI collagen are colocalized in structures such as the intervertebral discs and arteries of the spinal column. In vitro the two molecules are highly colocalized on the surface of several cell lines. Treatment of these cells resulting in a change in the distribution of NG2 on the cell surface also causes a parallel change in type VI collagen distribution. Our results suggest that cell surface NG2 may mediate cellular interactions with the extracellular matrix by binding to type VI collagen. PMID:2269670

  20. Antithetic roles of proteoglycans in cancer.

    PubMed

    Garusi, Elena; Rossi, Silvia; Perris, Roberto

    2012-02-01

    Proteoglycans (PGs), a family of complex post-translationally sculptured macromolecules, are fundamental regulators of most normal and aberrant cellular functions. The unparalleled structural-functional diversity of PGs endows them with the ability to serve as critical mediators of the tumor cells' interaction with the host microenvironment, while directly contributing to the organization and dynamic remodeling of this milieu. Despite their indisputable importance during embryonic development and in the adult organism, and their frequent dysregulation in tumor lesions, their precise involvement in tumorigenesis awaits a more decisive demonstration. Particularly challenging is to ascertain to what extent selected PGs may catalyze tumor progression and to what extent they may inhibit it, implying antithetic functions of individual PGs. Integrated efforts are needed to consolidate the routine use of PGs in the clinical monitoring of cancer patients and to broaden the exploitation of these macromolecules as therapeutic targets. Several PGs have the required attributes to be contemplated as effective antigens for immunotherapeutic approaches, while the tangible results obtained in recent clinical trials targeting the NG2/CSPG4 transmembrane PG urge further development of PG-based cancer treatment modalities.

  1. Xylosylated-proteoglycan-induced Golgi alterations.

    PubMed Central

    Kanwar, Y S; Rosenzweig, L J; Jakubowski, M L

    1986-01-01

    The effect of p-nitrophenyl beta-D-xylopyranoside on the Golgi apparatus and proteoglycans (PG) of the renal glomerulus was investigated in an isolated kidney organ perfusion system and monitored by utilizing [35S]sulfate as the PG precursor. By electron microscopy, a selective intracytoplasmic vesiculization of Golgi apparatus of visceral epithelium was observed in the beta-xyloside-treated kidneys. Electron microscopic autoradiography revealed most grains localized to the intracytoplasmic Golgi-derived vesicles, while very few grains were associated with the extracellular matrix membranes. Biochemically, a 2.3-fold increase in cellular matrix and a reduction by a factor of 1.7 in extracellular matrix of [35S]sulfate incorporation was observed. Besides a larger macromolecular form (Kavg = 0.25; Mr = 130,000), lower molecular weight PGs were recovered in the cellular (Kavg = 0.46, Mr = 30,000) and matrical (Kavg = 0.42, Mr = 45,000) compartments after xyloside treatment. The xyloside treatment increased the incorporated radioactivity, mostly included in free glycosaminoglycans and small PGs, in the media fraction by 3.8-fold. These data indicate that xyloside induces a dramatic imbalance in the de novo-synthesized PGs of cellular and extracellular compartments and that cellular accumulation of xylosylated (sulfated) PGs selectively alters the Golgi apparatus of the glomerular epithelial cell, the cell that actively synthesizes PGs. Images PMID:3462708

  2. Chemical Tumor Biology of Heparan Sulfate Proteoglycans

    PubMed Central

    Raman, Karthik; Kuberan, Balagurunathan

    2010-01-01

    Heparan sulfate proteoglycans (HSPGs) play vital roles in every step of tumor progression allowing cancer cells to proliferate, escape from immune response, invade neighboring tissues, and metastasize to distal sites away from the primary site. Several cancers including breast, lung, brain, pancreatic, skin, and colorectal cancers show aberrant modulation of several key HS biosynthetic enzymes such as 3-O Sulfotransferase and 6-O Sulfotransferase, and also catabolic enzymes such as HSulf-1, HSulf-2 and heparanase. The resulting tumor specific HS fine structures assist cancer cells to breakdown ECM to spread, misregulate signaling pathways to facilitate their proliferation, promote angiogenesis to receive nutrients, and protect themselves against natural killer cells. This review focuses on the changes in the expression of HS biosynthetic and catabolic enzymes in several cancers, the resulting changes in HS fine structures, and the effects of these tumor specific HS signatures on promoting invasion, proliferation, and metastasis. It is possible to retard tumor progression by modulating the deregulated biosynthetic and catabolic pathways of HS chains through novel chemical biology approaches. PMID:20596243

  3. Giant Cell Arteritis

    MedlinePlus

    ... Patient / Caregiver Diseases & Conditions Giant Cell Arteritis Giant Cell Arteritis Fast Facts Giant cell arteritis (GCA) is ... polymyalgia rheumatica (also called PMR). What is giant cell arteritis? GCA is a type of vasculitis or ...

  4. Degradation of heparin proteoglycan in cultured mouse mastocytoma cells.

    PubMed Central

    Jacobsson, K G; Lindahl, U

    1987-01-01

    Pulse-labelling of mouse mastocytoma cell cultures, established from ascites fluid, with inorganic [35S]sulphate for 1 h yielded labelled heparin proteoglycan containing polysaccharide chains of Mr 60,000-100,000. After chase incubation for 24 h most of the 35S appeared in intracellular polysaccharide fragments similar in size to commercially available heparin, Mr 5000-25,000, as indicated by gel chromatography. Products isolated from cultures after 6 h of chase incubation consisted of partially degraded free polysaccharide chains and, in addition, residual proteoglycans that were of smaller size than the proteoglycans initially pulse-labelled. The polysaccharide chains released by alkali treatment from the residual chase-incubated proteoglycans were of the same size as the chains derived from proteoglycans after 1 h of pulse labelling. These results suggest that the intracellular degradation of heparin proteoglycan to polysaccharide fragments is initiated by release of intact polysaccharide chains, probably by action of a peptidase, and is pursued through cleavage of these chains by an endoglycosidase. An endoglucuronidase with stringent substrate specificity [Thunberg, Bäckström, Wasteson, Ogren & Lindahl (1982) J. Biol. Chem. 257, 10278-10282] has previously been implicated in the latter step. Cultures of more purified mastocytoma cells (essentially devoid of macrophages) did not metabolize [35S]heparin proteoglycan to polysaccharide fragments, but instead accumulated free intact polysaccharide chains, i.e. the postulated intermediate of the complete degradation pathway. When such purified cells were co-cultured with adherent mouse peritoneal cells, presumably macrophages, formation of polysaccharide fragments was observed. It is tentatively proposed that the expression of endoglucuronidase activity by the mast cells depends on collaboration between these cells and macrophages. PMID:3120695

  5. Immunolocalization of a 110 kD molecule and a 150 kD molecule in rat incisor and mandibular bone.

    PubMed

    Chardin, H; Septier, D; Goldberg, M

    1991-03-01

    In the present study, antibodies against rat dental proteoglycans were used to characterize and localize the proteoglycans in rat incisor and mandibular tissues. Polyclonal rabbit antibodies were raised against a CPC-precipitated fraction of a sulfated dental extract. In unpurified dental extract these antibodies recognized two molecules of 110 kD and 150 kD. The 150 kD molecule was susceptible to chondroitinase ABC digestion but the 110 kD molecule resisted this enzymatic degradation. Immunocytochemically these two molecules were seen to be located in the pulp, the enamel organ and the mandibular bone. In each tissue only the periphery of the cells was stained and not the intracellular compartment. In the mineralized area of bone, dentin and forming enamel no staining was seen. These results indicate common epitopes in the proteoglycans from pulp, predentin, enamel organ and bone. Some differences were found in the nature of tooth and bone proteoglycans.

  6. Role of proteoglycans in the onset of calcification

    SciTech Connect

    Tellone, C.I.

    1985-01-01

    The objective of this investigation was to inquire if the presence or absence of proteoglycans or their chemical subunits had a direct effect on the onset of calcification. High density spot cultures of limb bud mesenchyme obtained from mouse embryos on the 12th day of gestation were exposed to medium containing 30 mM phosphate. Calcium deposits observed after staining by the von Kossa method were confined to the non-cartilagenous intenodular areas. Electron microscopy illustrated that a large proportion of the calcium deposits were associated with collagen fibrils. A significant increase in the uptake of /sup 45/Ca was observed in cultures supplemented with 30 mM phosphate. Atomic absorption analysis of the cultures showed that they contained 2.00 ng calcium/ug DNA. Incorporation of /sup 3/H-glucosamine into glycosaminoglycans (GAG) was significantly reduced by phosphate and both extruded and cell associated GAG were affected. Exposure of mineralizing cultures to a biologically active anticalculus agent, ethane-1-hydroxy-1,1-diphosphonate, resulted in a significant reduction in /sup 45/Ca uptake, providing confidence that the culture did response as a biological system. These data suggest that under the conditions employed, proteoglycans in the extracellular environment of limb bud mesenchyme inhibit calcium deposition. The inhibitory effect was observed only when proteoglycans were added as polymeric aggregates. The culture system employed was unable to detect the inhibitory effects, if any, of proteoglycan monomers or the subunits of proteoglycans, hyaluronic acid or chondroitin sulfate.

  7. Multinuclear nuclear magnetic resonance spectroscopic study of cartilage proteoglycans

    SciTech Connect

    Lerner, L.

    1985-01-01

    Hyaline cartilage is a composite material whose major function is to withstand compression while retaining flexibility. Its mechanical properties are affected by tissue hydration and ionic composition. Models of the mechanical behavior of cartilage have incorporated certain assumptions about the interactions of the major components of cartilage: collagen, proteoglycans, water, and cations. To determine the validity of these assumption, the authors have used nuclear magnetic resonance spectroscopy (NMR). Two approaches have been used: (a) natural abundance carbon-13 NMR; and (b) NMR of sodium-23, potassium-39, magnesium-25, and calcium-43. Evidence from studies in intact tissues are reinforced by extensive measurements on solutions of proteoglycans and other relevant macromolecules. Based on the measurements of NMR relaxation rates and lineshapes reported here, it is concluded that neither sodium nor potassium interact strongly with bovine nasal proteoglycan aggregates or their substituent glycosaminoglycan chains in solution. Proteoglycans do bind magnesium and calcium. Therefore there is a qualitative difference between monovalent and divalent cations, which is not taken into account by polyelectrolyte models or models for the ionic dependence of mechanical properties. Cation binding to heparin, which has a higher charge density than cartilage proteoglycans, was also studied. The results presented here establish that heparin binds sodium, magnesium, and calcium.

  8. 'Giant' multishell CdSe nanocrystal quantum dots with supporessed blinking: novel fluorescent probes for real-time detection of single-molecule events

    SciTech Connect

    Hollingsworth, Jennifer A; Vela, Javier; Htoon, Han; Klimov, Victor I; Casson, Amy R; Chen, Yongfen

    2009-01-01

    We reported for the first time that key nanocrystal quantum dot (NQD) optical properties-quantum yield, photobleaching and blinking-can be rendered independent ofNQD surface chemistry and environment by growth of a very thick, defect-free inorganic shell. Here, we show the precise shell-thickness dependence of these effects. We demonstrate that 'giant-shell' NQDs can be largely non-blinking for observation times as long as 54 minutes and lhat on-time fractions are independent of experimental time-resolution from 1-200 ms. These effects are primarily demonstrated on (CdSe)CdS (core)shell NQDs, but we also show that alloyed shells comprising Cd.Znl.'S and terminated with a non-cytotoxic ZnS layer exhibit similar properties. The mechanism for suppressed blinking and dramatically enhanced stability is attributed to both effective isolation of the NQD core excitonic wavefunction from the NQD surface, as well as a quasi-Type II electronic structure. The unusual electronic structure provides for effective spatial separation of the electron and hole into the shell and core, respectively, and, thereby, for reduced efficiencies in non-radiative Auger recombination.

  9. Multi-scale modeling of soft fibrous tissues based on proteoglycan mechanics.

    PubMed

    Linka, Kevin; Khiêm, Vu Ngoc; Itskov, Mikhail

    2016-08-16

    Collagen in the form of fibers or fibrils is an essential source of strength and structural integrity in most organs of the human body. Recently, with the help of complex experimental setups, a paradigm change concerning the mechanical contribution of proteoglycans (PGs) took place. Accordingly, PG connections protect the surrounding collagen fibrils from over-stretching rather than transmitting load between them. In this paper, we describe the reported PG mechanics and incorporate it into a multi-scale model of soft fibrous tissues. To this end, a nano-to-micro model of a single collagen fiber is developed by taking the entropic-energetic transition on the collagen molecule level into account. The microscopic damage occurring inside the collagen fiber is elucidated by sliding of PGs as well as by over-stretched collagen molecules. Predictions of this two-constituent-damage model are compared to experimental data available in the literature.

  10. Studies on the hyaluronate binding properties of newly synthesized proteoglycans purified from articular chondrocyte cultures

    SciTech Connect

    Sandy, J.D.; Plaas, A.H.

    1989-06-01

    Primary cultures of rabbit articular chondrocytes have been maintained for 10 days and labeled with (35S)sulfate, (3H)leucine, and (35S)cysteine in pulse-chase protocols to study the structure and hyaluronate binding properties of newly synthesized proteoglycan monomers. Radiolabeled monomers were purified from medium and cell-layer fractions by dissociative CsCl gradient centrifugation with bovine carrier monomer, and analyzed for hyaluronate binding affinity on Sepharose CL-2B in 0.5 M Na acetate, 0.1% Triton X-100, pH 6.8. Detergent was necessary to prevent self-association of newly synthesized monomers during chromatography. Monomers secreted during a 30-min pulse labeling with (35S)sulfate had a low affinity relative to carrier. Those molecules released into the medium during the first 12 h of chase remained in the low affinity form whereas those retained by the cell layer rapidly acquired high affinity. In cultures where more than 90% of the preformed cell-layer proteoglycan was removed by hyaluronidase digestion before radiolabeling the newly synthesized low affinity monomers also rapidly acquired high affinity if retained in the cell layer. Cultures labeled with amino acid precursors were used to establish the purity of monomer preparations and to isolate core proteins for study. Leucine- or cysteine-labeled core proteins derived from either low or high affinity monomer preparations migrated as a single major species on sodium dodecyl sulfate-polyacrylamide gel electrophoresis with electrophoretic mobility very similar to that of core protein derived from extracted proteoglycan monomer. Purified low affinity monomers were converted to the high affinity form by treatment at pH 8.6; however, this change was prevented by guanidinium-HCl at concentrations above 0.8 M.

  11. Proteoglycans in bones of streptozotocin-induced diabetic rats.

    PubMed

    Perez, C; Suarez, C; Kofoed, J

    1990-01-01

    Insulin seems to regulate the biosynthesis of proteoglycans in some tissues such as growth plate and glomeruli. The present investigation was undertaken to assess the ex vivo influence of insulin on proteoglycan metabolism in bones. Mandible and femur bones were used. Xiphoid cartilage was used as a control tissue of high glycosaminoglycan content. Diabetes was induced by 0.12 mg/g b.w. streptozotocin in male Sprague-Dawley rats, a number of which was treated with insulin (1 I.U./100 g b.w.) for 6 days. As compared with control animals, diabetic rats exhibited a decreased [35S]sulfate uptake as well as a shift to the right in Sephacryl S-500 chromatography. In addition, they showed lower density of proteoglycans in sucrose gradient and shorter glycosaminoglycan side chains in Sephadex G-200 chromatography. These changes were partly reversed by insulin.

  12. Endothelial proteoglycans inhibit bFGF binding and mitogenesis.

    PubMed

    Forsten, K E; Courant, N A; Nugent, M A

    1997-08-01

    Basic fibroblast growth factor (bFGF) is a known mitogen for vascular smooth muscle cells and has been implicated as having a role in a number of proliferative vascular disorders. Binding of bFGF to heparin or heparan sulfate has been demonstrated to both stimulate and inhibit growth factor activity. The activity, towards bFGF, of heparan sulfate proteoglycans present within the vascular system is likely related to the chemical characteristics of the glycosaminoglycan as well as the structure and pericellular location of the intact proteoglycans. We have previously shown that endothelial conditioned medium inhibits both bFGF binding to vascular smooth muscle cells and bFGF stimulated cell proliferation in vitro. In the present study, we have isolated proteoglycans from endothelial cell conditioned medium and demonstrated that they are responsible for the bFGF inhibitory activity. We further separated endothelial secreted proteoglycans into two fractions, PG-A and PG-B. The large sized fraction (PG-A) had greater inhibitory activity than did PG-B for both bFGF binding and bFGF stimulation of vascular smooth muscle cell proliferation. The increased relative activity of PG-A was attributed, in part, to larger heparan sulfate chains which were more potent inhibitors of bFGF binding than the smaller heparan sulfate chains on PG-B. Both proteoglycan fractions contained perlecan-like core proteins; however, PG-A contained an additional core protein (approximately 190 kDa) that was not observed in PG-B. Both proteoglycan fractions bound bFGF directly, and PG-A bound a significantly greater relative amount of bFGF than did PG-B. Thus the ability of endothelial heparan sulfate proteoglycans to bind bFGF and prevent its association with vascular smooth muscle cells appears essential for inhibition of bFGF-induced mitogenesis. The production of potent bFGF inhibitory heparan sulfate proteoglycans by endothelial cells might contribute to the maintenance of vascular homeostasis.

  13. A comparative study of the proteoglycan of growth cartilage of normal and rachitic chicks.

    PubMed Central

    Dickson, I R; Roughley, P J

    1978-01-01

    1. Proteoglycan was isolated from growth cartilage of normal and rachitic chicks. 2. The proteoglycan from normal cartilage showed differences in chemical composition and physical properties from a comparable fraction isolated from bovine nasal cartilage. 3. The proteoglycan from rachitic-chick cartilage was of smaller size than tis normal counterpart, though of similar average chemical composition. 4. Differences between proteoglycan from normal and rachitic cartilages can be explained in terms of limited proteolytic cleavage. Images Fig. 1. Fig. 2. PMID:666731

  14. Chronic barium intoxication disrupts sulphated proteoglycan synthesis: a hypothesis for the origins of multiple sclerosis.

    PubMed

    Purdey, Mark

    2004-01-01

    High level contamination by natural and industrial sources of the alkali earth metal, barium (Ba) has been identified in the ecosystems/workplaces that are associated with high incidence clustering of multiple sclerosis (MS) and other neurodegenerative diseases such as the transmissible spongiform encephalopathies (TSEs) and amyotrophic lateral sclerosis (ALS). Analyses of ecosystems supporting the most renowned MS clusters in Saskatchewan, Sardinia, Massachusetts, Colorado, Guam, NE Scotland demonstrated consistently elevated levels of Ba in soils (mean: 1428 ppm) and vegetation (mean: 74 ppm) in relation to mean levels of 345 and 19 ppm recorded in MS-free regions adjoining. The high levels of Ba stemmed from local quarrying for Ba ores and/or use of Ba in paper/foundry/welding/textile/oil and gas well related industries, as well as from the use of Ba as an atmospheric aerosol spray for enhancing/refracting the signalling of radio/radar waves along military jet flight paths, missile test ranges, etc. It is proposed that chronic contamination of the biosystem with the reactive types of Ba salts can initiate the pathogenesis of MS; due to the conjugation of Ba with free sulphate, which subsequently deprives the endogenous sulphated proteoglycan molecules (heparan sulfates) of their sulphate co partner, thereby disrupting synthesis of S-proteoglycans and their crucial role in the fibroblast growth factor (FGF) signalling which induces oligodendrocyte progenitors to maintain the growth and structural integrity of the myelin sheath. Loss of S-proteoglycan activity explains other key facets of MS pathogenesis; such as the aggregation of platelets and the proliferation of superoxide generated oxidative stress. Ba intoxications disturb the sodium-potassium ion pump--another key feature of the MS profile. The co-clustering of various neurodegenerative diseases in these Ba-contaminated ecosystems suggests that the pathogenesis of all of these diseases could pivot upon a

  15. Differentiation of 3T3-L1 preadipocytes with 3-isobutyl-1-methylxanthine and dexamethasone stimulates cell-associated and soluble chondroitin 4-sulfate proteoglycans

    SciTech Connect

    Calvo, J.C.; Rodbard, D.; Katki, A.; Chernick, S.; Yanagishita, M. )

    1991-06-15

    The proteoglycans (cell-associated and culture media) in 3T3-L1 preadipocytes in culture were analyzed before and during differentiation into adipocytes. Cells were metabolically labeled with (35S)sulfate and (3H) glucosamine for 24 h and then extracted and analyzed. There was a 1.68 {plus minus} 0.07-fold increase in the 35S in medium proteoglycan during differentiation, whereas cell-associated proteoglycan radioactivity showed no increase. Analyses of radiolabeled molecules using ion-exchange chromatography, gel filtration, and high performance liquid chromatography after enzymatic or alkaline digestion indicated that all of the 35S label was recovered as two major species of chondroitin 4-sulfate proteoglycans (CSPG-I and CSPG-II) and 7% as heparan sulfate proteoglycan. CSPG-I has a mass of {approximately} 970 kDa with multiple chondroitin sulfate chains (average of 50 kDa each) and a core protein of {approximately} 370 kDa including oligosaccharides. CSPG-II has a mass of 140 kDa with one or two chondroitin sulfate chains (average of 68 kDa each) and a core protein of 41 kDa including oligosaccharides. CSPG-I appears to be similar to versican, whereas CSPG-II is similar to decorin and/or biglycan, found in other fibroblastic cells. Cell differentiation was associated with a specific increase in CSPG-I (4.0 {plus minus} 0.2-fold in media and 3.2 {plus minus} 0.5-fold in the cell-associated form). This system should facilitate study of the functional roles of proteoglycans during growth and differentiation.

  16. Characterization of chicken syndecan-3 as a heparan sulfate proteoglycan and its expression during embryogenesis.

    PubMed

    Gould, S E; Upholt, W B; Kosher, R A

    1995-04-01

    Syndecan-3 is one of four identified members of a family of transmembrane proteoglycans (the syndecans) that possess highly similar cytoplasmic and transmembrane domains and may function as extracellular matrix receptors and/or low affinity receptors for signaling molecules such as FGF. We previously reported the cloning of a partial cDNA for chicken syndecan-3. Here we report the isolation of a syndecan-3 cDNA containing additional 5' sequence which includes a potential methionine start codon and putative signal sequence. In vitro translation of syndecan-3 cDNA in the presence and absence of microsomes suggests that the putative signal sequence is functional, suggesting that the cDNA may encompass the full coding sequence. We also identify syndecan-3 as a heparan sulfate proteoglycan and report its expression pattern during chicken embryogenesis using polyclonal antibodies raised against a recombinant fusion protein. We detect abundant syndecan-3 expression in the developing brain and neural tube, including a striking expression in the floor plate of the neural tube. During limb development, syndecan-3 is expressed in the distal mesenchymal cells of the limb bud which are undergoing outgrowth in response to the apical ectodermal ridge. Syndecan-3 is also transiently expressed during the formation of the precartilage condensations of the skeletal elements of the limb and subsequently in association with the differentiating osteoblasts of the periosteum. Expression is also observed in several areas of tissue interactions including the developing lens, otic vesicle, genital ridge, sclerotome, and feather buds.

  17. Unconventional T-cell recognition of an arthritogenic epitope of proteoglycan aggrecan released from degrading cartilage.

    PubMed

    Falconer, Jane; Mahida, Rahul; Venkatesh, Divya; Pearson, Jeffrey; Robinson, John H

    2016-04-01

    It has been proposed that peptide epitopes bind to MHC class II molecules to form distinct structural conformers of the same MHC II-peptide complex termed type A and type B, and that the two conformers of the same peptide-MHC II complex are recognized by distinct CD4 T cells, termed type A and type B T cells. Both types recognize short synthetic peptides but only type A recognize endosomally processed intact antigen. Type B T cells that recognize self peptides from exogenously degraded proteins have been shown to escape negative selection during thymic development and so have the potential to contribute to the pathogenesis of autoimmunity. We generated and characterized mouse CD4 T cells specific for an arthritogenic epitope of the candidate joint autoantigen proteoglycan aggrecan. Cloned T-cell hybridomas specific for a synthetic peptide containing the aggrecan epitope showed two distinct response patterns based on whether they could recognize processed intact aggrecan. Fine mapping demonstrated that both types of T-cell recognized the same core epitope. The results are consistent with the generation of aggrecan-specific type A and type B T cells. Type B T cells were activated by supernatants released from degrading cartilage, indicating the presence of antigenic extracellular peptides or fragments of aggrecan. Type B T cells could play a role in the pathogenesis of proteoglycan-induced arthritis in mice, a model for rheumatoid arthritis, by recognizing extracellular peptides or protein fragments of joint autoantigens released by inflamed cartilage.

  18. Three distinct molecular species of proteoglycan synthesized by the rat limb bud at the prechondrogenic stage

    SciTech Connect

    Matsui, F.; Oohira, A.; Shoji, R.; Nogami, H. )

    1989-11-15

    To characterize proteoglycans in the prechondrogenic limb bud, proteoglycans were extracted with 4 M guanidine HCl containing a detergent and protease inhibitors from Day 13 fetal rat limb buds which had been labeled with (35S)sulfate for 3 h in vitro. About 90% of 35S-labeled proteoglycans was solubilized under the conditions used. The proteoglycan preparation was separated by DEAE-Sephacel column chromatography into three peaks; peak I eluted at 0.45 M NaCl concentration, peak II at 0.52 M, and peak III at 1.4 M. Peaks I and III were identified as proteoglycans bearing heparan sulfate side chains. The heparan sulfate proteoglycan in peak III was larger in hydrodynamic size than the proteoglycan in peak I. The heparan sulfate side chains of peak III proteoglycan were smaller in the size and more abundant in N-sulfated glucosamine than those of peak I proteoglycan. Peak II contained a chondroitin sulfate proteoglycan with a core protein of a doublet of Mr 550,000 and 500,000. The chondroitin sulfate proteoglycan was easily solubilized with a physiological salt solution and the heparan sulfate proteoglycan in peak I was partially solubilized with the physiological salt solution. The remainder of the proteoglycan in peak I and the heparan sulfate proteoglycan in peak III could be solubilized effectively only with a solution containing a detergent, such as nonanoyl-N-methylglucamide. This observation indicates the difference in the localization among these three proteoglycans in the developing rat limb bud.

  19. Proteoglycan and collagen expression during human air conducting system development

    PubMed Central

    Godoy-Guzmán, C.; San Martin, S.; Pereda, J.

    2012-01-01

    The lung is formed from a bud that grows and divides in a dichotomous way. A bud is a new growth center which is determined by epithelial-mesenchymal interactions where proteins of the extracellular matrix (ECM) might be involved. To understand this protein participation during human lung development, we examined the expression and distribution of proteoglycans in relation to the different types of collagens during the period in which the air conducting system is installed. Using light microscopy and immunohistochemistry we evaluate the expression of collagens (I, III and VI) and proteoglycans (decorin, biglycan and lumican) between 8 to 10 weeks post fertilization and 11 to 14 weeks of gestational age of human embryo and fetus lungs. We show that decorin, lumican and all the collagen types investigated were expressed at the epithelium-mesenchymal interface, forming a sleeve around the bronchiolar ducts. In addition, biglycan was expressed in both the endothelial cells and the smooth muscle of the blood vessels. Thus, the similar distribution pattern of collagen and proteoglycans in the early developmental stages of the human lung may be closely related to the process of dichotomous division of the bronchial tree. This study provides a new insight concerning the participation of collagens and proteoglycans in the epithelial-mesenchymal interface during the period in which the air conducting system is installed in the human fetal lung. PMID:23027345

  20. Proteoglycans maintain lung stability in an elastase-treated mouse model of emphysema.

    PubMed

    Takahashi, Ayuko; Majumdar, Arnab; Parameswaran, Harikrishnan; Bartolák-Suki, Erzsébet; Suki, Béla

    2014-07-01

    Extracellular matrix remodeling and tissue rupture contribute to the progression of emphysema. Lung tissue elasticity is governed by the tensile stiffness of fibers and the compressive stiffness of proteoglycans. It is not known how proteoglycan remodeling affects tissue stability and destruction in emphysema. The objective of this study was to characterize the role of remodeled proteoglycans in alveolar stability and tissue destruction in emphysema. At 30 days after treatment with porcine pancreatic elastase, mouse lung tissue stiffness and alveolar deformation were evaluated under varying tonicity conditions that affect the stiffness of proteoglycans. Proteoglycans were stained and measured in the alveolar walls. Computational models of alveolar stability and rupture incorporating the mechanical properties of fibers and proteoglycans were developed. Although absolute tissue stiffness was only 24% of normal, changes in relative stiffness and alveolar shape distortion due to changes in tonicity were increased in emphysema (P < 0.01 and P < 0.001). Glycosaminoglycan amount per unit alveolar wall length, which is responsible for proteoglycan stiffness, was higher in emphysema (P < 0.001). Versican expression increased in the tissue, but decorin decreased. Our network model predicted that the rate of tissue deterioration locally governed by mechanical forces was reduced when proteoglycan stiffness was increased. Consequently, this general network model explains why increasing proteoglycan deposition protects the alveolar walls from rupture in emphysema. Our results suggest that the loss of proteoglycans observed in human emphysema contributes to disease progression, whereas treatments that promote proteoglycan deposition in the extracellular matrix should slow the progression of emphysema.

  1. Heparan sulfate proteoglycans undergo differential expression alterations in right sided colorectal cancer, depending on their metastatic character.

    PubMed

    Fernández-Vega, Iván; García-Suárez, Olivia; García, Beatriz; Crespo, Ainara; Astudillo, Aurora; Quirós, Luis M

    2015-10-20

    Heparan sulfate proteoglycans (HSPGs) are complex molecules involved in the growth, invasion and metastatic properties of cancerous cells. This study analyses the alterations in the expression patterns of these molecules in right sided colorectal cancer (CRC), both metastatic and non-metastatic. Twenty right sided CRCs were studied. A transcriptomic approach was used, employing qPCR to analyze both the expression of the enzymes involved in heparan sulfate (HS) chains biosynthesis, as well as the proteoglycan core proteins. Since some of these proteoglycans can also carry chondroitin sulfate (CS) chains, we include the study of the genes involved in the biosynthesis of these glycosaminoglycans. Immunohistochemical techniques were also used to analyze tissue expression of particular genes showing significant expression differences, of potential interest. Changes in proteoglycan core proteins differ depending on their location; those located intracellularly or in the extracellular matrix show very similar alteration patterns, while those located on the cell surface vary greatly depending on the nature of the tumor: glypicans 1, 3, 6 and betaglycan are affected in the non-metastatic tumors, whereas in the metastatic, only glypican-1 and syndecan-1 are modified, the latter showing opposing alterations in levels of RNA and of protein, suggesting post-transcriptional regulation in these tumors. Furthermore, in non-metastatic tumors, polymerization of glycosaminoglycan chains is modified, particularly affecting the synthesis of the tetrasaccharide linker and the initiation and elongation of CS chains, HS chains being less affected. Regarding the enzymes responsible for the modificaton of the HS chains, alterations were only found in non-metastatic tumors, affecting N-sulfation and the isoforms HS6ST1, HS3ST3B and HS3ST5. In contrast, synthesis of the CS chains suggests changes in epimerization and sulfation of the C4 and C2 in both types of tumor. Right sided CRCs show

  2. Source of peritoneal proteoglycans. Human peritoneal mesothelial cells synthesize and secrete mainly small dermatan sulfate proteoglycans.

    PubMed Central

    Yung, S.; Thomas, G. J.; Stylianou, E.; Williams, J. D.; Coles, G. A.; Davies, M.

    1995-01-01

    This study describes experiments that compare the proteoglycans (PGs) extracted from the dialysate from patients receiving continuous peritoneal ambulatory dialysis (CAPD) with those secreted by metabolically labeled human peritoneal mesothelial cells in vitro. The PGs isolated from both sources were predominantly small chondroitin sulfate/dermatan sulfate PGs. Western blot of the core proteins obtained after chondroitin ABC lyase treatment with specific antibodies identified decorin and biglycan. With [35S]sulfate and [35S]methionine as labeling precursors it was shown that dermatan sulfate rather than chondroitin sulfate were the major glycosaminoglycan chains and that decorin was the predominant species. These data provide the first evidence that human peritoneal mesothelial cells may be the principal source of PGs in the peritoneum. Given the proposed functions of decorin and biglycan, the results suggest that these PGs may be involved in the control of transforming growth factor-beta activity and collagen fibril formation in the peritoneum. Images Figure 2 Figure 7 Figure 8 PMID:7856761

  3. Functions of Heparan Sulfate Proteoglycans in Development: Insights From Drosophila Models.

    PubMed

    Nakato, H; Li, J-P

    2016-01-01

    Heparan sulfate proteoglycans (HSPGs) are a class of carbohydrate-modified proteins involved in key biological processes, including growth factor signaling, cell adhesion, and enzymatic catalysis. HSPGs serve as coreceptors for a number of ligand molecules to regulate their signaling and distribution. These HS-dependent factors include fibroblast growth factors, bone morphogenetic proteins, Wnt-related factors, hedgehog, and cytokines. Several classes of HSPGs are evolutionarily conserved from humans to the genetically tractable model organism Drosophila. Sophisticated molecular genetic tools available in Drosophila provide for a powerful system to address unanswered questions regarding in vivo functions of HSPGs. These studies have highlighted the functions of HSPGs in the regulation of significant developmental events, such as morphogen gradient formation, nervous system formation, and the stem cell niche. Drosophila genetics has also established HSPGs as key factors in feedback controls that ensure robustness in developmental systems.

  4. Carrier of Wingless (Cow), a Secreted Heparan Sulfate Proteoglycan, Promotes Extracellular Transport of Wingless

    PubMed Central

    Chang, Yung-Heng; Sun, Yi Henry

    2014-01-01

    Morphogens are signaling molecules that regulate growth and patterning during development by forming a gradient and activating different target genes at different concentrations. The extracellular distribution of morphogens is tightly regulated, with the Drosophila morphogen Wingless (Wg) relying on Dally-like (Dlp) and transcytosis for its distribution. However, in the absence of Dlp or endocytic activity, Wg can still move across cells along the apical (Ap) surface. We identified a novel secreted heparan sulfate proteoglycan (HSPG) that binds to Wg and promotes its extracellular distribution by increasing Wg mobility, which was thus named Carrier of Wg (Cow). Cow promotes the Ap transport of Wg, independent of Dlp and endocytosis, and this function addresses a previous gap in the understanding of Wg movement. This is the first example of a diffusible HSPG acting as a carrier to promote the extracellular movement of a morphogen. PMID:25360738

  5. NG2 proteoglycan increases mesangial cell proliferation and extracellular matrix production

    SciTech Connect

    Xiong Jing; Wang Yang; Zhu, Zhonghua; Liu Jianshe; Wang Yumei; Zhang Chun; Hammes, Hans-Peter; Lang, Florian; Feng Yuxi

    2007-10-05

    As a membrane-spanning protein, NG2 chondroitin sulfate proteoglycan interacts with molecules on both sides of plasma membrane. The present study explored the role of NG2 in the pathogenesis of diabetic nephropathy. In the normal kidneys, NG2 was observed predominantly in glomerular mesangium, Bowman's capsule and interstitial vessels. Both mRNA and protein expression in kidneys was significantly higher in strepozotocin-induced diabetic rats than that in normal rats. In the cultured rat mesangial cell line HBZY-1, overexpression of NG2 promoted mesangial cell proliferation and extracellular matrix (ECM) production, such as type VI collagen and laminin. Furthermore, target knockdown of NG2 resulted in decreased cell proliferation and ECM formation. The observations suggest that NG2 is up-regulated in diabetic nephropathy. It actively participates in the development and progression of glomerulosclerosis by stimulating proliferation of mesangial cells and deposition of ECM.

  6. Evidence for the presence of a large keratan sulphate proteoglycan in the human uterine cervix.

    PubMed Central

    Fischer, D C; Henning, A; Winkler, M; Rath, W; Haubeck, H D; Greiling, H

    1996-01-01

    Profound changes occur in the uterine cervix during pregnancy. In particular, the extracellular matrix of the connective tissue is remodelled extensively. To elucidate the mechanisms involved in this process, we have analysed the proteoglycan pattern in the human cervix from pregnant and non-pregnant women. Proteoglycans of the cervix tissue specimen were extracted with 4 M guanidine hydrochloride and precipitated with 80% ethanol. Purification of proteoglycans was performed by several chromatographic steps. Characterization of proteoglycans was done by SDS/PAGE before and after digestion with glycosaminoglycan-specific enzymes. Proteoglycans were detected by combined Alcian Blue/silver staining or, after blotting of biotin-labelled proteoglycans on to poly(vinylidene difluoride) membrane, with peroxidase-conjugated avidin or by the use of keratan sulphate- or decorin-specific monoclonal antibodies. In contrast with previous reports, where only chondroitin/dermatan sulphate proteoglycans have been found in the uterine cervix, we have shown in the present study the existence of a large keratan sulphate proteoglycan with an M(r) > 220,000 in cervix samples from non-pregnant and pregnant women. This proteoglycan showed a strong reaction with the keratan sulphate-specific monoclonal antibody 5D4 and could be degraded by keratanases. The size of the core protein of this keratan sulphate proteoglycan was estimated to be about M(r) 220,000. PMID:8973545

  7. The Role of NG2 Proteoglycan in Glioma

    PubMed Central

    Yadavilli, Sridevi; Hwang, Eugene I.; Packer, Roger J.; Nazarian, Javad

    2016-01-01

    Neuron glia antigen-2 ((NG2), also known as chondroitin sulphate proteoglycan 4, or melanoma-associated chondroitin sulfate proteoglycan) is a type-1 membrane protein expressed by many central nervous system (CNS) cells during development and differentiation and plays a critical role in proliferation and angiogenesis. ‘NG2’ often references either the protein itself or the highly proliferative and undifferentiated glial cells expressing high levels of NG2 protein. NG2 glia represent the fourth major type of neuroglia in the mammalian nervous system and are classified as oligodendrocyte progenitor cells by virtue of their committed oligodendrocyte generation in developing and adult brain. Here, we discuss NG2 glial cells as well as NG2 protein and its expression and role with regards to CNS neoplasms as well as its potential as a therapeutic target for treating childhood CNS cancers. PMID:26947882

  8. Detection of chondroitin sulfate proteoglycan 4 (CSPG4) in melanoma.

    PubMed

    Wang, Yangyang; Sabbatino, Francesco; Wang, Xinhui; Ferrone, Soldano

    2014-01-01

    The tumor antigen chondroitin sulfate proteoglycan 4 (CSPG4) appears to be a useful biomarker to identify melanoma cells and an attractive target to apply antibody-based immunotherapy for the treatment of melanoma. Here we described the reverse transcription-polymerase chain reaction (RT-PCR) method and the immunohistochemical (IHC) staining method to detect the expression of CSPG4 in melanoma cells and tissues.

  9. Functional Importance of a Proteoglycan Coreceptor in Pathologic Lymphangiogenesis.

    PubMed

    Johns, Scott C; Yin, Xin; Jeltsch, Michael; Bishop, Joseph R; Schuksz, Manuela; El Ghazal, Roland; Wilcox-Adelman, Sarah A; Alitalo, Kari; Fuster, Mark M

    2016-07-08

    Lymphatic vessel growth is mediated by major prolymphangiogenic factors, such as vascular endothelial growth factor (VEGF-C) and VEGF-D, among other endothelial effectors. Heparan sulfate is a linear polysaccharide expressed on proteoglycan core proteins on cell membranes and matrix, playing roles in angiogenesis, although little is known about any function(s) in lymphatic remodeling in vivo. To explore the genetic basis and mechanisms, whereby heparan sulfate proteoglycans mediate pathological lymphatic remodeling. Lymphatic endothelial deficiency in the major heparan sulfate biosynthetic enzyme N-deacetylase/N-sulfotransferase-1 (Ndst1; involved in glycan-chain sulfation) was associated with reduced lymphangiogenesis in pathological models, including spontaneous neoplasia. Mouse mutants demonstrated tumor-associated lymphatic vessels with apoptotic nuclei. Mutant lymphatic endothelia demonstrated impaired mitogen (Erk) and survival (Akt) pathway signaling and reduced VEGF-C-mediated protection from starvation-induced apoptosis. Lymphatic endothelial-specific Ndst1 deficiency (in Ndst1(f/f)Prox1(+/CreERT2) mice) was sufficient to inhibit VEGF-C-dependent lymphangiogenesis. Lymphatic heparan sulfate deficiency reduced phosphorylation of the major lymphatic growth receptor VEGF receptor-3 in response to multiple VEGF-C species. Syndecan-4 was the dominantly expressed heparan sulfate proteoglycan in mouse lymphatic endothelia, and pathological lymphangiogenesis was impaired in Sdc4((-/-)) mice. On the lymphatic cell surface, VEGF-C induced robust association between syndecan-4 and VEGF receptor-3, which was sensitive to glycan disruption. Moreover, VEGF receptor-3 mitogen and survival signaling was reduced in the setting of Ndst1 or Sdc4 deficiency. These findings demonstrate the genetic importance of heparan sulfate and the major lymphatic proteoglycan syndecan-4 in pathological lymphatic remodeling. This may introduce novel future strategies to alter pathological

  10. Proteoglycan synthesis in normal and Lowe syndrome fibroblasts

    SciTech Connect

    Harper, G.S.; Hascall, V.C.; Yanagishita, M.; Gahl, W.A.

    1987-04-25

    Lowe (oculocerebrorenal) syndrome (LS) is an X-linked disorder characterized by congenital cataracts, generalized hypotonia, mental retardation, and renal Fanconi syndrome. The basic defect remains unknown, but the possibility that fibroblasts express reduced sulfation of glycosaminoglycans has been studied in several laboratories. A mechanism involving overproduction of an enzyme (nucleotide pyrophosphatase) active against adenosine 3'-phosphate, 5'-phosphosulfate (PAPS) has been postulated. Decreased synthesis of normally sulfated glycosaminoglycans was also reported. We measured the synthesis of proteoglycans and glycosaminoglycans by incorporation of (/sup 3/H)glucosamine and Na/sub 2/(/sup 35/)SO/sub 4/ into cultured fibroblasts from four LS patients and related it directly to the synthesis in six normal fibroblast cultures. We found that the rate of synthesis varied greatly among the normal cultures (cv, 30%), but not significantly between LS and the normal. The LS fibroblasts' ability to sulfate glycosaminoglycans was assayed as the amount of /sup 3/H-glycosaminoglycan eluting at low ionic strength on anion exchange chromatography, the amount of non-sulfated disaccharide present in chondroitinase digests of labeled proteoglycans, and the ratio of /sup 35/S to 3H incorporation into proteoglycans. Each parameter suggested that the LS cells were synthesizing normally sulfated glycosaminoglycans (e.g. % delta Di-0S, 21 +/- 6 in normal; 27 +/- 6 in LS). The cells' ability to sulfate glycosaminoglycans was tested under conditions of markedly stimulated glycosaminoglycan synthesis, by treating the cultures with a beta-D-xyloside.

  11. Border Patrol: Insights into the Unique Role of Perlecan/Heparan Sulfate Proteoglycan2 at Cell and Tissue Borders

    PubMed Central

    Farach-Carson, Mary C.; Warren, Curtis R.; Harrington, Daniel A.; Carson, Daniel D.

    2013-01-01

    The extracellular matrix proteoglycan (ECM) perlecan, also known as heparan sulfate proteoglycan 2 or HSPG2, is one of the largest (>200 nm) and oldest (>550M years) extracellular matrix molecules. In vertebrates, perlecan’s five-domain structure contains numerous independently folding modules with sequence similarities to other ECM proteins, all connected like cars into one long, diverse complex train following a unique N-terminal domain I decorated with three long glycosaminoglycan chains, and an additional glycosaminoglycan attachment site in the C-terminal domain V. In lower invertebrates, perlecan is not typically a proteoglycan, possessing the majority of the core protein modules, but lacking domain I where the attachment sites for glycosaminoglycan chains are located. This suggests that uniting the heparan sulfate binding growth factor functions of domain I and the core protein functions of the rest of the molecule in domains II-V occurred later in evolution for a new functional purpose. In this review, we surveyed several decades of pertinent literature to ask a fundamental question: Why did nature design this protein uniquely as an extraordinarily long multifunctional proteoglycan with a single promoter regulating expression, rather than separating these functions into individual proteins that could be independently regulated? We arrived at the conclusion that the concentration of perlecan at functional borders separating tissues and tissue layers is an ancient key function of the core protein. The addition of the heparan sulfate chains in domain I likely occurred as an additional means of binding the core protein to other ECM proteins in territorial matrices and basement membranes, and as a means to reserve growth factors in an on-site depot to assist with rapid repair of those borders when compromised, such as would occur during wounding. We propose a function for perlecan that extends its role from that of an extracellular scaffold, as we previously

  12. Border patrol: insights into the unique role of perlecan/heparan sulfate proteoglycan 2 at cell and tissue borders.

    PubMed

    Farach-Carson, Mary C; Warren, Curtis R; Harrington, Daniel A; Carson, Daniel D

    2014-02-01

    The extracellular matrix proteoglycan (ECM) perlecan, also known as heparan sulfate proteoglycan 2 or HSPG2, is one of the largest (>200 nm) and oldest (>550 M years) extracellular matrix molecules. In vertebrates, perlecan's five-domain structure contains numerous independently folding modules with sequence similarities to other ECM proteins, all connected like cars into one long, diverse complex train following a unique N-terminal domain I decorated with three long glycosaminoglycan chains, and an additional glycosaminoglycan attachment site in the C-terminal domain V. In lower invertebrates, perlecan is not typically a proteoglycan, possessing the majority of the core protein modules, but lacking domain I where the attachment sites for glycosaminoglycan chains are located. This suggests that uniting the heparan sulfate binding growth factor functions of domain I and the core protein functions of the rest of the molecule in domains II-V occurred later in evolution for a new functional purpose. In this review, we surveyed several decades of pertinent literature to ask a fundamental question: Why did nature design this protein uniquely as an extraordinarily long multifunctional proteoglycan with a single promoter regulating expression, rather than separating these functions into individual proteins that could be independently regulated? We arrived at the conclusion that the concentration of perlecan at functional borders separating tissues and tissue layers is an ancient key function of the core protein. The addition of the heparan sulfate chains in domain I likely occurred as an additional means of binding the core protein to other ECM proteins in territorial matrices and basement membranes, and as a means to reserve growth factors in an on-site depot to assist with rapid repair of those borders when compromised, such as would occur during wounding. We propose a function for perlecan that extends its role from that of an extracellular scaffold, as we previously

  13. The Involvement of Proteoglycans in the Human Plasma Prekallikrein Interaction with the Cell Surface

    PubMed Central

    Veronez, Camila Lopes; Nascimento, Fabio D.; Melo, Katia R. B.; Nader, Helena B.; Tersariol, Ivarne L. S.; Motta, Guacyara

    2014-01-01

    Introduction The aim of this work was to evaluate the role of human plasma prekallikrein assembly and processing in cells and to determine whether proteoglycans, along with high molecular weight kininogen (H-kininogen), influence this interaction. Methods We used the endothelial cell line ECV304 and the epithelial cell lines CHO-K1 (wild type) and CHO-745 (deficient in proteoglycans). Prekallikrein endocytosis was studied using confocal microscopy, and prekallikrein cleavage/activation was determined by immunoblotting using an antibody directed to the prekallikrein sequence C364TTKTSTR371 and an antibody directed to the entire H-kininogen molecule. Results At 37°C, prekallikrein endocytosis was assessed in the absence and presence of exogenously applied H-kininogen and found to be 1,418.4±0.010 and 1,070.3±0.001 pixels/cell, respectively, for ECV304 and 1,319.1±0.003 and 631.3±0.001 pixels/cell, respectively, for CHO-K1. No prekallikrein internalization was observed in CHO-745 in either condition. Prekallikrein colocalized with LysoTracker in the absence and presence of exogenous H-kininogen at levels of 76.0% and 88.5%, respectively, for ECV304 and at levels of 40.7% and 57.0%, respectively, for CHO-K1. After assembly on the cell surface, a plasma kallikrein fragment of 53 kDa was predominant in the incubation buffer of all the cell lines studied, indicating specific proteolysis; plasma kallikrein fragments of 48–44 kDa and 34–32 kDa were also detected in the incubation buffer, indicating non-specific cleavage. Bradykinin free H-kininogen internalization was not detected in CHO-K1 or CHO-745 cells at 37°C. Conclusion The prekallikrein interaction with the cell surface is temperature-dependent and independent of exogenously applied H-kininogen, which results in prekallikrein endocytosis promoted by proteoglycans. Prekallikrein proteolysis/activation is influenced by H-kininogen/glycosaminoglycans assembly and controls plasma kallikrein activity. PMID

  14. Giant Magnons Meet Giant Gravitons

    SciTech Connect

    Hofman, Diego M.

    2008-07-28

    We study the worldsheet reflection matrix of a string attached to a D-brane in AdS{sub 5}xS{sup 5}. The D-brane corresponds to a maximal giant graviton that wraps an S{sup 3} inside S{sup 5}. In the gauge theory, the open string is described by a spin chain with boundaries. We focus on open strings with a large SO(6) charge and define an asymptotic boundary reflection matrix. Using the symmetries of the problem, we review the computation of the boundary reflection matrix, up to a phase. We also discuss weak and strong coupling computations where we obtain the overall phase factor and test our exact results.

  15. Primary mesenchyme cell migration requires a chondroitin sulfate/dermatan sulfate proteoglycan.

    PubMed

    Lane, M C; Solursh, M

    1991-02-01

    Primary mesenchyme cell migration in the sea urchin embryo is inhibited by sulfate deprivation and exposure to exogenous beta-D-xylosides, two treatments known to disrupt proteoglycan synthesis. We show that in the developing sea urchin, exogenous xyloside affects the synthesis by the primary mesenchyme cells of a very large, cell surface chondroitin sulfate/dermatan sulfate proteoglycan. This proteoglycan is present in a partially purified fraction that restores migratory ability to defective cells in vitro. The integrity of this chondroitin sulfate/dermatan sulfate proteoglycan appears essential for primary mesenchyme cell migration since treatment of actively migrating cells with chondroitinase ABC reversibly inhibited their migration in vitro.

  16. Structure of newly synthesized (/sup 35/S)-proteoglycans and (/sup 35/S)-proteoglycan turnover products of cartilage explant cultures from dogs with experimental osteoarthritis

    SciTech Connect

    Carney, S.L.; Billingham, M.E.; Muir, H.; Sandy, J.D.

    1985-01-01

    The structure of newly synthesized proteoglycans from explant cultures of cartilage from joints subjected to transection of the anterior cruciate ligament (osteoarthritic) and from normal (non- or sham-operated) joints was examined. The structure of the products of proteoglycan turnover was also examined using explants of normal and osteoarthritic cartilage maintained in culture for a 48 h chase period. The findings were as follows: Newly synthesized (/sup 35/S)-proteoglycans extracted from cartilage explants from osteoarthritic joints whether examined 3 weeks, 3 months, or 6 months after surgery were larger than those from corresponding normal cartilage. This can be explained by the synthesis in osteoarthritic cartilage of abnormally long chondroitin sulfate chains on newly synthesised proteoglycans. The extracts also contained a newly formed small proteoglycan species that was unable to interact with hyaluronic acid. The proportion of this species was higher in osteoarthritic cartilage compared with normal, examined 3 weeks after surgery, but was generally absent from cartilage obtained 3 and 6 months after surgery. Compared with controls, a smaller proportion of the (/sup 35/S)-proteoglycans released into the maintenance medium of explant cultures of osteoarthritic cartilage during a 48 h chase period was able to interact with hyaluronic acid. However, although furnished with longer (/sup 35/S)-glycosaminoglycan chains, these proteoglycans were smaller than those from control explants.

  17. Identity of the core proteins of the large chondroitin sulphate proteoglycans synthesized by skeletal muscle and prechondrogenic mesenchyme.

    PubMed Central

    Carrino, D A; Dennis, J E; Drushel, R F; Haynesworth, S E; Caplan, A I

    1994-01-01

    Large, chondroitin sulphate-containing proteoglycans are synthesized by three prominent tissue in the embryonic chick limb. One of these proteoglycans is aggrecan, the phenotype-specific proteoglycan of cartilage. Another, PG-M, is produced by prechondrogenic mesenchymal cells. The third, M-CSPG, is made by developing skeletal muscle cells. While the carbohydrate components of PG-M and M-CSPG share some similarities, both of these proteoglycans clearly have different carbohydrate moieties from those of aggrecan. To compare these three proteoglycans at another level, their core protein structures were analysed in three ways: by the presence or absence of monoclonal antibody epitopes, by one-dimensional peptide display of the cyanogen bromide-cleaved core proteins and by electron microscopic imaging of the molecules. Monoclonal antibodies whose epitopes are present in aggrecan core protein were tested with core protein preparations from M-CSPG and PG-M. One of these, 7D1, recognizes both PG-M and M-CSPG, while another, 1C6, shows no reactivity for the non-cartilage proteoglycans. The absence of 1C6 reactivity is of interest, as its epitope is in a region of the aggrecan core protein known to have a functional homologue in the core proteins of PG-M and M-CSPG. The cyanogen bromide-fragmented peptide pattern of M-CSPG is the same as that of PG-M, and both are different from that of aggrecan. The aggrecan pattern has one prominent large band (molecular mass 130 kDa), some less prominent large bands (molecular mass 70-100 kDa) and several smaller bands. In contrast, the PG-M and M-CSPG patterns show no bands with molecular masses > 73 kDa, and the smaller bands (molecular mass < 40 kDa) have a different pattern to that of the smaller bands from aggrecan. The electron microscopic images of aggrecan show a core protein with one end having two globular regions separated by a short linear segment; adjacent to this is a long linear segment, which sometimes contains a third

  18. Macrophage secretory products selectively stimulate dermatan sulfate proteoglycan production in cultured arterial smooth muscle cells

    SciTech Connect

    Edwards, I.J.; Wagner, W.D.; Owens, R.T. )

    1990-03-01

    Arterial dermatan sulfate proteoglycan has been shown to increase with atherosclerosis progression, but factors responsible for this increase are unknown. To test the hypothesis that smooth muscle cell proteoglycan synthesis may be modified by macrophage products, pigeon arterial smooth muscle cells were exposed to the media of either cholesteryl ester-loaded pigeon peritoneal macrophages or a macrophage cell line P388D1. Proteoglycans radiolabeled with (35S)sulfate and (3H)serine were isolated from culture media and smooth muscle cells and purified following precipitation with 1-hexadecylpyridinium chloride and chromatography. Increasing concentrations of macrophage-conditioned media were associated with a dose-response increase in (35S)sulfate incorporation into secreted proteoglycans, but there was no change in cell-associated proteoglycans. Incorporation of (3H)serine into total proteoglycan core proteins was not significantly different (5.2 X 10(5) dpm and 5.5 X 10(5) disintegrations per minute (dpm) in control and conditioned media-treated cultures, respectively), but selective effects were observed on individual proteoglycan types. Twofold increases in dermatan sulfate proteoglycan and limited degradation of chondroitin sulfate proteoglycan were apparent based on core proteins separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Immunoinhibition studies indicated that interleukin-1 was involved in the modulation of proteoglycan synthesis by macrophage-conditioned media. These data provide support for the role of macrophages in alteration of the matrix proteoglycans synthesized by smooth muscle cells and provide a mechanism to account for the reported increased dermatan sulfate/chondroitin sulfate ratios in the developing atherosclerotic lesion.

  19. Macrophage secretory products selectively stimulate dermatan sulfate proteoglycan production in cultured arterial smooth muscle cells.

    PubMed Central

    Edwards, I. J.; Wagner, W. D.; Owens, R. T.

    1990-01-01

    Arterial dermatan sulfate proteoglycan has been shown to increase with atherosclerosis progression, but factors responsible for this increase are unknown. To test the hypothesis that smooth muscle cell proteoglycan synthesis may be modified by macrophage products, pigeon arterial smooth muscle cells were exposed to the media of either cholesteryl ester-loaded pigeon peritoneal macrophages or a macrophage cell line P388D1. Proteoglycans radiolabeled with [35S]sulfate and [3H]serine were isolated from culture media and smooth muscle cells and purified following precipitation with 1-hexadecylpyridinium chloride and chromatography. Increasing concentrations of macrophage-conditioned media were associated with a dose-response increase in [35S]sulfate incorporation into secreted proteoglycans, but there was no change in cell-associated proteoglycans. Incorporation of [3H]serine into total proteoglycan core proteins was not significantly different (5.2 X 10(5) dpm and 5.5 X 10(5) disintegrations per minute (dpm) in control and conditioned media-treated cultures, respectively), but selective effects were observed on individual proteoglycan types. Twofold increases in dermatan sulfate proteoglycan and limited degradation of chondroitin sulfate proteoglycan were apparent based on core proteins separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Immunoinhibition studies indicated that interleukin-1 was involved in the modulation of proteoglycan synthesis by macrophage-conditioned media. These data provide support for the role of macrophages in alteration of the matrix proteoglycans synthesized by smooth muscle cells and provide a mechanism to account for the reported increased dermatan sulfate/chondroitin sulfate ratios in the developing atherosclerotic lesion. Images Figure 6 PMID:2316626

  20. Proteoglycans Maintain Lung Stability in an Elastase-Treated Mouse Model of Emphysema

    PubMed Central

    Takahashi, Ayuko; Majumdar, Arnab; Parameswaran, Harikrishnan; Bartolák-Suki, Erzsébet

    2014-01-01

    Extracellular matrix remodeling and tissue rupture contribute to the progression of emphysema. Lung tissue elasticity is governed by the tensile stiffness of fibers and the compressive stiffness of proteoglycans. It is not known how proteoglycan remodeling affects tissue stability and destruction in emphysema. The objective of this study was to characterize the role of remodeled proteoglycans in alveolar stability and tissue destruction in emphysema. At 30 days after treatment with porcine pancreatic elastase, mouse lung tissue stiffness and alveolar deformation were evaluated under varying tonicity conditions that affect the stiffness of proteoglycans. Proteoglycans were stained and measured in the alveolar walls. Computational models of alveolar stability and rupture incorporating the mechanical properties of fibers and proteoglycans were developed. Although absolute tissue stiffness was only 24% of normal, changes in relative stiffness and alveolar shape distortion due to changes in tonicity were increased in emphysema (P < 0.01 and P < 0.001). Glycosaminoglycan amount per unit alveolar wall length, which is responsible for proteoglycan stiffness, was higher in emphysema (P < 0.001). Versican expression increased in the tissue, but decorin decreased. Our network model predicted that the rate of tissue deterioration locally governed by mechanical forces was reduced when proteoglycan stiffness was increased. Consequently, this general network model explains why increasing proteoglycan deposition protects the alveolar walls from rupture in emphysema. Our results suggest that the loss of proteoglycans observed in human emphysema contributes to disease progression, whereas treatments that promote proteoglycan deposition in the extracellular matrix should slow the progression of emphysema. PMID:24450478

  1. Alteration of proteoglycan sulfation affects bone growth and remodeling.

    PubMed

    Gualeni, Benedetta; de Vernejoul, Marie-Christine; Marty-Morieux, Caroline; De Leonardis, Fabio; Franchi, Marco; Monti, Luca; Forlino, Antonella; Houillier, Pascal; Rossi, Antonio; Geoffroy, Valerie

    2013-05-01

    Diastrophic dysplasia (DTD) is a chondrodysplasia caused by mutations in the SLC26A2 gene, leading to reduced intracellular sulfate pool in chondrocytes, osteoblasts and fibroblasts. Hence, proteoglycans are undersulfated in the cartilage and bone of DTD patients. To characterize the bone phenotype of this skeletal dysplasia we used the Slc26a2 knock-in mouse (dtd mouse), that was previously validated as an animal model of DTD in humans. X-rays, bone densitometry, static and dynamic histomorphometry, and in vitro studies revealed a primary bone defect in the dtd mouse model. We showed in vivo that this primary bone defect in dtd mice is due to decreased bone accrual associated with a decreased trabecular and periosteal appositional rate at the cell level in one month-old mice. Although the osteoclast number evaluated by histomorphometry was not different in dtd compared to wild-type mice, urine analysis of deoxypyridinoline cross-links and serum levels of type I collagen C-terminal telopeptides showed a higher resorption rate in dtd mice compared to wild-type littermates. Electron microscopy studies showed that collagen fibrils in bone were thinner and less organized in dtd compared to wild-type mice. These data suggest that the low bone mass observed in mutant mice could possibly be linked to the different bone matrix compositions/organizations in dtd mice triggering changes in osteoblast and osteoclast activities. Overall, these results suggest that proteoglycan undersulfation not only affects the properties of hyaline cartilage, but can also lead to unbalanced bone modeling and remodeling activities, demonstrating the importance of proteoglycan sulfation in bone homeostasis.

  2. Alteration of proteoglycan sulfation affects bone growth and remodeling

    PubMed Central

    Gualeni, Benedetta; de Vernejoul, Marie-Christine; Marty-Morieux, Caroline; De Leonardis, Fabio; Franchi, Marco; Monti, Luca; Forlino, Antonella; Houillier, Pascal; Rossi, Antonio; Geoffroy, Valerie

    2013-01-01

    Diastrophic dysplasia (DTD) is a chondrodysplasia caused by mutations in the SLC26A2 gene, leading to reduced intracellular sulfate pool in chondrocytes, osteoblasts and fibroblasts. Hence, proteoglycans are undersulfated in the cartilage and bone of DTD patients. To characterize the bone phenotype of this skeletal dysplasia we used the Slc26a2 knock-in mouse (dtd mouse), that was previously validated as an animal model of DTD in humans. X-rays, bone densitometry, static and dynamic histomorphometry, and in vitro studies revealed a primary bone defect in the dtd mouse model. We showed in vivo that this primary bone defect in dtd mice is due to decreased bone accrual associated with a decreased trabecular and periosteal appositional rate at the cell level in one month-old mice. Although the osteoclast number evaluated by histomorphometry was not different in dtd compared to wild-type mice, urine analysis of deoxypyridinoline cross-links and serum levels of type I collagen C-terminal telopeptides showed a higher resorption rate in dtd mice compared to wild-type littermates. Electron microscopy studies showed that collagen fibrils in bone were thinner and less organized in dtd compared to wild-type mice. These data suggest that the low bone mass observed in mutant mice could possibly be linked to the different bone matrix compositions/organizations in dtd mice triggering changes in osteoblast and osteoclast activities. Overall, these results suggest that proteoglycan undersulfation not only affects the properties of hyaline cartilage, but can also lead to unbalanced bone modeling and remodeling activities, demonstrating the importance of proteoglycan sulfation in bone homeostasis. PMID:23369989

  3. Transforming giants.

    PubMed

    Kanter, Rosabeth Moss

    2008-01-01

    Large corporations have long been seen as lumbering, inflexible, bureaucratic--and clueless about global developments. But recently some multinationals seem to be transforming themselves: They're engaging employees, moving quickly, and introducing innovations that show true connection with the world. Harvard Business School's Kanter ventured with a research team inside a dozen global giants--including IBM, Procter & Gamble, Omron, CEMEX, Cisco, and Banco Real--to discover what has been driving the change. After conducting more than 350 interviews on five continents, she and her colleagues came away with a strong sense that we are witnessing the dawn of a new model of corporate power: The coordination of actions and decisions on the front lines now appears to stem from widely shared values and a sturdy platform of common processes and technology, not from top-down decrees. In particular, the values that engage the passions of far-flung workforces stress openness, inclusion, and making the world a better place. Through this shift in what might be called their guidance systems, the companies have become as creative and nimble as much smaller ones, even while taking on social and environmental challenges of a scale that only large enterprises could attempt. IBM, for instance, has created a nonprofit partnership, World Community Grid, through which any organization or individual can donate unused computing power to research projects and see what is being done with the donation in real time. IBM has gained an inspiring showcase for its new technology, helped business partners connect with the company in a positive way, and offered individuals all over the globe the chance to contribute to something big.

