Science.gov

Sample records for giant surfactant aggregates

  1. Surfactant effects on soil aggregate tensile strength

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Little is known regarding a soil aggregate's tensile strength response to surfactants that may be applied to alleviate soil water repellency. Two laboratory investigations were performed to determine surfactant effects on the tensile strength of 1) Ap horizons of nine wettable, agricultural soils co...

  2. Aggregation of sulfosuccinate surfactants in water

    SciTech Connect

    Magid, L.J.; Daus, K.A.; Butler, P.D.; Quincy, R.B.

    1983-12-22

    The aggregation of sodium di-n-alkyl sulfosuccinates in water (H/sub 2/O and D/sub 2/O at 45/sup 0/C) has been investigated. A self-consistent picture of the dependence of sodium ion binding on surfactant concentration is obtained from emf measurements, conductimetry, and small-angle neutron scattering (SANS) measurements. The concentration dependence of the micellar agregation number for the sulfosuccinates and related double-tailed surfactants depends markedly on surfactant solubility. A sphere-to-disk transition in micellar shape, which might have been expected as a precursor to formation of a lamellar mesophase, was not observed as the surfactant concentration was increased. 8 figures, 2 tables.

  3. Aggregation and transport of Brij surfactants in hydroxyethyl methacrylate hydrogels.

    PubMed

    Kapoor, Yash; Bengani, Lokendrakumar C; Tan, Grace; John, Vijay; Chauhan, Anuj

    2013-10-01

    Surfactant loaded polymeric hydrogels find applications in several technological areas including drug delivery. Drug transport can be attenuated in surfactant loaded gels through partitioning of the drug in the surfactant aggregates. The drug transport depends on the type of the aggregates and also on the surfactant transport because diffusion of the surfactant leads to dissolution of the aggregates. The drug and the surfactant transport can be characterized by the surfactant monomer diffusivity Ds. and the critical aggregation concentration C(*). Here we focus on the transport in hydroxyethyl methacrylate (HEMA) hydrogels loaded with three different types of Brij surfactants. We measure transport of a hydrophobic drug cyclosporine and the surfactant for surfactant loadings ranging from 0.1% to 8%, and utilize the data to predict the values of Ds. and C(*). We show that the predictions based on surfactant transport are significantly different from those based on modeling the drug transport. The differences are attributed to the assumption of just one type of aggregate in the gel irrespective of the total concentration. The transport data suggests existence of multiple types of aggregates and this hypothesis is validated for Brij 98 by imaging of the microstructure with free fracture SEM.

  4. Synergistic Growth of Giant Wormlike Micelles in Ternary Mixed Surfactant Solutions: Effect of Octanoic Acid.

    PubMed

    Georgieva, Gergana S; Anachkov, Svetoslav E; Lieberwirth, Ingo; Koynov, Kaloian; Kralchevsky, Peter A

    2016-12-06

    The synergistic growth of giant wormlike micelles in ternary mixed solutions composed of an anionic surfactant (sodium laurylethersulfate, SLES), a zwitterionic surfactant (cocamidopropyl betaine, CAPB), and octanoic acid (HC8) is studied. Rheological data and their analysis in terms of Cole-Cole plots and micellar characteristic times are presented, and the micellar structures behind the observed rheological behavior are revealed by cryo-TEM micrographs. The surfactant composition is fixed near the maximal micelle size of the binary SLES + CAPB system, whereas the concentration of HC8 is varied. At a given HC8 concentration, the viscosity of the ternary micellar solutions exhibits a very high and sharp peak. Polarized-light optical microscopy indicates that all investigated solutions are isotropic rather than liquid-crystalline. The cryo-TEM imaging shows complex phase behavior: wormlike micelles to the left of the peak, giant entangled wormlike micelles at the peak, and long wormlike micelles coexisting with multiconnected micellar aggregates to the right of the peak. The formation of multiconnected micelles leads to a drop in viscosity at the higher concentrations. The results contribute to a better understanding of the structure-rheology relations in micellar surfactant solutions and could be useful for controlling the properties of formulations in personal-care and house-hold detergency.

  5. Efficacy of glyphosate and five surfactants for controlling giant salvinia

    USGS Publications Warehouse

    Fairchild, J.F.; Allert, A.L.; Riddle, J.S.; Gladwin, D.R.

    2002-01-01

    Giant salvinia (Salvinia molesta Mitchell) is a non-native, invasive aquatic fern that was recently introduced to the southern United States. The aggressive nature of the species has led to concerns over its potential adverse impacts to native plants, fish, and invertebrates. We conducted a study to determine the efficacy of glyphosate [isopropylamine salt of N-(phosphono-methyl)glycine] and several surfactants for control of giant salvinia. Studies were conducted over a 42-day period using static renewals (twice weekly) with 4% Hoagland's medium (10 mg/L N equivalent) in replicated 2-L containers. Five concentrations of glyphosate (0, 0.45, 0.91, 1.82, and 3.60% v:v) and five surfactants (0.25% concentration, v:v; Optima???, Kinetic???, Mon 0818???, Cygnet Plus???, and LI-700???) were applied with a pressurized sprayer as a single surface application in a fully nested experimental design. Untreated giant salvinia grew rapidly and exhibited an increase of 800% wet weight biomass over the 42-day test duration. Glyphosate, with and without surfactants, exhibited efficacy at concentrations as low as 0.45% of the commercial formulation. Glyphosate with Optima was the only mixture that resulted in complete mortality of plants with no regrowth.

  6. Multi-block poloxamer surfactants suppress aggregation of denatured proteins.

    PubMed

    Mustafi, Devkumar; Smith, Catherine M; Makinen, Marvin W; Lee, Raphael C

    2008-01-01

    On the basis of elastic light scattering, we have compared the capacity of the multi-block, surfactant copolymers Poloxamer 108 (P108), Poloxamer 188 (P188), and Tetronic 1107 (T1107), of average molecular weight 4700, 8400, and 15,000, respectively, with that of polyethylene glycol (PEG, molecular weight 8000) to suppress aggregation of heat-denatured hen egg white lysozyme (HEWL) and bovine serum albumin (BSA). We also compared the capacity of P188 to that of PEG to suppress aggregation of carboxypeptidase A denatured in the presence of trifluoroethanol and to facilitate recovery of catalytic activity. In contrast to the multi-block copolymers, PEG had no effect in inhibiting aggregation of HEWL or of carboxypeptidase A with the recovery of catalytic activity. At very high polymer:protein ratios (>or=10:1), PEG increased aggregation of heat-denatured HEWL and BSA, consistent with its known properties to promote macromolecular crowding and crystallization of proteins. At a polymer:protein ratio of 2:1, the tetra-block copolymer T1107 was the most effective of the three surfactant copolymers, completely suppressing aggregation of heat-denatured HEWL. At a T1107:BSA ratio of 10:1, the poloxamer suppressed aggregation of heat-denatured BSA by 50% compared to that observed in the absence of the polymer. We showed that the extent of suppression of aggregation of heat-denatured proteins by multi-block surfactant copolymers is dependent on the size of the protein and the copolymer:protein molar ratio. We also concluded that at least one of the tertiary nitrogens in the ethylene-1,2-diamine structural core of the T1107 copolymer is protonated, and that this electrostatic factor underlies its capacity to suppress aggregation of denatured proteins more effectively than nonionic, multi-block poloxamers. These results indicate that amphiphilic, surfactant, multi-block copolymers are efficient as additives to suppress aggregation and to facilitate refolding of denatured

  7. The effects of alkylammonium counterions on the aggregation of fluorinated surfactants and surfactant ionic liquids.

    PubMed

    Pottage, Matthew J; Greaves, Tamar L; Garvey, Christopher J; Tabor, Rico F

    2016-08-01

    The effects of organic counterions with varying carbon number on surfactant aggregation have been analysed by coupling perfluorooctanoate surfactant anions with various alkylammonium counterions. Both the degree of substitution (primary to tertiary) and alkyl chain length (0-3 carbons) of the counterions were varied to provide a comprehensive matrix of geometries and lipophilicities. Surface activity was measured using pendant drop tensiometry, while temperature-controlled small-angle neutron scattering was used to probe changes in aggregation morphology. It was found that the use of such alkylammonium counterions resulted in a strong preference for bilayer formation even at low surfactant concentration (<2wt%), when compared to simple inorganic counterions such as sodium which favour near-spherical micelles. At increased temperatures, some counterions led to unique phase behaviour wherein a transition between two structurally different lamellar phases is seen, rationalised as a transition into a microscopic phase separation wherein a surfactant-rich lamellar phase coexists with a dilute micellar phase. The results indicate that aggregation is controlled by a delicate balance of counterion size, hydrophilicity and diffuseness of charge, providing new methods for the subtle control of surfactant solutions.

  8. Aggregation behavior of gemini surfactants and their interaction with macromolecules in aqueous solution.

    PubMed

    Han, Yuchun; Wang, Yilin

    2011-02-14

    Gemini surfactants are constructed by two hydrophobic chains and two polar/ionic head groups covalently connected by a spacer group at the level of the head groups. Gemini surfactants possess unique structural variations and display special aggregate transitions. Their aggregation ability and aggregate structures can be more effectively adjusted through changing their molecular structures compared with the corresponding monomeric surfactants. Moreover, gemini surfactants exhibit special and useful properties while interacting with polymers and biomacromolecules. Their strong self-aggregation ability can be applied to effectively influence the aggregation behavior of both polymers and biomacromolecules. This short review is focused on the performances of gemini surfactants in aqueous solutions investigated in the last few years, and summarizes the effects of molecular structures on aggregation behavior of gemini surfactants in aqueous solution as well as the interaction of gemini surfactants with polymers and biomacromolecules respectively.

  9. Reaction limited aggregation in surfactant-mediated epitaxy

    NASA Astrophysics Data System (ADS)

    Wu, Jing; Liu, Bang-Gui; Zhang, Zhenyu; Wang, E. G.

    2000-05-01

    A theoretical model for reaction limited aggregation (RLA) is introduced to study the effect of a monolayer of surfactant on the formation of two-dimensional islands in heteroepitaxial and homoepitaxial growth. In this model the basic atomic processes are considered as follows. A stable island consists of the adatoms that have exchanged positions with the surfactant atoms beneath them. Movable active adatoms may (a) diffuse on the surfactant terrace, (b) exchange positions with the surfactant atoms beneath them and become island seeds (seed exchange), or (c) stick to stable islands and become stuck but still active adatoms. The rate-limiting step for the formation of a stable island is the seed exchange. Furthermore, a stuck but still active adatom must overcome a sizable potential-energy barrier to exchange positions with the surfactant atom beneath it and become a member of the stable island (aided exchange). The seed exchange process can occur with an adatom or collectively with an addimer. In the case of dimer exchange, the diffusing adatoms on the surfactant terrace can meet and (after exchanging) form stable dimers, which can then become island seeds. Systematic kinetic Monte Carlo simulations and rate-equation analysis of the model are carried out. The key finding of these simulations is that a counterintuitive fractal-to-compact island shape transition can be induced either by increasing deposition flux or by decreasing growth temperature. This major qualitative conclusion is valid for both the monomer and the dimer seed exchanges and for two different substrate lattices (square and triangular, respectively), although there are some quantitative differences in the flux and temperature dependence of the island density. The shape transition observed is contrary to the prediction of the classic diffusion-limited aggregation (DLA) theory, but in excellent qualitative agreement with recent experiments. In rationalizing the main finding, it is crucial to realize

  10. Hierarchical Structure from the Self-Assembly of Giant Gemini Surfactants in Condensed State

    NASA Astrophysics Data System (ADS)

    Su, Hao; Wang, Zhao; Li, Yiwen; Cheng, Stephen

    2013-03-01

    In the past a few years, a new class of amphiphiles with both asymmetrical shapes and interactions named ``shape amphiphiles'' has been significantly intensified. Recently, a new kind of shape amphiphiles called ``Giant Gemini Surfactants'' consisting of two hydrophilic carboxylic acid-functionalized polyhedral oligomeric silsesquioxane (APOSS) heads and two hydrophobic polystyrene (PS) tails covalently linked via rigid spacers (p-phenylene versus biphenylene) has been successful behavior of giant gemini surfactants. We currently continue to investigate the spacer effects on the self-assembly behaviors of giant gemini surfactants in condensed state by utilizing DCS, SAXS and TEM. Preliminary results showed that giant gemini surfactants with different spacers have diverse phase behaviors. As we use the same 3.2k PS chains, the giant gemini surfactant with p-phenylene spacer showed double gyroid morphology, while the one with biphenylene spacer revealed cylindrical morphology. This study expands the scope of giant gemini surfactants and contributes a lot to the basic physical principles in self-assembly behavior.

  11. Dose response of surfactants to attenuate gas embolism related platelet aggregation

    NASA Astrophysics Data System (ADS)

    Eckmann, David M.; Eckmann, Yonaton Y.; Tomczyk, Nancy

    2014-03-01

    Intravascular gas embolism promotes blood clot formation, cellular activation, and adhesion events, particularly with platelets. Populating the interface with surfactants is a chemical-based intervention to reduce injury from gas embolism. We studied platelet activation and platelet aggregation, prominent adverse responses to blood contact with bubbles. We examined dose-response relationships for two chemically distinct surfactants to attenuate the rise in platelet function stimulated by exposure to microbubbles. Significant reduction in platelet aggregation and platelet activation occurred with increasing concentration of the surfactants, indicating presence of a saturable system. A population balance model for platelet aggregation in the presence of embolism bubbles and surfactants was developed. Monte Carlo simulations for platelet aggregation were performed. Results agree qualitatively with experimental findings. Surfactant dose-dependent reductions in platelet activation and aggregation indicate inhibition of the gas/liquid interface's ability to stimulate cellular activation mechanically.

  12. Synthesis of polymer-biohybrids: from small to giant surfactants.

    PubMed

    Reynhout, Irene C; Cornelissen, Jeroen J L M; Nolte, Roeland J M

    2009-06-16

    Amphiphiles or surfactants, more popularly known as soaps, are among the oldest known chemical compounds used by man. Written text on a clay tablet dated to 2200 B.C. indicates that the Babylonians were familiar with soap-like substances. According to the Ebers papyrus (1550 B.C.), the ancient Egyptians bathed regularly in a mixture of animal oils, vegetable extracts, and alkaline salts, and a soap factory with bars of scented soap was found in the ruins of Pompeii (79 A.D.). In modern times, the use of soap has become universal, and we now understand reasonably well what happens when soap molecules are dispersed in aqueous solution and how the cleaning properties of soap work. The latter is related to the surface-active behavior of soap molecules, which is a result of their amphiphilic, also called amphipathic, character. Although the cleaning aspect is still an important issue, scientists are increasingly focusing on other properties of soaps, for example, self-assembling behavior and how this can be used in the design and non-covalent synthesis of new (macro)molecular architectures. These new molecules can be employed in nanotechnology and drug delivery, among other applications. This Account will focus on three different classes of amphiphiles. The first is the low molecular weight amphiphiles, also called classical amphiphiles in this context. A short overview will be given on the research carried out by our group and others on the self-assembly behavior and properties of these compounds; in particular, we focus on the ones that can be stabilized by polymerization (polymerized vesicles). Next, we will introduce the still relatively young field of superamphiphiles, macromolecules consisting of a hydrophobic and a hydrophilic polymeric block. Finally, and this constitutes the main part of this Account, we will provide an overview of a new class of amphiphiles, the so-called giant amphiphiles. These macromolecules have an enzyme or protein as the polar head group

  13. Self-aggregation of cationic surfactants onto oxidized cellulose fibers and coadsorption of organic compounds.

    PubMed

    Alila, S; Aloulou, F; Beneventi, D; Boufi, S

    2007-03-27

    In this work, the adsorption of cationic surfactant and organic solutes on oxidized cellulose fibers bearing different amounts of carboxylic moieties was investigated. The increase in the amount of -COOH groups on cellulose fibers by TEMPO oxidation induced a general rise in surfactant adsorption. For all tested conditions, that is, cellulose oxidation level and surfactant alkyl chain length (C12 and C16), adsorption isotherms displayed a typical three-region shape with inversion of the substrate zeta-potential which was interpreted as reflecting surfactant adsorption and aggregation (admicelles and hemimicelles) on cellulose fibers. The addition of organic solutes in surfactant/cellulose systems induced a decrease in surfactant cac on the cellulose surface thus favoring surfactant aggregation and the formation of mixed surfactant/solute assemblies. Adsorption isotherms of organic solutes on cellulose in surfactant/cellulose/solute systems showed that solute adsorption is strictly correlated to (i) the surfactant concentration, solute adsorption increases up to the surfactant cmc, where solute partitioning between the cellulose surface and free micelles causes a drop in adsorption, and to (ii) solute solubility and functional groups. The specific shape of solutes adsorption isotherms at a fixed surfactant concentration was interpreted using a Frumkin adsorption isotherm, thus suggesting that solute uptake on cellulose fibers is a coadsorption and not a partitioning process. Results presented in this study were compared with those obtained in a previous work investigating solute adsorption in anionic surfactant/cationized cellulose systems to better understand the role of surfactant/solute interactions in the coadsorption process.

  14. Steroidal Surfactants: Detection of Premicellar Aggregation, Secondary Aggregation Changes in Micelles, and Hosting of a Highly Charged Negative Substance.

    PubMed

    Barnadas-Rodríguez, Ramon; Cladera, Josep

    2015-08-25

    CHAPSO and CHAPS are zwitterionic surfactants derived from bile salts which are usually employed in protein purification and for the preparation of liposomes and bicelles. Despite their spread use, there are significant discrepancies on the critical concentrations that determine their aggregation behavior. In this work, we study the interaction between these surfactants with the negative fluorescent dye pyranine (HPTS) by absorbance, fluorescence, and infrared spectrometry to establish their concentration-dependent aggregation. For the studied surfactants, we detect three critical concentrations showing their concentration-dependent presence as a monomeric form, premicellar aggregates, micelles, and a second type of micelle in aqueous medium. The nature of the interaction of HPTS with the surfactants was studied using analogues of their tails and the negative bile salt taurocholate (TC) as reference for the sterol ring. The results indicate that the chemical groups involved are the hydroxyl groups of the polar face of the sterol ring and the sulfonate groups of the dye. This interaction causes not only the incorporation of the negative dye in CHAPSO and CHAPS micelles but also its association with their premicellar aggregates. Surprisingly, this hosting behavior for a negative charged molecule was also detected for the negative bile salt TC, bypassing, in this way, the electrostatic repulsion between the guest and the host.

  15. Mechanical and thermodynamic properties of surfactant aggregates at the solid-liquid interface.

    PubMed

    Rabinovich, Yakov I; Vakarelski, Ivan U; Brown, Scott C; Singh, Pankaj K; Moudgil, Brij M

    2004-02-01

    Surfactants are widely used to stabilize colloidal systems in a variety of industrial applications through the formation of self-assembled aggregates at the solid-liquid interface. Previous studies have reported that the control of surfactant-mediated slurry stability can be achieved through the manipulation of surfactant chain length and concentration. However, a fundamental understanding of the mechanical and energetic properties of these aggregates, which may aid in the molecular-level design of these systems, is still lacking. In this study, experimentally measured force/distance curves between an atomic force microscope (AFM) tip and self-assembled surfactant aggregates on mica or silica substrates at concentrations higher than the bulk critical micelle concentration (CMC) were used to determine their mechanical and thermodynamic properties. The experimental curves were fitted to a model which describes the interaction between a hard sphere (tip) and a soft substrate (surfactant structures) based on a modified Hertz theory for the case of a thin elastic layer on a rigid substrate. The calculated mechanical properties were found to be in the same order of magnitude as those reported for rubber-like materials (e.g., polydimethylsiloxane (PDMS)). By integrating the force/distance curves, the energy required for breaking the surface aggregates was also calculated. These values are close to those reported for bulk-micelle formation.

  16. Self-assembled surfactants on patterned surfaces: confinement and cooperative effects on aggregate morphology.

    PubMed

    Suttipong, Manaswee; Grady, Brian P; Striolo, Alberto

    2014-08-21

    The adsorption and self-assembly of surfactants are ubiquitous processes in several technological applications, including the manufacture of nano-structured materials using bottom-up strategies. Although much is known about the adsorption of surfactants on homogeneous flat surfaces from experiments, theory, and simulations, limited information is available, in quantifiable terms, regarding the adsorption of surfactants on surfaces with chemical and/or morphological heterogeneity. In an effort to fill this knowledge gap, we report here results obtained using equilibrium dissipative particle dynamics (DPD) simulations for the adsorption of model surfactants onto patterned flat surfaces (i.e., flat surfaces with chemical heterogeneity). The patterns consist of one or two stripes of variable width on which the surfactants could adsorb. The adsorbing stripes are surrounded by a surface that effectively repels the surfactants. This repelling surface, perhaps not realistic, allows us to quantify the effect of lateral confinement on the morphology of surfactant aggregates. When the stripe width is large (effectively providing a homogeneous flat surface), the surfactants yield a flat monolayer. Our simulations suggest that the flat monolayers become hemi-cylinders, hemi-spheres, and individual surfactants as the stripe width decreases, a consequence of lateral confinement. In some cases our simulations show evidence of cooperative effects when two adsorbing stripes are present on the surface. If the distance between the stripes and the widths of the stripes are both less than about one surfactant length, hemi-cylindrical shells and irregular structures are observed because of cooperativity; otherwise the results match those found for a single isolated stripe. Our predictions could be useful for the design of new nano-structured materials and coatings, for applications ranging from nano-fluidic devices to nano-reactors.

  17. Effect of surfactants on the aggregation and sedimentation of zinc oxide nanomaterial in natural water matrices.

    PubMed

    Li, Xuankun; Yoneda, Minoru; Shimada, Yoko; Matsui, Yasuto

    2017-03-01

    The wide application of surfactants and engineered nanomaterials (ENMs) in industrial and consumer products lead to the high possibility of their co-presence in natural water environment, making it important to study the effect of surfactants on the environmental behavior and fate of ENMs. In this work, we selected an anionic sodium dodecyl sulfate (SDS) and a nonionic nonylphenol ethoxylate (NPEO, Tergitol NP-9) to study their effects on the aggregation and sedimentation of a 20nm ZnO ENM in different water matrices. The adsorption of SDS and NP-9 by ZnO ENM were fitted with Langmuir model, and the maximum adsorption capacities were 43.73±4.62mg/g and 13.79±1.09 respectively. As the surfactant concentration increased from 0 to 0.030% (m:v), SDS reduced the zeta potential of ZnO ENM from 17.56±2.13 to -27.96±2.59mV, whereas NP-9 did not affect the zeta potential. After a 24-h batch reactor experiment, SDS and NP-9 reduced 93.02% and 80.26% of the aggregate size of ZnO ENM (50mgL(-1)) in maximum at surfactant concentrations≥0.015%. The ZnO ENM was not stable in natural aqueous matrices, mainly because of the relatively high ionic strength. However, surfactants were found to reduce the aggregation and sedimentation of ZnO ENM in six natural water matrices in different degrees. With the presence of 0.030% SDS in tap water, maximum reduction rates of aggregate size and sedimentation were recorded as 69.54% and 26.69%, respectively. The results of this study indicate that the presence of surfactants may alter the behaviors and fate of ENMs in natural water environment.

  18. Evolution of mixed surfactant aggregates in solutions and at solid/solution interfaces

    NASA Astrophysics Data System (ADS)

    Zhang, Rui

    Surfactant systems have been widely used in such as enhanced oil recovery, waste treatment and metallurgy, etc., in order to solve the problem of global energy crisis, to remove the pollutants and to generate novel energy resources. Almost all surfactant systems are invariably mixtures due to beneficial and economic considerations. The sizes and shapes of aggregates in solutions and at solid/solution interfaces become important, since the nanostructures of mixed aggregates determine solution and adsorption properties. A major hurdle in science is the lack of information on the type of complexes and aggregates formed by mixtures and the lack of techniques for deriving such information. Using techniques such as analytical ultracentrifuge, small angle neutron scattering, surface tension, fluorescence, cryo-TEM, light scattering and ultrafiltration, the nanostructures of aggregates of sugar based n-dodecyl-beta-D-maltoside (DM) and nonionic pentaethyleneglycol monododecyl ether or nonyl phenol ethoxylated decyl ether (NP-10) and their mixtures have been investigated to prove the hypothesis that the aggregation behavior is linked to packing of the surfactant governed by the molecular interactions as well as the molecular structures. The results from both sedimentation velocity and sedimentation equilibrium experiments suggest coexistence of two types of micelles in nonyl phenol ethoxylated decyl ether solutions and its mixtures with n-dodecyl-beta-D-maltoside while only one micellar species is present in n-dodecyl-beta-D-maltoside solutions, in good agreement with those from small angle neutron scattering, cryo-TEM, light scattering and ultrafiltration. Type I micelles were primary micelles at cmc while type II micelles were elongated micelles. On the other hand, the nanostructures of mixed surface aggregates have been quantitatively predicted for the first time using a modified packing index. As a continuation of the Somasundaran-Fuersteneau adsorption model, a

  19. Giant Surfactants based on Precisely Functionalized POSS Nano-atoms: Tuning from Crystals to Frank-Kasper Phases and Quasicrystals

    NASA Astrophysics Data System (ADS)

    Cheng, Stephen Z. D.

    In creating new functional materials for advanced technologies, precisely control over functionality and their hierarchical ordered structures are vital for obtaining the desired properties. Giant polyhedra are a class of materials which are designed and constructed via deliberately placing precisely functionalized polyhedral oligomeric silsesquioxane (POSS) and fullerene (C60) molecular nano-particles (MNPs) (so-called ``nano-atoms'') at the vertices of a polyhedron. Giant surfactants are consisted of polymer tail-tethered ``nano-atoms'' which are deliberately and precisely functionalized POSS or C60 molecular nano-particles (MNPs). The ``nano-atom'' heads and polymer tails thus have drastic chemical differences to impart amphiphilicity. These giant surfactants capture the essential structural features of their small-molecule counterparts in many ways but possess much larger sizes, and therefore, they are recognized as size-amplified versions of small molecule surfactants. Two of the most illustrating examples are a series of novel giant tetrahedra and a series of giant giant surfactants as building blocks to construct into hierarchical ordered super-lattice structures ranging from crystals, Frank-Kasper phases and quasicrystals in the condensed bulk states, reveals evidently the interconnections between soft matters and hard matters in sharing their common structures and fundamental knowledge. This work was supported by National Science Foundation (DMR-1409972).

  20. An NMR study of macromolecular aggregation in a model polymer-surfactant solution

    NASA Astrophysics Data System (ADS)

    Barhoum, Suliman; Yethiraj, Anand

    2010-01-01

    A model complex-forming nonionic polymer-anionic surfactant system in aqueous solution has been studied at different surfactant concentrations. Using pulsed-field-gradient diffusion NMR spectroscopy, we obtain the self-diffusion coefficients of poly(ethylene glycol) (PEO) and sodium dodecyl sulfate (SDS) simultaneously and as a function of SDS concentration. In addition, we obtain NMR relaxation rates and chemical shifts as a function of SDS concentration. Within the context of a simple model, our experimental results yield the onset of aggregation of SDS on PEO chains (CAC=3.5 mM), a crossover concentration (C2=60 mM) which signals a sharp change in relaxation behavior, as well as an increase in free surfactant concentration and a critical concentration (Cm=145 mM) which signals a distinct change in diffusion behavior and a crossover to a solution containing free micelles. Cm also marks the concentration above which obstruction effects are definitely important. In addition, we obtain the concentration of SDS in monomeric form and in the form of free micelles, as well as the average number of SDS molecules in a PEO-SDS aggregate (NAggr). Taken together, our results suggests continuous changes in the aggregation phenomenon over much of the concentration but with three distinct concentrations that signal changes in the nature of the aggregates.

  1. Aggregation behavior of tetracarboxylic surfactants derived from cholic and deoxycholic acids and ethylenediaminetetraacetic acid.

    PubMed

    Alvarez Alcalde, Mercedes; Jover, Aida; Meijide, Francisco; Galantini, Luciano; Viorel Pavel, Nicolae; Antelo, Alvaro; Vázquez Tato, José

    2009-08-18

    The reaction of 3beta-aminoderivatives of cholic and deoxycholic acids (steroid residues) with dimethyl ester of ethylenediaminetetraacetic acid (bridge) leads to the formation of dimers carrying four carboxylic organic functions, two of them located on the side chain of each steroid residue and the other two on the bridge. As tetrasodium salts, these new compounds behave as surfactants and have been characterized by surface tension, fluorescence intensity of pyrene (as a probe), and static and dynamic light scattering measurements. Thermodynamic parameters for micellization were obtained from the dependence of the critical micelle concentration (cmc) with temperature. For both surfactants, the fraction of bound counterions is close to 0.5. The aggregation behavior is similar to one of their bile salt residues [i.e., sodium cholate (NaC) and sodium deoxycholate (NaDC)] and can be summarized as follows: (i) molecular areas at the interface for the new surfactants are fairly close to twice the value for a single molecule in a monolayer of natural bile salts; (ii) the environment where pyrene is solubilized is very apolar, as in natural bile salt aggregates; (iii) Gibbs free energies (per steroid residue) for micellization are not far from published values for NaC and NaDC, and the differences can be understood on the basis of less hydrophobicity of the new surfactants due to the charges in the bridge; and (iv) as for NaC and NaDC, aggregates have rather low aggregation numbers (which depend on the amount of added inert salt, NaCl). A structure based on the disklike model accepted for small bile salt aggregates is proposed.

  2. Inhibitory effect of copper nanoparticles on rosin modified surfactant induced aggregation of lysozyme.

    PubMed

    Ishtikhar, Mohd; Usmani, Salman Sadullah; Gull, Nuzhat; Badr, Gamal; Mahmoud, Mohamed H; Khan, Rizwan Hasan

    2015-01-01

    Protein aggregation is associated with many serious diseases including Parkinson's and Alzheimer's. Protein aggregation is a primary problem related with the health of industrial workers who work with the surfactants, metal ions, and cosolvents. We have synthesized rosin-based surfactants, i.e., quaternary amines of rosin diethylaminoethyl esters (QRMAE), which is an ester of rosin acid with polyethylene glycol monomethyl ether. Here, we report the thermal aggregation of lysozyme induced by QRMAE at 65 °C and pH 7.4 for a given time period in which amorphous aggregates are formed and confirm that copper-nanoparticles have the ability to inhibit QRMAE-induced aggregation compared with zinc and silver-nanoparticles. Aggregation experiments was evaluated using several spectroscopic methods and dye binding assay, such as turbidity, Rayleigh light scattering, 1-anilino-8-naphthalene sulfonate (ANS), Thioflavin T (Th T), congo red (CR) and circular dichroism (CD), that was further supported by scanning electron microscopy (SEM) and SEM with EDX. The therapeutic use of nanoparticles and the fact that rosin possesses excellent film-forming properties, and that its derivatives have pharmaceuticals application such as micro encapsulation, coating and film forming, it's matrix materials are used for sustained and controlled release tablets, renders importance and application to the present study.

  3. Micropolarity and water penetration in micellar aggregates of linear and branched hydrocarbon surfactants

    SciTech Connect

    Varadaraj, R.; Bock, J.; Valint, P. Jr.; Brons, N. )

    1990-08-01

    The micropolarity of aqueous micellar solutions of ethoxylates, sodium ethoxy sulfates, and sulfates derived from linear and branched hydrocarbon alcohols was investigated by using a solvatochromic pyridinio-N-phenoxide betaine, ET-30, polarity probe. Branching of the hydrophobe resulted in a more porous micellar aggregate. Thermosolvatochromism of ET-30 allowed an investigation of the effect of temperature on micropolarity. Increase in temperature was observed to expel water from the hydrophobic regions of the aggregate and decrease the effective micropolarity in linear and branched surfactants.

  4. Interfacial aggregation of a nonionic surfactant: Effect on the stability of silica suspensions

    SciTech Connect

    Giordano-Palmino, F.; Denoyel, R.; Rouquerol, J. . Centre de thermodynamique et Microcalorimetrie)

    1994-06-01

    Nonionic surfactants are in widespread use in technological applications such as flotation, detergency, suspension stabilization (paints, ceramic preparation, pharmaceuticals, cosmetics), and enhanced oil recovery. The adsorption of the nonionic surfactant TX 100 in two silica suspensions (Ludox HS40 and Syton W30) has been studied with the aim of relating the structure of the adsorbed layer to the stability of the suspension. First, a thermodynamic study based on the determination of adsorption isotherms and displacement enthalpies as a function of pH and solid/liquid ratio was carried out and lead to the conclusion that such a surfactant forms micelle-like aggregates on the silica surface. Then, a stability study based on visual observation, turbidimetry, and particle size determination (by photon correlation spectroscopy) was performed in order to determine the TX 100 concentration range in which flocculation occurs. Considering that the surface is covered with micelle-like aggregates in the flocculation range and that the [zeta]-potential (determined by microelectrophoresis) has varied only slightly at the onset of flocculation, it is concluded that the flocculation mechanism is a bridging of particles by surface micelles. This bridging of particles by aggregates similar in size and shape could be an explanation of the presence, in such systems, of optimum flocculation at half surface coverage.

  5. Colossal Aggregations of Giant Alien Freshwater Fish as a Potential Biogeochemical Hotspot

    PubMed Central

    Boulêtreau, Stéphanie; Cucherousset, Julien; Villéger, Sébastien; Masson, Rémi; Santoul, Frédéric

    2011-01-01

    The ubiquity and fascinating nature of animal aggregations are widely recognised. We report here consistent and previously undocumented occurences of aggregations of a giant alien freshwater fish, the Wels catfish (Silurus glanis). Aggregative groups were on average composed of 25 (±10 SD, ranging from 15 to 44) adults with estimated average total biomass of 651 kg (386 – 1132) and biomass density of 23 kg m−2 (14 – 40). Aggregations always occurred within the same location. No foraging, reproductive or anti-predator behaviour were observed during the aggregations. A mass-balance model estimated that these colossal aggregations of an alien species can locally release, through excretion only, up to 70 mg P m−2 h−1 and 400 mg N m−2 h−1, potentially representing the highest biogeochemical hotspots reported in freshwater ecosystems and another unexpected ecological effect of alien species. PMID:21998687

  6. Colossal aggregations of giant alien freshwater fish as a potential biogeochemical hotspot.

    PubMed

    Boulêtreau, Stéphanie; Cucherousset, Julien; Villéger, Sébastien; Masson, Rémi; Santoul, Frédéric

    2011-01-01

    The ubiquity and fascinating nature of animal aggregations are widely recognised. We report here consistent and previously undocumented occurences of aggregations of a giant alien freshwater fish, the Wels catfish (Silurus glanis). Aggregative groups were on average composed of 25 (± 10 SD, ranging from 15 to 44) adults with estimated average total biomass of 651 kg (386 - 1132) and biomass density of 23 kg m(-2) (14 - 40). Aggregations always occurred within the same location. No foraging, reproductive or anti-predator behaviour were observed during the aggregations. A mass-balance model estimated that these colossal aggregations of an alien species can locally release, through excretion only, up to 70 mg P m(-2) h(-1) and 400 mg N m(-2) h(-1), potentially representing the highest biogeochemical hotspots reported in freshwater ecosystems and another unexpected ecological effect of alien species.

  7. Unusual subterranean aggregations of the California Giant Salamander, Dicamptodon ensatus

    USGS Publications Warehouse

    Fellers, Gary M.; Wood, Leslie L.; Carlisle, Sarah; Pratt, David

    2010-01-01

    Larval Dicamptodon are one of the most abundant vertebrates in headwater streams in the Pacific Northwest. Their numbers and biomass can exceed those of all other amphibians, and of salmonid fishes. By contrast, metamorphosed Dicamptodon are only found infrequently, usually during formal surveys using pitfall traps, cover boards, or time constrained surveys However, we found two aggregations (23 and 27 individuals) of metamorphosed Dicamptodon ensatus during a culvert removal project at Point Reyes National Seashore, California. Furthermore, we found an additional 23 terrestrial D. ensatus in terrestrial habitat adjacent to the culverts. We did not expect these aggregations because metamorphosed individuals are so rarely encountered, and aggregations are likely to increase competition and predation in a species known to feed regularly on vertebrate prey. Deteriorating culverts might provide an unusually high-quality habitat that leads to aggregations such as we describe. Our observations may provide insight into the natural haunts of D. ensatus—underground burrows or caverns—and if so, then aggregations may be normal, but rarely seen.

  8. Small surfactant-like peptides can drive soluble proteins into active aggregates

    PubMed Central

    2012-01-01

    Background Inactive protein inclusion bodies occur commonly in Escherichia coli (E. coli) cells expressing heterologous proteins. Previously several independent groups have found that active protein aggregates or pseudo inclusion bodies can be induced by a fusion partner such as a cellulose binding domain from Clostridium cellulovorans (CBDclos) when expressed in E. coli. More recently we further showed that a short amphipathic helical octadecapeptide 18A (EWLKAFYEKVLEKLKELF) and a short beta structure peptide ELK16 (LELELKLKLELELKLK) have a similar property. Results In this work, we explored a third type of peptides, surfactant-like peptides, for performing such a "pulling-down" function. One or more of three such peptides (L6KD, L6K2, DKL6) were fused to the carboxyl termini of model proteins including Aspergillus fumigatus amadoriase II (AMA, all three peptides were used), Bacillus subtilis lipase A (LipA, only L6KD was used, hereinafter the same), Bacillus pumilus xylosidase (XynB), and green fluorescent protein (GFP), and expressed in E. coli. All fusions were found to predominantly accumulate in the insoluble fractions, with specific activities ranging from 25% to 92% of the native counterparts. Transmission electron microscopic (TEM) and confocal fluorescence microscopic analyses confirmed the formation of protein aggregates in the cell. Furthermore, binding assays with amyloid-specific dyes (thioflavin T and Cong red) to the AMA-L6KD aggregate and the TEM analysis of the aggregate following digestion with protease K suggested that the AMA-L6KD aggregate may contain structures reminiscent of amyloids, including a fibril-like structure core. Conclusions This study shows that the surfactant-like peptides L6KD and it derivatives can act as a pull-down handler for converting soluble proteins into active aggregates, much like 18A and ELK16. These peptide-mediated protein aggregations might have important implications for protein aggregation in vivo, and can be

  9. Rosin Surfactant QRMAE Can Be Utilized as an Amorphous Aggregate Inducer: A Case Study of Mammalian Serum Albumin

    PubMed Central

    Ishtikhar, Mohd; Chandel, Tajjali Ilm; Ahmad, Aamir; Ali, Mohd Sajid; Al-lohadan, Hamad A.; Atta, Ayman M.; Khan, Rizwan Hasan

    2015-01-01

    Quaternary amine of diethylaminoethyl rosin ester (QRMAE), chemically synthesized biocompatible rosin based cationic surfactant, has various biological applications including its use as a food product additive. In this study, we examined the amorphous aggregation behavior of mammalian serum albumins at pH 7.5, i.e., two units above their isoelectric points (pI ~5.5), and the roles played by positive charge and hydrophobicity of exogenously added rosin surfactant QRMAE. The study was carried out on five mammalian serum albumins, using various spectroscopic methods, dye binding assay, circular dichroism and electron microscopy. The thermodynamics of the binding of mammalian serum albumins to cationic rosin modified surfactant were established using isothermal titration calorimetry (ITC). It was observed that a suitable molar ratio of protein to QRMAE surfactant enthusiastically induces amorphous aggregate formation at a pH above two units of pI. Rosin surfactant QRMAE-albumins interactions revealed a unique interplay between the initial electrostatic and the subsequent hydrophobic interactions that play an important role towards the formation of hydrophobic interactions-driven amorphous aggregate. Amorphous aggregation of proteins is associated with varying diseases, from the formation of protein wine haze to the expansion of the eye lenses in cataract, during the expression and purification of recombinant proteins. This study can be used for the design of novel biomolecules or drugs with the ability to neutralize factor(s) responsible for the aggregate formation, in addition to various other industrial applications. PMID:26418451

  10. Synthesis and aggregation properties of dissymmetric phytanyl-gemini surfactants for use as improved DNA transfection vectors.

    PubMed

    Wang, Haitang; Wettig, Shawn D

    2011-01-14

    Improvements in transfection efficiency are required in order to make the goal of cellular gene delivery by non-viral vectors realizable. Novel derivatives of gemini surfactants having dissymmetric tail groups have been designed specifically as a means to improve DNA transfection; the micelle and interfacial properties are reported herein. The effect of these substitutions on the aggregation properties of the gemini surfactants is discussed in the context of results for the m-3-m gemini series, previously reported in the literature. Phytanyl substitution results in lower cmc and higher micelle ionization. In addition, the phytanyl substituted gemini surfactants form vesicles at room temperature. Preliminary in vitro transfection assays showed the phytanyl substituted gemini surfactants to be more efficient transfection vectors as compared to symmetric gemini surfactants.

  11. Solvation dynamics of DCM in a polypeptide-surfactant aggregate: gelatin-sodium dodecyl sulfate.

    PubMed

    Halder, Arnab; Sen, Pratik; Burman, Anupam Das; Bhattacharyya, Kankan

    2004-02-03

    Solvation dynamics of 4-(dicyanomethylidene)-2-[p-(dimethylamino)styryl]-6-methyl-4H-pyran (DCM) is studied in a polypeptide-surfactant aggregate consisting of gelatin and sodium dodecyl sulfate (SDS) in potassium dihydrogen phosphate (KP) buffer. The average solvation time (tauS) in gelatin-SDS aggregate at 45 degrees C is found to be 1780 ps, which is about 13 times slower than that in 15 mM SDS in KP buffer at the same temperature. The fluorescence anisotropy decay in gelatin-SDS aggregate is also different from that in SDS micelles in KP buffer. DCM displays negligible emission in the presence of gelatin in aqueous solution. Thus the solvation dynamics in the presence of gelatin and SDS is exclusively due to the probe (DCM) molecules at the gelatin-micelle interface. The slow solvation dynamics is ascribed to the restrictions imposed on the water molecules trapped between the polypeptide chain and micellar aggregates. The critical association concentration (cac) of SDS for gelatin is determined to be 0.5 +/- 0.1 mM.

  12. Determination of anionic surface active agents using silica coated magnetite nanoparticles modified with cationic surfactant aggregates.

    PubMed

    Pena-Pereira, Francisco; Duarte, Regina M B O; Trindade, Tito; Duarte, Armando C

    2013-07-19

    The development of a novel methodology for extraction and preconcentration of the most commonly used anionic surface active agents (SAAs), linear alkylbenzene sulfonates (LAS), is presented herein. The present method, based on the use of silica-magnetite nanoparticles modified with cationic surfactant aggregates, was developed for determination of C10-C13 LAS homologues. The proposed methodology allowed quantitative recoveries of C10-C13 LAS homologues by using a reduced amount of magnetic nanoparticles. Limits of detection were in the range 0.8-1.9μgL(-1) for C10-C13 LAS homologues, while the repeatability, expressed as relative standard deviation (RSD), ranged from 2.0 to 3.9% (N=6). Finally, the proposed method was successfully applied to the analysis of a variety of natural water samples.

  13. Geometry induced sequence of nanoscale Frank–Kasper and quasicrystal mesophases in giant surfactants

    SciTech Connect

    Yue, Kan; Huang, Mingjun; Marson, Ryan L.; He, Jinlin; Huang, Jiahao; Zhou, Zhe; Wang, Jing; Liu, Chang; Yan, Xuesheng; Wu, Kan; Guo, Zaihong; Liu, Hao; Zhang, Wei; Ni, Peihong; Wesdemiotis, Chrys; Zhang, Wen-Bin; Glotzer, Sharon C.; Cheng, Stephen Z. D.

    2016-11-28

    Frank–Kasper (F-K) and quasicrystal phases were originally identified in metal alloys and only sporadically reported in soft materials. These unconventional sphere-packing schemes open up possibilities to design materials with different properties. The challenge in soft materials is how to correlate complex phases built from spheres with the tunable parameters of chemical composition and molecular architecture. Here, we report a complete sequence of various highly ordered mesophases by the self-assembly of specifically designed and synthesized giant surfactants, which are conjugates of hydrophilic polyhedral oligomeric silsesquioxane cages tethered with hydrophobic polystyrene tails. We show that the occurrence of these mesophases results from nanophase separation between the heads and tails and thus is critically dependent on molecular geometry. Variations in molecular geometry achieved by changing the number of tails from one to four not only shift compositional phase boundaries but also stabilize F-K and quasicrystal phases in regions where simple phases of spheroidal micelles are typically observed. These complex self-assembled nanostructures have been identified by combining X-ray scattering techniques and real-space electron microscopy images. Brownian dynamics simulations based on a simplified molecular model confirm the architecture-induced sequence of phases. Our results demonstrate the critical role of molecular architecture in dictating the formation of supramolecular crystals with “soft” spheroidal motifs and provide guidelines to the design of unconventional self-assembled nanostructures.

  14. Effective short-range Coulomb correction to model the aggregation behavior of ionic surfactants

    NASA Astrophysics Data System (ADS)

    Burgos-Mármol, J. Javier; Solans, Conxita; Patti, Alessandro

    2016-06-01

    We present a short-range correction to the Coulomb potential to investigate the aggregation of amphiphilic molecules in aqueous solutions. The proposed modification allows to quantitatively reproduce the distribution of counterions above the critical micelle concentration (CMC) or, equivalently, the degree of ionization, α, of the micellar clusters. In particular, our theoretical framework has been applied to unveil the behavior of the cationic surfactant C24H49N2O2+ CH3SO4-, which offers a wide range of applications in the thriving and growing personal care market. A reliable and unambiguous estimation of α is essential to correctly understand many crucial features of the micellar solutions, such as their viscoelastic behavior and transport properties, in order to provide sound formulations for the above mentioned personal care solutions. We have validated our theory by performing extensive lattice Monte Carlo simulations, which show an excellent agreement with experimental observations. More specifically, our coarse-grained model is able to reproduce and predict the complex morphology of the micelles observed at equilibrium. Additionally, our simulation results disclose the existence of a transition from a monodisperse to a bidisperse size distribution of aggregates, unveiling the intriguing existence of a second CMC.

  15. Effective short-range Coulomb correction to model the aggregation behavior of ionic surfactants.

    PubMed

    Burgos-Mármol, J Javier; Solans, Conxita; Patti, Alessandro

    2016-06-21

    We present a short-range correction to the Coulomb potential to investigate the aggregation of amphiphilic molecules in aqueous solutions. The proposed modification allows to quantitatively reproduce the distribution of counterions above the critical micelle concentration (CMC) or, equivalently, the degree of ionization, α, of the micellar clusters. In particular, our theoretical framework has been applied to unveil the behavior of the cationic surfactant C24H49N2O2 (+) CH3SO4 (-), which offers a wide range of applications in the thriving and growing personal care market. A reliable and unambiguous estimation of α is essential to correctly understand many crucial features of the micellar solutions, such as their viscoelastic behavior and transport properties, in order to provide sound formulations for the above mentioned personal care solutions. We have validated our theory by performing extensive lattice Monte Carlo simulations, which show an excellent agreement with experimental observations. More specifically, our coarse-grained model is able to reproduce and predict the complex morphology of the micelles observed at equilibrium. Additionally, our simulation results disclose the existence of a transition from a monodisperse to a bidisperse size distribution of aggregates, unveiling the intriguing existence of a second CMC.

  16. Giant Raman scattering from J-aggregated dyes inside carbon nanotubes for multispectral imaging

    NASA Astrophysics Data System (ADS)

    Gaufrès, E.; Tang, N. Y.-Wa; Lapointe, F.; Cabana, J.; Nadon, M.-A.; Cottenye, N.; Raymond, F.; Szkopek, T.; Martel, R.

    2014-01-01

    Raman spectroscopy uses visible light to acquire vibrational fingerprints of molecules, thus making it a powerful tool for chemical analysis in a wide range of media. However, its potential for optical imaging at high resolution is severely limited by the fact that the Raman effect is weak. Here, we report the discovery of a giant Raman scattering effect from encapsulated and aggregated dye molecules inside single-walled carbon nanotubes. Measurements performed on rod-like dyes such as α-sexithiophene and β-carotene, assembled inside single-walled carbon nanotubes as highly polarizable J-aggregates, indicate a resonant Raman cross-section of (3 +/- 2) × 10-21 cm2 sr-1, which is well above the cross-section required for detecting individual aggregates at the highest optical resolution. Free from fluorescence background and photobleaching, this giant Raman effect allows the realization of a library of functionalized nanoprobe labels for Raman imaging with robust detection using multispectral analysis.

  17. Effect of head group polarity and spacer chain length on the aggregation properties of gemini surfactants in an aquatic environment.

    PubMed

    Borse, Mahendra; Sharma, Vikas; Aswal, V K; Goyal, P S; Devi, Surekha

    2005-04-01

    The aggregation behavior of cationic gemini surfactants with respect to variation in head group polarity and spacer length is studied through conductance, surface tension, viscosity, and small-angle neutron-scattering (SANS) measurements. The critical micellar concentration (cmc), average degree of micelle ionization (beta(ave)), minimum area per molecule of surfactant at the air-water interface (A(min)), surface excess concentration (gamma(max)), and Gibb's free energy of micellization (delta G(mic)) of the surfactants were determined from conductance and surface tension data. The aggregation numbers (N), dimensions of micelles (b/a), effective fractional charge per monomer (alpha), and hydration of micelles (h(E)) were determined from SANS and viscosity data, respectively. The increasing head group polarity of gemini surfactant with spacer chain length of 4 methylene units promotes micellar growth, leading to a decrease in cmc, beta(ave), and delta G(mic) and an increase in N and b/a. This is well supported by the observed increase in hydration (h(E)) of micelles with increase in aggregation number (N) and dimension (b/a) of micelle.

  18. Synthesis of polymer nanostructures via the use of surfactant surface aggregates as templates

    NASA Astrophysics Data System (ADS)

    Marquez, Maricel

    The subject of this work is the synthesis of polymer nanostructures via the use of surfactant surface aggregates as templates, also termed Template Assisted Admicellar Polymerization (TAAP). The first chapter reviews some of the most current nanopatterning techniques (including both top-down and bottom-up approaches), with particular emphasis on the fabrication of organic and inorganic patterned nanostructures via particle lithography. In chapter 2, highly ordered hexagonal arrays of latex spheres were prepared on highly ordered pyrolytic graphite (HOPG) from a variation of the Langmuir Blodgett technique, using an anionic surfactant (SDS), and a low molecular weight (ca. 10000) polyacrylamide as spreading agents. When a nonionic polyethoxylated (EO = 9) surfactant was used as the spreading agent, no ordered arrays were observed. Based on the correlation found between the surface tension in the presence of the latex particles and the critical concentration at which hexagonal arrangements of latex spheres occurs; a model was proposed to explain the role of the spreading agent in forming stable monolayers at the air/liquid interface, which in turn are necessary for the formation of well-ordered monolayers on a solid substrate from the LB technique. According to this model, solid-like regions of small numbers of latex spheres form at the liquid-air interface, which are then transferred to the substrate. These ordered regions then act as nuclei for the formation of 2D arrays of latex spheres on the surface upon water evaporation. The role of other factors such as relative humidity, substrate and solvent choice, and pulling vs. compression speed were also found to affect the quality of the monolayers formed. Finally, a simple, easy to automate, yet effective surface tension method was proposed to predict the optimal conditions for the formation of ordered monolayers using a variation of the LB deposition method from any monodisperse set of spheres. In chapter 3, a novel

  19. Protein aggregation with poly(vinyl) alcohol surfactant reduces double emulsion-encapsulated mammalian cell-free expression

    PubMed Central

    Ho, Kenneth K. Y.; Lee, Jin Woo; Durand, Grégory; Majumder, Sagardip

    2017-01-01

    Development of artificial cell models requires encapsulation of biomolecules within membrane-bound compartments. There have been limited studies of using mammalian cell-free expression (CFE) system as the ‘cytosol’ of artificial cells. We exploit glass capillary droplet microfluidics for the encapsulation of mammalian CFE within double emulsion templated vesicles. The complexity of the physicochemical properties of HeLa cell-free lysate poses a challenge compared with encapsulating simple buffer solutions. In particular, we discovered the formation of aggregates in double emulsion templated vesicles encapsulating mammalian HeLa CFE, but not with bacterial CFE. The aggregates did not arise from insolubility of the proteins made from CFE nor due to the interaction of mammalian CFE with the organic solvents in the middle phase of the double emulsions. We found that aggregation is dependent on the concentration of poly(vinyl) alcohol (PVA) surfactant, a critical double emulsion-stabilizing surfactant, and the lysate concentration in mammalian CFE. Despite vesicle instability and reduced protein expression, we demonstrate protein expression by encapsulating mammalian CFE system. Using mass spectrometry and Western blot, we identified and verified that actin is one of the proteins inside the mammalian CFE that aggregated with PVA surfactant. Our work establishes a baseline description of mammalian CFE system encapsulated in double emulsion templated vesicles as a platform for building artificial cells. PMID:28358875

  20. A Glimpse of Our Journey into the Design of Optical Probes in Self-assembled Surfactant Aggregates.

    PubMed

    Dey, Nilanjan; Bhattacharya, Santanu

    2016-08-01

    Dynamic self-assembling amphiphilic surfactant molecules, popularly known as "micelles", have received widespread attention, due to their ability to modulate the photophysical properties of various organic dyes upon encapsulation. Along with their well-known use as cleaning agents, catalysts in organic reactions, and even for drug delivery purposes, these surfactant assemblies also show promising pertinence in the recognition of both ionic and nonionic targeted analytes. Low micropolarity and relatively hydrophobic environments promote their interaction with ionic analytes, whereas neutral species mostly affect the aggregation pattern of the probe molecules upon partitioning inside the micellar hydrophobic milieu. The environment-sensitive nature of micelle-based self-assembled probes also prompts us to devise new sensor arrays for the recognition of multiple analytes. While this account will largely focus on our own work in developing surfactant-triggered self-assembled sensors, our findings have been placed in the context of the relevant contributions from others during their strategic evolution.

  1. Accurately tuning the charge on giant polyoxometalate type Keplerates through stoichiometric interaction with cationic surfactants.

    PubMed

    Kistler, Melissa L; Patel, Komal G; Liu, Tianbo

    2009-07-07

    We report an approach of exploring the interaction between cationic surfactants and a type of structurally well-defined, spherical "Keplerate" polyoxometalate (POM) macroanionic molecular clusters, {Mo72V30}, in aqueous solution. The effectiveness of the interaction can be determined by monitoring the size change of the "blackberry" supramolecular structures formed by the self-assembly of {Mo72V30} macroions, which is determined by the effective charge density on the macroions. Long-chain surfactants (CTAB and CTAT) can interact with {Mo72V30} macroions stoichiometrically and lower their charge density. Consequently, the blackberry size decreases continuously with increasing surfactant concentration in solution. On the other hand, for short-chain surfactants (e.g., OTAB), a larger fraction of surfactants exist as discrete chains in solution and do not strongly interact with the macroions. This approach shows that a controllable amount of suitable surfactants can accurately tune the charge on large molecular clusters.

  2. Evidence of self-aggregation of cationic surfactants in a choline chloride+glycerol deep eutectic solvent.

    PubMed

    Pal, Mahi; Singh, Ranjan K; Pandey, Siddharth

    2015-08-24

    Based on fluorescence probe, electrical conductivity, surface tension, small-angle X-ray/dynamic light scattering, and transmission electron microscopy experiments, we present the first clear lines of evidence for self-aggregation of cationic surfactants of the n-alkyltrimethylammonium family within an archetypical deep eutectic solvent comprised of a 1:2 molar mixture of choline chloride and glycerol. Estimated thermodynamic parameters suggest this self-aggregation process to be less entropically driven than that in water. These novel water-free self-assemblies might serve as dynamic soft templates to direct the growth of size- or shape-tailored nanoparticles within water-restricted media.

  3. Surface properties, aggregation behavior and micellization thermodynamics of a class of gemini surfactants with ethyl ammonium headgroups.

    PubMed

    Lu, Ting; Lan, Yuru; Liu, Chenjiang; Huang, Jianbin; Wang, Yilin

    2012-07-01

    Cationic gemini surfactant homologues alkanediyl-α,ω-bis(dodecyldiethylammonium bromide), [C(12)H(25)(CH(3)CH(2))(2)N(CH(2))(S)N(CH(2)CH(3))(2)C(12)H(25)]Br(2) (where S=2, 4, 6, 8, 10, 12, 16, 20), referred to as C(12)C(S)C(12)(Et) were synthesized systematically. This paper focused on various properties of the above gemini surfactants in order to give a full understanding of this series of surfactants. The following points are covered: (1) surface properties, which include (i) effect of the spacer carbon number on the general properties and (ii) the effect of added NaBr on the general surface properties; (2) aggregation behavior in bulk solution, including (i) morphologies of above gemini surfactants classed as having short spacers, middle-length spacers and long spacers and (ii) superior vesicle stability against high NaBr concentration for the long spacer gemini surfactants; (3) thermodynamic properties during micellization and the effect of spacer carbon number on them; and (4) perspectives for the further use and application of these compounds.

  4. Unusual pH-regulated surface adsorption and aggregation behavior of a series of asymmetric gemini amino-acid surfactants.

    PubMed

    Lv, Jing; Qiao, Weihong

    2015-04-07

    A new series of pH-regulated asymmetric amino-acid gemini surfactants N,N'-dialkyl-N,N'-diacetate ethylenediamine (Ace(m)-2-Ace(n)), differing by the asymmetric degree and length of the carbon tails (m = 8 and 10, n = 10, 12, 14, and 16), were synthesized in three steps. On the basis of pKa values obtained by pH titration, surface tension, fluorescence, dynamic light scattering (DLS), and transmission electron microscopy (TEM) measurements were performed to study the surface adsorption and aggregation properties in aqueous Ace(m)-2-Ace(n) solution. The new compounds have higher surface activity and better pH adaptability in comparison with that of symmetric gemini surfactants Ace(n)-2-Ace(n). The molecule behavior of Ace(m)-2-Ace(n) can be adjusted by either the hydrophobic group or the pH. With increasing alkyl chain length, the surface adsorption declines but its ability to form aggregates increases. We find that pH can promote the self-assembly transition of Ace(m)-2-Ace(n) from surfactant monomers to aggregates through protonation between H(+) and the tertiary nitrogen group. TEM data further confirm the pH-regulated molecular self-assembly process and the existence of vesicles at neutral or weak acidic pH. pH-recyclability is found to be reversible by pH-light transmittance recycle tests.

  5. Self-aggregation of cationic dimeric surfactants in water-ionic liquid binary mixtures.

    PubMed

    Martín, Victoria Isabel; Rodríguez, Amalia; Laschewsky, André; Moyá, María Luisa

    2014-09-15

    The micellization of four dimeric cationic surfactants ("gemini surfactants") derived from N-dodecyl-N,N,N-trimethylammonium chloride was studied in pure water and in water-ionic liquid (IL) solutions by a wide range of techniques. The dimeric surfactants are distinguished by their rigid spacer groups separating the two surfactant motifs, which range from C3 to C5 in length. In order to minimize organic ion pairing effects as well as the role of the ionic liquids as potential co-surfactants, ILs with inorganic hydrophilic anions and organic cations of limited hydrophobicity were chosen, namely ethyl, butyl, and hexyl-3-imidazolium chlorides. (1)H NMR two-dimensional, 2D, rotating frame nuclear Overhauser effect spectroscopy measurements, ROESY, supported this premise. The spacer nature hardly affects the micellization process, neither in water nor in water-IL solutions. However, it does influence the tendency of the dimeric surfactants to form elongated micelles when surfactant concentration increases. In order to have a better understanding of the ternary water-IL surfactant systems, the micellization of the surfactants was also studied in aqueous NaCl solutions, in water-ethylene glycol and in water-formamide binary mixtures. The combined results show that the ionic liquids play a double role in the mixed systems, operating simultaneously as background electrolytes and as polar organic solvents. The IL role as organic co-solvent becomes more dominant when its concentration increases, and when the IL alkyl chain length augments.

  6. Mixed aggregate formation in gemini surfactant/1,2-dialkyl-sn-glycero-3-phosphoethanolamine systems.

    PubMed

    Akbar, Javed; Tavakoli, Naser; Marangoni, D Gerrard; Wettig, Shawn D

    2012-07-01

    An evaluation of the physical interactions between gemini surfactants, DNA, and 1,2-dialkyl-sn-glycero-3-phosphoethanolamine helper lipid is presented in this work. Complexation between gemini surfactants and DNA was first investigated using surface tensiometry where the surface tension profiles obtained were found to be consistent with those typically observed for mixed surfactant-polymer systems; that is, there is a synergistic lowering of the surface tension, followed by a first (CAC) and second (CMC) break point in the plot. The surfactant alkyl tail length was observed to exhibit a significant effect on the CAC, thus demonstrating the importance of hydrophobic interactions during complexation between gemini surfactants and DNA. The second study presented is an investigation of the mixing interactions between gemini surfactants and DOPE using Clint's, Rubingh's, and Motomura's theories for mixed micellar formation. The mixing interactions between the 16-3-16/16-7-16/16-12-16/16-7NH-16 gemini surfactants and DOPE were observed to be antagonistic, where the strength of antagonism was found to be dependent upon the gemini surfactant spacer group and the solution composition.

  7. Aggregation Kinetics and Transport of Single-Walled CarbonNanotubes at Low Surfactant Concentrations

    EPA Science Inventory

    Little is known about how low levels of surfactants can affect the colloidal stability of single-walled carbon nanotubes (SWNTs) and how surfactant-wrapping of SWNTs can impact ecological exposures in aqueous systems. In this study, SWNTs were suspended in water with sodium ...

  8. Giant surfactants of poly(ethylene oxide)- b-polystyrene-(molecular nanoparticle): nanoparticle-driven self-assembly with sub-10-nm nanostructures in thin films

    NASA Astrophysics Data System (ADS)

    Hsu, Chih-Hao; Lin, Zhiwei; Dong, Xue-Hui; Hsieh, I.-Fan; Cheng, Stephen Z. D.

    2014-03-01

    Giant surfactants are built upon precisely attaching shape- and volume-persistent molecular nanoparticles (MNP) to polymeric flexible tails. The unique class of self-assembling materials, giant surfactants, has been demonstrated to form self-assembled ordered nanostructures, and their self-assembly behaviors are remarkably sensitive to primary chemical structures. In this work, two sets of giant surfactants with functionalized MNP attached to diblock copolymer tails were studied in thin films. Carboxylic acid-functionalized [60]fullerene (AC60) tethered with PEO- b-PS (PEO-PS-AC60) represents an ABA' (hydrophilic-hydrophobic-hydrophilic) giant surfactant, and fluoro-functionalized polyhedral oligomeric silsesquioxane (FPOSS) tethered with PEO- b-PS (PEO-PS-FPOSS) represents an ABC (hydrophilic-hydrophobic-omniphobic) one. The dissimilar chemical natures of the MNPs result in different arrangement of MNPs in self-assembled structures, the dispersion of AC60 in PEO domain and the single domain of FPOSS. Moreover, the chemically bonded MNPs could induce the originally disordered small molecular PEO- b-PS to form ordered cylindrical and lamellar structure, as evidenced by TEM and GISAXS, leading to sub-10-nm nanostructures of copolymer in the thin film state.

  9. Ecotoxicities of polyquaterniums and their associated polyelectrolyte-surfactant aggregates (PSA) to Gambusia holbrooki.

    PubMed

    Cumming, Janet L; Hawker, Darryl W; Nugent, Kerry W; Chapman, Heather F

    2008-02-01

    The toxicity of 11 polyquaterniums used in cosmetic applications, and polydimethyldiallylammonium chloride (poly(DADMAC)) were studied for toxicity of the polyquaternium alone, and of a polyquaternium/anionic surfactant complex as occurs in some cosmetic formulations. The surfactant used in the study was sodium dodecyl sulfate (SDS), which is used in cosmetic formulations under its International Nomenclature of Cosmetic Ingredients (INCI) name Sodium Laurel Sulfate. In fish immobilization studies with Gambusia holbrooki, the EC(50) of the polyquaternium/surfactant complex was found to be the same as or similar to the EC(50) for the polyquaternium alone. The toxicity of the polyquaterniums investigated was similar to the published values for other cationic polyelectrolytes and cationic surfactants, in the range from < 1.0 to 10 mg/L, with the exception of low charge density cellulosic polyquaterniums. The anionic surfactant alone was not toxic to fish in the concentration range tested. Results thus showed the toxicity of the polyquaternium was not mitigated by the presence of the anionic surfactant.

  10. Change in Chirality of Semiconducting Single-Walled Carbon Nanotubes Can Overcome Anionic Surfactant Stabilization: A Systematic Study of Aggregation Kinetics.

    PubMed

    Khan, Iftheker A; Flora, Joseph R V; Nabiul Afrooz, A R M; Aich, Nirupam; Schierz, P Ariette; Ferguson, P Lee; Sabo-Attwood, Tara; Saleh, Navid B

    2015-05-20

    Single-walled carbon nanotubes' (SWNT) effectiveness in applications is enhanced by debundling or stabilization. Anionic surfactants are known to effectively stabilize SWNTs. However, the role of specific chirality on surfactant-stabilized SWNT aggregation has not been studied to date. The aggregation behavior of chirally enriched (6,5) and (7,6) semiconducting SWNTs, functionalized with three anionic surfactants-sodium dodecyl sulfate (SDS), sodium dodecyl benzene sulfonate (SDBS), and sodium deoxycholate (SDOCO)-was evaluated with time-resolved dynamic light scattering. A wide range of mono- (NaCl) and di-valent (CaCl2) electrolytes as well as a 2.5 mg TOC/L Suwannee River humic acid (SRHA) were used as background chemistry. Overall, SDBS showed the most effectiveness in SWNT stability, followed by SDOCO and SDS. However, the relatively larger diameter (7,6) chiral tubes compromised the surfactant stability, compared to (6,5) chiral enrichment, due to enhanced van der Waals interaction. The presence of di-valent electrolytes overshadowed the chirality effects and resulted in similar aggregation behavior for both the SWNT samples. Molecular modeling results enumerated key differences in surfactant conformation on SWNT surfaces and identified interaction energy changes between the two chiralities to delineate aggregation mechanisms. The stability of SWNTs increased in the presence of SRHA under 10 mM monovalent and mixed electrolyte conditions. The results suggest that change in chirality can overcome surfactant stabilization of semiconducting SWNTs. SWNT stability can also be strongly influenced by the anionic surfactant structure.

  11. A Study of the Effect of Surfactants on the Aggregation Behavior of Crude Oil Aqueous Dispersions through Steady-State Fluorescence Spectrometry.

    PubMed

    Vallejo-Cardona, Alba A; Cerón-Camacho, Ricardo; Karamath, James R; Martínez-Palou, Rafael; Aburto, Jorge

    2017-01-01

    Unconventional crude oil as heavy, extra heavy, bitumen, tight, and shale oils will meet 10% of worldwide needs for 2035, perhaps earlier. Petroleum companies will face problems concerning crude oil extraction, production, transport, and refining, and some of these are addressed by the use of surfactants and other chemicals. For example, water-in-crude oil emulsions are frequently found during the production of mature wells where enhanced recovery techniques have been deployed. Nevertheless, the selection of adequate surfactant, dosage, type of water (sea, tap or oilfield), kind of crude oil (light, heavy, extra heavy, tight, shale, bitumen) affect the effectivity of treatment and usual bottle tests give limited information. We developed a fluorescence technique to study the effect of surfactants on medium, heavy, and extra heavy crude oil employing the natural fluorophore molecules from petroleum. We first carried out the characterization of commercial and synthetic surfactants, then dispersions of petroleum in water were studied by steady-state fluorometry and the size of petroleum aggregates were measured. The aggregation of petroleum incremented from medium to extra heavy crude oil and we discussed the effect of different surfactants on such aggregation.

  12. Static and Dynamic Microscopy of the Chemical Stability and Aggregation State of Silver Nanowires in Components of Murine Pulmonary Surfactant.

    PubMed

    Theodorou, Ioannis G; Botelho, Danielle; Schwander, Stephan; Zhang, Junfeng; Chung, Kian Fan; Tetley, Teresa D; Shaffer, Milo S P; Gow, Andrew; Ryan, Mary P; Porter, Alexandra E

    2015-07-07

    The increase of production volumes of silver nanowires (AgNWs) and of consumer products incorporating them may lead to increased health risks from occupational and public exposures. There is currently limited information about the putative toxicity of AgNWs upon inhalation and incomplete understanding of the properties that control their bioreactivity. The lung lining fluid (LLF), which contains phospholipids and surfactant proteins, represents a first contact site with the respiratory system. In this work, the impact of dipalmitoylphosphatidylcholine (DPPC), Curosurf, and murine LLF on the stability of AgNWs was examined. Both the phospholipid and protein components of the LLF modified the dissolution kinetics of AgNWs, due to the formation of a lipid corona or aggregation of the AgNWs. Moreover, the hydrophilic proteins, but neither the hydrophobic surfactant proteins nor the phospholipids, induced agglomeration of the AgNWs. Finally, the generation of a secondary population of nanosilver was observed and attributed to the reduction of Ag(+) ions by the surface capping of the AgNWs. Our findings highlight that combinations of spatially resolved dynamic and static techniques are required to develop a holistic understanding of which parameters govern AgNW behavior at the point of exposure and to accurately predict their risks on human health and the environment.

  13. Static and dynamic microscopy of the chemical stability and aggregation state of silver nanowires in components of murine pulmonary surfactant

    PubMed Central

    Theodorou, Ioannis G.; Botelho, Danielle; Schwander, Stephan; Zhang, Junfeng (Jim); Chung, Kian Fan; Tetley, Teresa D.; Shaffer, Milo S. P.; Gow, Andrew; Ryan, Mary P.; Porter, Alexandra E.

    2016-01-01

    The increase of production volumes of silver nanowires (AgNWs) and of consumer products incorporating them, may lead to increased health risks from occupational and public exposures. There is currently limited information about the putative toxicity of AgNWs upon inhalation, and incomplete understanding of the properties that control their bioreactivity. The lung lining fluid (LLF), which contains phospholipids and surfactant proteins, represents a first contact site with the respiratory system. In this work, the impact of Dipalmitoylphosphatidylcholine (DPPC), Curosurf® and murine LLF on the stability of AgNWs was examined. Both the phospholipid and protein components of the LLF modified the dissolution kinetics of AgNWs, due to the formation of a lipid corona or aggregation of the AgNWs. Moreover, the hydrophilic, but neither the hydrophobic surfactant proteins nor the phospholipids, induced agglomeration of the AgNWs. Finally, the generation of a secondary population of nano-silver was observed and attributed to the reduction of Ag+ ions by the surface capping of the AgNWs. Our findings highlight that combinations of spatially resolved dynamic and static techniques are required to develop a holistic understanding of which parameters govern AgNW behavior at the point of exposure and to accurately predict their risks on human health and the environment. PMID:26061974

  14. Change in Chirality of Semiconducting Single-Walled Carbon Nanotubes Can Overcome Anionic Surfactant Stabilization: A Systematic Study of Aggregation Kinetics

    PubMed Central

    Khan, Iftheker A.; Flora, Joseph R. V.; Nabiul Afrooz, A. R. M.; Aich, Nirupam; Schierz, P. Ariette; Ferguson, P. Lee; Sabo-Attwood, Tara; Saleh, Navid B.

    2015-01-01

    Single-walled carbon nanotubes’ (SWNT) effectiveness in applications is enhanced by debundling or stabilization. Anionic surfactants are known to effectively stabilize SWNTs. However, the role of specific chirality on surfactant-stabilized SWNT aggregation has not been studied to date. The aggregation behavior of chirally enriched (6,5) and (7,6) semiconducting SWNTs, functionalized with three anionic surfactants—sodium dodecyl sulfate (SDS), sodium dodecyl benzene sulfonate (SDBS), and sodium deoxycholate (SDOCO)—was evaluated with time-resolved dynamic light scattering. A wide range of mono- (NaCl) and di-valent (CaCl2) electrolytes as well as a 2.5 mg TOC/L Suwannee River humic acid (SRHA) were used as background chemistry. Overall, SDBS showed the most effectiveness in SWNT stability, followed by SDOCO and SDS. However, the relatively larger diameter (7,6) chiral tubes compromised the surfactant stability, compared to (6,5) chiral enrichment, due to enhanced van der Waals interaction. The presence of di-valent electrolytes overshadowed the chirality effects and resulted in similar aggregation behavior for both the SWNT samples. Molecular modeling results enumerated key differences in surfactant conformation on SWNT surfaces and identified interaction energy changes between the two chiralities to delineate aggregation mechanisms. The stability of SWNTs increased in the presence of SRHA under 10 mM monovalent and mixed electrolyte conditions. The results suggest that change in chirality can overcome surfactant stabilization of semiconducting SWNTs. SWNT stability can also be strongly influenced by the anionic surfactant structure. PMID:26855611

  15. Aggregation and transport of nano-TiO2 in saturated porous media: effects of pH, surfactants and flow velocity.

    PubMed

    Godinez, Itzel G; Darnault, Christophe J G

    2011-01-01

    Transport of manufactured nano-TiO(2) in saturated porous media was investigated as a function of morphology characteristics, pH of solutions, flow velocity, and the presence of anionic and non-ionic surfactants in different concentrations. Surfactants enhanced the transport of nano-TiO(2) in saturated porous media while a pH approaching the point of zero charge of nano-TiO(2) limited their transport. The deposition process, a retention mechanism of nano-TiO(2) in saturated porous media was impacted by surfactant and pH. In Dispersion 1 systems (pH 7), the size of the nano-TiO(2) aggregates was directly related to the presence of surfactants. The presence of non-ionic surfactant (Triton X-100) induced a size reduction of nano-TiO(2) aggregates that was dependent on the critical micelle concentration. In Dispersion 2 systems (pH 9), the stability provided by the pH had a significant effect on the size of nano-TiO(2) aggregates; the addition of surfactants did impact the size of the nano-TiO(2) aggregates but in less significance as compared to Dispersion 1 systems. The electrostatic and steric repulsion forces in connection with the size of nano-TiO(2) aggregates and flow velocity impacted the single-collector efficiency and attachment efficiency which dictated the maximum transport distance of nano-TiO(2) for the Dispersion 1 and Dispersion 2 systems. By doubling the flow velocity at pH 9, the No Surfactant, 50% CMC Triton X-100, 100% CMC Triton X-100 and 100% CMC SDBS dispersion systems allowed nano-TiO(2) to attain maximum transport distances of 0.898, 2.17, 2.29 and 1.12 m, respectively. Secondary energy minima played a critical role in the deposition mechanisms of nano-TiO(2). Nano-TiO(2) deposited in the secondary energy wells may be released because of changes in solution chemistry. The deposition of nano-TiO(2) in primary and secondary energy minima, the reversibility of their deposition should be characterized to analyze the transport of nanoparticles in

  16. Giant extracellular Glossoscolex paulistus Hemoglobin (HbGp) upon interaction with cethyltrimethylammonium chloride (CTAC) and sodium dodecyl sulphate (SDS) surfactants: Dissociation of oligomeric structure and autoxidation.

