Quantitative Boltzmann-Gibbs Principles via Orthogonal Polynomial Duality
NASA Astrophysics Data System (ADS)
Ayala, Mario; Carinci, Gioia; Redig, Frank
2018-06-01
We study fluctuation fields of orthogonal polynomials in the context of particle systems with duality. We thereby obtain a systematic orthogonal decomposition of the fluctuation fields of local functions, where the order of every term can be quantified. This implies a quantitative generalization of the Boltzmann-Gibbs principle. In the context of independent random walkers, we complete this program, including also fluctuation fields in non-stationary context (local equilibrium). For other interacting particle systems with duality such as the symmetric exclusion process, similar results can be obtained, under precise conditions on the n particle dynamics.
Gibbs sampling on large lattice with GMRF
NASA Astrophysics Data System (ADS)
Marcotte, Denis; Allard, Denis
2018-02-01
Gibbs sampling is routinely used to sample truncated Gaussian distributions. These distributions naturally occur when associating latent Gaussian fields to category fields obtained by discrete simulation methods like multipoint, sequential indicator simulation and object-based simulation. The latent Gaussians are often used in data assimilation and history matching algorithms. When the Gibbs sampling is applied on a large lattice, the computing cost can become prohibitive. The usual practice of using local neighborhoods is unsatisfying as it can diverge and it does not reproduce exactly the desired covariance. A better approach is to use Gaussian Markov Random Fields (GMRF) which enables to compute the conditional distributions at any point without having to compute and invert the full covariance matrix. As the GMRF is locally defined, it allows simultaneous updating of all points that do not share neighbors (coding sets). We propose a new simultaneous Gibbs updating strategy on coding sets that can be efficiently computed by convolution and applied with an acceptance/rejection method in the truncated case. We study empirically the speed of convergence, the effect of choice of boundary conditions, of the correlation range and of GMRF smoothness. We show that the convergence is slower in the Gaussian case on the torus than for the finite case studied in the literature. However, in the truncated Gaussian case, we show that short scale correlation is quickly restored and the conditioning categories at each lattice point imprint the long scale correlation. Hence our approach enables to realistically apply Gibbs sampling on large 2D or 3D lattice with the desired GMRF covariance.
Random walk to a nonergodic equilibrium concept
NASA Astrophysics Data System (ADS)
Bel, G.; Barkai, E.
2006-01-01
Random walk models, such as the trap model, continuous time random walks, and comb models, exhibit weak ergodicity breaking, when the average waiting time is infinite. The open question is, what statistical mechanical theory replaces the canonical Boltzmann-Gibbs theory for such systems? In this paper a nonergodic equilibrium concept is investigated, for a continuous time random walk model in a potential field. In particular we show that in the nonergodic phase the distribution of the occupation time of the particle in a finite region of space approaches U- or W-shaped distributions related to the arcsine law. We show that when conditions of detailed balance are applied, these distributions depend on the partition function of the problem, thus establishing a relation between the nonergodic dynamics and canonical statistical mechanics. In the ergodic phase the distribution function of the occupation times approaches a δ function centered on the value predicted based on standard Boltzmann-Gibbs statistics. The relation of our work to single-molecule experiments is briefly discussed.
Kouritzin, Michael A; Newton, Fraser; Wu, Biao
2013-04-01
Herein, we propose generating CAPTCHAs through random field simulation and give a novel, effective and efficient algorithm to do so. Indeed, we demonstrate that sufficient information about word tests for easy human recognition is contained in the site marginal probabilities and the site-to-nearby-site covariances and that these quantities can be embedded directly into certain conditional probabilities, designed for effective simulation. The CAPTCHAs are then partial random realizations of the random CAPTCHA word. We start with an initial random field (e.g., randomly scattered letter pieces) and use Gibbs resampling to re-simulate portions of the field repeatedly using these conditional probabilities until the word becomes human-readable. The residual randomness from the initial random field together with the random implementation of the CAPTCHA word provide significant resistance to attack. This results in a CAPTCHA, which is unrecognizable to modern optical character recognition but is recognized about 95% of the time in a human readability study.
Extension of Gibbs-Duhem equation including influences of external fields
NASA Astrophysics Data System (ADS)
Guangze, Han; Jianjia, Meng
2018-03-01
Gibbs-Duhem equation is one of the fundamental equations in thermodynamics, which describes the relation among changes in temperature, pressure and chemical potential. Thermodynamic system can be affected by external field, and this effect should be revealed by thermodynamic equations. Based on energy postulate and the first law of thermodynamics, the differential equation of internal energy is extended to include the properties of external fields. Then, with homogeneous function theorem and a redefinition of Gibbs energy, a generalized Gibbs-Duhem equation with influences of external fields is derived. As a demonstration of the application of this generalized equation, the influences of temperature and external electric field on surface tension, surface adsorption controlled by external electric field, and the derivation of a generalized chemical potential expression are discussed, which show that the extended Gibbs-Duhem equation developed in this paper is capable to capture the influences of external fields on a thermodynamic system.
An Interactive Image Segmentation Method in Hand Gesture Recognition
Chen, Disi; Li, Gongfa; Sun, Ying; Kong, Jianyi; Jiang, Guozhang; Tang, Heng; Ju, Zhaojie; Yu, Hui; Liu, Honghai
2017-01-01
In order to improve the recognition rate of hand gestures a new interactive image segmentation method for hand gesture recognition is presented, and popular methods, e.g., Graph cut, Random walker, Interactive image segmentation using geodesic star convexity, are studied in this article. The Gaussian Mixture Model was employed for image modelling and the iteration of Expectation Maximum algorithm learns the parameters of Gaussian Mixture Model. We apply a Gibbs random field to the image segmentation and minimize the Gibbs Energy using Min-cut theorem to find the optimal segmentation. The segmentation result of our method is tested on an image dataset and compared with other methods by estimating the region accuracy and boundary accuracy. Finally five kinds of hand gestures in different backgrounds are tested on our experimental platform, and the sparse representation algorithm is used, proving that the segmentation of hand gesture images helps to improve the recognition accuracy. PMID:28134818
Universal structures in some mean field spin glasses and an application
NASA Astrophysics Data System (ADS)
Bolthausen, Erwin; Kistler, Nicola
2008-12-01
We discuss a spin glass reminiscent of the random energy model (REM), which allows, in particular, to recast the Parisi minimization into a more classical Gibbs variational principle, thereby shedding some light into the physical meaning of the order parameter of the Parisi theory. As an application, we study the impact of an extensive cavity field on Derrida's REM: Despite its simplicity, this model displays some interesting features such as ultrametricity and chaos in temperature.
A label field fusion bayesian model and its penalized maximum rand estimator for image segmentation.
Mignotte, Max
2010-06-01
This paper presents a novel segmentation approach based on a Markov random field (MRF) fusion model which aims at combining several segmentation results associated with simpler clustering models in order to achieve a more reliable and accurate segmentation result. The proposed fusion model is derived from the recently introduced probabilistic Rand measure for comparing one segmentation result to one or more manual segmentations of the same image. This non-parametric measure allows us to easily derive an appealing fusion model of label fields, easily expressed as a Gibbs distribution, or as a nonstationary MRF model defined on a complete graph. Concretely, this Gibbs energy model encodes the set of binary constraints, in terms of pairs of pixel labels, provided by each segmentation results to be fused. Combined with a prior distribution, this energy-based Gibbs model also allows for definition of an interesting penalized maximum probabilistic rand estimator with which the fusion of simple, quickly estimated, segmentation results appears as an interesting alternative to complex segmentation models existing in the literature. This fusion framework has been successfully applied on the Berkeley image database. The experiments reported in this paper demonstrate that the proposed method is efficient in terms of visual evaluation and quantitative performance measures and performs well compared to the best existing state-of-the-art segmentation methods recently proposed in the literature.
An inverse problem for Gibbs fields with hard core potential
NASA Astrophysics Data System (ADS)
Koralov, Leonid
2007-05-01
It is well known that for a regular stable potential of pair interaction and a small value of activity one can define the corresponding Gibbs field (a measure on the space of configurations of points in Rd). In this paper we consider a converse problem. Namely, we show that for a sufficiently small constant ρ¯1 and a sufficiently small function ρ¯2(x), x ∈Rd, that is equal to zero in a neighborhood of the origin, there exist a hard core pair potential and a value of activity such that ρ¯1 is the density and ρ¯2 is the pair correlation function of the corresponding Gibbs field.
Chodera, John D; Shirts, Michael R
2011-11-21
The widespread popularity of replica exchange and expanded ensemble algorithms for simulating complex molecular systems in chemistry and biophysics has generated much interest in discovering new ways to enhance the phase space mixing of these protocols in order to improve sampling of uncorrelated configurations. Here, we demonstrate how both of these classes of algorithms can be considered as special cases of Gibbs sampling within a Markov chain Monte Carlo framework. Gibbs sampling is a well-studied scheme in the field of statistical inference in which different random variables are alternately updated from conditional distributions. While the update of the conformational degrees of freedom by Metropolis Monte Carlo or molecular dynamics unavoidably generates correlated samples, we show how judicious updating of the thermodynamic state indices--corresponding to thermodynamic parameters such as temperature or alchemical coupling variables--can substantially increase mixing while still sampling from the desired distributions. We show how state update methods in common use can lead to suboptimal mixing, and present some simple, inexpensive alternatives that can increase mixing of the overall Markov chain, reducing simulation times necessary to obtain estimates of the desired precision. These improved schemes are demonstrated for several common applications, including an alchemical expanded ensemble simulation, parallel tempering, and multidimensional replica exchange umbrella sampling.
NASA Astrophysics Data System (ADS)
Hayata, Tomoya; Hidaka, Yoshimasa; Noumi, Toshifumi; Hongo, Masaru
2015-09-01
We derive relativistic hydrodynamics from quantum field theories by assuming that the density operator is given by a local Gibbs distribution at initial time. We decompose the energy-momentum tensor and particle current into nondissipative and dissipative parts, and analyze their time evolution in detail. Performing the path-integral formulation of the local Gibbs distribution, we microscopically derive the generating functional for the nondissipative hydrodynamics. We also construct a basis to study dissipative corrections. In particular, we derive the first-order dissipative hydrodynamic equations without a choice of frame such as the Landau-Lifshitz or Eckart frame.
Jia, Erik; Chen, Tianlu
2018-01-01
Left-censored missing values commonly exist in targeted metabolomics datasets and can be considered as missing not at random (MNAR). Improper data processing procedures for missing values will cause adverse impacts on subsequent statistical analyses. However, few imputation methods have been developed and applied to the situation of MNAR in the field of metabolomics. Thus, a practical left-censored missing value imputation method is urgently needed. We developed an iterative Gibbs sampler based left-censored missing value imputation approach (GSimp). We compared GSimp with other three imputation methods on two real-world targeted metabolomics datasets and one simulation dataset using our imputation evaluation pipeline. The results show that GSimp outperforms other imputation methods in terms of imputation accuracy, observation distribution, univariate and multivariate analyses, and statistical sensitivity. Additionally, a parallel version of GSimp was developed for dealing with large scale metabolomics datasets. The R code for GSimp, evaluation pipeline, tutorial, real-world and simulated targeted metabolomics datasets are available at: https://github.com/WandeRum/GSimp. PMID:29385130
Determination of Gibbs energies of formation in aqueous solution using chemical engineering tools.
Toure, Oumar; Dussap, Claude-Gilles
2016-08-01
Standard Gibbs energies of formation are of primary importance in the field of biothermodynamics. In the absence of any directly measured values, thermodynamic calculations are required to determine the missing data. For several biochemical species, this study shows that the knowledge of the standard Gibbs energy of formation of the pure compounds (in the gaseous, solid or liquid states) enables to determine the corresponding standard Gibbs energies of formation in aqueous solutions. To do so, using chemical engineering tools (thermodynamic tables and a model enabling to predict activity coefficients, solvation Gibbs energies and pKa data), it becomes possible to determine the partial chemical potential of neutral and charged components in real metabolic conditions, even in concentrated mixtures. Copyright © 2016 Elsevier Ltd. All rights reserved.
Scan Order in Gibbs Sampling: Models in Which it Matters and Bounds on How Much.
He, Bryan; De Sa, Christopher; Mitliagkas, Ioannis; Ré, Christopher
2016-01-01
Gibbs sampling is a Markov Chain Monte Carlo sampling technique that iteratively samples variables from their conditional distributions. There are two common scan orders for the variables: random scan and systematic scan. Due to the benefits of locality in hardware, systematic scan is commonly used, even though most statistical guarantees are only for random scan. While it has been conjectured that the mixing times of random scan and systematic scan do not differ by more than a logarithmic factor, we show by counterexample that this is not the case, and we prove that that the mixing times do not differ by more than a polynomial factor under mild conditions. To prove these relative bounds, we introduce a method of augmenting the state space to study systematic scan using conductance.
Scan Order in Gibbs Sampling: Models in Which it Matters and Bounds on How Much
He, Bryan; De Sa, Christopher; Mitliagkas, Ioannis; Ré, Christopher
2016-01-01
Gibbs sampling is a Markov Chain Monte Carlo sampling technique that iteratively samples variables from their conditional distributions. There are two common scan orders for the variables: random scan and systematic scan. Due to the benefits of locality in hardware, systematic scan is commonly used, even though most statistical guarantees are only for random scan. While it has been conjectured that the mixing times of random scan and systematic scan do not differ by more than a logarithmic factor, we show by counterexample that this is not the case, and we prove that that the mixing times do not differ by more than a polynomial factor under mild conditions. To prove these relative bounds, we introduce a method of augmenting the state space to study systematic scan using conductance. PMID:28344429
Modeling adsorption of cationic surfactants at air/water interface without using the Gibbs equation.
Phan, Chi M; Le, Thu N; Nguyen, Cuong V; Yusa, Shin-ichi
2013-04-16
The Gibbs adsorption equation has been indispensable in predicting the surfactant adsorption at the interfaces, with many applications in industrial and natural processes. This study uses a new theoretical framework to model surfactant adsorption at the air/water interface without the Gibbs equation. The model was applied to two surfactants, C14TAB and C16TAB, to determine the maximum surface excesses. The obtained values demonstrated a fundamental change, which was verified by simulations, in the molecular arrangement at the interface. The new insights, in combination with recent discoveries in the field, expose the limitations of applying the Gibbs adsorption equation to cationic surfactants at the air/water interface.
A Gibbs point field model for the spatial pattern of coronary capillaries
NASA Astrophysics Data System (ADS)
Karch, R.; Neumann, M.; Neumann, F.; Ullrich, R.; Neumüller, J.; Schreiner, W.
2006-09-01
We propose a Gibbs point field model for the pattern of coronary capillaries in transverse histologic sections from human hearts, based on the physiology of oxygen supply from capillaries to tissue. To specify the potential energy function of the Gibbs point field, we draw on an analogy between the equation of steady-state oxygen diffusion from an array of parallel capillaries to the surrounding tissue and Poisson's equation for the electrostatic potential of a two-dimensional distribution of identical point charges. The influence of factors other than diffusion is treated as a thermal disturbance. On this basis, we arrive at the well-known two-dimensional one-component plasma, a system of identical point charges exhibiting a weak (logarithmic) repulsive interaction that is completely characterized by a single dimensionless parameter. By variation of this parameter, the model is able to reproduce many characteristics of real capillary patterns.
Lindeberg theorem for Gibbs-Markov dynamics
NASA Astrophysics Data System (ADS)
Denker, Manfred; Senti, Samuel; Zhang, Xuan
2017-12-01
A dynamical array consists of a family of functions \\{ fn, i: 1≤slant i≤slant k_n, n≥slant 1\\} and a family of initial times \\{τn, i: 1≤slant i≤slant k_n, n≥slant 1\\} . For a dynamical system (X, T) we identify distributional limits for sums of the form for suitable (non-random) constants s_n>0 and an, i\\in { R} . We derive a Lindeberg-type central limit theorem for dynamical arrays. Applications include new central limit theorems for functions which are not locally Lipschitz continuous and central limit theorems for statistical functions of time series obtained from Gibbs-Markov systems. Our results, which hold for more general dynamics, are stated in the context of Gibbs-Markov dynamical systems for convenience.
On grey levels in random CAPTCHA generation
NASA Astrophysics Data System (ADS)
Newton, Fraser; Kouritzin, Michael A.
2011-06-01
A CAPTCHA is an automatically generated test designed to distinguish between humans and computer programs; specifically, they are designed to be easy for humans but difficult for computer programs to pass in order to prevent the abuse of resources by automated bots. They are commonly seen guarding webmail registration forms, online auction sites, and preventing brute force attacks on passwords. In the following, we address the question: How does adding a grey level to random CAPTCHA generation affect the utility of the CAPTCHA? We treat the problem of generating the random CAPTCHA as one of random field simulation: An initial state of background noise is evolved over time using Gibbs sampling and an efficient algorithm for generating correlated random variables. This approach has already been found to yield highly-readable yet difficult-to-crack CAPTCHAs. We detail how the requisite parameters for introducing grey levels are estimated and how we generate the random CAPTCHA. The resulting CAPTCHA will be evaluated in terms of human readability as well as its resistance to automated attacks in the forms of character segmentation and optical character recognition.
Wang, Jing; Li, Tianfang; Lu, Hongbing; Liang, Zhengrong
2006-01-01
Reconstructing low-dose X-ray CT (computed tomography) images is a noise problem. This work investigated a penalized weighted least-squares (PWLS) approach to address this problem in two dimensions, where the WLS considers first- and second-order noise moments and the penalty models signal spatial correlations. Three different implementations were studied for the PWLS minimization. One utilizes a MRF (Markov random field) Gibbs functional to consider spatial correlations among nearby detector bins and projection views in sinogram space and minimizes the PWLS cost function by iterative Gauss-Seidel algorithm. Another employs Karhunen-Loève (KL) transform to de-correlate data signals among nearby views and minimizes the PWLS adaptively to each KL component by analytical calculation, where the spatial correlation among nearby bins is modeled by the same Gibbs functional. The third one models the spatial correlations among image pixels in image domain also by a MRF Gibbs functional and minimizes the PWLS by iterative successive over-relaxation algorithm. In these three implementations, a quadratic functional regularization was chosen for the MRF model. Phantom experiments showed a comparable performance of these three PWLS-based methods in terms of suppressing noise-induced streak artifacts and preserving resolution in the reconstructed images. Computer simulations concurred with the phantom experiments in terms of noise-resolution tradeoff and detectability in low contrast environment. The KL-PWLS implementation may have the advantage in terms of computation for high-resolution dynamic low-dose CT imaging. PMID:17024831
Helmholtz and Gibbs ensembles, thermodynamic limit and bistability in polymer lattice models
NASA Astrophysics Data System (ADS)
Giordano, Stefano
2017-12-01
Representing polymers by random walks on a lattice is a fruitful approach largely exploited to study configurational statistics of polymer chains and to develop efficient Monte Carlo algorithms. Nevertheless, the stretching and the folding/unfolding of polymer chains within the Gibbs (isotensional) and the Helmholtz (isometric) ensembles of the statistical mechanics have not been yet thoroughly analysed by means of the lattice methodology. This topic, motivated by the recent introduction of several single-molecule force spectroscopy techniques, is investigated in the present paper. In particular, we analyse the force-extension curves under the Gibbs and Helmholtz conditions and we give a proof of the ensembles equivalence in the thermodynamic limit for polymers represented by a standard random walk on a lattice. Then, we generalize these concepts for lattice polymers that can undergo conformational transitions or, equivalently, for chains composed of bistable or two-state elements (that can be either folded or unfolded). In this case, the isotensional condition leads to a plateau-like force-extension response, whereas the isometric condition causes a sawtooth-like force-extension curve, as predicted by numerous experiments. The equivalence of the ensembles is finally proved also for lattice polymer systems exhibiting conformational transitions.
Diffusive mixing and Tsallis entropy
O'Malley, Daniel; Vesselinov, Velimir V.; Cushman, John H.
2015-04-29
Brownian motion, the classical diffusive process, maximizes the Boltzmann-Gibbs entropy. The Tsallis q-entropy, which is non-additive, was developed as an alternative to the classical entropy for systems which are non-ergodic. A generalization of Brownian motion is provided that maximizes the Tsallis entropy rather than the Boltzmann-Gibbs entropy. This process is driven by a Brownian measure with a random diffusion coefficient. In addition, the distribution of this coefficient is derived as a function of q for 1 < q < 3. Applications to transport in porous media are considered.
Gibbs measures based on 1d (an)harmonic oscillators as mean-field limits
NASA Astrophysics Data System (ADS)
Lewin, Mathieu; Nam, Phan Thành; Rougerie, Nicolas
2018-04-01
We prove that Gibbs measures based on 1D defocusing nonlinear Schrödinger functionals with sub-harmonic trapping can be obtained as the mean-field/large temperature limit of the corresponding grand-canonical ensemble for many bosons. The limit measure is supported on Sobolev spaces of negative regularity, and the corresponding density matrices are not trace-class. The general proof strategy is that of a previous paper of ours, but we have to complement it with Hilbert-Schmidt estimates on reduced density matrices.
Four competing interactions for models with an uncountable set of spin values on a Cayley tree
NASA Astrophysics Data System (ADS)
Rozikov, U. A.; Haydarov, F. H.
2017-06-01
We consider models with four competing interactions ( external field, nearest neighbor, second neighbor, and three neighbors) and an uncountable set [0, 1] of spin values on the Cayley tree of order two. We reduce the problem of describing the splitting Gibbs measures of the model to the problem of analyzing solutions of a nonlinear integral equation and study some particular cases for Ising and Potts models. We also show that periodic Gibbs measures for the given models either are translation invariant or have the period two. We present examples where periodic Gibbs measures with the period two are not unique.
Rigorous Proof of the Boltzmann-Gibbs Distribution of Money on Connected Graphs
NASA Astrophysics Data System (ADS)
Lanchier, Nicolas
2017-04-01
Models in econophysics, i.e., the emerging field of statistical physics that applies the main concepts of traditional physics to economics, typically consist of large systems of economic agents who are characterized by the amount of money they have. In the simplest model, at each time step, one agent gives one dollar to another agent, with both agents being chosen independently and uniformly at random from the system. Numerical simulations of this model suggest that, at least when the number of agents and the average amount of money per agent are large, the distribution of money converges to an exponential distribution reminiscent of the Boltzmann-Gibbs distribution of energy in physics. The main objective of this paper is to give a rigorous proof of this result and show that the convergence to the exponential distribution holds more generally when the economic agents are located on the vertices of a connected graph and interact locally with their neighbors rather than globally with all the other agents. We also study a closely related model where, at each time step, agents buy with a probability proportional to the amount of money they have, and prove that in this case the limiting distribution of money is Poissonian.
Shielding property for thermal equilibrium states in the quantum Ising model
NASA Astrophysics Data System (ADS)
Móller, N. S.; de Paula, A. L.; Drumond, R. C.
2018-03-01
We show that Gibbs states of nonhomogeneous transverse Ising chains satisfy a shielding property. Namely, whatever the fields on each spin and exchange couplings between neighboring spins are, if the field in one particular site is null, then the reduced states of the subchains to the right and to the left of this site are exactly the Gibbs states of each subchain alone. Therefore, even if there is a strong exchange coupling between the extremal sites of each subchain, the Gibbs states of the each subchain behave as if there is no interaction between them. In general, if a lattice can be divided into two disconnected regions separated by an interface of sites with zero applied field, then we can guarantee a similar result only if the surface contains a single site. Already for an interface with two sites we show an example where the property does not hold. When it holds, however, we show that if a perturbation of the Hamiltonian parameters is done in one side of the lattice, then the other side is completely unchanged, with regard to both its equilibrium state and dynamics.
A Gibbs sampler for motif detection in phylogenetically close sequences
NASA Astrophysics Data System (ADS)
Siddharthan, Rahul; van Nimwegen, Erik; Siggia, Eric
2004-03-01
Genes are regulated by transcription factors that bind to DNA upstream of genes and recognize short conserved ``motifs'' in a random intergenic ``background''. Motif-finders such as the Gibbs sampler compare the probability of these short sequences being represented by ``weight matrices'' to the probability of their arising from the background ``null model'', and explore this space (analogous to a free-energy landscape). But closely related species may show conservation not because of functional sites but simply because they have not had sufficient time to diverge, so conventional methods will fail. We introduce a new Gibbs sampler algorithm that accounts for common ancestry when searching for motifs, while requiring minimal ``prior'' assumptions on the number and types of motifs, assessing the significance of detected motifs by ``tracking'' clusters that stay together. We apply this scheme to motif detection in sporulation-cycle genes in the yeast S. cerevisiae, using recent sequences of other closely-related Saccharomyces species.
Occupation times and ergodicity breaking in biased continuous time random walks
NASA Astrophysics Data System (ADS)
Bel, Golan; Barkai, Eli
2005-12-01
Continuous time random walk (CTRW) models are widely used to model diffusion in condensed matter. There are two classes of such models, distinguished by the convergence or divergence of the mean waiting time. Systems with finite average sojourn time are ergodic and thus Boltzmann-Gibbs statistics can be applied. We investigate the statistical properties of CTRW models with infinite average sojourn time; in particular, the occupation time probability density function is obtained. It is shown that in the non-ergodic phase the distribution of the occupation time of the particle on a given lattice point exhibits bimodal U or trimodal W shape, related to the arcsine law. The key points are as follows. (a) In a CTRW with finite or infinite mean waiting time, the distribution of the number of visits on a lattice point is determined by the probability that a member of an ensemble of particles in equilibrium occupies the lattice point. (b) The asymmetry parameter of the probability distribution function of occupation times is related to the Boltzmann probability and to the partition function. (c) The ensemble average is given by Boltzmann-Gibbs statistics for either finite or infinite mean sojourn time, when detailed balance conditions hold. (d) A non-ergodic generalization of the Boltzmann-Gibbs statistical mechanics for systems with infinite mean sojourn time is found.
Garrido, Nuno M; Jorge, Miguel; Queimada, António J; Gomes, José R B; Economou, Ioannis G; Macedo, Eugénia A
2011-10-14
The Gibbs energy of hydration is an important quantity to understand the molecular behavior in aqueous systems at constant temperature and pressure. In this work we review the performance of some popular force fields, namely TraPPE, OPLS-AA and Gromos, in reproducing the experimental Gibbs energies of hydration of several alkyl-aromatic compounds--benzene, mono-, di- and tri-substituted alkylbenzenes--using molecular simulation techniques. In the second part of the paper, we report a new model that is able to improve such hydration energy predictions, based on Lennard Jones parameters from the recent TraPPE-EH force field and atomic partial charges obtained from natural population analysis of density functional theory calculations. We apply a scaling factor determined by fitting the experimental hydration energy of only two solutes, and then present a simple rule to generate atomic partial charges for different substituted alkyl-aromatics. This rule has the added advantages of eliminating the unnecessary assumption of fixed charge on every substituted carbon atom and providing a simple guideline for extrapolating the charge assignment to any multi-substituted alkyl-aromatic molecule. The point charges derived here yield excellent predictions of experimental Gibbs energies of hydration, with an overall absolute average deviation of less than 0.6 kJ mol(-1). This new parameter set can also give good predictive performance for other thermodynamic properties and liquid structural information.
Classification with spatio-temporal interpixel class dependency contexts
NASA Technical Reports Server (NTRS)
Jeon, Byeungwoo; Landgrebe, David A.
1992-01-01
A contextual classifier which can utilize both spatial and temporal interpixel dependency contexts is investigated. After spatial and temporal neighbors are defined, a general form of maximum a posterior spatiotemporal contextual classifier is derived. This contextual classifier is simplified under several assumptions. Joint prior probabilities of the classes of each pixel and its spatial neighbors are modeled by the Gibbs random field. The classification is performed in a recursive manner to allow a computationally efficient contextual classification. Experimental results with bitemporal TM data show significant improvement of classification accuracy over noncontextual pixelwise classifiers. This spatiotemporal contextual classifier should find use in many applications of remote sensing, especially when the classification accuracy is important.
Boosting association rule mining in large datasets via Gibbs sampling.
Qian, Guoqi; Rao, Calyampudi Radhakrishna; Sun, Xiaoying; Wu, Yuehua
2016-05-03
Current algorithms for association rule mining from transaction data are mostly deterministic and enumerative. They can be computationally intractable even for mining a dataset containing just a few hundred transaction items, if no action is taken to constrain the search space. In this paper, we develop a Gibbs-sampling-induced stochastic search procedure to randomly sample association rules from the itemset space, and perform rule mining from the reduced transaction dataset generated by the sample. Also a general rule importance measure is proposed to direct the stochastic search so that, as a result of the randomly generated association rules constituting an ergodic Markov chain, the overall most important rules in the itemset space can be uncovered from the reduced dataset with probability 1 in the limit. In the simulation study and a real genomic data example, we show how to boost association rule mining by an integrated use of the stochastic search and the Apriori algorithm.
Non-Gaussian Multi-resolution Modeling of Magnetosphere-Ionosphere Coupling Processes
NASA Astrophysics Data System (ADS)
Fan, M.; Paul, D.; Lee, T. C. M.; Matsuo, T.
2016-12-01
The most dynamic coupling between the magnetosphere and ionosphere occurs in the Earth's polar atmosphere. Our objective is to model scale-dependent stochastic characteristics of high-latitude ionospheric electric fields that originate from solar wind magnetosphere-ionosphere interactions. The Earth's high-latitude ionospheric electric field exhibits considerable variability, with increasing non-Gaussian characteristics at decreasing spatio-temporal scales. Accurately representing the underlying stochastic physical process through random field modeling is crucial not only for scientific understanding of the energy, momentum and mass exchanges between the Earth's magnetosphere and ionosphere, but also for modern technological systems including telecommunication, navigation, positioning and satellite tracking. While a lot of efforts have been made to characterize the large-scale variability of the electric field in the context of Gaussian processes, no attempt has been made so far to model the small-scale non-Gaussian stochastic process observed in the high-latitude ionosphere. We construct a novel random field model using spherical needlets as building blocks. The double localization of spherical needlets in both spatial and frequency domains enables the model to capture the non-Gaussian and multi-resolutional characteristics of the small-scale variability. The estimation procedure is computationally feasible due to the utilization of an adaptive Gibbs sampler. We apply the proposed methodology to the computational simulation output from the Lyon-Fedder-Mobarry (LFM) global magnetohydrodynamics (MHD) magnetosphere model. Our non-Gaussian multi-resolution model results in characterizing significantly more energy associated with the small-scale ionospheric electric field variability in comparison to Gaussian models. By accurately representing unaccounted-for additional energy and momentum sources to the Earth's upper atmosphere, our novel random field modeling approach will provide a viable remedy to the current numerical models' systematic biases resulting from the underestimation of high-latitude energy and momentum sources.
Complete Scene Recovery and Terrain Classification in Textured Terrain Meshes
Song, Wei; Cho, Kyungeun; Um, Kyhyun; Won, Chee Sun; Sim, Sungdae
2012-01-01
Terrain classification allows a mobile robot to create an annotated map of its local environment from the three-dimensional (3D) and two-dimensional (2D) datasets collected by its array of sensors, including a GPS receiver, gyroscope, video camera, and range sensor. However, parts of objects that are outside the measurement range of the range sensor will not be detected. To overcome this problem, this paper describes an edge estimation method for complete scene recovery and complete terrain reconstruction. Here, the Gibbs-Markov random field is used to segment the ground from 2D videos and 3D point clouds. Further, a masking method is proposed to classify buildings and trees in a terrain mesh. PMID:23112653
The chemical (not mechanical) paradigm of thermodynamics of colloid and interface science.
Kaptay, George
2018-06-01
In the most influential monograph on colloid and interfacial science by Adamson three fundamental equations of "physical chemistry of surfaces" are identified: the Laplace equation, the Kelvin equation and the Gibbs adsorption equation, with a mechanical definition of surface tension by Young as a starting point. Three of them (Young, Laplace and Kelvin) are called here the "mechanical paradigm". In contrary it is shown here that there is only one fundamental equation of the thermodynamics of colloid and interface science and all the above (and other) equations of this field follow as its derivatives. This equation is due to chemical thermodynamics of Gibbs, called here the "chemical paradigm", leading to the definition of surface tension and to 5 rows of equations (see Graphical abstract). The first row is the general equation for interfacial forces, leading to the Young equation, to the Bakker equation and to the Laplace equation, etc. Although the principally wrong extension of the Laplace equation formally leads to the Kelvin equation, using the chemical paradigm it becomes clear that the Kelvin equation is generally incorrect, although it provides right results in special cases. The second row of equations provides equilibrium shapes and positions of phases, including sessile drops of Young, crystals of Wulff, liquids in capillaries, etc. The third row of equations leads to the size-dependent equations of molar Gibbs energies of nano-phases and chemical potentials of their components; from here the corrected versions of the Kelvin equation and its derivatives (the Gibbs-Thomson equation and the Freundlich-Ostwald equation) are derived, including equations for more complex problems. The fourth row of equations is the nucleation theory of Gibbs, also contradicting the Kelvin equation. The fifth row of equations is the adsorption equation of Gibbs, and also the definition of the partial surface tension, leading to the Butler equation and to its derivatives, including the Langmuir equation and the Szyszkowski equation. Positioning the single fundamental equation of Gibbs into the thermodynamic origin of colloid and interface science leads to a coherent set of correct equations of this field. The same provides the chemical (not mechanical) foundation of the chemical (not mechanical) discipline of colloid and interface science. Copyright © 2018 Elsevier B.V. All rights reserved.
Generalized Gibbs ensembles for quantum field theories
NASA Astrophysics Data System (ADS)
Essler, F. H. L.; Mussardo, G.; Panfil, M.
2015-05-01
We consider the nonequilibrium dynamics in quantum field theories (QFTs). After being prepared in a density matrix that is not an eigenstate of the Hamiltonian, such systems are expected to relax locally to a stationary state. In the presence of local conservation laws, these stationary states are believed to be described by appropriate generalized Gibbs ensembles. Here we demonstrate that in order to obtain a correct description of the stationary state, it is necessary to take into account conservation laws that are not (ultra)local in the usual sense of QFTs, but fulfill a significantly weaker form of locality. We discuss the implications of our results for integrable QFTs in one spatial dimension.
Inference with minimal Gibbs free energy in information field theory.
Ensslin, Torsten A; Weig, Cornelius
2010-11-01
Non-linear and non-gaussian signal inference problems are difficult to tackle. Renormalization techniques permit us to construct good estimators for the posterior signal mean within information field theory (IFT), but the approximations and assumptions made are not very obvious. Here we introduce the simple concept of minimal Gibbs free energy to IFT, and show that previous renormalization results emerge naturally. They can be understood as being the gaussian approximation to the full posterior probability, which has maximal cross information with it. We derive optimized estimators for three applications, to illustrate the usage of the framework: (i) reconstruction of a log-normal signal from poissonian data with background counts and point spread function, as it is needed for gamma ray astronomy and for cosmography using photometric galaxy redshifts, (ii) inference of a gaussian signal with unknown spectrum, and (iii) inference of a poissonian log-normal signal with unknown spectrum, the combination of (i) and (ii). Finally we explain how gaussian knowledge states constructed by the minimal Gibbs free energy principle at different temperatures can be combined into a more accurate surrogate of the non-gaussian posterior.
Quantitative Characterization of Spurious Gibbs Waves in 45 CMIP5 Models
NASA Astrophysics Data System (ADS)
Geil, K. L.; Zeng, X.
2014-12-01
Gibbs oscillations appear in global climate models when representing fields, such as orography, that contain discontinuities or sharp gradients. It has been known for decades that the oscillations are associated with the transformation of the truncated spectral representation of a field to physical space and that the oscillations can also be present in global models that do not use spectral methods. The spurious oscillations are potentially detrimental to model simulations (e.g., over ocean) and this work provides a quantitative characterization of the Gibbs oscillations that appear across the Coupled Model Intercomparison Project Phase 5 (CMIP5) models. An ocean transect running through the South Pacific High toward the Andes is used to characterize the oscillations in ten different variables. These oscillations are found to be stationary and hence are not caused by (physical) waves in the atmosphere. We quantify the oscillation amplitude using the root mean square difference (RMSD) between the transect of a variable and its running mean (rather than the constant mean across the transect). We also compute the RMSD to interannual variability (IAV) ratio, which provides a relative measure of the oscillation amplitude. Of the variables examined, the largest RMSD values exist in the surface pressure field of spectral models, while the smallest RMSD values within the surface pressure field come from models that use finite difference (FD) techniques. Many spectral models have a surface pressure RMSD that is 2 to 15 times greater than IAV over the transect and an RMSD:IAV ratio greater than one for many other variables including surface temperature, incoming shortwave radiation at the surface, incoming longwave radiation at the surface, and total cloud fraction. In general, the FD models out-perform the spectral models, but not all the spectral models have large amplitude oscillations and there are a few FD models where the oscillations do appear. Finally, we present a brief comparison of the numerical methods of a select few models to better understand their Gibbs oscillations.
Charting the Replica Symmetric Phase
NASA Astrophysics Data System (ADS)
Coja-Oghlan, Amin; Efthymiou, Charilaos; Jaafari, Nor; Kang, Mihyun; Kapetanopoulos, Tobias
2018-02-01
Diluted mean-field models are spin systems whose geometry of interactions is induced by a sparse random graph or hypergraph. Such models play an eminent role in the statistical mechanics of disordered systems as well as in combinatorics and computer science. In a path-breaking paper based on the non-rigorous `cavity method', physicists predicted not only the existence of a replica symmetry breaking phase transition in such models but also sketched a detailed picture of the evolution of the Gibbs measure within the replica symmetric phase and its impact on important problems in combinatorics, computer science and physics (Krzakala et al. in Proc Natl Acad Sci 104:10318-10323, 2007). In this paper we rigorise this picture completely for a broad class of models, encompassing the Potts antiferromagnet on the random graph, the k-XORSAT model and the diluted k-spin model for even k. We also prove a conjecture about the detection problem in the stochastic block model that has received considerable attention (Decelle et al. in Phys Rev E 84:066106, 2011).
Bayesian estimation of Karhunen–Loève expansions; A random subspace approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chowdhary, Kenny; Najm, Habib N.
One of the most widely-used statistical procedures for dimensionality reduction of high dimensional random fields is Principal Component Analysis (PCA), which is based on the Karhunen-Lo eve expansion (KLE) of a stochastic process with finite variance. The KLE is analogous to a Fourier series expansion for a random process, where the goal is to find an orthogonal transformation for the data such that the projection of the data onto this orthogonal subspace is optimal in the L 2 sense, i.e, which minimizes the mean square error. In practice, this orthogonal transformation is determined by performing an SVD (Singular Value Decomposition)more » on the sample covariance matrix or on the data matrix itself. Sampling error is typically ignored when quantifying the principal components, or, equivalently, basis functions of the KLE. Furthermore, it is exacerbated when the sample size is much smaller than the dimension of the random field. In this paper, we introduce a Bayesian KLE procedure, allowing one to obtain a probabilistic model on the principal components, which can account for inaccuracies due to limited sample size. The probabilistic model is built via Bayesian inference, from which the posterior becomes the matrix Bingham density over the space of orthonormal matrices. We use a modified Gibbs sampling procedure to sample on this space and then build a probabilistic Karhunen-Lo eve expansions over random subspaces to obtain a set of low-dimensional surrogates of the stochastic process. We illustrate this probabilistic procedure with a finite dimensional stochastic process inspired by Brownian motion.« less
Bayesian estimation of Karhunen–Loève expansions; A random subspace approach
Chowdhary, Kenny; Najm, Habib N.
2016-04-13
One of the most widely-used statistical procedures for dimensionality reduction of high dimensional random fields is Principal Component Analysis (PCA), which is based on the Karhunen-Lo eve expansion (KLE) of a stochastic process with finite variance. The KLE is analogous to a Fourier series expansion for a random process, where the goal is to find an orthogonal transformation for the data such that the projection of the data onto this orthogonal subspace is optimal in the L 2 sense, i.e, which minimizes the mean square error. In practice, this orthogonal transformation is determined by performing an SVD (Singular Value Decomposition)more » on the sample covariance matrix or on the data matrix itself. Sampling error is typically ignored when quantifying the principal components, or, equivalently, basis functions of the KLE. Furthermore, it is exacerbated when the sample size is much smaller than the dimension of the random field. In this paper, we introduce a Bayesian KLE procedure, allowing one to obtain a probabilistic model on the principal components, which can account for inaccuracies due to limited sample size. The probabilistic model is built via Bayesian inference, from which the posterior becomes the matrix Bingham density over the space of orthonormal matrices. We use a modified Gibbs sampling procedure to sample on this space and then build a probabilistic Karhunen-Lo eve expansions over random subspaces to obtain a set of low-dimensional surrogates of the stochastic process. We illustrate this probabilistic procedure with a finite dimensional stochastic process inspired by Brownian motion.« less
Smooth Scalar-on-Image Regression via Spatial Bayesian Variable Selection
Goldsmith, Jeff; Huang, Lei; Crainiceanu, Ciprian M.
2013-01-01
We develop scalar-on-image regression models when images are registered multidimensional manifolds. We propose a fast and scalable Bayes inferential procedure to estimate the image coefficient. The central idea is the combination of an Ising prior distribution, which controls a latent binary indicator map, and an intrinsic Gaussian Markov random field, which controls the smoothness of the nonzero coefficients. The model is fit using a single-site Gibbs sampler, which allows fitting within minutes for hundreds of subjects with predictor images containing thousands of locations. The code is simple and is provided in less than one page in the Appendix. We apply this method to a neuroimaging study where cognitive outcomes are regressed on measures of white matter microstructure at every voxel of the corpus callosum for hundreds of subjects. PMID:24729670
Phase Equilibria and Thermodynamic Descriptions of Ag-Ge and Ag-Ge-Ni Systems
NASA Astrophysics Data System (ADS)
Rajkumar, V. B.; Chen, Sinn-Wen
2018-07-01
Gibbs energy modeling of Ag-Ge and Ag-Ge-Ni systems was done using the calculation of the phase diagram method with associated data from this work and relevant literature information. In the Ag-Ge system, the solidus temperatures of Ag-rich alloys are measured using differential thermal analysis, and the energy of mixing for the FCC_A1 phase is calculated using the special quasi-random structures technique. The isothermal sections of the Ag-Ge-Ni system at 1023 K and 673 K are also experimentally determined. These data and findings in the relevant literature are used to model the Gibbs energy of the Ag-Ge and Ag-Ge- Ni systems. A reaction scheme and a liquidus projection of the Ag-Ge-Ni system are determined.
Dasgupta, Nilanjan; Carin, Lawrence
2005-04-01
Time-reversal imaging (TRI) is analogous to matched-field processing, although TRI is typically very wideband and is appropriate for subsequent target classification (in addition to localization). Time-reversal techniques, as applied to acoustic target classification, are highly sensitive to channel mismatch. Hence, it is crucial to estimate the channel parameters before time-reversal imaging is performed. The channel-parameter statistics are estimated here by applying a geoacoustic inversion technique based on Gibbs sampling. The maximum a posteriori (MAP) estimate of the channel parameters are then used to perform time-reversal imaging. Time-reversal implementation requires a fast forward model, implemented here by a normal-mode framework. In addition to imaging, extraction of features from the time-reversed images is explored, with these applied to subsequent target classification. The classification of time-reversed signatures is performed by the relevance vector machine (RVM). The efficacy of the technique is analyzed on simulated in-channel data generated by a free-field finite element method (FEM) code, in conjunction with a channel propagation model, wherein the final classification performance is demonstrated to be relatively insensitive to the associated channel parameters. The underlying theory of Gibbs sampling and TRI are presented along with the feature extraction and target classification via the RVM.