  4. Diverse functions of uterine proteoglycans in human reproduction (review).

    PubMed

    Kitaya, Kotaro; Tada, Yoshihiro; Hayashi, Terumi; Taguchi, Sagiri; Funabiki, Miyako; Nakamura, Yoshitaka; Yasuo, Tadahiro

    2012-06-01

    Proteoglycans (PGs) are a group of heavily glycosylated proteins that are present throughout the mammalian body and are involved in a wide variety of biological phenomena, including structural maintenance, tissue remodeling, molecular presentation, cell adhesion and signal transmission. Previous studies have revealed an increasing number of roles for PGs in human reproduction. Several PGs are currently utilized or regarded as biomarkers for the diagnosis of certain pathological uterine conditions associated with infertility and obstetrical complications. The aim of this review was to discuss the involvement of PGs in the human uterus in reproductive biology and pathophysiology.

  5. Localization of human serum amyloid P component and heparan sulfate proteoglycan in in vitro-formed Abeta fibrils.

    PubMed

    Holm Nielsen, E; Nybo, M; Junker, K; Toftedal Hansen, P; Rasmussen, I M; Svehag, S E

    2000-08-01

    Ultrastructural studies of the localization of serum amyloid P component (SAP) in amyloid fibrils have given divergent results. We here report for the first time that electron microscopy of SAP coincubated with Abeta1-42 peptides or with mature Abeta1-42 fibrils, revealed SAP molecules coating the surface of the mature fibrils and that protofibrils of Abeta1-42 did not bind SAP. Also when incubated with extracted amyloid light chain (AL)-fibrils the SAP molecules aligned on the fibril surface. Heparan sulfate proteoglycan bound to the surface of the Abeta fibrils with a spacing of about 50 nm. We conclude that SAP does not bind to protofibrils but to the surface of mature Abeta fibrils and that it may stabilize and protect the fibrils.

  6. Giant Cell Arteritis

    MedlinePlus

    Giant cell arteritis is a disorder that causes inflammation of your arteries, usually in the scalp, neck, and arms. ... arteries, which keeps blood from flowing well. Giant cell arteritis often occurs with another disorder called polymyalgia ...

  7. Equarin is involved in cell adhesion by means of heparan sulfate proteoglycan during lens development.

    PubMed

    Song, Xiaohong; Sato, Yuya; Sekiguchi, Kiyotoshi; Tanaka, Hideaki; Ohta, Kunimasa

    2013-01-01

    Adhesion molecules are known to be instructive for both development and differentiation. During lens differentiation, epithelial cells undergo vertical elongation, with the anterior and posterior tips of the elongating fiber cells sliding along the epithelium and capsule, respectively. These cellular processes are highly coordinated through cell adhesive interactions, actin cytoskeletal reorganization and contractile force generation. Alterations in extracellular matrix composition that interfere with these interactions can lead to defects that alter tissue morphogenesis and the state of differentiation. We have demonstrated that Equarin, which is a secreted molecule expressed in the equator region of the lens, plays an important role in chick lens fiber differentiation through fibroblast growth factor signaling. Here, we explored the function of Equarin in chick lens cell adhesion. Equarin protein was expressed in the extracellular region of lens differentiating cells. We found that Equarin promoted lens cell adhesion through heparan sulfate proteoglycan. By biochemical analysis, we found that Equarin directly binds syndecan-3, which displayed a similar expression pattern to Equarin. Overexpression of Equarin resulted in altered actin localization. Equarin is involved in cell adhesion during fiber differentiation and development. Copyright © 2012 Wiley Periodicals, Inc.

  8. Role of the heparan sulfate proteoglycan syndecan-1 (CD138) in delayed-type hypersensitivity.

    PubMed

    Kharabi Masouleh, Behzad; Ten Dam, Gerdy B; Wild, Martin K; Seelige, Ruth; van der Vlag, Johan; Rops, Angelique L; Echtermeyer, Frank G; Vestweber, Dietmar; van Kuppevelt, Toin H; Kiesel, Ludwig; Götte, Martin

    2009-04-15

    The cell surface heparan sulfate proteoglycan syndecan-1 (CD138) modulates the activity of chemokines, cytokines, integrins, and other adhesion molecules which play important roles in the regulation of inflammation. We have previously shown that syndecan-1-deficient murine leukocytes display increased interactions with endothelial cells and increased diapedesis in vivo and in vitro. In this study, we demonstrate that syndecan-1 has an important function as a negative modulator in the murine contact allergy model of oxazolone-mediated delayed-type hypersensitivity (DTH). Following elicitation of the DTH response, syndecan-1-deficient mice showed an increase in leukocyte recruitment, resulting in an increased and prolonged edema formation. Expression of the cytokines TNF-alpha and IL-6 of the chemokines CCL5/RANTES and CCL-3/MIP-1alpha and of the adhesion molecule ICAM-1 were significantly increased in syndecan-1-deficient compared with wild-type mice. In wild-type mice, syndecan-1 mRNA and protein expression was reduced during the DTH response. The differentially increased adhesion of syndecan-1-deficient leukocytes to ICAM-1 was efficiently inhibited in vitro by CD18-blocking Abs, which emerges as one mechanistic explanation for the anti-inflammatory effects of syndecan-1. Collectively, our results show an important role of syndecan-1 in the contact DTH reaction, identifying syndecan-1 as a novel target in anti-inflammatory therapy.

  9. Sonic hedgehog processing and release are regulated by glypican heparan sulfate proteoglycans.

    PubMed

    Ortmann, Corinna; Pickhinke, Ute; Exner, Sebastian; Ohlig, Stefanie; Lawrence, Roger; Jboor, Hamodah; Dreier, Rita; Grobe, Kay

    2015-06-15

    All Hedgehog morphogens are released from producing cells, despite being synthesized as N- and C-terminally lipidated molecules, a modification that firmly tethers them to the cell membrane. We have previously shown that proteolytic removal of both lipidated peptides, called shedding, releases bioactive Sonic hedgehog (Shh) morphogens from the surface of transfected Bosc23 cells. Using in vivo knockdown together with in vitro cell culture studies, we now show that glypican heparan sulfate proteoglycans regulate this process, through their heparan sulfate chains, in a cell autonomous manner. Heparan sulfate specifically modifies Shh processing at the cell surface, and purified glycosaminoglycans enhance the proteolytic removal of N- and C-terminal Shh peptides under cell-free conditions. The most likely explanation for these observations is direct Shh processing in the extracellular compartment, suggesting that heparan sulfate acts as a scaffold or activator for Shh ligands and the factors required for their turnover. We also show that purified heparan sulfate isolated from specific cell types and tissues mediates the release of bioactive Shh from pancreatic cancer cells, revealing a previously unknown regulatory role for these versatile molecules in a pathological context.

  10. Structural characterization of proteoglycans produced by testicular peritubular cells and Sertoli cells

    SciTech Connect

    Skinner, M.K.; Fritz, I.B.

    1985-09-25

    The structural characteristics of proteoglycans produced by seminiferous peritubular cells and by Sertoli cells are defined. Peritubular cells secrete two proteoglycans designated PC I and PC II. PC I is a high molecular mass protein containing chondroitin glycosaminoglycan (GAG) chains (maximum 70 kDa). PC II has a protein core of 45 kDa and also contains chondroitin GAG chains (maximum 70 kDa). Preliminary results imply that PC II may be a degraded or processed form of PC I. Sertoli cells secrete two different proteoglycans, designated SC I and SC II. SC I is a large protein containing both chondroitin (maximum 62 kDa) and heparin (maximum 15 kDa) GAG chains. Results obtained suggest that this novel proteoglycan contains both chondroitin and heparin GAG chains bound to the same core protein. SC II has a 50-kDa protein core and contains chondroitin (maximum 25 kDa) GAG chains. A proteoglycan obtained from extracts of Sertoli cells is described which contains heparin (maximum 48 kDa) GAG chains. In addition, Sertoli cells secrete a sulfoprotein, SC III, which is not a proteoglycan. The stimulation by follicle-stimulating hormone of the incorporation of (TVS)SO2) U) into moieties secreted by Sertoli cells is shown to represent an increased production or sulfation of SC III, and not an increased production or sulfation of proteoglycans. Results are discussed in relation to the possible functions of proteoglycans in the seminiferous tubule.

  11. Patterns of proteoglycan degradation by a neutral protease from human growth-plate epiphyseal cartilage

    SciTech Connect

    Ehrlich, M.G.; Armstrong, A.L.; Neuman, R.G.; Davis, M.W.; Mankin, H.J.

    1982-12-01

    The hypothesis is widely held that proteolytic degradation of proteoglycans in the lower hypertrophic zone of the growth plate may be involved in the initiation of mineralization in the zone of provisional calcification. However, a neutral protease that is responsible for the degradation of proteoglycans in the growth plate has not been identified, isolated, and characterized. In the work reported here, neutral protease activity in the growth plate is demonstrated for the first time, and some of the properties of the enzyme are described. Proteoglycans subunits were prepared from bovine nasal cartilage and calf costal cartilage by equilibrium density-gradient centrifugation under dissociative conditions. The proteoglycan subunits were labeled with /sup 14/C-formaldehyde. Homogenates from human growth plates were examined for neutral protease activity using the proteoglycan subunits as substrates. Following incubation of the proteoglycan subunits with growth-plate homogenates at pH 5.3 and at pH 7.5 in the presence and absence of ten-millimolar magnesium chloride and calcium chloride, the digestion products were examined by gel chromatography on Sepharose-2B and 6B columns. Column eluants containing proteoglycan-subunit degradation products were monitored for uronic acid, hexose, and radio-activity. Maximum extensive degradation of proteoglycan subunits occurred at pH 7.5 in the presence of ten-millimolar magnesium chloride and calcium chloride.

  12. Giant impacts on giant planets

    NASA Astrophysics Data System (ADS)

    de Pater, Imke

    2013-10-01

    The 2009 impact and recent superbolides on Jupiter caught the world by surprise and cast doubt on impactor flux estimates for the outer solar system. Enhanced amateur planetary imaging techniques yield both high spatial resolution {enabling the 2009 impact debris field detection} and rapid frame rates {enabling the 2010/2012 impact flash detections and lightcurve measurements}.We propose a ToO program to image future impacts on Jupiter and Saturn. To remove the possibility of impact cloud non-detections, the program will be triggered only if an existing impact debris field is seen, an object on a collision course with Jupiter or Saturn is discovered, or an impact light curve is measured with an estimated total energy large enough to generate an impact cloud in a giant planet atmosphere {10^20 J}.HST provides the only way to image these events in the ultraviolet, providing information on aerosol altitudes and on smaller particles that are less visible to ground-based infrared observations. High-resolution imaging with proper timing {not achievable from the ground} is required to measure precisely both the velocity fields of impact sites and the optical spectrum of impact debris. HST observations of past impacts on Jupiter have also served both as cornerstones of science investigations at other wavelengths and as vehicles for effective public outreach.Large outer solar system impacts are governed by the same physics as in the terrestrial events that dominate the impact threat to humans. Studying the behavior of impactors of various sizes and compositions, as they enter the atmosphere at varying angles and speeds, will better quantify terrestrial impact hazards.

  13. Giant impacts on giant planets

    NASA Astrophysics Data System (ADS)

    de Pater, Imke

    2014-10-01

    The 2009 impact and recent superbolides on Jupiter caught the world by surprise and cast doubt on impactor flux estimates for the outer solar system. Enhanced amateur planetary imaging techniques yield both high spatial resolution (enabling the 2009 impact debris field detection) and rapid frame rates (enabling the 2010/2012 impact flash detections and lightcurve measurements).We propose a ToO program to image future impacts on Jupiter and Saturn. To remove the possibility of impact cloud non-detections, the program will be triggered only if an existing impact debris field is seen, an object on a collision course with Jupiter or Saturn is discovered, or an impact light curve is measured with an estimated total energy large enough to generate an impact cloud in a giant planet atmosphere (10^20 J).HST provides the only way to image these events in the ultraviolet, providing information on aerosol altitudes and on smaller particles that are less visible to ground-based infrared observations. High-resolution imaging with proper timing (not achievable from the ground) is required to measure precisely both the velocity fields of impact sites and the optical spectrum of impact debris. HST observations of past impacts on Jupiter have also served both as cornerstones of science investigations at other wavelengths and as vehicles for effective public outreach.Large outer solar system impacts are governed by the same physics as in the terrestrial events that dominate the impact threat to humans. Studying the behavior of impactors of various sizes and compositions, as they enter the atmosphere at varying angles and speeds, will better quantify terrestrial impact hazards.

  14. Giant impacts on giant planets

    NASA Astrophysics Data System (ADS)

    de Pater, Imke

    2012-10-01

    The 2009 impact on Jupiter caught the world by surprise and cast doubt on impactor flux estimates for the outer solar system. Enhanced amateur planetary imaging techniques yield both high spatial resolution {enabling the 2009 impact debris field detection} and rapid frame rates {enabling the 2010 impact flash detections and lightcurve measurements}.We propose a Target of Opportunity program to image future impacts on Jupiter and Saturn. To remove the possibility of impact cloud non-detections, the program will be triggered only if an existing impact debris field is seen, an object on a collision course with Jupiter or Saturn is discovered, or an impact light curve is measured with an estimated total energy large enough to generate an impact cloud in a giant planet atmosphere.HST provides the only way to image these events in the ultraviolet, providing information on aerosol altitudes and on smaller particles that are less visible to ground-based infrared observations. High-resolution imaging with proper timing {not achievable from the ground} is required to measure precisely both the velocity fields of impact sites and the optical spectrum of impact debris. HST observations of past impacts on Jupiter have also served both as cornerstones of science investigations at other wavelengths and as vehicles for effective public outreach.Large outer solar system impacts are governed by the same physics as in the terrestrial events that dominate the impact threat to humans. Studying the behavior of impactors of various sizes and compositions, as they enter the atmosphere at varying angles and speeds, will better quantify terrestrial impact hazards.

  15. Paxillin phosphorylation counteracts proteoglycan-mediated inhibition of axon regeneration

    PubMed Central

    Kuboyama, Tomoharu; Luo, Xueting; Park, Kevin; Blackmore, Murray G.; Tojima, Takuro; Tohda, Chihiro; Bixby, John L.; Lemmon, Vance P.; Kamiguchi, Hiroyuki

    2013-01-01

    In the adult central nervous system, the tips of axons severed by injury are commonly transformed into dystrophic endballs and cease migration upon encountering a rising concentration gradient of inhibitory proteoglycans. However, intracellular signaling networks mediating endball migration failure remain largely unknown. Here we show that manipulation of protein kinase A (PKA) or its downstream adhesion component paxillin can reactivate the locomotive machinery of endballs in vitro and facilitate axon growth after injury in vivo. In dissociated cultures of adult rat dorsal root ganglion neurons, PKA is activated in endballs formed on gradients of the inhibitory proteoglycan aggrecan, and pharmacological inhibition of PKA promotes axon growth on aggrecan gradients most likely through phosphorylation of paxillin at serine 301. Remarkably, pre-formed endballs on aggrecan gradients resume forward migration in response to PKA inhibition. This resumption of endball migration is associated with increased turnover of adhesive point contacts dependent upon paxillin phosphorylation. Furthermore, expression of phosphomimetic paxillin overcomes aggrecan-mediated growth arrest of endballs, and facilitates axon growth after optic nerve crush in vivo. These results point to the importance of adhesion dynamics in restoring endball migration and suggest a potential therapeutic target for axon tract repair. PMID:23797153

  16. Paxillin phosphorylation counteracts proteoglycan-mediated inhibition of axon regeneration.

    PubMed

    Kuboyama, Tomoharu; Luo, Xueting; Park, Kevin; Blackmore, Murray G; Tojima, Takuro; Tohda, Chihiro; Bixby, John L; Lemmon, Vance P; Kamiguchi, Hiroyuki

    2013-10-01

    In the adult central nervous system, the tips of axons severed by injury are commonly transformed into dystrophic endballs and cease migration upon encountering a rising concentration gradient of inhibitory proteoglycans. However, intracellular signaling networks mediating endball migration failure remain largely unknown. Here we show that manipulation of protein kinase A (PKA) or its downstream adhesion component paxillin can reactivate the locomotive machinery of endballs in vitro and facilitate axon growth after injury in vivo. In dissociated cultures of adult rat dorsal root ganglion neurons, PKA is activated in endballs formed on gradients of the inhibitory proteoglycan aggrecan, and pharmacological inhibition of PKA promotes axon growth on aggrecan gradients most likely through phosphorylation of paxillin at serine 301. Remarkably, pre-formed endballs on aggrecan gradients resume forward migration in response to PKA inhibition. This resumption of endball migration is associated with increased turnover of adhesive point contacts dependent upon paxillin phosphorylation. Furthermore, expression of phosphomimetic paxillin overcomes aggrecan-mediated growth arrest of endballs, and facilitates axon growth after optic nerve crush in vivo. These results point to the importance of adhesion dynamics in restoring endball migration and suggest a potential therapeutic target for axon tract repair. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. Ultrastructure features of camel cornea--collagen fibril and proteoglycans.

    PubMed

    Almubrad, Turki; Akhtar, Saeed

    2012-01-01

      The uniform distribution of collagen fibrils and proteoglycans maintain the transparency of normal cornea. We describe the ultrastructural features of camel cornea including collagen fibrils and proteoglycans (PGs).   Camel corneas (of 6-, 8-, and 10-month-old animals) were fixed in 2.5% glutaraldehyde containing cuprolinic blue in sodium acetate buffer and processed for electron microscopy. The 'AnalySIS LS Professional' program was used to analyze the collagen fibril diameter.   The camel cornea consists of four layers: the epithelium (227 μm), stroma (388 μm), Descemet's membrane (DM), and endothelium. The epithelium constituted 36% of the camel cornea, whereas corneal stroma constituted 62% of the corneal thickness (629 μm). The PGs in the posterior stroma were significantly larger in number and size compared with the anterior and middle stroma. The collagen fibril diameter was 25 nm and interfibrillar spacing 40 nm. Fibrillar structures are present throughout the DM.   The structure of the camel cornea is very different from human and other animals. The unique structure of the cornea might be an adaptation to help the camel to survive in a hot and dry climate. The camel cornea may also be a good model to study the effect of hot and dry climates on the cornea. © 2011 American College of Veterinary Ophthalmologists.

  18. Shh-proteoglycan interactions regulate maturation of olfactory glomerular circuitry.

    PubMed

    Persson, Laura; Witt, Rochelle M; Galligan, Meghan; Greer, Paul L; Eisner, Adriana; Pazyra-Murphy, Maria F; Datta, Sandeep R; Segal, Rosalind A

    2014-12-01

    The olfactory system relies on precise circuitry connecting olfactory sensory neurons (OSNs) and appropriate relay and processing neurons of the olfactory bulb (OB). In mammals, the exact correspondence between specific olfactory receptor types and individual glomeruli enables a spatially precise map of glomerular activation that corresponds to distinct odors. However, the mechanisms that govern the establishment and maintenance of the glomerular circuitry are largely unknown. Here we show that high levels of Sonic Hedgehog (Shh) signaling at multiple sites enable refinement and maintenance of olfactory glomerular circuitry. Mice expressing a mutant version of Shh (Shh(Ala/Ala)), with impaired binding to proteoglycan co-receptors, exhibit disproportionately small olfactory bulbs containing fewer glomeruli. Notably, in mutant animals the correspondence between individual glomeruli and specific olfactory receptors is lost, as olfactory sensory neurons expressing different olfactory receptors converge on the same glomeruli. These deficits arise at late stages in post-natal development and continue into adulthood, indicating impaired pruning of erroneous connections within the olfactory bulb. In addition, mature Shh(Ala/Ala) mice exhibit decreased proliferation in the subventricular zone (SVZ), with particular reduction in neurogenesis of calbindin-expressing periglomerular cells. Thus, Shh interactions with proteoglycan co-receptors function at multiple locations to regulate neurogenesis and precise olfactory connectivity, thereby promoting functional neuronal circuitry.

  19. Shh-Proteoglycan Interactions Regulate Maturation of Olfactory Glomerular Circuitry

    PubMed Central

    Persson, Laura; Witt, Rochelle M.; Galligan, Meghan; Greer, Paul L.; Eisner, Adriana; Pazyra-Murphy, Maria F.; Datta, Sandeep R.; Segal, Rosalind A.

    2014-01-01

    The olfactory system relies on precise circuitry connecting olfactory sensory neurons (OSNs) and appropriate relay and processing neurons of the olfactory bulb (OB). In mammals, the exact correspondence between specific olfactory receptor types and individual glomeruli enables a spatially precise map of glomerular activation that corresponds to distinct odors. However, the mechanisms that govern the establishment and maintenance of the glomerular circuitry are largely unknown. Here we show that high levels of Sonic Hedgehog (Shh) signaling at multiple sites enable refinement and maintenance of olfactory glomerular circuitry. Mice expressing a mutant version of Shh (ShhAla/Ala), with impaired binding to proteoglycan co-receptors, exhibit disproportionately small olfactory bulbs containing fewer glomeruli. Notably, in mutant animals the correspondence between individual glomeruli and specific olfactory receptors is lost, as olfactory sensory neurons expressing different olfactory receptors converge on the same glomeruli. These deficits arise at late stages in post-natal development and continue into adulthood, indicating impaired pruning of erroneous connections within the olfactory bulb. In addition, mature ShhAla/Ala mice exhibit decreased proliferation in the subventricular zone (SVZ), with particular reduction in neurogenesis of calbindin-expressing periglomerular cells. Thus, Shh interactions with proteoglycan co-receptors function at multiple locations to regulate neurogenesis and precise olfactory connectivity, thereby promoting functional neuronal circuitry. PMID:24913191

  20. Biosynthesis of sulfated proteoglycans in amphibian embryonal cells.

    PubMed

    Løvtrup-Rein, H

    1989-04-01

    The synthesis of sulfated proteoglycans in small explants from various parts of late blastulae from Ambystoma mexicanum or Xenopus laevis was investigated by incorporation of radioactive sulfate or glucosamine and galactosamine in media of low, normal or high tonicity. The explants differentiated into ciliated aggregates of fibroblast-like cells, or remained undifferentiated depending upon their origin in the embryo. High tonicity induces the explants to dissociate and prevents morphological differentiation, while low tonicity hardly affects this process. Yet, both types of media decrease the incorporation into glycosaminoglycans to various degrees, ranging from 40 to 80%, depending upon the species. In Xenopus, the uptake of sulfate is inhibited by as much as 90% in high tonicity media. The rate of incorporation of label is approximately twice as much in mesodermal as in animal or vegetal aggregates, which do not differ significantly. Animal aggregates from Ambystoma, however, revealed an exceptionally high uptake of sulfate. The relative distribution of chondroitin sulfates and heparan sulfates is not affected by changes in tonicity, except in Xenopus where high tonicity severely suppresses the synthesis of heparan sulfates, and is independent of the type of aggregate. The relationship between the synthesis of sulfated proteoglycans and processes involved in cell differentiation, especially cell adhesion, is discussed.

  1. Detection and quantitation of proteoglycans extracted from cell culture medium and cultured cartilage slices

    SciTech Connect

    Hronowski, L.J.; Anastassiades, T.P.

    1988-11-01

    Detection and quantitation of extracted proteoglycans, by staining with the dye Alcian blue on cellulose acetate followed by dissolution of the stained cellulose acetate strips in dimethyl sulfoxide containing 0.5% (v/v) sulfuric acid for absorbance measurement, is described. It is shown that, in the present system, the dye uptake by the proteoglycan is dependent only on the glycosaminoglycan content of the proteoglycan. The method is applied to the quantitation and characterization of proteoglycans and glycosaminoglycans, which have been extracted from radiolabeled bovine ankle cartilage and from mononuclear cell supernatant and which have been separated by DEAE-Sephacel column chromatography. The high sensitivity of the method allows detection of proteoglycans in 25-microliters samples of solutions containing as little as 1 microgram of glycosaminoglycan per milliliter of solution.

  2. Immunological characterization of a basement membrane-specific chondroitin sulfate proteoglycan

    PubMed Central

    1989-01-01

    Reichert's membrane, an extraembryonic membrane present in developing rodents, has been proposed as an in vivo model for the study of basement membranes. We have used this membrane as a source for isolation of basement membrane proteoglycans. Reichert's membranes were extracted in a guanidine/3-[(3-cholamidopropyl)dimethylammonio]-1- propanesulfonate buffer followed by cesium chloride density-gradient ultracentrifugation under dissociative conditions. The proteoglycans were subsequently purified from the two most dense fractions (greater than 1.3 g/ml) by ion-exchange chromatography. Mice were immunized with the proteoglycan preparation and four mAbs recognizing the core protein of a high-density, buoyant chondroitin sulfate proteoglycan were raised. Confirmation of antibody specificity was carried out by the preparation of affinity columns made from each of the mAbs. Chondroitin sulfate proteoglycans (CSPGs) were purified from both supernatant and tissue fractions of Reichert's membranes incubated in short-term organ culture in the presence of radiolabel. The resultant affinity-purified proteoglycan samples were examined by gel filtration, SDS-PAGE, and immunoblotting. This proteoglycan is of high molecular weight (Mr = 5-6 x 10(5)), with a core protein of Mr = approximately 1.5-1.6 x 10(5) and composed exclusively of chondroitin sulfate chains with an average Mr = 1.6-1.8 x 10(4). In addition, a CSPG was purified from adult rat kidney, whose core protein was also Mr = 1.6 x 10(5). The proteoglycan and its core protein were also recognized by all four mAbs. Indirect immunofluorescence of rat tissue sections stained with these antibodies reveal a widespread distribution of this proteoglycan, localized specifically to Reichert's membrane and nearly all basement membranes of rat tissues. In addition to heparan sulfate proteoglycans, it therefore appears that at least one CSPG is a widespread basement membrane component. PMID:2592422

  3. Specific genes involved in synthesis and editing of heparan sulfate proteoglycans show altered expression patterns in breast cancer

    PubMed Central

    2013-01-01

    anti-metastatic features, experienced a strong deregulation in all patients analyzed. Conclusions IDCs show alterations in the expression of HSPG genes; principally the expression and localization of proteoglycans and the sulfation patterns of glycosaminoglycan chains, depending on the metastatic nature of the tumor. In addition, the anti-proliferative molecule heparanase 2 experiences strong deregulation, thus highlighting it as a potentially interesting diagnostic factor. PMID:23327652

  4. Specific genes involved in synthesis and editing of heparan sulfate proteoglycans show altered expression patterns in breast cancer.

    PubMed

    Fernández-Vega, Iván; García, Olivia; Crespo, Ainara; Castañón, Sonia; Menéndez, Primitiva; Astudillo, Aurora; Quirós, Luis M

    2013-01-17

    , experienced a strong deregulation in all patients analyzed. IDCs show alterations in the expression of HSPG genes; principally the expression and localization of proteoglycans and the sulfation patterns of glycosaminoglycan chains, depending on the metastatic nature of the tumor. In addition, the anti-proliferative molecule heparanase 2 experiences strong deregulation, thus highlighting it as a potentially interesting diagnostic factor.

  5. Proteoglycan metabolism in the connective tissue of pregnant and non-pregnant human cervix. An in vitro study.

    PubMed

    Norman, M; Ekman, G; Ulmsten, U; Barchan, K; Malmström, A

    1991-04-15

    Profound changes occur in the cervix during pregnancy. In particular, the connective tissue is remodelled. To elucidate the mechanisms behind this process, the metabolism of cervical connective tissue was studied using tissue cultures. Cervical biopsies from non-pregnant and pregnant women were incubated with [35S]sulphate. The proteoglycans of the tissue specimens were purified by ion-exchange and gel chromatography and characterized by SDS/PAGE and by enzymic degradation. In the non-pregnant cervix, the incorporation of [35S]sulphate into the proteoglycans was linear for 48 h. During the first 6 h of incubation the accumulation of chiefly one small labelled proteoglycan (apparent Mr 110,000) substituted with dermatan sulphate was recorded. This is in accordance with the known proteoglycan composition of non-pregnant cervical tissue. In addition, small amounts of two larger radioactive dermatan/chondroitin sulphate proteoglycans (apparent Mr values 220,000 and greater than 500,000) were recorded. After longer periods of incubation the proportion of heparan sulphate proteoglycans increased considerably. The pregnant tissue showed a clearly different composition of labelled proteoglycans. An increased accumulation of the two larger dermatan/chondroitin sulphate proteoglycans was seen in addition to the dominant small dermatan sulphate proteoglycan of the non-pregnant cervix. The rate of accumulation of these two proteoglycans was about 3 times higher in the pregnant tissue, whereas that of the small dermatan sulphate proteoglycan was only increased 2-fold. The fact that the concentration of proteoglycans in the pregnant cervix is approximately one-half of that in the non-pregnant cervix indicates that the turnover of proteoglycans in pregnant cervical tissue is significantly increased. The major effect of this profound change of metabolism was a 50% decrease in proteoglycan content and a 2-fold increased proportion of a dermatan sulphate proteoglycan with an

  6. Proteoglycan metabolism in the connective tissue of pregnant and non-pregnant human cervix. An in vitro study.

    PubMed Central

    Norman, M; Ekman, G; Ulmsten, U; Barchan, K; Malmström, A

    1991-01-01

    Profound changes occur in the cervix during pregnancy. In particular, the connective tissue is remodelled. To elucidate the mechanisms behind this process, the metabolism of cervical connective tissue was studied using tissue cultures. Cervical biopsies from non-pregnant and pregnant women were incubated with [35S]sulphate. The proteoglycans of the tissue specimens were purified by ion-exchange and gel chromatography and characterized by SDS/PAGE and by enzymic degradation. In the non-pregnant cervix, the incorporation of [35S]sulphate into the proteoglycans was linear for 48 h. During the first 6 h of incubation the accumulation of chiefly one small labelled proteoglycan (apparent Mr 110,000) substituted with dermatan sulphate was recorded. This is in accordance with the known proteoglycan composition of non-pregnant cervical tissue. In addition, small amounts of two larger radioactive dermatan/chondroitin sulphate proteoglycans (apparent Mr values 220,000 and greater than 500,000) were recorded. After longer periods of incubation the proportion of heparan sulphate proteoglycans increased considerably. The pregnant tissue showed a clearly different composition of labelled proteoglycans. An increased accumulation of the two larger dermatan/chondroitin sulphate proteoglycans was seen in addition to the dominant small dermatan sulphate proteoglycan of the non-pregnant cervix. The rate of accumulation of these two proteoglycans was about 3 times higher in the pregnant tissue, whereas that of the small dermatan sulphate proteoglycan was only increased 2-fold. The fact that the concentration of proteoglycans in the pregnant cervix is approximately one-half of that in the non-pregnant cervix indicates that the turnover of proteoglycans in pregnant cervical tissue is significantly increased. The major effect of this profound change of metabolism was a 50% decrease in proteoglycan content and a 2-fold increased proportion of a dermatan sulphate proteoglycan with an

  7. Insights into the key roles of proteoglycans in breast cancer biology and translational medicine

    PubMed Central

    Theocharis, Achilleas D.; Skandalis, Spyros S.; Neill, Thomas; Multhaupt, Hinke A. B.; Hubo, Mario; Frey, Helena; Gopal, Sandeep; Gomes, Angélica; Afratis, Nikos; Lim, Hooi Ching; Couchman, John R.; Filmus, Jorge; Sanderson, Ralph D.; Schaefer, Liliana; Iozzo, Renato V.; Karamanos, Nikos K.

    2015-01-01

    Proteoglycans control numerous normal and pathological processes, among which are morphogenesis, tissue repair, inflammation, vascularization and cancer metastasis. During tumor development and growth, proteoglycan expression is markedly modified in the tumor microenvironment. Altered expression of proteoglycans on tumor and stromal cell membranes affects cancer cell signaling, growth and survival, cell adhesion, migration and angiogenesis. Despite the high complexity and heterogeneity of breast cancer, the rapid evolution in our knowledge that proteoglycans are among the key players in the breast tumor microenvironment suggests their potential as pharmacological targets in this type of cancer. It has been recently suggested that pharmacological treatment may target proteoglycan metabolism, their utilization as targets for immunotherapy or their direct use as therapeutic agents. The diversity inherent in the proteoglycans that will be presented herein provides the potential for multiple layers of regulation of breast tumor behavior. This review summarizes recent developments concerning the biology of selected proteoglycans in breast cancer, and presents potential targeted therapeutic approaches based on their novel key roles in breast cancer. PMID:25829250

  8. Insights into the key roles of proteoglycans in breast cancer biology and translational medicine.

    PubMed

    Theocharis, Achilleas D; Skandalis, Spyros S; Neill, Thomas; Multhaupt, Hinke A B; Hubo, Mario; Frey, Helena; Gopal, Sandeep; Gomes, Angélica; Afratis, Nikos; Lim, Hooi Ching; Couchman, John R; Filmus, Jorge; Sanderson, Ralph D; Schaefer, Liliana; Iozzo, Renato V; Karamanos, Nikos K

    2015-04-01

    Proteoglycans control numerous normal and pathological processes, among which are morphogenesis, tissue repair, inflammation, vascularization and cancer metastasis. During tumor development and growth, proteoglycan expression is markedly modified in the tumor microenvironment. Altered expression of proteoglycans on tumor and stromal cell membranes affects cancer cell signaling, growth and survival, cell adhesion, migration and angiogenesis. Despite the high complexity and heterogeneity of breast cancer, the rapid evolution in our knowledge that proteoglycans are among the key players in the breast tumor microenvironment suggests their potential as pharmacological targets in this type of cancer. It has been recently suggested that pharmacological treatment may target proteoglycan metabolism, their utilization as targets for immunotherapy or their direct use as therapeutic agents. The diversity inherent in the proteoglycans that will be presented herein provides the potential for multiple layers of regulation of breast tumor behavior. This review summarizes recent developments concerning the biology of selected proteoglycans in breast cancer, and presents potential targeted therapeutic approaches based on their novel key roles in breast cancer. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Synthesis by Schwann cells of basal lamina and membrane-associated heparan sulfate proteoglycans

    PubMed Central

    1985-01-01

    Primary cultures that contain only Schwann cells and sensory nerve cells synthesize basal lamina. The assembly of this basal lamina appears to be essential for normal Schwann cell development. In this study, we demonstrate that Schwann cells synthesize two major heparan sulfate-containing proteoglycans. Both proteoglycans band in dissociative CsCl gradients at densities less than 1.4 g/ml, and therefore, presumably, have relatively low carbohydrate-to-protein ratios. The larger of these proteoglycans elutes from Sepharose CL-4B in 4 M guanidine hydrochloride (GuHCl) at a Kav of 0.21 and contains heparan sulfate and chondroitin sulfate chains of Mr 21,000 in a ratio of approximately 3:1. This proteoglycan is extracted from cultures by 4 M GuHCl but not Triton X-100 and accumulates only when Schwann cells are actively synthesizing basal lamina. The smaller proteoglycan elutes from Sepharose CL-4B at a Kav of 0.44 and contains heparan sulfate and chondroitin sulfate chains of Mr 18,000 in a ratio of approximately 4:1. This proteoglycan is extracted by 4 M GuHCl or by Triton X-100. The accumulation of this proteoglycan is independent of basal lamina production. PMID:3160714

  10. Structural characteristics of articular cartilage proteoglycan in IgG induced experimental immune synovitis.

    PubMed Central

    Malemud, C J; Yoo, J U; Goldberg, V M; Kresina, T F

    1987-01-01

    The early changes (five weeks) in the structure of newly synthesised and endogenous articular cartilage sulphated proteoglycans were studied in lapine IgG induced experimental immune synovitis. Rabbits with immune synovitis (IS-IgG) were compared with animals with a developed hypersensitivity to IgG (I-IgG) and with non-treated normal weight matched controls. Medial and lateral femoral condyle and tibial plateau cartilage was pooled and radiolabelled for 24 h in vitro with 35SO4. The samples constituted tissue from regions underlying pannus and from pannus free sites. Cartilage from animals with IS-IgG showed a significantly diminished amount of newly synthesised and endogenous proteoglycan aggregate and an increased amount of hydrodynamically small proteoglycans. Newly synthesised (obtained by in vivo radiosulphate labelling) and endogenous proteoglycans showed a similar profile. The proteoglycan monomer fraction from animals with IS-IgG failed to form proteoglycan aggregates in the presence of excess hyaluronic acid. In the group with IS-IgG linear regression analysis showed a statistically significant relationship between the synovial pathology scores (but not cartilage pathology score) and diminished newly synthesised and endogenous proteoglycan aggregate. PMID:3662640

  11. Proteoglycan metabolism associated with mouse metanephric development: morphologic and biochemical effects of beta-D-xyloside

    SciTech Connect

    Platt, J.L.; Brown, D.M.; Granlund, K.; Oegema, T.R.; Klein, D.J.

    1987-10-01

    Morphology and de novo incorporation of (/sup 35/S)sulfate into proteoglycans were studied in fetal mouse kidneys at the onset of organogenesis. Branching morphogenesis and nephron development in organ culture and in vivo were associated with de novo synthesis of chondroitin-SO/sub 4/ and heparan-SO/sub 4/ proteoglycans. The role of proteoglycan metabolism in metanephrogenesis was then studied by analysis of the effects of p-nitrophenyl-beta-D-xylopyranoside (beta-D-xyloside) on renal development and proteoglycan metabolism. Incubation of fetal kidneys in beta-D-xyloside at concentrations of 1.0 and 0.5 mM, but not at 0.1 mM, caused inhibition of ureteric branching and markedly diminished synthesis of a large Mr 2.0 X 10(6) Da chondroitin-SO/sub 4/ proteoglycan. Incorporation of (/sup 35/S)sulfate was stimulated at all beta-D-xyloside concentrations, reflecting synthesis of xyloside initiated dermatan-/sup 35/SO/sub 4/ chains. In contrast to dramatic effects on chondroitin-SO/sub 4/ synthesis and ureteric branching, beta-D-xyloside had no effect on heparan-SO/sub 4/ synthesis or on development of the glomerulus and glomerular basement membrane. We thus characterize the proteoglycans synthesized early in the course of renal organogenesis and describe observations which suggest an association between metabolism of chondroitin-SO/sub 4/ proteoglycan and development of the ureter.

  12. The Electric Giant Resonances

    NASA Astrophysics Data System (ADS)

    van der Woude, A.

    The following sections are included: * Introduction * Experimental Methods to Study Giant Resonances * Introduction * The Tools * Introduction * Tools for Isoscalar Scattering * INELASTIC α-SCATTERING * INELASTIC PROTON SCATTERING * Tools for Isovector Excitations * γ-ABSORPTION AND PARTICLE CAPTURE REACTIONS * CHARGE EXCHANGE REACTIONS - THE (π+, π0) REACTION * Tools For Isoscalar And Isovector Excitations * INELASTIC ELECTRON SCATTERING * GIANT RESONANCE EXCITATION BY FAST HEAVY IONS * From Multipole Cross Section To Multipole Strength * The Electric Isoscalar Resonances * The Isoscalar Giant Monopole Resonance * Systematics on the GMR * Compressibility and the Giant Monopole Resonance * Introduction * The Compressibility of nuclear matter from the GMR energies * Discussion * The Isoscalar Giant Quadrupole Resonance * General Trends In Medium-Heavy and Heavy Nuclei * The GQR In Light Nuclei * The Isoscalar 3- Strength, LEOR and HEOR * Isoscalar 4+ Strength * Miscellaneous; Isoscalar 1- and L > 4-Strength * The Electric Isovector Giant Resonances * The Isovector Giant Dipole Resonance: GDR * The Isovector Giant Monopole Resonances: IVGMR * The Isovector Quadrupole Resonance: IVGQR * The Effect of Ground State Deformation on the Shape of Giant Resonance: Microscopic Picture * Giant Resonances Built on Excited States * Introduction * Capture Reactions on Light Nuclei * Statistical decay of GDR γ Emission in Heavy Compound Systems * Introduction * Theoretical Predictions * Some Experimental Results * Summary and Outlook * Acknowledgements * General References * References

  13. Sensory ecology: giant eyes for giant predators?

    PubMed

    Partridge, Julian C

    2012-04-24

    Mathematical models suggest the enormous eyes of giant and colossal squid evolved to see the bioluminescence induced by the approach of predatory whales. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Heparan sulfate proteoglycans: a sugar code for vertebrate development?

    PubMed Central

    Poulain, Fabienne E.; Yost, H. Joseph

    2015-01-01

    Heparan sulfate proteoglycans (HSPGs) have long been implicated in a wide range of cell-cell signaling and cell-matrix interactions, both in vitro and in vivo in invertebrate models. Although many of the genes that encode HSPG core proteins and the biosynthetic enzymes that generate and modify HSPG sugar chains have not yet been analyzed by genetics in vertebrates, recent studies have shown that HSPGs do indeed mediate a wide range of functions in early vertebrate development, for example during left-right patterning and in cardiovascular and neural development. Here, we provide a comprehensive overview of the various roles of HSPGs in these systems and explore the concept of an instructive heparan sulfate sugar code for modulating vertebrate development. PMID:26487777

  15. Heparan sulfate proteoglycans: a sugar code for vertebrate development?

    PubMed

    Poulain, Fabienne E; Yost, H Joseph

    2015-10-15

    Heparan sulfate proteoglycans (HSPGs) have long been implicated in a wide range of cell-cell signaling and cell-matrix interactions, both in vitro and in vivo in invertebrate models. Although many of the genes that encode HSPG core proteins and the biosynthetic enzymes that generate and modify HSPG sugar chains have not yet been analyzed by genetics in vertebrates, recent studies have shown that HSPGs do indeed mediate a wide range of functions in early vertebrate development, for example during left-right patterning and in cardiovascular and neural development. Here, we provide a comprehensive overview of the various roles of HSPGs in these systems and explore the concept of an instructive heparan sulfate sugar code for modulating vertebrate development.

  16. Proteoglycan biosynthesis in murine monocytic leukemic (M1) cells before and after differentiation

    SciTech Connect

    McQuillan, D.J.; Yanagishita, M.; Hascall, V.C.; Bickel, M. )

    1989-08-05

    Murine monocytic leukemic (M1) cells were cultured in the presence of ({sup 3}H)glucosamine and ({sup 35}S)sulfate. Labeled proteoglycans were purified by anion exchange chromatography and characterized by gel filtration and sodium dodecyl sulfate-polyacrylamide gel electrophoresis in combination with chemical and enzymatic degradation. M1 cells synthesize a single predominant species of proteoglycan which distributes almost equally between the cell and medium after 17 h labeling. The cell-associated proteoglycan has an overall size of about 135 kDa and contains three to five chondroitin sulfate chains (28-31 kDa each) attached to a chondroitinase-generated core protein of 28 kDa. The synthesis and subsequent secretion of this proteoglycan was enhanced 4-5-fold in cells induced to differentiate into macrophages. This was not a phenomenon of arrest in the G0/G1 stage of the cell cycle, since density inhibited undifferentiated cells arrested at this stage did not increase proteoglycan synthesis. The chondroitin sulfate chains contained exclusively chondroitin 4- and 6-sulfate; however, the ratio of these two disaccharides differed between the medium- and cell-associated proteoglycans, and changed during progression of the cells into a fully differentiated phenotype. Pulse-chase kinetics indicate the presence of two distinct pools of proteoglycan; one that is secreted very rapidly from the cell after a approximately 1-h lag, and a second pool that is turned over in the cell with a half-time of approximately 3.5 h. Subtle differences in the glycosylation patterns of the medium- and cell-associated species are consistent with synthesis of two pools. Papain digestion suggests that the chondroitin sulfate chains are clustered on a small protease resistant peptide. The data suggest that this proteoglycan is similar to the serglycin proteoglycan family.

  17. In vivo turnover of the basement membrane and other heparan sulfate proteoglycans of rat glomerulus

    SciTech Connect

    Beavan, L.A.; Davies, M.; Couchman, J.R.; Williams, M.A.; Mason, R.M.

    1989-03-01

    The metabolic turnover of rat glomerular proteoglycans in vivo was investigated. Newly synthesized proteoglycans were labeled during a 7-h period after injecting sodium (35S)sulfate intraperitoneally. At the end of the labeling period a chase dose of sodium sulfate was given. Subsequently at defined times (0-163 h) the kidneys were perfused in situ with 0.01% cetylpyridinium chloride in phosphate-buffered saline to maximize the recovery of 35S-proteoglycans. Glomeruli were isolated from the renal cortex and analyzed for 35S-proteoglycans by autoradiographic, biochemical, and immunochemical methods. Grain counting of autoradiographs revealed a complex turnover pattern of 35S-labeled macromolecules, commencing with a rapid phase followed by a slower phase. Biochemical analysis confirmed the biphasic pattern and showed that the total population of (35S)heparan sulfate proteoglycans had a metabolic half-life (t1/2) of 20 and 60 h in the early and late phases, respectively. Heparan sulfate proteoglycans accounted for 80% of total 35S-proteoglycans, the remainder being chondroitin/dermatan sulfate proteoglycans. Whole glomeruli were extracted with 4% 3-((cholamidopropyl)dimethy-lammonio)-1-propanesulfonate-4 M guanidine hydrochloride, a procedure which solubilized greater than 95% of the 35S-labeled macromolecules. Of these 11-13% was immunoprecipitated by an antiserum against heparan sulfate proteoglycan which, in immunolocalization experiments, showed specificity for staining the basement membrane of rat glomeruli. Autoradiographic analysis showed that 18% of total radioactivity present at the end of the labeling period was associated with the glomerular basement membrane.

  18. Hairpin Furans and Giant Biaryls.

    PubMed

    Geng, Xin; Mague, Joel T; Donahue, James P; Pascal, Robert A

    2016-05-06

    The thermal reaction of two cyclopentadienones with 5,5'-binaphthoquinone or 6,6'-dimethoxy-5,5'-binaphthoquinone in refluxing nitrobenzene (210 °C) gives, in a single synthetic step that includes two Diels-Alder additions, two decarbonylations, and two dehydrogenations, giant biaryl bisquinones (compounds 13, 14, 15, 18, and 21). However, when two cyclopentadienones react with 6,6'-dimethoxy-5,5'-binaphthoquinone in nitrobenzene at higher temperatures (250-260 °C), the resulting products are molecular ribbons composed of two twisted aromatic systems fused to a heteropentahelicene (19, 20, and 22). These molecules are representatives of a new class of chiral polycyclic aromatic compounds, the "hairpin furans". Interestingly, reheating a dimethoxy-substituted giant biaryl (e.g., 21) in nitrobenzene at 260 °C does not yield the corresponding hairpin furan (22), and mechanistic studies indicate that some intermediate or byproduct of the synthesis of the giant biaryls is a reagent or catalyst necessary for the conversion of the dimethoxybiaryl to the furan.

  19. MOLECULAR RESURFACING OF CARTILAGE WITH PROTEOGLYCAN 4 (PRG4)

    PubMed Central

    Chawla, Kanika; Ham, Hyun Ok; Nguyen, Trung; Messersmith, Phillip B.

    2010-01-01

    Early loss of proteoglycan 4 (PRG4), a lubricating glycoprotein implicated in boundary lubrication, from the cartilage surface has been associated with degeneration of cartilage and early onset of osteoarthritis. Viscosupplementation with hyaluronic acid and other macromolecules has been proposed as a treatment of osteoarthritis, however efficacy of viscosupplementation is variable and may be influenced by the short residence time of lubricant in the knee joint after injection. Recent studies have demonstrated the use of aldehyde (CHO) modified extracellular matrix proteins for targeted adherence to a biological tissue surface. We hypothesized that CHO could be exploited to enhance binding of lubricating proteoglycans to the surface of PRG4 depleted cartilage. The objective of this study was to determine the feasibility of molecular resurfacing of cartilage with aldehyde modified PRG4. PRG4 was chemically functionalized with aldehyde (PRG4-CHO), and aldehyde plus Oregon Green (OG) fluorophore (PRG4-OG-CHO) to allow for differentiation of endogenous and exogenous PRG4. Cartilage disks depleted of native PRG4 were then treated with solutions of PRG4, PRG4-CHO, or PRG4-OG-CHO and then assayed for the presence of PRG4 by immunohistochemistry, ELISA, and fluorescence imaging. Repletion of cartilage surfaces was significantly enhanced with the inclusion of CHO compared to repletion with unmodified PRG4. These findings suggest a generalized approach that may be used for molecular resurfacing of tissue surfaces with PRG4 and other lubricating biomolecules, perhaps leading in the future to a convenient method for overcoming loss of lubrication during the early stages of osteoarthritis. PMID:20338268

  20. Apolipoproteins E and AV mediate lipoprotein clearance by hepatic proteoglycans

    PubMed Central

    Gonzales, Jon C.; Gordts, Philip L.S.M.; Foley, Erin M.; Esko, Jeffrey D.

    2013-01-01

    The heparan sulfate proteoglycan (HSPG) syndecan-1 (SDC1) acts as a major receptor for triglyceride-rich lipoprotein (TRL) clearance in the liver. We sought to identify the relevant apolipoproteins on TRLs that mediate binding to SDC1 and determine their clinical relevance. Evidence supporting ApoE as a major determinant arose from its enrichment in TRLs from mice defective in hepatic heparan sulfate (Ndst1f/fAlbCre+ mice), decreased binding of ApoE-deficient TRLs to HSPGs on human hepatoma cells, and decreased clearance of ApoE-deficient [3H]TRLs in vivo. Evidence for a second ligand was suggested by the faster clearance of ApoE-deficient TRLs after injection into WT Ndst1f/fAlbCre– versus mutant Ndst1f/fAlbCre+ mice and elevated fasting and postprandial plasma triglycerides in compound Apoe–/–Ndst1f/fAlbCre+ mice compared with either single mutant. ApoAV emerged as a candidate based on 6-fold enrichment of ApoAV in TRLs accumulating in Ndst1f/fAlbCre+ mice, decreased binding of TRLs to proteoglycans after depletion of ApoAV or addition of anti-ApoAV mAb, and decreased heparan sulfate–dependent binding of ApoAV-deficient particles to hepatocytes. Importantly, disruption of hepatic heparan sulfate–mediated clearance increased atherosclerosis. We conclude that clearance of TRLs by hepatic HSPGs is atheroprotective and mediated by multivalent binding to ApoE and ApoAV. PMID:23676495

  1. Functional and clinical relevance of chondroitin sulfate proteoglycan 4.

    PubMed

    Campoli, Michael; Ferrone, Soldano; Wang, Xinhui

    2010-01-01

    The lack of effective conventional therapies for the treatment of advanced stage melanoma has stimulated interest in the development of novel strategies for the management of patients with malignant melanoma. Among them, immunotherapy has attracted much attention because of the potential role played by immunological events in the clinical course of melanoma. For many years, T cell-based immunotherapy has been emphasized in part because of the disappointing results of the monoclonal antibody (mAb)-based clinical trials conducted in the early 1980s and in part because of the postulated major role played by T cells in tumor growth control. More recently, mAb-based therapies have gained in popularity given their clinical and commercial success for a variety of malignant diseases. As a result, there has been increased interest in identifying and characterizing antibody-defined melanoma antigens. Among them, the chondroitin sulfate proteoglycan 4 (CSPG4), also known as high molecular weight-melanoma associated antigen (HMW-MAA) or melanoma chondroitin sulfate proteoglycan (MCSP), has attracted much attention in recent years because of the growing experimental evidence that it fulfills two requirements for immunotherapy to be therapeutically effective: (1) targeting of cancer stem cells (CSC) and (2) development of combinatorial therapies to counteract the escape mechanisms driven by the genetic instability of tumor cells. With this in mind, in this chapter, we have reviewed recent information related to the distribution of CSPG4 on various types of tumors, including CSC, its expression on pericytes in the tumor microenvironment, its recognition by T cells, its role in cell biology as well as the potential mechanisms underlying the ability of CSPG4-specific immunity to control malignant cell growth.

  2. Sulphated glycosaminoglycans and proteoglycans in the developing vertebral column of juvenile Atlantic salmon (Salmo salar).

    PubMed

    Hannesson, Kirsten O; Ytteborg, Elisabeth; Takle, Harald; Enersen, Grethe; Bæverfjord, Grete; Pedersen, Mona E

    2015-08-01

    In the present study, the distribution of sulphated glycosaminoglycans (GAGs) in the developing vertebral column of Atlantic salmon (Salmo salar) at 700, 900, 1100 and 1400 d° was examined by light microscopy. The mineralization pattern was outlined by Alizarin red S and soft structures by Alcian blue. The temporal and spatial distribution patterns of different types of GAGs: chondroitin-4-sulphate/dermatan sulphate, chondroitin-6-sulphate, chondroitin-0-sulphate and keratan sulphate were addressed by immunohistochemistry using monoclonal antibodies against the different GAGs. The specific pattern obtained with the different antibodies suggests a unique role of the different GAG types in pattern formation and mineralization. In addition, the distribution of the different GAG types in normal and malformed vertebral columns from 15 g salmon was compared. A changed expression pattern of GAGs was found in the malformed vertebrae, indicating the involvement of these molecules during the pathogenesis. The molecular size of proteoglycans (PGs) in the vertebrae carrying GAGs was analysed with western blotting, and mRNA transcription of the PGs aggrecan, decorin, biglycan, fibromodulin and lumican by real-time qPCR. Our study reveals the importance of GAGs in development of vertebral column also in Atlantic salmon and indicates that a more comprehensive approach is necessary to completely understand the processes involved.

  3. Influence of orthodontic forces on the distribution of proteoglycans in rat hypofunctional periodontal ligament.

    PubMed

    Esashika, Mayumi; Kaneko, Sawa; Yanagishita, Masaki; Soma, Kunimichi

    2003-06-01

    During orthodontic treatment, it is often necessary to move the hypofunctional teeth. In this study, we revealed an influence of orthodontic forces in the hypofunctional periodontal ligament, and focused on the distribution of proteoglycans, major extracellular matrix molecules. Five-week-old rats were divided into normal group and hypofunctional group. To induce occlusal hypofunction, occluding teeth of the mandibular first molar were extracted. At 8-week-old, orthodontic force by 15 or 2 gf titanium-nickel alloy closed coil spring was applied to the mandibular first molar toward the mesial direction. Immunohistochemical analysis was performed using antibodies for chondroitin sulfate (CS) and heparan sulfate (HS). In normal group, CS was observed throughout the extracellular matrix, while HS was observed on the endothelial cells and the osteoclastic cells on compressive side. In hypofunctional group without orthodontic appliance, CS and HS were detected in less amounts. With 15 gf, CS was observed at the compressive area where no cells and fibers were present, and HS was observed at the periphery of this area. With 2 gf, however, the distribution of CS and HS was similar to the normal control. These findings indicate that CS and HS were affected by orthodontic forces, and suggest their distinct functions in tissue remodeling.

  4. The identification of proteoglycans and glycosaminoglycans in archaeological human bones and teeth.

    PubMed

    Coulson-Thomas, Yvette M; Coulson-Thomas, Vivien J; Norton, Andrew L; Gesteira, Tarsis F; Cavalheiro, Renan P; Meneghetti, Maria Cecília Z; Martins, João R; Dixon, Ronald A; Nader, Helena B

    2015-01-01

    Bone tissue is mineralized dense connective tissue consisting mainly of a mineral component (hydroxyapatite) and an organic matrix comprised of collagens, non-collagenous proteins and proteoglycans (PGs). Extracellular matrix proteins and PGs bind tightly to hydroxyapatite which would protect these molecules from the destructive effects of temperature and chemical agents after death. DNA and proteins have been successfully extracted from archaeological skeletons from which valuable information has been obtained; however, to date neither PGs nor glycosaminoglycan (GAG) chains have been studied in archaeological skeletons. PGs and GAGs play a major role in bone morphogenesis, homeostasis and degenerative bone disease. The ability to isolate and characterize PG and GAG content from archaeological skeletons would unveil valuable paleontological information. We therefore optimized methods for the extraction of both PGs and GAGs from archaeological human skeletons. PGs and GAGs were successfully extracted from both archaeological human bones and teeth, and characterized by their electrophoretic mobility in agarose gel, degradation by specific enzymes and HPLC. The GAG populations isolated were chondroitin sulfate (CS) and hyaluronic acid (HA). In addition, a CSPG was detected. The localization of CS, HA, three small leucine rich PGs (biglycan, decorin and fibromodulin) and glypican was analyzed in archaeological human bone slices. Staining patterns were different for juvenile and adult bones, whilst adolescent bones had a similar staining pattern to adult bones. The finding that significant quantities of PGs and GAGs persist in archaeological bones and teeth opens novel venues for the field of Paleontology.

  5. NG2 PROTEOGLYCAN-DEPENDENT CONTRIBUTIONS OF PERICYTES AND MACROPHAGES TO BRAIN TUMOR VASCULARIZATION AND PROGRESSION

    PubMed Central

    Stallcup, William B.; You, Weon-Kyoo; Kucharova, Karolina; Cejudo-Martin, Pilar; Yotsumoto, Fusanori

    2015-01-01

    The NG2 proteoglycan promotes tumor growth as a component of both tumor and stromal cells. Using intracranial, NG2-negative B16F10 melanomas, we have investigated the importance of pericyte and macrophage NG2 in brain tumor progression. Reduced melanoma growth in myeloid-specific NG2 null (Mac-NG2ko) and pericyte-specific NG2 null (PC-NG2ko) mice demonstrates the importance of NG2 in both stromal compartments. In each genotype, loss of pericyte-endothelial cell interaction diminishes formation of endothelial junctions and assembly of the basal lamina. Tumor vessels in Mac-NG2ko mice have smaller diameters, reduced patency, and increased leakiness compared to PC-NG2ko mice, thus decreasing tumor blood supply and increasing hypoxia. While reduced pericyte interaction with endothelial cells in PC-NG2ko mice results from loss of pericyte activation of β1 integrin signaling in endothelial cells, reduced pericyte-endothelial cell interaction in Mac-NG2ko mice results from 90% reduced macrophage recruitment. The absence of macrophage-derived signals in Mac-NG2ko mice causes loss of pericyte association with endothelial cells. Reduced macrophage recruitment may be due to diminished activation of integrins in the absence of NG2, causing decreased macrophage interaction with endothelial adhesion molecules that are needed for extravasation. These results reflect the complex interplay that occurs between macrophages, pericytes, and endothelial cells during tumor vascularization. PMID:26465118

  6. Small Leucine Rich Proteoglycans Exhibit Unique Spatiotemporal Expression Profiles During Cardiac Valve Development

    PubMed Central

    Dupuis, Loren E.; Kern, Christine B.

    2015-01-01

    Background Small Leucine Rich Proteoglycans (SLRPs) play a role in collagen fiber formation and also function as signaling molecules. Given the importance of collagen synthesis to the cardiovascular extracellular matrix (ECM), we examined the spatiotemporal expression of SLRPs, not previously investigated in the murine heart. Results Cardiac expression using antibodies specific for biglycan (BGN), decorin (DCN), fibromodulin (FMOD) and lumican (LUM) revealed distinct patterns among the SLRPs in mesenchymal-derived tissues. DCN showed the most intense localization within the developing valve cusps, while LUM was evident primarily in the hinge region of postnatal cardiac valves. BGN, DCN and FMOD were immunolocalized to regions where cardiac valves anchor into adjacent tissues. Medial (BGN), and adventitial (BGN, DCN, FMOD and LUM) layers of the pulmonary and aortic arteries also showed intense staining of SLRPs but this spatiotemporal expression varied with developmental age. Conclusions The unique expression patterns of SLRPs suggest they have adapted to specialized roles in the cardiovascular ECM. SLRP expression patterns overlap with areas where TGFβ signaling is critical to the developing heart. Therefore we speculate that SLRPs may not only be required to facilitate collagen fiber formation but may also regulate TGFβ signaling in the murine heart. PMID:24272803

  7. The regulatory roles of small leucine-rich proteoglycans in extracellular assembly*

    PubMed Central

    Chen, Shoujun; Birk, David E.

    2013-01-01

    Small leucine rich proteoglycans (SLRPs) are involved in a variety of biological and pathological processes. This review focuses on their regulatory roles in matrix assembly. SLRPs have protein cores and hypervariable glycosylation with multivalent binding abilities. During development, differential interactions of SLRPs with other molecules results in tissue-specific spatial and temporal distributions. The changing expression patterns play a critical role in the regulation of tissue-specific matrix assembly and, therefore, tissue function. SLRPs have significant structural roles within extracellular matrices. In addition, they have instructive roles, regulating collagen fibril growth, fibril organization, and extracellular matrix assembly. Moreover, they are involved in mediating cell-matrix interactions. Abnormal SLRP expression and/or structures result in dysfunctional extracellular matrices and pathophysiology. Altered expression of SLRPs has been found in many disease models, and structural deficiency also causes altered matrix assembly. SLRPs regulate the assembly of the extracellular matrix, which defines the microenvironment, modulating both the extracellular matrix and cellular functions leading to an impact on tissue function. PMID:23331954

  8. Differences in gene expression of human xylosyltransferases and determination of acceptor specificities for various proteoglycans

    SciTech Connect

    Roch, Christina; Kuhn, Joachim; Kleesiek, Knut; Goetting, Christian

    2010-01-01

    The xylosyltransferase (XT) isoforms XT-I and XT-II initiate the posttranslational glycosaminoglycan (GAG) synthesis. Here, we determined the relative expression of both isoforms in 33 human cell lines. The majority of tested cell lines showed dominant XYLT2 gene expression, while only in 23132/87, JAR, NCI-H510A and THP-1 was the XT-I mRNA expression higher. Nearly equal expression levels were detected in six cell lines. Additionally, to shed light on putative differences in acceptor specificities the acceptor properties of potential acceptor sequences were determined. Peptides were expressed as glutathione-S-transferase fusion proteins containing putative or known GAG attachment sites of in vivo proteoglycans. Kinetic analysis showed that K{sub m} and V{sub max} values for XT-I mediated xylosylation were slightly higher than those for XT-II, and that XT-I showed a lesser stringency concerning the acceptor sequence. Mutagenesis of the bikunin peptide sequence in the G-S-G attachment site and flanking regions generated potential acceptor molecules. Here, mutations on the N-terminal side and the attachment site were found to be more susceptible to a loss of acceptor function than mutations in the C-terminus. Altogether the known consensus sequence a-a-a-a-G-S-G-a-a/G-a ('a' representing Asp or Glu) for XT-I mediated xylosylation could be approved and additionally extended to apply to XT-II as well.