    PubMed

    Santiago, Patricia S; Moreira, Leonardo M; de Almeida, Erika V; Tabak, Marcel

    2007-04-01

    The effects of two ionic surfactants on the oligomeric structure of the giant extracellular hemoglobin of Glossoscolex paulistus (HbGp) in the oxy - form have been studied through the use of several spectroscopic techniques such as electronic optical absorption, fluorescence emission, light scattering, and circular dichroism. The use of anionic sodium dodecyl sulphate (SDS) and cationic cethyltrimethyl ammonium chloride (CTAC) has allowed to differentiate the effects of opposite headgroup charges on the oligomeric structure dissociation and hemoglobin autoxidation. At pH 7.0, both surfactants induce the protein dissociation and a significant oxidation. Spectral changes occur at very low CTAC concentrations suggesting a significant electrostatic contribution to the protein-surfactant interaction. At low protein concentration, 0.08 mg/ml, some light scattering within a narrow CTAC concentration range occurs due to protein-surfactant precipitation. Light scattering experiments showed the dissociation of the oligomeric structure by SDS and CTAC, and the effect of precipitation induced by CTAC. At higher protein concentrations, 3.0 mg/ml, a precipitation was observed due to the intense charge neutralization upon formation of ion pair in the protein-surfactant precipitate. The spectral changes are spread over a much wider SDS concentration range, implying a smaller electrostatic contribution to the protein-surfactant interactions. The observed effects are consistent with the acid isoelectric point (pI) of this class of hemoglobins, which favors the intense interaction of HbGp with the cationic surfactant due to the existence of excess acid anionic residues at the protein surface. Protein secondary structure changes are significant for CTAC at low concentrations while they occur at significantly higher concentrations for SDS. In summary, the cationic surfactant seems to interact more strongly with the protein producing more dramatic spectral changes as compared to the

  17. Photoinduced electron transfer reaction in polymer-surfactant aggregates: Photoinduced electron transfer between N,N-dimethylaniline and 7-amino coumarin dyes

    SciTech Connect

    Chakraborty, Anjan; Seth, Debabrata; Setua, Palash; Sarkar, Nilmoni

    2008-05-28

    Photoinduced electron transfer between coumarin dyes and N,N-dimethylaniline has been investigated by using steady state and picosecond time resolved fluorescence spectroscopy in sodium dodecyl sulphate (SDS) micelles and PVP-polyvinyl pyrrolidone (SDS) polymer-surfactant aggregates. A slower rate of electron transfer is observed in PVP-SDS aggregates than in polymer-free SDS micelles. A Marcus type inversion is observed in the correlation of free energy change in comparison with the electron transfer rate. The careful investigation reveals that C-151 deviates from the normal Marcus inverted region compared to its analogs C-152 and C-481 due to slower rotational relaxation and smaller translational diffusion coefficient.

  18. Influence of trehalose on the interaction of curcumin with surface active ionic liquid micelle and its vesicular aggregate composed of a non-ionic surfactant sorbitan stearate

    NASA Astrophysics Data System (ADS)

    Roy, Arpita; Dutta, Rupam; Sarkar, Nilmoni

    2016-11-01

    The present investigation unravels the effect of trehalose on 1-hexadecyl-3-methylimidazolium chloride ([C16mim]Cl), a cationic surface active ionic liquid (SAIL) micelle and SAIL ([C16mim]Cl)-nonionic surfactant (Sorbitan Stearate, Span 60) based vesicles. The influence of trehalose on size and morphology of the aggregates has been investigated using dynamic light scattering (DLS) and transmission electron microscopic (TEM) measurements. Besides, we have studied the dynamic properties of curcumin inside these aggregates using fluorescence spectroscopic based techniques. The results revealed that trehalose molecules play crucial role in modulation of the photophysical properties of curcumin in these organized assemblies.

  19. Interaction of n-octyl β,D-glucopyranoside with giant magnetic-fluid-loaded phosphatidylcholine vesicles: direct visualization of membrane curvature fluctuations as a function of surfactant partitioning between water and lipid bilayer.

    PubMed

    Ménager, Christine; Guemghar, Dihya; Cabuil, Valérie; Lesieur, Sylviane

    2010-10-05

    The present study deals with the morphological modifications of giant dioleoyl phosphatidylcholine vesicles (DOPC GUVs) induced by the nonionic surfactant n-octyl β,D-glucopyranoside at sublytic levels, i.e., in the first steps of the vesicle-to-micelle transition process, when surfactant inserts into the vesicle bilayer without disruption. Experimental conditions were perfected to exactly control the surfactant bilayer composition of the vesicles, in line with former work focused on the mechanical properties of the membrane of magnetic-fluid-loaded DOPC GUVs submitted to a magnetic field. The purpose here was to systematically examine, in the absence of any external mechanical constraint, the dynamics of giant vesicle shape and membrane deformations as a function of surfactant partitioning between the aqueous phase and the lipid membrane, beforehand established by turbidity measurements from small unilamellar vesicles.

  20. Effect of the Surfactant Tween 80 on the Detachment and Dispersal of Salmonella enterica Serovar Thompson Single Cells and Aggregates from Cilantro Leaves as Revealed by Image Analysis

    PubMed Central

    Huynh, Steven

    2014-01-01

    Salmonella enterica has the ability to form biofilms and large aggregates on produce surfaces, including on cilantro leaves. Aggregates of S. enterica serovar Thompson that remained attached to cilantro leaves after rigorous washing and that were present free or bound to dislodged leaf tissue in the wash suspension were observed by confocal microscopy. Measurement of S. Thompson population sizes in the leaf washes by plate counts failed to show an effect of 0.05% Tween 80 on the removal of the pathogen from cilantro leaves 2 and 6 days after inoculation. On the contrary, digital image analysis of micrographs of single cells and aggregates of green fluorescent protein (GFP)-S. Thompson present in cilantro leaf washes revealed that single cells represented 13.7% of the cell assemblages in leaf washes containing Tween 80, versus 9.3% in those without the surfactant. Moreover, Tween 80 decreased the percentage of the total S. Thompson cell population located in aggregates equal to or larger than 64 cells from 9.8% to 4.4% (P < 0.05). Regression analysis of the frequency distribution of aggregate size in leaf washes with and without Tween 80 showed that the surfactant promoted the dispersal of cells from large aggregates into smaller ones and into single cells (P < 0.05). Our study underlines the importance of investigating bacterial behavior at the scale of single cells in order to uncover trends undetectable at the population level by bacterial plate counts. Such an approach may provide valuable information to devise strategies aimed at enhancing the efficacy of produce sanitization treatments. PMID:24907336

  1. Effect of the surfactant tween 80 on the detachment and dispersal of Salmonella enterica serovar Thompson single cells and aggregates from cilantro leaves as revealed by image analysis.

    PubMed

    Brandl, Maria T; Huynh, Steven

    2014-08-01

    Salmonella enterica has the ability to form biofilms and large aggregates on produce surfaces, including on cilantro leaves. Aggregates of S. enterica serovar Thompson that remained attached to cilantro leaves after rigorous washing and that were present free or bound to dislodged leaf tissue in the wash suspension were observed by confocal microscopy. Measurement of S. Thompson population sizes in the leaf washes by plate counts failed to show an effect of 0.05% Tween 80 on the removal of the pathogen from cilantro leaves 2 and 6 days after inoculation. On the contrary, digital image analysis of micrographs of single cells and aggregates of green fluorescent protein (GFP)-S. Thompson present in cilantro leaf washes revealed that single cells represented 13.7% of the cell assemblages in leaf washes containing Tween 80, versus 9.3% in those without the surfactant. Moreover, Tween 80 decreased the percentage of the total S. Thompson cell population located in aggregates equal to or larger than 64 cells from 9.8% to 4.4% (P < 0.05). Regression analysis of the frequency distribution of aggregate size in leaf washes with and without Tween 80 showed that the surfactant promoted the dispersal of cells from large aggregates into smaller ones and into single cells (P < 0.05). Our study underlines the importance of investigating bacterial behavior at the scale of single cells in order to uncover trends undetectable at the population level by bacterial plate counts. Such an approach may provide valuable information to devise strategies aimed at enhancing the efficacy of produce sanitization treatments.

  2. Spawning aggregation behavior and reproductive ecology of the giant bumphead parrotfish, Bolbometopon muricatum, in a remote marine reserve.

    PubMed

    Muñoz, Roldan C; Zgliczynski, Brian J; Teer, Bradford Z; Laughlin, Joseph L

    2014-01-01

    The giant bumphead parrotfish (Bolbometopon muricatum) has experienced precipitous population declines throughout its range due to its importance as a highly-prized fishery target and cultural resource. Because of its diet, Bolbometopon may serve as a keystone species on Indo-Pacific coral reefs, yet comprehensive descriptions of its reproductive ecology do not exist. We used a variety of underwater visual census (UVC) methods to study an intact population of Bolbometopon at Wake Atoll, a remote and protected coral atoll in the west Pacific. Key observations include spawning activities in the morning around the full and last quarter moon, with possible spawning extending to the new moon. We observed peaks in aggregation size just prior to and following the full and last quarter moon, respectively, and observed a distinct break in spawning at the site that persisted for four days; individuals returned to the aggregation site one day prior to the last quarter moon and resumed spawning the following day. The mating system was lek-based, characterized by early male arrival at the spawning site followed by vigorous defense (including head-butting between large males) of small territories. These territories were apparently used to attract females that arrived later in large schools, causing substantial changes in the sex ratio on the aggregation site at any given time during the morning spawning period. Aggression between males and courtship of females led to pair spawning within the upper water column. Mating interference was not witnessed but we noted instances suggesting that sperm competition might occur. Densities of Bolbometopon on the aggregation site averaged 10.07(±3.24 SE) fish per hectare (ha) with maximum densities of 51.5 fish per ha. By comparing our observations to the results of biennial surveys conducted by the National Oceanic and Atmospheric Administration (NOAA) Coral Reef Ecosystem Division (CRED), we confirmed spatial consistency of the aggregation

  3. Spawning aggregation behavior and reproductive ecology of the giant bumphead parrotfish, Bolbometopon muricatum, in a remote marine reserve

    PubMed Central

    Zgliczynski, Brian J.; Teer, Bradford Z.; Laughlin, Joseph L.

    2014-01-01

    The giant bumphead parrotfish (Bolbometopon muricatum) has experienced precipitous population declines throughout its range due to its importance as a highly-prized fishery target and cultural resource. Because of its diet, Bolbometopon may serve as a keystone species on Indo-Pacific coral reefs, yet comprehensive descriptions of its reproductive ecology do not exist. We used a variety of underwater visual census (UVC) methods to study an intact population of Bolbometopon at Wake Atoll, a remote and protected coral atoll in the west Pacific. Key observations include spawning activities in the morning around the full and last quarter moon, with possible spawning extending to the new moon. We observed peaks in aggregation size just prior to and following the full and last quarter moon, respectively, and observed a distinct break in spawning at the site that persisted for four days; individuals returned to the aggregation site one day prior to the last quarter moon and resumed spawning the following day. The mating system was lek-based, characterized by early male arrival at the spawning site followed by vigorous defense (including head-butting between large males) of small territories. These territories were apparently used to attract females that arrived later in large schools, causing substantial changes in the sex ratio on the aggregation site at any given time during the morning spawning period. Aggression between males and courtship of females led to pair spawning within the upper water column. Mating interference was not witnessed but we noted instances suggesting that sperm competition might occur. Densities of Bolbometopon on the aggregation site averaged 10.07(±3.24 SE) fish per hectare (ha) with maximum densities of 51.5 fish per ha. By comparing our observations to the results of biennial surveys conducted by the National Oceanic and Atmospheric Administration (NOAA) Coral Reef Ecosystem Division (CRED), we confirmed spatial consistency of the aggregation

  4. Fluorescence of aminofluoresceins as an indicative process allowing one to distinguish between micelles of cationic surfactants and micelle-like aggregates

    NASA Astrophysics Data System (ADS)

    Mchedlov-Petrossyan, Nikolay O.; Cheipesh, Tatiana A.; Roshal, Alexander D.; Doroshenko, Andrey O.; Vodolazkaya, Natalya A.

    2016-09-01

    Among the vast set of fluorescein derivatives, the double charged R2- anions of aminofluoresceins are known to exhibit only low quantum yields of fluorescence, \\varphi . The \\varphi value becomes as high as that of the fluorescein dianion when the lone electron pair of the amino group is involved in a covalent bond. According to Munkholm et al (1990 J. Am. Chem. Soc. 112 2608-12), a much smaller increase in the emission intensity can be observed in the presence of surfactant micelles. However, all these observations refer to aqueous or alcoholic solvents. In this paper, we show that in the non-hydrogen bond donor (or ‘aprotic’) solvents DMSO and acetone, the quantum yields, φ, of the 4‧- (or 5‧)-aminofluorescein R2- species amount to 61-67% and approach that of fluorescein (φ  =  87%), whereas in water φ is only 0.6-0.8%. In glycerol, a solvent with an extremely high viscosity, the φ value is only 6-10%. We report on the enhancement of the fluorescence of the aminofluorescein dianions as an indicative process, which allows us to distinguish between the micelle-like aggregates of cationic dendrimers of low generation, common spherical surfactant micelles, and surfactant bilayers. Some of these colloidal aggregates partly restore the fluorescence of aminofluoresceins in aqueous media. By contrast, other positively charged micellar-like aggregates do not enhance the quantum yield of aminofluorescein R2- species. Results for several related systems, such as CTAB-coated SiO2 particles and reverse microemulsions, are briefly described, and the possible reasons for the observed phenomena are discussed.

  5. Full-time kinetics of self-assembly and disassembly in micellar solution via the generalized Smoluchowski equation with fusion and fission of surfactant aggregates

    NASA Astrophysics Data System (ADS)

    Shchekin, Alexander K.; Babintsev, Ilya A.; Adzhemyan, Loran Ts.

    2016-11-01

    Full-time kinetics of self-assembly and disassembly of spherical micelles with their fusion and fission in non-ionic micellar solutions has been considered in detail on the basis of direct numerical solutions of the generalized Smoluchowski equations describing the evolution of the time-dependent concentrations of molecular aggregates for every aggregation number. The cases of instant increase of the monomer concentration up or dilution of a surfactant solution below the critical micelle concentration at large initial deviations from the final equilibrium state have been studied. Different stages in assembly or disassembly of micelles have been described and compared with the results of the stepwise mechanism of monomer attachment-detachment described by the Becker-Döring kinetic equations. A relation of the full-time kinetics to micellar relaxation at small deviations from the equilibrium state has been checked.

  6. Interaction of Fe(III)- and Zn(II)-tetra(4-sulfonatophenyl) porphyrins with ionic and nonionic surfactants: aggregation and binding.

    PubMed

    Gandini, S C; Yushmanov, V E; Tabak, M

    2001-07-01

    Interactions of the water soluble Fe(III)- and Zn(II)-tetra(4-sulfonatophenyl) porphyrins, FeTPPS(4) and ZnTPPS(4), with ionic and nonionic micelles in aqueous solutions have been studied by optical absorption, fluorescence, resonance light-scattering (RLS), and 1H NMR spectroscopies. The presence of three different species of both Fe(III)- and Zn(II)TPPS(4) in cationic cetyltrimethylammonium chloride (CTAC) solution has been unequivocally demonstrated: free metalloporphyrin monomers or dimers (pH 9), metalloporphyrin monomers or aggregates (possibly micro-oxo dimers) bound to the micelles, and nonmicellar metalloporphyrin/surfactant aggregates. The surfactant:metalloporphyrin ratio for the maximum nonmicellar aggregate formation is around 5-8 for Fe(III)TPPS(4) both at pH 4.0 and 9.0; for Zn(II)TPPS(4) this ratio is 8, and the spectral changes are practically independent of pH. In the case of zwitterionic N-hexadecyl-N,N-dimethyl-3-ammonio-1-propanesulfonate (HPS) and non-ionic polyoxyethylene lauryl ether (Brij-35) and t-octylphenoxypolyethoxyetanol (Triton X-100), the nonmicellar aggregates were not observed in the pH range from 2.0 to 12.0. Binding constants were calculated from optical absorption data and are of the order of 10(4) M(-1) for both CTAC and HPS, values which are similar to those previously obtained for the porphyrin in the free base form. For Brij-35 and Triton X-100 the binding constant for ZnTPPS(4) at pH 4.0 is a factor of 3-5 lower than those for CTAC and HPS, while in the case of FeTPPS(4) they are two orders of magnitude lower. Our data show that solubilization of ZnTPPS(4) within nonpolar regions of micelles is determined, in general, by nonspecific hydrophobic interactions, yet it is modulated by electrostatic factors. In the case of FeTPPS(4), the electrostatic factor seems to be more relevant. NMR data indicated that Fe(III)TPPS(4) is bound to the micelles predominantly as a monomer at pH 4.0, and at pH 9.0 the bound aggregated form

  7. The Value Compressive Strength and Split Tensile Strength on Concrete Mixture With Expanded Polystyrene Coated by Surfactant Span 80 as a Partial Substitution of Fine Aggregate

    NASA Astrophysics Data System (ADS)

    Hidayat, Irpan; Siauwantara, Alice

    2014-03-01

    The value of the density normal concrete which ranges between 2200-2400 kg/m3. Therefore the use of Expanded Polystyrene (EPS) as a subitute to fine aggregate can reduce the density of concrete. The purpose this research is to reduce the density of normal concrete but increase compressive strength of EPS concrete, with use surfactant as coating for the EPS. Variables of substitution percentage of EPS and EPS coated by surfactant are 5%,10%,15%,20%,25%. Method of concrete mix design based on SNI 03-2834-2000 "Tata Cara Pembuatan Rencana Campuran Beton Normal (Provisions for Proportioning Normal Concrete Mixture)". The result of testing, every increase percentage of EPS substitution will decrease the compressive strength around 1,74 MPa and decrease density 34,03 kg/m3. Using Surfactant as coating of EPS , compressive strength increase from the EPS's compressive strength. Average of increasing compressive strength 0,19 MPa and increase the density 20,03 kg/m3,average decrease of the tensile split strength EPS coated surfaktan is 0,84 MPa.

  8. Self-Propelled Oil Droplets and Their Morphological Change to Giant Vesicles Induced by a Surfactant Solution at Low pH.

    PubMed

    Banno, Taisuke; Tanaka, Yuki; Asakura, Kouichi; Toyota, Taro

    2016-09-20

    Unique dynamics using inanimate molecular assemblies based on soft matter have drawn much attention for demonstrating far-from-equilibrium chemical systems. However, there are no soft matter systems that exhibit a possible pathway linking the self-propelled oil droplets to formation of giant vesicles stimulated by low pH. In this study, we conceived an experimental oil-in-water emulsion system in which flocculated particles composed of a imine-containing oil transformed to spherical oil droplets that self-propelled and, after coming to rest, formed membranous figures. Finally, these figures became giant vesicles. From NMR, pH curves, and surface tension measurements, we determined that this far-from-equilibrium phenomenon was due to the acidic hydrolysis of the oil, which produced a benzaldehyde derivative as an oil component and a primary amine as a surfactant precursor, and the dynamic behavior of the hydrolytic products in the emulsion system. These findings afforded us a potential linkage between mobile droplet-based protocells and vesicle-based protocells stimulated by low pH.

  9. Using the giant Australian cuttlefish (Sepia apama) mass breeding aggregation to explore the life cycle of dicyemid parasites.

    PubMed

    Catalano, Sarah R; Whittington, Ian D; Donnellan, Stephen C; Gillanders, Bronwyn M

    2013-12-01

    Dicyemid mesozoan parasites, microscopic organisms found with high intensities in the renal appendages of benthic cephalopods, have a complex, partially unknown life cycle. It is uncertain at which host life cycle stage (i.e. eggs, juvenile, adult) new infection by the dispersive infusoriform embryo occurs. As adult cephalopods have a short lifespan and die shortly after reproducing only once, and juveniles are fast-moving, we hypothesize that the eggs are the life cycle stage where new infection occurs. Eggs are abundant and sessile, allowing a huge number of new individuals to be infected with low energy costs, and they also provide dicyemids with the maximum amount of time for survival compared with infection of juvenile and adult stages. In our study we collected giant Australian cuttlefish (Sepia apama) eggs at different stages of development and filtered seawater samples from the S. apama mass breeding aggregation area in South Australia, Australia, and tested these samples for the presence of dicyemid DNA. We did not recover dicyemid parasite cytochrome c oxidase subunit I (COI) nucleotide sequences from any of the samples, suggesting eggs are not the stage where new infection occurs. To resolve this unknown in the dicyemid life cycle, we believe experimental infection is needed.

  10. Effect of self-association of bovine serum albumin on the stability of surfactant-induced aggregates of allylamine-capped silicon quantum dots.

    PubMed

    Chatterjee, Surajit; Mukherjee, Tushar Kanti

    2013-12-19

    The concentration-dependent self-association of bovine serum albumin (BSA) and subsequent altered interaction with sodium dodecyl sulfate (SDS) has been explored by means of photoluminescence (PL) spectroscopy, dynamic light scattering (DLS), circular dichroism (CD), PL imaging, and atomic force microscopy (AFM). By using an extrinsic luminescent probe, allylamine-capped silicon quantum dots (Si-QDs), we have demonstrated the unusual concentration-dependent altered BSA-SDS interaction. Allylamine-capped Si-QDs forms ordered aggregates in the presence of 1 mM SDS due to hydrogen bonding with the surfactants head groups at pH 7.4. Although these aggregates remain stable in the presence of monomeric BSA in the concentration range 1-8 μM, they form typical ring-shaped doughnut-like structures due to "necklace and bead"-like complex formation. However, beyond 10 μM BSA, these aggregates of Si-QDs slowly dissociate and complete dissociation occurs at 150 μM BSA. These anomalous results have been explained by considering the altered hydrophilicity of self-associated BSA.

  11. Diarmed (adamantyl/alkyl) surfactants from nitrilotriacetic acid.

    PubMed

    Trillo, Juan V; Vázquez Tato, José; Jover, Aida; de Frutos, Santiago; Soto, Victor H; Galantini, Luciano; Meijide, Francisco

    2014-11-01

    The compounds presented here constitute a clear example of molecular biomimetics as their design is inspired on the structure and properties of natural phospholipids. Thus novel double-armed surfactants have been obtained in which nitrilotriacetic acid plays the role of glycerol in phospholipids. The hydrophobic arms are linked to the head group through amide bonds (which is also the case of sphingomyelin): (R1NHCOCH2)(R2NHCOCH2)NCH2CO2H (R1 being CH3(CH2)11, CH3(CH2)17, CH3(CH2)7CHCH(CH2)8, and adamantyl, and R2=adamantyl). The dependence of the surface tension with concentration shows the typical profile of surfactants since a breaking point, which corresponds to the critical aggregation concentration (cac), is observed in all cases. The cac of these diarmed derivatives are about 1-3 orders of magnitude lower than those of classical monoalkyl derivatives used as reference compounds. In contrast to conventional surfactants, reversed trends in cac values and molecular areas at the solution-air interface have been observed. This anomalous behavior is tied to the structure of the surfactants and suggests that long and flexible alkyl chains should self-coil previous to the aggregation or adsorption phenomena. Above cac all compounds form large aggregates, globular in shape, which tend to associate forming giant aggregates.

  12. Surfactant anchoring and aggregate structure at silica nanoparticles: a persuasive facade for the adsorption of azo dye.

    PubMed

    Chaudhary, Savita; Sood, Aastha; Mehta, S K

    2014-09-01

    Nanotechnology's aptitude to silhouette matter at the scale of the nanometer has unlocked the flap to new inventions of applications in material science and nanomedicine. Engineered silica nanoparticles are key actor of this strategy. The amphitheatre of silica nanoparticles is inexplicably bilateral. Silica particles play essential function in everyday commercial purposes for instance energy storage, chemical and biological sensors, food processing and catalysis. One of the most appealing applications to emerge in the recent years is the use of silica particles for cleaning up contaminants in groundwater, soil and sediments. Herein this work, surfactant modified silica nanoparticles with unique surface and pore properties as well as high surface areas have been extensively investigated as an alternative for the dye removal. The physical and chemical characterizations of adsorbent have been studied using FTIR and scanning electron microscopy. The present investigation aims to explore the comparative effect of different surfactants during the formation of the target composite materials. The effects of various parameters like pH, adsorbent doses, dye concentration, addition of salt have also been investigated. These findings indicate that the nano silica particles are effective materials for dye removal and can be used to alleviate environmental problems.

  13. "Giant surfactants" created by the fast and efficient functionalization of a DNA tetrahedron with a temperature-responsive polymer.

    PubMed

    Wilks, Thomas R; Bath, Jonathan; de Vries, Jan Willem; Raymond, Jeffery E; Herrmann, Andreas; Turberfield, Andrew J; O'Reilly, Rachel K

    2013-10-22

    Copper catalyzed azide-alkyne cycloaddition (CuAAC) was employed to synthesize DNA block copolymers (DBCs) with a range of polymer blocks including temperature-responsive poly(N-isoproylacrylamide) (poly(NIPAM)) and highly hydrophobic poly(styrene). Exceptionally high yields were achieved at low DNA concentrations, in organic solvents, and in the absence of any solid support. The DNA segment of the DBC remained capable of sequence-specific hybridization: it was used to assemble a precisely defined nanostructure, a DNA tetrahedron, with pendant poly(NIPAM) segments. In the presence of an excess of poly(NIPAM) homopolymer, the tetrahedron-poly(NIPAM) conjugate nucleated the formation of large, well-defined nanoparticles at 40 °C, a temperature at which the homopolymer precipitated from solution. These composite nanoparticles were observed by dynamic light scattering and cryoTEM, and their hybrid nature was confirmed by AFM imaging. As a result of the large effective surface area of the tetrahedron, only very low concentrations of the conjugate were required in order for this surfactant-like behavior to be observed.

  14. Time resolved study of three ruthenium(II) complexes at micellar surfaces: A new long excited state lifetime probe for determining critical micelle concentration of surfactant nano-aggregates.

    PubMed

    Patra, Digambara; Chaaban, Ahmad H; Darwish, Shaza; Saad, Huda A; Nehme, Ali S; Ghaddar, Tarek H

    2016-02-01

    Three different ruthenium complexes have been synthesized and their luminescence properties in different solvent environments are reported. Luminescence intensities and excited state lifetimes of Ru-I, Ru-II and Ru-III vary with solvent viscosity. The excited state lifetime of Ru-I linearly increases in the viscosity range 1.76-12,100cP. Ru-II shows two linear increases: one in the low and another in the high viscosity ranges, whereas Ru-III illustrates a linear enhancement only in the low viscosity range. Interestingly, luminescence intensities and excited state lifetimes of Ru-I, Ru-II and Ru-III are found to be sensitive to nano-aggregation. However, the surfactant head charge and that of the ruthenium center as well as the hydrophobic tail of the ancillary ligand of the complexes have a great role in deciding the nature of the interaction and on the excited state properties at micellar surfaces. It is proposed that the long lifetime of Ru-III in water could be due to the coiling of the carbon chain of the ancillary ligand around the ruthenium center. At micelle surface, this coiling of the carbon chain is lost due to the parallel alignment with surfactants and thus quenching of the excited state lifetime is seen. Furthermore, it is shown that the variation of the excited state lifetime with respect to the change in surfactant concentration is a result of the formation of micelles from the surfactant monomer, thus, a novel technique for the determination of the critical micelle concentration (cmc) based on the long excited state lifetime of Ru-III located at the micellar nano-aggregates is reported.

  15. Structural Studies of Protein-Surfactant Complexes

    SciTech Connect

    Chodankar, S. N.; Aswal, V. K.; Wagh, A. G.

    2008-03-17

    The structure of protein-surfactant complexes of two proteins bovine serum albumin (BSA) and lysozyme in presence of anionic surfactant sodium dodecyl sulfate (SDS) has been studied using small-angle neutron scattering (SANS). It is observed that these two proteins form different complex structures with the surfactant. While BSA protein undergoes unfolding on addition of surfactant, lysozyme does not show any unfolding even up to very high surfactant concentrations. The unfolding of BSA protein is caused by micelle-like aggregation of surfactant molecules in the complex. On the other hand, for lysozyme protein there is only binding of individual surfactant molecules to protein. Lysozyme in presence of higher surfactant concentrations has protein-surfactant complex structure coexisting with pure surfactant micelles.

  16. Effect of the surfactant Tween 80 on the detachment and dispersal of Salmonella enterica Thompson single cells and aggregates from cilantro leaves as revealed by image analysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biofilms formed by human enteric pathogens on plants are a great concern to the produce industry. Salmonella enterica has the ability to form biofilms and large aggregates on leaf surfaces, including on cilantro leaves. Aggregates that remained attached after rigorous washing of cilantro leaves and ...

  17. Ionic liquids as surfactants

    NASA Astrophysics Data System (ADS)

    Smirnova, N. A.; Safonova, E. A.

    2010-10-01

    Problems of self-assembling in systems containing ionic liquids (ILs) are discussed. Main attention is paid to micellization in aqueous solutions of dialkylimidazolium ILs and their mixtures with classical surfactants. Literature data are reviewed, the results obtained by the authors and co-workers are presented. Thermodynamic aspects of the studies and problems of molecular-thermodynamic modeling receive special emphasis. It is shown that the aggregation behavior of dialkylimidazolium ILs is close to that of alkyltrimethylammonium salts (cationic surfactants) though ILs have a higher ability to self-organize, especially as it concerns long-range ordering. Some aspects of ILs applications are outlined where their common features with classical surfactants and definite specificity are of value.

  18. Lung surfactant.

    PubMed Central

    Rooney, S A

    1984-01-01

    Aspects of pulmonary surfactant are reviewed from a biochemical perspective. The major emphasis is on the lipid components of surfactant. Topics reviewed include surfactant composition, cellular and subcellular sites as well as pathways of biosynthesis of phosphatidylcholine, disaturated phosphatidylcholine and phosphatidylglycerol. The surfactant system in the developing fetus and neonate is considered in terms of phospholipid content and composition, rates of precursor incorporation, activities of individual enzymes of phospholipid synthesis and glycogen content and metabolism. The influence of the following hormones and other factors on lung maturation and surfactant production is discussed: glucocorticoids, thyroid hormone, estrogen, prolactin, cyclic AMP, beta-adrenergic and cholinergic agonists, prostaglandins and growth factors. The influence of maternal diabetes, fetal sex, stress and labor are also considered. Nonphysiologic and toxic agents which influence surfactant in the fetus, newborn and adult are reviewed. PMID:6145585

  19. Filling the gap between the quantum and classical worlds of nanoscale magnetism: giant molecular aggregates based on paramagnetic 3d metal ions.

    PubMed

    Papatriantafyllopoulou, Constantina; Moushi, Eleni E; Christou, George; Tasiopoulos, Anastasios J

    2016-03-21

    In this review, aspects of the syntheses, structures and magnetic properties of giant 3d and 3d/4f paramagnetic metal clusters in moderate oxidation states are discussed. The term "giant clusters" is used herein to denote metal clusters with nuclearity of 30 or greater. Many synthetic strategies towards such species have been developed and are discussed in this paper. Attempts are made to categorize some of the most successful methods to giant clusters, but it will be pointed out that the characteristics of the crystal structures of such compounds including nuclearity, shape, architecture, etc. are unpredictable depending on the specific structural features of the included organic ligands, reaction conditions and other factors. The majority of the described compounds in this review are of special interest not only for their fascinating nanosized structures but also because they sometimes display interesting magnetic phenomena, such as ferromagnetic exchange interactions, large ground state spin values, single-molecule magnetism behaviour or impressively large magnetocaloric effects. In addition, they often possess the properties of both the quantum and the classical world, and thus their systematic study offers the potential for the discovery of new physical phenomena, as well as a better understanding of the existing ones. The research field of giant clusters is under continuous evolution and their intriguing structural characteristics and magnetism properties that attract the interest of synthetic Inorganic Chemists promise a brilliant future for this class of compounds.

  20. Compartmentalization of amino acids in surfactant aggregates - Partitioning between water and aqueous micellar sodium dodecanoate and between hexane and dodecylammonium propionate trapped water in hexane

    NASA Technical Reports Server (NTRS)

    Fendler, J. H.; Nome, F.; Nagyvary, J.

    1975-01-01

    The partitioning of amino acids (glycine, alanine, leucine, phenylalanine, histidine, aspartic acid, glutamic acid, lysine, isoleucine, threonine, serine, valine, proline, arginine) in aqueous and nonaqueous micellar systems was studied experimentally. Partitioning from neat hexane into dodecylammonium propionate trapped water in hexane was found to be dependent on both electrostatic and hydrophobic interactions, which implies that the interior of dodecylammonium propionate aggregates is negatively charged and is capable of hydrogen bonding in addition to providing a hydrophobic environment. Unitary free energies of transfer of amino acid side chains from hexane to water were determined and solubilities of amino acids in neat hexane substantiated the amino acid hydrophobicity scale. The relevance of the experiments to prebiotic chemistry was examined.

  1. Microstructure of Mixed Surfactant Solutions by Electron Microscopy

    NASA Astrophysics Data System (ADS)

    Naranjo, Edward

    1995-01-01

    Surfactant mixtures add a new dimension to the design of complex fluid microstructure. By combining different surfactants it is not only possible to modify aggregate morphology and control the macrascopic properties of colloidal dispersions but also to produce a variety of novel synergistic phases. Mixed systems produce new microstructures by altering the intermolecular and interaggregate forces in ways impossible for single component systems. In this dissertation, we report on the phase behavior and microstructure of several synthetic and biological surfactant mixtures as elucidated by freeze-fracture and cryo-transmission electron microscopy. We have discovered that stable, spontaneous unilamellar vesicles can be prepared from aqueous mixtures of commercially available single-tailed cationic and anionic surfactants. Vesicle stability is determined by the length and volume of the hydrocarbon chains of the "catanionic" pairs. Mixtures containing bulky or branched surfactant pairs (C _{16}/C_{12 -14}) in water produce defect-free fairly monodisperse equilibrium vesicles at high dilution. In contrast, mixtures of catanionic surfactants with highly asymmetric tails (C_{16}/C_8 ) form phases of porous vesicles, dilute lamellar L_{alpha}, and anomalous isotropic L_3 phases. Images of the microstructure by freeze-fracture microscopy show that the L_3 phase consists of multiconnected self-avoiding bilayers with saddle shaped curvature. The forces between bilayers of vesicle-forming cationic and anionic surfactant mixtures were also measured using the Surface Force Apparatus (SFA). We find that the vesicles are stabilized by a long range electrostatic repulsion at large separations (>20 A) and an additional salt-independent repulsive force below 20 A. The measured forces correlate very well with the ternary phase diagram and the vesicle microstructures observed by electron microscopy. In addition to studying ionic surfactants, we have also done original work with

  2. Solubilization and biodegradation of hydrophobic organic compounds in soil/aqueous systems with nonionic surfactants

    SciTech Connect

    Edwards, D.A.; Laha, S.; Liu, Zhongbao; Luthy, R.G.

    1992-01-01

    Nonionic surfactants may strongly interact with hydrophobic organic compounds (HOCs), soil, and microorganisms in soil/aqueous systems. These interactions affect the potential for surfactant-facilitated HOC transport in soil and groundwater systems, and the feasibility of engineered surfactant cleanup of contaminated sites (McCarthy and Wober, 1991). At sufficiently high bulk liquid concentrations at 25 C, most nonionic surfactants form regular micelles in single-phase solutions, whereas certain surfactants, such as C{sub 12}E{sub 4}, may form bilayer lamellae or other types of aggregates in more complex two-phase solutions. The critical concentrations for the onset of micelle and aggregate formation are termed the critical micelle concentration (CMC) and the critical aggregation concentration (CAC), respectively. Important changes occur in surfactant sorption, surfactant solubilization of HOCs, and microbial mineralization of HOCs in the presence of nonionic surfactants at or near these critical surfactant concentrations.

  3. Solubilization and biodegradation of hydrophobic organic compounds in soil/aqueous systems with nonionic surfactants

    SciTech Connect

    Edwards, D.A.; Laha, S.; Liu, Zhongbao; Luthy, R.G.

    1992-05-01

    Nonionic surfactants may strongly interact with hydrophobic organic compounds (HOCs), soil, and microorganisms in soil/aqueous systems. These interactions affect the potential for surfactant-facilitated HOC transport in soil and groundwater systems, and the feasibility of engineered surfactant cleanup of contaminated sites (McCarthy and Wober, 1991). At sufficiently high bulk liquid concentrations at 25 C, most nonionic surfactants form regular micelles in single-phase solutions, whereas certain surfactants, such as C{sub 12}E{sub 4}, may form bilayer lamellae or other types of aggregates in more complex two-phase solutions. The critical concentrations for the onset of micelle and aggregate formation are termed the critical micelle concentration (CMC) and the critical aggregation concentration (CAC), respectively. Important changes occur in surfactant sorption, surfactant solubilization of HOCs, and microbial mineralization of HOCs in the presence of nonionic surfactants at or near these critical surfactant concentrations.

  4. Surfactant-enhanced cellulose nanocrystal Pickering emulsions.

    PubMed

    Hu, Zhen; Ballinger, Sarah; Pelton, Robert; Cranston, Emily D

    2015-02-01

    The effect of surfactants on the properties of Pickering emulsions stabilized by cellulose nanocrystals (CNCs) was investigated. Electrophoretic mobility, interfacial tension, confocal microscopy and three-phase contact angle measurements were used to elucidate the interactions between anionic CNCs and cationic alkyl ammonium surfactants didecyldimethylammonium bromide (DMAB) and cetyltrimethylammonium bromide (CTAB). Both surfactants were found to adsorb onto CNCs with concentration-dependent morphology. At low concentrations, individual surfactant molecules adsorbed with alkyl tails pointing outward leading to hydrophobic CNCs. At higher concentrations, above the surfactant's apparent critical micelle concentration, surfactant aggregate morphologies on CNCs were inferred and the hydrophobicity of CNCs decreased. DMAB, which has two alkyl tails, rendered the CNCs more hydrophobic than CTAB which has only a single alkyl tail, at all surfactant concentrations. The change in CNC wettability from surfactant adsorption was directly linked to emulsion properties; adding surfactant increased the emulsion stability, decreased the droplet size, and controlled the internal phase of CNC Pickering emulsions. More specifically, a double transitional phase inversion, from oil-in-water to water-in-oil and back to oil-in-water, was observed for emulsions with CNCs and increasing amounts of DMAB (the more hydrophobic surfactant). With CNCs and CTAB, no phase inversion was induced. This work represents the first report of CNC Pickering emulsions with surfactants as well as the first CNC Pickering emulsions that can be phase inverted. The ability to surface modify CNCs in situ and tailor emulsions by adding surfactants may extend the potential of CNCs to new liquid formulations and extruded/spray-dried materials.

  5. Gemini surfactants from natural amino acids.

    PubMed

    Pérez, Lourdes; Pinazo, Aurora; Pons, Ramon; Infante, Mrosa

    2014-03-01

    In this review, we report the most important contributions in the structure, synthesis, physicochemical (surface adsorption, aggregation and phase behaviour) and biological properties (toxicity, antimicrobial activity and biodegradation) of Gemini natural amino acid-based surfactants, and some potential applications, with an emphasis on the use of these surfactants as non-viral delivery system agents. Gemini surfactants derived from basic (Arg, Lys), neutral (Ser, Ala, Sar), acid (Asp) and sulphur containing amino acids (Cys) as polar head groups, and Geminis with amino acids/peptides in the spacer chain are reviewed.

  6. Surfactant compositions

    SciTech Connect

    Novakovic, M.; Abend, P.G.

    1987-09-29

    A surfactant composition is described for subsequent addition to a soap slurring comprising an acyloxy alkane sulfonate salt. The sulfonate salt is present in an amount by weight of about 44 percent of about 56 percent. The polyol is present in an amount by weight of about 2 percent to about 6 percent, and water is present in an amount by weight of 26 to 36 percent. The composition constituting a solid reversible solution at ambient temperature and having a solids content of about 58 to 72 percent, whereby subsequent addition of the surfactant composition to a soap slurry results in formation of a soap/detergent bar having a smooth texture, uniform wear properties and a lack of grittiness.

  7. Biomimicry of surfactant protein C.

    PubMed

    Brown, Nathan J; Johansson, Jan; Barron, Annelise E

    2008-10-01

    Since the widespread use of exogenous lung surfactant to treat neonatal respiratory distress syndrome, premature infant survival and respiratory morbidity have dramatically improved. Despite the effectiveness of the animal-derived surfactant preparations, there still remain some concerns and difficulties associated with their use. This has prompted investigation into the creation of synthetic surfactant preparations. However, to date, no clinically used synthetic formulation is as effective as the natural material. This is largely because the previous synthetic formulations lacked analogues of the hydrophobic proteins of the lung surfactant system, SP-B and SP-C, which are critical functional constituents. As a result, recent investigation has turned toward the development of a new generation of synthetic, biomimetic surfactants that contain synthetic phospholipids along with a mimic of the hydrophobic protein portion of lung surfactant. In this Account, we detail our efforts in creating accurate mimics of SP-C for use in a synthetic surfactant replacement therapy. Despite SP-C's seemingly simple structure, the predominantly helical protein is extraordinarily challenging to work with given its extreme hydrophobicity and structural instability, which greatly complicates the creation of an effective SP-C analogue. Drawing inspiration from Nature, two promising biomimetic approaches have led to the creation of rationally designed biopolymers that recapitulate many of SP-C's molecular features. The first approach utilizes detailed SP-C structure-activity relationships and amino acid folding propensities to create a peptide-based analogue, SP-C33. In SP-C33, the problematic and metastable polyvaline helix is replaced with a structurally stable polyleucine helix and includes a well-placed positive charge to prevent aggregation. SP-C33 is structurally stable and eliminates the association propensity of the native protein. The second approach follows the same design

  8. Aggregation of sodium alkylbenzenesulfonates in aqueous solution

    SciTech Connect

    Magid, L.J.; Shaver, R.J.; Gulari, E.; Bedwell, B.; Alkhafaji, S.

    1981-01-01

    The surfactant 6 phenyl C/sub 12/SNa forms small spherical micelles in aqueous solution, having an aggregation number of 20 to 30 and a fractional charge of 0.45. These micelles are hydrated to the extent of approximately 18 moles H/sub 2/O per moles of surfactant. A second larger aggregate is also present in 6 phenyl C/sub 12/SNa solutions; its importance increases with solution age. Addition of NaCl causes both aggregates to apparently increase modestly in size. The surfactant 8 phenyl C/sub 16/SNa also contains both aggregates in its solutions; the larger one is relatively more important here. The larger aggregate does not correspond to dispersed bits of a liquid crystalline mesophase.

  9. Gemini surfactants affect the structure, stability, and activity of ribonuclease Sa.

    PubMed

    Amiri, Razieh; Bordbar, Abdol-Khalegh; Laurents, Douglas V

    2014-09-11

    Gemini surfactants have important advantages, e.g., low micromolar CMCs and slow millisecond monomer ↔ micelle kinetics, for membrane mimetics and for delivering nucleic acids for gene therapy or RNA silencing. However, as a prerequisite, it is important to characterize interactions occurring between Gemini surfactants and proteins. Here NMR and CD spectroscopies are employed to investigate the interactions of cationic Gemini surfactants with RNase Sa, a negatively charged ribonuclease. We find that RNase Sa binds Gemini surfactant monomers and micelles at pH values above 4 to form aggregates. Below pH 4, where the protein is positively charged, these aggregates dissolve and interactions are undetectable. Thermal denaturation experiments show that surfactant lowers RNase Sa's conformational stability, suggesting that surfactant binds the protein's denatured state preferentially. Finally, Gemini surfactants were found to bind RNA, leading to the formation of large complexes. Interestingly, Gemini surfactant binding did not prevent RNase Sa from cleaving RNA.

  10. DNA compaction by azobenzene-containing surfactant

    SciTech Connect

    Zakrevskyy, Yuriy; Kopyshev, Alexey; Lomadze, Nino; Santer, Svetlana

    2011-08-15

    We report on the interaction of cationic azobenzene-containing surfactant with DNA investigated by absorption and fluorescence spectroscopy, dynamic light scattering, and atomic force microscopy. The properties of the surfactant can be controlled with light by reversible switching of the azobenzene unit, incorporated into the surfactant tail, between a hydrophobic trans (visible irradiation) and a hydrophilic cis (UV irradiation) configuration. The influence of the trans-cis isomerization of the azobenzene on the compaction process of DNA molecules and the role of both isomers in the formation and colloidal stability of DNA-surfactant complexes is discussed. It is shown that the trans isomer plays a major role in the DNA compaction process. The influence of the cis isomer on the DNA coil configuration is rather small. The construction of a phase diagram of the DNA concentration versus surfactant/DNA charge ratio allows distancing between three major phases: colloidally stable and unstable compacted globules, and extended coil conformation. There is a critical concentration of DNA above which the compacted globules can be hindered from aggregation and precipitation by adding an appropriate amount of the surfactant in the trans configuration. This is because of the compensation of hydrophobicity of the globules with an increasing amount of the surfactant. Below the critical DNA concentration, the compacted globules are colloidally stable and can be reversibly transferred with light to an extended coil state.

  11. Aggregation work at polydisperse micellization: Ideal solution and ``dressed micelle'' models comparing to molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Burov, S. V.; Shchekin, A. K.

    2010-12-01

    General thermodynamic relations for the work of polydisperse micelle formation in the model of ideal solution of molecular aggregates in nonionic surfactant solution and the model of "dressed micelles" in ionic solution have been considered. In particular, the dependence of the aggregation work on the total concentration of nonionic surfactant has been analyzed. The analogous dependence for the work of formation of ionic aggregates has been examined with regard to existence of two variables of a state of an ionic aggregate, the aggregation numbers of surface active ions and counterions. To verify the thermodynamic models, the molecular dynamics simulations of micellization in nonionic and ionic surfactant solutions at two total surfactant concentrations have been performed. It was shown that for nonionic surfactants, even at relatively high total surfactant concentrations, the shape and behavior of the work of polydisperse micelle formation found within the model of the ideal solution at different total surfactant concentrations agrees fairly well with the numerical experiment. For ionic surfactant solutions, the numerical results indicate a strong screening of ionic aggregates by the bound counterions. This fact as well as independence of the coefficient in the law of mass action for ionic aggregates on total surfactant concentration and predictable behavior of the "waterfall" lines of surfaces of the aggregation work upholds the model of "dressed" ionic aggregates.

  12. Pseudomonas aeruginosa protease IV degrades surfactant proteins and inhibits surfactant host defense and biophysical functions.

    PubMed

    Malloy, Jaret L; Veldhuizen, Ruud A W; Thibodeaux, Brett A; O'Callaghan, Richard J; Wright, Jo Rae

    2005-02-01

    Pulmonary surfactant has two distinct functions within the lung: reduction of surface tension at the air-liquid interface and participation in innate host defense. Both functions are dependent on surfactant-associated proteins. Pseudomonas aeruginosa is primarily responsible for respiratory dysfunction and death in cystic fibrosis patients and is also a leading pathogen in nosocomial pneumonia. P. aeruginosa secretes a number of proteases that contribute to its virulence. We hypothesized that P. aeruginosa protease IV degrades surfactant proteins and results in a reduction in pulmonary surfactant host defense and biophysical functions. Protease IV was isolated from cultured supernatant of P. aeruginosa by gel chromatography. Incubation of cell-free bronchoalveolar lavage fluid with protease IV resulted in degradation of surfactant proteins (SP)-A, -D, and -B. SPs were degraded in a time- and dose-dependent fashion by protease IV, and degradation was inhibited by the trypsin-like serine protease inhibitor Nalpha-p-tosyl-L-lysine-chloromethyl ketone (TLCK). Degradation by protease IV inhibited SP-A- and SP-D-mediated bacterial aggregation and uptake by macrophages. Surfactant treated with protease IV was unable to reduce surface tension as effectively as untreated surfactant, and this effect was inhibited by TLCK. We speculate that protease IV may be an important contributing factor to the development and propagation of acute lung injury associated with P. aeruginosa via loss of surfactant function within the lung.

  13. Gemini imidazolium surfactants: synthesis and their biophysiochemical study.

    PubMed

    Kamboj, Raman; Singh, Sukhprit; Bhadani, Avinash; Kataria, Hardeep; Kaur, Gurcharan

    2012-08-21

    New gemini imidazolium surfactants 9-13 have been synthesized by a regioselective epoxy ring-opening reaction under solvent-free conditions. The surface properties of these new gemini surfactants were evaluated by surface tension and conductivity measurements. These surfactants have been found to have low critical micelle concentration (cmc) values as compared to other categories of gemini cationic surfactants and also showed the tendency to form premicellar aggregates in solution at sufficiently low concentration below their cmc values. The thermal degradation of these surfactants was determined by thermograviometry analysis (TGA). These new cationic surfactants have a good DNA binding capability as determined by agarose gel electrophoresis and ethidium bromide exclusion experiments. They have also been found to have low cytotoxicity by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay on the C6 glioma cell line.

  14. Thermally cleavable surfactants

    DOEpatents

    McElhanon, James R.; Simmons, Blake A.; Zifer, Thomas; Jamison, Gregory M.; Loy, Douglas A.; Rahimian, Kamyar; Long, Timothy M.; Wheeler, David R.; Staiger, Chad L.

    2009-11-24

    Two new surfactant molecules are reported which contain thermally labile Diels-Alder adducts connecting the polar and non-polar sections of each molecule. The two surfactants possess identical non-polar dodecyl tail segments but exhibit different polar headgroups. The surfactants become soluble in water when anionic salts are formed through the deprotonation of the surfactant headgroups by the addition of potassium hydroxide. When either surfactant is exposed to temperature above about 60.degree. C., the retro Diels-Alder reaction occurs, yielding hydrophilic and hydrophobic fragments or the aqueous solutions of the surfactants subsequently exhibit loss of all surface-active behavior.

  15. Thermally cleavable surfactants

    DOEpatents

    McElhanon, James R.; Simmons, Blake A.; Zifer, Thomas; Jamison, Gregory M.; Loy, Douglas A.; Rahimian, Kamyar; Long, Timothy M.; Wheeler, David R.; Staiger, Chad L.

    2006-04-04

    Two new surfactant molecules are reported which contain thermally labile Diels-Alder adducts connecting the polar and non-polar sections of each molecule. The two surfactants possess identical non-polar dodecyl tail segments but exhibit different polar headgroups. The surfactants become soluble in water when anionic salts are formed through the deprotonation of the surfactant headgroups by the addition of potassium hydroxide. When either surfactant is exposed to temperature above about 60.degree. C., the retro Diels-Alder reaction occurs, yielding hydrophilic and hydrophobic fragments and the aqueous solutions of the surfactants subsequently exhibit loss of all surface-active behavior.

  16. Thermally cleavable surfactants

    DOEpatents

    McElhanon, James R.; Simmons, Blake A.; Zifer, Thomas; Jamison, Gregory M.; Loy, Douglas A.; Rahimian, Kamyar; Long, Timothy M.; Wheeler, David R.; Staiger, Chad L.

    2009-09-29

    Two new surfactant molecules are reported which contain thermally labile Diels-Alder adducts connecting the polar and non-polar sections of each molecule. The two surfactants possess identical non-polar dodecyl tail segments but exhibit different polar headgroups. The surfactants become soluble in water when anionic salts are formed through the deprotonation of the surfactant headgroups by the addition of potassium hydroxide. When either surfactant is exposed to temperature above about 60.degree. C., the retro Diels-Alder reaction occurs, yielding hydrophilic and hydrophobic fragments or the aqueous solutions of the surfactants subsequently exhibit loss of all surface-active behavior.

  17. Photosensitive surfactants: Micellization and interaction with DNA

    NASA Astrophysics Data System (ADS)

    Zakrevskyy, Yuriy; Roxlau, Julian; Brezesinski, Gerald; Lomadze, Nino; Santer, Svetlana

    2014-01-01

    Recently, photosensitive surfactants have re-attracted considerable attention. It has been shown that their association with oppositely charged biologically important polyelectrolytes, such as DNA or microgels, can be efficiently manipulated simply by light exposure. In this article, we investigate the self-assembly of photosensitive surfactants as well as their interactions with DNA by calorimetric and spectroscopic methods. Critical micelle concentration (CMC), standard micellization enthalpy, entropy, and Gibbs energy were determined in different conditions (ionic strengths and temperatures) for a series of cationic surfactants with an azobenzene group in their tail. It is shown, that aggregation forces of photosensitive units play an important role in the micellization giving the major contribution to the micellization enthalpy. The onset of the aggregation can be traced from shift of the absorption peak position in the UV-visible spectrum. Titration UV-visible spectroscopy is used as an alternative, simple, and sensitive approach to estimate CMC. The titration UV-visible spectroscopy was also employed to investigate interactions (CAC: critical aggregation concentration, precipitation, and colloidal stabilization) in the DNA-surfactant complex.

  18. Photosensitive surfactants: micellization and interaction with DNA.

    PubMed

    Zakrevskyy, Yuriy; Roxlau, Julian; Brezesinski, Gerald; Lomadze, Nino; Santer, Svetlana

    2014-01-28

    Recently, photosensitive surfactants have re-attracted considerable attention. It has been shown that their association with oppositely charged biologically important polyelectrolytes, such as DNA or microgels, can be efficiently manipulated simply by light exposure. In this article, we investigate the self-assembly of photosensitive surfactants as well as their interactions with DNA by calorimetric and spectroscopic methods. Critical micelle concentration (CMC), standard micellization enthalpy, entropy, and Gibbs energy were determined in different conditions (ionic strengths and temperatures) for a series of cationic surfactants with an azobenzene group in their tail. It is shown, that aggregation forces of photosensitive units play an important role in the micellization giving the major contribution to the micellization enthalpy. The onset of the aggregation can be traced from shift of the absorption peak position in the UV-visible spectrum. Titration UV-visible spectroscopy is used as an alternative, simple, and sensitive approach to estimate CMC. The titration UV-visible spectroscopy was also employed to investigate interactions (CAC: critical aggregation concentration, precipitation, and colloidal stabilization) in the DNA-surfactant complex.

  19. Characterization and Control of Surfactant-Mediated Norovirus Interactions

    PubMed Central

    Mertens, Brittany S.; Velev, Orlin D.

    2015-01-01

    Understanding of the colloidal interactions of Norovirus particles in aqueous medium could provide insights on the origins of the notorious stability and infectivity of these widespread viral agents. We characterized the effects of solution pH and surfactant type and concentration on the aggregation, dispersion, and disassembly of Norovirus virus-like particles (VLPs) using dynamic light scattering, electrophoretic light scattering, and transmission electron microscopy. Owing to net negative surface charge of the VLPs at neutral pH, low concentrations of cationic surfactant tend to aggregate the VLPs, whereas low concentrations of anionic surfactant tend to disperse the particles. Increasing the concentration of these surfactants beyond their critical micelle concentration leads to virus capsid disassembly and breakdown of aggregates. Non-ionic surfactants, however, had little effect on virus interactions and likely stabilized them additionally in suspension. The data were interpreted on the basis of simple models for surfactant binding and re-charging of the virus capsid. We used zeta potential data to characterize virus surface charge and interpret the mechanisms behind these demonstrated surfactant-virus interactions. The fundamental understanding and control of these interactions will aid in practical formulations for virus inactivation and removal from contaminated surfaces. PMID:26378627

  20. Molecular simulation of surfactant-assisted protein refolding

    NASA Astrophysics Data System (ADS)

    Lu, Diannan; Liu, Zheng; Liu, Zhixia; Zhang, Minlian; Ouyang, Pingkai

    2005-04-01

    Protein refolding to its native state in vitro is a challenging problem in biotechnology, i.e., in the biomedical, pharmaceutical, and food industry. Protein aggregation and misfolding usually inhibit the recovery of proteins with their native states. These problems can be partially solved by adding a surfactant into a suitable solution environment. However, the process of this surfactant-assisted protein refolding is not well understood. In this paper, we wish to report on the first-ever simulations of surfactant-assisted protein refolding. For these studies, we defined a simple model for the protein and the surfactant and investigated how a surfactant affected the folding behavior of a two-dimensional lattice protein molecule. The model protein and model surfactant were chosen such that we could capture the important features of the folding process and the interaction between the protein and the surfactant, namely, the hydrophobic interaction. It was shown that, in the absence of surfactants, a protein in an "energy trap" conformation, i.e., a local energy minima, could not fold into the native form, which was characterized by a global energy minimum. The addition of surfactants created folding pathways via the formation of protein-surfactant complexes and thus enabled the conformations that fell into energy trap states to escape from these traps and to form the native proteins. The simulation results also showed that it was necessary to match the hydrophobicity of surfactant to the concentration of denaturant, which was added to control the folding or unfolding of a protein. The surfactants with different hydrophobicity had their own concentration range on assisting protein refolding. All of these simulations agreed well with experimental results reported elsewhere, indicating both the validity of the simulations presented here and the potential application of the simulations for the design of a surfactant on assisting protein refolding.

  1. Enhanced photodegradation of pentachlorophenol by single and mixed nonionic and anionic surfactants using graphene-TiO₂ as catalyst.

    PubMed

    Zhang, Yaxin; He, Xin; Zeng, Guangming; Chen, Tan; Zhou, Zeyu; Wang, Hongtao; Lu, Wenjing

    2015-11-01

    The photodegradation of pentachlorophenol (PCP) in a surfactant-containing (single and mixed) complex system using graphene-TiO2 (GT) as catalyst was investigated. The objective was to better understand the behavior of surfactants in a GT catalysis system for its possible use in remediation technology of soil contaminated by hydrophobic organic compounds (HOCs). In a single-surfactant system, surfactant molecules aggregated on GT via hydrogen bonding and electrostatic force; nonideal mixing between nonionic and anionic surfactants rendered GT surface with mixed admicelles in a mixed surfactant system. Both effects helped incorporating PCP molecules into surfactant aggregates on catalyst surface. Hence, the targeted pollutants were rendered easily available to photo-yielded oxidative radicals, and photodegradation efficiency was significantly enhanced. Finally, real soil washing-photocatalysis trials proved that anionic-nonionic mixed surfactant soil washing coupled with graphene-TiO2 photocatalysis can be one promising technology for HOC-polluted soil remediation.

  2. Deracemization of bilirubin as the marker of the chirality of micellar aggregates.

    PubMed

    Sorrenti, Alessandro; Altieri, Barbara; Ceccacci, Francesca; Di Profio, Pietro; Germani, Raimondo; Giansanti, Luisa; Savelli, Gianfranco; Mancini, Giovanna

    2012-01-01

    The deracemization of bilirubin in micellar aggregates of structurally correlated chiral surfactants was studied by circular dichroism experiments and exploited as the marker of the expression of chirality of the aggregates. The obtained results suggest that the hydrophobic interactions control the transfer of chirality from the monomers to the aggregates, and that different regions of the same aggregate might feature opposite enantiorecognition capabilities.

  3. Low-surface energy surfactants with branched hydrocarbon architectures.

    PubMed

    Alexander, Shirin; Smith, Gregory N; James, Craig; Rogers, Sarah E; Guittard, Frédéric; Sagisaka, Masanobu; Eastoe, Julian

    2014-04-01

    Surface tensiometry and small-angle neutron scattering have been used to characterize a new class of low-surface energy surfactants (LSESs), "hedgehog" surfactants. These surfactants are based on highly branched hydrocarbon (HC) chains as replacements for environmentally hazardous fluorocarbon surfactants and polymers. Tensiometric analyses indicate that a subtle structural modification in the tails and headgroup results in significant effects on limiting surface tensions γcmc at the critical micelle concentration: a higher level of branching and an increased counterion size promote an effective reduction of surface tension to low values for HC surfactants (γcmc ∼ 24 mN m(-1)). These LSESs present a new class of potentially very important materials, which form lamellar aggregates in aqueous solutions independent of dilution.

  4. Enhanced solubilization of curcumin in mixed surfactant vesicles.

    PubMed

    Kumar, Arun; Kaur, Gurpreet; Kansal, S K; Chaudhary, Ganga Ram; Mehta, S K

    2016-05-15

    Self-assemblies of equimolar double and single chain mixed ionic surfactants, with increasing numbers of carbon atoms of double chain surfactant, were analyzed on the basis of fluorescence and conductivity results. Attempts were also made to enhance the solubilization of curcumin in aqueous equimolar mixed surfactant systems. Mixed surfactant assembly was successful in retarding the degradation of curcumin in alkaline media (only 25-28 40% degraded in 10h at pH 13). Fluorescence spectroscopy and fluorescence quenching methods were employed to predict the binding position and mechanism of curcumin with self-assemblies. Results indicate that the interactions take place according to both dynamic and static quenching mechanisms and curcumin was distributed in a palisade layer of mixed aggregates. Antioxidant activity (using DPPH radical) and biocompatibility (using calf-thymus DNA) of curcumin-loaded mixed surfactant formulations were also evaluated. The prepared systems improved the stability, solubility and antioxidant activity of curcumin and additionally are biocompatible.

  5. Surfactant doped silica aerogels dried at supercritical pressure

    NASA Astrophysics Data System (ADS)

    Parale, V. G.; Mahadik, D. B.; Kavale, M. S.; Rao, A. Venkateswara; Vhatkar, R. S.; Wagh, P. B.; Gupta, Satish C.

    2013-02-01

    By combining the molecular silica precursor methyltrimethoxysilane (MTMS) with methanol, water and Tween-80 solution, we get surfactant-doped silica alcogels. The wet alcogels can be exchanged with methanol and then supercritically extracted with nitrogen to produce surfactant-doped silica aerogels (SDSAs). SDSAs represent a new class of aerogels that are composed of aggregated submicron porous particles that have tunable interparticle nanoporosity. As we increased the percentage of surfactant, the physical properties of silica aerogels changes. In this study we characterized the SDSAs by SEM for morphological study, FTIR for the material composition, contact angle for hydrophobicity determination and thermal conductivity measurements are carried out for thermal insulation application.

  6. Rheology of cellulose nanofibrils in the presence of surfactants.

    PubMed

    Quennouz, Nawal; Hashmi, Sara M; Choi, Hong Sung; Kim, Jin Woong; Osuji, Chinedum O

    2016-01-07

    Cellulose nanofibrils (CNFs) present unique opportunities for rheology modification in complex fluids. Here we systematically consider the effect of ionic and non-ionic surfactants on the rheology of dilute CNF suspensions. Neat suspensions are transparent yield-stress fluids which display strong shear thinning and power-law dependence of modulus on concentration, G' ∼ c(2.1). Surfactant addition below a critical mass concentration cc produces an increase in the gel modulus with retention of optical clarity. Larger than critical concentrations induce significant fibril aggregation leading to the loss of suspension stability and optical clarity, and to aggregate sedimentation. The critical concentration was the lowest for a cationic surfactant (DTAB), cc ≈ 0.08%, while suspension stability was retained for non-ionic surfactants (Pluronic F68, TX100) at concentrations up to 8%. The anionic surfactant SDS led to a loss of stability at cc ≈ 1.6% whereas suspension stability was not compromised by anionic SLES up to 8%. Dynamic light scattering data are consistent with a scenario in which gel formation is driven by micelle-nanofibril bridging mediated by associative interactions of ethoxylated surfactant headgroups with the cellulose fibrils. This may explain the strong difference between the properties of SDS and SLES-modified suspensions. These results have implications for the use of CNFs as a rheology modifier in surfactant-containing systems.

  7. Observation of two different fractal structures in nanoparticle, protein and surfactant complexes

    SciTech Connect

    Mehan, Sumit Kumar, Sugam Aswal, V. K.

    2014-04-24

    Small angle neutron scattering has been carried out from a complex of nanoparticle, protein and surfactant. Although all the components are similarly (anionic) charged, we have observed strong interactions in their complex formation. It is characterized by the coexistence of two different mass fractal structures. The first fractal structure is originated from the protein and surfactant interaction and second from the depletion effect of first fractal structure leading the nanoparticle aggregation. The fractal structure of protein-surfactant complex represents to bead necklace structure of micelle-like clusters of surfactant formed along the unfolded protein chain. Its fractal dimension depends on the surfactant to protein ratio (r) and decreases with the increase in r. However, fractal dimension of nanoparticle aggregates in nanoparticle-protein complex is found to be independent of protein concentration and governed by the diffusion limited aggregation like morphology.

  8. Micellization of alkyltrimethylammonium bromide surfactants in choline chloride:glycerol deep eutectic solvent.

    PubMed

    Sanchez-Fernandez, Adrian; Arnold, Thomas; Jackson, Andrew J; Fussell, Sian L; Heenan, Richard K; Campbell, Richard A; Edler, Karen J

    2016-12-07

    Deep eutectic solvents have shown the ability to promote the self-assembly of surfactants in solution. However, some differences have been found compared with self-assembly in pure water and other polar organic solvents. The behaviour of alkyltrimethylammonium bromides in choline chloride:glycerol deep eutectic solvent has been studied by means of surface tension, X-ray and neutron reflectivity and small-angle neutron scattering. The surfactants were found to remain surface active and showed comparable critical micelle concentrations to the same surfactants in water. Our scattering studies demonstrate that these surfactants form globular micelles with ellipsoidal shape in solution. The size, shape and aggregation number of the aggregates were found to vary with the chain length of the surfactant. Specific solvent-headgroup interactions were not found in this system, unlike those we have previously postulated for anionic surfactants in choline chloride deep eutectic solvents.

  9. Surfactant Enhanced DNAPL Removal

    DTIC Science & Technology

    2001-08-01

    or the permeability contrast (i.e., degree of heterogeneity) that is present in the DNAPL zone. To solubilize DNAPL with surfactants, a sufficient...with respect to the effects of permeability and heterogeneity upon the costs of SEAR: as permeability decreases and/or the degree of heterogeneity...not be an issue for surfactant recovery at all sites. The degree to which MEUF will concentrate the calcium is a function of the surfactant itself

  10. Construction aggregates

    USGS Publications Warehouse

    Tepordei, V.V.

    1995-01-01

    Part of the 1994 Industrial Minerals Review. The production, consumption, and applications of construction aggregates are reviewed. In 1994, the production of construction aggregates, which includes crushed stone and construction sand and gravel combined, increased 7.7 percent to 2.14 Gt compared with the previous year. These record production levels are mostly a result of funding for highway construction work provided by the Intermodal Surface Transportation Efficiency Act of 1991. Demand is expected to increase for construction aggregates in 1995.

  11. Towards unravelling surfactant transport

    NASA Astrophysics Data System (ADS)

    Sellier, Mathieu; Panda, Satyananda

    2015-11-01

    Surfactant transport arises in many natural or industrial settings. Examples include lipid tear layers in the eye, pulmonary surfactant replacement therapy, or industrial coating flows. Flows driven by the surface tension gradient which arises as a consequence of surfactant concentration inhomogeneity, also known as Marangoni-driven flows, have attracted the attention of fluid dynamists for several decades and has led to the development of sophisticated models and the undeniable advancement of the understanding of such flows. Yet, experimental confirmation of these models has been hampered by the difficulty in reliably and accurately measuring the surfactant concentration and its temporal evolution. In this contribution, we propose a methodology which may help shed some light on surfactant transport at the surface of thin liquid films. The surface stress induced by surfactant concentration induces a flow at the free surface which is visible and measurable. In the context of thin film flows for which the lubrication approximation hold, we demonstrate how the knowledge of this free surface flow field provides sufficient information to reconstruct the surfactant tension field. From the surface tension and an assumed equation of state, the local surfactant concentration can also be calculated and other transport parameters such as the surfactant surface diffusivity indirectly inferred. In this contribution, the proposed methodology is tested with synthetic data generated by the forward solution of the governing partial differential equations in order to illustrate the feasibility of the algorithm and highlight numerical challenges.

  12. Surfactant phospholipid metabolism

    PubMed Central

    Agassandian, Marianna; Mallampalli, Rama K.

    2012-01-01

    Pulmonary surfactant is essential for life and is comprised of a complex lipoprotein-like mixture that lines the inner surface of the lung to prevent alveolar collapse at the end of expiration. The molecular composition of surfactant depends on highly integrated and regulated processes involving its biosynthesis, remodeling, degradation, and intracellular trafficking. Despite its multicomponent composition, the study of surfactant phospholipid metabolism has focused on two predominant components, disaturated phosphatidylcholine that confers surface-tension lowering activities, and phosphatidylglycerol, recently implicated in innate immune defense. Future studies providing a better understanding of the molecular control and physiological relevance of minor surfactant lipid components are needed. PMID:23026158

  13. On the mesoscopic origins of high viscosities in some polyelectrolyte-surfactant mixtures

    SciTech Connect

    Hoffmann, Ingo; Farago, Bela; Schweins, Ralf; Falus, Peter; Sharp, Melissa; Prévost, Sylvain; Gradzielski, Michael

    2015-08-21

    Oppositely charged polyelectrolyte (PE) surfactant mixtures allow the control of rheological parameters of a solution even at fairly low concentrations. For example, addition of 0.3 wt. % of anionic surfactant to a 1 wt. % solution of the polycation JR 400 increases the viscosity by 4 orders of magnitude. Recently, we could show that this increase is related to the formation of mixed, rod-like PE/surfactant aggregates which interconnect several polyelectrolyte chains [Hoffmann et al., Europhys. Lett. 104, 28001 (2013)]. In this paper, we refine our structural model of the aggregates to obtain a more consistent picture of their internal structure for different anionic surfactants. Combining small angle neutron scattering (SANS) and neutron spin-echo (NSE) allows us to determine the size of the aggregates. By comparing different contrasts, the internal structure of the aggregates can be elucidated and it is seen that the PE in the aggregates retains a relatively high freedom of movement. We proceeded to investigate the influence of the surfactant concentration and the surfactant type on structure and dynamics of the mixed aggregates. It is seen that the structural parameters of the aggregates depend very little on the surfactant concentration and headgroup. However, it is crucial to incorporate a sufficient amount of PE in the aggregates to increase the viscosity of the aggregates. By comparing viscous samples at 1 wt. % PE concentration with samples at a PE concentration of 0.3 wt. %, where no significant increase in viscosity is observed, we find that similar aggregates are formed already at this lower PE concentrations. However, the amount of PE incorporated in them is insufficient to interconnect several PE chains and therefore, they do not increase viscosity. So, our detailed investigation combining contrast variation SANS and NSE does not only allow to explain the viscosity behavior but also to deduced detailed information regarding the structures and

  14. The interfacial interactions of Tb-doped silica nanoparticles with surfactants and phospholipids revealed through the fluorescent response.

    PubMed

    Bochkova, Olga D; Mustafina, Asiya R; Mukhametshina, Alsu R; Burilov, Vladimir A; Skripacheva, Viktoriya V; Zakharova, Lucia Ya; Fedorenko, Svetlana V; Konovalov, Alexander I; Soloveva, Svetlana E; Antipin, Igor S

    2012-04-01

    The quenching effect of dyes (phenol red and bromothymol blue) on Tb(III)-centered luminescence enables to sense the aggregation of cationic and anionic surfactants near the silica surface of Tb-doped silica nanoparticles (SN) in aqueous solutions. The Tb-centered luminescence of non-decorated SNs is diminished by the inner filter effect of both dyes. The decoration of the silica surface by cationic surfactants induces the quenching through the energy transfer between silica coated Tb(III) complexes and dye anions inserted into surfactant aggregates. Thus the distribution of surfactants aggregates at the silica/water interface and in the bulk of solution greatly affects dynamic quenching efficiency. The displacement of dye anions from the interfacial surfactant adlayer by anionic surfactants and phospholipids is accompanied by the "off-on" switching of Tb(III)-centered luminescence.

  15. Modification of Wyoming montmorillonite surfaces using a cationic surfactant.

    PubMed

    Xi, Yunfei; Frost, Ray L; He, Hongping; Kloprogge, Theo; Bostrom, Thor

    2005-09-13

    Surfaces of Wyoming SWy-2-Na-montmorillonite were modified using ultrasonic and hydrothermal methods through the intercalation and adsorption of the cationic surfactant octadecyltrimethylammonium bromide (ODTMA). Changes in the surfaces and structure were characterized using X-ray diffraction (XRD), thermal analysis (TG), and electron microscopy. The ultrasonic preparation method results in a higher surfactant concentration within the montmorillonite interlayer when compared with that from the hydrothermal method. Three different molecular environments for surfactants within the surface-modified montmorillonite are proposed upon the basis of their different decomposition temperatures. Both XRD patterns and TEM images demonstrate that SWy-2-Na-montmorillonite contains superlayers. TEM images of organoclays prepared at high surfactant concentrations show alternate basal spacings between neighboring layers. SEM images show that modification with surfactant reduces the clay particle size and aggregation. Organoclays prepared at low surfactant concentration display curved flakes, whereas they become flat with increasing intercalated surfactant. Novel surfactant-modified montmorillonite results in the formation of new nanophases with the potential for the removal of organic impurities from aqueous media.

  16. Interaction of photosensitive surfactant with DNA and poly acrylic acid

    SciTech Connect

    Zakrevskyy, Yuriy Paasche, Jens; Lomadze, Nino; Santer, Svetlana; Cywinski, Piotr; Cywinska, Magdalena; Reich, Oliver; Löhmannsröben, Hans-Gerd

    2014-01-28

    In this paper, we investigate interactions and phase transitions in polyelectrolyte-surfactant complexes formed between a cationic azobenzene-containing surfactant and two types of polyelectrolytes: natural (DNA) or synthetic (PAA: poly acrylic acid). The construction of a phase diagram allowed distancing between four major phases: extended coil conformation, colloidally stable compacted globules, colloidal instability range, and surfactant-stabilized compact state. Investigation on the complexes’ properties in different phases and under irradiation with UV light provides information about the role of the surfactant's hydrophobic trans isomers both in the formation and destruction of DNA and PAA globules as well as in their colloidal stabilization. The trans isomer shows much stronger affinity to the polyelectrolytes than the hydrophilic cis counterpart. There is no need for complete compensation of the polyelectrolyte charges to reach the complete compaction. On contrary to the findings previously reported in the literature, we demonstrate – for the first time – complete polyelectrolyte compaction which occurs already at 20% of DNA (and at 50% of PAA) charge compensation. The trans isomer plays the main role in the compaction. The aggregation between azobenzene units in the photosensitive surfactant is a driving force of this process. The decompaction can be realized during UV light irradiation and is strongly influenced by the interplay between surfactant-surfactant and surfactant-DNA interactions in the compacted globules.

  17. Mixing Effect of Polyoxyethylene-Type Nonionic Surfactants on the Liquid Crystalline Structures.

    PubMed

    Kunieda; Umizu; Yamaguchi

    1999-10-01

    An effective cross-sectional area per surfactant molecule at hydrophobic interfaces of aggregates, a(S), in hexagonal (H(1)) and lamellar (L(alpha)) liquid crystals was calculated in homogeneous and mixed polyoxyethylene dodecyl ether systems as a function of polyoxyethylene (EO) chain length by means of small-angle X-ray scattering. The a(S) increases with increasing the EO chain length. The a(S) in the mixed surfactant system is considerably smaller than that in the single surfactant system, even if the average EO chain length is the same. The reduction of a(S) is larger than that predicted by ideal mixing of the surfactants. Moreover, if the EO chain lengths of the surfactants are more separated, the a(S) is smaller. The shapes of surfactant self-organizing structures may be governed by the balance of the attractive and the repulsive forces acting at the hydrophobic interfaces of the aggregates. According to this consideration, the mixing effect of surfactants with the different EO chain lengths on the a(S) in the L(alpha) phase was discussed. It is considered that the surfactant molecules are tightly packed in the aggregates since the reduction in repulsion force takes place in the excess EO chain part of the hydrophilic surfactant longer than the short EO chain of the lipophilic one. The lower surface tensions and the better stability of macroemulsions and the large solubilizing capacity of microemulsions result from the mixing effect. Copyright 1999 Academic Press.

  18. Fetal corticosteroid and T4 treatment effects on lung function of surfactant-treated preterm lambs.

    PubMed

    Chen, C M; Ikegami, M; Ueda, T; Polk, D H; Jobe, A H

    1995-01-01

    Three groups of sheep fetuses at 125 or 126 d gestational age randomly received a single ultrasound-guided intramuscular injection of saline, 0.5 mg/kg betamethasone, or 0.5 mg/kg betamethasone plus 50 micrograms/kg thyroxine (T4). Forty-eight hours later the fetuses were delivered, treated with a pulmonary surfactant preparation, and ventilated for 3 h. Corticosteroids alone and in combination with T4 increased FRC, compliance, and lung volumes, and decreased the protein leak into the airspace. Saturated phosphatidylcholine pool sizes recovered by alveolar washing were not changed after hormone treatment. To evaluate the function of surfactant recovered from the lambs in vivo, we treated preterm rabbits at 27 d gestational age with the large-aggregate surfactant from alveolar washes. Large-aggregate surfactants and the pulmonary surfactant preparation increased compliances and maximal lung volumes relative to those in untreated preterm rabbits. Large-aggregate surfactants improved compliance more than did the pulmonary surfactant preparation. We conclude that ultrasound-guided single fetal corticosteroid treatment followed by postnatal surfactant improved postnatal lung function in preterm lambs. Addition of T4 did not augment corticosteroid effects. The function of the exogenous surfactant was improved in premature lamb lungs independently of the fetal treatment modality.