NASA Astrophysics Data System (ADS)
Jian, Wen-Yi; You, Hsin-Chiang; Wu, Cheng-Yen
2018-01-01
In this work, we used a sol-gel process to fabricate a ZnO-ZrO2-stacked resistive switching random access memory (ReRAM) device and investigated its switching mechanism. The Gibbs free energy in ZnO, which is higher than that in ZrO2, facilitates the oxidation and reduction reactions of filaments in the ZnO layer. The current-voltage (I-V) characteristics of the device revealed a forming-free operation because of nonlattice oxygen in the oxide layer. In addition, the device can operate under bipolar or unipolar conditions with a reset voltage of 0 to ±2 V, indicating that in this device, Joule heating dominates at reset and the electric field dominates in the set process. Furthermore, the characteristics reveal why the fabricated device exhibits a greater discrete distribution phenomenon for the set voltage than for the reset voltage. These results will enable the fabrication of future ReRAM devices with double-layer oxide structures with improved characteristics.
NASA Astrophysics Data System (ADS)
Starr, Francis; Douglas, Jack; Sastry, Srikanth
2013-03-01
We examine measures of dynamical heterogeneity for a bead-spring polymer melt and test how these scales compare with the scales hypothesized by the Adam and Gibbs (AG) and random first-order transition (RFOT) theories. We show that the time scale of the high-mobility clusters and strings is associated with a diffusive time scale, while the low-mobility particles' time scale relates to a structural relaxation time. The difference of the characteristic times naturally explains the decoupling of diffusion and structural relaxation time scales. We examine the appropriateness of identifying the size scales of mobile particle clusters or strings with the size of cooperatively rearranging regions (CRR) in the AG and RFOT theories. We find that the string size appears to be the most consistent measure of CRR for both the AG and RFOT models. Identifying strings or clusters with the``mosaic'' length of the RFOT model relaxes the conventional assumption that the``entropic droplet'' are compact. We also confirm the validity of the entropy formulation of the AG theory, constraining the exponent values of the RFOT theory. This constraint, together with the analysis of size scales, enables us to estimate the characteristic exponents of RFOT.
Odegård, J; Jensen, J; Madsen, P; Gianola, D; Klemetsdal, G; Heringstad, B
2003-11-01
The distribution of somatic cell scores could be regarded as a mixture of at least two components depending on a cow's udder health status. A heteroscedastic two-component Bayesian normal mixture model with random effects was developed and implemented via Gibbs sampling. The model was evaluated using datasets consisting of simulated somatic cell score records. Somatic cell score was simulated as a mixture representing two alternative udder health statuses ("healthy" or "diseased"). Animals were assigned randomly to the two components according to the probability of group membership (Pm). Random effects (additive genetic and permanent environment), when included, had identical distributions across mixture components. Posterior probabilities of putative mastitis were estimated for all observations, and model adequacy was evaluated using measures of sensitivity, specificity, and posterior probability of misclassification. Fitting different residual variances in the two mixture components caused some bias in estimation of parameters. When the components were difficult to disentangle, so were their residual variances, causing bias in estimation of Pm and of location parameters of the two underlying distributions. When all variance components were identical across mixture components, the mixture model analyses returned parameter estimates essentially without bias and with a high degree of precision. Including random effects in the model increased the probability of correct classification substantially. No sizable differences in probability of correct classification were found between models in which a single cow effect (ignoring relationships) was fitted and models where this effect was split into genetic and permanent environmental components, utilizing relationship information. When genetic and permanent environmental effects were fitted, the between-replicate variance of estimates of posterior means was smaller because the model accounted for random genetic drift.
Computational Thermodynamics of Materials Zi-Kui Liu and Yi Wang
DOE Office of Scientific and Technical Information (OSTI.GOV)
Devanathan, Ram
This authoritative volume introduces the reader to computational thermodynamics and the use of this approach to the design of material properties by tailoring the chemical composition. The text covers applications of this approach, introduces the relevant computational codes, and offers exercises at the end of each chapter. The book has nine chapters and two appendices that provide background material on computer codes. Chapter 1 covers the first and second laws of thermodynamics, introduces the spinodal as the limit of stability, and presents the Gibbs-Duhem equation. Chapter 2 focuses on the Gibbs energy function. Starting with a homogeneous system with amore » single phase, the authors proceed to phases with variable compositions, and polymer blends. The discussion includes the contributions of external electric and magnetic fields to the Gibbs energy. Chapter 3 deals with phase equilibria in heterogeneous systems, the Gibbs phase rule, and phase diagrams. Chapter 4 briefly covers experimental measurements of thermodynamic properties used as input for thermodynamic modeling by Calculation of Phase Diagrams (CALPHAD). Chapter 5 discusses the use of density functional theory to obtain thermochemical data and fill gaps where experimental data is missing. The reader is introduced to the Vienna Ab Initio Simulation Package (VASP) for density functional theory and the YPHON code for phonon calculations. Chapter 6 introduces the modeling of Gibbs energy of phases with the CALPHAD method. Chapter 7 deals with chemical reactions and the Ellingham diagram for metal-oxide systems and presents the calculation of the maximum reaction rate from equilibrium thermodynamics. Chapter 8 is devoted to electrochemical reactions and Pourbaix diagrams with application examples. Chapter 9 concludes this volume with the application of a model of multiple microstates to Ce and Fe3Pt. CALPHAD modeling is briefly discussed in the context of genomics of materials. The book introduces basic thermodynamic concepts clearly and directs readers to appropriate references for advanced concepts and details of software implementation. The list of references is quite comprehensive. The authors make liberal use of diagrams to illustrate key concepts. The two Appendices at the end discuss software requirements and the file structure, and present templates for special quasi-random structures. There is also a link to download pre-compiled binary files of the YPHON code for Linux or Microsoft Windows systems. The exercises at the end of the chapters assume that the reader has access to VASP, which is not freeware. Readers without access to this code can work on a limited number of exercises. However, results from other first principles codes can be organized in the YPHON format as explained in the Appendix. This book will serve as an excellent reference on computational thermodynamics and the exercises provided at the end of each chapter make it valuable as a graduate level textbook. Reviewer: Ram Devanathan is Acting Director of Earth Systems Science Division, Pacific Northwest National Laboratory, USA.« less
Noise Response Data Reveal Novel Controllability Gramian for Nonlinear Network Dynamics
Kashima, Kenji
2016-01-01
Control of nonlinear large-scale dynamical networks, e.g., collective behavior of agents interacting via a scale-free connection topology, is a central problem in many scientific and engineering fields. For the linear version of this problem, the so-called controllability Gramian has played an important role to quantify how effectively the dynamical states are reachable by a suitable driving input. In this paper, we first extend the notion of the controllability Gramian to nonlinear dynamics in terms of the Gibbs distribution. Next, we show that, when the networks are open to environmental noise, the newly defined Gramian is equal to the covariance matrix associated with randomly excited, but uncontrolled, dynamical state trajectories. This fact theoretically justifies a simple Monte Carlo simulation that can extract effectively controllable subdynamics in nonlinear complex networks. In addition, the result provides a novel insight into the relationship between controllability and statistical mechanics. PMID:27264780
NASA Technical Reports Server (NTRS)
Tescher, Andrew G. (Editor)
1989-01-01
Various papers on image compression and automatic target recognition are presented. Individual topics addressed include: target cluster detection in cluttered SAR imagery, model-based target recognition using laser radar imagery, Smart Sensor front-end processor for feature extraction of images, object attitude estimation and tracking from a single video sensor, symmetry detection in human vision, analysis of high resolution aerial images for object detection, obscured object recognition for an ATR application, neural networks for adaptive shape tracking, statistical mechanics and pattern recognition, detection of cylinders in aerial range images, moving object tracking using local windows, new transform method for image data compression, quad-tree product vector quantization of images, predictive trellis encoding of imagery, reduced generalized chain code for contour description, compact architecture for a real-time vision system, use of human visibility functions in segmentation coding, color texture analysis and synthesis using Gibbs random fields.
Langmuir-Gibbs Surface Phases and Transitions
NASA Astrophysics Data System (ADS)
Ocko, Benjamin; Sloutskin, Eli; Sapir, Zvi; Tamam, Lilach; Deutsch, Moshe; Bain, Colin
2007-03-01
Recent synchrotron x-ray measurements reveal surface ordering transitions in films of medium-length linear hydrocarbons (alkanes), spread on the water surface. Alkanes longer than hexane do not spread on the free surface of water. However, sub-mM concentrations of some anionic surfactants (e.g. CTAB) induce formation of thermodynamically stable alkane monolayers, through a ``pseudo-partial wetting'' phenomenon[1]. The monolayers, incorporating both water-insoluble alkanes (Langmuir) and water-soluble CTAB molecules (Gibbs) are called Langmuir-Gibbs (LG) films. The films formed by alkanes with n <=17 exhibit ordering transition upon cooling [2], below which the molecules are normal to the water surface and hexagonally packed, with CTAB molecules randomly mixed inside the quasi-2D crystal. Alkanes with n>17 can not form ordered LG monolayers, due to the repulsion from the n=16 tails of CTAB. This repulsion arises from the two chains' length mismatch. A demixing transition occurs upon ordering, with a pure alkane quasi-2D crystal forming on top of disordered alkyl tails of CTAB molecules. [1] K.M. Wilkinson et al., Chem. Phys. Phys. Chem. 6, 547 (2005). [2] E. Sloutskin, Z. Sapir, L. Tamam, B.M. Ocko, C.D. Bain, and M. Deutsch, Thin Solid Films, in press; K.M. Wilkinson, L. Qunfang, and C.D. Bain, Soft Matter 2, 66 (2006).
Quantum Gibbs Samplers: The Commuting Case
NASA Astrophysics Data System (ADS)
Kastoryano, Michael J.; Brandão, Fernando G. S. L.
2016-06-01
We analyze the problem of preparing quantum Gibbs states of lattice spin Hamiltonians with local and commuting terms on a quantum computer and in nature. Our central result is an equivalence between the behavior of correlations in the Gibbs state and the mixing time of the semigroup which drives the system to thermal equilibrium (the Gibbs sampler). We introduce a framework for analyzing the correlation and mixing properties of quantum Gibbs states and quantum Gibbs samplers, which is rooted in the theory of non-commutative {mathbb{L}_p} spaces. We consider two distinct classes of Gibbs samplers, one of them being the well-studied Davies generator modelling the dynamics of a system due to weak-coupling with a large Markovian environment. We show that their spectral gap is independent of system size if, and only if, a certain strong form of clustering of correlations holds in the Gibbs state. Therefore every Gibbs state of a commuting Hamiltonian that satisfies clustering of correlations in this strong sense can be prepared efficiently on a quantum computer. As concrete applications of our formalism, we show that for every one-dimensional lattice system, or for systems in lattices of any dimension at temperatures above a certain threshold, the Gibbs samplers of commuting Hamiltonians are always gapped, giving an efficient way of preparing the associated Gibbs states on a quantum computer.
NASA Astrophysics Data System (ADS)
Bensiali, Bouchra; Bodi, Kowsik; Ciraolo, Guido; Ghendrih, Philippe; Liandrat, Jacques
2013-03-01
In this work, we compare different interpolation operators in the context of particle tracking with an emphasis on situations involving velocity field with steep gradients. Since, in this case, most classical methods give rise to the Gibbs phenomenon (generation of oscillations near discontinuities), we present new methods for particle tracking based on subdivision schemes and especially on the Piecewise Parabolic Harmonic (PPH) scheme which has shown its advantage in image processing in presence of strong contrasts. First an analytic univariate case with a discontinuous velocity field is considered in order to highlight the effect of the Gibbs phenomenon on trajectory calculation. Theoretical results are provided. Then, we show, regardless of the interpolation method, the need to use a conservative approach when integrating a conservative problem with a velocity field deriving from a potential. Finally, the PPH scheme is applied in a more realistic case of a time-dependent potential encountered in the edge turbulence of magnetically confined plasmas, to compare the propagation of density structures (turbulence bursts) with the dynamics of test particles. This study highlights the difference between particle transport and density transport in turbulent fields.
2018-04-01
systems containing ionized gases. 2. Gibbs Method in the Integral Form As per the Gibbs general methodology , based on the concept of heterogeneous...ARL-TR-8348 ● APR 2018 US Army Research Laboratory The Gibbs Variational Method in Thermodynamics of Equilibrium Plasma: 1...ARL-TR-8348 ● APR 2018 US Army Research Laboratory The Gibbs Variational Method in Thermodynamics of Equilibrium Plasma: 1. General
Reflections on Gibbs: From Statistical Physics to the Amistad V3.0
NASA Astrophysics Data System (ADS)
Kadanoff, Leo P.
2014-07-01
This note is based upon a talk given at an APS meeting in celebration of the achievements of J. Willard Gibbs. J. Willard Gibbs, the younger, was the first American physical sciences theorist. He was one of the inventors of statistical physics. He introduced and developed the concepts of phase space, phase transitions, and thermodynamic surfaces in a remarkably correct and elegant manner. These three concepts form the basis of different areas of physics. The connection among these areas has been a subject of deep reflection from Gibbs' time to our own. This talk therefore celebrated Gibbs by describing modern ideas about how different parts of physics fit together. I finished with a more personal note. Our own J. Willard Gibbs had all his many achievements concentrated in science. His father, also J. Willard Gibbs, also a Professor at Yale, had one great non-academic achievement that remains unmatched in our day. I describe it.
PhyloGibbs-MP: Module Prediction and Discriminative Motif-Finding by Gibbs Sampling
Siddharthan, Rahul
2008-01-01
PhyloGibbs, our recent Gibbs-sampling motif-finder, takes phylogeny into account in detecting binding sites for transcription factors in DNA and assigns posterior probabilities to its predictions obtained by sampling the entire configuration space. Here, in an extension called PhyloGibbs-MP, we widen the scope of the program, addressing two major problems in computational regulatory genomics. First, PhyloGibbs-MP can localise predictions to small, undetermined regions of a large input sequence, thus effectively predicting cis-regulatory modules (CRMs) ab initio while simultaneously predicting binding sites in those modules—tasks that are usually done by two separate programs. PhyloGibbs-MP's performance at such ab initio CRM prediction is comparable with or superior to dedicated module-prediction software that use prior knowledge of previously characterised transcription factors. Second, PhyloGibbs-MP can predict motifs that differentiate between two (or more) different groups of regulatory regions, that is, motifs that occur preferentially in one group over the others. While other “discriminative motif-finders” have been published in the literature, PhyloGibbs-MP's implementation has some unique features and flexibility. Benchmarks on synthetic and actual genomic data show that this algorithm is successful at enhancing predictions of differentiating sites and suppressing predictions of common sites and compares with or outperforms other discriminative motif-finders on actual genomic data. Additional enhancements include significant performance and speed improvements, the ability to use “informative priors” on known transcription factors, and the ability to output annotations in a format that can be visualised with the Generic Genome Browser. In stand-alone motif-finding, PhyloGibbs-MP remains competitive, outperforming PhyloGibbs-1.0 and other programs on benchmark data. PMID:18769735
Remarks on thermalization in 2D CFT
NASA Astrophysics Data System (ADS)
de Boer, Jan; Engelhardt, Dalit
2016-12-01
We revisit certain aspects of thermalization in 2D conformal field theory (CFT). In particular, we consider similarities and differences between the time dependence of correlation functions in various states in rational and non-rational CFTs. We also consider the distinction between global and local thermalization and explain how states obtained by acting with a diffeomorphism on the ground state can appear locally thermal, and we review why the time-dependent expectation value of the energy-momentum tensor is generally a poor diagnostic of global thermalization. Since all 2D CFTs have an infinite set of commuting conserved charges, generic initial states might be expected to give rise to a generalized Gibbs ensemble rather than a pure thermal ensemble at late times. We construct the holographic dual of the generalized Gibbs ensemble and show that, to leading order, it is still described by a Banados-Teitelboim-Zanelli black hole. The extra conserved charges, while rendering c <1 theories essentially integrable, therefore seem to have little effect on large-c conformal field theories.
NASA Astrophysics Data System (ADS)
Ji, Sungchul
A new mathematical formula referred to as the Planckian distribution equation (PDE) has been found to fit long-tailed histograms generated in various fields of studies, ranging from atomic physics to single-molecule enzymology, cell biology, brain neurobiology, glottometrics, econophysics, and to cosmology. PDE can be derived from a Gaussian-like equation (GLE) by non-linearly transforming its variable, x, while keeping the y coordinate constant. Assuming that GLE represents a random distribution (due to its symmetry), it is possible to define a binary logarithm of the ratio between the areas under the curves of PDE and GLE as a measure of the non-randomness (or order) underlying the biophysicochemical processes generating long-tailed histograms that fit PDE. This new function has been named the Planckian information, IP, which (i) may be a new measure of order that can be applied widely to both natural and human sciences and (ii) can serve as the opposite of the Boltzmann-Gibbs entropy, S, which is a measure of disorder. The possible rationales for the universality of PDE may include (i) the universality of the wave-particle duality embedded in PDE, (ii) the selection of subsets of random processes (thereby breaking the symmetry of GLE) as the basic mechanism of generating order, organization, and function, and (iii) the quantity-quality complementarity as the connection between PDE and Peircean semiotics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berco, Dan, E-mail: danny.barkan@gmail.com; Tseng, Tseung-Yuen, E-mail: tseng@cc.nctu.edu.tw
This study presents an evaluation method for resistive random access memory retention reliability based on the Metropolis Monte Carlo algorithm and Gibbs free energy. The method, which does not rely on a time evolution, provides an extremely efficient way to compare the relative retention properties of metal-insulator-metal structures. It requires a small number of iterations and may be used for statistical analysis. The presented approach is used to compare the relative robustness of a single layer ZrO{sub 2} device with a double layer ZnO/ZrO{sub 2} one, and obtain results which are in good agreement with experimental data.
Hodge, Ian M
2005-09-22
A distribution of activation energies is introduced into the nonlinear Adam-Gibbs ("Hodge-Scherer") phenomenology for structural relaxation. The resulting dependencies of the stretched exponential beta parameter on thermodynamic temperature and fictive temperature (nonlinear thermorheological complexity) are derived. No additional adjustable parameters are introduced, and contact is made with the predictions of the random first-order transition theory of aging of Lubchenko and Wolynes [J. Chem. Physics121, 2852 (2004)].
Combinatorial Statistics on Trees and Networks
2010-09-29
interaction graph is drawn from the Erdos- Renyi , G(n,p), where each edge is present independently with probability p. For this model we establish a double...special interest is the behavior of Gibbs sampling on the Erdos- Renyi random graph G{n, d/n), where each edge is chosen independently with...which have no counterparts in the coloring setting. Our proof presented here exploits in novel ways the local treelike structure of Erdos- Renyi
NASA Astrophysics Data System (ADS)
Tikhonov, D. A.; Sobolev, E. V.
2011-04-01
A method of integral equations of the theory of liquids in the reference interaction site model (RISM) approximation is used to estimate the Gibbs energy averaged over equilibrium trajectories computed by molecular mechanics. Peptide oxytocin is selected as the object of interest. The Gibbs energy is calculated using all chemical potential formulas introduced in the RISM approach for the excess chemical potential of solvation and is compared with estimates by the generalized Born model. Some formulas are shown to give the wrong sign of Gibbs energy changes when peptide passes from the gas phase into water environment; the other formulas give overestimated Gibbs energy changes with the right sign. Note that allowance for the repulsive correction in the approximate analytical expressions for the Gibbs energy derived by thermodynamic perturbation theory is not a remedy.
Dynamical predictive power of the generalized Gibbs ensemble revealed in a second quench.
Zhang, J M; Cui, F C; Hu, Jiangping
2012-04-01
We show that a quenched and relaxed completely integrable system is hardly distinguishable from the corresponding generalized Gibbs ensemble in a dynamical sense. To be specific, the response of the quenched and relaxed system to a second quench can be accurately reproduced by using the generalized Gibbs ensemble as a substitute. Remarkably, as demonstrated with the transverse Ising model and the hard-core bosons in one dimension, not only the steady values but even the transient, relaxation dynamics of the physical variables can be accurately reproduced by using the generalized Gibbs ensemble as a pseudoinitial state. This result is an important complement to the previously established result that a quenched and relaxed system is hardly distinguishable from the generalized Gibbs ensemble in a static sense. The relevance of the generalized Gibbs ensemble in the nonequilibrium dynamics of completely integrable systems is then greatly strengthened.
Standard Gibbs energy of metabolic reactions: II. Glucose-6-phosphatase reaction and ATP hydrolysis.
Meurer, Florian; Do, Hoang Tam; Sadowski, Gabriele; Held, Christoph
2017-04-01
ATP (adenosine triphosphate) is a key reaction for metabolism. Tools from systems biology require standard reaction data in order to predict metabolic pathways accurately. However, literature values for standard Gibbs energy of ATP hydrolysis are highly uncertain and differ strongly from each other. Further, such data usually neglect the activity coefficients of reacting agents, and published data like this is apparent (condition-dependent) data instead of activity-based standard data. In this work a consistent value for the standard Gibbs energy of ATP hydrolysis was determined. The activity coefficients of reacting agents were modeled with electrolyte Perturbed-Chain Statistical Associating Fluid Theory (ePC-SAFT). The Gibbs energy of ATP hydrolysis was calculated by combining the standard Gibbs energies of hexokinase reaction and of glucose-6-phosphate hydrolysis. While the standard Gibbs energy of hexokinase reaction was taken from previous work, standard Gibbs energy of glucose-6-phosphate hydrolysis reaction was determined in this work. For this purpose, reaction equilibrium molalities of reacting agents were measured at pH7 and pH8 at 298.15K at varying initial reacting agent molalities. The corresponding activity coefficients at experimental equilibrium molalities were predicted with ePC-SAFT yielding the Gibbs energy of glucose-6-phosphate hydrolysis of -13.72±0.75kJ·mol -1 . Combined with the value for hexokinase, the standard Gibbs energy of ATP hydrolysis was finally found to be -31.55±1.27kJ·mol -1 . For both, ATP hydrolysis and glucose-6-phosphate hydrolysis, a good agreement with own and literature values were obtained when influences of pH, temperature, and activity coefficients were explicitly taken into account in order to calculate standard Gibbs energy at pH7, 298.15K and standard state. Copyright © 2017 Elsevier B.V. All rights reserved.
Hybrid Gibbs Sampling and MCMC for CMB Analysis at Small Angular Scales
NASA Technical Reports Server (NTRS)
Jewell, Jeffrey B.; Eriksen, H. K.; Wandelt, B. D.; Gorski, K. M.; Huey, G.; O'Dwyer, I. J.; Dickinson, C.; Banday, A. J.; Lawrence, C. R.
2008-01-01
A) Gibbs Sampling has now been validated as an efficient, statistically exact, and practically useful method for "low-L" (as demonstrated on WMAP temperature polarization data). B) We are extending Gibbs sampling to directly propagate uncertainties in both foreground and instrument models to total uncertainty in cosmological parameters for the entire range of angular scales relevant for Planck. C) Made possible by inclusion of foreground model parameters in Gibbs sampling and hybrid MCMC and Gibbs sampling for the low signal to noise (high-L) regime. D) Future items to be included in the Bayesian framework include: 1) Integration with Hybrid Likelihood (or posterior) code for cosmological parameters; 2) Include other uncertainties in instrumental systematics? (I.e. beam uncertainties, noise estimation, calibration errors, other).
A formula for the entropy of the convolution of Gibbs probabilities on the circle
NASA Astrophysics Data System (ADS)
Lopes, Artur O.
2018-07-01
Consider the transformation , such that (mod 1), and where S 1 is the unitary circle. Suppose is Hölder continuous and positive, and moreover that, for any , we have that We say that ρ is a Gibbs probability for the Hölder continuous potential , if where is the Ruelle operator for . We call J the Jacobian of ρ. Suppose is the convolution of two Gibbs probabilities and associated, respectively, to and . We show that ν is also Gibbs and its Jacobian is given by . In this case, the entropy is given by the expression For a fixed we consider differentiable variations , , of on the Banach manifold of Gibbs probabilities, where , and we estimate the derivative of the entropy at t = 0. We also present an expression for the Jacobian of the convolution of a Gibbs probability ρ with the invariant probability with support on a periodic orbit of period two. This expression is based on the Jacobian of ρ and two Radon–Nidodym derivatives.
Fast self contained exponential random deviate algorithm
NASA Astrophysics Data System (ADS)
Fernández, Julio F.
1997-03-01
An algorithm that generates random numbers with an exponential distribution and is about ten times faster than other well known algorithms has been reported before (J. F. Fernández and J. Rivero, Comput. Phys. 10), 83 (1996). That algorithm requires input of uniform random deviates. We now report a new version of it that needs no input and is nearly as fast. The only limitation we predict thus far for the quality of the output is the amount of computer memory available. Performance results under various tests will be reported. The algorithm works in close analogy to the set up that is often used in statistical physics in order to obtain the Gibb's distribution. N numbers, that are are stored in N registers, change with time according to the rules of the algorithm, keeping their sum constant. Further details will be given.
Directed Random Markets: Connectivity Determines Money
NASA Astrophysics Data System (ADS)
Martínez-Martínez, Ismael; López-Ruiz, Ricardo
2013-12-01
Boltzmann-Gibbs (BG) distribution arises as the statistical equilibrium probability distribution of money among the agents of a closed economic system where random and undirected exchanges are allowed. When considering a model with uniform savings in the exchanges, the final distribution is close to the gamma family. In this paper, we implement these exchange rules on networks and we find that these stationary probability distributions are robust and they are not affected by the topology of the underlying network. We introduce a new family of interactions: random but directed ones. In this case, it is found the topology to be determinant and the mean money per economic agent is related to the degree of the node representing the agent in the network. The relation between the mean money per economic agent and its degree is shown to be linear.
The Gibbs Phenomenon for Series of Orthogonal Polynomials
ERIC Educational Resources Information Center
Fay, T. H.; Kloppers, P. Hendrik
2006-01-01
This note considers the four classes of orthogonal polynomials--Chebyshev, Hermite, Laguerre, Legendre--and investigates the Gibbs phenomenon at a jump discontinuity for the corresponding orthogonal polynomial series expansions. The perhaps unexpected thing is that the Gibbs constant that arises for each class of polynomials appears to be the same…
Enzyme Catalysis and the Gibbs Energy
ERIC Educational Resources Information Center
Ault, Addison
2009-01-01
Gibbs-energy profiles are often introduced during the first semester of organic chemistry, but are less often presented in connection with enzyme-catalyzed reactions. In this article I show how the Gibbs-energy profile corresponds to the characteristic kinetics of a simple enzyme-catalyzed reaction. (Contains 1 figure and 1 note.)
Rapidly Mixing Gibbs Sampling for a Class of Factor Graphs Using Hierarchy Width.
De Sa, Christopher; Zhang, Ce; Olukotun, Kunle; Ré, Christopher
2015-12-01
Gibbs sampling on factor graphs is a widely used inference technique, which often produces good empirical results. Theoretical guarantees for its performance are weak: even for tree structured graphs, the mixing time of Gibbs may be exponential in the number of variables. To help understand the behavior of Gibbs sampling, we introduce a new (hyper)graph property, called hierarchy width . We show that under suitable conditions on the weights, bounded hierarchy width ensures polynomial mixing time. Our study of hierarchy width is in part motivated by a class of factor graph templates, hierarchical templates , which have bounded hierarchy width-regardless of the data used to instantiate them. We demonstrate a rich application from natural language processing in which Gibbs sampling provably mixes rapidly and achieves accuracy that exceeds human volunteers.
NASA Astrophysics Data System (ADS)
Cao, Xiangyu; Le Doussal, Pierre; Rosso, Alberto; Santachiara, Raoul
2018-04-01
We study transitions in log-correlated random energy models (logREMs) that are related to the violation of a Seiberg bound in Liouville field theory (LFT): the binding transition and the termination point transition (a.k.a., pre-freezing). By means of LFT-logREM mapping, replica symmetry breaking and traveling-wave equation techniques, we unify both transitions in a two-parameter diagram, which describes the free-energy large deviations of logREMs with a deterministic background log potential, or equivalently, the joint moments of the free energy and Gibbs measure in logREMs without background potential. Under the LFT-logREM mapping, the transitions correspond to the competition of discrete and continuous terms in a four-point correlation function. Our results provide a statistical interpretation of a peculiar nonlocality of the operator product expansion in LFT. The results are rederived by a traveling-wave equation calculation, which shows that the features of LFT responsible for the transitions are reproduced in a simple model of diffusion with absorption. We examine also the problem by a replica symmetry breaking analysis. It complements the previous methods and reveals a rich large deviation structure of the free energy of logREMs with a deterministic background log potential. Many results are verified in the integrable circular logREM, by a replica-Coulomb gas integral approach. The related problem of common length (overlap) distribution is also considered. We provide a traveling-wave equation derivation of the LFT predictions announced in a precedent work.
Forty more years of ramifications: Spectral asymptotics and its applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fulling, S.A.; Narcowhich, F.J.
1992-01-01
In writing this book, the editors commissioned eight experts in the field of Spectral Asymptotics to each contribute an article in their particular field of expertise. The written version of Hermann Weyl's famous Gibbs Lecture of 1948 is reprinted, as is the lecture given by Bryce DeWitt upon his acceptance of the Dirac Medal in 1987 for his view on Curved-Spacetime Propagators. The compilation is an interesting historical document as well as an invaluable resource for individuals seeking information on a specific subject.
Hierarchical Bayesian modeling of ionospheric TEC disturbances as non-stationary processes
NASA Astrophysics Data System (ADS)
Seid, Abdu Mohammed; Berhane, Tesfahun; Roininen, Lassi; Nigussie, Melessew
2018-03-01
We model regular and irregular variation of ionospheric total electron content as stationary and non-stationary processes, respectively. We apply the method developed to SCINDA GPS data set observed at Bahir Dar, Ethiopia (11.6 °N, 37.4 °E) . We use hierarchical Bayesian inversion with Gaussian Markov random process priors, and we model the prior parameters in the hyperprior. We use Matérn priors via stochastic partial differential equations, and use scaled Inv -χ2 hyperpriors for the hyperparameters. For drawing posterior estimates, we use Markov Chain Monte Carlo methods: Gibbs sampling and Metropolis-within-Gibbs for parameter and hyperparameter estimations, respectively. This allows us to quantify model parameter estimation uncertainties as well. We demonstrate the applicability of the method proposed using a synthetic test case. Finally, we apply the method to real GPS data set, which we decompose to regular and irregular variation components. The result shows that the approach can be used as an accurate ionospheric disturbance characterization technique that quantifies the total electron content variability with corresponding error uncertainties.
A CONTINUATION OF REMEDIATION OF BRINE SPILLS WITH HAY
First order rate constants for salt removal are shown in Table 1. For Gibbs 7, tilling with hay and fertilizers proved to be the best treatment for salt removal (80% confidence level, CL). For Gibbs 9, which is rockier than Gibbs 7, tilling was the best treatment for salt remo...
Masuda, Yosuke; Yamaotsu, Noriyuki; Hirono, Shuichi
2017-01-01
In order to predict the potencies of mechanism-based reversible covalent inhibitors, the relationships between calculated Gibbs free energy of hydrolytic water molecule in acyl-trypsin intermediates and experimentally measured catalytic rate constants (k cat ) were investigated. After obtaining representative solution structures by molecular dynamics (MD) simulations, hydration thermodynamics analyses using WaterMap™ were conducted. Consequently, we found for the first time that when Gibbs free energy of the hydrolytic water molecule was lower, logarithms of k cat were also lower. The hydrolytic water molecule with favorable Gibbs free energy may hydrolyze acylated serine slowly. Gibbs free energy of hydrolytic water molecule might be a useful descriptor for computer-aided discovery of mechanism-based reversible covalent inhibitors of hydrolytic enzymes.
Rapidly Mixing Gibbs Sampling for a Class of Factor Graphs Using Hierarchy Width
De Sa, Christopher; Zhang, Ce; Olukotun, Kunle; Ré, Christopher
2016-01-01
Gibbs sampling on factor graphs is a widely used inference technique, which often produces good empirical results. Theoretical guarantees for its performance are weak: even for tree structured graphs, the mixing time of Gibbs may be exponential in the number of variables. To help understand the behavior of Gibbs sampling, we introduce a new (hyper)graph property, called hierarchy width. We show that under suitable conditions on the weights, bounded hierarchy width ensures polynomial mixing time. Our study of hierarchy width is in part motivated by a class of factor graph templates, hierarchical templates, which have bounded hierarchy width—regardless of the data used to instantiate them. We demonstrate a rich application from natural language processing in which Gibbs sampling provably mixes rapidly and achieves accuracy that exceeds human volunteers. PMID:27279724
Removal of the Gibbs phenomenon and its application to fast-Fourier-transform-based mode solvers.
Wangüemert-Pérez, J G; Godoy-Rubio, R; Ortega-Moñux, A; Molina-Fernández, I
2007-12-01
A simple strategy for accurately recovering discontinuous functions from their Fourier series coefficients is presented. The aim of the proposed approach, named spectrum splitting (SS), is to remove the Gibbs phenomenon by making use of signal-filtering-based concepts and some properties of the Fourier series. While the technique can be used in a vast range of situations, it is particularly suitable for being incorporated into fast-Fourier-transform-based electromagnetic mode solvers (FFT-MSs), which are known to suffer from very poor convergence rates when applied to situations where the field distributions are highly discontinuous (e.g., silicon-on-insulator photonic wires). The resultant method, SS-FFT-MS, is exhaustively tested under the assumption of a simplified one-dimensional model, clearly showing a dramatic improvement of the convergence rates with respect to the original FFT-based methods.
ERIC Educational Resources Information Center
Vargas, Francisco M.
2014-01-01
The temperature dependence of the Gibbs energy and important quantities such as Henry's law constants, activity coefficients, and chemical equilibrium constants is usually calculated by using the Gibbs-Helmholtz equation. Although, this is a well-known approach and traditionally covered as part of any physical chemistry course, the required…
Reflections on Gibbs: From Critical Phenomena to the Amistad
NASA Astrophysics Data System (ADS)
Kadanoff, Leo P.
2003-03-01
J. Willard Gibbs, the younger was the first American theorist. He was one of the inventors of statistical physics. His introduction and development of the concepts of phase space, phase transitions, and thermodynamic surfaces was remarkably correct and elegant. These three concepts form the basis of different but related areas of physics. The connection among these areas has been a subject of deep reflection from Gibbs' time to our own. I shall talk about these connections by using concepts suggested by the work of Michael Berry and explicitly put forward by the philosopher Robert Batterman. This viewpoint relates theory-connection to the applied mathematics concepts of asymptotic analysis and singular perturbations. J. Willard Gibbs, the younger, had all his achievements concentrated in science. His father, also J. Willard Gibbs, also a Professor at Yale, had one great achievement that remains unmatched in our day. I shall describe it.
info-gibbs: a motif discovery algorithm that directly optimizes information content during sampling.
Defrance, Matthieu; van Helden, Jacques
2009-10-15
Discovering cis-regulatory elements in genome sequence remains a challenging issue. Several methods rely on the optimization of some target scoring function. The information content (IC) or relative entropy of the motif has proven to be a good estimator of transcription factor DNA binding affinity. However, these information-based metrics are usually used as a posteriori statistics rather than during the motif search process itself. We introduce here info-gibbs, a Gibbs sampling algorithm that efficiently optimizes the IC or the log-likelihood ratio (LLR) of the motif while keeping computation time low. The method compares well with existing methods like MEME, BioProspector, Gibbs or GAME on both synthetic and biological datasets. Our study shows that motif discovery techniques can be enhanced by directly focusing the search on the motif IC or the motif LLR. http://rsat.ulb.ac.be/rsat/info-gibbs
ERIC Educational Resources Information Center
Bozlee, Brian J.
2007-01-01
The impact of raising Gibbs energy of the enzyme-substrate complex (G[subscript 3]) and the reformulation of the Michaelis-Menten equation are discussed. The maximum velocity of the reaction (v[subscript m]) and characteristic constant for the enzyme (K[subscript M]) will increase with increase in Gibbs energy, indicating that the rate of reaction…
Illustrating the Effect of pH on Enzyme Activity Using Gibbs Energy Profiles
ERIC Educational Resources Information Center
Bearne, Stephen L.
2014-01-01
Gibbs energy profiles provide students with a visual representation of the energy changes that occur during enzyme catalysis, making such profiles useful as teaching and learning tools. Traditional kinetic topics, such as the effect of pH on enzyme activity, are often not discussed in terms of Gibbs energy profiles. Herein, the symbolism of Gibbs…
Marangoni and Gibbs elasticity of flowing soap films
NASA Astrophysics Data System (ADS)
Kim, Ildoo; Sane, Aakash; Mandre, Shreyas
2017-11-01
A flowing soap film has two elasticities. Marangoni elasticity dynamically stabilizes the film from sudden disturbance, and Gibbs elasticity is an equilibrium property that influences the film's persistence over time. In our experimental investigation, we find that Marangoni elasticity is 22 mN/m independent of the film thickness. On the other hand, Gibbs elasticity depends both on the film thickness and the soap concentration. Interestingly, the soap film made of dilute soap solution has the greater Gibbs elasticity, which is not consistent to the existing theory. Such discrepancy is originated from the flowing nature of our soap films, in which surfactants are continuously replenished.
Seal, R.R.; Inan, E.E.; Hemingway, B.S.
2001-01-01
The Gibbs free energy of formation of nukundamite (Cu3.38Fe0.62S4) was calculated from published experimental studies of the reaction 3.25 Cu3.38Fe0.62S4 + S2 = 11 CuS + 2 FeS2 in order to correct an erroneous expression in the published record. The correct expression describing the Gibbs free energy of formation (kJ???mol-1) of nukundamite relative to the elements and ideal S2 gas is ??fG?? nukundamite T(K) = -549.75 + 0.23242 T + 3.1284 T0.5, with an uncertainty of 0.6%. An evaluation of the phase equilibria of nukundamite with associated phases in the system Cu-Fe-S as a function of temperature and sulfur fugacity indicates that nukundamite is stable from 224 to 501??C at high sulfidation states. At its greatest extent, at 434??C, the stability field of nukundamite is only 0.4 log f(S2) units wide, which explains its rarity. Equilibria between nukundamite and bornite, which limit the stability of both phases, involve bornite compositions that deviate significantly from stoichiometric Cu5FeS4. Under equilibrium conditions in the system Cu-Fe-S, nukundamite + chalcopyrite is not a stable assemblage at any temperature.
K, Jalal Deen; R, Ganesan; A, Merline
2017-07-27
Objective: Accurate segmentation of abnormal and healthy lungs is very crucial for a steadfast computer-aided disease diagnostics. Methods: For this purpose a stack of chest CT scans are processed. In this paper, novel methods are proposed for segmentation of the multimodal grayscale lung CT scan. In the conventional methods using Markov–Gibbs Random Field (MGRF) model the required regions of interest (ROI) are identified. Result: The results of proposed FCM and CNN based process are compared with the results obtained from the conventional method using MGRF model. The results illustrate that the proposed method can able to segment the various kinds of complex multimodal medical images precisely. Conclusion: However, in this paper, to obtain an exact boundary of the regions, every empirical dispersion of the image is computed by Fuzzy C-Means Clustering segmentation. A classification process based on the Convolutional Neural Network (CNN) classifier is accomplished to distinguish the normal tissue and the abnormal tissue. The experimental evaluation is done using the Interstitial Lung Disease (ILD) database. Creative Commons Attribution License
K, Jalal Deen; R, Ganesan; A, Merline
2017-01-01
Objective: Accurate segmentation of abnormal and healthy lungs is very crucial for a steadfast computer-aided disease diagnostics. Methods: For this purpose a stack of chest CT scans are processed. In this paper, novel methods are proposed for segmentation of the multimodal grayscale lung CT scan. In the conventional methods using Markov–Gibbs Random Field (MGRF) model the required regions of interest (ROI) are identified. Result: The results of proposed FCM and CNN based process are compared with the results obtained from the conventional method using MGRF model. The results illustrate that the proposed method can able to segment the various kinds of complex multimodal medical images precisely. Conclusion: However, in this paper, to obtain an exact boundary of the regions, every empirical dispersion of the image is computed by Fuzzy C-Means Clustering segmentation. A classification process based on the Convolutional Neural Network (CNN) classifier is accomplished to distinguish the normal tissue and the abnormal tissue. The experimental evaluation is done using the Interstitial Lung Disease (ILD) database. PMID:28749127
NASA Technical Reports Server (NTRS)
Sohrab, Siavash H.; Pitch, Nancy (Technical Monitor)
1999-01-01
A scale-invariant statistical theory of fields is presented that leads to invariant definition of density, velocity, temperature, and pressure, The definition of Boltzmann constant is introduced as k(sub k) = m(sub k)v(sub k)c = 1.381 x 10(exp -23) J x K(exp -1), suggesting that the Kelvin absolute temperature scale is equivalent to a length scale. Two new state variables called the reversible heat Q(sub rev) = TS and the reversible work W(sub rev) = PV are introduced. The modified forms of the first and second law of thermodynamics are presented. The microscopic definition of heat (work) is presented as the kinetic energy due to the random (peculiar) translational, rotational, and pulsational motions. The Gibbs free energy of an element at scale Beta is identified as the total system energy at scale (Beta-1), thus leading to an invariant form of the first law of thermodynamics U(sub Beta) = Q(sub Beta) - W(sub Beta) +N(e3)U(sub Beta-1).
Force field development with GOMC, a fast new Monte Carlo molecular simulation code
NASA Astrophysics Data System (ADS)
Mick, Jason Richard
In this work GOMC (GPU Optimized Monte Carlo) a new fast, flexible, and free molecular Monte Carlo code for the simulation atomistic chemical systems is presented. The results of a large Lennard-Jonesium simulation in the Gibbs ensemble is presented. Force fields developed using the code are also presented. To fit the models a quantitative fitting process is outlined using a scoring function and heat maps. The presented n-6 force fields include force fields for noble gases and branched alkanes. These force fields are shown to be the most accurate LJ or n-6 force fields to date for these compounds, capable of reproducing pure fluid behavior and binary mixture behavior to a high degree of accuracy.
ERIC Educational Resources Information Center
Gary, Ronald K.
2004-01-01
The concentration dependence of (delta)S term in the Gibbs free energy function is described in relation to its application to reversible reactions in biochemistry. An intuitive and non-mathematical argument for the concentration dependence of the (delta)S term in the Gibbs free energy equation is derived and the applicability of the equation to…
Building test data from real outbreaks for evaluating detection algorithms.
Texier, Gaetan; Jackson, Michael L; Siwe, Leonel; Meynard, Jean-Baptiste; Deparis, Xavier; Chaudet, Herve
2017-01-01
Benchmarking surveillance systems requires realistic simulations of disease outbreaks. However, obtaining these data in sufficient quantity, with a realistic shape and covering a sufficient range of agents, size and duration, is known to be very difficult. The dataset of outbreak signals generated should reflect the likely distribution of authentic situations faced by the surveillance system, including very unlikely outbreak signals. We propose and evaluate a new approach based on the use of historical outbreak data to simulate tailored outbreak signals. The method relies on a homothetic transformation of the historical distribution followed by resampling processes (Binomial, Inverse Transform Sampling Method-ITSM, Metropolis-Hasting Random Walk, Metropolis-Hasting Independent, Gibbs Sampler, Hybrid Gibbs Sampler). We carried out an analysis to identify the most important input parameters for simulation quality and to evaluate performance for each of the resampling algorithms. Our analysis confirms the influence of the type of algorithm used and simulation parameters (i.e. days, number of cases, outbreak shape, overall scale factor) on the results. We show that, regardless of the outbreaks, algorithms and metrics chosen for the evaluation, simulation quality decreased with the increase in the number of days simulated and increased with the number of cases simulated. Simulating outbreaks with fewer cases than days of duration (i.e. overall scale factor less than 1) resulted in an important loss of information during the simulation. We found that Gibbs sampling with a shrinkage procedure provides a good balance between accuracy and data dependency. If dependency is of little importance, binomial and ITSM methods are accurate. Given the constraint of keeping the simulation within a range of plausible epidemiological curves faced by the surveillance system, our study confirms that our approach can be used to generate a large spectrum of outbreak signals.