  9. Key roles for the small leucine-rich proteoglycans in renal and pulmonary pathophysiology

    PubMed Central

    Nastase, Madalina V.; Iozzo, Renato V.; Schaefer, Liliana

    2014-01-01

    Background Small leucine-rich proteoglycans (SLRPs) are molecules that have signaling roles in a multitude of biological processes. In this respect, SLRPs play key roles in the evolution of a variety of diseases throughout the human body. Scope of Review We will critically review current developments in the roles of SLRPs in several types of disease of the kidney and lungs. Particular emphasis will be given to the roles of decorin and biglycan, the best characterized members of the SLRP gene family. Major Conclusions In both renal and pulmonary disorders, SLRPs are essential elements that regulate several pathophysiological processes including fibrosis, inflammation and tumor progression. Decorin has remarkable antifibrotic and antitumorigenic properties and is considered a valuable potential treatment of these diseases. Biglycan can modulate inflammatory processes in lung and renal inflammation and is a potential target in the treatment of inflammatory conditions. General significance SLRPs can serve as either treatment targets or as potential treatment in renal or lung disease. PMID:24508120

  10. Screening of a novel peptide targeting the proteoglycan-like region of human carbonic anhydrase IX.

    PubMed

    Rana, Shoaib; Nissen, Felix; Lindner, Thomas; Altmann, Annette; Mier, Walter; Debus, Juergen; Haberkorn, Uwe; Askoxylakis, Vasileios

    2013-01-01

    The extracellular domain of human carbonic anhydrase IX (CA IX) is extended by a proteoglycan-like region (PGLR). The aim of the present study was the development of novel molecules with specificity for PGLR, which may be used for tumor targeting and imaging. PGLR was chemically synthesized, and phage display biopanning was performed. The identified ligand PGLR-P1 was labeled with 125I and characterized for target binding and metabolic stability. In vitro characterization included kinetic, competition, and internalization studies on CA IX-positive renal cell carcinoma SKRC 52 cells. The CA IX-negative cell lines HEK293 wt and BxPC3 were used as negative controls. In vitro binding experiments revealed an increasing affinity of 125I-PGLR-P1 to SKRC 52 cells but not to negative control HEK293 wt and BxPC3 cells. Internalization studies indicated an exclusive cell membrane binding. Biodistribution analysis demonstrated a higher accumulation in SKRC 52 tumors than in most normal tissues after perfusion. In vivo blocking led to a significant decrease in tumor uptake. Our findings indicate that PGLR-P1 is a promising lead structure for the development of new peptide-based ligands targeting the PGLR of CA IX and reveal challenges that need to be considered for peptide-related molecular imaging.

  11. The Identification of Proteoglycans and Glycosaminoglycans in Archaeological Human Bones and Teeth

    PubMed Central

    Coulson-Thomas, Yvette M.; Coulson-Thomas, Vivien J.; Norton, Andrew L.; Gesteira, Tarsis F.; Cavalheiro, Renan P.; Meneghetti, Maria Cecília Z.; Martins, João R.; Dixon, Ronald A.; Nader, Helena B.

    2015-01-01

    Bone tissue is mineralized dense connective tissue consisting mainly of a mineral component (hydroxyapatite) and an organic matrix comprised of collagens, non-collagenous proteins and proteoglycans (PGs). Extracellular matrix proteins and PGs bind tightly to hydroxyapatite which would protect these molecules from the destructive effects of temperature and chemical agents after death. DNA and proteins have been successfully extracted from archaeological skeletons from which valuable information has been obtained; however, to date neither PGs nor glycosaminoglycan (GAG) chains have been studied in archaeological skeletons. PGs and GAGs play a major role in bone morphogenesis, homeostasis and degenerative bone disease. The ability to isolate and characterize PG and GAG content from archaeological skeletons would unveil valuable paleontological information. We therefore optimized methods for the extraction of both PGs and GAGs from archaeological human skeletons. PGs and GAGs were successfully extracted from both archaeological human bones and teeth, and characterized by their electrophoretic mobility in agarose gel, degradation by specific enzymes and HPLC. The GAG populations isolated were chondroitin sulfate (CS) and hyaluronic acid (HA). In addition, a CSPG was detected. The localization of CS, HA, three small leucine rich PGs (biglycan, decorin and fibromodulin) and glypican was analyzed in archaeological human bone slices. Staining patterns were different for juvenile and adult bones, whilst adolescent bones had a similar staining pattern to adult bones. The finding that significant quantities of PGs and GAGs persist in archaeological bones and teeth opens novel venues for the field of Paleontology. PMID:26107959

  12. Atherogenic remnant lipoproteins: role for proteoglycans in trapping, transferring, and internalizing

    PubMed Central

    Mahley, Robert W.; Huang, Yadong

    2007-01-01

    Unraveling the mechanisms controlling remnant lipoprotein clearance is important, as these lipoproteins are highly atherogenic. The most critical molecule in this process is apoE, which mediates high-affinity binding of remnant lipoproteins to members of the LDL receptor (LDLR) family and cell-surface heparan sulfate proteoglycans (HSPGs), which have been shown to play major independent as well as cooperative roles in remnant lipoprotein clearance. While all the players may have been identified, our understanding of how they interact and function together continues to evolve. In this issue of the JCI, MacArthur et al. (see the related article beginning on page 153) demonstrated that HSPGs under normal physiological conditions are critically important in the clearance of remnant lipoproteins, independent of LDLR family members. The complexity of VLDL and chylomicron remnant clearance was exemplified by the studies of Jones et al., also in this issue (see the related article beginning on page 165). Despite defective clearance of LDL in mice with a deficiency in the adaptor protein controlling internalization of the LDLR, called autosomal recessive hypercholesterolemia (ARH), remnant lipoprotein clearance was not grossly abnormal. A likely explanation is that the abnormal LDLRs bind the remnants and then transfer them to another acceptor for internalization. While the studies clearly demonstrate that the LDLR-related protein 1 is not involved and suggest a role for an additional unidentified receptor, it remains a possibility that HSPGs are responsible for remnant uptake by hepatocytes in the presence of defective LDLR internalization. PMID:17200713

  13. Giant Herbig-Haro Flows

    NASA Astrophysics Data System (ADS)

    Reipurth, Bo; Bally, John; Devine, David

    1997-12-01

    We present the discovery of a number of Herbig-Haro flows which extend over parsec-scale distances. The largest of these is the well known HH 111 jet complex, which is shown, through CCD images and a proper motion study, to have an angular extent of almost one degree on the sky, corresponding to 7.7 pc, making it the largest known HH flow. In our imaging survey we also found that T Tauri is at the center of a huge bipolar HH flow, HH 355, with a total extent of 38 arcmin, corresponding to 1.55 pc, and aligned with the axis of the tiny HH 255 flow surrounding the infrared companion T Tau S. We additionally have found a number of other giant HH flow candidates, including HH 315 at PV Cep, HH 41/295 at Haro 5a/6a, HH 300 in Bl8w, HH 354 in Li 165, HH 376 in Li 152, and HH 114/115 and HH 243/244/245/179 in the X Orionis molecular ring. It thus appears that it is common for HH flows to attain parsec-scale dimensions. The ubiquity of parsec-scale HH flows profoundly alters our view of the impact of young stars on their environment. Giant flows have dynamical ages comparable to the duration of the accretion phase of the sources, and provide a fossil record of their mass loss and accretion history. Multiple internal working surfaces and their S-shaped point symmetry provide evidence for variability of ejection velocity and orientation of the source jets. Giant HH flows are either longer or comparable in length to associated CO outflows, providing evidence for unified models in which HH flows power CO flows. Many giant flows have burst out of their source cloud cores and are dissociating molecules and injecting momentum and kinetic energy into the interclump medium of the host clouds. They contribute to the UV radiation field, and may produce C I and C ii in cloud interiors. Giant flows may contribute to the chemical rejuvenation of clouds, the generation of turbulent motions, and the self-regulation of star formation. The terminal working surfaces of giant flows may be

  14. On the shape of giant soap bubbles.

    PubMed

    Cohen, Caroline; Darbois Texier, Baptiste; Reyssat, Etienne; Snoeijer, Jacco H; Quéré, David; Clanet, Christophe

    2017-03-07

    We study the effect of gravity on giant soap bubbles and show that it becomes dominant above the critical size [Formula: see text], where [Formula: see text] is the mean thickness of the soap film and [Formula: see text] is the capillary length ([Formula: see text] stands for vapor-liquid surface tension, and [Formula: see text] stands for the liquid density). We first show experimentally that large soap bubbles do not retain a spherical shape but flatten when increasing their size. A theoretical model is then developed to account for this effect, predicting the shape based on mechanical equilibrium. In stark contrast to liquid drops, we show that there is no mechanical limit of the height of giant bubble shapes. In practice, the physicochemical constraints imposed by surfactant molecules limit the access to this large asymptotic domain. However, by an exact analogy, it is shown how the giant bubble shapes can be realized by large inflatable structures.

  15. On the shape of giant soap bubbles

    PubMed Central

    Cohen, Caroline; Darbois Texier, Baptiste; Reyssat, Etienne; Snoeijer, Jacco H.; Quéré, David; Clanet, Christophe

    2017-01-01

    We study the effect of gravity on giant soap bubbles and show that it becomes dominant above the critical size ℓ=a2/e0, where e0 is the mean thickness of the soap film and a=γb/ρg is the capillary length (γb stands for vapor–liquid surface tension, and ρ stands for the liquid density). We first show experimentally that large soap bubbles do not retain a spherical shape but flatten when increasing their size. A theoretical model is then developed to account for this effect, predicting the shape based on mechanical equilibrium. In stark contrast to liquid drops, we show that there is no mechanical limit of the height of giant bubble shapes. In practice, the physicochemical constraints imposed by surfactant molecules limit the access to this large asymptotic domain. However, by an exact analogy, it is shown how the giant bubble shapes can be realized by large inflatable structures. PMID:28223485

  16. Stimulation by concanavalin A of cartilage-matrix proteoglycan synthesis in chondrocyte cultures

    SciTech Connect

    Yan, W.Q.; Nakashima, K.; Iwamoto, M.; Kato, Y. )

    1990-06-15

    The effect of concanavalin A on proteoglycan synthesis by rabbit costal and articular chondrocytes was examined. Chondrocytes were seeded at low density and grown to confluency in medium supplemented with 10% fetal bovine serum, and then the serum concentration was reduced to 0.3%. At the low serum concentration, chondrocytes adopted a fibroblastic morphology. Addition of concanavalin A to the culture medium induced a morphologic alteration of the fibroblastic cells to spherical chondrocytes and increased by 3- to 4-fold incorporation of (35S)sulfate and (3H)glucosamine into large chondroitin sulfate proteoglycan that was characteristically found in cartilage. The stimulation of incorporation of labeled precursors reflected real increases in proteoglycan synthesis, as chemical analyses showed a 4-fold increase in the accumulation of macromolecules containing hexuronic acid in concanavalin A-maintained cultures. Furthermore, the effect of concanavalin A on (35S)sulfate incorporation into proteoglycans was greater than that of various growth factors or hormones. However, concanavalin A had smaller effects on (35S)sulfate incorporation into small proteoglycans and (3H)glucosamine incorporation into hyaluronic acid and chondroitinase AC-resistant glycosaminoglycans. Since other lectins tested, such as wheat germ agglutinin, lentil lectin, and phytohemagglutinin, had little effect on (35S)sulfate incorporation into proteoglycans, the concanavalin A action on chondrocytes seems specific. Although concanavalin A decreased (3H)thymidine incorporation in chondrocytes, the stimulation of proteoglycan synthesis could be observed in chondrocytes exposed to the inhibitor of DNA synthesis, cytosine arabinoside. These results indicate that concanavalin A is a potent modulator of proteoglycan synthesis by chondrocytes.

  17. Characterization of proteoglycan metabolites in human gingival crevicular fluid during orthodontic tooth movement.

    PubMed

    Waddington, R J; Embery, G; Samuels, R H

    1994-05-01

    Previous studies have identified glycosaminoglycans in gingival crevicular fluid (GCF) associated with a variety of clinical conditions, notably those involving bone resorptive activity. GCF was here collected from around teeth undergoing active orthodontic movement. Proteoglycan metabolites were purified from GCF by anion-exchange chromatography using fast performance liquid chromatography. Sulphated glycosaminoglycan was associated with the most highly anionic protein fractions IV, V and VI, and biochemical analysis was restricted to these fractions. Analysis included glycosaminoglycan content by cellulose acetate electrophoresis, molecular size by sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE), Western blotting and amino acid analyses. Fraction IV contained hyaluronan (18.7%) and chondroitin sulphate (10.9%), fraction V heparan sulphate (29.5%) and chondroitin sulphate (19.6%) and fraction VI chondroitin sulphate only (21.3%). SDS-PAGE revealed two Coomassie blue bands in fraction V of 72 and 60 kDa and two further bands in fraction VI of 71 and 56 kDa. These proteoglycans appeared resistant to digestion by chondroitinase ABC or heparinase III, although the glycosaminoglycan chains underwent degradation after protein-core removal. The molecular mass and amino acid composition of the chondroitin sulphate proteoglycan fractions showed a close similarity to those of human alveolar bone proteoglycan. The presence of heparan sulphate proteoglycan in GCF in association with orthodontic movement is in accord with previous reports. The findings support the view that proteoglycans in GCF are 'biomarkers', notably those associated with active resorption of alveolar bone.

  18. Aortic smooth muscle cell proteoglycan synthesis in relation to atherosclerosis

    SciTech Connect

    Edwards, I.J.

    1989-01-01

    Proteoglycans (PG) are implicated in atherogenesis by their effects on tissue permeability and cell proliferation and their interaction with plasma low density lipoproteins. Using the pigeon model in which an atherosclerosis-susceptible (WC) and -resistant (SR) breed can be compared, PG synthesis by cultured aortic smooth muscle cells was examined by the use of ({sup 35}S)-sodium sulfate and ({sup 3}H)-serine or ({sup 3}H)-glucosamine as labeling precursors. In both SR and WC cells, the majority of newly synthesized PG were secreted into the media. Chondroitin sulfate (CS) PG and dermatan sulfate (DS) PG were the major PG produced. Total PG production was consistently lower in WC compared to SR cultures due in part to reduce PG synthesis but also to degradation of newly synthesized PG. Since increased DS-PG accompanines atherosclerosis progression, experiments were designed to test the hypothesis that macrophages modulate smooth muscle cell metabolism to cause increase DS-PG production. Cultured WC aortic smooth muscle cells were exposed to the media of cholesteryl ester-loaded pigeon peritoneal macrophages or a macrophage cell line P388D1 and the production of PG examined. Increasing concentration of conditioned media from both types of macrophages caused increased incorporation of {sup 35}S-sulfate into secreted PG, but no change in cell-associated PG. Lipopolysaccharide activation of P388D1 cells enhanced the effect.

  19. Immunoablation of cells expressing the NG2 chondroitin sulphate proteoglycan.

    PubMed

    Leoni, Giampaolo; Rattray, Marcus; Fulton, Daniel; Rivera, Andrea; Butt, Arthur M

    2014-02-01

    Expression of the transmembrane NG2 chondroitin sulphate proteoglycan (CSPG) defines a distinct population of NG2-glia. NG2-glia serve as a regenerative pool of oligodendrocyte progenitor cells in the adult central nervous system (CNS), which is important for demyelinating diseases such as multiple sclerosis, and are a major component of the glial scar that inhibits axon regeneration after CNS injury. In addition, NG2-glia form unique neuron-glial synapses with unresolved functions. However, to date it has proven difficult to study the importance of NG2-glia in any of these functions using conventional transgenic NG2 'knockout' mice. To overcome this, we aimed to determine whether NG2-glia can be targeted using an immunotoxin approach. We demonstrate that incubation in primary anti-NG2 antibody in combination with secondary saporin-conjugated antibody selectively kills NG2-expressing cells in vitro. In addition, we provide evidence that the same protocol induces the loss of NG2-glia without affecting astrocyte or neuronal numbers in cerebellar brain slices from postnatal mice. This study shows that targeting the NG2 CSPG with immunotoxins is an effective and selective means for killing NG2-glia, which has important implications for studying the functions of these enigmatic cells both in the normal CNS, and in demyelination and degeneration.

  20. Product of per locus of Drosophila shares homology with proteoglycans.

    PubMed

    Jackson, F R; Bargiello, T A; Yun, S H; Young, M W

    Genes controlling biological rhythms have been identified in Drosophila. The best characterized of these genes is called period (per). Although wild-type flies have daily (circadian) rhythms with a periodicity of approximately 24 h, pers and per1 mutants have 19-h and 29-h rhythms, respectively, and pero mutants are arrhythmic. The pers mutation also enhances the sensitivity of the circadian clock to resetting by light stimuli, and all three types of per mutations affect a much shorter period ultradian rhythm, the 55-s rhythm of the Drosophila courtship song. A fragment of DNA of approximately 7 kilobases (kb) encoding a 4.5-kb poly(A)+ RNA restores rhythmicity when transduced into Drosophila carrying mutations or chromosomal deletions of the per locus. Here we report the sequence of this biologically active segment of DNA. The transcription unit that encodes the 4.5-kb RNA has been mapped, permitting a conceptual translation of a protein of 1,127 amino acids. Several abnormal phenotypes characterized by long-period rhythms are associated with changes in the sequence of untranslated portions of the transcription unit. The structure of some segments of the predicted protein suggests that it is a proteoglycan.

  1. Differential Expression of Proteoglycans by Corneal Stromal Cells in Keratoconus.

    PubMed

    García, Beatriz; García-Suárez, Olivia; Merayo-Lloves, Jesús; Alcalde, Ignacio; Alfonso, José F; Fernández-Vega Cueto, Luis; Meana, Álvaro; Vázquez, Fernando; Quirós, Luis M

    2016-05-01

    Keratoconus is a heterogeneous disease associated with a range of pathologies, including disorders that involve proteoglycans (PGs). Some PG alterations, mainly in keratan sulfate (KS), occur in keratoconus. In this article, we studied the differential expression of the genes encoding PGs in cells isolated from keratoconus patients and healthy controls, as well as in corneal sections. Human central corneal tissue was obtained from cadaver donors and patients undergoing penetrating keratoplasty surgery. A transcriptomic approach was used, employing quantitative PCR, to analyze both the expression of the enzymes involved in glycosaminoglycan (GAG) biosynthesis and the PG core proteins. The expressions of the differentially expressed core proteins and of the GAG chains were also analyzed by immunocytochemistry in the cultured cells, as well as by immunohistochemistry in corneal sections. The mRNA levels of most major matrix PG mRNAs in the cultured keratoconic stromal cells decreased except collagen XVIII, which increased. At keratocyte surfaces, some heparan sulfate PGs were down-regulated. With respect to GAGs, there were changes in gene expression for the polymerization of the GAG chains, mainly KS and chondroitin sulfate, and in the modification of the saccharidic chains, pointing to an alteration of the sulfation patterns of all GAG species. Most of the PG core proteins underwent significant changes in cultured keratoconic cells and corneas. With regard to GAG chains, the polymerization of the chains and their chemical modification was modified in way that depended on the specific type of GAG involved.

  2. Immunoablation of cells expressing the NG2 chondroitin sulphate proteoglycan

    PubMed Central

    Leoni, Giampaolo; Rattray, Marcus; Fulton, Daniel; Rivera, Andrea; Butt, Arthur M

    2014-01-01

    Expression of the transmembrane NG2 chondroitin sulphate proteoglycan (CSPG) defines a distinct population of NG2-glia. NG2-glia serve as a regenerative pool of oligodendrocyte progenitor cells in the adult central nervous system (CNS), which is important for demyelinating diseases such as multiple sclerosis, and are a major component of the glial scar that inhibits axon regeneration after CNS injury. In addition, NG2-glia form unique neuron–glial synapses with unresolved functions. However, to date it has proven difficult to study the importance of NG2-glia in any of these functions using conventional transgenic NG2 ‘knockout' mice. To overcome this, we aimed to determine whether NG2-glia can be targeted using an immunotoxin approach. We demonstrate that incubation in primary anti-NG2 antibody in combination with secondary saporin-conjugated antibody selectively kills NG2-expressing cells in vitro. In addition, we provide evidence that the same protocol induces the loss of NG2-glia without affecting astrocyte or neuronal numbers in cerebellar brain slices from postnatal mice. This study shows that targeting the NG2 CSPG with immunotoxins is an effective and selective means for killing NG2-glia, which has important implications for studying the functions of these enigmatic cells both in the normal CNS, and in demyelination and degeneration. PMID:24252088

  3. Theranostic impact of NG2/CSPG4 proteoglycan in cancer.

    PubMed

    Nicolosi, Pier Andrea; Dallatomasina, Alice; Perris, Roberto

    2015-01-01

    NG2/CSPG4 is an unusual cell-membrane integral proteoglycan widely recognized to be a prognostic factor, a valuable tool for ex vivo and non-invasive molecular diagnostics and, by virtue of its tight association with malignancy, a tantalizing therapeutic target in several tumour types. Although the biology behind its involvement in cancer progression needs to be better understood, implementation of NG2/CSPG4 in the routine clinical practice is attainable and has the potential to contribute to an improved individualized management of cancer patients. In this context, its polymorphic nature seems to be particularly valuable in the effort to standardize informative diagnostic procedures and consolidate forcible immunotherapeutic treatment strategies. We discuss here the underpinnings for this potential and highlight the benefits of taking advantage of the intra-tumour and inter-patient variability in the regulation of NG2/CSPG4 expression. We envision that NG2/CSPG4 may effectively be exploited in therapeutic interventions aimed at averting resistance to target therapy agents and at interfering with secondary lesion formation and/or tumour recurrence.

  4. Theranostic Impact of NG2/CSPG4 Proteoglycan in Cancer

    PubMed Central

    Nicolosi, Pier Andrea; Dallatomasina, Alice; Perris, Roberto

    2015-01-01

    NG2/CSPG4 is an unusual cell-membrane integral proteoglycan widely recognized to be a prognostic factor, a valuable tool for ex vivo and non-invasive molecular diagnostics and, by virtue of its tight association with malignancy, a tantalizing therapeutic target in several tumour types. Although the biology behind its involvement in cancer progression needs to be better understood, implementation of NG2/CSPG4 in the routine clinical practice is attainable and has the potential to contribute to an improved individualized management of cancer patients. In this context, its polymorphic nature seems to be particularly valuable in the effort to standardize informative diagnostic procedures and consolidate forcible immunotherapeutic treatment strategies. We discuss here the underpinnings for this potential and highlight the benefits of taking advantage of the intra-tumour and inter-patient variability in the regulation of NG2/CSPG4 expression. We envision that NG2/CSPG4 may effectively be exploited in therapeutic interventions aimed at averting resistance to target therapy agents and at interfering with secondary lesion formation and/or tumour recurrence. PMID:25767619

  5. Structural and functional modifications of human aorta proteoglycans in atherosclerosis.

    PubMed

    Cherchi, G M; Coinu, R; Demuro, P; Formato, M; Sanna, G; Tidore, M; Tira, M E; De Luca, G

    1990-12-01

    Proteoglycans (PGs) were extracted from minced normal human aorta intima and media and adjacent atherosclerotic plaques. Samples obtained from each individual artery which showed different degrees of atherosclerotic involvement were studied separately. Comparing normal and atherosclerotic areas from the same aorta, the hexuronic acid content was always lower in the atherosclerotic minces. Atherosclerotic samples always contained a higher percentage amount of chondroitinase AC resistant material. PGs were sequentially extracted with increasing guanidine hydrochloride (GuHCl) concentrations. 0.4 M GuHCl extracted about 13% of total PGs, containing mostly chondroitin sulphate (CS), whilst 4 M GuHCl extracted about 50% of total PGs, containing CS, dermatan sulphate (DS), heparan sulphate and hyaluronic acid. PGs from atherosclerotic minces showed a higher DS amount, based on electrophoretic glycosaminoglycan (GAG) analysis. PGs extracted with 4 M GuHCl were further characterized by gel-chromatography and by CsCl density gradient centrifugation. The relative content of PGs with highest hydrodynamic size appeared to be markedly reduced in all the atherosclerotic samples. LDL/GAGs and LDL/PGs interactions were studied by affinity chromatography. GAGs obtained by papain digestion of PGs extracted from atherosclerotic areas contained a glycosaminoglycuronan interacting more strongly with human LDL than GAGs from normal areas of the same artery. The complete elution of PGs required higher NaCl concentration than GAGs. Moreover, PGs from atherosclerotic samples showed higher affinity for LDL than PGs from normal areas of the same aorta.

  6. Effect of Age and Proteoglycan Deficiency on Collagen Fiber Re-Alignment and Mechanical Properties in Mouse Supraspinatus Tendon

    PubMed Central

    Connizzo, Brianne K.; Sarver, Joseph J.; Iozzo, Renato V.; Birk, David E.; Soslowsky, Louis J.

    2013-01-01

    Collagen fiber realignment is one mechanism by which tendon responds to load. Re-alignment is altered when the structure of tendon is altered, such as in the natural process of aging or with alterations of matrix proteins, such as proteoglycan expression. While changes in re-alignment and mechanical properties have been investigated recently during development, they have not been studied in (1) aged tendons, or (2) in the absence of key proteoglycans. Collagen fiber re-alignment and the corresponding mechanical properties are quantified throughout tensile mechanical testing in both the insertion site and the midsubstance of mouse supraspinatus tendons in wild type (WT), decorin-null (Dcn-/-), and biglycan-null (Bgn-/-) mice at three different ages (90 days, 300 days, and 570 days). Percent relaxation was significantly decreased with age in the WT and Dcn-/- tendons, but not in the Bgn-/- tendons. Changes with age were found in the linear modulus at the insertion site where the 300 day group was greater than the 90 day and 570 day group in the Bgn-/- tendons and the 90 day group was smaller than the 300 day and 570 day groups in the Dcn-/- tendons. However, no changes in modulus were found across age in WT tendons were found. The midsubstance fibers of the WT and Bgn-/- tendons were initially less aligned with increasing age. The re-alignment was significantly altered with age in the WT tendons, with older groups responding to load later in the mechanical test. This was also seen in the Dcn-/- midsubstance and the Bgn-/- insertion, but not in the other locations. Although some studies have found changes in the WT mechanical properties with age, this study did not support those findings. However, it did show fiber re-alignment changes at both locations with age, suggesting a breakdown of tendon′s ability to respond to load in later ages. In the proteoglycan-null tendons however, there were changes in the mechanical properties, accompanied only by

  7. Proteoglycans contain a 4.6 A repeat in muscular dystrophy corneas: x-ray diffraction evidence.

    PubMed Central

    Quantock, A J; Klintworth, G K; Schanzlin, D J; Capel, M S; Lenz, M E; Thonar, E J

    1996-01-01

    Synchrotron x-ray diffraction patterns from macular corneal dystrophy (MCD) corneas contain an unusual reflection that arises because of an undefined ultrastructure with a periodic repeat in the region of 4.6 A. In this study, we compared with wide-angle x-ray diffraction patterns obtained from four normal human corneas and four MCD corneas. Moreover, portions of two of the MCD corneas were pretreated with a specific glycosidase to shed light on the origin of the 4.6 A reflection. None of the normal corneas produced an x-ray reflection in the region of 4.6 A, whereas all four of the MCD corneas did (MCD type I at 4.65 A and 4.63 A, MCD type II at 4.63 A and 4.67 A). This reflection was diminished after incubation of the MCD tissues with either chondroitinase ABC or N-glycanase. The findings indicate that glycosaminoglycans or proteoglycans contribute to the unusual MCD x-ray reflection and hence most likely contain a periodic 4.6 A ultrastructure. Furthermore, the results imply that periodic 4.6 A MCD ultrastructures reside in either intact, unsulfated lumican molecules and regions of the CS/DS-containing molecules or in a region of a hybrid macromolecular aggregate formed by the interaction of the two molecules. PMID:8785355

  8. Water in K and M giant stars unveiled by ISO

    NASA Astrophysics Data System (ADS)

    Tsuji, T.

    2001-09-01

    Based on the spectra obtained with Infrared Space Observatory, ISO, we detected the 6.3 mu m bands of water in the late K giant Aldebaran (alpha Tau) and several early M giant stars (between M0 and M3.5), which have been deemed to be too warm for tri-atomic H2O molecule to reside in their photospheres. The water column densities range (0.2 - 2) *E18 molecules cm-2 in our sample of K and M giant stars and the excitation temperatures are 1500 K or higher. Thus, the water bands are not originating in cool stellar winds either. The presence of water in the K and early M giant stars was quite unexpected from the traditional picture of the atmosphere of the red giant star consisting of the photosphere, hot chromosphere, and cool wind. We confirm that a rather warm molecule forming region should exist as a new component of the atmosphere of red giant stars and that this should be a general phenomenon in late-type stars. Based on the data archives of ISO, an ESA project with instruments funded by ESA member states (especially the PI countries: France, Germany, The Netherlands, and the UK) and with the participation of ISAS and NASA.

  9. Independent secretion of proteoglycans and collagens in chick chondrocyte cultures during acute ascorbic acid treatment.

    PubMed Central

    Pacifici, M

    1990-01-01

    The mechanisms regulating the secretion of proteoglycans and collagens in chondrocytes, in particular those operating at the level of the rough endoplasmic reticulum (RER), are largely unknown. To examine these mechanisms, I studied the effects of acute ascorbate treatment on the secretion of two collagen types (types II and IX) and two proteoglycan types (PG-H and PG-Lb, the major keratan sulphate/chondroitin sulphate proteoglycan and the minor chondroitin sulphate proteoglycan respectively in cartilage) in scorbutic cultures of chick vertebral chondrocytes. I found that the scorbutic chondrocytes synthesized underhydroxylated precursors of types II and IX collagen that were secreted very slowly and accumulated in the RER. When the cultures were treated acutely with ascorbate, both macromolecules underwent hydroxylation within 1-1.5 h of treatment, and began to be secreted at normal high rates starting at about 2 h. Proteoglycan synthesis and secretion, however, remained largely unaffected by ascorbate treatment. Both the half-time of newly synthesized PG-H core protein in the RER and its conversion into completed proteoglycan were unchanged during treatment. Similarly, the overall rates of synthesis and secretion of both PG-H and PG-Lb remained at control levels during treatment. The data indicate that secretion of types II and IX collagen is regulated independently of secretion of PG-H and PG-Lb. This may be mediated by the ability of the RER of the chondrocyte to discriminate between procollagens and proteoglycan core proteins. Images Fig. 1. Fig. 2. Fig. 4. Fig. 10. PMID:2264824

  10. Secretion of an articular cartilage proteoglycan-degrading enzyme activity by murine T lymphocytes in vitro.

    PubMed Central

    Kammer, G M; Sapolsky, A I; Malemud, C J

    1985-01-01

    Destruction of articular cartilage is the hallmark of inflammatory arthritides. Enzymes elaborated by mononuclear cells infiltrating the synovium mediate, in part, the degradation of the cartilage extracellular matrix. Since mononuclear cells are the dominant cell type found in chronic inflammatory synovitis, we investigated whether interaction of immune mononuclear cells with antigen initiated the synthesis and secretion of a proteoglycan-degrading enzyme activity. Proteoglycan-degrading enzyme activity was monitored by the capacity of murine spleen cell conditioned medium to release [3H]serine/35SO4 incorporated into rabbit cartilage proteoglycan monomer fraction (A1D1), and by the relative change in specific viscosity of bovine nasal cartilage proteoglycan monomer. The results demonstrated that both virgin and immune mononuclear cells spontaneously generated proteoglycan-degrading enzyme activity and that cellular activation and proliferation induced by the antigen keyhole limpet hemocyanin or the mitogen phytohemagglutinin was not required. Kinetic studies demonstrated stable release of the enzyme activity over 72 h. Cell separation studies showed that T lymphocytes, a thymoma line, and macrophages separately produced proteoglycan-degrading enzyme activity. The enzyme activity has been partially characterized and appears to belong to a class of neutral pH metal-dependent proteinases. These observations, the first to demonstrate that T lymphocytes secrete an enzyme capable of degrading cartilage proteoglycan, raise the possibility that this enzyme activity contributes to cartilage extracellular matrix destruction in vivo. Moreover, these data support the conclusion that production of this enzyme by T lymphocytes is independent of an antigen-specific stimulus. PMID:3897284

  11. Basement membrane of mouse bone marrow sinusoids shows distinctive structure and proteoglycan composition: a high resolution ultrastructural study.

    PubMed

    Inoue, S; Osmond, D G

    2001-11-01

    Venous sinusoids in bone marrow are the site of a large-scale traffic of cells between the extravascular hemopoietic compartment and the blood stream. The wall of the sinusoids consists solely of a basement membrane interposed between a layer of endothelial cells and an incomplete covering of adventitial cells. To examine its possible structural specialization, the basement membrane of bone marrow sinusoids has now been examined by high resolution electron microscopy of perfusion-fixed mouse bone marrow. The basement membrane layer was discontinuous, consisting of irregular masses of amorphous material within a uniform 60-nm-wide space between apposing endothelial cells and adventitial cell processes. At maximal magnifications, the material was resolved as a random arrangement of components lacking the "cord network" formation seen in basement membranes elsewhere. Individual components exhibited distinctive ultrastructural features whose molecular identity has previously been established. By these morphological criteria, the basement membrane contained unusually abundant chondroitin sulfate proteoglycan (CSPG) revealed by 3-nm-wide "double tracks," and moderate amounts of both laminin as dense irregular coils and type IV collagen as 1-1.5-nm-wide filaments, together with less conspicuous amounts of amyloid P forming pentagonal frames. In contrast, 4.5-5-nm-wide "double tracks" characteristic of heparan sulfate proteoglycan (HSPG) were absent. The findings demonstrate that, in comparison with "typical" basement membranes in other tissues, the bone marrow sinusoidal basement membrane is uniquely specialized in several respects. Its discontinuous nature, lack of network organization, and absence of HSPG, a molecule that normally helps to maintain membrane integrity, may facilitate disassembly and reassembly of basement membrane material in concert with movements of adventitial cell processes as maturing hemopoietic cells pass through the sinusoidal wall: the

  12. Altered Signaling in the G1 Phase Deregulates Chondrocyte Growth in a Mouse Model With Proteoglycan Undersulfation

    PubMed Central

    Leonardis, Fabio De; Monti, Luca; Gualeni, Benedetta; Tenni, Ruggero; Forlino, Antonella; Rossi, Antonio

    2014-01-01

    In several skeletal dysplasias defects in extracellular matrix molecules affect not only the structural and mechanical properties of cartilage, but also the complex network of signaling pathways involved in cell proliferation and differentiation. Sulfated proteoglycans, besides playing an important structural role in cartilage, are crucial in modulating the transport, diffusion, and interactions of growth factors with their specific targets, taking part in the regulation of signaling pathways involved in skeletal development and growth. In this work, we investigated by real time PCR and Western blots of the microdissected growth plate and by immunohistochemistry the molecular basis of reduced chondrocyte proliferation in the growth plate of the dtd mouse, a chondrodysplastic model with defective chondroitin sulfate proteoglycan sulfation of articular and growth plate cartilage. We detected activation of the Wnt pathway, leading to an increase in the non-phosphorylated form of nuclear β-catenin and subsequent up-regulation of cyclin D1 expression in the G1 phase of the cell cycle. β-Catenin was further stabilized by up-regulation of Smad3 expression through TGF-β pathway synergistic activation. We demonstrate that notwithstanding cyclin D1 expression increase, cell cycle progression is compromised in the G1 phase due to reduced phosphorylation of the pocket protein p130 leading to inhibition of transcription factors of the E2F family which are crucial for cell cycle progression and DNA replication. These data, together with altered Indian hedgehox signaling detected previously, explain at the molecular level the reduced chondrocyte proliferation rate of the dtd growth plate leading to reduced skeletal growth. J. Cell. Biochem. 115: 1779–1786, 2014. PMID:24820054

  13. Hippocampal proteoglycans brevican and versican are linked to spatial memory of Sprague-Dawley rats in the morris water maze.

    PubMed

    Saroja, Sivaprakasam R; Sase, Ajinkya; Kircher, Susanne G; Wan, Jia; Berger, Johannes; Höger, Harald; Pollak, Arnold; Lubec, Gert

    2014-09-01

    Proteoglycans (PGs) are major constituents of the extracellular matrix and have recently been proposed to contribute to synaptic plasticity. Hippocampal PGs have not yet been studied or linked to memory. The aim of the study, therefore, was to isolate and characterize rat hippocampal PGs and determine their possible role in spatial memory. PGs were extracted from rat hippocampi by anion-exchange chromatography and analyzed by nano LC-MS/MS. Twenty male Sprague-Dawley rats were tested in the morris water maze. PGs agrin, amyloid beta A4 protein, brevican, glypican-1, neurocan, phosphacan, syndecan-4, and versican were identified in the hippocampi. Brevican and versican levels in the membrane fraction were higher in the trained group, correlating with the time spent in the target quadrant. α-amino-3-hydroxy-5-methylisoxazole-4-propionate receptor GluR1 was co-precipitated with brevican and versican. Levels for a receptor complex containing GluR1 was higher in trained while GluR2 and GluR3-containing complex levels were higher in yoked rats. The findings provide information about the PGs present in the rat hippocampus, demonstrating that versican and brevican are linked to memory retrieval in the morris water maze and that PGs interact with α-amino-3-hydroxy-5-methylisoxazole-4-propionate receptor GluR1, which is linked to memory retrieval. Proteoglycans (PGs) are major constituents of the extracellular matrix of the brain and were proposed to contribute to synaptic plasticity. This report addressed PGs in rat hippocampus and suggests that PGs brevican and versican are linked to spatial memory, and form a complex with the GluR1 subunit of the AMPA receptor, a key signaling molecule in memory mechanisms.

  14. Giant prostatic calculi

    PubMed Central

    Najoui, Mohammed; Qarro, Abdelmounaim; Ammani, Abdelghani; Alami, Mohammed

    2013-01-01

    Prostatic parenchymal calculi are common, usually incidental, findings on morphological examinations. They are typically asymptomatic and may be present in association with normal glands, benign prostatic hyperplasia, and prostate cancer. However giant prostatic calculi are rare. Less than 20 cases have been reported in the literature. We present the case of a 35-year-old man with two giant prostatic calculi that replaced the entire gland. He underwent an open cystolithotomy, two giant stones were removed from the prostate, and we used a lithotripsy in situ for extraction of stone fragments. PMID:23565316

  15. Unstable giant gravitons

    SciTech Connect

    Mello Koch, Robert de; Ives, Norman; Smolic, Jelena; Smolic, Milena

    2006-03-15

    We find giant graviton solutions in Frolov's three parameter generalization of the Lunin-Maldacena background. The background we study has {gamma}-tilde{sub 1}=0 and {gamma}-tilde{sub 2}={gamma}-tilde{sub 3}={gamma}-tilde. This class of backgrounds provides a nonsupersymmetric example of the gauge theory/gravity correspondence that can be tested quantitatively, as recently shown by Frolov, Roiban, and Tseytlin. The giant graviton solutions we find have a greater energy than the point gravitons, making them unstable states. Despite this, we find striking quantitative agreement between the gauge theory and gravity descriptions of open strings attached to the giant.

  16. Giant Kerr nonlinearities in circuit quantum electrodynamics.

    PubMed

    Rebić, Stojan; Twamley, Jason; Milburn, Gerard J

    2009-10-09

    The very small size of optical nonlinearities places strict restrictions on the types of novel physics one can explore. This work describes how a single artificial multilevel Cooper pair box molecule, interacting with a superconducting microwave coplanar resonator, when suitably driven, can generate extremely large optical nonlinearities at microwave frequencies, with no associated absorption. We describe how the giant self-Kerr effect can be detected by measuring the second-order correlation function and quadrature squeezing spectrum.

  17. Proteoglycans from bovine fetal epiphyseal cartilage. Sedimentation velocity and light scattering studies of the effect of link protein on proteoglycan aggregate size and stability.

    PubMed

    Tang, L H; Rosenberg, L C; Reihanian, H; Jamieson, A M; Blackwell, J

    1989-01-01

    Proteoglycan monomer and link proteins were isolated from bovine fetal epiphyseal cartilage and characterized. The physical characteristics of proteoglycan monomer were: s0(20) = 21.3 S, D0t,z = 4.25 x 10(-8)cm2/sec, Mw = 3 x 10(6) and Rg,z = 980A. Link protein preparations contained link proteins 1 and 2, but little or none of the fragment, link protein 3. Link protein-stabilized and link protein-free proteoglycan aggregates were reassembled from proteoglycan monomer, link protein and hyaluronate. The effect of epiphyseal cartilage link protein on aggregate size and stability was examined in sedimentation velocity studies. Compared with link protein from mature bovine nasal and articular cartilages, which contain appreciable amounts of link protein 3, epiphyseal cartilage link protein dramatically stabilized aggregates at pH 5. In the presence of link protein, 92% of the proteoglycan monomers were bound as aggregate at pH 7, and 81% were bound at pH 5. In the absence of link protein, 51% of monomers were bound at pH 7, and only 32% were bound at pH 5. The progressive dissociation of link protein-free aggregates as a function of decreasing pH, and of increasing temperature, was also examined in dynamic light scattering studies. The results of the light scattering studies were in perfect accord with the results of the sedimentation velocity studies. However, compared with the sedimentation velocity studies, the dynamic light scattering studies provided a more detailed and informative description of the dissociation of the link-free aggregate as a function of pH, as a function of temperature, and of the capacity of link protein to stabilize aggregate against dissociation at decreased pH or elevated temperature.

  18. Inhibition of SARS Pseudovirus Cell Entry by Lactoferrin Binding to Heparan Sulfate Proteoglycans

    PubMed Central

    Lang, Jianshe; Yang, Ning; Deng, Jiejie; Liu, Kangtai; Yang, Peng; Zhang, Guigen; Jiang, Chengyu

    2011-01-01

    It has been reported that lactoferrin (LF) participates in the host immune response against Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) invasion by enhancing NK cell activity and stimulating neutrophil aggregation and adhesion. We further investigated the role of LF in the entry of SARS pseudovirus into HEK293E/ACE2-Myc cells. Our results reveal that LF inhibits SARS pseudovirus infection in a dose-dependent manner. Further analysis suggested that LF was able to block the binding of spike protein to host cells at 4°C, indicating that LF exerted its inhibitory function at the viral attachment stage. However, LF did not disrupt the interaction of spike protein with angiotensin-converting enzyme 2 (ACE2), the functional receptor of SARS-CoV. Previous studies have shown that LF colocalizes with the widely distributed cell-surface heparan sulfate proteoglycans (HSPGs). Our experiments have also confirmed this conclusion. Treatment of the cells with heparinase or exogenous heparin prevented binding of spike protein to host cells and inhibited SARS pseudovirus infection, demonstrating that HSPGs provide the binding sites for SARS-CoV invasion at the early attachment phase. Taken together, our results suggest that, in addition to ACE2, HSPGs are essential cell-surface molecules involved in SARS-CoV cell entry. LF may play a protective role in host defense against SARS-CoV infection through binding to HSPGs and blocking the preliminary interaction between SARS-CoV and host cells. Our findings may provide further understanding of SARS-CoV pathogenesis and aid in treatment of this deadly disease. PMID:21887302

  19. Complex Cooperative Functions of Heparan Sulfate Proteoglycans Shape Nervous System Development in Caenorhabditis elegans

    PubMed Central

    Díaz-Balzac, Carlos A.; Lázaro-Peña, María I.; Tecle, Eillen; Gomez, Nathali; Bülow, Hannes E.

    2014-01-01

    The development of the nervous system is a complex process requiring the integration of numerous molecular cues to form functional circuits. Many cues are regulated by heparan sulfates, a class of linear glycosaminoglycan polysaccharides. These sugars contain distinct modification patterns that regulate protein–protein interactions. Misexpressing the homolog of KAL-1/anosmin-1, a neural cell adhesion molecule mutant in Kallmann syndrome, in Caenorhabditis elegans causes a highly penetrant, heparan sulfate–dependent axonal branching phenotype in AIY interneurons. In an extended forward genetic screen for modifiers of this phenotype, we identified alleles in new as well as previously identified genes involved in HS biosynthesis and modification, namely the xylosyltransferase sqv-6, the HS-6-O-sulfotransferase hst-6, and the HS-3-O-sulfotransferase hst-3.2. Cell-specific rescue experiments showed that different HS biosynthetic and modification enzymes can be provided cell-nonautonomously by different tissues to allow kal-1-dependent branching of AIY. In addition, we show that heparan sulfate proteoglycan core proteins that carry the heparan sulfate chains act genetically in a highly redundant fashion to mediate kal-1-dependent branching in AIY neurons. Specifically, lon-2/glypican and unc-52/perlecan act in parallel genetic pathways and display synergistic interactions with sdn-1/syndecan to mediate kal-1 function. Because all of these heparan sulfate core proteins have been shown to act in different tissues, these studies indicate that KAL-1/anosmin-1 requires heparan sulfate with distinct modification patterns of different cellular origin for function. Our results support a model in which a three-dimensional scaffold of heparan sulfate mediates KAL-1/anosmin-1 and intercellular communication through complex and cooperative interactions. In addition, the genes we have identified could contribute to the etiology of Kallmann syndrome in humans. PMID:25098771

  20. Role of Cellular Heparan Sulfate Proteoglycans in Infection of Human Adenovirus Serotype 3 and 35

    PubMed Central

    Tuve, Sebastian; Wang, Hongjie; Jacobs, Jeffrey D.; Yumul, Roma C.; Smith, David F.; Lieber, André

    2008-01-01

    Species B human adenoviruses (Ads) are increasingly associated with outbreaks of acute respiratory disease in U.S. military personnel and civil population. The initial interaction of Ads with cellular attachment receptors on host cells is via Ad fiber knob protein. Our previous studies showed that one species B Ad receptor is the complement receptor CD46 that is used by serotypes 11, 16, 21, 35, and 50 but not by serotypes 3, 7, and 14. In this study, we attempted to identify yet-unknown species B cellular receptors. For this purpose we used recombinant Ad3 and Ad35 fiber knobs in high-throughput receptor screening methods including mass spectrometry analysis and glycan arrays. Surprisingly, we found that the main interacting surface molecules of Ad3 fiber knob are cellular heparan sulfate proteoglycans (HSPGs). We subsequently found that HSPGs acted as low-affinity co-receptors for Ad3 but did not represent the main receptor of this serotype. Our study also revealed a new CD46-independent infection pathway of Ad35. This Ad35 infection mechanism is mediated by cellular HSPGs. The interaction of Ad35 with HSPGs is not via fiber knob, whereas Ad3 interacts with HSPGs via fiber knob. Both Ad3 and Ad35 interacted specifically with the sulfated regions within HSPGs that have also been implicated in binding physiologic ligands. In conclusion, our findings show that Ad3 and Ad35 directly utilize HSPGs as co-receptors for infection. Our data suggest that adenoviruses evolved to simulate the presence of physiologic HSPG ligands in order to increase infection. PMID:18974862

  1. Influence of genetics on the nephritogenic potential of proteoglycans.

    PubMed Central

    Lelongt, B.; Kashihara, N.; Makino, H.; Kanwar, Y. S.

    1992-01-01

    Nephritogenic potential of antibodies directed against one of the glomerular basement membrane (GBM) components, i.e., heparan sulfate-proteoglycan (HS-PG), was investigated in different strain of rats, i.e., Brown Norway, Lewis, Long Evans, and Sprague-Dawley. The rats were given two intravenous injections of anti-HS-PG antibody on days 1 and 3, and killed 2 to 8 weeks later. Before killing, blood and urine were collected for determination of anti-rabbit IgG levels and excretion of proteins, respectively. In addition, the right kidney was perfused with 125I-anti-rat IgG to quantitate the amount of immune-complexes present within the GBM. The tissues were processed for morphologic, autoradiographic, and immunofluorescent studies. The anti-HS-PG antibody was seen uniformly bound to GBM equally in all strains of rats. However, the protein-uric response was as follows: Brown Norway much much greater than Lewis much greater than Long Evans greater than Sprague Dawley. Also, the glomerular cells, monocytes in the glomerular capillaries, immunoreactivity of rat IgG and C3 frequency of subepithelial immune deposits, serum levels of anti-rabbit IgG, and the amount of 125I-anti-rat IgG bound to the GBM were proportionately increased among different strains of rats. The data suggest that the sustained presence of anti-HS-PG antibodies in the subepithelial aspect of the GBM with differential humoral response in the production of the antibody by the host most likely attributed to the variable glomerular damage in different strains of rats. Thus, it seems that the genetic makeup of a given strain of rat heavily influences the nephritogenic potential of an antibody and consequentially the outcome of the immune complex-mediated glomerular injury. Images Figure 2 Figure 3 Figure 4 Figure 5 PMID:1519664

  2. Differential expression of proteoglycan epitopes by ovine intervertebral disc cells

    PubMed Central

    MELROSE, JAMES; SMITH, SUSAN; GHOSH, PETER

    2000-01-01

    The alginate bead culture system has been utilised by several groups to examine the in vitro proteoglycan (PG) metabolism of chondrocytes and intervertebral disc cells, but the nature of the PGs produced has not been examined in detail. This is largely due to the difficulty of separating the anionically charged sodium alginate support matrix from PGs which are similarly charged. In the present study ovine annulus fibrosus, transitional zone and nucleus pulposus cells were dissociated enzymatically from their respective matrices by sequential digestion with pronase/clostridial collagenase and DNAase and then cultured in alginate beads for 10 d. The beads were solubilised and subjected to DEAE Sepharose CL6B anion exchange chromatography to separate the sodium alginate bead support matrix material quantitatively from the disc cell PGs. The alginate free bead PGs were then subjected to composite agarose polyacrylamide gel electrophoresis to resolve PG populations and the PGs were transferred to nitrocellulose membranes by semidry electroblotting. The PGs were identified by probing the blots with a panel of antibodies to defined PG core protein and glycosaminoglycan side chain epitopes. Alginate beads of disc cells were also embedded in paraffin wax and 4μm sections cut to immunolocalise decorin, biglycan, versican, and the 7-D-4 PG epitope within the beads. Decorin and biglycan had similar distributions in the beads, being localised on the cell surface whereas versican and the 7-D-4 PG epitope were immunolocalised interterritoriarly. This study is the first to demonstrate that ovine disc cells synthesise versican in alginate bead culture. Furthermore the immunoblotting studies also showed that a proportion of the 7-D-4 PG epitope was colocalised with versican. PMID:11005711

  3. Optical Clearing in Collagen- and Proteoglycan-Rich Osteochondral Tissues

    PubMed Central

    Neu, Corey P.; Novak, Tyler; Gilliland, Kateri Fites; Marshall, Peter; Calve, Sarah

    2014-01-01

    Objective Recent developments in optical clearing and microscopy technology have enabled the imaging of intact tissues at the millimeter scale to characterize cells via fluorescence labeling. While these techniques have facilitated the three-dimensional cellular characterization within brain and heart, study of dense connective tissues of the musculoskeletal system have been largely unexplored. Here, we quantify how optical clearing impacted the cell and tissue morphology of collagen-, proteoglycan-, and mineral-rich cartilage and bone from the articulating knee joint. Methods Water-based fructose solutions were used for optical clearing of bovine osteochondral tissues, followed by imaging with transmission and confocal microscopy. To confirm preservation of tissue structure during the clearing process, samples were mechanically tested in unconfined compression and visualized by cryoSEM. Results Optical clearing enhanced light transmission through cartilage, but not subchondral bone regions. Fluorescent staining and immunolabeling was preserved through sample preparations, enabling imaging to cartilage depths 5 times deeper than previously reported, limited only by the working distance of the microscope objective. Chondrocyte volume remained unchanged in response to, and upon the reversal, of clearing. Equilibrium modulus increased in cleared samples, and was attributed to exchange of interstitial fluid with the more viscous fructose solution, but returned to control levels upon unclearing. In addition, cryoSEM-based analysis of cartilage showed no ultrastructural changes. Conclusion We anticipate large-scale microscopy of diverse connective tissues will enable the study of intact, three-dimensional interfaces (e.g. osteochondral) and cellular connectivity as a function of development, disease, and regeneration, which have been previously hindered by specimen opacity. PMID:25454370

  4. Tracks of a Giant

    NASA Image and Video Library

    2010-08-25

    The giant, 70-meter-wide antenna at NASA Deep Space Network complex in Goldstone, Calif., tracks a spacecraft on Nov. 17, 2009. This antenna, officially known as Deep Space Station 14, is also nicknamed the Mars antenna.

  5. The Next Giant Step

    NASA Image and Video Library

    Artist Robert McCall painted "The Next Giant Step" in 1979 to commemorate the heroism and courage of spaceflight pioneers. Located in the lobby of Johnson's building 2, the mural depicts America's ...

  6. Silvics of Giant Sequoia

    Treesearch

    C. Phillip Weatherspoon

    1986-01-01

    Ecological relationships-including habitat and life history---of giant sequoia (Sequoiadendron giganteum [Lindl.] Buchholz) in natural stands are summarized. Such silvical information provides an important foundation for sound management of the species.

  7. The Giant Cell.

    ERIC Educational Resources Information Center

    Stockdale, Dennis

    1998-01-01

    Provides directions for the construction of giant plastic cells, including details for building and installing the organelles. Also contains instructions for preparing the ribosomes, nucleolus, nucleus, and mitochondria. (DDR)

  8. Giant Earlobe Epidermoid Cyst

    PubMed Central

    Pérez-Guisado, Joaquín; Scilletta, Alessandra; Cabrera-Sánchez, Emilio; Rioja, Luis F; Perrotta, Rosario

    2012-01-01

    Epidermoid cysts represent the most common cutaneous cysts. They are usually small and benign; however, sometimes they can grow to giant epidermoid cists, and occasionally malignancies develop. Giant epidermoid cysts at the earlobe have never been described but in other locations. We describe a case of a giant epidermoid cyst at the earlobe, a location where such a large cyst has never been reported before. The mass was completely resected and the wound of the pedunculated base was sutured with four stitches of nylon 5/0. Histopathology confirmed the presumptive diagnosis of an epidermoid cyst. Six months after the resection, the patient did not have any relapse of the epidermoid cyst. The earlobe is a potential location for giant epidermoid cysts. Although the clinical diagnosis could be enough, due to the possibility of malignancy and to ensure appropriate diagnosis, we consider that all cysts should be sent to the anatomic pathology laboratory for histological evaluation. PMID:22557855

  9. The Giant Cell.

    ERIC Educational Resources Information Center

    Stockdale, Dennis

    1998-01-01

    Provides directions for the construction of giant plastic cells, including details for building and installing the organelles. Also contains instructions for preparing the ribosomes, nucleolus, nucleus, and mitochondria. (DDR)

  10. Giant Cell Arteritis and Polymyalgia Rheumatica

    MedlinePlus

    ... Controlfamilydoctor.org editorial staff Home Diseases and Conditions Giant Cell Arteritis and Polymyalgia Rheumatica Condition Giant Cell Arteritis and Polymyalgia Rheumatica Share Print Giant ...

  11. Capella: Separating the Giants

    NASA Astrophysics Data System (ADS)

    Young, P. R.; Dupree, A. K.

    2002-01-01

    Images from the Faint Object Camera (FOC) on the Hubble Space Telescope (HST) are used to spatially separate the two giants of Capella (α Aurigae; HD 34029) for the first time at ultraviolet wavelengths. The images were obtained with broadband filters that isolate the wavelength regions 2500-3000 Å and 1300-1500 Å. The cool G8 giant is found to be weaker than the hot G1 giant by factors of around 4 and 17, respectively, in these bands. The latter factor is largely due to the much stronger G1 continuum at short wavelengths. No evidence is found for material lying between the two stars in the images. In addition, the objective prisms of the FOC were used to obtain low-resolution spectra from 1200 to 3000 Å, allowing individual emission lines from each star to be spatially separated. Cool-to-hot star ratios for the emission lines H I Lyα, O I λ1305, Si II λ1816, C II λ1335, He II λ1640, and Si IV λ1393 are presented, showing that the cool giant is weaker than the hot giant by factors of 5-10 in these lines. The O I emission is only a factor of 2.5 weaker in the cool giant, most probably resulting from fluorescence in the extended atmosphere of the cool giant. The line ratios are compared with values derived from International Ultraviolet Explorer and HST/Goddard High Resolution Spectrograph spectra, which could separate the stars spectrally but not spatially. Reasonable agreement is found although the FOC ratios generally imply lower contributions from the cool giant. Based on observations with the NASA/ESA Hubble Space Telescope obtained at the Space Telescope Science Institute, which is operated by AURA, Inc., under NASA contract NAS 5-26555.

  12. Release of chromaffin granule glycoproteins and proteoglycans from potassium-stimulated PC12 pheochromocytoma cells.

    PubMed

    Salton, S R; Margolis, R U; Margolis, R K

    1983-10-01

    Cultured PC12 pheochromocytoma cells were labeled with [3H]glucosamine, and the glycoproteins and proteoglycans released following potassium-induced depolarization were fractionated and characterized. Exposure of PC12 cells for 20 min to a high concentration of potassium (51.5 mM in Krebs-Ringers-HEPES buffer) results in an approximately sixfold increase in the release of labeled glycoproteins and proteoglycans, compared to incubation in physiological levels of potassium (6 mM). The released complex carbohydrates include chromogranins, dopamine beta-hydroxylase, and two chondroitin sulfate/heparan sulfate proteoglycan fractions, which together account for 7.4% of the soluble cell radioactivity. The chromogranins contained galactosyl(beta 1 leads to 3)N-acetylgalactosamine, as well as several mono- and disialyl O-glycosidically-linked oligosaccharides, and the tetrasaccharide AcNeu(alpha 2 leads to 3)Gal(beta 1 leads to 3)[AcNeu(alpha 2 leads to 6)] GalNAcol, obtained by alkaline borohydride treatment of the chromogranin glycopeptides, accounted for almost half of the total chromogranin labeling. The proteoglycan fractions varied in their relative proportions of chondroitin sulfate (23-68%), heparan sulfate (16-23%), and glycoprotein oligosaccharides (16-54%), which are of the tri- and tetraantennary and O-glycosidic types. As previously found in the case of proteoglycans from bovine chromaffin granules, the more acidic species has a considerably higher proportion of carbohydrate in the form of sulfated glycosaminoglycans.

  13. Benoxaprofen stimulates proteoglycan synthesis in normal canine knee cartilage in vitro

    SciTech Connect

    Palmoski, M.J.; Brandt, K.D.

    1983-06-01

    Several nonsteroidal antiinflammatory drugs which are cyclooxygenase inhibitors (e.g., salicylates, fenoprofen, ibuprofen) have been shown to suppress proteoglycan synthesis by normal joint cartilage in vitro. We examined the effect of benoxaprofen, a long-acting proprionic acid derivative which inhibits lipoxygenase in addition to causing moderate cyclooxygenase inhibition. When added to the culture medium in concentrations comparable with those obtainable in serum of patients treated with the drug (e.g., 10 and 50 micrograms/ml), benoxaprofen increased proteoglycan synthesis in slices of normal canine knee cartilage to 126% and 135%, respectively, of control levels. These concentrations of the drug augmented net protein synthesis to 154% and 123%, respectively, of control levels. Incorporation of /sup 3/H glucosamine into 9-aminoacridine precipitable material was increased by benoxaprofen, showing that it stimulates net proteoglycan synthesis, and not merely sulfation. At concentrations of either 10 or 50 micrograms/ml, the drug had no effect on proteoglycan catabolism or on the ability of proteoglycans to interact with cartilage hyaluronic acid to form macromolecular aggregates. Nordihydroguaiaretic acid, a free radical scavenger which, like benoxaprofen, inhibits the lipoxygenase as well as cyclooxygenase pathways of arachidonic acid metabolism, also increased /sup 35/S glycosaminoglycan synthesis in cartilage slices. The stimulation of glycosaminoglycan and protein synthesis by benoxaprofen suggests that its action on the chondrocyte may be different from that of most other nonsteroidal antiinflammatory drugs.

  14. Purification and partial characterization of glycosaminoglycans and proteoglycans from cultured rabbit smooth muscle cells

    SciTech Connect

    Sabatino, R.D.

    1985-01-01

    Glycosaminoglycans synthesized by cultured rabbit smooth muscle cells were isolated after incorporation of (/sup 3/H)-glucosamine into glycosaminoglycans in the presence or absence of 10% fetal bovine serum. Glycosaminoglycans were quantitated by two-dimensional electrophoresis after proteolytic digestion of the cell layers and media. The results show that the presence of serum has no effect on the chondroitin sulfate, heparan sulfate and dermatan sulfate content of the cell layers. The incorporation of (/sup 3/H)-glucosamine into hyaluronic acid of the cell layers was three times higher in the presence of serum. In the medium , the quantity of hyaluronic was two times higher in the presence of serum while the other glycosaminoglycans remained unchanged. The incorporation of (/sup 3/H)-glucosamine into hyaluronic acid was unaffected by the presence of serum. Specific proteoglycans were isolated from medium after with (/sup 35/S)-sulfate and (/sup 3/H)-serine by isopycnic ultracentrifugation and chromatography on Sepharose CL-4B and DEAE-cellulose. Preparations contained a chondroitin sulfate proteoglycan, a condroitin sulfate-dermatan sulfate proteoglycan and a heparan sulfate proteoglycan. Glycosaminoglycans and proteoglycans synthesized by rabbit aorta smooth muscle cells are similar to those from human aorta.

  15. Effects of Decorin Proteoglycan on Fibrillogenesis, Ultrastructure, and Mechanics of Type I Collagen Gels

    PubMed Central

    Reese, Shawn P.; Underwood, Clayton J.; Weiss, Jeffrey A.

    2013-01-01

    The proteoglycan decorin is known to affect both the fibrillogenesis and the resulting ultrastructure of in vitro polymerized collagen gels. However, little is known about its effects on mechanical properties. In this study, 3D collagen gels were polymerized into tensile test specimens in the presence of decorin proteoglycan, decorin core protein, or dermatan sulfate (DS). Collagen fibrillogenesis, ultrastructure, and mechanical properties were then quantified using a turbidity assay, 2 forms of microscopy (SEM and confocal), and tensile testing. The presence of decorin proteoglycan or core protein decreased the rate and ultimate turbidity during fibrillogenesis and decreased the number of fibril aggregates (fibers) compared to control gels. The addition of decorin and core protein increased the linear modulus by a factor of 2 compared to controls, while the addition of DS reduced the linear modulus by a factor of 3. Adding decorin after fibrillogenesis had no effect, suggesting that decorin must be present during fibrillogenesis to increase the mechanical properties of the resulting gels. These results show that the inclusion of decorin proteoglycan during fibrillogenesis of Type I collagen increases the modulus and tensile strength of resulting collagen gels. The increase in mechanical properties when polymerization occurs in the presence of the decorin proteoglycan is due to a reduction in the aggregation of fibrils into larger order structures such as fibers and fiber bundles. PMID:23608680

  16. The heterogeneity of the non-aggregating proteoglycans of the human intervertebral disc.

    PubMed Central

    DiFabio, J L; Pearce, R H; Caterson, B; Hughes, H

    1987-01-01

    Non-aggregating proteoglycans of differing average hydrodynamic volumes were prepared from nuclei pulposi and anuli fibrosi of three human lumbar spines and characterized by biochemical and immunochemical analyses. The hexose-to-hexuronate and protein-to-hexuronate ratios increased with decreasing hydrodynamic volume. Analysis by composite agarose/polyacrylamide-gel electrophoresis has demonstrated two aggregating subpopulations [McDevitt, Jahnke & Green (1982) Trans. Annu. Meet. Orthop. Res. Soc. 7, 50]. In the present study, electrophoresis of the non-aggregating pools has shown three additional subpopulations, here named bands III, IV and V. The two smallest proteoglycan pools from each tissue contained two and three components respectively. These components were isolated by preparative electrophoresis and analysed. Band III was a proteoglycan richer in keratan sulphate than in chondroitin sulphate; band IV was a proteoglycan richer in chondroitin sulphate than in keratan sulphate; band V contained only chondroitin sulphate. Unsaturated disaccharides prepared from the chondroitin sulphate of all bands were predominantly 6-sulphated, with only 5-15% 4-sulphated. The molecular masses of the chondroitin sulphate and keratan sulphate did not differ between the bands. The amino acid composition of band III differed from that of band IV. Thus three distinct subpopulations of non-aggregating proteoglycan were demonstrated in the human intervertebral disc. PMID:3117036

  17. 1980 Volvo award in basic science. Proteoglycans in experimental intervertebral disc degeneration.