  19. On the shape of giant soap bubbles.

    PubMed

    Cohen, Caroline; Darbois Texier, Baptiste; Reyssat, Etienne; Snoeijer, Jacco H; Quéré, David; Clanet, Christophe

    2017-03-07

    We study the effect of gravity on giant soap bubbles and show that it becomes dominant above the critical size [Formula: see text], where [Formula: see text] is the mean thickness of the soap film and [Formula: see text] is the capillary length ([Formula: see text] stands for vapor-liquid surface tension, and [Formula: see text] stands for the liquid density). We first show experimentally that large soap bubbles do not retain a spherical shape but flatten when increasing their size. A theoretical model is then developed to account for this effect, predicting the shape based on mechanical equilibrium. In stark contrast to liquid drops, we show that there is no mechanical limit of the height of giant bubble shapes. In practice, the physicochemical constraints imposed by surfactant molecules limit the access to this large asymptotic domain. However, by an exact analogy, it is shown how the giant bubble shapes can be realized by large inflatable structures.

  20. SURFACTANTS IN LUBRICATION

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Surfactants are one of the most widely applied materials by consumers and industry. The application areas for surfactants span from everyday mundane tasks such as cleaning, to highly complex processes involving the formulation of pharmaceuticals, foods, pesticides, lubricants, etc. Even though sur...

  1. SURFACTANTS AND SUBSURFACE REMEDIATION

    EPA Science Inventory

    Because of the limitations of pump-and-trat technology, attention is now focused on the feasibility of surfactant use to increase its efficiency. Surfactants have been studied for use in soil washing and enhanced oil recovery. Although similarities exist between the application...

  2. Partition and water/oil adsorption of some surfactants.

    PubMed

    Tadmouri, Rawad; Zedde, Chantal; Routaboul, Corinne; Micheau, Jean-Claude; Pimienta, Véronique

    2008-10-02

    Adsorption isotherms have been determined at the water/oil interface for five biphasic systems involving surfactants (non-ionic and ionic) present in both phases at partition equilibrium. The systems studied were polyoxyethylene(23)lauryl ether (Brij35) in water/hexane and four ionic surfactants, hexadecyltrimethylammonium bromide (CTAB), and a series of three tetraalkylammonium dodecylsulfate (TEADS, TPADS, and TBADS) in water/CH 2Cl 2. Interfacial tension measurements performed at the water/air and water/oil interfaces provided all the necessary information for the determination of the adsorption parameters by taking partition into account. These measurements also allowed the comparison of the adsorption properties at both interfaces which showed an increase of the adsorption equilibrium constant and a decrease of the maximum surface concentration at the water/oil interface compared to water/air. The values of the critical aggregation concentration showed, in all cases, that only the surfactant dissolved in the aqueous phase contribute to the decrease of the water/oil interfacial tension. In the case of the four ionic surfactants, the critical aggregation concentration obtained in biphasic conditions were lowered because of the formation of mixed surfactant-CH 2Cl 2 aggregates.

  3. Coacervation with surfactants: From single-chain surfactants to gemini surfactants.

    PubMed

    Zhao, Weiwei; Wang, Yilin

    2017-01-01

    Coacervation is a spontaneous process during which a colloidal dispersion separates into two immiscible liquid phases: a colloid-rich liquid phase in equilibrium with a diluted phase. Coacervation is usually divided into simple coacervation and complex coacervation according to the number of components. Surfactant-based coacervation normally contains traditional single-chain surfactants. With the development of surfactants, gemini surfactants with two amphiphilic moieties have been applied to form coacervation. This review summarizes the development of simple coacervation and complex coacervation in the systems of single-chain surfactants and gemini surfactants. Simple coacervation in surfactant solutions with additives or at elevated temperature and complex coacervation in surfactant/polymer mixtures by changing charge densities, molecular weight, ionic strength, pH, or temperature are reviewed. The comparison between gemini surfactants and corresponding monomeric single-chain surfactants reveals that the unique structures of gemini surfactants endow them with higher propensity to generate coacervation.

  4. Tuning of depletion interaction in nanoparticle-surfactant systems

    SciTech Connect

    Ray, D. Aswal, V. K.

    2014-04-24

    The interaction of anionic silica nanoparticles (Ludox LS30) and non-ionic surfactants decaethylene glycol monododecylether (C12E10) without and with anionic sodium dodecyl sulfate (SDS) in aqueous electrolyte solution has been studied by small-angle neutron scattering (SANS). The measurements have been carried out for fixed concentrations of nanoparticle (1 wt%), surfactants (1 wt%) and electrolyte (0.1 M NaCl). Each of these nanoparticlesurfactant systems has been examined for different contrast conditions where individual components (nanoparticle or surfactant) are made visible. It is observed that the nanoparticle-C12E10 system leads to the depletion-induced aggregation of nanoparticles. The system however behaves very differently on addition of SDS where depletion interaction gets suppressed and aggregation of nanoparticles can be prevented. We show that C12E10 and SDS form mixed micelles and the charge on these micelles plays important role in tuning the depletion interaction.

  5. Surfactants in the environment.

    PubMed

    Ivanković, Tomislav; Hrenović, Jasna

    2010-03-01

    Surfactants are a diverse group of chemicals that are best known for their wide use in detergents and other cleaning products. After use, residual surfactants are discharged into sewage systems or directly into surface waters, and most of them end up dispersed in different environmental compartments such as soil, water or sediment. The toxic effects of surfactants on various aquatic organisms are well known. In general, surfactants are present in the environment at levels below toxicity and in Croatia below the national limit. Most surfactants are readily biodegradable and their amount is greatly reduced with secondary treatment in wastewater treatment plants. The highest concern is the release of untreated wastewater or wastewater that has undergone primary treatment alone. The discharge of wastewater polluted with massive quantities of surfactants could have serious effects on the ecosystem. Future studies of surfactant toxicities and biodegradation are necessary to withdraw highly toxic and non-biodegradable compounds from commercial use and replace them with more environmentally friendly ones.

  6. Mechanisms of Particle Charging by Surfactants in Nonpolar Dispersions.

    PubMed

    Lee, Joohyung; Zhou, Zhang-Lin; Alas, Guillermo; Behrens, Sven Holger

    2015-11-10

    Electric charging of colloidal particles in nonpolar solvents plays a crucial role for many industrial applications and products, including rubbers, engine oils, toners, or electronic displays. Although disfavored by the low solvent permittivity, particle charging can be induced by added surfactants, even nonionic ones, but the underlying mechanism is poorly understood, and neither the magnitude nor the sign of charge can generally be predicted from the particle and surfactant properties. The conclusiveness of scientific studies has been limited partly by a traditional focus on few surfactant types with many differences in their chemical structure and often poorly defined composition. Here we investigate the surface charging of poly(methyl methacrylate) particles dispersed in hexane-based solutions of three purified polyisobutylene succinimide polyamine surfactants with "subtle" structural variations. We precisely vary the surfactant chemistry by replacing only a single electronegative atom located at a fixed position within the polar headgroup. Electrophoresis reveals that these small differences between the surfactants lead to qualitatively different particle charging. In the respective particle-free surfactant solutions we also find potentially telling differences in the size of the surfactant aggregates (inverse micelles), the residual water content, and the electric solution conductivity as well as indications for a significant size difference between oppositely charged inverse micelles of the most hygroscopic surfactant. An analysis that accounts for the acid/base properties of all constituents suggests that the observed particle charging is better described by asymmetric adsorption of charged inverse micelles from the liquid bulk than by charge creation at the particle surface. Intramicellar acid-base interaction and intermicellar surfactant exchange help rationalize the formation of micellar ions pairs with size asymmetry.

  7. Application of peptide gemini surfactants as novel solubilization surfactants for photosystems I and II of cyanobacteria.

    PubMed

    Koeda, Shuhei; Umezaki, Katsunari; Noji, Tomoyasu; Ikeda, Atsushi; Kawakami, Keisuke; Kondo, Masaharu; Yamamoto, Yasushi; Shen, Jian-Ren; Taga, Keijiro; Dewa, Takehisa; Ito, Shigeru; Nango, Mamoru; Tanaka, Toshiki; Mizuno, Toshihisa

    2013-09-17

    We designed novel peptide gemini surfactants (PG-surfactants), DKDKC12K and DKDKC12D, which can solubilize Photosystem I (PSI) of Thermosynecoccus elongatus and Photosystem II (PSII) of Thermosynecoccus vulcanus in an aqueous buffer solution. To assess the detailed effects of PG-surfactants on the original supramolecular membrane protein complexes and functions of PSI and PSII, we applied the surfactant exchange method to the isolated PSI and PSII. Spectroscopic properties, light-induced electron transfer activity, and dynamic light scattering measurements showed that PSI and PSII could be solubilized not only with retention of the original supramolecular protein complexes and functions but also without forming aggregates. Furthermore, measurement of the lifetime of light-induced charge-separation state in PSI revealed that both surfactants, especially DKDKC12D, displayed slight improvement against thermal denaturation below 60 °C compared with that using β-DDM. This degree of improvement in thermal resistance still seems low, implying that the peptide moieties did not interact directly with membrane protein surfaces. By conjugating an electron mediator such as methyl viologen (MV(2+)) to DKDKC12K (denoted MV-DKDKC12K), we obtained derivatives that can trap the generated reductive electrons from the light-irradiated PSI. After immobilization onto an indium tin oxide electrode, a cathodic photocurrent from the electrode to the PSI/MV-DKDKC12K conjugate was observed in response to the interval of light irradiation. These findings indicate that the PG-surfactants DKDKC12K and DKDKC12D provide not only a new class of solubilization surfactants but also insights into designing other derivatives that confer new functions on PSI and PSII.

  8. Metathesis depolymerizable surfactants

    DOEpatents

    Jamison, Gregory M.; Wheeler, David R.; Loy, Douglas A.; Simmons, Blake A.; Long, Timothy M.; McElhanon, James R.; Rahimian, Kamyar; Staiger, Chad L.

    2008-04-15

    A class of surfactant molecules whose structure includes regularly spaced unsaturation in the tail group and thus, can be readily decomposed by ring-closing metathesis, and particularly by the action of a transition metal catalyst, to form small molecule products. These small molecules are designed to have increased volatility and/or enhanced solubility as compared to the original surfactant molecule and are thus easily removed by solvent extraction or vacuum extraction at low temperature. By producing easily removable decomposition products, the surfactant molecules become particularly desirable as template structures for preparing meso- and microstructural materials with tailored properties.

  9. Modifications in structure and interaction of nanoparticle-protein-surfactant complexes in electrolyte solution

    NASA Astrophysics Data System (ADS)

    Mehan, Sumit; Kumar, S.; Aswal, V. K.; Schweins, R.

    2016-05-01

    SANS experiments of three-component system of anionic silica nanoparticles, anionic BSA protein and anionic SDS surfactants have been carried out without and with electrolyte in aqueous solution. In both the cases, the interaction of surfactant with protein results in formation of bead-necklace structure of protein-surfactant complexes in solution. These protein-surfactant complexes interact very differently with nanoparticles in absence and presence of electrolyte. In absence of electrolyte, nanoparticles remain in dispersed phase in solution, whereas with the addition of electrolyte the nanoparticles fractal aggregates are formed. SANS describes the phase behavior to be governed by competition of electrostatic and depletion interactions among the components solution.

  10. Magnetic surfactants as molecular based-magnets with spin glass-like properties.

    PubMed

    Brown, Paul; Smith, Gregory N; Hernández, Eduardo Padrón; James, Craig; Eastoe, Julian; Nunes, Wallace C; Settens, Charles M; Hatton, T Alan; Baker, Peter J

    2016-05-05

    This paper reports the use of muon spin relaxation spectroscopy to study how the aggregation behavior of magnetic surfactants containing lanthanide counterions may be exploited to create spin glass-like materials. Surfactants provide a unique approach to building in randomness, frustration and competing interactions into magnetic materials without requiring a lattice of ordered magnetic species or intervening ligands and elements. We demonstrate that this magnetic behavior may also be manipulated via formation of micelles rather than simple dilution, as well as via design of surfactant molecular architecture. This somewhat unexpected result indicates the potential of using novel magnetic surfactants for the generation and tuning of molecular magnets.

  11. New serine-derived gemini surfactants as gene delivery systems.

    PubMed

    Cardoso, Ana M; Morais, Catarina M; Cruz, A Rita; Silva, Sandra G; do Vale, M Luísa; Marques, Eduardo F; de Lima, Maria C Pedroso; Jurado, Amália S

    2015-01-01

    Gemini surfactants have been extensively used for in vitro gene delivery. Amino acid-derived gemini surfactants combine the special aggregation properties characteristic of the gemini surfactants with high biocompatibility and biodegradability. In this work, novel serine-derived gemini surfactants, differing in alkyl chain lengths and in the linker group bridging the spacer to the headgroups (amine, amide and ester), were evaluated for their ability to mediate gene delivery either per se or in combination with helper lipids. Gemini surfactant-based DNA complexes were characterized in terms of hydrodynamic diameter, surface charge, stability in aqueous buffer and ability to protect DNA. Efficient formulations, able to transfect up to 50% of the cells without causing toxicity, were found at very low surfactant/DNA charge ratios (1/1-2/1). The most efficient complexes presented sizes suitable for intravenous administration and negative surface charge, a feature known to preclude potentially adverse interactions with serum components. This work brings forward a new family of gemini surfactants with great potential as gene delivery systems.

  12. Recent advances in gemini surfactants: oleic Acid-based gemini surfactants and polymerizable gemini surfactants.

    PubMed

    Sakai, Kenichi; Sakai, Hideki; Abe, Masahiko

    2011-01-01

    Gemini surfactants recently developed by our research group are introduced from the standpoints of their syntheses, aqueous solution properties, and potential applications. Two series of gemini surfactants are introduced in this short review, the first of which is the oleic acid-based gemini surfactants, and the second is the polymerizable gemini surfactants. These gemini surfactants have been developed not only as environmentally friendly materials (the use of gemini surfactants enables the reduction of the total consumption of surfactants in chemical products owing to their excellent adsorption and micellization capabilities at low concentrations) but also as functional organic materials.

  13. Phosphine oxide surfactants revisited.

    PubMed

    Stubenrauch, Cosima; Preisig, Natalie; Laughlin, Robert G

    2016-04-01

    This review summarizes everything we currently know about the nonionic surfactants alkyl dimethyl (C(n)DMPO) and alkyl diethyl (C(n)DEPO) phosphine oxide (PO surfactants). The review starts with the synthesis and the general properties (Section 2) of these compounds and continues with their interfacial properties (Section 3) such as surface tension, surface rheology, interfacial tension and adsorption at solid surfaces. We discuss studies on thin liquid films and foams stabilized by PO surfactants (Section 4) as well as studies on their self-assembly into lyotropic liquid crystals and microemulsions, respectively (Section 5). We aim at encouraging colleagues from both academia and industry to take on board PO surfactants whenever possible and feasible because of their broad variety of excellent properties.

  14. Binding of Alkyl Polyglucoside Surfactants to Bacteriorhodopsin and its Relation to Protein Stability

    PubMed Central

    Santonicola, M. Gabriella; Lenhoff, Abraham M.; Kaler, Eric W.

    2008-01-01

    The binding of alkyl polyglucoside surfactants to the integral membrane protein bacteriorhodopsin (BR) and the formation of protein-surfactant complexes are investigated by sedimentation equilibrium via analytical ultracentrifugation and by small-angle neutron scattering (SANS). Contrast variation techniques in SANS enable measurement of the composition of the protein-surfactant complexes and determination of the thickness of the surfactant shell bound to the protein. The results indicate that alkyl polyglucosides can bind to BR as single surfactant layers or as a thicker shell. The thickness of the surfactant shell increases with increasing surfactant tail length, and it is generally unrelated to the aggregation number of the micelles even for a small and predominantly hydrophobic membrane protein such as BR. The aggregation numbers determined by sedimentation equilibrium methods match those measured by SANS, which also allows reconstruction of the shape of the protein-detergent complex. When the surfactant is present as a single layer, the BR loses activity, as measured by absorption spectroscopy, more quickly than it does when the surfactant forms a thicker shell. PMID:18234822

  15. Binding of alkyl polyglucoside surfactants to bacteriorhodopsin and its relation to protein stability.

    PubMed

    Santonicola, M Gabriella; Lenhoff, Abraham M; Kaler, Eric W

    2008-05-01

    The binding of alkyl polyglucoside surfactants to the integral membrane protein bacteriorhodopsin (BR) and the formation of protein-surfactant complexes are investigated by sedimentation equilibrium via analytical ultracentrifugation and by small-angle neutron scattering (SANS). Contrast variation techniques in SANS enable measurement of the composition of the protein-surfactant complexes and determination of the thickness of the surfactant shell bound to the protein. The results indicate that alkyl polyglucosides can bind to BR as single surfactant layers or as a thicker shell. The thickness of the surfactant shell increases with increasing surfactant tail length, and it is generally unrelated to the aggregation number of the micelles even for a small and predominantly hydrophobic membrane protein such as BR. The aggregation numbers determined by sedimentation equilibrium methods match those measured by SANS, which also allows reconstruction of the shape of the protein-detergent complex. When the surfactant is present as a single layer, the BR loses activity, as measured by absorption spectroscopy, more quickly than it does when the surfactant forms a thicker shell.

  16. Determination of the critical micelle concentration in simulations of surfactant systems

    SciTech Connect

    Santos, Andrew P.; Panagiotopoulos, Athanassios Z.

    2016-01-28

    Alternative methods for determining the critical micelle concentration (cmc) are investigated using canonical and grand canonical Monte Carlo simulations of a lattice surfactant model. A common measure of the cmc is the “free” (unassociated) surfactant concentration in the presence of micellar aggregates. Many prior simulations of micellizing systems have observed a decrease in the free surfactant concentration with overall surfactant loading for both ionic and nonionic surfactants, contrary to theoretical expectations from mass-action models of aggregation. In the present study, we investigate a simple lattice nonionic surfactant model in implicit solvent, for which highly reproducible simulations are possible in both the canonical (NVT) and grand canonical (μVT) ensembles. We confirm the previously observed decrease of free surfactant concentration at higher overall loadings and propose an algorithm for the precise calculation of the excluded volume and effective concentration of unassociated surfactant molecules in the accessible volume of the solution. We find that the cmc can be obtained by correcting the free surfactant concentration for volume exclusion effects resulting from the presence of micellar aggregates. We also develop an improved method for determination of the cmc based on the maximum in curvature for the osmotic pressure curve determined from μVT simulations. Excellent agreement in cmc and other micellar properties between NVT and μVT simulations of different system sizes is observed. The methodological developments in this work are broadly applicable to simulations of aggregating systems using any type of surfactant model (atomistic/coarse grained) or solvent description (explicit/implicit)

  17. Polymer gels with associating side chains and their interaction with surfactants

    NASA Astrophysics Data System (ADS)

    Gordievskaya, Yulia D.; Rumyantsev, Artem M.; Kramarenko, Elena Yu.

    2016-05-01

    Conformational behaviour of hydrophobically modified (HM) polymer gels in solutions of nonionic surfactants is studied theoretically. A HM gel contains hydrophobic side chains (stickers) grafted to its subchains. Hydrophobic stickers are capable to aggregate into joint micelles with surfactant molecules. Micelles containing more than one sticker serve as additional physical cross-links of the network, and their formation causes gel shrinking. In the proposed theoretical model, the interior of the gel/surfactant complex is treated as an array of densely packed spherical polymer brushes consisting of gel subchains tethered to the surface of the spherical sticker/surfactant micelles. Effect of stickers length and grafting density, surfactant concentration and hydrophobicity on gel swelling as well as on hydrophobic association inside it is analyzed. It is shown that increasing surfactant concentration can result in a gel collapse, which is caused by surfactant-induced hydrophobic aggregation of stickers, and a successive gel reswelling. The latter should be attributed to a growing fraction of surfactants in joint aggregates and, hence, increasing number of micelles containing only one sticker and not participating in gel physical cross-linking. In polyelectrolyte (PE) gels hydrophobic aggregation is opposed by osmotic pressure of mobile counterions, so that at some critical ionization degree hydrophobic association is completely suppressed. Hydrophobic modification of polymers is shown to open new ways for controlling gel responsiveness. In particular, it is discussed that incorporation of photosensitive groups into gel subchains and/or surfactant tail could give a possibility to vary the gel volume by light. Since hydrophobic aggregation regularities in gels and solutions are common, we hope our findings will be useful for design of polymer based self-healing materials as well.

  18. Adsorption of anionic and non-ionic surfactants on carbon nanotubes in water with dissipative particle dynamics simulation

    NASA Astrophysics Data System (ADS)

    Vo, Minh D.; Shiau, Benjamin; Harwell, Jeffrey H.; Papavassiliou, Dimitrios V.

    2016-05-01

    The morphology of surfactants physically adsorbed on the surface of carbon nanotubes (CNTs) has a significant impact on the dispersion of CNTs in the solution. The adsorption of the surfactants alfoterra 123-8s (AF) and tergitol 15-s-40 (TG) on CNTs was investigated with dissipative particle dynamics (DPD) simulations, as well as the behavior of the binary surfactant system with CNTs. Properties of surfactants (i.e., critical micelle concentration, aggregation number, shape and size of micelle, and diffusivity) in water were determined to validate the simulation model. Results indicated that the assembly of surfactants (AF and TG) on CNTs depends on the interaction of the surfactant tail and the CNT surface, where surfactants formed mainly hemimicellar structures. For surfactants in solution, most micelles had spherical shape. The particles formed by the CNT and the adsorbed surfactant became hydrophilic, due to the outward orientation of the head groups of the surfactants that formed monolayer adsorption. In the binary surfactant system, the presence of TG on the CNT surface provided a considerable hydrophilic steric effect, due to the EO groups of TG molecules. It was also seen that the adsorption of AF was more favorable than TG on the CNT surface. Diffusion coefficients for the surfactants in the bulk and surface diffusion on the CNT were calculated. These results are applicable, in a qualitative sense, to the more general case of adsorption of surfactants on the hydrophobic surface of cylindrically shaped nanoscale objects.

  19. Synthesis and Crystallization Behavior of Surfactants with Hexamolybdate as the Polar Headgroup

    DOE PAGES

    Zhu, Li; Chen, Kun; Hao, Jian; ...

    2015-06-12

    For this paper, alkyl chains with different lengths were covalently grafted onto the surface of hexamolybdate through the postfunctionalization protocol of polyoxometalates. The obtained compounds represent typical structures of the so-called giant surfactants. Unexpectedly, those surfactants with hexamolybdates as polar headgroups are able to crystallize, while single-crystal X-ray diffraction reveals that the crystallization behavior of the surfactants is highly dependent on the length of the alkyl chains. For surfactants with comparatively short alkyl chains (C6 and C10), the alkyl chains prefer to interact with tetrabutylammonium, the countercation of hexamolybdate. However, the alkyl chains tend to pack with each other tomore » form a domain of alkyl chains in the surfactant with a longer alkyl chain (C18). Finally, the possible mechanism is that a long alkyl chain cannot be fully compatible with the short chain (C4) of tetrabutylammonium.« less

  20. Synthesis and Crystallization Behavior of Surfactants with Hexamolybdate as the Polar Headgroup

    SciTech Connect

    Zhu, Li; Chen, Kun; Hao, Jian; Wei, Zheyu; Zhang, Haocheng; Yin, Panchao; Wei, Yongge

    2015-06-12

    For this paper, alkyl chains with different lengths were covalently grafted onto the surface of hexamolybdate through the postfunctionalization protocol of polyoxometalates. The obtained compounds represent typical structures of the so-called giant surfactants. Unexpectedly, those surfactants with hexamolybdates as polar headgroups are able to crystallize, while single-crystal X-ray diffraction reveals that the crystallization behavior of the surfactants is highly dependent on the length of the alkyl chains. For surfactants with comparatively short alkyl chains (C6 and C10), the alkyl chains prefer to interact with tetrabutylammonium, the countercation of hexamolybdate. However, the alkyl chains tend to pack with each other to form a domain of alkyl chains in the surfactant with a longer alkyl chain (C18). Finally, the possible mechanism is that a long alkyl chain cannot be fully compatible with the short chain (C4) of tetrabutylammonium.

  1. Giant Magnons Meet Giant Gravitons

    SciTech Connect

    Hofman, Diego M.

    2008-07-28

    We study the worldsheet reflection matrix of a string attached to a D-brane in AdS{sub 5}xS{sup 5}. The D-brane corresponds to a maximal giant graviton that wraps an S{sup 3} inside S{sup 5}. In the gauge theory, the open string is described by a spin chain with boundaries. We focus on open strings with a large SO(6) charge and define an asymptotic boundary reflection matrix. Using the symmetries of the problem, we review the computation of the boundary reflection matrix, up to a phase. We also discuss weak and strong coupling computations where we obtain the overall phase factor and test our exact results.

  2. Micelle depletion-induced vs. micelle-mediated aggregation in nanoparticles

    SciTech Connect

    Ray, D. Aswal, V. K.

    2015-06-24

    The phase behavior anionic silica nanoparticle (Ludox LS30) with non-ionic surfactants decaethylene glycol monododecylether (C12E10) and cationic dodecyltrimethyl ammonium bromide (DTAB) in aqueous electrolyte solution has been studied by small-angle neutron scattering (SANS). The measurements have been carried out for fixed concentrations of nanoparticle (1 wt%), surfactants (1 wt%) and electrolyte (0.1 M NaCl). Each of these nanoparticle–surfactant systems has been examined for different contrast conditions where individual components (nanoparticle or surfactant) are made visible. It is observed that the nanoparticle-micelle system in both the cases lead to the aggregation of nanoparticles. The aggregation is found to be micelle depletion-induced for C12E10 whereas micelle-mediated aggregation for DTAB. Interestingly, it is also found that phase behavior of mixed surfactant (C12E10 + DTAB) system is similar to that of C12E10 (unlike DTAB) micelles with nanoparticles.

  3. SANS and DLS Studies of Protein Unfolding in Presence of Urea and Surfactant

    SciTech Connect

    Aswal, V. K.; Chodankar, S. N.; Wagh, A. G.; Kohlbrecher, J.; Vavrin, R.

    2008-03-17

    Small-angle neutron scattering (SANS) and dynamic light scattering (DLS) have been used to study conformational changes in protein bovine serum albumin (BSA) during its unfolding in presence of protein denaturating agents urea and surfactant. On addition of urea, the BSA protein unfolds for urea concentrations greater than 4 M and acquires a random coil configuration with its radius of gyration increasing with urea concentration. The addition of surfactant unfolds the protein by the formation of micelle-like aggregates of surfactants along the unfolded polypeptide chains of the protein. The fractal dimension of such a protein-surfactant complex decreases and the overall size of the complex increases on increasing the surfactant concentration. The conformation of the unfolded protein in the complex has been determined directly using contrast variation SANS measurements by contrast matching the surfactant to the medium. Results of DLS measurements are found to be in good agreement with those obtained using SANS.

  4. Beneficial effects of synthetic KL₄ surfactant in experimental lung transplantation.

    PubMed

    Sáenz, A; Alvarez, L; Santos, M; López-Sánchez, A; Castillo-Olivares, J L; Varela, A; Segal, R; Casals, C

    2011-04-01

    The aim of this study was to investigate whether intratracheal administration of a new synthetic surfactant that includes the cationic, hydrophobic 21-residue peptide KLLLLKLLLLKLLLLKLLLLK (KL₄), might be effective in reducing ischaemia-reperfusion injury after lung transplantation. Single left lung transplantation was performed in Landrace pigs 22 h post-harvest. KL₄ surfactant at a dose of 25 mg total phospholipid·kg body weight⁻¹ (2.5 mL·kg body weight⁻¹) was instilled at 37°C to the donor left lung (n = 8) prior to explantation. Saline (2.5 mL·kg body weight⁻¹; 37°C) was instilled into the donor left lung of the untreated group (n = 6). Lung function in recipients was measured during 2 h of reperfusion. Recipient left lung bronchoalveolar lavage (BAL) provided native cytometric, inflammatory marker and surfactant data. KL(4) surfactant treatment recovered oxygen levels in the recipient blood (mean ± sd arterial oxygen tension/inspiratory oxygen fraction 424 ± 60 versus 263 ± 101 mmHg in untreated group; p=0.01) and normalised alveolar-arterial oxygen tension difference. Surfactant biophysical function was also recovered in KL₄ surfactant-treated lungs. This was associated with decreased C-reactive protein levels in BAL, and recovery of surfactant protein A content, normalised protein/phospholipid ratios, and lower levels of both lipid peroxides and protein carbonyls in large surfactant aggregates. These findings suggest an important protective role for KL₄ surfactant treatment in lung transplantation.

  5. Surfactant loss control in chemical flooding spectroscopic and calorimetric study of adsorption and precipitation on reservoir minerals. Annual report, September 30, 1992--September 30 1995

    SciTech Connect

    Casteel, J.

    1996-07-01

    The aim of this research project was to investigate mechanisms governing adsorption and surface precipitation of flooding surfactants on reservoir minerals. Effects of surfactant structure, surfactant combinations, various inorganic and polymeric species, and solids mineralogy have been determined. A multi-pronged approach consisting of micro & nano spectroscopy, electrokinetics, surface tension and wettability is used in this study. The results obtained should help in controlling surfactant loss in chemical flooding and in developing optimum structures and conditions for efficient chemical flooding processes. During the three years contract period, adsorption of single surfactants and select surfactant mixtures was studied at the solid-liquid and gas-liquid interfaces. Alkyl xylene sulfonates, polyethoxylated alkyl phenols, octaethylene glycol mono n-decyl ether, and tetradecyl trimethyl ammonium chloride were the surfactants studied. Adsorption of surfactant mixtures of varying composition was also investigated. The microstructure of the adsorbed layer was characterized using fluorescence spectroscopy. Changes in interfacial properties such as wettability, electrokinetics and stability of reservoir minerals were correlated with the amounts of reagent adsorbed. Strong effects of the structure of the surfactant and position of functional groups were revealed. Changes of microstructure upon dilution (desorption) were also studied. Presence of the nonionic surfactants in mixed aggregate leads to shielding of the charge of ionic surfactants which in turn promotes aggregation but reduced electrostatic attraction between the charged surfactant and the mineral surface. Strong consequences of surfactant interactions in solution on adsorption as well as correlations between monomer concentration in mixtures and adsorption were revealed.

  6. Effect of surfactants on shear-induced gelation and gel morphology of soft strawberry-like particles.

    PubMed

    Xie, Delong; Arosio, Paolo; Wu, Hua; Morbidelli, Massimo

    2011-06-07

    The role of surfactant type in the aggregation and gelation of strawberry-like particles induced by intense shear without any electrolyte addition is investigated. The particles are composed of a rubbery core, partially covered by a plastic shell, and well stabilized by fixed (sulfate) charges in the end group of the polymer chains originating from the initiator. In the absence of any surfactant, after the system passes through a microchannel at a Peclet number equal to 220 and a particle volume fraction equal to 0.15, not only shear-induced gelation but also partial coalescence among the particles occurs. The same shear-induced aggregation/gelation process has been carried out in the presence of an ionic (sulfonate) surfactant or a nonionic (Tween 20) steric surfactant. It is found that for both surfactants shear-induced gelation does occur at low surfactant surface density but the conversion of the primary particles to the clusters constituting the gel decreases as the surfactant surface density increases. When the surfactant surface density increases above certain critical values, shear-induced gelation and eventually even aggregation do not occur any longer. For the sulfonate surfactant, this was explained in the literature by the non-DLVO, short-range repulsive hydration forces generated by the adsorbed surfactant layer. In this work, it is shown that the steric repulsion generated by the adsorbed Tween 20 layer can also protect particles from aggregation under intense shear. Moreover, the nonionic steric surfactant can also protect the strawberry-like particles from coalescence. This implies a decrease in the fractal dimension of the clusters constituting the gel from 2.76 to 2.45, which cannot be achieved using the ionic sulfonate surfactant.

  7. Size separation of analytes using monomeric surfactants

    DOEpatents

    Yeung, Edward S.; Wei, Wei

    2005-04-12

    A sieving medium for use in the separation of analytes in a sample containing at least one such analyte comprises a monomeric non-ionic surfactant of the of the general formula, B-A, wherein A is a hydrophilic moiety and B is a hydrophobic moiety, present in a solvent at a concentration forming a self-assembled micelle configuration under selected conditions and having an aggregation number providing an equivalent weight capable of effecting the size separation of the sample solution so as to resolve a target analyte(s) in a solution containing the same, the size separation taking place in a chromatography or electrophoresis separation system.

  8. Comparative insight into surfactants mediated amyloidogenesis of lysozyme.

    PubMed

    Chaturvedi, Sumit K; Khan, Javed M; Siddiqi, Mohammad K; Alam, Parvez; Khan, Rizwan H

    2016-02-01

    Electrostatic and hydrophobic interactions have an important role in the protein aggregation. In this study, we have investigated the effect of charge and hydrophobicity of oppositely charged surfactants i.e., anionic (AOT and SDS) and cationic (CTAB and DTAB) on hen egg white lysozyme at pH 9.0 and 13.0, respectively. We have employed various methods such as turbidity measurements, Rayleigh light scattering, ThT, Congo red and ANS dye binding assays, far-UV CD, atomic force microscopy, transmission electron and fluorescence microscopy. At lower molar ratio, both anionic and cationic surfactants promote amyloid fibril formation in lysozyme at pH 9.0 and 13.0, respectively. The aggregation was proportionally increased with respect to protein concentration and hydrophobicity of surfactant. The morphology of aggregates at both the pH was fibrillar in structure, as visualized by dye binding and microscopic imaging techniques. Initially, the interaction between surfactants and lysozyme was electrostatic and then hydrophobic as investigated by ITC. This study demonstrates the crucial role of charge and hydrophobicity during amyloid fibril formation.

  9. The interaction of photo-responsive surfactants with biological macromolecules

    NASA Astrophysics Data System (ADS)

    Mazwi, Khiza L.

    The interaction of photo-responsive surfactants with proteins has been considered as a means to exert reversible control over a number of aspects of protein structure and function. The azobenzene trimethylammonium bromide (azoTAB) family of cationic surfactants undergo a photo-reversible cis to trans isomerization upon exposure to light of the appropriate wavelength. The trans form of the molecule has a lower dipole moment across its azo linkage, and is more hydrophobic than the cis isomer. This results in a higher binding affinity with proteins for the trans isomer, inducing a greater degree of unfolding of tertiary and secondary structures. The surfactant has been applied to the study of the amyloid fibrillation pathway in insulin, in which the protein self-associates into long, insoluble, rod-like structures. The fibrillation rate in insulin is enhanced in the presence of the trans- isomer while the formation of fibrils is largely inhibited in the presence of the cis- isomer, where amorphous aggregates are observed instead. Additionally early fibrillar species formed in the trans-azoTAB assays exhibit a greater tendency to lateral aggregation than do structures in the pure protein, resulting in a more truncated, bundled final aggregate morphology. Use of the surfactants as a means to control protein quaternary solution structure has also been explored in the subunit dissociation of tetrameric catalase. In the presence of azoTAB surfactants, catalase dissociates first into a super-active dimer, then at higher concentrations into an aggregation prone monomer. Finally, the structural changes associated with azoTAB-induced unfolding of the two domain protein papain are tracked. The denaturation pathway involves a progressive loss in secondary structure with increasing azoTAB concentration, along with a relaxation of the compact tertiary structure, and a spatial separation of the two domains. A number of complementary experimental techniques are combined to determine

  10. Surfactant loss control in chemical flooding spectroscopic and calorimetric study of adsorption and precipitation on reservoir minerals. Annual report, September 30, 1993--September 30, 1994

    SciTech Connect

    Somasundaran, P.

    1995-06-01

    The aim of this project is to elucidate the mechanisms underlying adsorption and surface precipitation of flooding surfactants on reservoir minerals. Effect of surfactant structure, surfactant combinations, other inorganic and polymeric species is being studied. A multi-pronged approach consisting of micro and nano spectroscopy, microcalorimetry, electrokinetics, surface tension and wettability is used to achieve the goals. The results of this study should help in controlling surfactant loss in chemical flooding and also in developing optimum structures and conditions for efficient chemical flooding processes. During the second year of this three year contract, adsorption/desorption of single surfactants and select surfactant mixtures on alumina and silica was studied. Surfactants studied include the anionic sodium dodecyl sulfate (SDS), cationic tetradecyl trimethyl ammonium chloride (TTAC), nonionic pentadecylethoxylated nonyl phenol (NP-15) and the nonionic octaethylene glycol n-dodecyl ether (C{sub 12}EO{sub 8}) of varying hydrocarbon chain length. The microstructure of the adsorbed layer in terms of micropolarity and aggregation numbers was probed using fluorescence spectroscopy. Changes of microstructure upon dilution (desorption) were also studied. Presence of the nonionic surfactant in the mixed aggregate led to shielding of the charge of the ionic surfactant which in-turn promoted aggregation but reduced electrostatic attraction between the charged surfactant and the mineral surface. Strong consequences of surfactant interactions in solution upon adsorption as well as correlations between monomer concentrations in mixtures and adsorption were revealed.

  11. Nature of the Adsorption of Zwitterionic Surfactants at Hydrophilic Surfaces

    PubMed

    Harwigsson; Tiberg; Chevalier

    1996-11-10

    This paper describes the adsorption of zwitterionic dodecyl-N,N-dimethylammonio alkanoates with polymethylene intercharge arms of different lengths on silica. The data presented were obtained by in situ ellipsometry, allowing time-resolved studies of the surface excess, the mean thickness, and the refractive index of thin interfacial films. It is shown that the mode of adsorption of zwitterionic surfactants is similar to that observed for ethylene-oxide-based nonionic surfactants. The interaction energy between single zwitterionic surfactants and silica is relatively weak and the adsorption process is best described in terms of surfactant self-assembly, promoted by the presence of the solid surface. The mode of adsorption is only weakly affected by increasing the number of intercharge methylene units. The surface aggregation behavior observed at the silica surface displays many parallels with the corresponding solution phase behavior. Finally, the adsorption of zwitterionic surfactants is relatively independent of the pH. However, as the pH is lowered to the pKa values of the terminal carboxyl group (i.e., as the surfactants become increasingly positively charged) desorption is observed.

  12. Solubilization of herbicides by single and mixed commercial surfactants.

    PubMed

    Galán-Jiménez, M C; Gómez-Pantoja, E; Morillo, E; Undabeytia, T

    2015-12-15

    The solubilization capabilities of micellar solutions of three single surfactants, two alcohol alkoxylates B048 and B266, and the tallow alkyl ethoxylated amine ET15, and their equimolar mixed solutions toward the herbicides flurtamone (FL), metribuzin (MTZ) and mesotrione (MST) were investigated. The solubilization capacity was quantified in terms of the molar solubilization ratio (MSR), critical micellar concentration (CMC), micelle-water partition coefficient (Kmc), binding constant (K1), number of aggregation (Nagg) and Stern-Volmer constant (Ksv). The herbicides were greatly solubilized into different loci of the micelles: FL within the inner hydrophobic core, MST at the micelle/water interface and MTZ in the palisade region. Equimolar binary surfactant mixtures did not improve the solubilization of herbicides over those of single components, with the exception of MTZ by the B266/ET15 system which enhanced solubilization by 10-20%. This enhanced solubilization of MTZ was due to an increased number of micelles that arise from both the intermediate Nagg relative to that of the single surfactants and the lower CMC. The use of Ksv values was a better predictor of the solubilization of polar molecules within binary mixtures of these surfactants than the interaction parameter β(M) from regular solution theory (RST). The results herein suggest that the use of mixed surfactant systems for the solubilization of polar molecules in environmental remediation technologies may be very limited in scope, without clear advantages over the use of single surfactant systems.

  13. Transforming giants.

    PubMed

    Kanter, Rosabeth Moss

    2008-01-01

    Large corporations have long been seen as lumbering, inflexible, bureaucratic--and clueless about global developments. But recently some multinationals seem to be transforming themselves: They're engaging employees, moving quickly, and introducing innovations that show true connection with the world. Harvard Business School's Kanter ventured with a research team inside a dozen global giants--including IBM, Procter & Gamble, Omron, CEMEX, Cisco, and Banco Real--to discover what has been driving the change. After conducting more than 350 interviews on five continents, she and her colleagues came away with a strong sense that we are witnessing the dawn of a new model of corporate power: The coordination of actions and decisions on the front lines now appears to stem from widely shared values and a sturdy platform of common processes and technology, not from top-down decrees. In particular, the values that engage the passions of far-flung workforces stress openness, inclusion, and making the world a better place. Through this shift in what might be called their guidance systems, the companies have become as creative and nimble as much smaller ones, even while taking on social and environmental challenges of a scale that only large enterprises could attempt. IBM, for instance, has created a nonprofit partnership, World Community Grid, through which any organization or individual can donate unused computing power to research projects and see what is being done with the donation in real time. IBM has gained an inspiring showcase for its new technology, helped business partners connect with the company in a positive way, and offered individuals all over the globe the chance to contribute to something big.

  14. Construction aggregates

    USGS Publications Warehouse

    Nelson, T.I.; Bolen, W.P.

    2007-01-01

    Construction aggregates, primarily stone, sand and gravel, are recovered from widespread naturally occurring mineral deposits and processed for use primarily in the construction industry. They are mined, crushed, sorted by size and sold loose or combined with portland cement or asphaltic cement to make concrete products to build roads, houses, buildings, and other structures. Much smaller quantities are used in agriculture, cement manufacture, chemical and metallurgical processes, glass production and many other products.

  15. Construction aggregates

    USGS Publications Warehouse

    Tepordei, V.V.

    1996-01-01

    Part of the Annual Commodities Review 1995. Production of construction aggregates such as crushed stone and construction sand and gravel showed a marginal increase in 1995. Most of the 1995 increases were due to funding for highway construction work. The major areas of concern to the industry included issues relating to wetlands classification and the classification of crystalline silica as a probable human carcinogen. Despite this, an increase in demand is anticipated for 1996.

  16. Giant Cell Arteritis

    MedlinePlus

    Giant cell arteritis is a disorder that causes inflammation of your arteries, usually in the scalp, neck, and arms. ... arteries, which keeps blood from flowing well. Giant cell arteritis often occurs with another disorder called polymyalgia ...

  17. Theoretical model to investigate the alkyl chain and anion dependent interactions of gemini surfactant with bovine serum albumin.

    PubMed

    Vishvakarma, Vijay K; Kumari, Kamlesh; Patel, Rajan; Dixit, V S; Singh, Prashant; Mehrotra, Gopal K; Chandra, Ramesh; Chakrawarty, Anand Kumar

    2015-05-15

    Surfactants are used to prevent the irreversible aggregation of partially refolded proteins and they also assist in protein refolding. We have reported the design and screening of gemini surfactant to stabilize bovine serum albumin (BSA) with the help of computational tool (iGEMDOCK). A series of gemini surfactant has been designed based on bis-N-alkyl nicotinate dianion via varying the alkyl group and anion. On changing the alkyl group and anion of the surfactant, the value of Log P changes means polarity of surfactant can be tuned. Further, the virtual screening of the gemini surfactant has been carried out based on generic evolutionary method. Herein, thermodynamic data was studied to determine the potential of gemini surfactant as BSA stabilizer. Computational tools help to find out the efficient gemini surfactant to stabilize the BSA rather than to use the surfactant randomly and directionless for the stabilization. It can be confirmed through the experimental techniques. Previously, researcher synthesized one of the designed and used gemini surfactant to stabilize the BSA and their interactions were confirmed through various techniques and computational docking. But herein, the authors find the most competent gemini surfactant to stabilize BSA using computational tools on the basis of energy score. Different from the single chain surfactant, the gemini surfactants exhibit much stronger electrostatic and hydrophobic interactions with the protein and are thus effective at much lower concentrations. Based on the present study, it is expected that gemini surfactants may prove useful in the protein stabilization operations and may thus be effectively employed to circumvent the problem of misfolding and aggregation.

  18. Therapeutic surfactant-stripped frozen micelles

    NASA Astrophysics Data System (ADS)

    Zhang, Yumiao; Song, Wentao; Geng, Jumin; Chitgupi, Upendra; Unsal, Hande; Federizon, Jasmin; Rzayev, Javid; Sukumaran, Dinesh K.; Alexandridis, Paschalis; Lovell, Jonathan F.

    2016-05-01

    Injectable hydrophobic drugs are typically dissolved in surfactants and non-aqueous solvents which can induce negative side-effects. Alternatives like `top-down' fine milling of excipient-free injectable drug suspensions are not yet clinically viable and `bottom-up' self-assembled delivery systems usually substitute one solubilizing excipient for another, bringing new issues to consider. Here, we show that Pluronic (Poloxamer) block copolymers are amenable to low-temperature processing to strip away all free and loosely bound surfactant, leaving behind concentrated, kinetically frozen drug micelles containing minimal solubilizing excipient. This approach was validated for phylloquinone, cyclosporine, testosterone undecanoate, cabazitaxel and seven other bioactive molecules, achieving sizes between 45 and 160 nm and drug to solubilizer molar ratios 2-3 orders of magnitude higher than current formulations. Hypertonic saline or co-loaded cargo was found to prevent aggregation in some cases. Use of surfactant-stripped micelles avoided potential risks associated with other injectable formulations. Mechanistic insights are elucidated and therapeutic dose responses are demonstrated.

  19. Therapeutic surfactant-stripped frozen micelles

    PubMed Central

    Zhang, Yumiao; Song, Wentao; Geng, Jumin; Chitgupi, Upendra; Unsal, Hande; Federizon, Jasmin; Rzayev, Javid; Sukumaran, Dinesh K.; Alexandridis, Paschalis; Lovell, Jonathan F.

    2016-01-01

    Injectable hydrophobic drugs are typically dissolved in surfactants and non-aqueous solvents which can induce negative side-effects. Alternatives like ‘top-down' fine milling of excipient-free injectable drug suspensions are not yet clinically viable and ‘bottom-up' self-assembled delivery systems usually substitute one solubilizing excipient for another, bringing new issues to consider. Here, we show that Pluronic (Poloxamer) block copolymers are amenable to low-temperature processing to strip away all free and loosely bound surfactant, leaving behind concentrated, kinetically frozen drug micelles containing minimal solubilizing excipient. This approach was validated for phylloquinone, cyclosporine, testosterone undecanoate, cabazitaxel and seven other bioactive molecules, achieving sizes between 45 and 160 nm and drug to solubilizer molar ratios 2–3 orders of magnitude higher than current formulations. Hypertonic saline or co-loaded cargo was found to prevent aggregation in some cases. Use of surfactant-stripped micelles avoided potential risks associated with other injectable formulations. Mechanistic insights are elucidated and therapeutic dose responses are demonstrated. PMID:27193558

  20. Surfactant mixing rules applied to surfactant enhanced alkaline flooding

    SciTech Connect

    Taylor, K.C. )

    1992-01-01

    This paper discusses surfactant mixing rules which have been used to describe crude oil/alkali/surfactant phase behavior, using David Lloydminster crude oil and the surfactant Neodol 25-3S. It was found that at a fixed salinity and alkali concentration, a specific mole fraction of synthetic surfactant to petroleum soap was required to produce optimal phase behavior as the water-to-oil ratio varied. This methodology is useful in understanding the relationship between the variables of water-to-oil ratio and synthetic surfactant concentration in phase behavior systems that produce a petroleum soap.

  1. Effect of amide bonds on the self-assembly of gemini surfactants.

    PubMed

    Hoque, Jiaul; Gonuguntla, Spandhana; Yarlagadda, Venkateswarlu; Aswal, Vinod K; Haldar, Jayanta

    2014-06-21

    This study provides an insight into the micellar aggregation properties in aqueous solutions of various gemini surfactants bearing one or more amide groups at the side chains and/or in the spacer by conductivity and small angle neutron scattering (SANS) studies. The amide functionality was found to enhance the surfactant aggregation properties as compared to the surfactants having no amide bond. Furthermore, the aggregation properties of the gemini surfactants bearing amide groups were found to strongly depend on the position and number of amide bonds. With the increase in the number of amide bonds, the aggregation number (N) and the size of the micelles increased. Additionally, the size and shape of the micelles were also found to depend both on the hydrocarbon chain length and the spacer chain length. It was also found that the aggregation number and the size of the micelles increased with an increase in concentration and decreased with an increase in temperature. The critical micellar concentration (CMC) values of the gemini surfactants obtained by a conductometric method were found to vary greatly with variation in the hydrocarbon chain.

  2. Giant impacts on giant planets

    NASA Astrophysics Data System (ADS)

    de Pater, Imke

    2013-10-01

    The 2009 impact and recent superbolides on Jupiter caught the world by surprise and cast doubt on impactor flux estimates for the outer solar system. Enhanced amateur planetary imaging techniques yield both high spatial resolution {enabling the 2009 impact debris field detection} and rapid frame rates {enabling the 2010/2012 impact flash detections and lightcurve measurements}.We propose a ToO program to image future impacts on Jupiter and Saturn. To remove the possibility of impact cloud non-detections, the program will be triggered only if an existing impact debris field is seen, an object on a collision course with Jupiter or Saturn is discovered, or an impact light curve is measured with an estimated total energy large enough to generate an impact cloud in a giant planet atmosphere {10^20 J}.HST provides the only way to image these events in the ultraviolet, providing information on aerosol altitudes and on smaller particles that are less visible to ground-based infrared observations. High-resolution imaging with proper timing {not achievable from the ground} is required to measure precisely both the velocity fields of impact sites and the optical spectrum of impact debris. HST observations of past impacts on Jupiter have also served both as cornerstones of science investigations at other wavelengths and as vehicles for effective public outreach.Large outer solar system impacts are governed by the same physics as in the terrestrial events that dominate the impact threat to humans. Studying the behavior of impactors of various sizes and compositions, as they enter the atmosphere at varying angles and speeds, will better quantify terrestrial impact hazards.

  3. Giant impacts on giant planets

    NASA Astrophysics Data System (ADS)

    de Pater, Imke

    2014-10-01

    The 2009 impact and recent superbolides on Jupiter caught the world by surprise and cast doubt on impactor flux estimates for the outer solar system. Enhanced amateur planetary imaging techniques yield both high spatial resolution (enabling the 2009 impact debris field detection) and rapid frame rates (enabling the 2010/2012 impact flash detections and lightcurve measurements).We propose a ToO program to image future impacts on Jupiter and Saturn. To remove the possibility of impact cloud non-detections, the program will be triggered only if an existing impact debris field is seen, an object on a collision course with Jupiter or Saturn is discovered, or an impact light curve is measured with an estimated total energy large enough to generate an impact cloud in a giant planet atmosphere (10^20 J).HST provides the only way to image these events in the ultraviolet, providing information on aerosol altitudes and on smaller particles that are less visible to ground-based infrared observations. High-resolution imaging with proper timing (not achievable from the ground) is required to measure precisely both the velocity fields of impact sites and the optical spectrum of impact debris. HST observations of past impacts on Jupiter have also served both as cornerstones of science investigations at other wavelengths and as vehicles for effective public outreach.Large outer solar system impacts are governed by the same physics as in the terrestrial events that dominate the impact threat to humans. Studying the behavior of impactors of various sizes and compositions, as they enter the atmosphere at varying angles and speeds, will better quantify terrestrial impact hazards.

  4. Giant impacts on giant planets

    NASA Astrophysics Data System (ADS)

    de Pater, Imke

    2012-10-01

    The 2009 impact on Jupiter caught the world by surprise and cast doubt on impactor flux estimates for the outer solar system. Enhanced amateur planetary imaging techniques yield both high spatial resolution {enabling the 2009 impact debris field detection} and rapid frame rates {enabling the 2010 impact flash detections and lightcurve measurements}.We propose a Target of Opportunity program to image future impacts on Jupiter and Saturn. To remove the possibility of impact cloud non-detections, the program will be triggered only if an existing impact debris field is seen, an object on a collision course with Jupiter or Saturn is discovered, or an impact light curve is measured with an estimated total energy large enough to generate an impact cloud in a giant planet atmosphere.HST provides the only way to image these events in the ultraviolet, providing information on aerosol altitudes and on smaller particles that are less visible to ground-based infrared observations. High-resolution imaging with proper timing {not achievable from the ground} is required to measure precisely both the velocity fields of impact sites and the optical spectrum of impact debris. HST observations of past impacts on Jupiter have also served both as cornerstones of science investigations at other wavelengths and as vehicles for effective public outreach.Large outer solar system impacts are governed by the same physics as in the terrestrial events that dominate the impact threat to humans. Studying the behavior of impactors of various sizes and compositions, as they enter the atmosphere at varying angles and speeds, will better quantify terrestrial impact hazards.

  5. Modeling counterion binding in ionic-nonionic and ionic-zwitterionic binary surfactant mixtures.

    PubMed

    Goldsipe, Arthur; Blankschtein, Daniel

    2005-10-25

    A predictive molecular-thermodynamic theory is developed to model the effect of counterion binding on micellar solution properties of binary surfactant mixtures of ionic and nonionic (or zwitterionic) surfactants. The theory combines a molecular-thermodynamic description of micellization in binary surfactant mixtures with a recently developed model of counterion binding to single-component ionic surfactant micelles. The thermodynamic component of the theory models the equilibrium between the surfactant monomers, the counterions, and the mixed micelles. The molecular component of the theory models the various contributions to the free-energy change associated with forming a mixed micelle from ionic surfactants, nonionic (or zwitterionic) surfactants, and bound counterions (referred to as the free energy of mixed micellization). Specifically, the various molecular contributions to the free energy of mixed micellization model the underlying physics associated with the assembly of, and the interactions between, the surfactant polar heads, the surfactant nonpolar tails, and the bound counterions. Utilizing known structural characteristics of the surfactants and the counterions, along with the solution conditions, the free energy of mixed micellization is minimized to predict various optimal micelle characteristics, including the degree of counterion binding, the micelle composition, and the micelle shape and size. These predicted optimal micelle characteristics are then used to predict the critical micelle concentration (cmc) and the average micelle aggregation number. Our predictions of the degree of counterion binding, the cmc, and the average micelle aggregation number show good agreement with available experimental results from the literature for several binary surfactant mixtures. In addition, the theory is used to shed light on the relationship between the micelle composition, counterion binding and ion condensation, and the micelle shape transition.

  6. Surfactant-enhanced bioremediation

    SciTech Connect

    Churchill, P.F.; Dudley, R.J.; Churchill, S.A.

    1995-12-31

    This study was undertaken to examine the effect of three structurally related, non-ionic surfactants, Triton X-45, Triton X-100 and Triton X-165, as well as the oleophilic fertilizer, Inipol EAP 22, on the rate of biodegradation of phenanthrene by pure bacterial cultures. Each surfactant dramatically increased the apparent aqueous solubility of phenanthrene. Model studies were conducted to investigate the ability of these surfactants to enhance the rate of transport and uptake of polycyclic aromatic hydrocarbons into bacterial cells, and to assess the impact that increasing the aqueous solubility of hydrocarbons has on their rate of biodegradation. The results indicate that increasing the apparent aqueous solubility of hydrocarbons can lead to enhanced biodegradation rates by two Pseudomonas saccharophila strains. However, the experiments also suggest that some surfactants can inhibit aromatic hydrocarbon biodegradation by certain bacteria. The data also support the hypothesis that surface-active components present in the oleophilic fertilizer formulation, Inipol EAP 22, may have significantly contributed to the positive results reported in tests of remedial agent impact on bioremediation, which was used as a supplemental clean-up technology on Exxon Valdez crude oil-contaminated Alaskan beaches.

  7. Surfactant-assisted dispersion of carbon nanotubes: mechanism of stabilization and biocompatibility of the surfactant

    NASA Astrophysics Data System (ADS)

    Singh, Raman Preet; Jain, Sanyog; Ramarao, Poduri

    2013-10-01

    Nanoparticles (NPs) are thermodynamically unstable system and tend to aggregate to reduce free energy. The aggregation property of NPs results in inhomogeneous exposure of cells to NPs resulting in variable cellular responses. Several types of surfactants are used to stabilize NP dispersions and obtain homogenous dispersions. However, the effects of these surfactants, per se, on cellular responses are not completely known. The present study investigated the application of Pluronic F68 (PF68) for obtaining stable dispersion of NPs using carbon nanotubes as model NPs. PF68-stabilized NP suspensions are stable for long durations and do not show signs of aggregation or settling during storage or after autoclaving. The polyethylene oxide blocks in PF68 provide steric hindrance between adjacent NPs leading to stable NP dispersions. Further, PF68 is biocompatible in nature and does not affect integrity of mitochondria, lysosomes, DNA, and nuclei. Also, PF68 neither induce free radical or cytokine production nor does it interfere with cellular uptake mechanisms. The results of the present study suggest that PF68-assisted dispersion of NPs produced suspensions, which are stable after autoclaving. Further, PF68 does not interfere with normal physiological functions suggesting its application in nanomedicine and nanotoxicity evaluation.

  8. Relaxation times and modes of disturbed aggregate distribution in micellar solutions with fusion and fission of micelles

    SciTech Connect

    Zakharov, Anatoly I.; Adzhemyan, Loran Ts.; Shchekin, Alexander K.

    2015-09-28

    We have performed direct numerical calculations of the kinetics of relaxation in the system of surfactant spherical micelles under joint action of the molecular mechanism with capture and emission of individual surfactant molecules by molecular aggregates and the mechanism of fusion and fission of the aggregates. As a basis, we have taken the difference equations of aggregation and fragmentation in the form of the generalized kinetic Smoluchowski equations for aggregate concentrations. The calculations have been made with using the droplet model of molecular surfactant aggregates and two modified Smoluchowski models for the coefficients of aggregate-monomer and aggregate-aggregate fusions which take into account the effects of the aggregate size and presence of hydrophobic spots on the aggregate surface. A full set of relaxation times and corresponding relaxation modes for nonequilibrium aggregate distribution in the aggregation number has been found. The dependencies of these relaxation times and modes on the total concentration of surfactant in the solution and the special parameter controlling the probability of fusion in collisions of micelles with other micelles have been studied.

  9. Diseases of Pulmonary Surfactant Homeostasis

    PubMed Central

    Whitsett, Jeffrey A.; Wert, Susan E.; Weaver, Timothy E.

    2015-01-01

    Advances in physiology and biochemistry have provided fundamental insights into the role of pulmonary surfactant in the pathogenesis and treatment of preterm infants with respiratory distress syndrome. Identification of the surfactant proteins, lipid transporters, and transcriptional networks regulating their expression has provided the tools and insights needed to discern the molecular and cellular processes regulating the production and function of pulmonary surfactant prior to and after birth. Mutations in genes regulating surfactant homeostasis have been associated with severe lung disease in neonates and older infants. Biophysical and transgenic mouse models have provided insight into the mechanisms underlying surfactant protein and alveolar homeostasis. These studies have provided the framework for understanding the structure and function of pulmonary surfactant, which has informed understanding of the pathogenesis of diverse pulmonary disorders previously considered idiopathic. This review considers the pulmonary surfactant system and the genetic causes of acute and chronic lung disease caused by disruption of alveolar homeostasis. PMID:25621661

  10. Effect of surfactants on preformed fibrils of human serum albumin.

    PubMed

    Pandey, Nitin Kumar; Ghosh, Sudeshna; Dasgupta, Swagata

    2013-08-01

    The central reason behind pathogenesis of various neurological disorders is usually attributed to the accumulation of aggregated proteins particularly in fibrillar morphology in vivo. One of the plausible remedial treatments for such disorders may be to identify molecules which are capable of either preventing formation of fibrils or disintegrating formed fibrils. The effect of cationic surfactants cetyl trimethylammonium bromide (CTAB), dodecyl trimethylammonium bromide (DTAB) and the anionic surfactant sodium dodecyl sulfate (SDS) in vitro toward mature HSA fibrils has been investigated. The process has been monitored using ThT fluorescence, FTIR, circular dichroism, fluorescence microscopy and HRTEM. It was observed that the micelles of cationic surfactants were able to effectively disrupt the HSA fibrils, among which CTAB was found to be the most potent.

  11. Controlling liquid splash on superhydrophobic surfaces by a vesicle surfactant.

    PubMed

    Song, Meirong; Ju, Jie; Luo, Siqi; Han, Yuchun; Dong, Zhichao; Wang, Yilin; Gu, Zhen; Zhang, Lingjuan; Hao, Ruiran; Jiang, Lei

    2017-03-01

    Deposition of liquid droplets on solid surfaces is of great importance to many fundamental scientific principles and technological applications, such as spraying, coating, and printing. For example, during the process of pesticide spraying, more than 50% of agrochemicals are lost because of the undesired bouncing and splashing behaviors on hydrophobic or superhydrophobic leaves. We show that this kind of splashing on superhydrophobic surfaces can be greatly inhibited by adding a small amount of a vesicular surfactant, Aerosol OT. Rather than reducing splashing by increasing the viscosity via polymer additives, the vesicular surfactant confines the motion of liquid with the help of wettability transition and thus inhibits the splash. Significantly, the vesicular surfactant exhibits a distinguished ability to alter the surface wettability during the first inertial spreading stage of ~2 ms because of its dense aggregates at the air/water interface. A comprehensive model proposed by this idea could help in understanding the complex interfacial interactions at the solid/liquid/air interface.

  12. Interaction of two imidazolium gemini surfactants with two model proteins BSA and HEWL.

    PubMed

    Gospodarczyk, W; Kozak, M

    Gemini surfactants and their interactions with proteins have gained considerable scientific interest, especially when amyloidogenic proteins are taken into account. In this work, the influence of two selected dicationic (gemini) surfactants (3,3'-[1,8-(2,7-dioxaoctane)]bis(1-dodecylimidazolium) chloride and 3,3'-[1,12-(2,11-dioxadodecane)]bis(1-dodecylimidazolium) chloride) on two model proteins, bovine serum albumin (BSA) and hen egg white lysozyme (HEWL), have been investigated. A pronounced and sophisticated influence on BSA structure has been revealed, including a considerable change of protein radius of gyration as well as substantial alteration of its secondary structure. Radius of gyration has been found to rise significantly with addition of surfactants and to fall down for high surfactants concentration. Similarly, a remarkable fall of secondary structure (α-helix content) has been observed, followed by its partial retrieval for high surfactants concentration. A strong aggregation of BSA has been observed for a confined range of surfactants concentrations as well. In case of HEWL-gemini system, on the other hand, the protein-surfactant interaction was found to be weak. Molecular mechanisms explaining such behaviour of protein-surfactant systems have been proposed. The differences of properties of both studied surfactants have also been discussed.

  13. Chemoenzymatic synthesis and properties of novel lactone-type anionic surfactants.

    PubMed

    Mori, Keisuke; Matsumura, Shuichi

    2012-01-01

    Two series of lactone-type surfactants with and without a hexyl side chain were prepared by the cyclocondensation of dimethyl alkanedioates with unsaturated diols, such as cis-2-butene-1,4-diol and ricinoleyl alcohol, using a lipase, followed by the addition of hydrophilic 3-mercaptopropionic acid in the presence of triethylamine. The lactone-type surfactants showed clear cmc values and surface tension lowering in aqueous solution irrespective of the hexyl side chain. It was found that the cmc values of lactone-type surfactants were lower than that of typical anionics, e.g., sodium laurate, and the cmc value became lower with increasing size of the lactone ring. The adsorption area at the surface of the aqueous lactone-type surfactant solution was larger when compared to the corresponding non-lactone-type surfactants. Lactone-type surfactants without the hexyl side chain aggregated quickly, forming 3-10 nm micelles; on the other hand, lactone-type surfactants with the hexyl side chain formed significantly larger micelles. This is due to the steric hindrance of the hexyl group on the lactone ring. The solubilization ability of the lactone-type surfactants with a hexyl side chain was superior to those without a hexyl side chain. The lactone-type surfactants showed a high foaming power and low foaming stability. They were also biodegraded by activated sludge.

  14. Surfactant treatments alter endogenous surfactant metabolism in rabbit lungs

    SciTech Connect

    Oetomo, S.B.; Lewis, J.; Ikegami, M.; Jobe, A.H. )

    1990-04-01

    The effect of exogenous surfactant on endogenous surfactant metabolism was evaluated using a single-lobe treatment strategy to compare effects of treated with untreated lung within the same rabbit. Natural rabbit surfactant, Survanta, or 0.45% NaCl was injected into the left main stem bronchus by use of a Swan-Ganz catheter. Radiolabeled palmitic acid was then given by intravascular injection at two times after surfactant treatment, and the ratios of label incorporation and secretion in the left lower lobe to label incorporation and secretion in the right lung were compared. The treatment procedure resulted in a reasonably uniform surfactant distribution and did not disrupt lobar pulmonary blood flow. Natural rabbit surfactant increased incorporation of palmitate into saturated phosphatidylcholine (Sat PC) approximately 2-fold (P less than 0.01), and secretion of labeled Sat PC increased approximately 2.5-fold in the surfactant-treated left lower lobe relative to the right lung (P less than 0.01). Although Survanta did not alter incorporation, it did increase secretion but not to the same extent as rabbit surfactant (P less than 0.01). Alteration of endogenous surfactant Sat PC metabolism in vivo by surfactant treatments was different from that which would have been predicted by previous in vitro studies.

  15. Metal Nanoparticle Pollutants Interfere with Pulmonary Surfactant Function In Vitro☆

    PubMed Central

    Bakshi, Mandeep Singh; Zhao, Lin; Smith, Ronald; Possmayer, Fred; Petersen, Nils O.

    2008-01-01

    Abstract Reported associations between air pollution and pulmonary and cardiovascular diseases prompted studies on the effects of gold nanoparticles (Au NP) on pulmonary surfactant function. Low levels (3.7 mol % Au/lipid, 0.98% wt/wt) markedly inhibited adsorption of a semisynthetic pulmonary surfactant (dipalmitoyl-phosphatidylcholine (DPPC)/palmitoyl-oleoyl-phosphatidylglycerol/surfactant protein B (SP-B); 70:30:1 wt %). Au NP also impeded the surfactant's ability to reduce surface tension (γ) to low levels during film compression and to respread during film expansion. Transmission electron microscopy showed that Au NP generated by a seed-growth method were spherical with diameters of ∼15 nm. Including palmitoyl-oleoyl-phosphatidylglycerol appeared to coat the NP with at least one lipid bilayer but did not affect NP shape or size. Similar overall observations occurred with dimyristoyl phosphatidylglycerol. Dipalmitoyl-phosphatidylglycerol was less effective in NP capping, although similar sized NP were formed. Including SP-B (1% wt/wt) appears to induce the formation of elongated strands of interacting threads with the fluid phosphatidylglycerols (PG). Including DPPC resulted in formation of aggregated, less spherical NP with a larger size distribution. With DPPC, strand formation due to SP-B was not observed. Agarose gel electrophoresis studies demonstrated that the aggregation induced by SP-B blocked migration of PG-coated NP. Migration was also influenced by the fluidity of the PGs. It is concluded that Au NP can interact with and sequester pulmonary surfactant phospholipids and, if inhaled from the atmosphere, could impede pulmonary surfactant function in the lung. PMID:17890383

  16. Chain architecture and micellization: A mean-field coarse-grained model for poly(ethylene oxide) alkyl ether surfactants

    NASA Astrophysics Data System (ADS)

    García Daza, Fabián A.; Colville, Alexander J.; Mackie, Allan D.

    2015-03-01

    Microscopic modeling of surfactant systems is expected to be an important tool to describe, understand, and take full advantage of the micellization process for different molecular architectures. Here, we implement a single chain mean field theory to study the relevant equilibrium properties such as the critical micelle concentration (CMC) and aggregation number for three sets of surfactants with different geometries maintaining constant the number of hydrophobic and hydrophilic monomers. The results demonstrate the direct effect of the block organization for the surfactants under study by means of an analysis of the excess energy and entropy which can be accurately determined from the mean-field scheme. Our analysis reveals that the CMC values are sensitive to branching in the hydrophilic head part of the surfactant and can be observed in the entropy-enthalpy balance, while aggregation numbers are also affected by splitting the hydrophobic tail of the surfactant and are manifested by slight changes in the packing entropy.

  17. Chain architecture and micellization: A mean-field coarse-grained model for poly(ethylene oxide) alkyl ether surfactants

    SciTech Connect

    García Daza, Fabián A.; Mackie, Allan D.; Colville, Alexander J.

    2015-03-21

    Microscopic modeling of surfactant systems is expected to be an important tool to describe, understand, and take full advantage of the micellization process for different molecular architectures. Here, we implement a single chain mean field theory to study the relevant equilibrium properties such as the critical micelle concentration (CMC) and aggregation number for three sets of surfactants with different geometries maintaining constant the number of hydrophobic and hydrophilic monomers. The results demonstrate the direct effect of the block organization for the surfactants under study by means of an analysis of the excess energy and entropy which can be accurately determined from the mean-field scheme. Our analysis reveals that the CMC values are sensitive to branching in the hydrophilic head part of the surfactant and can be observed in the entropy-enthalpy balance, while aggregation numbers are also affected by splitting the hydrophobic tail of the surfactant and are manifested by slight changes in the packing entropy.

  18. Surfactant-laden soft contact lenses for extended delivery of ophthalmic drugs.

    PubMed

    Kapoor, Yash; Thomas, Justin C; Tan, Grace; John, Vijay T; Chauhan, Anuj

    2009-02-01

    Eye drops are inefficient means of delivering ophthalmic drugs because of limited bioavailability and these can cause significant side effects due to systemic uptake of the drug. The bioavailability for ophthalmic drugs can be increased significantly by using contact lenses. This study focuses on the development of surfactant-laden poly-hydroxy ethyl methacrylate (p-HEMA) contact lenses that can release Cyclosporine A (CyA) at a controlled rate for extended periods of time. We focus on various Brij surfactants to investigate the effects of chain length and the presence of an unsaturated group on the drug release dynamics and partitioning inside the surfactant domains inside the gel. The gels were imaged by cryogenic scanning electron microscopy (cryo-SEM) to obtain direct evidence of the presence of surfactant aggregates in the gel, and to investigate the detailed microstructure for different surfactants. The images show a distribution of nano pores inside the surfactant-laden hydrogels which we speculate are regions of surfactant aggregates, possibly vesicles that have a high affinity for the hydrophobic drug molecule. The gels are further characterized by studying their mechanical and physical properties such as transparency, surface contact angle and equilibrium water content to determine their suitability as extended wear contact lenses. Results show that Brij surfactant-laden p-HEMA gels provide extended release of CyA, and possess suitable mechanical and optical properties for contact lens applications. The gels are not as effective for extended release of two other hydrophobic ophthalmic drugs, dexamethasone (DMS) and dexamethasone 21 acetate (DMSA) because of insufficient partitioning inside the surfactant aggregates.

  19. Comprehensive study of tartrazine/cationic surfactant interaction.

    PubMed

    Shahir, Afshin Asadzadeh; Javadian, Soheila; Razavizadeh, Bi Bi Marzieh; Gharibi, Hussein

    2011-12-15

    Interaction of a food dye, tartrazine, with some cationic conventional and gemini surfactants, tetradecyltrimethylammonium bromide (TTAB), N,N'-ditetradecyl-N,N,N',N'-tetramethyl-N,N'-butanediyl-diammonium dibromide (14,4,14), and N,N'-didodecyl-N,N,N',N'-tetramethyl-N,N'-butanediyl-diammonium dibromide (12,4,12), were first investigated comprehensively employing conductometry, tensiometry, and UV-visible spectroscopy. Tartrazine was found to behave in the same manner as aromatic counterions. The formation of ion pairs reflected as a considerable increase of the surfactant efficiency in tensiometry plots and their stoichiometry were determined by Job's method of continuous variations. For the tartrazine/TTAB system, nonionic DS(3), ionic DS(2-), and/or DS(2)(-) ion pairs, their small premicelles, and tartrazine-rich micelles were constituted as well as dye-containing TTAB-rich micelles. Insoluble J-aggregates of DS(-) ion pairs and cylindrical surfactant-rich micelles were also formed in tartrazine/gemini surfactant systems and recognized by transmission electron microscopy. The zeta potential and the size of the aggregates were determined using dynamic light scattering and confirmed the suggested models for the processes happening in each system. Cyclic voltammetry was applied successfully to track all of these species using tartrazine's own reduction peak current for the first time.

  20. Aggregation in charged nanoparticles solutions induced by different interactions

    NASA Astrophysics Data System (ADS)

    Abbas, S.; Kumar, Sugam; Aswal, V. K.; Kohlbrecher, J.

    2016-05-01

    Small-angle neutron scattering (SANS) has been used to study the aggregation of anionic silica nanoparticles as induced through different interactions. The nanoparticle aggregation is induced by addition of salt (NaCl), cationic protein (lysozyme) and non-ionic surfactant (C12E10) employing different kind of interactions. The results show that the interaction in presence of salt can be explained using DLVO theory whereas non-DLVO forces play important role for interaction of nanoparticles with protein and surfactant. The presence of salt screens the repulsion between charged nanoparticles giving rise to a net attraction in the DLVO potential. On the other hand, strong electrostatic attraction between nanoparticle and oppositely charged protein leads to protein-mediated nanoparticle aggregation. In case of non-ionic surfactant, the relatively long-range attractive depletion interaction is found to be responsible for the particle aggregation. Interestingly, the completely different interactions lead to similar kind of aggregate morphology. The nanoparticle aggregates formed are found to have mass fractal nature having a fractal dimension (~2.5) consistent with diffusion limited type of fractal morphology in all three cases.

  1. The Electric Giant Resonances

    NASA Astrophysics Data System (ADS)

    van der Woude, A.

    The following sections are included: * Introduction * Experimental Methods to Study Giant Resonances * Introduction * The Tools * Introduction * Tools for Isoscalar Scattering * INELASTIC α-SCATTERING * INELASTIC PROTON SCATTERING * Tools for Isovector Excitations * γ-ABSORPTION AND PARTICLE CAPTURE REACTIONS * CHARGE EXCHANGE REACTIONS - THE (π+, π0) REACTION * Tools For Isoscalar And Isovector Excitations * INELASTIC ELECTRON SCATTERING * GIANT RESONANCE EXCITATION BY FAST HEAVY IONS * From Multipole Cross Section To Multipole Strength * The Electric Isoscalar Resonances * The Isoscalar Giant Monopole Resonance * Systematics on the GMR * Compressibility and the Giant Monopole Resonance * Introduction * The Compressibility of nuclear matter from the GMR energies * Discussion * The Isoscalar Giant Quadrupole Resonance * General Trends In Medium-Heavy and Heavy Nuclei * The GQR In Light Nuclei * The Isoscalar 3- Strength, LEOR and HEOR * Isoscalar 4+ Strength * Miscellaneous; Isoscalar 1- and L > 4-Strength * The Electric Isovector Giant Resonances * The Isovector Giant Dipole Resonance: GDR * The Isovector Giant Monopole Resonances: IVGMR * The Isovector Quadrupole Resonance: IVGQR * The Effect of Ground State Deformation on the Shape of Giant Resonance: Microscopic Picture * Giant Resonances Built on Excited States * Introduction * Capture Reactions on Light Nuclei * Statistical decay of GDR γ Emission in Heavy Compound Systems * Introduction * Theoretical Predictions * Some Experimental Results * Summary and Outlook * Acknowledgements * General References * References

  2. Mixed surfactant systems for enhanced oil recovery

    SciTech Connect

    Llave, F.M.; Gall, B.L.; Noll, L.A.

    1990-12-01

    The results of an evaluation of mixed surfactant systems for enhanced oil recovery are described. Several surfactant combinations have been studied. These include alkyl aryl sulfonates as primary surfactants and carboxymethylated ethoxylated (CME) surfactants and ethoxylated sulfonates (ES) as secondary surfactants. The ethoxylated surfactants increase the salinity tolerance of the primary surfactants and, in theory, allow tailoring of the surfactant system to match selected reservoir conditions. The experiments conducted included interfacial tension (IFT) measurements, phase behavior measurements, adsorption and/or chromatographic separation of mixed surfactant systems, measurements of solution properties such as the critical micelle concentration (CMC) of surfactant mixtures, and crude oil displacement experiments. The effects of temperature, surfactant concentration, salinity, presence of divalent ions, hydrocarbon type, and component proportions in the mixed surfactant combinations, and injection strategies on the performance potential of the targeted surfactant/hydrocarbon systems were studied. 40 refs., 37 figs., 8 tabs.