Building test data from real outbreaks for evaluating detection algorithms
Texier, Gaetan; Jackson, Michael L.; Siwe, Leonel; Meynard, Jean-Baptiste; Deparis, Xavier; Chaudet, Herve
2017-01-01
Benchmarking surveillance systems requires realistic simulations of disease outbreaks. However, obtaining these data in sufficient quantity, with a realistic shape and covering a sufficient range of agents, size and duration, is known to be very difficult. The dataset of outbreak signals generated should reflect the likely distribution of authentic situations faced by the surveillance system, including very unlikely outbreak signals. We propose and evaluate a new approach based on the use of historical outbreak data to simulate tailored outbreak signals. The method relies on a homothetic transformation of the historical distribution followed by resampling processes (Binomial, Inverse Transform Sampling Method—ITSM, Metropolis-Hasting Random Walk, Metropolis-Hasting Independent, Gibbs Sampler, Hybrid Gibbs Sampler). We carried out an analysis to identify the most important input parameters for simulation quality and to evaluate performance for each of the resampling algorithms. Our analysis confirms the influence of the type of algorithm used and simulation parameters (i.e. days, number of cases, outbreak shape, overall scale factor) on the results. We show that, regardless of the outbreaks, algorithms and metrics chosen for the evaluation, simulation quality decreased with the increase in the number of days simulated and increased with the number of cases simulated. Simulating outbreaks with fewer cases than days of duration (i.e. overall scale factor less than 1) resulted in an important loss of information during the simulation. We found that Gibbs sampling with a shrinkage procedure provides a good balance between accuracy and data dependency. If dependency is of little importance, binomial and ITSM methods are accurate. Given the constraint of keeping the simulation within a range of plausible epidemiological curves faced by the surveillance system, our study confirms that our approach can be used to generate a large spectrum of outbreak signals. PMID:28863159
Chemical potential, Gibbs-Duhem equation and quantum gases
NASA Astrophysics Data System (ADS)
Lee, M. Howard
2017-05-01
Thermodynamic relations like the Gibbs-Duhem are valid from the lowest to the highest temperatures. But they cannot by themselves provide any specific temperature behavior of thermodynamic functions like the chemical potential. In this work, we show that if some general conditions are attached to the Gibbs-Duhem equation, it is possible to obtain the low temperature form of the chemical potential for the ideal Fermi and Bose gases very directly.
Pan-STARRS 1 observations of the unusual active Centaur P/2011 S1(Gibbs)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, H. W.; Ip, W. H.; Chen, W. P.
2014-05-01
P/2011 S1 (Gibbs) is an outer solar system comet or active Centaur with a similar orbit to that of the famous 29P/Schwassmann-Wachmann 1. P/2011 S1 (Gibbs) has been observed by the Pan-STARRS 1 (PS1) sky survey from 2010 to 2012. The resulting data allow us to perform multi-color studies of the nucleus and coma of the comet. Analysis of PS1 images reveals that P/2011 S1 (Gibbs) has a small nucleus <4 km radius, with colors g {sub P1} – r {sub P1} = 0.5 ± 0.02, r {sub P1} – i {sub P1} = 0.12 ± 0.02, and i {submore » P1} – z {sub P1} = 0.46 ± 0.03. The comet remained active from 2010 to 2012, with a model-dependent mass-loss rate of ∼100 kg s{sup –1}. The mass-loss rate per unit surface area of P/2011 S1 (Gibbs) is as high as that of 29P/Schwassmann-Wachmann 1, making it one of the most active Centaurs. The mass-loss rate also varies with time from ∼40 kg s{sup –1} to 150 kg s{sup –1}. Due to its rather circular orbit, we propose that P/2011 S1 (Gibbs) has 29P/Schwassmann-Wachmann 1-like outbursts that control the outgassing rate. The results indicate that it may have a similar surface composition to that of 29P/Schwassmann-Wachmann 1. Our numerical simulations show that the future orbital evolution of P/2011 S1 (Gibbs) is more similar to that of the main population of Centaurs than to that of 29P/Schwassmann-Wachmann 1. The results also demonstrate that P/2011 S1 (Gibbs) is dynamically unstable and can only remain near its current orbit for roughly a thousand years.« less
Gibbs Ensembles for Nearly Compatible and Incompatible Conditional Models
Chen, Shyh-Huei; Wang, Yuchung J.
2010-01-01
Gibbs sampler has been used exclusively for compatible conditionals that converge to a unique invariant joint distribution. However, conditional models are not always compatible. In this paper, a Gibbs sampling-based approach — Gibbs ensemble —is proposed to search for a joint distribution that deviates least from a prescribed set of conditional distributions. The algorithm can be easily scalable such that it can handle large data sets of high dimensionality. Using simulated data, we show that the proposed approach provides joint distributions that are less discrepant from the incompatible conditionals than those obtained by other methods discussed in the literature. The ensemble approach is also applied to a data set regarding geno-polymorphism and response to chemotherapy in patients with metastatic colorectal PMID:21286232
Poisson-Nernst-Planck-Fermi theory for modeling biological ion channels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Jinn-Liang, E-mail: jinnliu@mail.nhcue.edu.tw; Eisenberg, Bob, E-mail: beisenbe@rush.edu
2014-12-14
A Poisson-Nernst-Planck-Fermi (PNPF) theory is developed for studying ionic transport through biological ion channels. Our goal is to deal with the finite size of particle using a Fermi like distribution without calculating the forces between the particles, because they are both expensive and tricky to compute. We include the steric effect of ions and water molecules with nonuniform sizes and interstitial voids, the correlation effect of crowded ions with different valences, and the screening effect of water molecules in an inhomogeneous aqueous electrolyte. Including the finite volume of water and the voids between particles is an important new part ofmore » the theory presented here. Fermi like distributions of all particle species are derived from the volume exclusion of classical particles. Volume exclusion and the resulting saturation phenomena are especially important to describe the binding and permeation mechanisms of ions in a narrow channel pore. The Gibbs free energy of the Fermi distribution reduces to that of a Boltzmann distribution when these effects are not considered. The classical Gibbs entropy is extended to a new entropy form — called Gibbs-Fermi entropy — that describes mixing configurations of all finite size particles and voids in a thermodynamic system where microstates do not have equal probabilities. The PNPF model describes the dynamic flow of ions, water molecules, as well as voids with electric fields and protein charges. The model also provides a quantitative mean-field description of the charge/space competition mechanism of particles within the highly charged and crowded channel pore. The PNPF results are in good accord with experimental currents recorded in a 10{sup 8}-fold range of Ca{sup 2+} concentrations. The results illustrate the anomalous mole fraction effect, a signature of L-type calcium channels. Moreover, numerical results concerning water density, dielectric permittivity, void volume, and steric energy provide useful details to study a variety of physical mechanisms ranging from binding, to permeation, blocking, flexibility, and charge/space competition of the channel.« less
Mesohysteresis model for ferromagnetic materials by minimization of the micromagnetic free energy
NASA Astrophysics Data System (ADS)
van den Berg, A.; Dupré, L.; Van de Wiele, B.; Crevecoeur, G.
2009-04-01
To study the connection between macroscopic hysteretic behavior and the microstructural properties, this paper presents and validates a new material dependent three-dimensional mesoscopic magnetic hysteresis model. In the presented mesoscopic description, the different micromagnetic energy terms are reformulated on the space scale of the magnetic domains. The sample is discretized in cubic cells, each with a local stress state, local bcc crystallographic axes, etc. The magnetization is assumed to align with one of the three crystallographic axes, in positive or negative sense, defining six volume fractions within each cell. The micromagnetic Gibbs free energy is described in terms of these volume fractions. Hysteresis loops are computed by minimizing the mesoscopic Gibbs free energy using a modified gradient search for a sequence of external applied fields. To validate the mesohysteresis model, we studied the magnetic memory properties. Numerical experiments reveal that (1) minor hysteresis loops are indeed closed and (2) the closed minor loops are erased from the memory.
NASA Astrophysics Data System (ADS)
Sahu, Sulata Kumari; Ganesan, Rajesh; Gnanasekaran, T.
2012-07-01
Partial phase diagram of Pb-Fe-O system has been established by phase equilibration studies over a wide temperature range coupled with high temperature solid electrolyte based emf cells. Ternary oxides are found to coexist with liquid lead only at temperatures above 900 K. At temperatures below 900 K, iron oxides coexist with liquid lead. Standard molar Gibbs energy of formation of ternary oxides 'PbFe5O8.5' and Pb2Fe2O5 were determined by measuring equilibrium oxygen partial pressures over relevant phase fields using emf cells and are given by the following expressions: ΔfGmo 'PbFeO'±1.0(kJ mol)=-2208.1+0.6677(T/K) (917⩽T/K⩽1117) ΔfGmo PbFeO±0.8(kJ mol)=-1178.4+0.3724(T/K) (1050⩽T/K⩽1131) .
Latella, Ivan; Pérez-Madrid, Agustín
2013-10-01
The local thermodynamics of a system with long-range interactions in d dimensions is studied using the mean-field approximation. Long-range interactions are introduced through pair interaction potentials that decay as a power law in the interparticle distance. We compute the local entropy, Helmholtz free energy, and grand potential per particle in the microcanonical, canonical, and grand canonical ensembles, respectively. From the local entropy per particle we obtain the local equation of state of the system by using the condition of local thermodynamic equilibrium. This local equation of state has the form of the ideal gas equation of state, but with the density depending on the potential characterizing long-range interactions. By volume integration of the relation between the different thermodynamic potentials at the local level, we find the corresponding equation satisfied by the potentials at the global level. It is shown that the potential energy enters as a thermodynamic variable that modifies the global thermodynamic potentials. As a result, we find a generalized Gibbs-Duhem equation that relates the potential energy to the temperature, pressure, and chemical potential. For the marginal case where the power of the decaying interaction potential is equal to the dimension of the space, the usual Gibbs-Duhem equation is recovered. As examples of the application of this equation, we consider spatially uniform interaction potentials and the self-gravitating gas. We also point out a close relationship with the thermodynamics of small systems.
Quantum Gibbs ensemble Monte Carlo
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fantoni, Riccardo, E-mail: rfantoni@ts.infn.it; Moroni, Saverio, E-mail: moroni@democritos.it
We present a path integral Monte Carlo method which is the full quantum analogue of the Gibbs ensemble Monte Carlo method of Panagiotopoulos to study the gas-liquid coexistence line of a classical fluid. Unlike previous extensions of Gibbs ensemble Monte Carlo to include quantum effects, our scheme is viable even for systems with strong quantum delocalization in the degenerate regime of temperature. This is demonstrated by an illustrative application to the gas-superfluid transition of {sup 4}He in two dimensions.
Li, Rongjin; Zhang, Xiaotao; Dong, Huanli; Li, Qikai; Shuai, Zhigang; Hu, Wenping
2016-02-24
The equilibrium crystal shape and shape evolution of organic crystals are found to follow the Gibbs-Curie-Wulff theorem. Organic crystals are grown by the physical vapor transport technique and exhibit exactly the same shape as predicted by the Gibbs-Curie-Wulff theorem under optimal conditions. This accordance provides concrete proof for the theorem. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
GLASS VISCOSITY AS A FUNCTION OF TEMPERATURE AND COMPOSITION: A MODEL BASED ON ADAM-GIBBS EQUATION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hrma, Pavel R.
2008-07-01
Within the temperature range and composition region of processing and product forming, the viscosity of commercial and waste glasses spans over 12 orders of magnitude. This paper shows that a generalized Adam-Gibbs relationship reasonably approximates the real behavior of glasses with four temperature-independent parameters of which two are linear functions of the composition vector. The equation is subjected to two constraints, one requiring that the viscosity-temperature relationship approaches the Arrhenius function at high temperatures with a composition-independent pre-exponential factor and the other that the viscosity value is independent of composition at the glass-transition temperature. Several sets of constant coefficients weremore » obtained by fitting the generalized Adam-Gibbs equation to data of two glass families: float glass and Hanford waste glass. Other equations (the Vogel-Fulcher-Tammann equation, original and modified, the Avramov equation, and the Douglass-Doremus equation) were fitted to float glass data series and compared with the Adam-Gibbs equation, showing that Adam-Gibbs glass appears an excellent approximation of real glasses even as compared with other candidate constitutive relations.« less
NASA Astrophysics Data System (ADS)
Suntsov, Yu. K.; Goryunov, V. A.; Chuikov, A. M.; Meshcheryakov, A. V.
2016-08-01
The boiling points of solutions of five binary systems are measured via ebulliometry in the pressure range of 2.05-103.3 kPa. Equilibrium vapor phase compositions, the values of the excess Gibbs energies, enthalpies, and entropies of solution of these systems are calculated. Patterns in the changes of phase equilibria and thermodynamic properties of solutions are established, depending on the compositions and temperatures of the systems. Liquid-vapor equilibria in the systems are described using the equations of Wilson and the NRTL (Non-Random Two-Liquid Model).
Multilevel covariance regression with correlated random effects in the mean and variance structure.
Quintero, Adrian; Lesaffre, Emmanuel
2017-09-01
Multivariate regression methods generally assume a constant covariance matrix for the observations. In case a heteroscedastic model is needed, the parametric and nonparametric covariance regression approaches can be restrictive in the literature. We propose a multilevel regression model for the mean and covariance structure, including random intercepts in both components and allowing for correlation between them. The implied conditional covariance function can be different across clusters as a result of the random effect in the variance structure. In addition, allowing for correlation between the random intercepts in the mean and covariance makes the model convenient for skewedly distributed responses. Furthermore, it permits us to analyse directly the relation between the mean response level and the variability in each cluster. Parameter estimation is carried out via Gibbs sampling. We compare the performance of our model to other covariance modelling approaches in a simulation study. Finally, the proposed model is applied to the RN4CAST dataset to identify the variables that impact burnout of nurses in Belgium. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Cure fraction model with random effects for regional variation in cancer survival.
Seppä, Karri; Hakulinen, Timo; Kim, Hyon-Jung; Läärä, Esa
2010-11-30
Assessing regional differences in the survival of cancer patients is important but difficult when separate regions are small or sparsely populated. In this paper, we apply a mixture cure fraction model with random effects to cause-specific survival data of female breast cancer patients collected by the population-based Finnish Cancer Registry. Two sets of random effects were used to capture the regional variation in the cure fraction and in the survival of the non-cured patients, respectively. This hierarchical model was implemented in a Bayesian framework using a Metropolis-within-Gibbs algorithm. To avoid poor mixing of the Markov chain, when the variance of either set of random effects was close to zero, posterior simulations were based on a parameter-expanded model with tailor-made proposal distributions in Metropolis steps. The random effects allowed the fitting of the cure fraction model to the sparse regional data and the estimation of the regional variation in 10-year cause-specific breast cancer survival with a parsimonious number of parameters. Before 1986, the capital of Finland clearly stood out from the rest, but since then all the 21 hospital districts have achieved approximately the same level of survival. Copyright © 2010 John Wiley & Sons, Ltd.
Thermodynamic properties of adsorption and micellization of n-oktyl-β-D-glucopiranoside.
Mańko, Diana; Zdziennicka, Anna; Jańczuk, Bronisław
2014-02-01
Measurements of the surface tension, density and viscosity of aqueous solutions of n-oktyl-β-D-glucopiranoside (OGP) were made at 293 K. From the obtained results the Gibbs surface excess concentration of OGP at the water-air interface and its critical micelle concentration were determined. The Gibbs surface excess concentration of OGP used in the Gu and Zhu isotherm equation allowed us to determine the Gibbs standard free energy of OGP adsorption at the water-air interface. The Gibbs standard free energy of OGP adsorption was also determined on the basis of the Langmuir, Szyszkowski, Gamboa and Olea equations as well the surface tension of "hydrophobic" part of OGP and "hydrophobic" part-water interface tension. It appeared that there is an agreement between the values of Gibbs standard free energy of OGP adsorption at the water-air interface determined by using all the above mentioned methods. It also proved that standard free energy of OGP micellization determined from CMC is consistent with that obtained on the basis of the free energy of the interactions between the "hydrophobic" part of the OPG through the water phase. Copyright © 2013 Elsevier B.V. All rights reserved.
Performance evaluation of an automatic MGRF-based lung segmentation approach
NASA Astrophysics Data System (ADS)
Soliman, Ahmed; Khalifa, Fahmi; Alansary, Amir; Gimel'farb, Georgy; El-Baz, Ayman
2013-10-01
The segmentation of the lung tissues in chest Computed Tomography (CT) images is an important step for developing any Computer-Aided Diagnostic (CAD) system for lung cancer and other pulmonary diseases. In this paper, we introduce a new framework for validating the accuracy of our developed Joint Markov-Gibbs based lung segmentation approach using 3D realistic synthetic phantoms. These phantoms are created using a 3D Generalized Gauss-Markov Random Field (GGMRF) model of voxel intensities with pairwise interaction to model the 3D appearance of the lung tissues. Then, the appearance of the generated 3D phantoms is simulated based on iterative minimization of an energy function that is based on the learned 3D-GGMRF image model. These 3D realistic phantoms can be used to evaluate the performance of any lung segmentation approach. The performance of our segmentation approach is evaluated using three metrics, namely, the Dice Similarity Coefficient (DSC), the modified Hausdorff distance, and the Average Volume Difference (AVD) between our segmentation and the ground truth. Our approach achieves mean values of 0.994±0.003, 8.844±2.495 mm, and 0.784±0.912 mm3, for the DSC, Hausdorff distance, and the AVD, respectively.
Mattfeldt, Torsten
2011-04-01
Computer-intensive methods may be defined as data analytical procedures involving a huge number of highly repetitive computations. We mention resampling methods with replacement (bootstrap methods), resampling methods without replacement (randomization tests) and simulation methods. The resampling methods are based on simple and robust principles and are largely free from distributional assumptions. Bootstrap methods may be used to compute confidence intervals for a scalar model parameter and for summary statistics from replicated planar point patterns, and for significance tests. For some simple models of planar point processes, point patterns can be simulated by elementary Monte Carlo methods. The simulation of models with more complex interaction properties usually requires more advanced computing methods. In this context, we mention simulation of Gibbs processes with Markov chain Monte Carlo methods using the Metropolis-Hastings algorithm. An alternative to simulations on the basis of a parametric model consists of stochastic reconstruction methods. The basic ideas behind the methods are briefly reviewed and illustrated by simple worked examples in order to encourage novices in the field to use computer-intensive methods. © 2010 The Authors Journal of Microscopy © 2010 Royal Microscopical Society.
Weakly Nonergodic Dynamics in the Gross-Pitaevskii Lattice
NASA Astrophysics Data System (ADS)
Mithun, Thudiyangal; Kati, Yagmur; Danieli, Carlo; Flach, Sergej
2018-05-01
The microcanonical Gross-Pitaevskii (also known as the semiclassical Bose-Hubbard) lattice model dynamics is characterized by a pair of energy and norm densities. The grand canonical Gibbs distribution fails to describe a part of the density space, due to the boundedness of its kinetic energy spectrum. We define Poincaré equilibrium manifolds and compute the statistics of microcanonical excursion times off them. The tails of the distribution functions quantify the proximity of the many-body dynamics to a weakly nonergodic phase, which occurs when the average excursion time is infinite. We find that a crossover to weakly nonergodic dynamics takes place inside the non-Gibbs phase, being unnoticed by the largest Lyapunov exponent. In the ergodic part of the non-Gibbs phase, the Gibbs distribution should be replaced by an unknown modified one. We relate our findings to the corresponding integrable limit, close to which the actions are interacting through a short range coupling network.
Time-dependent generalized Gibbs ensembles in open quantum systems
NASA Astrophysics Data System (ADS)
Lange, Florian; Lenarčič, Zala; Rosch, Achim
2018-04-01
Generalized Gibbs ensembles have been used as powerful tools to describe the steady state of integrable many-particle quantum systems after a sudden change of the Hamiltonian. Here, we demonstrate numerically that they can be used for a much broader class of problems. We consider integrable systems in the presence of weak perturbations which break both integrability and drive the system to a state far from equilibrium. Under these conditions, we show that the steady state and the time evolution on long timescales can be accurately described by a (truncated) generalized Gibbs ensemble with time-dependent Lagrange parameters, determined from simple rate equations. We compare the numerically exact time evolutions of density matrices for small systems with a theory based on block-diagonal density matrices (diagonal ensemble) and a time-dependent generalized Gibbs ensemble containing only a small number of approximately conserved quantities, using the one-dimensional Heisenberg model with perturbations described by Lindblad operators as an example.
Gibbs Energy Modeling of Digenite and Adjacent Solid-State Phases
NASA Astrophysics Data System (ADS)
Waldner, Peter
2017-08-01
All sulfur potential and phase diagram data available in the literature for solid-state equilibria related to digenite have been assessed. Thorough thermodynamic analysis at 1 bar total pressure has been performed. A three-sublattice approach has been developed to model the Gibbs energy of digenite as a function of composition and temperature using the compound energy formalism. The Gibbs energies of the adjacent solid-state phases covelitte and high-temperature chalcocite are also modeled treating both sulfides as stoichiometric compounds. The novel model for digenite offers new interpretation of experimental data, may contribute from a thermodynamic point of view to the elucidation of the role of copper species within the crystal structure and allows extrapolation to composition regimes richer in copper than stoichiometric digenite Cu2S. Preliminary predictions into the ternary Cu-Fe-S system at 1273 K (1000 °C) using the Gibbs energy model of digenite for calculating its iron solubility are promising.
Thermodynamics of Bioreactions.
Held, Christoph; Sadowski, Gabriele
2016-06-07
Thermodynamic principles have been applied to enzyme-catalyzed reactions since the beginning of the 1930s in an attempt to understand metabolic pathways. Currently, thermodynamics is also applied to the design and analysis of biotechnological processes. The key thermodynamic quantity is the Gibbs energy of reaction, which must be negative for a reaction to occur spontaneously. However, the application of thermodynamic feasibility studies sometimes yields positive Gibbs energies of reaction even for reactions that are known to occur spontaneously, such as glycolysis. This article reviews the application of thermodynamics in enzyme-catalyzed reactions. It summarizes the basic thermodynamic relationships used for describing the Gibbs energy of reaction and also refers to the nonuniform application of these relationships in the literature. The review summarizes state-of-the-art approaches that describe the influence of temperature, pH, electrolytes, solvents, and concentrations of reacting agents on the Gibbs energy of reaction and, therefore, on the feasibility and yield of biological reactions.
Gibbs measures with memory of length 2 on an arbitrary-order Cayley tree
NASA Astrophysics Data System (ADS)
Akın, Hasan
In this paper, we consider the Ising-Vanniminus model on an arbitrary-order Cayley tree. We generalize the results conjectured by Akın [Chinese J. Phys. 54(4), 635-649 (2016) and Int. J. Mod. Phys. B 31(13), 1750093 (2017)] for an arbitrary-order Cayley tree. We establish the existence and a full classification of translation-invariant Gibbs measures (TIGMs) with a memory of length 2 associated with the model on arbitrary-order Cayley tree. We construct the recurrence equations corresponding to the generalized ANNNI model. We satisfy the Kolmogorov consistency condition. We propose a rigorous measure-theoretical approach to investigate the Gibbs measures with a memory of length 2 for the model. We explain if the number of branches of the tree does not change the number of Gibbs measures. Also, we try to determine when the phase transition does occur.
Generalized thermalization for integrable system under quantum quench.
Muralidharan, Sushruth; Lochan, Kinjalk; Shankaranarayanan, S
2018-01-01
We investigate equilibration and generalized thermalization of the quantum Harmonic chain under local quantum quench. The quench action we consider is connecting two disjoint harmonic chains of different sizes and the system jumps between two integrable settings. We verify the validity of the generalized Gibbs ensemble description for this infinite-dimensional Hilbert space system and also identify equilibration between the subsystems as in classical systems. Using Bogoliubov transformations, we show that the eigenstates of the system prior to the quench evolve toward the Gibbs Generalized Ensemble description. Eigenstates that are more delocalized (in the sense of inverse participation ratio) prior to the quench, tend to equilibrate more rapidly. Further, through the phase space properties of a generalized Gibbs ensemble and the strength of stimulated emission, we identify the necessary criterion on the initial states for such relaxation at late times and also find out the states that would potentially not be described by the generalized Gibbs ensemble description.
NASA Astrophysics Data System (ADS)
Ahmad, Mohd Ali Khameini; Liao, Lingmin; Saburov, Mansoor
2018-06-01
We study the set of p-adic Gibbs measures of the q-state Potts model on the Cayley tree of order three. We prove the vastness of the set of the periodic p-adic Gibbs measures for such model by showing the chaotic behavior of the corresponding Potts-Bethe mapping over Q_p for the prime numbers p≡1 (mod 3). In fact, for 0< |θ -1|_p< |q|_p^2 < 1 where θ =\\exp _p(J) and J is a coupling constant, there exists a subsystem that is isometrically conjugate to the full shift on three symbols. Meanwhile, for 0< |q|_p^2 ≤ |θ -1|_p< |q|_p < 1, there exists a subsystem that is isometrically conjugate to a subshift of finite type on r symbols where r ≥ 4. However, these subshifts on r symbols are all topologically conjugate to the full shift on three symbols. The p-adic Gibbs measures of the same model for the prime numbers p=2,3 and the corresponding Potts-Bethe mapping are also discussed. On the other hand, for 0< |θ -1|_p< |q|_p < 1, we remark that the Potts-Bethe mapping is not chaotic when p=3 and p≡ 2 (mod 3) and we could not conclude the vastness of the set of the periodic p-adic Gibbs measures. In a forthcoming paper with the same title, we will treat the case 0< |q|_p ≤ |θ -1|_p < 1 for all prime numbers p.
Hemingway, B.S.; Robie, R.A.; Kittrick, J.A.
1978-01-01
Solution calorimetric measurements compared with solubility determinations from the literature for the same samples of gibbsite have provided a direct thermochemical cycle through which the Gibbs free energy of formation of [Al(OH)4 aq-] can be determined. The Gibbs free energy of formation of [Al(OH)4 aq-] at 298.15 K is -1305 ?? 1 kJ/mol. These heat-of-solution results show no significant difference in the thermodynamic properties of gibbsite particles in the range from 50 to 0.05 ??m. The Gibbs free energies of formation at 298.15 K and 1 bar pressure of diaspore, boehmite and bayerite are -9210 ?? 5.0, -918.4 ?? 2.1 and -1153 ?? 2 kJ/mol based upon the Gibbs free energy of [A1(OH)4 aq-] calculated in this paper and the acceptance of -1582.2 ?? 1.3 and -1154.9 ?? 1.2 kJ/mol for the Gibbs free energy of formation of corundum and gibbsite, respectively. Values for the Gibbs free energy formation of [Al(OH)2 aq+] and [AlO2 aq-] were also calculated as -914.2 ?? 2.1 and -830.9 ?? 2.1 kJ/mol, respectively. The use of [AlC2 aq-] as a chemical species is discouraged. A revised Gibbs free energy of formation for [H4SiO4aq0] was recalculated from calorimetric data yielding a value of -1307.5 ?? 1.7 kJ/mol which is in good agreement with the results obtained from several solubility studies. Smoothed values for the thermodynamic functions CP0, ( HT0 - H2980) T, ( GT0 - H2980) T, ST0 - S00, ??Hf{hook},2980 kaolinite are listed at integral temperatures between 298.15 and 800 K. The heat capacity of kaolinite at temperatures between 250 and 800 K may be calculated from the following equation: CP0 = 1430.26 - 0.78850 T + 3.0340 ?? 10-4 T2 -1.85158 ?? 10-4 T2 1 2 + 8.3341 ?? 106 T-2. The thermodynamic properties of most of the geologically important Al-bearing phases have been referenced to the same reference state for Al, namely gibbsite. ?? 1978.
Some problems in fractal differential equations
NASA Astrophysics Data System (ADS)
Su, Weiyi
2016-06-01
Based upon the fractal calculus on local fields, or p-type calculus, or Gibbs-Butzer calculus ([1],[2]), we suggest a constructive idea for "fractal differential equations", beginning from some special examples to a general theory. However, this is just an original idea, it needs lots of later work to support. In [3], we show example "two dimension wave equations with fractal boundaries", and in this note, other examples, as well as an idea to construct fractal differential equations are shown.
NASA Astrophysics Data System (ADS)
Mendes, R. G. B.; Barreto, F. C. Sá; Santos, J. P.
2018-04-01
The mean field approximation results in the mixedspin 1/2 Ising model and spin 1 Blume-Capel model, in the hexagonal nanowire system, are obtained from the Bogoliubov inequality. The Gibbs free energy, magnetization, and critical frontiers are obtained. Besides the stable branches of the order parameters, we obtain the metastable and unstable parts of these curves and also find phase transitions of the metastable branches of the order parameters. The classification of the stable, metastable, and unstable states is made by comparing the free energy values of these states.
Dielectric constant of ionic solutions: a field-theory approach.
Levy, Amir; Andelman, David; Orland, Henri
2012-06-01
We study the variation of the dielectric response of a dielectric liquid (e.g. water) when a salt is added to the solution. Employing field-theoretical methods, we expand the Gibbs free energy to first order in a loop expansion and calculate self-consistently the dielectric constant. We predict analytically the dielectric decrement which depends on the ionic strength in a complex way. Furthermore, a qualitative description of the hydration shell is found and is characterized by a single length scale. Our prediction fits rather well a large range of concentrations for different salts using only one fit parameter related to the size of ions and dipoles.
Multi-phase-field method for surface tension induced elasticity
NASA Astrophysics Data System (ADS)
Schiedung, Raphael; Steinbach, Ingo; Varnik, Fathollah
2018-01-01
A method, based on the multi-phase-field framework, is proposed that adequately accounts for the effects of a coupling between surface free energy and elastic deformation in solids. The method is validated via a number of analytically solvable problems. In addition to stress states at mechanical equilibrium in complex geometries, the underlying multi-phase-field framework naturally allows us to account for the influence of surface energy induced stresses on phase transformation kinetics. This issue, which is of fundamental importance on the nanoscale, is demonstrated in the limit of fast diffusion for a solid sphere, which melts due to the well-known Gibbs-Thompson effect. This melting process is slowed down when coupled to surface energy induced elastic deformation.
Bayesian focalization: quantifying source localization with environmental uncertainty.
Dosso, Stan E; Wilmut, Michael J
2007-05-01
This paper applies a Bayesian formulation to study ocean acoustic source localization as a function of uncertainty in environmental properties (water column and seabed) and of data information content [signal-to-noise ratio (SNR) and number of frequencies]. The approach follows that of the optimum uncertain field processor [A. M. Richardson and L. W. Nolte, J. Acoust. Soc. Am. 89, 2280-2284 (1991)], in that localization uncertainty is quantified by joint marginal probability distributions for source range and depth integrated over uncertain environmental properties. The integration is carried out here using Metropolis Gibbs' sampling for environmental parameters and heat-bath Gibbs' sampling for source location to provide efficient sampling over complicated parameter spaces. The approach is applied to acoustic data from a shallow-water site in the Mediterranean Sea where previous geoacoustic studies have been carried out. It is found that reliable localization requires a sufficient combination of prior (environmental) information and data information. For example, sources can be localized reliably for single-frequency data at low SNR (-3 dB) only with small environmental uncertainties, whereas successful localization with large environmental uncertainties requires higher SNR and/or multifrequency data.
Comment on "Inference with minimal Gibbs free energy in information field theory".
Iatsenko, D; Stefanovska, A; McClintock, P V E
2012-03-01
Enßlin and Weig [Phys. Rev. E 82, 051112 (2010)] have introduced a "minimum Gibbs free energy" (MGFE) approach for estimation of the mean signal and signal uncertainty in Bayesian inference problems: it aims to combine the maximum a posteriori (MAP) and maximum entropy (ME) principles. We point out, however, that there are some important questions to be clarified before the new approach can be considered fully justified, and therefore able to be used with confidence. In particular, after obtaining a Gaussian approximation to the posterior in terms of the MGFE at some temperature T, this approximation should always be raised to the power of T to yield a reliable estimate. In addition, we show explicitly that MGFE indeed incorporates the MAP principle, as well as the MDI (minimum discrimination information) approach, but not the well-known ME principle of Jaynes [E.T. Jaynes, Phys. Rev. 106, 620 (1957)]. We also illuminate some related issues and resolve apparent discrepancies. Finally, we investigate the performance of MGFE estimation for different values of T, and we discuss the advantages and shortcomings of the approach.
On the fine structure of meteoritical taenite/tetrataenite and its interpretation
NASA Astrophysics Data System (ADS)
Albertsen, J. F.; Nielsen, H. P.; Buchwald, V. F.
1983-04-01
TEM, electron microprobe, and Moessbauer spectroscopy are used in investigating taenite fields from several meteorites. A delicate pattern of antiphase domains is revealed in the tetrataenite, as is the presence of low-Ni taenite at the antiphase boundaries in what was hitherto believed to be pure tetrataenite. The observations suggest that the 'cloudy taenite' (cloudy zone II) was formed by a magnetically induced spinodal decomposition of the metastable taenite during slow cooling below 400 C. It is thought likely that decompositin occurs when the Curie temperature of the alloy changes rapidly with composition, as it does in f.c.c. iron-nickel alloys containing approximately 28-43 percent Ni (wt pct). The large contribution to Gibbs free energy from magnetic ordering leads to inflections in the Gibbs free energy curve, making the alloy unstable with regard to decomposition, in this case into a magnetically and atomically ordered Ni-rich alloy plus a magnetically and atomically disordered Ni-poor alloy. The model accounts well for the structure and composition of the two phases in the cloudy taenite.
Ergodicity of a singly-thermostated harmonic oscillator
NASA Astrophysics Data System (ADS)
Hoover, William Graham; Sprott, Julien Clinton; Hoover, Carol Griswold
2016-03-01
Although Nosé's thermostated mechanics is formally consistent with Gibbs' canonical ensemble, the thermostated Nosé-Hoover (harmonic) oscillator, with its mean kinetic temperature controlled, is far from ergodic. Much of its phase space is occupied by regular conservative tori. Oscillator ergodicity has previously been achieved by controlling two oscillator moments with two thermostat variables. Here we use computerized searches in conjunction with visualization to find singly-thermostated motion equations for the oscillator which are consistent with Gibbs' canonical distribution. Such models are the simplest able to bridge the gap between Gibbs' statistical ensembles and Newtonian single-particle dynamics.
Aggression Replacement Training and Childhood Trauma
ERIC Educational Resources Information Center
Amendola, A. Mark; Oliver, Robert W.
2013-01-01
Aggression Replacement Training (ART) was developed by the late Arnold Goldstein of Syracuse University to teach positive alternatives to children and youth with emotional and behavioral problems (Glick & Gibbs, 2011; Goldstein, Glick, & Gibbs, 1998). ART provides cognitive, affective, and behavioral interventions to build competence in…
Feng, Dong-xia; Nguyen, Anh V
2016-03-01
Floating objects on the air-water interfaces are central to a number of everyday activities, from walking on water by insects to flotation separation of valuable minerals using air bubbles. The available theories show that a fine sphere can float if the force of surface tension and buoyancies can support the sphere at the interface with an apical angle subtended by the circle of contact being larger than the contact angle. Here we show that the pinning of the contact line at the sharp edge, known as the Gibbs inequality condition, also plays a significant role in controlling the stability and detachment of floating spheres. Specifically, we truncated the spheres with different angles and used a force sensor device to measure the force of pushing the truncated spheres from the interface into water. We also developed a theoretical modeling to calculate the pushing force that in combination with experimental results shows different effects of the Gibbs inequality condition on the stability and detachment of the spheres from the water surface. For small angles of truncation, the Gibbs inequality condition does not affect the sphere detachment, and hence the classical theories on the floatability of spheres are valid. For large truncated angles, the Gibbs inequality condition determines the tenacity of the particle-meniscus contact and the stability and detachment of floating spheres. In this case, the classical theories on the floatability of spheres are no longer valid. A critical truncated angle for the transition from the classical to the Gibbs inequality regimes of detachment was also established. The outcomes of this research advance our understanding of the behavior of floating objects, in particular, the flotation separation of valuable minerals, which often contain various sharp edges of their crystal faces.
Scanning sequences after Gibbs sampling to find multiple occurrences of functional elements
Tharakaraman, Kannan; Mariño-Ramírez, Leonardo; Sheetlin, Sergey L; Landsman, David; Spouge, John L
2006-01-01
Background Many DNA regulatory elements occur as multiple instances within a target promoter. Gibbs sampling programs for finding DNA regulatory elements de novo can be prohibitively slow in locating all instances of such an element in a sequence set. Results We describe an improvement to the A-GLAM computer program, which predicts regulatory elements within DNA sequences with Gibbs sampling. The improvement adds an optional "scanning step" after Gibbs sampling. Gibbs sampling produces a position specific scoring matrix (PSSM). The new scanning step resembles an iterative PSI-BLAST search based on the PSSM. First, it assigns an "individual score" to each subsequence of appropriate length within the input sequences using the initial PSSM. Second, it computes an E-value from each individual score, to assess the agreement between the corresponding subsequence and the PSSM. Third, it permits subsequences with E-values falling below a threshold to contribute to the underlying PSSM, which is then updated using the Bayesian calculus. A-GLAM iterates its scanning step to convergence, at which point no new subsequences contribute to the PSSM. After convergence, A-GLAM reports predicted regulatory elements within each sequence in order of increasing E-values, so users have a statistical evaluation of the predicted elements in a convenient presentation. Thus, although the Gibbs sampling step in A-GLAM finds at most one regulatory element per input sequence, the scanning step can now rapidly locate further instances of the element in each sequence. Conclusion Datasets from experiments determining the binding sites of transcription factors were used to evaluate the improvement to A-GLAM. Typically, the datasets included several sequences containing multiple instances of a regulatory motif. The improvements to A-GLAM permitted it to predict the multiple instances. PMID:16961919
ERIC Educational Resources Information Center
Hanson, Robert M.; Riley, Patrick; Schwinefus, Jeff; Fischer, Paul J.
2008-01-01
The use of qualitative graphs of Gibbs energy versus temperature is described in the context of chemical demonstrations involving phase changes and colligative properties at the general chemistry level. (Contains 5 figures and 1 note.)
NASA Astrophysics Data System (ADS)
Liu, Yue-Lin; Ding, Fang; Luo, G.-N.; Chen, Chang-An
2017-12-01
We have carried out systematic first-principles total energy and vibration spectrum calculations to investigate the finite-temperature H dissolution behaviors in tungsten and molybdenum, which are considered promising candidates for the first wall in nuclear fusion reactors. The temperature effect is considered by the lattice expansion and phonon vibration. We demonstrate that the H Gibbs energy of formation in both tetrahedral and octahedral interstitial positions depends strongly on the temperature. The H Gibbs energy of formation under one atmosphere of pressure increases significantly with increasing temperature. The phonon vibration contribution plays a decisive role in the H Gibbs energy of formation with the increasing temperature. Using the predicted H Gibbs energy of formation, our calculated H concentrations in both metals are about one or two orders of magnitude lower than the experimental data at temperature range from 900 to 2400 K. Such a discrepancy can be reasonably explained by the defect-capturing effect.
Thermodynamical properties of liquid lanthanides-A variational approach
NASA Astrophysics Data System (ADS)
Patel, H. P.; Thakor, P. B.; Sonvane, Y. A.
2015-06-01
Thermodynamical properties like Entropy (S), Internal energy (E) and Helmholtz free energy (F) of liquid lanthanides using a variation principle based on the Gibbs-Bogoliubuv (GB) inequality with Percus Yevick hard sphere reference system have been reported in the present investigation. To describe electron-ion interaction we have used our newly constructed parameter free model potential along with Sarkar et al. local field correction function. Lastly, we conclude that our newly constructed model potential is capable to explain the thermodynamical properties of liquid lanthanides.
Thermodynamical properties of liquid lanthanides-A variational approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patel, H. P.; Department of Applied Physics, S. V. National Institute of Technology, Surat 395 007, Gujarat; Thakor, P. B., E-mail: pbthakor@rediffmail.com
2015-06-24
Thermodynamical properties like Entropy (S), Internal energy (E) and Helmholtz free energy (F) of liquid lanthanides using a variation principle based on the Gibbs-Bogoliubuv (GB) inequality with Percus Yevick hard sphere reference system have been reported in the present investigation. To describe electron-ion interaction we have used our newly constructed parameter free model potential along with Sarkar et al. local field correction function. Lastly, we conclude that our newly constructed model potential is capable to explain the thermodynamical properties of liquid lanthanides.
Measuring effective temperatures in a generalized Gibbs ensemble
NASA Astrophysics Data System (ADS)
Foini, Laura; Gambassi, Andrea; Konik, Robert; Cugliandolo, Leticia F.
2017-05-01
The local physical properties of an isolated quantum statistical system in the stationary state reached long after a quench are generically described by the Gibbs ensemble, which involves only its Hamiltonian and the temperature as a parameter. If the system is instead integrable, additional quantities conserved by the dynamics intervene in the description of the stationary state. The resulting generalized Gibbs ensemble involves a number of temperature-like parameters, the determination of which is practically difficult. Here we argue that in a number of simple models these parameters can be effectively determined by using fluctuation-dissipation relationships between response and correlation functions of natural observables, quantities which are accessible in experiments.
NASA Astrophysics Data System (ADS)
Fyodorov, Yan V.; Bouchaud, Jean-Philippe
2008-08-01
We construct an N-dimensional Gaussian landscape with multiscale, translation invariant, logarithmic correlations and investigate the statistical mechanics of a single particle in this environment. In the limit of high dimension N → ∞ the free energy of the system and overlap function are calculated exactly using the replica trick and Parisi's hierarchical ansatz. In the thermodynamic limit, we recover the most general version of the Derrida's generalized random energy model (GREM). The low-temperature behaviour depends essentially on the spectrum of length scales involved in the construction of the landscape. If the latter consists of K discrete values, the system is characterized by a K-step replica symmetry breaking solution. We argue that our construction is in fact valid in any finite spatial dimensions N >= 1. We discuss the implications of our results for the singularity spectrum describing multifractality of the associated Boltzmann-Gibbs measure. Finally we discuss several generalizations and open problems, such as the dynamics in such a landscape and the construction of a generalized multifractal random walk.