    PubMed

    Lipson, S J; Muir, H

    1981-01-01

    An animal model of intervertebral disc degeneration induced surgically by ventral nuclear herniation in the rabbit produces morphologic changes of disc degeneration. Histologic characteristics and proteoglycan changes have been studied at various times after herniation. After injury, there was metaplasia into fibrocartilage originating from the cells along the margins of the annular wound, with proliferation of cells changing almost the entire disc space into fibrocartilage. A vertebral osteophyte occurred through an endochondral ossification sequence. Aggregating proteoglycans had two periods of repletion in the early course of degeneration. The water content of the disc was rapidly but only transiently restored in the first two days after herniation, whilst the changes in the total proteoglycan content of the disc paralleled these changes. Hyaluronic acid content decreased rapidly after herniation, but the size of the proteoglycan monomers did not change with degeneration. It is suggested that loss of confined fluid mechanics signals an abortive repair attempt rather than that of biochemical changes in proteoglycans initiate disc degeneration.

  18. Salubrinal inhibits the expression of proteoglycans and favors neurite outgrowth from cortical neurons in vitro.

    PubMed

    Barreda-Manso, M Asunción; Yanguas-Casás, Natalia; Nieto-Sampedro, Manuel; Romero-Ramírez, Lorenzo

    2015-07-01

    After CNS injury, astrocytes and mesenchymal cells attempt to restore the disrupted glia limitans by secreting proteoglycans and extracellular matrix proteins (ECMs), forming the so-called glial scar. Although the glial scar is important in sealing the lesion, it is also a physical and functional barrier that prevents axonal regeneration. The synthesis of secretory proteins in the RER is under the control of the initiation factor of translation eIF2α. Inhibiting the synthesis of secretory proteins by increasing the phosphorylation of eIF2α, might be a pharmacologically efficient way of reducing proteoglycans and other profibrotic proteins present in the glial scar. Salubrinal, a neuroprotective drug, decreased the expression and secretion of proteoglycans and other profibrotic proteins induced by EGF or TGFβ, maintaining eIF2α phosphorylated. Besides, Salubrinal also reduced the transcription of proteoglycans and other profibrotic proteins, suggesting that it induced the degradation of non-translated mRNA. In a model in vitro of the glial scar, cortical neurons grown on cocultures of astrocytes and fibroblasts with TGFβ treated with Salubrinal, showed increased neurite outgrowth compared to untreated cells. Our results suggest that Salubrinal may be considered of therapeutic value facilitating axonal regeneration, by reducing overproduction and secretion of proteoglycans and profibrotic protein inhibitors of axonal growth. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Epidermal and hair follicle progenitor cells express melanoma-associated chondroitin sulfate proteoglycan core protein.

    PubMed

    Ghali, Lucy; Wong, Soon-Tee; Tidman, Nick; Quinn, Anthony; Philpott, Michael P; Leigh, Irene M

    2004-02-01

    Basal keratinocytes in the epidermis and hair follicle are biologically heterogeneous but must include a stable subpopulation of epidermal stem cells. In animal models these can be identified by their retention of radioactive label due to their slow cycle (label-retaining cells) but human studies largely depend on in vitro characterization of colony forming efficiency and clonogenicity. Differential integrin expression has been used to detect cells of increased proliferative potential but further stem cell markers are urgently required for in vivo and in vitro characterization. Using LHM2, a monoclonal antibody reacting with a high molecular weight melanoma-associated proteoglycan core protein, a subset of basal keratinocytes in both the interfollicular epidermis and the hair follicle has been identified. Coexpression of melanoma-associated chondroitin sulfate proteoglycan with keratins 15 and 19 as well as beta 1 and alpha 6 integrins has been examined in adult and fetal human skin from hair bearing, nonhair bearing, and palmoplantar regions. Although melanoma-associated chondroitin sulfate proteoglycan coexpression with a subset of beta 1 integrin bright basal keratinocytes within the epidermis suggests that melanoma-associated chondroitin sulfate proteoglycan colocalizes with epidermal stem cells, melanoma-associated chondroitin sulfate proteoglycan expression within the hair follicle was more complex and multiple subpopulations of basal outer root sheath keratinocytes are described. These data suggest that epithelial compartmentalization of the outer root sheath is more complex than interfollicular epidermis and further supports the hypothesis that more than one hair follicle stem cell compartment may exist.

  20. The in vivo regulation of pioneer axon growth by FGF-2 and heparan sulfate proteoglycans in cultured embryos of the cockroach.

    PubMed

    Nyhus, J K; Denburg, J L

    1998-08-01

    Antibody perturbation experiments on cultured cockroach embryos demonstrated that a localized source of an FGF-2-like immunoreactive molecule in the head is required for the proper growth of pioneer axons in the leg. The study of axon growth in various fragments of cultured embryos and in the presence of various conditioned media showed that FGF-2 is needed to counteract the effects of an inhibitor of axon growth produced in the body trunk of the embryo. Endogenous heparan sulfate proteoglycans mediate these effects of FGF-2 on axon growth. The results of experiments with FGF-2 and/or body trunk axon growth inhibitor added to the culture medium indicate that more globally and uniformly distributed molecules may play as important a role in axon guidance as the more spatially restricted guidance cues. The results are interpreted in terms of a model that is consistent with a role for the FGF-2 receptor in axon growth.

  1. Embryonic lung morphogenesis in organ culture: experimental evidence for a proteoglycan function in the extracellular matrix

    NASA Technical Reports Server (NTRS)

    Spooner, B. S.; Bassett, K. E.; Spooner, B. S. Jr

    1993-01-01

    The lung rudiment, isolated from mid-gestation (11 day) mouse embryos, can undergo morphogenesis in organ culture. Observation of living rudiments, in culture, reveals both growth and ongoing bronchiolar branching activity. To detect proteoglycan (PG) biosynthesis, and deposition in the extracellular matrix, rudiments were metabolically labeled with radioactive sulfate, then fixed, embedded, sectioned and processed for autoradiography. The sulfated glycosaminoglycan (GAG) types, composing the carbohydrate component of the proteoglycans, were evaluated by selective GAG degradative approaches that showed chondroitin sulfate PG principally associated with the interstitial matrix, and heparan sulfate PG principally associated with the basement membrane. Experiments using the proteoglycan biosynthesis disrupter, beta-xyloside, suggest that when chondroitin sulfate PG deposition into the ECM is perturbed, branching morphogenesis is compromised.

  2. Small-angle neutron scattering studies from solutions of bovine nasal cartilage proteoglycan

    SciTech Connect

    Patel, A.; Stivala, S.S.; Damle, S.P.; Gregory, J.D.; Bunick, G.J.; Uberbacher, E.C.

    1985-08-01

    Small-angle neutron scattering, SANS, of the proteoglycan subunit of bovine nasal cartilage in 0.15N LiCl at 25/sup 0/C yielded the radius of gyration, R/sub g/, radius of gyration of the cross-section, R/sub q/, persistence length, a, and the molecular weight, M. The following values were obtained: M = 3.9 x 10/sup 6/, R/sub g/ = 745 A, R/sub q/ = 34.6 A and a = 35.2 A. These values compare favorably with those that were obtained from small angle x-ray scattering, SAXS, of a similar extract. The scattering curve of the proteoglycan subunit in D/sub 2/O showed a characteristic broad peak in the specified angular range similar to that observed from SAXS, thus confirming the polyelectrolyte nature of the proteoglycan. 15 refs., 3 figs., 1 tab. (DT)

  3. Sweet on Hedgehogs: regulatory roles of heparan sulfate proteoglycans in Hedgehog-dependent cell proliferation and differentiation.

    PubMed

    Bandari, Shyam; Exner, Sebastian; Ortmann, Corinna; Bachvarova, Velina; Vortkamp, Andrea; Grobe, Kay

    2015-01-01

    Morphogens exert their effects over long distances, typically by spreading from cell to cell to activate signal transduction in surrounding tissues in concentration-dependent manner. One example of a morphogen is the signaling molecule Hedgehog (Hh), which controls growth and patterning during development and has also been implicated in the progression of numerous cancers. To this end, accessory mechanisms that release, transport, and receive Hhs are required to elicit temporally and spatially specific responses in cells and tissues. The Hh spreading mechanism is especially intriguing, because all Hhs are released from the producing cells despite being synthesized as dually lipidated, membrane-tethered molecules. In addition to this cellular association, Hhs bind strongly to extracellular heparan sulfate proteoglycans (HSPGs), which is expected to further reduce their spreading. Paradoxically, several lines of evidence suggest that Hh gradient formation actually requires HSPG expression, and that HSPGs act as both positive and negative regulators of Hh function. This article reviews the multiple roles that HSPGs play in Hh morphogen function, and discusses their congruity with proposed mechanisms of Hh solubilization, transport, and signal reception in vertebrate and invertebrate tissues.

  4. Distribution of proteoglycans during the hair growth cycle in human skin.

    PubMed

    Westgate, G E; Messenger, A G; Watson, L P; Gibson, W T

    1991-02-01

    The involvement of proteoglycans in hair growth has been recognized through the observation of increased hair growth in diseases such as the mucopolysaccharidoses and pre-tibial myxedema, which involve an increase in skin proteoglycan content. In an attempt to understand this, we have examined the distribution of chondroitin 6 sulphate (C6S), unsulphated chondroitin (COS), dermatan sulphate (DS), and heparan sulphate proteoglycans (HSPG) in frozen tissue sections of normal scalp by immunostaining. Results show that during anagen, the thick connective tissue sheath around the follicle strains strongly for C6S, COS, and DS. COS is uniquely associated with this region and is not found beneath the epidermis or infundibular epithelium. HSPG is, however, localized in the basement membrane zone adjacent to the outer root sheath. In addition, all of these proteoglycans are localized in the dermal papilla. In mid-catagen, we observed significant loss of C6S and COS staining from both the dermal papilla and the connective tissue sheath, but no decrease in staining for HSPG. In late catagen, very little staining of C6S and COS was observed. In early anagen, we observed that C6S was again present in the connective tissue sheath and dermal papilla; however, COS staining appeared to be weaker and less closely associated with the follicle. HSPG staining was observed in early anagen in a pattern very similar to that found for other basement membrane components. Results for DS were not obtained for catagen or early anagen. These results provide further evidence that hair growth is associated with the presence of chondroitin proteoglycans in the follicle environment and that the cessation of growth is associated with their removal. Further studies are underway to characterize the relationship between hair growth and proteoglycans.

  5. Proteoglycan and Collagen Biochemical Variations during Fluoroquinolone-Induced Chondrotoxicity in Mice

    PubMed Central

    Simonin, Marie-Agnès; Gegout-Pottie, Pascale; Minn, Alain; Gillet, Pierre; Netter, Patrick; Terlain, Bernard

    1999-01-01

    Although fluoroquinolone antibacterials have a broad therapeutic use, with a relatively low incidence of severe side effects, they have been reported to induce lesions in the cartilage of growing animals by a mechanism that remains unclear. This study was undertaken to determine the potentially deleterious effect of a high dose of pefloxacin (400 mg/kg of body weight) on two main constituents of cartilage in mice, i.e., proteoglycans and collagen. Variations in levels of proteoglycan anabolism measured by in vivo [35S]sulfate incorporation into cartilage and oxidative modifications of collagen assessed by detection of carbonyl derivatives were monitored after administration of pefloxacin. Treatment of mice with 1 day of pefloxacin treatment significantly decreased the rate of biosynthesis of proteoglycan for the first 24 h. However, no difference was observed after 48 h. The decrease in proteoglycan synthesis was accompanied by a marked drop in serum sulfate concentration and a concomitant increase in urinary sulfate excretion. The decrease in proteoglycan synthesis, also observed ex vivo, may suggest a direct effect of pefloxacin on this process, rather than it being a consequence of a low concentration of sulfate. On the other hand, treatment with pefloxacin for 10 days induced oxidative damage to collagen. In conclusion, this study demonstrates, for the first time, that pefloxacin administration to mice leads to modifications in the metabolism and integrity of extracellular proteins, such as collagen and proteoglycans, which may account for the side effects observed. These results offer new insights to explain quinolone-induced disorders in growing articular cartilage. PMID:10582882

  6. Proteoglycan and collagen biochemical variations during fluoroquinolone-induced chondrotoxicity in mice.

    PubMed

    Simonin, M A; Gegout-Pottie, P; Minn, A; Gillet, P; Netter, P; Terlain, B

    1999-12-01

    Although fluoroquinolone antibacterials have a broad therapeutic use, with a relatively low incidence of severe side effects, they have been reported to induce lesions in the cartilage of growing animals by a mechanism that remains unclear. This study was undertaken to determine the potentially deleterious effect of a high dose of pefloxacin (400 mg/kg of body weight) on two main constituents of cartilage in mice, i.e., proteoglycans and collagen. Variations in levels of proteoglycan anabolism measured by in vivo [(35)S]sulfate incorporation into cartilage and oxidative modifications of collagen assessed by detection of carbonyl derivatives were monitored after administration of pefloxacin. Treatment of mice with 1 day of pefloxacin treatment significantly decreased the rate of biosynthesis of proteoglycan for the first 24 h. However, no difference was observed after 48 h. The decrease in proteoglycan synthesis was accompanied by a marked drop in serum sulfate concentration and a concomitant increase in urinary sulfate excretion. The decrease in proteoglycan synthesis, also observed ex vivo, may suggest a direct effect of pefloxacin on this process, rather than it being a consequence of a low concentration of sulfate. On the other hand, treatment with pefloxacin for 10 days induced oxidative damage to collagen. In conclusion, this study demonstrates, for the first time, that pefloxacin administration to mice leads to modifications in the metabolism and integrity of extracellular proteins, such as collagen and proteoglycans, which may account for the side effects observed. These results offer new insights to explain quinolone-induced disorders in growing articular cartilage.

  7. Adjuvant neurotrophic factors in peripheral nerve repair with chondroitin sulfate proteoglycan-reduced acellular nerve allografts

    PubMed Central

    Boyer, Richard B.; Sexton, Kevin W.; Rodriguez-Feo, Charles L.; Nookala, Ratnam; Pollins, Alonda C.; Cardwell, Nancy L.; Tisdale, Keonna Y.; Nanney, Lillian B.; Shack, R. Bruce; Thayer, Wesley P.

    2014-01-01

    Background Acellular nerve allografts are now standard tools in peripheral nerve repair due to decreased donor site morbidity and operative time savings. Preparation of nerve allografts involves several steps of decellularization and modification of extracellular matrix to remove chondroitin sulfate proteoglycans (CSPGs), which have been shown to inhibit neurite outgrowth through a poorly understood mechanism involving RhoA and ECM-integrin interactions. Chondroitinase ABC (ChABC) is an enzyme that degrades CSPG molecules and has been shown to promote neurite outgrowth following injury of the central and peripheral nervous systems. Variable results following chondroitinase ABC treatment make it difficult to predict the effects of this drug in human nerve allografts, especially in the presence of native extracellular signaling molecules. Several studies have shown cross-talk between neurotrophic factor and CSPG signaling pathways, but their interaction remains poorly understood. In this study, we examined the adjuvant effects of nerve growth factor (NGF) and glial cell line-derived neurotrophic factor (GDNF) on neurite outgrowth post-injury in CSPG-reduced substrates and acellular nerve allografts. Materials and Methods E12 chicken DRG explants were cultured in medium containing ChABC, ChABC + NGF, ChABC + GDNF or control media. Explants were imaged at 3 d and neurite outgrowths measured. The rat sciatic nerve injury model involved a 1-cm sciatic nerve gap that was microsurgically repaired with ChABC pre-treated acellular nerve allografts. Prior to implantation, nerve allografts were incubated in NGF, GDNF or sterile water. Nerve histology was evaluated at 5d and 8wk post-injury. Results The addition of GDNF in vitro produced significant increase in sensory neurite length at 3 d compared to ChABC alone (P < 0.01), while NGF was not significantly different from control. In vivo adjuvant NGF produced increases in total myelinated axon count (P < 0.005) and motor axon

  8. Multivalent proteoglycan modulation of FGF mitogenic responses in perivascular cells.

    PubMed

    Cattaruzza, Sabrina; Ozerdem, Ugur; Denzel, Martin; Ranscht, Barbara; Bulian, Pietro; Cavallaro, Ugo; Zanocco, Daniela; Colombatti, Alfonso; Stallcup, William B; Perris, Roberto

    2013-04-01

    Sprouting of angiogenic perivascular cells is thought to be highly dependent upon autocrine and paracrine growth factor stimulation. Accordingly, we report that corneal angiogenesis induced by ectopic FGF implantation is strongly impaired in NG2/CSPG4 proteoglycan (PG) null mice known to harbour a putative deficit in pericyte proliferation/mobilization. Conversely, no significant differences were seen between wild type and knockout corneas when VEGF was used as an angiocrine factor. Perturbed responsiveness of NG2-deficient pericytes to paracrine and autocrine stimulation by several FGFs could be confirmed in cells isolated from NG2 null mice, while proliferation induced by other growth factors was equivalent in wild type and knockout cells. Identical results were obtained after siRNA-mediated knock-down of NG2 in human smooth muscle-like cell lines, as also demonstrated by the decreased levels of FGF receptor phosphorylation detected in these NG2 deprived cells. Binding assays with recombinant proteins and molecular interactions examined on live cells asserted that FGF-2 bound to NG2 in a glycosaminoglycan-independent, core protein-mediated manner and that the PG was alone capable of retaining FGF-2 on the cell membrane for subsequent receptor presentation. The use of dominant-negative mutant cells, engineered by combined transduction of NG2 deletion constructs and siRNA knock-down of the endogenous PG, allowed us to establish that the FGF co-receptor activity of NG2 is entirely mediated by its extracellular portion. In fact, forced overexpression of the NG2 ectodomain in human smooth muscle-like cells increased their FGF-2-induced mitosis and compensated for low levels of FGF receptor surface expression, in a manner equivalent to that produced by overexpression of the full-length NG2. Upon FGF binding, the cytoplasmic domain of NG2 is phosphorylated, but there is no evidence that this event elicits signal transductions that could bypass the FGFR-mediated ones

  9. Heparan Sulfate Proteoglycans and Their Binding Proteins in Embryo Implantation and Placentation

    PubMed Central

    Kirn-Safran, Catherine; D’Souza, Sonia S.; Carson, Daniel D.

    2008-01-01

    Complex interactions occur among embryonic, placental and maternal tissues during embryo implantation. Many of these interactions are controlled by growth factors, extracellular matrix and cell surface components that share the ability to bind heparan sulfate (HS) polysaccharides. HS is carried by several classes of cell surface and secreted proteins called HS proteoglycan that are expressed in restricted patterns during implantation and placentation. This review will discuss the expression of HS proteoglycans and various HS binding growth factors as well as extracellular matrix components and HS-modifying enzymes that can release HS-bound proteins in the context of implantation and placentation. PMID:17766150

  10. Effect of testosterone on proteoglycans in the submandibular glands of the rat.

    PubMed

    Kofoed, J A; Tumilasci, O R; Curbelo, H M; Fernandez Lemos, S M; Arias, N H; Houssay, A B

    1990-12-01

    The proteoglycans in the submandibular salivary glands of castrated male Wistar rats were studied before and after the daily administration of testosterone propionate (TP) for one month. Castration decreased the weight of the glands and their uronic acid content. The administration of TP reversed these effects. Chromatographic separation of the uronic acid fractions was performed on cellulose microcolumns. The principal fractions were hyaluronic acid, heparan sulfate and dermatan sulfate. There were also changes in the physical properties of the proteoglycans. Castration decreased the range of distribution of molecular weight and the density, while the lateral chains of smaller length disappeared. TP administration to castrated rats reversed these effects.

  11. Effect of beta-D-xyloside on the glomerular proteoglycans. I. Biochemical studies

    PubMed Central

    1984-01-01

    The effect of p-nitrophenyl-beta-D-xylopyranoside on glomerular extracellular matrices (glomerular basement membrane and mesangial matrix) proteoglycans was studied. The proteoglycans of rat kidneys were labeled with [35S]sulfate in the presence or absence of beta- xyloside (2.5 mM) by using an isolated organ perfusion system. The proteoglycans from the glomeruli and perfusion medium were isolated and characterized by Sepharose CL-6B chromatography and by their behavior in CsCl density gradients. With xyloside treatment there was a twofold decrease in 35S-labeled macromolecules in the tissues but a twofold increase in those recovered in the medium as compared with the control. The labeled proteoglycans extracted from control kidneys eluted as a single peak with Kav = 0.25 (Mr = approximately 130,000), and approximately 95% of the radioactivity was associated with heparan sulfate proteoglycan (HS-PG), the remainder with chondroitin (or dermatan) sulfate proteoglycan (CS-PG). In the xyloside-treated kidneys, the proteoglycans extracted from the tissue eluted as two peaks, Kav = 0.25 (Mr = approximately 130,000) and 0.41 (Mr = approximately 46,000), which contained approximately 40 and approximately 60% of the total radioactivity, respectively. The first peak contained mostly the HS-PG (approximately 90%) while the second peak had a mixture of HS-PG (approximately 70%) and CS-PG (approximately 30%). In controls, approximately 90% of the radioactivity, mostly HS-PG, was confined to high density fractions of a CsCl density gradient. In contrast, in xyloside experiments, both HS- PG and CS-PG were distributed in variable proportions throughout the gradient. The incorporated 35S activity in the medium of xyloside- treated kidneys was twice that of the controls and had three to four times the amount of free chondroitin (or dermatan) sulfate glycosaminoglycan chains. The data suggest that beta-xyloside inhibits the addition of de novo synthesized glycosaminoglycan chains

  12. Fatal canine distemper virus infection of giant pandas in China

    PubMed Central

    Feng, Na; Yu, Yicong; Wang, Tiecheng; Wilker, Peter; Wang, Jianzhong; Li, Yuanguo; Sun, Zhe; Gao, Yuwei; Xia, Xianzhu

    2016-01-01

    We report an outbreak of canine distemper virus (CDV) infection among endangered giant pandas (Ailuropoda melanoleuca). Five of six CDV infected giant pandas died. The surviving giant panda was previously vaccinated against CDV. Genomic sequencing of CDV isolated from one of the infected pandas (giant panda/SX/2014) suggests it belongs to the Asia-1 cluster. The hemagglutinin protein of the isolated virus and virus sequenced from lung samples originating from deceased giant pandas all possessed the substitutions V26M, T213A, K281R, S300N, P340Q, and Y549H. The presence of the Y549H substitution is notable as it is found at the signaling lymphocytic activation molecule (SLAM) receptor-binding site and has been implicated in the emergence of highly pathogenic CDV and host switching. These findings demonstrate that giant pandas are susceptible to CDV and suggest that surveillance and vaccination among all captive giant pandas are warranted to support conservation efforts for this endangered species. PMID:27310722

  13. Fatal canine distemper virus infection of giant pandas in China.

    PubMed

    Feng, Na; Yu, Yicong; Wang, Tiecheng; Wilker, Peter; Wang, Jianzhong; Li, Yuanguo; Sun, Zhe; Gao, Yuwei; Xia, Xianzhu

    2016-06-16

    We report an outbreak of canine distemper virus (CDV) infection among endangered giant pandas (Ailuropoda melanoleuca). Five of six CDV infected giant pandas died. The surviving giant panda was previously vaccinated against CDV. Genomic sequencing of CDV isolated from one of the infected pandas (giant panda/SX/2014) suggests it belongs to the Asia-1 cluster. The hemagglutinin protein of the isolated virus and virus sequenced from lung samples originating from deceased giant pandas all possessed the substitutions V26M, T213A, K281R, S300N, P340Q, and Y549H. The presence of the Y549H substitution is notable as it is found at the signaling lymphocytic activation molecule (SLAM) receptor-binding site and has been implicated in the emergence of highly pathogenic CDV and host switching. These findings demonstrate that giant pandas are susceptible to CDV and suggest that surveillance and vaccination among all captive giant pandas are warranted to support conservation efforts for this endangered species.

  14. Giant congenital melanocytic nevus.

    PubMed

    Viana, Ana Carolina Leite; Gontijo, Bernardo; Bittencourt, Flávia Vasques

    2013-01-01

    Giant congenital melanocytic nevus is usually defined as a melanocytic lesion present at birth that will reach a diameter ≥ 20 cm in adulthood. Its incidence is estimated in <1:20,000 newborns. Despite its rarity, this lesion is important because it may associate with severe complications such as malignant melanoma, affect the central nervous system (neurocutaneous melanosis), and have major psychosocial impact on the patient and his family due to its unsightly appearance. Giant congenital melanocytic nevus generally presents as a brown lesion, with flat or mammilated surface, well-demarcated borders and hypertrichosis. Congenital melanocytic nevus is primarily a clinical diagnosis. However, congenital nevi are histologically distinguished from acquired nevi mainly by their larger size, the spread of the nevus cells to the deep layers of the skin and by their more varied architecture and morphology. Although giant congenital melanocytic nevus is recognized as a risk factor for the development of melanoma, the precise magnitude of this risk is still controversial. The estimated lifetime risk of developing melanoma varies from 5 to 10%. On account of these uncertainties and the size of the lesions, the management of giant congenital melanocytic nevus needs individualization. Treatment may include surgical and non-surgical procedures, psychological intervention and/or clinical follow-up, with special attention to changes in color, texture or on the surface of the lesion. The only absolute indication for surgery in giant congenital melanocytic nevus is the development of a malignant neoplasm on the lesion.

  15. Giant congenital melanocytic nevus*

    PubMed Central

    Viana, Ana Carolina Leite; Gontijo, Bernardo; Bittencourt, Flávia Vasques

    2013-01-01

    Giant congenital melanocytic nevus is usually defined as a melanocytic lesion present at birth that will reach a diameter ≥ 20 cm in adulthood. Its incidence is estimated in <1:20,000 newborns. Despite its rarity, this lesion is important because it may associate with severe complications such as malignant melanoma, affect the central nervous system (neurocutaneous melanosis), and have major psychosocial impact on the patient and his family due to its unsightly appearance. Giant congenital melanocytic nevus generally presents as a brown lesion, with flat or mammilated surface, well-demarcated borders and hypertrichosis. Congenital melanocytic nevus is primarily a clinical diagnosis. However, congenital nevi are histologically distinguished from acquired nevi mainly by their larger size, the spread of the nevus cells to the deep layers of the skin and by their more varied architecture and morphology. Although giant congenital melanocytic nevus is recognized as a risk factor for the development of melanoma, the precise magnitude of this risk is still controversial. The estimated lifetime risk of developing melanoma varies from 5 to 10%. On account of these uncertainties and the size of the lesions, the management of giant congenital melanocytic nevus needs individualization. Treatment may include surgical and non-surgical procedures, psychological intervention and/or clinical follow-up, with special attention to changes in color, texture or on the surface of the lesion. The only absolute indication for surgery in giant congenital melanocytic nevus is the development of a malignant neoplasm on the lesion. PMID:24474093

  16. Immune Recognition of Citrullinated Proteoglycan Aggrecan Epitopes in Mice with Proteoglycan-Induced Arthritis and in Patients with Rheumatoid Arthritis

    PubMed Central

    Markovics, Adrienn; Ocskó, Tímea; Katz, Robert S.; Buzás, Edit I.; Glant, Tibor T.

    2016-01-01

    Background Rheumatoid arthritis (RA) is an autoimmune inflammatory disease affecting the joints. Anti-citrullinated protein antibodies (ACPA) are frequently found in RA. Previous studies identified a citrullinated epitope in cartilage proteoglycan (PG) aggrecan that elicited pro-inflammatory cytokine production by RA T cells. We recently reported the presence of ACPA-reactive (citrullinated) PG in RA cartilage. Herein, we sought to identify additional citrullinated epitopes in human PG that are recognized by T cells or antibodies from RA patients. Methods We used mice with PG-induced arthritis (PGIA) as a screening tool to select citrulline (Cit)-containing PG peptides that were more immunogenic than the arginine (R)-containing counterparts. The selected peptide pairs were tested for induction of pro-inflammatory T-cell cytokine production in RA and healthy control peripheral blood mononuclear cell (PBMC) cultures using ELISA and flow cytometry. Anti-Cit and anti-R peptide antibodies were detected by ELISA. Results Splenocytes from mice with PGIA exhibited greater T-cell cytokine secretion in response to the Cit than the R version of PG peptide 49 (P49) and anti-P49 antibodies were found in PGIA serum. PBMC from ACPA+ and ACPA- RA patients, but not from healthy controls, responded to Cit49 with robust cytokine production. High levels of anti-Cit49 antibodies were found in the plasma of a subset of ACPA+ RA patients. Another PG peptide (Cit13) similar to the previously described T-cell epitope induced greater cytokine responses than R13 by control (but not RA) PBMC, however, anti-Cit13 antibodies were rarely detected in human plasma. Conclusions We identified a novel citrullinated PG epitope (Cit49) that is highly immunogenic in mice with PGIA and in RA patients. We also describe T-cell and antibody reactivity with Cit49 in ACPA+ RA. As citrullinated PG might be present in RA articular cartilage, Cit PG epitope-induced T-cell activation or antibody deposition may

  17. Giant star seismology

    NASA Astrophysics Data System (ADS)

    Hekker, S.; Christensen-Dalsgaard, J.

    2017-06-01

    The internal properties of stars in the red-giant phase undergo significant changes on relatively short timescales. Long near-uninterrupted high-precision photometric timeseries observations from dedicated space missions such as CoRoT and Kepler have provided seismic inferences of the global and internal properties of a large number of evolved stars, including red giants. These inferences are confronted with predictions from theoretical models to improve our understanding of stellar structure and evolution. Our knowledge and understanding of red giants have indeed increased tremendously using these seismic inferences, and we anticipate that more information is still hidden in the data. Unraveling this will further improve our understanding of stellar evolution. This will also have significant impact on our knowledge of the Milky Way Galaxy as well as on exo-planet host stars. The latter is important for our understanding of the formation and structure of planetary systems.

  18. An Innocent Giant

    PubMed Central

    Solanki, Lakhan Singh; Dhingra, Mandeep; Raghubanshi, Gunjan; Thami, Gurvinder Pal

    2014-01-01

    A cutaneous horn (cornu cutaneum) is a protrusion from the skin composed of a cornified material. It may be associated with a benign, premalignant, or malignant lesion at the base, masking numerous dermatoses. In a 24-year-old female, a giant cutaneous horn arising from a seborrheic keratosis located on the leg is presented. This case has been reported to emphasize that a giant cutaneous horn may also occur in young patients, even in photoprotected areas, and are not always associated with malignancy. PMID:25484426

  19. The syndecan family of proteoglycans. Novel receptors mediating internalization of atherogenic lipoproteins in vitro.

    PubMed Central

    Fuki, I V; Kuhn, K M; Lomazov, I R; Rothman, V L; Tuszynski, G P; Iozzo, R V; Swenson, T L; Fisher, E A; Williams, K J

    1997-01-01

    Cell-surface heparan sulfate proteoglycans have been shown to participate in lipoprotein catabolism, but the roles of specific proteoglycan classes have not been examined previously. Here, we studied the involvement of the syndecan proteoglycan family. First, transfection of CHO cells with expression vectors for several syndecan core proteins produced parallel increases in the cell association and degradation of lipoproteins enriched in lipoprotein lipase, a heparan-binding protein. Second, a chimeric construct, FcR-Synd1, that consists of the ectodomain of the IgG Fc receptor Ia linked to the highly conserved transmembrane and cytoplasmic domains of syndecan-1 directly mediated efficient internalization, in a process triggered by ligand clustering. Third, internalization of lipase-enriched lipoproteins via syndecan-1 and of clustered IgGs via the chimera showed identical kinetics (t1/2 = 1 h) and identical dose-response sensitivities to cytochalasin B, which disrupts microfilaments, and to genistein, which inhibits tyrosine kinases. In contrast, internalization of the receptor-associated protein, which proceeds via coated pits, showed a t1/2 < 15 min, limited sensitivity to cytochalasin B, and complete insensitivity to genistein. Thus, syndecan proteoglycans can directly mediate ligand catabolism through a pathway with characteristics distinct from coated pits, and might act as receptors for atherogenic lipoproteins and other ligands in vivo. PMID:9294130

  20. Unique glycoprotein-proteoglycan complex defined by monoclonal antibody on human melanoma cells.

    PubMed Central

    Bumol, T F; Reisfeld, R A

    1982-01-01

    A monoclonal antibody, 9.2.27, with a high specificity for human melanoma cell surfaces has been utilized for biosynthetic studies in M21 human melanoma cells to define a unique antigenic complex consisting of a 250-kilodalton N-linked glycoprotein and a high molecular weight proteoglycan component larger than 400 kilodaltons. The 250-kilodalton glycoprotein has endoglycosidase H-sensitive precursors and shows a lower apparent molecular weight after treatment with neuraminidase. The biosynthesis of the proteoglycan component is inhibited by exposure of M21 cells to the monovalent ionophore monensin, this component can be labeled biosynthetically with 35SO4, is sensitive to beta-elimination in dilute base, and is degraded by both chondroitinase AC and ABC lyases, suggesting that it is a chondroitin sulfate proteoglycan. These data demonstrate that the antigenic determinant recognized by monoclonal antibody 9.2.27 is located on a glycoprotein-proteoglycan complex which may have unique implications for the interaction of glycoconjugates at the human melanoma tumor cell surface. Images PMID:6175965

  1. Heparin sequences in the heparan sulfate chains of an endothelial cell proteoglycan

    SciTech Connect

    Nader, H.B.; Dietrich, C.P.; Buonassisi, V.; Colburn, P.

    1987-06-01

    The structure of the glycosaminoglycan chain of a heparan sulfate proteoglycan isolated from the conditioned medium of an endothelial cell line has been analyzed by using various degradative enzymes (heparitinase I, heparitinase II, heparinase, glycuronidase, sulfatases) from Flavobacterium heparinum. (/sup 35/S)sulfuric acid and/or (/sup 3/H) glucosamine ucre used in preparing heparan sulfate proteoglycan. This proteoglycan inhibits the thromboplastin-activated pathway of coagulation; as a consequence, the catalytic conversion of prothrombin to thrombin is arrested. Heparitinase I, an enzyme with specificity restricted to the heparan sulfate portion of the polysaccharide, releases fragments with the electrophoretic mobility and the structure of heparin. Conversely, as assessment of the size and distribution of the heparan sulfate regions has been provided by the use of heparinase, which, by degrading the heparin sections of the chain, releases two segments that exhibit the structure of heparan sulfate. One of these segments is attached to the protein core. On the basis of these findings, the heparan sulfate chain can be defined as a copolymer containing heparin regions in its structure. The combined use of these enzymes has made it possible to establish the disaccharide sequence of parts of the glycosaminoglycan moiety of this proteoglycan.

  2. Shadows on a Giant

    NASA Image and Video Library

    2012-07-02

    Saturn rings cast wide shadows on the planet, and the shadow of a moon also graces the gas giant in this scene from NASA Cassini spacecraft. The moon Enceladus is not shown in this view, but it does cast a small, elongated shadow.

  3. Giant scrotal elephantiasis.

    PubMed

    Kuepper, Daniel

    2005-02-01

    How much can a man carry? Penoscrotal elephantiasis is a debilitating syndrome. This is a case report of a patient with giant genital elephantiasis secondary to long-standing lymphogranuloma venereum infection in Ethiopia. Complete surgical resection of the pathologic tissue and penile reconstruction was undertaken with good cosmetic and functional results.

  4. [Giant retroperitoneal liposarcoma].

    PubMed

    Mezzour, Mohamed Hicham; El Messaoudi, Yasser Arafat; Fekak, Hamid; Rabii, Redouane; Marnissi, Farida; Karkouri, Mehdi; Salam, Siham; Iraki, Moulay Ahmed; Joual, Abdenbi; Meziane, Fathi

    2006-02-01

    The authors report a case of giant retroperitoneal liposarcoma. The diagnosis was suspected after scanography and magnetic resonance imaging and confirmed by the histological analysis of the extracted piece after surgical treatment. Postoperative evolution was favourable after one year without recurrence or distant metastasis. The authors discuss the pathologic and therapeutic aspects and the prognosis of retroperitoneal liposarcoma.

  5. Electroluminescence of Giant Stretchability.

    PubMed

    Yang, Can Hui; Chen, Baohong; Zhou, Jinxiong; Chen, Yong Mei; Suo, Zhigang

    2016-06-01

    A new type of electroluminescent device achieves giant stretchability by integrating electronic and ionic components. The device uses phosphor powders as electroluminescent materials, and hydrogels as stretchable and transparent ionic conductors. Subject to cyclic voltage, the phosphor powders luminesce, but the ionic conductors do not electrolyze. The device produces constant luminance when stretched up to an area strain of 1500%.

  6. Quantitative imaging of proteoglycan in cartilage using a gadolinium probe and microCT.

    PubMed

    Cockman, M D; Blanton, C A; Chmielewski, P A; Dong, L; Dufresne, T E; Hookfin, E B; Karb, M J; Liu, S; Wehmeyer, K R

    2006-03-01

    Micro-computed tomography (microCT) imaging has the potential to allow the three-dimensional (3D) visualization of cartilage morphology. However, cartilage intensity on a microCT image is weak because cartilage does not strongly attenuate X-rays. This work was designed to demonstrate that exposure of cartilage to charged gadolinium compounds modifies the intensity to allow an improved visualization of cartilage morphology and the determination of proteoglycan content. Trypsin was used to deplete proteoglycan in bovine nasal cartilage disks. Disks were then exposed to Gd(3+), gadopentetate (Gd-DTPA(2-)), or gadoteridol (Gd-HP-DO3A), and imaged with microCT. The intensities of the disks were measured from the images and compared to the actual proteoglycan content determined with a dimethylmethylene blue assay. Treatment of naïve disks with 200 mM Gd(3+) for 24h at room temperature produced a 2.8-fold increase in intensity on microCT images. Similar treatment with 200 mM Gd-DTPA(2-) produced a 1.4-fold increase. After 2h of trypsin treatment at room temperature, the intensities of cartilage disks exposed to 20 0mM Gd(3+) decreased by 12%. Conversely, the intensities of trypsin-treated disks exposed to 200 mM Gd-DPTA(2-) increased by 15%. Trypsin treatment caused a 4% increase in the intensities of disks exposed to neutral Gd-HP-DO3A. The correlation between proteoglycan content and the microCT intensity of cartilage treated with Gd(3+) was very good (r(2)=0.81). Gadolinium and microCT allow an improved 3D visualization of cartilage and quantification of its proteoglycan content.

  7. Effects of compression on the loss of newly synthesized proteoglycans and proteins from cartilage explants

    SciTech Connect

    Sah, R.L.; Doong, J.Y.; Grodzinsky, A.J.; Plaas, A.H.; Sandy, J.D. )

    1991-04-01

    The effects of mechanical compression of calf cartilage explants on the catabolism and loss into the medium of proteoglycans and proteins radiolabeled with (35S)sulfate and (3H)proline were examined. A single 2- or 12-h compression of 3-mm diameter cartilage disks from a thickness of 1.25 to 0.50 mm, or slow cyclic compression (2 h on/2 h off) from 1.25 mm to 1.00, 0.75, or 0.50 mm for 24 h led to transient alterations and/or sustained increases in loss of radiolabeled macromolecules. The effects of imposing or removing loads were consistent with several compression-induced physical mediators including fluid flow, diffusion, and matrix disruption. Cyclic compression induced convective fluid flow and enhanced the loss of 35S- and 3H-labeled macromolecules from tissue into medium. In contrast, prolonged static compression induced matrix consolidation and appeared to hinder the diffusional transport and loss of 35S- and 3H-labeled macromolecules. Since high amplitude cyclic compression led to a sustained increase in the rate of loss of 3H- and 35S-labeled macromolecules that was accompanied by an increase in the rate of loss of (3H)hydroxyproline residues and an increase in tissue hydration, such compression may have caused disruption of the collagen meshwork. The 35S-labeled proteoglycans lost during such cyclic compression were of smaller average size than those from controls, but contained a similarly low proportion (approximately 15%) that could form aggregates with excess hyaluronate and link protein. The size distribution and aggregability of the remaining tissue proteoglycans and 35S-labeled proteoglycans were not markedly affected. The loss of tissue proteoglycan paralleled the loss of 35S-labeled macromolecules.

  8. Function of Membrane-Associated Proteoglycans in the Regulation of Satellite Cell Growth.

    PubMed

    Song, Yan

    2016-01-01

    Muscle growth can be divided into embryonic and postnatal periods. During the embryonic period, mesenchymal stem cells proliferate and differentiate to form muscle fibers. Postnatal muscle growth (hypertrophy) is characterized by the enlargement of existing muscle fiber size. Satellite cells (also known as adult myoblasts) are responsible for hypertrophy. The activity of satellite cells can be regulated by their extracellular matrix (ECM). The ECM is composed of collagens, proteoglycans, non-collagenous glycoproteins, cytokines and growth factors. Proteoglycans contain a central core protein with covalently attached glycosaminoglycans (GAGs: chondroitin sulfate, keratan sulfate, dermatan sulfate, and heparan sulfate) and N- or O-linked glycosylation chains. Membrane-associated proteoglycans attach to the cell membrane either through a glycosylphosphatidylinositol anchor or transmembrane domain. The GAGs can bind proteins including cytokines and growth factors. Both cytokines and growth factors play important roles in regulating satellite cell growth and development. Cytokines are generally associated with immune cells. However, cytokines can also affect muscle cell development. For instance, interleukin-6, tumor necrosis factor-α, and leukemia inhibitory factor have been reported to affect the proliferation and differentiation of satellite cells and myoblasts. Growth factors are potent stimulators or inhibitors of satellite cell proliferation and differentiation. The proper function of some cytokines and growth factors requires an interaction with the cell membrane-associated proteoglycans to enhance the affinity to bind to their primary receptors to initiate downstream signal transduction. This chapter is focused on the interaction of membrane-associated proteoglycans with cytokines and growth factors, and their role in satellite cell growth and development.

  9. Mechanical interactions between collagen and proteoglycans: implications for the stability of lung tissue.

    PubMed

    Cavalcante, Francisco S A; Ito, Satoru; Brewer, Kelly; Sakai, Hiroaki; Alencar, Adriano M; Almeida, Murilo P; Andrade, José S; Majumdar, Arnab; Ingenito, Edward P; Suki, Béla

    2005-02-01

    Collagen and elastin are thought to dominate the elasticity of the connective tissue including lung parenchyma. The glycosaminoglycans on the proteoglycans may also play a role because osmolarity of interstitial fluid can alter the repulsive forces on the negatively charged glycosaminoglycans, allowing them to collapse or inflate, which can affect the stretching and folding pattern of the fibers. Hence, we hypothesized that the elasticity of lung tissue arises primarily from 1) the topology of the collagen-elastin network and 2) the mechanical interaction between proteoglycans and fibers. We measured the quasi-static, uniaxial stress-strain curves of lung tissue sheets in hypotonic, normal, and hypertonic solutions. We found that the stress-strain curve was sensitive to osmolarity, but this sensitivity decreased after proteoglycan digestion. Images of immunofluorescently labeled collagen networks showed that the fibers follow the alveolar walls that form a hexagonal-like structure. Despite the large heterogeneity, the aspect ratio of the hexagons at 30% uniaxial strain increased linearly with osmolarity. We developed a two-dimensional hexagonal network model of the alveolar structure incorporating the mechanical properties of the collagen-elastin fibers and their interaction with proteoglycans. The model accounted for the stress-strain curves observed under all experimental conditions. The model also predicted how aspect ratio changed with osmolarity and strain, which allowed us to estimate the Young's modulus of a single alveolar wall and a collagen fiber. We therefore identify a novel and important role for the proteoglycans: they stabilize the collagen-elastin network of connective tissues and contribute to lung elasticity and alveolar stability at low to medium lung volumes.

  10. Proteoglycans in the microvasculature. I. Histochemical localization in microvessels of the rabbit eye.

    PubMed Central

    Ausprunk, D. H.; Boudreau, C. L.; Nelson, D. A.

    1981-01-01

    The ultrastructural organization of ruthenium red (RR) stainable material within small blood vessels located in the limbus of the rabbit eye was studied. Proteoglycans were identified in this material by digesting tissues with Streptomyces hyaluronidase, testicular hyaluronidase, chondroitinase ABC, or heparinase before ruthenium red staining. Neuraminidase digestion enabled separate identification of sialoglycoprotein. The luminal surface of endothelial cells demonstrates an RR-stained glycocalyx containing both sialoglycoprotein and proteoglycans, which are removed by testicular hyaluronidase and crude heparinase. The basal coat of endothelial cells and small granules (10-20 nm in diameter) located within the basal lamina stain with RR and are removed only by crude heparinase. The surface coat of smooth muscle cells and small granules (10-20 nm) within their basal laminas are also digested by crude heparinase. Large proteoglycan granules (20-50 nm), which are completely removed by testicular hyaluronidase and partially digested by Streptomyces hyaluronidase, are deposited between the connective tissue fibers of the media and adventitia. Other large granules that are attached to collagen fibers contain enzyme-resistant anionic materials. The surface coat of adventitial fibroblasts is removed only by crude heparinase. Thin filaments (3-5 nm in diameter) interconnect the cell coat material, basal lamina granules, and large connective tissue granules, to form a network of proteoglycans that traverses the intima, media, and adventitia. The highly ordered arrangement of proteoglycans in the microvascular wall suggests that these macromolecules play several roles in microvascular function. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9 Figure 10 Figure 11 Figure 12 PMID:6165246

  11. Effect of interleukin 17 on proteoglycan degradation in murine knee joints

    PubMed Central

    Dudler, J.; Renggli-Zulliger, N.; Busso, N.; Lotz, M.; So, A.

    2000-01-01

    OBJECTIVE—To evaluate the effect of murine interleukin 17 (IL17) on cartilage catabolism and joint inflammation by direct intra-articular injection of the cytokine into murine knee joints.
METHODS—Knees of normal C57 Bl mice were injected once or repeatedly with recombinant IL17 or IL1β. Inflammation was estimated by technetium-99m pertechnetate (99Tc) uptake and histological scoring of tissue sections. Proteoglycan depletion was evaluated by histological scoring of safranin O stained sections. Effects on proteoglycan synthesis were studied by 35SO4 incorporation.
RESULTS—A single intra-articular injection of IL17 (10 ng/knee) produced effects very similar to those of IL1β (10 ng/knee). No inflammation was detected at six or 24 hours by 99Tc uptake. However, safranin O staining showed depletion of proteoglycan at 48 hours. Repeated injections of IL17 induced joint inflammation and cartilage proteoglycan depletion as shown by histological scoring. Unlike IL1β, proteoglycan depletion induced by IL17 seemed to be the result of increased degradation only, as no suppression of 35SO4 incorporation was seen.
CONCLUSION—These findings confirm, in vivo, the catabolic effects of IL17 on cartilage. IL17 is thus the first T cell cytokine showing a direct catabolic effect on cartilage in addition to stimulatory effects on macrophages and synoviocytes, making it a potentially important cytokine in the pathogenesis of arthritis.

 PMID:10873962

  12. Intestinal mucosal mast cells from rats infected with Nippostrongylus brasiliensis contain protease-resistant chondroitin sulfate di-B proteoglycans

    SciTech Connect

    Stevens, R.L.; Lee, T.D.G.; Seldin, D.C.; Austen, K.F.; Befus, A.D.; Bienenstock, J.

    1986-07-01

    Rats infected with the helminth Nippostrongylus brasiliensis were injected i.p. with 2 mCi of (/sup 35/S) sulfate on days 13, 15, 17, and 19 after infection. The intestines were removed from animals on day 20 or 21 after infection, the intestinal cells were obtained by collagenase treatment and mechanical dispersion of the tissue, and the /sup 35/S-labeled mucosal mast cells (MMC) were enriched to 60 to 65% purity by Percoll centrifugation. The isolated proteoglycans were of approx. 150,000 m.w., were resistant to pronase degradation, and contained highly sulfated chondroitin sulfate side chains. The presence in normal mammalian cells of chondroitin sulfate proteoglycans that contain a high percentage of the unusual disulfated di-B disaccharide has not been previously reported. The rat intestinal MMC proteoglycans are the first chondroitin sulfate proteoglycans that have been isolated from an enriched populations of normal mast cells. They are homologous to the chondroitin sulfate-rich proteoglycans of the transformed rat basophilic leumekia-1 cell and the cultured interleukin 3-dependent mouse bone marrow-derived mast cell, in that these chondroitin sulfate proteoglycans are all highly sulfated, protease-resistant proteoglycans.

  13. Transforming growth factor-beta 1 stimulates synthesis of proteoglycan aggregates in calf articular cartilage organ cultures

    SciTech Connect

    Morales, T.I. )

    1991-04-01

    Previous work showed that transforming growth factor-beta 1 (TGF-beta 1), added alone to bovine cartilage organ cultures, stimulated (35S)sulfate incorporation into macromolecular material but did not investigate the fidelity of the stimulated system to maintain synthesis of cartilage-type proteoglycans. This paper provides evidence that chondrocytes synthesize the appropriate proteoglycan matrix under TGF-beta 1 stimulation: (1) there is a coordinated increase in hyaluronic acid and proteoglycan monomer synthesis, (2) link-stable proteoglycan aggregates are assembled, (3) the hybrid chondroitin sulfate/keratan sulfate monomeric species is synthesized, and (4) there is an increase in protein core synthesis. Some variation in glycosylation patterns was observed when proteoglycans synthesized under TGF-beta 1 stimulation were compared to those synthesized under basal conditions. Thus comparing TGF-beta 1 to basal samples respectively, the monomers were larger (Kav on Sepharose CL-2B = 0.29 vs 0.41), the chondroitin sulfate chains were longer by approximately 3.5 kDa, the percentage of total glycosaminoglycan in keratan sulfate increased slightly from approximately 4% (basal) to approximately 6%, and the unsulfated disaccharide decreased from 28% (basal) to 12%. All of these variations are in the direction of a more anionic proteoglycan. Since the ability of proteoglycans to confer resiliency to the cartilage matrix is directly related to their anionic nature, these changes would presumably have a beneficial effect on tissue function.

  14. Uncoupling of stem cell inhibition from monocyte chemoattraction in MIP-1alpha by mutagenesis of the proteoglycan binding site.

    PubMed Central

    Graham, G J; Wilkinson, P C; Nibbs, R J; Lowe, S; Kolset, S O; Parker, A; Freshney, M G; Tsang, M L; Pragnell, I B

    1996-01-01

    We have studied the role of proteoglycans in the function of Macrophage Inflammatory Protein-1 alpha (MIP-1alpha), a member of the proteoglycan binding chemokine family. Sequence and peptide analysis has identified a basic region within MIP-1alpha which appears to be the major determinant of proteoglycan binding and we have now produced a mutant of MIP-1alpha lacking the basic charges on two of the amino acids within this proteoglycan binding site. This mutant (Hep Mut) appears to have lost the ability to bind to proteoglycans. Bioassay of Hep Mut indicates that it has retained stem cell inhibitory properties but has a compromised activity as a monocyte chemoattractant, thus suggesting uncoupling of these two properties of MIP-1alpha. Receptor studies have indicated that the inactivity of Hep Mut on human monocytes correlates with its inability to bind to CCR1, a cloned human MIP-1alpha receptor. In addition, studies using proteoglycan deficient cells transfected with CCR1 have indicated that the proteoglycan binding site in MIP-1alpha is a site that is also involved in the docking of MIP-1alpha to the monocyte receptor. The site for interaction with the stem cell receptor must therefore be distinct, suggesting that MIP-1alpha utilizes different receptors for these two different biological processes. Images PMID:8978677

  15. Transforming growth factor type beta specifically stimulates synthesis of proteoglycan in human adult arterial smooth muscle cells.

    PubMed Central

    Chen, J K; Hoshi, H; McKeehan, W L

    1987-01-01

    Myo-intimal proteoglycan metabolism is thought to be important in blood vessel homeostasis, blood clotting, atherogenesis, and atherosclerosis. Human platelet-derived transforming growth factor type beta (TGF-beta) specifically stimulated synthesis of at least two types of chondroitin sulfate proteoglycans in nonproliferating human adult arterial smooth muscle cells in culture. Stimulation of smooth muscle cell proteoglycan synthesis by smooth muscle cell growth promoters (epidermal growth factor, platelet-derived growth factor, and heparin-binding growth factors) was less than 20% of that elicited by TGF-beta. TGF-beta neither significantly stimulated proliferation of quiescent smooth muscle cells nor inhibited proliferating cells. The extent of TGF-beta stimulation of smooth muscle cell proteoglycan synthesis was similar in both nonproliferating and growth-stimulated cells. TGF-beta, which is a reversible inhibitor of endothelial cell proliferation, had no comparable effect on endothelial cell proteoglycan synthesis. These results are consistent with the hypothesis that TGF-beta is a cell-type-specific regulator of proteoglycan synthesis in human blood vessels and may contribute to the myo-intimal accumulation of proteoglycan in atherosclerotic lesions. Images PMID:3474655

  16. Uncoupling of stem cell inhibition from monocyte chemoattraction in MIP-1alpha by mutagenesis of the proteoglycan binding site.

    PubMed

    Graham, G J; Wilkinson, P C; Nibbs, R J; Lowe, S; Kolset, S O; Parker, A; Freshney, M G; Tsang, M L; Pragnell, I B

    1996-12-02

    We have studied the role of proteoglycans in the function of Macrophage Inflammatory Protein-1 alpha (MIP-1alpha), a member of the proteoglycan binding chemokine family. Sequence and peptide analysis has identified a basic region within MIP-1alpha which appears to be the major determinant of proteoglycan binding and we have now produced a mutant of MIP-1alpha lacking the basic charges on two of the amino acids within this proteoglycan binding site. This mutant (Hep Mut) appears to have lost the ability to bind to proteoglycans. Bioassay of Hep Mut indicates that it has retained stem cell inhibitory properties but has a compromised activity as a monocyte chemoattractant, thus suggesting uncoupling of these two properties of MIP-1alpha. Receptor studies have indicated that the inactivity of Hep Mut on human monocytes correlates with its inability to bind to CCR1, a cloned human MIP-1alpha receptor. In addition, studies using proteoglycan deficient cells transfected with CCR1 have indicated that the proteoglycan binding site in MIP-1alpha is a site that is also involved in the docking of MIP-1alpha to the monocyte receptor. The site for interaction with the stem cell receptor must therefore be distinct, suggesting that MIP-1alpha utilizes different receptors for these two different biological processes.

  17. Ovarian carcinoma cells synthesize both chondroitin sulfate and heparan sulfate cell surface proteoglycans that mediate cell adhesion to interstitial matrix.

    PubMed

    Kokenyesi, R

    Metastatic ovarian carcinoma metastasizes by intra-peritoneal, non-hematogenous dissemination. The adhesion of the ovarian carcinoma cells to extracellular matrix components, such as types I and III collagen and cellular fibronectin, is essential for intra-peritoneal dissemination. The purpose of this study was to determine whether cell surface proteoglycans (a class of matrix receptors) are produced by ovarian carcinoma cells, and whether these proteoglycans have a role in the adhesion of ovarian carcinoma cells to types I and III collagen and fibronectin. Proteoglycans were metabolically labeled for biochemical studies. Both phosphatidylinositol-anchored and integral membrane-type cell surface proteoglycans were found to be present on the SK-OV-3 and NIH:OVCAR-3 cell lines. Three proteoglycan populations of differing hydrodynamic size were detected in both SK-OV-3 and NIH:OVCAR-3 cells. Digestions with heparitinase and chondroitinase ABC showed that cell surface proteoglycans of SK-OV-3 cells had higher proportion of chondroitin sulfate proteoglycans (75:25 of chondroitin sulfate:heparan sulfate ratio), while NIH:OVCAR-3 cells had higher proportion of heparan sulfate proteoglycans (10:90 of chondroitin sulfate:heparan sulfate ratio). RT-PCR indicated the synthesis of a unique assortment of syndecans, glypicans, and CD44 by the two cell lines. In adhesion assays performed on matrix-coated titer plates both cell lines adhered to types I and III collagen and cellular fibronectin, and cell adhesion was inhibited by preincubation of the matrix with heparin, heparan sulfate, chondroitin sulfate, dermatan sulfate, or chondroitin glycosaminoglycans. Treatment of the cells with heparitinase, chondroitinase ABC, or methylumbelliferyl xyloside also interfered with adhesion confirming the role of both heparan sulfate and chondroitin sulfate cell surface proteoglycans as matrix receptors on ovarian carcinoma cells.

  18. Epigenetic Regulation of the Biosynthesis & Enzymatic Modification of Heparan Sulfate Proteoglycans: Implications for Tumorigenesis and Cancer Biomarkers.

    PubMed

    Hull, Elizabeth E; Montgomery, McKale R; Leyva, Kathryn J

    2017-06-26

    Emerging evidence suggests that the enzymes in the biosynthetic pathway for the synthesis of heparan sulfate moieties of heparan sulfate proteoglycans (HSPGs) are epigenetically regulated at many levels. As the exact composition of the heparan sulfate portion of the resulting HSPG molecules is critical to the broad spectrum of biological processes involved in oncogenesis, the epigenetic regulation of heparan sulfate biosynthesis has far-reaching effects on many cellular activities related to cancer progression. Given the current focus on developing new anti-cancer therapeutics focused on epigenetic targets, it is important to understand the effects that these emerging therapeutics may have on the synthesis of HSPGs as alterations in HSPG composition may have profound and unanticipated effects. As an introduction, this review will briefly summarize the variety of important roles which HSPGs play in a wide-spectrum of cancer-related cellular and physiological functions and then describe the biosynthesis of the heparan sulfate chains of HSPGs, including how alterations observed in cancer cells serve as potential biomarkers. This review will then focus on detailing the multiple levels of epigenetic regulation of the enzymes in the heparan sulfate synthesis pathway with a particular focus on regulation by miRNA and effects of epigenetic therapies on HSPGs. We will also explore the use of lectins to detect differences in heparan sulfate composition and preview their potential diagnostic and prognostic use in the clinic.

  19. High resistance of the mechanical properties of the chondrocyte pericellular matrix to proteoglycan digestion by chondroitinase, aggrecanase, or hyaluronidase.

    PubMed

    Wilusz, Rebecca E; Guilak, Farshid

    2014-10-01

    In articular cartilage, the extracellular matrix (ECM) and chondrocyte-associated pericellular matrix (PCM) are characterized by a high concentration of proteoglycans (PGs) and their associated glycosaminoglycans (GAGs). These molecules serve important biochemical, structural, and biomechanical roles in the tissue and differences in their regional distributions suggest that different GAG/PG species contribute to the specific biomechanical properties of the ECM and PCM. The objective of this study was to investigate region-specific contributions of aggrecan, chondroitin and dermatan sulfate, and hyaluronan to the micromechanical properties of articular cartilage PCM and ECM in situ. Cryosections of porcine cartilage underwent digestion with ADAMTS-4, chondroitinase ABC, bacterial hyaluronidase or human leukocyte elastase. Guided by immunofluorescence for type VI collagen, AFM stiffness mapping was used to evaluate the elastic properties of matched PCM and ECM regions in paired control and digested cartilage sections. These methods were used to test the hypotheses that specific enzymatic digestion of GAGs or PGs would reduce both PCM and ECM elastic moduli. Elastase, which digests a number of PGs, some types of collagen, and non-collagenous proteins, was used as a positive control. ECM elastic moduli were significantly reduced by all enzyme treatments. However, PCM micromechanical properties were unaffected by enzymatic digestion of aggrecan, chondroitin/dermatan sulfate, and hyaluronan but were significantly reduced by 24% following elastase digestion. Our results provide new evidence for high resistance of PCM micromechanical properties to PG digestion and suggest a potential role for elastase in the degradation of the ECM and PCM.

  20. Modulators of axonal growth and guidance at the brain midline with special reference to glial heparan sulfate proteoglycans.

    PubMed

    Cavalcante, Leny A; Garcia-Abreu, Jos; Moura Neto, Vivaldo; Silva, Luiz Claudio; Weissmüller, Gilberto

    2002-12-01

    Bilaterally symmetric organisms need to exchange information between the left and right sides of their bodies to integrate sensory input and to coordinate motor control. Thus, an important choice point for developing axons is the Central Nervous System (CNS) midline. Crossing of this choice point is influenced by highly conserved, soluble or membrane-bound molecules such as the L1 subfamily, laminin, netrins, slits, semaphorins, Eph-receptors and ephrins, etc. Furthermore, there is much circumstantial evidence for a role of proteoglycans (PGs) or their glycosaminoglycan (GAG) moieties on axonal growth and guidance, most of which was derived from simplified models. A model of intermediate complexity is that of cocultures of young neurons and astroglial carpets (confluent cultures) obtained from medial and lateral sectors of the embryonic rodent midbrain soon after formation of its commissures. Neurite production in these cocultures reveals that, irrespective of the previous location of neurons in the midbrain, medial astrocytes exerted an inhibitory or non-permissive effect on neuritic growth that was correlated to a higher content of both heparan and chondroitin sulfates (HS and CS). Treatment with GAG lyases shows minor effects of CS and discloses a major inhibitory or non-permissive role for HS. The results are discussed in terms of available knowledge on the binding of HSPGs to interative proteins and underscore the importance of understanding glial polysaccharide arrays in addition to its protein complement for a better understanding of neuron-glial interactions.

  1. Melanoma-associated chondroitin sulphate proteoglycan as a new target antigen for CD4+ T cells in melanoma patients.

    PubMed

    Erfurt, Cornelia; Müller, Esther; Emmerling, Sonja; Klotz, Claudia; Hertl, Michael; Schuler, Gerold; Schultz, Erwin S

    2009-05-15

    Melanoma-associated chondroitin sulfate proteoglycan (MCSP) (also known as high molecular weight-melanoma-associated antigen) represents an interesting target antigen for cancer immunotherapy which is expressed on human melanomas and other tumors such as breast carcinomas, gliomas, neuroblastomas and acute leukemias. MCSP seems to play an important functional role in melanoma as it is involved in tumor cell migration, invasion and angiogenesis. In this study, we isolated CD4(+) T helper cells from the blood of a healthy donor, recognizing a peptide from the MCSP core protein presented by HLA-DBR1*1101 molecules. T cell reactivity against the identified peptide could be detected in the blood of healthy donors and melanoma patients. MCSP specific T cells from the blood of a patient could be readily expanded by repeated peptide stimulation and recognized MCSP and HLA-DR expressing tumor cells. Our findings suggest that vaccination against MCSP helper T cell epitopes might be a promising approach to fight melanoma.

  2. Nursery of Giants

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Hidden behind a shroud of dust in the constellation Cygnus is a stellar nursery called DR21, which is giving birth to some of the most massive stars in our galaxy. Visible light images reveal no trace of this interstellar cauldron because of heavy dust obscuration. In fact, visible light is attenuated in DR21 by a factor of more than 10,000,000,000,000,000,000,000,000,000,000,000,000,000 (ten thousand trillion heptillion).

    New images from NASA's Spitzer Space Telescope allow us to peek behind the cosmic veil and pinpoint one of the most massive natal stars yet seen in our Milky Way galaxy. The never-before-seen star is 100,000 times as bright as the Sun. Also revealed for the first time is a powerful outflow of hot gas emanating from this star and bursting through a giant molecular cloud.

    This image is a large-scale mosaic assembled from individual photographs obtained with the InfraRed Array Camera (IRAC) aboard Spitzer. The image covers an area about two times that of a full moon. The mosaic is a composite of images obtained at mid-infrared wavelengths of 3.6 microns (blue), 4.5 microns (green), 5.8 microns (orange) and 8 microns (red). The brightest infrared cloud near the top center corresponds to DR21, which presumably contains a cluster of newly forming stars at a distance of 10,000 light-years.