  3. BEHAVIOR OF SURFACTANT MIXTURES AT SOLID/LIQUID AND OIL/LIQUID INTERFACES IN CHEMICAL FLOODING SYSTEMS

    SciTech Connect

    P. Somasundaran

    2004-11-20

    The aim of the project is to develop a knowledge base to help the design of enhanced processes for mobilizing and extracting untrapped oil. We emphasize evaluation of novel surfactant mixtures and obtaining optimum combinations of the surfactants for efficient chemical flooding EOR processes. In this regard, an understanding of the aggregate shape, size and structure is crucial since these properties govern the crude oil removal efficiency. During the three-year period, the adsorption and aggregation behavior of sugar-based surfactants and their mixtures with other types of surfactants have been studied. Sugar-based surfactants are made from renewable resources, nontoxic and biodegradable. They are miscible with water and oil. These environmentally benign surfactants feature high surface activity, good salinity, calcium and temperature tolerance, and unique adsorption behavior. They possess the characteristics required for oil flooding surfactants and have the potential for replacing currently used surfactants in oil recovery. A novel analytical ultracentrifugation technique has been successfully employed for the first time, to characterize the aggregate species present in mixed micellar solution due to its powerful ability to separate particles based on their size and shape and monitor them simultaneously. Analytical ultracentrifugation offers an unprecedented opportunity to obtain important information on mixed micelles, structure-performance relationship for different surfactant aggregates in solution and their role in interfacial processes. Initial sedimentation velocity investigations were conducted using nonyl phenol ethoxylated decyl ether (NP-10) to choose the best analytical protocol, calculate the partial specific volume and obtain information on sedimentation coefficient, aggregation mass of micelles. Four softwares: OptimaTM XL-A/XL-I data analysis software, DCDT+, Svedberg and SEDFIT, were compared for the analysis of sedimentation velocity

  4. Molecular thermodynamics for micellar branching in solutions of ionic surfactants.

    PubMed

    Andreev, Vasily A; Victorov, Alexey I

    2006-09-26

    We develop an analytical molecular-thermodynamic model for the aggregation free energy of branching portions of wormlike ionic micelles in 1:1 salt solution. The junction of three cylindrical aggregates is represented by a combination of pieces of the torus and bilayer. A geometry-dependent analytical solution is obtained for the linearized Poisson-Boltzmann equation. This analytical solution is applicable to saddle-like structures and reduces to the solutions known previously for planar, cylindrical, and spherical aggregates. For micellar junctions, our new analytical solution is in excellent agreement with numerical results over the range of parameters typical of ionic surfactant systems with branching micelles. Our model correctly predicts the sequence of stable aggregate morphologies, including a narrow bicontinuous zone, in dependence of hydrocarbon tail length, head size, and solution salinity. For predicting properties of a spatial network of wormlike micelles, our aggregation free energy is used in the Zilman-Safran theory. Our predictions are compared with experimental data for branching micelles of ionic surfactants.

  5. Micellization behavior of aromatic moiety bearing hybrid fluorocarbon sulfonate surfactants.

    PubMed

    Wadekar, Mohan N; Boekhoven, Job; Jager, Wolter F; Koper, Ger J M; Picken, Stephen J

    2012-02-21

    Aggregation behavior and thermodynamic properties of two novel homologous aromatic moiety bearing hybrid fluorocarbon surfactants, sodium 2-(2-(4-ethylphenyl)-1,1,2,2-tetrafluoroethoxy)-1,1,2,2-tetrafluoroethanesulfonate (1) and sodium 2-(1,1,2,2-tetrafluoro-2-(4-vinylphenyl)ethoxy)-1,1,2,2-tetrafluoroethanesulfonate (2) were studied using surface tension measurements and isothermal titration calorimetry (ITC) in dilute aqueous solutions at room temperature. Because of the aromatic group in the hydrophobic tail, both surfactants are soluble at room temperature unlike their starting precursor, 5-iodooctafluoro-3-oxapentanesulfonate as well as several other fluorocarbon sulfonic acid salts. Moreover, the surfactant 2 has the ability that it can be polymerized once microemulsions are formed with it. The ionic conductivity measurements of 1 at five different temperatures from 288 to 313 K were carried out to study the effect of temperature on the micellization and its thermodynamics. The pseudophase separation model was applied to estimate thermodynamic quantities from conductivity data. The Gibbs energy of micellization versus temperature exhibited the characteristic U-shaped behavior with a minimum at 306 K. The micellization process was found to be largely entropy driven. Because of its hybrid structure, the entropy change of micellization for 1 was larger than what is common for hydrocarbon surfactants like SDS but less than for fully fluorinated surfactants like NaPFO. The micellization process was found to be following the entropy-enthalpy compensation phenomena.

  6. BEHAVIOR OF SURFACTANT MIXTURES AT SOLID/LIQUID AND OIL/LIQUID INTERFACES IN CHEMICAL FLOODING SYSTEMS

    SciTech Connect

    Prof. P. Somasundaran

    2002-09-30

    The aim of the project is to develop and evaluate efficient novel surfactant mixtures for enhanced oil recovery. Surfactant loss by adsorption or precipitation depends to a great extent on the type of surfactant complexes and aggregates formed. Such information as well as techniques to generate the information is lacking currently particularly for surfactant mixtures and surfactant/polymer systems. A novel analytical centrifuge application is explored during the last period to generate information on structures-performance relationship for different surfactant aggregates in solution and, in turn, at interfaces. To use analytical untracentrifuge for surfactant mixtures, information on partial specific volumes of single surfactants and their mixtures is required. Towards this purpose, surface tension and density measurements were performed to determine critical micellar concentrations (cmc), partial specific volumes of n-dodecyl-{beta}-Dmaltoside (DM), nonyl phenol ethoxylated decyl ether (NP-10) and their 1:1 mixtures at 25 C. Durchschlag's theoretical calculation method was adopted to calculate the partial specific volumes. Effects of temperature and mixing, as well as methods used for estimation on micellization and partial specific volumes were studied during the current period. Surface tension results revealed no interaction between the two surfactants in mixed micelles. Partial specific volume measurements also indicated no interaction in mixed micelles. Maximum adsorption density, area per molecule and free energy of micellization were also calculated. Partial specific volumes were estimated by two experimental methods: d{sub {rho}}/dc and V{sub {sigma}}. The difference between the results of using the two methods is within 0.5% deviation. It was found that the partial specific volume is concentration dependent and sensitive to changes in temperature. The information generated in this study will be used for the study of surfactant aggregate mass distribution

  7. Flavonoid-surfactant interactions: A detailed physicochemical study

    NASA Astrophysics Data System (ADS)

    Singh, Onkar; Kaur, Rajwinder; Mahajan, Rakesh Kumar

    2017-01-01

    The aim of this article is to study the interactions between flavonoids and surfactants with attention of finding the probable location of flavonoids in micellar media that can be used for controlling their antioxidant behavior. In present study, the micellar and interfacial behavior of twin tailed anionic surfactants viz. sodium bis(2-ethylhexyl)sulfosuccinate (AOT) and sodium bis(2-ethylhexyl)phosphate (NaDEHP) in the presence of two flavonoids, namely quercetin (QUE) and kaempferol (KFL) have been studied by surface tension measurements. UV-visible, fluorescence and differential pulse voltammetric (DPV) measurements have been employed to predict the probable location of flavonoids (QUE/KFL) within surfactant (AOT/NaDEHP) aggregates. Dynamic light scattering (DLS) measurements further confirmed the solubilization of QUE/KFL in AOT/NaDEHP aggregates deduced from increased hydrodynamic diameter (Dh) of aggregates in the presence of flavonoids. Both radical scavenging activity (RSA) and degradation rate constant (k) of flavonoids are found to be higher in NaDEHP micelles as compared to AOT micelles.

  8. Interaction between cationic surfactant of 1-methyl-3-tetradecylimidazolium bromide and anionic polymer of sodium polystyrene sulfonate

    NASA Astrophysics Data System (ADS)

    Zhang, Qian; Kang, Wenpei; Sun, Dezhi; Liu, Jie; Wei, Xilian

    2013-08-01

    The interaction between long-chain imidazolium ionic liquid (C14mimBr) and anionic polyelectrolyte of sodium polystyrene sulfonate (NaPSS) has been studied using surface tension, isothermal titration microcalorimetry (ITC), dynamic light scatting (DLS) and conductance methods. The result shows that the surface tension plots have a pronounced hump in the surface tension at surfactant concentrations below the critical micelle concentration (cmc) of the surfactant. The cooperative adsorption of surfactant and polymer on the surface (PSS) and the formation of polymer/surfactant aggregate in bulk solution (PSM) provide a rational explanation about it. The formation of surfactant/polymer complexes is affected by the concentration of the surfactant or NaPSS, which is also ascertained by ITC and DLS measurements. Further, the thermodynamic parameters are derived from calorimetric titration and conductance curves, and the effects of polymer concentration and temperature on the parameters are evaluated in detail.

  9. Surfactants at the Design Limit.

    PubMed

    Czajka, Adam; Hazell, Gavin; Eastoe, Julian

    2015-08-04

    This article analyzes how the individual structural elements of surfactant molecules affect surface properties, in particular, the point of reference defined by the limiting surface tension at the aqueous cmc, γcmc. Particular emphasis is given to how the chemical nature and structure of the hydrophobic tails influence γcmc. By comparing the three different classes of surfactants, fluorocarbon, silicone, and hydrocarbon, a generalized surface packing index is introduced which is independent of the chemical nature of the surfactants. This parameter ϕcmc represents the volume fraction of surfactant chain fragments in a surface film at the aqueous cmc. It is shown that ϕcmc is a useful index for understanding the limiting surface tension of surfactants and can be useful for designing new superefficient surfactants.

  10. Solution rheology of polyelectrolytes and polyelectrolyte-surfactant systems

    NASA Astrophysics Data System (ADS)

    Plucktaveesak, Nopparat

    The fundamental understanding of polyelectrolytes in aqueous solutions is an important branch of polymer research. In this work, the rheological properties of polyelectrolytes and polyelectrolyte/surfactant systems are studied. Various synthetic poly electrolytes are chosen with varied hydrophobicity. We discuss the effects of adding various surfactants to aqueous solutions of poly(ethylene oxide)-b-poly(propylene oxide)- b-polyethylene oxide)-g-poly(acrylic acid) (PEO-PPO-PAA) in the first chapter. Thermogelation in aqueous solutions of PEO-PPO-PAA is due to micellization caused by aggregation of poly(propylene oxide) (PPO) blocks resulting from temperature-induced dehydration of PPO. When nonionic surfactants with hydrophilic-lipophilic balance (HLB) parameter exceeding 11 or Cn alkylsulfates; n-octyl (C8), n-decyl (C 10) and n-dodecyl (C12) sulfates are added, the gelation threshold temperature (Tgel) of 1.0wt% PEO-PPO-PAA in aqueous solutions increases. In contrast, when nonionic surfactants with HLB below 11 are added, the gelation temperature decreases. On the other hand, alkylsulfates with n = 16 or 18 and poly(ethylene oxide) (PEO) do not affect the Tgel. The results imply that both hydrophobicity and tail length of the added surfactant play important roles in the interaction of PEO-PPO-PAA micelles and the surfactant. In the second chapter, the solution behavior of alternating copolymers of maleic acid and hydrophobic monomer is studied. The alternating structure of monomers with two-carboxylic groups and hydrophobic monomers make these copolymers unique. Under appropriate conditions, these carboxylic groups dissociate leaving charges on the chain. The potentiometric titrations of copolymer solutions with added CaCl2 reveal two distinct dissociation processes corresponding to the dissociation of the two adjacent carboxylic acids. The viscosity data as a function of polymer concentration of poly(isobutylene-alt-sodium maleate), poly

  11. Surfactant Assemblies and their Various Possible Roles for the Origin(S) of Life

    NASA Astrophysics Data System (ADS)

    Walde, Peter

    2006-04-01

    A large number of surfactants (surface active molecules) are chemically simple compounds that can be obtained by simple chemical reactions, in some cases even under presumably prebiotic conditions. Surfactant assemblies are self-organized polymolecular aggregates of surfactants, in the simplest case micelles, vesicles, hexagonal and cubic phases. It may be that these different types of surfactant assemblies have played various, so-far underestimated important roles in the processes that led to the formation of the first living systems. Although nucleic acids are key players in the formation of cells as we know them today (RNA world hypothesis), it is still unclear how RNA could have been formed under prebiotic conditions. Surfactants with their self-organizing properties may have assisted, controlled and compartimentalized some of the chemical reactions that eventually led to the formation of molecules like RNA. Therefore, surfactants were possibly very important in prebiotic times in the sense that they may have been involved in different physical and chemical processes that finally led to a transformation of non-living matter to the first cellular form(s) of life. This hypothesis is based on four main experimental observations: (i) Surfactant aggregation can lead to cell-like compartimentation (vesicles). (ii) Surfactant assemblies can provide local reaction conditions that are very different from the bulk medium, which may lead to a dramatic change in the rate of chemical reactions and to a change in reaction product distributions. (iii) The surface properties of surfactant assemblies that may be liquid- or solid-like, charged or neutral, and the elasticity and packing density of surfactant assemblies depend on the chemical structure of the surfactants, on the presence of other molecules, and on the overall environmental conditions (e. g. temperature). This wide range of surface characteristics of surfactant assemblies may allow a control of surface

  12. Surfactant assemblies and their various possible roles for the origin(s) of life.

    PubMed

    Walde, Peter

    2006-04-01

    A large number of surfactants (surface active molecules) are chemically simple compounds that can be obtained by simple chemical reactions, in some cases even under presumably prebiotic conditions. Surfactant assemblies are self-organized polymolecular aggregates of surfactants, in the simplest case micelles, vesicles, hexagonal and cubic phases. It may be that these different types of surfactant assemblies have played various, so-far underestimated important roles in the processes that led to the formation of the first living systems. Although nucleic acids are key players in the formation of cells as we know them today (RNA world hypothesis), it is still unclear how RNA could have been formed under prebiotic conditions. Surfactants with their self-organizing properties may have assisted, controlled and compartimentalized some of the chemical reactions that eventually led to the formation of molecules like RNA. Therefore, surfactants were possibly very important in prebiotic times in the sense that they may have been involved in different physical and chemical processes that finally led to a transformation of non-living matter to the first cellular form(s) of life. This hypothesis is based on four main experimental observations: (i) Surfactant aggregation can lead to cell-like compartimentation (vesicles). (ii) Surfactant assemblies can provide local reaction conditions that are very different from the bulk medium, which may lead to a dramatic change in the rate of chemical reactions and to a change in reaction product distributions. (iii) The surface properties of surfactant assemblies that may be liquid- or solid-like, charged or neutral, and the elasticity and packing density of surfactant assemblies depend on the chemical structure of the surfactants, on the presence of other molecules, and on the overall environmental conditions (e. g. temperature). This wide range of surface characteristics of surfactant assemblies may allow a control of surface

  13. Marangoni Effects of a Drop in an Extensional Flow: The Role of Surfactant Physical Chemistry

    NASA Technical Reports Server (NTRS)

    Stebe, Kathleen J.; Balasubramaniam, R. (Technical Monitor)

    2002-01-01

    While the changes in stresses caused by surfactant adsorption on non-deforming interfaces have been fairly well established, prior to this work, there were few studies addressing how surfactants alter stresses on strongly deforming interfaces. We chose the model problem of a drop in a uniaxial extensional flow to study these stress conditions To model surfactant effects at fluid interfaces, a proper description of the dependence of the surface tension on surface concentration, the surface equation of state, is required. We have adopted a surface equation of state that accounts for the maximum coverage limit; that is, because surfactants have a finite cross sectional area, there is an upper bound to the amount of surfactant that can adsorb in a monolayer. The surface tension reduces strongly only when this maximum coverage is approached. Since the Marangoni stresses go as the derivative of the surface equation of state times the surface concentration gradient, the non-linear equation of state determines both the effect of surfactants in the normal stress jump, (which is balanced by the product of the mean curvature of the interface times the surface tension), and the tangential stress jump, which is balanced by Marangoni stresses. First, the effects of surface coverage and intermolecular interactions among surfactants which drive aggregation of surfactants in the interface were studied. (see Pawar and Stebe, Physics of Fluids).

  14. Facile Directed Assembly of Hollow Polymer Nanocapsules within Spontaneously Formed Catanionic Surfactant Vesicles

    SciTech Connect

    Kim, Mariya D.; Dergunov, Sergey; Richter, Andrew; Durbin, Jeffrey; Shmakov, Sergey; Jia, Ying; Kenbeilova, Saltanat; Orazbekuly, Yerbolat; Kengpeiil, Aigerim; Lindner, Erno; Pingali, Sai Venkatesh; Urban, Volker S; Weigand, Steven; Pinkhassik, Eugene

    2014-01-01

    Surfactant vesicles containing monomers in the interior of the bilayer were used to template hollow polymer nanocapsules. This study investigated the formation of surfactant/monomer assemblies by two loading methods, concurrent loading and diffusion loading. The assembly process and the resulting aggregates were investigated with dynamic light scattering, small angle neutron scattering, and small-angle X-ray scattering. Acrylic monomers formed vesicles with a mixture of cationic and anionic surfactants in a broad range of surfactant ratios. Regions with predominant formation of vesicles were broader for compositions containing acrylic monomers compared with blank surfactants. This observation supports the stabilization of the vesicular structure by acrylic monomers. Diffusion loading produced monomer-loaded vesicles unless vesicles were composed from surfactants at the ratios close to the boundary of a vesicular phase region on a phase diagram. Both concurrent-loaded and diffusion-loaded surfactant/monomer vesicles produced hollow polymer nanocapsules upon the polymerization of monomers in the bilayer followed by removal of surfactant scaffolds.

  15. Self-assembly of polyelectrolyte surfactant complexes using large scale MD simulation

    NASA Astrophysics Data System (ADS)

    Goswami, Monojoy; Sumpter, Bobby

    2014-03-01

    Polyelectrolytes (PE) and surfactants are known to form interesting structures with varied properties in aqueous solutions. The morphological details of the PE-surfactant complexes depend on a combination of polymer backbone, electrostatic interactions and hydrophobic interactions. We study the self-assembly of cationic PE and anionic surfactants complexes in dilute condition. The importance of such complexes of PE with oppositely charged surfactants can be found in biological systems, such as immobilization of enzymes in polyelectrolyte complexes or nonspecific association of DNA with protein. Many useful properties of PE surfactant complexes come from the highly ordered structures of surfactant self-assembly inside the PE aggregate which has applications in industry. We do large scale molecular dynamics simulation using LAMMPS to understand the structure and dynamics of PE-surfactant systems. Our investigation shows highly ordered pearl-necklace structures that have been observed experimentally in biological systems. We investigate many different properties of PE-surfactant complexation for different parameter ranges that are useful for pharmaceutical, engineering and biological applications.

  16. The Critical Role of Surfactants in the Growth of Cobalt Nanoparticles

    SciTech Connect

    Bao, Yuping; An, Wei; Turner, C. H.; Krishnan, Kannan M.

    2010-01-05

    We report a combined experimental and computational study on the critical role of surfactants in the nucleation and growth of Co nanoparticles synthesized by chemical routes. By varying the surfactant species, Co nanoparticles of different morphologies under similar reaction conditions (e.g., temperature and Co-precursor concentration) were produced. Depending on the surfactant species, the growth of Co nanoparticles followed three different growth pathways. For example, with surfactants oleic acid (OA) and trioctylphosphine oxide (TOPO) used in combination, Co nanoparticles followed a diffusional growth pathway, leading to single crystalline nanoparticles. Multiple-grained nanoparticles, through an aggregation process, were formed with the combination of surfactants OA and dioctylamine (DOA). Further, an Ostwald ripening process was observed in the case of TOPO alone. Complementary electronic structure calculations were used to predict the optimized Co-surfactant complex structures and to quantify the binding energy between the surfactants (ligands) and the Co atoms. These calculations were further applied to predict the Co nanoparticle nucleation and growth processes based on the stability of Co-surfactant complexes.

  17. Non-covalent bonding interaction of surfactants with functionalized carbon nanotubes in proton exchange membranes for fuel cell applications.

    PubMed

    Sayeed, M Abu; Kim, Young Ho; Park, Younjin; Gopalan, A I; Lee, Kwang-Pill; Choi, Sang-June

    2013-11-01

    Dispersion of functionalized multiwalled carbon nanotubes (MWCNTs) in proton exchange membranes (PEMs) was conducted via non-covalent bonding between benzene rings of various surfactants and functionalized MWCNTs. In the solution casting method, dispersion of functionalized MWCNTs in PEMs such as Nafion membranes is a critical issue. In this study, 1 wt.% pristine MWCNTs (p-MWCNTs) and oxidized MWCNTs (ox-MWCNTs) were reinforced in Nafion membranes by adding 0.1-0.5 wt.% of a surfactant such as benzalkonium chloride (BKC) as a cationic surfactant with a benzene ring, Tween-80 as a nonanionic surfactant without a benzene ring, sodium dodecylsulfonate (SDS) as an anionic surfactant without a benzene ring, or sodium dodecylben-zenesulfonate (SDBS) as an anionic surfactant with a benzene ring and their effects on the dispersion of nanocomposites were then observed. Among these surfactants, those with benzene rings such as BKC and SDBS produced enhanced dispersion via non-covalent bonding interaction between CNTs and surfactants. Specifically, the surfactants were adsorbed onto the surface of functionalized MWCNTs, where they prevented re-aggregation of MWCNTs in the nanocomposites. Furthermore, the prepared CNTs reinforced nanocomposite membranes showed reduced methanol uptake values while the ion exchange capacity values were maintained. The enhanced properties, including thermal property of the CNTs reinforced PEMs with surfactants, could be applicable to fuel cell applications.

  18. Aggregation kinetics of coalescing polymer colloids.

    PubMed

    Gauer, Cornelius; Jia, Zichen; Wu, Hua; Morbidelli, Massimo

    2009-09-01

    The aggregation behavior of a soft, rubbery colloidal system with a relatively low glass transition temperature, T(g) approximately -20 degrees C, has been investigated. It is found that the average gyration and hydrodynamic radii, R(g) and R(h), measured by light scattering techniques, evolve in time in parallel, without exhibiting the crossover typical of rigid particle aggregation. Cryogenic scanning electron microscopy (cryo-SEM) images reveal sphere-like clusters, indicating that complete coalescence between particles occurs during aggregation. Since coalescence leads to a reduction in the total colloidal surface area, the surfactant adsorption equilibrium, and thus the colloidal stability, change in the course of aggregation. It is found that to simulate the observed kinetic behavior based on the population balance equations, it is necessary to assume that all the clusters are spherical and to account for variations in the colloidal stability of each aggregating particle pair with time. This indicates that, for the given system, the coalescence is very fast, i.e., its time scale is much smaller than that of the aggregation.

  19. Synthesis and Self-Assembly Behaviors of Polyhedral Oligomeric Silsesquioxane Based Giant Molecular Shape Amphiphiles

    NASA Astrophysics Data System (ADS)

    Yue, Kan; Yu, Xinfei; Liu, Chang; Zhang, Wen-Bin; Cheng, Stephen

    2013-03-01

    Recently, our group has focus on the synthesis and characterization of novel giant molecular shape amphiphiles (GMSAs) based on functionalized molecular nanoparticles (MNPs), such as polyhedral oligomeric silsesquioxane (POSS), tethered with polymeric tails. A general synthetic method via the combination of sequential ?click? reactions has been developed and several model GMSAs with various tail lengths and distinct molecular topologies, which can be referred as the ?giant surfactants?, ?giant lipids?, ?giant gemini surfactants?, and ?giant bolaform surfactants? etc., have been demonstrated. Studies on their self-assembly behaviors in the bulk have revealed the formation of different ordered mesophase structures with feature sizes around 10 nanometers, which have been investigated in detail by small angle X-ray scattering (SAXS) technique and transmission electron microscopy (TEM). These findings have general implications on understanding the underlying principles of self-assembly behaviors of GMSAs, and might have potential applications in nano-patterning technology. This work is supported by NSF (DMR-0906898) and the Joint-Hope Foundation.

  20. Theoretical and Simulations-Based Modeling of Micellization in Linear and Branched Surfactant Systems

    NASA Astrophysics Data System (ADS)

    Mendenhall, Jonathan D.

    Surfactants are chemically-heterogeneous molecules possessing hydrophilic (head) and hydrophobic (tail) moieties. This dual nature of surfactants leads to interesting phase behavior in aqueous solution as a function of surfactant concentration, including: (i) formation of surfactant monolayers at surfaces and interfaces, and (ii) self-assembly into finite aggregates (micelles) in the bulk solution beyond the critical micelle concentration (cmc). This concentration-dependent phase behavior induces changes in solution properties. For example, the surface activity of surfactants can decrease the surface tension, and self-assembly in bulk solution can lead to changes in viscosity, equivalent conductivity, solubilization capacity, and other bulk properties. These effects make surfactants quite attractive and unique for use in product formulations, where they are utilized as detergents, dispersants, emulsifiers, solubilizers, surface and interfacial tension modifiers, and in other contexts. The specific chemical structure of the surfactant head and tail is essential in determining the overall performance properties of a surfactant in aqueous media. The surfactant tail drives the self-assembly process through the hydrophobic effect, while the surfactant head imparts a certain extent of solubility to the surfactant in aqueous solution through preferential interactions with the hydrogen-bonding network of water. The interplay between these two effects gives rise to the particular phase diagram of a surfactant, including the specific cmc at which micelles begin to form. In addition to serving as a quantitative indicator of micelle formation, the cmc represents a limit to surface monolayer formation, and hence to surface and interfacial tension reduction, because surfactant adsorption at interfaces remains approximately constant beyond the cmc. In addition, the cmc represents the onset of changes in bulk solution properties. This Thesis is concerned with the prediction of cmc

  1. MINERAL-SURFACTANT INTERACTIONS FOR MINIMUM REAGENTS PRECIPITATION AND ADSORPTION FOR IMPROVED OIL RECOVERY

    SciTech Connect

    P. Somasundaran

    2005-04-30

    The aim of this project is to delineate the role of mineralogy of reservoir rocks in determining interactions between reservoir minerals and externally added reagents (surfactants/polymers) and its effect on critical solid-liquid and liquid-liquid interfacial properties such as adsorption, wettability and interfacial tension in systems relevant to reservoir conditions. Previous studies have suggested that significant surfactant loss by precipitation or adsorption on reservoir minerals can cause chemical schemes to be less than satisfactory for enhanced oil recovery. Both macroscopic adsorption, wettability and microscopic orientation and conformation studies for various surfactant/polymer mixtures/reservoir rocks systems were conducted to explore the cause of chemical loss by means of precipitation or adsorption, and the effect of rock mineralogy on the chemical loss. During this period, the adsorption of mixed system of n-dodecyl-{beta}-D-maltoside (DM) and dodecyl sulfonate (C{sub 12}SO{sub 3}Na) has been studied. The effects of solution pH, surfactant mixing ratio and different salts on surfactant adsorption on alumina have been investigated in detail. Along with these adsorption studies, changes in mineral wettability due to the adsorption of the mixtures were determined under relevant conditions to identify the nano-structure of the adsorbed layers. Solution properties of C{sub 12}SO{sub 3}Na/DM mixtures were also studied to identify surfactant interactions that affect the mixed aggregate formation in solution. Adsorption of SDS on gypsum and limestone suggested stronger surfactant/mineral interaction than on alumina, due to the precipitation of surfactant by dissolved calcium ions. The effects of different salts such as sodium nitrate, sodium sulfite and sodium chloride on DM adsorption on alumina have also been determined. As surfactant hemimicelles at interface and micelles in solution have drastic effects on oil recovery processes, their microstructures in

  2. Spectroscopy and computational studies on the interaction of octyl, dodecyl, and hexadecyl derivatives of anionic and cationic surfactants with adenosine deaminase.

    PubMed

    Ajloo, Davood; Mahmoodabadi, Najmeh; Ghadamgahi, Maryam; Saboury, Ali Akbar

    2016-07-01

    Effects of sodium (octyl, dodecyl, hexadecyl) sulfate and their cationic analogous on the structure of adenosine deaminase (ADA) were investigated by fluorescence and circular dichroism spectroscopy as well as molecular dynamics simulation and docking calculation. Root-mean-square derivations, radius of gyration, solvent accessible surface area, and radial distribution function were obtained. The results showed that anionic and cationic surfactants reduce protein stability. Cationic surfactants have more effect on the ADA structure in comparison with anionic surfactants. More concentration and longer surfactants are parallel to higher denaturation. Furthermore, aggregation in the presence of anionic surfactants is more than cationic surfactants. Docking data showed that longer surfactants have more interaction energy and smaller ones bound to the active site.

  3. Random bilayer phases of dilute surfactant solutions

    NASA Astrophysics Data System (ADS)

    Cates, M. E.; Roux, D.

    1990-12-01

    Surfactant molecules in dilute solution may aggregate reversibly into extended structures. For suitably chosen molecules, the preferred packing involves a locally flat bilayer which tends to wander entropically at large distances. At low temperatures (and/or high concentrations) the system forms a stack of flat sheets with one-dimensional quasi-long range order (a smectic liquid crystal), but at high temperatures or low concentrations, the stack can melt into a random surface structure that resembles a multiply connected labyrinth or 'sponge' of bilayer in a sea of solvent. Recent theoretical and experimental progress in understanding the properties of the sponge is reviewed. The authors argue that the sponge phase may provide a good system for the study of various liquid-state critical phenomena.

  4. Surfactant adsorption kinetics in microfluidics

    PubMed Central

    Riechers, Birte; Maes, Florine; Akoury, Elias; Semin, Benoît; Gruner, Philipp; Baret, Jean-Christophe

    2016-01-01

    Emulsions are metastable dispersions. Their lifetimes are directly related to the dynamics of surfactants. We design a microfluidic method to measure the kinetics of adsorption of surfactants to the droplet interface, a key process involved in foaming, emulsification, and droplet coarsening. The method is based on the pH decay in the droplet as a direct measurement of the adsorption of a carboxylic acid surfactant to the interface. From the kinetic measurement of the bulk equilibration of the pH, we fully determine the adsorption process of the surfactant. The small droplet size and the convection during the droplet flow ensure that the transport of surfactant through the bulk is not limiting the kinetics of adsorption. To validate our measurements, we show that the adsorption process determines the timescale required to stabilize droplets against coalescence, and we show that the interface should be covered at more than 90% to prevent coalescence. We therefore quantitatively link the process of adsorption/desorption, the stabilization of emulsions, and the kinetics of solute partitioning—here through ion exchange—unraveling the timescales governing these processes. Our method can be further generalized to other surfactants, including nonionic surfactants, by making use of fluorophore–surfactant interactions. PMID:27688765

  5. Surfactant-assisted coal liquefaction

    NASA Technical Reports Server (NTRS)

    Hsu, G. C.

    1977-01-01

    Improved process of coal liquefaction utilizing nonaqueous surfactant has increased oil yield from 50 to about 80%. Asphaltene molecule formation of colloid particles is prevented by surfactant. Separated molecules present more surface area for hydrogenation reaction. Lower requirements for temperature, pressure, and hydrogen lead to reduction in capital and operation costs.

  6. Surfactant monitoring by foam generation

    DOEpatents

    Mullen, Ken I.

    1997-01-01

    A device for monitoring the presence or absence of active surfactant or other surface active agents in a solution or flowing stream based on the formation of foam or bubbles is presented. The device detects the formation of foam with a light beam or conductivity measurement. The height or density of the foam can be correlated to the concentration of the active surfactant present.

  7. ADSORPTION OF SURFACTANT ON CLAYS

    EPA Science Inventory

    Surfactants used to enhance remediation of soils by soil washing are often lost in the process. Neither the amount nor the cause of this loss is known. It is assumed that clays present in the soil are responsible for the loss of the surfactant. In this papere, adsorption prope...

  8. Surfactant adsorption kinetics in microfluidics

    NASA Astrophysics Data System (ADS)

    Riechers, Birte; Maes, Florine; Akoury, Elias; Semin, Benoît; Gruner, Philipp; Baret, Jean-Christophe

    2016-10-01

    Emulsions are metastable dispersions. Their lifetimes are directly related to the dynamics of surfactants. We design a microfluidic method to measure the kinetics of adsorption of surfactants to the droplet interface, a key process involved in foaming, emulsification, and droplet coarsening. The method is based on the pH decay in the droplet as a direct measurement of the adsorption of a carboxylic acid surfactant to the interface. From the kinetic measurement of the bulk equilibration of the pH, we fully determine the adsorption process of the surfactant. The small droplet size and the convection during the droplet flow ensure that the transport of surfactant through the bulk is not limiting the kinetics of adsorption. To validate our measurements, we show that the adsorption process determines the timescale required to stabilize droplets against coalescence, and we show that the interface should be covered at more than 90% to prevent coalescence. We therefore quantitatively link the process of adsorption/desorption, the stabilization of emulsions, and the kinetics of solute partitioning—here through ion exchange—unraveling the timescales governing these processes. Our method can be further generalized to other surfactants, including nonionic surfactants, by making use of fluorophore-surfactant interactions.

  9. On-line surfactant monitoring

    SciTech Connect

    Mullen, K.I.; Neal, E.E.; Soran, P.D.; Smith, B.

    1995-04-01

    This group has developed a process to extract metal ions from dilute aqueous solutions. The process uses water soluble polymers to complex metal ions. The metal/polymer complex is concentrated by ultrafiltration and the metals are recovered by a pH adjustment that frees the metal ions. The metal ions pass through the ultrafiltration membrane and are recovered in a concentrated form suitable for reuse. Surfactants are present in one of the target waste streams. Surfactants foul the costly ultrafiltration membranes. It was necessary to remove the surfactants before processing the waste stream. This paper discusses an on-line device the authors fabricated to monitor the process stream to assure that all the surfactant had been removed. The device is inexpensive and sensitive to very low levels of surfactants.

  10. Adaptation to low body temperature influences pulmonary surfactant composition thereby increasing fluidity while maintaining appropriately ordered membrane structure and surface activity.

    PubMed

    Suri, Lakshmi N M; McCaig, Lynda; Picardi, Maria V; Ospina, Olga L; Veldhuizen, Ruud A W; Staples, James F; Possmayer, Fred; Yao, Li-Juan; Perez-Gil, Jesus; Orgeig, Sandra

    2012-07-01

    The interfacial surface tension of the lung is regulated by phospholipid-rich pulmonary surfactant films. Small changes in temperature affect surfactant structure and function in vitro. We compared the compositional, thermodynamic and functional properties of surfactant from hibernating and summer-active 13-lined ground squirrels (Ictidomys tridecemlineatus) with porcine surfactant to understand structure-function relationships in surfactant membranes and films. Hibernating squirrels had more surfactant large aggregates with more fluid monounsaturated molecular species than summer-active animals. The latter had more unsaturated species than porcine surfactant. Cold-adapted surfactant membranes displayed gel-to-fluid transitions at lower phase transition temperatures with reduced enthalpy. Both hibernating and summer-active squirrel surfactants exhibited lower enthalpy than porcine surfactant. LAURDAN fluorescence and DPH anisotropy revealed that surfactant bilayers from both groups of squirrels possessed similar ordered phase characteristics at low temperatures. While ground squirrel surfactants functioned well during dynamic cycling at 3, 25, and 37 degrees C, porcine surfactant demonstrated poorer activity at 3 degrees C but was superior at 37 degrees C. Consequently the surfactant composition of ground squirrels confers a greater thermal flexibility relative to homeothermic mammals, while retaining tight lipid packing at low body temperatures. This may represent the most critical feature contributing to sustained stability of the respiratory interface at low lung volumes. Thus, while less effective than porcine surfactant at 37 degrees C, summer-active surfactant functions adequately at both 37 degrees C and 3 degrees C allowing these animals to enter hibernation. Here further compositional alterations occur which improve function at low temperatures by maintaining adequate stability at low lung volumes and when temperature increases during arousal from

  11. Role of interaction energies in the behavior of mixed surfactant systems: a lattice Monte Carlo simulation.

    PubMed

    Poorgholami-Bejarpasi, Niaz; Hashemianzadeh, Majid; Mousavi-Khoshdel, S Morteza; Sohrabi, Beheshteh

    2010-09-07

    We have investigated micellization in systems containing two surfactant molecules with the same structure using a lattice Monte Carlo simulation method. For the binary systems containing two surfactants, we have varied the head-head interactions or tail-tail repulsions in order to mimic the nonideal behavior of mixed surfactant systems and to manipulate the net interactions between surfactant molecules. The simulation results indicate that interactions between headgroups or tailgroups have an effect on thermodynamic properties such as the mixed critical micelle concentration (cmc), distribution of aggregates, shape of the aggregates, and composition of the micelles formed. Moreover, we have compared the simulation results with estimates based on regular solution theory, a mean-field theory, to determine the applicability of this theory to the nonideal mixed surfactant systems. We have found that the simulation results agree reasonable well with regular solution theory for the systems with attractions between headgroups and repulsions between tailgroups. However, the large discrepancies observed for the systems with head-head repulsions could be attributed to the disregarding of the correlation effect on the interaction among surfactant molecules and the nonrandom mixing effect in the theory.

  12. Alveolar metabolism of natural vs. synthetic surfactants in preterm newborn rabbits.

    PubMed

    Allen, V; Oulton, M; Stinson, D; MacDonald, J; Allen, A

    2001-01-01

    We compared the recoveries of four surfactant preparations: two natural [term fetal rabbit surfactant (FRS) and adult rabbit surfactant (ARS)] and two commercially available preparations [apoprotein-based Survanta (S) and synthetic Exosurf (E)] from 27-day gestation rabbit pups treated at birth and ventilated up to 120 min. At 5, 60, and 120 min, we measured the recovery of the heavy-aggregate, metabolically active form (H) and the light-aggregate, nonsurface active metabolic breakdown form (L) of alveolar surfactant and determined the phospholipid content and composition of the intracellularly stored lamellar body (LB) pool. Pups treated with FRS had <15% loss of H by 2 h. ARS-treated pups had a >50% loss of H by 1 h, and E- and S-treated pups had approximately 50% loss by 5 min, with a slower rate of continuing loss of up to 80% by 2 h. The major losses of H phospholipid were not explained by the L-form recovery. LB phospholipid significantly increased only in the E-treated pups and only at 2 h. FRS provides a biologically active form (H) of surfactant that appeared to remain in the airway for a significantly longer time than the other surfactant preparations. The unique properties of FRS merit further study.

  13. Surfactant damping of water waves

    NASA Astrophysics Data System (ADS)

    Lapham, Gary S.; Dowling, David R.; Schultz, William W.

    1997-11-01

    The most well known and perhaps most important distinguishing characteristic of a water surface laden with surfactant is the profound increase in small-wave damping with the addition of even small amounts of surfactant material. It would seem to follow that damping increases with increasing surfactant concentration. This is undoubtedly true for some surfactants, however our experiments with a soluble surfactant show that it is possible to increase surfactant concentration and measure a decrease in damping. While the increased concentration is accompanied by a dramatic decrease in measured static surface tension, some of the capillary-wave frequency regime is less damped. Experimental measurements of the real and imaginary parts of the wave speed are compared with existing theory where at least one other physical quantity besides surface tension is needed to properly model the interface. Our on-going work with insoluble surfactants may also provide an example of this type of behavior for materials that do not readily transfer to and from the bulk water. [Supported by the Office of Naval Research

  14. Molecular mobility in the monolayers of foam films stabilized by porcine lung surfactant.

    PubMed Central

    Lalchev, Z I; Todorov, R K; Christova, Y T; Wilde, P J; Mackie, A R; Clark, D C

    1996-01-01

    Certain physical properties of a range of foam film types that are believed to exist in vivo in the lung have been investigated. The contribution of different lung surfactant components found in porcine lung surfactant to molecular surface diffusion in the plane of foam films has been investigated for the first time. The influence of the type and thickness of black foam films, temperature, electrolyte concentration, and extract composition on surface diffusion has been studied using the fluorescence recovery after photobleaching technique. Fluorescent phospholipid probe molecules in foam films stabilized by porcine lung surfactant samples or their hydrophobic extracts consisting of surfactant lipids and hydrophobic lung surfactant proteins, SP-B and SP-C, exhibited more rapid diffusion than observed in films of its principal lipid component alone, L-alpha-phosphatidylcholine dipalmitoyl. This effect appears to be due to contributions from minor lipid components present in the total surfactant lipid extracts. The minor lipid components influence the surface diffusion in foam films both by their negative charge and by lowering the phase transition temperature of lung surfactant samples. In contrast, the presence of high concentrations of the hydrophillic surfactant protein A (SP-A) and non-lung-surfactant proteins in the sample reduced the diffusion coefficient (D) of the lipid analog in the adsorbed layer of the films. Hysteresis behavior of D was observed during temperature cycling, with the cooling curve lying above the heating curve. However, in cases where some surface molecular aggregation and surface heterogeneity were observed during cooling, the films became more rigid and molecules at the interfaces became immobilized. The thickness, size, capillary pressure, configuration, and composition of foam films of lung surfactant prepared in vitro support their investigation as realistic structural analogs of the surface films that exist in vivo in the lung

  15. Unstable giant gravitons

    SciTech Connect

    Mello Koch, Robert de; Ives, Norman; Smolic, Jelena; Smolic, Milena

    2006-03-15

    We find giant graviton solutions in Frolov's three parameter generalization of the Lunin-Maldacena background. The background we study has {gamma}-tilde{sub 1}=0 and {gamma}-tilde{sub 2}={gamma}-tilde{sub 3}={gamma}-tilde. This class of backgrounds provides a nonsupersymmetric example of the gauge theory/gravity correspondence that can be tested quantitatively, as recently shown by Frolov, Roiban, and Tseytlin. The giant graviton solutions we find have a greater energy than the point gravitons, making them unstable states. Despite this, we find striking quantitative agreement between the gauge theory and gravity descriptions of open strings attached to the giant.

  16. ABC copolymer silicone surfactant templating for biomimetic silicification.

    PubMed

    Sun, Bo; Guo, Caiyun; Yao, Yuan; Che, Shunai

    2012-07-15

    Using the ABC copolymer silicone surfactant polydimethylsiloxane (PDMS)-graft-(polyethylene oxide (PEO)-block-propylene oxide (PPO)) (PSEP, Scheme 1a) as a template and tetraethoxysilane (TEOS) as a silica source, silica particles with various structures and morphologies (i.e., disordered spherical micellar aggregation, two-dimensional p6mm mesostructure, asymmetric multi-layer non-equilibrium vesicles and symmetric monolayer vesicles) were synthesized by changing the synthesis temperature from 30 to 80 °C. Increasing the hydrophobicity of the surfactant by increasing the temperature resulted in an increase in the surfactant packing parameter g, which led to the mesophase transformation from micellar to cylinder and later to a lamellar structure. The good compatibility between the PDMS and the TEOS, the different natures of the hydrophobic PDMS and PPO segments, and the hydrolysis and condensation rates of TEOS enabled the variation of silicification structures. This novel silicone surfactant templating route and a new type of materials with highly ordered mesostructures and asymmetric morphologies provide a new insight into the molecular factors governing inorganic-organic mesophase and biosilicification for fabricating functionalized materials.

  17. Surfactant self-assembly in oppositely charged polymer networks. Theory.

    PubMed

    Hansson, Per

    2009-10-01

    The interaction of ionic surfactants with polyion networks of opposite charge in an aqueous environment is analyzed theoretically by applying a recent theory of surfactant ion-polyion complex salts (J. Colloid. Int. Sci. 2009, 332, 183). The theory takes into account attractive and repulsive polyion-mediated interactions between the micelles, the deformation of the polymer network, the mixing of micelles, polyion chains, and simple ions with water, and the hydrophobic free energy at the micelle surface. The theory is used to calculate binding isotherms, swelling isotherms, surfactant aggregation numbers, compositions of complexes,and phase structure under various conditions. Factors controlling the gel volume transition and conditions for core/shell phase coexistence are investigated in detail, as well as the influence of salt. In particular, the interplay between electrostatic and elastic interactions is highlighted. Results from theory are compared with experimental data reported in the literature. The agreement is found to be semiquantitative or qualitative. The theory explains both the discrete volume transition observed in systems where the surfactant is in excess over the polyion and the core/shell phase coexistence in systems where the polyion is in excess.

  18. Electrokinetic investigation of surfactant adsorption.

    PubMed

    Bellmann, C; Synytska, A; Caspari, A; Drechsler, A; Grundke, K

    2007-05-15

    Fuerstenau [D.W. Fuerstenau, in: M.L. Hair (Ed.), Dekker, New York, 1971, p. 143] has already discussed the role of hydrocarbon chain of surfactants, the effect of alkyl chain length, chain structure and the pH of the solution on the adsorption process of surfactants. Later Kosmulski [M. Kosmulski, Chemical Properties of Material Surfaces, Surfactant Science Series, vol. 102, Dekker, New York, Basel, 2001] included the effect of surfactant concentration, equilibration time, temperature and electrolyte in his approaches. Certainly, the character of the head groups of the surfactant and the properties of the adsorbent surface are the basis for the adsorption process. Different surfactants and adsorbents cause different adsorption mechanisms described firstly by Rosen [M.J. Rosen, Surfactants and Interfacial Phenomena, second ed., Wiley, New York, 1989]. These adsorption mechanisms and their influencing factors were studied by electrokinetic investigations. Here only changes of the charges at the surfaces could be detected. To control the results of electrokinetic investigations they were compared with results from ellipsometric measurements. In the case of surfactant adsorption the chain length was vitally important. It could be shown by the adsorption of alkyl trimethyl ammonium bromides onto polymer films spin coated at wafer surfaces. The influence of the chain length depending on surface properties of the polymer film was studied. Streaming potential measurements were applied for these investigations. The obtained results enabled us to calculate the molar cohesive free energy per mol of CH2-group in the alkaline chain of the surfactant if all other specific adsorption effects were neglected.

  19. Semi-quantitative determination of cationic surfactants in aqueous solutions using gold nanoparticles as reporter probes.

    PubMed

    Kuong, Chi-Lap; Chen, Wei-Yu; Chen, Yu-Chie

    2007-03-01

    Concentrations of cationic surfactants in aqueous solutions have been estimated on the basis of changes in the color of gold nanoparticles, used as reporter probes. We have shown that the colors of gold nanoparticles with anionic protective groups on their surfaces shift from red to indigo/purple and then back to red in a range of cationic surfactant solutions in which concentrations vary from very low to above the theoretical CMCs. The color changes occur near the theoretical CMCs, presumably because the presence of surfactant micelles in the solution prevents the gold nanoparticles from aggregating. We have used gold nanoparticles as reporter probes to determine the concentrations of cationic surfactants in products such as hair conditioners, which often contain large amounts of alkyltrimethylammonium halides. Although this approach can only provide an estimate, it can be performed simply by addition of a given amount of gold nanoparticles to a series of diluted solutions, without the need for instruments or labor-intensive procedures.

  20. Synthesis and bio-physicochemical properties of amide-functionalized N-methylpiperazinium surfactants.

    PubMed

    Chauhan, Vinay; Singh, Sukhprit; Mishra, Rachana; Kaur, Gurcharan

    2014-12-15

    Four new amide functionalized N-methylpiperazinium amphiphiles having tetradecyl, hexadecyl alkyl chain lengths and counterions; chloride or bromide have been synthesized and characterized by various spectroscopic techniques. These new surfactants have been investigated in detail for their self-assembling behavior by surface tension, conductivity and fluorescence measurements. The thermodynamic parameters of these surfactants indicate that micellization is exothermic and entropy-driven. The dynamic light scattering (DLS) and transmission electron microscopy (TEM) experiments have been performed to insight the aggregate size of these cationics. Thermal degradation of these new surfactants has also been evaluated by thermal gravimetric analysis (TGA). These new surfactants form stable complexes with DNA as acknowledged by agarose gel electrophoresis, ethidium bromide exclusion and zeta potential measurements. They have also been found to have low cytotoxicity by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay on the C6 glioma cell line.

  1. Pulmonary surfactant for neonatal respiratory disorders.

    PubMed

    Merrill, Jeffrey D; Ballard, Roberta A

    2003-04-01

    Surfactant therapy has revolutionized neonatal care and is used routinely for preterm infants with respiratory distress syndrome. Recent investigation has further elucidated the function of surfactant-associated proteins and their contribution toward surfactant and lung immune defense functions. As the field of neonatology moves away from intubation and mechanical ventilation of preterm infants at birth toward more aggressive use of nasal continuous positive airway pressure, the optimal timing of exogenous surfactant therapy remains unclear. Evidence suggests that preterm neonates with bronchopulmonary dysplasia and prolonged mechanical ventilation also experience surfactant dysfunction; however, exogenous surfactant therapy beyond the first week of life has not been well studied. Surfactant replacement therapy has been studied for use in other respiratory disorders, including meconium aspiration syndrome and pneumonia. Commercial surfactant preparations currently available are not optimal, given the variability of surfactant protein content and their susceptibility to inhibition. Further progress in the treatment of neonatal respiratory disorders may include the development of "designer" surfactant preparations.

  2. Mixed micellization of gemini and conventional surfactant in aqueous solution: a lattice Monte Carlo simulation.

    PubMed

    Gharibi, Hussein; Khodadadi, Zahra; Mousavi-Khoshdel, S Morteza; Hashemianzadeh, S Majid; Javadian, Soheila

    2014-09-01

    In the current study, we have investigated the micellization of pure gemini surfactants and a mixture of gemini and conventional surfactants using a 3D lattice Monte Carlo simulation method. For the pure gemini surfactant system, the effects of tail length on CMC and aggregation number were studied, and the simulation results were found to be in excellent agreement with the experimental results. For a mixture of gemini and conventional surfactants, variations in the mixed CMC, interaction parameter β, and excess Gibbs free energy G(E) with composition revealed synergism in micelle formation. Simulation results were compared to estimations made using regular solution theory to determine the applicability of this theory for non-ideal mixed surfactant systems. A large discrepancy was observed between the behavior of parameters such as the activity coefficients fi and the excess Gibbs free energy G(E) and the expected behavior of these parameters as predicted by regular solution theory. Therefore, we have used the modified version of regular solution theory. This three parameter model contains two parameters in addition to the interaction parameters: the size parameter, ρ, which reflects differences in the size of components, and the packing parameter, P*, which reflects nonrandom mixing in mixed micelles. The proposed model provides a good description of the behavior of gemini and conventional surfactant mixtures. The results indicated that as the chain length of gemini surfactants in mixture is increased, the size parameter remains constant while the interaction and packing parameters increase.

  3. Effects of surfactant micelles on viscosity and conductivity of poly(ethylene glycol) solutions

    NASA Astrophysics Data System (ADS)

    Wang, Shun-Cheng; Wei, Tzu-Chien; Chen, Wun-Bin; Tsao, Heng-Kwong

    2004-03-01

    The neutral polymer-micelle interaction is investigated for various surfactants by viscometry and electrical conductometry. In order to exclude the well-known necklace scenario, we consider aqueous solutions of low molecular weight poly(ethylene glycol) (2-20)×103, whose radial size is comparable to or smaller than micelles. The single-tail surfactants consist of anionic, cationic, and nonionic head groups. It is found that the viscosity of the polymer solution may be increased several times by micelles if weak attraction between a polymer segment and a surfactant exists, ɛsurfactant concentration is therefore attributed to the considerable cross links among micelles and polymers (transient network). In addition to substantial alteration of the transport properties, this weak interaction also influences the onset point of thermodynamic instability associated with polymer-surfactant solutions. The examples include the decrease of critical aggregation concentration for ionic surfactant and clouding point for nonionic surfactant due to PEG addition.

  4. Unraveling the Agglomeration Mechanism in Charged Block Copolymer and Surfactant Complexes

    DOE PAGES

    Borreguero, Jose M.; Pincus, Philip A.; Sumpter, Bobby G.; ...

    2017-01-27

    Here, we report a molecular dynamics simulation investigation of self-assembly and complex formation of charged-neutral double hydrophilic and hydrophobic-hydrophilic block copolymers (BCP) with oppositely charged surfactants. Furthermore, the structure of the surfactant micelles and the BCP aggregation on the micelle surface is systematically studied for five different BCP volume fractions that also mimics a reduction of the surfactant concentration. The local electrostatic interactions between the oppositely charged species encourage the formation of core-shell structures between the surfactant micelles where the surfactants form the cores and the charged blocks of the BCP form the corona. The emergent morphologies of these aggregatesmore » are contingent upon the nature of the BCP neutral blocks. The hydrophilic neutral blocks agglomerate with the micelles as hairy colloidal structures while the hydrophobic neutrals agglomerate in lamellar structures with the surfactant micelles. The distribution of counterion charges along the simulation box show a close-to-normal density distribution for the hydrophilic neutral blocks and a binodal distribution for hydrophobic neutral blocks. No specific surfactant concentration dependent scaling relation is observed as opposed to the simpler case of homo-polyelectrolytes.« less

  5. Minimally invasive approaches for surfactant administration.

    PubMed

    Trevisanuto, D; Marchetto, L

    2013-01-01

    Respiratory distress syndrome (RDS) is the most common respiratory morbidity in preterm infants. In addition to respiratory support, the current clinical treatment includes endotracheal intubation and rapid instillation of exogenous surfactant. However, this approach needs skilled operators and has been associated with complications such as hemodynamic instability and electroencephalogram abnormalities. New, less invasive methods for surfactant administration are needed. In this article, we reviewed the available noninvasive procedures for surfactant administration. In particular, we focused on aerosolized surfactant and surfactant administration through LMA.

  6. The Next Giant Step

    NASA Video Gallery

    Artist Robert McCall painted "The Next Giant Step" in 1979 to commemorate the heroism and courage of spaceflight pioneers. Located in the lobby of Johnson's building 2, the mural depicts America's ...

  7. The Giant Cell.

    ERIC Educational Resources Information Center

    Stockdale, Dennis

    1998-01-01

    Provides directions for the construction of giant plastic cells, including details for building and installing the organelles. Also contains instructions for preparing the ribosomes, nucleolus, nucleus, and mitochondria. (DDR)

  8. Interactions between polymers and surfactants

    SciTech Connect

    de Gennes, P.G. )

    1990-11-01

    A surfactant film (at the water/air interface, or in a bilayer) is exposed to a solution of a neutral, flexible, polymer. Depending on the interactions, and on the Langmuir pressure II of the pure surfactant film, the authors expected to find three types of behavior: (I) the polymer does not absorb; (II) the polymer absorbs and mixes with the surfactant; (III) the polymer absorbs but segregates from the surfactant. Their interest here is in case II. They predict that (a) bilayers become rigid; (b) bilayers, exposed to polymer on one side only, tend to bend strongly; (c) the surface viscosity of monolayers or bilayers is considerably increased; soap films or foams, which usually drain by turbulent (two-dimensional) flows, may be stabilized in case II.

  9. Genetics Home Reference: surfactant dysfunction

    MedlinePlus

    ... easy. Without normal surfactant, the tissue surrounding the air sacs in the lungs (the alveoli ) sticks together (because of a force called surface tension) after exhalation, causing the alveoli ...

  10. Surfactant loss control in chemical flooding: Spectroscopic and calorimetric study of adsorption and precipitation on reservoir minerals. Quarterly technical progress report. October 1, 1994--December 31, 1994

    SciTech Connect

    Somasundaran, P.

    1995-03-01

    The aim of this research is to elucidate the mechanisms underling adsorption and surface precipitation of flooding surfactants on reservoir minerals. The adsorption and desorption behaviors of tetradecyltrimethyl ammonium chloride (TTAC) and pentadecylethoxylated nonylphenol (NP-15) mixtures as reported earlier were rather complex and to better understand the interactions involved fluorescence spectroscopy and ultrafiltration were used during this report period to probe the microstructure of the adsorbed layer and to determine individual surfactant monomer concentration respectively. It was observed that pyrene was solubilized in mixed aggregates (hemimicelles) of a 1:1 TTAC:NP-15 mixture at the alumina-water interface over a wider concentration range than for TTAC alone. It was also observed that the adsorbed aggregate of a 1:1 TTAC:NP-15 mixture is as hydrophobic as the mixed micelle in solution. This is contrary to what was observed for the adsorption of TTAC alone: pyrene was preferentially solubilized in the TTAC micelles rather than the adsorbed aggregate. The preference of pyrene for the mixed adsorbed aggregates over individual aggregates is relevant to the application of surfactant mixtures in enhanced oil recovery and solubilization. The adsorption/desorption behavior of surfactants is directly related to the monomer concentration of the surfactant, hence it is important to monitor changes in monomer concentration during the adsorption and desorption processes. Ultrafiltration techniques were used to monitor the monomer concentration in solution and at the interface to determine the partitioning of the surfactants to the solid-liquid interface.

  11. Spectroscopic investigations on the interaction of an anionic probe with nonionic micelles of Igepal surfactants in aqueous media

    NASA Astrophysics Data System (ADS)

    Moore, S. A.; Palepu, R. M.

    The behaviour of the anionic dye 8-anilino-1-napthalenesulfonic acid ammonium salt, or ANS, in aqueous solutions containing the Igepal series of polyoxyethylene nonionic surfactants was investigated using fluorescence spectroscopic technique. The interactions of the dye with the nonionic surfactants were examined in micellar media, to prevent dye aggregate formation and to ensure maximum dye and surfactant interaction. From the relative fluorescence enhancements, binding constants of the dye to the surfactant micelles and aggregation numbers of the micelles were determined. The aggregation numbers were also separately determined by static fluorescence quenching of pyrene by cetylpyridinium chloride in aqueous surfactant mixtures at a fixed concentration of surfactant, and compared with the value obtained from the present investigation of the interaction of the micelles with the ANS probe. The values of binding constants, micropolarity values sensed by pyrene and the Stern-Volmer constants for quenching of pyrene fluorescence by cetylpyridinium chloride were correlated with the number of ethylene oxide groups in the Igepal series.

  12. Tube extrusion from permeabilized giant vesicles

    NASA Astrophysics Data System (ADS)

    Borghi, N.; Kremer, S.; Askovic, V.; Brochard-Wyart, F.

    2006-08-01

    This letter reports the permeabilization effects of chemical additives on mechanical properties of Giant Unilamellar Vesicles (GUVs). We use a surfactant, Tween 20, inducing transient pores and a protein, Streptolysin O, inducing permanent pores in the membrane. Lipid tubes are extracted from GUVs anchored onto the tip of a micro-needle and submitted to hydrodynamic flows. On bare vesicles, tube extrusion is governed by the entropic elasticity of the membrane. The vesicle tension increases until it balances the flow velocity U and the tube reaches a stationary length. In permeabilized vesicles, the membrane tension is maintained at a constant value σp by the permeation of inner solution through nanometric pores. This allows extrusion of "infinite" tubes at constant velocity that never reach a stationary length. Tween-20 preliminary results suggest that σp strongly depends on surfactant concentration. For Streptolysin O, we have measured σp vs. U and found two regimes: a "high-porosity" regime for U > Up0 and a "low-porosity" regime for U < Up0, where Up0 is related to the number of pores on the vesicle surface.

  13. New cationic vesicles prepared with double chain surfactants from arginine: Role of the hydrophobic group on the antimicrobial activity and cytotoxicity.

    PubMed

    Pinazo, A; Petrizelli, V; Bustelo, M; Pons, R; Vinardell, M P; Mitjans, M; Manresa, A; Perez, L

    2016-05-01

    Cationic double chain surfactants have attracted much interest because they can give rise to cationic vesicles that can be used in biomedical applications. Using a simple and economical synthetic approach, we have synthesized four double-chain surfactants with different alkyl chain lengths (LANHCx). The critical aggregation concentration of the double chain surfactants is at least one order of magnitude lower than the CMC of their corresponding single-chain LAM and the solutions prepared with the LANHCx contain stable cationic vesicles. Encouragingly, these new arginine derivatives show very low haemolytic activity and weaker cytotoxic effects than conventional dialkyl dimethyl ammonium surfactants. In addition, the surfactant with the shortest alkyl chain exhibits good antimicrobial activity against Gram-positive bacteria. The results show that a rational design applied to cationic double chain surfactants might serve as a promising strategy for the development of safe cationic vesicular systems.

  14. Oil-in-water microemulsions based on cationic surfactants with a hydroxyalkyl fragment in the head group

    NASA Astrophysics Data System (ADS)

    Mirgorodskaya, Alla B.; Yackevich, Ekaterina I.; Zakharova, Lucia Ya.; Konovalov, Alexander I.

    2013-04-01

    The stable oil-in-water microemulsions with a high water content were formed on the basis of cationic surfactants, including those that contain a hydroxyalkyl fragment in the head group. These systems can bind the water- and oil-soluble reagents into a single aggregate formed by self-assembling components. The size, surface and electrokinetic potentials of aggregates in the surfactant/n-hexane/n-butanol/water microemulsions were determined. Besides, their catalytic effect on the cleavage of carboxylic acid esters was evaluated. The behavior of the system was shown to be determined not only by hydrophobic and electrostatic interactions but also by specific interactions, i.e., hydrogen bonds.

  15. Physicochemical properties of oleic acid-based partially fluorinated gemini surfactants.

    PubMed

    Sakai, Kenichi; Umemoto, Naoki; Aburai, Kenichi; Takamatsu, Yuichiro; Endo, Takeshi; Kitiyanan, Boonyarach; Matsumoto, Mutsuyoshi; Sakai, Hideki; Abe, Masahiko

    2014-01-01

    We have developed oleic acid-based partially fluorinated gemini surfactants with carboxylic acid headgroups. The fluorocarbon chain is covalently bound to the terminal carbonyl group of oleic acid via a -CH(2)CH(2)OCO- unit, and the carboxylic acid headgroups are introduced to the cis double bond of oleic acid via -OCOCH(2)CH(2)- units. The aqueous solution properties of these surfactants were studied at pH 9 in the presence of 10 mmol dm–3 NaCl by means of static surface tension, pyrene fluorescence, and dynamic light scattering measurements. The resulting surface tension data demonstrate that the partially fluorinated gemini surfactants exhibit excellent surface activity in their dilute aqueous solutions. In addition, the surfactants are suggested to form micellar aggregates 2–4 nm in diameter. We also studied the aqueous temperature-concentration phase diagrams of the partially fluorinated gemini surfactants (disodium salts) on the basis of visual observations (through a crossed polarizer), polarized optical microscopy, and small angle X-ray scattering measurements. Several phase states including micellar solution phase, hexagonal phase, bicontinuous cubic phase, and lamellar phase were observed along with the coexistence of these phases in certain regions. Assemblies with lesser positive curvature tend to be formed with increasing surfactant concentration, increasing temperature, and increasing fluorocarbon chain length. A comparison of the phase diagrams of the partially fluorinated and hydrogenated surfactant systems suggests that close molecular packing is inhibited within the assemblies of the partially fluorinated surfactants because of the limited miscibility between the fluorocarbon and hydrocarbon units. To the best of our knowledge, this is the first systematic report focusing on the temperature-concentration phase diagrams of (partially) fluorinated gemini surfactants over a wide range of compositions and temperatures.

  16. Thermodynamics of Protein Aggregation

    NASA Astrophysics Data System (ADS)

    Osborne, Kenneth L.; Barz, Bogdan; Bachmann, Michael; Strodel, Birgit

    Amyloid protein aggregation characterizes many neurodegenerative disorders, including Alzheimer's, Parkinson's, and Creutz- feldt-Jakob disease. Evidence suggests that amyloid aggregates may share similar aggregation pathways, implying simulation of full-length amyloid proteins is not necessary for understanding amyloid formation. In this study we simulate GNNQQNY, the N-terminal prion-determining domain of the yeast protein Sup35 to investigate the thermodynamics of structural transitions during aggregation. We use a coarse-grained model with replica-exchange molecular dynamics to investigate the association of 3-, 6-, and 12-chain GNNQQNY systems and we determine the aggregation pathway by studying aggregation states of GN- NQQNY. We find that the aggregation of the hydrophilic GNNQQNY sequence is mainly driven by H-bond formation, leading to the formation of /3-sheets from the very beginning of the assembly process. Condensation (aggregation) and ordering take place simultaneously, which is underpinned by the occurrence of a single heat capacity peak only.

  17. Tailoring supramolecular nanotubes by bile salt based surfactant mixtures.

    PubMed

    Gubitosi, Marta; Travaglini, Leana; di Gregorio, Maria Chiara; Pavel, Nicolae V; Vázquez Tato, José; Sennato, Simona; Olsson, Ulf; Schillén, Karin; Galantini, Luciano

    2015-06-08

    An approach for tailoring self-assembled tubular structures is described. By controlling the relative composition of a two-component surfactant mixture comprising the natural bile salt lithocholate and its bolamphiphilic derivative, it was possible to finely tune the nanotube cross-section of the mixed tubular aggregates that self-associated spontaneously in aqueous solution at pH 12. The diameter was found to vary up to 50% when the stoichiometric ratio of the two bile salts was changed. The tuning of supramolecular nanochannels with such remarkable precision is of significant interest for technological applications of these materials.

  18. Giant congenital melanocytic nevus*

    PubMed Central

    Viana, Ana Carolina Leite; Gontijo, Bernardo; Bittencourt, Flávia Vasques

    2013-01-01

    Giant congenital melanocytic nevus is usually defined as a melanocytic lesion present at birth that will reach a diameter ≥ 20 cm in adulthood. Its incidence is estimated in <1:20,000 newborns. Despite its rarity, this lesion is important because it may associate with severe complications such as malignant melanoma, affect the central nervous system (neurocutaneous melanosis), and have major psychosocial impact on the patient and his family due to its unsightly appearance. Giant congenital melanocytic nevus generally presents as a brown lesion, with flat or mammilated surface, well-demarcated borders and hypertrichosis. Congenital melanocytic nevus is primarily a clinical diagnosis. However, congenital nevi are histologically distinguished from acquired nevi mainly by their larger size, the spread of the nevus cells to the deep layers of the skin and by their more varied architecture and morphology. Although giant congenital melanocytic nevus is recognized as a risk factor for the development of melanoma, the precise magnitude of this risk is still controversial. The estimated lifetime risk of developing melanoma varies from 5 to 10%. On account of these uncertainties and the size of the lesions, the management of giant congenital melanocytic nevus needs individualization. Treatment may include surgical and non-surgical procedures, psychological intervention and/or clinical follow-up, with special attention to changes in color, texture or on the surface of the lesion. The only absolute indication for surgery in giant congenital melanocytic nevus is the development of a malignant neoplasm on the lesion. PMID:24474093

  19. Giant congenital melanocytic nevus.

    PubMed

    Viana, Ana Carolina Leite; Gontijo, Bernardo; Bittencourt, Flávia Vasques

    2013-01-01

    Giant congenital melanocytic nevus is usually defined as a melanocytic lesion present at birth that will reach a diameter ≥ 20 cm in adulthood. Its incidence is estimated in <1:20,000 newborns. Despite its rarity, this lesion is important because it may associate with severe complications such as malignant melanoma, affect the central nervous system (neurocutaneous melanosis), and have major psychosocial impact on the patient and his family due to its unsightly appearance. Giant congenital melanocytic nevus generally presents as a brown lesion, with flat or mammilated surface, well-demarcated borders and hypertrichosis. Congenital melanocytic nevus is primarily a clinical diagnosis. However, congenital nevi are histologically distinguished from acquired nevi mainly by their larger size, the spread of the nevus cells to the deep layers of the skin and by their more varied architecture and morphology. Although giant congenital melanocytic nevus is recognized as a risk factor for the development of melanoma, the precise magnitude of this risk is still controversial. The estimated lifetime risk of developing melanoma varies from 5 to 10%. On account of these uncertainties and the size of the lesions, the management of giant congenital melanocytic nevus needs individualization. Treatment may include surgical and non-surgical procedures, psychological intervention and/or clinical follow-up, with special attention to changes in color, texture or on the surface of the lesion. The only absolute indication for surgery in giant congenital melanocytic nevus is the development of a malignant neoplasm on the lesion.

  20. Adsorption of a cationic surfactant by a magsorbent based on magnetic alginate beads.

    PubMed

    Obeid, Layaly; El Kolli, Nadia; Dali, Noëlle; Talbot, Delphine; Abramson, Sébastien; Welschbillig, Mathias; Cabuil, Valérie; Bée, Agnès

    2014-10-15

    Adsorption of cetylpyridinium chloride (CPC), a cationic surfactant, by magnetic alginate beads (MagAlgbeads) was investigated. The magnetic adsorbent (called magsorbent) was prepared by encapsulation of magnetic functionalized nanoparticles in an alginate gel. The influence on CPC adsorption of several parameters such as contact time, pH and initial surfactant concentration was studied. The equilibrium isotherm shows that adsorption occurs through both electrostatic interactions with charge neutralization of the carboxylate groups of the beads and hydrophobic interactions inducing the formation of surfactant aggregates in the beads. The dosage of calcium ions released in the solution turns out to be a useful tool for understanding the adsorption mechanisms. Adsorption is accompanied by a shrinking of the beads that corresponds to a 45% reduction of the volume. Adsorption kinetic experiments show that equilibrium time is strongly dependent on the surfactant concentration, which monitors the nature of the interactions. On the other hand, since the pH affects the ionization state of adsorption sites, adsorption depends on the pH solution, maximum adsorption being obtained in a large pH range (3.2-12) in agreement with the pKa value of alginate (pKa=3.4-4.2). Finally, due to the formation of micelle-like surfactants aggregates in the magnetic alginate beads, they could be used as a new efficient magsorbent for hydrophobic pollutants.

  1. A thermosensitive carrageenan-based polymer: synthesis, characterization and interactions with a cationic surfactant.

    PubMed

    Gaweł, Kamila; Karewicz, Anna; Bielska, Dorota; Szczubiałka, Krzysztof; Rysak, Katarzyna; Bonarek, Piotr; Nowakowska, Maria

    2013-07-01

    Novel polyelectrolytes were obtained by grafting N-isopropylacrylamide (NIPAM) on the ι-carrageenan (CAR) chain. Two polymers with different grafting degrees were synthesized. The polymers were found to show the lower critical solution temperature (LCST) close to that of PNIPAM. The LCST values were dependent on the concentration of salt and cationic surfactant. The interactions of CAR-graft-PNIPAM with a model cationic surfactant-dodecyltrimethyl ammonium chloride (DTAC) in water and 0.15M NaCl were studied. It was found that both ι-carrageenan and CAR-graft-PNIPAM polymers interact with DTAC. The presence of CAR-graft-PNIPAM in the solution of DTAC induces formation of surfactant aggregates at the critical aggregation concentration much lower than the cmc of the surfactant. Cac increased with ionic strength. The values of cac for CAR-graft-PNIPAM - DTAC system and standard free enthalpy changes attributed to the complexation process were determined. The results obtained for CAR-graft-PNIPAM were compared with these for the non-modified ι-carrageenan. The surfactant interactions with non-modified and grafted polymers were found to be different in nature.

  2. Solubilizing effects caused by the nonionic surfactant dodecylmaltoside in phosphatidylcholine liposomes.

    PubMed Central

    de la Maza, A; Parra, J L

    1997-01-01

    The interaction of the nonionic surfactant dodecylmaltoside (DM) with phosphatidylcholine liposomes was investigated. Permeability alterations were detected as a change in 5(6)-carboxyfluorescein released from the interior of vesicles and bilayer solubilization as a decrease in the static light scattered by liposome suspensions. This surfactant showed higher capacity to saturate and solubilize PC liposomes and greater affinity with these structures than those reported for the octyl glucoside. At subsolubilizing level an initial maximum in the bilayer/water partitioning (K) followed by an abrupt decrease of this parameter occurred as the effective molar ratio of surfactant to phospholipid in bilayers (Re) rose. However, at solubilizing level a direct dependence was established between both parameters. A direct correlation took place in the initial interaction steps (Re up to 0.28) between the growth of vesicles, their fluidity, and Re. A similar direct dependence was established during solubilization (Re range from 0.9 to 1.7) between the decrease in both the surfactant-PC aggregate size, the light scattering of the system, and Re (composition of aggregates). The fact that the free DM concentration at subsolubilizing and solubilizing levels showed values lower than and similar to its critical micelle concentration indicates that permeability alterations and solubilization were determined, respectively, by the action of surfactant monomer and by the formation of mixed micelles. Images FIGURE 3 PMID:9083670

  3. Colloidal Aggregate Structure under Shear by USANS

    NASA Astrophysics Data System (ADS)

    Chatterjee, Tirtha; van Dyk, Antony K.; Ginzburg, Valeriy V.; Nakatani, Alan I.

    2015-03-01

    Paints are complex formulations of polymeric binders, inorganic pigments, dispersants, surfactants, colorants, rheology modifiers, and other additives. A commercially successful paint exhibits a desired viscosity profile over a wide shear rate range from 10-5 s-1 for settling to >104 s-1 for rolling, and spray applications. Understanding paint formulation structure is critical as it governs the paint viscosity profile. However, probing paint formulation structure under shear is a challenging task due to the formulation complexity containing structures with different hierarchical length scales and their alterations under the influence of an external flow field. In this work mesoscale structures of paint formulations under shear are investigated using Ultra Small-Angle Neutron Scattering (rheo-USANS). Contrast match conditions were utilized to independently probe the structure of latex binder particle aggregates and the TiO2 pigment particle aggregates. Rheo-USANS data revealed that the aggregates are fractal in nature and their self-similarity dimensions and correlations lengths depend on the chemistry of the binder particles, the type of rheology modifier present and the shear stress imposed upon the formulation. These results can be explained in the framework of diffusion and reaction limited transient aggregates structure evolution under simple shear.

  4. Synthesis, characterization, and controlled aggregation of biotemplated polystyrene nanodisks

    NASA Astrophysics Data System (ADS)

    Tekobo, Samuel; Richter, Andrew G.; Dergunov, Sergey A.; Pingali, Sai Venkatesh; Urban, Volker S.; Yan, Bing; Pinkhassik, Eugene

    2011-12-01

    Cross-linked polystyrene nanodisks were prepared by controlled polymerization of styrene and divinylbenzene in the interior of bicelles, discoidal lipid aggregates. Aggregation behavior of polymer nanodisks was studied in water, organic solvents, and solid phase. Nanodisks form stable dispersions in aqueous solutions of surfactants, such as sodium dodecyl sulfate (SDS). Varying SDS/nanodisk ratio allowed us to control the size of nanodisk aggregates. Nanodisks are readily solubilized in nonpolar organic solvents, such as toluene and carbon tetrachloride, to yield stable monodisperse suspensions. These findings open opportunities for creating nanodisk-based nanocomposite materials. Stable nanodisk suspension in toluene enabled small angle neutron scattering (SANS) measurements. SANS data confirmed the nanodisk diameter and allowed accurate measurement of nanodisk thickness (19.5 ± 1.0 Å). In solid phase, nanodisks aggregate in sub-micron platelets.

  5. Investigations on ionic detergents with unusual aggregation behavior

    SciTech Connect

    Hoffman, H.; Platz, G.; Ulbricht, W.

    1981-05-14

    The aggregation behavior of the 2 surfactants dodecylammonium trifluoroacetate (DATFA) and tetradecylammonium trifluoroacetate (TATFA) has been studied at different concentrations and temperatures with several techniques. Rodlike aggregates are present in solutions of DATFA. The length of these anisotropic micelles which was determined by electric birefringence, viscosity, and quasielastic light-scattering measurements varies little with total detergent concentration but decreases rapidly with increasing temperature. The aggregation behavior of TATFA show no electric birefringence but the hydrodynamic radius for the micelles which is determined from the quasielastic light-scattering measurements is too large for normal spherical micelles. Furthermore, the residence times of the detergent ions inside the micelles are too long also. The data are explained on the basis of micellar aggregates that contain solubilized ion pairs of the detergent ion and its counterion in the interior of the micelles. 27 references.

  6. Synthesis, characterization, and controlled aggregation of biotemplated polystyrene nanodisks

    SciTech Connect

    Tekobo, Samuel; Richter, Andrew; Dergunov, Sergey; Pingali, Sai Venkatesh; Urban, Volker S; Yan, Bing; Pinkhassik, Eugene

    2011-01-01

    Cross-linked polystyrene nanodisks were prepared by controlled polymerization of styrene and divinylbenzene in the interior of bicelles, discoidal lipid aggregates. Aggregation behavior of polymer nanodisks was studied in water, organic solvents, and solid phase. Nanodisks form stable dispersions in aqueous solutions of surfactants, such as sodium dodecyl sulfate (SDS). Varying SDS/nanodisk ratio allowed us to control the size of nanodisk aggregates. Nanodisks are readily solubilized in nonpolar organic solvents, such as toluene and carbon tetrachloride, to yield stable monodisperse suspensions. These findings open opportunities for creating nanodisk-based nanocomposite materials. Stable nanodisk suspension in toluene enabled small angle neutron scattering (SANS) measurements. SANS data confirmed the nanodisk diameter and allowed accurate measurement of nanodisk thickness (19.5 1.0 ). In solid phase, nanodisks aggregate in sub-micron platelets.