Swimbladder Allometry of Selected Midwater Fish Species
1976-01-05
Gibbs, R. II., Jr., 1971. "Notes on Fishes of the Genus Eustomias ( Stomiatoidei , Melanstomiatidae) in Bermuda Waters, With the Description of...N00140-70-C-0307, Smithsonian Institution. Goodyear, R. H. and R. H. Gibbs, Jr., 1970. "Systematics and Zoogeography of Stomiatoid Fishes of the
Starr, Francis W; Douglas, Jack F; Sastry, Srikanth
2013-03-28
We carefully examine common measures of dynamical heterogeneity for a model polymer melt and test how these scales compare with those hypothesized by the Adam and Gibbs (AG) and random first-order transition (RFOT) theories of relaxation in glass-forming liquids. To this end, we first analyze clusters of highly mobile particles, the string-like collective motion of these mobile particles, and clusters of relative low mobility. We show that the time scale of the high-mobility clusters and strings is associated with a diffusive time scale, while the low-mobility particles' time scale relates to a structural relaxation time. The difference of the characteristic times for the high- and low-mobility particles naturally explains the well-known decoupling of diffusion and structural relaxation time scales. Despite the inherent difference of dynamics between high- and low-mobility particles, we find a high degree of similarity in the geometrical structure of these particle clusters. In particular, we show that the fractal dimensions of these clusters are consistent with those of swollen branched polymers or branched polymers with screened excluded-volume interactions, corresponding to lattice animals and percolation clusters, respectively. In contrast, the fractal dimension of the strings crosses over from that of self-avoiding walks for small strings, to simple random walks for longer, more strongly interacting, strings, corresponding to flexible polymers with screened excluded-volume interactions. We examine the appropriateness of identifying the size scales of either mobile particle clusters or strings with the size of cooperatively rearranging regions (CRR) in the AG and RFOT theories. We find that the string size appears to be the most consistent measure of CRR for both the AG and RFOT models. Identifying strings or clusters with the "mosaic" length of the RFOT model relaxes the conventional assumption that the "entropic droplets" are compact. We also confirm the validity of the entropy formulation of the AG theory, constraining the exponent values of the RFOT theory. This constraint, together with the analysis of size scales, enables us to estimate the characteristic exponents of RFOT.
NASA Astrophysics Data System (ADS)
Ferreira, D. J. S.; Bezerra, B. N.; Collyer, M. N.; Garcia, A.; Ferreira, I. L.
2018-04-01
The simulation of casting processes demands accurate information on the thermophysical properties of the alloy; however, such information is scarce in the literature for multicomponent alloys. Generally, metallic alloys applied in industry have more than three solute components. In the present study, a general solution of Butler's formulation for surface tension is presented for multicomponent alloys and is applied in quaternary Al-Cu-Si-Fe alloys, thus permitting the Gibbs-Thomson coefficient to be determined. Such coefficient is a determining factor to the reliability of predictions furnished by microstructure growth models and by numerical computations of solidification thermal parameters, which will depend on the thermophysical properties assumed in the calculations. The Gibbs-Thomson coefficient for ternary and quaternary alloys is seldom reported in the literature. A numerical model based on Powell's hybrid algorithm and a finite difference Jacobian approximation has been coupled to a Thermo-Calc TCAPI interface to assess the excess Gibbs energy of the liquid phase, permitting liquidus temperature, latent heat, alloy density, surface tension and Gibbs-Thomson coefficient for Al-Cu-Si-Fe hypoeutectic alloys to be calculated, as an example of calculation capabilities for multicomponent alloys of the proposed method. The computed results are compared with thermophysical properties of binary Al-Cu and ternary Al-Cu-Si alloys found in the literature and presented as a function of the Cu solute composition.
NASA Astrophysics Data System (ADS)
Oware, E. K.
2017-12-01
Geophysical quantification of hydrogeological parameters typically involve limited noisy measurements coupled with inadequate understanding of the target phenomenon. Hence, a deterministic solution is unrealistic in light of the largely uncertain inputs. Stochastic imaging (SI), in contrast, provides multiple equiprobable realizations that enable probabilistic assessment of aquifer properties in a realistic manner. Generation of geologically realistic prior models is central to SI frameworks. Higher-order statistics for representing prior geological features in SI are, however, usually borrowed from training images (TIs), which may produce undesirable outcomes if the TIs are unpresentatitve of the target structures. The Markov random field (MRF)-based SI strategy provides a data-driven alternative to TI-based SI algorithms. In the MRF-based method, the simulation of spatial features is guided by Gibbs energy (GE) minimization. Local configurations with smaller GEs have higher likelihood of occurrence and vice versa. The parameters of the Gibbs distribution for computing the GE are estimated from the hydrogeophysical data, thereby enabling the generation of site-specific structures in the absence of reliable TIs. In Metropolis-like SI methods, the variance of the transition probability controls the jump-size. The procedure is a standard Markov chain Monte Carlo (McMC) method when a constant variance is assumed, and becomes simulated annealing (SA) when the variance (cooling temperature) is allowed to decrease gradually with time. We observe that in certain problems, the large variance typically employed at the beginning to hasten burn-in may be unideal for sampling at the equilibrium state. The powerfulness of SA stems from its flexibility to adaptively scale the variance at different stages of the sampling. Degeneration of results were reported in a previous implementation of the MRF-based SI strategy based on a constant variance. Here, we present an updated version of the algorithm based on SA that appears to resolve the degeneration problem with seemingly improved results. We illustrate the performance of the SA version with a joint inversion of time-lapse concentration and electrical resistivity measurements in a hypothetical trinary hydrofacies aquifer characterization problem.
Critical behavior and phase transition of dilaton black holes with nonlinear electrodynamics
NASA Astrophysics Data System (ADS)
Dayyani, Z.; Sheykhi, A.; Dehghani, M. H.; Hajkhalili, S.
2018-02-01
In this paper, we take into account the dilaton black hole solutions of Einstein gravity in the presence of logarithmic and exponential forms of nonlinear electrodynamics. First of all, we consider the cosmological constant and nonlinear parameter as thermodynamic quantities which can vary. We obtain thermodynamic quantities of the system such as pressure, temperature and Gibbs free energy in an extended phase space. We complete the analogy of the nonlinear dilaton black holes with the Van der Waals liquid-gas system. We work in the canonical ensemble and hence we treat the charge of the black hole as an external fixed parameter. Moreover, we calculate the critical values of temperature, volume and pressure and show that they depend on the dilaton coupling constant as well as on the nonlinear parameter. We also investigate the critical exponents and find that they are universal and independent of the dilaton and nonlinear parameters, which is an expected result. Finally, we explore the phase transition of nonlinear dilaton black holes by studying the Gibbs free energy of the system. We find that in the case of T>T_c, we have no phase transition. When T=T_c, the system admits a second-order phase transition, while for T=T_f
Estimating a Noncompensatory IRT Model Using Metropolis within Gibbs Sampling
ERIC Educational Resources Information Center
Babcock, Ben
2011-01-01
Relatively little research has been conducted with the noncompensatory class of multidimensional item response theory (MIRT) models. A Monte Carlo simulation study was conducted exploring the estimation of a two-parameter noncompensatory item response theory (IRT) model. The estimation method used was a Metropolis-Hastings within Gibbs algorithm…
Bayesian Estimation of the DINA Model with Gibbs Sampling
ERIC Educational Resources Information Center
Culpepper, Steven Andrew
2015-01-01
A Bayesian model formulation of the deterministic inputs, noisy "and" gate (DINA) model is presented. Gibbs sampling is employed to simulate from the joint posterior distribution of item guessing and slipping parameters, subject attribute parameters, and latent class probabilities. The procedure extends concepts in Béguin and Glas,…
Illustrating Enzyme Inhibition Using Gibbs Energy Profiles
ERIC Educational Resources Information Center
Bearne, Stephen L.
2012-01-01
Gibbs energy profiles have great utility as teaching and learning tools because they present students with a visual representation of the energy changes that occur during enzyme catalysis. Unfortunately, most textbooks divorce discussions of traditional kinetic topics, such as enzyme inhibition, from discussions of these same topics in terms of…
SPERTI Electric Control Building (PER608). Plan, elevations, and details. Gibbs ...
SPERT-I Electric Control Building (PER-608). Plan, elevations, and details. Gibbs and Hill, Inc. 1087-PER-608-S5. Date: August 1956. INEEL index no. 760-0608-00-312-108328 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID
Note on in situ (scanning) transmission electron microscopy study of liquid samples.
Jiang, Nan
2017-08-01
Liquid cell (scanning) transmission electron microscopy has been developed rapidly, using amorphous SiN x membranes as electron transparent windows. The current interpretations of electron beam effects are mainly based on radiolytic processes. In this note, additional effects of the electric field due to electron-beam irradiation are discussed. The electric field can be produced by the charge accumulation due to the emission of secondary and Auger electrons. Besides various beam-induced phenomena, such as nanoparticle precipitation and gas bubble formation and motion, two other effects need to be considered; one is the change of Gibbs free energy of nucleation and the other is the violation of Brownian motion due to ion drifting driven by the electric field. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Grazhdan, K. V.; Gamov, G. A.; Dushina, S. V.; Sharnin, V. A.
2012-11-01
Coefficients of the interphase distribution of nicotinic acid are determined in aqueous solution systems of ethanol-hexane and DMSO-hexane at 25.0 ± 0.1°C. They are used to calculate the Gibbs energy of the transfer of nicotinic acid from water into aqueous solutions of ethanol and dimethylsulfoxide. The Gibbs energy values for the transfer of the molecular and zwitterionic forms of nicotinic acid are obtained by means of UV spectroscopy. The diametrically opposite effect of the composition of binary solvents on the transfer of the molecular and zwitterionic forms of nicotinic acid is noted.
Measuring effective temperatures in a generalized Gibbs ensemble
Foini, Laura; Gambassi, Andrea; Konik, Robert; ...
2017-05-11
The local physical properties of an isolated quantum statistical system in the stationary state reached long after a quench are generically described by the Gibbs ensemble, which involves only its Hamiltonian and the temperature as a parameter. Additional quantities conserved by the dynamics intervene in the description of the stationary state, if the system is instead integrable. The resulting generalized Gibbs ensemble involves a number of temperature-like parameters, the determination of which is practically difficult. We argue that in a number of simple models these parameters can be effectively determined by using fluctuation-dissipation relationships between response and correlation functions ofmore » natural observables, quantities which are accessible in experiments.« less
First-Year University Chemistry Textbooks' Misrepresentation of Gibbs Energy
ERIC Educational Resources Information Center
Quilez, Juan
2012-01-01
This study analyzes the misrepresentation of Gibbs energy by college chemistry textbooks. The article reports the way first-year university chemistry textbooks handle the concepts of spontaneity and equilibrium. Problems with terminology are found; confusion arises in the meaning given to [delta]G, [delta][subscript r]G, [delta]G[degrees], and…
Exploring Fourier Series and Gibbs Phenomenon Using Mathematica
ERIC Educational Resources Information Center
Ghosh, Jonaki B.
2011-01-01
This article describes a laboratory module on Fourier series and Gibbs phenomenon which was undertaken by 32 Year 12 students. It shows how the use of CAS played the role of an "amplifier" by making higher level mathematical concepts accessible to students of year 12. Using Mathematica students were able to visualise Fourier series of…
The entropy and Gibbs free energy of formation of the aluminum ion
Hemingway, B.S.; Robie, R.A.
1977-01-01
A reevaluation of the entropy and Gibbs free energy of formation of Al3+(aq) yields -308 ?? 15 J/K??mol and 489.4 ?? 1.4kj/mol for S0298 and ??G0f{hook},298 respectively. The standard electrode potential for aluminum is 1.691 ?? 0.005 volts. ?? 1977.
Surfactant Adsorption: A Revised Physical Chemistry Lab
ERIC Educational Resources Information Center
Bresler, Marc R.; Hagen, John P.
2008-01-01
Many physical chemistry lab courses include an experiment in which students measure surface tension as a function of surfactant concentration. In the traditional experiment, the data are fit to the Gibbs isotherm to determine the molar area for the surfactant, and the critical micelle concentration is used to calculate the Gibbs energy of micelle…
Gibbs energies of transferring triglycine from water into H2O-DMSO solvent
NASA Astrophysics Data System (ADS)
Usacheva, T. R.; Kuz'mina, K. I.; Lan, Pham Thi; Kuz'mina, I. A.; Sharnin, V. A.
2014-08-01
The Gibbs energies of transferring triglycine (3Gly, glycyl-glycyl-glycine) from water into mixtures of water with dimethyl sulfoxide (χDMSO = 0.05, 0.10, and 0.15 mole fractions) at 298.15 K are determined from the interphase distribution. An increased dimethyl sulfoxide (DMSO) concentration in the solvent slightly raises the positive values of Δtr G ○(3Gly), possibly indicating the formation of more stable 3Gly-H2O solvated complexes than ones of 3Gly-DMSO. It is shown that the change in the Gibbs energy of transfer of 3Gly is determined by the enthalpy component. The relationship of 3Gly and 18-crown-6 ether (18C6) solvation's contributions to the change in the Gibbs energy of [3Gly18C6] molecular complex formation in H2O-DMSO solvents is analyzed, and the key role of 3Gly solvation's contribution to the change in the stability of [3Gly18C6] upon moving from H2O to mixtures with DMSO is revealed.
On thermodynamical inconsistency of isotherm equations: Gibbs's thermodynamics.
Tóth, József
2003-06-01
It has been proven that all isotherm equations which include the expression 1-Theta contradict the exact Gibbs thermodynamics. These contradictions have been discussed in detail in the case of the Langmuir (L) equation applied to gas/solid (G/S), solid/liquid (S/L), and gas/liquid (G/L) interfaces. In G/S adsorption the L equation can theoretically be applied only at low equilibrium pressures on condition that vg > vs . vg is the molar volume of the adsorbed amount in the gas phase and vs is the same in the Gibbs phase. In S/L and G/L adsorption the L equation is practically applicable only in the domain of very low concentrations. The cause of these contradictions (inconsistencies) is that Gibbs thermodynamics takes excess adsorbed amounts into account; however, the L and other isotherm equations calculate with the absolute adsorbed amount. The two amounts may be practically equal to each other when the limiting conditions mentioned above are fulfilled. It is also discussed how these inconsistent isotherm equations can be transformed into consistent ones.
Accurate segmentation framework for the left ventricle wall from cardiac cine MRI
NASA Astrophysics Data System (ADS)
Sliman, H.; Khalifa, F.; Elnakib, A.; Soliman, A.; Beache, G. M.; Gimel'farb, G.; Emam, A.; Elmaghraby, A.; El-Baz, A.
2013-10-01
We propose a novel, fast, robust, bi-directional coupled parametric deformable model to segment the left ventricle (LV) wall borders using first- and second-order visual appearance features. These features are embedded in a new stochastic external force that preserves the topology of LV wall to track the evolution of the parametric deformable models control points. To accurately estimate the marginal density of each deformable model control point, the empirical marginal grey level distributions (first-order appearance) inside and outside the boundary of the deformable model are modeled with adaptive linear combinations of discrete Gaussians (LCDG). The second order visual appearance of the LV wall is accurately modeled with a new rotationally invariant second-order Markov-Gibbs random field (MGRF). We tested the proposed segmentation approach on 15 data sets in 6 infarction patients using the Dice similarity coefficient (DSC) and the average distance (AD) between the ground truth and automated segmentation contours. Our approach achieves a mean DSC value of 0.926±0.022 and AD value of 2.16±0.60 compared to two other level set methods that achieve 0.904±0.033 and 0.885±0.02 for DSC; and 2.86±1.35 and 5.72±4.70 for AD, respectively.
Multi-Topic Tracking Model for dynamic social network
NASA Astrophysics Data System (ADS)
Li, Yuhua; Liu, Changzheng; Zhao, Ming; Li, Ruixuan; Xiao, Hailing; Wang, Kai; Zhang, Jun
2016-07-01
The topic tracking problem has attracted much attention in the last decades. However, existing approaches rarely consider network structures and textual topics together. In this paper, we propose a novel statistical model based on dynamic bayesian network, namely Multi-Topic Tracking Model for Dynamic Social Network (MTTD). It takes influence phenomenon, selection phenomenon, document generative process and the evolution of textual topics into account. Specifically, in our MTTD model, Gibbs Random Field is defined to model the influence of historical status of users in the network and the interdependency between them in order to consider the influence phenomenon. To address the selection phenomenon, a stochastic block model is used to model the link generation process based on the users' interests to topics. Probabilistic Latent Semantic Analysis (PLSA) is used to describe the document generative process according to the users' interests. Finally, the dependence on the historical topic status is also considered to ensure the continuity of the topic itself in topic evolution model. Expectation Maximization (EM) algorithm is utilized to estimate parameters in the proposed MTTD model. Empirical experiments on real datasets show that the MTTD model performs better than Popular Event Tracking (PET) and Dynamic Topic Model (DTM) in generalization performance, topic interpretability performance, topic content evolution and topic popularity evolution performance.
Ebenhöh, Oliver; Spelberg, Stephanie
2018-02-19
The photosynthetic carbon reduction cycle, or Calvin-Benson-Bassham (CBB) cycle, is now contained in every standard biochemistry textbook. Although the cycle was already proposed in 1954, it is still the subject of intense research, and even the structure of the cycle, i.e. the exact series of reactions, is still under debate. The controversy about the cycle's structure was fuelled by the findings of Gibbs and Kandler in 1956 and 1957, when they observed that radioactive 14 CO 2 was dynamically incorporated in hexoses in a very atypical and asymmetrical way, a phenomenon later termed the 'photosynthetic Gibbs effect'. Now, it is widely accepted that the photosynthetic Gibbs effect is not in contradiction to the reaction scheme proposed by CBB, but the arguments given have been largely qualitative and hand-waving. To fully appreciate the controversy and to understand the difficulties in interpreting the Gibbs effect, it is illustrative to illuminate the history of the discovery of the CBB cycle. We here give an account of central scientific advances and discoveries, which were essential prerequisites for the elucidation of the cycle. Placing the historic discoveries in the context of the modern textbook pathway scheme illustrates the complexity of the cycle and demonstrates why especially dynamic labelling experiments are far from easy to interpret. We conclude by arguing that it requires sound theoretical approaches to resolve conflicting interpretations and to provide consistent quantitative explanations. © 2018 The Author(s).
On classical mechanical systems with non-linear constraints
NASA Astrophysics Data System (ADS)
Terra, Gláucio; Kobayashi, Marcelo H.
2004-03-01
In the present work, we analyze classical mechanical systems with non-linear constraints in the velocities. We prove that the d'Alembert-Chetaev trajectories of a constrained mechanical system satisfy both Gauss' principle of least constraint and Hölder's principle. In the case of a free mechanics, they also satisfy Hertz's principle of least curvature if the constraint manifold is a cone. We show that the Gibbs-Maggi-Appell (GMA) vector field (i.e. the second-order vector field which defines the d'Alembert-Chetaev trajectories) conserves energy for any potential energy if, and only if, the constraint is homogeneous (i.e. if the Liouville vector field is tangent to the constraint manifold). We introduce the Jacobi-Carathéodory metric tensor and prove Jacobi-Carathéodory's theorem assuming that the constraint manifold is a cone. Finally, we present a version of Liouville's theorem on the conservation of volume for the flow of the GMA vector field.
Unifying hydrotropy under Gibbs phase rule.
Shimizu, Seishi; Matubayasi, Nobuyuki
2017-09-13
The task of elucidating the mechanism of solubility enhancement using hydrotropes has been hampered by the wide variety of phase behaviour that hydrotropes can exhibit, encompassing near-ideal aqueous solution, self-association, micelle formation, and micro-emulsions. Instead of taking a field guide or encyclopedic approach to classify hydrotropes into different molecular classes, we take a rational approach aiming at constructing a unified theory of hydrotropy based upon the first principles of statistical thermodynamics. Achieving this aim can be facilitated by the two key concepts: (1) the Gibbs phase rule as the basis of classifying the hydrotropes in terms of the degrees of freedom and the number of variables to modulate the solvation free energy; (2) the Kirkwood-Buff integrals to quantify the interactions between the species and their relative contributions to the process of solubilization. We demonstrate that the application of the two key concepts can in principle be used to distinguish the different molecular scenarios at work under apparently similar solubility curves observed from experiments. In addition, a generalization of our previous approach to solutes beyond dilution reveals the unified mechanism of hydrotropy, driven by a strong solute-hydrotrope interaction which overcomes the apparent per-hydrotrope inefficiency due to hydrotrope self-clustering.
Mirrored continuum and molecular scale simulations of the ignition of gamma phase RDX
NASA Astrophysics Data System (ADS)
Stewart, D. Scott; Chaudhuri, Santanu; Joshi, Kaushik; Lee, Kiabek
2015-06-01
We consider the ignition of a high-pressure gamma-phase of an explosive crystal of RDX which forms during overdriven shock initiation. Molecular dynamics (MD), with first-principles based or reactive force field based molecular potentials, provides a description of the chemistry as an extremely complex reaction network. The results of the molecular simulation is analyzed by sorting molecular product fragments into high and low molecular groups, to represent identifiable components that can be interpreted by a continuum model. A continuum model based on a Gibbs formulation, that has a single temperature and stress state for the mixture is used to represent the same RDX material and its chemistry. Each component in the continuum model has a corresponding Gibbs continuum potential, that are in turn inferred from molecular MD informed equation of state libraries such as CHEETAH, or are directly simulated by Monte Carlo MD simulations. Information about transport, kinetic rates and diffusion are derived from the MD simulation and the growth of a reactive hot spot in the RDX is studied with both simulations that mirror the other results to provide an essential, continuum/atomistic link. Supported by N000014-12-1-0555, subaward-36561937 (ONR).
Computation of thermodynamic equilibrium in systems under stress
NASA Astrophysics Data System (ADS)
Vrijmoed, Johannes C.; Podladchikov, Yuri Y.
2016-04-01
Metamorphic reactions may be partly controlled by the local stress distribution as suggested by observations of phase assemblages around garnet inclusions related to an amphibolite shear zone in granulite of the Bergen Arcs in Norway. A particular example presented in fig. 14 of Mukai et al. [1] is discussed here. A garnet crystal embedded in a plagioclase matrix is replaced on the left side by a high pressure intergrowth of kyanite and quartz and on the right side by chlorite-amphibole. This texture apparently represents disequilibrium. In this case, the minerals adapt to the low pressure ambient conditions only where fluids were present. Alternatively, here we compute that this particular low pressure and high pressure assemblage around a stressed rigid inclusion such as garnet can coexist in equilibrium. To do the computations we developed the Thermolab software package. The core of the software package consists of Matlab functions that generate Gibbs energy of minerals and melts from the Holland and Powell database [2] and aqueous species from the SUPCRT92 database [3]. Most up to date solid solutions are included in a general formulation. The user provides a Matlab script to do the desired calculations using the core functions. Gibbs energy of all minerals, solutions and species are benchmarked versus THERMOCALC, PerpleX [4] and SUPCRT92 and are reproduced within round off computer error. Multi-component phase diagrams have been calculated using Gibbs minimization to benchmark with THERMOCALC and Perple_X. The Matlab script to compute equilibrium in a stressed system needs only two modifications of the standard phase diagram script. Firstly, Gibbs energy of phases considered in the calculation is generated for multiple values of thermodynamic pressure. Secondly, for the Gibbs minimization the proportion of the system at each particular thermodynamic pressure needs to be constrained. The user decides which part of the stress tensor is input as thermodynamic pressure. To compute a case of high and low pressure around a stressed inclusion we first did a Finite Element Method calculation of a rigid inclusion in a viscous matrix under simple shear. From the computed stress distribution we took the local pressure (mean stress) in each grid point of the FEM calculation. This was used as input thermodynamic pressure in the Gibbs minimization and the result showed it is possible to have an equilibrium situation in which chlorite-amphibole is stable in the low pressure domain and kyanite in the high pressure domain of the stress field around the inclusion. Interestingly, the calculation predicts the redistribution of fluid from an average content of fluid in the system. The fluid in equilibrium tends to accumulate in the low pressure areas whereas it leaves the high pressure areas dry. Transport of fluid components occurs not necessarily by fluid flow, but may happen for example by diffusion. We conclude that an apparent disequilibrium texture may be explained by equilibrium under pressure variations, and apparent fluid addition by redistribution of fluid controlled by the local stress distribution. [1] Mukai et al. (2014), Journal of Petrology, 55 (8), p. 1457-1477. [2] Holland and Powell (1998), Journal of Metamorphic Geology, 16, p. 309-343 [3] Johnson et al. (1992), Computers & Geosciences, 18 (7), p. 899-947 [4] Connolly (2005), Earth and Planetary Science Letters, 236, p. 524-541
ERIC Educational Resources Information Center
Hoijtink, Herbert; Molenaar, Ivo W.
1997-01-01
This paper shows that a certain class of constrained latent class models may be interpreted as a special case of nonparametric multidimensional item response models. Parameters of this latent class model are estimated using an application of the Gibbs sampler, and model fit is investigated using posterior predictive checks. (SLD)
A Generalized Deduction of the Ideal-Solution Model
ERIC Educational Resources Information Center
Leo, Teresa J.; Perez-del-Notario, Pedro; Raso, Miguel A.
2006-01-01
A new general procedure for deriving the Gibbs energy of mixing is developed through general thermodynamic considerations, and the ideal-solution model is obtained as a special particular case of the general one. The deduction of the Gibbs energy of mixing for the ideal-solution model is a rational one and viewed suitable for advanced students who…
Experimental Pragmatics and What Is Said: A Response to Gibbs and Moise.
ERIC Educational Resources Information Center
Nicolle, Steve; Clark, Billy
1999-01-01
Attempted replication of Gibbs and Moise (1997) experiments regarding the recognition of a distinction between what is said and what is implicated. Results showed that, under certain conditions, subject selected implicatures when asked to select the paraphrase best reflecting what a speaker has said. Suggests that results can be explained with the…
Multifractality and freezing phenomena in random energy landscapes: An introduction
NASA Astrophysics Data System (ADS)
Fyodorov, Yan V.
2010-10-01
We start our lectures with introducing and discussing the general notion of multifractality spectrum for random measures on lattices, and how it can be probed using moments of that measure. Then we show that the Boltzmann-Gibbs probability distributions generated by logarithmically correlated random potentials provide a simple yet non-trivial example of disorder-induced multifractal measures. The typical values of the multifractality exponents can be extracted from calculating the free energy of the associated Statistical Mechanics problem. To succeed in such a calculation we introduce and discuss in some detail two analytically tractable models for logarithmically correlated potentials. The first model uses a special definition of distances between points in space and is based on the idea of multiplicative cascades which originated in theory of turbulent motion. It is essentially equivalent to statistical mechanics of directed polymers on disordered trees studied long ago by Derrida and Spohn (1988) in Ref. [12]. In this way we introduce the notion of the freezing transition which is identified with an abrupt change in the multifractality spectrum. Second model which allows for explicit analytical evaluation of the free energy is the infinite-dimensional version of the problem which can be solved by employing the replica trick. In particular, the latter version allows one to identify the freezing phenomenon with a mechanism of the replica symmetry breaking (RSB) and to elucidate its physical meaning. The corresponding one-step RSB solution turns out to be marginally stable everywhere in the low-temperature phase. We finish with a short discussion of recent developments and extensions of models with logarithmic correlations, in particular in the context of extreme value statistics. The first appendix summarizes the standard elementary information about Gaussian integrals and related subjects, and introduces the notion of the Gaussian free field characterized by logarithmic correlations. Three other appendices provide the detailed exposition of a few technical details underlying the replica analysis of the model discussed in the lectures.
NASA Astrophysics Data System (ADS)
Cugliandolo, Leticia F.; Lozano, Gustavo S.; Nessi, Nicolás; Picco, Marco; Tartaglia, Alessandro
2018-06-01
We study the Hamiltonian dynamics of the spherical spin model with fully-connected two-body random interactions. In the statistical physics framework, the potential energy is of the so-called p = 2 kind, closely linked to the scalar field theory. Most importantly for our setting, the energy conserving dynamics are equivalent to the ones of the Neumann integrable model. We take initial conditions from the Boltzmann equilibrium measure at a temperature that can be above or below the static phase transition, typical of a disordered (paramagnetic) or of an ordered (disguised ferromagnetic) equilibrium phase. We subsequently evolve the configurations with Newton dynamics dictated by a different Hamiltonian, obtained from an instantaneous global rescaling of the elements in the interaction random matrix. In the limit of infinitely many degrees of freedom, , we identify three dynamical phases depending on the parameters that characterise the initial state and the final Hamiltonian. We next set the analysis of the system with finite number of degrees of freedom in terms of N non-linearly coupled modes. We argue that in the limit the modes decouple at long times. We evaluate the mode temperatures and we relate them to the frequency-dependent effective temperature measured with the fluctuation-dissipation relation in the frequency domain, similarly to what was recently proposed for quantum integrable cases. Finally, we analyse the N ‑ 1 integrals of motion, notably, their scaling with N, and we use them to show that the system is out of equilibrium in all phases, even for parameters that show an apparent Gibbs–Boltzmann behaviour of the global observables. We elaborate on the role played by these constants of motion after the quench and we briefly discuss the possible description of the asymptotic dynamics in terms of a generalised Gibbs ensemble.
Kappa Distribution in a Homogeneous Medium: Adiabatic Limit of a Super-diffusive Process?
NASA Astrophysics Data System (ADS)
Roth, I.
2015-12-01
The classical statistical theory predicts that an ergodic, weakly interacting system like charged particles in the presence of electromagnetic fields, performing Brownian motions (characterized by small range deviations in phase space and short-term microscopic memory), converges into the Gibbs-Boltzmann statistics. Observation of distributions with a kappa-power-law tails in homogeneous systems contradicts this prediction and necessitates a renewed analysis of the basic axioms of the diffusion process: characteristics of the transition probability density function (pdf) for a single interaction, with a possibility of non-Markovian process and non-local interaction. The non-local, Levy walk deviation is related to the non-extensive statistical framework. Particles bouncing along (solar) magnetic field with evolving pitch angles, phases and velocities, as they interact resonantly with waves, undergo energy changes at undetermined time intervals, satisfying these postulates. The dynamic evolution of a general continuous time random walk is determined by pdf of jumps and waiting times resulting in a fractional Fokker-Planck equation with non-integer derivatives whose solution is given by a Fox H-function. The resulting procedure involves the known, although not frequently used in physics fractional calculus, while the local, Markovian process recasts the evolution into the standard Fokker-Planck equation. Solution of the fractional Fokker-Planck equation with the help of Mellin transform and evaluation of its residues at the poles of its Gamma functions results in a slowly converging sum with power laws. It is suggested that these tails form the Kappa function. Gradual vs impulsive solar electron distributions serve as prototypes of this description.
The Gibbs Energy Basis and Construction of Boiling Point Diagrams in Binary Systems
ERIC Educational Resources Information Center
Smith, Norman O.
2004-01-01
An illustration of how excess Gibbs energies of the components in binary systems can be used to construct boiling point diagrams is given. The underlying causes of the various types of behavior of the systems in terms of intermolecular forces and the method of calculating the coexisting liquid and vapor compositions in boiling point diagrams with…
Just Another Gibbs Sampler (JAGS): Flexible Software for MCMC Implementation
ERIC Educational Resources Information Center
Depaoli, Sarah; Clifton, James P.; Cobb, Patrice R.
2016-01-01
A review of the software Just Another Gibbs Sampler (JAGS) is provided. We cover aspects related to history and development and the elements a user needs to know to get started with the program, including (a) definition of the data, (b) definition of the model, (c) compilation of the model, and (d) initialization of the model. An example using a…
Simultaneous alignment and clustering of peptide data using a Gibbs sampling approach.
Andreatta, Massimo; Lund, Ole; Nielsen, Morten
2013-01-01
Proteins recognizing short peptide fragments play a central role in cellular signaling. As a result of high-throughput technologies, peptide-binding protein specificities can be studied using large peptide libraries at dramatically lower cost and time. Interpretation of such large peptide datasets, however, is a complex task, especially when the data contain multiple receptor binding motifs, and/or the motifs are found at different locations within distinct peptides. The algorithm presented in this article, based on Gibbs sampling, identifies multiple specificities in peptide data by performing two essential tasks simultaneously: alignment and clustering of peptide data. We apply the method to de-convolute binding motifs in a panel of peptide datasets with different degrees of complexity spanning from the simplest case of pre-aligned fixed-length peptides to cases of unaligned peptide datasets of variable length. Example applications described in this article include mixtures of binders to different MHC class I and class II alleles, distinct classes of ligands for SH3 domains and sub-specificities of the HLA-A*02:01 molecule. The Gibbs clustering method is available online as a web server at http://www.cbs.dtu.dk/services/GibbsCluster.
NASA Astrophysics Data System (ADS)
Leal, Allan M. M.; Kulik, Dmitrii A.; Kosakowski, Georg
2016-02-01
We present a numerical method for multiphase chemical equilibrium calculations based on a Gibbs energy minimization approach. The method can accurately and efficiently determine the stable phase assemblage at equilibrium independently of the type of phases and species that constitute the chemical system. We have successfully applied our chemical equilibrium algorithm in reactive transport simulations to demonstrate its effective use in computationally intensive applications. We used FEniCS to solve the governing partial differential equations of mass transport in porous media using finite element methods in unstructured meshes. Our equilibrium calculations were benchmarked with GEMS3K, the numerical kernel of the geochemical package GEMS. This allowed us to compare our results with a well-established Gibbs energy minimization algorithm, as well as their performance on every mesh node, at every time step of the transport simulation. The benchmark shows that our novel chemical equilibrium algorithm is accurate, robust, and efficient for reactive transport applications, and it is an improvement over the Gibbs energy minimization algorithm used in GEMS3K. The proposed chemical equilibrium method has been implemented in Reaktoro, a unified framework for modeling chemically reactive systems, which is now used as an alternative numerical kernel of GEMS.
Gibbs Ensemble Simulations of the Solvent Swelling of Polymer Films
NASA Astrophysics Data System (ADS)
Gartner, Thomas; Epps, Thomas, III; Jayaraman, Arthi
Solvent vapor annealing (SVA) is a useful technique to tune the morphology of block polymer, polymer blend, and polymer nanocomposite films. Despite SVA's utility, standardized SVA protocols have not been established, partly due to a lack of fundamental knowledge regarding the interplay between the polymer(s), solvent, substrate, and free-surface during solvent annealing and evaporation. An understanding of how to tune polymer film properties in a controllable manner through SVA processes is needed. Herein, the thermodynamic implications of the presence of solvent in the swollen polymer film is explored through two alternative Gibbs ensemble simulation methods that we have developed and extended: Gibbs ensemble molecular dynamics (GEMD) and hybrid Monte Carlo (MC)/molecular dynamics (MD). In this poster, we will describe these simulation methods and demonstrate their application to polystyrene films swollen by toluene and n-hexane. Polymer film swelling experiments, Gibbs ensemble molecular simulations, and polymer reference interaction site model (PRISM) theory are combined to calculate an effective Flory-Huggins χ (χeff) for polymer-solvent mixtures. The effects of solvent chemistry, solvent content, polymer molecular weight, and polymer architecture on χeff are examined, providing a platform to control and understand the thermodynamics of polymer film swelling.
NASA Astrophysics Data System (ADS)
Butlitsky, M. A.; Zelener, B. B.; Zelener, B. V.
2015-11-01
Earlier a two-component pseudopotential plasma model, which we called a “shelf Coulomb” model has been developed. A Monte-Carlo study of canonical NVT ensemble with periodic boundary conditions has been undertaken to calculate equations of state, pair distribution functions, internal energies and other thermodynamics properties of the model. In present work, an attempt is made to apply so-called hybrid Gibbs statistical ensemble Monte-Carlo technique to this model. First simulation results data show qualitatively similar results for critical point region for both methods. Gibbs ensemble technique let us to estimate the melting curve position and a triple point of the model (in reduced temperature and specific volume coordinates): T* ≈ 0.0476, v* ≈ 6 × 10-4.
NASA Astrophysics Data System (ADS)
Evard, Margarita E.; Volkov, Aleksandr E.; Belyaev, Fedor S.; Ignatova, Anna D.
2018-05-01
The choice of Gibbs' potential for microstructural modeling of FCC ↔ HCP martensitic transformation in FeMn-based shape memory alloys is discussed. Threefold symmetry of the HCP phase is taken into account on specifying internal variables characterizing volume fractions of martensite variants. Constraints imposed on model constants by thermodynamic equilibrium conditions are formulated.
Discovery of a young asteroid cluster associated with P/2012 F5 (Gibbs)
NASA Astrophysics Data System (ADS)
Novaković, Bojan; Hsieh, Henry H.; Cellino, Alberto; Micheli, Marco; Pedani, Marco
2014-03-01
We present the results of our search for a dynamical family around the active Asteroid P/2012 F5 (Gibbs). By applying the hierarchical clustering method, we discover an extremely compact 9-body cluster associated with P/2012 F5. The statistical significance of this newly discovered Gibbs cluster is estimated to be >99.9%, strongly suggesting that its members share a common origin. The cluster is located in a dynamically cold region of the outer main-belt at a proper semi-major axis of ∼3.005 AU, and all members are found to be dynamically stable over very long timescales. Backward numerical orbital integrations show that the age of the cluster is only 1.5 ± 0.1 Myr. Taxonomic classifications are unavailable for most of the cluster members, but SDSS spectrophotometry available for two cluster members indicate that both appear to be Q-type objects. We also estimate a lower limit of the size of the parent body to be about 10 km, and find that the impact event which produced the Gibbs cluster is intermediate between a cratering and a catastrophic collision. In addition, we search for new main-belt comets in the region of the Gibbs cluster by observing seven asteroids either belonging to the cluster, or being very close in the space of orbital proper elements. However, we do not detect any convincing evidence of the presence of a tail or coma in any our targets. Finally, we obtain optical images of P/2012 F5, and find absolute R-band and V-band magnitudes of HR = 17.0 ± 0.1 mag and HV = 17.4 ± 0.1 mag, respectively, corresponding to an upper limit on the diameter of the P/2012 F5 nucleus of ∼2 km.
NASA Technical Reports Server (NTRS)
Barker, R. E., Jr.
1985-01-01
Transient and steady-state phenomena in temperature, stress, and electric, field intensity in ferroelectric polymers were investigated. The application and extension of the theory in the primary stage to the polarization domain nucleation and growth in ferroelectric polymers were developed. The kinetics of this growth were investigated. Expressions describing nucleation under the influence of an electric field were found through the expansion of the Gibbs' free energy in a Maclaurin series. The series was expanded in the electric field strength rather than the degree of undercooling. The resulting expressions were manipulated and applied to the case of nucleation of polarized domains in ferroelectric polymers. The kinetics of the nucleation and growth of polarized domains are also investigated. This was accomplished through the modification of the Johnson-Mehl-Avrami treatment of crystallization kinetics to be applicable to the growth of polarization domains in ferroelectric materials.
NASA Technical Reports Server (NTRS)
Isham, M. A.
1992-01-01
Silicon carbide and silicon nitride are considered for application as structural materials and coating in advanced propulsion systems including nuclear thermal. Three-dimensional Gibbs free energy were constructed for reactions involving these materials in H2 and H2/H2O. Free energy plots are functions of temperature and pressure. Calculations used the definition of Gibbs free energy where the spontaneity of reactions is calculated as a function of temperature and pressure. Silicon carbide decomposes to Si and CH4 in pure H2 and forms a SiO2 scale in a wet atmosphere. Silicon nitride remains stable under all conditions. There was no apparent difference in reaction thermodynamics between ideal and Van der Waals treatment of gaseous species.
Plastino, A; Rocca, M C
2017-06-01
Appealing to the 1902 Gibbs formalism for classical statistical mechanics (SM)-the first SM axiomatic theory ever that successfully explained equilibrium thermodynamics-we show that already at the classical level there is a strong correlation between Renyi's exponent α and the number of particles for very simple systems. No reference to heat baths is needed for such a purpose.
GibbsCluster: unsupervised clustering and alignment of peptide sequences.
Andreatta, Massimo; Alvarez, Bruno; Nielsen, Morten
2017-07-03
Receptor interactions with short linear peptide fragments (ligands) are at the base of many biological signaling processes. Conserved and information-rich amino acid patterns, commonly called sequence motifs, shape and regulate these interactions. Because of the properties of a receptor-ligand system or of the assay used to interrogate it, experimental data often contain multiple sequence motifs. GibbsCluster is a powerful tool for unsupervised motif discovery because it can simultaneously cluster and align peptide data. The GibbsCluster 2.0 presented here is an improved version incorporating insertion and deletions accounting for variations in motif length in the peptide input. In basic terms, the program takes as input a set of peptide sequences and clusters them into meaningful groups. It returns the optimal number of clusters it identified, together with the sequence alignment and sequence motif characterizing each cluster. Several parameters are available to customize cluster analysis, including adjustable penalties for small clusters and overlapping groups and a trash cluster to remove outliers. As an example application, we used the server to deconvolute multiple specificities in large-scale peptidome data generated by mass spectrometry. The server is available at http://www.cbs.dtu.dk/services/GibbsCluster-2.0. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.
Consistent Estimation of Gibbs Energy Using Component Contributions
Milo, Ron; Fleming, Ronan M. T.
2013-01-01
Standard Gibbs energies of reactions are increasingly being used in metabolic modeling for applying thermodynamic constraints on reaction rates, metabolite concentrations and kinetic parameters. The increasing scope and diversity of metabolic models has led scientists to look for genome-scale solutions that can estimate the standard Gibbs energy of all the reactions in metabolism. Group contribution methods greatly increase coverage, albeit at the price of decreased precision. We present here a way to combine the estimations of group contribution with the more accurate reactant contributions by decomposing each reaction into two parts and applying one of the methods on each of them. This method gives priority to the reactant contributions over group contributions while guaranteeing that all estimations will be consistent, i.e. will not violate the first law of thermodynamics. We show that there is a significant increase in the accuracy of our estimations compared to standard group contribution. Specifically, our cross-validation results show an 80% reduction in the median absolute residual for reactions that can be derived by reactant contributions only. We provide the full framework and source code for deriving estimates of standard reaction Gibbs energy, as well as confidence intervals, and believe this will facilitate the wide use of thermodynamic data for a better understanding of metabolism. PMID:23874165
Density-functional theory computer simulations of CZTS0.25Se0.75 alloy phase diagrams
NASA Astrophysics Data System (ADS)
Chagarov, E.; Sardashti, K.; Haight, R.; Mitzi, D. B.; Kummel, A. C.
2016-08-01
Density-functional theory simulations of CZTS, CZTSe, and CZTS0.25Se0.75 photovoltaic compounds have been performed to investigate the stability of the CZTS0.25Se0.75 alloy vs. decomposition into CZTS, CZTSe, and other secondary compounds. The Gibbs energy for vibrational contributions was estimated by calculating phonon spectra and thermodynamic properties at finite temperatures. It was demonstrated that the CZTS0.25Se0.75 alloy is stabilized not by enthalpy of formation but primarily by the mixing contributions to the Gibbs energy. The Gibbs energy gains/losses for several decomposition reactions were calculated as a function of temperature with/without intermixing and vibration contributions to the Gibbs energy. A set of phase diagrams was built in the multidimensional space of chemical potentials at 300 K and 900 K temperatures to demonstrate alloy stability and boundary compounds at various chemical conditions. It demonstrated for CZTS0.25Se0.75 that the chemical potentials for stability differ between typical processing temperature (˜900 K) and operating temperature (300 K). This implies that as cooling progresses, the flux/concentration of S should be increased in MBE growth to maintain the CZTS0.25Se0.75 in a thermodynamically stable state to minimize phase decomposition.
A Gibbs sampler for Bayesian analysis of site-occupancy data
Dorazio, Robert M.; Rodriguez, Daniel Taylor
2012-01-01
1. A Bayesian analysis of site-occupancy data containing covariates of species occurrence and species detection probabilities is usually completed using Markov chain Monte Carlo methods in conjunction with software programs that can implement those methods for any statistical model, not just site-occupancy models. Although these software programs are quite flexible, considerable experience is often required to specify a model and to initialize the Markov chain so that summaries of the posterior distribution can be estimated efficiently and accurately. 2. As an alternative to these programs, we develop a Gibbs sampler for Bayesian analysis of site-occupancy data that include covariates of species occurrence and species detection probabilities. This Gibbs sampler is based on a class of site-occupancy models in which probabilities of species occurrence and detection are specified as probit-regression functions of site- and survey-specific covariate measurements. 3. To illustrate the Gibbs sampler, we analyse site-occupancy data of the blue hawker, Aeshna cyanea (Odonata, Aeshnidae), a common dragonfly species in Switzerland. Our analysis includes a comparison of results based on Bayesian and classical (non-Bayesian) methods of inference. We also provide code (based on the R software program) for conducting Bayesian and classical analyses of site-occupancy data.