    Protruding out from DR21 toward the bottom left of the image is a gaseous outflow (green), containing both carbon monoxide and molecular hydrogen. Data from the Spitzer spectrograph, which breaks light into its constituent individual wavelengths, indicate the presence of hot steam formed as the outflow heats the surrounding molecular gas. Outflows are physical signatures of processes that create supersonic beams, or jets, of gas. They are usually accompanied by discs of material around the new star, which likely contain the materials from which future planetary systems are formed. Additional newborn stars, depicted in green, can be seen surrounding the

  3. Nursery of Giants

    NASA Image and Video Library

    2004-04-13

    Hidden behind a shroud of dust in the constellation Cygnus is a stellar nursery called DR21, which is giving birth to some of the most massive stars in our galaxy. Visible light images reveal no trace of this interstellar cauldron because of heavy dust obscuration. In fact, visible light is attenuated in DR21 by a factor of more than 10,000,000,000,000,000,000,000,000,000,000,000,000,000 (ten thousand trillion heptillion). New images from NASA's Spitzer Space Telescope allow us to peek behind the cosmic veil and pinpoint one of the most massive natal stars yet seen in our Milky Way galaxy. The never-before-seen star is 100,000 times as bright as the Sun. Also revealed for the first time is a powerful outflow of hot gas emanating from this star and bursting through a giant molecular cloud. This image is a large-scale mosaic assembled from individual photographs obtained with the InfraRed Array Camera (IRAC) aboard Spitzer. The image covers an area about two times that of a full moon. The mosaic is a composite of images obtained at mid-infrared wavelengths of 3.6 microns (blue), 4.5 microns (green), 5.8 microns (orange) and 8 microns (red). The brightest infrared cloud near the top center corresponds to DR21, which presumably contains a cluster of newly forming stars at a distance of 10,000 light-years. Protruding out from DR21 toward the bottom left of the image is a gaseous outflow (green), containing both carbon monoxide and molecular hydrogen. Data from the Spitzer spectrograph, which breaks light into its constituent individual wavelengths, indicate the presence of hot steam formed as the outflow heats the surrounding molecular gas. Outflows are physical signatures of processes that create supersonic beams, or jets, of gas. They are usually accompanied by discs of material around the new star, which likely contain the materials from which future planetary systems are formed. Additional newborn stars, depicted in green, can be seen surrounding the DR21 region

  4. Molecule nanoweaver

    DOEpatents

    Gerald, II; Rex, E [Brookfield, IL; Klingler, Robert J [Glenview, IL; Rathke, Jerome W [Homer Glen, IL; Diaz, Rocio [Chicago, IL; Vukovic, Lela [Westchester, IL

    2009-03-10

    A method, apparatus, and system for constructing uniform macroscopic films with tailored geometric assemblies of molecules on the nanometer scale. The method, apparatus, and system include providing starting molecules of selected character, applying one or more force fields to the molecules to cause them to order and condense with NMR spectra and images being used to monitor progress in creating the desired geometrical assembly and functionality of molecules that comprise the films.

  5. Ice Giant Exploration

    NASA Astrophysics Data System (ADS)

    Rymer, A. M.; Arridge, C. S.; Masters, A.; Turtle, E. P.; Simon, A. A.; Hofstadter, M. D.; Turrini, D.; Politi, R.

    2015-12-01

    The Ice Giants in our solar system, Uranus and Neptune, are fundamentally different from their Gas Giant siblings Jupiter and Saturn, from the different proportions of rock and ice to the configuration of their planetary magnetic fields. Kepler space telescope discoveries of exo-planets indicate that planets of this type are among the most ubiquitous universally and therefore a future mission to explore the nature of the Ice Giants in our own solar system will provide insights into the nature of extra-solar system objects in general. Uranus has the smallest self- luminosity of all the planets, potentially related to catastrophic events early in the planet's history, which also may explain Uranus' large obliquity. Uranus' atmosphere is subject to extreme seasonal forcing making it unique in the Solar System. Neptune is also unique in a number of ways, notably its large moon Triton which is likely a captured Kuiper Belt Object and one of only two moons in the solar system with a robustly collisional atmosphere. Similar to Uranus, the angle between the solar wind and the magnetic dipole axis is subject to large-amplitude variations on both diurnal and seasonal timescales, but peculiarly it has one of the quietest magnetospheres of the solar system, at least according to Voyager 2, the only spacecraft to encounter Neptune to date. A comprehensive mission, as advocated in the Decadal Survey, would provide enormous science return but is also challenging and expensive. In this presentation we will discuss mission scenarios and suggest how collaboration between disciplines and internationally can help us to pursue a mission that includes Ice Giant exploration.

  6. Giant cell arteritis

    PubMed Central

    Calvo-Romero, J

    2003-01-01

    Giant cell arteritis (GCA), temporal arteritis or Horton's arteritis, is a systemic vasculitis which involves large and medium sized vessels, especially the extracranial branches of the carotid arteries, in persons usually older than 50 years. Permanent visual loss, ischaemic strokes, and thoracic and abdominal aortic aneurysms are feared complications of GCA. The treatment consists of high dose steroids. Mortality, with a correct treatment, in patients with GCA seems to be similar that of controls. PMID:13679546

  7. Giant Cell Arteritis.

    PubMed

    Hoffman, Gary S

    2016-11-01

    This issue provides a clinical overview of giant cell arteritis, focusing on diagnosis, treatment, and practice improvement. The content of In the Clinic is drawn from the clinical information and education resources of the American College of Physicians (ACP), including MKSAP (Medical Knowledge and Self-Assessment Program). Annals of Internal Medicine editors develop In the Clinic in collaboration with the ACP's Medical Education and Publishing divisions and with the assistance of additional science writers and physician writers.

  8. Effects of tenoxicam and aspirin on the metabolism of proteoglycans and hyaluronan in normal and osteoarthritic human articular cartilage.

    PubMed Central

    Manicourt, D H; Druetz-Van Egeren, A; Haazen, L; Nagant de Deuxchaisnes, C

    1994-01-01

    1. As nonsteroidal anti-inflammatory drugs may impair the ability of the chondrocyte to repair its damaged extracellular matrix, we explored the changes in the metabolism of newly synthesized proteoglycan (PG) and hyaluronan (HA) molecules produced by tenoxicam and aspirin in human normal cartilage explants and in osteoarthritic (OA) cartilage from age-matched donors. 2. Explants were sampled from the medial femoral condyle and were classified by use of Mankin's histological-histochemical grading system. Cartilage specimens were normal in 10 subjects, exhibited moderate OA (MOA) in 10 and had severe OA (SOA) in 10. 3. Cartilage explants were pulsed with [3H]-glucosamine and chased in the absence and in the presence of either aspirin (190 micrograms ml-1) or tenoxicam (4-16 micrograms ml-1). After papain digestion, the labelled chondroitin sulphate ([3H]-PGs) and HA([3H]-HA) molecules present in the tissue and media were purified by anion-exchange chromatography. 4. In normal cartilage as well as in explants with MOA and SOA aspirin reduced more strongly PG and HA synthesis than the loss of [3H]-HA and [3H]-PGs. 5. In normal cartilage, tenoxicam did not affect PG metabolism whereas it reduced HA synthesis in a dose-dependent manner and did not change or even increased the net loss of [3H]-HA. In contrast, in OA cartilage, tenoxicam produced a stronger reduction in the loss of [3H]-PGs than in PG synthesis and this decrease occurred at lower concentrations in cartilage with SOA (4-8 micrograms ml-1) than in cartilage with MOA (8-16 micrograms ml-1).(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7889262

  9. Pigment epithelium-derived factor (PEDF) shares binding sites in collagen with heparin/heparan sulfate proteoglycans.

    PubMed

    Sekiya, Atsushi; Okano-Kosugi, Hitomi; Yamazaki, Chisato M; Koide, Takaki

    2011-07-29

    Pigment epithelium-derived factor (PEDF) is a collagen-binding protein that is abundantly distributed in various tissues, including the eye. It exhibits various biological functions, such as anti-angiogenic, neurotrophic, and neuroprotective activities. PEDF also interacts with extracellular matrix components such as collagen, heparan sulfate proteoglycans (HSPGs), and hyaluronan. The collagen-binding property has been elucidated to be important for the anti-angiogenic activity in vivo (Hosomichi, J., Yasui, N., Koide, T., Soma, K., and Morita, I. (2005) Biochem. Biophys. Res. Commun. 335, 756-761). Here, we investigated the collagen recognition mechanism by PEDF. We first narrowed down candidate PEDF-binding sequences by taking advantage of previously reported structural requirements in collagen. Subsequent searches for PEDF-binding sequences employing synthetic collagen-like peptides resulted in the identification of one of the critical binding sites for PEDF, human α1(I)(929-938) (IKGHRGFSGL). Further analysis revealed that the collagen recognition by PEDF is sequence- and conformation-specific, and the high affinity binding motif is KGXRGFXGL in the triple helix. The PEDF-binding motif significantly overlapped with the heparin/HSPG-binding motif, KGHRG(F/Y). The interaction of PEDF with collagen I was specifically competed with by heparin but not by chondroitin sulfate-C or hyaluronan. The binding sequences for PEDF and heparin/HSPG also overlapped with the covalent cross-linking sites between collagen molecules. These findings imply a functional relationship between PEDF and HSPGs during angiogenesis, and the interaction of these molecules is regulated by collagen modifications.

  10. Targeting Common but Complex Proteoglycans on Breast Cancer Cells and Stem Cells Using Evolutionary Refined Malaria Proteins

    DTIC Science & Technology

    2016-08-01

    AWARD NUMBER: W81XWH-13-1-0140 TITLE: Targeting Common but Complex Proteoglycans on Breast Cancer Cells and Stem Cells Using Evolutionary...DATES COVERED 15 Jul 2015 – 14 Jul 2016 4. TITLE AND SUBTITLE Targeting Common but Complex Proteoglycans on Breast Cancer Cells and Stem Cells Using...cell growth and metastasis. Our data demonstrate how an evolutionarily refined parasite-derived protein can be exploited to target a common , but

  11. Decreased elastic fibers and increased proteoglycans in the ligamentum flavum of patients with lumbar spinal canal stenosis.

    PubMed

    Yabe, Yutaka; Hagiwara, Yoshihiro; Tsuchiya, Masahiro; Honda, Masahito; Hatori, Kouki; Sonofuchi, Kazuaki; Kanazawa, Kenji; Koide, Masashi; Sekiguchi, Takuya; Itaya, Nobuyuki; Itoi, Eiji

    2016-07-01

    Elastic fibers and proteoglycans are major components of the extracellular matrix and their changes have been reported in some pathological conditions. Further, recent studies have indicated that some glycosaminoglycans and proteoglycans inhibit elastic fiber assembly. The purpose of this study was to investigate changes of the elastic fibers and proteoglycans in the ligamentum flavum and analyze their relationships to thickening of the ligamentum flavum from lumbar spinal canal stenosis (LSCS). Ligamentum flavum samples were collected from 20 patients with LSCS (thickened flavum group) and 10 patients with lumbar disc herniation (non-thickened flavum group) as a control. Elastica-Masson staining and alcian blue staining were used to compare the relationship between the changes in the elastic fibers and proteoglycans. Gene and protein expressions of the elastic fibers and proteoglycans were analyzed by quantitative reverse transcription polymerase chain reaction and immunohistochemistry. Histological changes indicated that proteoglycans mainly increased on the dorsal side of the ligamentum flavum in accordance with the decreased elastic fibers in the thickened flavum group. The gene and protein expressions of fibrillin-2 and DANCE were significantly lower and decorin, lumican, osteoglycin, and versican were significantly higher in the thickened flavum group. Our study shows that elastic fibers decrease and proteoglycans increase in the thickened ligamentum flavum. Decreased gene expression of elastogenesis and disrupted elastic fiber assembly caused by increased proteoglycans may lead to a loss of elasticity in the thickened ligamentum flavum. Decreased elasticity may cause buckling of the tissue, which leads to thickening of the ligamentum flavum. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:1241-1247, 2016. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  12. Distinct Secondary Structures of the Leucine-Rich Repeat Proteoglycans Decorin and Biglycan: Glycosylation-Dependent Conformational Stability

    NASA Technical Reports Server (NTRS)

    Krishnan, Priya; Hocking, Anne M.; Scholtz, J. Martin; Pace, C. Nick; Holik, Kimberly K.; McQuillan, David J.

    1998-01-01

    Biglycan and decorin, closely related small leucine-rich repeat proteoglycans, have been overexpressed in eukaryotic cers and two major glycoforms isolated under native conditions: a proteoglycan substituted with glycosaminoglycan chains; and a core protein form secreted devoid of glycosaminoglycans. A comparative biophysical study of these glycoforms has revealed that the overall secondary structures of biglycan and decorin are different. Far-UV Circular Dichroism (CD) spectroscopy of decorin and biglycan proteoglycans indicates that, although they are predominantly Beta-sheet, biglycan has a significantly higher content of alpha-helical structure. Decorin proteoglycan and core protein are very similar, whereas the biglycan core protein exhibits closer similarity to the decorin glycoforms than to. the biglycan proteoglycan form. However, enzymatic removal of the chondroitin sulfate chains from biglycan proteoglycan does not induce a shift to the core protein structure, suggesting that the fmal form is influenced by polysaccharide addition only during biosynthesis. Fluorescence emission spectroscopy demonstrated that the single tryptophan residue, which is at a conserved position at the C-terminal domain of both biglycan and decorin, is found in similar microenvironments. This indicates that at least in this specific domain, the different glycoforms do exhibit apparent conservation of structure. Exposure of decorin and biglycan to 10 M urea resulted in an increase in fluorescent intensity, which indicates that the emission from tryptophan in the native state is quenched. Comparison of urea-induced protein unfolding curves provided further evidence that decorin and biglycan assume different structures in solution. Decorin proteoglycan and core protein unfold in a manner similar to a classic two-state model, in which there is a steep transition to an unfolded state between 1-2 M urea. The biglycan core protein also shows a similar steep transition. However, biglycan

  13. Unusual Giant Prostatic Urethral Calculus

    PubMed Central

    Bello, A.; Maitama, H. Y.; Mbibu, N. H.; Kalayi, G. D.; Ahmed, A.

    2010-01-01

    Giant vesico-prostatic urethral calculus is uncommon. Urethral stones rarely form primarily in the urethra, and they are usually associated with urethral strictures, posterior urethral valve or diverticula. We report a case of a 32-year-old man with giant vesico-prostatic (collar-stud) urethral stone presenting with sepsis and bladder outlet obstruction. The clinical presentation, management, and outcome of the giant prostatic urethral calculus are reviewed. PMID:22091328

  14. Transmembrane proteoglycans control stretch-activated channels to set cytosolic calcium levels

    PubMed Central

    Gopal, Sandeep; Søgaard, Pernille; Multhaupt, Hinke A.B.; Pataki, Csilla; Okina, Elena; Xian, Xiaojie; Pedersen, Mikael E.; Stevens, Troy; Griesbeck, Oliver; Park, Pyong Woo; Pocock, Roger

    2015-01-01

    Transmembrane heparan sulfate proteoglycans regulate multiple aspects of cell behavior, but the molecular basis of their signaling is unresolved. The major family of transmembrane proteoglycans is the syndecans, present in virtually all nucleated cells, but with mostly unknown functions. Here, we show that syndecans regulate transient receptor potential canonical (TRPCs) channels to control cytosolic calcium equilibria and consequent cell behavior. In fibroblasts, ligand interactions with heparan sulfate of syndecan-4 recruit cytoplasmic protein kinase C to target serine714 of TRPC7 with subsequent control of the cytoskeleton and the myofibroblast phenotype. In epidermal keratinocytes a syndecan–TRPC4 complex controls adhesion, adherens junction composition, and early differentiation in vivo and in vitro. In Caenorhabditis elegans, the TRPC orthologues TRP-1 and -2 genetically complement the loss of syndecan by suppressing neuronal guidance and locomotory defects related to increases in neuronal calcium levels. The widespread and conserved syndecan–TRPC axis therefore fine tunes cytoskeletal organization and cell behavior. PMID:26391658

  15. Proteoglycan regulation of goldfish retinal explant growth on optic tectal membranes.

    PubMed

    Su, Yung-Kang; Elam, John S

    2003-05-14

    Regenerating goldfish retinal explants cultured on poly-L-lysine overlaid with membranes isolated from 21-day regenerating 1/3 anterior optic tectum (Ant. OTec) exhibited extensive defasciculated neurite outgrowth. Heparatinase treatment of membranes caused the complete inhibition of neurite outgrowth on that substrate. Western blot analysis showed that the OTec membranes contain a 300 kDa heparan sulfate proteoglycan. Explants cultured on 21-day regenerating 1/3 Ant. OTec membranes in the presence of 1 mM beta-xyloside, an axonal proteoglycan synthesis inhibitor, showed a significant reduction in the number of neurites per explant and in the average neurite length. Taken all together, the present results provide evidence that a 300-kDa membrane HSPG present in the Ant. OTec is necessary for axonal outgrowth and that axonal PGs are involved in modulating outgrowth on 21-day regenerating 1/3 Ant. OTec membranes.

  16. Biochemical and atomic force microscopic characterization of salmon nasal cartilage proteoglycan.

    PubMed

    Kakizaki, Ikuko; Mineta, Takashi; Sasaki, Mana; Tatara, Yota; Makino, Eiji; Kato, Yoji

    2014-03-15

    Biological activities of salmon nasal cartilage proteoglycan fractions are known, however, structural information is lacking. Recently, the major proteoglycan of this cartilage was identified as aggrecan. In this study, global molecular images and glycosaminoglycan structure of salmon nasal cartilage aggrecan purified from 4M guanidine hydrochloride extract were analyzed using HPLCs and atomic force microscopy with bovine tracheal cartilage aggrecan as a control. The estimated numbers of sulfates per disaccharide unit of chondroitin sulfate chains of salmon and bovine aggrecans were similar (approximately 0.85). However, the disaccharide composition showed a higher proportion of chondroitin 6-sulfate units in salmon aggrecan, 60%, compared to 40% in bovine. Gel filtration HPLC and monosaccharide analysis showed the salmon aggrecan had a lower number (approximately one-third), but 1.5-3.3 times longer chondroitin sulfate chains than the bovine aggrecan. Atomic force microscopic molecular images of aggrecan supported the images predicted by biochemical analyses. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Interstellar molecules

    NASA Technical Reports Server (NTRS)

    Townes, C. H.

    1976-01-01

    Progress in the discovery and study of interstellar molecules is summarized. The 36 molecular species thus far identified in interstellar space are listed in several groups which include simple hydrides, oxides, and sulfides, various derivatives of ammonia, molecules involving linear carbon chains, cyanides, and molecules related in structure to formaldehyde, alcohols, or ethers. Several free radicals are described, the discovery of molecules in external galaxies is discussed, and possible mechanisms for molecular formation are noted. Methods for examining relative isotopic abundances by measuring molecules in interstellar clouds are outlined, mechanisms for the excitation of interstellar molecules are reviewed, and values are presented for the C-12/C-13 abundance ratio in a number of interstellar clouds. The detection of interstellar masers is discussed along with pumping mechanisms and masing transitions in H2CO, CH, OH, and SiO. The nature of dense interstellar clouds is examined in terms of several simple and complex cloud models, with emphasis on multiple condensation models.

  18. Giant bulla mimicking tension pneumothorax.

    PubMed

    Gökçe, Mertol; Saydam, Ozkan; Altin, Remzi; Kart, Levent

    2009-01-01

    In the chest X-ray, we observe tension pneumothorax (TPX) as wide radiolucent view in a hemithorax and pushing the mediastinal structures contralateral. Giant bulla may mimic TPX with wide radiolucent view and mediastinal shift. The present report includes giant pulmonary bulla in 35-year-old woman. The giant bulla was diagnosed as a TPX in emergency, and chest tube was performed. The differentiation between TPX and a giant bulla may be very difficult. The therapies of these two similar entities are completely different. So that, we must be careful about anamnesis, physical examination and radiology for true diagnosis.

  19. Salmon cartilage proteoglycan suppresses mouse experimental colitis through induction of Foxp3{sup +} regulatory T cells

    SciTech Connect

    Mitsui, Toshihito; Sashinami, Hiroshi; Sato, Fuyuki; Kijima, Hiroshi; Ishiguro, Yoh; Fukuda, Shinsaku; Yoshihara, Shuichi; Hakamada, Ken-Ichi; Nakane, Akio

    2010-11-12

    Research highlights: {yields} Salmon proteoglycan suppresses IL-10{sup -/-} cell transfer-induced colitis progression. {yields} Salmon proteoglycan suppresses Th1- and Th17-related factors in colitis mice. {yields} Salmon proteoglycan enhances Foxp3 expression. -- Abstract: Proteoglycans (PGs) are complex glycohydrates which are widely distributed in extracellular matrix (ECM). PGs are involved in the construction of ECM, cell proliferation and differentiation. ECM components are involved in transduction of proinflammatory responses, but it is still unknown whether PGs are involved in inflammatory response. In this study, we investigated the effect of PG extracted from salmon cartilage on the progression of experimental colitis-induced in severe combined immunodeficiency mice by cell transfer from interleukin-10 (IL-10){sup -/-} mice. IL-10{sup -/-} cell-transferred mice showed weight loss, colon shortening and histological appearance of mild colitis. Daily oral administration of PG attenuated the clinical progression of colitis in a dose-dependent manner. Colitis-induced mice showed the elevated expression of IFN-{gamma}, IL-12, TNF-{alpha}, IL-21, IL-23p19, IL-6, IL-17A and retinoic acid-related orphan receptor {gamma}t (ROR{gamma}t) in lamina propria mononuclear cells (LPMCs) and oral administration of PG suppressed the expression of these factors. Conversely, expression of Foxp3 that induces CD4{sup +}CD25{sup +} regulatory T cells in LPMCs was enhanced by PG administration. These findings suggested that salmon PG attenuated the progression of colitis due to suppression of inflammatory response by enhancement of regulatory T cell induction.

  20. Ultrastructure of unstained, hydrated proteoglycan aggregates and monomer: a new method of imaging

    SciTech Connect

    Panessa, B J; Hoffman, P; Warren, J B; McCorkle, R A; Coleman, G

    1980-01-01

    The application of a new method for imaging delicate hydrated biological materials is reported, and the structure of isolated proteoglycan aggregates and monomer is demonstrated at better than 30 nm resolution. This new method for high resolution examination of labile hydrated biological materials, employing a wet cell and pulsed plasma x-ray source, permits short exposure times, minimal specimen damage, and sufficient radiation dosages for imaging. (ERB)

  1. Physiological Loading Can Restore the Proteoglycan Content in a Model of Early IVD Degeneration

    PubMed Central

    Gawri, Rahul; Moir, Janet; Ouellet, Jean; Beckman, Lorne; Steffen, Thomas; Roughley, Peter; Haglund, Lisbet

    2014-01-01

    A hallmark of early IVD degeneration is a decrease in proteoglycan content. Progression will eventually lead to matrix degradation, a decrease in weight bearing capacity and loss of disc height. In the final stages of IVD degradation, fissures appear in the annular ring allowing extrusion of the NP. It is crucial to understand the interplay between mechanobiology, disc composition and metabolism to be able to provide exercise recommendations to patients with early signs of disc degeneration. This study evaluates the effect of physiological loading compared to no loading on matrix homeostasis in bovine discs with induced degeneration. Bovine discs with trypsin-induced degeneration were cultured for 14 days in a bioreactor under dynamic loading with maintained metabolic activity. Chondroadherin abundance and structure was used to confirm that a functional matrix was preserved in the chosen loading environment. No change was observed in chondroadherin integrity and a non-significant increase in abundance was detected in trypsin-treated loaded discs compared to unloaded discs. The proteoglycan concentration in loaded trypsin-treated discs was significantly higher than in unloaded disc and the newly synthesised proteoglycans were of the same size range as those found in control samples. The proteoglycan showed an even distribution throughout the NP region, similar to that of control discs. Significantly more newly synthesised type II collagen was detected in trypsin-treated loaded discs compared to unloaded discs, demonstrating that physiological load not only stimulates aggrecan production, but also that of type II collagen. Taken together, this study shows that dynamic physiological load has the ability to repair the extracellular matrix depletion typical of early disc degeneration. PMID:24992586

  2. Preservation of the Structure of Enzymatically-Degraded Bovine Vitreous Using Synthetic Proteoglycan Mimics

    PubMed Central

    Zhang, Qianru; Filas, Benjamen A.; Roth, Robyn; Heuser, John; Ma, Nan; Sharma, Shaili; Panitch, Alyssa; Beebe, David C.; Shui, Ying-Bo

    2014-01-01

    Purpose. Vitreous liquefaction and subsequent posterior vitreous detachment can lead to several sight-threatening diseases, including retinal detachment, macular hole and macular traction syndrome, nuclear cataracts, and possibly, open-angle glaucoma. In this study, we tested the ability of three novel synthetic chondroitin sulfate proteoglycan mimics to preserve the structure and physical properties of enzymatically-degraded bovine vitreous. Methods. Chondroitin sulfate proteoglycan mimics, designed to bind to type II collagen, hyaluronic acid, or both, were applied to trypsin- or collagenase-treated bovine vitreous in situ and in vitro. Rheology and liquefaction tests were performed to determine the physical properties of the vitreous, while Western blots were used to detect the presence and degradation of soluble collagen II (α1). Deep-etch electron microscopy (DEEM) identified the ultrastructure of mimic-treated and untreated enzyme-degraded bovine vitreous. Results. Proteoglycan mimics preserved the physical properties of trypsin-degraded bovine vitreous and protected against vitreous liquefaction. Although the collagen-binding mimic maintained the physical properties of collagenase-treated vitreous, liquefaction still occurred. Western blots indicated that the mimic provided only marginal protective ability against soluble collagen degradation. Deep-etch electron microscopy, however, showed increased density and isotropy of microstructural components in mimic-treated vitreous, supporting the initial result that vitreous structure was preserved. Conclusions. Proteoglycan mimics preserved bovine vitreous physical properties after enzymatic degradation. These compounds may be useful in delaying or preventing the pathological effects of age-related, or enzymatically-induced, degradation of the vitreous body. PMID:25342623

  3. Proteoglycan synthesis by skeletal muscle undergoing bone matrix-directed transformation into cartilage in vitro.

    PubMed

    Nathanson, M A

    1983-09-10

    Myoblasts and fibroblasts of embryonic skeletal muscle reproducibly form chondrocytes when cultured on demineralized bone in vitro. The transformation occurs in 3 morphologically defined phases, with disappearance of the myoblast phenotype preceding the appearance of fibroblast-like cells and finally chondrocytes. Proteoglycan synthesis in these cultures was investigated by labeling at prechondrogenic (5 days) and postchondrogenic (6-12 days) stages with (35S)sulfate and [6-3H]glucosamine. Labeled material elutes from associative Sepharose CL-2B columns as two major included peaks, which correspond to proteoglycan monomer and a material of lower molecular size. Control cultures, cultured upon gels of type I collagen, fail to synthesize monomer-like material and contain solely a material of lower molecular size. Demineralized bone-derived monomer was rechromatographed under dissociative conditions in an attempt to detect the presence of small aggregates. Again, only a single peak of sulfate and glucosamine-labeled material appears. The data further show that the monomer resembles that of embryonic cartilage in glycosaminoglycan chain size (Mr = 8.6-12.2 X 10(3] and composition (mainly chondroitin 4-sulfate). Aggregated monomer forms a shoulder of the monomeric peak and comprises only 5% of the sulfated material. Fifteen to thirty-four per cent of the monomer elutes as aggregate after addition of rooster comb hyaluronic acid (HA). Failure to aggregate appears to be related to endogenous synthesis of short chain HA. Synthesis of long chain HA may constitute a rate-limiting step in chondrogenesis. Material of lower molecular size, from cultures grown on demineralized bone, bind to exogenous HA, whereas the elution pattern of sulfated material from control cultures remains essentially unchanged. These latter data suggest that proteoglycans of low hydrodynamic size may participate in the early formation of proteoglycan aggregate.

  4. Observation of pendular butterfly Rydberg molecules.

    PubMed

    Niederprüm, Thomas; Thomas, Oliver; Eichert, Tanita; Lippe, Carsten; Pérez-Ríos, Jesús; Greene, Chris H; Ott, Herwig

    2016-10-05

    Engineering molecules with a tunable bond length and defined quantum states lies at the heart of quantum chemistry. The unconventional binding mechanism of Rydberg molecules makes them a promising candidate to implement such tunable molecules. A very peculiar type of Rydberg molecules are the so-called butterfly molecules, which are bound by a shape resonance in the electron-perturber scattering. Here we report the observation of these exotic molecules and employ their exceptional properties to engineer their bond length, vibrational state, angular momentum and orientation in a small electric field. Combining the variable bond length with their giant dipole moment of several hundred Debye, we observe counter-intuitive molecules which locate the average electron position beyond the internuclear distance.

  5. Observation of pendular butterfly Rydberg molecules

    NASA Astrophysics Data System (ADS)

    Niederprüm, Thomas; Thomas, Oliver; Eichert, Tanita; Lippe, Carsten; Pérez-Ríos, Jesús; Greene, Chris H.; Ott, Herwig

    2016-10-01

    Engineering molecules with a tunable bond length and defined quantum states lies at the heart of quantum chemistry. The unconventional binding mechanism of Rydberg molecules makes them a promising candidate to implement such tunable molecules. A very peculiar type of Rydberg molecules are the so-called butterfly molecules, which are bound by a shape resonance in the electron-perturber scattering. Here we report the observation of these exotic molecules and employ their exceptional properties to engineer their bond length, vibrational state, angular momentum and orientation in a small electric field. Combining the variable bond length with their giant dipole moment of several hundred Debye, we observe counter-intuitive molecules which locate the average electron position beyond the internuclear distance.

  6. Observation of pendular butterfly Rydberg molecules

    PubMed Central

    Niederprüm, Thomas; Thomas, Oliver; Eichert, Tanita; Lippe, Carsten; Pérez-Ríos, Jesús; Greene, Chris H.; Ott, Herwig

    2016-01-01

    Engineering molecules with a tunable bond length and defined quantum states lies at the heart of quantum chemistry. The unconventional binding mechanism of Rydberg molecules makes them a promising candidate to implement such tunable molecules. A very peculiar type of Rydberg molecules are the so-called butterfly molecules, which are bound by a shape resonance in the electron–perturber scattering. Here we report the observation of these exotic molecules and employ their exceptional properties to engineer their bond length, vibrational state, angular momentum and orientation in a small electric field. Combining the variable bond length with their giant dipole moment of several hundred Debye, we observe counter-intuitive molecules which locate the average electron position beyond the internuclear distance. PMID:27703143

  7. Vascular wall proteoglycan synthesis and structure as a target for the prevention of atherosclerosis

    PubMed Central

    Little, Peter J; Ballinger, Mandy L; Osman, Narin

    2007-01-01

    Atherosclerosis is the underlying pathology of most cardiovascular disease and it represents the major cause of premature death in modern societies. Current therapies target risk factors being hypertension, hypercholesterolemia, hypertriglyceridemia and hyperglycemia when diabetes is present however the maximum efficacy of these strategies is often 30% or less. Areas of vascular biology that may lead to the development of a complementary vascular wall directed therapy are: inflammation, oxidation, endothelial dysfunction, diabetes-specific factors—hyperglycemia and advanced glycation endproducts and lipid retention by vascular matrix specifically proteoglycans. The major structural features of proteoglycans that determine low-density lipoprotein (LDL) binding are the length and sulfation pattern on the glycosaminoglycan (GAG) chains. Emerging data discussed in this review indicates that these structural properties are subject to considerable regulation by vasoactive substances possibly using novel signaling pathways. For example, GAG elongation stimulated by platelet-derived growth factor is not blocked by the receptor tyrosine kinase antagonist, genistein suggesting that there may be a previously unknown signaling pathway involved in this response. Thus, modifying proteoglycan synthesis and structure may represent a prime target to prevent LDL binding and entrapment in the vessel wall and thus prevent the development and progression of atherosclerosis. PMID:17583182

  8. Heterogeneous distribution of a basement membrane heparan sulfate proteoglycan in rat tissues

    PubMed Central

    1987-01-01

    A heparan sulfate proteoglycan (HSPG) synthesized by murine parietal yolk sac (PYS-2) cells has been characterized and purified from culture supernatants. A monospecific polyclonal antiserum was raised against it which showed activity against the HSPG core protein and basement membrane specificity in immunohistochemical studies on frozen tissue sections from many rat organs. However, there was no reactivity with some basement membranes, notably those of several smooth muscle types and cardiac muscle. In addition, it was found that pancreatic acinar basement membranes also lacked the HSPG type recognized by this antiserum. Those basement membranes that lacked the HSPG strongly stained with antisera against laminin and type IV collagen. The striking distribution pattern is possibly indicative of multiple species of basement membrane HSPGs of which one type is recognized by this antiserum. Further evidence for multiple HSPGs was derived from the finding that skeletal neuromuscular junction and liver epithelia also did not contain this type of HSPG, though previous reports have indicated the presence of HSPGs at these sites. The PYS-2 HSPG was shown to be antigenically related to the large, low buoyant density HSPG from the murine Engelbreth-Holm swarm tumor. It was, however, confirmed that only a single population of antibodies was present in the serum. Despite the presence of similar epitopes on these two proteoglycans of different hydrodynamic properties, it was apparent that the PYS-2 HSPG represents a basement membrane proteoglycan of distinct properties reflected in its restricted distribution in vivo. PMID:2959669

  9. Diabetes induces stromal remodelling and increase in chondroitin sulphate proteoglycans of the rat ventral prostate.

    PubMed

    Ribeiro, Daniele Lisboa; Taboga, Sebastião Roberto; Góes, Rejane Maira

    2009-08-01

    Extracellular matrix (ECM) remodelling is an important process involved in prostate cancer progression. Alterations in ECM caused by diabetes in different tissues such as kidney is well described; however, it is poorly investigated in prostate. The aim of this study was to evaluate changes in ECM of rat prostate showing gland atrophy caused by diabetes and their implications in development of malignant lesions. Diabetes was induced in Wistar rats using alloxan (45 mg/kg bw). After 90 days of diabetes onset, animals were killed and ventral prostate was removed and prepared for light microscopy following immunoreaction for fibronectin, chondroitin sulphate and Picrossirius staining for collagen fibres. Proteoglycans (PG) were identified at transmission electron microscopy after fixation with Cuprolinic Blue. Diabetes led to a thickening of 25% in the acinar basement membrane accompanied by increase and disorganization of its proteoglycans (P1). Three additional populations of prostatic stromal PGs were identified: collagen fibril linked (P2) and interstitial (P3) and (P4) PGs. Diabetes increased P3 and mainly P4 which had higher dimension and accumulated around the smooth muscle cells. In addition, an increase in chondrotin sulphate (33%, mainly in sites where P4 were noted) and collagen (44%) was noted in diabetic rats, whereas fibronectin did not change. Atrophic changes observed in rat ventral prostate after diabetes are accompanied by stromal remodelation related to increase in collagen and chondroitin sulphate proteoglycans. Thus, diabetes can promote a stromal microenvironment rich in elements that could favour cell migration, proliferation and pathological process.

  10. Proteoglycans associated with the ciliary zonule of the rat eye: a histochemical and immunocytochemical study.

    PubMed

    Chan, F L; Choi, H L

    1995-11-01

    The structural organization of integral and associated components of the ciliary zonule is still not fully understood. The present study is to localize and characterize the proteoglycans associated with the ciliary zonule of the rat eye by Cuprolinic blue (CB) staining and immunocytochemistry. After CB staining, the proteoglycans appeared as electron dense elongated rodlets and were localized with the zonular fibers. They were seen lying on the periphery of the zonular fibers or along the length of the individual fibrils. Most of the CB rodlets had a size of 60-170 nm long (average 130 nm) and 25 nm wide. Smaller CB rodlets measuring 25-60 nm long (average 45 nm) and 12 nm wide were sometimes found associated with the individual zonular fibrils. The CB rodlets were removed after chondroitinase ABC or chondroitinase AC treatment, but were resistant to heparitinase, nitrous acid, keratanase or Streptomyces hyaluronidase digestions. The ciliary zonule was also immunostained with three monoclonal antibodies: 2-B-6 specific for chondroitin 4-sulfate, 3-B-3 for chondroitin 6-sulfate and 1-B-5 for unsulfated chondroitin, using indirect immunoperoxidase or immuno-colloidal gold methods. The zonular fibers were immunoperoxidase stained and immunogold labeled by 2-B-6, but were not reactive to 3-B-3 and 1-B-5. The results demonstrate that chondroitin sulfate proteoglycan is associated with the ciliary zonule of the rat eye.

  11. Induction of chondroitin sulfate proteoglycan synthesis and secretion in lymphocytes and monocytes

    PubMed Central

    1983-01-01

    The ability of mononuclear leukocytes to synthesize and secrete proteoglycans was evaluated. Using radiolabeling with H2 35SO4, it is shown that peripheral blood mononuclear cells (PBMC) and their major subpopulations (B cells, T cells, and monocytes), as well as mouse spleen cells, all secreted easily detectable proteoglycan. After 24-h labeling periods, 90% of macromolecular 35S could be detected in culture media. This material was primarily (greater than 95%) chondroitin-4-sulfate proteoglycan (CSPG). Production and secretion of CSPG could be stimulated more than 200% in PBMC and 300% in T cell populations by high concentrations of concanavalin A and phorbol 12- myristate-13-acetate; lipopolysaccharide induced a small (twofold) but reproducible increase in CSPG secretion by adherent mononuclear leukocytes. The CSPG secreted by PBMC was relatively small in size compared to chondrocyte CSPG (130,000 daltons vs. 2-4 million daltons) but possessed similar sizes of glycosaminoglycan chains and greater solubility in low ionic strength solutions. This sulfated polyanion, which was produced endogenously by leukocytes and was actively secreted, might function as a co-mediator or "second messenger" in certain immune responses. PMID:6604059

  12. De novo cellular synthesis of sulfated proteoglycans of the developing renal glomerulus in vivo.

    PubMed Central

    Kanwar, Y S; Jakubowski, M L; Rosenzweig, L J; Gibbons, J T

    1984-01-01

    The site of cellular synthesis of glomerular proteoglycans was investigated in developing glomeruli of 4- to 5-day-old rats. [35S]Sulfate was administered intravenously and animals were sacrificed 15 min to 12 hr later. The outermost layers of the kidney cortices were utilized for characterization of proteoglycans and electron microscopic autoradiography. Sepharose CL-6B chromatography and cellulose acetate electrophoresis revealed that most (approximately equal to 96%) of the radioactivity was associated with heparan sulfate-proteoglycan synthesized during maturation of glomerular capillaries. Tissue autoradiography revealed the following: (i) during the S-shaped body stage, there is rapid incorporation of [35S]sulfate by mesenchymal cells into the cleft region (site for development of future glomerular extracellular matrices); (ii) during the precapillary stage, mesenchyme-derived cells showed higher incorporation of radioisotope than did epithelial cells; and (iii) during the mature capillary stage, all glomerular cell types (mesangial, endothelial, and epithelial) incorporated [35S]sulfate, incorporation by mesangial cells being the greatest. Radiolabeling was also higher in the mesangial matrix than in the glomerular basement membrane of peripheral capillary loops. Synthesis of a single major species of sulfated glycosaminoglycan by cells of different embryologic origin may be unique to glomerular capillaries. Images PMID:6239287

  13. Proteoglycans in articular cartilage revealed with a quick freezing and deep etching method.

    PubMed Central

    Toriumi, H; Nakagawa, H; Ueda, H; Leng, C G; Fujii, Y; Ohno, S

    1996-01-01

    OBJECTIVES: To clarify the three dimensional ultrastructure of proteoglycans, and their relationship with other matrix components in articular cartilage. METHODS: Specimens from rat femoral heads were examined using three techniques: (1) Histochemical staining with cationic polyethyleneimine (PEI), using a pre-embedding or a postembedding method. Some tissues were pretreated with chondroitinase ABC or hyaluronidase. (2) Quick freezing and deep etching (QF-DE). Some specimens were fixed with paraformaldehyde and washed in buffer solution before quick freezing; others were frozen directly. (3) Ultrathin sections were studied after conventional preparation. RESULTS: Proteoglycans were observed as aggregated clumps with PEI staining by the pre-embedding method, but as fine filaments by the postembedding method. They were lost with enzyme digestion; this was also demonstrated by the QF-DE method. The ultrastructure was well preserved by the QF-DE method when fixation and washing procedures were included, but not without these procedures. A fine mesh-like structure was connected to the cell membrane in the pericellular matrix. Filamentous structures suggestive of aggrecans were observed among collagen fibrils. They had side chains, approximately 50 nm in length, which branched from the central filaments at intervals of 10-20 nm, and were occasionally linked to other structures. Many thin filaments were also attached to the collagen fibrils. CONCLUSIONS: The QF-DE method incorporating paraformaldehyde fixation and buffer washing procedures revealed three dimensional, extended structures suggestive of proteoglycans. Images PMID:8774166

  14. Carbohydrate-containing molecules as potential biomarkers in colon cancer.

    PubMed

    Joo, Eun Ji; Weyers, Amanda; Li, Guoyun; Gasimli, Leyla; Li, Lingyun; Choi, Won Jun; Lee, Kyung Bok; Linhardt, Robert J

    2014-04-01

    Glycans play a critical role in physiological and pathological processes through interaction with a variety of ligands. Altered expression and dysregulation of these molecules can cause aberrant cellular function such as malignancy. Glycomics provide information of the structure and function of glycans, glycolipids, and glycoproteins such as proteoglycans, and may help to predict cancer development and progression as biomarkers. In this report, we compared the expression of proteoglycans, the content and structure of glycosaminoglycans and glycolipids between patient-matched normal and cancer tissues obtained from colon cancer patients. Tumor-related proteoglycans, glypican-3, and syndecan-1 showed downregulation in cancer tissues compared to normal tissues. In cancer tissue, the total amount of chondroitin sulfate (CS)/dermatan sulfate and heparan sulfate were lower and, interestingly, the level of disaccharide units of both 4S6S (CS-E) and 6S (CS-C) were higher compared to normal tissue. Also, overall lipids including glycolipids, a major glycomics target, were analyzed by hydrophilic interaction liquid chromatography mass spectrometry. Increase of lyso-phosphatidylcholine (phospholipid), sphingomyelin (sphigolipid), and four types of glycolipids (glucosylceramide, lactosylceramide, monosialic acid ganglioside, and globoside 4) in cancer tissue showed the possibility as potential biomarkers in colon cancer. While requiring the need for careful interpretation, this type of broad investigation gives us a better understanding of pathophysiological roles on glycosaminoglycans and glycolipids and might be a powerful tool for colon cancer diagnosis.

  15. Carbohydrate-Containing Molecules as Potential Biomarkers in Colon Cancer

    PubMed Central

    Joo, Eun Ji; Weyers, Amanda; Li, Guoyun; Gasimli, Leyla; Li, Lingyun; Choi, Won Jun

    2014-01-01

    Abstract Glycans play a critical role in physiological and pathological processes through interaction with a variety of ligands. Altered expression and dysregulation of these molecules can cause aberrant cellular function such as malignancy. Glycomics provide information of the structure and function of glycans, glycolipids, and glycoproteins such as proteoglycans, and may help to predict cancer development and progression as biomarkers. In this report, we compared the expression of proteoglycans, the content and structure of glycosaminoglycans and glycolipids between patient-matched normal and cancer tissues obtained from colon cancer patients. Tumor-related proteoglycans, glypican-3, and syndecan-1 showed downregulation in cancer tissues compared to normal tissues. In cancer tissue, the total amount of chondroitin sulfate (CS)/dermatan sulfate and heparan sulfate were lower and, interestingly, the level of disaccharide units of both 4S6S (CS-E) and 6S (CS-C) were higher compared to normal tissue. Also, overall lipids including glycolipids, a major glycomics target, were analyzed by hydrophilic interaction liquid chromatography mass spectrometry. Increase of lyso-phosphatidylcholine (phospholipid), sphingomyelin (sphigolipid), and four types of glycolipids (glucosylceramide, lactosylceramide, monosialic acid ganglioside, and globoside 4) in cancer tissue showed the possibility as potential biomarkers in colon cancer. While requiring the need for careful interpretation, this type of broad investigation gives us a better understanding of pathophysiological roles on glycosaminoglycans and glycolipids and might be a powerful tool for colon cancer diagnosis. PMID:24502776

  16. Imaging Extrasolar Giant Planets

    NASA Astrophysics Data System (ADS)

    Bowler, Brendan P.

    2016-10-01

    High-contrast adaptive optics (AO) imaging is a powerful technique to probe the architectures of planetary systems from the outside-in and survey the atmospheres of self-luminous giant planets. Direct imaging has rapidly matured over the past decade and especially the last few years with the advent of high-order AO systems, dedicated planet-finding instruments with specialized coronagraphs, and innovative observing and post-processing strategies to suppress speckle noise. This review summarizes recent progress in high-contrast imaging with particular emphasis on observational results, discoveries near and below the deuterium-burning limit, and a practical overview of large-scale surveys and dedicated instruments. I conclude with a statistical meta-analysis of deep imaging surveys in the literature. Based on observations of 384 unique and single young (≈5-300 Myr) stars spanning stellar masses between 0.1 and 3.0 M ⊙, the overall occurrence rate of 5-13 M Jup companions at orbital distances of 30-300 au is {0.6}-0.5+0.7 % assuming hot-start evolutionary models. The most massive giant planets regularly accessible to direct imaging are about as rare as hot Jupiters are around Sun-like stars. Dividing this sample into individual stellar mass bins does not reveal any statistically significant trend in planet frequency with host mass: giant planets are found around {2.8}-2.3+3.7 % of BA stars, <4.1% of FGK stars, and <3.9% of M dwarfs. Looking forward, extreme AO systems and the next generation of ground- and space-based telescopes with smaller inner working angles and deeper detection limits will increase the pace of discovery to ultimately map the demographics, composition, evolution, and origin of planets spanning a broad range of masses and ages.

  17. Degenerative suspensory ligament desmitis as a systemic disorder characterized by proteoglycan accumulation

    PubMed Central

    Halper, Jaroslava; Kim, Byoungjae; Khan, Ahrar; Yoon, Jung Hae; Mueller, PO Eric

    2006-01-01

    Background Degenerative suspensory ligament desmitis (DSLD) is a debilitating disorder thought to be limited to suspensory ligaments of Peruvian Pasos, Peruvian Paso crosses, Arabians, American Saddlebreds, American Quarter Horses, Thoroughbreds, and some European breeds. It frequently leads to persistent, incurable lameness and need to euthanize affected horses. The pathogenesis remains unclear, though the disease appears to run in families. Treatment and prevention are empirical and supportive, and not effective in halting the progression of the disease. Presently, the presumptive diagnosis of DSLD is obtained from patient signalment and history, clinical examination, and ultrasonographic examination of clinically affected horses, and is confirmed at post mortem examination. Presently, there are no reliable methods of diagnosing DSLD in asymptomatic horses. The goal of this study was to characterize and define the disorder in terms of tissue involvement at the macroscopic and microscopic levels. Results We examined tissues and organs from 28 affected horses (22 Peruvian Pasos, 6 horses of other breeds) and from 8 control horses. Histopathological examination revealed the presence of excessive amounts of proteoglycans in the following tissues removed from DSLD-affected horses: suspensory ligaments, superficial and deep digital flexor tendons, patellar and nuchal ligaments, cardiovascular system, and sclerae. Electron microscopy demonstrated changes in diameters of collagen fibrils in the tendon, and in smooth muscle cells of the media of the aorta compatible with increased cell permeability in DSLD-affected cells. Separation of tendon extracts by gel chromatography revealed the presence of additional proteoglycan(s) in extracts from affected, but not control extracts. Conclusion This study demonstrates for the first time that DSLD, a disease process previously thought to be limited to the suspensory ligaments of the distal limbs of affected horses, is in fact a

  18. Giant left ventricular pseudoaneurysm.

    PubMed

    Prakash, Sumi; Garg, Nadish; Xie, Gong-Yuan; Dellsperger, Kevin C

    2010-01-01

    Left ventricular (LV) pseudoaneurysm (PS) is an uncommon, often fatal complication associated with myocardial infarction, cardiothoracic surgery, trauma, and, rarely, infective endocarditis. A 28-year-old man with prior history of bioprosthetic mitral valve replacement presented with congestive heart failure and bacteremia with Abiotrophia granulitica. Transesophageal echocardiogram showed bioprosthesis dysfunction, large vegetations, mitral regurgitation, and probable PS. Cardiac and chest CT confirmed a PS communicating with the left ventricle Patient had pulseless electrical activity and died. Autopsy showed a giant PS with layered thrombus and pseudo-endothelialized cavity. Our case highlights the importance of multimodality imaging as an important tool in management of PS.

  19. Giant mesenteric cyst

    PubMed Central

    Guraya, Salman Yousuf; Salman, Shaista; Almaramhy, Hamdi H.

    2011-01-01

    Mesenteric cysts are uncommon benign abdominal lesions with no classical clinical features. The preoperative diagnosis requires the common imaging modalities but the final diagnosis is established only during surgery or histological analysis. The treatment of choice is complete surgical excision. We report an 18-year-old female with a non-specific abdominal pain and discomfort since 3 weeks. Her CT scan showed a huge cystic swelling, which necessitated surgical exploration. Preoperatively, a giant cyst was encountered with displacement of bowel loops. The cyst was completely removed and histology report confirmed mesenteric cyst without evidence of malignancy. PMID:24765349

  20. Giant mesenteric cyst.

    PubMed

    Guraya, Salman Yousuf; Salman, Shaista; Almaramhy, Hamdi H

    2011-09-28

    Mesenteric cysts are uncommon benign abdominal lesions with no classical clinical features. The preoperative diagnosis requires the common imaging modalities but the final diagnosis is established only during surgery or histological analysis. The treatment of choice is complete surgical excision. We report an 18-year-old female with a non-specific abdominal pain and discomfort since 3 weeks. Her CT scan showed a huge cystic swelling, which necessitated surgical exploration. Preoperatively, a giant cyst was encountered with displacement of bowel loops. The cyst was completely removed and histology report confirmed mesenteric cyst without evidence of malignancy.

  1. A Giant Urethral Calculus.

    PubMed

    Sigdel, G; Agarwal, A; Keshaw, B W

    2014-01-01

    Urethral calculi are rare forms of urolithiasis. Majority of the calculi are migratory from urinary bladder or upper urinary tract. Primary urethral calculi usually occur in presence of urethral stricture or diverticulum. In this article we report a case of a giant posterior urethral calculus measuring 7x3x2 cm in a 47 years old male. Patient presented with acute retention of urine which was preceded by burning micturition and dribbling of urine for one week. The calculus was pushed in to the bladder through the cystoscope and was removed by suprapubic cystolithotomy.

  2. Changes in collagen fibril network organization and proteoglycan distribution in equine articular cartilage during maturation and growth.

    PubMed

    Hyttinen, Mika M; Holopainen, Jaakko; van Weeren, P René; Firth, Elwyn C; Helminen, Heikki J; Brama, Pieter A J

    2009-11-01

    The aim of this study was to record growth-related changes in collagen network organization and proteoglycan distribution in intermittently peak-loaded and continuously lower-level-loaded articular cartilage. Cartilage from the proximal phalangeal bone of the equine metacarpophalangeal joint at birth, at 5, 11 and 18 months, and at 6-10 years of age was collected from two sites. Site 1, at the joint margin, is unloaded at slow gaits but is subjected to high-intensity loading during athletic activity; site 2 is a continuously but less intensively loaded site in the centre of the joint. The degree of collagen parallelism was determined with quantitative polarized light microscopy and the parallelism index for collagen fibrils was computed from the cartilage surface to the osteochondral junction. Concurrent changes in the proteoglycan distribution were quantified with digital densitometry. We found that the parallelism index increased significantly with age (up to 90%). At birth, site 2 exhibited a more organized collagen network than site 1. In adult horses this situation was reversed. The superficial and intermediate zones exhibited the greatest reorganization of collagen. Site 1 had a higher proteoglycan content than site 2 at birth but here too the situation was reversed in adult horses. We conclude that large changes in joint loading during growth and maturation in the period from birth to adulthood profoundly affect the architecture of the collagen network in equine cartilage. In addition, the distribution and content of proteoglycans are modified significantly by altered joint use. Intermittent peak-loading with shear seems to induce higher collagen parallelism and a lower proteoglycan content in cartilage than more constant weight-bearing. Therefore, we hypothesize that the formation of mature articular cartilage with a highly parallel collagen network and relatively low proteoglycan content in the peak-loaded area of a joint is needed to withstand

  3. High-oleic canola oil consumption enriches LDL particle cholesteryl oleate content and reduces LDL proteoglycan binding in humans

    PubMed Central

    Jones, Peter J. H.; MacKay, Dylan. S.; Senanayake, Vijitha K.; Pu, Shuaihua; Jenkins, David J. A.; Connelly, Philip W.; Lamarche, Benoît; Couture, Patrick; Kris-Etherton, Penny M.; West, Sheila G.; Liu, Xiaoran; Fleming, Jennifer A.; Hantgan, Roy R.; Rudel, Lawrence L.

    2015-01-01

    Oleic acid consumption is considered cardio-protective according to studies conducted examining effects of the Mediterranean diet. However, animal models have shown that oleic acid consumption increases LDL particle cholesteryl oleate content which is associated with increased LDL-proteoglycan binding and atherosclerosis. The objective was to examine effects of varying oleic, linoleic and docosahexaenoic acid consumption on human LDL-proteoglycan binding in a non-random subset of the Canola Oil Multi-center Intervention Trial (COMIT) participants. COMIT employed a randomized, double-blind, five-period, cross-over trial design. Three of the treatment oil diets; 1) a blend of corn/safflower oil (25:75); 2) high oleic canola oil; and 3) DHA-enriched high oleic canola oil were selected for analysis of LDL-proteoglycan binding in 50 participants exhibiting good compliance. LDL particles were isolated from frozen plasma by gel filtration chromatography and LDL cholesteryl esters quantified by mass-spectrometry. LDL-proteoglycan binding was assessed using surface plasmon resonance. LDL particle cholesterol ester fatty acid composition was sensitive to the treatment fatty acid compositions, with the main fatty acids in the treatments increasing in the LDL cholesterol esters. The corn/safflower oil and high-oleic canola oil diets lowered LDL-proteoglycan binding relative to their baseline values (p=0.0005 and p=0.0012, respectively). At endpoint, high-oleic canola oil feeding resulted in lower LDL-proteoglycan binding than corn/safflower oil (p=0.0243) and DHA-enriched high oleic canola oil (p=0.0249), although high-oleic canola oil had the lowest binding at baseline (p=0.0344). Our findings suggest that high-oleic canola oil consumption in humans increases cholesteryl oleate percentage in LDL, but in a manner not associated with a rise in LDL-proteoglycan binding. PMID:25528432

  4. High-oleic canola oil consumption enriches LDL particle cholesteryl oleate content and reduces LDL proteoglycan binding in humans.

    PubMed

    Jones, Peter J H; MacKay, Dylan S; Senanayake, Vijitha K; Pu, Shuaihua; Jenkins, David J A; Connelly, Philip W; Lamarche, Benoît; Couture, Patrick; Kris-Etherton, Penny M; West, Sheila G; Liu, Xiaoran; Fleming, Jennifer A; Hantgan, Roy R; Rudel, Lawrence L

    2015-02-01

    Oleic acid consumption is considered cardio-protective according to studies conducted examining effects of the Mediterranean diet. However, animal models have shown that oleic acid consumption increases LDL particle cholesteryl oleate content which is associated with increased LDL-proteoglycan binding and atherosclerosis. The objective was to examine effects of varying oleic, linoleic and docosahexaenoic acid consumption on human LDL-proteoglycan binding in a non-random subset of the Canola Oil Multi-center Intervention Trial (COMIT) participants. COMIT employed a randomized, double-blind, five-period, cross-over trial design. Three of the treatment oil diets: 1) a blend of corn/safflower oil (25:75); 2) high oleic canola oil; and 3) DHA-enriched high oleic canola oil were selected for analysis of LDL-proteoglycan binding in 50 participants exhibiting good compliance. LDL particles were isolated from frozen plasma by gel filtration chromatography and LDL cholesteryl esters quantified by mass-spectrometry. LDL-proteoglycan binding was assessed using surface plasmon resonance. LDL particle cholesterol ester fatty acid composition was sensitive to the treatment fatty acid compositions, with the main fatty acids in the treatments increasing in the LDL cholesterol esters. The corn/safflower oil and high-oleic canola oil diets lowered LDL-proteoglycan binding relative to their baseline values (p = 0.0005 and p = 0.0012, respectively). At endpoint, high-oleic canola oil feeding resulted in lower LDL-proteoglycan binding than corn/safflower oil (p = 0.0243) and DHA-enriched high oleic canola oil (p = 0.0249), although high-oleic canola oil had the lowest binding at baseline (p = 0.0344). Our findings suggest that high-oleic canola oil consumption in humans increases cholesteryl oleate percentage in LDL, but in a manner not associated with a rise in LDL-proteoglycan binding.

  5. Extracellular matrix proteoglycan plays a pivotal role in sensitization by low pH of mechanosensitive currents in nociceptive sensory neurones

    PubMed Central

    Kubo, Asako; Katanosaka, Kimiaki; Mizumura, Kazue

    2012-01-01

    Ischaemia, inflammation, and exercise lead to tissue acidosis, which induces pain and mechanical hyperalgesia. Corresponding to this, enhanced thin-fibre afferent responses to mechanical stimulation have been recorded in vitro at low pH. However, knowledge about how this sensitization by low pH occurs is lacking. In this study, we found that all three types (rapidly adapting (RA), intermediately adapting and slowly adapting) of mechanically activated currents recorded with the whole cell patch-clamp method were sensitized by low pH in rat cultured dorsal root ganglion neurones. This sensitization was mainly observed in neurones positively labelled with isolectin B4 (IB4), which binds to versican, a chondroitin sulfate proteoglycan. Inhibitors of acid-sensitive channels (amiloride and capsazepine) did not block sensitization by low pH except in RA neurones, and extracellular calcium was not involved even in the sensitization of this type of neurone. A broad spectrum kinase inhibitor and a phospholipase C inhibitor (staurosporine and U73122) failed to block pH-induced sensitization in IB4-positive neurones, suggesting that these intracellular signalling pathways are not involved. Notably, both excess chondroitin sulfate in the extracellular solution and pretreatment of the neurone culture with chondroitinase ABC attenuated this low pH-induced sensitization in IB4-positive neurones. These findings suggest that a change in interaction between mechanosensitive channels and/or their auxiliary molecules and the side chain of versican on the cell surface causes this sensitization, at least in IB4-positive neurones. This report proposes a novel mechanism for sensitization that involves extracellular proteoglycans (versican). PMID:22570376

  6. Extracellular matrix proteoglycan plays a pivotal role in sensitization by low pH of mechanosensitive currents in nociceptive sensory neurones.

    PubMed

    Kubo, Asako; Katanosaka, Kimiaki; Mizumura, Kazue

    2012-07-01

    Ischaemia, inflammation, and exercise lead to tissue acidosis, which induces pain and mechanical hyperalgesia. Corresponding to this, enhanced thin-fibre afferent responses to mechanical stimulation have been recorded in vitro at low pH. However, knowledge about how this sensitization by low pH occurs is lacking. In this study, we found that all three types (rapidly adapting (RA), intermediately adapting and slowly adapting) of mechanically activated currents recorded with the whole cell patch-clamp method were sensitized by low pH in rat cultured dorsal root ganglion neurones. This sensitization was mainly observed in neurones positively labelled with isolectin B4 (IB4), which binds to versican, a chondroitin sulfate proteoglycan. Inhibitors of acid-sensitive channels (amiloride and capsazepine) did not block sensitization by low pH except in RA neurones, and extracellular calcium was not involved even in the sensitization of this type of neurone. A broad spectrum kinase inhibitor and a phospholipase C inhibitor (staurosporine and U73122) failed to block pH-induced sensitization in IB4-positive neurones, suggesting that these intracellular signalling pathways are not involved. Notably, both excess chondroitin sulfate in the extracellular solution and pretreatment of the neurone culture with chondroitinase ABC attenuated this low pH-induced sensitization in IB4-positive neurones. These findings suggest that a change in interaction between mechanosensitive channels and/or their auxiliary molecules and the side chain of versican on the cell surface causes this sensitization, at least in IB4-positive neurones. This report proposes a novel mechanism for sensitization that involves extracellular proteoglycans (versican).

  7. Giant extragenital Bowen's disease.

    PubMed

    Bakardzhiev, Ilko; Chokoeva, Anastasiya Atanasova; Tchernev, Georgi

    2015-12-01

    Giant extragenital forms of Morbus Bowen are extremely rare. The already described cases in the word literature are most commonly with periungual localization, as well as located on the foot and neck area. The clinical manifestation is presented most commonly by non-specific erythematous to erythematous-squamous plaques or papules, which is confusing to the clinician. From the pathogenic point of view, it is important to be confirmed or rejected the presence of human papilloma viruses (HPVs) in each case of affected patient, as this information is mandatory in respect to the adequate selection of the subsequent regimen. If HPVs are detected, systemic antiviral therapy could be initiated to reduce the size of the lesions before subsequent surgical eradication. A postoperative prevention through vaccination could be also considered additionally. In cases of HPV-negative giant extragenital forms of Morbus Bowen (as in the described patient), the focus should be on local immunomodulation by substances such as imiquimod, which reduce the size of the lesions, thereby creating optimal opportunities for their future surgical eradication. Other possible options described in the literature include topical application of 5-fluorouracil, photodynamic therapy, cryotherapy, and laser therapy (carbon dioxide laser). The choice of the most appropriate regimen should have been an individual decision of the clinician, considering also the location and the extent of the lesion.

  8. Gas Giants Form Quickly

    NASA Technical Reports Server (NTRS)

    2007-01-01

    This is an artist's concept of a hypothetical 10-million-year-old star system. The bright blur at the center is a star much like our sun. The other orb in the image is a gas-giant planet like Jupiter. Wisps of white throughout the image represent traces of gas.

    Astronomers using NASA's Spitzer Space Telescope have found evidence showing that gas-giant planets either form within the first 10 million years of a sun-like star's life, or not at all. The lifespan for sun-like stars is about 10 billion years.

    The scientists came to this conclusion after searching for traces of gas around 15 different sun-like stars, most with ages ranging from 3 million to 30 million years. With the help of Spitzer's Infrared Spectrometer instrument, they were able to search for relatively warm gas in the inner regions of these star systems, an area comparable to the zone between Earth and Jupiter in our own solar system. They also used ground-based radio telescopes to search for cooler gas in the outer regions of these systems, an area comparable to the zone around Saturn and beyond.

  9. Giant papillary conjunctivitis.

    PubMed Central

    Donshik, P C

    1994-01-01

    Giant papillary conjunctivitis is a syndrome found frequently as a complication of contact lenses. Many variables can affect the onset and severity of the presenting signs and symptoms. Rigid gas permeable contact lenses appear to result in less severe signs and symptoms, with a longer time before the development of giant papillary conjunctivitis. Nonionic, low-water-content soft contact lenses tend to produce less severe signs and symptoms than ionic, low-water-content soft contact lenses. Enzymatic treatment appears to lessen the severity of signs and symptoms. The association of an allergy appears to play a role in the onset of the severity of the signs and symptoms but does not appear to affect the final ability of the individual to wear contact lenses. Using multiple treatment options, such as changing the polymer to a glyceryl methyl methacrylate or a rigid lens, or utilizing a soft lens on a frequent-replacement basis, can result in a success rate of over 90%. In individuals who still have a return of symptoms, the use of topical mast cell stabilizers or a nonsteroidal anti-inflammatory drug as an adjunctive therapy offers the added possibility of keeping these patients in contact lenses. Images FIGURE 1 FIGURE 2 FIGURE 3 FIGURE 4 FIGURE 5 FIGURE 6 FIGURE 7 FIGURE 11 A FIGURE 11 B FIGURE 11 C FIGURE 11 D PMID:7886881

  10. Gas Giants Form Quickly

    NASA Technical Reports Server (NTRS)

    2007-01-01

    This is an artist's concept of a hypothetical 10-million-year-old star system. The bright blur at the center is a star much like our sun. The other orb in the image is a gas-giant planet like Jupiter. Wisps of white throughout the image represent traces of gas.