  7. Effect of surfactants on Ra-sHSPI - A small heat shock protein from the cattle tick Rhipicephalus annulatus

    NASA Astrophysics Data System (ADS)

    Siddiqi, Mohammad Khursheed; Shahein, Yasser E.; Hussein, Nahla; Khan, Rizwan H.

    2016-09-01

    Electrostatic interaction plays an important role in protein aggregation phenomenon. In this study, we have checked the effect of anionic - Sodium Dodecyl Sulfate (SDS) and cationic-Cetyltrimethyl Ammonium Bromide (CTAB) surfactant on aggregation behavior of Ra-sHSPI, a small heat shock protein purified from Rhipicephalus annulatus tick. To monitor the effect of these surfactants, we have employed several spectroscopic methods such as Rayleigh light scattering measurements, ANS (8-Anilinonaphthalene-1-sulfonic acid) fluorescence measurements, ThT (Thioflavin T) binding assays, Far-UV CD (Circular Dichroism) and dynamic light scattering measurements. In the presence of anionic surfactant-SDS, Ra-sHSPI forms amyloid fibrils, in contrast, no amyloid formation was observed in presence of cationic surfactant at low pH. Enhancement of ANS fluorescence intensity confirms the exposition of more hydrophobic patches during aggregation. ThT binding assay confirms the amyloid fibrillar nature of the SDS induced Ra-sHSPI aggregates and supported by PASTA 2.0 (prediction of amyloid structural aggregation) software. This study demonstrates the crucial role of charge during amyloid fibril formation at low pH in Ra-sHSPI.

  8. Transport of fluorescently labeled hydroxyapatite nanoparticles in saturated granular media at environmentally relevant concentrations of surfactants

    SciTech Connect

    Wang, Dengjun; Su, Chuming; Liu, Chongxuan; Zhou, Dongmei

    2014-05-01

    Hydroxyapatite nanoparticle (nHAP) is being used to remediate soils and aquifers contaminated with metals and radionuclides; however, the mobility of nHAP is still poorly understood in subsurface granular environments. In this study, transport and retention kinetics of alizarin red S (ARS)-labeled nHAP were investigated in water-saturated quartz sand at low concentrations of surfactants: sodium dodecyl benzene sulfonate (SDBS, an anionic surfactant, 0–50 mg L–1) and cetyltrimethylammonium bromide (CTAB, a cationic surfactant, 0–5 mg L–1). Both surfactants were found to have a marked effect on the electrokinetic properties of ARS-nHAP and, consequently, on their transport and retention behaviors. Transport of nanoparticles (NPs) increased significantly with increasing SDBS concentration, largely because of enhanced colloidal stability and reduced aggregate size arising from enhanced electrostatic, osmotic, and elastic-steric repulsions between ARS-nHAP and sand grains. Conversely, transport decreased significantly in the presence of increasing CTAB concentrations due to reduced surface charge and consequential enhanced aggregation of the NPs. Osmotic and elastic-steric repulsions played only a minor role in enhancing the colloidal stability of ARS-nHAP in the presence of CTAB. Retention profiles of ARS-nHAP exhibited hyperexponential-shapes (decreasing rates of retention with increasing distance) for all conditions tested, and became more pronounced as CTAB concentration increased. The phenomenon was attributed to the aggregation and ripening of ARS-nHAP in the presence of surfactants, particularly CTAB. Overall, the present study suggests that surfactants at environmentally relevant concentrations may be an important consideration in employing nHAP for engineered in-situ remediation of certain metals and radionuclides in contaminated soils and aquifers.

  9. Interactions and hybrid complex formation of anionic algal polysaccharides with a cationic glycine betaine-derived surfactant.

    PubMed

    Covis, Rudy; Vives, Thomas; Gaillard, Cédric; Benoit, Maud; Benvegnu, Thierry

    2015-05-05

    The interaction between anionic algal polysaccharides ((κ)-, (ι)-, (λ)-carrageenans, alginate and ulvan) and a cationic glycine betaine (GB) amide surfactant possessing a C18:1 alkyl chain has been studied using isothermal titration calorimetry (ITC), zeta-potential measurements, dynamic light scattering (DLS), transmission electron microscopy (TEM), atomic force microscopy (AFM), and surface tension measurements. It was observed that this cationic surfactant derived from renewable raw materials induced cooperative binding with the anionic polymers at critical aggregation concentration (CAC) and the CAC values are significantly lower than the corresponding critical micelle concentration (CMC) for the surfactant. The CMC of cationic GB surfactant was obtained at higher surfactant concentration in polysaccharide solution than in pure water. More interestingly, the presence of original polysaccharide/surfactant hybrid complexes formed above the CMC value was evidenced from (κ)-carrageenan by microscopy (TEM and AFM). Preliminary investigations of the structure of these complexes revealed the existence of surfactant nanoparticles surrounded with polysaccharide matrix, probably resulting from electrostatic attraction. In addition, ITC measurements clearly showed that the interactions of the κ-carrageenan was stronger than for other polysaccharides ((ι)-, (λ)-carrageenans, alginate and ulvan). These results may have important impact on the use of the GB amide surfactant in formulations based on algal polysaccharides for several applications such as in food, cosmetics, and detergency fields.

  10. Surfactant therapy and spontaneous diuresis.

    PubMed

    Bhat, R; John, E; Diaz-Blanco, J; Ortega, R; Fornell, L; Vidyasagar, D

    1989-03-01

    The effect of artificial surfactant therapy on renal function and the onset of spontaneous diuresis was prospectively evaluated in 19 infants with hyaline membrane disease in a double-blind, controlled study. Twelve infants were in the surfactant group; seven infants received placebo (0.9% saline solution). There was no difference in the time of onset of spontaneous diuresis (as defined by output greater than or equal to 80% of intake). The glomerular filtration rate, determined by endogenous creatinine clearance, was also similar in the surfactant- and placebo-treated infants during the first 3 days of life. The fractional excretion of sodium was significantly higher in the placebo group at 24 hours and 36 hours. Infants in the placebo group had a higher negative sodium balance than those in the surfactant group. Ventilatory status improved significantly soon after surfactant treatment, as evidenced by improvement in the alveolar/arterial oxygen pressure ratio and by a lower mean airway pressure. These data suggest that ventilatory status can be improved without diuresis; the factors that regulate diuresis are multiple and not fully understood.

  11. On mean type aggregation.

    PubMed

    Yager, R R

    1996-01-01

    We introduce and define the concept of mean aggregation of a collection of n numbers. We point out that the lack of associativity of this operation compounds the problem of the extending mean of n numbers to n+1 numbers. The closely related concepts of self identity and the centering property are introduced as one imperative for extending mean aggregation operators. The problem of weighted mean aggregation is studied. A new concept of prioritized mean aggregation is then introduced. We next show that the technique of selecting an element based upon the performance of a random experiment can be considered as a mean aggregation operation.

  12. An Innocent Giant

    PubMed Central

    Solanki, Lakhan Singh; Dhingra, Mandeep; Raghubanshi, Gunjan; Thami, Gurvinder Pal

    2014-01-01

    A cutaneous horn (cornu cutaneum) is a protrusion from the skin composed of a cornified material. It may be associated with a benign, premalignant, or malignant lesion at the base, masking numerous dermatoses. In a 24-year-old female, a giant cutaneous horn arising from a seborrheic keratosis located on the leg is presented. This case has been reported to emphasize that a giant cutaneous horn may also occur in young patients, even in photoprotected areas, and are not always associated with malignancy. PMID:25484426

  13. Assembling wormlike micelles in tubular nanopores by tuning surfactant-wall interactions.

    PubMed

    Bharti, Bhuvnesh; Xue, Mengjun; Meissner, Jens; Cristiglio, Viviana; Findenegg, Gerhard H

    2012-09-12

    Threadlike molecular assemblies are excluded from narrow pores unless attractive interactions with the confining pore walls compensate for the loss of configurational entropy. Here we show that wormlike surfactant micelles can be assembled in the 8 nm tubular nanopores of SBA-15 silica by adjusting the surfactant-pore-wall interactions. The modulation of the interactions was achieved by coadsorption of a surface modifier that also provides control over the partitioning of wormlike aggregates between the bulk solution and the pore space. We anticipate that the concept of tuning the interactions with the pore wall will be applicable to a wide variety of self-assembling molecules and pores.

  14. A fundamental investigation of the surfactant-stabilized single-walled carbon nanotube/epoxy resin suspensions by molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Rahmani, Farzin; Nouranian, Sasan; Mahdavi, Mina; O’Haver, John H.

    2017-01-01

    The surfactant-assisted stabilization of single-walled carbon nanotubes (SWCNTs) in SWCNT/epoxy resin suspensions were investigated for different surfactant types, concentrations, and temperatures using molecular dynamics simulation. One cationic surfactant, i.e. cetyltrimethylammonium bromide (CTAB), and three anionic surfactants, i.e. sodium dodecyl sulfate (SDS), sodium dodecylbenzenesulfonate (NaDDBS), and sodium cholate (SC), as well as a 1:1 mixture of CTAB and SDS were used. Potentials of mean force (PMFs) were generated between two fixed-size (6,6) SWCNTs for all neat (no surfactant) and surfactant-loaded SWCNT/epoxy resin systems at three different surfactant concentrations (0.25, 0.50, and 1.00 wt%) at room (298 K) and elevated temperature (398 K, only for low-surfactant-concentration systems). Overall, two distinct mechanisms of SWCNT stabilization by the surfactants were identified: (1) an increase in the SWCNT aggregation energy barrier due to the wrapping of the SWCNTs by the surfactant molecules, and (2) a constantly positive free energy (repulsion) for all SWCNT separation distances due to the encapsulation of the two approaching SWCNTs. With the second mechanism, there is a delay for the epoxy molecules to be pushed out from the space between the two SWCNTs. With an increase in the surfactant concentration, the first mechanism becomes more prevalent. With an increase in temperature to 398 K, all surfactants migrate to the suspending medium, thereby the second mechanism of SWCNT stabilization dominates. A drop in the SWCNT-surfactant binding energy is observed around 360–370 K, signifying the surfactant migration to the suspending medium. More or less, all surfactants stabilize the SWCNTs in an epoxy resin at one or more surfactant concentrations. However, NaDDBS exhibits a higher SWCNT aggregation barrier at high concentrations and both temperatures (298 K and 398 K), thereby providing a better SWCNT stabilization in the epoxy resin

  15. Probing structure-nanoaggregation relations of polyaromatic surfactants: a molecular dynamics simulation and dynamic light scattering study.

    PubMed

    Teklebrhan, Robel B; Ge, Lingling; Bhattacharjee, Subir; Xu, Zhenghe; Sjöblom, Johan

    2012-05-24

    Four synthetic perylene bisimide-based polyaromatic (PA) surfactants with a structural or functional group difference in their attached hydrophilic/hydrophobic substituent side chains were used to probe structure-nanoaggregation relations in organic media by molecular dynamics simulations and dynamic light scattering. The results from the simulated radial distribution functions and light scattering experiments indicate that variation in the structure of side chains and polarity of functional groups leads to significant variations in molecular association, dynamics of molecular nanoaggregation and structure of nanoaggregates. The aggregates of PA surfactant molecules grow to much larger sizes in heptane than in toluene. The aromatic solvent is shown to hinder molecular association by weakening π-π stacking, demonstrating the control of molecular aggregation by tuning solvent properties. In aliphatic solvent, the aggregates formed from PA surfactants of aliphatic alkyl groups and phenylalanine derivatives as a side chain usually have a higher solvent accessible surface area to accessible volume ratio (SASA:AV) than that of tryptophan derivatives in their side chains. PA surfactants with an aliphatic functional group in both side chains does not form polyaromatic π-π stacking (T-stacking) due to its strong steric hindrance in both solvents. Depending on the nature of the side chains attached, various stacking distributions, aggregation sizes, and SASA:AV ratios were obtained. In PA surfactant nanoaggregates, all of the solvent molecules were found to be excluded from the interstices of the stacked polyaromatic cores, regardless of whether the solvent molecules are aliphatic or aromatic. Although the change in the structure of side chain substituent in polyaromatic surfactants has a negligible impact on their self-diffusivity, it can strongly influence their intermolecular interactions, leading to different aggregate diffusion coefficients.

  16. Adsorption of atrazine by natural organic matter and surfactant dispersed carbon nanotubes.

    PubMed

    Shi, Baoyou; Zhuang, Xiaoyan; Yan, Xiaomin; Lu, Jiajuan; Tang, Hongxiao

    2010-01-01

    The aggregation and dispersion behaviors of carbon nanotubes (CNTs) can regulate the environmental spread and fate of CNTs, as well as the organic pollutants adsorbed onto them. In this study, multi-walled carbon nanotubes (MWNTs) and single-walled carbon nanotubes (SWNTs) were surface modified with humic acids from different sources and with surfactants of different ionic types. The dispersion stability of surface modified CNTs was observed by UV-Vis spectrophotometry. The effect of humic acid and surfactant dispersion on the adsorption of atrazine by CNTs was investigated by batch equilibrium experiments. Both humic acid and surfactant could effectively disperse MWNTs, but not SWNTs, into stable suspensions under the studied conditions. Surface modified CNTs had a greatly reduced capacity for adsorption of atrazine. The inhibitory effect of peat humic acid was relatively stronger than that of soil humic acid, but the two surfactants had a similar inhibitory effect on atrazine adsorption by the two CNT types. Increases in surfactant concentration resulted in rapid decreases in the adsorption of atrazine by CNTs when the surfactant concentration was less than 0.5 critical micelle concentration.

  17. Phase Behavior and Phase Structure of Protein-Surfactant-Water Systems.

    PubMed

    Morén; Khan

    1999-10-15

    Phase behavior of oppositely charged ovalbumin-DOTAC and BSA-DOTAC, and similarly charged ovalbumin-SDS, BSA-SDS, lysozyme-DOTAC, and BLG-SDS systems within the concentration range of 20 wt% of both protein and surfactant are examined in water. Aqueous solutions of ovalbumin yield, in succession, precipitation, gel, and solution with increased addition of the surfactant dodecyltrimethylammonium chloride (DOTAC). The stability range of each region is determined. Both isotropic and anisotropic gels are detected. Solutions of bovine serum albumin (BSA) form only a solution phase with oppositely charged DOTAC. One solution phase is also obtained with all similarly charged protein-surfactant systems except the BLG-SDS-water system, which produces a gel phase in addition to a large solution phase. (2)H NMR longitudinal (R(1)) and transverse (R(2)) relaxation rates are determined in solution and gel by following the behavior of selectively deuterated surfactant at the alpha-methylene group next to the surfactant head group for the oppositely charged systems ovalbumin-DOTAC and BSA-DOTAC. Large R(2)-values proved the existence of large protein-surfactant aggregates in both systems. Copyright 1999 Academic Press.

  18. Synthesis of carbohydrate-based surfactants

    DOEpatents

    Pemberton, Jeanne E.; Polt, Robin L.; Maier, Raina M.

    2016-11-22

    The present invention provides carbohydrate-based surfactants and methods for producing the same. Methods for producing carbohydrate-based surfactants include using a glycosylation promoter to link a carbohydrate or its derivative to a hydrophobic compound.

  19. Preparations of organobentonite using nonionic surfactants.

    PubMed

    Shen, Y H

    2001-08-01

    Due to hydrophilic environment at its surface, natural bentonite is an ineffective sorbent for nonpolar nonionic organic compounds in water even though it has high surface area. The surface properties of natural bentonite can be greatly modified by simple ion-exchange reactions with large organic cations (cationic surfactants) and this organobentonite is highly effective in removing nonionic organic compounds from water. Cationic surfactant derived organobentonites have been investigated extensively for a wide variety of environmental applications. In this study, the preparation of organobentonite using nonionic surfactants has been investigated for the first time. Results indicate that nonionic surfactants intercalates into the interlamellar space of bentonite and may demonstrate higher sorption capacity than cationic surfactant. It is possible to create large interlayer spacing and high organic carbon content organobentonite by use of nonionic surfactants with suitable balance between the hydrocarbon and ethylene oxide chain lengths. In addition, nonionic surfactant derived organobentonites are more chemically stable than cationic surfactant derived organobentonites.

  20. Surfactant recovery from water using foam fractionation

    SciTech Connect

    Tharapiwattananon, N.; Osuwan, S.; Scamehorn, J.F.

    1996-05-01

    The purpose of this study was to investigate the use of foam fractionation to recover surfactant from water. A simple continuous mode foam fractionation was used and three surfactants were studied (two anionic and one cationic). The effects of air flow rate, foam height, liquid height, liquid feed surfactant concentration, and sparger porosity were studied. This technique was shown to be effective in either surfactant recovery or the reduction of surfactant concentration in water to acceptable levels. As an example of the effectiveness of this technique, the cetylpyridinium chloride concentration in water can be reduced by 90% in one stage with a liquid residence time of 375 minutes. The surfactant concentration in the collapsed foam is 21.5 times the feed concentration. This cationic surfactant was easier to remove from water by foam fractionation than the anionic surfactants studied.

  1. Biofoams and natural protein surfactants

    PubMed Central

    Cooper, Alan; Kennedy, Malcolm W.

    2010-01-01

    Naturally occurring foam constituent and surfactant proteins with intriguing structures and functions are now being identified from a variety of biological sources. The ranaspumins from tropical frog foam nests comprise a range of proteins with a mixture of surfactant, carbohydrate binding and antimicrobial activities that together provide a stable, biocompatible, protective foam environment for developing eggs and embryos. Ranasmurfin, a blue protein from a different species of frog, displays a novel structure with a unique chromophoric crosslink. Latherin, primarily from horse sweat, but with similarities to salivary, oral and upper respiratory tract proteins, illustrates several potential roles for surfactant proteins in mammalian systems. These proteins, together with the previously discovered hydrophobins of fungi, throw new light on biomolecular processes at air–water and other interfaces. This review provides a perspective on these recent findings, focussing on structure and biophysical properties. PMID:20615601

  2. MINERAL-SURFACTANT INTERACTIONS FOR MINIMUM REAGENTS PRECIPITATION AND ADSORPTION FOR IMPROVED OIL RECOVERY

    SciTech Connect

    P. Somasundaran

    2004-10-30

    Significant surfactant loss by adsorption or precipitation on reservoir minerals can cause chemical flooding processes to be less than satisfactory for enhanced oil recovery. This project is aimed towards an understanding of the role of reservoir minerals and their dissolved species in chemical loss by precipitation or adsorption of surfactants/polymers in enhanced oil recovery. Emphasis will be on the type and nature of different minerals in the oil reservoirs. Macroscopic adsorption, precipitation, wettability and nanoscopic orientation/conformation studies for aggregates of various surfactant/polymer mixtures on reservoir rocks systems is planned for exploring the cause of chemical loss by means of precipitation or adsorption, and the effect of rock mineralogy on the chemical loss. During this reporting period, the minerals proposed in this study: sandstone, limestone, gypsum, kaolinite and pyrite, have been characterized to obtain their particle size distribution and surface area, which will be used in the analysis of adsorption and wettability data. The effect of surfactant mixing ratio on the adsorption of mixture of C{sub 12}-C{sub 4}-C{sub 12} Gemini surfactant (synthesized during last period) and sugar-based nonionic surfactant n-dodecyl-{beta}-D-maltoside (DM) has been studied. It was discovered that even trace amounts of Gemini in the mixture is sufficient to force significant adsorption of DM. DM adsorption on silica increased from relatively negligible levels to very high levels. It is clear form analysis of the results that desired adsorption of either surfactant component in the mixtures can be obtained by controlling the mixing ratio, the total mixture concentration, pH etc. Along with these adsorption studies, changes in mineral wettability due to the adsorption of Gemini/DM mixtures were determined under relevant conditions to identify the nano-structure of the adsorbed layers. With increasing total surfactant adsorption, the silica mineral

  3. Fiber coating with surfactant solutions

    NASA Astrophysics Data System (ADS)

    Shen, Amy Q.; Gleason, Blake; McKinley, Gareth H.; Stone, Howard A.

    2002-11-01

    When a fiber is withdrawn at low speeds from a pure fluid, the variation in the thickness of the entrained film with imposed fiber velocity is well-predicted by the Landau-Levich-Derjaguin (LLD) equation. However, surfactant additives are known to alter this response. We study the film thickening properties of the protein BSA (bovine serum albumin), the nonionic surfactant Triton X-100, and the anionic surfactant SDS (sodium dodecyl sulfate). For each of these additives, the film thickening factor alpha (the ratio of the measured thickness to the LLD prediction) for a fixed fiber radius varies as a function of the ratio of the surfactant concentration c to the critical micelle concentration (CMC). In the case of BSA, which does not form micelles, the reference value is the concentration at which multilayers form. As a result of Marangoni effects, alpha reaches a maximum as c approaches the CMC from below. However, when the surfactant concentration c exceeds the CMC, the behavior of alpha varies as a consequence of the dynamic surface properties, owing for example to different sorption kinetics of these additives, or possibly surface or bulk rheological effects. For SDS, alpha begins to decrease when c exceeds the CMC and causes the surface to become partially or completely remobilized, which is consistent with the experimental and theoretical results published for studies of slug flows of bubbles and surfactant solutions in a capillary tube and the rise of bubbles in surfactant solutions. However, when the SDS or Triton X-100 surfactant concentration is well above the CMC, we observe that the film thickening parameter alpha increases once again. In the case of SDS we observe a second maximum in the film thickening factor. For all the experiments, transport of monomers to the interface is limited by diffusion and the second maximum in the film thickening factor may be explained as a result of a nonmonotonic change in the stability characteristics of suspended SDS

  4. A light-responsive organofluid based on reverse worm-like micelles formed from an equi-charged, mixed, anionic gemini surfactant with an azobenzene spacer and a cationic conventional surfactant.

    PubMed

    Yang, Duoping; Zhao, Jianxi

    2016-05-07

    An equally-charged mixture of an anionic gemini surfactant, O,O'-bis(sodium 2-tetradecylcarboxylate)-p-azodiphendiol (G14-azo), and a cationic surfactant, cetyltrimethylammonium bromide (CTAB), was dissolved in cyclohexane to form reverse worm-like micelles. Samples with different surfactant concentrations and amounts of added water were studied using rheological measurements. The amount of water, represented as the molar ratio of water to total surfactants W0, was c. 13 (at its minimum) in these equally charged systems of G14-azo (200 mmol L(-1))/CTAB. The low shear viscosity ηL of this system reached 4370 Pa s at W0 = 13 and the dynamic rheological result showed typical surfactant gel behaviour. Under UV-light irradiation, the transparent sample (G14-azo (300 mmol L(-1))/CTAB (600 mmol L(-1))) at W0 = 40 became turbid, during which ηL was rapidly reduced from the original 285 Pa s to 0.3 Pa s, indicating a transition of aggregate morphology from reverse worms into simple reverse micelles. Then the sample was returned to its original homogeneous state with c. 290 Pa s viscosity under visible light irradiation. However, this transition cannot be well achieved at low W0 due to the interior cores being too small. This limit has been attributed to both the Gemini type of surfactant molecule and to the inverted structure of aggregates.

  5. Temperature Triggered Structural Transitions in Surfactant organized Self Assemblies

    NASA Astrophysics Data System (ADS)

    Rose, J. Linet; Balamurugan, S.; Sajeevan, Ajin C.; Sreejith, Lisa

    2011-10-01

    Preparation & characterization of tunable fluids is an emerging area with potential application in many fields. Surfactants self assemble in aqueous solution to give a rich variety of phase structures, the size and shape of which can be tuned by additives like salts, alcohols, amines, aromatics etc or external stimuli such as light, temperature etc. The addition of long chain aliphatic alcohol has significant influence on the surfactant aggregation, as it promotes morphological growth of micelles. The cationic surfactant, Cetyl Trimethyl Ammonium Bromide (CTAB) with nonanol in presence of potassium bromide (KBr) shows thermo tunable viscosity behaviour and optical switching behaviour. The solution is visually observed to transform from a turbid and less viscous phase at low temperature to clear and considerably viscous phase at high temperature. Temperature induced changes in turbidity and viscosity are consistent with the transition from vesicle to worm like micelle. It is also worth emphasizing that the transition is thermo reversible, so that vesicles that are disrupted into micelles upon heating can be reformed upon cooling. The thermo tunable transition from turbid to transparent state and the concomitant changes in viscosity are promising for the use in smart windows, monitoring of tumor growth or in other stimuli based application.

  6. Surfactant-induced assembly of enzymatically-stable peptide hydrogels

    SciTech Connect

    Jones, Brad H.; Martinez, Alina M.; Wheeler, Jill S.; Spoerke, Erik D.

    2015-04-07

    The secondary structure of peptides in the presence of interacting additives is an important topic of study, having implications in the application of peptide science to a broad range of modern technologies. Surfactants constitute a class of biologically relevant compounds that are known to influence both peptide conformation and aggregation or assembly. In addition, we have characterized the secondary structure of a linear nonapeptide composed of a hydrophobic alanine/phenylalanine core flanked by hydrophilic acid/amine units. We show that the anionic surfactant sodium dodecyl sulfate (SDS) induces the formation of β-sheets and macroscopic gelation in this otherwise unstructured peptide. Through comparison to related additives, we propose that SDS-induced secondary structure formation is the result of amphiphilicity created by electrostatic binding of SDS to the peptide. In addition, we demonstrate a novel utility of surfactants in manipulating and stabilizing peptide nanostructures. SDS is used to simultaneously induce secondary structure in a peptide and to inhibit the activity of a model enzyme, resulting in a peptide hydrogel that is impervious to enzymatic degradation. These results complement our understanding of the behavior of peptides in the presence of interacting secondary molecules and provide new potential pathways for programmable organization of peptides by the addition of such components.

  7. Surfactant-induced assembly of enzymatically-stable peptide hydrogels

    DOE PAGES

    Jones, Brad H.; Martinez, Alina M.; Wheeler, Jill S.; ...

    2015-04-07

    The secondary structure of peptides in the presence of interacting additives is an important topic of study, having implications in the application of peptide science to a broad range of modern technologies. Surfactants constitute a class of biologically relevant compounds that are known to influence both peptide conformation and aggregation or assembly. In addition, we have characterized the secondary structure of a linear nonapeptide composed of a hydrophobic alanine/phenylalanine core flanked by hydrophilic acid/amine units. We show that the anionic surfactant sodium dodecyl sulfate (SDS) induces the formation of β-sheets and macroscopic gelation in this otherwise unstructured peptide. Through comparisonmore » to related additives, we propose that SDS-induced secondary structure formation is the result of amphiphilicity created by electrostatic binding of SDS to the peptide. In addition, we demonstrate a novel utility of surfactants in manipulating and stabilizing peptide nanostructures. SDS is used to simultaneously induce secondary structure in a peptide and to inhibit the activity of a model enzyme, resulting in a peptide hydrogel that is impervious to enzymatic degradation. These results complement our understanding of the behavior of peptides in the presence of interacting secondary molecules and provide new potential pathways for programmable organization of peptides by the addition of such components.« less

  8. Controlling liquid splash on superhydrophobic surfaces by a vesicle surfactant

    PubMed Central

    Song, Meirong; Ju, Jie; Luo, Siqi; Han, Yuchun; Dong, Zhichao; Wang, Yilin; Gu, Zhen; Zhang, Lingjuan; Hao, Ruiran; Jiang, Lei

    2017-01-01

    Deposition of liquid droplets on solid surfaces is of great importance to many fundamental scientific principles and technological applications, such as spraying, coating, and printing. For example, during the process of pesticide spraying, more than 50% of agrochemicals are lost because of the undesired bouncing and splashing behaviors on hydrophobic or superhydrophobic leaves. We show that this kind of splashing on superhydrophobic surfaces can be greatly inhibited by adding a small amount of a vesicular surfactant, Aerosol OT. Rather than reducing splashing by increasing the viscosity via polymer additives, the vesicular surfactant confines the motion of liquid with the help of wettability transition and thus inhibits the splash. Significantly, the vesicular surfactant exhibits a distinguished ability to alter the surface wettability during the first inertial spreading stage of ~2 ms because of its dense aggregates at the air/water interface. A comprehensive model proposed by this idea could help in understanding the complex interfacial interactions at the solid/liquid/air interface. PMID:28275735

  9. Toward surfactant-free and water-free microemulsions.

    PubMed

    Fischer, Veronika; Marcus, Julien; Touraud, Didier; Diat, Olivier; Kunz, Werner

    2015-09-01

    It was recently demonstrated that a nano-clustering was present in the monophasic "pre-Ouzo" region of ternary liquid mixtures without surfactants. The goal of this work is to check if this nano-clustering is also present in the surfactant-free and water-free "green" microemulsions glycerol/ethanol/1-octanol and deep eutectic solvent/tetrahydrofurfuryl alcohol/diethyl adipate. The deep eutectic solvents used instead of water were ethylene glycol-choline chloride (molar ratio 4-1) and urea-choline chloride (molar ratio 2-1). To our knowledge this is the first time that deep eutectic solvents were used to formulate microemulsions. The surfactant-free and water-free microemulsions were studied using phase diagrams, dynamic light scattering, and small-angle X-ray scattering. The presence of aggregate fluctuations was demonstrated and they were found to be independent of molecular critical fluctuations, except when approaching the critical point where the critical phenomenon is superimposed to the signal. These structures have similarities to classical microemulsions but, in contrast to them, without having a sharp interface between the non-miscible phases, much as it was the case for systems previously investigated like water/ethanol/oil, where the oil was 1-octanol, fragrance molecules, or mosquito repellents.

  10. Giant scrotal elephantiasis.

    PubMed

    Kuepper, Daniel

    2005-02-01

    How much can a man carry? Penoscrotal elephantiasis is a debilitating syndrome. This is a case report of a patient with giant genital elephantiasis secondary to long-standing lymphogranuloma venereum infection in Ethiopia. Complete surgical resection of the pathologic tissue and penile reconstruction was undertaken with good cosmetic and functional results.

  11. Electroluminescence of Giant Stretchability.

    PubMed

    Yang, Can Hui; Chen, Baohong; Zhou, Jinxiong; Chen, Yong Mei; Suo, Zhigang

    2016-06-01

    A new type of electroluminescent device achieves giant stretchability by integrating electronic and ionic components. The device uses phosphor powders as electroluminescent materials, and hydrogels as stretchable and transparent ionic conductors. Subject to cyclic voltage, the phosphor powders luminesce, but the ionic conductors do not electrolyze. The device produces constant luminance when stretched up to an area strain of 1500%.

  12. Formation and morphology of reverse micelles formed by nonionic surfactants in "dry" organic solvents.

    PubMed

    Pérez, Sofía V; Olea, Andres F; Gárate, M Pilar

    2014-01-01

    The formation of reverse micelles by nonionic alcohol ethoxylates surfactants in two "dry" non polar solvents, heptane and dibutoxymethane (DBM), has been studied. These surfactants are formed by a linear hydrocarbon chain consisting of i carbons, and a poly(ethylene oxide) chain with j ethoxylate units (EO) ending with a hydroxyl group, CiEOj. The study is focused on the determination of the critical micelle concentration CMC and the size and morphology of the formed aggregates. The CMC was obtained from the decreasing of interfacial tension with increasing surfactant concentration and by using pyrene sulfonic acid sodium salt as fluorescence probe. The results show that the CMC in heptane is one order of magnitude higher than in DBM and two orders of magnitude higher than those determined in aqueous solution. The self-diffusion coefficients D of C8EO5, C8EO4 and C10EO6 in heptane, were obtained by diffusion ordered spectroscopy (DOSY (1)H-NMR). The experimental values of D were then fitted to four different configurations to determine the most probable morphology of the formed aggregates. In all cases the presence of large and compact aggregates, with aggregation numbers going from a few dozens of monomers to a hundred of them, was shown.

  13. Effect of surfactant charge on polymer-micelle interaction: N-dodecyldimethylamine oxide

    SciTech Connect

    Brackman, J.C.; Engberts, J.B.F.N. )

    1992-02-01

    The influence of the nonionic water-soluble polymers poly(vinyl methyl ether) (PVME), poly(propylene oxide) (PPO), and poly(ethylene oxide) (PEO) on the aggregation behavior of n-dodecyldimethylamine oxide (DDAO), at various stages of protonation, has been studied. Critical micelle concentration (cmc) values were determined by the pH method and revealed an increase in stabilization of the micelles by association with PVME and PPO, upon increasing the average charge of the surfactant. The micelles formed from nonionic DDAO are not stabilized by association with PVME or PPO, but association was apparent from the reduction in aggregation number. This reduction in aggregation number is even more pronounced at higher surfactant charge. The results are interpreted in terms of a reduction in electrostatic inter-head-group interaction upon formation of the smaller polymer-bound micelles in the case of the charged surfactant molecules. PEO does not exert any influence on either the cmc or the aggregation number of DDAO micelles at any degree of protonation indicating the absence of polymer-micelle interaction. The effect of neutral and protonated DDAO on the clouding behavior of PVME and PPO has also been studied. 36 refs., 4 figs., 4 tabs.

  14. SURFACTANT ENHANCED AQUIFER REMEDIATION WITH SURFACTANT REGENERATION/REUSE

    EPA Science Inventory

    A demonstration of surfactant-enhanced aquifer remediation was conducted during the spring of 1999 at Marine Corps Base, Camp LeJeune, NC. A PCE-DNAPL zone was identified and delineated by extensive soil sampling in 1997, and was further characteized by a partitioning interwell t...

  15. Model study of enhanced oil recovery by flooding with aqueous surfactant solution and comparison with theory.

    PubMed

    Fletcher, Paul D I; Savory, Luke D; Woods, Freya; Clarke, Andrew; Howe, Andrew M

    2015-03-17

    With the aim of elucidating the details of enhanced oil recovery by surfactant solution flooding, we have determined the detailed behavior of model systems consisting of a packed column of calcium carbonate particles as the porous rock, n-decane as the trapped oil, and aqueous solutions of the anionic surfactant sodium bis(2-ethylhexyl) sulfosuccinate (AOT). The AOT concentration was varied from zero to above the critical aggregation concentration (cac). The salt content of the aqueous solutions was varied to give systems of widely different, post-cac oil-water interfacial tensions. The systems were characterized in detail by measuring the permeability behavior of the packed columns, the adsorption isotherms of AOT from the water to the oil-water interface and to the water-calcium carbonate interface, and oil-water-calcium carbonate contact angles. Measurements of the percent oil recovery by pumping surfactant solutions into calcium carbonate-packed columns initially filled with oil were analyzed in terms of the characterization results. We show that the measured contact angles as a function of AOT concentration are in reasonable agreement with those calculated from values of the surface energy of the calcium carbonate-air surface plus the measured adsorption isotherms. Surfactant adsorption onto the calcium carbonate-water interface causes depletion of its aqueous-phase concentration, and we derive equations which enable the concentration of nonadsorbed surfactant within the packed column to be estimated from measured parameters. The percent oil recovery as a function of the surfactant concentration is determined solely by the oil-water-calcium carbonate contact angle for nonadsorbed surfactant concentrations less than the cac. For surfactant concentrations greater than the cac, additional oil removal occurs by a combination of solubilization and emulsification plus oil mobilization due to the low oil-water interfacial tension and a pumping pressure increase.

  16. Novel fluorescent probe as aggregation predictor and micro-polarity reporter for micelles and mixed micelles

    NASA Astrophysics Data System (ADS)

    Shannigrahi, Mrinmoy; Bagchi, Sanjib

    2005-07-01

    Aggregational behaviour of micelles sodium dodecyl sulphate (SDS and Triton X-100, TX-100 both in pure and mixed form) and micelle like aggregates such as polymer-surfactant system [polymer poly(vinyl pyrrolidone), PVP]-SDS have been studied by using fluorescence characteristics of a newly synthesized probe. The critical micelle concentration (CMC) values determined at various surfactant compositions are lower than the ideal values indicating a synergistic effect. The value of the interaction parameter for the surfactant mixture has been determined which agrees well with the value calculated according to molecular thermodynamic theory. The total aggregation number of surfactant in mixed micelle shows a drastic variation in the SDS mole fraction range 0 ≤ α1 ≤ 0.3 and beyond the range it remains practically constant. Molar-based partition coefficients for the dye between the micellar and aqueous phase have been determined and a non-linear variation is obtained for the mixed micellar system. Variations of micro-polarity in the mixed micellar region have been investigated as a function of surfactant composition and results have been explained in terms of a suitable realistic model.

  17. Fluorescence of acridinic dyes in anionic surfactant solution

    NASA Astrophysics Data System (ADS)

    Pereira, Robson Valentim; Gehlen, Marcelo Henrique

    2005-10-01

    The interaction of the cationic dyes acridine, 9-aminoacridine (9AA), and proflavine, with sodium dodecyl sulfate (SDS) was studied by electronic absorption, steady-state and time-resolved fluorescence spectroscopies. The dyes interact with SDS in the pre-micellar region leading in two cases to dimerization in dye-surfactant aggregates, but with distinct molecular arrangements. For proflavine, the observed red shift of the electronic absorption band indicates the presence of J-aggregate, which are nonfluorescent. In the case of 9AA, the aggregates were characterized as nonspecific (neither J- nor H-type is spectroscopically observed). The time-resolved emission spectra gives evidences of the presence of weakly bound dimers by the recovery of three defined decay times by global analysis: dye monomer ( τ1 = 16.4 ns), dimer ( τ2 = 7.1 ns), and a faster component ( τ3 = 2.1 ns) ascribed to intracluster energy migration between monomer and dimer. Acridine has a weak interaction with SDS forming only an ion pair without further self-aggregation of the dye.

  18. Fluorescence of acridinic dyes in anionic surfactant solution.

    PubMed

    Pereira, Robson Valentim; Gehlen, Marcelo Henrique

    2005-10-01

    The interaction of the cationic dyes acridine, 9-aminoacridine (9AA), and proflavine, with sodium dodecyl sulfate (SDS) was studied by electronic absorption, steady-state and time-resolved fluorescence spectroscopies. The dyes interact with SDS in the pre-micellar region leading in two cases to dimerization in dye-surfactant aggregates, but with distinct molecular arrangements. For proflavine, the observed red shift of the electronic absorption band indicates the presence of J-aggregate, which are nonfluorescent. In the case of 9AA, the aggregates were characterized as nonspecific (neither J- nor H-type is spectroscopically observed). The time-resolved emission spectra gives evidences of the presence of weakly bound dimers by the recovery of three defined decay times by global analysis: dye monomer (tau1 = 16.4 ns), dimer (tau2 = 7.1 ns), and a faster component (tau3 = 2.1 ns) ascribed to intracluster energy migration between monomer and dimer. Acridine has a weak interaction with SDS forming only an ion pair without further self-aggregation of the dye.

  19. SP-B and SP-C Containing New Synthetic Surfactant for Treatment of Extremely Immature Lamb Lung

    PubMed Central

    Sato, Atsuyasu; Ikegami, Machiko

    2012-01-01

    Although superiority of synthetic surfactant over animal-driven surfactant has been known, there is no synthetic surfactant commercially available at present. Many trials have been made to develop synthetic surfactant comparable in function to animal-driven surfactant. The efficacy of treatment with a new synthetic surfactant (CHF5633) containing dipalmitoylphosphatidylcholine, phosphatidylglycerol, SP-B analog, and SP-C analog was evaluated using immature newborn lamb model and compared with animal lung tissue-based surfactant Survanta. Lambs were treated with a clinical dose of 200 mg/kg CHF5633, 100 mg/kg Survanta, or air after 15 min initial ventilation. All the lambs treated with air died of respiratory distress within 90 min of age. During a 5 h study period, Pco2 was maintained at 55 mmHg with 24 cmH2O peak inspiratory pressure for both groups. The preterm newborn lamb lung functions were dramatically improved by CHF5633 treatment. Slight, but significant superiority of CHF5633 over Survanta was demonstrated in tidal volume at 20 min and dynamic lung compliance at 20 and 300 min. The ultrastructure of CHF5633 was large with uniquely aggregated lipid particles. Increased uptake of CHF5633 by alveolar monocytes for catabolism was demonstrated by microphotograph, which might be associated with the higher treatment dose of CHF5633. The higher catabolism of CHF5633 was also suggested by the similar amount of surfactant lipid in bronchoalveolar lavage fluid (BALF) between CHF5633 and Survanta groups, despite the 2-fold higher treatment dose of CHF5633. Under the present ventilation protocol, lung inflammation was minimal for both groups, evaluated by inflammatory cell numbers in BALF and expression of IL-1β, IL-6, IL-8, and TNFα mRNA in the lung tissue. In conclusion, the new synthetic surfactant CHF5633 was effective in treating extremely immature newborn lambs with surfactant deficiency during the 5 h study period. PMID:22808033

  20. BEHAVIOR OF SURFACTANT MIXTURES AT SOLID/LIQUID AND OIL/LIQUID INTERFACES IN CHEMICAL FLOODING SYSTEMS

    SciTech Connect

    Prof. P. Somasundaran

    2003-03-31

    The aim of the project is to develop a knowledge base to help with the design of enhanced process for mobilizing and extracting untrapped oil. We emphasize on evaluating novel surfactant mixtures and on obtaining optimum combinations of the surfactants in chemical flooding EOR process. An understanding of the micellar shape and size is crucial since these physical properties directly determine the crude oil removal efficiency. Analytical ultracentrifugation experiments were used to test the multi-micelle model proposed earlier and formulate the relationships between mixed micelle formation and the surfactant structure. Information on partial specific volume of surfactants and their mixtures is required to treat analytical ultracentrifuge data. In the last report, it was noted that the partial specific volumes of the sugar-based surfactants obtained experimentally did not agree with those from theoretical calculations. A scrutiny of partial specific volumes of the four sugar-based surfactants revealed that conformational changes upon micelle formation are responsible for the large deviation. From sedimentation equilibrium experiments, two types of micelles were identified for the nonionic polyethylene surfactant and its mixtures with the sugar-based surfactant, dodecyl maltoside. The average aggregation numbers of n-dodecyl-{beta}-D-maltoside and nonyl phenol ethoxylated decyl ether agreed with those reported in literature using other techniques. Our study displayed, for the first time, that small micelles might coexist with large micelles at high concentrations due to unique structures of the surfactant although classical thermodynamic theory supports only one type of micelle. Initial dynamic light scattering results support the results for the same mixed surfactant system from analytical ultracentrifuge equilibrium technique. The implication of this finding lies in the fact that efficiency of oil recovery will be improved due to the large micellar size, its

  1. Structural diversity, physicochemical properties and application of imidazolium surfactants: Recent advances.

    PubMed

    Bhadani, Avinash; Misono, Takeshi; Singh, Sukhprit; Sakai, Kenichi; Sakai, Hideki; Abe, Masahiko

    2016-05-01

    The current review covers recent advances on development and investigation of cationic surfactants containing imidazolium headgroup, which are being extensively investigated for their self-aggregation properties and are currently being utilized in various conventional and non-conventional application areas. These surfactants are being used as: soft template for synthesis of mesoporous/microporous materials, drug and gene delivery agent, stabilizing agent for nanoparticles, dispersants for single/multi walled carbon nanotubes, antimicrobial and antifungal agent, viscosity modifiers, preparing nanocomposite materials, stabilizing microemulsions, corrosion inhibitors and catalyst for organic reactions. Recently several structural derivatives of these surfactants have been developed having many interesting physicochemical properties and they have demonstrated enormous potential in the area of nanotechnology, material science and biomedical science.

  2. Interfacial adsorption and aggregation of amphiphilic proteins

    NASA Astrophysics Data System (ADS)

    Cheung, David

    2012-02-01

    The adsorption and aggregation on liquid interfaces of proteins is important in many biological contexts, such as the formation of aerial structures, immune response, and catalysis. Likewise the adsorption of proteins onto interfaces has applications in food technology, drug delivery, and in personal care products. As such there has been much interest in the study of a wide range of biomolecules at liquid interfaces. One class of proteins that has attracted particular attention are hydrophobins, small, fungal proteins with a distinct, amphiphilic surface structure. This makes these proteins highly surface active and they recently attracted much interest. In order to understand their potential applications a microscopic description of their interfacial and self-assembly is necessary and molecular simulation provides a powerful tool for providing this. In this presentation I will describe some recent work using coarse-grained molecular dynamics simulations to study the interfacial and aggregation behaviour of hydrophobins. Specifically this will present the calculation of their adsorption strength at oil-water and air-water interfaces, investigate the stability of hydrophobin aggregates in solution and their interaction with surfactants.

  3. Aggregate transitions in aqueous solutions of sodium dodecylsulfate with a "gemini-type" organic salt.

    PubMed

    Yu, Defeng; Tian, Maozhang; Fan, Yaxun; Ji, Gang; Wang, Yilin

    2012-06-07

    Effects of a "gemini-type" organic salt 1,2-bis(2-benzylammoniumethoxy) ethane dichloride (BEO) on the aggregation behavior of sodium dodecylsulfate (SDS) have been investigated by turbidity, surface tension, isothermal titration microcalorimetry, dynamic light scattering, cryogenic transmission electron microscopy, (1)H NMR spectroscopy, and differential scanning microcalorimetry. The aggregation behavior of the SDS/BEO mixed aqueous solution shows strong concentration and ratio dependence. For the SDS/BEO solution with a molar ratio of 5:1, large loose irregular aggregates, vesicles, and long thread-like micelles are formed in succession with the increase of the total SDS and BEO concentration. Because BEO has two positive charges, the SDS/BEO solution may consist of the (SDS)(2)-BEO gemini-type complex, the SDS-BEO complex and extra SDS. The aggregation ability and surface activity of the SDS/BEO mixture exhibit the characteristics of gemini-type surfactants. Along with the results of DSC and (1)H NMR, the (SDS)(2)-BEO gemini-type structure is confirmed to exist in the system. This work provides an approach to construct the surfactant systems with the characteristics of gemini surfactants through intermolecular interaction between a two-charged organic salt and oppositely charged single-chain surfactants.

  4. Inactivation of surfactant in rat lungs.

    PubMed

    Bruni, R; Fan, B R; David-Cu, R; Taeusch, H W; Walther, F J

    1996-02-01

    Although surfactant replacement therapy has dramatically improved the outcome of premature infants with respiratory distress syndrome, approximately 30% of treated infants show a transient or no response. Nonresponse to surfactant replacement therapy may be due to extreme lung immaturity and possibly surfactant inactivation. Surfactant inactivation involves aspecific biophysical events, such as interference with the formation or activity of an alveolar monolayer, and specific interactions with serum proteins, including antibodies, leaking into the alveolar space. As formulations containing surfactant proteins appear to better tolerate serum inactivation, we used an excised rat lung model to compare the susceptibility to serum inactivation of a mixture of synthetic phospholipids selected from surfactant lipid constituents, Exosurf (a protein-free synthetic surfactant), Survanta [containing surfactant proteins B and C (SP-B and -C)], and a porcine surfactant (containing SP-A, -B, and -C). For each of these preparations, we used pressure/volume determinations as an in situ measure of surfactant activity and retested the same preparations after mixing with human serum, a nonspecific surfactant inactivator. Human serum inactivated porcine surfactant to a lesser extent than Survanta, Exosurf, or synthetic phospholipids. Temperature exerted a significant effect on deflation stability, as shown by a greater lung compliance in untreated, normal lungs and a larger improvement in compliance after treating lavaged lungs with synthetic phospholipids at 37 degrees C than at 22 degrees C. We conclude that surfactant containing SP-A, -B, and -C is only moderately susceptible to inactivation with whole serum and may therefore exert a greater clinical response than protein-free surfactants or those containing only SP-B and -C.

  5. High-Q ultrasonic determination of the critical nanoaggregate concentration of asphaltenes and the critical micelle concentration of standard surfactants.

    PubMed

    Andreatta, Gaëlle; Bostrom, Neil; Mullins, Oliver C

    2005-03-29

    Asphaltenes are known to be interfacially active in many circumstances such as at toluene-water interfaces. Furthermore, the term micelle has been used to describe the primary aggregation of asphaltenes in good solvents such as toluene. Nevertheless, there has been significant uncertainty regarding the critical micelle concentration (CMC) of asphaltenes and even whether the micelle concept is appropriate for asphaltenes. To avoid semantic debates we introduce the terminology critical nanoaggregate concentration (CNAC) for asphaltenes. In this report, we investigate asphaltenes and standard surfactants using high-Q, ultrasonic spectroscopy in both aqueous and organic solvents. As expected, standard surfactants are shown to exhibit a sharp break in sonic velocity versus concentration at known CMCs. To prove our methods, we measured known surfactants with CMCs in the range from 0.010 g/L to 2.3 g/L in agreement with the literature. Using density determinations, we obtain micelle compressibilities consistent with previous literature reports. Asphaltenes are also shown to exhibit behavior similar to that of ultrasonic velocity versus concentration as standard surfactants; asphaltene CNACs in toluene occur at roughly 0.1 g/L, although the exact concentration depends on the specific (crude oil) asphaltene. Furthermore, using asphaltene solution densities, we show that asphaltene nanoaggregate compressibilities are similar to micellar compressibilities obtained with standard nonionic surfactants in toluene. These results strongly support the contention that asphaltenes in toluene can be treated roughly within the micelle framework, although asphaltenes may exhibit small levels of aggregation (dimers, etc.) below their CNAC. Furthermore, our extensive results on known surfactants agree with the literature while the asphaltene CNACs reported here are one to two orders of magnitude lower than most previously published results. (Previous work utilized the terminology "micelle

  6. Effect of exogenous surfactant on the development of surfactant synthesis in premature rabbit lung.

    PubMed

    Amato, Maurizio; Petit, Kevin; Fiore, Humberto H; Doyle, Cynthia A; Frantz, Ivan D; Nielsen, Heber C

    2003-04-01

    Surfactant replacement is an effective therapy for neonatal respiratory distress syndrome. Full recovery from respiratory distress syndrome requires development of endogenous surfactant synthesis and metabolism. The influence of exogenous surfactant on the development of surfactant synthesis in premature lungs is not known. We hypothesized that different exogenous surfactants have different effects on the development of endogenous surfactant production in the premature lung. We treated organ cultures of d 25 fetal rabbit lung for 3 d with 100 mg/kg body weight of natural rabbit surfactant, Survanta, and Exosurf and measured their effects on the development of surfactant synthesis. Additional experiments tested how these surfactants and Curosurf affected surfactant protein (SP) SP-A, SP-B, and SP-C mRNA expression. Surfactant synthesis was measured as the incorporation of 3H-choline and 14C-glycerol into disaturated phosphatidylcholine recovered from lamellar bodies. Randomized-block ANOVA showed significant differences among treatments for incorporation of both labels (p < 0.01), with natural rabbit surfactant less than control, Survanta greater than control, and Exosurf unchanged. Additional experiments with natural rabbit surfactant alone showed no significant effects in doses up to 1000 mg/kg. Survanta stimulated disaturated phosphatidylcholine synthesis (173 +/- 41% of control; p = 0.01), increased total lamellar body disaturated phosphatidylcholine by 22% (p < 0.05), and increased 14C-disat-PC specific activity by 35% (p < 0.05). The response to Survanta was dose-dependent up to 1000 mg/kg. Survanta did not affect surfactant release. No surfactant altered the expression of mRNA for SP-A, SP-B, or SP-C. We conclude that surfactant replacement therapy can enhance the maturation of surfactant synthesis, but this potential benefit differs with different surfactant preparations.

  7. Ice Giant Exploration

    NASA Astrophysics Data System (ADS)

    Rymer, A. M.; Arridge, C. S.; Masters, A.; Turtle, E. P.; Simon, A. A.; Hofstadter, M. D.; Turrini, D.; Politi, R.

    2015-12-01

    The Ice Giants in our solar system, Uranus and Neptune, are fundamentally different from their Gas Giant siblings Jupiter and Saturn, from the different proportions of rock and ice to the configuration of their planetary magnetic fields. Kepler space telescope discoveries of exo-planets indicate that planets of this type are among the most ubiquitous universally and therefore a future mission to explore the nature of the Ice Giants in our own solar system will provide insights into the nature of extra-solar system objects in general. Uranus has the smallest self- luminosity of all the planets, potentially related to catastrophic events early in the planet's history, which also may explain Uranus' large obliquity. Uranus' atmosphere is subject to extreme seasonal forcing making it unique in the Solar System. Neptune is also unique in a number of ways, notably its large moon Triton which is likely a captured Kuiper Belt Object and one of only two moons in the solar system with a robustly collisional atmosphere. Similar to Uranus, the angle between the solar wind and the magnetic dipole axis is subject to large-amplitude variations on both diurnal and seasonal timescales, but peculiarly it has one of the quietest magnetospheres of the solar system, at least according to Voyager 2, the only spacecraft to encounter Neptune to date. A comprehensive mission, as advocated in the Decadal Survey, would provide enormous science return but is also challenging and expensive. In this presentation we will discuss mission scenarios and suggest how collaboration between disciplines and internationally can help us to pursue a mission that includes Ice Giant exploration.

  8. Giant cell arteritis

    PubMed Central

    Calvo-Romero, J

    2003-01-01

    Giant cell arteritis (GCA), temporal arteritis or Horton's arteritis, is a systemic vasculitis which involves large and medium sized vessels, especially the extracranial branches of the carotid arteries, in persons usually older than 50 years. Permanent visual loss, ischaemic strokes, and thoracic and abdominal aortic aneurysms are feared complications of GCA. The treatment consists of high dose steroids. Mortality, with a correct treatment, in patients with GCA seems to be similar that of controls. PMID:13679546

  9. Giant Cell Arteritis.

    PubMed

    Hoffman, Gary S

    2016-11-01

    This issue provides a clinical overview of giant cell arteritis, focusing on diagnosis, treatment, and practice improvement. The content of In the Clinic is drawn from the clinical information and education resources of the American College of Physicians (ACP), including MKSAP (Medical Knowledge and Self-Assessment Program). Annals of Internal Medicine editors develop In the Clinic in collaboration with the ACP's Medical Education and Publishing divisions and with the assistance of additional science writers and physician writers.

  10. Interaction between bovine serum albumin and equimolarly mixed cationic-anionic surfactants decyltriethylammonium bromide-sodium decyl sulfonate.

    PubMed

    Lu, Run-Chao; Cao, Ao-Neng; Lai, Lu-Hua; Zhu, Bu-Yao; Zhao, Guo-Xi; Xiao, Jin-Xin

    2005-03-25

    The interactions of bovine serum albumin (BSA) with the anionic surfactant sodium decylsulfonate (C10SO3), the cationic surfactant decyltriethylammonium bromide (C10NE) and equimolarly mixed cationic-anionic surfactants C10NE-C10SO3 were investigated by surface tension, viscosity, dynamic light scattering (DLS) and circular dichroism (CD). It was shown that the single ionic surfactant C10SO3 or C10NE has obvious interaction with BSA. The presence of C10SO3 or C10NE modified BSA structure. However, the equimolarly mixed cationic-anionic surfactants C10NE-C10SO3 showed very weak interactions with BSA. The surface tension-log concentration (gamma-logC) plot for the aqueous solutions of C10NE-C10SO3/BSA mixtures coincided with that of C10NE-C10SO3 solutions. Viscometry showed that there is no significant change in the rheological properties for the C10NE-C10SO3/BSA mixed solutions. DLS showed that BSA monomers and mixed aggregates of C10NE-C10SO3 existed in the C10NE-C10SO3/BSA mixed solutions. From CD spectra no obvious modification of BSA structure in the presence of C10NE-C10SO3 mixtures was observed. The weak interactions between BSA and C10NE-C10SO3 might be explained in terms of the very low critical micelle concentration (cmc) of C10NE-C10SO3 mixtures that made the concentration of ionic surfactant monomers much lower than that needed for inducing the modification of BSA structure. In other words, the very strong synergism between oppositely charged cationic and anionic surfactants makes the formation of cationic-anionic surfactant mixed aggregates in the bulk solution a more favorable process than binding to proteins.

  11. Aggregations in Flatworms.

    ERIC Educational Resources Information Center

    Liffen, C. L.; Hunter, M.

    1980-01-01

    Described is a school project to investigate aggregations in flatworms which may be influenced by light intensity, temperature, and some form of chemical stimulus released by already aggregating flatworms. Such investigations could be adopted to suit many educational levels of science laboratory activities. (DS)

  12. Unbonded Aggregate Surface Roads

    DTIC Science & Technology

    2006-12-01

    are sufficiently angular and rough in texture, thus ensuring mixture stability. A popular asphalt mixture design method called Superpave Level 1...would not pass either of the Superpave aggregate requirements. Table 18 Additional Characteristics for the Fine Fraction Abbreviated Common Name...CBR values when compacted wet of optimum. This is likely attributable to their relatively high permeabilities . For soaked CBR tests, the aggregates

  13. Erosion of dust aggregates

    NASA Astrophysics Data System (ADS)

    Seizinger, A.; Krijt, S.; Kley, W.

    2013-12-01

    Aims: The aim of this work is to gain a deeper insight into how much different aggregate types are affected by erosion. Especially, it is important to study the influence of the velocity of the impacting projectiles. We also want to provide models for dust growth in protoplanetary disks with simple recipes to account for erosion effects. Methods: To study the erosion of dust aggregates we employed a molecular dynamics approach that features a detailed micro-physical model of the interaction of spherical grains. For the first time, the model has been extended by introducing a new visco-elastic damping force, which requires a proper calibration. Afterwards, different sample generation methods were used to cover a wide range of aggregate types. Results: The visco-elastic damping force introduced in this work turns out to be crucial to reproduce results obtained from laboratory experiments. After proper calibration, we find that erosion occurs for impact velocities of 5 ms-1 and above. Though fractal aggregates as formed during the first growth phase are most susceptible to erosion, we observe erosion of aggregates with rather compact surfaces as well. Conclusions: We find that bombarding a larger target aggregate with small projectiles results in erosion for impact velocities as low as a few ms-1. More compact aggregates suffer less from erosion. With increasing projectile size the transition from accretion to erosion is shifted to higher velocities. This allows larger bodies to grow through high velocity collisions with smaller aggregates.

  14. MINERAL-SURFACTANT INTERACTIONS FOR MINIMUM REAGENTS PRECIPITATION AND ADSORPTION FOR IMPROVED OIL RECOVERY

    SciTech Connect

    P. Somasundaran

    2005-10-30

    In this project, fundamental studies were conducted to understand the mechanism of the interactions between polymer/surfactant and minerals with the aim of minimizing chemical loss by adsorption. The effects of chemical molecular structure on critical solid/liquid interfacial properties such as adsorption, wettability and surface tension in mineral/surfactant systems were investigated. The final aim is to build a guideline to design optimal polymer/surfactant formula based on the understanding of adsorption and orientation of surfactants and their aggregates at solid/liquid interface. During this period, the adsorption of mixed system of n-dodecyl-{beta}-D-maltoside (DM) and dodecyl sulfonate (C{sub 12}SO{sub 3}Na) was studied. Along with these adsorption studies, changes in mineral wettability due to the adsorption were determined under relevant conditions. pH was found to play a critical role in controlling total adsorption and mineral wettability. Previous studies have suggested significant surfactant loss by adsorption at neutral pH. But at certain pH, bilayer was found at lower adsorption density, which is beneficial for enhanced oil recovery. Analytical ultracentrifuge technique was successfully employed to study the micellization of DM/C{sub 12}SO{sub 3}Na mixtures. Compositional changes of the aggregates in solution were observed when two species were mixed. Surfactant mixture micellization affects the conformation and orientation of adsorption layer at mineral/water interface and thus the wettability and as a result, the oil release efficiency of the chemical flooding processes. Three surfactants C{sub 12}SO{sub 3}, AOT and SLE3 and one polymer were selected into three different binary combinations. Equilibrium surface tension measurement revealed complexation of polymer/surfactant under different conditions. Except for one combination of SLE3/ PVCAP, complexation was observed. It is to be noted that such complexation is relevant to both interfacial

  15. Mode changes associated with oil droplet movement in solutions of gemini cationic surfactants.

    PubMed

    Banno, Taisuke; Miura, Shingo; Kuroha, Rie; Toyota, Taro

    2013-06-25

    Micrometer-sized self-propelled oil droplets in nonequilibrium systems have attracted much attention, since they form stable emulsions composed of oil, water, and surfactant which represent a primitive type of inanimate chemical machinery. In this work, we examined means of controlling the movement of oil droplets by studying the dynamics of n-heptyloxybenzaldehyde droplets in phosphate buffers containing alkanediyl-α,ω-bis(N-dodecyl-N,N-dimethylammonium bromide) (nG12) with either tetramethylene (4G12), octaethylene (8G12), or dodecamethylene (12G12) chains in the linker moiety. Significant differences in droplet dynamics were observed to be induced by changes in the linker structure of these gemini cationic surfactants. In a phosphate buffer containing 30 mM 4G12, self-propelled motion of droplets concurrent with the formation of molecular aggregates on their surfaces was observed, whereas the fusion of oil droplets was evident in both 8G12 and 12G12 solutions. We also determined that the surface activities and the extent of molecular self-assembly of the surfactants in phosphate buffer were strongly influenced by the alkyl chain length in the linker moiety. We therefore conclude that the surface activities of the gemini cationic surfactant have important effects on the oil-water interfacial tension of oil droplets and the formation of molecular aggregates and that both of these factors induce the unique movement of the droplets.

  16. Surfactants in the management of rhinopathologies

    PubMed Central

    Rosen, Philip L.; Palmer, James N.; O'Malley, Bert W.

    2013-01-01

    Background: Surfactants are a class of amphiphilic surface active compounds that show several unique physical properties at liquid–liquid or liquid–solid surface interfaces including the ability to increase the solubility of substances, lower the surface tension of a liquid, and decrease friction between two mediums. Because of these unique physical properties several in vitro, ex vivo, and human trials have examined the role of surfactants as stand-alone or adjunct therapy in recalcitrant chronic rhinosinusitis (CRS). Methods: A review of the literature was performed. Results: The data from three different surfactants have been examined in this review: citric acid zwitterionic surfactant (CAZS; Medtronic ENT, Jacksonville FL), Johnson's Baby Shampoo (Johnson & Johnson, New Brunswick NJ), and SinuSurf (NeilMed Pharmaceuticals, Santa Rosa, CA). Dilute surfactant therapy shows in vitro antimicrobial effects with modest inhibition of bacterial biofilm formation. In patients with CRS, surfactants may improve symptoms, most likely through its mucolytic effects. In addition, surfactants have several distinct potential benefits including their ability to improve an irrigant's penetration of the nonoperated sinus and their synergistic effects with antibiotics. However, surfactants potential for nasal irritation and possible transient ciliotoxicity may limit their use. Conclusion: Recent data suggest a possible therapeutic role of surfactants in treating rhinopathologies associated with mucostasis. Further investigation, including a standardization of surfactant formulations, is warranted to further elucidate the potential benefits and drawbacks of this therapy. PMID:23710951

  17. Serine-based gemini surfactants with different spacer linkages: from self-assembly to DNA compaction.

    PubMed

    Silva, Sandra G; Oliveira, Isabel S; do Vale, M Luísa C; Marques, Eduardo F

    2014-12-14

    Cationic gemini surfactants have strong potential as compaction agents of nucleic acids for efficient non-viral gene delivery. In this work, we present the aggregation behavior of three novel cationic serine-based gemini surfactants as well as their ability to compact DNA per se and mixed with a helper lipid, 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE). All the surfactants have a 12-12-12 configuration, i.e. two main 12-carbon alkyl chains linked to the nitrogen atom of the amino acid residue and a 12 methylene spacer, but they differ in the nature of the spacer linkage: for (12Ser)2N12, an amine bond; for (12Ser)2CON12, an amide bond; and for (12Ser)2COO12, an ester bond. Interestingly, while the amine-based gemini aggregates into micelles, the amide and ester ones spontaneously form vesicles, which denotes a strong influence of the type of linkage on the surfactant packing parameter. The size, ζ-potential and stability of the vesicles have been characterized by light microscopy, cryogenic scanning electron microscopy (cryo-SEM) and dynamic light scattering (DLS). The interaction of the gemini aggregates with DNA at different charge ratios and in the absence and presence of DOPE has been studied by DLS, fluorescence spectroscopy and cryo-SEM. All the compounds are found to efficiently compact DNA (complexation > 90%), but relevant differences are obtained in terms of the size, ζ-potential and stability of the lipoplexes formed. Results are rationalized in terms of headgroup differences and the type of aggregates present prior to DNA condensation.

  18. Superamphiphilic nanocontainers based on the resorcinarene - Cationic surfactant system: Synergetic self-assembling behavior

    NASA Astrophysics Data System (ADS)

    Gaynanova, Gulnara A.; Bekmukhametova, Alina M.; Kashapov, Ruslan R.; Ziganshina, Albina Yu.; Zakharova, Lucia Ya.

    2016-05-01

    Self-organization in the mixed system based on water-soluble aminomethylated calix[4]arene with sulfonatoethyl groups at the lower rim and classical cationic surfactant cetyltrimethylammonium bromide has been studied by the methods of tensiometry, conductometry, spectrophotometry, dynamic and electrophoretic light scattering. The values of the critical association concentration, the size and zeta potential values, and the solubilization capacity of mixed aggregates toward the hydrophobic probe (Sudan I) were determined.

  19. Colloidal stability of iron oxide nanocrystals coated with a PEG-based tetra-catechol surfactant

    NASA Astrophysics Data System (ADS)

    Mondini, Sara; Drago, Carmelo; Ferretti, Anna M.; Puglisi, Alessandra; Ponti, Alessandro

    2013-03-01

    Long-term colloidal stability of magnetic iron oxide nanoparticles (NPs) is an important goal that has not yet been fully achieved. To make an advance in our understanding of the colloidal stability of iron oxide NPs in aqueous media, we prepared NPs comprising a monodisperse (13 nm) iron oxide core coated with a PEG-based (PEG: polyethyleneglycol) surfactant. This consists of a methoxy-terminated PEG chain (MW = 5000 Da) bearing four catechol groups via a diethylenetriamine linker. The surfactant was grafted onto the nanocrystals by ligand exchange monitored by infrared spectroscopy. The colloidal stability of these nanoparticles was probed by monitoring the time evolution of the Z-average intensity-weighted radius Rh and volume-weighted size distribution Pv obtained from analysis of dynamic light scattering data. The nanoparticles showed no sign of aggregation for four months in deionized water at room temperature and also when subjected to thermal cycling between 25 and 75 °C. In 0.01 M PBS (phosphate buffered saline), aggregation (if any) is slow and partial; after 66 h, about 50% of NPs have not aggregated. Aggregation is more effective in 0.15 M NH4AcO buffer, where isolated particles are not observed after 66 h, and especially in acidic NH4AcO/AcOH buffer, where aggregation is complete within 1 h and precipitation is observed. The differing stability of the NPs in the above aqueous media is closely related to their ζ potential.

  20. 1H NMR relaxation of water: a probe for surfactant adsorption on kaolin.

    PubMed

    Totland, Christian; Lewis, Rhiannon T; Nerdal, Willy

    2011-11-01

    In this study, (1)H NMR is used to investigate properties of sodium dodecyl sulfate (SDS), tetradecyl trimethyl ammonium bromide (TTAB), and dodecyl trimethyl ammonium bromide (DTAB) adsorbed on kaolin by NMR T(1) and T(2) measurements of the water proton resonance. The results show that adsorbed surfactants form a barrier between sample water and the paramagnetic species present on the clay surface, thus significantly increasing the proton T(1) values of water. This effect is attributed to the amount of adsorbed surfactants and the arrangement of the surfactant aggregates. The total surface area covered by the cationic (DTAB and TTAB) and anionic (SDS) surfactants could be estimated from the water T(1) data and found to correspond to the fractions of negatively and positively charged surface area, respectively. For selected samples, the amount of paramagnetic species on the clay surface was reduced by treatment with hydrofluoric (HF) acid. For these samples, T(1) and T(2) measurements were taken in the temperature range 278-338 K, revealing detailed information on molecular mobility and nuclear exchange for the sample water that is related to surfactant behavior both on the surface and in the aqueous phase.

  1. Characterization of chemical selectivity in micellar electrokinetic chromatography. VI. Effects of surfactant counter-ion.

    PubMed

    Trone, M D; Mack, J P; Goodell, H P; Khaledi, M G

    2000-08-04

    Linear solvation energy relationships and free energy of transfer data were used to evaluate the influence of the surfactant counter-ion on selectivity in micellar electrokinetic chromatography. It was determined that selectivity differences are dependent on the valency of the counter-ion but not the type of counter-ion. Monovalent surfactants, sodium dodecyl sulfate (SDS) and lithium dodecyl sulfate, have nearly identical selectivity behavior. The divalent surfactants, magnesium didodecyl sulfate and copper didodecyl sulfate also show very similar behavior. However, when the divalent counter-ion species is compared to SDS under similar conditions, significant differences are observed. Most notably, the utilization of divalent counter-ion species of dodecyl sulfate surfactants causes the micelles to become more hydrophobic and a weaker hydrogen bond donating pseudo-stationary phases. It is believed that the divalent counter-ions reduce the electrostatic repulsion between the surfactant head groups and therefore, increase the chain packing of the monomers in the micelle aggregates. This reduces the degree of hydration of the micellar palisade layer leading to a decreased ability of the micelle to participate in polar/polarizable and hydrogen bonding interactions with solute molecules.

  2. Nanostructured fluids from degradable nonionic surfactants for the cleaning of works of art from polymer contaminants.

    PubMed

    Baglioni, M; Raudino, M; Berti, D; Keiderling, U; Bordes, R; Holmberg, K; Baglioni, P

    2014-09-21

    Nanostructured fluids containing anionic surfactants are among the best performing systems for the cleaning of works of art. Though efficient, their application may result in the formation of a precipitate, due to the combination with divalent cations that might leach out from the artifact. We propose here two new aqueous formulations based on nonionic surfactants, which are non-toxic, readily biodegradable and insensitive to the presence of divalent ions. The cleaning properties of water-nonionic surfactant-2-butanone (MEK) were assessed both on model surfaces and on a XIII century fresco that could not be cleaned using conventional methods. Structural information on nanofluids has been gathered by means of small-angle neutron scattering, dynamic light scattering and nuclear magnetic resonance with diffusion monitoring. Beside the above-mentioned advantages, these formulations turned out to be considerably more efficient in the removal of polymer coatings than those based on anionic surfactants. Our results indicate that the cleaning process most likely consists of two steps: initially, the polymer film is swollen by the MEK dissolved in the continuous domain of the nanofluid; in the second stage, surfactant aggregates come into play by promoting the removal of the polymer film with a detergency-like mechanism. The efficiency can be tuned by the composition and nature of amphiphiles and is promoted by working as close as possible to the cloud point of the formulation, where the second step proceeds at maximum rate.

  3. Orientational bonding model for temperature dependent micellization and solubility of diblock surfactants

    NASA Astrophysics Data System (ADS)

    Davis, Jonathan R.; Panagiotopoulos, Athanassios Z.

    2009-09-01

    A lattice model for diblock surfactants that incorporates orientational bonding has been developed for studying self-assembly in dilute solutions. Using grand canonical Monte Carlo simulations with histogram reweighting and mixed field finite size scaling, we examine the effect of amphiphile architecture on phase transitions and distinguish between first order transitions that create a disordered liquid phase and higher order transitions that indicate the formation of finite sized aggregates. As the solution temperature increases, we find that the critical micelle concentration for the orientational bonding model surfactants reaches a minimum value at a temperature that can be controlled by varying the number of bonding orientations between the solvophobic surfactant monomers and the implicit solvent. This trend is qualitatively similar to experimental data for ionic and nonionic surfactants in aqueous solutions. A comparable dependence on temperature is observed in the limit of amphiphile solubility for phase separating systems. None of the model surfactants considered here undergo both a first and a higher order transition over the range of densities and temperatures examined.

  4. Charged Dust Aggregate Interactions

    NASA Astrophysics Data System (ADS)

    Matthews, Lorin; Hyde, Truell

    2015-11-01

    A proper understanding of the behavior of dust particle aggregates immersed in a complex plasma first requires a knowledge of the basic properties of the system. Among the most important of these are the net electrostatic charge and higher multipole moments on the dust aggregate as well as the manner in which the aggregate interacts with the local electrostatic fields. The formation of elongated, fractal-like aggregates levitating in the sheath electric field of a weakly ionized RF generated plasma discharge has recently been observed experimentally. The resulting data has shown that as aggregates approach one another, they can both accelerate and rotate. At equilibrium, aggregates are observed to levitate with regular spacing, rotating about their long axis aligned parallel to the sheath electric field. Since gas drag tends to slow any such rotation, energy must be constantly fed into the system in order to sustain it. A numerical model designed to analyze this motion provides both the electrostatic charge and higher multipole moments of the aggregate while including the forces due to thermophoresis, neutral gas drag, and the ion wakefield. This model will be used to investigate the ambient conditions leading to the observed interactions. This research is funded by NSF Grant 1414523.

  5. Solution properties and emulsification properties of amino acid-based gemini surfactants derived from cysteine.

    PubMed

    Yoshimura, Tomokazu; Sakato, Ayako; Esumi, Kunio

    2013-01-01

    Amino acid-based anionic gemini surfactants (2C(n)diCys, where n represents an alkyl chain with a length of 10, 12, or 14 carbons and "di" and "Cys" indicate adipoyl and cysteine, respectively) were synthesized using the amino acid cysteine. Biodegradability, equilibrium surface tension, and dynamic light scattering were used to characterize the properties of gemini surfactants. Additionally, the effects of alkyl chain length, number of chains, and structure on these properties were evaluated by comparing previously reported gemini surfactants derived from cystine (2C(n)Cys) and monomeric surfactants (C(n)Cys). 2C(n)diCys shows relatively higher biodegradability than does C(n)Cys and previously reported sugar-based gemini surfactants. Both critical micelle concentration (CMC) and surface tension decrease when alkyl chain length is increased from 10 to 12, while a further increase in chain length to 14 results in increased CMC and surface tension. This indicates that long-chain gemini surfactants have a decreased aggregation tendency due to the steric hindrance of the bulky spacer as well as premicelle formation at concentrations below the CMC and are poorly packed at the air/water interface. Formation of micelles (measuring 2 to 5 nm in solution) from 2C(n)diCys shows no dependence on alkyl chain length. Further, shaking the mixtures of aqueous 2C(n)diCys surfactant solutions and squalane results in the formation of oil-in-water type emulsions. The highly stable emulsions are formed using 2C₁₂diCys or 2C₁₄diCys solution and squalane in a 1:1 or 2:1 volume ratio.

  6. Interactions between dyes and surfactants in inkjet ink used for textiles.

    PubMed

    Park, Ju-Young; Hirata, Yuichi; Hamada, Kunihiro

    2011-01-01

    Optimal preparation of inkjet ink should be possible through the elucidation of the relationship between dye/additive interactions and ink performance. In the present study, the interactions between the dyes and surfactant additives were investigated. To investigate the physical properties of the surfactants used, the critical micelle concentration (cmc) and the aggregation number (N) were determined using electron spin resonance, static light-scattering, and fluorescence spectroscopy. On the basis of the cmc and N values, the visible absorption spectra of aqueous acid dye solutions (C. I. Acid Red 88, 13, and 27) containing surfactants (i.e., Surfynol 465 (S465), octaethylene glycol monododecyl ether (OGDE), and sodium dodecyl sulfate (SDS)) were measured. From the dependence of the spectra on the surfactant concentration, the binding constants, K(bind), of the acid dyes with the surfactant micelles were calculated: the K(bind) values decreased in the order of C. I. Acid Red 88 > C. I. Acid Red 13 > C. I. Acid Red 27, which correlates with the number of sulfonate groups. For all the dyes, the K(bind) values with the nonionic surfactants, S465 and OGDE, were much larger than those with the anionic surfactant, SDS. The thermodynamic parameters of the binding, i.e., the enthalpy change, ΔH(bind), and entropy change, ΔS(bind), were determined via the temperature dependence of the binding constants. The positive ΔH(bind) value for S465 indicates an endothermic binding process, while the negative ΔH(bind) values for SDS and OGDE indicate exothermic binding processes.