Nonthermal steady states after an interaction quench in the Falicov-Kimball model.
Eckstein, Martin; Kollar, Marcus
2008-03-28
We present the exact solution of the Falicov-Kimball model after a sudden change of its interaction parameter using nonequilibrium dynamical mean-field theory. For different interaction quenches between the homogeneous metallic and insulating phases the system relaxes to a nonthermal steady state on time scales on the order of variant Planck's over 2pi/bandwidth, showing collapse and revival with an approximate period of h/interaction if the interaction is large. We discuss the reasons for this behavior and provide a statistical description of the final steady state by means of generalized Gibbs ensembles.
NASA Astrophysics Data System (ADS)
Macris, N.; Martin, Ph. A.; Pulé, J. V.
1988-06-01
We study the diamagnetic surface currents of particles in thermal equilibrium submitted to a constant magnetic field. The current density of independent electrons with Boltzmann (respectively Fermi) statistics has a gaussian (respectively exponential) bound for its fall off into the bulk. For a system of interacting particles at low activity with Boltzmann statistics, the current density is localized near to the boundary and integrable when the two-body potential decays as |x|-α, α >4, α>4, in three dimensions. In all cases, the integral of the current density is independent of the nature of the confining wall and correctly related to the bulk magnetisation. The results hold for hard and soft walls and all field strength. The analysis relies on the Feynman-Kac-Ito representation of the Gibbs state and on specific properties of the Brownian bridge process.
Dynamics of glass-forming liquids. XVIII. Does entropy control structural relaxation times?
NASA Astrophysics Data System (ADS)
Samanta, Subarna; Richert, Ranko
2015-01-01
We study the dielectric dynamics of viscous glycerol in the presence of a large bias field. Apart from dielectric saturation and polarization anisotropy, we observe that the steady state structural relaxation time is longer by 2.7% in the presence of a 225 kV/cm dc-field relative to the linear response counterpart, equivalent to a field induced glass transition (Tg) shift of +84 mK. This result compares favorably with the 3.0% time constant increase predicted on the basis of a recent report [G. P. Johari, J. Chem. Phys. 138, 154503 (2013)], where the field induced reduction of the configurational entropy translates into slower dynamics by virtue of the Adam-Gibbs relation. Other models of field dependent glass transition temperatures are also discussed. Similar to observations related to the electro-optical Kerr effect, the rise time of the field induced effect is much longer than its collapse when the field is removed again. The orientational relaxation time of the plastic crystal cyclo-octanol is more sensitive to a bias field, showing a 13.5% increase at a field of 150 kV/cm, equivalent to an increase of Tg by 0.58 K.
NASA Astrophysics Data System (ADS)
Björnbom, Pehr
2016-03-01
In the first part of this work equilibrium temperature profiles in fluid columns with ideal gas or ideal liquid were obtained by numerically minimizing the column energy at constant entropy, equivalent to maximizing column entropy at constant energy. A minimum in internal plus potential energy for an isothermal temperature profile was obtained in line with Gibbs' classical equilibrium criterion. However, a minimum in internal energy alone for adiabatic temperature profiles was also obtained. This led to a hypothesis that the adiabatic lapse rate corresponds to a restricted equilibrium state, a type of state in fact discussed already by Gibbs. In this paper similar numerical results for a fluid column with saturated air suggest that also the saturated adiabatic lapse rate corresponds to a restricted equilibrium state. The proposed hypothesis is further discussed and amended based on the previous and the present numerical results and a theoretical analysis based on Gibbs' equilibrium theory.
Hemingway, B.S.; Robie, R.A.; Apps, J.A.
1991-01-01
Heat capacity measurements are reported for a well-characterized boehmite that differ significantly from results reported earlier by Shomate and Cook (1946) for a monohydrate of alumina. It is suggested that the earlier measurements were made on a sample that was a mixture of phases and that use of that heat-capacity and derived thermodynamic data be discontinued. The entropy of boehmite derived in this study is 37.19 ?? 0.10 J/(mol.K) at 298.15 K. Based on our value for the entropy and accepting the recommended Gibbs free energy for Al(OH)-4, the Gibbs free energy and enthalpy of formation of boehmite are calculated to be -918.4 ?? 2.1 and -996.4 ?? 2.2 kJ/mol, respectively, from solubility data for boehmite. The Gibbs energy for boehmite is unchanged from that given by Hemingway et al. (1978). -from Authors
Refined two-index entropy and multiscale analysis for complex system
NASA Astrophysics Data System (ADS)
Bian, Songhan; Shang, Pengjian
2016-10-01
As a fundamental concept in describing complex system, entropy measure has been proposed to various forms, like Boltzmann-Gibbs (BG) entropy, one-index entropy, two-index entropy, sample entropy, permutation entropy etc. This paper proposes a new two-index entropy Sq,δ and we find the new two-index entropy is applicable to measure the complexity of wide range of systems in the terms of randomness and fluctuation range. For more complex system, the value of two-index entropy is smaller and the correlation between parameter δ and entropy Sq,δ is weaker. By combining the refined two-index entropy Sq,δ with scaling exponent h(δ), this paper analyzes the complexities of simulation series and classifies several financial markets in various regions of the world effectively.
Evolution of the scattering anisotropy of aged foams in the wet-to-dry transition
NASA Astrophysics Data System (ADS)
Zimnyakov, D. A.; Yuvchenko, S. A.; Isaeva, A. A.; Isaeva, E. A.; Samorodina, T. V.
2018-04-01
Empirical data on the diffuse and collimated transmittance of aged liquid foams are discussed in terms of influence of mutual correlations in the scatter positions. This influence can be described introducing the static structure factor of a scattering system and occurs remarkable in the case of wet foams with gas bubbles as the basic scattering units. On the contrary, mutual correlations of basic scattering units (Plateau-Gibbs channels and vertices) in dry foams are negligible due to low values of their volume fraction. This causes dramatic changes of the scattering anisotropy of foam layers in the vicinity of the wet-to-dry transition. Some analogies can be drawn between this effect and a previously reported "optical inversion" of densely packed random media.
Generalized Gibbs ensemble in integrable lattice models
NASA Astrophysics Data System (ADS)
Vidmar, Lev; Rigol, Marcos
2016-06-01
The generalized Gibbs ensemble (GGE) was introduced ten years ago to describe observables in isolated integrable quantum systems after equilibration. Since then, the GGE has been demonstrated to be a powerful tool to predict the outcome of the relaxation dynamics of few-body observables in a variety of integrable models, a process we call generalized thermalization. This review discusses several fundamental aspects of the GGE and generalized thermalization in integrable systems. In particular, we focus on questions such as: which observables equilibrate to the GGE predictions and who should play the role of the bath; what conserved quantities can be used to construct the GGE; what are the differences between generalized thermalization in noninteracting systems and in interacting systems mappable to noninteracting ones; why is it that the GGE works when traditional ensembles of statistical mechanics fail. Despite a lot of interest in these questions in recent years, no definite answers have been given. We review results for the XX model and for the transverse field Ising model. For the latter model, we also report original results and show that the GGE describes spin-spin correlations over the entire system. This makes apparent that there is no need to trace out a part of the system in real space for equilibration to occur and for the GGE to apply. In the past, a spectral decomposition of the weights of various statistical ensembles revealed that generalized eigenstate thermalization occurs in the XX model (hard-core bosons). Namely, eigenstates of the Hamiltonian with similar distributions of conserved quantities have similar expectation values of few-spin observables. Here we show that generalized eigenstate thermalization also occurs in the transverse field Ising model.
Fluctuations around equilibrium laws in ergodic continuous-time random walks.
Schulz, Johannes H P; Barkai, Eli
2015-06-01
We study occupation time statistics in ergodic continuous-time random walks. Under thermal detailed balance conditions, the average occupation time is given by the Boltzmann-Gibbs canonical law. But close to the nonergodic phase, the finite-time fluctuations around this mean are large and nontrivial. They exhibit dual time scaling and distribution laws: the infinite density of large fluctuations complements the Lévy-stable density of bulk fluctuations. Neither of the two should be interpreted as a stand-alone limiting law, as each has its own deficiency: the infinite density has an infinite norm (despite particle conservation), while the stable distribution has an infinite variance (although occupation times are bounded). These unphysical divergences are remedied by consistent use and interpretation of both formulas. Interestingly, while the system's canonical equilibrium laws naturally determine the mean occupation time of the ergodic motion, they also control the infinite and Lévy-stable densities of fluctuations. The duality of stable and infinite densities is in fact ubiquitous for these dynamics, as it concerns the time averages of general physical observables.
A bayesian hierarchical model for classification with selection of functional predictors.
Zhu, Hongxiao; Vannucci, Marina; Cox, Dennis D
2010-06-01
In functional data classification, functional observations are often contaminated by various systematic effects, such as random batch effects caused by device artifacts, or fixed effects caused by sample-related factors. These effects may lead to classification bias and thus should not be neglected. Another issue of concern is the selection of functions when predictors consist of multiple functions, some of which may be redundant. The above issues arise in a real data application where we use fluorescence spectroscopy to detect cervical precancer. In this article, we propose a Bayesian hierarchical model that takes into account random batch effects and selects effective functions among multiple functional predictors. Fixed effects or predictors in nonfunctional form are also included in the model. The dimension of the functional data is reduced through orthonormal basis expansion or functional principal components. For posterior sampling, we use a hybrid Metropolis-Hastings/Gibbs sampler, which suffers slow mixing. An evolutionary Monte Carlo algorithm is applied to improve the mixing. Simulation and real data application show that the proposed model provides accurate selection of functional predictors as well as good classification.
Xu, Hui; Li, Pei Xun; Ma, Kun; Thomas, Robert K; Penfold, Jeffrey; Lu, Jian Ren
2013-07-30
This is a second paper responding to recent papers by Menger et al. and the ensuing discussion about the application of the Gibbs equation to surface tension (ST) data. Using new neutron reflection (NR) measurements on sodium dodecylsulfate (SDS) and sodium dodecylmonooxyethylene sulfate (SLES) above and below their CMCs and with and without added NaCl, in conjunction with the previous ST measurements on SDS by Elworthy and Mysels (EM), we conclude that (i) ST measurements are often seriously compromised by traces of divalent ions, (ii) adsorption does not generally reach saturation at the CMC, making it difficult to obtain the limiting Gibbs slope, and (iii) the significant width of micellization may make it impossible to apply the Gibbs equation in a significant range of concentration below the CMC. Menger et al. proposed ii as a reason for the difficulty of applying the Gibbs equation to ST data. Conclusions i and iii now further emphasize the failings of the ST-Gibbs analysis for determining the limiting coverage at the CMC, especially for SDS. For SDS, adsorption increases above the CMC to a value of 10 × CMC, which is about 25% greater than at the CMC and about the same as at the CMC in the presence of 0.1 M NaCl. In contrast, the adsorption of SLES reaches a limit at the CMC with no further increase up to 10 × CMC, but the addition of 0.1 M NaCl increases the surface excess by 20-25%. The results for SDS are combined with earlier NR results to generate an adsorption isotherm from 2 to 100 mM. The NR results for SDS are compared to the definitive surface tension (ST) measurements of EM, and the surface excesses agree over the range where they can safely be compared, from 2 to 6 mM. This confirms that the anomalous decrease in the slope of EM's σ - ln c curve between 6 mM and the CMC at 8.2 mM results from changes in activity associated with a significant width of micellization. This anomaly shows that it is impossible to apply the Gibbs equation usefully from 6 to 8.2 mM (i.e., the lack of knowledge of the activity in this range is the same as above the CMC (8.2 mM)). It was found that a mislabeling of the original data in EM may have prevented the use of this excellent ST data as a standard by other authors. Although NR and ST results for SDS in the absence of added electrolyte show that the discrepancies can be rationalized, ST is generally shown to be less accurate and more vulnerable to impurities, especially divalent ions, than NR. The radiotracer technique is shown to be less accurate than ST-Gibbs in that the four radiotracer measurements of the surface excess are consistent neither with each other nor with ST and NR. It is also shown that radiotracer results on aerosol-OT are likely to be incorrect. Application of the mass action (MA) model of micellization to the ST curves of SDS and SLES through and above the CMC shows that they can be explained by this model and that they depend on the degree of dissociation of the micelle, which leads to a larger change in the mean activity, and hence the adsorption, for the more highly dissociated SDS micelles than for SLES. Previous measurements of the activity of SDS above the CMC were found to be semiquantitatively consistent with the change in mean activity predicted by the MA model but inconsistent with the combined ST, NR, and Gibbs equation results.
NASA Astrophysics Data System (ADS)
Cui, B.; Song, C.; Li, F.; Zhong, X. Y.; Wang, Z. C.; Werner, P.; Gu, Y. D.; Wu, H. Q.; Saleem, M. S.; Parkin, S. S. P.; Pan, F.
2017-10-01
Manipulation of oxygen vacancies (VO ) in single oxide layers by varying the electric field can result in significant modulation of the ground state. However, in many oxide multilayers with strong application potentials, e.g., ferroelectric tunnel junctions and solid-oxide fuel cells, understanding VO behavior in various layers under an applied electric field remains a challenge, owing to complex VO transport between different layers. By sweeping the external voltage, a reversible manipulation of VO and a corresponding fixed magnetic phase transition sequence in cobaltite/manganite (SrCoO3 -x/La0.45Sr0.55MnO3 -y ) heterostructures are reported. The magnetic phase transition sequence confirms that the priority of electric-field-induced VO formation or annihilation in the complex bilayer system is mainly determined by the VO formation energies and Gibbs free-energy differences, which is supported by theoretical analysis. We not only realize a reversible manipulation of the magnetic phase transition in an oxide bilayer but also provide insight into the electric-field control of VO engineering in heterostructures.
Direct measurements of the Gibbs free energy of OH using a CW tunable laser
NASA Technical Reports Server (NTRS)
Killinger, D. K.; Wang, C. C.
1979-01-01
The paper describes an absorption measurement for determining the Gibbs free energy of OH generated in a mixture of water and oxygen vapor. These measurements afford a direct verification of the accuracy of thermochemical data of H2O at high temperatures and pressures. The results indicate that values for the heat capacity of H2O obtained through numerical computations are correct within an experimental uncertainty of 0.15 cal/mole K.
Generating Natural Language Under Pragmatic Constraints.
1987-03-01
central issue, Carter’s loss. concentrating on ,more, pleasant aspects. But what would happen in an extreme case ’.’ what if you, a Carter supporter. are...In [Cohen 78], Cohen studied the effect of the hearer’s knowledge on the selection of appropriate speech act (say, REQUEST vs INFORM OF WANT...utterances is studied in [Clark & Carlson 81], [Clark & Murphy 82]; [Gibbs 79] and [Gibbs 81] discuss the effects of context on the processing of indirect
Air Force Logistics Command DCS/Materiel Management 1988-9 Master Plan
1988-10-01
MMMAI, AUTOVON 787-2587 Member: Mr James Gibbs, HQ AFLC/MMMES, AUTOVON 787-3407 PROJECT SPONSOR: Mr Steve Stewart, HQ AFLC/MMME, AUTOVON 787-5280 HQ...AFLC OPR: Mr James Gibbs, HQ AFLC/MMMES, AUTOVON 787-3407 PROBLEM STATEMENT: Item managers do not have a procedure to analyze the economic costs and/or...513) 429-0055 Contractor: The Analytic Sciences Corporation (Contact) Mr Rich Mabe , (513) 426-1040 PROJECT SPONSOR: Lt Col Michael Williams, HQ USAF
1988-11-01
rates.6 The Hammet equation , also called the Linear Free Energy Relationship (LFER) because of the relationship of the Gibb’s Free Energy to the... equations for numerous biological and physicochemical properties. Linear Solvation Enery Relationship (LSER), a sub-set of QSAR have been used by...originates from thermodynamics, where Hammet recognized the relationship of structure to the Gibb’s Free Energy, and ultimately to equilibria and reaction
Density-functional theory computer simulations of CZTS{sub 0.25}Se{sub 0.75} alloy phase diagrams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chagarov, E.; Sardashti, K.; Kummel, A. C.
2016-08-14
Density-functional theory simulations of CZTS, CZTSe, and CZTS{sub 0.25}Se{sub 0.75} photovoltaic compounds have been performed to investigate the stability of the CZTS{sub 0.25}Se{sub 0.75} alloy vs. decomposition into CZTS, CZTSe, and other secondary compounds. The Gibbs energy for vibrational contributions was estimated by calculating phonon spectra and thermodynamic properties at finite temperatures. It was demonstrated that the CZTS{sub 0.25}Se{sub 0.75} alloy is stabilized not by enthalpy of formation but primarily by the mixing contributions to the Gibbs energy. The Gibbs energy gains/losses for several decomposition reactions were calculated as a function of temperature with/without intermixing and vibration contributions to themore » Gibbs energy. A set of phase diagrams was built in the multidimensional space of chemical potentials at 300 K and 900 K temperatures to demonstrate alloy stability and boundary compounds at various chemical conditions. It demonstrated for CZTS{sub 0.25}Se{sub 0.75} that the chemical potentials for stability differ between typical processing temperature (∼900 K) and operating temperature (300 K). This implies that as cooling progresses, the flux/concentration of S should be increased in MBE growth to maintain the CZTS{sub 0.25}Se{sub 0.75} in a thermodynamically stable state to minimize phase decomposition.« less
Moriya, Yoshio; Hasegawa, Takeshi; Okada, Tetsuo; Ogawa, Nobuaki; Kawai, Erika; Abe, Kosuke; Ogasawara, Masataka; Kato, Sumio; Nakata, Shinichi
2006-11-15
Gibbs monolayers of lipophilic tetraphenylporphyrinatomanganese(III) and hydrophilic diacid of meso-tetrakis(4-sulfonatopheny)porphyrin adsorbed at the liquid-liquid interface have been analyzed by UV-visible external reflection (ER) and partial internal reflection (PIR) spectra measured at different angles of incidence. The angle-dependent ER and PIR spectra over the Brewster angles (thetaERB and thetaIRB) have readily been measured at the toluene/water interface. As preliminarily expected in our previous study, the present study has first proved that the reflection-absorbance of UV-visible PIR spectra quantitatively agrees with the theoretical calculations for the Gibbs monolayer over thetaIRB. In addition, it has also been proved that the absorbance of the PIR spectra is greatly enhanced in comparison to that of the ATR spectra. The enhancement is caused by an optical effect in the monolayer sandwiched between two phases of toluene and water that have different but refractive indices close to each other. This optical enhancement requires an optically perfect contact between the phases, which is difficult to prepare for a solid-solid contact. At the liquid/liquid interface, however, an ideal optical contact is easily realized, which makes the enhancement as much as the theoretical expectation. The PIR spectrometry will be recognized to be a new high-sensitive analytical tool to study Gibbs monolayer at the liquid/liquid interface.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Shu-Kun
1996-12-31
Gibbs paradox statement of entropy of mixing has been regarded as the theoretical foundation of statistical mechanics, quantum theory and biophysics. However, all the relevant chemical experimental observations and logical analyses indicate that the Gibbs paradox statement is false. I prove that this statement is wrong: Gibbs paradox statement implies that entropy decreases with the increase in symmetry (as represented by a symmetry number {sigma}; see any statistical mechanics textbook). From group theory any system has at least a symmetry number {sigma}=1 which is the identity operation for a strictly asymmetric system. It follows that the entropy of a systemmore » is equal to, or less than, zero. However, from either von Neumann-Shannon entropy formula (S(w) =-{Sigma}{sup {omega}} in p{sub 1}) or the Boltzmann entropy formula (S = in w) and the original definition, entropy is non-negative. Therefore, this statement is false. It should not be a surprise that for the first time, many outstanding problems such as the validity of Pauling`s resonance theory, the explanation of second order phase transition phenomena, the biophysical problem of protein folding and the related hydrophobic effect, etc., can be solved. Empirical principles such as Pauli principle (and Hund`s rule) and HSAB principle, etc., can also be given a theoretical explanation.« less
NASA Astrophysics Data System (ADS)
Chen, Yun-Yu
2016-12-01
As a kind of mass transfer process as well as the basis of separating and purifying mixtures, interfacial adsorption has been widely applied to fields like chemical industry, medical industry and purification engineering in recent years. Influencing factors of interfacial adsorption, in addition to the traditional temperature, intensity of pressure, amount of substance and concentration, also include external fields, such as magnetic field, electric field and electromagnetic field, etc. Starting from the point of thermodynamics and taking the Gibbs adsorption as the model, the combination of energy axiom and the first law of thermodynamics was applied to boundary phase, and thus the theoretical expression for the volume of interface absorption under electric field as well as the mathematical relationship between surface tension and electric field intensity was obtained. In addition, according to the obtained theoretical expression, the volume of interface absorption of ethanol solution under different electric field intensities and concentrations was calculated. Moreover, the mechanism of interfacial adsorption was described from the perspective of thermodynamics and the influence of electric field on interfacial adsorption was explained reasonably, aiming to further discuss the influence of thermodynamic mechanism of interfacial adsorption on purifying air-conditioning engineering under intensification of electric field.
Heritability of hypothyroidism in the Finnish Hovawart population.
Åhlgren, Johanna; Uimari, Pekka
2016-06-07
The Hovawart is a working and companion dog breed of German origin. A few hundred Hovawart dogs are registered annually in Finland. The most common disease with a proposed genetic background in Hovawarts is hypothyroidism. The disease is usually caused by lymphocytic thyroiditis, an autoimmune disorder which destroys the thyroid gland. Hypothyroidism can be treated medically with hormone replacement. Its overall incidence could also be reduced through selection, provided that the trait shows an adequate genetic basis. The aim of this study was to estimate the heritability of hypothyroidism in the Finnish Hovawart population. The pedigree data for the study were provided by the Finnish Kennel Club and the hypothyroidism data by the Finnish Hovawart Club. The data included 4953 dogs born between 1990 and 2010, of which 107 had hypothyroidism and 4846 were unaffected. Prior to the estimation of heritability, we studied the effects of gender, birth year, birth month, and inbreeding on susceptibility to hypothyroidism. Heritability was estimated with the probit model both via restricted maximum likelihood (REML) and Gibbs sampling, using litter and sire of the dog as random effects. None of the studied systematic effects or level of inbreeding had a significant effect on susceptibility to hypothyroidism. The estimated heritability of hypothyroidism varied from 0.47 (SE = 0.18) using REML to 0.62 (SD = 0.21) using Gibbs sampling. Based on our analysis, the heritability of hypothyroidism is moderate to high, suggesting that its prevalence could be decreased through selection. Thus, breeders should notify the breed association of any affected dogs, and their use for breeding should be avoided.
Improved prediction of MHC class I and class II epitopes using a novel Gibbs sampling approach.
Nielsen, Morten; Lundegaard, Claus; Worning, Peder; Hvid, Christina Sylvester; Lamberth, Kasper; Buus, Søren; Brunak, Søren; Lund, Ole
2004-06-12
Prediction of which peptides will bind a specific major histocompatibility complex (MHC) constitutes an important step in identifying potential T-cell epitopes suitable as vaccine candidates. MHC class II binding peptides have a broad length distribution complicating such predictions. Thus, identifying the correct alignment is a crucial part of identifying the core of an MHC class II binding motif. In this context, we wish to describe a novel Gibbs motif sampler method ideally suited for recognizing such weak sequence motifs. The method is based on the Gibbs sampling method, and it incorporates novel features optimized for the task of recognizing the binding motif of MHC classes I and II. The method locates the binding motif in a set of sequences and characterizes the motif in terms of a weight-matrix. Subsequently, the weight-matrix can be applied to identifying effectively potential MHC binding peptides and to guiding the process of rational vaccine design. We apply the motif sampler method to the complex problem of MHC class II binding. The input to the method is amino acid peptide sequences extracted from the public databases of SYFPEITHI and MHCPEP and known to bind to the MHC class II complex HLA-DR4(B1*0401). Prior identification of information-rich (anchor) positions in the binding motif is shown to improve the predictive performance of the Gibbs sampler. Similarly, a consensus solution obtained from an ensemble average over suboptimal solutions is shown to outperform the use of a single optimal solution. In a large-scale benchmark calculation, the performance is quantified using relative operating characteristics curve (ROC) plots and we make a detailed comparison of the performance with that of both the TEPITOPE method and a weight-matrix derived using the conventional alignment algorithm of ClustalW. The calculation demonstrates that the predictive performance of the Gibbs sampler is higher than that of ClustalW and in most cases also higher than that of the TEPITOPE method.
Biochemical thermodynamics: applications of Mathematica.
Alberty, Robert A
2006-01-01
The most efficient way to store thermodynamic data on enzyme-catalyzed reactions is to use matrices of species properties. Since equilibrium in enzyme-catalyzed reactions is reached at specified pH values, the thermodynamics of the reactions is discussed in terms of transformed thermodynamic properties. These transformed thermodynamic properties are complicated functions of temperature, pH, and ionic strength that can be calculated from the matrices of species values. The most important of these transformed thermodynamic properties is the standard transformed Gibbs energy of formation of a reactant (sum of species). It is the most important because when this function of temperature, pH, and ionic strength is known, all the other standard transformed properties can be calculated by taking partial derivatives. The species database in this package contains data matrices for 199 reactants. For 94 of these reactants, standard enthalpies of formation of species are known, and so standard transformed Gibbs energies, standard transformed enthalpies, standard transformed entropies, and average numbers of hydrogen atoms can be calculated as functions of temperature, pH, and ionic strength. For reactions between these 94 reactants, the changes in these properties can be calculated over a range of temperatures, pHs, and ionic strengths, and so can apparent equilibrium constants. For the other 105 reactants, only standard transformed Gibbs energies of formation and average numbers of hydrogen atoms at 298.15 K can be calculated. The loading of this package provides functions of pH and ionic strength at 298.15 K for standard transformed Gibbs energies of formation and average numbers of hydrogen atoms for 199 reactants. It also provides functions of temperature, pH, and ionic strength for the standard transformed Gibbs energies of formation, standard transformed enthalpies of formation, standard transformed entropies of formation, and average numbers of hydrogen atoms for 94 reactants. Thus loading this package makes available 774 mathematical functions for these properties. These functions can be added and subtracted to obtain changes in these properties in biochemical reactions and apparent equilibrium constants.
A three-dimensional phase field model for nanowire growth by the vapor-liquid-solid mechanism
NASA Astrophysics Data System (ADS)
Wang, Yanming; Ryu, Seunghwa; McIntyre, Paul C.; Cai, Wei
2014-07-01
We present a three-dimensional multi-phase field model for catalyzed nanowire (NW) growth by the vapor-liquid-solid (VLS) mechanism. The equation of motion contains both a Ginzburg-Landau term for deposition and a diffusion (Cahn-Hilliard) term for interface relaxation without deposition. Direct deposition from vapor to solid, which competes with NW crystal growth through the molten catalyst droplet, is suppressed by assigning a very small kinetic coefficient at the solid-vapor interface. The thermodynamic self-consistency of the model is demonstrated by its ability to reproduce the equilibrium contact angles at the VLS junction. The incorporation of orientation dependent gradient energy leads to faceting of the solid-liquid and solid-vapor interfaces. The model successfully captures the curved shape of the NW base and the Gibbs-Thomson effect on growth velocity.
Nonequilibrium Thermodynamics of Hydrate Growth on a Gas-Liquid Interface
NASA Astrophysics Data System (ADS)
Fu, Xiaojing; Cueto-Felgueroso, Luis; Juanes, Ruben
2018-04-01
We develop a continuum-scale phase-field model to study gas-liquid-hydrate systems far from thermodynamic equilibrium. We design a Gibbs free energy functional for methane-water mixtures that recovers the isobaric temperature-composition phase diagram under thermodynamic equilibrium conditions. The proposed free energy is incorporated into a phase-field model to study the dynamics of hydrate formation on a gas-liquid interface. We elucidate the role of initial aqueous concentration in determining the direction of hydrate growth at the interface, in agreement with experimental observations. Our model also reveals two stages of hydrate growth at an interface—controlled by a crossover in how methane is supplied from the gas and liquid phases—which could explain the persistence of gas conduits in hydrate-bearing sediments and other nonequilibrium phenomena commonly observed in natural methane hydrate systems.
Chialvo, Ariel A.; Moucka, Filip; Vlcek, Lukas; ...
2015-03-24
Here we implemented the Gaussian charge-on-spring (GCOS) version of the original self-consistent field implementation of the Gaussian Charge Polarizable water model and test its accuracy to represent the polarization behavior of the original model involving smeared charges and induced dipole moments. Moreover, for that purpose we adapted the recently developed multiple-particle-move (MPM) within the Gibbs and isochoric-isothermal ensembles Monte Carlo methods for the efficient simulation of polarizable fluids. We also assessed the accuracy of the GCOS representation by a direct comparison of the resulting vapor-liquid phase envelope, microstructure, and relevant microscopic descriptors of water polarization along the orthobaric curve againstmore » the corresponding quantities from the actual GCP water model.« less
Nonequilibrium Thermodynamics of Hydrate Growth on a Gas-Liquid Interface.
Fu, Xiaojing; Cueto-Felgueroso, Luis; Juanes, Ruben
2018-04-06
We develop a continuum-scale phase-field model to study gas-liquid-hydrate systems far from thermodynamic equilibrium. We design a Gibbs free energy functional for methane-water mixtures that recovers the isobaric temperature-composition phase diagram under thermodynamic equilibrium conditions. The proposed free energy is incorporated into a phase-field model to study the dynamics of hydrate formation on a gas-liquid interface. We elucidate the role of initial aqueous concentration in determining the direction of hydrate growth at the interface, in agreement with experimental observations. Our model also reveals two stages of hydrate growth at an interface-controlled by a crossover in how methane is supplied from the gas and liquid phases-which could explain the persistence of gas conduits in hydrate-bearing sediments and other nonequilibrium phenomena commonly observed in natural methane hydrate systems.
Historical and Future Roles of the Tactical Signal Officer
1991-03-27
can soil . LTC James. his sigralmen ind ooat crew on tr,e snic m-4Ca scccmolished both feats while under heavy artillery fi-e rrom tne Soanish on...the capture of Fort Malate to Admiral Dewey’s fleet in Manila Bay. Sergeant Gibbs later became Major General Gibbs, and Chief of Signal in 1928.17...kept critical equipment out of operation required in commmand and control, and degraded the unit’s ability to see the enemy at night. These officers
Solubility and dissolution thermodynamics of tetranitroglycoluril in organic solvents at 295-318 K
NASA Astrophysics Data System (ADS)
Zheng, Zhihua; Wang, Jianlong; Hu, Zhiyan; Du, Hongbin
2017-08-01
The solubility data of tetranitroglycoluril in acetone, methanol, ethanol, ethyl acetate, nitromethane and chloroform at temperatures ranging from 295-318 K were measured by gravimetric method. The solubility data of tetranitroglycoluril were fitted with Apelblat semiempirical equation. The dissolution enthalpy, entropy and Gibbs energy of tetranitroglycoluril were calculated using the Van't Hoff and Gibbs equations. The results showed that the Apelblat semiempirical equation was significantly correlated with solubility data. The dissolving process was endothermic, entropy-driven, and nonspontaneous.
NASA Technical Reports Server (NTRS)
Gottlieb, David; Shu, Chi-Wang; Solomonoff, Alex; Vandeven, Herve
1992-01-01
It is well known that the Fourier series of an analytic or periodic function, truncated after 2N+1 terms, converges exponentially with N, even in the maximum norm, although the function is still analytic. This is known as the Gibbs phenomenon. Here, we show that the first 2N+1 Fourier coefficients contain enough information about the function, so that an exponentially convergent approximation (in the maximum norm) can be constructed.
A kinetic study of jack-bean urease denaturation by a new dithiocarbamate bismuth compound
NASA Astrophysics Data System (ADS)
Menezes, D. C.; Borges, E.; Torres, M. F.; Braga, J. P.
2012-10-01
A kinetic study concerning enzymatic inhibitory effect of a new bismuth dithiocarbamate complex on jack-bean urease is reported. A neural network approach is used to solve the ill-posed inverse problem arising from numerical treatment of the subject. A reaction mechanism for the urease denaturation process is proposed and the rate constants, relaxation time constants, equilibrium constants, activation Gibbs free energies for each reaction step and Gibbs free energies for the transition species are determined.
Thermodynamic model of a solid with RKKY interaction and magnetoelastic coupling
NASA Astrophysics Data System (ADS)
Balcerzak, T.; Szałowski, K.; Jaščur, M.
2018-04-01
Thermodynamic description of a model system with magnetoelastic coupling is presented. The elastic, vibrational, electronic and magnetic energy contributions are taken into account. The long-range RKKY interaction is considered together with the nearest-neighbour direct exchange. The generalized Gibbs potential and the set of equations of state are derived, from which all thermodynamic functions are self-consistently obtained. Thermodynamic properties are calculated numerically for FCC structure for arbitrary external pressure, magnetic field and temperature, and widely discussed. In particular, for some parameters of interaction potential and electron concentration corresponding to antiferromagnetic phase, the existence of negative thermal expansion coefficient is predicted.
Thermodynamics properties of lanthanide series near melting point-A pseudopotential approach
NASA Astrophysics Data System (ADS)
Suthar, P. H.; Gajjar, P. N.
2018-04-01
The present paper deals with computational study of thermodynamics properties for fifteen elements of lanthanide series. The Helmholtz free energy (F), Internal energy (E) and Entropy (S)have been computed using variational method based on the Gibbs-Bogoliubov (GB) along with Percus-Yevick hard sphere reference system and Gajjar's model potential. The local field correction function proposed by Taylor is applied to introduce the exchange and correlation effects in the study of thermodynamics of these metals. The present results in comparison with available theoretical and experimental are found to be in good agreement and confirm the ability of the model potential.
Constitution and thermodynamics of the Mo-Ru, Mo-Pd, Ru-Pd and Mo-Ru-Pd systems
NASA Astrophysics Data System (ADS)
Kleykamp, H.
1989-09-01
The constitution of the Mo-Ru, Mo-Pd and Ru-Pd systems was reinvestigated between 800 and 2000°C. The Mo-Ru system is of the eutectic type, a σ-phase Mo 5Ru 3 exists between 1915 and 1143°C. The Mo-Pd system is characterized by an hcp phase Mo 9Pd 11 and by two peritectic reactions, β- Mo( Pd) + L = Mo9Pd11andMo9Pd11 + L = α- Pd( Mo). Mo 9Pd 11 decomposes eutectoidally at 1370°C. The Ru-Pd system is simple peritectic. The continuous series of the hcp solid solutions between Mo 9Pd 11 and ɛ-Ru(Mo, Pd) in the ternary Mo-Ru-Pd system observed at 1700°C are suppressed below 1370°C near the Mo-Pd boundary system by the formation of a narrow α + β + ɛ three-phase field. Relative partial molar Gibbs energies of Mo, Mo and Ru in the respective binary systems and of Mo in the ternary system were measured by the EMF method with a Zr(Ca)O 2 electrolyte. xsΔ ḠMo∞ quantities were evaluated at 1200 K which give -43 kJ/mol Mo in Ru and -94 kJ/mol Mo in Pd at infinite dilution. Gibbs energies of formation of the Mo-Ru and Mo-Pd systems were calculated.
Korsgaard, Inge Riis; Lund, Mogens Sandø; Sorensen, Daniel; Gianola, Daniel; Madsen, Per; Jensen, Just
2003-01-01
A fully Bayesian analysis using Gibbs sampling and data augmentation in a multivariate model of Gaussian, right censored, and grouped Gaussian traits is described. The grouped Gaussian traits are either ordered categorical traits (with more than two categories) or binary traits, where the grouping is determined via thresholds on the underlying Gaussian scale, the liability scale. Allowances are made for unequal models, unknown covariance matrices and missing data. Having outlined the theory, strategies for implementation are reviewed. These include joint sampling of location parameters; efficient sampling from the fully conditional posterior distribution of augmented data, a multivariate truncated normal distribution; and sampling from the conditional inverse Wishart distribution, the fully conditional posterior distribution of the residual covariance matrix. Finally, a simulated dataset was analysed to illustrate the methodology. This paper concentrates on a model where residuals associated with liabilities of the binary traits are assumed to be independent. A Bayesian analysis using Gibbs sampling is outlined for the model where this assumption is relaxed. PMID:12633531
A semi-Lagrangian advection scheme for radioactive tracers in a regional spectral model
NASA Astrophysics Data System (ADS)
Chang, E.-C.; Yoshimura, K.
2015-06-01
In this study, the non-iteration dimensional-split semi-Lagrangian (NDSL) advection scheme is applied to the National Centers for Environmental Prediction (NCEP) regional spectral model (RSM) to alleviate the Gibbs phenomenon. The Gibbs phenomenon is a problem wherein negative values of positive-definite quantities (e.g., moisture and tracers) are generated by the spectral space transformation in a spectral model system. To solve this problem, the spectral prognostic specific humidity and radioactive tracer advection scheme is replaced by the NDSL advection scheme, which considers advection of tracers in a grid system without spectral space transformations. A regional version of the NDSL is developed in this study and is applied to the RSM. Idealized experiments show that the regional version of the NDSL is successful. The model runs for an actual case study suggest that the NDSL can successfully advect radioactive tracers (iodine-131 and cesium-137) without noise from the Gibbs phenomenon. The NDSL can also remove negative specific humidity values produced in spectral calculations without losing detailed features.
Computing the absolute Gibbs free energy in atomistic simulations: Applications to defects in solids
NASA Astrophysics Data System (ADS)
Cheng, Bingqing; Ceriotti, Michele
2018-02-01
The Gibbs free energy is the fundamental thermodynamic potential underlying the relative stability of different states of matter under constant-pressure conditions. However, computing this quantity from atomic-scale simulations is far from trivial, so the potential energy of a system is often used as a proxy. In this paper, we use a combination of thermodynamic integration methods to accurately evaluate the Gibbs free energies associated with defects in crystals, including the vacancy formation energy in bcc iron, and the stacking fault energy in fcc nickel, iron, and cobalt. We quantify the importance of entropic and anharmonic effects in determining the free energies of defects at high temperatures, and show that the potential energy approximation as well as the harmonic approximation may produce inaccurate or even qualitatively wrong results. Our calculations manifest the necessity to employ accurate free energy methods such as thermodynamic integration to estimate the stability of crystallographic defects at high temperatures.
Fractional Stochastic Differential Equations Satisfying Fluctuation-Dissipation Theorem
NASA Astrophysics Data System (ADS)
Li, Lei; Liu, Jian-Guo; Lu, Jianfeng
2017-10-01
We propose in this work a fractional stochastic differential equation (FSDE) model consistent with the over-damped limit of the generalized Langevin equation model. As a result of the `fluctuation-dissipation theorem', the differential equations driven by fractional Brownian noise to model memory effects should be paired with Caputo derivatives, and this FSDE model should be understood in an integral form. We establish the existence of strong solutions for such equations and discuss the ergodicity and convergence to Gibbs measure. In the linear forcing regime, we show rigorously the algebraic convergence to Gibbs measure when the `fluctuation-dissipation theorem' is satisfied, and this verifies that satisfying `fluctuation-dissipation theorem' indeed leads to the correct physical behavior. We further discuss possible approaches to analyze the ergodicity and convergence to Gibbs measure in the nonlinear forcing regime, while leave the rigorous analysis for future works. The FSDE model proposed is suitable for systems in contact with heat bath with power-law kernel and subdiffusion behaviors.
Towards Holography via Quantum Source-Channel Codes.
Pastawski, Fernando; Eisert, Jens; Wilming, Henrik
2017-07-14
While originally motivated by quantum computation, quantum error correction (QEC) is currently providing valuable insights into many-body quantum physics, such as topological phases of matter. Furthermore, mounting evidence originating from holography research (AdS/CFT) indicates that QEC should also be pertinent for conformal field theories. With this motivation in mind, we introduce quantum source-channel codes, which combine features of lossy compression and approximate quantum error correction, both of which are predicted in holography. Through a recent construction for approximate recovery maps, we derive guarantees on its erasure decoding performance from calculations of an entropic quantity called conditional mutual information. As an example, we consider Gibbs states of the transverse field Ising model at criticality and provide evidence that they exhibit nontrivial protection from local erasure. This gives rise to the first concrete interpretation of a bona fide conformal field theory as a quantum error correcting code. We argue that quantum source-channel codes are of independent interest beyond holography.
Towards Holography via Quantum Source-Channel Codes
NASA Astrophysics Data System (ADS)
Pastawski, Fernando; Eisert, Jens; Wilming, Henrik
2017-07-01
While originally motivated by quantum computation, quantum error correction (QEC) is currently providing valuable insights into many-body quantum physics, such as topological phases of matter. Furthermore, mounting evidence originating from holography research (AdS/CFT) indicates that QEC should also be pertinent for conformal field theories. With this motivation in mind, we introduce quantum source-channel codes, which combine features of lossy compression and approximate quantum error correction, both of which are predicted in holography. Through a recent construction for approximate recovery maps, we derive guarantees on its erasure decoding performance from calculations of an entropic quantity called conditional mutual information. As an example, we consider Gibbs states of the transverse field Ising model at criticality and provide evidence that they exhibit nontrivial protection from local erasure. This gives rise to the first concrete interpretation of a bona fide conformal field theory as a quantum error correcting code. We argue that quantum source-channel codes are of independent interest beyond holography.
Cooperative strings and glassy interfaces
Salez, Thomas; Salez, Justin; Dalnoki-Veress, Kari; Raphaël, Elie; Forrest, James A.
2015-01-01
We introduce a minimal theory of glass formation based on the ideas of molecular crowding and resultant string-like cooperative rearrangement, and address the effects of free interfaces. In the bulk case, we obtain a scaling expression for the number of particles taking part in cooperative strings, and we recover the Adam–Gibbs description of glassy dynamics. Then, by including thermal dilatation, the Vogel–Fulcher–Tammann relation is derived. Moreover, the random and string-like characters of the cooperative rearrangement allow us to predict a temperature-dependent expression for the cooperative length ξ of bulk relaxation. Finally, we explore the influence of sample boundaries when the system size becomes comparable to ξ. The theory is in agreement with measurements of the glass-transition temperature of thin polymer films, and allows quantification of the temperature-dependent thickness hm of the interfacial mobile layer. PMID:26100908
Rotational KMS States and Type I Conformal Nets
NASA Astrophysics Data System (ADS)
Longo, Roberto; Tanimoto, Yoh
2018-01-01
We consider KMS states on a local conformal net on S 1 with respect to rotations. We prove that, if the conformal net is of type I, namely if it admits only type I DHR representations, then the extremal KMS states are the Gibbs states in an irreducible representation. Completely rational nets, the U(1)-current net, the Virasoro nets and their finite tensor products are shown to be of type I. In the completely rational case, we also give a direct proof that all factorial KMS states are Gibbs states.
NASA Astrophysics Data System (ADS)
Naumov, V. V.; Isaeva, V. A.; Kuzina, E. N.; Sharnin, V. A.
2012-12-01
Gibbs energies for the transfer of glycylglycine and glycylglycinate ions from water to water-dimethylsulfoxide solvents are determined from the interface distribution of substances between immiscible phases in the composition range of 0.00 to 0.20 molar fractions of DMSO at 298.15 K. It is shown that with a rise in the concentration of nonaqueous components in solution, we observe the solvation of dipeptide and its anion, due mainly to the destabilization of the carboxyl group.