    Astronomers using NASA's Spitzer Space Telescope have found evidence showing that gas-giant planets either form within the first 10 million years of a sun-like star's life, or not at all. The lifespan for sun-like stars is about 10 billion years.

    The scientists came to this conclusion after searching for traces of gas around 15 different sun-like stars, most with ages ranging from 3 million to 30 million years. With the help of Spitzer's Infrared Spectrometer instrument, they were able to search for relatively warm gas in the inner regions of these star systems, an area comparable to the zone between Earth and Jupiter in our own solar system. They also used ground-based radio telescopes to search for cooler gas in the outer regions of these systems, an area comparable to the zone around Saturn and beyond.

  11. Giant Intradiverticular Bladder Tumor

    PubMed Central

    Noh, Mohamad Syafeeq Faeez Md; Aziz, Ahmad Fuad Abdul; Ghani, Khairul Asri Mohd; Siang, Christopher Lee Kheng; Yunus, Rosna; Yusof, Mubarak Mohd

    2017-01-01

    Patient: Male, 74 Final Diagnosis: Giant intradiverticular bladder tumor with metastasis Symptoms: Hematuria Medication:— Clinical Procedure: — Specialty: Urology Objective: Rare disease Background: Intradiverticular bladder tumors are rare. This renders diagnosis of an intradiverticular bladder tumor difficult. Imaging plays a vital role in achieving the diagnosis, and subsequently staging of the disease. Case Report: A 74-year-old male presented to our center with a few months history of constitutional symptoms. Upon further history, he reported hematuria two months prior to presentation, which stopped temporarily, only to recur a few days prior to coming to the hospital. The patient admitted to having lower urinary tract symptoms. However, there was no dysuria, no sandy urine, and no fever. Palpation of his abdomen revealed a vague mass at the suprapubic region, which was non tender. In view of his history and the clinical examination findings, an ultrasound of the abdomen and computed tomography (CT) was arranged. These investigations revealed a giant tumor that seemed to be arising from a bladder diverticulum, with a mass effect and hydronephrosis. He later underwent operative intervention. Conclusions: Intradiverticular bladder tumors may present a challenge to the treating physician in an atypical presentation; thus requiring a high index of suspicion and knowledge of tumor pathophysiology. As illustrated in our case, CT with its wide availability and multiplanar imaging capabilities offers a useful means for diagnosis, disease staging, operative planning, and follow-up. PMID:28246375

  12. Reinflating Giant Planets

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2017-01-01

    Two new, large gas-giant exoplanets have been discovered orbiting close to their host stars. A recent study examining these planets and others like them may help us to better understand what happens to close-in hot Jupiters as their host stars reach the end of their main-sequence lives.OversizedGiantsUnbinned transit light curves for HAT-P-65b. [Adapted from Hartman et al. 2016]The discovery of HAT-P-65b and HAT-P-66b, two new transiting hot Jupiters, is intriguing. These planets have periods of just under 3 days and masses of roughly 0.5 and 0.8 times that of Jupiter, but their sizes are whats really interesting: they have inflated radii of 1.89 and 1.59 times that of Jupiter.These two planets, discovered using the Hungarian-made Automated Telescope Network (HATNet) in Arizona and Hawaii, mark the latest in an ever-growing sample of gas-giant exoplanets with radii larger than expected based on theoretical planetary structure models.What causes this discrepancy? Did the planets just fail to contract to the expected size when they were initially formed, or were they reinflated later in their lifetimes? If the latter, how? These are questions that scientists are only now starting to be able to address using statistics of the sample of close-in, transiting planets.Unbinned transit light curves for HAT-P-66b. [Hartman et al. 2016]Exploring Other PlanetsLed by Joel Hartman (Princeton University), the team that discovered HAT-P-65b and HAT-P-66b has examined these planets observed parameters and those of dozens of other known close-in, transiting exoplanets discovered with a variety of transiting exoplanet missions: HAT, WASP, Kepler, TrES, and KELT. Hartman and collaborators used this sample to draw conclusions about what causes some of these planets to have such large radii.The team found that there is a statistically significant correlation between the radii of close-in giant planets and the fractional ages of their host stars (i.e., the stars age divided by its full

  13. Giant ferromagnetic π -d interaction in a phthalocyanine molecule

    NASA Astrophysics Data System (ADS)

    Murakawa, H.; Kanda, A.; Ikeda, M.; Matsuda, M.; Hanasaki, N.

    2015-08-01

    We experimentally demonstrate that the ferromagnetic intramolecular π -d interaction works between an itinerant π -electron spin and a localized d -electron's magnetic moment in the iron-phthalocyanine (Pc) molecular compound. The evaluation of the hidden π -d coupling is achieved by preparing the isolated Fe(Pc )(CN ) 2 molecular solution with unpaired π - and d -electron spins, which is generated through the oxidization by iodine bromide (IBr). The monotonic increase of the magnetization with IBr addition and the saturation value of the Curie constant indicate the ferromagnetic π -d coupling. Furthermore, through the magnetization measurements of the single crystals of neutral π radical Fe(Pc )(CN ) 2.2 CHCl3 , we reveal that the on-site π -d interaction in Fe(Pc )(CN ) 2 is extremely large (Jπ d/kB>500 K ) among those in other molecular materials.

  14. Allometry indicates giant eyes of giant squid are not exceptional.

    PubMed

    Schmitz, Lars; Motani, Ryosuke; Oufiero, Christopher E; Martin, Christopher H; McGee, Matthew D; Gamarra, Ashlee R; Lee, Johanna J; Wainwright, Peter C

    2013-02-18

    The eyes of giant and colossal squid are among the largest eyes in the history of life. It was recently proposed that sperm whale predation is the main driver of eye size evolution in giant squid, on the basis of an optical model that suggested optimal performance in detecting large luminous visual targets such as whales in the deep sea. However, it is poorly understood how the eye size of giant and colossal squid compares to that of other aquatic organisms when scaling effects are considered. We performed a large-scale comparative study that included 87 squid species and 237 species of acanthomorph fish. While squid have larger eyes than most acanthomorphs, a comparison of relative eye size among squid suggests that giant and colossal squid do not have unusually large eyes. After revising constants used in a previous model we found that large eyes perform equally well in detecting point targets and large luminous targets in the deep sea. The eyes of giant and colossal squid do not appear exceptionally large when allometric effects are considered. It is probable that the giant eyes of giant squid result from a phylogenetically conserved developmental pattern manifested in very large animals. Whatever the cause of large eyes, they appear to have several advantages for vision in the reduced light of the deep mesopelagic zone.

  15. Allometry indicates giant eyes of giant squid are not exceptional

    PubMed Central

    2013-01-01

    Background The eyes of giant and colossal squid are among the largest eyes in the history of life. It was recently proposed that sperm whale predation is the main driver of eye size evolution in giant squid, on the basis of an optical model that suggested optimal performance in detecting large luminous visual targets such as whales in the deep sea. However, it is poorly understood how the eye size of giant and colossal squid compares to that of other aquatic organisms when scaling effects are considered. Results We performed a large-scale comparative study that included 87 squid species and 237 species of acanthomorph fish. While squid have larger eyes than most acanthomorphs, a comparison of relative eye size among squid suggests that giant and colossal squid do not have unusually large eyes. After revising constants used in a previous model we found that large eyes perform equally well in detecting point targets and large luminous targets in the deep sea. Conclusions The eyes of giant and colossal squid do not appear exceptionally large when allometric effects are considered. It is probable that the giant eyes of giant squid result from a phylogenetically conserved developmental pattern manifested in very large animals. Whatever the cause of large eyes, they appear to have several advantages for vision in the reduced light of the deep mesopelagic zone. PMID:23418818

  16. Mobius Molecules

    ERIC Educational Resources Information Center

    Eckert, J. M.

    1973-01-01

    Discusses formation of chemical molecules via Mobius strip intermediates, and concludes that many special physics-chemical properties of the fully closed circular form (1) of polyoma DNA are explainable by this topological feature. (CC)

  17. Interstellar Molecules

    ERIC Educational Resources Information Center

    Solomon, Philip M.

    1973-01-01

    Radioastronomy reveals that clouds between the stars, once believed to consist of simple atoms, contain molecules as complex as seven atoms and may be the most massive objects in our Galaxy. (Author/DF)

  18. Modeling Molecules

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The molecule modeling method known as Multibody Order (N) Dynamics, or MBO(N)D, was developed by Moldyn, Inc. at Goddard Space Flight Center through funding provided by the SBIR program. The software can model the dynamics of molecules through technology which stimulates low-frequency molecular motions and properties, such as movements among a molecule's constituent parts. With MBO(N)D, a molecule is substructured into a set of interconnected rigid and flexible bodies. These bodies replace the computation burden of mapping individual atoms. Moldyn's technology cuts computation time while increasing accuracy. The MBO(N)D technology is available as Insight II 97.0 from Molecular Simulations, Inc. Currently the technology is used to account for forces on spacecraft parts and to perform molecular analyses for pharmaceutical purposes. It permits the solution of molecular dynamics problems on a moderate workstation, as opposed to on a supercomputer.

  19. Interstellar Molecules

    ERIC Educational Resources Information Center

    Solomon, Philip M.

    1973-01-01

    Radioastronomy reveals that clouds between the stars, once believed to consist of simple atoms, contain molecules as complex as seven atoms and may be the most massive objects in our Galaxy. (Author/DF)

  20. Mobius Molecules

    ERIC Educational Resources Information Center

    Eckert, J. M.

    1973-01-01

    Discusses formation of chemical molecules via Mobius strip intermediates, and concludes that many special physics-chemical properties of the fully closed circular form (1) of polyoma DNA are explainable by this topological feature. (CC)

  1. Chondroitin sulfate proteoglycans and microglia prevent migration and integration of grafted Müller stem cells into degenerating retina.

    PubMed

    Singhal, Shweta; Lawrence, Jean M; Bhatia, Bhairavi; Ellis, James S; Kwan, Anthony S; Macneil, Angus; Luthert, Philip J; Fawcett, James W; Perez, Maria-Thereza; Khaw, Peng T; Limb, G Astrid

    2008-04-01

    At present, there are severe limitations to the successful migration and integration of stem cells transplanted into the degenerated retina to restore visual function. This study investigated the potential role of chondroitin sulfate proteoglycans (CSPGs) and microglia in the migration of human Müller glia with neural stem cell characteristics following subretinal injection into the Lister hooded (LH) and Royal College of Surgeons (RCS) rat retinae. Neonate LH rat retina showed minimal baseline microglial accumulation (CD68-positive cells) that increased significantly 2 weeks after transplantation (p < .001), particularly in the ganglion cell layer (GCL) and inner plexiform layer. In contrast, nontransplanted 5-week-old RCS rat retina showed considerable baseline microglial accumulation in the outer nuclear layer (ONL) and photoreceptor outer segment debris zone (DZ) that further increased (p < .05) throughout the retina 2 weeks after transplantation. Marked deposition of the N-terminal fragment of CSPGs, as well as neurocan and versican, was observed in the DZ of 5-week-old RCS rat retinae, which contrasted with the limited expression of these proteins in the GCL of the adult and neonate LH rat retinae. Staining for CSPGs and CD68 revealed colocalization of these two molecules in cells infiltrating the ONL and DZ of the degenerating RCS rat retina. Enhanced immune suppression with oral prednisolone and intraperitoneal injections of indomethacin caused a reduction in the number of microglia but did not facilitate Müller stem cell migration. However, injection of cells with chondroitinase ABC combined with enhanced immune suppression caused a dramatic increase in the migration of Müller stem cells into all the retinal cell layers. These observations suggest that both microglia and CSPGs constitute a barrier for stem cell migration following transplantation into experimental models of retinal degeneration and that control of matrix deposition and the innate

  2. Metastasis Stimulation by Hypoxia and Acidosis-Induced Extracellular Lipid Uptake Is Mediated by Proteoglycan-Dependent Endocytosis.

    PubMed

    Menard, Julien A; Christianson, Helena C; Kucharzewska, Paulina; Bourseau-Guilmain, Erika; Svensson, Katrin J; Lindqvist, Eva; Indira Chandran, Vineesh; Kjellén, Lena; Welinder, Charlotte; Bengzon, Johan; Johansson, Maria C; Belting, Mattias

    2016-08-15

    Hypoxia and acidosis are inherent stress factors of the tumor microenvironment and have been linked to increased tumor aggressiveness and treatment resistance. Molecules involved in the adaptive mechanisms that drive stress-induced disease progression constitute interesting candidates of therapeutic intervention. Here, we provide evidence of a novel role of heparan sulfate proteoglycans (HSPG) in the adaptive response of tumor cells to hypoxia and acidosis through increased internalization of lipoproteins, resulting in a lipid-storing phenotype and enhanced tumor-forming capacity. Patient glioblastoma tumors and cells under hypoxic and acidic stress acquired a lipid droplet (LD)-loaded phenotype, and showed an increased recruitment of all major lipoproteins, HDL, LDL, and VLDL. Stress-induced LD accumulation was associated with increased spheroid-forming capacity during reoxygenation in vitro and lung metastatic potential in vivo On a mechanistic level, we found no apparent effect of hypoxia on HSPGs, whereas lipoprotein receptors (VLDLR and SR-B1) were transiently upregulated by hypoxia. Importantly, however, using pharmacologic and genetic approaches, we show that stress-mediated lipoprotein uptake is highly dependent on intact HSPG expression. The functional relevance of HSPG in the context of tumor cell stress was evidenced by HSPG-dependent lipoprotein cell signaling activation through the ERK/MAPK pathway and by reversal of the LD-loaded phenotype by targeting of HSPGs. We conclude that HSPGs may have an important role in the adaptive response to major stress factors of the tumor microenvironment, with functional consequences on tumor cell signaling and metastatic potential. Cancer Res; 76(16); 4828-40. ©2016 AACR.

  3. Enumerating molecules.

    SciTech Connect

    Visco, Donald Patrick, Jr.; Faulon, Jean-Loup Michel; Roe, Diana C.

    2004-04-01

    This report is a comprehensive review of the field of molecular enumeration from early isomer counting theories to evolutionary algorithms that design molecules in silico. The core of the review is a detail account on how molecules are counted, enumerated, and sampled. The practical applications of molecular enumeration are also reviewed for chemical information, structure elucidation, molecular design, and combinatorial library design purposes. This review is to appear as a chapter in Reviews in Computational Chemistry volume 21 edited by Kenny B. Lipkowitz.

  4. Giant magnetostrictive composites

    NASA Astrophysics Data System (ADS)

    Duenas, Terrisa Ann

    The limitation of magnetostrictive composites has been in their low magnetostrictive response when compared to their monolithic counterparts. In this dissertation research is presented describing the methods and analysis used to create a giant magnetostrictive composite (GMC) producing giant strains at low fields, exhibiting magnetization ``jumping'' and the ΔE effect. This composite combines the giant magnetostrictive material, Terfenol-D (Tb0.3Dy0.7Fe2) in particle form, with a nonmetallic binder and is capable of producing strains (at room temperature) exceeding 1000 ppm at a nominal field of 1.5 kOe mechanically unloaded and 1200 ppm at 8 MPa preload (2.5 kOe). Several studies leading to the high response of this composite are presented. A connectivity study shows that a [1-3] connected composite produces 50% more strain than a [0-3] composite. A resin study indicates that the lower the viscosity of the resin, the greater the magnetostrictive response; this is attributed to the removal of voids during degassing. A void study correlates the increase in voids to the decrease in strain response. A model is used to correlate analysis with experimental results within 10% accuracy and shows that an optimal volume fraction exists based on the properties of the binder. Using a Polyscience Spurr low- viscosity (60 cps) binder this volume fraction is nominally 20%; this optimum is attributed to the balance of epoxy contracting on the particle (built-in preload) and the actuation delivered by the magnetostrictive material. In addition to the connectivity, resin, void, and volume-fraction study, particle size and gradation studies are presented. Widely dispersed (<106, <212, <300 μm), narrowly dispersed (<45, (90-106), (275-300) μm), and an optimized bimodal (18.7% of (45-90) μm with 81.3% of (250-300) μm) particle distributions are studied. Results show that the larger the particle size, the higher the magnetostrictive response; this is attributed to the reduction of

  5. On to the Ice Giants

    NASA Astrophysics Data System (ADS)

    Reh, Kim; Hofstdater, Mark; Simon, Amy; Elliott, John

    2017-04-01

    Voyager 2 mission flew by Uranus in 1986 and Neptune in 1989 resulting in stunning remote observations not previously accessible from the ground. There have been no follow-up space flight missions to examine ice giants and, as a result there are significant gaps in our understanding of planetary formation and evolution. This gap not only affects our understanding of our own solar system but also our understanding of exoplanets; the majority of planets discovered around other stars are thought to be ice giants. Ice Giants are likely to be far more abundant in our galaxy than previously thought. The U.S. 2011 Planetary Science Decadal Survey committee recognized the importance of Uranus and Neptune, and prioritized the exploration of the Ice Giants. Following from this, NASA and ESA have recently completed a study of candidate missions to Uranus and Neptune, the so-called ice giant planets. The intent was to examine what could be accomplished within the budget realities of the predictable future. This "Pre-Decadal Study," focused on opportunities for missions launching in the 2020's and early 2030's. This paper presents results from the Ice Giants study (science, architectures and technologies) and concludes that compelling and affordable missions to the Ice Giants are within our reach.

  6. Chemical Biology in the Embryo: In Situ Imaging of Sulfur Biochemistry in Normal and Proteoglycan-Deficient Cartilage Matrix.

    PubMed

    Hackett, Mark J; George, Graham N; Pickering, Ingrid J; Eames, B Frank

    2016-05-03

    Proteoglycans (PGs) are heavily glycosylated proteins that play major structural and biological roles in many tissues. Proteoglycans are abundant in cartilage extracellular matrix; their loss is a main feature of the joint disease osteoarthritis. Proteoglycan function is regulated by sulfation-sulfate ester formation with specific sugar residues. Visualization of sulfation within cartilage matrix would yield vital insights into its biological roles. We present synchrotron-based X-ray fluorescence imaging of developing zebrafish cartilage, providing the first in situ maps of sulfate ester distribution. Levels of both sulfur and sulfate esters decrease as cartilage develops through late phase differentiation (maturation or hypertrophy), suggesting a functional link between cartilage matrix sulfur content and chondrocyte differentiation. Genetic experiments confirm that sulfate ester levels were due to cartilage proteoglycans and support the hypothesis that sulfate ester levels regulate chondrocyte differentiation. Surprisingly, in the PG synthesis mutant, the total level of sulfur was not significantly reduced, suggesting sulfur is distributed in an alternative chemical form during lowered cartilage proteoglycan production. Fourier transform infrared imaging indicated increased levels of protein in the mutant fish, suggesting that this alternative sulfur form might be ascribed to an increased level of protein synthesis in the mutant fish, as part of a compensatory mechanism.

  7. Giant magnetofossils and hyperthermal events

    NASA Astrophysics Data System (ADS)

    Chang, Liao; Roberts, Andrew P.; Williams, Wyn; Fitz Gerald, John D.; Larrasoaña, Juan C.; Jovane, Luigi; Muxworthy, Adrian R.

    2012-10-01

    Magnetotactic bacteria biomineralize magnetic minerals with precisely controlled size, morphology, and stoichiometry. These cosmopolitan bacteria are widely observed in aquatic environments. If preserved after burial, the inorganic remains of magnetotactic bacteria act as magnetofossils that record ancient geomagnetic field variations. They also have potential to provide paleoenvironmental information. In contrast to conventional magnetofossils, giant magnetofossils (most likely produced by eukaryotic organisms) have only been reported once before from Paleocene-Eocene Thermal Maximum (PETM; 55.8 Ma) sediments on the New Jersey coastal plain. Here, using transmission electron microscopic observations, we present evidence for abundant giant magnetofossils, including previously reported elongated prisms and spindles, and new giant bullet-shaped magnetite crystals, in the Southern Ocean near Antarctica, not only during the PETM, but also shortly before and after the PETM. Moreover, we have discovered giant bullet-shaped magnetite crystals from the equatorial Indian Ocean during the Mid-Eocene Climatic Optimum (˜40 Ma). Our results indicate a more widespread geographic, environmental, and temporal distribution of giant magnetofossils in the geological record with a link to "hyperthermal" events. Enhanced global weathering during hyperthermals, and expanded suboxic diagenetic environments, probably provided more bioavailable iron that enabled biomineralization of giant magnetofossils. Our micromagnetic modelling indicates the presence of magnetic multi-domain (i.e., not ideal for navigation) and single domain (i.e., ideal for navigation) structures in the giant magnetite particles depending on their size, morphology and spatial arrangement. Different giant magnetite crystal morphologies appear to have had different biological functions, including magnetotaxis and other non-navigational purposes. Our observations suggest that hyperthermals provided ideal conditions for

  8. [Giant esophageal fibrovascular polyp].

    PubMed

    Palacios, Fernando; Contardo, Carlos; Guevara, Jorge; Vera, Augusto; Aguilar, Luis; Huamán, Manuel; Palomino, Américo; Yabar, Alejandro

    2003-01-01

    Fibrovascular polyps are extremely rare benign neoplasias of the esophagus, which usually originate in the lower cricoid area. They do not produce any discomfort in the patient for a long time, however it may make itself evident by the patient's regurgitation of the polyp, producing asphyxia or, more frequently, dysphagia. The case of a 58 year old male patient is presented herein, with a 9 month record of dysphagia, weight loss and intermittent melena. The barium x-ray showed a distended esophagus, with a tumor running from the upper esophageal sphincter to the cardia. The endoscopy confirmed the presence of a pediculated tumor, implanted in the cervical esophagus. Surgeons suspected the potential malignancy of the tumor and performed a transhiatal esophagectomy. The final pathologic diagnosis was giant fibrovascular esophageal polyp.

  9. A giant Ordovician anomalocaridid.

    PubMed

    Van Roy, Peter; Briggs, Derek E G

    2011-05-26

    Anomalocaridids, giant lightly sclerotized invertebrate predators, occur in a number of exceptionally preserved early and middle Cambrian (542-501 million years ago) biotas and have come to symbolize the unfamiliar morphologies displayed by stem organisms in faunas of the Burgess Shale type. They are characterized by a pair of anterior, segmented appendages, a circlet of plates around the mouth, and an elongate segmented trunk lacking true tergites with a pair of flexible lateral lobes per segment. Disarticulated body parts, such as the anterior appendages and oral circlet, had been assigned to a range of taxonomic groups--but the discovery of complete specimens from the middle Cambrian Burgess Shale showed that these disparate elements all belong to a single kind of animal. Phylogenetic analyses support a position of anomalocaridids in the arthropod stem, as a sister group to the euarthropods. The anomalocaridids were the largest animals in Cambrian communities. The youngest unequivocal examples occur in the middle Cambrian Marjum Formation of Utah but an arthropod retaining some anomalocaridid characteristics is present in the Devonian of Germany. Here we report the post-Cambrian occurrence of anomalocaridids, from the Early Ordovician (488-472 million years ago) Fezouata Biota in southeastern Morocco, including specimens larger than any in Cambrian biotas. These giant animals were an important element of some marine communities for about 30 million years longer than previously realized. The Moroccan specimens confirm the presence of a dorsal array of flexible blades attached to a transverse rachis on the trunk segments; these blades probably functioned as gills.

  10. Giant Hedge-Hogs: Spikes on Giant Gravitons

    SciTech Connect

    Sadri, D

    2004-01-28

    We consider giant gravitons on the maximally supersymmetric plane-wave background of type IIB string theory. Fixing the light-cone gauge, we work out the low energy effective light-cone Hamiltonian of the three-sphere giant graviton. At first order, this is a U(1) gauge theory on R x S{sup 3}. We place sources in this effective gauge theory. Although non-vanishing net electric charge configurations are disallowed by Gauss' law, electric dipoles can be formed. From the string theory point of view these dipoles can be understood as open strings piercing the three-sphere, generalizing the usual BIons to the giant gravitons, BIGGons. Our results can be used to give a two dimensional (worldsheet) description of giant gravitons, similar to Polchinski's description for the usual D-branes, in agreement with the discussions of hep-th/0204196.

  11. Effect of articular cartilage proteoglycan depletion on high frequency ultrasound backscatter.

    PubMed

    Pellaumail, B; Watrin, A; Loeuille, D; Netter, P; Berger, G; Laugier, P; Saïed, A

    2002-07-01

    To study the effect of variations of articular cartilage proteoglycans (PG) on high-frequency ultrasound backscatter. The study was performed on patellar cartilages of immature and mature rats (N=36). The variation of PG content was induced by enzyme digestion. Control and treated cartilages were explored in vitro using a 55MHz scanning acoustic microscopy, then assessed by histology for the fibrillar collagen organization analysis. The variations of proteoglycan and collagen content were evaluated. Thickness measurements performed on both B-scan images and histologic sections were compared. Ultrasonic radio-frequency signals reflected by the cartilage surface and backscattered from its internal matrix were processed to estimate the integrated reflection coefficient (IRC) and apparent integrated backscatter (AIB). Although hyaluronidase treatment of immature and mature cartilages removed approximately 50% of the proteoglycans, the echogenicity level of ultrasound images of degraded cartilages was similar to that of controls. IRC and AIB parameters did not significantly vary. Histologic sections of degraded cartilage displayed no change in collagen fiber organization. The thickness mean values measured by ultrasound in PG-depleted groups were significantly higher than in controls, whereas no significant difference in thickness was detected by histological measurement. The increase in cartilage thickness may potentially be explained by a decrease of speed of sound in PG-depleted cartilages that is more likely subsequent to an increase of water content. Current results indicate that PG depletion has no significant effect on high frequency ultrasound backscattered from rat patellar cartilage. Ultrasound may provide information about variations of PG content via speed of sound measurement. Copyright 2002 OsteoArthritis Research Society International. Published by Elsevier Science Ltd. All rights reserved.

  12. Expression of small leucine-rich proteoglycans in rat anterior pituitary gland.

    PubMed

    Horiguchi, Kotaro; Syaidah, Rahimi; Fujiwara, Ken; Tsukada, Takehiro; Ramadhani, Dini; Jindatip, Depicha; Kikuchi, Motoshi; Yashiro, Takashi

    2013-01-01

    Proteoglycans are components of the extracellular matrix and comprise a specific core protein substituted with covalently linked glycosaminoglycan chains. Small leucine-rich proteoglycans (SLRPs) are a major family of proteoglycans and have key roles as potent effectors in cellular signaling pathways. Research during the last two decades has shown that SLRPs regulate biological functions in many tissues such as skin, tendon, kidney, liver, and heart. However, little is known of the expression of SLRPs, or the characteristics of the cells that produce them, in the anterior pituitary gland. Therefore, we have determined whether SLRPs are present in rat anterior pituitary gland. We have used real-time reverse transcription with the polymerase chain reaction to analyze the expression of SLRP genes and have identified the cells that produce SLRPs by using in situ hybridization with a digoxigenin-labeled cRNA probe. We have clearly detected the mRNA expression of SLRP genes, and cells expressing decorin, biglycan, fibromodulin, lumican, proline/arginine-rich end leucine-rich repeat protein (PRELP), and osteoglycin are located in the anterior pituitary gland. We have also investigated the possible double-staining of SLRP mRNA and pituitary hormones, S100 protein (a marker of folliculostellate cells), desmin (a marker of capillary pericytes), and isolectin B4 (a marker of endothelial cells). Decorin, biglycan, fibromodulin, lumican, PRELP, and osteoglycin mRNA have been identified in S100-protein-positive and desmin-positive cells. Thus, we conclude that folliculostellate cells and pericytes produce SLRPs in rat anterior pituitary gland.

  13. Atheroprotective remodelling of vascular dermatan sulphate proteoglycans in response to hypercholesterolaemia in a rat model.

    PubMed

    Oberkersch, Roxana; Maccari, Francesca; Bravo, Alicia I; Volpi, Nicola; Gazzaniga, Silvina; Calabrese, Graciela C

    2014-06-01

    Proteoglycan accumulation within the arterial intima has been implicated in atherosclerosis progression in humans. Nevertheless, hypercholesterolaemia is unable to induce intimal thickening and atheroma plaque development in rats. The study was performed to analyse proteoglycans modifications in rats fed with a high-cholesterol diet to understand whether vascular wall remodelling protects against lesions. Sections obtained from rat aortas showed normal features, in intimal-to-media ratio and lipid accumulation. However, focal endothelial hyperplasia and neo-intima rearrangement were observed in high-cholesterol animals. Besides, hypercholesterolaemia induced an inflammatory microenviroment. We determined the expression of different proteoglycans from aortic cells by Western blot and observed a diminished production of decorin and biglycan in high-cholesterol animals compared with control (P < 0.01 and P < 0.05, respectively). Versican was increased in high-cholesterol animals (P < 0.05), whereas perlecan production showed no differences. No modification of the total content of glycosaminoglycans (GAGs) was found between the two experimental groups. In contrast, the chondroitin sulphate/dermatan sulphate ratio was increased in the high-cholesterol group as compared to the control (0.56 and 0.34, respectively). Structural alterations in the disaccharide composition of galactosaminoglycans were also detected by HPLC, as the ratio of 6-sulphate to 4-sulphate disaccharides was increased in high-cholesterol animals (P < 0.05). Our results suggest that attenuation of decorin and biglycan expression might be an effective strategy to inhibit the first step in atherogenesis, although specific GAG structural modification associated with the development of vascular disease took place. Results emphasize the potential application of therapies based on vascular matrix remodelling to treat atherosclerosis. © 2014 The Authors. International Journal of Experimental

  14. Chondroitin sulphate proteoglycan is involved in lens vesicle morphogenesis in chick embryos.

    PubMed

    Gato, A; Martin, C; Alonso, M I; Martinez-Alvarez, C; Moro, J A

    2001-10-01

    Proteoglycans have been implicated in the invagination and formation of various embryonal cavitied primordia. In this paper the expression of chondroitin sulphate proteoglycan (CSPG) is analysed in the lens primordium during lens vesicle formation, and demonstrate that this proteoglycan has a specific distribution pattern with regard to invagination and fusion processes in the transformation of placode into lens vesicle. More specifically, CSPG was detected in: (1) the apical surface of lens epithelial cells, where early CSPG expression was observed in the whole of the lens placode whilst in the vesicle phase it was restricted to the posterior epithelium; (2) intense CSPG expression in the basal lamina, which remained constant for the entire period under study; (3) CSPG expression in the intercellular spaces of the lens primordium epithelium, which increased during the invagination of the primordium and which at the vesicle stage was more evident in the posterior epithelium; and (4) CSPG expression on the edges of the lens placode both prior to and during fusion. Treatment with beta- D -xyloside causes significant CSPG depletion in the lens primordium together with severe alterations in the invagination and fusion of the lens vesicle; this leads to the formation of lens primordia which in some cases remain practically flat or show partial invagination defects or fusion disruption. Similar results were obtained by enzyme digestion with chondroitinase AC but not with type II heparinase, which indicates that alterations induced by beta- D -xyloside were due to interference in CSPG synthesis. The findings demonstrate that CSPG is a common component of the lens primordium at the earliest developmental stages during which it undergoes specific modifications. It also includes experimental evidence to show that 'in vivo' CSPG plays an important role in the invagination and fusion processes of the lens primordium.

  15. Atheroprotective remodelling of vascular dermatan sulphate proteoglycans in response to hypercholesterolaemia in a rat model

    PubMed Central

    Oberkersch, Roxana; Maccari, Francesca; Bravo, Alicia I; Volpi, Nicola; Gazzaniga, Silvina; Calabrese, Graciela C

    2014-01-01

    Proteoglycan accumulation within the arterial intima has been implicated in atherosclerosis progression in humans. Nevertheless, hypercholesterolaemia is unable to induce intimal thickening and atheroma plaque development in rats. The study was performed to analyse proteoglycans modifications in rats fed with a high-cholesterol diet to understand whether vascular wall remodelling protects against lesions. Sections obtained from rat aortas showed normal features, in intimal-to-media ratio and lipid accumulation. However, focal endothelial hyperplasia and neo-intima rearrangement were observed in high-cholesterol animals. Besides, hypercholesterolaemia induced an inflammatory microenviroment. We determined the expression of different proteoglycans from aortic cells by Western blot and observed a diminished production of decorin and biglycan in high-cholesterol animals compared with control (P < 0.01 and P < 0.05, respectively). Versican was increased in high-cholesterol animals (P < 0.05), whereas perlecan production showed no differences. No modification of the total content of glycosaminoglycans (GAGs) was found between the two experimental groups. In contrast, the chondroitin sulphate/dermatan sulphate ratio was increased in the high-cholesterol group as compared to the control (0.56 and 0.34, respectively). Structural alterations in the disaccharide composition of galactosaminoglycans were also detected by HPLC, as the ratio of 6-sulphate to 4-sulphate disaccharides was increased in high-cholesterol animals (P < 0.05). Our results suggest that attenuation of decorin and biglycan expression might be an effective strategy to inhibit the first step in atherogenesis, although specific GAG structural modification associated with the development of vascular disease took place. Results emphasize the potential application of therapies based on vascular matrix remodelling to treat atherosclerosis. PMID:24602133

  16. The study of optical properties and proteoglycan content of tendons by PS-OCT

    NASA Astrophysics Data System (ADS)

    Yang, Ying; Rupani, Asha; Weightman, Alan; Wimpenny, Ian; Bagnaninchi, Pierre; Ahearne, Mark

    2011-03-01

    Tendons are load-bearing collagenous tissues consisting mainly of type I collagen and various proteoglycans (PGs) including decorin and versican. It is widely accepted that highly orientated collagen fibers in tendons a play critical role for transferring tensile stress and demonstrate birefringent optical properties. However, the influence that proteoglycans have on the optical properties of tendons is yet to be fully elucidated. Tendinopathy (defined as a syndrome of tendon pain, tenderness and swelling that affects the normal function of the tissue) is a common disease associated with sporting injuries or degeneration. PG's are the essential components of the tendon extracellular matrix; changes in their quantities and compositions have been associated with tendinopathy. In this study, polarization sensitive optical coherence tomography (PS-OCT) has been used to reveal the relationship between proteoglycan content/location and birefringent properties of tendons. Tendons dissected from freshly slaughtered chickens were imaged at regular intervals by PS-OCT and polarizing light microscope during the extraction of PGs or glycosaminoglycans using established protocols (guanidine hydrochloride (GuHCl) or proteinase K solution). The macroscopic and microscopic time lapsed images are complimentary; mutually demonstrating that there was a higher concentration of PG's in the outer sheath region than in the fascicles; and the integrity of the sheath affected extraction process and the OCT birefringence bands. Extraction of PGs using GuHCl disturbed the organization of local collagen bundles, which corresponded to a reduction in the frequency of birefringence bands and the band width by PS-OCT. The feature of OCT penetration depth helped us to define the heterogeneous distribution of PG's in tendon, which was complimented by polarizing light microscopy. The results provide new insight of tendon structure and also demonstrate a great potential for using PS-OCT as a

  17. Cell-surface proteoglycan in sea urchin primary mesenchyme cell migration

    SciTech Connect

    Lane, M.C.

    1989-01-01

    Early in the development of the sea urchin embryo, the primary mesenchyme cells (PMC) migrate along the basal lamina of the blastocoel. Migration is inhibited in L. pictus embryos cultured in sulfate-free seawater and in S. purpuratus embryos exposed to exogenous {beta}-D-xylosides. An in vitro assay was developed to test the migratory capacity of normal PMC on normal and treated blastocoelic matrix. Sulfate deprivation and exposure to exogenous xyloside render PMC nonmotile on either matrix. Materials removed from the surface of normal PMC by treatment with 1 M urea restored migratory ability to defective cells, whereas a similar preparation isolated from the surface of epithelial cells at the same stage did not. Migration also resumed when cells were removed from the xyloside or returned to normal seawater. The urea extract was partially purified and characterized by radiolabeling, gel electrophoresis, fluorography, ion exchange chromatography, and western blotting. The PMC synthesize a large chondroitin sulfate/dermatan sulfate proteoglycan that is present in an active fraction isolated by chromatography. Chondroitinase ABC digestion of live cells blocked migration reversibly, further supporting the identification of the chondroitin sulfate/dermatan sulfate proteoglycan as the active component in the urea extract. Much of the incorporated sulfate was distributed along the filopodia in {sup 35}SO{sub 4}-labelled PMC by autoradiography. The morphology of normal and treated S. purpuratus PMC was examined by scanning electron microscopy, and differences in spreading, particularly of the extensive filopodia present on the cells, was observed. A model for the role of the chondroitin sulfate/dermatan sulfate proteoglycan in cell detachment during migration is proposed.

  18. Giant resonances: Progress, new directions, new challenges

    SciTech Connect

    Bertrand, J.R.; Beene, J.R.

    1989-01-01

    A review of some recent developments in the field of giant multipole resonances is presented. Particular emphasis is placed on directions that the authors feel will be followed in this field during the next several years. In particular, the use of high-energy heavy ions to excite the giant resonances is shown to provide exciting new capabilities for giant resonance studies. Among subjects covered are: Coulomb excitation of giant resonances, photon decay of giant resonances, the recent controversy over the identity of the giant monopole resonance, the most recent value for incompressibility of nuclear matter from analysis of giant monopole data, the isospin character of the 63 A/sup /minus/1/3/ GQR, agreement between (e,e/prime/) and (hadron, hadron/prime/) excitation of the giant quadrupole resonance, prospects for multiphonon giant resonance observation, and isolation of the isovector giant quadrupole resonance. 55 refs., 23 figs., 4 tabs.

  19. Mice deficient in small leucine-rich proteoglycans: novel in vivo models for osteoporosis, osteoarthritis, Ehlers-Danlos syndrome, muscular dystrophy, and corneal diseases.

    PubMed

    Ameye, Laurent; Young, Marian F

    2002-09-01

    Small leucine-rich proteoglycans (SLRPs) are extracellular molecules that bind to TGFbetas and collagens and other matrix molecules. In vitro, SLRPs were shown to regulate collagen fibrillogenesis, a process essential in development, tissue repair, and metastasis. To better understand their functions in vivo, mice deficient in one or two of the four most prominent and widely expressed SLRPs (biglycan, decorin, fibromodulin, and lumican) were recently generated. All four SLRP deficiencies result in the formation of abnormal collagen fibrils. Taken together, the collagen phenotypes demonstrate a cooperative, sequential, timely orchestrated action of the SLRPs that altogether shape the architecture and mechanical properties of the collagen matrix. In addition, SLRP-deficient mice develop a wide array of diseases (osteoporosis, osteoarthritis, muscular dystrophy, Ehlers-Danlos syndrome, and corneal diseases), most of them resulting primarily from an abnormal collagen fibrillogenesis. The development of these diseases by SLRP-deficient mice suggests that mutations in SLRPs may be part of undiagnosed predisposing genetic factors for these diseases. Although the distinct phenotypes developed by the different singly deficient mice point to distinct in vivo function for each SLRP, the analysis of the double-deficient mice also demonstrates the existence of rescuing/compensation mechanisms, indicating some functional overlap within the SLRP family.

  20. Changes in cartilage metabolism in arthritis are reflected by altered serum and synovial fluid levels of the cartilage proteoglycan aggrecan. Implications for pathogenesis.

    PubMed Central

    Poole, A R; Ionescu, M; Swan, A; Dieppe, P A

    1994-01-01

    The metabolism of the cartilage proteoglycan aggrecan was studied in patients with osteoarthritis (OA, n = 83), rheumatoid arthritis (RA, n = 127), and in controls (n = 117) using monoclonal antibody-based radioimmunoassays for glycosaminoglycans in the serum and synovial fluid (SF) to detect epitope 846 on chondroitin sulfate (probably only on recently synthesized molecules) and a keratan sulfate (KS) epitope AN9PI, present on intact and degraded molecules. Epitope 846 levels were always elevated in SF over serum (mean 38-fold in OA and 8.6-fold in RA) being highest in OA patients with the longest disease duration and greatest loss of cartilage, and lowest in RA joints with high leucocyte counts. Serum levels were more often elevated in RA (56%) than in OA (19%) and probably reflect increased aggrecan synthesis in diseased joints. KS levels were higher in SF than in serum in 69% of patients (up to 2.3-fold); levels were inversely (OA) and directly (RA) related to SF leucocyte counts. Serum KS was reduced in both diseases and in RA was inversely related to both systemic and joint inflammation markers. SF 846 levels were inversely related to SF KS in both diseases. These epitopes may provide a measure of the balance between cartilage synthesis and degradation in these diseases. PMID:7518830

  1. Both hyaluronan and collagen type II keep proteoglycan 4 (lubricin) at the cartilage surface in a condition that provides low friction during boundary lubrication.

    PubMed

    Majd, Sara Ehsani; Kuijer, Roel; Köwitsch, Alexander; Groth, Thomas; Schmidt, Tannin A; Sharma, Prashant K

    2014-12-09

    Wear resistant and ultralow friction in synovial joints is the outcome of a sophisticated synergy between the major macromolecules of the synovial fluid, e.g., hyaluronan (HA) and proteoglycan 4 (PRG4), with collagen type II fibrils and other non-collagenous macromolecules of the cartilage superficial zone (SZ). This study aimed at better understanding the mechanism of PRG4 localization at the cartilage surface. We show direct interactions between surface bound HA and freely floating PRG4 using the quartz crystal microbalance with dissipation (QCM-D). Freely floating PRG4 was also shown to bind with surface bound collagen type II fibrils. Albumin, the most abundant protein of the synovial fluid, effectively blocked the adsorption of PRG4 with HA, through interaction with C and N terminals on PRG4, but not that of PRG4 with collagen type II fibrils. The above results indicate that collagen type II fibrils strongly contribute in keeping PRG4 in the SZ during cartilage articulation in situ. Furthermore, PRG4 molecules adsorbed very well on mimicked SZ of absorbed HA molecules with entangled collagen type II fibrils and albumin was not able to block this interaction. In this last condition PRG4 adsorption resulted in a coefficient of friction (COF) of the same order of magnitude as the COF of natural cartilage, measured with an atomic force microscope in lateral mode.

  2. Theories of Giant Planet Formation

    NASA Technical Reports Server (NTRS)

    Lissauer, Jack J.; Young, Richard E. (Technical Monitor)

    1998-01-01

    An overview of current theories of planetary formation, with emphasis on giant planets, is presented. The most detailed models are based upon observations of our own Solar System and of young stars and their environments. While these models predict that rocky planets should form around most single stars, the frequency of formation of gas giant planets is more difficult to predict theoretically. Terrestrial planets are believed to grow via pairwise accretion until the spacing of planetary orbits becomes large enough that the configuration is stable for the age of the system. Giant planets begin their growth as do terrestrial planets, but they become massive enough that they are able to accumulate substantial amounts of gas before the protoplanetary disk dissipates. Most models for extrasolar giant planets suggest that they formed as did Jupiter and Saturn (in nearly circular orbits, far enough from the star that ice could), and subsequently migrated to their current positions, although some models suggest in situ formation.

  3. Lichens On Galapagos Giant Tortoises.

    PubMed

    Hendrickson, J R; Weber, W A

    1964-06-19

    The association of Physcia picta with the giant Galdpagos tortoise is believed to be the first reported occurrence of lichens on land animals. The habitat is restricted to specific sites on the carapace of male tortoises.

  4. Landscape of the lost giants

    NASA Astrophysics Data System (ADS)

    2013-09-01

    The Pleistocene megafauna extinction erased a group of remarkable animals. Whether humans had a prominent role in the extinction remains controversial, but it is emerging that the disappearance of the giants has markedly affected the environment.

  5. What Is Giant Cell Arteritis?

    MedlinePlus

    ... 01, 2017 Giant cell arteritis (GCA) is an inflammation (swelling) of the arteries, which are the blood ... help nourish your eyes, reduced blood flow can cause sudden, painless vision loss. This condition is called ...

  6. Pharma giants swap research programs.

    PubMed

    2014-07-01

    Pharmaceutical giants Novartis and GlaxoSmithKline (GSK) agreed in late April to swap some assets, with Novartis handing off its vaccine business to GSK and getting most of the British company's cancer portfolio in return.

  7. Giant sacrolumbar meningioma. Case report.

    PubMed

    Feldenzer, J A; McGillicuddy, J E; Hopkins, J W

    1990-06-01

    A case of giant sacral meningioma with presacral and lumbar extension is presented. The difficulties in diagnosis and management are emphasized including the staged multidisciplinary surgical approaches and preoperative tumor embolization.

  8. Atmospheres of Extrasolar Giant Planets

    NASA Technical Reports Server (NTRS)

    Marley, Mark

    2006-01-01

    The next decade will almost certainly see the direct imaging of extrasolar giant planets around nearby stars. Unlike purely radial velocity detections, direct imaging will open the door to characterizing the atmosphere and interiors of extrasola planets and ultimately provide clues on their formation and evolution through time. This process has already begun for the transiting planets, placing new constraints on their atmospheric structure, composition, and evolution. Indeed the key to understanding giant planet detectability, interpreting spectra, and constraining effective temperature and hence evolution-is the atmosphere. I will review the universe of extrasolar giant planet models, focusing on what we have already learned from modeling and what we will likely be able to learn from the first generation of direct detection data. In addition to these theoretical considerations, I will review the observations and interpretation of the - transiting hot Jupiters. These objects provide a test of our ability to model exotic atmospheres and challenge our current understanding of giant planet evolution.

  9. Theories of Giant Planet Formation

    NASA Technical Reports Server (NTRS)

    Lissauer, Jack J.; Young, Richard E. (Technical Monitor)

    1998-01-01

    An overview of current theories of planetary formation, with emphasis on giant planets, is presented. The most detailed models are based upon observations of our own Solar System and of young stars and their environments. While these models predict that rocky planets should form around most single stars, the frequency of formation of gas giant planets is more difficult to predict theoretically. Terrestrial planets are believed to grow via pairwise accretion until the spacing of planetary orbits becomes large enough that the configuration is stable for the age of the system. Giant planets begin their growth as do terrestrial planets, but they become massive enough that they are able to accumulate substantial amounts of gas before the protoplanetary disk dissipates. Most models for extrasolar giant planets suggest that they formed as did Jupiter and Saturn (in nearly circular orbits, far enough from the star that ice could), and subsequently migrated to their current positions, although some models suggest in situ formation.

  10. Pefloxacin-Induced Achilles Tendon Toxicity in Rodents: Biochemical Changes in Proteoglycan Synthesis and Oxidative Damage to Collagen

    PubMed Central

    Simonin, Marie-Agnes; Gegout-Pottie, Pascale; Minn, Alain; Gillet, Pierre; Netter, Patrick; Terlain, Bernard

    2000-01-01

    Despite a relatively low incidence of serious side effects, fluoroquinolones and the fluoroquinolone pefloxacin have been reported to occasionally promote tendinopathy that might result in the complication of spontaneous rupture of tendons. In the present study, we investigated in rodents the intrinsic deleterious effect of pefloxacin (400 mg/kg of body weight) on Achilles tendon proteoglycans and collagen. Proteoglycan synthesis was determined by measurement of in vivo and ex vivo radiosulfate incorporation in mice. Collagen oxidative modifications were measured by carbonyl derivative detection by Western blotting. An experimental model of tendinous ischemia (2 h) and reperfusion (3 days) was achieved in rats. Biphasic changes in proteoglycan synthesis were observed after a single administration of pefloxacin, consisting of an early inhibition followed by a repair-like phase. The depletion phase was accompanied by a marked decrease in the endogenous serum sulfate level and a concomitant increase in the level of sulfate excretion in urine. Studies of ex vivo proteoglycan synthesis confirmed the in vivo results that were obtained. The decrease in proteoglycan anabolism seemed to be a direct effect of pefloxacin on tissue metabolism rather than a consequence of the low concentration of sulfate. Pefloxacin treatment for several days induced oxidative damage of type I collagen, with the alterations being identical to those observed in the experimental tendinous ischemia and reperfusion model. Oxidative damage was prevented by coadministration of N-acetylcysteine (150 mg/kg) to the mice. These results provide the first experimental evidence of a pefloxacin-induced oxidative stress in the Achilles tendon that altered proteoglycan anabolism and oxidized collagen. PMID:10722483

  11. Apolipoprotein AV accelerates plasma hydrolysis of triglyceride-rich lipoproteins by interaction with proteoglycan-bound lipoprotein lipase.

    PubMed

    Merkel, Martin; Loeffler, Britta; Kluger, Malte; Fabig, Nathalie; Geppert, Gesa; Pennacchio, Len A; Laatsch, Alexander; Heeren, Joerg

    2005-06-03

    Apolipoprotein A5 (APOA5) is associated with differences in triglyceride levels and familial combined hyperlipidemia. In genetically engineered mice, apoAV plasma levels are inversely correlated with plasma triglycerides. To elucidate the mechanism by which apoAV influences plasma triglycerides, metabolic studies and in vitro assays resembling physiological conditions were performed. In human APOA5 transgenic mice (hAPOA5tr), catabolism of chylomicrons and very low density lipoprotein (VLDL) was accelerated due to a faster plasma hydrolysis of triglycerides by lipoprotein lipase (LPL). Hepatic VLDL and intestinal chylomicron production were not affected. The functional interplay between apoAV and LPL was further investigated by cross-breeding a human LPL transgene with the apoa5 knock-out and the hAPOA5tr to an lpl-deficient background. Increased LPL activity completely normalized hypertriglyceridemia of apoa5-deficient mice; however, overexpression of human apoAV modulated triglyceride levels only slightly when LPL was reduced. To reflect the physiological situation in which LPL is bound to cell surface proteoglycans, we examined hydrolysis in the presence or absence of proteoglycans. Without proteoglycans, apoAV derived either from triglyceride-rich lipoproteins, hAPOA5tr high density lipoprotein, or a recombinant source did not alter the LPL hydrolysis rate. In the presence of proteoglycans, however, apoAV led to a significant and dose-dependent increase in LPL-mediated hydrolysis of VLDL triglycerides. These results were confirmed in cell culture using a proteoglycan-deficient cell line. A direct interaction between LPL and apoAV was found by ligand blotting. It is proposed, that apoAV reduces triglyceride levels by guiding VLDL and chylomicrons to proteoglycan-bound LPL for lipolysis.

  12. Apolipoprotein AV Accelerates Plasma Hydrolysis OfTriglyceride-Rich Lipoproteins By Interaction With Proteoglycan BoundLipoprotein Lipase

    SciTech Connect

    Merkel, Martin; Loeffler, Britta; Kluger, Malte; Fabig, Nathalie; Geppert, Gesa; Pennacchio, Len A.; Laatsch, Alexander; Heeren, Joerg

    2005-02-22

    Apolipoprotein A5 (APOA5) is associated with differences intriglyceride levels and familial combined hyperlipidemia. In genetically engineered mice, apoAV plasma levels are inversely correlated with plasmatriglycerides. To elucidate the mechanism by which apoAV influences plasma triglycerides, metabolic studies and in vitro assays resembling physiological conditions were performed. In hAPOA5 transgenic mice(hAPOA5tr), catabolism of chylomicrons and VLDL was accelerated due to a faster plasma hydrolysis of triglycerides by lipoprotein lipase (LPL).Hepatic VLDL and intestinal chylomicron production were not affected. The functional interplay between apoAV and LPL was further investigated by crossbreeding a human LPL transgene with the apoa5 knockout, and the hAPOA5tr to an LPL deficient background. Increased LPL activity completely normalized hypertriglyceridemia of apoa5 deficient mice,however, over expression of human apoAV modulated triglyceride levels only slightly when LPL was reduced. To reflect the physiological situation in which LPL is bound to cell surface proteoglycans, we examined hydrolysis in the presence or absence of proteoglycans. Without proteoglycans, apoAV derived either from triglyceride-rich lipoproteins, hAPOA5tr HDL, or a recombinant source did not alter the LPL hydrolysis rate. In the presence of proteoglycans, however, apoAV led to a significant and dose-dependent increase in LPL mediated hydrolysis of VLDL triglycerides. These results were confirmed in cell culture using a proteoglycan-deficient cell line.A direct interaction between LPL and apoAV was found by ligand blotting.It is proposed, that apoAV reduces triglyceride levels by guiding VLDL and chylomicrons to proteoglycans bound LPL for lipolysis.

  13. Giant cell arteritis: a review

    PubMed Central

    Patil, Pravin; Karia, Niral; Jain, Shaifali; Dasgupta, Bhaskar

    2013-01-01

    Giant cell arteritis is the most common vasculitis in Caucasians. Acute visual loss in one or both eyes is by far the most feared and irreversible complication of giant cell arteritis. This article reviews recent guidelines on early recognition of systemic, cranial, and ophthalmic manifestations, and current management and diagnostic strategies and advances in imaging. We share our experience of the fast track pathway and imaging in associated disorders, such as large-vessel vasculitis. PMID:28539785

  14. Giants in the Local Region

    NASA Astrophysics Data System (ADS)

    Luck, R. Earle; Heiter, Ulrike

    2007-06-01

    We present parameter and abundance data for a sample of 298 nearby giants. The spectroscopic data for this work have a resolution of R~60,000, S/N>150, and spectral coverage from 475 to 685 nm. Overall trends in the Z>10 abundances are dominated by Galactic chemical evolution, while the light-element abundances are influenced by stellar evolution, as well as Galactic evolution. We find several super-Li stars in our sample and confirm that Li abundances in the first giant branch are related to mixing depths. Once astration of lithium on the main sequence along with the overall range of main-sequence lithium abundances are taken into account, the lithium abundances of the giants are not dramatically at odds with the predictions of standard stellar evolution. We find the giants to be carbon-diluted in accord with standard stellar evolution and that the carbon and oxygen abundances determined for the local giants are consistent with those found in local field dwarfs. We find that there is evidence for systematic carbon variations in the red giant clump in the sense that the blue side of the clump is carbon-poor (more diluted) than the red side.

  15. Kuiper Prize: Giant Planet Atmospheres

    NASA Astrophysics Data System (ADS)

    Ingersoll, Andrew P.

    2007-10-01

    The study of giant planet atmospheres is near and dear to me, for several reasons. First, the giant planets are photogenic; the colored clouds are great tracers, and one can make fantastic movies of the atmosphere in motion. Second, the giant planets challenge us with storms that last for hundreds of years and winds that blow faster the farther you go from the sun. Third, they remind us of Earth with their hurricanes, auroras, and lightning, but they also are the link to the 200 giant planets that have been discovered around other stars. This talk will cover the past, present, and future (one hopes) of giant planet research. I will review the surprises of the Voyager and Galileo eras, and will discuss what we are learning now from the Cassini orbiter. I will review the prospects for answering the outstanding questions like: Where's the water? What is providing the colors of the clouds? How deep do the features extend? Where do the winds get their energy? What is the role of the magnetic field? Finally, I will briefly discuss how extrasolar giant planets compare with objects in our own solar system.

  16. Induction of Syndecan-4 by Organic–Inorganic Hybrid Molecules with a 1,10-Phenanthroline Structure in Cultured Vascular Endothelial Cells

    PubMed Central

    Hara, Takato; Kojima, Takayuki; Matsuzaki, Hiroka; Nakamura, Takehiro; Yoshida, Eiko; Fujiwara, Yasuyuki; Yamamoto, Chika; Saito, Shinichi; Kaji, Toshiyuki

    2017-01-01

    Organic–inorganic hybrid molecules constitute analytical tools used in biological systems. Vascular endothelial cells synthesize and secrete proteoglycans, which are macromolecules consisting of a core protein and glycosaminoglycan side chains. Although the expression of endothelial proteoglycans is regulated by several cytokines/growth factors, there may be alternative pathways for proteoglycan synthesis aside from downstream pathways activated by these cytokines/growth factors. Here, we investigated organic–inorganic hybrid molecules to determine a variant capable of analyzing the expression of syndecan-4, a transmembrane heparan-sulfate proteoglycan, and identified 1,10-phenanthroline (o-Phen) with or without zinc (Zn-Phen) or rhodium (Rh-Phen). Bovine aortic endothelial cells in culture were treated with these compounds, and the expression of syndecan-4 mRNA and core proteins was determined by real-time reverse transcription polymerase chain reaction and Western blot analysis, respectively. Our findings indicated that o-Phen and Zn-Phen specifically and strongly induced syndecan-4 expression in cultured vascular endothelial cells through activation of the hypoxia-inducible factor-1α/β pathway via inhibition of prolyl hydroxylase-domain-containing protein 2. These results demonstrated an alternative pathway involved in mediating induction of endothelial syndecan-4 expression and revealed organic–inorganic hybrid molecules as effective tools for analyzing biological systems. PMID:28208699

  17. Induction of Syndecan-4 by Organic-Inorganic Hybrid Molecules with a 1,10-Phenanthroline Structure in Cultured Vascular Endothelial Cells.

    PubMed

    Hara, Takato; Kojima, Takayuki; Matsuzaki, Hiroka; Nakamura, Takehiro; Yoshida, Eiko; Fujiwara, Yasuyuki; Yamamoto, Chika; Saito, Shinichi; Kaji, Toshiyuki

    2017-02-08

    Organic-inorganic hybrid molecules constitute analytical tools used in biological systems. Vascular endothelial cells synthesize and secrete proteoglycans, which are macromolecules consisting of a core protein and glycosaminoglycan side chains. Although the expression of endothelial proteoglycans is regulated by several cytokines/growth factors, there may be alternative pathways for proteoglycan synthesis aside from downstream pathways activated by these cytokines/growth factors. Here, we investigated organic-inorganic hybrid molecules to determine a variant capable of analyzing the expression of syndecan-4, a transmembrane heparan-sulfate proteoglycan, and identified 1,10-phenanthroline (o-Phen) with or without zinc (Zn-Phen) or rhodium (Rh-Phen). Bovine aortic endothelial cells in culture were treated with these compounds, and the expression of syndecan-4 mRNA and core proteins was determined by real-time reverse transcription polymerase chain reaction and Western blot analysis, respectively. Our findings indicated that o-Phen and Zn-Phen specifically and strongly induced syndecan-4 expression in cultured vascular endothelial cells through activation of the hypoxia-inducible factor-1α/β pathway via inhibition of prolyl hydroxylase-domain-containing protein 2. These results demonstrated an alternative pathway involved in mediating induction of endothelial syndecan-4 expression and revealed organic-inorganic hybrid molecules as effective tools for analyzing biological systems.

  18. Gamma rays from giant molecular clouds

    NASA Technical Reports Server (NTRS)

    Hunter, Stanley D.; Kanbach, Gottfried

    1990-01-01

    Giant Molecular Clouds (GMCs) are massive, bounded, cool, dense regions containing mostly H2, but also H I, CO, and other molecules. These clouds occupy less than 1 percent of the galactic volume, but are a substantial part of the interstellar mass. They are irradiated by the high energy cosmic rays which are possibly modulated by the matter and magnetic fields within the clouds. The product of cosmic-ray flux and matter density is traced by the emission of high energy gamma-rays. A spherical cloud model is considered and the gamma ray flux from several GMCs within 1 kpc of the sun which should be detectable by the EGRET (Energetic Gamma-Ray Experimental Telescope) instrument on GRO (Gamma Ray Observatory).

  19. The Giant Magnetocaloric Effect

    NASA Astrophysics Data System (ADS)

    Pecharsky, Vitalij K.

    1998-03-01

    Since the discovery of the magnetocaloric effect in pure iron by E.Warburg in 1881, it has been measured experimentally on many magnetic metals and compounds. The majority of the materials studied order magnetically undergoing a second order phase transformation. The magnetocaloric effect, typically peaking near the Curie or the Néel temperature, generally ranges from 0.5 to 2 K (in terms of adiabatic temperature change) or at 1 to 4 J/kg K (in terms of isothermal magnetic entropy change) per 1 T magnetic field change. The giant magnetocaloric effect recently discovered in Gd_5(Si_xGe_1-x)4 alloys, where x <= 0.5, is associated with a first order magnetic phase transition and it reaches values of 3 to 4 K and 6 to 10 J/kg K per 1 T field change, respectively. The refrigerant capacity, which is the measure of how much heat can be transferred from a cold to a hot reservoir in one ideal thermodynamic cycle, is larger than that of the best second order phase transition materials by 25 to 100%. When the Gd_5(Si_xGe_1-x)4 alloys are compared with other known materials, which show first order magnetic phase transition, such as Dy, Ho, Er, HoCo_2, NdMn_2Si_2, Fe_0.49Rh_0.51, and (Hf_0.83Ta_0.17)Fe_2+x, only Fe_0.49Rh_0.51 has comparable magnetocaloric properties. However, the first order magnetic phase transition in Fe_0.49Rh_0.51 is irreversible, and the magnetocaloric effect disappears after one magnetizing/demagnetizing cycle. A study of the crystal structure, thermodynamics, and magnetism of the Gd_5(Si_xGe_1-x)4 alloys, where 0 <= x <= 1 allowed us to obtain a qualitative understanding of the basic relations between the composition, the crystal structure, and the change in thermodynamics and magnetocaloric properties, which occur in the Gd_5(Si_xGe_1-x)4 system, and which brings about the giant magnetocaloric effect when x <= 0.5.

  20. Transforming growth factor-β2 is sequestered in preterm human milk by chondroitin sulfate proteoglycans.

    PubMed

    Namachivayam, Kopperuncholan; Coffing, Hayley P; Sankaranarayanan, Nehru Viji; Jin, Yingzi; MohanKumar, Krishnan; Frost, Brandy L; Blanco, Cynthia L; Patel, Aloka L; Meier, Paula P; Garzon, Steven A; Desai, Umesh R; Maheshwari, Akhil

    2015-08-01

    Human milk contains biologically important amounts of transforming growth factor-β2 isoform (TGF-β2), which is presumed to protect against inflammatory gut mucosal injury in the neonate. In preclinical models, enterally administered TGF-β2 can protect against experimental necrotizing enterocolitis, an inflammatory bowel necrosis of premature infants. In this study, we investigated whether TGF-β bioactivity in human preterm milk could be enhanced for therapeutic purposes by adding recombinant TGF-β2 (rTGF-β2) to milk prior to feeding. Milk-borne TGF-β bioactivity was measured by established luciferase reporter assays. Molecular interactions of TGF-β2 were investigated by nondenaturing gel electrophoresis and immunoblots, computational molecular modeling, and affinity capillary electrophoresis. Addition of rTGF-β2 (20-40 nM) to human preterm milk samples failed to increase TGF-β bioactivity in milk. Milk-borne TGF-β2 was bound to chondroitin sulfate (CS) containing proteoglycan(s) such as biglycan, which are expressed in high concentrations in milk. Chondroitinase treatment of milk increased the bioactivity of both endogenous and rTGF-β2, and consequently, enhanced the ability of preterm milk to suppress LPS-induced NF-κB activation in macrophages. These findings provide a mechanism for the normally low bioavailability of milk-borne TGF-β2 and identify chondroitinase digestion of milk as a potential therapeutic strategy to enhance the anti-inflammatory effects of preterm milk.

  1. THE NG2 PROTEOGLYCAN PROMOTES OLIGODENDROCYTE PROGENITOR PROLIFERATION AND DEVELOPMENTAL MYELINATION

    PubMed Central

    Kucharova, Karolina; Stallcup, William B.