  7. Two sides of the coin. Part 1. Lipid and surfactant self-assembly revisited.

    PubMed

    Ninham, Barry W; Larsson, Kåre; Lo Nostro, Pierandrea

    2017-04-01

    Hofmeister, specific ion effects, hydration and van der Waals forces at and between interfaces are factors that determine curvature and microstructure in self assembled aggregates of surfactants and lipids; and in microemulsions. Lipid and surfactant head group interactions and between aggregates vary enormously and are highly specific. They act on the hydrophilic side of a bilayer, micelle or other self assembled aggregate. It is only over the last three decades that the origin of Hofmeister effects has become generally understood. Knowledge of their systematics now provides much flexibility in designing nanostructured fluids. The other side of the coin involves equally specific forces. These (opposing) forces work on the hydrophobic side of amphiphilic interfaces. They are due to the interaction of hydrocarbons and other "oils" with hydrophobic tails of surfactants and lipids. The specificity of oleophilic solutes in microemulsions and lipid membranes provides a counterpoint to Hofmeister effects and hydration. Together with global packing constraints these effects determine microstructure. Another factor that has hardly been recognised is the role of dissolved gas. This introduces further, qualitative changes in forces that prescribe microstructure. The systematics of these effects and their interplay are elucidated. Awareness of these competing factors facilitates formulation of self assembled nanostructured fluids. New and predictable geometries that emerge naturally provide insights into a variety of biological phenomena like anaesthetic and pheromone action and transmission of the nervous impulse (see Part 2).

  8. Surfactant transport on viscous bilayers

    NASA Astrophysics Data System (ADS)

    Matar, Omar; Craster, Richard; Warner, Mark

    2001-11-01

    We model the external delivery of surfactant to pulmonary airways, an integral part of Surfactant Replacement Therapy (SRT), a method of treatment of Respiratory Distress Syndrome in neonates. We examine the spreading dynamics of insoluble surfactant by Marangoni stresses along the mucus-perciliary liquid bilayers that line the inside of airways. The bilayer is modelled as a thin highly viscous mucus surface film (mucus) overlying a much less viscous perciliary liquid layer (PCL); this is appropriate for small airways. By exploiting this large viscosity constrast, a variant of standard lubrication theory is adopted wherein terms, which would have otherwise been neglected in the lubrication approximation, are promoted in order to model correctly the presence of the mucus. Inclusion of van der Waals forces in the model permit the study of the effect of this mucus 'skin' on the possibility of bilayer rupture, a potential cause of failure of SRT. We find that increasing the viscosity contrast and initial mucus layer thickness delays the onset of rupture, while increasing the relative significance of Marangoni stresses leads to more marked thinning and rapid bilayer rupture [1]. [1] O. K. Matar, R. V. Craster and M. R. Warner, submitted to J. Fluid Mech. (2001).

  9. Aggregate and the environment

    USGS Publications Warehouse

    Langer, William H.; Drew, Lawrence J.; Sachs, J.S.

    2004-01-01

    This book is designed to help you understand our aggregate resources-their importance, where they come from, how they are processed for our use, the environmental concerns related to their mining and processing, how those concerns are addressed, and the policies and regulations designed to safeguard workers, neighbors, and the environment from the negative impacts of aggregate mining. We hope this understanding will help prepare you to be involved in decisions that need to be made-individually and as a society-to be good stewards of our aggregate resources and our living planet.

  10. Solution behavior of surfactants. Vol. 1

    SciTech Connect

    Mittal, K.L.; Fendler, E.J.

    1983-01-01

    This three-volume set constitutes the proceedings of the 4th International Symposium on Surfactants in Solution held in Sweden in 1982. Volume 1 considers phase behavior and phase equilibria in surfactant solutions (e.g., thermodynamics of partially miscible micelles and liquid crystals; multi-method characterization of micelles; the surfactant-block model of micelle structure). Volume 2 considers thermodynamic and kinetic aspects of micellization (computation of the micelle-size distribution; salt-induced sphere-rod transition of ionic micelles; micellar effects on kinetics and equilibria of electron transfer reactions). Volume 3 considers reverse micelles, microemulsions and reactions in microemulsions. Topics covered include solubilization, surfactants in analytical chemistry, the adsorption and binding of surfactants, the polymerization of organized surfactant assemblies, light scattering by liquid surfaces, and vesicles.

  11. Imaging Extrasolar Giant Planets

    NASA Astrophysics Data System (ADS)

    Bowler, Brendan P.

    2016-10-01

    High-contrast adaptive optics (AO) imaging is a powerful technique to probe the architectures of planetary systems from the outside-in and survey the atmospheres of self-luminous giant planets. Direct imaging has rapidly matured over the past decade and especially the last few years with the advent of high-order AO systems, dedicated planet-finding instruments with specialized coronagraphs, and innovative observing and post-processing strategies to suppress speckle noise. This review summarizes recent progress in high-contrast imaging with particular emphasis on observational results, discoveries near and below the deuterium-burning limit, and a practical overview of large-scale surveys and dedicated instruments. I conclude with a statistical meta-analysis of deep imaging surveys in the literature. Based on observations of 384 unique and single young (≈5-300 Myr) stars spanning stellar masses between 0.1 and 3.0 M ⊙, the overall occurrence rate of 5-13 M Jup companions at orbital distances of 30-300 au is {0.6}-0.5+0.7 % assuming hot-start evolutionary models. The most massive giant planets regularly accessible to direct imaging are about as rare as hot Jupiters are around Sun-like stars. Dividing this sample into individual stellar mass bins does not reveal any statistically significant trend in planet frequency with host mass: giant planets are found around {2.8}-2.3+3.7 % of BA stars, <4.1% of FGK stars, and <3.9% of M dwarfs. Looking forward, extreme AO systems and the next generation of ground- and space-based telescopes with smaller inner working angles and deeper detection limits will increase the pace of discovery to ultimately map the demographics, composition, evolution, and origin of planets spanning a broad range of masses and ages.

  12. Marine aggregate dynamics

    NASA Astrophysics Data System (ADS)

    The direction and scope of the Office of Naval Research's Marine Aggregate Dynamics Accelerated Research Initiative will be the topic of an open-house style meeting February 14, 7:30-10:00 P.M. in Ballroom D of the Hyatt Regency New Orleans at the Louisiana Superdome. This meeting is scheduled during the AGU/American Society of Limnology and Oceanography Ocean Sciences Meeting February 12-16 in New Orleans.The critical focus of the ARI is the measurement and modeling of the dynamics of the biological, physical, chemical and molecular processes that drive aggregation and produce aggregates. This new ARI will provide funding in Fiscal Years 1991-1995 to identify and quantify mechanisms that determine the distribution, abundance and size spectrum of aggregated particulate matter in the ocean.

  13. Protein Colloidal Aggregation Project

    NASA Technical Reports Server (NTRS)

    Oliva-Buisson, Yvette J. (Compiler)

    2014-01-01

    To investigate the pathways and kinetics of protein aggregation to allow accurate predictive modeling of the process and evaluation of potential inhibitors to prevalent diseases including cataract formation, chronic traumatic encephalopathy, Alzheimer's Disease, Parkinson's Disease and others.

  14. Aggregation and Averaging.

    ERIC Educational Resources Information Center

    Siegel, Irving H.

    The arithmetic processes of aggregation and averaging are basic to quantitative investigations of employment, unemployment, and related concepts. In explaining these concepts, this report stresses need for accuracy and consistency in measurements, and describes tools for analyzing alternative measures. (BH)

  15. A Giant Urethral Calculus.

    PubMed

    Sigdel, G; Agarwal, A; Keshaw, B W

    2014-01-01

    Urethral calculi are rare forms of urolithiasis. Majority of the calculi are migratory from urinary bladder or upper urinary tract. Primary urethral calculi usually occur in presence of urethral stricture or diverticulum. In this article we report a case of a giant posterior urethral calculus measuring 7x3x2 cm in a 47 years old male. Patient presented with acute retention of urine which was preceded by burning micturition and dribbling of urine for one week. The calculus was pushed in to the bladder through the cystoscope and was removed by suprapubic cystolithotomy.

  16. Giant left ventricular pseudoaneurysm.

    PubMed

    Prakash, Sumi; Garg, Nadish; Xie, Gong-Yuan; Dellsperger, Kevin C

    2010-01-01

    Left ventricular (LV) pseudoaneurysm (PS) is an uncommon, often fatal complication associated with myocardial infarction, cardiothoracic surgery, trauma, and, rarely, infective endocarditis. A 28-year-old man with prior history of bioprosthetic mitral valve replacement presented with congestive heart failure and bacteremia with Abiotrophia granulitica. Transesophageal echocardiogram showed bioprosthesis dysfunction, large vegetations, mitral regurgitation, and probable PS. Cardiac and chest CT confirmed a PS communicating with the left ventricle Patient had pulseless electrical activity and died. Autopsy showed a giant PS with layered thrombus and pseudo-endothelialized cavity. Our case highlights the importance of multimodality imaging as an important tool in management of PS.

  17. Remediation using trace element humate surfactant

    SciTech Connect

    Riddle, Catherine Lynn; Taylor, Steven Cheney; Bruhn, Debra Fox

    2016-08-30

    A method of remediation at a remediation site having one or more undesirable conditions in which one or more soil characteristics, preferably soil pH and/or elemental concentrations, are measured at a remediation site. A trace element humate surfactant composition is prepared comprising a humate solution, element solution and at least one surfactant. The prepared trace element humate surfactant composition is then dispensed onto the remediation site whereby the trace element humate surfactant composition will reduce the amount of undesirable compounds by promoting growth of native species activity. By promoting native species activity, remediation occurs quickly and environmental impact is minimal.

  18. Inhibition of Aflatoxin Production by Surfactants

    PubMed Central

    Rodriguez, Susan B.; Mahoney, Noreen E.

    1994-01-01

    The effect of 12 surfactants on aflatoxin production, growth, and conidial germination by the fungus Aspergillus flavus is reported. Five nonionic surfactants, Triton X-100, Tergitol NP-7, Tergitol NP-10, polyoxyethylene (POE) 10 lauryl ether, and Latron AG-98, reduced aflatoxin production by 96 to 99% at 1% (wt/vol). Colony growth was restricted by the five nonionic surfactants at this concentration. Aflatoxin production was inhibited 31 to 53% by lower concentrations of Triton X-100 (0.001 to 0.0001%) at which colony growth was not affected. Triton X-301, a POE-derived anionic surfactant, had an effect on colony growth and aflatoxin production similar to that of the five POE-derived nonionic surfactants. Sodium dodecyl sulfate (SDS), an anionic surfactant, and dodecyltrimethylammonium bromide, a cationic surfactant, suppressed conidial germination at 1% (wt/vol). SDS had no effect on aflatoxin production or colony growth at 0.001%. The degree of aflatoxin inhibition by a surfactant appears to be a function of the length of the hydrophobic and hydrophilic chains of POE-derived surfactants. Images PMID:16349144

  19. An electronic spectroscopic study of micellisation of surfactants and solvation of homomicelles formed by cationic or anionic surfactants using a solvatochromic electron donor acceptor dye.

    PubMed

    Kedia, Niraja; Sarkar, Amrita; Purkayastha, Pradipta; Bagchi, Sanjib

    2014-10-15

    Solvatochromic absorption and fluorescence bands of a donor-acceptor dye have been utilised for following the micellisation and for probing the polarity of the aqueous homomicellar phase provided separately by cationic (cetyltrimethylammonimum bromide, CTAB and dodecyltrimethylammonimum bromide, DTAB) and anionic (sodium dodecyl sulphate, SDS) surfactant. Results indicate that for a low concentration of surfactant (below cmc) the dye forms a dimer in aqueous solution. In a micellar media, however, the dye exists as monomers. A strong dye-micelle interaction, as indicated by the shift of the solvatochromic intramolecular charge transfer band of the dye, has also been indicated. The absorption and fluorescence parameters of the dye have been utilised for studying the onset of aggregation of the surfactants. An iterative procedure has been developed for the estimation of cmc and the distribution coefficient (KD) of the dye between the aqueous and the micellar phase. All the parameters provide convergent values of cmc. A high value of KD indicates that the dye exists predominantly in the micellar phase. The solvatochromic parameters characterising the dipolarity-polarisability (π(*)) and H-bond donation ability (α) of modes of solvation interaction in different micellar media have been estimated. The dye is found to distribute itself between two regions in a catanionic vesicle formed by surfactants SDS and DTAB, one being relatively polar than other. The distribution coefficients have been found out using the fluorescence data.

  20. Fluorescence spectroscopy as a specific tool for the interaction study of two surfactants with natural and synthetic organic compounds

    NASA Astrophysics Data System (ADS)

    Jung, Aude-Valérie; Frochot, Céline; Bersillon, Jean-Luc

    2016-04-01

    Four different techniques were used to study the binding of cationic cetyltrimethylammonium bromide (CTAB) and non-ionic nonylphenylethoxyl (NPE) surfactants to three synthetic organic components that mimic humic-like aggregates and to two natural aggregated humic substances (HS) extracted from aquatic suspended matter. The composition of synthetic organic components were chosen to be similar to high molecular weight highly processed terrigenous HS and low and high molecular weight less processed terrigenous (or aquatic terrigenous) HS. The natural HS were extracted under two different meteorological conditions (rainy and dry periods). No significant interaction between the non-ionic surfactant and any of the studied compounds was found. Concerning CTAB; pH, conductivity and turbidity measurements, along with fluorescence spectroscopy were combined to provide a better understanding of interactions between organic aggregates and the surfactant. The spectroscopic data show that a "highly processed terrigenous HS" fluorophore interacts in a different way with the cationic surfactant than an "aquatic terrigenous (or less processed terrigenous) HS" fluorophore does. Under similar conditions, some spectral changes in the fluorescence signal are correlated to changes in non-specific physical-chemical parameters (pH, turbidity, conductivity) for the organic compounds tested. The complexation mechanism is essentially governed by charge neutralization, which can be monitored specifically by the fluorescence of the organic moieties.

  1. Specific ion effects on the self-assembly of ionic surfactants: a molecular thermodynamic theory of micellization with dispersion forces.

    PubMed

    Lukanov, Boris; Firoozabadi, Abbas

    2014-06-10

    The self-assembly of amphiphilic molecules is a key process in numerous biological and chemical systems. When salts are present, the formation and properties of molecular aggregates can be altered dramatically by the specific types of ions in the electrolyte solution. We present a molecular thermodynamic model for the micellization of ionic surfactants that incorporates quantum dispersion forces to account for specific ion effects explicitly through ionic polarizabilities and sizes. We assume that counterions are distributed in the diffuse region according to a modified Poisson-Boltzmann equation and can reach all the way to the micelle surface of charge. Stern layers of steric exclusion or distances of closest approach are not imposed externally; these are accounted for through the counterion radial distribution profiles due to the incorporation of dispersion potentials, resulting in a simple and straightforward treatment. There are no adjustable or fitted parameters in the model, which allows for a priori quantitative prediction of surfactant aggregation behavior based only on the initial composition of the system and the surfactant molecular structure. The theory is validated by accurately predicting the critical micelle concentration (CMC) for the well-studied sodium dodecyl sulfate (SDS) surfactant and its alkaline-counterion derivatives in mono- and divalent salts, as well as the molecular structure parameters of SDS micelles such as aggregation numbers and micelle surface potential.

  2. Pulmonary surfactant protein A interacts with gel-like regions in monolayers of pulmonary surfactant lipid extract.

    PubMed Central

    Worthman, L A; Nag, K; Rich, N; Ruano, M L; Casals, C; Pérez-Gil, J; Keough, K M

    2000-01-01

    Epifluorescence microscopy was used to investigate the interaction of pulmonary surfactant protein A (SP-A) with spread monolayers of porcine surfactant lipid extract (PSLE) containing 1 mol % fluorescent probe (NBD-PC) spread on a saline subphase (145 mM NaCl, 5 mM Tris-HCl, pH 6.9) containing 0, 0.13, or 0.16 microg/ml SP-A and 0, 1.64, or 5 mM CaCl(2). In the absence of SP-A, no differences were noted in PSLE monolayers in the absence or presence of Ca(2+). Circular probe-excluded (dark) domains were observed against a fluorescent background at low surface pressures (pi approximately 5 mN/m) and the domains grew in size with increasing pi. Above 25 mN/m, the domain size decreased with increasing pi. The amount of observable dark phase was maximal at 18% of the total film area at pi approximately 25 mN/m, then decreased to approximately 3% at pi approximately 40 mN/m. The addition of 0.16 microg/ml SP-A with 0 or 1.64 mM Ca(2+) in the subphase caused an aggregation of dark domains into a loose network, and the total amount of dark phase was increased to approximately 25% between pi of 10-28 mN/m. Monolayer features in the presence of 5 mM Ca(2+) and SP-A were not substantially different from those spread in the absence of SP-A, likely due to a self-association and aggregation of SP-A in the presence of higher concentrations of Ca(2+). PSLE films were spread on a subphase containing 0.16 microg/ml SP-A with covalently bound Texas Red (TR-SP-A). In the absence of Ca(2+), TR-SP-A associated with the reorganized dark phase (as seen with the lipid probe). The presence of 5 mM Ca(2+) resulted in an appearance of TR-SP-A in the fluid phase and of aggregates at the fluid/gel phase boundaries of the monolayers. This study suggests that SP-A associates with PSLE monolayers, particularly with condensed or solid phase lipid, and results in some reorganization of rigid phase lipid in surfactant monolayers. PMID:11053138

  3. Giant papillary conjunctivitis.

    PubMed Central

    Donshik, P C

    1994-01-01

    Giant papillary conjunctivitis is a syndrome found frequently as a complication of contact lenses. Many variables can affect the onset and severity of the presenting signs and symptoms. Rigid gas permeable contact lenses appear to result in less severe signs and symptoms, with a longer time before the development of giant papillary conjunctivitis. Nonionic, low-water-content soft contact lenses tend to produce less severe signs and symptoms than ionic, low-water-content soft contact lenses. Enzymatic treatment appears to lessen the severity of signs and symptoms. The association of an allergy appears to play a role in the onset of the severity of the signs and symptoms but does not appear to affect the final ability of the individual to wear contact lenses. Using multiple treatment options, such as changing the polymer to a glyceryl methyl methacrylate or a rigid lens, or utilizing a soft lens on a frequent-replacement basis, can result in a success rate of over 90%. In individuals who still have a return of symptoms, the use of topical mast cell stabilizers or a nonsteroidal anti-inflammatory drug as an adjunctive therapy offers the added possibility of keeping these patients in contact lenses. Images FIGURE 1 FIGURE 2 FIGURE 3 FIGURE 4 FIGURE 5 FIGURE 6 FIGURE 7 FIGURE 11 A FIGURE 11 B FIGURE 11 C FIGURE 11 D PMID:7886881

  4. Giant extragenital Bowen's disease.

    PubMed

    Bakardzhiev, Ilko; Chokoeva, Anastasiya Atanasova; Tchernev, Georgi

    2015-12-01

    Giant extragenital forms of Morbus Bowen are extremely rare. The already described cases in the word literature are most commonly with periungual localization, as well as located on the foot and neck area. The clinical manifestation is presented most commonly by non-specific erythematous to erythematous-squamous plaques or papules, which is confusing to the clinician. From the pathogenic point of view, it is important to be confirmed or rejected the presence of human papilloma viruses (HPVs) in each case of affected patient, as this information is mandatory in respect to the adequate selection of the subsequent regimen. If HPVs are detected, systemic antiviral therapy could be initiated to reduce the size of the lesions before subsequent surgical eradication. A postoperative prevention through vaccination could be also considered additionally. In cases of HPV-negative giant extragenital forms of Morbus Bowen (as in the described patient), the focus should be on local immunomodulation by substances such as imiquimod, which reduce the size of the lesions, thereby creating optimal opportunities for their future surgical eradication. Other possible options described in the literature include topical application of 5-fluorouracil, photodynamic therapy, cryotherapy, and laser therapy (carbon dioxide laser). The choice of the most appropriate regimen should have been an individual decision of the clinician, considering also the location and the extent of the lesion.

  5. Gas Giants Form Quickly

    NASA Technical Reports Server (NTRS)

    2007-01-01

    This is an artist's concept of a hypothetical 10-million-year-old star system. The bright blur at the center is a star much like our sun. The other orb in the image is a gas-giant planet like Jupiter. Wisps of white throughout the image represent traces of gas.

    Astronomers using NASA's Spitzer Space Telescope have found evidence showing that gas-giant planets either form within the first 10 million years of a sun-like star's life, or not at all. The lifespan for sun-like stars is about 10 billion years.

    The scientists came to this conclusion after searching for traces of gas around 15 different sun-like stars, most with ages ranging from 3 million to 30 million years. With the help of Spitzer's Infrared Spectrometer instrument, they were able to search for relatively warm gas in the inner regions of these star systems, an area comparable to the zone between Earth and Jupiter in our own solar system. They also used ground-based radio telescopes to search for cooler gas in the outer regions of these systems, an area comparable to the zone around Saturn and beyond.

  6. Giant Intradiverticular Bladder Tumor

    PubMed Central

    Noh, Mohamad Syafeeq Faeez Md; Aziz, Ahmad Fuad Abdul; Ghani, Khairul Asri Mohd; Siang, Christopher Lee Kheng; Yunus, Rosna; Yusof, Mubarak Mohd

    2017-01-01

    Patient: Male, 74 Final Diagnosis: Giant intradiverticular bladder tumor with metastasis Symptoms: Hematuria Medication:— Clinical Procedure: — Specialty: Urology Objective: Rare disease Background: Intradiverticular bladder tumors are rare. This renders diagnosis of an intradiverticular bladder tumor difficult. Imaging plays a vital role in achieving the diagnosis, and subsequently staging of the disease. Case Report: A 74-year-old male presented to our center with a few months history of constitutional symptoms. Upon further history, he reported hematuria two months prior to presentation, which stopped temporarily, only to recur a few days prior to coming to the hospital. The patient admitted to having lower urinary tract symptoms. However, there was no dysuria, no sandy urine, and no fever. Palpation of his abdomen revealed a vague mass at the suprapubic region, which was non tender. In view of his history and the clinical examination findings, an ultrasound of the abdomen and computed tomography (CT) was arranged. These investigations revealed a giant tumor that seemed to be arising from a bladder diverticulum, with a mass effect and hydronephrosis. He later underwent operative intervention. Conclusions: Intradiverticular bladder tumors may present a challenge to the treating physician in an atypical presentation; thus requiring a high index of suspicion and knowledge of tumor pathophysiology. As illustrated in our case, CT with its wide availability and multiplanar imaging capabilities offers a useful means for diagnosis, disease staging, operative planning, and follow-up. PMID:28246375

  7. Chest position and pulmonary deposition of surfactant in surfactant depleted rabbits.

    PubMed Central

    Broadbent, R.; Fok, T. F.; Dolovich, M.; Watts, J.; Coates, G.; Bowen, B.; Kirpalani, H.

    1995-01-01

    AIMS--To investigate the correlation between chest position and the distribution of surfactant in the lungs of surfactant depleted rabbits, to corroborate current guidelines on the intratracheal instillation of exogenous surfactant in newborns. METHODS--Twelve tracheotomised rabbits, depleted of pulmonary surfactant by saline bronchoalveolar lavage, were given intratracheal 99m Technetium labelled Exosurf in three positions (prone, right side down, and left side down) (n = 4 in each group). They were monitored for 10 minutes using dynamic gamma scintigraphy monitoring. Instillation completed, the lateral lying animals were turned to the opposite side to determine whether redistribution of the surfactant had taken place. The amount of radiolabelled surfactant deposited at the peripheral, central, dorsal and ventral parts of the lungs was then estimated by gamma counting of the lung sections at necropsy. RESULTS--Both gamma scintigraphy and gamma counting showed similar rates and total amount of surfactant accumulation in both lungs of the prone animals. In the lateral lying animals surfactant accumulated at a significantly faster rate in the dependent lungs: the amount of surfactant deposition was three to 14-fold that in the raised lungs (p = 0.017; nested ANOVA). Changing the chest position immediately after instillation did not redistribute the surfactant. In all three groups of animals there was no significant difference in deposition between the peripheral, central, ventral and dorsal parts of the lungs. CONCLUSIONS--Pulmonary distribution of intratracheally instilled surfactant is largely determined by gravity, and changing the chest position after instillation does not result in any redistribution of the surfactant. During the instillation of exogenous surfactant to newborn infants, keeping the chest in the horizontal position may therefore result in the most even distribution of the surfactant in the two lungs. Further deposition studies are required to

  8. Reinflating Giant Planets

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2017-01-01

    Two new, large gas-giant exoplanets have been discovered orbiting close to their host stars. A recent study examining these planets and others like them may help us to better understand what happens to close-in hot Jupiters as their host stars reach the end of their main-sequence lives.OversizedGiantsUnbinned transit light curves for HAT-P-65b. [Adapted from Hartman et al. 2016]The discovery of HAT-P-65b and HAT-P-66b, two new transiting hot Jupiters, is intriguing. These planets have periods of just under 3 days and masses of roughly 0.5 and 0.8 times that of Jupiter, but their sizes are whats really interesting: they have inflated radii of 1.89 and 1.59 times that of Jupiter.These two planets, discovered using the Hungarian-made Automated Telescope Network (HATNet) in Arizona and Hawaii, mark the latest in an ever-growing sample of gas-giant exoplanets with radii larger than expected based on theoretical planetary structure models.What causes this discrepancy? Did the planets just fail to contract to the expected size when they were initially formed, or were they reinflated later in their lifetimes? If the latter, how? These are questions that scientists are only now starting to be able to address using statistics of the sample of close-in, transiting planets.Unbinned transit light curves for HAT-P-66b. [Hartman et al. 2016]Exploring Other PlanetsLed by Joel Hartman (Princeton University), the team that discovered HAT-P-65b and HAT-P-66b has examined these planets observed parameters and those of dozens of other known close-in, transiting exoplanets discovered with a variety of transiting exoplanet missions: HAT, WASP, Kepler, TrES, and KELT. Hartman and collaborators used this sample to draw conclusions about what causes some of these planets to have such large radii.The team found that there is a statistically significant correlation between the radii of close-in giant planets and the fractional ages of their host stars (i.e., the stars age divided by its full

  9. Allometry indicates giant eyes of giant squid are not exceptional

    PubMed Central

    2013-01-01

    Background The eyes of giant and colossal squid are among the largest eyes in the history of life. It was recently proposed that sperm whale predation is the main driver of eye size evolution in giant squid, on the basis of an optical model that suggested optimal performance in detecting large luminous visual targets such as whales in the deep sea. However, it is poorly understood how the eye size of giant and colossal squid compares to that of other aquatic organisms when scaling effects are considered. Results We performed a large-scale comparative study that included 87 squid species and 237 species of acanthomorph fish. While squid have larger eyes than most acanthomorphs, a comparison of relative eye size among squid suggests that giant and colossal squid do not have unusually large eyes. After revising constants used in a previous model we found that large eyes perform equally well in detecting point targets and large luminous targets in the deep sea. Conclusions The eyes of giant and colossal squid do not appear exceptionally large when allometric effects are considered. It is probable that the giant eyes of giant squid result from a phylogenetically conserved developmental pattern manifested in very large animals. Whatever the cause of large eyes, they appear to have several advantages for vision in the reduced light of the deep mesopelagic zone. PMID:23418818

  10. Hemolysis by surfactants--A review.

    PubMed

    Manaargadoo-Catin, Magalie; Ali-Cherif, Anaïs; Pougnas, Jean-Luc; Perrin, Catherine

    2016-02-01

    An overview of the use of surfactants for erythrocyte lysis and their cell membrane action mechanisms is given. Erythrocyte membrane characteristics and its association with the cell cytoskeleton are presented in order to complete understanding of the erythrocyte membrane distortion. Cell homeostasis disturbances caused by surfactants might induce changes starting from shape modification to cell lysis. Two main mechanisms are hypothesized in literature which are osmotic lysis and lysis by solubilization even if the boundary between them is not clearly defined. Another specific mechanism based on the formation of membrane pores is suggested in the particular case of saponins. The lytic potency of a surfactant is related to its affinity for the membrane and the modification of the lipid membrane curvature. This is to be related to the surfactant shape defined by its hydrophobic and hydrophilic moieties but also by experimental conditions. As a consequence, prediction of the hemolytic potency of a given surfactant is challenging. Several studies are focused on the relation between surfactant erythrolytic potency and their physico-chemical parameters such as the critical micellar concentration (CMC), the hydrophile-lipophile balance (HLB), the surfactant membrane/water partition coefficient (K) or the packing parameter (P). The CMC is one of the most important factors considered even if a lytic activity cut-off effect points out that the only consideration of CMC not enough predictive. The relation K.CMC must be considered in addition to the CMC to predict the surfactant lytic capacity within the same family of non ionic surfactant. Those surfactant structure/lytic activity studies demonstrate the requirement to take into account a combination of physico-chemical parameters to understand and foresee surfactant lytic potency.

  11. Fibronectin Aggregation and Assembly

    PubMed Central

    Ohashi, Tomoo; Erickson, Harold P.

    2011-01-01

    The mechanism of fibronectin (FN) assembly and the self-association sites are still unclear and contradictory, although the N-terminal 70-kDa region (I1–9) is commonly accepted as one of the assembly sites. We previously found that I1–9 binds to superfibronectin, which is an artificial FN aggregate induced by anastellin. In the present study, we found that I1–9 bound to the aggregate formed by anastellin and a small FN fragment, III1–2. An engineered disulfide bond in III2, which stabilizes folding, inhibited aggregation, but a disulfide bond in III1 did not. A gelatin precipitation assay showed that I1–9 did not interact with anastellin, III1, III2, III1–2, or several III1–2 mutants including III1–2KADA. (In contrast to previous studies, we found that the III1–2KADA mutant was identical in conformation to wild-type III1–2.) Because I1–9 only bound to the aggregate and the unfolding of III2 played a role in aggregation, we generated a III2 domain that was destabilized by deletion of the G strand. This mutant bound I1–9 as shown by the gelatin precipitation assay and fluorescence resonance energy transfer analysis, and it inhibited FN matrix assembly when added to cell culture. Next, we introduced disulfide mutations into full-length FN. Three disulfide locks in III2, III3, and III11 were required to dramatically reduce anastellin-induced aggregation. When we tested the disulfide mutants in cell culture, only the disulfide bond in III2 reduced the FN matrix. These results suggest that the unfolding of III2 is one of the key factors for FN aggregation and assembly. PMID:21949131

  12. Selective enrichment and sensitive detection of candidate disease biomarker using a novel surfactant-coated magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Capangpangan, R. Y.; dela Rosa, M. A. C.; Chang, C. H.; Wang, W. C.; Peng, J.; Shih, S. J.; Chiang, M. H.; Tzou, D. L.; Lin, C. C.; Chen, Y. J.

    2014-08-01

    In this study, novel surfactant-coated magnetic nanoparticles were synthesized and evaluated for enrichment performance towards the sensitive detection of disease biomarkers. Surfactants with phosphate ester groups (RD35A and RD66) were used as a coating to reduce aggregation and to enhance the nanoparticle dispersion. Importantly, sensitive enrichment of the target proteins using the antibody-functionalized magnetic nanoparticles (Ab@MNP) was obtained, with a five-fold increase in recovery compared to uncoated magnetic nanoparticles. Similarly, phosphopeptide enrichment using the NTA@MNP in standard samples showed that the nanoparticles could selectively enrich phosphorylated peptides.

  13. Effect of surfactant surface coverage on formation of solid lipid nanoparticles (SLN).

    PubMed

    Helgason, T; Awad, T S; Kristbergsson, K; McClements, D J; Weiss, J

    2009-06-01

    The effect of surfactant surface coverage on formation and stability of Tween 20 stabilized tripalmitin solid lipid nanoparticles (SLN) was investigated. A lipid phase (10% w/w tripalmitin) and an aqueous phase (2% w/w Tween 20, 10 mM phosphate buffer, pH 7) were heated to 75 degrees C and then homogenized using a microfluidizer. The resulting oil-in-water emulsion was kept at a temperature (37 degrees C) above the crystallization temperature of the tripalmitin to prevent solidification of emulsion droplets, and additional surfactant at various concentrations (0-5% w/w Tween 20) was added. Droplets were then cooled to 5 degrees C to initiate crystallization and stored at 20 degrees C for 24 h. Particle size and/or aggregation were examined visually and by light scattering, and crystallization behavior was examined by differential scanning calorimetry (DSC). Excess Tween 20 concentration remaining in the aqueous phase was measured by surface tensiometry. Emulsion droplets after homogenization had a mean particle diameter of 134.1+/-2.0 nm and a polydispersity index of 0.08+/-0.01. After cooling to 5 degrees C at low Tween 20 concentrations, SLN dispersions rapidly gelled due to aggregation of particles driven by hydrophobic attraction between insufficiently covered lipid crystal surfaces. Upon addition of 1-5% w/w Tween 20, SLN dispersions became increasingly stable. At low added Tween 20 concentration (<1% w/w) the SLN formed gels but only increased slightly at higher surfactant concentrations (>1% w/w). The Tween 20 concentration in the aqueous phase decreased after tripalmitin crystallization suggesting additional surfactant adsorption onto solid surfaces. At higher Tween 20 concentrations, SLN had increasingly complex crystal structures as evidenced by the appearance of additional thermal transition peaks in the DSC. The results suggest that surfactant coverage at the interface may influence crystal structure and stability of solid lipid nanoparticles via

  14. MINERAL-SURFACTANT INTERACTIONS FOR MINIMUM REAGENTS PRECIPITATION AND ADSORPTION FOR IMPROVED OIL RECOVERY

    SciTech Connect

    P. Somasundaran

    2006-04-30

    During this reporting period, further fundamental studies were conducted to understand the mechanism of the interactions between surfactants and minerals with the aim of minimizing chemical loss by adsorption. The effects of pH and mixing ratio on the chemical loss by adsorption were investigated. Some preliminary modeling work has been done towards the aim of developing a guide book to design optimal polymer/surfactant formula based on the understanding of adsorption and orientation of surfactants and their aggregates at solid/liquid interfaces. The study of adsorption of mixed system of n-dodecyl-{beta}-D-maltoside (DM) and dodecyl sulfonate (C{sub 12}SO{sub 3}Na) was continued during this period. Based on the adsorption results, the effects of pH and mixing ratio on reagent loss were quantitatively evaluated. Adsorption of dodecyl maltoside showed a maximum at certain mixing ratio at low pH (3{approx}5), while adsorption of dodecyl maltoside steadily decreased with the increase in C{sub 12}SO{sub 3}Na. Analytical ultracentrifuge technique was employed to study the micellization of DM/C{sub 12}SO{sub 3}Na mixtures. Compositional changes of the aggregates were observed the mixing ratio of the components. Surfactant mixture micellization affects the conformation and orientation of adsorption layer at mineral/water interface and thus the wettability and as a result, the oil release efficiency of the chemical flooding processes. A preliminary term, Reagent Loss Index (RLI), has been proposed to represent the adsorption of all the surfactants in a standardized framework for the development of the models. Previously reported adsorption data have been analyzed using the theoretical framework for the preparation of a guidebook to help optimization of chemical combinations and selection of reagent scheme for enhanced oil recovery.

  15. Surface active complexes formed between keratin polypeptides and ionic surfactants.

    PubMed

    Pan, Fang; Lu, Zhiming; Tucker, Ian; Hosking, Sarah; Petkov, Jordan; Lu, Jian R

    2016-12-15

    Keratins are a group of important proteins in skin and hair and as biomaterials they can provide desirable properties such as strength, biocompatibility, and moisture regaining and retaining. The aim of this work is to develop water-soluble keratin polypeptides from sheep wool and then explore how their surface adsorption behaves with and without surfactants. Successful preparation of keratin samples was demonstrated by identification of the key components from gel electrophoresis and the reproducible production of gram scale samples with and without SDS (sodium dodecylsulphate) during wool fibre dissolution. SDS micelles could reduce the formation of disulphide bonds between keratins during extraction, reducing inter-molecular crosslinking and improving keratin polypeptide solubility. However, Zeta potential measurements of the two polypeptide batches demonstrated almost identical pH dependent surface charge distributions with isoelectric points around pH 3.5, showing complete removal of SDS during purification by dialysis. In spite of different solubility from the two batches of keratin samples prepared, very similar adsorption and aggregation behavior was revealed from surface tension measurements and dynamic light scattering. Mixing of keratin polypeptides with SDS and C12TAB (dodecyltrimethylammonium bromide) led to the formation of keratin-surfactant complexes that were substantially more effective at reducing surface tension than the polypeptides alone, showing great promise in the delivery of keratin polypeptides via the surface active complexes. Neutron reflection measurements revealed the coexistence of surfactant and keratin polypeptides at the interface, thus providing the structural support to the observed surface tension changes associated with the formation of the surface active complexes.

  16. CHARMM36 united atom chain model for lipids and surfactants.

    PubMed

    Lee, Sarah; Tran, Alan; Allsopp, Matthew; Lim, Joseph B; Hénin, Jérôme; Klauda, Jeffery B

    2014-01-16

    Molecular simulations of lipids and surfactants require accurate parameters to reproduce and predict experimental properties. Previously, a united atom (UA) chain model was developed for the CHARMM27/27r lipids (Hénin, J., et al. J. Phys. Chem. B. 2008, 112, 7008-7015) but suffers from the flaw that bilayer simulations using the model require an imposed surface area ensemble, which limits its use to pure bilayer systems. A UA-chain model has been developed based on the CHARMM36 (C36) all-atom lipid parameters, termed C36-UA, and agreed well with bulk, lipid membrane, and micelle formation of a surfactant. Molecular dynamics (MD) simulations of alkanes (heptane and pentadecane) were used to test the validity of C36-UA on density, heat of vaporization, and liquid self-diffusion constants. Then, simulations using C36-UA resulted in accurate properties (surface area per lipid, X-ray and neutron form factors, and chain order parameters) of various saturated- and unsaturated-chain bilayers. When mixed with the all-atom cholesterol model and tested with a series of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC)/cholesterol mixtures, the C36-UA model performed well. Simulations of self-assembly of a surfactant (dodecylphosphocholine, DPC) using C36-UA suggest an aggregation number of 53 ± 11 DPC molecules at 0.45 M of DPC, which agrees well with experimental estimates. Therefore, the C36-UA force field offers a useful alternative to the all-atom C36 lipid force field by requiring less computational cost while still maintaining the same level of accuracy, which may prove useful for large systems with proteins.

  17. Coarse-grained molecular dynamics study on the self-assembly of Gemini surfactants: the effect of spacer length.

    PubMed

    Wang, Pan; Pei, Shuai; Wang, Muhan; Yan, Youguo; Sun, Xiaoli; Zhang, Jun

    2017-02-08

    Gemini surfactants cause a lot of concerns owing to their unusual aggregation morphologies and superior physicochemical properties over the conventional surfactants. Research shows that the unique structure of Gemini surfactants, especially the spacer group, has a great impact on the self-assembly behaviors. To understand the determinants of this behavior on the molecular level, we carried out coarse-grained molecular dynamics (CGMD) simulations on aqueous solutions of alkanediyl-a,w-bis (dimethylcetylammonium bromide)-based surfactants with different spacer group lengths. Our simulation results demonstrated that the self-assembled morphologies of Gemini changed from spherical micelles, wormlike micelles to vesicles with the decrease in the spacer length, which were qualitatively consistent with the experimental observations. Both the microscopic dynamics processes and the self-assembly mechanisms for the formation of spherical micelles, wormlike micelles and vesicles were systematically studied through the CGMD simulations. In addition, based on the microscopic analysis, a strategy was proposed to predict the self-assembled morphology of surfactant-based systems based on simulation. This work shed light on new views in the understanding of the self-assembly of Gemini surfactants at a molecular-level and the proposed predicting strategy showed promise for practical applications.

  18. Surfactants decrease the toxicity of ZnO, TiO2 and Ni nanoparticles to Daphnia magna.

    PubMed

    Oleszczuk, Patryk; Jośko, Izabela; Skwarek, Ewa

    2015-11-01

    The objective of the study was the estimation of the effect of surfactants on the toxicity of ZnO, TiO2 and Ni nanoparticles (ENPs) towards Daphnia magna. The effect of hexadecyltrimethylammonium bromide (CTAB), triton X-100 (TX100) and 4-dodecylbenzenesulfonic acid (SDBS) was tested. The Daphtoxkit F test (conforming to OECD Guideline 202 and ISO 6341) was applied for the toxicity testing. Both the surfactants and the ENPs were toxic to D. magna. The addition of ENPs to a solution of the surfactants caused a significant reduction of toxicity of ENPs. The range of reduction of the toxicity of the ENPs depended on the kind of the ENPs and their concentration in the solution, and also on the kind of surfactant. For nano-ZnO the greatest reduction of toxicity was caused by CTAB, while for nano-TiO2 the largest drop of toxicity was observed after the addition of TX100. In the case of nano-Ni, the effect of the surfactants depended on its concentration. Most probably the reduction of toxicity of ENPs in the presence of the surfactants was related with the formation of ENPs aggregates that inhibited the availability of ENPs for D. magna.

  19. Modeling effects of pH and counterions on surfactant adsorption at the oxide/water interface

    SciTech Connect

    Hankins, N.P.; O`Haver, J.H.; Harwell, J.H.

    1996-09-01

    The adsorption of surfactants on minerals is important in areas such as enhanced oil recovery, surfactant-enhanced soil remediation, formation of organic thin films, ore flotation, wetting, adhesion, detergency, and dispersion stability. A model is presented that describes the effect of pH on the adsorption of an isomerically pure anionic surfactant species at a mineral oxide/water interface. A site-binding model, to account for effects of pH, surface heterogeneities, and counterions, is incorporated into a patchwise, phase-separation modeling approach, making it possible to predict both the surface charge and the counterion association beneath an adsorbed surfactant aggregate. Parameters for the site binding model on {alpha}-alumina are obtained from experimental surface charge measurements. The formation of both local monolayers (hemimicelles) and bilayers (admicelles) is allowed, although the isotherms studied in this paper are fit by parameter values that predict admicelle formation only. The model is able to predict experimental measurements of the adsorption of an isomerically pure, anionic surfactant species on {alpha}-alumina as a function of pH. It reproduces several previously unexplained experimental observations; in particular, it offers an explanation for the observation of significant adsorption of anionic surfactant above the point of zero charge (pzc) of a mineral oxide surface.

  20. Impact of model perfume molecules on the self-assembly of anionic surfactant sodium dodecyl 6-benzene sulfonate.

    PubMed

    Bradbury, Robert; Penfold, Jeffrey; Thomas, Robert K; Tucker, Ian M; Petkov, Jordan T; Jones, Craig; Grillo, Isabelle

    2013-03-12

    The impact of two model perfumes with differing degrees of hydrophobicity/hydrophilicity, linalool (LL) and phenylethanol (PE), on the solution structure of anionic surfactant sodium dodecyl 6-benzene sulfonate, LAS-6, has been studied by small angle neutron scattering, SANS. For both types of perfume molecules, complex phase behavior is observed. The phase behavior depends upon the concentration, surfactant/perfume composition, and type of perfume. The more hydrophilic perfume PE promotes the formation of more highly curved structures. At relatively low surfactant concentrations, small globular micelles, L1, are formed. These become perfume droplets, L(sm), stabilized by the surfactant at much higher perfume solution compositions. At higher surfactant concentrations, the tendency of LAS-6 to form more planar structures is evident. The more hydrophobic linalool promotes the formation of more planar structures. Combined with the greater tendency of LAS-6 to form planar structures, this results in the planar structures dominating the phase behavior for the LAS-6/linalool mixtures. For the LAS-6/linalool mixture, the self-assembly is in the form of micelles only at the lowest surfactant and perfume concentrations. Over most of the concentration-composition space explored, the structures are predominantly lamellar, L(α), or vesicle, L(v), or in the form of a lamellar/micellar coexistence. At low and intermediate amounts of LL, a significantly different structure is observed, and the aggregates are in the form of small, relatively monodisperse vesicles (i.e., nanovesicles), L(sv).

  1. The stabilization and targeting of surfactant-synthesized gold nanorods

    NASA Astrophysics Data System (ADS)

    Rostro-Kohanloo, Betty C.; Bickford, Lissett R.; Payne, Courtney M.; Day, Emily S.; Anderson, Lindsey J. E.; Zhong, Meng; Lee, Seunghyun; Mayer, Kathryn M.; Zal, Tomasz; Adam, Liana; Dinney, Colin P. N.; Drezek, Rebekah A.; West, Jennifer L.; Hafner, Jason H.

    2009-10-01

    The strong cetyltrimethylammonium bromide (CTAB) surfactant responsible for the synthesis and stability of gold nanorod solutions complicates their biomedical applications. The critical parameter to maintain nanorod stability is the ratio of CTAB to nanorod concentration. The ratio is approximately 740 000 as determined by chloroform extraction of the CTAB from a nanorod solution. A comparison of nanorod stabilization by thiol-terminal PEG and by anionic polymers reveals that PEGylation results in higher yields and less aggregation upon removal of CTAB. A heterobifunctional PEG yields nanorods with exposed carboxyl groups for covalent conjugation to antibodies with the zero-length carbodiimide linker EDC. This conjugation strategy leads to approximately two functional antibodies per nanorod according to fluorimetry and ELISA assays. The nanorods specifically targeted cells in vitro and were visible with both two-photon and confocal reflectance microscopies. This covalent strategy should be generally applicable to other biomedical applications of gold nanorods as well as other gold nanoparticles synthesized with CTAB.

  2. Destabilization Mechanism of Ionic Surfactant on Curcumin Nanocrystal against Electrolytes.

    PubMed

    Rachmawati, Heni; Rahma, Annisa; Al Shaal, Loaye; Müller, Rainer H; Keck, Cornelia M

    2016-10-18

    We have successfully developed curcumin nanosuspension intended for oral delivery. The main purpose is to improve bioavailability through enhancing its solubility. The nanoparticles were stabilized using various stabilizers, including polyvinyl pyrrolidone (PVP), polyvinyl alcohol (PVA), sodium carboxymethylcellulose (Na-CMC), d-α-tocopheryl polyethylene glycol 1000 succinate (TPGS), and sodium dodecyl sulfate (SDS). The average diameter of particles, microscopic appearance, and sedimentation of each preparation was observed and compared. Each stabilizer demonstrated a different degree of inhibition of particle aggregation under electrolyte-containing simulated gastrointestinal (GIT) fluid. Non-ionic stabilizers (PVA, PVP, and TPGS) were shown to preserve the nanosuspension stability against electrolytes. In contrast, strong ionic surfactants such as SDS were found to be very sensitive to electrolytes. The results can provide useful information for the formulators to choose the most suitable stabilizers by considering the nature of stabilizers and physiological characteristics of the target site of the drug.

  3. Destabilization Mechanism of Ionic Surfactant on Curcumin Nanocrystal against Electrolytes

    PubMed Central

    Rachmawati, Heni; Rahma, Annisa; Al Shaal, Loaye; Müller, Rainer H.; Keck, Cornelia M.

    2016-01-01

    We have successfully developed curcumin nanosuspension intended for oral delivery. The main purpose is to improve bioavailability through enhancing its solubility. The nanoparticles were stabilized using various stabilizers, including polyvinyl pyrrolidone (PVP), polyvinyl alcohol (PVA), sodium carboxymethylcellulose (Na-CMC), d-α-tocopheryl polyethylene glycol 1000 succinate (TPGS), and sodium dodecyl sulfate (SDS). The average diameter of particles, microscopic appearance, and sedimentation of each preparation was observed and compared. Each stabilizer demonstrated a different degree of inhibition of particle aggregation under electrolyte-containing simulated gastrointestinal (GIT) fluid. Non-ionic stabilizers (PVA, PVP, and TPGS) were shown to preserve the nanosuspension stability against electrolytes. In contrast, strong ionic surfactants such as SDS were found to be very sensitive to electrolytes. The results can provide useful information for the formulators to choose the most suitable stabilizers by considering the nature of stabilizers and physiological characteristics of the target site of the drug. PMID:27763572

  4. Surfactant Adsorption: A Revised Physical Chemistry Lab

    ERIC Educational Resources Information Center

    Bresler, Marc R.; Hagen, John P.

    2008-01-01

    Many physical chemistry lab courses include an experiment in which students measure surface tension as a function of surfactant concentration. In the traditional experiment, the data are fit to the Gibbs isotherm to determine the molar area for the surfactant, and the critical micelle concentration is used to calculate the Gibbs energy of micelle…

  5. Measuring surfactant concentration in plating solutions

    DOEpatents

    Bonivert, William D.; Farmer, Joseph C.; Hachman, John T.

    1989-01-01

    An arrangement for measuring the concentration of surfactants in a electrolyte containing metal ions includes applying a DC bias voltage and a modulated voltage to a counter electrode. The phase angle between the modulated voltage and the current response to the modulated voltage at a working electrode is correlated to the surfactant concentration.

  6. DILUTE SURFACTANT METHODS FOR CARBONATE FORMATIONS

    SciTech Connect

    Kishore K. Mohanty

    2003-07-01

    There are many carbonate reservoirs in US (and the world) with light oil and fracture pressure below its minimum miscibility pressure (or reservoir may be naturally fractured). Many carbonate reservoirs are naturally fractured. Waterflooding is effective in fractured reservoirs, if the formation is water-wet. Many fractured carbonate reservoirs, however, are mixed-wet and recoveries with conventional methods are low (less than 10%). Thermal and miscible tertiary recovery techniques are not effective in these reservoirs. Surfactant flooding (or huff-n-puff) is the only hope, yet it was developed for sandstone reservoirs in the past. The goal of this research is to evaluate dilute (hence relatively inexpensive) surfactant methods for carbonate formations and identify conditions under which they can be effective. We have conducted adsorption, phase behavior, interfacial tension (IFT) and wettability studies. Addition of Na{sub 2}CO{sub 3} decreases IFT with a minimum at about 0.2 M. Addition of surfactant decreases IFT further. In the absence of surfactant the minerals are oil-wet after aging with crude oil. Addition of surfactant solution decreases the contact angle to intermediate-wet for many surfactants and water-wet for one surfactant. Addition of Na{sub 2}CO{sub 3} decreases anionic surfactant adsorption on calcite surface. Plans for the next quarter include conducting core adsorption, phase behavior, wettability and mobilization studies.

  7. Stabilizing nanocellulose-nonionic surfactant composite foams by delayed Ca-induced gelation.

    PubMed

    Gordeyeva, Korneliya S; Fall, Andreas B; Hall, Stephen; Wicklein, Bernd; Bergström, Lennart

    2016-06-15

    Aggregation of dispersed rod-like particles like nanocellulose can improve the strength and rigidity of percolated networks but may also have a detrimental effect on the foamability. However, it should be possible to improve the strength of nanocellulose foams by multivalent ion-induced aggregation if the aggregation occurs after the foam has been formed. Lightweight and highly porous foams based on TEMPO-mediated oxidized cellulose nanofibrils (CNF) were formulated with the addition of a non-ionic surfactant, pluronic P123, and CaCO3 nanoparticles. Foam volume measurements show that addition of the non-ionic surfactant generates wet CNF/P123 foams with a high foamability. Foam bubble size studies show that delayed Ca-induced aggregation of CNF by gluconic acid-triggered dissolution of the CaCO3 nanoparticles significantly improves the long-term stability of the wet composite foams. Drying the Ca-reinforced foam at 60 °C results in a moderate shrinkage and electron microscopy and X-ray tomography studies show that the pores became slightly oblate after drying but the overall microstructure and pore/foam bubble size distribution is preserved after drying. The elastic modulus (0.9-1.4 MPa) of Ca-reinforced composite foams with a density of 9-15 kg/m(3) is significantly higher than commercially available polyurethane foams used for thermal insulation.

  8. Surfactant screening of diesel-contaminated soil

    SciTech Connect

    Peters, R.W.; Montemagno, C.D.; Shem, L. ); Lewis, B.A. . Dept. of Civil Engineering)

    1990-01-01

    At one installation, approximately 60,000 gal of No. 2 diesel fuel leaked into the subsurface environment, with contamination at depths of 6 to 34 m below the surface. Argonne National Laboratory was contracted to perform treatability studies for site remediation. The treatability studies focused on four separate phases: (1) leachability studies on the various contaminated soil borings, (2) air stripping studies, (3) bioremediation studies, and (4) surfactant screening/surfactant flooding studies. This paper summarizes the fourth phase of the research program in which twenty-one surfactants were screened for possible use to mobilize the organics from the contaminated soil prior to bioremediation. Anionic surfactants resulted in the greatest degree of diesel mobilization. The most promising surfactants will be employed on actual contaminated soil samples obtained from the site. 18 refs., 16 figs., 1 tab.

  9. [Giant esophageal fibrovascular polyp].

    PubMed

    Palacios, Fernando; Contardo, Carlos; Guevara, Jorge; Vera, Augusto; Aguilar, Luis; Huamán, Manuel; Palomino, Américo; Yabar, Alejandro

    2003-01-01

    Fibrovascular polyps are extremely rare benign neoplasias of the esophagus, which usually originate in the lower cricoid area. They do not produce any discomfort in the patient for a long time, however it may make itself evident by the patient's regurgitation of the polyp, producing asphyxia or, more frequently, dysphagia. The case of a 58 year old male patient is presented herein, with a 9 month record of dysphagia, weight loss and intermittent melena. The barium x-ray showed a distended esophagus, with a tumor running from the upper esophageal sphincter to the cardia. The endoscopy confirmed the presence of a pediculated tumor, implanted in the cervical esophagus. Surgeons suspected the potential malignancy of the tumor and performed a transhiatal esophagectomy. The final pathologic diagnosis was giant fibrovascular esophageal polyp.

  10. Giant resonances: Progress, new directions, new challenges

    SciTech Connect

    Bertrand, J.R.; Beene, J.R.

    1989-01-01

    A review of some recent developments in the field of giant multipole resonances is presented. Particular emphasis is placed on directions that the authors feel will be followed in this field during the next several years. In particular, the use of high-energy heavy ions to excite the giant resonances is shown to provide exciting new capabilities for giant resonance studies. Among subjects covered are: Coulomb excitation of giant resonances, photon decay of giant resonances, the recent controversy over the identity of the giant monopole resonance, the most recent value for incompressibility of nuclear matter from analysis of giant monopole data, the isospin character of the 63 A/sup /minus/1/3/ GQR, agreement between (e,e/prime/) and (hadron, hadron/prime/) excitation of the giant quadrupole resonance, prospects for multiphonon giant resonance observation, and isolation of the isovector giant quadrupole resonance. 55 refs., 23 figs., 4 tabs.

  11. Fibrinogen stability under surfactant interaction.

    PubMed

    Hassan, Natalia; Barbosa, Leandro R S; Itri, Rosangela; Ruso, Juan M

    2011-10-01

    Differential scanning calorimetry (DSC), circular dichroism (CD), difference spectroscopy (UV-vis), Raman spectroscopy, and small-angle X-ray scattering (SAXS) measurements have been performed in the present work to provide a quantitatively comprehensive physicochemical description of the complexation between bovine fibrinogen and the sodium perfluorooctanoate, sodium octanoate, and sodium dodecanoate in glycine buffer (pH 8.5). It has been found that sodium octanoate and dodecanoate act as fibrinogen destabilizer. Meanwhile, sodium perfluorooctanoate acts as a structure stabilizer at low molar concentration and as a destabilizer at high molar concentration. Fibrinogen's secondary structure is affected by all three studied surfactants (decrease in α-helix and an increase in β-sheet content) to a different extent. DSC and UV-vis revealed the existence of intermediate states in the thermal unfolding process of fibrinogen. In addition, SAXS data analysis showed that pure fibrinogen adopts a paired-dimer structure in solution. Such a structure is unaltered by sodium octanoate and perfluoroctanoate. However, interaction of sodium dodecanoate with the fibrinogen affects the protein conformation leading to a complex formation. Taken together, all results evidence that both surfactant hydrophobicity and tail length mediate the fibrinogen stability upon interaction.

  12. Solubilisation capacity of Brij surfactants.

    PubMed

    Ribeiro, Maria E N P; de Moura, Carolina L; Vieira, Mariano G S; Gramosa, Nilce V; Chaibundit, Chiraphon; de Mattos, Marcos C; Attwood, David; Yeates, Stephen G; Nixon, S Keith; Ricardo, Nágila M P S

    2012-10-15

    The aim of this study was to investigate the potential of selected Brij non-ionic surfactants for enhancing the solubility of poorly water-soluble drugs. Griseofulvin was selected as a model drug candidate enabling comparisons to be made with the solubilisation capacities of other poly(ethylene oxide)-based copolymers. UV/Vis and (1)H NMR spectroscopies were used to quantify the enhancement of solubility of griseofulvin in 1 wt% aqueous micellar solutions of Brij 78 (C(18)H(37)E(20)), Brij 98 (C(18)H(35)E(20)) and Brij 700 (C(18)H(37)E(100)) (where E represents the OCH(2)CH(2) unit of the poly(ethylene oxide) chain) at 25, 37 and 40 °C. Solubilisation capacities (S(cp) expressed as mg griseofulvin per g Brij) were similar for Brij 78 and 98 (range 6-11 mg g(-1)) but lower for Brij 700 (3-4 mg g(-1)) as would be expected for the surfactant with the higher ethylene oxide content. The drug loading capacity of micelles of Brij 78 was higher than many di- and triblock copolymers with hydrophilic E-blocks specifically designed for enhancement of drug solubility.

  13. Giant Hedge-Hogs: Spikes on Giant Gravitons

    SciTech Connect

    Sadri, D

    2004-01-28

    We consider giant gravitons on the maximally supersymmetric plane-wave background of type IIB string theory. Fixing the light-cone gauge, we work out the low energy effective light-cone Hamiltonian of the three-sphere giant graviton. At first order, this is a U(1) gauge theory on R x S{sup 3}. We place sources in this effective gauge theory. Although non-vanishing net electric charge configurations are disallowed by Gauss' law, electric dipoles can be formed. From the string theory point of view these dipoles can be understood as open strings piercing the three-sphere, generalizing the usual BIons to the giant gravitons, BIGGons. Our results can be used to give a two dimensional (worldsheet) description of giant gravitons, similar to Polchinski's description for the usual D-branes, in agreement with the discussions of hep-th/0204196.

  14. A giant Ordovician anomalocaridid.

    PubMed

    Van Roy, Peter; Briggs, Derek E G

    2011-05-26

    Anomalocaridids, giant lightly sclerotized invertebrate predators, occur in a number of exceptionally preserved early and middle Cambrian (542-501 million years ago) biotas and have come to symbolize the unfamiliar morphologies displayed by stem organisms in faunas of the Burgess Shale type. They are characterized by a pair of anterior, segmented appendages, a circlet of plates around the mouth, and an elongate segmented trunk lacking true tergites with a pair of flexible lateral lobes per segment. Disarticulated body parts, such as the anterior appendages and oral circlet, had been assigned to a range of taxonomic groups--but the discovery of complete specimens from the middle Cambrian Burgess Shale showed that these disparate elements all belong to a single kind of animal. Phylogenetic analyses support a position of anomalocaridids in the arthropod stem, as a sister group to the euarthropods. The anomalocaridids were the largest animals in Cambrian communities. The youngest unequivocal examples occur in the middle Cambrian Marjum Formation of Utah but an arthropod retaining some anomalocaridid characteristics is present in the Devonian of Germany. Here we report the post-Cambrian occurrence of anomalocaridids, from the Early Ordovician (488-472 million years ago) Fezouata Biota in southeastern Morocco, including specimens larger than any in Cambrian biotas. These giant animals were an important element of some marine communities for about 30 million years longer than previously realized. The Moroccan specimens confirm the presence of a dorsal array of flexible blades attached to a transverse rachis on the trunk segments; these blades probably functioned as gills.

  15. The interactions between cationic cellulose and Gemini surfactant in aqueous solution.

    PubMed

    Zhao, Shaojing; Cheng, Fa; Chen, Yu; Wei, Yuping

    2016-05-05

    Due to the extensive application of cationic cellulose in cosmetic, drug delivery and gene therapy, combining the improvement effect of surfactant-cellulose complexes, to investigate the properties of cellulose in aqueous solution is an important topic from both scientific and technical views. In this study, the phase behavior, solution properties and microstructure of Gemini surfactant sodium 5-nonyl-2-(4-(4-nonyl-2-sulfonatophenoxy)butoxy)phenyl sulfite (9-4-9)/cationic cellulose (JR400, the ammonium groups are directly bonded to the hydroxyethyl substituent with a degree substitution of 0.37) mixture was investigated using turbidity, fluorescence spectrophotometer and shear rheology techniques. As a control, the interaction of corresponding monovalent surfactant, sodium 2-ethoxy-5-nonylbenzenesulfonate (9-2) with JR400 in aqueous solution was also studied. Experimental results showed that 9-4-9/JR400 mixture has lower critical aggregation concentration (CAC) and critical micelle concentration (CMC) (about one order of magnitude) than 9-2/JR400 mixture. A low concentration of Gemini surfactant 9-4-9 appeared to induce an obvious micropolarity and viscosity value variation of the mixture, while these effects required a high concentration of corresponding monovalent one. Furthermore, dynamic light scattering (DLS) and transmission electron microscopy (TEM) measurements illuminated the formation and collapse procedure of network structure of the 9-4-9/JR400 mixture, which resulted in the increase and decrease of viscosity. These results suggest that the molecular structure of the surfactant has a great effect on its interaction with cationic cellulose. Moreover, the Gemini surfactant/cationic cellulose mixture may be used as a potencial stimuli-responsive drug delivery vector which not only load hydrophilic drugs, but also deliver hydrophobic substances.

  16. Recent progress of the characterization of oppositely charged polymer/surfactant complex in dilution deposition system.

    PubMed

    Miyake, M

    2017-01-01

    A mixture of oppositely charged polymer and surfactants changes the solubilized state, having a complex precipitation region at the composition of electric neutralization. This complex behavior has been applied to surface modification in the fields of health care and cosmetic products such as conditioning shampoos, as a dilution-deposition system in which the polymer/surfactant mixture at the higher surfactant concentration precipitates the insoluble complex by dilution. A large number of studies over many years have revealed the basic coacervation behavior and physicochemical properties of complexes. However, the mechanism by which a precipitated complex performs surface modification is not well understood. The precipitation region and the morphology of precipitated complex that are changed by molecular structure and additives affect the performance. Hydrophilic groups such as the EO unit in polymers and surfactants, the mixing of nonionic or amphoteric surfactant and nonionic polymer, and the addition of low polar solvent influence the complex precipitation region. Furthermore, the morphology of precipitated complex is formed by crosslinking and aggregating among polymers in the dilution process, and characterizes the performance of products. The polymer chain density in precipitated complex is determined by the charges of both the polymer and surfactant micelle and the conformation of polymer. As a result, the morphology of precipitated complexes is changed from a closely packed film to looser meshes, and/or to small particles, and it is possible for the morphology to control the rheological properties and the amount of adsorbed silicone. In the future, further investigation of the relationships between the morphology and performance is needed.

  17. Technology meets aggregate

    SciTech Connect

    Wilson, C.; Swan, C.

    2007-07-01

    New technology carried out at Tufts University and the University of Massachusetts on synthetic lightweight aggregate has created material from various qualities of fly ash from coal-fired power plants for use in different engineered applications. In pilot scale manufacturing tests an 'SLA' containing 80% fly ash and 20% mixed plastic waste from packaging was produced by 'dry blending' mixed plastic with high carbon fly ash. A trial run was completed to produce concrete masonry unit (CMU) blocks at a full-scale facility. It has been shown that SLA can be used as a partial substitution of a traditional stone aggregate in hot asphalt mix. 1 fig., 2 photos.

  18. Lattice Boltzmann Modeling of Thrombosis in Giant Aneurysms

    NASA Astrophysics Data System (ADS)

    Chopard, B.; Ouared, R.; Ruefenacht, D. A.; Yilmaz, H.

    We propose a numerical model of blood flow and blood clotting whose purpose is to describe thrombus formation in cerebral aneurysms. We identify possible mechanisms that can cause occurence of spontaneous thrombosis in unruptured giant intracranial aneurysms. Our main claim is that, under normal conditions, there is a low shear rate threshold below which thrombosis starts and growths. This assumption is supported by several evidences from literature. The proposed mechanisms are incorporated into a Lattice Boltzmann (LB) model for blood flow and platelets adhesion and aggregation. Numerical simulations show that the low shear rate threshold assumption together with aneurysm geometry account well for the observations.

  19. Reverse micellar extraction of bovine serum albumin - a comparison between the effects of gemini surfactant and its corresponding monomeric surfactant.

    PubMed

    Xiao, Jing; Cai, Juan; Guo, Xia

    2013-01-15

    Gemini surfactant displayed distinct advantages over monomeric surfactant in the liquid-liquid reverse micellar extraction process. First, less amount of gemini surfactant than monomeric surfactant was needed for transferring almost complete bovine serum albumin (BSA) into organic phase from aqueous phase. Second, the loading capacity of gemini surfactant reverse micelle phase was much higher than that of the corresponding monomeric surfactant reverse micelle. Third, efficient backward extraction (75-92%) of BSA could be effected in a wide pH range from 4 to 9 with gemini surfactant reverse micelle while a pH of ca. 4.3 is prerequisite to the recovery of BSA from monomeric surfactant reverse micelle. So far, the reports about the effect of surfactant structure on protein extraction have been limited. This study indicates the important role of the spacer of gemini surfactant in protein extraction process and may provide more knowledge on how to optimise surfactant structure.

  20. Exogenous Pulmonary Surfactant as a Vehicle for Antimicrobials: Assessment of Surfactant-Antibacterial Interactions In Vitro

    PubMed Central

    2014-01-01

    Owing to its unique surface-active properties, an exogenous pulmonary surfactant may become a promising drug delivery agent, in particular, acting as a vehicle for antibiotics in topical treatment of pneumonia. The purpose of this study was to assess a mutual influence of natural surfactant preparation and three antibiotics (amikacin, cefepime, and colistimethate sodium) in vitro and to identify appropriate combination(s) for subsequent in vivo investigations of experimental surfactant/antibiotic mixtures. Influence of antibiotics on surface-active properties of exogenous surfactant was assessed using the modified Pattle method. Effects of exogenous surfactant on antibacterial activity of antimicrobials against Staphylococcus aureus, Klebsiella pneumoniae, and Pseudomonas aeruginosa were evaluated using conventional microbiologic procedures. Addition of amikacin or cefepime to surfactant had no significant influence on surface-active properties of the latter. Obvious reduction of surface-active properties was confirmed for surfactant/colistimethate composition. When suspended with antibiotics, surfactant either had no impact on their antimicrobial activity (amikacin) or exerted mild to moderate influence (reduction of cefepime bactericidal activity and increase of colistimethate bacteriostatic activity against S. aureus and P. aeruginosa). Considering favorable compatibility profile, the surfactant/amikacin combination is advisable for subsequent investigation of joint surfactant/antibacterial therapy in animals with bacterial pneumonia. PMID:24876994

  1. Pharma giants swap research programs.

    PubMed

    2014-07-01

    Pharmaceutical giants Novartis and GlaxoSmithKline (GSK) agreed in late April to swap some assets, with Novartis handing off its vaccine business to GSK and getting most of the British company's cancer portfolio in return.

  2. Theories of Giant Planet Formation

    NASA Technical Reports Server (NTRS)

    Lissauer, Jack J.; Young, Richard E. (Technical Monitor)

    1998-01-01

    An overview of current theories of planetary formation, with emphasis on giant planets, is presented. The most detailed models are based upon observations of our own Solar System and of young stars and their environments. While these models predict that rocky planets should form around most single stars, the frequency of formation of gas giant planets is more difficult to predict theoretically. Terrestrial planets are believed to grow via pairwise accretion until the spacing of planetary orbits becomes large enough that the configuration is stable for the age of the system. Giant planets begin their growth as do terrestrial planets, but they become massive enough that they are able to accumulate substantial amounts of gas before the protoplanetary disk dissipates. Most models for extrasolar giant planets suggest that they formed as did Jupiter and Saturn (in nearly circular orbits, far enough from the star that ice could), and subsequently migrated to their current positions, although some models suggest in situ formation.

  3. Lichens On Galapagos Giant Tortoises.

    PubMed

    Hendrickson, J R; Weber, W A

    1964-06-19

    The association of Physcia picta with the giant Galdpagos tortoise is believed to be the first reported occurrence of lichens on land animals. The habitat is restricted to specific sites on the carapace of male tortoises.

  4. Landscape of the lost giants

    NASA Astrophysics Data System (ADS)

    2013-09-01

    The Pleistocene megafauna extinction erased a group of remarkable animals. Whether humans had a prominent role in the extinction remains controversial, but it is emerging that the disappearance of the giants has markedly affected the environment.

  5. Atmospheres of Extrasolar Giant Planets

    NASA Technical Reports Server (NTRS)

    Marley, Mark

    2006-01-01

    The next decade will almost certainly see the direct imaging of extrasolar giant planets around nearby stars. Unlike purely radial velocity detections, direct imaging will open the door to characterizing the atmosphere and interiors of extrasola planets and ultimately provide clues on their formation and evolution through time. This process has already begun for the transiting planets, placing new constraints on their atmospheric structure, composition, and evolution. Indeed the key to understanding giant planet detectability, interpreting spectra, and constraining effective temperature and hence evolution-is the atmosphere. I will review the universe of extrasolar giant planet models, focusing on what we have already learned from modeling and what we will likely be able to learn from the first generation of direct detection data. In addition to these theoretical considerations, I will review the observations and interpretation of the - transiting hot Jupiters. These objects provide a test of our ability to model exotic atmospheres and challenge our current understanding of giant planet evolution.

  6. Aggregates, broccoli and cauliflower

    NASA Astrophysics Data System (ADS)

    Grey, Francois; Kjems, Jørgen K.

    1989-09-01

    Naturally grown structures with fractal characters like broccoli and cauliflower are discussed and compared with DLA-type aggregates. It is suggested that the branching density can be used to characterize the growth process and an experimental method to determine this parameter is proposed.

  7. Determination of aromatic hydrotropic drugs in pharmaceutical preparations by the surfactant-binding degree method.

    PubMed

    Pedraza, Ana; Sicilia, María Dolores; Rubio, Soledad; Pérez-Bendito, Dolores

    2005-07-01

    An aggregation parameter-based analytical approach, the surfactant-dye binding degree (SDBD) method, was used, for the first time, to determine aromatic hydrotropic compounds. The anionic dye Coomassie Brilliant Blue G (CBBG) was used as inductor of didodecyldimethylammonium bromide (DDABr) aggregates, whose formation was monitored from changes in the spectral features of the dye. Interactions between hydrotrope and DDABr molecules resulted in a decrease of the degree of binding of the cationic surfactant to CBBG, which was proportional to the concentration of hydrotrope in the aqueous solution. The CBBG-DDABr-hydrotrope chemical system was found to fit to the mathematical expression previously derived for the determination of amphiphilic compounds. The hydrotrope-surfactant bond strength determined the sensitivity achieved for the determination of hydrotropic compounds, which was highly dependent on the molecular structure of the analyte. The high precision (the relative standard deviation for 7 mg l(-1) of salicylic acid was 0.8%), rapidity (measurements were performed in a few minutes) and low cost (in both instrumentation and reactants) of the proposed method, made it especially suitable for quality control. The practical analytical applicability of the SDBD method for the control of hydrotropic drugs in pharmaceutical preparations was demonstrated by quantifying salicylic acid and acetyl salicylic acid in liquid (solutions) and solid (tablets, granulates, unguents, gels and creams) samples, which were directly analyzed after dissolution of the samples.

  8. Surfactant Effects on Particle Generation in Antibody Formulations in Pre-filled Syringes

    PubMed Central

    Gerhardt, Alana; McUmber, Aaron C.; Nguyen, Bao H.; Lewus, Rachael; Schwartz, Daniel K.; Carpenter, John F.; Randolph, Theodore W.

    2016-01-01

    Protein aggregation and particle formation have been observed when protein solutions contact hydrophobic interfaces, and it has been suggested that this undesirable phenomenon may be initiated by interfacial adsorption and subsequent gelation of the protein. The addition of surfactants, such as polysorbate 20, to protein formulations has been proposed as a way to reduce protein adsorption at silicone oil-water interfaces and mitigate the production of aggregates and particles. In an accelerated stability study, monoclonal antibody formulations containing varying concentrations of polysorbate 20 were incubated and agitated in pre-filled glass syringes (PFS), exposing the protein to silicone oil-water interfaces at the siliconized syringe walls, air-water interfaces, and agitation stress. Following agitation in siliconized syringes that contained an air bubble, lower particle concentrations were measured in the surfactant-containing antibody formulations than in surfactant-free formulations. Polysorbate 20 reduced particle formation when added at concentrations above or below the critical micelle concentration (CMC). The ability of polysorbate 20 to decrease particle generation in PFS corresponded with its ability to inhibit gelation of the adsorbed protein layer, which was assessed by measuring the interfacial diffusion of individual antibody molecules at the silicone oil-water interface using total internal reflectance fluorescence (TIRF) microscopy with single-molecule tracking. PMID:26413998

  9. Adsorption of Gemini surfactants onto clathrate hydrates.

    PubMed

    Salako, O; Lo, C; Couzis, A; Somasundaran, P; Lee, J W

    2013-12-15

    This work addresses the adsorption of two Gemini surfactants at the cyclopentane (CP) hydrate-water interface. The Gemini surfactants investigated here are Dowfax C6L and Dowfax 2A1 that have two anionic head groups and one hydrophobic tail group. The adsorption of these surfactants was quantified using adsorption isotherms and the adsorption isotherms were determined using liquid-liquid titrations. Even if the Gemini surfactant adsorption isotherms show multi-layer adsorption, they possess the first Langmuir layer with the second adsorption layer only evident in the 2A1 adsorption isotherm. Zeta potentials of CP hydrate particles in the surfactant solution of various concentrations of Dowfax C6L and Dowfax 2A1 were measured to further explain their adsorption behavior at the CP hydrate-water interface. Zeta potentials of alumina particles as a model particle system in different concentrations of sodium dodecyl sulfate (SDS), Dowfax C6L and Dowfax 2A1 were also measured to confirm the configuration of all the surfactants at the interface. The determination of the isotherms and zeta-potentials provides an understanding framework for the adsorption behavior of the two Gemini surfactants at the hydrate-water interface.

  10. A study of surfactant-assisted waterflooding

    SciTech Connect

    Scamehorn, J F; Harwell, J H

    1990-09-01

    In surfactant-assisted waterflooding, a surfactant slug is injected into a reservoir, followed by a brine spacer, followed by second surfactant slug. The charge on the surfactant in the first slug has opposite sign to that in the second slug. When the two slugs mix in the reservoir, a precipitate or coacervate is formed which plugs the permeable region of the reservoir. Subsequently injected water or brine is forced through the low permeability region of the reservoir, increasing sweep efficiency of the waterflood, compared to a waterflood not using surfactants. In this part of the work, two major tasks are performed. First, core floods are performed with oil present to demonstrate the improvement in incremental oil production, as well as permeability modification. Second, a reservoir simulation model will be proposed to further delineate the optimum strategy for implementation of the surfactant-assisted waterflooding, as well as indicate the reservoir types for which it would be most effective. Surfactants utilized were sodium dodecyl sulfate and dodecyl pyridinium chloride. 44 refs., 17 figs., 3 tabs.

  11. Adsorption of dimeric surfactants in lamellar silicates

    NASA Astrophysics Data System (ADS)

    Balcerzak, Mateusz; Pietralik, Zuzanna; Domka, Ludwik; Skrzypczak, Andrzej; Kozak, Maciej

    2015-12-01

    The adsorption of different types of cationic surfactants in lamellar silicates changes their surface character from hydrophilic to hydrophobic. This study was undertaken to obtain lamellar silicates modified by a series of novel dimeric (gemini) surfactants of different length alkyl chains and to characterise these organophilised materials. Synthetic sodium montmorillonite SOMASIF® ME 100 (M) and enriched bentonite of natural origin (Nanoclay - hydrophilic bentonite®) were organophilised with dimeric (gemini) surfactants (1,1‧-(1,4-butanediyl)bis(alkoxymethyl)imidazolium dichlorides). As a result of surfactant molecule adsorption in interlamellar space, the d-spacing (d001) increased from 0.97 nm (for the anhydrous structure) to 2.04 nm. A Fourier transform infrared spectroscopy (FTIR) analysis of the modified systems reveals bands assigned to the stretching vibrations of the CH2 and CH3 groups and the scissoring vibrations of the NH group from the structure of the dimeric surfactants. Thermogravimetric (TG) and derivative thermogravimetric (DTG) studies imply a four-stage process of surfactant decomposition. Scanning electron microscopy (SEM) images provide information on the influence of dimeric surfactant intercalation into the silicate structures. Particles of the modified systems show a tendency toward the formation of irregularly shaped agglomerates.