Song, Wei; Cho, Kyungeun; Um, Kyhyun; Won, Chee Sun; Sim, Sungdae
2012-01-01
Mobile robot operators must make rapid decisions based on information about the robot’s surrounding environment. This means that terrain modeling and photorealistic visualization are required for the remote operation of mobile robots. We have produced a voxel map and textured mesh from the 2D and 3D datasets collected by a robot’s array of sensors, but some upper parts of objects are beyond the sensors’ measurements and these parts are missing in the terrain reconstruction result. This result is an incomplete terrain model. To solve this problem, we present a new ground segmentation method to detect non-ground data in the reconstructed voxel map. Our method uses height histograms to estimate the ground height range, and a Gibbs-Markov random field model to refine the segmentation results. To reconstruct a complete terrain model of the 3D environment, we develop a 3D boundary estimation method for non-ground objects. We apply a boundary detection technique to the 2D image, before estimating and refining the actual height values of the non-ground vertices in the reconstructed textured mesh. Our proposed methods were tested in an outdoor environment in which trees and buildings were not completely sensed. Our results show that the time required for ground segmentation is faster than that for data sensing, which is necessary for a real-time approach. In addition, those parts of objects that were not sensed are accurately recovered to retrieve their real-world appearances. PMID:23235454
Song, Wei; Cho, Kyungeun; Um, Kyhyun; Won, Chee Sun; Sim, Sungdae
2012-12-12
Mobile robot operators must make rapid decisions based on information about the robot's surrounding environment. This means that terrain modeling and photorealistic visualization are required for the remote operation of mobile robots. We have produced a voxel map and textured mesh from the 2D and 3D datasets collected by a robot's array of sensors, but some upper parts of objects are beyond the sensors' measurements and these parts are missing in the terrain reconstruction result. This result is an incomplete terrain model. To solve this problem, we present a new ground segmentation method to detect non-ground data in the reconstructed voxel map. Our method uses height histograms to estimate the ground height range, and a Gibbs-Markov random field model to refine the segmentation results. To reconstruct a complete terrain model of the 3D environment, we develop a 3D boundary estimation method for non-ground objects. We apply a boundary detection technique to the 2D image, before estimating and refining the actual height values of the non-ground vertices in the reconstructed textured mesh. Our proposed methods were tested in an outdoor environment in which trees and buildings were not completely sensed. Our results show that the time required for ground segmentation is faster than that for data sensing, which is necessary for a real-time approach. In addition, those parts of objects that were not sensed are accurately recovered to retrieve their real-world appearances.
Rigorous force field optimization principles based on statistical distance minimization
Vlcek, Lukas; Chialvo, Ariel A.
2015-10-12
We use the concept of statistical distance to define a measure of distinguishability between a pair of statistical mechanical systems, i.e., a model and its target, and show that its minimization leads to general convergence of the model’s static measurable properties to those of the target. Here we exploit this feature to define a rigorous basis for the development of accurate and robust effective molecular force fields that are inherently compatible with coarse-grained experimental data. The new model optimization principles and their efficient implementation are illustrated through selected examples, whose outcome demonstrates the higher robustness and predictive accuracy of themore » approach compared to other currently used methods, such as force matching and relative entropy minimization. We also discuss relations between the newly developed principles and established thermodynamic concepts, which include the Gibbs-Bogoliubov inequality and the thermodynamic length.« less
Conformal field theory out of equilibrium: a review
NASA Astrophysics Data System (ADS)
Bernard, Denis; Doyon, Benjamin
2016-06-01
We provide a pedagogical review of the main ideas and results in non-equilibrium conformal field theory and connected subjects. These concern the understanding of quantum transport and its statistics at and near critical points. Starting with phenomenological considerations, we explain the general framework, illustrated by the example of the Heisenberg quantum chain. We then introduce the main concepts underlying conformal field theory (CFT), the emergence of critical ballistic transport, and the CFT scattering construction of non-equilibrium steady states. Using this we review the theory for energy transport in homogeneous one-dimensional critical systems, including the complete description of its large deviations and the resulting (extended) fluctuation relations. We generalize some of these ideas to one-dimensional critical charge transport and to the presence of defects, as well as beyond one-dimensional criticality. We describe non-equilibrium transport in free-particle models, where connections are made with generalized Gibbs ensembles, and in higher-dimensional and non-integrable quantum field theories, where the use of the powerful hydrodynamic ideas for non-equilibrium steady states is explained. We finish with a list of open questions. The review does not assume any advanced prior knowledge of conformal field theory, large-deviation theory or hydrodynamics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Da-Guang; Li, Meng-Han; Zhou, Hao-Miao, E-mail: zhouhm@cjlu.edu.cn
2015-10-15
For magnetostrictive rods under combined axial pre-stress and magnetic field, a general one-dimension nonlinear magneto-elastic coupled constitutive model was built in this paper. First, the elastic Gibbs free energy was expanded into polynomial, and the relationship between stress and strain and the relationship between magnetization and magnetic field with the polynomial form were obtained with the help of thermodynamic relations. Then according to microscopic magneto-elastic coupling mechanism and some physical facts of magnetostrictive materials, a nonlinear magneto-elastic constitutive with concise form was obtained when the relations of nonlinear strain and magnetization in the polynomial constitutive were instead with transcendental functions.more » The comparisons between the prediction and the experimental data of different magnetostrictive materials, such as Terfenol-D, Metglas and Ni showed that the predicted magnetostrictive strain and magnetization curves were consistent with experimental results under different pre-stresses whether in the region of low and moderate field or high field. Moreover, the model can fully reflect the nonlinear magneto-mechanical coupling characteristics between magnetic, magnetostriction and elasticity, and it can effectively predict the changes of material parameters with pre-stress and bias field, which is useful in practical applications.« less
Hanel, Rudolf; Thurner, Stefan; Gell-Mann, Murray
2014-05-13
The maximum entropy principle (MEP) is a method for obtaining the most likely distribution functions of observables from statistical systems by maximizing entropy under constraints. The MEP has found hundreds of applications in ergodic and Markovian systems in statistical mechanics, information theory, and statistics. For several decades there has been an ongoing controversy over whether the notion of the maximum entropy principle can be extended in a meaningful way to nonextensive, nonergodic, and complex statistical systems and processes. In this paper we start by reviewing how Boltzmann-Gibbs-Shannon entropy is related to multiplicities of independent random processes. We then show how the relaxation of independence naturally leads to the most general entropies that are compatible with the first three Shannon-Khinchin axioms, the (c,d)-entropies. We demonstrate that the MEP is a perfectly consistent concept for nonergodic and complex statistical systems if their relative entropy can be factored into a generalized multiplicity and a constraint term. The problem of finding such a factorization reduces to finding an appropriate representation of relative entropy in a linear basis. In a particular example we show that path-dependent random processes with memory naturally require specific generalized entropies. The example is to our knowledge the first exact derivation of a generalized entropy from the microscopic properties of a path-dependent random process.
Dynamics of Contact Line Pinning and Depinning of Droplets Evaporating on Microribs.
Mazloomi Moqaddam, Ali; Derome, Dominique; Carmeliet, Jan
2018-05-15
The contact line dynamics of evaporating droplets deposited on a set of parallel microribs is analyzed with the use of a recently developed entropic lattice Boltzmann model for two-phase flow. Upon deposition, part of the droplet penetrates into the space between ribs because of capillary action, whereas the remaining liquid of the droplet remains pinned on top of the microribs. In the first stage, evaporation continues until the droplet undergoes a series of pinning-depinning events, showing alternatively the constant contact radius and constant contact angle modes. While the droplet is pinned, evaporation results in a contact angle reduction, whereas the contact radius remains constant. At a critical contact angle, the contact line depins, the contact radius reduces, and the droplet rearranges to a larger apparent contact angle. This pinning-depinning behavior goes on until the liquid above the microribs is evaporated. By computing the Gibbs free energy taking into account the interfacial energy, pressure terms, and viscous dissipation due to drop internal flow, we found that the mechanism that causes the unpinning of the contact line results from an excess in Gibbs free energy. The spacing distance and the rib height play an important role in controlling the pinning-depinning cycling, the critical contact angle, and the excess Gibbs free energy. However, we found that neither the critical contact angle nor the maximum excess Gibbs free energy depends on the rib width. We show that the different terms, that is, pressure term, viscous dissipation, and interfacial energy, contributing to the excess Gibbs free energy, can be varied differently by varying different geometrical properties of the microribs. It is demonstrated that, by varying the spacing distance between the ribs, the energy barrier is controlled by the interfacial energy while the contribution of the viscous dissipation is dominant if either rib height or width is changed. Main finding of this is study is that, for microrib patterned surfaces, the energy barrier required for the contact line to depin can be enlarged by increasing the spacing or the rib height, which can be important for practical applications.
The MgO-Al2O3-SiO2 system - Free energy of pyrope and Al2O3-enstatite. [in earth mantle formation
NASA Technical Reports Server (NTRS)
Saxena, S. K.
1981-01-01
The model of fictive ideal components is used to determine Gibbs free energies of formation of pyrope and Al2O3-enstatite from the experimental data on coexisting garnet and orthopyroxene and orthopyroxene and spinel in the temperature range 1200-1600 K. It is noted that Al2O3 forms an ideal solution with MgSiO3. These thermochemical data are found to be consistent with the Al2O3 isopleths that could be drawn using most recent experimental data and with the reversed experimental data on the garnet-spinel field boundary.
Quantum quenches in the Luttinger model and its close relatives
NASA Astrophysics Data System (ADS)
Cazalilla, M. A.; Chung, Ming-Chiang
2016-06-01
A number of results on quantum quenches in the Luttinger and related models are surveyed with emphasis on post-quench correlations. For the Luttinger model and initial gaussian states, we discuss both sudden and smooth quenches of the interaction and the emergence of a steady state described by a generalized Gibbs ensemble. Comparisons between analytics and numerics, and the question of universality or lack thereof are also discussed. The relevance of the theoretical results to current and future experiments in the fields of ultracold atomic gases and mesoscopic systems of electrons is also briefly touched upon. Wherever possible, our approach is pedagogical and self-contained. This work is dedicated to the memory of our colleague Alejandro Muramatsu.
Ji, Jiayuan; Zhao, Lingling; Tao, Lu; Lin, Shangchao
2017-06-29
In CO 2 geological storage, the interfacial tension (IFT) between supercritical CO 2 and brine is critical for the storage capacitance design to prevent CO 2 leakage. IFT relies not only on the interfacial molecule properties but also on the environmental conditions at different storage sites. In this paper, supercritical CO 2 -NaCl solution systems are modeled at 343-373 K and 6-35 MPa under the salinity of 1.89 mol/L using molecular dynamics simulations. After computing and comparing the molecular density profile across the interface, the atomic radial distribution function, the molecular orientation distribution, the molecular Gibbs surface excess (derived from the molecular density profile), and the CO 2 -hydrate number density under the above environmental conditions, we confirm that only the molecular Gibbs surface excess of CO 2 molecules and the CO 2 -hydrate number density correlate strongly with the temperature- and pressure-dependent IFTs. We also compute the populations of two distinct CO 2 -hydrate structures (T-type and H-type) and attribute the observed dependence of IFTs to the dominance of the more stable, surfactant-like T-type CO 2 -hydrates at the interface. On the basis of these new molecular mechanisms behind IFT variations, this study could guide the rational design of suitable injecting environmental pressure and temperature conditions. We believe that the above two molecular-level metrics (Gibbs surface excess and hydrate number density) are of great fundamental importance for understanding the supercritical CO 2 -water interface and engineering applications in geological CO 2 storage.
NASA Astrophysics Data System (ADS)
Saputro, D. R. S.; Amalia, F.; Widyaningsih, P.; Affan, R. C.
2018-05-01
Bayesian method is a method that can be used to estimate the parameters of multivariate multiple regression model. Bayesian method has two distributions, there are prior and posterior distributions. Posterior distribution is influenced by the selection of prior distribution. Jeffreys’ prior distribution is a kind of Non-informative prior distribution. This prior is used when the information about parameter not available. Non-informative Jeffreys’ prior distribution is combined with the sample information resulting the posterior distribution. Posterior distribution is used to estimate the parameter. The purposes of this research is to estimate the parameters of multivariate regression model using Bayesian method with Non-informative Jeffreys’ prior distribution. Based on the results and discussion, parameter estimation of β and Σ which were obtained from expected value of random variable of marginal posterior distribution function. The marginal posterior distributions for β and Σ are multivariate normal and inverse Wishart. However, in calculation of the expected value involving integral of a function which difficult to determine the value. Therefore, approach is needed by generating of random samples according to the posterior distribution characteristics of each parameter using Markov chain Monte Carlo (MCMC) Gibbs sampling algorithm.
Harnessing the Bethe free energy†
Bapst, Victor
2016-01-01
ABSTRACT A wide class of problems in combinatorics, computer science and physics can be described along the following lines. There are a large number of variables ranging over a finite domain that interact through constraints that each bind a few variables and either encourage or discourage certain value combinations. Examples include the k‐SAT problem or the Ising model. Such models naturally induce a Gibbs measure on the set of assignments, which is characterised by its partition function. The present paper deals with the partition function of problems where the interactions between variables and constraints are induced by a sparse random (hyper)graph. According to physics predictions, a generic recipe called the “replica symmetric cavity method” yields the correct value of the partition function if the underlying model enjoys certain properties [Krzkala et al., PNAS (2007) 10318–10323]. Guided by this conjecture, we prove general sufficient conditions for the success of the cavity method. The proofs are based on a “regularity lemma” for probability measures on sets of the form Ωn for a finite Ω and a large n that may be of independent interest. © 2016 Wiley Periodicals, Inc. Random Struct. Alg., 49, 694–741, 2016 PMID:28035178
A semi-Lagrangian advection scheme for radioactive tracers in the NCEP Regional Spectral Model (RSM)
NASA Astrophysics Data System (ADS)
Chang, E.-C.; Yoshimura, K.
2015-10-01
In this study, the non-iteration dimensional-split semi-Lagrangian (NDSL) advection scheme is applied to the National Centers for Environmental Prediction (NCEP) Regional Spectral Model (RSM) to alleviate the Gibbs phenomenon. The Gibbs phenomenon is a problem wherein negative values of positive-definite quantities (e.g., moisture and tracers) are generated by the spectral space transformation in a spectral model system. To solve this problem, the spectral prognostic specific humidity and radioactive tracer advection scheme is replaced by the NDSL advection scheme, which considers advection of tracers in a grid system without spectral space transformations. A regional version of the NDSL is developed in this study and is applied to the RSM. Idealized experiments show that the regional version of the NDSL is successful. The model runs for an actual case study suggest that the NDSL can successfully advect radioactive tracers (iodine-131 and cesium-137) without noise from the Gibbs phenomenon. The NDSL can also remove negative specific humidity values produced in spectral calculations without losing detailed features.
Hemingway, B.S.
1990-01-01
Smoothed values of the heat capacities and derived thermodynamic functions are given for bunsenite, magnetite, and hematite for the temperature interval 298.15 to 1800 K. The Gibbs free energy for the reaction Ni + 0.5O2 = NiO is given by the equation ??rG0T = -238.39 + 0.1146T - 3.72 ?? 10-3T ln T and is valid from 298.15 K to 1700 K. The Gibbs free energy (in kJ) of the reaction 2 magnetite + 3 quartz = 3 fayalite + O2 may be calculated from the equation ??rG0T = 474.155 - 0.16120 T in kJ and between 800 and 1400 K. The Gibbs free energy (in kJ) of the reaction 6 hematite = 4 magnetite + O2 may be calculated from the following equations: ??rG0T = 496.215 - 0.27114T, ??rG0T = 514.690 - 0.29753T, ??rG0T = 501.348 - 0.2854T. -from Author
Standard Gibbs energy of formation of Mo 3Te 4 by emf measurements
NASA Astrophysics Data System (ADS)
Mallika, C.; Sreedharan, O. M.
1990-03-01
The emf of the galvanic cells Pt, Mo, MoO 2¦8 YSZ¦'FeO', Fe, Pt (I) and Pt, Fe,'FeO' ¦8 YSZ¦MoO 2, Mo 3Te 4, MoTe 2(α), C, Pt (II) were measured over the temperature ranges 837 to 1151 K and 775 to 1196 K, respectively, using 8 mass% yttria-stabilized zirconia (8 YSZ) as the solid electrolyte. From the emf values, the partial molar Gibbs energy of solution of molybdenum in Mo 3Te 4/MoTe 2(α), Δ ḠMo was found to be Δ ḠMo ± 1.19 ( kJ/mol) = -025.08 + 0.00420T(K) . Using the literature data for the Gibbs energy of formation of MoTe 2(α). the expression ΔG° f( Mo3Te4, s) ± 5.97 (kj/mol) = -253.58 + 0.09214 T( K) was derived for the range 775 to 1196 K. A third-law analysis yielded a value of -209 ± 10 kJ/mol for ΔH° f.298o of Mo 3Te 4(s).
Interfacial interactions between plastic particles in plastics flotation.
Wang, Chong-qing; Wang, Hui; Gu, Guo-hua; Fu, Jian-gang; Lin, Qing-quan; Liu, You-nian
2015-12-01
Plastics flotation used for recycling of plastic wastes receives increasing attention for its industrial application. In order to study the mechanism of plastics flotation, the interfacial interactions between plastic particles in flotation system were investigated through calculation of Lifshitz-van der Waals (LW) function, Lewis acid-base (AB) Gibbs function, and the extended Derjaguin-Landau-Verwey-Overbeek potential energy profiles. The results showed that van der Waals force between plastic particles is attraction force in flotation system. The large hydrophobic attraction, caused by the AB Gibbs function, is the dominant interparticle force. Wetting agents present significant effects on the interfacial interactions between plastic particles. It is found that adsorption of wetting agents promotes dispersion of plastic particles and decreases the floatability. Pneumatic flotation may improve the recovery and purity of separated plastics through selective adsorption of wetting agents on plastic surface. The relationships between hydrophobic attraction and surface properties were also examined. It is revealed that there exists a three-order polynomial relationship between the AB Gibbs function and Lewis base component. Our finding provides some insights into mechanism of plastics flotation. Copyright © 2015 Elsevier Ltd. All rights reserved.
Bayesian Analysis of the Cosmic Microwave Background
NASA Technical Reports Server (NTRS)
Jewell, Jeffrey
2007-01-01
There is a wealth of cosmological information encoded in the spatial power spectrum of temperature anisotropies of the cosmic microwave background! Experiments designed to map the microwave sky are returning a flood of data (time streams of instrument response as a beam is swept over the sky) at several different frequencies (from 30 to 900 GHz), all with different resolutions and noise properties. The resulting analysis challenge is to estimate, and quantify our uncertainty in, the spatial power spectrum of the cosmic microwave background given the complexities of "missing data", foreground emission, and complicated instrumental noise. Bayesian formulation of this problem allows consistent treatment of many complexities including complicated instrumental noise and foregrounds, and can be numerically implemented with Gibbs sampling. Gibbs sampling has now been validated as an efficient, statistically exact, and practically useful method for low-resolution (as demonstrated on WMAP 1 and 3 year temperature and polarization data). Continuing development for Planck - the goal is to exploit the unique capabilities of Gibbs sampling to directly propagate uncertainties in both foreground and instrument models to total uncertainty in cosmological parameters.
Bohmanova, J; Miglior, F; Jamrozik, J; Misztal, I; Sullivan, P G
2008-09-01
A random regression model with both random and fixed regressions fitted by Legendre polynomials of order 4 was compared with 3 alternative models fitting linear splines with 4, 5, or 6 knots. The effects common for all models were a herd-test-date effect, fixed regressions on days in milk (DIM) nested within region-age-season of calving class, and random regressions for additive genetic and permanent environmental effects. Data were test-day milk, fat and protein yields, and SCS recorded from 5 to 365 DIM during the first 3 lactations of Canadian Holstein cows. A random sample of 50 herds consisting of 96,756 test-day records was generated to estimate variance components within a Bayesian framework via Gibbs sampling. Two sets of genetic evaluations were subsequently carried out to investigate performance of the 4 models. Models were compared by graphical inspection of variance functions, goodness of fit, error of prediction of breeding values, and stability of estimated breeding values. Models with splines gave lower estimates of variances at extremes of lactations than the model with Legendre polynomials. Differences among models in goodness of fit measured by percentages of squared bias, correlations between predicted and observed records, and residual variances were small. The deviance information criterion favored the spline model with 6 knots. Smaller error of prediction and higher stability of estimated breeding values were achieved by using spline models with 5 and 6 knots compared with the model with Legendre polynomials. In general, the spline model with 6 knots had the best overall performance based upon the considered model comparison criteria.
Thermochemical investigations in the system Cd–Gd
Reichmann, Thomas L.; Ganesan, Rajesh; Ipser, Herbert
2014-01-01
Vapour pressure measurements were performed in terms of a non-isothermal isopiestic method to determine vapour pressures of Cd in the system Cd–Gd between 693 and 1045 K. From these results thermodynamic activities of Cd were derived as a function of temperature for the composition range 52–86 at.% Cd. By employing an adapted Gibbs–Helmholtz equation, partial molar enthalpies of mixing of Cd were obtained for the corresponding composition range, which were used to convert the activity values of Cd to a common average sample temperature of 773 K. The relatively large variation of the activity across the homogeneity ranges of the phases Cd2Gd and Cd45Gd11 indicates that they probably belong to the most stable intermetallic compounds in this system. An activity value of Gd for the two phase field Cd6Gd+L was available from literature and served as an integration constant for a Gibbs–Duhem integration. Integral Gibbs energies are presented between 51 and 100 at.% Cd at 773 K, referred to Cd(l) and α-Gd(s) as standard states. Gibbs energies of formation for the exact stoichiometric compositions of the phases Cd58Gd13, Cd45Gd11, Cd3Gd and Cd2Gd were obtained at 773 K as about −19.9, −21.1, −24.8, and −30.0 kJ g atom−1, respectively. PMID:25328283
Hydrogeochemical quality and suitability studies of groundwater in northern Bangladesh.
Islam, M J; Hakim, M A; Hanafi, M M; Juraimi, Abdul Shukor; Aktar, Sharmin; Siddiqa, Aysha; Rahman, A K M Shajedur; Islam, M Atikul; Halim, M A
2014-07-01
Agriculture, rapid urbanization and geochemical processes have direct or indirect effects on the chemical composition of groundwater and aquifer geochemistry. Hydro-chemical investigations, which are significant for assessment of water quality, were carried out to study the sources of dissolved ions in groundwater of Dinajpur district, northern Bangladesh. The groundwater samplish were analyzed for physico-chemical properties like pH, electrical conductance, hardness, alkalinity, total dissolved solids and Ca2+, Mg2+, Na+, K+, CO3(2-), HCO3(-), SO4(2-) and Cl- ions, respectively. Based on the analyses, certain parameters like sodium adsorption ratio, soluble sodium percentage, potential salinity, residual sodium carbonate, Kelly's ratio, permeability index and Gibbs ratio were also calculated. The results showed that the groundwater of study area was fresh, slightly acidic (pH 5.3-6.4) and low in TDS (35-275 mg I(-1)). Ground water of the study area was found suitable for irrigation, drinking and domestic purposes, since most of the parameters analyzed were within the WHO recommended values for drinking water. High concentration of NO3- and Cl- was reported in areas with extensive agriculture and rapid urbanization. Ion-exchange, weathering, oxidation and dissolution of minerals were major geochemical processes governing the groundwater evolution in study area. Gibb's diagram showed that all the samples fell in the rock dominance field. Based on evaluation, it is clear that groundwater quality of the study area was suitable for both domestic and irrigation purposes.
Gibbs free-energy difference between the glass and crystalline phases of a Ni-Zr alloy
NASA Technical Reports Server (NTRS)
Ohsaka, K.; Trinh, E. H.; Holzer, J. C.; Johnson, W. L.
1993-01-01
The heats of eutectic melting and devitrification, and the specific heats of the crystalline, glass, and liquid phases have been measured for a Ni24Zr76 alloy. The data are used to calculate the Gibbs free-energy difference, Delta G(AC), between the real glass and the crystal on an assumption that the liquid-glass transition is second order. The result shows that Delta G(AC) continuously increases as the temperature decreases in contrast to the ideal glass case where Delta G(AC) is assumed to be independent of temperature.
Solvation thermodynamics of L-cystine, L-tyrosine, and L-leucine in aqueous-electrolyte media
NASA Astrophysics Data System (ADS)
Roy, Sanjay; Guin, Partha Sarathi; Mahali, Kalachand; Dolui, Bijoy Krishna
2017-12-01
Solubilities of L-cystine, L-tyrosine, and L-leucine in aqueous NaCl media at 298.15 K have been studied. Indispensable and related solvent parameters such as molar mass, molar volume, etc., were also determined. The results are used to evaluate the standard transfer Gibbs free energy, cavity forming enthalpy of transfer, cavity forming transfer Gibbs free energy and dipole-dipole interaction effects during the course of solvation. Various weak interactions involving solute-solvent or solvent-solvent molecules were characterized in order to find their role on the solvation of these amino acids.
Thermodynamics of BTZ black holes in gravity’s rainbow
NASA Astrophysics Data System (ADS)
Alsaleh, Salwa
2017-05-01
In this paper, we deform the thermodynamics of a BTZ black hole from rainbow functions in gravity’s rainbow. The rainbow functions will be motivated from the results in loop quantum gravity and noncommutative geometry. It will be observed that the thermodynamics gets deformed due to these rainbow functions, indicating the existence of a remnant. However, the Gibbs free energy does not get deformed due to these rainbow functions, and so the critical behavior from Gibbs does not change by this deformation. This is because the deformation in the entropy cancels out the temperature deformation.
Hodge, Ian M
2006-08-01
The nonlinear thermorheologically complex Adam Gibbs (extended "Scherer-Hodge") model for the glass transition is applied to enthalpy relaxation data reported by Sartor, Mayer, and Johari for hydrated methemoglobin. A sensible range in values for the average localized activation energy is obtained (100-200 kJ mol(-1)). The standard deviation in the inferred Gaussian distribution of activation energies, computed from the reported KWW beta-parameter, is approximately 30% of the average, consistent with the suggestion that some relaxation processes in hydrated proteins have exceptionally low activation energies.
On the dispute between Boltzmann and Gibbs entropy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buonsante, Pierfrancesco; Franzosi, Roberto, E-mail: roberto.franzosi@ino.it; Smerzi, Augusto
2016-12-15
The validity of the concept of negative temperature has been recently challenged by arguing that the Boltzmann entropy (that allows negative temperatures) is inconsistent from a mathematical and statistical point of view, whereas the Gibbs entropy (that does not admit negative temperatures) provides the correct definition for the microcanonical entropy. Here we prove that the Boltzmann entropy is thermodynamically and mathematically consistent. Analytical results on two systems supporting negative temperatures illustrate the scenario we propose. In addition we numerically study a lattice system to show that negative temperature equilibrium states are accessible and obey standard statistical mechanics prediction.
NASA Astrophysics Data System (ADS)
Varouchakis, Emmanouil; Hristopulos, Dionissios
2015-04-01
Space-time geostatistical approaches can improve the reliability of dynamic groundwater level models in areas with limited spatial and temporal data. Space-time residual Kriging (STRK) is a reliable method for spatiotemporal interpolation that can incorporate auxiliary information. The method usually leads to an underestimation of the prediction uncertainty. The uncertainty of spatiotemporal models is usually estimated by determining the space-time Kriging variance or by means of cross validation analysis. For de-trended data the former is not usually applied when complex spatiotemporal trend functions are assigned. A Bayesian approach based on the bootstrap idea and sequential Gaussian simulation are employed to determine the uncertainty of the spatiotemporal model (trend and covariance) parameters. These stochastic modelling approaches produce multiple realizations, rank the prediction results on the basis of specified criteria and capture the range of the uncertainty. The correlation of the spatiotemporal residuals is modeled using a non-separable space-time variogram based on the Spartan covariance family (Hristopulos and Elogne 2007, Varouchakis and Hristopulos 2013). We apply these simulation methods to investigate the uncertainty of groundwater level variations. The available dataset consists of bi-annual (dry and wet hydrological period) groundwater level measurements in 15 monitoring locations for the time period 1981 to 2010. The space-time trend function is approximated using a physical law that governs the groundwater flow in the aquifer in the presence of pumping. The main objective of this research is to compare the performance of two simulation methods for prediction uncertainty estimation. In addition, we investigate the performance of the Spartan spatiotemporal covariance function for spatiotemporal geostatistical analysis. Hristopulos, D.T. and Elogne, S.N. 2007. Analytic properties and covariance functions for a new class of generalized Gibbs random fields. IΕΕΕ Transactions on Information Theory, 53:4667-4467. Varouchakis, E.A. and Hristopulos, D.T. 2013. Improvement of groundwater level prediction in sparsely gauged basins using physical laws and local geographic features as auxiliary variables. Advances in Water Resources, 52:34-49. Research supported by the project SPARTA 1591: "Development of Space-Time Random Fields based on Local Interaction Models and Applications in the Processing of Spatiotemporal Datasets". "SPARTA" is implemented under the "ARISTEIA" Action of the operational programme Education and Lifelong Learning and is co-funded by the European Social Fund (ESF) and National Resources.
Beyond Poisson-Boltzmann: Fluctuation effects and correlation functions
NASA Astrophysics Data System (ADS)
Netz, R. R.; Orland, H.
2000-02-01
We formulate the exact non-linear field theory for a fluctuating counter-ion distribution in the presence of a fixed, arbitrary charge distribution. The Poisson-Boltzmann equation is obtained as the saddle-point of the field-theoretic action, and the effects of counter-ion fluctuations are included by a loop-wise expansion around this saddle point. The Poisson equation is obeyed at each order in this loop expansion. We explicitly give the expansion of the Gibbs potential up to two loops. We then apply our field-theoretic formalism to the case of a single impenetrable wall with counter ions only (in the absence of salt ions). We obtain the fluctuation corrections to the electrostatic potential and the counter-ion density to one-loop order without further approximations. The relative importance of fluctuation corrections is controlled by a single parameter, which is proportional to the cube of the counter-ion valency and to the surface charge density. The effective interactions and correlation functions between charged particles close to the charged wall are obtained on the one-loop level.
Test of quantum thermalization in the two-dimensional transverse-field Ising model
Blaß, Benjamin; Rieger, Heiko
2016-01-01
We study the quantum relaxation of the two-dimensional transverse-field Ising model after global quenches with a real-time variational Monte Carlo method and address the question whether this non-integrable, two-dimensional system thermalizes or not. We consider both interaction quenches in the paramagnetic phase and field quenches in the ferromagnetic phase and compare the time-averaged probability distributions of non-conserved quantities like magnetization and correlation functions to the thermal distributions according to the canonical Gibbs ensemble obtained with quantum Monte Carlo simulations at temperatures defined by the excess energy in the system. We find that the occurrence of thermalization crucially depends on the quench parameters: While after the interaction quenches in the paramagnetic phase thermalization can be observed, our results for the field quenches in the ferromagnetic phase show clear deviations from the thermal system. These deviations increase with the quench strength and become especially clear comparing the shape of the thermal and the time-averaged distributions, the latter ones indicating that the system does not completely lose the memory of its initial state even for strong quenches. We discuss our results with respect to a recently formulated theorem on generalized thermalization in quantum systems. PMID:27905523
Multivariate Markov chain modeling for stock markets
NASA Astrophysics Data System (ADS)
Maskawa, Jun-ichi
2003-06-01
We study a multivariate Markov chain model as a stochastic model of the price changes of portfolios in the framework of the mean field approximation. The time series of price changes are coded into the sequences of up and down spins according to their signs. We start with the discussion for small portfolios consisting of two stock issues. The generalization of our model to arbitrary size of portfolio is constructed by a recurrence relation. The resultant form of the joint probability of the stationary state coincides with Gibbs measure assigned to each configuration of spin glass model. Through the analysis of actual portfolios, it has been shown that the synchronization of the direction of the price changes is well described by the model.
Mirrored continuum and molecular scale simulations of the ignition of gamma phase RDX
NASA Astrophysics Data System (ADS)
Stewart, D. Scott; Chaudhuri, Santanu; Joshi, Kaushik; Lee, Kibaek
2017-01-01
We describe the ignition of an explosive crystal of gamma-phase RDX due to a thermal hot spot with reactive molecular dynamics (RMD), with first-principles trained, reactive force field based molecular potentials that represents an extremely complex reaction network. The RMD simulation is analyzed by sorting molecular product fragments into high and low molecular weight groups, to represent identifiable components that can be interpreted by a continuum model. A continuum model based on a Gibbs formulation has a single temperature and stress state for the mixture. The continuum simulation that mirrors the atomistic simulation allows us to study the atomistic simulation in the familiar physical chemistry framework and provides an essential, continuum/atomistic link.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vlcek, Lukas; Chialvo, Ariel A; Cole, David
The unlike- pair interaction parameters for the SPC/E- EPM2 models have been optimized to reproduce the mutual solubility of water and carbon dioxide at the conditions of liquid- supercritical fluid phase equilibria. An efficient global optimization of the parameters is achieved through an implementation of the coupling parameter approach, adapted to phase equilibria calculations in the Gibbs ensemble, that explicitly corrects for the over- polarization of the SPC/E water molecule in the non- polar CO2 environments. The resulting H2O- CO2 force field reproduces accurately the available experimental solubilities at the two fluid phases in equilibria as well as the correspondingmore » species tracer diffusion coefficients.« less
Stress versus temperature dependence of activation energies for creep
NASA Technical Reports Server (NTRS)
Freed, A. D.; Raj, S. V.; Walker, K. P.
1992-01-01
The activation energy for creep at low stresses and elevated temperatures is associated with lattice diffusion, where the rate controlling mechanism for deformation is dislocation climb. At higher stresses and intermediate temperatures, the rate controlling mechanism changes from dislocation climb to obstacle-controlled dislocation glide. Along with this change in deformation mechanism occurs a change in the activation energy. When the rate controlling mechanism for deformation is obstacle-controlled dislocation glide, it is shown that a temperature-dependent Gibbs free energy does better than a stress-dependent Gibbs free energy in correlating steady-state creep data for both copper and LiF-22mol percent CaF2 hypereutectic salt.
Impact of uncertainty in expected return estimation on stock price volatility
NASA Astrophysics Data System (ADS)
Kostanjcar, Zvonko; Jeren, Branko; Juretic, Zeljan
2012-11-01
We investigate the origin of volatility in financial markets by defining an analytical model for time evolution of stock share prices. The defined model is similar to the GARCH class of models, but can additionally exhibit bimodal behaviour in the supply-demand structure of the market. Moreover, it differs from existing Ising-type models. It turns out that the constructed model is a solution of a thermodynamic limit of a Gibbs probability measure when the number of traders and the number of stock shares approaches infinity. The energy functional of the Gibbs probability measure is derived from the Nash equilibrium of the underlying game.
NASA Technical Reports Server (NTRS)
Gottlieb, David; Shu, Chi-Wang
1993-01-01
The investigation of overcoming Gibbs phenomenon was continued, i.e., obtaining exponential accuracy at all points including at the discontinuities themselves, from the knowledge of a spectral partial sum of a discontinuous but piecewise analytic function. It was shown that if we are given the first N expansion coefficients of an L(sub 2) function f(x) in terms of either the trigonometrical polynomials or the Chebyshev or Legendre polynomials, an exponentially convergent approximation to the point values of f(x) in any sub-interval in which it is analytic can be constructed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Picard, G.; Schneider-Henriquez, J.E.; Fendler, J.H.
Two-exposure interferometric holograms have been shown to sensitively report ultrasmall-pressure (10 natm)-induced curvature changes in glyceryl monooleate (GMO) bilayer lipid membranes (BLMs). The number of concentric fringes observed, and hence the lateral distance between the plane of the Teflon and the BLM, increased linearly with increasing transmembrane pressure and led to a value of 1.1 {plus minus} 0.05 dyn/cm for the surface tension of the BLM. BLMs with appreciable Plateau-Gibbs borders have been shown to undergo nonuniform deformation; the bilayer portion is distorted less than the surrounding Plateau-Gibbs border upon the application of a transmembrane pressure gradient.
Gutman, E M
2010-10-27
In a recent publication by Olives (2010 J. Phys.: Condens. Matter 22 085005) he studied 'the thermodynamics and mechanics of the surface of a deformable body, following and refining the general approach of Gibbs' and believed that 'a new definition of the surface stress is given'. However, using the usual way of deriving the equations of Gibbs-Duhem type the author, nevertheless, has fallen into a mathematical discrepancy because he has tried to unite in one equation different thermodynamic systems and 'a new definition of the surface stress' has appeared known in the usual theory of elasticity.
Size Fluctuations of Near Critical Nuclei and Gibbs Free Energy for Nucleation of BDA on Cu(001)
NASA Astrophysics Data System (ADS)
Schwarz, Daniel; van Gastel, Raoul; Zandvliet, Harold J. W.; Poelsema, Bene
2012-07-01
We present a low-energy electron microscopy study of nucleation and growth of BDA on Cu(001) at low supersaturation. At sufficiently high coverage, a dilute BDA phase coexists with c(8×8) crystallites. The real-time microscopic information allows a direct visualization of near-critical nuclei, determination of the supersaturation and the line tension of the crystallites, and, thus, derivation of the Gibbs free energy for nucleation. The resulting critical nucleus size nicely agrees with the measured value. Nuclei up to 4-6 times larger still decay with finite probability, urging reconsideration of the classic perception of a critical nucleus.
Size fluctuations of near critical nuclei and Gibbs free energy for nucleation of BDA on Cu(001).
Schwarz, Daniel; van Gastel, Raoul; Zandvliet, Harold J W; Poelsema, Bene
2012-07-06
We present a low-energy electron microscopy study of nucleation and growth of BDA on Cu(001) at low supersaturation. At sufficiently high coverage, a dilute BDA phase coexists with c(8×8) crystallites. The real-time microscopic information allows a direct visualization of near-critical nuclei, determination of the supersaturation and the line tension of the crystallites, and, thus, derivation of the Gibbs free energy for nucleation. The resulting critical nucleus size nicely agrees with the measured value. Nuclei up to 4-6 times larger still decay with finite probability, urging reconsideration of the classic perception of a critical nucleus.
Preferential Solvation of Silver (I) Bromate in Methanol-Dimethylsulfoxide Mixtures
NASA Astrophysics Data System (ADS)
Janardhanan, S.; Kalidas, C.
1984-06-01
The solubiltiy of silver bromate, the Gibbs transfer energy of Ag+ and BrO3- and the solvent transport number in methanol-dimethyl sulfoxide mixtures are reported. The solubility of silver bromate increases with addition of DMSO. The Gibbs energy of transfer of the silver ion (based on the ferrocene reference method) decreases, while that of the bromate ion becomes slightly negative with the addition of DMSO. The solvent transport number A passes through a maximum (⊿ = 1.0 at XDMSO = 0.65. From these results, it is concluded that the silver ion is preferentially solvated by DMSO whereas the bromate ion shows no preferential solvation.
NASA Astrophysics Data System (ADS)
Duque, Michel; Andraca, Adriana; Goldstein, Patricia; del Castillo, Luis Felipe
2018-04-01
The Adam-Gibbs equation has been used for more than five decades, and still a question remains unanswered on the temperature dependence of the chemical potential it includes. Nowadays, it is a well-known fact that in fragile glass formers, actually the behavior of the system depends on the temperature region it is being studied. Transport coefficients change due to the appearance of heterogeneity in the liquid as it is supercooled. Using the different forms for the logarithmic shift factor and the form of the configurational entropy, we evaluate this temperature dependence and present a discussion on our results.
Gartner, Thomas E; Epps, Thomas H; Jayaraman, Arthi
2016-11-08
We describe an extension of the Gibbs ensemble molecular dynamics (GEMD) method for studying phase equilibria. Our modifications to GEMD allow for direct control over particle transfer between phases and improve the method's numerical stability. Additionally, we found that the modified GEMD approach had advantages in computational efficiency in comparison to a hybrid Monte Carlo (MC)/MD Gibbs ensemble scheme in the context of the single component Lennard-Jones fluid. We note that this increase in computational efficiency does not compromise the close agreement of phase equilibrium results between the two methods. However, numerical instabilities in the GEMD scheme hamper GEMD's use near the critical point. We propose that the computationally efficient GEMD simulations can be used to map out the majority of the phase window, with hybrid MC/MD used as a follow up for conditions under which GEMD may be unstable (e.g., near-critical behavior). In this manner, we can capitalize on the contrasting strengths of these two methods to enable the efficient study of phase equilibria for systems that present challenges for a purely stochastic GEMC method, such as dense or low temperature systems, and/or those with complex molecular topologies.
NASA Astrophysics Data System (ADS)
Gelb, Lev D.; Chakraborty, Somendra Nath
2011-12-01
The normal boiling points are obtained for a series of metals as described by the "quantum-corrected Sutton Chen" (qSC) potentials [S.-N. Luo, T. J. Ahrens, T. Çağın, A. Strachan, W. A. Goddard III, and D. C. Swift, Phys. Rev. B 68, 134206 (2003)]. Instead of conventional Monte Carlo simulations in an isothermal or expanded ensemble, simulations were done in the constant-NPH adabatic variant of the Gibbs ensemble technique as proposed by Kristóf and Liszi [Chem. Phys. Lett. 261, 620 (1996)]. This simulation technique is shown to be a precise tool for direct calculation of boiling temperatures in high-boiling fluids, with results that are almost completely insensitive to system size or other arbitrary parameters as long as the potential truncation is handled correctly. Results obtained were validated using conventional NVT-Gibbs ensemble Monte Carlo simulations. The qSC predictions for boiling temperatures are found to be reasonably accurate, but substantially underestimate the enthalpies of vaporization in all cases. This appears to be largely due to the systematic overestimation of dimer binding energies by this family of potentials, which leads to an unsatisfactory description of the vapor phase.
Gibbs-Thomson Effect in Planar Nanowires: Orientation and Doping Modulated Growth.
Shen, Youde; Chen, Renjie; Yu, Xuechao; Wang, Qijie; Jungjohann, Katherine L; Dayeh, Shadi A; Wu, Tom
2016-07-13
Epitaxy-enabled bottom-up synthesis of self-assembled planar nanowires via the vapor-liquid-solid mechanism is an emerging and promising approach toward large-scale direct integration of nanowire-based devices without postgrowth alignment. Here, by examining large assemblies of indium tin oxide nanowires on yttria-stabilized zirconia substrate, we demonstrate for the first time that the growth dynamics of planar nanowires follows a modified version of the Gibbs-Thomson mechanism, which has been known for the past decades to govern the correlations between thermodynamic supersaturation, growth speed, and nanowire morphology. Furthermore, the substrate orientation strongly influences the growth characteristics of epitaxial planar nanowires as opposed to impact at only the initial nucleation stage in the growth of vertical nanowires. The rich nanowire morphology can be described by a surface-energy-dependent growth model within the Gibbs-Thomson framework, which is further modulated by the tin doping concentration. Our experiments also reveal that the cutoff nanowire diameter depends on the substrate orientation and decreases with increasing tin doping concentration. These results enable a deeper understanding and control over the growth of planar nanowires, and the insights will help advance the fabrication of self-assembled nanowire devices.