    2010-01-01

    The NG2 proteoglycan has been shown to promote proliferation and motility in a variety of cell types. The presence of NG2 on oligodendrocyte progenitor cells (OPCs) suggests that the proteoglycan may be a factor in expansion of the OPC pool to fill the entire central nervous system prior to OPC differentiation to form myelinating oligodendrocytes. Comparisons of postnatal cerebellar myelination in wild type and NG2 null mice reveal reduced numbers of OPCs in developing white matter of the NG2 null mouse. Quantification of BrdU incorporation shows that reduced proliferation is a key reason for this OPC shortage, with the peak of OPC proliferation delayed by 4-5 days in the absence of NG2. As a result of the subnormal pool of OPCs, there is also a delay in production of mature oligodendrocytes and myelinating processes in the NG2 null cerebellum. NG2 may promote OPC proliferation via enhancement of growth factor signaling or mediation of OPC interaction with unmyelinated axons. PMID:20006679

  2. Lectican proteoglycans, their cleaving metalloproteinases, and plasticity in the central nervous system extracellular microenvironment

    PubMed Central

    Howell, Matthew D.; Gottschall, Paul E.

    2013-01-01

    The extracellular matrix in the central nervous system actively orchestrates and modulates changes in neural structure and function in response to experience, after injury, during disease, and with changes in neuronal activity. A component of the multi-protein, extracellular matrix aggregate in brain, the chondroitin sulfate-bearing proteoglycans known as lecticans, inhibit neurite outgrowth, alter dendritic spine shape, elicit closure of critical period plasticity, and block target reinnervation and functional recovery after injury as the major component of a glial scar. While removal of the chondroitin sulfate chains from lecticans with chondroitinase ABC improves plasticity, proteolytic cleavage of the lectican core protein may change the conformation of the matrix aggregate and also modulate neural plasticity. This review centers on the roles of the lecticans and the endogenous metalloproteinase families that proteolytically cleave lectican core proteins, the matrix metalloproteinases (MMPs) and a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTSs), in neural plasticity. These extracellular metalloproteinases modulate structural neural plasticity—including changes in neurite outgrowth and dendritic spine remodeling—and synaptic plasticity. Some of these actions have been demonstrated to occur via cleavage of the proteoglycan core protein. Other actions of the proteases include cleavage of non-matrix substrate proteins, whereas still other actions may occur directly at the cell surface without proteolytic cleavage. The data convincingly demonstrate that metalloproteinases modulate physiological and pathophysiological neural plasticity. PMID:22626649

  3. Proteolytic histone modification by mast cell tryptase, a serglycin proteoglycan-dependent secretory granule protease.

    PubMed

    Melo, Fabio R; Vita, Francesca; Berent-Maoz, Beata; Levi-Schaffer, Francesca; Zabucchi, Giuliano; Pejler, Gunnar

    2014-03-14

    A hallmark feature of mast cells is their high content of cytoplasmic secretory granules filled with various preformed compounds, including proteases of tryptase-, chymase-, and carboxypeptidase A3 type that are electrostatically bound to serglycin proteoglycan. Apart from participating in extracellular processes, serglycin proteoglycan and one of its associated proteases, tryptase, are known to regulate cell death by promoting apoptosis over necrosis. Here we sought to outline the underlying mechanism and identify core histones as primary proteolytic targets for the serglycin-tryptase axis. During the cell death process, tryptase was found to relocalize from granules into the cytosol and nucleus, and it was found that the absence of tryptase was associated with a pronounced accumulation of core histones both in the cytosol and in the nucleus. Intriguingly, tryptase deficiency resulted in defective proteolytic modification of core histones even at baseline conditions, i.e. in the absence of cytotoxic agent, suggesting that tryptase has a homeostatic impact on nuclear events. Indeed, tryptase was found in the nucleus of viable cells and was shown to cleave core histones in their N-terminal tail. Moreover, it was shown that the absence of the serglycin-tryptase axis resulted in altered chromatin composition. Together, these findings implicate histone proteolysis through a secretory granule-derived serglycin-tryptase axis as a novel principle for histone modification, during both cell homeostasis and cell death.

  4. Vascular accumulation of the small leucine-rich proteoglycan decorin in CADASIL.

    PubMed

    Lee, Soo Jung; Zhang, Xiaojie; Wang, Michael M

    2014-09-10

    Small penetrating brain artery thickening is a major feature of cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL). Although affected fibrotic arteries of CADASIL have been shown to accumulate collagen, other components that compose pathological arterial walls remain incompletely characterized. We investigated the expression of decorin (DCN), the first collagen-binding small leucine-rich proteoglycan identified, in CADASIL. DCN was markedly upregulated in pathologically affected leptomeningeal and small penetrating arteries in CADASIL and was notably weaker in normal arteries from control brains. DCN protein was localized principally to the media and adventitia and only occasionally expressed in the intima. Immunoblotting of brain lysates showed a three-fold increase of DCN in CADASIL brains (compared with controls). Messenger RNA encoding DCN was five-fold increased in CADASIL. We conclude that DCN is the first identified proteoglycan to be identified in CADASIL arteries and may accumulate through transcriptional mechanisms. Additional studies are warranted to determine whether DCN localizes broadly to pathological small vessels in other cerebrovascular disorders.

  5. Site-specific identification of heparan and chondroitin sulfate glycosaminoglycans in hybrid proteoglycans

    PubMed Central

    Noborn, Fredrik; Gomez Toledo, Alejandro; Green, Anders; Nasir, Waqas; Sihlbom, Carina; Nilsson, Jonas; Larson, Göran

    2016-01-01

    Heparan sulfate (HS) and chondroitin sulfate (CS) are complex polysaccharides that regulate important biological pathways in virtually all metazoan organisms. The polysaccharides often display opposite effects on cell functions with HS and CS structural motifs presenting unique binding sites for specific ligands. Still, the mechanisms by which glycan biosynthesis generates complex HS and CS polysaccharides required for the regulation of mammalian physiology remain elusive. Here we present a glycoproteomic approach that identifies and differentiates between HS and CS attachment sites and provides identity to the core proteins. Glycopeptides were prepared from perlecan, a complex proteoglycan known to be substituted with both HS and CS chains, further digested with heparinase or chondroitinase ABC to reduce the HS and CS chain lengths respectively, and thereafter analyzed by nLC-MS/MS. This protocol enabled the identification of three consensus HS sites and one hybrid site, carrying either a HS or a CS chain. Inspection of the amino acid sequence at the hybrid attachment locus indicates that certain peptide motifs may encode for the chain type selection process. This analytical approach will become useful when addressing fundamental questions in basic biology specifically in elucidating the functional roles of site-specific glycosylations of proteoglycans. PMID:27694851

  6. Evidence against proteoglycan mediated collagen fibril load transmission and dynamic viscoelasticity in tendon.

    PubMed

    Fessel, Gion; Snedeker, Jess G

    2009-10-01

    The glycosaminoglycan (GAG) dermatan sulfate and chondroitin sulfate side-chains of small leucine-rich proteoglycans have been increasingly posited to act as molecular cross links between adjacent collagen fibrils and to directly contribute to tendon elasticity. GAGs have also been implicated in tendon viscoelasticity, supposedly affecting frictional loss during elongation or fluid flow through the extra cellular matrix. The current study sought to systematically test these theories of tendon structure-function by investigating the mechanical repercussions of enzymatic depletion of GAG complexes by chondroitinase ABC in a reproducible tendon structure-function model (rat tail tendon fascicles). The extent of GAG removal (at least 93%) was verified by relevant spectrophotometric assays and transmission electron microscopy. Dynamic viscoelastic tensile tests on GAG depleted rat tail tendon fascicle were not mechanically different from controls in storage modulus (elastic behavior) over a wide range of strain-rates (0.05, 0.5, and 5% change in length per second) in either the linear or nonlinear regions of the material curve. Loss modulus (viscoelastic behavior) was only affected in the nonlinear region at the highest strain-rate, and even this effect was marginal (19% increased loss modulus, p=0.035). Thus glycosaminoglycan chains of small leucine-rich proteoglycans do not appear to mediate dynamic elastic behavior nor do they appear to regulate the dynamic viscoelastic properties in rat tail tendon fascicles.

  7. Cellular and Molecular Pathology of Age-Related Macular Degeneration: Potential Role for Proteoglycans.

    PubMed

    Al Gwairi, Othman; Thach, Lyna; Zheng, Wenhua; Osman, Narin; Little, Peter J

    2016-01-01

    Age-related macular degeneration (AMD) is a retinal disease evident after the age of 50 that damages the macula in the centre of retina. It leads to a loss of central vision with retained peripheral vision but eventual blindness occurs in many cases. The initiation site of AMD development is Bruch's membrane (BM) where multiple changes occur including the deposition of plasma derived lipids, accumulation of extracellular debris, changes in cell morphology, and viability and the formation of drusen. AMD manifests as early and late stage; the latter involves cell proliferation and neovascularization in wet AMD. Current therapies target the later hyperproliferative and invasive wet stage whilst none target early developmental stages of AMD. In the lipid deposition disease atherosclerosis modified proteoglycans bind and retain apolipoproteins in the artery wall. Chemically modified trapped lipids are immunogenic and can initiate a chronic inflammatory process manifesting as atherosclerotic plaques and subsequent artery blockages, heart attacks, or strokes. As plasma derived lipoprotein deposits are found in BM in early AMD, it is possible that they arise by a similar process within the macula. In this review we consider aspects of the pathological processes underlying AMD with a focus on the potential role of modifications to secreted proteoglycans being a cause and therefore a target for the treatment of early AMD.

  8. Transmembrane proteoglycans control stretch-activated channels to set cytosolic calcium levels.

    PubMed

    Gopal, Sandeep; Søgaard, Pernille; Multhaupt, Hinke A B; Pataki, Csilla; Okina, Elena; Xian, Xiaojie; Pedersen, Mikael E; Stevens, Troy; Griesbeck, Oliver; Park, Pyong Woo; Pocock, Roger; Couchman, John R

    2015-09-28

    Transmembrane heparan sulfate proteoglycans regulate multiple aspects of cell behavior, but the molecular basis of their signaling is unresolved. The major family of transmembrane proteoglycans is the syndecans, present in virtually all nucleated cells, but with mostly unknown functions. Here, we show that syndecans regulate transient receptor potential canonical (TRPCs) channels to control cytosolic calcium equilibria and consequent cell behavior. In fibroblasts, ligand interactions with heparan sulfate of syndecan-4 recruit cytoplasmic protein kinase C to target serine714 of TRPC7 with subsequent control of the cytoskeleton and the myofibroblast phenotype. In epidermal keratinocytes a syndecan-TRPC4 complex controls adhesion, adherens junction composition, and early differentiation in vivo and in vitro. In Caenorhabditis elegans, the TRPC orthologues TRP-1 and -2 genetically complement the loss of syndecan by suppressing neuronal guidance and locomotory defects related to increases in neuronal calcium levels. The widespread and conserved syndecan-TRPC axis therefore fine tunes cytoskeletal organization and cell behavior. © 2015 Gopal et al.

  9. Glycosidases during chick embryo lung development and their colocalization with proteoglycans and growth factors.

    PubMed

    Stabellini, G; Calvitti, M; Baroni, T; Marinucci, L; Calastrini, C; Carinci, P; Becchetti, E

    2002-01-01

    During development, the epithelial component of the lung goes through a complex orderly process of branching, following strict patterns of space and time. Proteoglycans, glycosaminoglycans and growth factors are fundamental components of the extracellular matrix and perform a key role in differentiative processes. The embryonic chick lung shows a specific glycosaminoglycan composition at different levels of branching and at different embryonic stages. Proteoglycan and glycosaminoglycan accumulation is the result of secretion, absorption and degradation processes. In this pathway, enzymes, such as glycosidases, growth factors and cytokines are involved. We examined the behaviour of glycosidases, such as beta-hexosaminidases (beta-N-acetyl-D-glucosaminidase, beta-N-acetyl-D-galactosaminidase), beta-glucuronidase and beta-galactosidase, during the development of the lung bud. Our data show that the activity of the enzymes is closely linked to the processes of epithelial proliferation, bronchial tubule lengthening and infiltration of the surrounding mesenchyme. The glycosaminoglycans colocalize with transforming growth factor beta2 and interleukin-1 in the basement membrane and in the mesenchymal areas where the epithelium grows, and are complementary to the presence of the glycosidases. In conclusion, the activity of these glycosidases is spatially and temporally programmed and favors the release of the factors and the events which they influence.

  10. Chondroitin sulfate proteoglycans are structural renewable constituents of the rabbit vitreous body.

    PubMed

    Góes, Rejane M; Nader, Helena B; Porcionatto, Marimelia A; Haddad, Antonio; Laicine, Eduardo M

    2005-05-01

    To characterize the vitreous intrinsic proteoglycans, investigate their dynamics, and examine their role in the supramolecular organization of the vitreous. Vitreous from normal rabbits was collected and processed for observation with the transmission electron microscope after treatment with glycosidases. Also, rabbits were injected intravitreally with [35S]-sodium sulfate and sacrificed at several time intervals after the injection. Proteoglycans (PGs) were assayed in the vitreous supernatant or in whole samples extracted with guanidine hydrochloride by polyacrylamide or agarose gel electrophoresis, followed respectively by fluorography or autoradiography, and ion-exchange chromatography and gel-filtration chromatography, combined with glycolytic treatment of the samples. The sulfated glycosaminoglycans (GAGs) were characterized by agarose gel electrophoresis after treating vitreous samples with protease and specific glycosidases. The electron microscopic study revealed a network with hyaluronic acid (HA) as thin threads coating and connecting collagen fibrils. The elimination of the HA coat showed chondroitin sulfate granules (8-25 nm) arranged at regular intervals on the fibril surface. The chondroitinase ABC digestion, besides removing the granules, also caused the formation of thicker bundles of the collagen fibrils. The PG and GAG analysis indicated that there are three renewable PGs in the vitreous (e.g., one heparan- and two chondroitin-sulfate ones). At least one of the chondroitin sulfate PGs is involved in the interactions that occur in the vitreous structure, mainly by providing adequate spacing between the collagen fibrils, a condition that is probably required for the transparency of the vitreous.

  11. Melanoma Proteoglycan Modifies Gene Expression to Stimulate Tumor Cell Motility, Growth and Epithelial to Mesenchymal Transition

    PubMed Central

    Yang, Jianbo; Price, Matthew A.; Li, GuiYuan; Bar-Eli, Menashe; Salgia, Ravi; Jagedeeswaran, Ramasamy; Carlson, Jennifer H.; Ferrone, Soldano; Turley, Eva A.; McCarthy, James B.

    2009-01-01

    Melanoma chondroitin sulfate proteoglycan (MCSP) is a plasma membrane-associated proteoglycan that facilitates the growth, motility and invasion of tumor cells. MCSP expression in melanoma cells enhances integrin function and constitutive activation of Erk 1,2. The current studies were performed to determine the mechanism by which MCSP expression promotes tumor growth and motility. The results demonstrate that MCSP expression in radial growth phase (RGP), vertical growth phase (VGP) or metastatic cell lines causes sustained activation of Erk 1,2, enhanced growth and motility which all require the cytoplasmic domain of the MCSP core protein. MCSP expression in an RGP cell line also promotes an epithelial to mesenchymal transition (EMT) based on changes in cell morphology and the expression of several EMT markers. Finally MCSP enhances the expression of c-Met and HGF, and inhibiting c-Met expression or activation limits the increased growth and motility of multiple melanoma cell lines. The studies collectively demonstrate an importance for MCSP in promoting progression by an epigenetic mechanism and they indicate that MCSP could be targeted to delay or inhibit tumor progression in patients. PMID:19738072

  12. Chondroitin sulfate proteoglycan-4: a biomarker and a potential immunotherapeutic target for canine malignant melanoma.

    PubMed

    Mayayo, Saray Lorda; Prestigio, Simone; Maniscalco, Lorella; La Rosa, Giuseppe; Aricò, Arianna; De Maria, Raffaella; Cavallo, Federica; Ferrone, Soldano; Buracco, Paolo; Iussich, Selina

    2011-11-01

    Chondroitin sulfate proteoglycan-4 (CSPG4), also known as high molecular weight-melanoma associated antigen (HMW-MAA), is a membrane-bound chondroitin sulfate proteoglycan highly expressed by human melanoma cells. This phylogenetically conserved tumour antigen plays an important biological role in human melanoma, where it is used as a marker to diagnose forms with unusual characteristics, such as desmoplastic melanoma, and to detect melanoma cells in lymph nodes and peripheral blood, and as a target for immunotherapy because of its restricted distribution in normal tissues. To identify suitable targets to develop novel approaches of treating canine melanoma, CSPG4 was studies to see whether it is expressed in canine malignant melanomas. Immunohistochemical staining of 65 canine malignant melanomas with an anti-human CSPG4-specific antibody detected CSPG4 in 37 cases (56.9%). Positive staining was more frequent, albeit not significantly, in amelanotic compared to melanotic tumours and was statistically associated with tumours having both melanin and the epithelioid histotype. The frequency of CSPG4 expression was similar to that of other melanoma antigens used as diagnostic markers for canine malignant melanoma, such as Melan A and the protein recognized by the PNL2 monoclonal antibody. The results suggest that CSPG4 constitutes a new potential immunohistochemical marker of canine malignant melanoma and may represent an immunotherapeutic target as in humans.

  13. LDL particle core enrichment in cholesteryl oleate increases proteoglycan binding and promotes atherosclerosis[S

    PubMed Central

    Melchior, John T.; Sawyer, Janet K.; Kelley, Kathryn L.; Shah, Ramesh; Wilson, Martha D.; Hantgan, Roy R.; Rudel, Lawrence L.

    2013-01-01

    Several studies in humans and animals suggest that LDL particle core enrichment in cholesteryl oleate (CO) is associated with increased atherosclerosis. Diet enrichment with MUFAs enhances LDL CO content. Steroyl O-acyltransferase 2 (SOAT2) is the enzyme that catalyzes the synthesis of much of the CO found in LDL, and gene deletion of SOAT2 minimizes CO in LDL and protects against atherosclerosis. The purpose of this study was to test the hypothesis that the increased atherosclerosis associated with LDL core enrichment in CO results from an increased affinity of the LDL particle for arterial proteoglycans. ApoB-100-only Ldlr−/− mice with and without Soat2 gene deletions were fed diets enriched in either cis-MUFA or n-3 PUFA, and LDL particles were isolated. LDL:proteogylcan binding was measured using surface plasmon resonance. Particles with higher CO content consistently bound with higher affinity to human biglycan and the amount of binding was shown to be proportional to the extent of atherosclerosis of the LDL donor mice. The data strongly support the thesis that atherosclerosis was induced through enhanced proteoglycan binding of LDL resulting from LDL core CO enrichment. PMID:23804810

  14. Studies on the asparagine-linked oligosaccharides from cartilage-specific proteoglycan

    SciTech Connect

    Cioffi, L.C.

    1987-01-01

    Chondrocytes synthesize and secrete a cartilage-specific proteoglycan (PG-H) as one of their major products. This proteoglycan has attached to it several types of carbohydrate chains, including chondroitin sulfate, keratan sulfate, O-linked oligosaccharides, and asparagine-linked oligosaccharides. The asparagine-linked oligosaccharides found on PG-H were investigated in these studies. Methodology was developed for the isolation and separation of standard of standard complex and high mannose type oligosaccharides. This included digesting glycoproteins with N-glycanase and separation of the oligosaccharides according to type by concanavalin-A lectin chromatography. The different oligosaccharide types were then analyzed by high pressure liquid chromatography. This methodology was used in the subsequent studies on the PG-H asparagine-linked oligosaccharides. Initially, the asparagine-linked oligosaccharides recovered from the culture medium (CM) and cell-associated (Ma) fractions of PG-H from of tibial chondrocytes were labeled with (/sup 3/H)-mannose and the oligosaccharides were isolated and analyzed.

  15. Further Delineation of CANT1 Phenotypic Spectrum and Demonstration of Its Role in Proteoglycan Synthesis

    PubMed Central

    Nizon, Mathilde; Huber, Céline; De Leonardis, Fabio; Merrina, Rodolphe; Forlino, Antonella; Fradin, Mélanie; Tuysuz, Beyhan; Abu-Libdeh, Bassam Y; Alanay, Yasemin; Albrecht, Beate; Al-Gazali, Lihadh; Basaran, Sarenur Yilmaz; Clayton-Smith, Jill; Désir, Julie; Gill, Harinder; Greally, Marie T; Koparir, Erkan; van Maarle, Merel C; MacKay, Sara; Mortier, Geert; Morton, Jenny; Sillence, David; Vilain, Catheline; Young, Ian; Zerres, Klaus; Le Merrer, Martine; Munnich, Arnold; Le Goff, Carine; Rossi, Antonio; Cormier-Daire, Valérie

    2012-01-01

    Desbuquois dysplasia (DD) is characterized by antenatal and postnatal short stature, multiple dislocations, and advanced carpal ossification. Two forms have been distinguished on the basis of the presence (type 1) or the absence (type 2) of characteristic hand anomalies. We have identified mutations in calcium activated nucleotidase 1 gene (CANT1) in DD type 1. Recently, CANT1 mutations have been reported in the Kim variant of DD, characterized by short metacarpals and elongated phalanges. DD has overlapping features with spondyloepiphyseal dysplasia with congenital joint dislocations (SDCD) due to Carbohydrate (chondroitin 6) Sulfotransferase 3 (CHST3) mutations. We screened CANT1 and CHST3 in 38 DD cases (6 type 1 patients, 1 Kim variant, and 31 type 2 patients) and found CANT1 mutations in all DD type 1 cases, the Kim variant and in one atypical DD type 2 expanding the clinical spectrum of hand anomalies observed with CANT1 mutations. We also identified in one DD type 2 case CHST3 mutation supporting the phenotype overlap with SDCD. To further define function of CANT1, we studied proteoglycan synthesis in CANT1 mutated patient fibroblasts, and found significant reduced GAG synthesis in presence of β-D-xyloside, suggesting that CANT1 plays a role in proteoglycan metabolism. Hum Mutat 33:1261–1266, 2012. © 2012 Wiley Periodicals, Inc. PMID:22539336

  16. High chondroitin sulfate proteoglycan 4 expression correlates with poor outcome in patients with breast cancer.

    PubMed

    Hsu, Nicholas C; Nien, Pei-Yung; Yokoyama, Kazunari K; Chu, Pei-Yi; Hou, Ming-Feng

    2013-11-15

    Chondroitin sulfate proteoglycan 4 (CSPG4), a transmembrane proteoglycan originally identified in melanoma cells, has been reported to be expressed in breast cancer cells. This study was performed to examine the expression and significance of CSPG4 in a cohort of breast cancer patients. Immunohistochemical analysis of CSPG4 was performed on tissue microarrays constructed from tissue specimens from 240 breast cancer patients. CSPG4 staining was correlated with clinical and pathological characteristics, overall survival (OS), and disease recurrence. Contradicting to a previous report, our results showed that high CSPG4 expression was not related to triple-negative status of breast cancer patients. The Kaplan-Meier method showed that high CSPG4 expression was significantly associated with shorter time to recurrence (TTR). Patients with high CSPG4 expression had poorer OS and shorter TTR in a multivariate survival analysis after adjustment for stage, tumor grade, expression of estrogen receptor and progesterone receptor, and HER2 overexpression. This study showed that high CSPG4 expression correlates with disease recurrence and OS in breast cancers.

  17. Lectin binding pattern and proteoglycan distribution in human eccrine sweat glands.

    PubMed

    Sames, K; Moll, I; van Damme, E J; Peumans, W J; Schumacher, U

    1999-11-01

    The distribution pattern of glycoconjugates in human eccrine sweat glands has been studied by the binding of newly discovered lectins and by antibodies against a chondroitin sulphate proteoglycan and chondroitin sulphate glycosaminoglycans. Mannose-specific lectins labelled large intracellular granules, part of which could be extended cisternae of the endoplasmic reticulum or Golgi apparatus. In contrast, lectins specific for terminal mannose/glucose residues predominantly labelled basement membranes and the glycocalyx. Lectins recognizing terminal N-acetylgalactosamine groups left most parts of the glands unstained, but stained some dark cells intensely. These last cells were also intensively labelled by N-acetylglucosamine-specific and by fucose-specific lectins. Sialic acid residues were preferentially located in luminal borders of secretory coils. No terminal galactose residues were detected. All antibodies against chondroitin glycoconjugates stained large granules similar to those revealed by the mannose-specific lectins in the secretory cells. The basement membrane is only stained by the proteoglycan antibody and the chondroitin-6-sulphate antibody. Thus, a complex composition of glycoconjugates exists not only in matrix elements but also in the cells of eccrine glands of the human skin. A possible secretion of glycoconjugates is discussed.

  18. Isolation and partial characterization of heparan sulphate proteoglycans from human hepatic amyloid.

    PubMed Central

    Magnus, J H; Stenstad, T; Husby, G; Kolset, S O

    1992-01-01

    Proteoglycans were isolated from human amyloidotic liver by extraction with guanidine, followed by trichloroacetic acid precipitation, DEAE-Sephacel ion-exchange chromatography, and Sepharose CL-6B gel chromatography. A significant portion of the material was found to be free chondroitin/dermatan sulphate chains (30%), whereas the predominant part was heparan sulphate proteoglycan (HSPG) (70%). The approx. molecular mass of the HSPG was 200 kDa, as measured by gel electrophoresis and gel chromatography. The molecular mass of the core protein was shown to be 60 kDa by SDS/PAGE following de-aminative cleavage of the heparan sulphate chains. The heparan sulphate chains were liberated from the core protein by alkali treatment and found to have a molecular mass of approx. 35 kDa by Sepharose CL-6B gel chromatography. The core protein was shown, by immunoblotting, to react with a monoclonal antibody against bovine basement membrane HSPG. The presence of HSPG in amyloid deposits was further confirmed by immunohistochemistry on tissue sections from amyloidotic liver using the same antibody. Images Fig. 5 Fig. 6 PMID:1445267

  19. Cellular and Molecular Pathology of Age-Related Macular Degeneration: Potential Role for Proteoglycans

    PubMed Central

    Thach, Lyna; Zheng, Wenhua; Osman, Narin

    2016-01-01

    Age-related macular degeneration (AMD) is a retinal disease evident after the age of 50 that damages the macula in the centre of retina. It leads to a loss of central vision with retained peripheral vision but eventual blindness occurs in many cases. The initiation site of AMD development is Bruch's membrane (BM) where multiple changes occur including the deposition of plasma derived lipids, accumulation of extracellular debris, changes in cell morphology, and viability and the formation of drusen. AMD manifests as early and late stage; the latter involves cell proliferation and neovascularization in wet AMD. Current therapies target the later hyperproliferative and invasive wet stage whilst none target early developmental stages of AMD. In the lipid deposition disease atherosclerosis modified proteoglycans bind and retain apolipoproteins in the artery wall. Chemically modified trapped lipids are immunogenic and can initiate a chronic inflammatory process manifesting as atherosclerotic plaques and subsequent artery blockages, heart attacks, or strokes. As plasma derived lipoprotein deposits are found in BM in early AMD, it is possible that they arise by a similar process within the macula. In this review we consider aspects of the pathological processes underlying AMD with a focus on the potential role of modifications to secreted proteoglycans being a cause and therefore a target for the treatment of early AMD. PMID:27563459

  20. Giant necrotic pituitary apoplexy.

    PubMed

    Fanous, Andrew A; Quigley, Edward P; Chin, Steven S; Couldwell, William T

    2013-10-01

    Apoplexy of the pituitary gland is a rare complication of pituitary adenomas, involving hemorrhage with or without necrosis within the tumor. This condition may be either asymptomatic or may present with severe headache, visual impairment, ophthalmoplegia, and pituitary failure. Transsphenoidal surgery is the treatment of choice, and early intervention is usually required to ensure reversal of visual impairment. Reports of pituitary apoplectic lesions exceeding 60.0mm in diameter are very rare. A 39-year-old man with long-standing history of nasal congestion, decreased libido and infertility presented with a sudden onset of severe headache and diplopia. MRI of the head demonstrated a massive skull base lesion of 70.0 × 60.0 × 25.0mm, compatible with a giant pituitary macroadenoma. The lesion failed to enhance after administration of a contrast agent, suggesting complete necrotic apoplexy. Urgent surgical decompression was performed, and the lesion was resected via a transnasal transsphenoidal approach. Pathological analysis revealed evidence of necrotic pituitary apoplexy. At the 2 month follow-up, the patient had near-complete to complete resolution of his visual impairment. To the authors' knowledge, this report is unique as the patient demonstrated complete necrotic apoplexy and it underlines the diagnostic dilemma in such a case. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Recurrent renal giant leiomyosarcoma

    PubMed Central

    Öziş, Salih Erpulat; Gülpınar, Kamil; Şahlı, Zafer; Konak, Baha Burak; Keskin, Mete; Özdemir, Süleyman; Ataoğlu, Ömür

    2016-01-01

    Primary renal leiomyosarcomas are rare, aggressive tumors. They constitute 1–2% of adult malignant renal tumors. Although leiomyosarcomas are the most common histological type (50–60%) of renal sarcomas, information on renal leiomyosarcoma is limited. Local or systemic recurrences are common. The radiological appearance of renal leiomyosarcomas is not specific, therefore renal leiomyosarcoma cannot be distinguished from renal cell carcinoma by imaging methods in all patients. A 74-year-old female patient presented to our clinic complaining of a palpable mass on the right side of her abdomen in November 2012. The abdominal magnetic resonance imaging revealed a mass, 25 × 24 × 23 cm in size. Her past medical history revealed that she has undergone right radical nephrectomy in 2007, due to a 11 × 12 × 13 cm renal mass that was then reported as renal cell carcinoma on abdominal magnetic resonance imaging, but the pathological diagnosis was low-grade renal leiomyosarcoma. The most recent follow-up of the patient was in 2011, with no signs of local recurrence or distant metastases within this four-year period. The patient underwent laparotomy on November 2012, and a 35 cm retroperitoneal mass was excised. The pathological examination of the mass was reported as high-grade leiomyosarcoma. The formation of this giant retroperitoneal mass in 1 year can be explained by the transformation of the lesion’s pathology from low-grade to a high-grade tumor. PMID:27436926

  2. Giant cell arteritis.

    PubMed

    Ninan, Jem; Lester, Susan; Hill, Catherine

    2016-02-01

    Giant cell arteritis (GCA) is the most common vasculitis of the elderly. The diagnosis can be challenging at times because of the limitation of the American Rheumatology Association (ARA) classification criteria and the significant proportion of biopsy-negative patients with GCA. We discuss the role of advanced imaging techniques, including positron emission tomography (PET) scanning, in establishing diagnosis and improved histopathology techniques to improve the sensitivity of temporal artery biopsy. There have been significant advances in the understanding of the pathogenesis of GCA, particularly the role of cytokine pathways such as the interleukins, IL-6-IL-17 axis, and the IL-12-interferon-γ axis and their implication for new therapies. We highlight that glucocorticoids remain the primary treatment for GCA, but recognize the risk of steroid-induced side effects. A number of pharmacotherapies to enable glucocorticoid dose reduction and prevent relapse have been studied. Early diagnosis and fast-track pathways have improved outcomes by encouraging adherence to evidence-based practice. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. A unique advantage for giant eyes in giant squid.

    PubMed

    Nilsson, Dan-Eric; Warrant, Eric J; Johnsen, Sönke; Hanlon, Roger; Shashar, Nadav

    2012-04-24

    Giant and colossal deep-sea squid (Architeuthis and Mesonychoteuthis) have the largest eyes in the animal kingdom [1, 2], but there is no explanation for why they would need eyes that are nearly three times the diameter of those of any other extant animal. Here we develop a theory for visual detection in pelagic habitats, which predicts that such giant eyes are unlikely to evolve for detecting mates or prey at long distance but are instead uniquely suited for detecting very large predators, such as sperm whales. We also provide photographic documentation of an eyeball of about 27 cm with a 9 cm pupil in a giant squid, and we predict that, below 600 m depth, it would allow detection of sperm whales at distances exceeding 120 m. With this long range of vision, giant squid get an early warning of approaching sperm whales. Because the sonar range of sperm whales exceeds 120 m [3-5], we hypothesize that a well-prepared and powerful evasive response to hunting sperm whales may have driven the evolution of huge dimensions in both eyes and bodies of giant and colossal squid. Our theory also provides insights into the vision of Mesozoic ichthyosaurs with unusually large eyes. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Operational durability of a giant ER valve for Braille display

    NASA Astrophysics Data System (ADS)

    Luning, Xu; Han, Li; Yufei, Li; Shen, Rong; Kunquan, Lu

    2017-05-01

    The compact configuration of giant ER (electrorheological) valves provides the possibility of realizing a full-page Braille display. The operational durability of ER valves is a key issue in fulfilling a Braille display. A giant ER valve was used to investigate the variations in pressure drops and critical pressure drops of the valves over a long period under some typical operational parameters. The results indicate that neither the pressure drops nor critical pressure drops of giant ER valves show apparent deterioration over a long period. Without ER fluid exchange, a blockage appears in the channel of the valve because the ER structures induced by an external electric field cannot be broken by the Brownian motion of hydraulic oil molecules when the external electric field is removed. Forcing ER fluid flow is an effective and necessary method to keep the channel of the valve unblocked. Thus the operational durability of the valve using giant ER fluids is able to meet the demands of Braille display.

  5. Clump Giants in the Hyades

    NASA Technical Reports Server (NTRS)

    Mushotzky, Richard F. (Technical Monitor); Brickhouse, Nancy

    2003-01-01

    The project is entitled 'Clump Giants in the Hyades.' This observation of one of the late-type Hyades giants (Gamma Tau) has implications for understanding the formation of late-type stellar coronae as a function of the evolutionary state of the star. The Hyades giants are interesting because they are all clump giants in the Helium burning phase, similar to the cool primary of Capella. The Hyades giants show significantly more magnetic activity than expected from their state of evolution (and slowed-down rotation). Thus these systems provide an important clue to dynamo action. The data were obtained by the satellite on 13 March 2001 for a total RGS exposure of 58220 seconds. These data were delivered to the PI on 7 August 2001. The data could not be reprocessed until SAS Version 5.3.3 which became available 7 June 2002. Although the guidelines for assessing background rates suggested that half the data were contaminated, it does not appear that the spectral region of the RGS was adversely affected by unusually high background. The spectra show strong lines of Fe XVII and XVIII, O VII and VIII, Ne IX and X, along with numerous weaker lines. The emission measure distribution is highly reminiscent of Capella; if anything, the emission measure distribution is steeper at 6 million K than for Capella. Gamma Tau is the second brightest of the Hyades clump giants. Pallavicini et al. have shown that the luminosity of the brightest Hyades giant (Theta Tau) is remarkably similar to its luminosity as measured by Einstein. Short-term variability is also modest. We are addressing the variability issue now for Gamma Tau. Initial results were reported at the 2003 Seattle AAS meeting. A paper is in preparation for submission to the Astrophysical Journal.

  6. Formation of the giant planets

    NASA Technical Reports Server (NTRS)

    Lissauer, Jack J.

    2006-01-01

    The observed properties of giant planets, models of their evolution and observations of protoplanetary disks provide constraints on the formation of gas giant planets. The four largest planets in our Solar System contain considerable quantities of hydrogen and helium, which could not have condensed into solid planetesimals within the protoplanetary disk. All three (transiting) extrasolar giant planets with well determined masses and radii also must contain substantial amounts of these light gases. Jupiter and Saturn are mostly hydrogen and helium, but have larger abundances of heavier elements than does the Sun. Neptune and Uranus are primarily composed of heavier elements. HD 149026 b, which is slightly more massive than is Saturn, appears to have comparable quantities of light gases and heavy elements. HD 209458 b and TrES-1 are primarily hydrogen and helium, but may contain supersolar abundances of heavy elements. Spacecraft flybys and observations of satellite orbits provide estimates of the gravitational moments of the giant planets in our Solar System, which in turn provide information on the internal distribution of matter within Jupiter, Saturn, Uranus and Neptune. Atmospheric thermal structure and heat flow measurements constrain the interior temperatures of planets. Internal processes may cause giant planets to become more compositionally differentiated or alternatively more homogeneous; high-pressure laboratory .experiments provide data useful for modeling these processes. The preponderance of evidence supports the core nucleated gas accretion model. According to this model, giant planets begin their growth by the accumulation of small solid bodies, as do terrestrial planets. However, unlike terrestrial planets, the growing giant planet cores become massive enough that they are able to accumulate substantial amounts of gas before the protoplanetary disk dissipates. The primary questions regarding the core nucleated growth model is under what conditions

  7. Clump Giants in the Hyades

    NASA Technical Reports Server (NTRS)

    Mushotzky, Richard F. (Technical Monitor); Brickhouse, Nancy

    2003-01-01

    The project is entitled 'Clump Giants in the Hyades.' This observation of one of the late-type Hyades giants (Gamma Tau) has implications for understanding the formation of late-type stellar coronae as a function of the evolutionary state of the star. The Hyades giants are interesting because they are all clump giants in the Helium burning phase, similar to the cool primary of Capella. The Hyades giants show significantly more magnetic activity than expected from their state of evolution (and slowed-down rotation). Thus these systems provide an important clue to dynamo action. The data were obtained by the satellite on 13 March 2001 for a total RGS exposure of 58220 seconds. These data were delivered to the PI on 7 August 2001. The data could not be reprocessed until SAS Version 5.3.3 which became available 7 June 2002. Although the guidelines for assessing background rates suggested that half the data were contaminated, it does not appear that the spectral region of the RGS was adversely affected by unusually high background. The spectra show strong lines of Fe XVII and XVIII, O VII and VIII, Ne IX and X, along with numerous weaker lines. The emission measure distribution is highly reminiscent of Capella; if anything, the emission measure distribution is steeper at 6 million K than for Capella. Gamma Tau is the second brightest of the Hyades clump giants. Pallavicini et al. have shown that the luminosity of the brightest Hyades giant (Theta Tau) is remarkably similar to its luminosity as measured by Einstein. Short-term variability is also modest. We are addressing the variability issue now for Gamma Tau. Initial results were reported at the 2003 Seattle AAS meeting. A paper is in preparation for submission to the Astrophysical Journal.

  8. Formation of the giant planets

    NASA Technical Reports Server (NTRS)

    Lissauer, Jack J.

    2006-01-01

    The observed properties of giant planets, models of their evolution and observations of protoplanetary disks provide constraints on the formation of gas giant planets. The four largest planets in our Solar System contain considerable quantities of hydrogen and helium, which could not have condensed into solid planetesimals within the protoplanetary disk. All three (transiting) extrasolar giant planets with well determined masses and radii also must contain substantial amounts of these light gases. Jupiter and Saturn are mostly hydrogen and helium, but have larger abundances of heavier elements than does the Sun. Neptune and Uranus are primarily composed of heavier elements. HD 149026 b, which is slightly more massive than is Saturn, appears to have comparable quantities of light gases and heavy elements. HD 209458 b and TrES-1 are primarily hydrogen and helium, but may contain supersolar abundances of heavy elements. Spacecraft flybys and observations of satellite orbits provide estimates of the gravitational moments of the giant planets in our Solar System, which in turn provide information on the internal distribution of matter within Jupiter, Saturn, Uranus and Neptune. Atmospheric thermal structure and heat flow measurements constrain the interior temperatures of planets. Internal processes may cause giant planets to become more compositionally differentiated or alternatively more homogeneous; high-pressure laboratory .experiments provide data useful for modeling these processes. The preponderance of evidence supports the core nucleated gas accretion model. According to this model, giant planets begin their growth by the accumulation of small solid bodies, as do terrestrial planets. However, unlike terrestrial planets, the growing giant planet cores become massive enough that they are able to accumulate substantial amounts of gas before the protoplanetary disk dissipates. The primary questions regarding the core nucleated growth model is under what conditions

  9. DSD-1-Proteoglycan/Phosphacan and receptor protein tyrosine phosphatase-beta isoforms during development and regeneration of neural tissues.

    PubMed

    Faissner, Andreas; Heck, Nicolas; Dobbertin, Alexandre; Garwood, Jeremy

    2006-01-01

    Interactions between neurons and glial cells play important roles in regulating key events of development and regeneration of the CNS. Thus, migrating neurons are partly guided by radial glia to their target, and glial scaffolds direct the growth and directional choice of advancing axons, e.g., at the midline. In the adult, reactive astrocytes and myelin components play a pivotal role in the inhibition of regeneration. The past years have shown that astrocytic functions are mediated on the molecular level by extracellular matrix components, which include various glycoproteins and proteoglycans. One important, developmentally regulated chondroitin sulfate proteoglycan is DSD-1-PG/phosphacan, a glial derived proteoglycan which represents a splice variant of the receptor protein tyrosine phosphatase (RPTP)-beta (also known as PTP-zeta). Current evidence suggests that this proteoglycan influences axon growth in development and regeneration, displaying inhibitory or stimulatory effects dependent on the mode of presentation, and the neuronal lineage. These effects seem to be mediated by neuronal receptors of the Ig-CAM superfamily.

  10. Open questions about giant viruses.

    PubMed

    Claverie, Jean-Michel; Abergel, Chantal

    2013-01-01

    The recent discovery of giant viruses exhibiting double-stranded DNA genomes larger than a million base pairs, encoding more than a thousand proteins and packed in near micron-sized icosahedral particles, opened a new and unexpected chapter in virology. As of today, these giant viruses and their closest relatives of lesser dimensions infect unicellular eukaryotes found in aquatic environments, but belonging to a wide diversity of early branching phyla. This broad phylogenetic distribution of hosts is consistent with the hypothesis that giant viruses originated prior to the radiation of the eukaryotic domain and/or might have been involved in the partition of nuclear versus cytoplasmic functions in ancestral cells. The distinctive features of the known giant viruses, in particular the recurrent presence of components of the translation apparatus in their proteome, raise a number of fundamental questions about their origin, their mode of evolution, and the relationship they may entertain with other dsDNA viruses, the genome size of which exhibits the widest distribution among all biological entities, from less than 5 kb to more than 1.25 Mb (a ratio of 1:250). At a more conceptual level, the convergence between the discovery of increasingly reduced parasitic cellular organisms and that of giant viruses exhibiting a widening array of cellular-like functions may ultimately abolish the historical discontinuity between the viral and the cellular world. 2013 Elsevier Inc. All rights reserved

  11. Gravitational scattering by giant planets

    NASA Astrophysics Data System (ADS)

    Laakso, T.; Rantala, J.; Kaasalainen, M.

    2006-09-01

    We seek to characterize giant-planet systems by their gravitational scattering properties. We do this to a given system by integrating it numerically along with a large number of hypothetical small bodies that are initially in eccentric habitable zone (HZ)-crossing orbits. Our analysis produces a single number, the escape rate, which represents the rate at which the small-body flux is perturbed away by the giant planets into orbits that no longer pose a threat to terrestrial planets inside the HZ. Obtaining the escape rate this way is similar to computing the largest Liapunov exponent as the exponential rate of divergence of two nearby orbits. For a terrestrial planet inside the HZ, the escape rate value quantifies the "protective" effect that the studied giant-planet system offers. Therefore, escape rates could provide information on whether certain giant-planet configurations produce a more desirable environment for life than the others. We present some computed escape rates on selected planetary systems, focusing on effects of varying the masses and semi-major axes of the giant planets. In the case of our Solar System we find rather surprisingly that Jupiter, in its current orbit, may provide a minimal amount of protection to the Earth.

  12. Giant Magellan Telescope: overview

    NASA Astrophysics Data System (ADS)

    Johns, Matt; McCarthy, Patrick; Raybould, Keith; Bouchez, Antonin; Farahani, Arash; Filgueira, Jose; Jacoby, George; Shectman, Steve; Sheehan, Michael

    2012-09-01

    The Giant Magellan Telescope (GMT) is a 25-meter optical/infrared extremely large telescope that is being built by an international consortium of universities and research institutions. It will be located at the Las Campanas Observatory, Chile. The GMT primary mirror consists of seven 8.4-m borosilicate honeycomb mirror segments made at the Steward Observatory Mirror Lab (SOML). Six identical off-axis segments and one on-axis segment are arranged on a single nearly-paraboloidal parent surface having an overall focal ratio of f/0.7. The fabrication, testing and verification procedures required to produce the closely-matched off-axis mirror segments were developed during the production of the first mirror. Production of the second and third off-axis segments is underway. GMT incorporates a seven-segment Gregorian adaptive secondary to implement three modes of adaptive-optics operation: natural-guide star AO, laser-tomography AO, and ground-layer AO. A wide-field corrector/ADC is available for use in seeing-limited mode over a 20-arcmin diameter field of view. Up to seven instruments can be mounted simultaneously on the telescope in a large Gregorian Instrument Rotator. Conceptual design studies were completed for six AO and seeing-limited instruments, plus a multi-object fiber feed, and a roadmap for phased deployment of the GMT instrument suite is being developed. The partner institutions have made firm commitments for approximately 45% of the funds required to build the telescope. Project Office efforts are currently focused on advancing the telescope and enclosure design in preparation for subsystem- and system-level preliminary design reviews which are scheduled to be completed in the first half of 2013.

  13. Rotation of Giant Stars

    NASA Astrophysics Data System (ADS)

    Kissin, Yevgeni; Thompson, Christopher

    2015-07-01

    The internal rotation of post-main sequence stars is investigated, in response to the convective pumping of angular momentum toward the stellar core, combined with a tight magnetic coupling between core and envelope. The spin evolution is calculated using model stars of initial mass 1, 1.5, and 5 {M}⊙ , taking into account mass loss on the giant branches. We also include the deposition of orbital angular momentum from a sub-stellar companion, as influenced by tidal drag along with the excitation of orbital eccentricity by a fluctuating gravitational quadrupole moment. A range of angular velocity profiles {{Ω }}(r) is considered in the envelope, extending from solid rotation to constant specific angular momentum. We focus on the backreaction of the Coriolis force, and the threshold for dynamo action in the inner envelope. Quantitative agreement with measurements of core rotation in subgiants and post-He core flash stars by Kepler is obtained with a two-layer angular velocity profile: uniform specific angular momentum where the Coriolis parameter {Co}\\equiv {{Ω }}{τ }{con}≲ 1 (here {τ }{con} is the convective time), and {{Ω }}(r)\\propto {r}-1 where {Co}≳ 1. The inner profile is interpreted in terms of a balance between the Coriolis force and angular pressure gradients driven by radially extended convective plumes. Inward angular momentum pumping reduces the surface rotation of subgiants, and the need for a rejuvenated magnetic wind torque. The co-evolution of internal magnetic fields and rotation is considered in Kissin & Thompson, along with the breaking of the rotational coupling between core and envelope due to heavy mass loss.

  14. First report of congenital or infantile cataract in deranged proteoglycan metabolism with released xylose

    PubMed Central

    Sulochana, K; Ramakrishnan, S; Vasanthi, S; Madhavan, H; Arunagiri, K; Punitham, R

    1997-01-01

    AIM—To investigate the chemical pathology in the blood and lens, in cases of congenital or infantile cataract in children excreting predominantly non-reducing carbohydrates in urine.
METHODS—Urine samples from children with congenital or infantile cataract, and age and sex-matched controls, were analysed for (i) inherited errors of metabolism, (ii) paper chromatography of sugars, (iii) spectrophotometric assay of glycosaminoglycans (GAG), (iv) cetyl trimethyl ammonium bromide test, (v) electrophoresis using Alcian blue, (vi) ion exchange chromatography with IR 120 resin, and (vii) HPLC for xylose. Blood and lens material were also tested for GAG fragments and xylose. β Glucuronidase was assayed in lymphocytes and urine.
RESULTS—Of 220 children of both sexes below 12 years of age, with congenital or infantile cataract treated in Sankara Nethralaya, Madras, India, during a period of 2 years, 145 excreted fragments of GAG (heparan and chondroitin sulphates) in their urine. There was no such excretion among the control group of 50 children. The same was found accumulated in the blood and lenses of affected children. In addition, xylose was present in small amounts in the urine and blood and xylitol was present in the lens. There was a significant elevation in the activity of β glucuronidase in lymphocytes and urine, when compared with normals. All the above findings suggest deranged proteoglycan metabolism. As the urine contained mostly GAG fragments and very little xylose, Benedict's reagent was not reduced. This ruled out galactosaemia.
CONCLUSION—An increase of β glucuronidase activity might have caused extensive fragmentation of GAG with resultant accumulation in the blood and lens and excretion in urine. Small amounts of xylose may have come from xylose links between GAG and core protein of proteoglycans. Owing to their polyanionic nature, GAG fragments in the lens might abstract sodium, and with it water, thereby increasing the hydration

  15. Quantitation of proteoglycans as glycosaminoglycans in biological fluids using an alcian blue dot blot analysis.

    PubMed

    Björnsson, S

    1998-02-15

    A method for quantitation of intact proteoglycans as GAGs in biological fluids (blood plasma, synovial fluid) or 4 M guanidine extracts of tissues has been published previously (S. Björnsson, Anal. Biochem. 210, 282-291, 1993). The method is based on the specific interaction between sulfated polymers and the tetravalent cationic dye Alcian blue at pH 1.5 in 0.4 M guanidine-HCl and in the presence of 0.25% Triton. The absorbance assay has a measuring range of 1-20 microgram of glycosaminoglycan (GAG) which is not sensitive enough to measure the low contents of proteoglycans in blood plasma, urine, or wound fluid. A dot blot assay is now described in which the Alcian blue-GAG complexes are collected on a polyvinylidene fluoride membrane, by filtration in a dot blot apparatus, and the stain is quantitated as reflectance by scanning and densitometry. The assay requires 10 microliter of sample and has a measuring range of 10-800 ng of GAG, corresponding to a concentration of 1-80 mg/liter, suitable for proteoglycans in biological fluids. The procedures for chemistry, scanning, densitometry, and curve fitting were each evaluated separately. The error contributed by chemistry accounted for a minor portion of the imprecision. The imprecision contributed by scanning was the most important source of within-run and between-run imprecision, and was caused by inequalities of the charge-coupled device along the scanning arm. Unexpectedly, curve fitting was also a major source of total imprecision in dot blot quantitation and differed with the type of equation used. The between-run imprecision calculated as CV (SD/mean . 100) was 13.0% at 8 mg/liter. The response of the assay was identical for six different commercial preparations of GAGs (chondroitin-4-sulfate, chondroitin-6-sulfate, dermatan sulfate, keratan sulfate, heparan sulfate, and heparin) despite differences in degree of sulfation known to exist. There was no positive or negative interference by blood plasma, apart

  16. Changes in collagen fibril network organization and proteoglycan distribution in equine articular cartilage during maturation and growth

    PubMed Central

    Hyttinen, Mika M; Holopainen, Jaakko; René van Weeren, P; Firth, Elwyn C; Helminen, Heikki J; Brama, Pieter A J

    2009-01-01

    The aim of this study was to record growth-related changes in collagen network organization and proteoglycan distribution in intermittently peak-loaded and continuously lower-level-loaded articular cartilage. Cartilage from the proximal phalangeal bone of the equine metacarpophalangeal joint at birth, at 5, 11 and 18 months, and at 6–10 years of age was collected from two sites. Site 1, at the joint margin, is unloaded at slow gaits but is subjected to high-intensity loading during athletic activity; site 2 is a continuously but less intensively loaded site in the centre of the joint. The degree of collagen parallelism was determined with quantitative polarized light microscopy and the parallelism index for collagen fibrils was computed from the cartilage surface to the osteochondral junction. Concurrent changes in the proteoglycan distribution were quantified with digital densitometry. We found that the parallelism index increased significantly with age (up to 90%). At birth, site 2 exhibited a more organized collagen network than site 1. In adult horses this situation was reversed. The superficial and intermediate zones exhibited the greatest reorganization of collagen. Site 1 had a higher proteoglycan content than site 2 at birth but here too the situation was reversed in adult horses. We conclude that large changes in joint loading during growth and maturation in the period from birth to adulthood profoundly affect the architecture of the collagen network in equine cartilage. In addition, the distribution and content of proteoglycans are modified significantly by altered joint use. Intermittent peak-loading with shear seems to induce higher collagen parallelism and a lower proteoglycan content in cartilage than more constant weight-bearing. Therefore, we hypothesize that the formation of mature articular cartilage with a highly parallel collagen network and relatively low proteoglycan content in the peak-loaded area of a joint is needed to withstand

  17. Polymyalgia Rheumatica and Giant Cell Arteritis

    MedlinePlus

    ... Clinical Trial Journal Articles Polymyalgia Rheumatica and Giant Cell Arteritis May 2016 Questions and Answers about Polymyalgia Rheumatica and Giant Cell Arteritis This publication contains general information about polymyalgia ...

  18. Giant cell tumour of the mandibular condyle.

    PubMed

    Della Sala, S W; Recla, M; Campolongo, F; Bortot, G; Bauer, M; Peterlongo, P

    1996-01-01

    The authors report a case of giant cell tumour of the mandibular condyle, which is a rare finding. This tumour, studied using the main three radiological modalities (plain radiography, CT and MRI) showed characteristic radiological features of "giant cell tumour".

  19. Giant lobelias exemplify convergent evolution.

    PubMed

    Givnish, Thomas J

    2010-01-14

    Giant lobeliads on tropical mountains in East Africa and Hawaii have highly unusual, giant-rosette growth forms that appear to be convergent on each other and on those of several independently evolved groups of Asteraceae and other families. A recent phylogenetic analysis by Antonelli, based on sequencing the widest selection of lobeliads to date, raises doubts about this paradigmatic example of convergent evolution. Here I address the kinds of evidence needed to test for convergent evolution and argue that the analysis by Antonelli fails on four points. Antonelli's analysis makes several important contributions to our understanding of lobeliad evolution and geographic spread, but his claim regarding convergence appears to be invalid. Giant lobeliads in Hawaii and Africa represent paradigmatic examples of convergent evolution.

  20. Structure of giant muscle proteins

    PubMed Central

    Meyer, Logan C.; Wright, Nathan T.

    2013-01-01

    Giant muscle proteins (e.g., titin, nebulin, and obscurin) play a seminal role in muscle elasticity, stretch response, and sarcomeric organization. Each giant protein consists of multiple tandem structural domains, usually arranged in a modular fashion spanning 500 kDa to 4 MDa. Although many of the domains are similar in structure, subtle differences create a unique function of each domain. Recent high and low resolution structural and dynamic studies now suggest more nuanced overall protein structures than previously realized. These findings show that atomic structure, interactions between tandem domains, and intrasarcomeric environment all influence the shape, motion, and therefore function of giant proteins. In this article we will review the current understanding of titin, obscurin, and nebulin structure, from the atomic level through the molecular level. PMID:24376425

  1. CMB lensing and giant rings

    SciTech Connect

    Rathaus, Ben; Itzhaki, Nissan E-mail: ben.rathaus@gmail.com

    2012-05-01

    We study the CMB lensing signature of a pre-inationary particle (PIP), assuming it is responsible for the giant rings anomaly that was found recently in the WMAP data. Simulating Planck-like data we find that generically the CMB lensing signal to noise ratio associated with such a PIP is quite small and it would be difficult to cross correlate the temperature giant rings with the CMB lensing signal. However, if the pre-inationary particle is also responsible for the bulk flow measured from the local large scale structure, which happens to point roughly at the same direction as the giant rings, then the CMB lensing signal to noise ratio is fairly significant.

  2. Giant lobelias exemplify convergent evolution

    PubMed Central

    2010-01-01

    Giant lobeliads on tropical mountains in East Africa and Hawaii have highly unusual, giant-rosette growth forms that appear to be convergent on each other and on those of several independently evolved groups of Asteraceae and other families. A recent phylogenetic analysis by Antonelli, based on sequencing the widest selection of lobeliads to date, raises doubts about this paradigmatic example of convergent evolution. Here I address the kinds of evidence needed to test for convergent evolution and argue that the analysis by Antonelli fails on four points. Antonelli's analysis makes several important contributions to our understanding of lobeliad evolution and geographic spread, but his claim regarding convergence appears to be invalid. Giant lobeliads in Hawaii and Africa represent paradigmatic examples of convergent evolution. PMID:20074322

  3. Atmospheres of Extrasolar Giant Planets

    NASA Astrophysics Data System (ADS)

    Marley, M. S.; Fortney, J.; Seager, S.; Barman, T.

    The key to understanding an extrasolar giant planet's spectrum - and hence its detectability and evolution - lies with its atmosphere. Now that direct observations of thermal emission from extrasolar giant planets (EGPs) are in hand, atmosphere models can be used to constrain atmospheric composition, thermal structure, and ultimately the formation and evolution of detected planets. We review the important physical processes that influence the atmospheric structure and evolution of EGPs and consider what has already been learned from the first generation of observations and modeling. We pay particular attention to the roles of cloud structure, metallicity, and atmospheric chemistry in affecting detectable properties through Spitzer Space Telescope observations of the transiting giant planets. Our review stresses the uncertainties that ultimately limit our ability to interpret EGP observations. Finally we will conclude with a look to the future as characterization of multiple individual planets in a single stellar system leads to the study of comparative planetary architectures.

  4. Chinese hamster ovary cell adhesion to human platelet thrombospondin is dependent on cell surface heparan sulfate proteoglycan.

    PubMed Central

    Kaesberg, P R; Ershler, W B; Esko, J D; Mosher, D F

    1989-01-01

    Thrombospondin is a 420-kD platelet alpha-granule glycoprotein that binds specifically to heparin. We examined adhesion to thrombospondin of CHO K1 cells and three mutant CHO lines with varying deficiencies in glycosaminoglycan (GAG) synthesis. In an experiment in which the parent line (K1) had 78% adherence to thrombospondin adsorbed to tissue culture plastic, CHO S745 cells, with less than 6% normal GAG synthesis had 11% adherence. CHO S677 cells, with decreased heparan sulfate proteoglycan but increased chondroitin sulfate proteoglycan, had 42% adherence. CHO S803 cells, with decreased heparan sulfate proteoglycan and normal chondroitin sulfate proteoglycan, had 31% adherence. Heparin inhibited K1 cell adhesion to thrombospondin, but not fibronectin, in a concentration-dependent manner. Dermatan sulfate but not chondroitin sulfate was also inhibitory. There was markedly decreased K1 cell adhesion to a thrombospondin core fragment that lacked the heparin binding NH2-terminal domain. Purified heparin binding domain, although poorly adhesive when adsorbed to substratum, inhibited cell adhesion to intact thrombospondin. Adhesion was better for all cell lines tested, including three human tumor cell lines, when thrombospondin was adsorbed at pH 4.0 compared with pH 7.4. When adsorption of thrombospondin was done at pH 7.4, cell adhesion was better when thrombospondin was adsorbed in the presence of greater than or equal to 0.6 mM calcium, compared to 0.1 mM calcium or EDTA. These findings suggest that thrombospondin can adsorb to plastic with varying degrees of exposure of a cell adhesion domain. We conclude that the thrombospondin cell adhesion receptor on CHO cells is a heparan sulfate proteoglycan, and that cell adhesion to thrombospondin depends on conformation of adsorbed thrombospondin. Images PMID:2522106

  5. The effect of insulin-like growth factor I on proteoglycan metabolism in immature and adult bovine articular cartilage

    SciTech Connect

    Barone-Varelas, J.

    1989-01-01

    Explants of articular cartilage from calf (15 weeks old) and steer (18-24 months old) were cultured for up to 19 days in medium containing either insulin-like growth factor (IGF-I) or 20% fetal bovine serum (FBS). Explants cultured in medium alone were controls. {sup 35}S-proteoglycans (PGs) synthesized on day 7 of culture during a 5-hour pulse with {sup 35}S-sulfate were isolated, quantified and characterized. Lower concentrations of IGF-I were required for maximal stimulation of PG synthesis in calf than in steer (10 vs 20 ng/ml). In calf, IGF-I was as effective as 20% FABS in stimulating PG synthesis. In steer, PG synthesis in the presence of IGF-I reached its maximum at a rate that was half that obtained with 20% FBS. The stimulation by IGF-I or FBS was not accompanied at either age by alterations in the size and composition of the aggregating PGs nor by changes in the relative proportions of the CS-rich and CS-poor PG subpopulations. Importantly, the newly synthesized calf and steer PGs retained marked age-related differences in composition regardless of the culture conditions. The effects of exogenously added IGF-I and FBS on the rate of turnover of cartilage PGs was also studied. In calf, IGF-I and FBS did not significantly alter the rate of turnover of either the {sup 35}S-PGs synthesized in vitro or of the unlabeled PGs representing mostly molecules synthesize and organized into the matrix in vivo. In steer, explants cultured in the absence of IGF-I or FBS exhibited very fast rates of turnover which resulted in severe depletion of matrix PG with time. Importantly, IGF-I and FBS were equally effective in reducing the turnover rate of {sup 35}S-PGs and unlabeled PGs and in preventing PG depletion. These results demonstrate age-related differences in the effect of IGF-I on PG synthesis by articular chondrocytes.

  6. Two Faces of Chondroitin Sulfate Proteoglycan in Spinal Cord Repair: A Role in Microglia/Macrophage Activation

    PubMed Central

    London, Anat; Segev, Yifat; Jacob-Hirsch, Jasmin; Amariglio, Ninette; Rechavi, Gidon; Schwartz, Michal

    2008-01-01

    Background Chondroitin sulfate proteoglycan (CSPG) is a major component of the glial scar. It is considered to be a major obstacle for central nervous system (CNS) recovery after injury, especially in light of its well-known activity in limiting axonal growth. Therefore, its degradation has become a key therapeutic goal in the field of CNS regeneration. Yet, the abundant de novo synthesis of CSPG in response to CNS injury is puzzling. This apparent dichotomy led us to hypothesize that CSPG plays a beneficial role in the repair process, which might have been previously overlooked because of nonoptimal regulation of its levels. This hypothesis is tested in the present study. Methods and Findings We inflicted spinal cord injury in adult mice and examined the effects of CSPG on the recovery process. We used xyloside to inhibit CSPG formation at different time points after the injury and analyzed the phenotype acquired by the microglia/macrophages in the lesion site. To distinguish between the resident microglia and infiltrating monocytes, we used chimeric mice whose bone marrow-derived myeloid cells expressed GFP. We found that CSPG plays a key role during the acute recovery stage after spinal cord injury in mice. Inhibition of CSPG synthesis immediately after injury impaired functional motor recovery and increased tissue loss. Using the chimeric mice we found that the immediate inhibition of CSPG production caused a dramatic effect on the spatial organization of the infiltrating myeloid cells around the lesion site, decreased insulin-like growth factor 1 (IGF-1) production by microglia/macrophages, and increased tumor necrosis factor alpha (TNF-α) levels. In contrast, delayed inhibition, allowing CSPG synthesis during the first 2 d following injury, with subsequent inhibition, improved recovery. Using in vitro studies, we showed that CSPG directly activated microglia/macrophages via the CD44 receptor and modulated neurotrophic factor secretion by these cells

  7. Characterization of Heparan Sulfate Proteoglycan-positive Recycling Endosomes Isolated from Glioma Cells

    PubMed Central

    A. PODYMA-INOUE, KATARZYNA; MORIWAKI, TAKUYA; R. RAJAPAKSHE, ANUPAMA; TERASAWA, KAZUE; HARA-YOKOYAMA, MIKI

    2016-01-01

    Background: Heparan sulfate proteoglycans (HSPGs)-dependent endocytic events have been involved in glioma progression. Thus, comprehensive understanding of the intracellular trafficking complexes formed in presence of HSPGs would be important for development of glioma treatments. Materials and Methods: Subcellular fractionation was used to separate vesicles containing HSPGs from the rat C6 glioma cell line. Isolated HSPG-positive vesicles were further characterized with liquid chromatography-mass spectrometry. Results: The HSPG-positive vesicular fractions, distinct from plasma membrane-derived material, were enriched in endocytic marker, Rab11. Proteomic analysis identified more than two hundred proteins to be associated with vesicular membrane, among them, over eighty were related to endosomal uptake, recycling or vesicular transport. Conclusion: Part of HSPGs in glioma cells is internalized through clathrin-dependent endocytosis and undergo recycling. The development of compounds regulating HSPG-mediated trafficking will likely enable design of effective glioma treatment. PMID:27807067

  8. An inhibitor of chondroitin sulfate proteoglycan synthesis promotes central nervous system remyelination

    PubMed Central

    Keough, Michael B.; Rogers, James A.; Zhang, Ping; Jensen, Samuel K.; Stephenson, Erin L.; Chen, Tieyu; Hurlbert, Mitchel G.; Lau, Lorraine W.; Rawji, Khalil S.; Plemel, Jason R.; Koch, Marcus; Ling, Chang-Chun; Yong, V. Wee

    2016-01-01

    Remyelination is the generation of new myelin sheaths after injury facilitated by processes of differentiating oligodendrocyte precursor cells (OPCs). Although this repair phenomenon occurs in lesions of multiple sclerosis patients, many lesions fail to completely remyelinate. A number of factors have been identified that contribute to remyelination failure, including the upregulated chondroitin sulfate proteoglycans (CSPGs) that comprise part of the astrogliotic scar. We show that in vitro, OPCs have dramatically reduced process outgrowth in the presence of CSPGs, and a medication library that includes a number of recently reported OPC differentiation drugs failed to rescue this inhibitory phenotype on CSPGs. We introduce a novel CSPG synthesis inhibitor to reduce CSPG content and find rescued process outgrowth from OPCs in vitro and accelerated remyelination following focal demyelination in mice. Preventing CSPG deposition into the lesion microenvironment may be a useful strategy to promote repair in multiple sclerosis and other neurological disorders. PMID:27115988

  9. Ultrastructural visualisation of proteoglycans in early unmineralised dentine of rat tooth germs stained with cuprolinic blue.