  12. Surfactants tailored by the class Actinobacteria

    PubMed Central

    Kügler, Johannes H.; Le Roes-Hill, Marilize; Syldatk, Christoph; Hausmann, Rudolf

    2015-01-01

    Globally the change towards the establishment of a bio-based economy has resulted in an increased need for bio-based applications. This, in turn, has served as a driving force for the discovery and application of novel biosurfactants. The class Actinobacteria represents a vast group of microorganisms with the ability to produce a diverse range of secondary metabolites, including surfactants. Understanding the extensive nature of the biosurfactants produced by actinobacterial strains can assist in finding novel biosurfactants with new potential applications. This review therefore presents a comprehensive overview of the knowledge available on actinobacterial surfactants, the chemical structures that have been completely or partly elucidated, as well as the identity of the biosurfactant-producing strains. Producer strains of not yet elucidated compounds are discussed, as well as the original habitats of all the producer strains, which seems to indicate that biosurfactant production is environmentally driven. Methodology applied in the isolation, purification and structural elucidation of the different types of surface active compounds, as well as surfactant activity tests, are also discussed. Overall, actinobacterial surfactants can be summarized to include the dominantly occurring trehalose-comprising surfactants, other non-trehalose containing glycolipids, lipopeptides and the more rare actinobacterial surfactants. The lack of structural information on a large proportion of actinobacterial surfactants should be considered as a driving force to further explore the abundance and diversity of these compounds. This would allow for a better understanding of actinobacterial surface active compounds and their potential for biotechnological application. PMID:25852670

  13. Improvement of Absorber's Performance by a Surfactant

    NASA Astrophysics Data System (ADS)

    Nishimura, Nobuya; Nomura, Tomohiro; Iyota, Hiroyuki; Kawakami, Ryuichiro

    Effects of an addition of surfactant to a lithium bromide aqueous solution have been investigated experimentally. N-octanol was used as a surfactant. The Marangoni convection occurred at/beneath the solution surface in the very beginning of steam absorption was observed both by a real-time type laser holographic visualization and by temperature measurements with extremely fine gauge thermocouples. Generation and growth of the Marangoni convection were both observed and evaluated quantitatively by the flow visualization. Furthermore, solution's surface temperatures with and without addition of the surfactant were measured minutely. Cell's formation pattern and migration speed at the surface were measured varying the initial surfactant's concentration ranging from 0 to 50000 ppm and the shallow liquid layer thickness ranging from 2 to 5 mm. And spacio-temporal scales of the Marangoni convection were determined. Also solution temperature changes at the surface were compared. Temperature increases when the surfactant was added to its solubility limit became almost double than that case of no surfactant. From these temperature differences, effects of the surfactant on absorber's performances were estimated by a calculation quantitatively with diffusion coefficient as an evaluation value.

  14. Tunable, antibacterial activity of silicone polyether surfactants.

    PubMed

    Khan, Madiha F; Zepeda-Velazquez, Laura; Brook, Michael A

    2015-08-01

    Silicone surfactants are used in a variety of applications, however, limited data is available on the relationship between surfactant structure and biological activity. A series of seven nonionic, silicone polyether surfactants with known structures was tested for in vitro antibacterial activity against Escherichia coli BL21. The compounds varied in their hydrophobic head, comprised of branched silicone structures with 3-10 siloxane linkages and, in two cases, phenyl substitution, and hydrophilic tail of 8-44 poly(ethylene glycol) units. The surfactants were tested at three concentrations: below, at, and above their Critical Micelle Concentrations (CMC) against 5 concentrations of E. coli BL21 in a three-step assay comprised of a 14-24h turbidometric screen, a live-dead stain and viable colony counts. The bacterial concentration had little effect on antibacterial activity. For most of the surfactants, antibacterial activity was higher at concentrations above the CMC. Surfactants with smaller silicone head groups had as much as 4 times the bioactivity of surfactants with larger groups, with the smallest hydrophobe exhibiting potency equivalent to sodium dodecyl sulfate (SDS). Smaller PEG chains were similarly associated with higher potency. These data link lower micelle stability and enhanced permeability of smaller silicone head groups to antibacterial activity. The results demonstrate that simple manipulation of nonionic silicone polyether structure leads to significant changes in antibacterial activity.

  15. Fluorescence emission of pyrene in surfactant solutions.

    PubMed

    Piñeiro, Lucas; Novo, Mercedes; Al-Soufi, Wajih

    2015-01-01

    The systematic description of the complex photophysical behaviour of pyrene in surfactant solutions in combination with a quantitative model for the surfactant concentrations reproduces with high accuracy the steady-state and the time resolved fluorescence intensity of pyrene in surfactant solutions near the cmc, both in the monomer and in the excimer emission bands. We present concise model equations that can be used for the analysis of the pyrene fluorescence intensity in order to estimate fundamental parameters of the pyrene-surfactant system, such as the binding equilibrium constant K of pyrene to a given surfactant micelle, the rate constant of excimer formation in micelles, and the equilibrium constant of pyrene-surfactant quenching. The values of the binding equilibrium constant K(TX100)=3300·10³ M⁻¹ and K(SDS)=190·10³ M⁻¹ for Triton X-100 (TX100) and SDS micelles, respectively, show that the partition of pyrene between bulk water and micelles cannot be ignored, even at relatively high surfactant concentrations above the cmc. We apply the model to the determination of the cmc from the pyrene fluorescence intensity, especially from the intensity ratio at two vibronic bands in the monomer emission or from the ratio of excimer to monomer emission intensity. We relate the finite width of the transition region below and above the cmc with the observed changes in the pyrene fluorescence in this region.

  16. Giants in the Local Region

    NASA Astrophysics Data System (ADS)

    Luck, R. Earle; Heiter, Ulrike

    2007-06-01

    We present parameter and abundance data for a sample of 298 nearby giants. The spectroscopic data for this work have a resolution of R~60,000, S/N>150, and spectral coverage from 475 to 685 nm. Overall trends in the Z>10 abundances are dominated by Galactic chemical evolution, while the light-element abundances are influenced by stellar evolution, as well as Galactic evolution. We find several super-Li stars in our sample and confirm that Li abundances in the first giant branch are related to mixing depths. Once astration of lithium on the main sequence along with the overall range of main-sequence lithium abundances are taken into account, the lithium abundances of the giants are not dramatically at odds with the predictions of standard stellar evolution. We find the giants to be carbon-diluted in accord with standard stellar evolution and that the carbon and oxygen abundances determined for the local giants are consistent with those found in local field dwarfs. We find that there is evidence for systematic carbon variations in the red giant clump in the sense that the blue side of the clump is carbon-poor (more diluted) than the red side.

  17. Fabric Softener-Cellulose Nanocrystal Interaction: A Model for Assessing Surfactant Deposition on Cotton.

    PubMed

    Oikonomou, E K; Mousseau, F; Christov, N; Cristobal, G; Vacher, A; Airiau, M; Bourgaux, C; Heux, L; Berret, J-F

    2017-03-16

    There is currently a renewed interest for improving household and personal-care formulations to provide more environment-friendly products. Fabric conditioners used as softeners have to fulfill a number of stability and biodegradability requirements. They should also display significant adsorption on cotton under the conditions of use. The quantification of surfactant adsorption remains however difficult because the fabric-woven structure is complex and deposited amounts are generally small. Here, we propose a method to evaluate cellulose-surfactant interactions with increased detection sensitivity. The method is based on the use of cellulose nanocrystals (CNCs) in lieu of micron-sized fibers or yarns, combined with different techniques, including light scattering, optical and electron microscopy, and electrophoretic mobility. CNCs are rod-shaped nanoparticles in the form of 200 nm laths that are negatively charged and can be dispersed in bulk solutions. In this work, we use a double-tailed cationic surfactant present in fabric softener. Results show that the surfactants self-assemble into unilamellar, multivesicular, and multilamellar vesicles, and the interaction with CNCs is driven by electrostatics. Mutual interactions are strong and lead to the formation of large-scale aggregates, where the vesicles remain intact at the cellulose surface. The technique developed here could be exploited to rapidly assess the fabric conditioner efficiency obtained by varying the nature and content of their chemical additives.

  18. Re-entrant phase behavior of a concentrated anionic surfactant system with strongly binding counterions.

    PubMed

    Ghosh, Sajal Kumar; Rathee, Vikram; Krishnaswamy, Rema; Raghunathan, V A; Sood, A K

    2009-08-04

    The phase behavior of the anionic surfactant sodium dodecyl sulfate (SDS) in the presence of the strongly binding counterion p-toluidine hydrochloride (PTHC) has been examined using small-angle X-ray diffraction and polarizing microscopy. A hexagonal-to-lamellar transition on varying the PTHC to SDS molar ratio (alpha) occurs through a nematic phase of rodlike micelles (Nc) --> isotropic (I) --> nematic of disklike micelles (N(D)) at a fixed surfactant concentration (phi). The lamellar phase is found to coexist with an isotropic phase (I') over a large region of the phase diagram. Deuterium nuclear magnetic resonance investigations of the phase behavior at phi = 0.4 confirm the transition from N(C) to N(D) on varying alpha. The viscoelastic and flow behaviors of the different phases were examined. A decrease in the steady shear viscosity across the different phases with increasing alpha suggests a decrease in the aspect ratio of the micellar aggregates. From the transient shear stress response of the N() and N(D) nematic phases in step shear experiments, they were characterized to be tumbling and flow aligning, respectively. Our studies reveal that by tuning the morphology of the surfactant micelles strongly binding counterions modify the phase behavior and rheological properties of concentrated surfactant solutions.

  19. Role of the surfactant structure in the behavior of hydrophobic ionic liquids within aqueous micellar solutions.

    PubMed

    Behera, Kamalakanta; Kumar, Vinod; Pandey, Siddharth

    2010-04-06

    The behavior of an ionic liquid (IL) within aqueous micellar solutions is governed by its unique property to act as both an electrolyte and a cosolvent. The influence of the surfactant structure on the properties of aqueous micellar solutions of zwitterionic SB-12, nonionic Brij-35 and TX-100, and anionic sodium dodecyl sulfate (SDS) in the presence of the "hydrophobic" IL 1-butyl-3-methylimidazolium hexafluorophosphate ([bmim][PF(6)]) is assessed along with the possibility of forming oil-in-water microemulsions in which the IL acts as the "oil" phase. The solubility of [bmim][PF(6)] within aqueous micellar solutions increases with increasing surfactant concentration. In contrast to anionic SDS, the zwitterionic and nonionic surfactant solutions solubilize more [bmim][PF(6)] at higher concentrations and the average aggregate size remains almost unchanged. The formation of IL-in-water microemulsions when the concentration of [bmim][PF(6)] is above its aqueous solubility is suggested for nonionic Brij-35 and TX-100 aqueous surfactant solutions.

  20. Impact of Alkyl Polyglucosides Surfactant Lutensol GD 70 on Modification of Bacterial Cell Surface Properties.

    PubMed

    Smułek, Wojciech; Kaczorek, Ewa; Zgoła-Grzeskowiak, Agnieszka; Cybulski, Zefiryn

    Alkyl polyglucosides, due to their low toxicity and environmental compatibility, could be used in biodegradation of hydrophobic compounds. In this study, the influence of Lutensol GD 70 on the cell hydrophobicity and zeta potential was measured. The particle size distribution and surfactant biodegradation were also investigated. Microbacterium sp. strain E19, Pseudomonas stutzeri strain 9, and the same strain cultivated in stress conditions were used in studies. Adding surfactant to the diesel oil system resulted in an increase of the cell surface hydrophobicity and the formation of cell aggregates (a high polydispersity index). The correlation between cell hydrophobicity and zeta potential in examined samples was not found. The results showed a significant influence of Lutensol GD 70 on the changes in cell surface properties. Moreover, a high biodegradation of a surfactant (over 50 %) by tested strains was observed. The biodegradation of Lutensol GD 70 depends on the length of both polar and nonpolar chains. A long-term contact with diesel oil of stressed strain modifies not only cell surface properties but also its ability to a surfactant biodegradation.

  1. Possible size control and emission characteristics of Eu3+-doped Y2O3 nanoparticles synthesized by surfactant-assembly

    NASA Astrophysics Data System (ADS)

    Akita, Yukihiko; Harada, Takashi; Sasai, Ryo; Tomita, Koji; Nishiyama, Katsura

    2016-08-01

    Yttrium oxide nanoparticles doped with 2.0 wt% Eu (Eu@Y2O3) were synthesized via the surfactant-assembly method. The average diameter of Eu@Y2O3 (dav) depends on the alkyl chain number (N) of the sodium alkyl sulfates employed as surfactants. Using surfactants with N = 8, 10, and 12, Eu@Y2O3 with dav = 35, 200, and 500 nm, respectively were obtained. Such changes in dav are ascribed to the difference in the micelle aggregation numbers, supporting the use of rare-earth ions in the assembly. The Eu@Y2O3 particles synthesized presently emitted through Eu3+ transitions under UV excitation of Y2O3, making them applicable to nanoemitters.

  2. Influence of surfactants in forced dynamic dewetting.

    PubMed

    Henrich, Franziska; Fell, Daniela; Truszkowska, Dorota; Weirich, Marcel; Anyfantakis, Manos; Nguyen, Thi-Huong; Wagner, Manfred; Auernhammer, Günter K; Butt, Hans-Jürgen

    2016-09-20

    In this work we show that the forced dynamic dewetting of surfactant solutions depends sensitively on the surfactant concentration. To measure this effect, a hydrophobic rotating cylinder was horizontally half immersed in aqueous surfactant solutions. Dynamic contact angles were measured optically by extrapolating the contour of the meniscus to the contact line. Anionic (sodium 1-decanesulfonate, S-1DeS), cationic (cetyl trimethylammonium bromide, CTAB) and nonionic surfactants (C4E1, C8E3 and C12E5) with critical micelle concentrations (CMCs) spanning four orders of magnitude were used. The receding contact angle in water decreased with increasing velocity. This decrease was strongly enhanced when adding surfactant, even at surfactant concentrations of 10% of the critical micelle concentration. Plots of the receding contact angle-versus-velocity almost superimpose when being plotted at the same relative concentration (concentration/CMC). Thus the rescaled concentration is the dominating property for dynamic dewetting. The charge of the surfactants did not play a role, thus excluding electrostatic effects. The change in contact angle can be interpreted by local surface tension gradients, i.e. Marangoni stresses, close to the three-phase contact line. The decrease of dynamic contact angles with velocity follows two regimes. Despite the existence of Marangoni stresses close to the contact line, for a dewetting velocity above 1-10 mm s(-1) the hydrodynamic theory is able to describe the experimental results for all surfactant concentrations. At slower velocities an additional steep decrease of the contact angle with velocity was observed. Particle tracking velocimetry showed that the flow profiles do not differ with and without surfactant on a scales >100 μm.

  3. Surfactant-associated proteins: structure, function and clinical implications.

    PubMed

    Ketko, Anastasia K; Donn, Steven M

    2014-01-01

    Surfactant replacement therapy is now the standard of care for infants with respiratory distress syndrome. As the understanding of surfactant structure and function has evolved, surfactant-associated proteins are now understood to be essential components of pulmonary surfactant. Their structural and functional diversity detail the complexity of their contributions to normal pulmonary physiology, and deficiency states result in significant pathology. Engineering synthetic surfactant protein constructs has been a major research focus for replacement therapies. This review highlights what is known about surfactant proteins and how this knowledge is pivotal for future advancements in treating respiratory distress syndrome as well as other pulmonary diseases characterized by surfactant deficiency or inactivation.

  4. Surfactant-Assisted Coal Liquefaction

    NASA Technical Reports Server (NTRS)

    Hickey, Gregory S.; Sharma, Pramod K.

    1993-01-01

    Obtaining liquid fuels from coal which are economically competitive with those obtained from petroleum based sources is a significant challenge for the researcher as well as the chemical industry. Presently, the economics of coal liquefaction are not favorable because of relatively intense processing conditions (temperatures of 430 degrees C and pressures of 2200 psig), use of a costly catalyst, and a low quality product slate of relatively high boiling fractions. The economics could be made more favorable by achieving adequate coal conversions at less intense processing conditions and improving the product slate. A study has been carried out to examine the effect of a surfactant in reducing particle agglomeration and improving hydrodynamics in the coal liquefaction reactor to increase coal conversions...

  5. The Giant Magnetocaloric Effect

    NASA Astrophysics Data System (ADS)

    Pecharsky, Vitalij K.

    1998-03-01

    Since the discovery of the magnetocaloric effect in pure iron by E.Warburg in 1881, it has been measured experimentally on many magnetic metals and compounds. The majority of the materials studied order magnetically undergoing a second order phase transformation. The magnetocaloric effect, typically peaking near the Curie or the Néel temperature, generally ranges from 0.5 to 2 K (in terms of adiabatic temperature change) or at 1 to 4 J/kg K (in terms of isothermal magnetic entropy change) per 1 T magnetic field change. The giant magnetocaloric effect recently discovered in Gd_5(Si_xGe_1-x)4 alloys, where x <= 0.5, is associated with a first order magnetic phase transition and it reaches values of 3 to 4 K and 6 to 10 J/kg K per 1 T field change, respectively. The refrigerant capacity, which is the measure of how much heat can be transferred from a cold to a hot reservoir in one ideal thermodynamic cycle, is larger than that of the best second order phase transition materials by 25 to 100%. When the Gd_5(Si_xGe_1-x)4 alloys are compared with other known materials, which show first order magnetic phase transition, such as Dy, Ho, Er, HoCo_2, NdMn_2Si_2, Fe_0.49Rh_0.51, and (Hf_0.83Ta_0.17)Fe_2+x, only Fe_0.49Rh_0.51 has comparable magnetocaloric properties. However, the first order magnetic phase transition in Fe_0.49Rh_0.51 is irreversible, and the magnetocaloric effect disappears after one magnetizing/demagnetizing cycle. A study of the crystal structure, thermodynamics, and magnetism of the Gd_5(Si_xGe_1-x)4 alloys, where 0 <= x <= 1 allowed us to obtain a qualitative understanding of the basic relations between the composition, the crystal structure, and the change in thermodynamics and magnetocaloric properties, which occur in the Gd_5(Si_xGe_1-x)4 system, and which brings about the giant magnetocaloric effect when x <= 0.5.

  6. Surfactant-Templated Mesoporous Metal Oxide Nanowires

    DOE PAGES

    Luo, Hongmei; Lin, Qianglu; Baber, Stacy; ...

    2010-01-01

    We demore » monstrate two approaches to prepare mesoporous metal oxide nanowires by surfactant assembly and nanoconfinement via sol-gel or electrochemical deposition. For example, mesoporous Ta 2 O 5 and zeolite nanowires are prepared by block copolymer Pluronic 123-templated sol-gel method, and mesoporous ZnO nanowires are prepared by electrodeposition in presence of anionic surfactant sodium dodecyl sulfate (SDS) surfactant, in porous membranes. The morphologies of porous nanowires are studied by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) analyses.« less

  7. Studies on Octylphenoxy Surfactants 1

    PubMed Central

    Shafer, Warren E.; Bukovac, Martin J.

    1987-01-01

    Sorption characteristics of a polyethoxy (EO) derivative of octylphenol (OP) were determined for enzymically isolated mature tomato (Lycopersicon esculentum Mill. cv Sprinter) fruit cuticles at 25°C. Sorption was followed using 14C-labeled OP + 9.5EO (Triton X-100). Solution pH (2.2-6.2) did not affect surfactant sorption by tomato fruit cuticular membranes (CM). Surfactant concentration (0.001-1.0%, w/v) had a marked impact on sorption. Sorption equilibrium was reached in 24 hours for OP + 9.5EO concentrations below the critical micelle concentration (CMC), whereas 72 to 120 hours were required to reach equilibrium with concentrations greater than the CMC. Regardless of when equilibrium was attained, initial sorption of OP + 9.5EO occurred rapidly. Partition coefficients (K) of approximately 300 were obtained at pre-CMC concentrations, whereas at the highest concentration (1.0%), K values were approximately 15- to 20-fold lower. Sorption was higher for dewaxed CM (DCM) than for CM. At OP + 9.5EO concentrations below the CMC, the amount (millimoles per kilogram) sorbed by CM and DCM increased sharply as the CMC was reached. After an apparent plateau in the amount sorbed at concentrations immediately below and above the CMC, sorption by CM and DCM increased dramatically with OP + 9.5EO concentrations greater than the CMC (0.5 and 1.0%). In contrast, sorption of OP + 5EO (Triton X-45) by CM and DCM differed from one another at relatively high (0.5 and 1.0%) concentrations, where sorption by DCM increased with increasing concentration, but plateaued for the CM. Sorption of OP + 9.5EO was also related to CM concentration, with an inverse relationship existing between sorption and CM at concentrations less than 3.33 milligrams per milliliter. PMID:16665839

  8. Less invasive surfactant administration (LISA) - ways to deliver surfactant in spontaneously breathing infants.

    PubMed

    Herting, Egbert

    2013-11-01

    The idea to deliver surfactant to spontaneously breathing premature infants is not new. The spectrum of methods reported reaches from aerosol administration over pharyngeal deposition, the use of laryngeal masks, short term intubation, surfactant administration and rapid extubation (INSURE) to an approach of keeping premature neonates on spontaneous breathing with continuous positive airway pressure support and administering surfactant by laryngoscopy via a small diameter tube. This way of Less Invasive Surfactant Administration (LISA) is in increasing use in the last decade in Germany. More than 1000 babies have been included in clinical studies on LISA by now. A first prospective randomized controlled trial (AMV-trial) demonstrated a significant reduction in the use of mechanical ventilation in LISA patients compared to standard treatment with intratracheal bolus administration of surfactant. Another recent study (Take Care study) indicates, that LISA may even be superior to INSURE. The search for even more "gentle" methods (e.g. nebulization) to deliver surfactant continues.

  9. Studies on the electrocapillary curves of anionic surfactants in presence of non-ionic surfactants.

    PubMed

    Bembi, R; Goyal, R N; Malik, W U

    1976-09-01

    Polyoxyethylated non-ionic surfactants such as Tween 20, Tween 40, Nonidet P40 and Nonex 501 have been supposed to be associated with cationic characteristics. Studies on the effect of these surfactants on the electrocapillary curves of the anionic surfactants Aerosol IB, Manaxol OT and sodium lauryl sulphate (SLS), show that the electrocapillary maxima shift towards positive potentials. The order of adsorption of the anionic surfactants is SLS > Manaxol OT > Aerosol IB while the shift in maxima is in the order Aerosol IB ~ Manaxol OT > SLS which confirms association of cationic characteristics with the micelles of these non-ionic surfactants. The magnitude of the shift in electrocapillary maxima is Nonex 501 > Nonidet P40 > Tween 20 > Tween 40 which may be the order of magnitude of the positive charge carried by these non-ionic surfactants.

  10. Time-dependent changes in pulmonary surfactant function and composition in acute respiratory distress syndrome due to pneumonia or aspiration

    PubMed Central

    Schmidt, Reinhold; Markart, Philipp; Ruppert, Clemens; Wygrecka, Malgorzata; Kuchenbuch, Tim; Walmrath, Dieter; Seeger, Werner; Guenther, Andreas

    2007-01-01

    Background Alterations to pulmonary surfactant composition have been encountered in the Acute Respiratory Distress Syndrome (ARDS). However, only few data are available regarding the time-course and duration of surfactant changes in ARDS patients, although this information may largely influence the optimum design of clinical trials addressing surfactant replacement therapy. We therefore examined the time-course of surfactant changes in 15 patients with direct ARDS (pneumonia, aspiration) over the first 8 days after onset of mechanical ventilation. Methods Three consecutive bronchoalveolar lavages (BAL) were performed shortly after intubation (T0), and four days (T1) and eight days (T2) after intubation. Fifteen healthy volunteers served as controls. Phospholipid-to-protein ratio in BAL fluids, phospholipid class profiles, phosphatidylcholine (PC) molecular species, surfactant proteins (SP)-A, -B, -C, -D, and relative content and surface tension properties of large surfactant aggregates (LA) were assessed. Results At T0, a severe and highly significant reduction in SP-A, SP-B and SP-C, the LA fraction, PC and phosphatidylglycerol (PG) percentages, and dipalmitoylation of PC (DPPC) was encountered. Surface activity of the LA fraction was greatly impaired. Over time, significant improvements were encountered especially in view of LA content, DPPC, PG and SP-A, but minimum surface tension of LA was not fully restored (15 mN/m at T2). A highly significant correlation was observed between PaO2/FiO2 and minimum surface tension (r = -0.83; p < 0.001), SP-C (r = 0.64; p < 0.001), and DPPC (r = 0.59; p = 0.003). Outcome analysis revealed that non-survivors had even more unfavourable surfactant properties as compared to survivors. Conclusion We concluded that a profound impairment of pulmonary surfactant composition and function occurs in the very early stage of the disease and only gradually resolves over time. These observations may explain why former surfactant replacement

  11. How to overcome surfactant dysfunction in meconium aspiration syndrome?

    PubMed

    Mokra, Daniela; Calkovska, Andrea

    2013-06-01

    Surfactant dysfunction in meconium aspiration syndrome (MAS) is caused by meconium components, by plasma proteins leaking through the injured alveolocapillary membrane and by substances originated in meconium-induced inflammation. Surfactant inactivation in MAS may be diminished by several ways. Firstly, aspirated meconium should be removed from the lungs to decrease concentrations of meconium inhibitors coming into the contact with surfactant in the alveolar compartment. Once the endogenous surfactant becomes inactivated, components of surfactant should be substituted by exogenous surfactant at a sufficient dose, and surfactant administration should be repeated, if oxygenation remains compromised. To delay the inactivation by inhibitors, exogenous surfactants may be enriched with surfactant proteins, phospholipids, or other substances such as polymers. Finally, to diminish an adverse action of products of meconium-induced inflammation on both endogenous and exogenously delivered surfactant, anti-inflammatory drugs may be administered. A combined therapeutic approach may result in better outcome in patients with MAS and in lower costs of treatment.

  12. pH-Sensitive self-propelled motion of oil droplets in the presence of cationic surfactants containing hydrolyzable ester linkages.

    PubMed

    Banno, Taisuke; Kuroha, Rie; Toyota, Taro

    2012-01-17

    Self-propelled oil droplets in a nonequilibrium system have drawn much attention as both a primitive type of inanimate chemical machinery and a dynamic model of the origin of life. Here, to create the pH-sensitive self-propelled motion of oil droplets, we synthesized cationic surfactants containing hydrolyzable ester linkages. We found that n-heptyloxybenzaldehyde oil droplets were self-propelled in the presence of ester-containing cationic surfactant. In basic solution prepared with sodium hydroxide, oil droplets moved as molecular aggregates formed on their surface. Moreover, the self-propelled motion in the presence of the hydrolyzable cationic surfactant lasted longer than that in the presence of nonhydrolyzable cationic surfactant. This is probably due to the production of a fatty acid by the hydrolysis of the ester-containing cationic surfactant and the subsequent neutralization of the fatty acid with sodium hydroxide. A complex surfactant was formed in the aqueous solution because of the cation and anion combination. Because such complex formation can induce both a decrease in the interfacial tension of the oil droplet and self-assembly with n-heptyloxybenzaldehyde and lauric acid in the aqueous dispersion, the prolonged movement of the oil droplet may be explained by the increase in heterogeneity of the interfacial tension of the oil droplet triggered by the hydrolysis of the ester-containing surfactant.

  13. Adsorption of the anionic surfactant sodium dodecyl sulfate on a C18 column under micellar and high submicellar conditions in reversed-phase liquid chromatography.

    PubMed

    Ortiz-Bolsico, C; Ruiz-Angel, M J; García-Alvarez-Coque, M C

    2015-02-01

    Micellar liquid chromatography makes use of aqueous solutions or aqueous-organic solutions containing a surfactant, at a concentration above its critical micelle concentration. In the mobile phase, the surfactant monomers aggregate to form micelles, whereas on the surface of the nonpolar alkyl-bonded stationary phases they are significantly adsorbed. If the mobile phase contains a high concentration of organic solvent, micelles break down, and the amount of surfactant adsorbed on the stationary phase is reduced, giving rise to another chromatographic mode named high submicellar liquid chromatography. The presence of a thinner coating of surfactant enhances the selectivity and peak shape, especially for basic compounds. However, the risk of full desorption of surfactant is the main limitation in the high submicellar mode. This study examines the adsorption of the anionic surfactant sodium dodecyl sulfate under micellar and high submicellar conditions on a C18 column, applying two methods. One of them uses a refractive index detector to obtain direct measurements of the adsorbed amount of sodium dodecyl sulfate, whereas the second method is based on the retention and peak shape for a set of cationic basic compounds that indirectly reveal the presence of adsorbed monomers of surfactant on the stationary phase.

  14. Both protein adsorption and aggregation contribute to shear yielding and viscosity increase in protein solutions.

    PubMed

    Castellanos, Maria Monica; Pathak, Jai A; Colby, Ralph H

    2014-01-07

    A combination of sensitive rotational rheometry and surface rheometry with a double-wall ring were used to identify the origins of the viscosity increase at low shear rates in protein solutions. The rheology of two high molecular weight proteins is discussed: Bovine Serum Albumin (BSA) in a Phosphate Buffered Saline solution and an IgG1 monoclonal antibody (mAb) in a formulation buffer containing small quantities of a non-ionic surfactant. For surfactant-free BSA solutions, the interfacial viscosity dominates the low shear viscosity measured in rotational rheometers, while the surfactant-laden mAb solution has an interfacial viscosity that is small compared to that from aggregation in the bulk. A viscoelastic film forms at the air/water interface in the absence of surfactant, contributing to an apparent yield stress (thus a low shear viscosity increase) in conventional bulk rheology measurements. Addition of surfactant eliminates the interfacial yield stress. Evidence of a bulk yield stress arising from protein aggregation is presented, and correlated with results from standard characterization techniques used in the bio-pharmaceutical industry. The protein film at the air/water interface and bulk aggregates both lead to an apparent viscosity increase and their contributions are quantified using a dimensionless ratio of the interfacial and total yield stress. While steady shear viscosities at shear rates below ∼1 s(-1) contain rich information about the stability of protein solutions, embodied in the measured yield stress, such low shear rate data are regrettably often not measured and reported in the literature.

  15. Spreading, evaporation, and contact line dynamics of surfactant-laden microdrops.

    PubMed

    Gokhale, Shripad J; Plawsky, Joel L; Wayner, Peter C

    2005-08-30

    contact line when the adsorbed film of the surfactant solution was just hydrated or desiccated during the phase-change processes. This result shows the effect of vesicles and aggregates of the surfactant on the shape evolution of the drops. For these surfactant-laden water drops, we found that the apparent contact angle increased during condensation and decreased during evaporation. However, for the drop of a pure liquid (n-butanol and 2-propanol) the apparent contact angle remained constant at a constant velocity during condensation and evaporation. The contact line was pinned during the evaporation and spreading of the surfactant-laden water drops, but it was not pinned for a drop of a pure alcohol (self-similar shape evolution).

  16. Morphology and crystallinity of the nanosized hydroxyapatite synthesized by hydrolysis using cetyltrimethylammonium bromide (CTAB) as a surfactant

    NASA Astrophysics Data System (ADS)

    Shih, Wei-Jen; Wang, Moo-Chin; Hon, Min-Hsiung

    2005-02-01

    The biodegradable hydroxyapatite (HA) was synthesized by hydrolysis and characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and electron diffraction (ED). The HA synthesized from CaHPO 4·2H 2O(DCPD) in 2.5 M NaOH (aq) at 75 °C for 1 h had a size of 50 nm in width and 100 nm in length. However, the HA aggregates synthesized from DCPD in 2.5 M NaOH (aq) with cetyltrimethylammonium bromide (CTAB) as a surfactant were elongated. When the CTAB concentration was increased from 1×10 -4 to 1×10 -2 M, the synthesized HA became thinner to a size of 5-20 nm in width and 50 nm in length. For thinner HA aggregates, longer agglomerates were aligned in the synthesis without the CTAB surfactant.

  17. Lung Surfactant Levels are Regulated by Ig-Hepta/GPR116 by Monitoring Surfactant Protein D

    PubMed Central

    Fukuzawa, Taku; Ishida, Junji; Kato, Akira; Ichinose, Taro; Ariestanti, Donna Maretta; Takahashi, Tomoya; Ito, Kunitoshi; Abe, Jumpei; Suzuki, Tomohiro; Wakana, Shigeharu; Fukamizu, Akiyoshi; Nakamura, Nobuhiro; Hirose, Shigehisa

    2013-01-01

    Lung surfactant is a complex mixture of lipids and proteins, which is secreted from the alveolar type II epithelial cell and coats the surface of alveoli as a thin layer. It plays a crucial role in the prevention of alveolar collapse through its ability to reduce surface tension. Under normal conditions, surfactant homeostasis is maintained by balancing its release and the uptake by the type II cell for recycling and the internalization by alveolar macrophages for degradation. Little is known about how the surfactant pool is monitored and regulated. Here we show, by an analysis of gene-targeted mice exhibiting massive accumulation of surfactant, that Ig-Hepta/GPR116, an orphan receptor, is expressed on the type II cell and sensing the amount of surfactant by monitoring one of its protein components, surfactant protein D, and its deletion results in a pulmonary alveolar proteinosis and emphysema-like pathology. By a coexpression experiment with Sp-D and the extracellular region of Ig-Hepta/GPR116 followed by immunoprecipitation, we identified Sp-D as the ligand of Ig-Hepta/GPR116. Analyses of surfactant metabolism in Ig-Hepta+/+ and Ig-Hepta−/− mice by using radioactive tracers indicated that the Ig-Hepta/GPR116 signaling system exerts attenuating effects on (i) balanced synthesis of surfactant lipids and proteins and (ii) surfactant secretion, and (iii) a stimulating effect on recycling (uptake) in response to elevated levels of Sp-D in alveolar space. PMID:23922714

  18. Molecular-thermodynamic theory of micellization of multicomponent surfactant mixtures: 2. pH-sensitive surfactants.

    PubMed

    Goldsipe, Arthur; Blankschtein, Daniel

    2007-05-22

    In article 1 of this series, we developed a molecular-thermodynamic (MT) theory to model the micellization of mixtures containing an arbitrary number of conventional (pH-insensitive) surfactants. In this article, we extend the MT theory to model mixtures containing a pH-sensitive surfactant. The MT theory was validated by examining mixtures containing both a pH-sensitive surfactant and a conventional surfactant, which effectively behave like ternary surfactant mixtures. We first compared the predicted micellar titration data to experimental micellar titration data that we obtained for varying compositions of mixed micelles containing the pH-sensitive surfactant dodecyldimethylamine oxide (C12DAO) mixed with either a cationic surfactant (dodecyltrimethylammonium bromide, C12TAB), a nonionic surfactant (dodecyl octa(ethylene oxide), C12E8), or an anionic surfactant (sodium dodecyl sulfate, SDS) surfactant. The MT theory accurately modeled the titration behavior of C12DAO mixed with C12E8. However, C12DAO was observed to interact more favorably with SDS and with C12TAB than was predicted by the MT theory. We also compared predictions to data from the literature for mixtures of C12DAO and SDS. Although the pH values of solutions with no added acid were modeled with only qualitative accuracy, the MT theory resulted in quantitatively accurate predictions of solution pH for mixtures containing added acid. In addition, the predicted degree of counterion binding yielded a lower bound to the experimentally measured value. Finally, we predicted the critical micelle concentration (cmc) of solutions of two pH-sensitive surfactants, tetradecyldimethylamine oxide (C14DAO) and hexadecyldimethyl betaine (C16Bet), at varying solution pH and surfactant composition. However, at the pH values considered, the pH sensitivity of C16Bet could be neglected, and it was equivalently modeled as a zwitterionic surfactant. The cmc's predicted using the MT theory agreed well with the experimental

  19. A unique advantage for giant eyes in giant squid.

    PubMed

    Nilsson, Dan-Eric; Warrant, Eric J; Johnsen, Sönke; Hanlon, Roger; Shashar, Nadav

    2012-04-24

    Giant and colossal deep-sea squid (Architeuthis and Mesonychoteuthis) have the largest eyes in the animal kingdom [1, 2], but there is no explanation for why they would need eyes that are nearly three times the diameter of those of any other extant animal. Here we develop a theory for visual detection in pelagic habitats, which predicts that such giant eyes are unlikely to evolve for detecting mates or prey at long distance but are instead uniquely suited for detecting very large predators, such as sperm whales. We also provide photographic documentation of an eyeball of about 27 cm with a 9 cm pupil in a giant squid, and we predict that, below 600 m depth, it would allow detection of sperm whales at distances exceeding 120 m. With this long range of vision, giant squid get an early warning of approaching sperm whales. Because the sonar range of sperm whales exceeds 120 m [3-5], we hypothesize that a well-prepared and powerful evasive response to hunting sperm whales may have driven the evolution of huge dimensions in both eyes and bodies of giant and colossal squid. Our theory also provides insights into the vision of Mesozoic ichthyosaurs with unusually large eyes.

  20. Efficiency of surfactant-enhanced desorption for contaminated soils depending on the component characteristics of soil-surfactant--PAHs system.

    PubMed

    Zhou, Wenjun; Zhu, Lizhong

    2007-05-01

    The sorption of surfactants onto soils has a significant effect on the performance of surfactant enhanced desorption. In this study, the efficiency of surfactants in enhancing desorption for polycyclic aromatic hydrocarbons (PAHs) contaminated soils relative to water was evaluated with a term of relative efficiency coefficient (REC). Since the sorption of surfactants onto soils, surfactants only enhanced PAH desorption when REC values were larger than 1 and the added surfactant concentration was greater than the corresponding critical enhance desorption concentration (CEDC), which was defined as the corresponding surfactant concentration with REC=1. A model was utilized to describe and predict the REC and CEDC values for PAH desorption. The model and experimental results indicated that the efficiency of surfactants in enhancing PAH desorption showed strong dependence on the soil composition, surfactant structure and PAH properties. These results are of practical interest for the selection of surfactant to optimize soil remediation technologies.

  1. Formation of the giant planets

    NASA Technical Reports Server (NTRS)

    Lissauer, Jack J.

    2006-01-01

    The observed properties of giant planets, models of their evolution and observations of protoplanetary disks provide constraints on the formation of gas giant planets. The four largest planets in our Solar System contain considerable quantities of hydrogen and helium, which could not have condensed into solid planetesimals within the protoplanetary disk. All three (transiting) extrasolar giant planets with well determined masses and radii also must contain substantial amounts of these light gases. Jupiter and Saturn are mostly hydrogen and helium, but have larger abundances of heavier elements than does the Sun. Neptune and Uranus are primarily composed of heavier elements. HD 149026 b, which is slightly more massive than is Saturn, appears to have comparable quantities of light gases and heavy elements. HD 209458 b and TrES-1 are primarily hydrogen and helium, but may contain supersolar abundances of heavy elements. Spacecraft flybys and observations of satellite orbits provide estimates of the gravitational moments of the giant planets in our Solar System, which in turn provide information on the internal distribution of matter within Jupiter, Saturn, Uranus and Neptune. Atmospheric thermal structure and heat flow measurements constrain the interior temperatures of planets. Internal processes may cause giant planets to become more compositionally differentiated or alternatively more homogeneous; high-pressure laboratory .experiments provide data useful for modeling these processes. The preponderance of evidence supports the core nucleated gas accretion model. According to this model, giant planets begin their growth by the accumulation of small solid bodies, as do terrestrial planets. However, unlike terrestrial planets, the growing giant planet cores become massive enough that they are able to accumulate substantial amounts of gas before the protoplanetary disk dissipates. The primary questions regarding the core nucleated growth model is under what conditions

  2. Clump Giants in the Hyades

    NASA Technical Reports Server (NTRS)

    Mushotzky, Richard F. (Technical Monitor); Brickhouse, Nancy

    2003-01-01

    The project is entitled 'Clump Giants in the Hyades.' This observation of one of the late-type Hyades giants (Gamma Tau) has implications for understanding the formation of late-type stellar coronae as a function of the evolutionary state of the star. The Hyades giants are interesting because they are all clump giants in the Helium burning phase, similar to the cool primary of Capella. The Hyades giants show significantly more magnetic activity than expected from their state of evolution (and slowed-down rotation). Thus these systems provide an important clue to dynamo action. The data were obtained by the satellite on 13 March 2001 for a total RGS exposure of 58220 seconds. These data were delivered to the PI on 7 August 2001. The data could not be reprocessed until SAS Version 5.3.3 which became available 7 June 2002. Although the guidelines for assessing background rates suggested that half the data were contaminated, it does not appear that the spectral region of the RGS was adversely affected by unusually high background. The spectra show strong lines of Fe XVII and XVIII, O VII and VIII, Ne IX and X, along with numerous weaker lines. The emission measure distribution is highly reminiscent of Capella; if anything, the emission measure distribution is steeper at 6 million K than for Capella. Gamma Tau is the second brightest of the Hyades clump giants. Pallavicini et al. have shown that the luminosity of the brightest Hyades giant (Theta Tau) is remarkably similar to its luminosity as measured by Einstein. Short-term variability is also modest. We are addressing the variability issue now for Gamma Tau. Initial results were reported at the 2003 Seattle AAS meeting. A paper is in preparation for submission to the Astrophysical Journal.

  3. Methotrexate intercalated layered double hydroxides with the mediation of surfactants: Mechanism exploration and bioassay study.

    PubMed

    Dai, Chao-Fan; Tian, De-Ying; Li, Shu-Ping; Li, Xiao-Dong

    2015-12-01

    Methotrexatum intercalated layered double hydroxides (MTX/LDHs) hybrids were synthesized by the co-precipitation method and three kinds of nonionic surfactants with different hydrocarbon chain lengths were used. The resulting hybrids were then characterized by X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy and transmission electron microscopy (TEM). XRD and FTIR investigations manifest the successful intercalation of MTX anions into the interlayer of LDHs. TEM graphs indicate that the morphology of the hybrids changes with the variation of the chain length of the surfactants, i.e., the particles synthesized using polyethylene glycol (PEG-7) present regular disc morphology with good monodispersity, while samples with the mediation of alkyl polyglycoside (APG-14) are heavily aggregated and samples with the addition of polyvinylpyrrolidone (PVP-10) exhibit irregular branches. Furthermore, the release and bioassay experiments show that monodisperse MTX/LDHs present good controlled-release and are more efficient in the suppression of the tumor cells.

  4. Tracking protein aggregate interactions

    PubMed Central

    Bartz, Jason C; Nilsson, K Peter R

    2011-01-01

    Amyloid fibrils share a structural motif consisting of highly ordered β-sheets aligned perpendicular to the fibril axis.1, 2 At each fibril end, β-sheets provide a template for recruiting and converting monomers.3 Different amyloid fibrils often co-occur in the same individual, yet whether a protein aggregate aids or inhibits the assembly of a heterologous protein is unclear. In prion disease, diverse prion aggregate structures, known as strains, are thought to be the basis of disparate disease phenotypes in the same species expressing identical prion protein sequences.4–7 Here we explore the interactions reported to occur when two distinct prion strains occur together in the central nervous system. PMID:21597336

  5. Segregation of saturated chain lipids in pulmonary surfactant films and bilayers.

    PubMed Central

    Nag, Kaushik; Pao, Jin-Si; Harbottle, Robert R; Possmayer, Fred; Petersen, Nils O; Bagatolli, Luis A

    2002-01-01

    The physical properties of organized system (bilayers and monolayers at the air water interface) composed of bovine lipid extract surfactant (BLES) were studied using correlated experimental techniques. 6-Dodecanoyl-2-dimethylamino-naphthalene (LAURDAN)-labeled giant unilamelar vesicles (mean diameter approximately 30 microm) composed of BLES were observed at different temperatures using two-photon fluorescence microscopy. As the temperature was decreased, dark domains (gel-like) appeared at physiological temperature (37 degrees C) on the surface of BLES giant unilamelar vesicles. The LAURDAN two-photon fluorescent images show that the gel-like domains span the lipid bilayer. Quantitative analysis of the LAURDAN generalized polarization function suggests the presence of a gel/fluid phase coexistence between 37 degrees C to 20 degrees C with low compositional and energetic differences between the coexisting phases. Interestingly, the microscopic scenario of the phase coexistence observed below 20 degrees C shows different domain's shape compared with that observed between 37 degrees C to 20 degrees C, suggesting the coexistence of two ordered but differently organized lipid phases on the bilayer. Epifluorescence microscopy studies of BLES monomolecular films doped with small amounts of fluorescent lipids showed the appearance and growth of dark domains (liquid condensed) dispersed in a fluorescent phase (liquid expanded) with shapes and sizes similar to those observed in BLES giant unilamelar vesicles. Our study suggests that bovine surfactant lipids can organize into discrete phases in monolayers or bilayers with equivalent temperature dependencies and may occur at physiological temperatures and surface pressures equivalent to those at the lung interface. PMID:11916861

  6. Surfactant Activated Dip-Pen Nanolithography

    NASA Astrophysics Data System (ADS)

    Collier, C. Patrick

    2005-03-01

    Direct nanoscale patterning of maleimide-linked biotin on mercaptosilane-functionalized glass substrates using dip-pen nanolithography (DPN) is facilitated by the addition of a small amount of the biocompatible nonionic surfactant Tween-20. A correlation was found between activated ink transfer from the AFM tip when surfactant was included in the ink and an increase in the wettability of the partially hydrophobic silanized substrate. Surfactant concentration represents a new control variable for DPN that complements relative humidity, tip-substrate contact force, scan speed, and temperature. Using surfactants systematically as ink additives expands the possible ink-substrate combinations that can be used for patterning biotin and other molecules. For example, we are currently exploring the possibility of developing nickel/nitrilotriacetic acid (NTA)-maleimide based inks that will bind to mercaptosilanized glass surfaces for the reversible immobilization of biomolecules containing polyhistidine tags.

  7. Zooplankton Aggregations Near Sills

    DTIC Science & Technology

    2003-09-30

    frequency echo-sounder system. This data were supplemented with multi-net (BIONESS) trawls, bongo nets, and otter trawls (operated by D. Mackas and group...side. The general composition of the zooplankton aggregations can be deduced from the relative levels of the three echo-sounder frequencies; krill ...Nov. 20th, 2002. Krill layer is evident at 66 – 90 m, coincident with BIONESS trawl through the region. 3 Figure 2 shows a comparison between

  8. Spreading and spontaneous motility of multicellular aggregates on soft substrates

    NASA Astrophysics Data System (ADS)

    Brochard-Wyart, Françoise

    2013-03-01

    monolayer expands outward from the aggregate apparently under tension. In this tense monolayer, holes nucleate, and lead to a symmetry breaking as the entire aggregate starts to move in a similar fashion as a giant fish keratocyte.

  9. Proteins aggregation and human diseases

    NASA Astrophysics Data System (ADS)

    Hu, Chin-Kun

    2015-04-01

    Many human diseases and the death of most supercentenarians are related to protein aggregation. Neurodegenerative diseases include Alzheimer's disease (AD), Huntington's disease (HD), Parkinson's disease (PD), frontotemporallobar degeneration, etc. Such diseases are due to progressive loss of structure or function of neurons caused by protein aggregation. For example, AD is considered to be related to aggregation of Aβ40 (peptide with 40 amino acids) and Aβ42 (peptide with 42 amino acids) and HD is considered to be related to aggregation of polyQ (polyglutamine) peptides. In this paper, we briefly review our recent discovery of key factors for protein aggregation. We used a lattice model to study the aggregation rates of proteins and found that the probability for a protein sequence to appear in the conformation of the aggregated state can be used to determine the temperature at which proteins can aggregate most quickly. We used molecular dynamics and simple models of polymer chains to study relaxation and aggregation of proteins under various conditions and found that when the bending-angle dependent and torsion-angle dependent interactions are zero or very small, then protein chains tend to aggregate at lower temperatures. All atom models were used to identify a key peptide chain for the aggregation of insulin chains and to find that two polyQ chains prefer anti-parallel conformation. It is pointed out that in many cases, protein aggregation does not result from protein mis-folding. A potential drug from Chinese medicine was found for Alzheimer's disease.

  10. Process for making surfactant capped nanocrystals

    DOEpatents

    Alivisatos, A Paul; Rockenberger, Joerg

    2002-01-01

    Disclosed is a process for making surfactant capped nanocrystals of transition metal oxides. The process comprises reacting a metal cupferron complex of the formula M Cup, wherein M is a transition metal, and Cup is a cupferron, with a coordinating surfactant, the reaction being conducted at a temperature ranging from about 250 to about 300 C., for a period of time sufficient to complete the reaction.

  11. Spatial and temporal control of surfactant systems.

    PubMed

    Liu, Xiaoyang; Abbott, Nicholas L

    2009-11-01

    This paper reviews some recent progress on approaches leading to spatial and temporal control of surfactant systems. The approaches revolve around the use of redox-active and light-sensitive surfactants. Perspectives are presented on experiments that have realized approaches for active control of interfacial properties of aqueous surfactant systems, reversible control of microstructures and nanostructures formed within bulk solutions, and in situ manipulation of the interactions of surfactants with polymers, DNA and proteins. A particular focus of this review is devoted to studies of amphiphiles that contain the redox-active group ferrocene - reversible control of the oxidation state of ferrocene leads to changes in the charge/hydrophobicity of these amphiphiles, resulting in substantial changes in their self-assembly. Light-sensitive surfactants containing azobenzene, which undergo changes in shape/polarity upon illumination with light, are a second focus of this review. Examples of both redox-active and light-sensitive surfactants that lead to large (>20mN/m) and spatially localized ( approximately mm) changes in surface tensions on a time scale of seconds are presented. Systems that permit reversible transformations of bulk solution nanostructures - such as micelle-to-vesicle transitions or monomer-to-micelle transitions - are also described. The broad potential utility of these emerging classes of amphiphiles are illustrated by the ability to drive changes in functional properties of surfactant systems, such as rheological properties and reversible solubilization of oils, as well as the ability to control interactions of surfactants with biomolecules to modulate their transport into cells.

  12. BEHAVIOR OF SURFACTANT MIXTURE AT SOLID/LIQUID AND OIL/LIQUID INTERFACE IN CHEMICAL FLOODING SYSTEMS

    SciTech Connect

    Prof. P. Somasundaran

    2002-03-01

    The aim of the project is to develop and evaluate efficient novel surfactant mixtures for enhanced oil recovery. Preliminary ultra-filtration tests suggest that two kinds of micelles may exist in binary surfactant mixtures at different concentrations. Due to the important role played in interfacial processes by micelles as determined by their structures, focus of the current work is on the delineation of the relationship between such aggregate structures and chemical compositions of the surfactants. A novel analytical centrifuge application is explored to generate information on structures of different surfactants aggregates. In this report, optical systems, typical output of the analytical ultracentrifuge results and four basic experiments are discussed. Initial sedimentation velocity investigations were conducted using nonyl phenol ethoxylated decyl ether (NP-10) to choose the best analytical protocol, calculate the partial specific volume and obtain information on sedimentation coefficient, aggregation mass of micelles. The partial specific volume was calculated to be 0.920. Four softwares: Optima{trademark} XL-A/XL-I data analysis software, DCDT+, Svedberg and SEDFIT, were compared for the analysis of sedimentation velocity experimental data. The sedimentation coefficient and aggregation number of NP-10 micelles obtained using the first three softwares at 25 C are 209, 127, and 111, respectively. The last one is closest to the result from Light Scattering. The reason for the differences in numbers obtained using the three softwares is discussed. Based on these tests, Svedberg and SEDFIT analysis are chosen for further studies. This approach using the analytical ultracentrifugation offers an unprecedented opportunity now to obtain important information on mixed micelles and their role in interfacial processes.

  13. Effect of surface properties of elastomer colloids on their coalescence and aggregation kinetics.

    PubMed

    Gauer, Cornelius; Wu, Hua; Morbidelli, Massimo

    2009-10-20

    We study the aggregation kinetics of two elastomer colloids with similar bulk polymer properties but with different surface charge groups in order to understand the role of the surface properties in particle coalescence during aggregation. It is confirmed that clusters of the elastomer particles stabilized purely by ionic surfactants coalesce in both reaction-limited and diffusion-limited aggregation (RLCA and DLCA) regimes and that the coalescence is independent of the coagulant type. On the other hand, clusters formed by elastomer particles stabilized by charged polymer end groups, which are fixed on the particle surface, are fractal objects with a fractal dimension of 1.7 in the DLCA and 2.1 in the RLCA regime. This indicates insignificant cluster coalescence during aggregation, most likely due to a hindrance effect of the fixed charges.

  14. Synthesis and surface activities of a novel di-hydroxyl-sulfate-betaine-type zwitterionic gemini surfactants

    NASA Astrophysics Data System (ADS)

    Geng, Xiang F.; Hu, Xing Q.; Xia, Ji J.; Jia, Xue C.

    2013-04-01

    A series of novel di-hydroxyl-sulfate-betaine-type zwitterionic gemini surfactants of 1,2-bis[N-ethyl-N-(2-hydroxyl-3-sulfopropyl)-alkylammonium] alkyl betaines (DBAs-n, where s and n represent the spacer length of 2, 4 and 6 and the hydrocarbon chain length of 8, 12, 14, 16 and 18, respectively) were synthesized by reacting alkylamine with sodium 3-chloro-2-hydroxypropanesulfonate (the alternative sulphonated agent), followed by the reactions with а,ω-dibromoalkyl and then ethyl bromide. Their adsorption and aggregation properties were investigated by means of equilibrium surface tension, dynamic light-scattering (DLS) and transmission electron microscopy (TEM). DBAs-n gemini surfactants showed excellent surface activities and packed tightly at the interface. For example, the minimum CMC value for DBAs-n series was of the order of 10-5 M and the surface tension of water can be decreased as low as 22.2 mN/m. It was also found that the aggregates of DBAs-n solutions were significantly dependent on their hydrocarbon chain lengths. The aggregates changed from vesicles to entangled fiber-like micelles as the chain length increased from dodecyl to tetradecyl.

  15. Surfactant toxicity identification with a municipal wastewater

    SciTech Connect

    Amato, J.R.; Wayment, D.D.

    1998-12-31

    An acute toxicity identification evaluation following US EPA guidelines was performed with a municipal wastewater to identify effluent components responsible for lethality of larval fathead minnows (Pimephales promelas) and Ceriodaphnia dubia. Ammonia toxicity, also present in the effluent, was not the object of this study. The study was designed to characterize effluent toxicity not due to ammonia. To minimize ammonia toxicity interferences, all Phase 1 testing was performed at pH`s where ammonia toxicity would be negligible. Phase 1 toxicity characterization results indicated surfactants as the class of compounds causing acute non-ammonia toxicity for both test species. A distinct toxicant characteristic, specifically sublation at alkaline pH, was employed to track suspect surfactant loadings in the collection system. Concurrently, effluent surfactant residue testing determined nonionic surfactants were at adequate concentrations and were sufficiently toxic to cause the measured adverse effects. Influent surfactant toxicity was determined to be much less than in the final effluent indicating the treatment process was enhancing surfactant toxicity.

  16. Surfactant mediated polyelectrolyte self-assembly

    DOE PAGES

    Goswami, Monojoy; Borreguero Calvo, Jose M.; Pincus, Phillip A.; ...

    2015-11-25

    Self-assembly and dynamics of polyelectrolyte (PE) surfactant complex (PES) is investigated using molecular dynamics simulations. The complexation is systematically studied for five different PE backbone charge densities. At a fixed surfactant concentration the PES complexation exhibits pearl-necklace to agglomerated double spherical structures with a PE chain decorating the surfactant micelles. The counterions do not condense on the complex, but are released in the medium with a random distribution. The relaxation dynamics for three different length scales, polymer chain, segmental and monomer, show distinct features of the charge and neutral species; the counterions are fastest followed by the PE chain andmore » surfactants. The surfactant heads and tails have the slowest relaxation due to their restricted movement inside the agglomerated structure. At the shortest length scale, all the charge and neutral species show similar relaxation dynamics confirming Rouse behavior at monomer length scales. Overall, the present study highlights the structure-property relationship for polymer-surfactant complexation. These results will help improve the understanding of PES complex and should aid in the design of better materials for future applications.« less

  17. Surfactant mediated polyelectrolyte self-assembly

    SciTech Connect

    Goswami, Monojoy; Borreguero Calvo, Jose M.; Pincus, Phillip A.; Sumpter, Bobby G.

    2015-11-25

    Self-assembly and dynamics of polyelectrolyte (PE) surfactant complex (PES) is investigated using molecular dynamics simulations. The complexation is systematically studied for five different PE backbone charge densities. At a fixed surfactant concentration the PES complexation exhibits pearl-necklace to agglomerated double spherical structures with a PE chain decorating the surfactant micelles. The counterions do not condense on the complex, but are released in the medium with a random distribution. The relaxation dynamics for three different length scales, polymer chain, segmental and monomer, show distinct features of the charge and neutral species; the counterions are fastest followed by the PE chain and surfactants. The surfactant heads and tails have the slowest relaxation due to their restricted movement inside the agglomerated structure. At the shortest length scale, all the charge and neutral species show similar relaxation dynamics confirming Rouse behavior at monomer length scales. Overall, the present study highlights the structure-property relationship for polymer-surfactant complexation. These results will help improve the understanding of PES complex and should aid in the design of better materials for future applications.

  18. SURFACTANT - POLYMER INTERACTION FOR IMPROVED OIL RECOVERY

    SciTech Connect

    Unknown

    1998-10-01

    The goal of this research is to use the interaction between a surfactant and a polymer for efficient displacement of tertiary oil by improving slug integrity, adsorption and mobility control. Surfactant--polymer flooding has been shown to be highly effective in laboratory-scale linear floods. The focus of this proposal is to design an inexpensive surfactant-polymer mixture that can efficiently recover tertiary oil by avoiding surfactant slug degradation high adsorption and viscous/heterogeneity fingering. A mixture comprising a ''pseudo oil'' with appropriate surfactant and polymer has been selected to study micellar-polymer chemical flooding. The physical properties and phase behavior of this system have been determined. A surfactant-polymer slug has been designed to achieve high efficiency recovery by improving phase behavior and mobility control. Recovery experiments have been performed on linear cores and a quarter 5-spot. The same recovery experiments have been simulated using a commercially available simulator (UTCHEM). Good agreement between experimental data and simulation results has been achieved.

  19. DILUTE SURFACTANT METHODS FOR CARBONATE FORMATIONS

    SciTech Connect

    Kishore K. Mohanty

    2005-01-01

    There are many carbonate reservoirs in US (and the world) with light oil and fracture pressure below its minimum miscibility pressure (or reservoir may be naturally fractured). Many carbonate reservoirs are naturally fractured. Waterflooding is effective in fractured reservoirs, if the formation is water-wet. Many fractured carbonate reservoirs, however, are mixed-wet and recoveries with conventional methods are low (less than 10%). Thermal and miscible tertiary recovery techniques are not effective in these reservoirs. Surfactant flooding (or huff-n-puff) is the only hope, yet it was developed for sandstone reservoirs in the past. The goal of this research is to evaluate dilute (hence relatively inexpensive) surfactant methods for carbonate formations and identify conditions under which they can be effective. Imbibition in an originally oil-wet 2D capillary is the fastest in the case of Alf-38 and slowest in the case of DTAB (among the surfactants studied). Force of adhesion studies and contact angle measurements show that greater wettability alteration is possible with these anionic surfactants than the cationic surfactant studied. The water imbibition rate does not increase monotonically with an increase in the surfactant concentration. A numerical model has been developed that fits the rate of imbibition. Plans for the next quarter include conducting simulation and imbibition studies.

  20. Nonlinear water waves with soluble surfactant

    NASA Astrophysics Data System (ADS)

    Lapham, Gary; Dowling, David; Schultz, William

    1998-11-01

    The hydrodynamic effects of surfactants have fascinated scientists for generations. This presentation describes an experimental investigation into the influence of a soluble surfactant on nonlinear capillary-gravity waves in the frequency range from 12 to 20 Hz. Waves were generated in a plexiglass wave tank (254 cm long, 30.5 cm wide, and 18 cm deep) with a triangular plunger wave maker. The tank was filled with carbon- and particulate-filtered water into which the soluble surfactant Triton-X-100® was added in known amounts. Wave slope was measured nonintrusively with a digital camera running at 225 fps by monitoring the position of light beams which passed up through the bottom of the tank, out through the wavy surface, and onto a white screen. Wave slope data were reduced to determine wave damping and the frequency content of the wave train. Both were influenced by the presence of the surfactant. Interestingly, a subharmonic wave occurring at one-sixth the paddle-driving frequency was found only when surfactant was present and the paddle was driven at amplitudes high enough to produce nonlinear waves in clean water. Although the origins of this subharmonic wave remain unclear, it appears to be a genuine manifestation of the combined effects of the surfactant and nonlinearity.

  1. DILUTE SURFACTANT METHODS FOR CARBONATE FORMATIONS

    SciTech Connect

    Kishore K. Mohanty

    2003-07-01

    There are many carbonate reservoirs in US (and the world) with light oil and fracture pressure below its minimum miscibility pressure (or reservoir may be naturally fractured). Many carbonate reservoirs are naturally fractured. Waterflooding is effective in fractured reservoirs, if the formation is water-wet. Many fractured carbonate reservoirs, however, are mixed-wet and recoveries with conventional methods are low (less than 10%). Thermal and miscible tertiary recovery techniques are not effective in these reservoirs. Surfactant flooding (or huff-n-puff) is the only hope, yet it was developed for sandstone reservoirs in the past. The goal of this research is to evaluate dilute (hence relatively inexpensive) surfactant methods for carbonate formations and identify conditions under which they can be effective. We have conducted adsorption, phase behavior and wettability studies. Addition of Na{sub 2}CO{sub 3} decreases IFT with a minimum at about 0.2 M. Addition of surfactant decreases IFT further. In the absence of surfactant the minerals are oil wet after aging with crude oil. Addition of surfactant solution decreases the contact angle to intermediate wettability. Addition of Na{sub 2}CO{sub 3} decreases anionic surfactant adsorption on calcite surface. Plans for the next quarter include conducting adsorption, phase behavior and wettability studies.

  2. DILUTE SURFACTANT METHODS FOR CARBONATE FORMATIONS

    SciTech Connect

    Kishore K. Mohanty

    2004-01-01

    There are many carbonate reservoirs in US (and the world) with light oil and fracture pressure below its minimum miscibility pressure (or reservoir may be naturally fractured). Many carbonate reservoirs are naturally fractured. Waterflooding is effective in fractured reservoirs, if the formation is water-wet. Many fractured carbonate reservoirs, however, are mixed-wet and recoveries with conventional methods are low (less than 10%). Thermal and miscible tertiary recovery techniques are not effective in these reservoirs. Surfactant flooding (or huff-n-puff) is the only hope, yet it was developed for sandstone reservoirs in the past. The goal of this research is to evaluate dilute (hence relatively inexpensive) surfactant methods for carbonate formations and identify conditions under which they can be effective. Anionic surfactants (SS-6656, Alfoterra 35, 38, 63,65,68) have been identified which can change the wettability of the calcite surface to intermediate/water-wet condition as well or better than the cationic surfactant DTAB with a West Texas crude oil in the presence of Na{sub 2}CO{sub 3}. All the carbonate surfaces (Lithographic Limestone, Marble, Dolomite and Calcite) show similar behavior with respect to wettability alteration with surfactant 4-22. Anionic surfactants (5-166, Alfoterra-33 and Alfoterra-38 and Alfoterra-68), which lower the interfacial tension with a West Texas crude oil to very low values (<10{sup -2} nM/m), have also been identified. Plans for the next quarter include conducting wettability, mobilization, and imbibition studies.

  3. Open questions about giant viruses.

    PubMed

    Claverie, Jean-Michel; Abergel, Chantal

    2013-01-01

    The recent discovery of giant viruses exhibiting double-stranded DNA genomes larger than a million base pairs, encoding more than a thousand proteins and packed in near micron-sized icosahedral particles, opened a new and unexpected chapter in virology. As of today, these giant viruses and their closest relatives of lesser dimensions infect unicellular eukaryotes found in aquatic environments, but belonging to a wide diversity of early branching phyla. This broad phylogenetic distribution of hosts is consistent with the hypothesis that giant viruses originated prior to the radiation of the eukaryotic domain and/or might have been involved in the partition of nuclear versus cytoplasmic functions in ancestral cells. The distinctive features of the known giant viruses, in particular the recurrent presence of components of the translation apparatus in their proteome, raise a number of fundamental questions about their origin, their mode of evolution, and the relationship they may entertain with other dsDNA viruses, the genome size of which exhibits the widest distribution among all biological entities, from less than 5 kb to more than 1.25 Mb (a ratio of 1:250). At a more conceptual level, the convergence between the discovery of increasingly reduced parasitic cellular organisms and that of giant viruses exhibiting a widening array of cellular-like functions may ultimately abolish the historical discontinuity between the viral and the cellular world.

  4. Giant Magellan Telescope: overview

    NASA Astrophysics Data System (ADS)

    Johns, Matt; McCarthy, Patrick; Raybould, Keith; Bouchez, Antonin; Farahani, Arash; Filgueira, Jose; Jacoby, George; Shectman, Steve; Sheehan, Michael

    2012-09-01

    The Giant Magellan Telescope (GMT) is a 25-meter optical/infrared extremely large telescope that is being built by an international consortium of universities and research institutions. It will be located at the Las Campanas Observatory, Chile. The GMT primary mirror consists of seven 8.4-m borosilicate honeycomb mirror segments made at the Steward Observatory Mirror Lab (SOML). Six identical off-axis segments and one on-axis segment are arranged on a single nearly-paraboloidal parent surface having an overall focal ratio of f/0.7. The fabrication, testing and verification procedures required to produce the closely-matched off-axis mirror segments were developed during the production of the first mirror. Production of the second and third off-axis segments is underway. GMT incorporates a seven-segment Gregorian adaptive secondary to implement three modes of adaptive-optics operation: natural-guide star AO, laser-tomography AO, and ground-layer AO. A wide-field corrector/ADC is available for use in seeing-limited mode over a 20-arcmin diameter field of view. Up to seven instruments can be mounted simultaneously on the telescope in a large Gregorian Instrument Rotator. Conceptual design studies were completed for six AO and seeing-limited instruments, plus a multi-object fiber feed, and a roadmap for phased deployment of the GMT instrument suite is being developed. The partner institutions have made firm commitments for approximately 45% of the funds required to build the telescope. Project Office efforts are currently focused on advancing the telescope and enclosure design in preparation for subsystem- and system-level preliminary design reviews which are scheduled to be completed in the first half of 2013.

  5. Aggregation of concentrated monoclonal antibody solutions studied by rheology and neutron scattering

    NASA Astrophysics Data System (ADS)

    Castellanos, Maria Monica; Pathak, Jai; Colby, Ralph

    2013-03-01

    Protein solutions are studied using rheology and scattering techniques to investigate aggregation. Here we present a monoclonal antibody (mAb) that aggregates after incubation at 40 °C (below its unfolding temperature), with a decrease in monomer purity of 6% in 10 days. The mAb solution contains surfactant and behaves as a Newtonian fluid when reconstituted into solution from the lyophilized form (before incubation at 40 °C). In contrast, mAb solutions incubated at 40 °C for 1 month exhibit shear yielding in torsional bulk rheometers. Interfacial rheology reveals that interfacial properties are controlled by the surfactant, producing a negligible surface contribution to the bulk yield stress. These results provide evidence that protein aggregates formed in the bulk are responsible for the yield stress. Small-angle neutron scattering (SANS) measurements show an increase in intensity at low wavevectors (q < 4*10-2 nm-1) that we attribute to protein aggregation, and is not observed in solutions stored at 4 °C for 3 days before the measurement. This work suggests a correlation between the aggregated state of the protein (stability) and the yield stress from rheology. Research funded by MedImmune

  6. Polymyalgia Rheumatica and Giant Cell Arteritis

    MedlinePlus

    ... Clinical Trial Journal Articles Polymyalgia Rheumatica and Giant Cell Arteritis May 2016 Questions and Answers about Polymyalgia Rheumatica and Giant Cell Arteritis This publication contains general information about polymyalgia ...

  7. Polymer-grafted lignin surfactants prepared via reversible addition-fragmentation chain-transfer polymerization.

    PubMed

    Gupta, Chetali; Washburn, Newell R

    2014-08-12

    Kraft lignin grafted with hydrophilic polymers has been prepared using reversible addition-fragmentation chain-transfer (RAFT) polymerization and investigated for use as a surfactant. In this preliminary study, polyacrylamide and poly(acrylic acid) were grafted from a lignin RAFT macroinitiator at average initiator site densities estimated to be 2 per particle and 17 per particle. The target degrees of polymerization were 50 and 100, but analysis of cleaved polyacrylamide was consistent with a higher average molecular weight, suggesting not all sites were able to participate in the polymerization. All materials were readily soluble in water, and dynamic light scattering data indicate polymer-grafted lignin coexisted in isolated and aggregated forms in aqueous media. The characteristic size was 15-20 nm at low concentrations, and aggregation appeared to be a stronger function of degree of polymerization than graft density. These species were surface active, reducing the surface tension to as low as 60 dyn/cm at 1 mg/mL, and a greater decrease was observed than for polymer-grafted silica nanoparticles, suggesting that the lignin core was also surface active. While these lignin surfactants were soluble in water, they were not soluble in hexanes. Thus, it was unexpected that water-in-oil emulsions formed in all surfactant compositions and solvent ratios tested, with average droplet sizes of 10-20 μm. However, although polymer-grafted lignin has structural features similar to nanoparticles used in Pickering emulsions, its interfacial behavior was qualitatively different. While at air-water interfaces, the hydrophilic grafts promote effective reductions in surface tension, we hypothesize that the low grafting density in these lignin surfactants favors partitioning into the hexanes side of the oil-water interface because collapsed conformations of the polymer grafts improve interfacial coverage and reduce water-hexanes interactions. We propose that polymer-grafted lignin

  8. Interactions of organic contaminants with mineral-adsorbed surfactants.

    PubMed

    Zhu, Lizhong; Chen, Baoliang; Tao, Shu; Chiou, Cary T

    2003-09-01

    Sorption of organic contaminants (phenol, p-nitrophenol, and naphthalene) to natural solids (soils and bentonite) with and without myristylpyridinium bromide (MPB) cationic surfactant was studied to provide novel insightto interactions of contaminants with the mineral-adsorbed surfactant. Contaminant sorption coefficients with mineral-adsorbed surfactants, Kss, show a strong dependence on surfactant loading in the solid. At low surfactant levels, the Kss values increased with increasing sorbed surfactant mass, reached a maximum, and then decreased with increasing surfactant loading. The Kss values for contaminants were always higher than respective partition coefficients with surfactant micelles (Kmc) and natural organic matter (Koc). At examined MPB concentrations in water the three organic contaminants showed little solubility enhancement by MPB. At low sorbed-surfactant levels, the resulting mineral-adsorbed surfactant via the cation-exchange process appears to form a thin organic film, which effectively "adsorbs" the contaminants, resulting in very high Kss values. At high surfactant levels, the sorbed surfactant on minerals appears to form a bulklike medium that behaves essentially as a partition phase (rather than an adsorptive surface), with the resulting Kss being significantly decreased and less dependent on the MPB loading. The results provide a reference to the use of surfactants for remediation of contaminated soils/sediments or groundwater in engineered surfactant-enhanced washing.

  9. Interactions of organic contaminants with mineral-adsorbed surfactants

    USGS Publications Warehouse

    Zhu, L.; Chen, B.; Tao, S.; Chiou, C.T.

    2003-01-01

    Sorption of organic contaminants (phenol, p-nitrophenol, and naphthalene) to natural solids (soils and bentonite) with and without myristylpyridinium bromide (MPB) cationic surfactant was studied to provide novel insight to interactions of contaminants with the mineral-adsorbed surfactant. Contaminant sorption coefficients with mineral-adsorbed surfactants, Kss, show a strong dependence on surfactant loading in the solid. At low surfactant levels, the Kss values increased with increasing sorbed surfactant mass, reached a maximum, and then decreased with increasing surfactant loading. The Kss values for contaminants were always higher than respective partition coefficients with surfactant micelles (Kmc) and natural organic matter (Koc). At examined MPB concentrations in water the three organic contaminants showed little solubility enhancement by MPB. At low sorbed-surfactant levels, the resulting mineral-adsorbed surfactant via the cation-exchange process appears to form a thin organic film, which effectively "adsorbs" the contaminants, resulting in very high Kss values. At high surfactant levels, the sorbed surfactant on minerals appears to form a bulklike medium that behaves essentially as a partition phase (rather than an adsorptive surface), with the resulting Kss being significantly decreased and less dependent on the MPB loading. The results provide a reference to the use of surfactants for remediation of contaminated soils/sediments or groundwater in engineered surfactant-enhanced washing.

  10. Giant lobelias exemplify convergent evolution

    PubMed Central

    2010-01-01

    Giant lobeliads on tropical mountains in East Africa and Hawaii have highly unusual, giant-rosette growth forms that appear to be convergent on each other and on those of several independently evolved groups of Asteraceae and other families. A recent phylogenetic analysis by Antonelli, based on sequencing the widest selection of lobeliads to date, raises doubts about this paradigmatic example of convergent evolution. Here I address the kinds of evidence needed to test for convergent evolution and argue that the analysis by Antonelli fails on four points. Antonelli's analysis makes several important contributions to our understanding of lobeliad evolution and geographic spread, but his claim regarding convergence appears to be invalid. Giant lobeliads in Hawaii and Africa represent paradigmatic examples of convergent evolution. PMID:20074322

  11. Atmospheres of Extrasolar Giant Planets

    NASA Astrophysics Data System (ADS)

    Marley, M. S.; Fortney, J.; Seager, S.; Barman, T.

    The key to understanding an extrasolar giant planet's spectrum - and hence its detectability and evolution - lies with its atmosphere. Now that direct observations of thermal emission from extrasolar giant planets (EGPs) are in hand, atmosphere models can be used to constrain atmospheric composition, thermal structure, and ultimately the formation and evolution of detected planets. We review the important physical processes that influence the atmospheric structure and evolution of EGPs and consider what has already been learned from the first generation of observations and modeling. We pay particular attention to the roles of cloud structure, metallicity, and atmospheric chemistry in affecting detectable properties through Spitzer Space Telescope observations of the transiting giant planets. Our review stresses the uncertainties that ultimately limit our ability to interpret EGP observations. Finally we will conclude with a look to the future as characterization of multiple individual planets in a single stellar system leads to the study of comparative planetary architectures.

  12. CMB lensing and giant rings

    SciTech Connect

    Rathaus, Ben; Itzhaki, Nissan E-mail: ben.rathaus@gmail.com

    2012-05-01

    We study the CMB lensing signature of a pre-inationary particle (PIP), assuming it is responsible for the giant rings anomaly that was found recently in the WMAP data. Simulating Planck-like data we find that generically the CMB lensing signal to noise ratio associated with such a PIP is quite small and it would be difficult to cross correlate the temperature giant rings with the CMB lensing signal. However, if the pre-inationary particle is also responsible for the bulk flow measured from the local large scale structure, which happens to point roughly at the same direction as the giant rings, then the CMB lensing signal to noise ratio is fairly significant.

  13. Structure of giant muscle proteins

    PubMed Central

    Meyer, Logan C.; Wright, Nathan T.