Statistical mechanics of money and income
NASA Astrophysics Data System (ADS)
Dragulescu, Adrian; Yakovenko, Victor
2001-03-01
Money: In a closed economic system, money is conserved. Thus, by analogy with energy, the equilibrium probability distribution of money will assume the exponential Boltzmann-Gibbs form characterized by an effective temperature. We demonstrate how the Boltzmann-Gibbs distribution emerges in computer simulations of economic models. We discuss thermal machines, the role of debt, and models with broken time-reversal symmetry for which the Boltzmann-Gibbs law does not hold. Reference: A. Dragulescu and V. M. Yakovenko, "Statistical mechanics of money", Eur. Phys. J. B 17, 723-729 (2000), [cond-mat/0001432]. Income: Using tax and census data, we demonstrate that the distribution of individual income in the United States is exponential. Our calculated Lorenz curve without fitting parameters and Gini coefficient 1/2 agree well with the data. We derive the distribution function of income for families with two earners and show that it also agrees well with the data. The family data for the period 1947-1994 fit the Lorenz curve and Gini coefficient 3/8=0.375 calculated for two-earners families. Reference: A. Dragulescu and V. M. Yakovenko, "Evidence for the exponential distribution of income in the USA", cond-mat/0008305.
Cerebella segmentation on MR images of pediatric patients with medulloblastoma
NASA Astrophysics Data System (ADS)
Shan, Zu Y.; Ji, Qing; Glass, John; Gajjar, Amar; Reddick, Wilburn E.
2005-04-01
In this study, an automated method has been developed to identify the cerebellum from T1-weighted MR brain images of patients with medulloblastoma. A new objective function that is similar to Gibbs free energy in classic physics was defined; and the brain structure delineation was viewed as a process of minimizing Gibbs free energy. We used a rigid-body registration and an active contour (snake) method to minimize the Gibbs free energy in this study. The method was applied to 20 patient data sets to generate cerebellum images and volumetric results. The generated cerebellum images were compared with two manually drawn results. Strong correlations were found between the automatically and manually generated volumetric results, the correlation coefficients with each of manual results were 0.971 and 0.974, respectively. The average Jaccard similarities with each of two manual results were 0.89 and 0.88, respectively. The average Kappa indexes with each of two manual results were 0.94 and 0.93, respectively. These results showed this method was both robust and accurate for cerebellum segmentation. The method may be applied to various research and clinical investigation in which cerebellum segmentation and quantitative MR measurement of cerebellum are needed.
Ab Initio Prediction of Adsorption Isotherms for Small Molecules in Metal-Organic Frameworks.
Kundu, Arpan; Piccini, GiovanniMaria; Sillar, Kaido; Sauer, Joachim
2016-10-26
For CO and N 2 on Mg 2+ sites of the metal-organic framework CPO-27-Mg (Mg-MOF-74), ab initio calculations of Gibbs free energies of adsorption have been performed. Combined with the Bragg-Williams/Langmuir model and taking into account the experimental site availability (76.5%), we obtained adsorption isotherms in close agreement with those in experiment. The remaining deviations in the Gibbs free energy (about 1 kJ/mol) are significantly smaller than the "chemical accuracy" limit of about 4 kJ/mol. The presented approach uses (i) a DFT dispersion method (PBE+D2) to optimize the structure and to calculate anharmonic frequencies for vibrational partition functions and (ii) a "hybrid MP2:(PBE+D2)+ΔCCSD(T)" method to determine electronic energies. With the achieved accuracy (estimated uncertainty ±1.4 kJ/mol), the ab initio energies become useful benchmarks for assessing different DFT + dispersion methods (PBE+D2, B3LYP+D*, and vdW-D2), whereas the ab initio heats, entropies, and Gibbs free energies of adsorption are used to assess the reliability of experimental values derived from fitting isotherms or from variable-temperature IR studies.
On-line Gibbs learning. II. Application to perceptron and multilayer networks
NASA Astrophysics Data System (ADS)
Kim, J. W.; Sompolinsky, H.
1998-08-01
In the preceding paper (``On-line Gibbs Learning. I. General Theory'') we have presented the on-line Gibbs algorithm (OLGA) and studied analytically its asymptotic convergence. In this paper we apply OLGA to on-line supervised learning in several network architectures: a single-layer perceptron, two-layer committee machine, and a winner-takes-all (WTA) classifier. The behavior of OLGA for a single-layer perceptron is studied both analytically and numerically for a variety of rules: a realizable perceptron rule, a perceptron rule corrupted by output and input noise, and a rule generated by a committee machine. The two-layer committee machine is studied numerically for the cases of learning a realizable rule as well as a rule that is corrupted by output noise. The WTA network is studied numerically for the case of a realizable rule. The asymptotic results reported in this paper agree with the predictions of the general theory of OLGA presented in paper I. In all the studied cases, OLGA converges to a set of weights that minimizes the generalization error. When the learning rate is chosen as a power law with an optimal power, OLGA converges with a power law that is the same as that of batch learning.
Anero, Jesús G; Español, Pep; Tarazona, Pedro
2013-07-21
We present a generalization of Density Functional Theory (DFT) to non-equilibrium non-isothermal situations. By using the original approach set forth by Gibbs in his consideration of Macroscopic Thermodynamics (MT), we consider a Functional Thermo-Dynamics (FTD) description based on the density field and the energy density field. A crucial ingredient of the theory is an entropy functional, which is a concave functional. Therefore, there is a one to one connection between the density and energy fields with the conjugate thermodynamic fields. The connection between the three levels of description (MT, DFT, FTD) is clarified through a bridge theorem that relates the entropy of different levels of description and that constitutes a generalization of Mermin's theorem to arbitrary levels of description whose relevant variables are connected linearly. Although the FTD level of description does not provide any new information about averages and correlations at equilibrium, it is a crucial ingredient for the dynamics in non-equilibrium states. We obtain with the technique of projection operators the set of dynamic equations that describe the evolution of the density and energy density fields from an initial non-equilibrium state towards equilibrium. These equations generalize time dependent density functional theory to non-isothermal situations. We also present an explicit model for the entropy functional for hard spheres.
Genetic parameters of legendre polynomials for first parity lactation curves.
Pool, M H; Janss, L L; Meuwissen, T H
2000-11-01
Variance components of the covariance function coefficients in a random regression test-day model were estimated by Legendre polynomials up to a fifth order for first-parity records of Dutch dairy cows using Gibbs sampling. Two Legendre polynomials of equal order were used to model the random part of the lactation curve, one for the genetic component and one for permanent environment. Test-day records from cows registered between 1990 to 1996 and collected by regular milk recording were available. For the data set, 23,700 complete lactations were selected from 475 herds sired by 262 sires. Because the application of a random regression model is limited by computing capacity, we investigated the minimum order needed to fit the variance structure in the data sufficiently. Predictions of genetic and permanent environmental variance structures were compared with bivariate estimates on 30-d intervals. A third-order or higher polynomial modeled the shape of variance curves over DIM with sufficient accuracy for the genetic and permanent environment part. Also, the genetic correlation structure was fitted with sufficient accuracy by a third-order polynomial, but, for the permanent environmental component, a fourth order was needed. Because equal orders are suggested in the literature, a fourth-order Legendre polynomial is recommended in this study. However, a rank of three for the genetic covariance matrix and of four for permanent environment allows a simpler covariance function with a reduced number of parameters based on the eigenvalues and eigenvectors.
Simulation of phase equilibria
NASA Astrophysics Data System (ADS)
Martin, Marcus Gary
The focus of this thesis is on the use of configurational bias Monte Carlo in the Gibbs ensemble. Unlike Metropolis Monte Carlo, which is reviewed in chapter I, configurational bias Monte Carlo uses an underlying Markov chain transition matrix which is asymmetric in such a way that it is more likely to attempt to move to a molecular conformation which has a lower energy than to one with a higher energy. Chapter II explains how this enables efficient simulation of molecules with complex architectures (long chains and branched molecules) for coexisting fluid phases (liquid, vapor, or supercritical), and also presents several of our recent extensions to this method. In chapter III we discuss the development of the Transferable Potentials for Phase Equilibria United Atom (TraPPE-UA) force field which accurately describes the fluid phase coexistence for linear and branched alkanes. Finally, in the fourth chapter the methods and the force field are applied to systems ranging from supercritical extraction to gas chromatography to illustrate the power and versatility of our approach.
NASA Astrophysics Data System (ADS)
Herdeiro, Victor
2017-09-01
Herdeiro and Doyon [Phys. Rev. E 94, 043322 (2016), 10.1103/PhysRevE.94.043322] introduced a numerical recipe, dubbed uv sampler, offering precise estimations of the conformal field theory (CFT) data of the planar two-dimensional (2D) critical Ising model. It made use of scale invariance emerging at the critical point in order to sample finite sublattice marginals of the infinite plane Gibbs measure of the model by producing holographic boundary distributions. The main ingredient of the Markov chain Monte Carlo sampler is the invariance under dilation. This paper presents a generalization to higher dimensions with the critical 3D Ising model. This leads to numerical estimations of a subset of the CFT data—scaling weights and structure constants—through fitting of measured correlation functions. The results are shown to agree with the recent most precise estimations from numerical bootstrap methods [Kos, Poland, Simmons-Duffin, and Vichi, J. High Energy Phys. 08 (2016) 036, 10.1007/JHEP08(2016)036].
Bayesian Hierarchical Random Intercept Model Based on Three Parameter Gamma Distribution
NASA Astrophysics Data System (ADS)
Wirawati, Ika; Iriawan, Nur; Irhamah
2017-06-01
Hierarchical data structures are common throughout many areas of research. Beforehand, the existence of this type of data was less noticed in the analysis. The appropriate statistical analysis to handle this type of data is the hierarchical linear model (HLM). This article will focus only on random intercept model (RIM), as a subclass of HLM. This model assumes that the intercept of models in the lowest level are varied among those models, and their slopes are fixed. The differences of intercepts were suspected affected by some variables in the upper level. These intercepts, therefore, are regressed against those upper level variables as predictors. The purpose of this paper would demonstrate a proven work of the proposed two level RIM of the modeling on per capita household expenditure in Maluku Utara, which has five characteristics in the first level and three characteristics of districts/cities in the second level. The per capita household expenditure data in the first level were captured by the three parameters Gamma distribution. The model, therefore, would be more complex due to interaction of many parameters for representing the hierarchical structure and distribution pattern of the data. To simplify the estimation processes of parameters, the computational Bayesian method couple with Markov Chain Monte Carlo (MCMC) algorithm and its Gibbs Sampling are employed.
Q-Space Truncation and Sampling in Diffusion Spectrum Imaging
Tian, Qiyuan; Rokem, Ariel; Folkerth, Rebecca D.; Nummenmaa, Aapo; Fan, Qiuyun; Edlow, Brian L.; McNab, Jennifer A.
2015-01-01
Purpose To characterize the q-space truncation and sampling on the spin-displacement probability density function (PDF) in diffusion spectrum imaging (DSI). Methods DSI data were acquired using the MGH-USC connectome scanner (Gmax=300mT/m) with bmax=30,000s/mm2, 17×17×17, 15×15×15 and 11×11×11 grids in ex vivo human brains and bmax=10,000s/mm2, 11×11×11 grid in vivo. An additional in vivo scan using bmax=7,000s/mm2, 11×11×11 grid was performed with a derated gradient strength of 40mT/m. PDFs and orientation distribution functions (ODFs) were reconstructed with different q-space filtering and PDF integration lengths, and from down-sampled data by factors of two and three. Results Both ex vivo and in vivo data showed Gibbs ringing in PDFs, which becomes the main source of artifact in the subsequently reconstructed ODFs. For down-sampled data, PDFs interfere with the first replicas or their ringing, leading to obscured orientations in ODFs. Conclusion The minimum required q-space sampling density corresponds to a field-of-view approximately equal to twice the mean displacement distance (MDD) of the tissue. The 11×11×11 grid is suitable for both ex vivo and in vivo DSI experiments. To minimize the effects of Gibbs ringing, ODFs should be reconstructed from unfiltered q-space data with the integration length over the PDF constrained to around the MDD. PMID:26762670
On adiabatic pair potentials of highly charged colloid particles
NASA Astrophysics Data System (ADS)
Sogami, Ikuo S.
2018-03-01
Generalizing the Debye-Hückel formalism, we develop a new mean field theory for adiabatic pair potentials of highly charged particles in colloid dispersions. The unoccupied volume and the osmotic pressure are the key concepts to describe the chemical and thermodynamical equilibrium of the gas of small ions in the outside region of all of the colloid particles. To define the proper thermodynamic quantities, it is postulated to take an ensemble averaging with respect to the particle configurations in the integrals for their densities consisting of the electric potential satisfying a set of equations that are derived by linearizing the Poisson-Boltzmann equation. With the Fourier integral representation of the electric potential, we calculate first the internal electric energy of the system from which the Helmholtz free energy is obtained through the Legendre transformation. Then, the Gibbs free energy is calculated using both ways of the Legendre transformation with respect to the unoccupied volume and the summation of chemical potentials. The thermodynamic functions provide three types of pair potentials, all of which are inversely proportional to the fraction of the unoccupied volume. At the limit when the fraction factor reduces to unity, the Helmholtz pair potential turns exactly into the well known Derjaguin-Landau-Verwey-Overbeek repulsive potential. The Gibbs pair potential possessing a medium-range strong repulsive part and a long-range weak attractive tail can explain the Schulze-Hardy rule for coagulation in combination with the van der Waals-London potential and describes a rich variety of phenomena of phase transitions observed in the dilute dispersions of highly charged particles.
Quantum chemical approach to estimating the thermodynamics of metabolic reactions.
Jinich, Adrian; Rappoport, Dmitrij; Dunn, Ian; Sanchez-Lengeling, Benjamin; Olivares-Amaya, Roberto; Noor, Elad; Even, Arren Bar; Aspuru-Guzik, Alán
2014-11-12
Thermodynamics plays an increasingly important role in modeling and engineering metabolism. We present the first nonempirical computational method for estimating standard Gibbs reaction energies of metabolic reactions based on quantum chemistry, which can help fill in the gaps in the existing thermodynamic data. When applied to a test set of reactions from core metabolism, the quantum chemical approach is comparable in accuracy to group contribution methods for isomerization and group transfer reactions and for reactions not including multiply charged anions. The errors in standard Gibbs reaction energy estimates are correlated with the charges of the participating molecules. The quantum chemical approach is amenable to systematic improvements and holds potential for providing thermodynamic data for all of metabolism.
NASA Astrophysics Data System (ADS)
Kuz'mina, I. A.; Usacheva, T. R.; Kuz'mina, K. I.; Volkova, M. A.; Sharnin, V. A.
2015-01-01
The Gibbs energies of the transfer of 18-crown-6 ether from methanol to its mixtures with acetonitrile (χAN = 0.0-1.0 mole fraction) are determined by means of interphase distribution at 298 K. The effect the solvent composition has on the thermodynamic characteristics of the solvation of 18-crown-6 ether is analyzed. An increase in the content of acetonitrile in the mixed solvent enhances the solvation of crown ether due to changes in the energy of the solution. Resolvation of the macrocycle is assumed to be complete at acetonitrile concentrations higher than 0.6 mole fraction.
Marinsky, J.A.; Reddy, M.M.
1991-01-01
Earlier research has shown that the acid dissociation and metal ion complexation equilibria of linear, weak-acid polyelectrolytes and their cross-linked gel analogues are similarly sensitive to the counterion concentration levels of their solutions. Gibbs-Donnan-based concepts, applicable to the gel, are equally applicable to the linear polyelectrolyte for the accommodation of this sensitivity to ionic strength. This result is presumed to indicate that the linear polyelectrolyte in solution develops counterion-concentrating regions that closely resemble the gel phase of their analogues. Advantage has been taken of this description of linear polyelectrolytes to estimate the solvent uptake by these regions. ?? 1991 American Chemical Society.
Maxwell’s equal area law for Lovelock thermodynamics
NASA Astrophysics Data System (ADS)
Xu, Hao; Xu, Zhen-Ming
We present the construction of Maxwell’s equal area law for the Guass-Bonnet AdS black holes in d = 5, 6 and third-order Lovelock AdS black holes in d = 7, 8. The equal area law can be used to find the number and location of the points of intersection in the plots of Gibbs free energy, so that we can get the thermodynamically preferred solution which corresponds to the first-order phase transition. We obtain the radius of the small and large black holes in the phase transition which share the same Gibbs free energy. The case with two critical points is explored in much more details. The latent heat is also studied.
Phase equilibrium of methane and nitrogen at low temperatures - Application to Titan
NASA Technical Reports Server (NTRS)
Kouvaris, Louis C.; Flasar, F. M.
1991-01-01
Since the vapor phase composition of Titan's methane-nitrogen lower atmosphere is uniquely determined as a function of the Gibbs phase rule, these data are presently computed via integration of the Gibbs-Duhem equation. The thermodynamic consistency of published measurements and calculations of the vapor phase composition is then examined, and the saturated mole fraction of gaseous methane is computed as a function of altitude up to the 700-mbar level. The mole fraction is found to lie approximately halfway between that computed from Raoult's law, for a gas in equilibrium with an ideal solution of liquid nitrogen and methane, and that for a gas in equilibrium with pure liquid methane.
Stress versus temperature dependent activation energies in creep
NASA Technical Reports Server (NTRS)
Freed, A. D.; Raj, S. V.; Walker, K. P.
1990-01-01
The activation energy for creep at low stresses and elevated temperatures is lattice diffusion, where the rate controlling mechanism for deformation is dislocation climb. At higher stresses and intermediate temperatures, the rate controlling mechanism changes from that of dislocation climb to one of obstacle-controlled dislocation glide. Along with this change, there occurs a change in the activation energy. It is shown that a temperature-dependent Gibbs free energy does a good job of correlating steady-state creep data, while a stress-dependent Gibbs free energy does a less desirable job of correlating the same data. Applications are made to copper and a LiF-22 mol. percent CaF2 hypereutectic salt.
Gibbs Sampler-Based λ-Dynamics and Rao-Blackwell Estimator for Alchemical Free Energy Calculation.
Ding, Xinqiang; Vilseck, Jonah Z; Hayes, Ryan L; Brooks, Charles L
2017-06-13
λ-dynamics is a generalized ensemble method for alchemical free energy calculations. In traditional λ-dynamics, the alchemical switch variable λ is treated as a continuous variable ranging from 0 to 1 and an empirical estimator is utilized to approximate the free energy. In the present article, we describe an alternative formulation of λ-dynamics that utilizes the Gibbs sampler framework, which we call Gibbs sampler-based λ-dynamics (GSLD). GSLD, like traditional λ-dynamics, can be readily extended to calculate free energy differences between multiple ligands in one simulation. We also introduce a new free energy estimator, the Rao-Blackwell estimator (RBE), for use in conjunction with GSLD. Compared with the current empirical estimator, the advantage of RBE is that RBE is an unbiased estimator and its variance is usually smaller than the current empirical estimator. We also show that the multistate Bennett acceptance ratio equation or the unbinned weighted histogram analysis method equation can be derived using the RBE. We illustrate the use and performance of this new free energy computational framework by application to a simple harmonic system as well as relevant calculations of small molecule relative free energies of solvation and binding to a protein receptor. Our findings demonstrate consistent and improved performance compared with conventional alchemical free energy methods.
Gelb, Lev D; Chakraborty, Somendra Nath
2011-12-14
The normal boiling points are obtained for a series of metals as described by the "quantum-corrected Sutton Chen" (qSC) potentials [S.-N. Luo, T. J. Ahrens, T. Çağın, A. Strachan, W. A. Goddard III, and D. C. Swift, Phys. Rev. B 68, 134206 (2003)]. Instead of conventional Monte Carlo simulations in an isothermal or expanded ensemble, simulations were done in the constant-NPH adabatic variant of the Gibbs ensemble technique as proposed by Kristóf and Liszi [Chem. Phys. Lett. 261, 620 (1996)]. This simulation technique is shown to be a precise tool for direct calculation of boiling temperatures in high-boiling fluids, with results that are almost completely insensitive to system size or other arbitrary parameters as long as the potential truncation is handled correctly. Results obtained were validated using conventional NVT-Gibbs ensemble Monte Carlo simulations. The qSC predictions for boiling temperatures are found to be reasonably accurate, but substantially underestimate the enthalpies of vaporization in all cases. This appears to be largely due to the systematic overestimation of dimer binding energies by this family of potentials, which leads to an unsatisfactory description of the vapor phase. © 2011 American Institute of Physics
NASA Astrophysics Data System (ADS)
Orkoulas, Gerassimos; Panagiotopoulos, Athanassios Z.
1994-07-01
In this work, we investigate the liquid-vapor phase transition of the restricted primitive model of ionic fluids. We show that at the low temperatures where the phase transition occurs, the system cannot be studied by conventional molecular simulation methods because convergence to equilibrium is slow. To accelerate convergence, we propose cluster Monte Carlo moves capable of moving more than one particle at a time. We then address the issue of charged particle transfers in grand canonical and Gibbs ensemble Monte Carlo simulations, for which we propose a biased particle insertion/destruction scheme capable of sampling short interparticle distances. We compute the chemical potential for the restricted primitive model as a function of temperature and density from grand canonical Monte Carlo simulations and the phase envelope from Gibbs Monte Carlo simulations. Our calculated phase coexistence curve is in agreement with recent results of Caillol obtained on the four-dimensional hypersphere and our own earlier Gibbs ensemble simulations with single-ion transfers, with the exception of the critical temperature, which is lower in the current calculations. Our best estimates for the critical parameters are T*c=0.053, ρ*c=0.025. We conclude with possible future applications of the biased techniques developed here for phase equilibrium calculations for ionic fluids.
NASA Astrophysics Data System (ADS)
Bagchi, Debarshee; Tsallis, Constantino
2017-04-01
The relaxation to equilibrium of two long-range-interacting Fermi-Pasta-Ulam-like models (β type) in thermal contact is numerically studied. These systems, with different sizes and energy densities, are coupled to each other by a few thermal contacts which are short-range harmonic springs. By using the kinetic definition of temperature, we compute the time evolution of temperature and energy density of the two systems. Eventually, for some time t >teq, the temperature and energy density of the coupled system equilibrate to values consistent with standard Boltzmann-Gibbs thermostatistics. The equilibration time teq depends on the system size N as teq ∼Nγ where γ ≃ 1.8. We compute the velocity distribution P (v) of the oscillators of the two systems during the relaxation process. We find that P (v) is non-Gaussian and is remarkably close to a q-Gaussian distribution for all times before thermal equilibrium is reached. During the relaxation process we observe q > 1 while close to t =teq the value of q converges to unity and P (v) approaches a Gaussian. Thus the relaxation phenomenon in long-ranged systems connected by a thermal contact can be generically described as a crossover from q-statistics to Boltzmann-Gibbs statistics.
Phase diagrams of Janus fluids with up-down constrained orientations
NASA Astrophysics Data System (ADS)
Fantoni, Riccardo; Giacometti, Achille; Maestre, Miguel Ángel G.; Santos, Andrés
2013-11-01
A class of binary mixtures of Janus fluids formed by colloidal spheres with the hydrophobic hemispheres constrained to point either up or down are studied by means of Gibbs ensemble Monte Carlo simulations and simple analytical approximations. These fluids can be experimentally realized by the application of an external static electrical field. The gas-liquid and demixing phase transitions in five specific models with different patch-patch affinities are analyzed. It is found that a gas-liquid transition is present in all the models, even if only one of the four possible patch-patch interactions is attractive. Moreover, provided the attraction between like particles is stronger than between unlike particles, the system demixes into two subsystems with different composition at sufficiently low temperatures and high densities.
2D quantum gravity from quantum entanglement.
Gliozzi, F
2011-01-21
In quantum systems with many degrees of freedom the replica method is a useful tool to study the entanglement of arbitrary spatial regions. We apply it in a way that allows them to backreact. As a consequence, they become dynamical subsystems whose position, form, and extension are determined by their interaction with the whole system. We analyze, in particular, quantum spin chains described at criticality by a conformal field theory. Its coupling to the Gibbs' ensemble of all possible subsystems is relevant and drives the system into a new fixed point which is argued to be that of the 2D quantum gravity coupled to this system. Numerical experiments on the critical Ising model show that the new critical exponents agree with those predicted by the formula of Knizhnik, Polyakov, and Zamolodchikov.
Hydrogen bonds determine the signal arrangement in 13C NMR spectra of nicotinate
NASA Astrophysics Data System (ADS)
Gamov, G. A.; Kuranova, N. N.; Pogonin, A. E.; Aleksandriiskii, V. V.; Sharnin, V. A.
2018-02-01
Present work reports on studies of sodium nicotinate solutions in water and aqueous ethanol by means of 1H, 13C, 15N NMR spectroscopy. The H(2) nucleus was observed to be the least shielded among pyridine ring protons whilst C(6) signal placed in the lowest field in relation to the other pyridine carbons. The hydrogen bonds formation between nicotinate and water molecules was shown to be probable reason of signal arrangement in 13C NMR spectra of nicotinate. The heteronitrogen of nicotinate is less prone to the hydrogen bonding with water molecules than that of nicotinamide. The data on the change in the Gibbs energy of the nicotinate transfer and the results of the 13C NMR experiment are compared.
How reliable are thermodynamic feasibility statements of biochemical pathways?
Maskow, Thomas; von Stockar, Urs
2005-10-20
The driving force for organo- or lithotrophic growth as well as for each step in the metabolic network is the Gibbs reaction energy. For each enzymatic step it must be negative. Thermodynamics contributes therefore to the in-silico description of living systems. It may be used for assessing the feasibility of a given pathway because it provides a further constraint for those pathways which are feasible from the point of view of mass balance calculations (metabolic flux analysis) and the genetic potential of an organism. However, when this constraint was applied to lactic acid fermentation according to a method proposed by Mavrovouniotis (1993a, ISMB 93:273-283) it turned out that an unrealistically wide metabolite concentration range had to be assumed to make this well-known glycolytic pathway thermodynamically feasible. During a search for the reasons of this surprising result the insufficient consideration of the activity coefficients was identified as main cause. However, it is shown in the present contribution that the influence of the activity coefficients on Gibbs reaction energy can be easily taken into account based on the intracellular ionic strength. The uncertainty of the tabulated equilibrium constants and of the apparent standard Gibbs energies derived from them was found to be the second most important reason for the erroneous result of the feasibility analysis. Deviations of intracellular pH from the standard value and bad estimations of currency metabolites, e.g., NAD(+) and NADH, were found to be of lesser importance but not negligible. The pH dependency of Gibbs reaction enthalpy was proved to be easily taken into account. Therefore, the application of thermodynamics for a better in-silico prediction of the behavior of living cell factories calls predominantly for better equilibrium data determined under well defined conditions and also for a more detailed knowledge about the intracellular ionic strength and pH value. Copyright 2005 Wiley Periodicals, Inc.
Pethica, Brian A
2007-12-21
As indicated by Gibbs and made explicit by Guggenheim, the electrical potential difference between two regions of different chemical composition cannot be measured. The Gibbs-Guggenheim Principle restricts the use of classical electrostatics in electrochemical theories as thermodynamically unsound with some few approximate exceptions, notably for dilute electrolyte solutions and concomitant low potentials where the linear limit for the exponential of the relevant Boltzmann distribution applies. The Principle invalidates the widespread use of forms of the Poisson-Boltzmann equation which do not include the non-electrostatic components of the chemical potentials of the ions. From a thermodynamic analysis of the parallel plate electrical condenser, employing only measurable electrical quantities and taking into account the chemical potentials of the components of the dielectric and their adsorption at the surfaces of the condenser plates, an experimental procedure to provide exceptions to the Principle has been proposed. This procedure is now reconsidered and rejected. No other related experimental procedures circumvent the Principle. Widely-used theoretical descriptions of electrolyte solutions, charged surfaces and colloid dispersions which neglect the Principle are briefly discussed. MD methods avoid the limitations of the Poisson-Bolzmann equation. Theoretical models which include the non-electrostatic components of the inter-ion and ion-surface interactions in solutions and colloid systems assume the additivity of dispersion and electrostatic forces. An experimental procedure to test this assumption is identified from the thermodynamics of condensers at microscopic plate separations. The available experimental data from Kelvin probe studies are preliminary, but tend against additivity. A corollary to the Gibbs-Guggenheim Principle is enunciated, and the Principle is restated that for any charged species, neither the difference in electrostatic potential nor the sum of the differences in the non-electrostatic components of the thermodynamic potential difference between regions of different chemical compositions can be measured.
Classical and quantum Reissner-Nordström black hole thermodynamics and first order phase transition
NASA Astrophysics Data System (ADS)
Ghaffarnejad, Hossein
2016-01-01
First we consider classical Reissner-Nordström black hole (CRNBH) metric which is obtained by solving Einstein-Maxwell metric equation for a point electric charge e inside of a spherical static body with mass M. It has 2 interior and exterior horizons. Using Bekenstein-Hawking entropy theorem we calculate interior and exterior entropy, temperature, Gibbs free energy and heat capacity at constant electric charge. We calculate first derivative of the Gibbs free energy with respect to temperature which become a singular function having a singularity at critical point Mc=2|e|/√{3} with corresponding temperature Tc=1/24π√{3|e|}. Hence we claim first order phase transition is happened there. Temperature same as Gibbs free energy takes absolutely positive (negative) values on the exterior (interior) horizon. The Gibbs free energy takes two different positive values synchronously for 0< T< Tc but not for negative values which means the system is made from two subsystem. For negative temperatures entropy reaches to zero value at Tto-∞ and so takes Bose-Einstein condensation single state. Entropy increases monotonically in case 0< T< Tc. Regarding results of the work presented at Wang and Huang (Phys. Rev. D 63:124014, 2001) we calculate again the mentioned thermodynamical variables for remnant stable final state of evaporating quantum Reissner-Nordström black hole (QRNBH) and obtained results same as one in case of the CRNBH. Finally, we solve mass loss equation of QRNBH against advance Eddington-Finkelstein time coordinate and derive luminosity function. We obtain switching off of QRNBH evaporation before than the mass completely vanishes. It reaches to a could Lukewarm type of RN black hole which its final remnant mass is m_{final}=|e| in geometrical units. Its temperature and luminosity vanish but not in Schwarzschild case of evaporation. Our calculations can be take some acceptable statements about information loss paradox (ILP).
NASA Astrophysics Data System (ADS)
Perron, Aurelien; Roehling, John D.; Turchi, Patrice E. A.; Fattebert, Jean-Luc; McKeown, Joseph T.
2018-01-01
A combination of dynamic transmission electron microscopy (DTEM) experiments and CALPHAD-informed phase-field simulations was used to study rapid solidification in Cu-Ni thin-film alloys. Experiments—conducted in the DTEM—consisted of in situ laser melting and determination of the solidification kinetics by monitoring the solid-liquid interface and the overall microstructure evolution (time-resolved measurements) during the solidification process. Modelling of the Cu-Ni alloy microstructure evolution was based on a phase-field model that included realistic Gibbs energies and diffusion coefficients from the CALPHAD framework (thermodynamic and mobility databases). DTEM and post mortem experiments highlighted the formation of microsegregation-free columnar grains with interface velocities varying from ˜0.1 to ˜0.6 m s-1. After an ‘incubation’ time, the velocity of the planar solid-liquid interface accelerated until solidification was complete. In addition, a decrease of the temperature gradient induced a decrease in the interface velocity. The modelling strategy permitted the simulation (in 1D and 2D) of the solidification process from the initially diffusion-controlled to the nearly partitionless regimes. Finally, results of DTEM experiments and phase-field simulations (grain morphology, solute distribution, and solid-liquid interface velocity) were consistent at similar time (μs) and spatial scales (μm).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perron, Aurelien; Roehling, John D.; Turchi, Patrice E. A.
A combination of dynamic transmission electron microscopy (DTEM) experiments and CALPHAD-informed phase-field simulations was used to study rapid solidification in Cu–Ni thin-film alloys. Experiments—conducted in the DTEM—consisted of in situ laser melting and determination of the solidification kinetics by monitoring the solid–liquid interface and the overall microstructure evolution (time-resolved measurements) during the solidification process. Modelling of the Cu–Ni alloy microstructure evolution was based on a phase-field model that included realistic Gibbs energies and diffusion coefficients from the CALPHAD framework (thermodynamic and mobility databases). DTEM and post mortem experiments highlighted the formation of microsegregation-free columnar grains with interface velocities varying frommore » ~0.1 to ~0.6 m s –1. After an 'incubation' time, the velocity of the planar solid–liquid interface accelerated until solidification was complete. In addition, a decrease of the temperature gradient induced a decrease in the interface velocity. The modelling strategy permitted the simulation (in 1D and 2D) of the solidification process from the initially diffusion-controlled to the nearly partitionless regimes. Lastly, results of DTEM experiments and phase-field simulations (grain morphology, solute distribution, and solid–liquid interface velocity) were consistent at similar time (μs) and spatial scales (μm).« less
Perron, Aurelien; Roehling, John D.; Turchi, Patrice E. A.; ...
2017-12-05
A combination of dynamic transmission electron microscopy (DTEM) experiments and CALPHAD-informed phase-field simulations was used to study rapid solidification in Cu–Ni thin-film alloys. Experiments—conducted in the DTEM—consisted of in situ laser melting and determination of the solidification kinetics by monitoring the solid–liquid interface and the overall microstructure evolution (time-resolved measurements) during the solidification process. Modelling of the Cu–Ni alloy microstructure evolution was based on a phase-field model that included realistic Gibbs energies and diffusion coefficients from the CALPHAD framework (thermodynamic and mobility databases). DTEM and post mortem experiments highlighted the formation of microsegregation-free columnar grains with interface velocities varying frommore » ~0.1 to ~0.6 m s –1. After an 'incubation' time, the velocity of the planar solid–liquid interface accelerated until solidification was complete. In addition, a decrease of the temperature gradient induced a decrease in the interface velocity. The modelling strategy permitted the simulation (in 1D and 2D) of the solidification process from the initially diffusion-controlled to the nearly partitionless regimes. Lastly, results of DTEM experiments and phase-field simulations (grain morphology, solute distribution, and solid–liquid interface velocity) were consistent at similar time (μs) and spatial scales (μm).« less
Annealed scaling for a charged polymer in dimensions two and higher
NASA Astrophysics Data System (ADS)
Berger, Q.; den Hollander, F.; Poisat, J.
2018-02-01
This paper considers an undirected polymer chain on {Z}d , d ≥slant 2 , with i.i.d. random charges attached to its constituent monomers. Each self-intersection of the polymer chain contributes an energy to the interaction Hamiltonian that is equal to the product of the charges of the two monomers that meet. The joint probability distribution for the polymer chain and the charges is given by the Gibbs distribution associated with the interaction Hamiltonian. The object of interest is the annealed free energy per monomer in the limit as the length n of the polymer chain tends to infinity. We show that there is a critical curve in the parameter plane spanned by the charge bias and the inverse temperature separating an extended phase from a collapsed phase. We derive the scaling of the critical curve for small and for large charge bias and the scaling of the annealed free energy for small inverse temperature. We argue that in the collapsed phase the polymer chain is subdiffusive, namely, on scale \
NEXUS/Physics: An interdisciplinary repurposing of physics for biologists
NASA Astrophysics Data System (ADS)
Redish, E. F.; Bauer, C.; Carleton, K. L.; Cooke, T. J.; Cooper, M.; Crouch, C. H.; Dreyfus, B. W.; Geller, B. D.; Giannini, J.; Gouvea, J. S.; Klymkowsky, M. W.; Losert, W.; Moore, K.; Presson, J.; Sawtelle, V.; Thompson, K. V.; Turpen, C.; Zia, R. K. P.
2014-05-01
In response to increasing calls for the reform of the undergraduate science curriculum for life science majors and pre-medical students (Bio2010, Scientific Foundations for Future Physicians, Vision & Change), an interdisciplinary team has created NEXUS/Physics: a repurposing of an introductory physics curriculum for the life sciences. The curriculum interacts strongly and supportively with introductory biology and chemistry courses taken by life-science students, with the goal of helping students build general, multi-discipline scientific competencies. NEXUS/Physics stresses interdisciplinary examples and the content differs markedly from traditional introductory physics to facilitate this: it extends the discussion of energy to include interatomic potentials and chemical reactions, the discussion of thermodynamics to include enthalpy and Gibbs free energy and includes a serious discussion of random vs coherent motion including diffusion. The development of instructional materials is coordinated with careful education research. Both the new content and the results of the research are described in a series of papers for which this paper serves as an overview and context.
Maskow, Thomas; Kemp, Richard; Buchholz, Friederike; Schubert, Torsten; Kiesel, Baerbel; Harms, Hauke
2010-01-01
Summary The exploitation of microorganisms in natural or technological systems calls for monitoring tools that reflect their metabolic activity in real time and, if necessary, are flexible enough for field application. The Gibbs energy dissipation of assimilated substrates or photons often in the form of heat is a general feature of life processes and thus, in principle, available to monitor and control microbial dynamics. Furthermore, the combination of measured heat fluxes with material fluxes allows the application of Hess' law to either prove expected growth stoichiometries and kinetics or identify and estimate unexpected side reactions. The combination of calorimetry with respirometry is theoretically suited for the quantification of the degree of coupling between catabolic and anabolic reactions. New calorimeter developments overcome the weaknesses of conventional devices, which hitherto limited the full exploitation of this powerful analytical tool. Calorimetric systems can be integrated easily into natural and technological systems of interest. They are potentially suited for high‐throughput measurements and are robust enough for field deployment. This review explains what information calorimetric analyses provide; it introduces newly emerging calorimetric techniques and it exemplifies the application of calorimetry in different fields of microbial research. PMID:21255327
2018-01-01
Objective The objective of this study was to estimate genetic parameters of milk, fat, and protein yields within and across lactations in Tunisian Holsteins using a random regression test-day (TD) model. Methods A random regression multiple trait multiple lactation TD model was used to estimate genetic parameters in the Tunisian dairy cattle population. Data were TD yields of milk, fat, and protein from the first three lactations. Random regressions were modeled with third-order Legendre polynomials for the additive genetic, and permanent environment effects. Heritabilities, and genetic correlations were estimated by Bayesian techniques using the Gibbs sampler. Results All variance components tended to be high in the beginning and the end of lactations. Additive genetic variances for milk, fat, and protein yields were the lowest and were the least variable compared to permanent variances. Heritability values tended to increase with parity. Estimates of heritabilities for 305-d yield-traits were low to moderate, 0.14 to 0.2, 0.12 to 0.17, and 0.13 to 0.18 for milk, fat, and protein yields, respectively. Within-parity, genetic correlations among traits were up to 0.74. Genetic correlations among lactations for the yield traits were relatively high and ranged from 0.78±0.01 to 0.82±0.03, between the first and second parities, from 0.73±0.03 to 0.8±0.04 between the first and third parities, and from 0.82±0.02 to 0.84±0.04 between the second and third parities. Conclusion These results are comparable to previously reported estimates on the same population, indicating that the adoption of a random regression TD model as the official genetic evaluation for production traits in Tunisia, as developed by most Interbull countries, is possible in the Tunisian Holsteins. PMID:28823122
Ben Zaabza, Hafedh; Ben Gara, Abderrahmen; Rekik, Boulbaba
2018-05-01
The objective of this study was to estimate genetic parameters of milk, fat, and protein yields within and across lactations in Tunisian Holsteins using a random regression test-day (TD) model. A random regression multiple trait multiple lactation TD model was used to estimate genetic parameters in the Tunisian dairy cattle population. Data were TD yields of milk, fat, and protein from the first three lactations. Random regressions were modeled with third-order Legendre polynomials for the additive genetic, and permanent environment effects. Heritabilities, and genetic correlations were estimated by Bayesian techniques using the Gibbs sampler. All variance components tended to be high in the beginning and the end of lactations. Additive genetic variances for milk, fat, and protein yields were the lowest and were the least variable compared to permanent variances. Heritability values tended to increase with parity. Estimates of heritabilities for 305-d yield-traits were low to moderate, 0.14 to 0.2, 0.12 to 0.17, and 0.13 to 0.18 for milk, fat, and protein yields, respectively. Within-parity, genetic correlations among traits were up to 0.74. Genetic correlations among lactations for the yield traits were relatively high and ranged from 0.78±0.01 to 0.82±0.03, between the first and second parities, from 0.73±0.03 to 0.8±0.04 between the first and third parities, and from 0.82±0.02 to 0.84±0.04 between the second and third parities. These results are comparable to previously reported estimates on the same population, indicating that the adoption of a random regression TD model as the official genetic evaluation for production traits in Tunisia, as developed by most Interbull countries, is possible in the Tunisian Holsteins.
Borquis, Rusbel Raul Aspilcueta; Neto, Francisco Ribeiro de Araujo; Baldi, Fernando; Hurtado-Lugo, Naudin; de Camargo, Gregório M F; Muñoz-Berrocal, Milthon; Tonhati, Humberto
2013-09-01
In this study, genetic parameters for test-day milk, fat, and protein yield were estimated for the first lactation. The data analyzed consisted of 1,433 first lactations of Murrah buffaloes, daughters of 113 sires from 12 herds in the state of São Paulo, Brazil, with calvings from 1985 to 2007. Ten-month classes of lactation days were considered for the test-day yields. The (co)variance components for the 3 traits were estimated using the regression analyses by Bayesian inference applying an animal model by Gibbs sampling. The contemporary groups were defined as herd-year-month of the test day. In the model, the random effects were additive genetic, permanent environment, and residual. The fixed effects were contemporary group and number of milkings (1 or 2), the linear and quadratic effects of the covariable age of the buffalo at calving, as well as the mean lactation curve of the population, which was modeled by orthogonal Legendre polynomials of fourth order. The random effects for the traits studied were modeled by Legendre polynomials of third and fourth order for additive genetic and permanent environment, respectively, the residual variances were modeled considering 4 residual classes. The heritability estimates for the traits were moderate (from 0.21-0.38), with higher estimates in the intermediate lactation phase. The genetic correlation estimates within and among the traits varied from 0.05 to 0.99. The results indicate that the selection for any trait test day will result in an indirect genetic gain for milk, fat, and protein yield in all periods of the lactation curve. The accuracy associated with estimated breeding values obtained using multi-trait random regression was slightly higher (around 8%) compared with single-trait random regression. This difference may be because to the greater amount of information available per animal. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Introduction to the topical issue: Nonadditive entropy and nonextensive statistical mechanics
NASA Astrophysics Data System (ADS)
Sugiyama, Masaru
. Dear CMT readers, it is my pleasure to introduce you to this topical issue dealing with a new research field of great interest, nonextensive statistical mechanics. This theory was initiated by Constantino Tsallis' work in 1998, as a possible generalization of Boltzmann-Gibbs thermostatistics. It is based on a nonadditive entropy, nowadays referred to as the Tsallis entropy. Nonextensive statistical mechanics is expected to be a consistent and unified theoretical framework for describing the macroscopic properties of complex systems that are anomalous in view of ordinary thermostatistics. In such systems, the long-standing problem regarding the relationship between statistical and dynamical laws becomes highlighted, since ergodicity and mixing may not be well realized in situations such as the edge of chaos. The phase space appears to self-organize in a structure that is not simply Euclidean but (multi)fractal. Due to this nontrivial structure, the concept of homogeneity of the system, which is the basic premise in ordinary thermodynamics, is violated and accordingly the additivity postulate for the thermodynamic quantities such as the internal energy and entropy may not be justified, in general. (Physically, nonadditivity is deeply relevant to nonextensivity of a system, in which the thermodynamic quantities do not scale with size in a simple way. Typical examples are systems with long-range interactions like self-gravitating systems as well as nonneutral charged ones.) A point of crucial importance here is that, phenomenologically, such an exotic phase-space structure has a fairly long lifetime. Therefore, this state, referred to as a metaequilibrium state or a nonequilibrium stationary state, appears to be described by a generalized entropic principle different from the traditional Boltzmann-Gibbs form, even though it may eventually approach the Boltzmann-Gibbs equilibrium state. The limits t-> ∞ and N-> ∞ do not commute, where t and N are time and the number of particles, respectively. The present topical issue is devoted to summarizing the current status of nonextensive statistical mechanics from various perspectives. It is my hope that this issue can inform the reader of one of the foremost research areas in thermostatistics. This issue consists of eight articles. The first one by Tsallis and Brigatti presents a general introduction and an overview of nonextensive statistical mechanics. At first glance, generalization of the ordinary Boltzmann-Gibbs-Shannon entropy might be completely arbitrary. But Abe's article explains how Tsallis' generalization of the statistical entropy can uniquely be characterized by both physical and mathematical principles. Then, the article by Pluchino, Latora, and Rapisarda presents a strong evidence that nonextensive statistical mechanics is in fact relevant to nonextensive systems with long-range interactions. The articles by Rajagopal, by Wada, and by Plastino, Miller, and Plastino are concerned with the macroscopic thermodynamic properties of nonextensive statistical mechanics. Rajagopal discusses the first and second laws of thermodynamics. Wada develops a discussion about the condition under which the nonextensive statistical-mechanical formalism is thermodynamically stable. The work of Plastino, Miller, and Plastino addresses the thermodynamic Legendre-transform structure and its robustness for generalizations of entropy. After these fundamental investigations, Sakagami and Taruya examine the theory for self-gravitating systems. Finally, Beck presents a novel idea of the so-called superstatistics, which provides nonextensive statistical mechanics with a physical interpretation based on nonequilibrium concepts including temperature fluctuations. Its applications to hydrodynamic turbulence and pattern formation in thermal convection states are also discussed. Nonextensive statistical mechanics is already a well-studied field, and a number of works are available in the literature. It is recommended that the interested reader visit the URL http: //tsallis.cat.cbpf.br/TEMUCO.pdf. There, one can find a comprehensive list of references to more than one thousand papers including important results that, due to lack of space, have not been mentioned in the present issue. Though there are so many published works, nonextensive statistical mechanics is still a developing field. This can naturally be understood, since the program that has been undertaken is an extremely ambitious one that makes a serious attempt to enlarge the horizons of the realm of statistical mechanics. The possible influence of nonextensive statistical mechanics on continuum mechanics and thermodynamics seems to be wide and deep. I will therefore be happy if this issue contributes to attracting the interest of researchers and stimulates research activities not only in the very field of nonextensive statistical mechanics but also in the field of continuum mechanics and thermodynamics in a wider context. As the editor of the present topical issue, I would like to express my sincere thanks to all those who joined up to make this issue. I cordially thank Professor S. Abe for advising me on the editorial policy. Without his help, the present topical issue would never have been brought out.