    PubMed Central

    Tenorio, D; Reid, A R; Katchburian, E

    1990-01-01

    The ultrastructural distribution and localisation of proteoglycans (PGs) of early developing rat dentine were examined using cuprolinic blue in a critical electrolyte concentration procedure. Results show that the cuprolinic blue method produces images of higher morphological quality than other cationic dyes. PGs appeared as ribbon-like electron-opaque precipitates of various sizes, ranging between 1.4 and 0.2 microns in length, distributed throughout the matrix and in close association with well preserved matrix vesicles and collagen fibrils. Matrix vesicles revealed tightly packed PG filaments which appeared to be attached to their membrane. It is possible that the close association of PG filaments with matrix vesicles and collagen indicates that PGs are related to the process of mineralisation of dentine. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 Fig. 8 PMID:2384338

  10. Extracellular modulation of Fibroblast Growth Factor signaling through heparan sulfate proteoglycans in mammalian development.

    PubMed

    Matsuo, Isao; Kimura-Yoshida, Chiharu

    2013-08-01

    Fibroblast Growth Factor (FGF) signaling plays crucial roles in multiple cellular processes including cell proliferation, differentiation, survival, and migration during mammalian embryogenesis. In the extracellular matrix, as well as at the cell surface, the movement of FGF ligands to target cells and the subsequent complex formations with their receptors are positively and negatively controlled extracellularly by heparan sulfate proteoglycans (HSPGs) such as syndecans, glypicans, and perlecan. Additionally, spreading of HSPGs by cleavage with sheddases such as proteinases and heparanases, and the overall length and sulfation level of specific heparan sulfate structures further generate a great diversity of FGF signaling outcomes. This review presents our current understanding of the regulatory mechanisms of FGF signaling in extracellular spaces through HSPGs in mammalian development. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Cell surface receptors for herpes simplex virus are heparan sulfate proteoglycans

    PubMed Central

    1992-01-01

    The role of cell surface heparan sulfate in herpes simplex virus (HSV) infection was investigated using CHO cell mutants defective in various aspects of glycosaminoglycan synthesis. Binding of radiolabeled virus to the cells and infection were assessed in mutant and wild-type cells. Virus bound efficiently to wild-type cells and initiated an abortive infection in which immediate-early or alpha viral genes were expressed, despite limited production of late viral proteins and progeny virus. Binding of virus to heparan sulfate-deficient mutant cells was severely impaired and mutant cells were resistant to HSV infection. Intermediate levels of binding and infection were observed for a CHO cell mutant that produced undersulfated heparan sulfate. These results show that heparan sulfate moieties of cell surface proteoglycans serve as receptors for HSV. PMID:1310996

  12. Structural and functional analysis of two small leucine-rich repeat proteoglycans, fibromodulin and chondroadherin.

    PubMed

    Paracuellos, Patricia; Kalamajski, Sebastian; Bonna, Arkadiusz; Bihan, Dominique; Farndale, Richard W; Hohenester, Erhard

    2017-02-17

    The small leucine-rich proteoglycans (SLRPs) are important regulators of extracellular matrix assembly and cell signalling. We have determined crystal structures at ~2.2Å resolution of human fibromodulin and chondroadherin, two collagen-binding SLRPs. Their overall fold is similar to that of the prototypical SLRP, decorin, but unlike decorin neither fibromodulin nor chondroadherin forms a stable dimer. A previously identified binding site for integrin α2β1 maps to an α-helix in the C-terminal cap region of chondroadherin. Interrogation of the Collagen Toolkits revealed a unique binding site for chondroadherin in collagen II, and no binding to collagen III. A triple-helical peptide containing the sequence GAOGPSGFQGLOGPOGPO (O is hydroxyproline) forms a stable complex with chondroadherin in solution. In fibrillar collagen I and II, this sequence is aligned with the collagen cross-linking site KGHR, suggesting a role for chondroadherin in cross-linking.

  13. Glycosaminoglycans, proteoglycans and sulodexide and the endothelium: biological roles and pharmacological effects.

    PubMed

    Masola, V; Zaza, G; Onisto, M; Lupo, A; Gambaro, G

    2014-06-01

    The glycocalyx is a jelly layer covering the endothelium constituted by glycosaminoglycans (GAGs), proteoglycans and adsorbed plasma proteins. This structure take part in several physiological and pathological vascular events. The glycocalyx acts as mechanosensor to shear stress and participates to regulation of vascular tone, permeability, coagulation and complement activation. Moreover it regulates the interaction and activation of blood cells with endothelial cells. The presence of a thick, normal glycocalyx is required for physiological vascular functions, whereas these functions are impaired by its damage by noxious agents. Indeed, glycocalyx alterations are involved in the pathogenesis of atherosclerosis, ischemia-reperfusion and diabetic vascular complications. GAGs such as sulodexide are promising agents to control endothelial dysfunction. They act at multiple levels: they promote glycocalyx reconstitution, control glycocalyx degrading enzymes, exert anti-inflammatory effects and have anti-apoptotic and anti-senescence effects on endothelial cells. Clinical studies support the evidence that glycosaminoglycans are useful to restore a normal endothelial function.

  14. Analysis by high-performance liquid chromatography of radioactively labeled carbohydrate components of proteoglycans

    SciTech Connect

    Lohmander, L.S.

    1986-04-01

    Methods were developed for the separation of radioactively labeled carbohydrate components of proteoglycans by isocratic ion-moderated partition HPLC. Neutral sugars were separated after hydrolysis in trifluoroacetic acid with baseline separation between glucose, xylose, galactose, fucose, and mannose. N-Acetylneuraminic acid, N-acetylated hexosamines, glucose, galactose, and xylitol were likewise well separated from each other under isocratic elution conditions. Glucuronic acid, iduronic acid, and their lactones were separated after hydrolysis in formic acid and sulfuric acid. Glucosamine, galactosamine, galactosaminitol, and glucosaminitol were separated by HPLC on a cation exchanger with neutral buffer after hydrolysis in hydrochloric acid. THe separation techniques also proved useful in fractionation of exoglycosidase digests of O- and N-linked oligosaccharides. Separations of aldoses, hexosamines, and uronic acids were adapted to sensitive photometric detection.

  15. PTPsigma is a receptor for chondroitin sulfate proteoglycan, an inhibitor of neural regeneration.

    PubMed

    Shen, Yingjie; Tenney, Alan P; Busch, Sarah A; Horn, Kevin P; Cuascut, Fernando X; Liu, Kai; He, Zhigang; Silver, Jerry; Flanagan, John G

    2009-10-23

    Chondroitin sulfate proteoglycans (CSPGs) present a barrier to axon regeneration. However, no specific receptor for the inhibitory effect of CSPGs has been identified. We showed that a transmembrane protein tyrosine phosphatase, PTPsigma, binds with high affinity to neural CSPGs. Binding involves the chondroitin sulfate chains and a specific site on the first immunoglobulin-like domain of PTPsigma. In culture, PTPsigma(-/-) neurons show reduced inhibition by CSPG. A PTPsigma fusion protein probe can detect cognate ligands that are up-regulated specifically at neural lesion sites. After spinal cord injury, PTPsigma gene disruption enhanced the ability of axons to penetrate regions containing CSPG. These results indicate that PTPsigma can act as a receptor for CSPGs and may provide new therapeutic approaches to neural regeneration.

  16. Hypothalamic proteoglycan syndecan-3 is a novel cocaine addiction resilience factor.

    PubMed

    Chen, Jihuan; Repunte-Canonigo, Vez; Kawamura, Tomoya; Lefebvre, Celine; Shin, William; Howell, Leonard L; Hemby, Scott E; Harvey, Brandon K; Califano, Andrea; Morales, Marisela; Koob, George F; Sanna, Pietro Paolo

    2013-01-01

    Proteoglycans like syndecan-3 have complex signaling roles in addition to their function as structural components of the extracellular matrix. Here, we show that syndecan-3 in the lateral hypothalamus has an unexpected new role in limiting compulsive cocaine intake. In particular, we observe that syndecan-3 null mice self-administer greater amounts of cocaine than wild-type mice. This effect can be rescued by re-expression of syndecan-3 in the lateral hypothalamus with an adeno-associated viral vector. Adeno-associated viral vector delivery of syndecan-3 to the lateral hypothalamus also reduces motivation for cocaine in normal mice. Syndecan-3 limits cocaine intake by modulating the effects of glial-cell-line-derived neurotrophic factor, which uses syndecan-3 as an alternative receptor. Our findings indicate syndecan-3-dependent signaling as a novel therapeutic target for the treatment of cocaine addiction.

  17. Dynamic Structure of Proteoglycans/Glycosaminoglycans in the Lungs of Mice with Chronic Granulomatous Inflammation.

    PubMed

    Kim, L B; Shkurupy, V A; Putyatina, A N

    2016-02-01

    Structure of proteoglycans in the lungs and total glycosaminoglycan content in blood serum were studied on mouse model of BCG-induced granulomatous inflammation in mice (without destructive processes in the lung parenchyma and granulomas). The maximum level of sulfated glycosaminoglycans in the lungs was detected on postinfection day 30 and was related to their involvement in initiation granulomogenesis and development of granulomas. The maximum level of total glycosaminoglycans in mouse serum on postinfection day 90 coincided with minimum level of sulfated glycosaminoglycans in the lungs. This blood/lungs ratio of glycosaminoglycans can be related to the prevalence of low-molecular-weight hyaluronan fragments promoting inflammation and fibrosis in the lungs observed at the end of the experiment (postinfection day 180).

  18. Effect of indomethacin on swelling, lymphocyte influx, and cartilage proteoglycan depletion in experimental arthritis.

    PubMed Central

    Pettipher, E R; Henderson, B; Edwards, J C; Higgs, G A

    1989-01-01

    The effects of indomethacin on antigen induced arthritis in rabbits have been investigated. Arthritis was induced in the knee joints of sensitised rabbits by intra-articular injection of antigen. Swelling of the joints was measured for 14 days after antigen challenge, and groups of animals were killed on days 1, 7, or 14 for collection of synovial fluids and tissues. Indomethacin (1 mg/kg, three times daily) reduced joint swelling and the prostaglandin E2 concentrations in synovial fluid. In addition, indomethacin increased the loss of proteoglycan from articular cartilage and the numbers of lymphocytes in the inflamed synovial lining. These findings suggest that the symptomatic benefits of indomethacin and related drugs in inflammatory arthritis may be achieved at the expense of significant adverse effects on joint tissues. PMID:2782971

  19. Elevated expression of transforming growth factor-beta and proteoglycan production in experimental glomerulonephritis. Possible role in expansion of the mesangial extracellular matrix.

    PubMed Central

    Okuda, S; Languino, L R; Ruoslahti, E; Border, W A

    1990-01-01

    Glomerular accumulation of extracellular matrix is a prominent feature of progressive glomerulonephritis. Previously, we have shown that transforming growth factor-beta (TGF-beta) is unique among growth factors in regulating the production of the proteoglycans biglycan and decorin by glomerular mesangial cells in vitro. We now provide evidence of an elevated expression of TGF-beta, proteoglycans, and fibronectin in glomerulonephritis induced in rats by injection of anti-thymocyte serum (ATS). Glomeruli were cultured from rat kidneys at 1, 4, 7, 14, and 28 d after ATS administration. Increased proteoglycan synthesis was detected beginning on day 4, which peaked at a 4,900% increase compared with control on day 7, and returned toward control levels by day 28. The increased proteoglycan synthesis by cultured nephritic glomeruli, as well as that of fibronectin, were greatly reduced by addition of antiserum raised against a synthetic peptide from TGF-beta. Conditioned media from ATS glomerular cultures, when added to normal cultured mesangial cells, induced elevated proteoglycan synthesis that also peaked on day 7 and that mimicked the response to added exogenous TGF-beta. The stimulatory activity of the conditioned media was blocked by addition of TGF-beta antiserum. Prior addition of the immunizing peptide to the antiserum abolished the blocking effect. The main induced proteoglycans were identified as biglycan and decorin by immunoprecipitation with antiserum made against synthetic peptides from the proteoglycan core proteins. Glomerular histology showed mesangial matrix expansion in a time course that roughly paralleled both the elevated proteoglycan synthesis by the ATS glomeruli and the ability of the conditioned media from these glomeruli to induce proteoglycan synthesis. At the same time there was an increased expression of TGF-beta mRNA and TGF-beta protein in the glomeruli. These results suggest a central role for TGF-beta in the accumulation of pathological

  20. Review of Giant cell arteritis

    PubMed Central

    Chacko, Joseph G.; Chacko, J. Anthony; Salter, Michael W.

    2014-01-01

    Giant-cell arteritis (GCA) is a systemic autoimmune disease affecting primarily the elderly. Giant cell arteritis can cause sudden and potentially bilateral sequential vision loss in the elderly. Therefore, it is considered a medical emergency in ophthalmology and a significant cause of morbidity in an increasingly aging population. Ophthalmologists need to be able to recognize the classic symptoms and signs of this disease, and then be able to work-up and treat these patients in an efficient manner. An in-depth review of GCA from the literature as well as personal clinical experience follows. PMID:25859139

  1. Transforming growth factor-β2 is sequestered in preterm human milk by chondroitin sulfate proteoglycans

    PubMed Central

    Namachivayam, Kopperuncholan; Coffing, Hayley P.; Sankaranarayanan, Nehru Viji; Jin, Yingzi; MohanKumar, Krishnan; Frost, Brandy L.; Blanco, Cynthia L.; Patel, Aloka L.; Meier, Paula P.; Garzon, Steven A.; Desai, Umesh R.

    2015-01-01

    Human milk contains biologically important amounts of transforming growth factor-β2 isoform (TGF-β2), which is presumed to protect against inflammatory gut mucosal injury in the neonate. In preclinical models, enterally administered TGF-β2 can protect against experimental necrotizing enterocolitis, an inflammatory bowel necrosis of premature infants. In this study, we investigated whether TGF-β bioactivity in human preterm milk could be enhanced for therapeutic purposes by adding recombinant TGF-β2 (rTGF-β2) to milk prior to feeding. Milk-borne TGF-β bioactivity was measured by established luciferase reporter assays. Molecular interactions of TGF-β2 were investigated by nondenaturing gel electrophoresis and immunoblots, computational molecular modeling, and affinity capillary electrophoresis. Addition of rTGF-β2 (20–40 nM) to human preterm milk samples failed to increase TGF-β bioactivity in milk. Milk-borne TGF-β2 was bound to chondroitin sulfate (CS) containing proteoglycan(s) such as biglycan, which are expressed in high concentrations in milk. Chondroitinase treatment of milk increased the bioactivity of both endogenous and rTGF-β2, and consequently, enhanced the ability of preterm milk to suppress LPS-induced NF-κB activation in macrophages. These findings provide a mechanism for the normally low bioavailability of milk-borne TGF-β2 and identify chondroitinase digestion of milk as a potential therapeutic strategy to enhance the anti-inflammatory effects of preterm milk. PMID:26045614

  2. Keratocan, a Cornea-specific Keratan Sulfate Proteoglycan, Is Regulated by Lumican*

    PubMed Central

    Carlson, Eric C.; Liu, Chia-Yang; Chikama, Tai-ichiro; Hayashi, Yasuhito; Kao, Candace W.-C.; Birk, David E.; Funderburgh, James L.; Jester, James V.; Kao, Winston W.-Y.

    2010-01-01

    Lumican is an extracellular matrix glycoprotein widely distributed in mammalian connective tissues. Corneal lumican modified with keratan sulfate constitutes one of the major proteoglycans of the stroma. Lumican-null mice exhibit altered collagen fibril organization and loss of corneal transparency. A closely related protein, keratocan, carries the remaining keratan sulfate of the cornea, but keratocan-null mice exhibit a less severe corneal phenotype. In the current study, we examined the effect of lumican overexpression in corneas of wild type mice. These mice showed no alteration in collagen organization or transparency but had increased keratocan expression at both protein and mRNA levels. Corneas of lumican-null mice showed decreased keratocan. This coupling of keratocan expression with lumican also was observed after intrastromal injection of a lumican expression minigene into the corneal stroma of Lum–/– mice. Small interfering RNA knockdown of lumican in vitro reduced keratocan expression, whereas co-injection of a lumican-expressing minigene with a β-galactosidase reporter driven by the keratocan promoter demonstrated an increase of keratocan transcriptional activity in response to lumican expression in Lum–/– corneas in vivo. These observations demonstrate that lumican has a novel regulatory role in keratocan expression at the transcriptional level. Such results help provide an explanation for the differences in severity of corneal manifestation found in Lum–/– and Kera–/– mice. The results also suggest a critical level of small proteoglycans to be essential for collagen organization but that overabundance is not detrimental to extracellular matrix morphogenesis. PMID:15849191

  3. The small leucine-rich repeat proteoglycans in tissue repair and atherosclerosis

    PubMed Central

    Hultgårdh-Nilsson, Anna; Borén, Jan; Chakravarti, Shukti

    2015-01-01

    Proteoglycans consist of a protein core with one or more covalently attached glycosaminoglycan (GAG) side chains, and have multiple roles in the initiation and progression of atherosclerosis. Here we discuss the potential and known functions of a group of small leucine-rich repeat proteoglycans (SLRPs) in atherosclerosis. We focus on five SLRPs, decorin, biglycan lumican, fibromodulin, and PRELP, because these have been detected in atherosclerotic plaques or demonstrated to have a role in animal models of atherosclerosis. Decorin and biglycan are modified post translationally by substitution with chondroitin/dermatan sulfate GAGs, whereas lumican, fibromodulin, and PRELP have keratan sulfate side chains, and the core proteins have leucine-rich repeat (LRR) motifs that are characteristic of the LRR superfamily. The chondroitin/dermatan sulfate GAG side chains have been implicated in lipid retention in atherosclerosis. The core proteins are discussed here in the context of: (i) interactions with collagens and their implications in tissue integrity, fibrosis, and wound repair; and (ii) interactions with growth factors, cytokines, pathogen-associated molecular patterns, and cell surface receptors that impact normal physiology and disease processes such as inflammation, innate immune responses, and wound healing (i.e processes that are all important in plaque development and progression). Thus, studies of these SLRPs in the context of wound healing are providing clues about their functions that may be important in early stages of atherosclerosis to plaque vulnerability and cardiovascular disease at later stages. Understanding of signal transduction pathways regulated by the core protein interactions is leading to novel roles and therapeutic potential for these proteins in wound repair and atherosclerosis. PMID:26477596

  4. Hepatocyte growth factor/scatter factor modulates cell motility, proliferation, and proteoglycan synthesis of chondrocytes.

    PubMed

    Takebayashi, T; Iwamoto, M; Jikko, A; Matsumura, T; Enomoto-Iwamoto, M; Myoukai, F; Koyama, E; Yamaai, T; Matsumoto, K; Nakamura, T

    1995-06-01

    Hepatocyte growth factor/scatter factor (HGF/SF) is a multifunctional growth factor that promotes proliferation, motility, and morphogenesis in epithelial cells. Recently the HGF receptor, c-met protooncogene product, has been shown to be expressed in developing limb buds (Sonnenberg, E., D. Meyer, M. Weidner, and C. Birchmeiyer, 1993. J. Cell Biol. 123: 223-235), suggesting that some populations of mesenchymal cells in limb buds respond to HGF/SF. To test the possibility that HGF/SF is involved in regulation of cartilage development, we isolated chondrocytes from knee joints and costal cartilages of 23-d embryonic and 4-wk-old rabbits, and analyzed the effects of HGF/SF on migration and proliferation of these cells. We found that HGF/SF stimulated migration of cultured articular chondrocytes but did not scatter limb mesenchymal fibroblasts or synovial fibroblasts in culture. HGF/SF also stimulated proliferation of chondrocytes; a maximum three-fold stimulation in DNA synthesis was observed at the concentration of 3 ng/ml of HGF/SF. Moreover, HGF/SF had the ability to enhance proteoglycan synthesis in chondrocytes. The responsiveness of chondrocytes to HGF/SF was also supported by the observation that they expressed the HGF/SF receptor. Addition of the neutralizing antibody to rat HGF/SF affected neither DNA synthesis nor proteoglycan synthesis in rat chondrocytes, suggesting a paracine mechanism of action of HGF/SF on these cells. In situ hybridization analysis showed that HGF/SF mRNA was restrictively expressed in the areas of future joint regions in developing limb buds and in the intercostal spaces of developing costal cartilages. These findings suggest that HGF/SF plays important roles in cartilage development through its multiple activities.

  5. Hepatocyte growth factor/scatter factor modulates cell motility, proliferation, and proteoglycan synthesis of chondrocytes

    PubMed Central

    1995-01-01

    Hepatocyte growth factor/scatter factor (HGF/SF) is a multifunctional growth factor that promotes proliferation, motility, and morphogenesis in epithelial cells. Recently the HGF receptor, c-met protooncogene product, has been shown to be expressed in developing limb buds (Sonnenberg, E., D. Meyer, M. Weidner, and C. Birchmeiyer, 1993. J. Cell Biol. 123: 223-235), suggesting that some populations of mesenchymal cells in limb buds respond to HGF/SF. To test the possibility that HGF/SF is involved in regulation of cartilage development, we isolated chondrocytes from knee joints and costal cartilages of 23-d embryonic and 4-wk-old rabbits, and analyzed the effects of HGF/SF on migration and proliferation of these cells. We found that HGF/SF stimulated migration of cultured articular chondrocytes but did not scatter limb mesenchymal fibroblasts or synovial fibroblasts in culture. HGF/SF also stimulated proliferation of chondrocytes; a maximum three-fold stimulation in DNA synthesis was observed at the concentration of 3 ng/ml of HGF/SF. Moreover, HGF/SF had the ability to enhance proteoglycan synthesis in chondrocytes. The responsiveness of chondrocytes to HGF/SF was also supported by the observation that they expressed the HGF/SF receptor. Addition of the neutralizing antibody to rat HGF/SF affected neither DNA synthesis nor proteoglycan synthesis in rat chondrocytes, suggesting a paracine mechanism of action of HGF/SF on these cells. In situ hybridization analysis showed that HGF/SF mRNA was restrictively expressed in the areas of future joint regions in developing limb buds and in the intercostal spaces of developing costal cartilages. These findings suggest that HGF/SF plays important roles in cartilage development through its multiple activities. PMID:7775584

  6. Developmental and functional significance of the CSF-1 proteoglycan chondroitin sulfate chain

    PubMed Central

    Nandi, Sayan; Akhter, Mohammed P.; Seifert, Mark F.; Dai, Xu-Ming; Stanley, E. Richard

    2006-01-01

    The primary macrophage growth factor, colony-stimulating factor-1 (CSF-1), is homodimeric and exists in 3 biologically active isoforms: a membrane-spanning, cell-surface glycoprotein (csCSF-1) and secreted glycoprotein (sgCSF-1) and proteoglycan (spCSF-1) isoforms. To investigate the in vivo role of the chondroitin sulfate glycosaminoglycan (GAG) chain of spCSF-1, we created mice that exclusively express, in a normal tissue-specific and developmental manner, either the secreted precursor of spCSF-1 or the corresponding precursor in which the GAG addition site was mutated. The reproductive, hematopoietic tooth eruption and tissue macrophage defects of CSF-1-deficient, osteopetrotic Csf1op/Csf1op mice were corrected by transgenic expression of the precursors of either sgCSF-1 or spCSF-1. Furthermore, in contrast to the transgene encoding csCSF-1, both failed to completely correct growth retardation, suggesting a role for csCSF-1 in the regulation of body weight. However, spCSF-1, in contrast to sgCSF-1, completely resolved the osteopetrotic phenotype. Furthermore, in transgenic lines expressing different concentrations of sgCSF-1 or spCSF-1, spCSF-1 more efficiently corrected Csf1op/Csf1op defects of tooth eruption, eyelid opening, macrophage morphology, and B-cell deficiency than sgCSF-1. These results indicate an important role of the CSF-1 chondroitin sulfate proteoglycan in in vivo signaling by secreted CSF-1. (Blood. 2006;107:786-795) PMID:16210339

  7. Ctr2 regulates mast cell maturation by affecting the storage and expression of tryptase and proteoglycans

    PubMed Central

    Öhrvik, Helena; Logeman, Brandon; Noguchi, Glyn; Eriksson, Inger; Kjellén, Lena; Thiele, Dennis J.; Pejler, Gunnar

    2015-01-01

    Copper (Cu) is essential for multiple cellular functions. Cellular uptake of Cu+ is carried out by the Ctr1 high affinity Cu transporter. The mobilization of endosomal Cu pools is regulated by a protein structurally similar to Ctr1, called Ctr2. It was recently shown that ablation of Ctr2 caused an increase in the concentration of Cu localized to endolysosomes. However, the biological significance of excess endolysosomal Cu accumulation has not been assessed. Here we addressed this issue by investigating the impact of Ctr2 deficiency on mast cells, a cell type unusually rich in endolysosomal organelles (secretory granules). We show that Ctr2−/− mast cells have increased intracellular Cu concentrations and that the absence of Ctr2 results in increased metachromatic staining, the latter indicating an impact of Ctr2 on the storage of proteoglycans in the secretory granules. In agreement with this, the absence of Ctr2 caused a skewed ratio between proteoglycans of heparin and chondroitin sulfate type, with increased amounts of heparin accompanied by a reduction of chondroitin sulfate. Moreover, transmission electron microscopy analysis revealed a higher number of electron dense granules in Ctr2−/− mast cells than in wild-type cells. The increase in granular staining and heparin content is compatible with an impact of Ctr2 on mast cell maturation and, in support of this, the absence of Ctr2 resulted in markedly increased mRNA expression, storage and enzymatic activity of tryptase. Taken together, the present study introduces Ctr2 and Cu as novel actors in the regulation of mast cell maturation and granule homeostasis. PMID:26342034

  8. An ultrasound study of altered hydration behaviour of proteoglycan-degraded articular cartilage

    PubMed Central

    2013-01-01

    Background Articular cartilage is a solid-fluid biphasic material covering the bony ends of articulating joints. Hydration of articular cartilage is important to joint lubrication and weight-wearing. The aims of this study are to measure the altered hydration behaviour of the proteoglycan-degraded articular cartilage using high-frequency ultrasound and then to investigate the effect of proteoglycan (PG) degradation on cartilage hydration. Methods Twelve porcine patellae with smooth cartilage surface were prepared and evenly divided into two groups: normal group without any enzyme treatment and trypsin group treated with 0.25% trypsin solution for 4 h to digest PG in the tissue. After 40-minute exposure to air at room temperature, the specimens were immerged into the physiological saline solution. The dehydration induced hydration behaviour of the specimen was monitored by the high-frequency (25 MHz) ultrasound pulser/receiver (P/R) system. Dynamic strain and equilibrium strain were extracted to quantitatively evaluate the hydration behaviour of the dehydrated cartilage tissues. Results The hydration progress of the dehydrated cartilage tissue was observed in M-mode ultrasound image indicating that the hydration behaviour of the PG-degraded specimens decreased. The percentage value of the equilibrium strain (1.84 ± 0.21%) of the PG-degraded cartilage significantly (p < 0.01) decreased in comparison with healthy cartilage (3.46 ± 0.49%). The histological sections demonstrated that almost PG content in the entire cartilage layer was digested by trypsin. Conclusion Using high-frequency ultrasound, this study found a reduction in the hydration behaviour of the PG-degraded cartilage. The results indicated that the degradation of PG decreased the hydration capability of the dehydrated tissue. This study may provide useful information for further study on changes in the biomechanical property of articular cartilage in osteoarthritis. PMID:24119051

  9. T cell receptor (TCR) signal strength controls arthritis severity in proteoglycan-specific TCR transgenic mice

    PubMed Central

    Olasz, K; Boldizsar, F; Kis-Toth, K; Tarjanyi, O; Hegyi, A; van Eden, W; Rauch, T A; Mikecz, K; Glant, T T

    2012-01-01

    T cell receptor transgenic (TCR-Tg) mice specific for the arthritogenic 5/4E8 epitope in the G1 domain of cartilage proteoglycan were generated and back-crossed into arthritis-prone BALB/c background. Although more than 90% of CD4+ T cells of all TCR-Tg lines were 5/4E8-specific, one (TCR-TgA) was highly sensitive to G1-induced or spontaneous arthritis, while another (TCR-TgB) was less susceptible. Here we studied whether fine differences in TCR signalling controlled the onset and severity of arthritis. Mice from the two TCR-Tg lines were immunized side by side with purified recombinant human G1 (rhG1) domain for G1 domain of cartilage proteoglycan (PG)-induced arthritis (GIA). TCR-TgA mice developed severe and early-onset arthritis, whereas TCR-TgB mice developed weaker arthritis with delayed onset, although TCR-TgB CD4+ T cells expressed approximately twice more TCR-Vβ4 chain protein. The more severe arthritis in TCR-TgA mice was associated with higher amounts of anti-G1 domain-specific antibodies, larger numbers of B cells and activated T helper cells. Importantly, TCR-TgB CD4+ T cells were more sensitive to in vitro activation-induced apoptosis, correlating with their higher TCR and CD3 expression and with the increased TCR signal strength. These findings indicate that TCR signal strength determines the clinical outcome of arthritis induction: ‘optimal’ TCR signal strength leads to strong T cell activation and severe arthritis in TCR-TgA mice, whereas ‘supra-optimal’ TCR signal leads to enhanced elimination of self-reactive T cells, resulting in attenuated disease. PMID:22236012

  10. Contaminants in commercial preparations of 'purified' small leucine-rich proteoglycans may distort mechanistic studies.

    PubMed

    Brown, Sharon J; Fuller, Heidi R; Jones, Philip; Caterson, Bruce; Shirran, Sally L; Botting, Catherine H; Roberts, Sally

    2017-02-28

    The present study reports the perplexing results that came about because of seriously impure commercially available reagents. Commercial reagents and chemicals are routinely ordered by scientists and expected to have been rigorously assessed for their purity. Unfortunately, we found this assumption to be risky. Extensive work was carried out within our laboratory using commercially sourced preparations of the small leucine-rich proteoglycans (SLRPs), decorin and biglycan, to investigate their influence on nerve cell growth. Unusual results compelled us to analyse the composition and purity of both preparations of these proteoglycans (PGs) using both mass spectrometry (MS) and Western blotting, with and without various enzymatic deglycosylations. Commercial 'decorin' and 'biglycan' were found to contain a mixture of PGs including not only both decorin and biglycan but also fibromodulin and aggrecan. The unexpected effects of 'decorin' and 'biglycan' on nerve cell growth could be explained by these impurities. Decorin and biglycan contain either chondroitin or dermatan sulfate glycosaminoglycan (GAG) chains whereas fibromodulin only contains keratan sulfate and the large (>2500 kDa), highly glycosylated aggrecan contains both keratan and chondroitin sulfate. The different structure, molecular weight and composition of these impurities significantly affected our work and any conclusions that could be made. These findings beg the question as to whether scientists need to verify the purity of each commercially obtained reagent used in their experiments. The implications of these findings are vast, since the effects of these impurities may already have led to inaccurate conclusions and reports in the literature with concomitant loss of researchers' funds and time.

  11. Transient expression of a cell surface heparan sulfate proteoglycan (syndecan) during limb development.

    PubMed

    Solursh, M; Reiter, R S; Jensen, K L; Kato, M; Bernfield, M

    1990-07-01

    Syndecan is an integral membrane proteoglycan that contains both heparan sulfate and chondroitin sulfate chains and that links the cytoskeleton to interstitial extracellular matrix components, including collagen and fibronectin. Immunohistochemistry with a monoclonal antibody directed to the core protein of the syndecan ectodomain has been used to analyze the distribution of this proteoglycan in the developing mouse limb bud and in high-density cultures of limb mesenchyme cells. By Day 9 of gestation when the limb buds are just apparent, syndecan is detected on cells throughout the limb region, including both ectodermal and mesenchymal components. This distribution does not change as the limb bud elongates along its proximodistal axis, except for its reduction in the apical ectodermal ridge. By Day 11, the intensity of immunofluorescence in the central core decreases relative to other regions. By Day 13 immunostaining is lost in the regions destined for chondrogenesis and myogenesis but persists in the limb ectoderm and peripheral and distal mesenchyme. In the limb mesenchyme cell cultures, syndecan is initially undetected, but is found throughout the culture by 24 hr. With further culture the antigen becomes reduced in chondrogenic foci and in association with myogenic cells. When chick limb ectoderm is placed on the high-density cultures, immunoreactivity in the mouse mesenchyme is enhanced suggesting that epithelial-mesenchymal interactions modulate syndecan expression in the limb bud. Based on analysis of 35S-labeled syndecan from the cultures, syndecan from limb mesenchyme cells contains more glycosaminoglycan chains and is larger in size than the previously described polymorphic forms of syndecan from various epithelia. The high affinity of syndecan for components of the extracellular matrix and its distribution in the early limb bud are consistent with a role in maintaining the morphologic integrity of the limb bud during the period of initiation and rapid

  12. Three-dimensional culture of human meniscal cells: Extracellular matrix and proteoglycan production

    PubMed Central

    Gruber, Helen E; Mauerhan, David; Chow, Yin; Ingram, Jane A; Norton, H James; Hanley, Edward N; Sun, Yubo

    2008-01-01

    Background The meniscus is a complex tissue whose cell biology has only recently begun to be explored. Published models rely upon initial culture in the presence of added growth factors. The aim of this study was to test a three-dimensional (3D) collagen sponge microenvironment (without added growth factors) for its ability to provide a microenvironment supportive for meniscal cell extracellular matrix (ECM) production, and to test the responsiveness of cells cultured in this manner to transforming growth factor-β (TGF-β). Methods Experimental studies were approved prospectively by the authors' Human Subjects Institutional Review Board. Human meniscal cells were isolated from surgical specimens, established in monolayer culture, seeded into a 3D scaffold, and cell morphology and extracellular matrix components (ECM) evaluated either under control condition or with addition of TGF-β. Outcome variables were evaluation of cultured cell morphology, quantitative measurement of total sulfated proteoglycan production, and immunohistochemical study of the ECM components chondroitin sulfate, keratan sulfate, and types I and II collagen. Result and Conclusion Meniscal cells attached well within the 3D microenvironment and expanded with culture time. The 3D microenvironment was permissive for production of chondroitin sulfate, types I and II collagen, and to a lesser degree keratan sulfate. This microenvironment was also permissive for growth factor responsiveness, as indicated by a significant increase in proteoglycan production when cells were exposed to TGF-β (2.48 μg/ml ± 1.00, mean ± S.D., vs control levels of 1.58 ± 0.79, p < 0.0001). Knowledge of how culture microenvironments influence meniscal cell ECM production is important; the collagen sponge culture methodology provides a useful in vitro tool for study of meniscal cell biology. PMID:18582376

  13. Charting the Giants

    NASA Astrophysics Data System (ADS)

    2004-06-01

    zero expansion asymptotically after an infinite time and has a flat geometry). All three observational tests by means of supernovae (green), the cosmic microwave background (blue) and galaxy clusters converge at a Universe around Ωm ~ 0.3 and ΩΛ ~ 0.7. The dark red region for the galaxy cluster determination corresponds to 95% certainty (2-sigma statistical deviation) when assuming good knowledge of all other cosmological parameters, and the light red region assumes a minimum knowledge. For the supernovae and WMAP results, the inner and outer regions corespond to 68% (1-sigma) and 95% certainty, respectively. References: Schuecker et al. 2003, A&A, 398, 867 (REFLEX); Tonry et al. 2003, ApJ, 594, 1 (supernovae); Riess et al. 2004, ApJ, 607, 665 (supernovae) Galaxy clusters are far from being evenly distributed in the Universe. Instead, they tend to conglomerate into even larger structures, "super-clusters". Thus, from stars which gather in galaxies, galaxies which congregate in clusters and clusters tying together in super-clusters, the Universe shows structuring on all scales, from the smallest to the largest ones. This is a relict of the very early (formation) epoch of the Universe, the so-called "inflationary" period. At that time, only a minuscule fraction of one second after the Big Bang, the tiny density fluctuations were amplified and over the eons, they gave birth to the much larger structures. Because of the link between the first fluctuations and the giant structures now observed, the unique REFLEX catalogue - the largest of its kind - allows astronomers to put considerable constraints on the content of the Universe, and in particular on the amount of dark matter that is believed to pervade it. Rather interestingly, these constraints are totally independent from all other methods so far used to assert the existence of dark matter, such as the study of very distant supernovae (see e.g. ESO PR 21/98) or the analysis of the Cosmic Microwave background (e

  14. Giant right atrial thrombi treated with thrombolysis

    PubMed Central

    Ruiz-Bailén, Manuel; López-Caler, Carmen; Castillo-Rivera, Ana; Rucabado-Aguilar, Luis; Cuadra, José Ángel Ramos; Toral, Juan Lara; Cabezas, Cristobal Lozano; Guerrero, Juan Carlos Fernández

    2008-01-01

    The present report describes giant atrial thrombi that were treated with thrombolysis in a community hospital. Two patients with giant atrial thrombi whose treatment involved complications are presented. Both patients developed cardiogenic shock and were treated unsuccessfully with thrombolysis. Because thrombolysis of giant thrombi may be ineffective, patients in this situation may require surgery. PMID:18401474

  15. Cabergoline treatment in invasive giant prolactinoma.

    PubMed

    Alsubaie, Sadeem; Almalki, Mussa H

    2014-01-01

    Patients with invasive giant prolactinoma suffer from a constellation of symptoms including headache, blurred vision, lethargy, and sexual dysfunction. Cabergoline, a potent dopamine agonist, is a known medication prescribed for the treatment of invasive giant prolactinoma. Here, we report a case of invasive giant prolactinoma in a 52-year-old Saudi male with dramatic response to cabergoline treatment clinically, biochemically, and radiologically.

  16. Giant right atrial thrombi treated with thrombolysis.

    PubMed

    Ruiz-Bailén, Manuel; López-Caler, Carmen; Castillo-Rivera, Ana; Rucabado-Aguilar, Luis; Ramos Cuadra, José Angel; Lara Toral, Juan; Lozano Cabezas, Cristobal; Fernández Guerrero, Juan Carlos

    2008-04-01

    The present report describes giant atrial thrombi that were treated with thrombolysis in a community hospital. Two patients with giant atrial thrombi whose treatment involved complications are presented. Both patients developed cardiogenic shock and were treated unsuccessfully with thrombolysis. Because thrombolysis of giant thrombi may be ineffective, patients in this situation may require surgery.

  17. Targeting of Proteoglycan Synthesis Pathway: A New Strategy to Counteract Excessive Matrix Proteoglycan Deposition and Transforming Growth Factor-β1-Induced Fibrotic Phenotype in Lung Fibroblasts.

    PubMed

    Shaukat, Irfan; Barré, Lydia; Venkatesan, Narayanan; Li, Dong; Jaquinet, Jean-Claude; Fournel-Gigleux, Sylvie; Ouzzine, Mohamed

    2016-01-01

    Stimulation of proteoglycan (PG) synthesis and deposition plays an important role in the pathophysiology of fibrosis and is an early and dominant feature of pulmonary fibrosis. Transforming growth factor-β1 (TGF-β1) is a major cytokine associated with fibrosis that induces excessive synthesis of matrix proteins, particularly PGs. Owing to the importance of PGs in matrix assembly and in mediating cytokine and growth factor signaling, a strategy based on the inhibition of PG synthesis may prevent excessive matrix PG deposition and attenuates profibrotic effects of TGF-β1 in lung fibroblasts. Here, we showed that 4-MU4-deoxy-β-D-xylopyranoside, a competitive inhibitor of β4-galactosyltransferase7, inhibited PG synthesis and secretion in a dose-dependent manner by decreasing the level of both chondroitin/dermatan- and heparin-sulfate PG in primary lung fibroblasts. Importantly, 4-MU4-deoxy-xyloside was able to counteract TGF-β1-induced synthesis of PGs, activation of fibroblast proliferation and fibroblast-myofibroblast differentiation. Mechanistically, 4-MU4-deoxy-xyloside treatment inhibited TGF-β1-induced activation of canonical Smads2/3 signaling pathway in lung primary fibroblasts. The knockdown of β4-galactosyltransferase7 mimicked 4-MU4-deoxy-xyloside effects, indicating selective inhibition of β4-galactosyltransferase7 by this compound. Collectively, this study reveals the anti-fibrotic activity of 4-MU4-deoxy-xyloside and indicates that inhibition of PG synthesis represents a novel strategy for the treatment of lung fibrosis.

  18. Targeting of Proteoglycan Synthesis Pathway: A New Strategy to Counteract Excessive Matrix Proteoglycan Deposition and Transforming Growth Factor-β1-Induced Fibrotic Phenotype in Lung Fibroblasts

    PubMed Central

    Shaukat, Irfan; Barré, Lydia; Venkatesan, Narayanan; Li, Dong; Jaquinet, Jean-Claude; Fournel-Gigleux, Sylvie; Ouzzine, Mohamed

    2016-01-01

    Stimulation of proteoglycan (PG) synthesis and deposition plays an important role in the pathophysiology of fibrosis and is an early and dominant feature of pulmonary fibrosis. Transforming growth factor-β1 (TGF-β1) is a major cytokine associated with fibrosis that induces excessive synthesis of matrix proteins, particularly PGs. Owing to the importance of PGs in matrix assembly and in mediating cytokine and growth factor signaling, a strategy based on the inhibition of PG synthesis may prevent excessive matrix PG deposition and attenuates profibrotic effects of TGF-β1 in lung fibroblasts. Here, we showed that 4-MU4-deoxy-β-D-xylopyranoside, a competitive inhibitor of β4-galactosyltransferase7, inhibited PG synthesis and secretion in a dose-dependent manner by decreasing the level of both chondroitin/dermatan- and heparin-sulfate PG in primary lung fibroblasts. Importantly, 4-MU4-deoxy-xyloside was able to counteract TGF-β1-induced synthesis of PGs, activation of fibroblast proliferation and fibroblast-myofibroblast differentiation. Mechanistically, 4-MU4-deoxy-xyloside treatment inhibited TGF-β1-induced activation of canonical Smads2/3 signaling pathway in lung primary fibroblasts. The knockdown of β4-galactosyltransferase7 mimicked 4-MU4-deoxy-xyloside effects, indicating selective inhibition of β4-galactosyltransferase7 by this compound. Collectively, this study reveals the anti-fibrotic activity of 4-MU4-deoxy-xyloside and indicates that inhibition of PG synthesis represents a novel strategy for the treatment of lung fibrosis. PMID:26751072

  19. Differential compartmentalization of mRNAs in squid giant axon.

    PubMed

    Chun, J T; Gioio, A E; Crispino, M; Giuditta, A; Kaplan, B B

    1996-11-01

    Previously, we reported that the squid giant axon contains a heterogeneous population of mRNAs that includes beta-actin, beta-tubulin, kinesin, neurofilament proteins, and enolase. To define the absolute levels and relative distribution of these mRNAs, we have used competitive reverse transcription-PCR to quantify the levels of five mRNAs present in the giant axon and giant fiber lobe (GFL), the location of the parental cell soma. In the GFL, the number of transcripts for these mRNAs varied over a fourfold range, with beta-tubulin being the most abundant mRNA species (1.25 x 10(9) molecules per GFL). Based on transcript number, the rank order of mRNA levels in the GFL was beta-tubulin > beta-actin > kinesin > enolase > microtubule-associated protein (MAP) H1. In contrast, kinesin mRNA was most abundant in the axon (4.1 x 10(7) molecules per axon) with individual mRNA levels varying 15-fold. The rank order of mRNA levels in the axon was kinesin > beta-tubulin > MAP H1 > beta-actin > enolase. The relative abundance of the mRNA species in the axon did not correlate with the size of the transcript, nor was it directly related to their corresponding levels in the GFL. Taken together, these findings confirm that significant amounts of mRNA are present in the giant axon and suggest that specific mRNAs are differentially transported into the axonal domain.

  20. Targeting of adhesion molecules as a therapeutic strategy in multiple myeloma.

    PubMed

    Neri, Paola; Bahlis, Nizar J

    2012-09-01

    Multiple myeloma (MM) is a clonal disorder of plasma cells that remains, for the most part, incurable despite the advent of several novel therapeutic agents. Tumor cells in this disease are cradled within the bone marrow (BM) microenvironment by an array of adhesive interactions between the BM cellular residents, the surrounding extracellular matrix (ECM) components such as fibronectin (FN), laminin, vascular cell adhesion molecule-1 (VCAM-1), proteoglycans, collagens and hyaluronan, and a variety of adhesion molecules on the surface of MM cells including integrins, hyaluronan receptors (CD44 and RHAMM) and heparan sulfate proteoglycans. Several signaling responses are activated by these interactions, affecting the survival, proliferation and migration of MM cells. An important consequence of these direct adhesive interactions between the BM/ECM and MM cells is the development of drug resistance. This phenomenon is termed "cell adhesion-mediated drug resistance" (CAM-DR) and it is thought to be one of the major mechanisms by which MM cells escape the cytotoxic effects of therapeutic agents. This review will focus on the adhesion molecules involved in the cross-talk between MM cells and components of the BM microenvironment. The complex signaling networks downstream of these adhesive molecules mediated by direct ligand binding or inside-out soluble factors signaling will also be reviewed. Finally, novel therapeutic strategies targeting these molecules will be discussed. Identification of the mediators of MM-BM interaction is essential to understand MM biology and to elucidate novel therapeutic targets for this disease.

  1. Giant absorption of light by molecular vibrations on a chip

    NASA Astrophysics Data System (ADS)

    Karabchevsky, A.; Kavokin, A. V.

    2016-02-01

    Vibrational overtone spectroscopy of molecules is a powerful tool for drawing information on molecular structure and dynamics. It relies on absorption of near infrared radiation (NIR) by molecular vibrations. Here we show the experimental evidence of giant enhancement of the absorption of light in solutions of organic molecules due to the switch from ballistic to diffusive propagation of light through a channel silicate glass waveguide. We also experimentally address a dynamics of absorption as a function of time of adsorption of the organic molecules on a waveguide. The observed enhancement in diffusion regime is by a factor of 300 in N-Methylaniline and by factor of 80 in Aniline compared to the expected values in the case of ballistic propagation of light in a waveguide. Our results underscore the importance of a guide surface modification and the disordered molecular nano-layer in enhancement of absorption by amines on engineered integrated system.

  2. Giant absorption of light by molecular vibrations on a chip

    PubMed Central

    Karabchevsky, A.; Kavokin, A. V.

    2016-01-01

    Vibrational overtone spectroscopy of molecules is a powerful tool for drawing information on molecular structure and dynamics. It relies on absorption of near infrared radiation (NIR) by molecular vibrations. Here we show the experimental evidence of giant enhancement of the absorption of light in solutions of organic molecules due to the switch from ballistic to diffusive propagation of light through a channel silicate glass waveguide. We also experimentally address a dynamics of absorption as a function of time of adsorption of the organic molecules on a waveguide. The observed enhancement in diffusion regime is by a factor of 300 in N-Methylaniline and by factor of 80 in Aniline compared to the expected values in the case of ballistic propagation of light in a waveguide. Our results underscore the importance of a guide surface modification and the disordered molecular nano-layer in enhancement of absorption by amines on engineered integrated system. PMID:26887658

  3. Astrocytes as a Source for Extracellular Matrix Molecules and Cytokines

    PubMed Central

    Wiese, Stefan; Karus, Michael; Faissner, Andreas

    2012-01-01

    Research of the past 25 years has shown that astrocytes do more than participating and building up the blood-brain barrier and detoxify the active synapse by reuptake of neurotransmitters and ions. Indeed, astrocytes express neurotransmitter receptors and, as a consequence, respond to stimuli. Within the tripartite synapse, the astrocytes owe more and more importance. Besides the functional aspects the differentiation of astrocytes has gained a more intensive focus. Deeper knowledge of the differentiation processes during development of the central nervous system might help explaining and even help treating neurological diseases like Alzheimer’s disease, Amyotrophic lateral sclerosis, Parkinsons disease, and psychiatric disorders in which astrocytes have been shown to play a role. Specific differentiation of neural stem cells toward the astroglial lineage is performed as a multi-step process. Astrocytes and oligodendrocytes develop from a multipotent stem cell that prior to this has produced primarily neuronal precursor cells. This switch toward the more astroglial differentiation is regulated by a change in receptor composition on the cell surface and responsiveness to Fibroblast growth factor and Epidermal growth factor (EGF). The glial precursor cell is driven into the astroglial direction by signaling molecules like Ciliary neurotrophic factor, Bone Morphogenetic Proteins, and EGF. However, the early astrocytes influence their environment not only by releasing and responding to diverse soluble factors but also express a wide range of extracellular matrix (ECM) molecules, in particular proteoglycans of the lectican family and tenascins. Lately these ECM molecules have been shown to participate in glial development. In this regard, especially the matrix protein Tenascin C (Tnc) proved to be an important regulator of astrocyte precursor cell proliferation and migration during spinal cord development. Nevertheless, ECM molecules expressed by reactive astrocytes

  4. The submillimeter giants

    NASA Astrophysics Data System (ADS)

    Smith, D. H.

    1985-08-01

    The construction of new radiotelescopes to study the 0.3-1 mm radio band is being carried out at arid and high altitude sites around the world to avoid absorption of the radiation by atmospheric water vapor. The band offers data on the distribution of astromonical molecules in dark and dust clouds and quasars. A 30-m dish is being built at 9300 ft altitude in southern Spain, a synthesis array at 8400 ft ASL in the French Alps, and a 15-m dish at La Silla. Kitt Peak has received a new 12-m-diameter reflector and three 10.4-m dishes are operating in Owens Valley in California. A 10.4-m submillimeter dish is being constructed on Mauna Kea in Hawaii. The need to protect the devices from distortions due to moisture and vibrations is spurring the use of composite materials to retain accuracies in the tens of microns in focusing.

  5. Giant Serpentine Aneurysms: Multidisciplinary Management

    PubMed Central

    Anshun, W.; Feng, L.; Daming, W.

    2000-01-01

    Summary Sixty-five cases of intracranial giant serpentine aneurysms (GSΛs), including 61 cases reported in the literature and four additional cases presented in this study were reviewed. The clinical presentation, possible causes, natural history, and especially management of GSAs are discussed with emphasis on the need for aggressive intervention and multidisciplinary management. PMID:20667180

  6. The giant panda gut microbiome.

    PubMed

    Wei, Fuwen; Wang, Xiao; Wu, Qi

    2015-08-01

    Giant pandas (Ailuropoda melanoleuca) are bamboo specialists that evolved from carnivores. Their gut microbiota probably aids in the digestion of cellulose and this is considered an example of gut microbiota adaptation to a bamboo diet. However, this issue remains unresolved and further functional and compositional studies are needed.

  7. Controlling nucleation in giant liposomes.

    PubMed

    Tester, Chantel C; Whittaker, Michael L; Joester, Derk

    2014-05-30

    We introduce giant liposomes to investigate phase transformations in picoliter volumes. Precipitation of calcium carbonate in the confinement of DPPC liposomes leads to dramatic stabilization of amorphous calcium carbonate (ACC). In contrast, amorphous strontium carbonate (ASC) is a transient species, and BaCO3 precipitation leads directly to the formation of crystalline witherite.

  8. Formation of Hydrocarbons in the Outflows from Red Giants

    NASA Technical Reports Server (NTRS)

    Roberge, Wayne; Kress, Monika; Tielens, Alexander G.

    1995-01-01

    The formation of hydrocarbons in the oxygen-rich outflows from red giants was studied. The existence of organic molecules in such outflows has been known for several years; however, their surprisingly high abundances has been a mystery since all of the carbon had been thought to be irretrievably locked up in CO, the most strongly bound molecule. CO is the first molecule to form from the atoms present in the star's extended atmosphere, and as strong stellar winds drive a cooling outflow, dust grains condense out. In oxygen-rich outflows, the dust is thought to be composed mainly of silicates and other metal oxides. Perhaps the noble metals can condense out in metallic form, in particular the relatively abundant transition metals iron and nickel. We proposed that perhaps the carbon reservoir held as CO can be accessed through a catalytic process involving the chemisorption of CO and H2 onto grains rich in metallic iron. CO and H2 are the two most abundant molecules in circumstellar outflows, and they both are known to dissociate on transition metal surfaces at elevated temperatures, freeing carbon to form organic molecules such as methane. We believe methane is a precursor molecule to the organics observed in oxygen-rich red giants. We have developed a nonequilibrium numerical model of a surface chemical (catalytic) process. Based on this model, we believe that methane can be formed under the conditions present in circumstellar outflows. Although the methane formation rates are exceptionally low under these conditions, over dynamical timescales, a significant amount of CO can be converted to methane and driven further out in the envelope, explaining the presence of organics there.

  9. Mind Molecules

    PubMed Central

    Snyder, Solomon H.

    2011-01-01

    Scientific styles vary tremendously. For me, research is largely about the unfettered pursuit of novel ideas and experiments that can test multiple ideas in a day, not a year, an approach that I learned from my mentor Julius “Julie” Axelrod. This focus on creative conceptualizations has been my métier since working in the summers during medical school at the National Institutes of Health, during my two years in the Axelrod laboratory, and throughout my forty-five years at Johns Hopkins University School of Medicine. Equally important has been the “high” that emerges from brainstorming with my students. Nothing can compare with the eureka moments when, together, we sense new insights and, better yet, when high-risk, high-payoff experiments succeed. Although I have studied many different questions over the years, a common theme emerges: simple biochemical approaches to understanding molecular messengers, usually small molecules. Equally important has been identifying, purifying, and cloning the messengers' relevant biosynthetic, degradative, or target proteins, at all times seeking potential therapeutic relevance in the form of drugs. In the interests of brevity, this Reflections article is highly selective, and, with a few exceptions, literature citations are only of findings of our laboratory that illustrate notable themes. PMID:21543333

  10. Effects of limited exposure of rabbit chondrocyte cultures to parathyroid hormone and dibutyryl adenosine 3',5'-monophosphate on cartilage-characteristic proteoglycan synthesis

    SciTech Connect

    Kato, Y.; Koike, T.; Iwamoto, M.; Kinoshita, M.; Sato, K.; Hiraki, Y.; Suzuki, F.

    1988-05-01

    Treatment of rabbit chondrocyte cultures with PTH or (Bu)2cAMP for 30 h increased by 2- to 3-fold the incorporation of (35S)sulfate and 3H radioactivity with glucosamine as the precursor into large chondroitin sulfate proteoglycans characteristically found in cartilage matrix. However, PTH and (Bu)2cAMP did not increase either (35S)sulfate incorporation into small proteoglycans or the incorporation of 3H radioactivity into hyaluronic acid and other glycosaminoglycans. PTH and (Bu)2cAMP also increased the incorporation of (3H) serine into both proteoglycans and total protein. In all cultures described above, the stimulation of (3H)serine incorporation into proteoglycans exceeded that of (3H)serine incorporation into total protein. These data indicate that PTH and (Bu)2cAMP selectively stimulate cartilage proteoglycan synthesis while they increase total protein synthesis. Since cAMP seems to play a mediatory role in the action of PTH, we elected to examine the effects of a limited exposure of chondrocytes to PTH or (Bu)2cAMP on the synthesis of proteoglycans. Treatment with PTH or (Bu)2cAMP for only the initial 2-7 h did not increase the rates of incorporation of (35S)sulfate, the 3H radioactivity with glucosamine, and (3H)serine into proteoglycans, as measured at 30 h, despite the fact that this treatment brought about a rapid and transient rise in the cAMP level. Furthermore, the application of prostaglandin I2 at concentrations that increased cAMP levels in a similar fashion as did PTH did not affect (35S) sulfate incorporation into proteoglycans.

  11. Rapidly Developing Yeast Microcolonies Differentiate in a Similar Way to Aging Giant Colonies

    PubMed Central

    Váchová, Libuše; Hatáková, Ladislava; Čáp, Michal; Pokorná, Michaela; Palková, Zdena

    2013-01-01

    During their development and aging on solid substrates, yeast giant colonies produce ammonia, which acts as a quorum sensing molecule. Ammonia production is connected with alkalization of the surrounding medium and with extensive reprogramming of cell metabolism. In addition, ammonia signaling is important for both horizontal (colony centre versus colony margin) and vertical (upper versus lower cell layers) colony differentiations. The centre of an aging differentiated giant colony is thus composed of two major cell subpopulations, the subpopulation of long-living, metabolically active and stress-resistant cells that form the upper layers of the colony and the subpopulation of stress-sensitive starving cells in the colony interior. Here, we show that microcolonies originating from one cell pass through similar developmental phases as giant colonies. Microcolony differentiation is linked to ammonia signaling, and cells similar to the upper and lower cells of aged giant colonies are formed even in relatively young microcolonies. A comparison of the properties of these cells revealed a number of features that are similar in microcolonies and giant colonies as well as a few that are only typical of chronologically aged giant colonies. These findings show that colony age per se is not crucial for colony differentiation. PMID:23970946

  12. Altered Liver Proteoglycan/Glycosaminoglycan Structure as a Manifestation of Extracellular Matrix Remodeling upon BCG-induced Granulomatosis in Mice.

    PubMed

    Kim, L B; Shkurupy, V A; Putyatina, A N

    2017-01-01

    Experimental BCG-induced granulomatosis in mice was used to study changes in the dynamics of individual liver proteoglycan components reflecting phasic extracellular matrix remodeling, determined by the host-parasite interaction and associated with granuloma development. In the early BCG-granulomatosis period, the increase in individual proteoglycan components promotes granuloma formation, providing conditions for mycobacteria adhesion to host cells, migration of phagocytic cells from circulation, and cell-cell interaction leading to granuloma development and fibrosis. Later, reduced reserve capacity of the extracellular matrix, development of interstitial fibrosis and granuloma fibrosis can lead to trophic shortage for cells within the granulomas, migration of macrophages out of them, and development of spontaneous necrosis and apoptosis typical of tuberculosis.

  13. 1988 Volvo award in basic science. Proteoglycan synthesis in the human intervertebral disc. Variation with age, region and pathology.

    PubMed

    Bayliss, M T; Johnstone, B; O'Brien, J P

    1988-09-01

    Slices of human annulus fibrosus were cultured under conditions that controlled their hydration and prevented loss of proteoglycans from the extracellular matrix. A quantitative analysis of proteoglycan synthesis was carried out. Both the absolute rate of synthesis and the topographical variation in chondrocyte activity changed with age; the most active cells in the adult were found in the mid-annulus region, whereas in the fetal disc the cells in the inner annulus were the most active. The conditions under which the tissue was stored, and changes in hydration during culture, had considerable effects on synthesis. Pathological discs had a wide range of biological activity that reflected the heterogeneous properties of these specimens. It is suggested that this culture method provides a means of investigating the way in which the synthesis of the macromolecular components of the intervertebral disc are coordinated and subsequently incorporated into the extracellular matrix.

  14. Identification of phosphatase that dephosphorylates xylose in the glycosaminoglycan-protein linkage region of proteoglycans.

    PubMed

    Koike, Toshiyasu; Izumikawa, Tomomi; Sato, Ban; Kitagawa, Hiroshi

    2014-03-07

    Recently, we demonstrated that FAM20B is a kinase that phosphorylates the xylose (Xyl) residue in the glycosaminoglycan-protein linkage region of proteoglycans. The phosphorylation of Xyl residues by FAM20B enhances the formation of the linkage region. Rapid dephosphorylation is probably induced just after synthesis of the linker and just before polymerization initiates. Indeed, in vitro chondroitin or heparan sulfate polymerization does not occur when the Xyl residue of the tetrasaccharide linkage region is phosphorylated. However, the enzyme responsible for the dephosphorylation of Xyl remains unknown. Here, we identified a novel protein that dephosphorylates the Xyl residue and designated it 2-phosphoxylose phosphatase. The phosphatase efficiently removed the phosphate from the phosphorylated trisaccharide, Galβ1-3Galβ1-4Xyl(2-O-phosphate), but not from phosphorylated tetrasaccharide, GlcUAβ1-3Galβ1-3Galβ1-4Xyl(2-O-phosphate). Additionally, RNA interference-mediated inhibition of 2-phosphoxylose phosphatase resulted in increased amounts of GlcNAcα1-4GlcUAβ1-3Galβ1-3Galβ1-4Xyl(2-O-phosphate), Galβ1-3Galβ1-4Xyl(2-O-phosphate), and Galβ1-4Xyl(2-O-phosphate) in the cells. Gel filtration analysis of the glycosaminoglycan chains synthesized in the knockdown cells revealed that these cells produced decreased amounts of glycosaminoglycan chains and that the chains had similar lengths to those in the mock-transfected cells. Transcripts encoding this phosphatase were ubiquitously, but differentially, expressed in human tissues. Moreover, the phosphatase localized to the Golgi and interacted with the glucuronyltransferase-I involved in the completion of the glycosaminoglycan-protein linkage region. Based on these findings, we conclude that transient phosphorylation of the Xyl residue in the glycosaminoglycan-protein linkage region controls the formation of glycosaminoglycan chains of proteoglycans.

  15. Perlecan domain 1 recombinant proteoglycan augments BMP-2 activity and osteogenesis

    PubMed Central

    2012-01-01

    Background Many growth factors, such as bone morphogenetic protein (BMP)-2, have been shown to interact with polymers of sulfated disacharrides known as heparan sulfate (HS) glycosaminoglycans (GAGs), which are found on matrix and cell-surface proteoglycans throughout the body. HS GAGs, and some more highly sulfated forms of chondroitin sulfate (CS), regulate cell function by serving as co-factors, or co-receptors, in GF interactions with their receptors, and HS or CS GAGs have been shown to be necessary for inducing signaling and GF activity, even in the osteogenic lineage. Unlike recombinant proteins, however, HS and CS GAGs are quite heterogenous due, in large part, to post-translational addition, then removal, of sulfate groups to various positions along the GAG polymer. We have, therefore, investigated whether it would be feasible to deliver a DNA pro-drug to generate a soluble HS/CS proteoglycan in situ that would aug