    2013-01-01

    Giant muscle proteins (e.g., titin, nebulin, and obscurin) play a seminal role in muscle elasticity, stretch response, and sarcomeric organization. Each giant protein consists of multiple tandem structural domains, usually arranged in a modular fashion spanning 500 kDa to 4 MDa. Although many of the domains are similar in structure, subtle differences create a unique function of each domain. Recent high and low resolution structural and dynamic studies now suggest more nuanced overall protein structures than previously realized. These findings show that atomic structure, interactions between tandem domains, and intrasarcomeric environment all influence the shape, motion, and therefore function of giant proteins. In this article we will review the current understanding of titin, obscurin, and nebulin structure, from the atomic level through the molecular level. PMID:24376425

  14. Quantitative determination of the surfactant-induced split ratio of influenza virus by fluorescence spectroscopy.

    PubMed

    Lee, Kenny Kwon Ho; Sahin, Yusuf Ziya; Neeleman, Ronald; Trout, Bernhardt L; Kayser, Veysel

    2016-07-02

    The majority of marketed seasonal influenza vaccines are prepared using viruses that are chemically inactivated and treated with a surfactant. Treating with surfactants has important consequences: it produces 'split viruses' by solubilizing viral membranes, stabilizes free membrane proteins and ensures a low level of reactogenicity while retaining high vaccine potency. The formulation stability and potency of split influenza vaccines are largely determined by the specifics of this 'splitting' process; namely, the consequent conformational changes of proteins and interactions of solubilized particles, which may form aggregates. Robust methods to quantitatively determine the split ratio need to be developed before optimal splitting conditions can be investigated to streamline production of superior influenza vaccines. Here, we present a quantitative method, based on both steady-state and time-resolved fluorescence spectroscopy, to calculate the split ratio of the virus after surfactant treatment. We use the lipophilic dye Nile Red (NR) as a probe to elucidate molecular interactions and track changes in molecular environments. Inactivated whole influenza viruses obtained from a sucrose gradient were incubated with NR and subsequently treated with increasing concentrations of the surfactant Triton X-100 (TX-100) to induce virus splitting. NR's emission spectra showed that the addition of TX-100 caused ˜27 nm red-shifts in the emission peak, indicative of increasingly hydrophilic environments surrounding NR. The emission spectra of NR at different surfactant concentrations were analyzed with multi-peak fitting to ascertain the number of different micro-environments surrounding NR and track its population change in these different environments. Results from both the emission spectra and fluorescence lifetime spectroscopy revealed that NR showed presence in 3 distinct molecular environments. The split ratio of the virus was then calculated from the percentages of NR in

  15. Quantitative determination of the surfactant-induced split ratio of influenza virus by fluorescence spectroscopy

    PubMed Central

    Lee, Kenny Kwon Ho; Sahin, Yusuf Ziya; Neeleman, Ronald; Trout, Bernhardt L.; Kayser, Veysel

    2016-01-01

    ABSTRACT The majority of marketed seasonal influenza vaccines are prepared using viruses that are chemically inactivated and treated with a surfactant. Treating with surfactants has important consequences: it produces ‘split viruses’ by solubilizing viral membranes, stabilizes free membrane proteins and ensures a low level of reactogenicity while retaining high vaccine potency. The formulation stability and potency of split influenza vaccines are largely determined by the specifics of this ‘splitting’ process; namely, the consequent conformational changes of proteins and interactions of solubilized particles, which may form aggregates. Robust methods to quantitatively determine the split ratio need to be developed before optimal splitting conditions can be investigated to streamline production of superior influenza vaccines. Here, we present a quantitative method, based on both steady-state and time-resolved fluorescence spectroscopy, to calculate the split ratio of the virus after surfactant treatment. We use the lipophilic dye Nile Red (NR) as a probe to elucidate molecular interactions and track changes in molecular environments. Inactivated whole influenza viruses obtained from a sucrose gradient were incubated with NR and subsequently treated with increasing concentrations of the surfactant Triton X-100 (TX-100) to induce virus splitting. NR's emission spectra showed that the addition of TX-100 caused ˜27 nm red-shifts in the emission peak, indicative of increasingly hydrophilic environments surrounding NR. The emission spectra of NR at different surfactant concentrations were analyzed with multi-peak fitting to ascertain the number of different micro-environments surrounding NR and track its population change in these different environments. Results from both the emission spectra and fluorescence lifetime spectroscopy revealed that NR showed presence in 3 distinct molecular environments. The split ratio of the virus was then calculated from the

  16. Characterization of Surfactant Water Systems by X-Ray Scattering and 2H NMR

    NASA Astrophysics Data System (ADS)

    Holmes, Michael C.

    Aqueous solutions of surfactants not only have important applications as de- tergents, in food and cosmetic products, in oil recovery and drug delivery [1] but are now becoming important as a medium for the templating of nanostruc- tured materials [2-7]. Surfactants are molecules which possess two different moieties; a hydrophobic moiety and a hydrophilic moiety [8] and typically have dimensions in the range 1 to 10 nm. At very low concentrations in aque- ous solution they exist as individual molecules but above the critical micellar concentration and Krafft temperature they self assemble to form micelles. At such low concentrations interactions between the micelles are negligible and generally they will have a spherical shape whose radius is determined by the length of the hydrophobic tail. However as the concentration of surfactant is increased, micelles can become non-spherical (rod or disk shaped) and the in- teractions between them become significant. In fact within these systems there are two important interactions determining structure; inter-molecular inter- actions (both head and tail groups) which to a large extent determine the aggregate size and shape and inter-aggregate interactions which can influence aggregate size and shape but more importantly can determine phase structure. These interactions can easily become strong enough to promote macroscopic order and can lead to the formation of a sequence of ordered mesophases hav- ing length scales in the range 3 to 200 nm typically. One of the key properties of these mesophases is that they divide space into two regions; hydrophobic and hydrophilic, making them ideal for templating media.

  17. Cationic gemini surfactant-assisted synthesis of hollow Au nanostructures by stepwise reductions.

    PubMed

    Wang, Wentao; Han, Yuchun; Tian, Maozhang; Fan, Yaxun; Tang, Yongqiang; Gao, Mingyuan; Wang, Yilin

    2013-06-26

    A novel synthetic approach was developed for creating versatile hollow Au nanostructures by stepwise reductions of Au(III) upon the use of cationic gemini surfactant hexamethylene-1,6-bis(dodecyl dimethylammonium bromide) (C12C6C12Br2) as a template agent. It was observed that the Au(I) ions obtained from the reduction of Au(III) by ascorbic acid can assist the gemini surfactant to form vesicles, capsule-like, and tube-like aggregates that subsequently act as soft templates for hollow Au nanostructures upon further reduction of Au(I) to Au(0) by NaBH4. It was demonstrated that the combination of C12C6C12Br2 and Au(I) plays a key role in regulating the structure of the hollow precursors not only because C12C6C12Br2 has a stronger aggregation ability in comparison with its single chain counterpart but also because the electrostatic repulsion between head groups of C12C6C12Br2 is greatly weakened after Au(III) is converted to Au(I), which is in favor of the construction of vesicles, capsule-like, and tube-like aggregates. Compared with solid Au nanospheres, the resultant hollow nanostructures exhibit enhanced electrocatalytic activities in methanol oxidation, following the order of elongated nanocapsule > nanocapsule > nanosphere. Benefiting from balanced interactions between the gemini surfactant and Au(I), this soft-template method may present a facile and versatile approach for the controlled synthesis of Au nanostructures potentially useful for fuel cells and other Au nanodevices.

  18. Aggregation in concentrated protein solutions: Insights from rheology, neutron scattering and molecular simulations

    NASA Astrophysics Data System (ADS)

    Castellanos, Maria Monica

    Aggregation of therapeutic proteins is currently one of the major challenges in the bio-pharmaceutical industry, because aggregates could induce immunogenic responses and compromise the quality of the product. Current scientific efforts, both in industry and academia, are focused on developing rational approaches to screen different drug candidates and predict their stability under different conditions. Moreover, aggregation is promoted in highly concentrated protein solutions, which are typically required for subcutaneous injection. In order to gain further understanding about the mechanisms that lead to aggregation, an approach that combined rheology, neutron scattering, and molecular simulations was undertaken. Two model systems were studied in this work: Bovine Serum Albumin in surfactant-free Phosphate Buffered Saline at pH = 7.4 at concentrations from 11 mg/mL up to ˜519 mg/mL, and a monoclonal antibody in 20 mM Histidine/Histidine Hydrochloride at pH = 6.0 with 60 mg/mL trehalose and 0.2 mg/mL polysorbate-80 at concentrations from 53 mg/mL up to ˜220 mg/mL. The antibody used here has three mutations in the CH2 domain, which result in lower stability upon incubation at 40 °C with respect to the wild-type protein, based on size-exclusion chromatography assays. This temperature is below 49 °C, where unfolding of the least stable, CH2 domain occurs, according to differential scanning calorimetry. This dissertation focuses on identifying the role of aggregation on the viscosity of protein solutions. The protein solutions of this work show an increase in the low shear viscosity in the absence of surfactants, because proteins adsorb at the air/water interface forming a viscoelastic film that affects the measured rheology. Stable surfactant-laden protein solutions behave as simple Newtonian fluids. However, the surfactant-laden antibody solution also shows an increase in the low shear viscosity from bulk aggregation, after prolonged incubation at 40 °C. Small

  19. Surfactant Delivery into the Lung

    NASA Astrophysics Data System (ADS)

    Grotberg, James; Filoche, Marcel

    2014-11-01

    We have developed a multiscale, compartmentalized model of surfactant and liquid delivery into the lung. Assuming liquid plug propagation, the airway compartment accounts for the plug's volume deposition (coating) on the airway wall, while the bifurcation compartment accounts for plug splitting from the parent airway to the two daughter airways. Generally the split is unequal due to gravity and geometry effects. Both the deposition ratio RD (deposition volume/airway volume), and the splitting ratio, RS, of the daughters volumes are solved independently from one another. Then they are used in a 3D airway network geometry to achieve the distribution of delivery into the lung. The airway geometry is selected for neonatal as well as adult applications, and can be advanced from symmetric, to stochastically asymmetric, to personalized. RD depends primarily on the capillary number, Ca, while RS depends on Ca, the Reynolds number, Re, the Bond number, Bo, the dose volume, VD, and the branch angles. The model predicts the distribution of coating on the airway walls and the remaining plug volume delivered to the alveolar region at the end of the tree. Using this model, we are able to simulate and test various delivery protocols, in order to optimize delivery and improve the respiratory function.

  20. The influence of erythrocyte aggregation on induced platelet aggregation.

    PubMed

    Ott, C; Lardi, E; Schulzki, T; Reinhart, W H

    2010-01-01

    Red blood cells (RBCs) affect platelet aggregation in flowing blood (primary hemostasis). We tested the hypothesis that RBC aggregation could influence platelet aggregation. RBC aggregation was altered in vitro by: (i) changing plasma aggregatory properties with 3.7 g% dextran 40 (D40), 3.0 g% dextran 70 (D70) or 1.55 g% dextran 500 (D500); (ii) changing RBC aggregatory properties by incubating RBCs in 50 mU/ml neuraminidase for 60 min (reduction of the surface sialic acid content, thus reducing electrostatic repulsion) and subsequent RBC resuspension in platelet rich plasma (PRP) containing 1 g% dextran 70. RBC aggregation was assessed with the sedimentation rate (ESR). Platelet aggregation was measured: (i) in flowing whole blood with a platelet function analyzer PFA-100(R), which simulates in vivo conditions with RBCs flowing in the center and platelets along the wall, where they adhere to collagen and aggregate; and (ii) in a Chrono-log 700 Aggregometer, which measures changes of impedance by platelet aggregation in whole blood or changes in light transmission in PRP. We found that RBC aggregation increased with increasing molecular weight of dextran (ESR: 4 +/- 3 mm/h, 34 +/- 14 mm/h and 89 +/- 23 mm/hfor D40, D70 and D500, respectively, p < 0.0001) and with neuraminidase-treated RBCs (76 +/- 27 mm/h vs 27 +/- 8 mm/h, respectively, p < 0.0001). Platelet aggregation measured in whole blood under flow conditions (PFA-100) and without flow (Chronolog Aggregometer) was not affected by RBC aggregation. Our data suggest that RBC aggregation does not affect platelet aggregation in vitro and plays no role in primary hemostasis.

  1. Dilute Surfactant Methods for Carbonate Formations

    SciTech Connect

    Kishore K. Mohanty

    2006-02-01

    There are many fractured carbonate reservoirs in US (and the world) with light oil. Waterflooding is effective in fractured reservoirs, if the formation is water-wet. Many fractured carbonate reservoirs, however, are mixed-wet and recoveries with conventional methods are low (less than 10%). The process of using dilute anionic surfactants in alkaline solutions has been investigated in this work for oil recovery from fractured oil-wet carbonate reservoirs both experimentally and numerically. This process is a surfactant-aided gravity drainage where surfactant diffuses into the matrix, lowers IFT and contact angle, which decrease capillary pressure and increase oil relative permeability enabling gravity to drain the oil up. Anionic surfactants have been identified which at dilute concentration of 0.05 wt% and optimal salinity can lower the interfacial tension and change the wettability of the calcite surface to intermediate/water-wet condition as well or better than the cationic surfactant DTAB with a West Texas crude oil. The force of adhesion in AFM of oil-wet regions changes after anionic surfactant treatment to values similar to those of water-wet regions. The AFM topography images showed that the oil-wetting material was removed from the surface by the anionic surfactant treatment. Adsorption studies indicate that the extent of adsorption for anionic surfactants on calcite minerals decreases with increase in pH and with decrease in salinity. Surfactant adsorption can be minimized in the presence of Na{sub 2}CO{sub 3}. Laboratory-scale surfactant brine imbibition experiments give high oil recovery (20-42% OOIP in 50 days; up to 60% in 200 days) for initially oil-wet cores through wettability alteration and IFT reduction. Small (<10%) initial gas saturation does not affect significantly the rate of oil recovery in the imbibition process, but larger gas saturation decreases the oil recovery rate. As the core permeability decreases, the rate of oil recovery reduces

  2. Giant right atrial thrombi treated with thrombolysis.

    PubMed

    Ruiz-Bailén, Manuel; López-Caler, Carmen; Castillo-Rivera, Ana; Rucabado-Aguilar, Luis; Ramos Cuadra, José Angel; Lara Toral, Juan; Lozano Cabezas, Cristobal; Fernández Guerrero, Juan Carlos

    2008-04-01

    The present report describes giant atrial thrombi that were treated with thrombolysis in a community hospital. Two patients with giant atrial thrombi whose treatment involved complications are presented. Both patients developed cardiogenic shock and were treated unsuccessfully with thrombolysis. Because thrombolysis of giant thrombi may be ineffective, patients in this situation may require surgery.

  3. Giant right atrial thrombi treated with thrombolysis

    PubMed Central

    Ruiz-Bailén, Manuel; López-Caler, Carmen; Castillo-Rivera, Ana; Rucabado-Aguilar, Luis; Cuadra, José Ángel Ramos; Toral, Juan Lara; Cabezas, Cristobal Lozano; Guerrero, Juan Carlos Fernández

    2008-01-01

    The present report describes giant atrial thrombi that were treated with thrombolysis in a community hospital. Two patients with giant atrial thrombi whose treatment involved complications are presented. Both patients developed cardiogenic shock and were treated unsuccessfully with thrombolysis. Because thrombolysis of giant thrombi may be ineffective, patients in this situation may require surgery. PMID:18401474

  4. Cabergoline treatment in invasive giant prolactinoma.

    PubMed

    Alsubaie, Sadeem; Almalki, Mussa H

    2014-01-01

    Patients with invasive giant prolactinoma suffer from a constellation of symptoms including headache, blurred vision, lethargy, and sexual dysfunction. Cabergoline, a potent dopamine agonist, is a known medication prescribed for the treatment of invasive giant prolactinoma. Here, we report a case of invasive giant prolactinoma in a 52-year-old Saudi male with dramatic response to cabergoline treatment clinically, biochemically, and radiologically.

  5. Microemulsion-based lycopene extraction: Effect of surfactants, co-surfactants and pretreatments.

    PubMed

    Amiri-Rigi, Atefeh; Abbasi, Soleiman

    2016-04-15

    Lycopene is a potent antioxidant that has received extensive attention recently. Due to the challenges encountered with current methods of lycopene extraction using hazardous solvents, industry calls for a greener, safer and more efficient process. The main purpose of present study was application of microemulsion technique to extract lycopene from tomato pomace. In this respect, the effect of eight different surfactants, four different co-surfactants, and ultrasound and enzyme pretreatments on lycopene extraction efficiency was examined. Experimental results revealed that application of combined ultrasound and enzyme pretreatments, saponin as a natural surfactant, and glycerol as a co-surfactant, in the bicontinuous region of microemulsion was the optimal experimental conditions resulting in a microemulsion containing 409.68±0.68 μg/glycopene. The high lycopene concentration achieved, indicates that microemulsion technique, using a low-cost natural surfactant could be promising for a simple and safe separation of lycopene from tomato pomace and possibly from tomato industrial wastes.

  6. Selection of surfactant in remediation of DDT-contaminated soil by comparison of surfactant effectiveness.

    PubMed

    Guo, Ping; Chen, Weiwei; Li, Yueming; Chen, Tao; Li, Linhui; Wang, Guanzhu

    2014-01-01

    With an aim to select the most appropriate surfactant for remediation of DDT-contaminated soil, the performance of nonionic surfactants Tween80, TX-100, and Brij35 and one anionic surfactant sodium dodecyl benzene sulfonate (SDBS) in enhancement of DDT water solubility and desorption of DDT from contaminated soil and their adsorption onto soil and ecotoxicities were investigated in this study. Tween80 had the highest solubilizing and soil-washing ability for DDT among the four experimental surfactants. The adsorption loss of surfactants onto soil followed the order of TX-100 > Tween80 > Brij35 > SDBS. The ecotoxicity of Tween80 to ryegrass (Lolium perenne L.) was lowest. The overall performance considering about the above four aspects suggested that Tween80 should be selected for the remediation of DDT-contaminated soil, because Tween80 had the greatest solubilizing and soil-washing ability for DDT, less adsorption loss onto soil, and the lowest ecotoxicity in this experiment.

  7. Structure of Viral Aggregates

    NASA Astrophysics Data System (ADS)

    Barr, Stephen; Luijten, Erik

    2010-03-01

    The aggregation of virus particles is a particular form of colloidal self-assembly, since viruses of a give type are monodisperse and have identical, anisotropic surface charge distributions. In small-angle X-ray scattering experiments, the Qbeta virus was found to organize in different crystal structures in the presence of divalent salt and non-adsorbing polymer. Since a simple isotropic potential cannot explain the occurrence of all observed phases, we employ computer simulations to investigate how the surface charge distribution affects the virus interactions. Using a detailed model of the virus particle, we find an asymmetric ion distribution around the virus which gives rise to the different phases observed.

  8. Charting the Giants

    NASA Astrophysics Data System (ADS)

    2004-06-01

    zero expansion asymptotically after an infinite time and has a flat geometry). All three observational tests by means of supernovae (green), the cosmic microwave background (blue) and galaxy clusters converge at a Universe around Ωm ~ 0.3 and ΩΛ ~ 0.7. The dark red region for the galaxy cluster determination corresponds to 95% certainty (2-sigma statistical deviation) when assuming good knowledge of all other cosmological parameters, and the light red region assumes a minimum knowledge. For the supernovae and WMAP results, the inner and outer regions corespond to 68% (1-sigma) and 95% certainty, respectively. References: Schuecker et al. 2003, A&A, 398, 867 (REFLEX); Tonry et al. 2003, ApJ, 594, 1 (supernovae); Riess et al. 2004, ApJ, 607, 665 (supernovae) Galaxy clusters are far from being evenly distributed in the Universe. Instead, they tend to conglomerate into even larger structures, "super-clusters". Thus, from stars which gather in galaxies, galaxies which congregate in clusters and clusters tying together in super-clusters, the Universe shows structuring on all scales, from the smallest to the largest ones. This is a relict of the very early (formation) epoch of the Universe, the so-called "inflationary" period. At that time, only a minuscule fraction of one second after the Big Bang, the tiny density fluctuations were amplified and over the eons, they gave birth to the much larger structures. Because of the link between the first fluctuations and the giant structures now observed, the unique REFLEX catalogue - the largest of its kind - allows astronomers to put considerable constraints on the content of the Universe, and in particular on the amount of dark matter that is believed to pervade it. Rather interestingly, these constraints are totally independent from all other methods so far used to assert the existence of dark matter, such as the study of very distant supernovae (see e.g. ESO PR 21/98) or the analysis of the Cosmic Microwave background (e

  9. Surfactant-enhanced low-pH alkaline flooding

    SciTech Connect

    Peru, D.A. and Co., Columbia, MD . Research Div.); Lorenz, P.B. )

    1990-08-01

    This paper reports sodium bicarbonate investigated as a potential alkaline agent in surfactant-enhanced alkaline flooding because it has very little tendency to dissolve silicate minerals. In experiments performed with Wilmington, CA, crude oil and three types of surfactants, the bicarbonate/surfactant combination caused a marked lowering of interfacial tension (IFT). Bicarbonate protected the surfactant against divalent cations and reduced adsorption of surfactant and polymer on various minerals. Coreflood test confirm that sodium bicarbonate plus surfactant can be an effective alternative to the high-pH flooding process.

  10. A Review on Progress in QSPR Studies for Surfactants

    PubMed Central

    Hu, Jiwei; Zhang, Xiaoyi; Wang, Zhengwu

    2010-01-01

    This paper presents a review on recent progress in quantitative structure-property relationship (QSPR) studies of surfactants and applications of various molecular descriptors. QSPR studies on critical micelle concentration (cmc) and surface tension (γ) of surfactants are introduced. Studies on charge distribution in ionic surfactants by quantum chemical calculations and its effects on the structures and properties of the colloids of surfactants are also reviewed. The trends of QSPR studies on cloud point (for nonionic surfactants), biodegradation potential and some other properties of surfactants are evaluated. PMID:20479997

  11. Growing Characteristics of Fine Ice Particles in Surfactant Solution

    NASA Astrophysics Data System (ADS)

    Suzuki, Hiroshi; Nakayama, Kosuke; Komoda, Yoshiyuki; Usui, Hiromoto; Okada, Kazuto; Fujisawa, Ryo

    Time variation characteristics of ice particles in a surfactant solution have been investigated. The effect of surfactants on corrosion characteristics was also studied. The results were compared with those treated with poly(vinyl alcohol). From the results, the present surfactant, cetyl dimethyl betaine was not found to be effective on preventing Ostward ripening of ice particles as poly(vinyl alcohol) showed. Then, it was concluded some effective technology has to be installed with surfactants when this surfactant treatment is realized. On the corrosion characteristics, it was found that the present surfactant shows the same level as tap water.

  12. Surfactant-assisted synthesis of water-soluble and biocompatible semiconductor quantum dot-micelles.

    SciTech Connect

    Brinker, C. Jeffrey; Bunge, Scott D.; Gabaldon, John; Fan, Hongyou; Scullin, Chessa; Leve, Erik W.; Wilson, Michael C.; Tallant, David Robert; Boyle, Timothy J.

    2005-04-01

    We report a simple, rapid approach to synthesize water-soluble and biocompatible fluorescent quantum dot (QD) micelles by encapsulation of monodisperse, hydrophobic QDs within surfactant/lipid micelles. Analyses of UV-vis and photo luminescence spectra, along with transmission electron microscopy, indicate that the water-soluble semiconductor QD micelles are monodisperse and retain the optical properties of the original hydrophobic QDs. The QD micelles were shown to be biocompatible and exhibited little or no aggregation when taken up by cultured rat hippocampal neurons.

  13. Surfactants and the Mechanics of Respiration

    NASA Astrophysics Data System (ADS)

    Jbaily, Abdulrahman; Szeri, Andrew J.

    2016-11-01

    Alveoli are small sacs found at the end of terminal bronchioles in human lungs with a mean diameter of 200 μm. A thin layer of fluid (hypophase) coats the inner face of an alveolus and is in contact with the air in the lungs. The thickness of this layer varies among alveoli, but is in the range of 0.1 to 0.5 μm for many portions of the alveolar network. The interfacial tension σ at the air-hypophase interface tends to favor collapse of the alveolus, and resists its expansion during inhalation. Type II alveolar cells synthesize and secrete a mixture of phospholipids and proteins called pulmonary surfactant. These surfactant molecules adsorb to the interface causing σ of water at body temperature is 70 mN/m and falls to an equilibrium value of 25 mN/m when surfactants are present. Also, in a dynamic sense, it is known that σ is reduced to near 0 during exhalation when the surfactant film compresses. In this work, the authors develop a mechanical and transport model of the alveolus to study the effect of surfactants on various aspects of respiration. The model is composed of three principal parts: (i) air movement into and out of the alveolus; (ii) a balance of linear momentum across the two-layered membrane of the alveolus (hypophase and elastic wall); and (iii) a pulmonary surfactant transport problem in the hypophase. The goal is to evaluate the influence of pulmonary surfactant on respiratory mechanics.

  14. Influence of clay mineral structure and surfactant nature on the adsorption capacity of surfactants by clays.

    PubMed

    Sánchez-Martín, M J; Dorado, M C; del Hoyo, C; Rodríguez-Cruz, M S

    2008-01-15

    Adsorption of three surfactants of different nature, Triton X-100 (TX100) (non-ionic), sodium dodecylsulphate (SDS) (anionic) and octadecyltrimethylammonium bromide (ODTMA) (cationic) by four layered (montmorillonite, illite, muscovite and kaolinite) and two non-layered (sepiolite and palygorskite) clay minerals was studied. The objective was to improve the understanding of surfactant behaviour in soils for the possible use of these compounds in remediation technologies of contaminated soils by toxic organic compounds. Adsorption isotherms were obtained using surfactant concentrations higher and lower than the critical micelle concentration (cmc). These isotherms showed different adsorption stages of the surfactants by the clay minerals, and were classified in different subgroups of the L-, S- or H-types. An increase in the adsorption of SDS and ODTMA by all clay minerals is observed up to the cmc of the surfactant in the equilibrium solution is reached. However, there was further TX100 adsorption when the equilibrium concentration was well above the cmc. Adsorption constants from Langmuir and Freundlich equations (TX100 and ODTMA) or Freundlich equation (SDS) were used to compare adsorption of different surfactants by clay minerals studied. These constants indicated the surfactant adsorption by clay minerals followed this order ODTMA>TX100>SDS. The adsorption of TX100 and ODTMA was higher by montmorillonite and illite, and the adsorption of SDS was found to be higher by kaolinite and sepiolite. Results obtained show the influence of clay mineral structure and surfactant nature on the adsorption capacity of surfactants by clays, and they indicate the interest to consider the soil mineralogical composition when one surfactant have to be selected in order to establish more efficient strategies for the remediation of soils and water contaminated by toxic organic pollutants.

  15. Mineral-Surfactant Interaction for Minimum Reagents Precipitation and Adsorption for Improved Oil Recovery

    SciTech Connect

    P. Somasundaran

    2006-09-30

    In this project, fundamental studies were conducted to understand the mechanisms of the interactions between polymers/surfactants and minerals with the aim of minimizing chemical loss by adsorption. The effects of structures of the surface active molecules on critical solid/liquid interfacial properties such as adsorption, wettability and surface tension in mineral/surfactant systems were investigated. The final aim is to build a guideline to design optimal polymer/surfactant formula based on the understanding of adsorption and orientation of surfactants and their aggregates at solid/liquid interfaces. During this period, the wettability of alumina was tested using two-phase extraction at different pHs. The results were explained using the adsorption data obtain previously. It was found that the wettability is determined by both the nano-structure of the hemimicelles and the surface coverage. It was found that pH plays a critical role in controlling the total adsorption and the mineral wettability. At pH 4, the alumina surface remains hydrophilic in the surfactant concentration range tested because of the low surface coverage, even though hemimicelles are formed. Adsorption of sodium dodecyl sulfate (SDS) on alumina and silica, the component minerals reservoir rocks, was conducted at different pHs. The adsorption of SDS on silica is negligible, while the adsorption on alumina is high due to the different charge of the latter. Tests of adsorption of a modified polymer S-19703-35HT on alumina were also conducted at different pHs. Adsorption density decreases with pH. The results suggest that alkaline pH range is more cost-effective for a SDS/polymer system because of the low adsorption density. A new term, reagent loss index (RLI), was used to analyze the adsorption data for different surfactants and minerals. It was shown that the chemical loss is very high in the case of SDS on gypsum and limestone, while it is low in the case of silica. The mixed Dodecyl maltoside

  16. Adsorption and adsolubilization of polymerizable surfactants on aluminum oxide.

    PubMed

    Attaphong, Chodchanok; Asnachinda, Emma; Charoensaeng, Ampira; Sabatini, David A; Khaodhiar, Sutha

    2010-04-01

    Surfactant-based adsorption processes have been widely investigated for environmental applications. A major problem facing surfactant-modified adsorbents is surfactant loss from the adsorbent due to loss of monomers from solution and subsequent surfactant desorption. For this study, a bilayer of anionic polymerizable surfactant (Hitenol BC 05, Hitenol BC 10 and Hitenol BC 20) and non-polymerizable surfactant (Hitenol N 08) was adsorbed onto alumina. The results of adsorption studies showed that as the number of ethylene oxide (EO) groups of the surfactants increased, the area per molecule increased and the maximum adsorption decreased. The lowest maximum adsorption onto alumina was for Hitenol BC 20 (20 EO groups) corresponding to 0.08 mmol/g or 0.34 molecule/nm(2) while the highest level of adsorption was 0.30 mmol/g or 1.28 molecule/nm(2) for Hitenol BC 05 (5 EO groups). This variation in adsorption was attributed to the increased bulkiness of the head group with increasing number of EO groups. Relative to the adsolubilization capacity of organic solutes, ethylcyclohexane adsolubilizes more than styrene. Styrene and ethylcyclohexane adsolubilization were both independent of the number of EO groups of the surfactant. For surfactant desorption studies, the polymerization of polymerizable surfactants increased the stability of surfactants adsorbed onto the alumina surface and reduced surfactant desorption from the alumina surface. These results provide useful information on surfactant-based surface modification to enhance contaminant remediation and industrial applications.

  17. 2-DE using hemi-fluorinated surfactants.

    PubMed

    Starita-Geribaldi, Mireille; Thebault, Pascal; Taffin de Givenchy, Elisabeth; Guittard, Frederic; Geribaldi, Serge

    2007-07-01

    The synthesis of hemi-fluorinated zwitterionic surfactants was realized and assessed for 2-DE, a powerful separation method for proteomic analysis. These new fluorinated amidosulfobetaine (FASB-p,m) were compared to their hydrocarbon counterparts amidosulfobetaine (ASB-n) characterized by a hydrophilic polar head, a hydrophobic and lipophilic tail, and an amido group as connector. The tail of these FASB surfactants was in part fluorinated resulting in the modulation of its lipophilicity (or oleophobicity). Their effect on the red blood cell (RBC) membrane showed a specific solubilization depending on the length of the hydrophobic part. A large number of polypeptide spots appeared in the 2-DE patterns by using FASB-p,m. The oleophobic character of these surfactants was confirmed by the fact that Band 3, a highly hydrophobic transmembrane protein, was not solubilized by these fluorinated structures. The corresponding pellet was very rich in Band 3 and could then be solubilized by using a strong detergent such as amidosulfobetaine with an alkyl tail containing 14 carbon atoms (ASB-14). Thus, these hemi-fluorinated surfactants appeared as powerful tools when used at the first step of a two-step solubilization strategy using a hydrocarbon homologous surfactant in the second step.

  18. Rheology of Natural Lung Surfactant Films

    NASA Astrophysics Data System (ADS)

    Alonso, Coralie; Waring, Alan; Zsadzinski, Joseph

    2004-03-01

    The lung surfactant (LS) is a lipoprotein mixture lining the inside of the pulmonary alveoli which has the ability to lower the surface tension of the air-liquid hypophase interface to value near zero thus reducing the work of breathing and which also prevents the alveolar collapse. A lack or malfunction of lung surfactant, as it is often the case for premature infants, leads to respiratory distress syndrome. RDS can be treated by supplying replacement LS to the infants and several medications derived from natural sources, are now widely used. The lung surfactant is adsorbed at the air-liquid interface and is subjected to incessant compression expansion cycles therefore Langmuir monolayers provide a suitable model to investigate the physical properties of lung surfactant films. Using a magnetic needle rheometer, we measured the shear viscosity of natural lung surfactant spread at the air-liquid interface upon compression and expansion cycles for three different formulations. The shear viscosity of Survanta changes by orders of magnitude along one cycle while for Curosurf samples it changes only slightly and for Infasurf films it remains constant. These different behaviors can be explained by differences in composition between the three formulations leading to different organizations on the molecular scale.

  19. DILUTE SURFACTANT METHODS FOR CARBONATE FORMATIONS

    SciTech Connect

    Kishore K. Mohanty

    2004-10-01

    There are many carbonate reservoirs in US (and the world) with light oil and fracture pressure below its minimum miscibility pressure (or reservoir may be naturally fractured). Many carbonate reservoirs are naturally fractured. Waterflooding is effective in fractured reservoirs, if the formation is water-wet. Many fractured carbonate reservoirs, however, are mixed-wet and recoveries with conventional methods are low (less than 10%). Thermal and miscible tertiary recovery techniques are not effective in these reservoirs. Surfactant flooding (or huff-n-puff) is the only hope, yet it was developed for sandstone reservoirs in the past. The goal of this research is to evaluate dilute (hence relatively inexpensive) surfactant methods for carbonate formations and identify conditions under which they can be effective. Simulation studies indicate that both wettability alteration and gravity-driven flow play significant role in oil recovery from fractured carbonates. Anionic surfactants (Alfoterra 35, 38) recover about 55% of the oil in about 150 days by imbibition driven by wettability alteration and low tension in the core-scale. Anionic surfactant, Alfoterra-68, recovers about 40% of the oil by lower tension aided gravity-driven imbibition in the core-scale. Cationic surfactant, DTAB recovers about 35% of the oil. Plans for the next quarter include conducting simulation and imbibition studies.

  20. Dilute Surfactant Methods for Carbonate Formations

    SciTech Connect

    Kishore K. Mohanty

    2004-03-31

    There are many carbonate reservoirs in US (and the world) with light oil and fracture pressure below its minimum miscibility pressure (or reservoir may be naturally fractured). Many carbonate reservoirs are naturally fractured. Waterflooding is effective in fractured reservoirs, if the formation is water-wet. Many fractured carbonate reservoirs, however, are mixed-wet and recoveries with conventional methods are low (less than 10%). Thermal and miscible tertiary recovery techniques are not effective in these reservoirs. Surfactant flooding (or huff-n-puff) is the only hope, yet it was developed for sandstone reservoirs in the past. The goal of this research is to evaluate dilute (hence relatively inexpensive) surfactant methods for carbonate formations and identify conditions under which they can be effective. Anionic surfactants (Alfoterra 35, 38) recover more than 40% of the oil in about 50 days by imbibition driven by wettability alteration in the core-scale. Anionic surfactant, Alfoterra-68, recovers about 28% of the oil by lower tension aided gravity-driven imbibition in the core-scale. Residual oil saturation showed little capillary number dependence between 10{sup -5} and 10{sup -2}. Wettability alteration increases as the number of ethoxy groups increases in ethoxy sulfate surfactants. Plans for the next quarter include conducting mobilization, and imbibition studies.

  1. Foaming behaviour of polymer surfactant solutions

    NASA Astrophysics Data System (ADS)

    Cervantes-Martínez, Alfredo; Maldonado, Amir

    2007-06-01

    We study the effect of a non-ionic amphiphilic polymer (PEG-100 stearate also called Myrj 59) on the foaming behaviour of aqueous solutions of an anionic surfactant (sodium dodecyl sulfate or SDS). The SDS concentration was kept fixed while the Myrj 59 concentration was varied. Measurements of foamability, surface tension and electrical conductivity were carried out. The results show two opposite effects depending on the polymer concentration: foamability is higher when the Myrj 59 concentration is low; however, it decreases considerably when the polymer concentration is increased. This behaviour is due to the polymer adsorption at the air/liquid interface at lower polymer concentrations, and to the formation of a polymer-surfactant complex in the bulk at higher concentrations. The results are confirmed by surface tension and electrical conductivity measurements, which are interpreted in terms of the microstructure of the polymer-surfactant solutions. The observed behaviour is due to the amphiphilic nature of the studied polymer. The increased hydrophobicity of Myrj 59, compared to that of water-soluble polymers like PEG or PEO, increases its 'reactivity' towards SDS, i.e. the strength of its interaction with this anionic surfactant. Our results show that hydrophobically modified polymers have potential applications as additives in order to control the foaming properties of surfactant solutions.

  2. Analysis of supercooling activities of surfactants.

    PubMed

    Kuwabara, Chikako; Terauchi, Ryuji; Tochigi, Hiroshi; Takaoka, Hisao; Arakawa, Keita; Fujikawa, Seizo

    2014-08-01

    Supercooling-promoting activities (SCAs) of 25 kinds of surfactants including non-ionic, anionic, cationic and amphoteric types were examined in solutions (buffered Milli-Q water, BMQW) containing the ice nucleation bacterium (INB) Erwinia ananas, silver iodide (AgI) or BMQW alone, which unintentionally contained unidentified ice nucleators, by a droplet freezing assay. Most of the surfactants exhibited SCA in solutions containing AgI but not in solutions containing the INB E. ananas or BMQW alone. SCAs of many surfactants in solutions containing AgI were very high compared with those of previously reported supercooling-promoting substances. Cationic surfactants, hexadecyltrimethylammonium bromide (C16TAB) and hexadecyltrimethylammonium chloride (C16TAC), at concentrations of 0.01% (w/v) exhibited SCA of 11.8 °C, which is the highest SCA so far reported. These surfactants also showed high SCAs at very low concentrations in solutions containing AgI. C16TAB exhibited SCA of 5.7 °C at a concentration of 0.0005% (w/v).

  3. Surface shear inviscidity of soluble surfactants

    PubMed Central

    Zell, Zachary A.; Nowbahar, Arash; Mansard, Vincent; Leal, L. Gary; Deshmukh, Suraj S.; Mecca, Jodi M.; Tucker, Christopher J.; Squires, Todd M.

    2014-01-01

    Foam and emulsion stability has long been believed to correlate with the surface shear viscosity of the surfactant used to stabilize them. Many subtleties arise in interpreting surface shear viscosity measurements, however, and correlations do not necessarily indicate causation. Using a sensitive technique designed to excite purely surface shear deformations, we make the most sensitive and precise measurements to date of the surface shear viscosity of a variety of soluble surfactants, focusing on SDS in particular. Our measurements reveal the surface shear viscosity of SDS to be below the sensitivity limit of our technique, giving an upper bound of order 0.01 μN·s/m. This conflicts directly with almost all previous studies, which reported values up to 103–104 times higher. Multiple control and complementary measurements confirm this result, including direct visualization of monolayer deformation, for SDS and a wide variety of soluble polymeric, ionic, and nonionic surfactants of high- and low-foaming character. No soluble, small-molecule surfactant was found to have a measurable surface shear viscosity, which seriously undermines most support for any correlation between foam stability and surface shear rheology of soluble surfactants. PMID:24563383

  4. Surfactant apoprotein in nonmalignant pulmonary disorders.

    PubMed Central

    Singh, G.; Katyal, S. L.

    1980-01-01

    Formalin-fixed, paraffin-embedded lungs exhibiting a variety of nonmalignant disorders were studied by immunoperoxidase staining using antibodies specific for surfactant apoprotein, IgG, IgM, IgA, albumin, fibrinogen, and lysozyme. Normal Type II pneumocytes showed staining for surfactant apoprotein in the perinuclear region only. The extent and intensity of staining for apoprotein was markedly increased in reactive Type II pneumocytes. This increase appeared to be a nonspecific reaction to lung injury. The intra-alveolar material in pulmonary alveolar proteinosis stained intensely for surfactant apoprotein, indicating that the accumulated proteinaceous material contained pulmonary surfactant. Type II pneumocytes in pulmonary alveolar proteinosis exhibited hyperplasia as well as hypertrophy. The few macrophages in lung affected by pulmonary alveolar proteinosis stained intensely for lysozyme. The excessive intraalveolar accumulation of proteinaceous material in pulmonary alveolar proteinosis may be the result of both an over-production as well as a deficient removal of pulmonary surfactant. Images Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9 p[57]-a PMID:7004201

  5. Surfactant remediation of diesel fuel polluted soil.

    PubMed

    Khalladi, Razika; Benhabiles, Ouassila; Bentahar, Fatiha; Moulai-Mostefa, Naji

    2009-05-30

    Soil contamination with petroleum hydrocarbons has caused critical environmental and health defects and increasing attention has been paid for developing innovative technology for cleaning up this contamination. In this work, the washing process of a soil column by ionic surfactant sodium dodecyl sulfate (SDS) was investigated. Water flow rate and the contamination duration (age) have been studied. The performance of water in the removal of diesel fuel was found to be non-negligible, while water contributed by 24.7% in the global elimination of n-alkanes. The effect of SDS is significant beyond a concentration of 8mM. After 4h of treatment with surfactant solution, the diesel soil content remains constant, which shows the existence of a necessary contact time needed to the surfactant to be efficient. The soil washing process at a rate of 3.2 mL/min has removed 97% of the diesel fuel. This surfactant soil remediation process was shown to be governed by the first-order kinetics. These results are of practical interest in developing effective surfactant remediation technology of diesel fuel contaminated soils.

  6. Surfactant effects on SF6 hydrate formation.

    PubMed

    Lee, Bo Ram; Lee, Ju Dong; Lee, Hyun Ju; Ryu, Young Bok; Lee, Man Sig; Kim, Young Seok; Englezos, Peter; Kim, Myung Hyun; Kim, Yang Do

    2009-03-01

    Sulfur hexafluoride (SF(6)) has been widely used in a variety of industrial processes, but it is one of the most potent greenhouse gases. For this reason, it is necessary to separate or collect it from waste gas streams. One separation method is through hydrate crystal formation. In this study, SF(6) hydrate was formed in aqueous surfactant solutions of 0.00, 0.01, 0.05, 0.15 and 0.20 wt% to investigate the effects of surfactants on the hydrate formation rates. Three surfactants, Tween 20 (Tween), sodium dodecyl sulfate (SDS) and linear alkyl benzene sulfonate (LABS), were tested in a semi-batch stirred vessel at the constant temperature and pressures of 276.2 K and 0.78 MPa, respectively. All surfactants showed kinetic promoter behavior for SF(6) hydrate formation. It was also found that SF(6) hydrate formation proceeded in two stages with the second stage being the most rapid. In situ Raman spectroscopy analysis revealed that the increased gas consumption rate with the addition of surfactant was possibly due to the increased gas filling rate in the hydrate cavity.

  7. Giant Serpentine Aneurysms: Multidisciplinary Management

    PubMed Central

    Anshun, W.; Feng, L.; Daming, W.

    2000-01-01

    Summary Sixty-five cases of intracranial giant serpentine aneurysms (GSΛs), including 61 cases reported in the literature and four additional cases presented in this study were reviewed. The clinical presentation, possible causes, natural history, and especially management of GSAs are discussed with emphasis on the need for aggressive intervention and multidisciplinary management. PMID:20667180

  8. On the Shoulders of Giants...

    DTIC Science & Technology

    2013-01-01

    REFERENCES 1. Newton I. Turnbull HW, ed. Correspondence of Isaac Newton . Vol I: 1661Y1675. Cambridge, United Kingdom: Cambridge University Press; 1959:416...calendar), Sir Isaac Newtonopined to Robert Hooke, ‘‘If I have seen further [than you and Descartes], it is by standing on the shoulders of giants.’’1 That

  9. The giant panda gut microbiome.

    PubMed

    Wei, Fuwen; Wang, Xiao; Wu, Qi

    2015-08-01

    Giant pandas (Ailuropoda melanoleuca) are bamboo specialists that evolved from carnivores. Their gut microbiota probably aids in the digestion of cellulose and this is considered an example of gut microbiota adaptation to a bamboo diet. However, this issue remains unresolved and further functional and compositional studies are needed.

  10. Nursery of Giants

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Hidden behind a shroud of dust in the constellation Cygnus is a stellar nursery called DR21, which is giving birth to some of the most massive stars in our galaxy. Visible light images reveal no trace of this interstellar cauldron because of heavy dust obscuration. In fact, visible light is attenuated in DR21 by a factor of more than 10,000,000,000,000,000,000,000,000,000,000,000,000,000 (ten thousand trillion heptillion).

    New images from NASA's Spitzer Space Telescope allow us to peek behind the cosmic veil and pinpoint one of the most massive natal stars yet seen in our Milky Way galaxy. The never-before-seen star is 100,000 times as bright as the Sun. Also revealed for the first time is a powerful outflow of hot gas emanating from this star and bursting through a giant molecular cloud.

    This image is a large-scale mosaic assembled from individual photographs obtained with the InfraRed Array Camera (IRAC) aboard Spitzer. The image covers an area about two times that of a full moon. The mosaic is a composite of images obtained at mid-infrared wavelengths of 3.6 microns (blue), 4.5 microns (green), 5.8 microns (orange) and 8 microns (red). The brightest infrared cloud near the top center corresponds to DR21, which presumably contains a cluster of newly forming stars at a distance of 10,000 light-years.

    Protruding out from DR21 toward the bottom left of the image is a gaseous outflow (green), containing both carbon monoxide and molecular hydrogen. Data from the Spitzer spectrograph, which breaks light into its constituent individual wavelengths, indicate the presence of hot steam formed as the outflow heats the surrounding molecular gas. Outflows are physical signatures of processes that create supersonic beams, or jets, of gas. They are usually accompanied by discs of material around the new star, which likely contain the materials from which future planetary systems are formed. Additional newborn stars, depicted in green, can be seen surrounding the

  11. Holographic characterization of protein aggregates

    NASA Astrophysics Data System (ADS)

    Wang, Chen; Zhong, Xiao; Ruffner, David; Stutt, Alexandra; Philips, Laura; Ward, Michael; Grier, David

    Holographic characterization directly measures the size distribution of subvisible protein aggregates in suspension and offers insights into their morphology. Based on holographic video microscopy, this analytical technique records and interprets holograms of individual aggregates in protein solutions as they flow down a microfluidic channel, without requiring labeling or other exceptional sample preparation. The hologram of an individual protein aggregate is analyzed in real time with the Lorenz-Mie theory of light scattering to measure that aggregate's size and optical properties. Detecting, counting and characterizing subvisible aggregates proceeds fast enough for time-resolved studies, and lends itself to tracking trends in protein aggregation arising from changing environmental factors. No other analytical technique provides such a wealth of particle-resolved characterization data in situ. Holographic characterization promises accelerated development of therapeutic protein formulations, improved process control during manufacturing, and streamlined quality assurance during storage and at the point of use. Mrsec and MRI program of the NSF, Spheryx Inc.

  12. Modulation of the aggregation properties of sodium deoxycholate in presence of hydrophilic imidazolium based ionic liquid: water dynamics study to probe the structural alteration of the aggregates.

    PubMed

    Kundu, Niloy; Banik, Debasis; Roy, Arpita; Kuchlyan, Jagannath; Sarkar, Nilmoni

    2015-10-14

    In this article, we have investigated the effect of a hydrophilic ionic liquid, 1-butyl-3-methylimidazolium tetrafluoroborate ([bmim]-BF4), on the aggregation properties of a biological surfactant, sodium deoxycholate (NaDC), in water. In solution, unlike conventional surfactants it shows stepwise aggregation and the effect of the conventional ionic liquid on the aggregation properties is rather interesting. We have observed concentration dependent dual role of the ionic liquid; at their low concentration, the aggregated structure of NaDC reorganizes itself into an elongated rod like structure. However, the aggregated network is disintegrated into small aggregates upon further addition of ionic liquid. TEM (Transmission Electron Microscopy), SEM (Scanning Electron Microscopy) and FLIM (Fluorescence Lifetime Imaging Microscopy) images also confirmed the structural alteration of NaDC upon varying the concentration of the ionic liquid. The proton NMR data indicate that hydrophobic as well as electrostatic interaction is solely responsible for such structural adaptation of NaDC in the presence of an ionic liquid. The host-guest interaction inside the aggregates is monitored using Coumarin-153 (C-153) and the location of C-153 is probed by varying the excitation wavelength from 375 nm to 440 nm and the two binding sites of the aggregates are affected in a different fashion in the presence of ionic liquid. Excitation in the blue region selects the fluorophores which preferably bind to the buried region of the aggregates, whereas 440 nm excitation corresponds to the guest molecules which are exposed to the solvent molecules. The average solvation time of C-153 is increased in the presence of 1.68 wt% [bmim]-BF4 at λexc = 440 nm i.e. the probe molecules relocate themselves to a more restricted region. However, the average solvation time became 2.6 times faster in the presence of 11.2 wt% [bmim]-BF4, which corresponds to a more polar and exposed region. The time resolved

  13. Visualizing the Analogy between Competitive Adsorption and Colloid Stability to Restore Lung Surfactant Function

    PubMed Central

    Shieh, Ian C.; Waring, Alan J.; Zasadzinski, Joseph A.

    2012-01-01

    We investigated a model of acute respiratory distress syndrome in which the serum protein albumin adsorbs to an air-liquid interface and prevents the thermodynamically preferable adsorption of the clinical lung surfactant Survanta by inducing steric and electrostatic energy barriers analogous to those that prevent colloidal aggregation. Chitosan and polyethylene glycol (PEG), two polymers that traditionally have been used to aggregate colloids, both allow Survanta to quantitatively displace albumin from the interface, but through two distinct mechanisms. Direct visualization with confocal microscopy shows that the polycation chitosan coadsorbs to interfacial layers of both Survanta and albumin, and also colocalizes with the anionic domains of Survanta at the air-liquid interface, consistent with it eliminating the electrostatic repulsion by neutralizing the surface charges on albumin and Survanta. In contrast, the PEG distribution does not change during the displacement of albumin by Survanta, consistent with PEG inducing a depletion attraction sufficient to overcome the repulsive energy barrier toward adsorption. PMID:22385848

  14. Exploring the affinity binding of alkylmaltoside surfactants to bovine serum albumin and their effect on the protein stability: A spectroscopic approach.

    PubMed

    Hierrezuelo, J M; Carnero Ruiz, C

    2015-08-01

    Steady-state and time-resolved fluorescence together with circular dichroism (CD) spectroscopic studies was performed to examine the interactions between bovine serum albumin (BSA) and two alkylmaltoside surfactants, i.e. n-decyl-β-D-maltoside (β-C10G2) and n-dodecyl-β-D-maltoside (β-C12G2), having identical structures but different tail lengths. Changes in the intrinsic fluorescence of BSA from static as well as dynamic measurements revealed a weak protein-surfactant interaction and gave the corresponding binding curves, suggesting that the binding mechanism of surfactants to protein is essentially cooperative in nature. The behavior of both surfactants is similar, so that the differences detected were attributed to the more hydrophobic nature of β-C12G2, which favors the adsorption of micelle-like aggregates onto the protein surface. These observations were substantially demonstrated by data derived from synchronous, three-dimensional and anisotropy fluorescence experiments. Changes in the secondary structure of the protein induced by the interaction with surfactants were analyzed by CD to determine the contents of α-helix and β-strand. It was noted that whereas the addition of β-C10G2 appears to stabilize the secondary structure of the protein, β-C12G2 causes a marginal denaturation of BSA for a protein:surfactant molar ratio as high as 1 to 100.

  15. Fullerene surfactants and their use in polymer solar cells

    SciTech Connect

    Jen, Kwan-Yue; Yip, Hin-Lap; Li, Chang-Zhi

    2015-12-15

    Fullerene surfactant compounds useful as interfacial layer in polymer solar cells to enhance solar cell efficiency. Polymer solar cell including a fullerene surfactant-containing interfacial layer intermediate cathode and active layer.

  16. Synthesis of mesoporous nano-hydroxyapatite by using zwitterions surfactant

    EPA Science Inventory

    Mesoporous nano-hydroxyapatite (mn-HAP) was successfully synthesized via a novel micelle-templating method using lauryl dimethylaminoacetic acid as zwitterionic surfactant. The systematic use of such a surfactant in combination with microwave energy inputenables the precise contr...

  17. Surfactant ionic liquid-based microemulsions for polymerization.

    PubMed

    Yan, Feng; Texter, John

    2006-07-05

    Surfactants based on imidazolium ionic liquids (ILs), including polymerizable surfactant ILs, have been synthesized and used to stabilize polymerizable microemulsions useful for producing polymer nanoparticles, gels, and open-cell porous materials.

  18. Rescue of keratin 18/19 doubly deficient mice using aggregation with tetraploid embryos.

    PubMed

    Hesse, Michael; Watson, Erica D; Schwaluk, Tanja; Magin, Thomas M

    2005-03-01

    We have previously shown that the targeted deletions of both type I keratins (K) 18 and 19 cause lethality by embryonic day (e) 9.5 due to fragility and cytolysis of trophoblast giant cells. The development of the embryo proper appeared to be unaffected and its death was caused by nutrient deficiency. In order to address the function of keratins within the embryo proper, lethality due to extraembryonic tissue failure must be overcome. One approach to rescue doubly deficient embryos is by aggregating knockout embryos with tetraploid wild-type embryos. As a general tool, tetraploid aggregation can be used to rescue embryonic lethality caused by defects in extraembryonic tissues like the placenta, trophoblast or yolk sac. We rescued K18-/- K19-/- embryos until e11.5, using this approach, proving that the loss of the keratin cytoskeleton causes defects in the trophoblast giant cell layer, but has no effect on early development of the embryo proper.

  19. Nanotube Dispersions Made With Charged Surfactant

    NASA Technical Reports Server (NTRS)

    Kuper, Cynthia; Kuzma, Mike

    2006-01-01

    Dispersions (including monodispersions) of nanotubes in water at relatively high concentrations have been formulated as prototypes of reagents for use in making fibers, films, and membranes based on single-walled carbon nanotubes (SWNTs). Other than water, the ingredients of a dispersion of this type include one or more charged surfactant(s) and carbon nanotubes derived from the HiPco(TradeMark) (or equivalent) process. Among reagents known to be made from HiPco(TradeMark)(or equivalent) SWNTs, these are the most concentrated and are expected to be usable in processing of bulk structures and materials. Test data indicate that small bundles of SWNTs and single SWNTs at concentrations up to 1.1 weight percent have been present in water plus surfactant. This development is expected to contribute to the growth of an industry based on applied carbon nanotechnology. There are expected to be commercial applications in aerospace, avionics, sporting goods, automotive products, biotechnology, and medicine.

  20. Recent Food Applications of Microbial Surfactants.

    PubMed

    Nitschke, Marcia; Silva, Sumária Sousa E

    2016-07-20

    During last years the interest on microbial surfactants or biosurfactants has gained attention due to their natural origin and environmental compatibility. These characteristics fulfill the demand of regulatory agencies and society to use of more sustained and green chemicals. Microbial-derived surfactants can replace synthetic surfactants in a great variety of industrial applications as detergents, foaming, emulsifiers, solubilizers and wetting agents. Change in trend of consumers to natural from synthetic additives and also the increasing health and environmental concerns creating demand for new "green" additives in food. Apart from their inherent surface-active properties, BS have been shown antimicrobial and antibiofilm activity against food pathogens; therefore, BS can be versatile additives or ingredients for food processing. These interesting applications will be discussed in this review.

  1. Surfactant studies for bench-scale operation

    NASA Technical Reports Server (NTRS)

    Hickey, Gregory S.; Sharma, Pramod K.

    1992-01-01

    A phase 2 study was initiated to investigate surfactant-assisted coal liquefaction, with the objective of quantifying the enhancement in liquid yields and product quality. This publication covers the first quarter of work. The major accomplishments were: the refurbishment of the high-pressure, high-temperature reactor autoclave, the completion of four coal liquefaction runs with Pittsburgh #8 coal, two each with and without sodium lignosulfonate surfactant, and the development of an analysis scheme for the product liquid filtrate and filter cake. Initial results at low reactor temperatures show that the addition of the surfactant produces an improvement in conversion yields and an increase in lighter boiling point fractions for the filtrate.

  2. Surfactant studies for bench-scale operation

    NASA Technical Reports Server (NTRS)

    Hickey, Gregory S.; Sharma, Pramod K.

    1993-01-01

    A phase 2 study has been initiated to investigate surfactant-assisted coal liquefaction, with the objective of quantifying the enhancement in liquid yields and product quality. This report covers the second quarter of work. The major accomplishments were: completion of coal liquefaction autoclave reactor runs with Illinois number 6 coal at processing temperatures of 300, 325, and 350 C, and pressures of 1800 psig; analysis of the filter cake and the filtrate obtained from the treated slurry in each run; and correlation of the coal conversions and the liquid yield quality to the surfactant concentration. An increase in coal conversions and upgrading of the liquid product quality due to surfactant addition was observed for all runs.

  3. Fractal structure of asphaltene aggregates.

    PubMed

    Rahmani, Nazmul H G; Dabros, Tadeusz; Masliyah, Jacob H

    2005-05-15

    A photographic technique coupled with image analysis was used to measure the size and fractal dimension of asphaltene aggregates formed in toluene-heptane solvent mixtures. First, asphaltene aggregates were examined in a Couette device and the fractal-like aggregate structures were quantified using boundary fractal dimension. The evolution of the floc structure with time was monitored. The relative rates of shear-induced aggregation and fragmentation/restructuring determine the steady-state floc structure. The average floc structure became more compact or more organized as the floc size distribution attained steady state. Moreover, the higher the shear rate is, the more compact the floc structure is at steady state. Second, the fractal dimensions of asphaltene aggregates were also determined in a free-settling test. The experimentally determined terminal settling velocities and characteristic lengths of the aggregates were utilized to estimate the 2D and 3D fractal dimensions. The size-density fractal dimension (D(3)) of the asphaltene aggregates was estimated to be in the range from 1.06 to 1.41. This relatively low fractal dimension suggests that the asphaltene aggregates are highly porous and very tenuous. The aggregates have a structure with extremely low space-filling capacity.

  4. Aggregation dynamics of rigid polyelectrolytes

    NASA Astrophysics Data System (ADS)

    Tom, Anvy Moly; Rajesh, R.; Vemparala, Satyavani

    2016-01-01

    Similarly charged polyelectrolytes are known to attract each other and aggregate into bundles when the charge density of the polymers exceeds a critical value that depends on the valency of the counterions. The dynamics of aggregation of such rigid polyelectrolytes are studied using large scale molecular dynamics simulations. We find that the morphology of the aggregates depends on the value of the charge density of the polymers. For values close to the critical value, the shape of the aggregates is cylindrical with height equal to the length of a single polyelectrolyte chain. However, for larger values of charge, the linear extent of the aggregates increases as more and more polymers aggregate. In both the cases, we show that the number of aggregates decrease with time as power laws with exponents that are not numerically distinguishable from each other and are independent of charge density of the polymers, valency of the counterions, density, and length of the polyelectrolyte chain. We model the aggregation dynamics using the Smoluchowski coagulation equation with kernels determined from the molecular dynamics simulations and justify the numerically obtained value of the exponent. Our results suggest that once counterions condense, effective interactions between polyelectrolyte chains short-ranged and the aggregation of polyelectrolytes are diffusion-limited.

  5. Exogenous surfactant restores lung function but not peripheral immunosuppression in ventilated surfactant-deficient rats.

    PubMed

    Vreugdenhil, Harriet A; Lachmann, Burkhard; Haitsma, Jack J; Zijlstra, Jitske; Heijnen, Cobi J; Jansen, Nicolaas J; van Vught, Adrianus J

    2006-01-01

    The authors have previously shown that mechanical ventilation can result in increased pulmonary inflammation and suppressed peripheral leukocyte function. In the present study the effect of surfactant therapy on pulmonary inflammation and peripheral immune function in ventilated surfactant-deficient rats was assessed. Surfactant deficiency was induced by repeated lung lavage, treated rats with surfactant or left them untreated, and ventilated the rats during 2 hours. Nonventilated rats served as healthy control group. Expression of macrophage inflammatory protein (MIP)-2 was measured in bronchoalveolar lavage (BAL), interleukin (IL)-1beta, and heat shock protein 70 (HSP70) were measured in total lung homogenates. Outside the lung phytohemagglutinin (PHA)-induced lymphocyte proliferation, interferon (IFN)-gamma and IL-10 production, and natural killer activity were measured in splenocytes. After 2 hours of mechanical ventilation, expression of MIP-2, IL-1beta, and HSP70 increased significantly in the lungs of surfactant-deficient rats. Outside the lung, mitogen-induced proliferation and production of IFN-gamma and IL-10 reduced significantly. Only natural killer cell activity remained unaffected. Surfactant treatment significantly improved lung function, but could not prevent increased pulmonary expression of MIP-2, IL-1beta, and HSP70 and decreased peripheral mitogen-induced lymphocyte proliferation and IFN-gamma and IL-10 production in vitro. In conclusion, 2 hours of mechanical ventilation resulted in increased lung inflammation and partial peripheral leukocyte suppression in surfactant-deficient rats. Surfactant therapy ameliorated lung function but could not prevent or restore peripheral immunosuppression. The authors postulate that peripheral immunosuppression may occur in ventilated surfactant deficient patients, which may enhance susceptibility for infections.

  6. Molecular dynamics study of non-nucleoside reverse transcriptase inhibitor 4-[[4-[[4-[(E)-2-cyanoethenyl]-2,6-dimethylphenyl]amino]-2-pyrimidinyl]amino]benzonitrile (TMC278/rilpivirine) aggregates: correlation between amphiphilic properties of the drug and oral bioavailability

    PubMed Central

    Frenkel, Yulia Volovik; Gallicchio, Emilio; Das, Kalyan; Levy, Ronald M.; Arnold, Eddy

    2009-01-01

    The non-nucleoside reverse transcriptase inhibitor (NNRTI) TMC278/rilpivirine is an anti-AIDS therapeutic agent with high oral bioavailability despite its high hydrophobicity. Previous studies established a correlation between ability of the drug molecule to form stable, homogeneous populations of spherical nanoparticles (~100–120 nm in diameter) at low pH in surfactant-independent fashion, and good oral bioavailability. Here, we hypothesize that the drug is able to assume surfactant-like properties under physiologically relevant conditions, thus facilitating formation of nanostructuresin the absence of other surfactants. The results of all-atom molecular dynamics simulations indeed show that protonated drug molecules behave as surfactants at the water/aggregate interface while neutral drug molecules assist aggregate packing via conformational variability. Our simulation results suggest that amphiphilic behavior at low pH and intrinsic flexibility influence drug aggregation and are believed to play critical roles in the favorable oral bioavailability of hydrophobic drugs. PMID:19739675

  7. Adhesion of latex films. Influence of surfactants

    SciTech Connect

    Charmeau, J.Y.; Kientz, E.; Holl, Y.

    1996-12-31

    In the applications of film forming latexes in paint, paper, coating, adhesive, textile industries, one of the most important property of latex films is adhesion onto a support. From the point of view of adhesion, latex films have two specificities. The first one arises from the particular structure of the film which is usually not homogeneous but retains to a certain extent the memory of the particles it was made from. These structure effects are clearly apparent when one compares mechanical or adhesion properties of pure latex films and of films of the same polymers but prepared from a solution. Latex films show higher Young`s moduli and lower adhesion properties than solution films. The second specificity of latex films comes from the presence of the surfactant which was used in the synthesis and as stabilizer for the latex. Most industrial latexes contain low amounts of surfactant, typically in the range 0.1 to 2-3 wt%. However, being usually incompatible with the polymer, the surfactant is not homogeneously distributed in the film. It tends to segregate towards the film-air or film-support interfaces or to form domains in the bulk of the film. Distribution of surfactants in latex films has been studied by several authors. The influence of the surfactant on adhesion, as well as on other properties, is thus potentially very important. This article presents the results of the authors investigation of surfactant effects on adhesion properties of latex films. To the authors knowledge, there is no other example, in the open literature, of this kind of study.

  8. Effect of surfactants on properties of soap-based greases

    SciTech Connect

    Fuks, I.G.

    1983-07-01

    Surfactants often influence the susceptibility of the grease to additives. This paper considers ways to improve the effectiveness of surfactant additives by the use of additive packages. The mechanism of surfactant action in forming grease structures are elucidated, and methods for preventing grease softening are established. The softening effect of surfactants is explained in part by retardation of the initial stages of the structurization i.e., association and micelle formation.

  9. Surfactant-Polymer Interaction for Improved Oil Recovery

    SciTech Connect

    Gabitto, Jorge; Mohanty, Kishore K.

    2002-01-07

    The goal of this research was to use the interaction between a surfactant and a polymer for efficient displacement of tertiary oil by improving slug integrity, oil solubility in the displacing fluid and mobility control. Surfactant-polymer flooding has been shown to be highly effective in laboratory-scale linear floods. The focus of this proposal is to design an inexpensive surfactant-polymer mixture that can efficiently recover tertiary oil by avoiding surfactant slug degradation and viscous/heterogeneity fingering.

  10. Control of acid mine drainage using surfactants

    SciTech Connect

    Not Available

    1983-02-01

    This news sheet describes US Bureau of Mines work on the reduction or prevention of acid mine drainage from coal refuse piles and surface mines by inhibiting the growth of Thiobacillus ferrooxidans. It has been found that the direct application of a dilute surfactant or detergent solution to coal refuse piles or overburden can be an effective preventive measure or can reduce water treatment costs by controlling acid drainage at its source. Of the anionic surfactants tested to date, sodium lauryl sulphate appears to be the most effective. Alpha olefin sulphonate and alkyl benzene sulphonate are acceptable alternatives. The results of field trials are presented.

  11. Two-dimensional photonic crystal surfactant detection.

    PubMed

    Zhang, Jian-Tao; Smith, Natasha; Asher, Sanford A

    2012-08-07

    We developed a novel two-dimensional (2-D) crystalline colloidal array photonic crystal sensing material for the visual detection of amphiphilic molecules in water. A close-packed polystyrene 2-D array monolayer was embedded in a poly(N-isopropylacrylamide) (PNIPAAm)-based hydrogel film. These 2-D photonic crystals placed on a mirror show intense diffraction that enables them to be used for visual determination of analytes. Binding of surfactant molecules attaches ions to the sensor that swells the PNIPAAm-based hydrogel. The resulting increase in particle spacing red shifts the 2-D diffracted light. Incorporation of more hydrophobic monomers increases the sensitivity to surfactants.

  12. Water solubilization capacity of mixed reverse micelles: effect of surfactant component, the nature of the oil, and electrolyte concentration.

    PubMed

    Paul, Bidyut K; Mitra, Rajib K

    2005-08-01

    Solubilization of water in mixed reverse micellar systems with anionic surfactant (AOT) and nonionic surfactants (Brijs, Spans, Tweens, Igepal CO 520), cationic surfactant (DDAB)-nonionic surfactants (Brijs, Spans, Igepal CO 520), and nonionic (Igepal CO 520)-nonionics (Brijs, Spans) in oils of different chemical structures and physical properties (isopropyl myristate, isobutyl benzene, cyclohexane) has been studied at 303 K. The enhancement in water solubilization has been evidenced in these systems with some exceptions. The maximum water solubilization capacity (omega(0,max)) in mixed reverse micellar systems occurred at a certain mole fraction of a nonionic surfactant, which is indicated as X(nonionic,max). The addition of electrolyte (NaCl or NaBr) in these systems tends to enhance their solubilization capacities further both at a fixed composition of nonionic (X(nonionic); 0.1) and at X(nonionic,max) at 303 K. The maximum in solubilization capacity of electrolyte (omega(max)) was obtained at an optimal electrolyte concentration (designated as [NaCl](max) or [NaBr](max)). All these parameters, omega(0,max) vis-a-vis X(nonionic,max) and omega(max) vis-a-vis [NaCl](max), have been found to be dependent on the surfactant component (content, EO chains, and configuration of the polar head group, and the hydrocarbon moiety of the nonionic surfactants) and type of oils. The conductance behavior of these systems has also been investigated, focusing on the influences of water content (omega), content of nonionics (X(nonionic)), concentration of electrolyte ([NaCl] or [NaBr]), and oil. Percolation of conductance has been observed in some of these systems and explained by considering the influences of the variables on the rigidity of the oil/water interface and attractive interactions of the surfactant aggregates. Percolation zones have been depicted in the solubilization capacity vs X(nonionic) or [electrolyte] curves in order to correlate with maximum in water or

  13. Effects of selected surfactants on soil microbial activity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Surfactants (surface-active agents) facilitate and accentuate the emulsifying, dispersing, spreading, and wetting properties of liquids. Surfactants are used in industry to reduce the surface tension of liquid and to solubilize compounds. For agricultural pest management, surfactants are an import...

  14. Impact of Alkyl Chain Length on the Transition of Hexagonal Liquid Crystal-Wormlike Micelle-Gel in Ionic Liquid-Type Surfactant Aqueous Solutions without Any Additive.

    PubMed

    Hu, Yimin; Han, Jie; Ge, Lingling; Guo, Rong

    2015-11-24

    The search for functional supramolecular aggregations with different structure has attracted interest of chemists because they have the potential in industrial and technological application. Hydrophobic interaction has great influence on the formation of these aggregations, such as hexagonal liquid crystals, wormlike micelles, hydrogels, etc. So a systematical investigation was done to investigate the influence of alkyl chain length of surfactants on the aggregation behavior in water. The aggregation behavior of 1-hexadecyl-3-alkyl imidazolium bromide and water has been systematically investigated. These ionic liquid surfactants are denoted as C16-Cn (n = 2, 3, 4, 6, 8, 9, 10, 12, 14, 16). The rheological behavior and microstructure were characterized via a combination of rheology, cryo-etch scanning electron microscopy, polarization optical microscopy, and X-ray crystallography. The alkyl chain has great influence on the formation of surfactant aggregates in water at the molecular level. With increasing alkyl chain length, different aggregates, such as hexagonal liquid crystals, wormlike micelles, and hydrogels can be fabricated: C16-C2 aqueous solution only forms hexagonal liquid crystal; C16-C3 aqueous solution forms wormlike micelle and hexagonal liquid crystal; C16-C4, C16-C6 and C16-C8 aqueous solutions only form wormlike micelle; C16-C9 aqueous solution experiences a transition between wormlike micelle and hydrogel; C16-C10, C16-C12, C16-C14 and C16-C16 only form hydrogel. The mechanism of the transition of different aggregation with increasing alkyl chain length was also proposed.

  15. Giant Herbig-Haro Flows

    NASA Astrophysics Data System (ADS)

    Reipurth, Bo; Bally, John; Devine, David

    1997-12-01

    We present the discovery of a number of Herbig-Haro flows which extend over parsec-scale distances. The largest of these is the well known HH 111 jet complex, which is shown, through CCD images and a proper motion study, to have an angular extent of almost one degree on the sky, corresponding to 7.7 pc, making it the largest known HH flow. In our imaging survey we also found that T Tauri is at the center of a huge bipolar HH flow, HH 355, with a total extent of 38 arcmin, corresponding to 1.55 pc, and aligned with the axis of the tiny HH 255 flow surrounding the infrared companion T Tau S. We additionally have found a number of other giant HH flow candidates, including HH 315 at PV Cep, HH 41/295 at Haro 5a/6a, HH 300 in Bl8w, HH 354 in Li 165, HH 376 in Li 152, and HH 114/115 and HH 243/244/245/179 in the X Orionis molecular ring. It thus appears that it is common for HH flows to attain parsec-scale dimensions. The ubiquity of parsec-scale HH flows profoundly alters our view of the impact of young stars on their environment. Giant flows have dynamical ages comparable to the duration of the accretion phase of the sources, and provide a fossil record of their mass loss and accretion history. Multiple internal working surfaces and their S-shaped point symmetry provide evidence for variability of ejection velocity and orientation of the source jets. Giant HH flows are either longer or comparable in length to associated CO outflows, providing evidence for unified models in which HH flows power CO flows. Many giant flows have burst out of their source cloud cores and are dissociating molecules and injecting momentum and kinetic energy into the interclump medium of the host clouds. They contribute to the UV radiation field, and may produce C I and C ii in cloud interiors. Giant flows may contribute to the chemical rejuvenation of clouds, the generation of turbulent motions, and the self-regulation of star formation. The terminal working surfaces of giant flows may be

  16. Understanding the solvent polarity effects on surfactant-capped nanoparticles.

    PubMed

    Leekumjorn, Sukit; Gullapalli, Sravani; Wong, Michael S

    2012-11-01

    Understanding the molecular interactions between suspended nanoparticles (NPs) and the suspending solvent fluid may provide a useful avenue to create and to study exotic NP ensembles. This study focused on using a coarse-grained computational model to investigate the molecular interactions between oleate-capped NPs in various solvents, and to relate the results to experimental features of solvent-suspended, oleate-capped CdSe quantum dots (QDs). The QDs were modeled as a closed-shell fullerene molecule with an oleate-like ligand attached to each vertex. Solvent polarity was found to correlate to the simulation and experimental results more strongly than either dielectric constant or dipole moment. Computational results showed that the nonpolar solvents of hexane, toluene, and benzene (polarity index E(T)(N) < 0.120) kept NPs in suspension and solvated the oleate chains such that the oleate layer swelled to full extension. In contrast, as the most polar solvent tested (E(T)(N) = 1.000), water caused NPs to aggregate and precipitate. It partially solvated the oleate chains and compressed the layer to 86% of full extension. For solvents of intermediate polarity like ethanol, acetone, and chloroform, the oleate layer swelled with decreasing polarity index values, with rapid swelling occurring close to E(T)(N) = 0.307 (~50:50 vol % chloroform/acetone) below which QDs were colloidally stable. This study represents the first attempt to delineate the solvent effect on surfactant-coated NP hydrodynamic size, colloidal stability, and aggregation behavior.

  17. Topics in Probabilistic Judgment Aggregation

    ERIC Educational Resources Information Center

    Wang, Guanchun

    2011-01-01

    This dissertation is a compilation of several studies that are united by their relevance to probabilistic judgment aggregation. In the face of complex and uncertain events, panels of judges are frequently consulted to provide probabilistic forecasts, and aggregation of such estimates in groups often yield better results than could have been made…

  18. Mineral of the month: aggregates

    USGS Publications Warehouse

    Tepordei, Valentin V.

    2005-01-01

    Natural aggregates, consisting of crushed stone, and sand and gravel, are a major contributor to economic health, and have an amazing variety of uses. Aggregates are among the most abundant mineral resources and are major basic raw materials used by construction, agriculture and other industries that employ complex chemical and metallurgical processes.

  19. Interaction of a biosurfactant, Surfactin with a cationic Gemini surfactant in aqueous solution.

    PubMed

    Jin, Lei; Garamus, Vasil M; Liu, Fang; Xiao, Jingwen; Eckerlebe, Helmut; Willumeit-Römer, Regine; Mu, Bozhong; Zou, Aihua

    2016-11-01

    The interaction between biosurfactant Surfactin and cationic Gemini surfactant ethanediyl-1,3-bis(dodecyldimethylammonium bromide) (abbreviated as 12-3-12) was investigated using turbidity, surface tension, dynamic light scattering (DLS) and small angle neutron scattering (SANS). Analysis of critical micelle concentration (CMC) values in Surfactin/12-3-12 mixture indicates that there is synergism in formation of mixed Surfactin/12-3-12 micelles. Although Surfactin and 12-3-12 are oppositely charged in phosphate buffer solution (PBS, pH7.4), there are no precipitates observed at the concentrations below the CMC of Surfactin/12-3-12 system. However, at the concentration above CMC value, the Surfactin/12-3-12 mixture is severely turbid with high 12-3-12 content. DLS and SANS measurements follow the size and shape changes of mixed Surfactin/12-3-12 aggregates from small spherical micelles via elongated aggregates to large bulk complexes with increasing fraction of Gemini surfactant.

  20. Structure of BRIJ-35 nonionic surfactant in water: a reverse Monte Carlo study.

    PubMed

    Tóth, Gergely; Madarász, Adám

    2006-01-17

    There are some contradictions in the literature on the structure of micelles formed by the BRIJ-35 surfactant in water. One can find reasonable differences in the aggregation numbers and micellar sizes, but there is a lack of data on the intermicellar structure. In this study, we reevaluated the small-angle neutron scattering experiments performed previously on the BRIJ-35 surfactant in the concentration range of 5-200 g/dm3 at 20, 40, and 60 degrees C. The data were analyzed with a reverse Monte Carlo-type method developed recently for colloids. The micelles were modeled as spherical cores representing the hydrophobic parts and number of balls put on the cores to mimic the hydrated hydrophilic chains. The simulations provided data on the mean aggregation number and on the extent of hydration of the hydrophilic shell of the micelles. We obtained intermicellar pair-correlation functions indicating different micelle-micelle interactions from the usually assumed hard-sphere ones.