Gibbs free energy difference between the undercooled liquid and the beta phase of a Ti-Cr alloy
NASA Technical Reports Server (NTRS)
Ohsaka, K.; Trinh, E. H.; Holzer, J. C.; Johnson, W. L.
1992-01-01
The heat of fusion and the specific heats of the solid and liquid have been experimentally determined for a Ti60Cr40 alloy. The data are used to evaluate the Gibbs free energy difference, delta-G, between the liquid and the beta phase as a function of temperature to verify a reported spontaneous vitrification (SV) of the beta phase in Ti-Cr alloys. The results show that SV of an undistorted beta phase in the Ti60Cr40 alloy at 873 K is not feasible because delta-G is positive at the temperature. However, delta-G may become negative with additional excess free energy to the beta phase in the form of defects.
Effect of Surface Excess Energy Transport on the Rupture of an Evaporating Film
NASA Astrophysics Data System (ADS)
Luo, Yan; Zhou, Jianqiu; Yang, Xia; Liu, Rong
2018-05-01
In most of existing works on the instabilities of an evaporating film, the energy boundary condition only takes into account contributions of the evaporation latent heat and the heat conduction in the liquid. We use a new generalized energy boundary condition at the evaporating liquid-vapor interface, in which the contribution of the transport of the Gibbs excess energy is included. We have derived the long-wave equations in which the thickness of film and the interfacial temperature are coupled to describe the dynamics of an evaporating thin film. The results of our computation show that the transport of the Gibbs excess internal energy delay the rupture of thin films due to van de Waals force, evaporating effect and vapor recoil.
Xiong, Kan; Asher, Sanford A
2010-01-01
We used CD and UV resonance Raman spectroscopy to study the impact of alcohols on the conformational equilibria and relative Gibbs free energy landscapes along the Ramanchandran Ψ-coordinate of a mainly poly-ala peptide, AP of sequence AAAAA(AAARA)3A. 2,2,2-trifluroethanol (TFE) most stabilizes the α-helical-like conformations, followed by ethanol, methanol and pure water. The π-bulge conformation is stabilized more than the α-helix, while the 310-helix is destabilized due to the alcohol increased hydrophobicity. Turns are also stabilized by alcohols. We also found that while TFE induces more α-helices, it favors multiple, shorter helix segments. PMID:20225890
Pozsgay, B; Mestyán, M; Werner, M A; Kormos, M; Zaránd, G; Takács, G
2014-09-12
We study the nonequilibrium time evolution of the spin-1/2 anisotropic Heisenberg (XXZ) spin chain, with a choice of dimer product and Néel states as initial states. We investigate numerically various short-ranged spin correlators in the long-time limit and find that they deviate significantly from predictions based on the generalized Gibbs ensemble (GGE) hypotheses. By computing the asymptotic spin correlators within the recently proposed quench-action formalism [Phys. Rev. Lett. 110, 257203 (2013)], however, we find excellent agreement with the numerical data. We, therefore, conclude that the GGE cannot give a complete description even of local observables, while the quench-action formalism correctly captures the steady state in this case.
Relations between dissipated work and Rényi divergences in the generalized Gibbs ensemble
NASA Astrophysics Data System (ADS)
Wei, Bo-Bo
2018-04-01
In this work, we show that the dissipation in a many-body system under an arbitrary nonequilibrium process is related to the Rényi divergences between two states along the forward and reversed dynamics under a very general family of initial conditions. This relation generalizes the links between dissipated work and Rényi divergences to quantum systems with conserved quantities whose equilibrium state is described by the generalized Gibbs ensemble. The relation is applicable for quantum systems with conserved quantities and can be applied to protocols driving the system between integrable and chaotic regimes. We demonstrate our ideas by considering the one-dimensional transverse quantum Ising model and the Jaynes-Cummings model which are driven out of equilibrium.
Vapor-liquid phase equilibria of water modelled by a Kim-Gordon potential
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maerzke, K A; McGrath, M J; Kuo, I W
2009-03-16
Gibbs ensemble Monte Carlo simulations were carried out to investigate the properties of a frozen-electron-density (or Kim-Gordon, KG) model of water along the vapor-liquid coexistence curve. Because of its theoretical basis, such a KG model provides for seamless coupling to Kohn-Sham density functional theory for use in mixed quantum mechanics/molecular mechanics (QM/MM) implementations. The Gibbs ensemble simulations indicate rather limited transferability of such a simple KG model to other state points. Specifically, a KG model that was parameterized by Barker and Sprik to the properties of liquid water at 300 K, yields saturated vapor pressures and a critical temperature thatmore » are significantly under- and over-estimated, respectively.« less
Gibbs-Donnan ratio and channel conductance of Tetrahymena cilia in mixed solution of K+ and Ca2+.
Oosawa, Y; Kasai, M
1988-01-01
A single cation-channel from Tetrahymena cilia was incorporated into planar lipid bilayers. This channel was voltage-independent and is permeable to K+ and Ca2+. In the experiments with mixed solutions where the concentrations of K+ and Ca2+ were varied, the single-channel conductance was found to be influenced by the Gibbs-Donnan ratio. The data are explained by assuming that the binding sites of this channel were always occupied by two potassium ions or one calcium ion under the present experimental conditions (5 mM-90 mM K+ and 0.5 mM-35 mM Ca2+) and these bound cations determined the channel conductivity. PMID:2462927
Generalized Gibbs distribution and energy localization in the semiclassical FPU problem
NASA Astrophysics Data System (ADS)
Hipolito, Rafael; Danshita, Ippei; Oganesyan, Vadim; Polkovnikov, Anatoli
2011-03-01
We investigate dynamics of the weakly interacting quantum mechanical Fermi-Pasta-Ulam (qFPU) model in the semiclassical limit below the stochasticity threshold. Within this limit we find that initial quantum fluctuations lead to the damping of FPU oscillations and relaxation of the system to a slowly evolving steady state with energy localized within few momentum modes. We find that in large systems this state can be described by the generalized Gibbs ensemble (GGE), with the Lagrange multipliers being very weak functions of time. This ensembles gives accurate description of the instantaneous correlation functions, both quadratic and quartic. Based on these results we conjecture that GGE generically appears as a prethermalized state in weakly non-integrable systems.
Quantum Chemical Approach to Estimating the Thermodynamics of Metabolic Reactions
Jinich, Adrian; Rappoport, Dmitrij; Dunn, Ian; Sanchez-Lengeling, Benjamin; Olivares-Amaya, Roberto; Noor, Elad; Even, Arren Bar; Aspuru-Guzik, Alán
2014-01-01
Thermodynamics plays an increasingly important role in modeling and engineering metabolism. We present the first nonempirical computational method for estimating standard Gibbs reaction energies of metabolic reactions based on quantum chemistry, which can help fill in the gaps in the existing thermodynamic data. When applied to a test set of reactions from core metabolism, the quantum chemical approach is comparable in accuracy to group contribution methods for isomerization and group transfer reactions and for reactions not including multiply charged anions. The errors in standard Gibbs reaction energy estimates are correlated with the charges of the participating molecules. The quantum chemical approach is amenable to systematic improvements and holds potential for providing thermodynamic data for all of metabolism. PMID:25387603
DFT Studies of SN2 Dechlorination of Polychlorinated Biphenyls.
Krzemińska, Agnieszka; Paneth, Piotr
2016-06-21
Nucleophilic dechlorination of all 209 PCBs congeners by ethylene glycol anion has been studied theoretically at the DFT level. The obtained Gibbs free energies of activation are in the range 7-22 kcal/mol. The reaction Gibbs free energies indicate that all reactions are virtually irreversible. Due to geometric constrains these reactions undergo rather untypical attack with attacking oxygen atom being nearly perpendicular to the attacked C-Cl bond. The most prone to substitution are chlorine atoms that occupy ortho- (2, 2', 6, 6') positions. These results provide extensive information on the PEG/KOH dependent PCBs degradation. They can also be used in further developments of reaction class transition state theory (RC-TST) for description of complex reactive systems encountered for example in combustion processes.
The Charlie-Gibbs Fracture Zone: A Crossroads of the Atlantic Meridional Overturning Circulation
NASA Astrophysics Data System (ADS)
Bower, A. S.; Furey, H. H.; Xu, X.
2016-02-01
The Charlie-Gibbs Fracture Zone (CGFZ), a deep gap in the Mid-Atlantic Ridge at 52N, is the primary conduit for westward-flowing Iceland-Scotland Overflow Water (ISOW), which merges with Denmark Strait Overflow Water to form the Deep Western Boundary Current. The CGFZ has also been shown to "funnel" the path of the northern branch of the eastward-flowing North Atlantic Current (NAC), thereby bringing these two branches of the AMOC into close proximity. A recent two-year time series of hydrographic properties and currents from eight tall moorings across the CGFZ offers the first opportunity to investigate the NAC as a source of variability for ISOW transport. The two-year mean and standard deviation of ISOW transport was -1.7 ± 1.5 Sv, compared to -2.4 ± 3.0 Sv reported by Saunders for a 13-month period in 1988-1989. Differences in the two estimates are partly explained by limitations of the Saunders array, but more importantly reflect the strong low-frequency variability in ISOW transport through CGFZ (which includes complete reversals). Both the observations and output from a multi-decadal simulation of the North Atlantic using the Hybrid Coordinate Ocean Model (HYCOM) forced with interannually varying wind and buoyancy fields indicate a strong positive correlation between ISOW transport and the strength of the NAC through the CGFZ (stronger eastward NAC related to weaker westward ISOW transport). Vertical structure of the low-frequency current variability and water mass structure in the CGFZ will also be discussed. The results have implications regarding the interaction of the upper and lower limbs of the AMOC, and downstream propagation of ISOW transport variability in the Deep Western Boundary Current.
NASA Astrophysics Data System (ADS)
Bower, Amy; Furey, Heather; Xu, Xiaobiao
2015-04-01
Detailed observations of the pathways, transports and water properties of dense overflows associated with the Atlantic Meridional Overturning Circulation (AMOC) provide critical benchmarks for climate models and mixing parameterizations. A recent two-year time series from eight moorings offers the first long-term simultaneous observations of the hydrographic properties and transport of Iceland-Scotland Overflow Water (ISOW) flowing westward through the Charlie-Gibbs Fracture Zone (CGFZ), a major deep gap in the Mid-Atlantic Ridge (MAR) connecting the eastern and western basins of the North Atlantic. In addition, current meters up to 500-m depth and satellite altimetry allow us to investigate the overlying North Atlantic Current (NAC) as a source of ISOW transport variability. Using the isohaline 34.94 to define the ISOW layer, the two year mean and standard deviation of ISOW transport was -1.7 ± 1.5 Sv, compared to -2.4 ± 3.0 Sv reported by Saunders for a 13-month period in 1988-1989 using the same isohaline. Differences in the two estimates are partly explained by limitations of the Saunders array, but more importantly reflect the strong low-frequency variability in ISOW transport through CGFZ (which includes complete reversals). Both the observations and output from a multi-decadal simulation of the North Atlantic using the Hybrid Coordinate Ocean Model (HYCOM) forced with interannually varying wind and buoyancy fields indicate a strong positive correlation between ISOW transport and the strength of the NAC through the CGFZ. This result raises new questions regarding the interaction of the upper and lower limbs of the AMOC, downstream propagation of ISOW transport variability in the Deep Western Boundary Current and alternative pathways of ISOW across the MAR.
NASA Astrophysics Data System (ADS)
Bakhtiar, Nurizatul Syarfinas Ahmad; Abdullah, Farah Aini; Hasan, Yahya Abu
2017-08-01
In this paper, we consider the dynamical behaviour of the random field on the pulsating and snaking solitons in a dissipative systems described by the one-dimensional cubic-quintic complex Ginzburg-Landau equation (cqCGLE). The dynamical behaviour of the random filed was simulated by adding a random field to the initial pulse. Then, we solve it numerically by fixing the initial amplitude profile for the pulsating and snaking solitons without losing any generality. In order to create the random field, we choose 0 ≤ ɛ ≤ 1.0. As a result, multiple soliton trains are formed when the random field is applied to a pulse like initial profile for the parameters of the pulsating and snaking solitons. The results also show the effects of varying the random field of the transient energy peaks in pulsating and snaking solitons.
NASA Astrophysics Data System (ADS)
Tóth, Balázs
2018-03-01
Some new dual and mixed variational formulations based on a priori nonsymmetric stresses will be developed for linearly coupled irreversible thermoelastodynamic problems associated with second sound effect according to the Lord-Shulman theory. Having introduced the entropy flux vector instead of the entropy field and defining the dissipation and the relaxation potential as the function of the entropy flux, a seven-field dual and mixed variational formulation will be derived from the complementary Biot-Hamilton-type variational principle, using the Lagrange multiplier method. The momentum-, the displacement- and the infinitesimal rotation vector, and the a priori nonsymmetric stress tensor, the temperature change, the entropy field and its flux vector are considered as the independent field variables of this formulation. In order to handle appropriately the six different groups of temporal prescriptions in the relaxed- and/or the strong form, two variational integrals will be incorporated into the seven-field functional. Then, eliminating the entropy from this formulation through the strong fulfillment of the constitutive relation for the temperature change with the use of the Legendre transformation between the enthalpy and Gibbs potential, a six-field dual and mixed action functional is obtained. As a further development, the elimination of the momentum- and the velocity vector from the six-field principle through the a priori satisfaction of the kinematic equation and the constitutive relation for the momentum vector leads to a five-field variational formulation. These principles are suitable for the transient analyses of the structures exposed to a thermal shock of short temporal domain or a large heat flux.
2008-01-01
The kinetics and thermodynamics of binding of transportan 10 (tp10) and four of its variants to phospholipid vesicles, and the kinetics of peptide-induced dye efflux, were compared. Tp10 is a 21-residue, amphipathic, cationic, cell-penetrating peptide similar to helical antimicrobial peptides. The tp10 variants examined include amidated and free peptides, and replacements of tyrosine by tryptophan. Carboxy-terminal amidation or substitution of tryptophan for tyrosine enhance binding and activity. The Gibbs energies of peptide binding to membranes determined experimentally and calculated from the interfacial hydrophobicity scale are in good agreement. The Gibbs energy for insertion into the bilayer core was calculated using hydrophobicity scales of residue transfer from water to octanol and to the membrane/water interface. Peptide-induced efflux becomes faster as the Gibbs energies for binding and insertion of the tp10 variants decrease. If anionic lipids are included, binding and efflux rate increase, as expected because all tp10 variants are cationic and an electrostatic component is added. Whether the most important effect of peptide amidation is the change in charge or an enhancement of helical structure, however, still needs to be established. Nevertheless, it is clear that the changes in efflux rate reflect the differences in the thermodynamics of binding and insertion of the free and amidated peptide groups. PMID:18260641
NASA Astrophysics Data System (ADS)
Kuhn, J.; Kesler, O.
2015-03-01
For the second part of a two part publication, coking thresholds with respect to molar steam:carbon ratio (SC) and current density in nickel-based solid oxide fuel cells were determined. Anode-supported button cell samples were exposed to 2-component and 5-component gas mixtures with 1 ≤ SC ≤ 2 and zero fuel utilization for 10 h, followed by measurement of the resulting carbon mass. The effect of current density was explored by measuring carbon mass under conditions known to be prone to coking while increasing the current density until the cell was carbon-free. The SC coking thresholds were measured to be ∼1.04 and ∼1.18 at 600 and 700 °C, respectively. Current density experiments validated the thresholds measured with respect to fuel utilization and steam:carbon ratio. Coking thresholds at 600 °C could be predicted with thermodynamic equilibrium calculations when the Gibbs free energy of carbon was appropriately modified. Here, the Gibbs free energy of carbon on nickel-based anode support cermets was measured to be -6.91 ± 0.08 kJ mol-1. The results of this two part publication show that thermodynamic equilibrium calculations with appropriate modification to the Gibbs free energy of solid-phase carbon can be used to predict coking thresholds on nickel-based anodes at 600-700 °C.
Knudsen effusion mass spectrometric studies over (USn3+U3Sn7) two-phase region of U-Sn system
NASA Astrophysics Data System (ADS)
Manikandan, P.; Trinadh, V. V.; Bera, Suranjan; Narasimhan, T. S. Lakshmi; Ananthasivan, K.; Joseph, M.; Mudali, U. Kamachi
2017-08-01
Vaporisation studies over (USn3+U3Sn7) ;two-phase; field have been carried out by employing Knudsen effusion mass spectrometry (KEMS) in the temperature range of 1050-1226 K. Sn(g) was the species observed in the mass spectrum of the equilibrium vapour phase over the samples (71.5 at% Sn and 73.0 at% Sn). The partial pressure of Sn(g) was measured as a function of temperature over (USn3+U3Sn7) ;two-phase; field and the p-T relation was derived as log (pSn/Pa) = ((-14580 ± 91)/(T/K)) + (8.82 ± 0.08) (1050-1226 K). The vaporisation reaction 3USn3(s) = U3Sn7(s) + 2Sn(g) was evaluated by second law method. The Gibbs energy of formation of USn3(s) was derived as ΔfGm°(U Sn3 , s , T) (±1.8) = -173.4 + 0.055 T (K) (kJ mol-1) (1050-1226 K). The mass spectrometric studies on this system have been carried out for the first time.
Thermodynamic Study of the Nickel Addition in Zinc Hot-Dip Galvanizing Baths
NASA Astrophysics Data System (ADS)
Pistofidis, N.; Vourlias, G.
2010-01-01
A usual practice during zinc hot-dip galvanizing is the addition of nickel in the liquid zinc which is used to inhibit the Sandelin effect. Its action is due to the fact that the ζ (zeta) phase of the Fe-Zn system is replaced by the Τ (tau) phase of the Fe-Zn-Ni system. In the present work an attempt is made to explain the formation of the Τ phase with thermodynamics. For this reason the Gibbs free energy changes for Τ and ζ phases were calculated. The excess free energy for the system was calculated with the Redlich-Kister polyonyme. From this calculation it was deduced that the Gibbs energy change for the tau phase is negative. As a result its formation is spontaneous.
NASA Astrophysics Data System (ADS)
Sudolská, Mária; Cantrel, Laurent; Budzák, Šimon; Černušák, Ivan
2014-03-01
Monohydrated complexes of iodine species (I, I2, HI, and HOI) have been studied by correlated ab initio calculations. The standard enthalpies of formation, Gibbs free energy and the temperature dependence of the heat capacities at constant pressure were calculated. The values obtained have been implemented in ASTEC nuclear accident simulation software to check the thermodynamic stability of hydrated iodine compounds in the reactor coolant system and in the nuclear containment building of a pressurised water reactor during a severe accident. It can be concluded that iodine complexes are thermodynamically unstable by means of positive Gibbs free energies and would be represented by trace level concentrations in severe accident conditions; thus it is well justified to only consider pure iodine species and not hydrated forms.
Estimation hydrophilic-lipophilic balance number of surfactants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pawignya, Harsa, E-mail: harsa-paw@yahoo.co.id; Chemical Engineering Departement University of Pembangunan Nasional Yogyakarta; Prasetyaningrum, Aji, E-mail: ajiprasetyaningrum@gmail.com
Any type of surfactant has a hydrophilic-lipophilic balance number (HLB number) of different. There are several methods for determining the HLB number, with ohysical properties of surfactant (solubility cloud point and interfacial tension), CMC methods and by thermodynamics properties (Free energy Gibbs). This paper proposes to determined HLB numbers from interfelation methods. The result of study indicated that the CMC method described by Hair and Moulik espesially for nonionic surfactant. The application of exess Gibbs free energy and by implication activity coefficient provides the ability to predict the behavior of surfactants in multi component mixtures of different concentration. Determination ofmore » HLB number by solubility and cloud point parameter is spesific for anionic and nonionic surfactant but this methods not available for cationic surfactants.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sobolev, S. L., E-mail: sobolev@icp.ac.ru
An analytical model has been developed to describe the influence of solute trapping during rapid alloy solidification on the components of the Gibbs free energy change at the phase interface with emphasis on the solute drag energy. For relatively low interface velocity V < V{sub D}, where V{sub D} is the characteristic diffusion velocity, all the components, namely mixing part, local nonequilibrium part, and solute drag, significantly depend on solute diffusion and partitioning. When V ≥ V{sub D}, the local nonequilibrium effects lead to a sharp transition to diffusionless solidification. The transition is accompanied by complete solute trapping and vanishingmore » solute drag energy, i.e. partitionless and “dragless” solidification.« less
Tsallis thermostatistics for finite systems: a Hamiltonian approach
NASA Astrophysics Data System (ADS)
Adib, Artur B.; Moreira, Andrã© A.; Andrade, José S., Jr.; Almeida, Murilo P.
2003-05-01
The derivation of the Tsallis generalized canonical distribution from the traditional approach of the Gibbs microcanonical ensemble is revisited (Phys. Lett. A 193 (1994) 140). We show that finite systems whose Hamiltonians obey a generalized homogeneity relation rigorously follow the nonextensive thermostatistics of Tsallis. In the thermodynamical limit, however, our results indicate that the Boltzmann-Gibbs statistics is always recovered, regardless of the type of potential among interacting particles. This approach provides, moreover, a one-to-one correspondence between the generalized entropy and the Hamiltonian structure of a wide class of systems, revealing a possible origin for the intrinsic nonlinear features present in the Tsallis formalism that lead naturally to power-law behavior. Finally, we confirm these exact results through extensive numerical simulations of the Fermi-Pasta-Ulam chain of anharmonic oscillators.
NASA Astrophysics Data System (ADS)
Barber, Duncan Henry
During some postulated accidents at nuclear power stations, fuel cooling may be impaired. In such cases, the fuel heats up and the subsequent increased fission-gas release from the fuel to the gap may result in fuel sheath failure. After fuel sheath failure, the barrier between the coolant and the fuel pellets is lost or impaired, gases and vapours from the fuel-to-sheath gap and other open voids in the fuel pellets can be vented. Gases and steam from the coolant can enter the broken fuel sheath and interact with the fuel pellet surfaces and the fission-product inclusion on the fuel surface (including material at the surface of the fuel matrix). The chemistry of this interaction is an important mechanism to model in order to assess fission-product releases from fuel. Starting in 1995, the computer program SOURCE 2.0 was developed by the Canadian nuclear industry to model fission-product release from fuel during such accidents. SOURCE 2.0 has employed an early thermochemical model of irradiated uranium dioxide fuel developed at the Royal Military College of Canada. To overcome the limitations of computers of that time, the implementation of the RMC model employed lookup tables to pre-calculated equilibrium conditions. In the intervening years, the RMC model has been improved, the power of computers has increased significantly, and thermodynamic subroutine libraries have become available. This thesis is the result of extensive work based on these three factors. A prototype computer program (referred to as SC11) has been developed that uses a thermodynamic subroutine library to calculate thermodynamic equilibria using Gibbs energy minimization. The Gibbs energy minimization requires the system temperature (T) and pressure (P), and the inventory of chemical elements (n) in the system. In order to calculate the inventory of chemical elements in the fuel, the list of nuclides and nuclear isomers modelled in SC11 had to be expanded from the list used by SOURCE 2.0. A benchmark calculation demonstrates the improvement in agreement of the total inventory of those chemical elements included in the RMC fuel model to an ORIGEN-S calculation. ORIGEN-S is the Oak Ridge isotope generation and depletion computer program. The Gibbs energy minimizer requires a chemical database containing coefficients from which the Gibbs energy of pure compounds, gas and liquid mixtures, and solid solutions can be calculated. The RMC model of irradiated uranium dioxide fuel has been converted into the required format. The Gibbs energy minimizer has been incorporated into a new model of fission-product vaporization from the fuel surface. Calculated release fractions using the new code have been compared to results calculated with SOURCE IST 2.0P11 and to results of tests used in the validation of SOURCE 2.0. The new code shows improvements in agreement with experimental releases for a number of nuclides. Of particular significance is the better agreement between experimental and calculated release fractions for 140La. The improved agreement reflects the inclusion in the RMC model of the solubility of lanthanum (III) oxide (La2O3) in the fuel matrix. Calculated lanthanide release fractions from earlier computer programs were a challenge to environmental qualification analysis of equipment for some accident scenarios. The new prototype computer program would alleviate this concern. Keywords: Nuclear Engineering; Material Science; Thermodynamics; Radioactive Material, Gibbs Energy Minimization, Actinide Generation and Depletion, FissionProduct Generation and Depletion.
NASA Astrophysics Data System (ADS)
Young-Gonzales, Amanda R.; Samanta, Subarna; Richert, Ranko
2015-09-01
For glycerol and three monohydroxy alcohols, we have measured the non-linear dielectric effects resulting from the application and removal of a high dc bias electric field. The field effects are detected by virtue of a small amplitude harmonic field, from which time resolved changes in the dielectric loss are derived. The changes in permittivity are dominated by modifications of the time constants (rather than amplitudes) which display two contributions: a heating-like decrease of relaxation times that originates from the time dependent field when the bias is switched on and off and a slowing down of the dynamics resulting from the field induced reduction of configurational entropy. As observed for the electro-optical Kerr effect, the rise of the entropy change is slower than its decay, a feature that we rationalize on the basis of the quadratic dependence of the entropy change on polarization. For glycerol, the observed steady state level of the field induced shift of the glass transition temperature (+84 mK) matches the expectation based on the entropy change and its impact on dynamics via the Adam-Gibbs relation (+88 mK). For the alcohols, these non-linear effects rise and decay on the time scales of the prominent dielectric Debye process, underscoring the relation of these features to polarization anisotropy, opposed to mechanical or enthalpy relaxation which are orders of magnitude faster in these systems. A model is discussed which captures the observed magnitudes as well as time dependences in a near quantitative fashion. It is demonstrated that the high bias field modifies the response of polarization to the ac field, including a temporary change in the low field susceptibility.
Kernel-Correlated Levy Field Driven Forward Rate and Application to Derivative Pricing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bo Lijun; Wang Yongjin; Yang Xuewei, E-mail: xwyangnk@yahoo.com.cn
2013-08-01
We propose a term structure of forward rates driven by a kernel-correlated Levy random field under the HJM framework. The kernel-correlated Levy random field is composed of a kernel-correlated Gaussian random field and a centered Poisson random measure. We shall give a criterion to preclude arbitrage under the risk-neutral pricing measure. As applications, an interest rate derivative with general payoff functional is priced under this pricing measure.
Is the Non-Dipole Magnetic Field Random?
NASA Technical Reports Server (NTRS)
Walker, Andrew D.; Backus, George E.
1996-01-01
Statistical modelling of the Earth's magnetic field B has a long history. In particular, the spherical harmonic coefficients of scalar fields derived from B can be treated as Gaussian random variables. In this paper, we give examples of highly organized fields whose spherical harmonic coefficients pass tests for independent Gaussian random variables. The fact that coefficients at some depth may be usefully summarized as independent samples from a normal distribution need not imply that there really is some physical, random process at that depth. In fact, the field can be extremely structured and still be regarded for some purposes as random. In this paper, we examined the radial magnetic field B(sub r) produced by the core, but the results apply to any scalar field on the core-mantle boundary (CMB) which determines B outside the CMB.
NASA Astrophysics Data System (ADS)
Harvey, J.-P.; Gheribi, A. E.; Chartrand, P.
2012-12-01
In this work, an in silico procedure to generate a fully coherent set of thermodynamic properties obtained from classical molecular dynamics (MD) and Monte Carlo (MC) simulations is proposed. The procedure is applied to the Al-Zr system because of its importance in the development of high strength Al-Li alloys and of bulk metallic glasses. Cohesive energies of the studied condensed phases of the Al-Zr system (the liquid phase, the fcc solid solution, and various orthorhombic stoichiometric compounds) are calculated using the modified embedded atom model (MEAM) in the second-nearest-neighbor formalism (2NN). The Al-Zr MEAM-2NN potential is parameterized in this work using ab initio and experimental data found in the literature for the AlZr3-L12 structure, while its predictive ability is confirmed for several other solid structures and for the liquid phase. The thermodynamic integration (TI) method is implemented in a general MC algorithm in order to evaluate the absolute Gibbs energy of the liquid and the fcc solutions. The entropy of mixing calculated from the TI method, combined to the enthalpy of mixing and the heat capacity data generated from MD/MC simulations performed in the isobaric-isothermal/canonical (NPT/NVT) ensembles are used to parameterize the Gibbs energy function of all the condensed phases in the Al-rich side of the Al-Zr system in a CALculation of PHAse Diagrams (CALPHAD) approach. The modified quasichemical model in the pair approximation (MQMPA) and the cluster variation method (CVM) in the tetrahedron approximation are used to define the Gibbs energy of the liquid and the fcc solid solution respectively for their entire range of composition. Thermodynamic and structural data generated from our MD/MC simulations are used as input data to parameterize these thermodynamic models. A detailed analysis of the validity and transferability of the Al-Zr MEAM-2NN potential is presented throughout our work by comparing the predicted properties obtained from this formalism with available ab initio and experimental data for both liquid and solid phases.
Xia, Xiaodong; Wang, Yang; Zhong, Zheng
2016-01-01
Unlike mechanical creep with inelastic deformation, electric creep with domain evolution is a rarely studied subject. In this paper, we present a theory of electric creep and related electromechanical coupling for both non-poled and fully poled ferroelectric ceramics. We consider electric creep to be a time-dependent process, with an initial condition lying on the D (electric displacement) versus E (electric field) hysteresis loop. Both processes are shown to share the same Gibbs free energy and thermodynamic driving force, but relative to creep, the hysteresis loop is just a field-dependent process. With this view, we develop a theory with a single thermodynamic driving force but with two separate kinetic equations, one for the field-dependent loops in terms of a Lorentzian-like function and the other for the time-dependent D in terms of a dissipation potential. We use the 0°–90° and then 90°–180° switches to attain these goals. It is demonstrated that the calculated results are in broad agreement with two sets of experiments, one for a non-poled PIC-151 and the other for a fully poled PZT-5A. The theory also shows that creep polarization tends to reach a saturation state with time and that the saturated polarization has its maximum at the coercive field. PMID:27843406
NASA Astrophysics Data System (ADS)
Vanmarcke, Erik
1983-03-01
Random variation over space and time is one of the few attributes that might safely be predicted as characterizing almost any given complex system. Random fields or "distributed disorder systems" confront astronomers, physicists, geologists, meteorologists, biologists, and other natural scientists. They appear in the artifacts developed by electrical, mechanical, civil, and other engineers. They even underlie the processes of social and economic change. The purpose of this book is to bring together existing and new methodologies of random field theory and indicate how they can be applied to these diverse areas where a "deterministic treatment is inefficient and conventional statistics insufficient." Many new results and methods are included. After outlining the extent and characteristics of the random field approach, the book reviews the classical theory of multidimensional random processes and introduces basic probability concepts and methods in the random field context. It next gives a concise amount of the second-order analysis of homogeneous random fields, in both the space-time domain and the wave number-frequency domain. This is followed by a chapter on spectral moments and related measures of disorder and on level excursions and extremes of Gaussian and related random fields. After developing a new framework of analysis based on local averages of one-, two-, and n-dimensional processes, the book concludes with a chapter discussing ramifications in the important areas of estimation, prediction, and control. The mathematical prerequisite has been held to basic college-level calculus.
Surface plasmon enhanced cell microscopy with blocked random spatial activation
NASA Astrophysics Data System (ADS)
Son, Taehwang; Oh, Youngjin; Lee, Wonju; Yang, Heejin; Kim, Donghyun
2016-03-01
We present surface plasmon enhanced fluorescence microscopy with random spatial sampling using patterned block of silver nanoislands. Rigorous coupled wave analysis was performed to confirm near-field localization on nanoislands. Random nanoislands were fabricated in silver by temperature annealing. By analyzing random near-field distribution, average size of localized fields was found to be on the order of 135 nm. Randomly localized near-fields were used to spatially sample F-actin of J774 cells (mouse macrophage cell-line). Image deconvolution algorithm based on linear imaging theory was established for stochastic estimation of fluorescent molecular distribution. The alignment between near-field distribution and raw image was performed by the patterned block. The achieved resolution is dependent upon factors including the size of localized fields and estimated to be 100-150 nm.
Entropy Analyses of Four Familiar Processes.
ERIC Educational Resources Information Center
Craig, Norman C.
1988-01-01
Presents entropy analysis of four processes: a chemical reaction, a heat engine, the dissolution of a solid, and osmosis. Discusses entropy, the second law of thermodynamics, and the Gibbs free energy function. (MVL)
Thermal interpretation of infrared dynamics in de Sitter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rigopoulos, Gerasimos, E-mail: gerasimos.rigopoulos@ncl.ac.uk
The infrared dynamics of a light, minimally coupled scalar field in de Sitter spacetime with Ricci curvature R = 12 H {sup 2}, averaged over horizon sized regions of physical volume V {sub H} = (4π/3)(1/ H ){sup 3}, can be interpreted as Brownian motion in a medium with de Sitter temperature T {sub DS} = h-bar H /2π. We demonstrate this by directly deriving the effective action of scalar field fluctuations with wavelengths larger than the de Sitter curvature radius and generalizing Starobinsky's seminal results on stochastic inflation. The effective action describes stochastic dynamics and the fluctuating force drivesmore » the field to an equilibrium characterized by a thermal Gibbs distribution at temperature T {sub DS} which corresponds to a de Sitter invariant state. Hence, approach towards this state can be interpreted as thermalization. We show that the stochastic kinetic energy of the coarse-grained description corresponds to the norm of ∂{sub μ}φ and takes a well defined value per horizon volume ½((∇φ){sup 2}) = − ½ T {sub DS}/ V {sub H} . This approach allows for the non-perturbative computation of the de Sitter invariant stress energy tensor ( T {sub μν}) for an arbitrary scalar potential.« less
Improving Communication Within a Managerial Workgroup
ERIC Educational Resources Information Center
Harvey, Jerry B.; Boettger, C. Russell
1971-01-01
This paper describes an experiment involving the use of laboratory education (Bradford, Gibb, & Benne, 1964; Bennis & Schein, 1965) and was designed on the assumption that improvement of communication in managerial workgroups enhances task effectiveness. (Author)
Cathedral house & crocker fence, Taylor Street east and north ...
Cathedral house & crocker fence, Taylor Street east and north elevations, perspective view from the northeast - Grace Cathedral, George William Gibbs Memorial Hall, 1051 Taylor Street, San Francisco, San Francisco County, CA
Remediation System Evaluation, MacGillis and Gibbs Superfund Site
The site was a wood preserving facility that is no longer active. Key contaminants at the site includepentachlorophenol (PCP), chromium, and to a much lesser extent dioxin, arsenic, and polynucleararomatic hydrocarbons (PAHs).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kagan, D. N., E-mail: d.n.kagan@mtu-net.ru; Krechetova, G. A.; Shpil'rain, E. E.
A detailed procedural analysis is given and results of implementation of the new version of the effusion method for determining the Gibbs energy (thermodynamic activity) of binary and ternary systems of alkali metals Cs-Na, K-Na, Cs-K, and Cs-K-Na are presented. The activity is determined using partial pressures of the components measured according the effusion method by the intensity of their atomic beams. The pressure range used in the experiment is intermediate between the Knudsen and hydrodynamic effusion modes. A generalized version of the effusion method involves the pressure range beyond the limits of the applicability of the Hertz-Knudsen equation. Employmentmore » of this method provides the differential equation of chemical thermodynamics; solution of this equation makes it possible to construct the Gibbs energy in the range of temperatures 400 {<=} T {<=} 1200 K and concentrations 0 {<=} x{sub i} {<=} 1.« less
NASA Astrophysics Data System (ADS)
Suthar, Shyam Sunder; Purohit, Suresh
2018-05-01
Properties of diesel and biodiesel (produced from corn oil) are used. Densities and viscosities of binary mixture of diesel with biodiesel (produced from corn oil) have been computed by using liquid binary mixture law over the entire range of compositions at T=298.15K and atmospheric pressure. From the computed values of density and viscosities, viscosity deviation (Δη), the excess molar volume (VE) and excess Gibbs energy of activation of viscous flow (ΔG#E) have been calculated. The results of excess volume, excess Gibbs energy of activation of viscous flow and viscosity deviation have been fitted to Redlich -Kister models to estimate the binary coefficients. The results are communicated in terms of the molecular interactions and the best suited composition has been found.
Modeling Ignition of HMX with the Gibbs Formulation
NASA Astrophysics Data System (ADS)
Lee, Kibaek; Stewart, D. Scott
2017-06-01
We present a HMX model with the Gibbs formulation in which stress tensor and temperature are assumed to be in local equilibrium, but phase/chemical changes are not assumed to be in equilibrium. We assume multi-components for HMX including beta- and delta-phase, liquid, and gas phase of HMX and its gas products. Isotropic small strain solid model, modified Fried Howard liquid EOS, and ideal gas EOS are used for its relevant component. Phase/chemical changes are characterized as reactions and are in individual reaction rate. Maxwell-Stefan model is used for diffusion. Excited gas products in the local domain lead unreacted HMX solid to the ignition event. Density of the mixture, stress, strain, displacement, mass fractions, and temperature are considered in 1D domain with time histories. Office of Naval Research and Air Force Office of Scientific Research.
NASA Astrophysics Data System (ADS)
Manikandan, P.; Trinadh, V. V.; Bera, Suranjan; Narasimhan, T. S. Lakshmi; Joseph, M.
2016-07-01
Vaporisation studies over gallium rich biphasic regions (U3Ga5 + UGa2) and (UGa2 + UGa3) in the Usbnd Ga system were carried out by Knusen effusion mass spectrometry in the temperature ranges of 1208-1366 K and 1133-1338 K, respectively. Ga(g) was the species observed in the mass spectra of the equilibrium vapour over both phase regions. From temperature dependence measurements, pressure-temperature relations were deduced as: log (pGa/Pa) = (-18216 ± 239)/(T/K) + (12.88 ± 0.18) over (U3Ga5 + UGa2) and log (pGa/Pa) = (-16225 ± 124)/(T/K) + (11.78 ± 0.10) over (UGa2 + UGa3). From these data, Gibbs free energy changes for the reactions 3UGa2(s) = U3Ga5(s) + Ga(g) and UGa3(s) = UGa2(s) + Ga(g) were computed and subsequently Gibbs free energies of formation of U3Ga5(s) and UGa3(s) were deduced as ΔfGTo U3Ga5(s) (±5.5) = -352.4 + 0.133 T(K) (kJ mol-1) (1208-1366 K) and ΔfGTo UGa3(s) (±3.8) = -191.9 + 0.082 T(K) (kJ mol-1) (1133-1338 K). The Gibbs free energy of formation of U3Ga5(s) is being reported for the first time.
NASA Astrophysics Data System (ADS)
Toher, Cormac; Oses, Corey; Plata, Jose J.; Hicks, David; Rose, Frisco; Levy, Ohad; de Jong, Maarten; Asta, Mark; Fornari, Marco; Buongiorno Nardelli, Marco; Curtarolo, Stefano
2017-06-01
Thorough characterization of the thermomechanical properties of materials requires difficult and time-consuming experiments. This severely limits the availability of data and is one of the main obstacles for the development of effective accelerated materials design strategies. The rapid screening of new potential materials requires highly integrated, sophisticated, and robust computational approaches. We tackled the challenge by developing an automated, integrated workflow with robust error-correction within the AFLOW framework which combines the newly developed "Automatic Elasticity Library" with the previously implemented GIBBS method. The first extracts the mechanical properties from automatic self-consistent stress-strain calculations, while the latter employs those mechanical properties to evaluate the thermodynamics within the Debye model. This new thermoelastic workflow is benchmarked against a set of 74 experimentally characterized systems to pinpoint a robust computational methodology for the evaluation of bulk and shear moduli, Poisson ratios, Debye temperatures, Grüneisen parameters, and thermal conductivities of a wide variety of materials. The effect of different choices of equations of state and exchange-correlation functionals is examined and the optimum combination of properties for the Leibfried-Schlömann prediction of thermal conductivity is identified, leading to improved agreement with experimental results than the GIBBS-only approach. The framework has been applied to the AFLOW.org data repositories to compute the thermoelastic properties of over 3500 unique materials. The results are now available online by using an expanded version of the REST-API described in the Appendix.
Thermodynamic properties of calcium-bismuth alloys determined by emf measurements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, H; Boysen, DA; Bradwell, DJ
2012-01-15
The thermodynamic properties of Ca-Bi alloys were determined by electromotive force (emf) measurements to assess the suitability of Ca-Bi electrodes for electrochemical energy storage applications. Emf was measured at ambient pressure as a function of temperature between 723 K and 1173 K using a Ca(s)vertical bar CaF2(s)vertical bar Ca(in Bi) cell for twenty different Ca-Bi alloys spanning the entire range of composition from chi(Ca) = 0 to 1. Reported are the temperature-independent partial molar entropy and enthalpy of calcium for each Ca-Bi alloy. Also given are the measured activities of calcium, the excess partial molar Gibbs energy of bismuth estimatedmore » from the Gibbs-Duhem equation, and the integral change in Gibbs energy for each Ca-Bi alloy at 873 K, 973 K, and 1073 K. Calcium activities at 973 K were found to be nearly constant at a value a(Ca) = 1 x 10(-8) over the composition range chi(Ca) = 0.32-0.56, yielding an emf of similar to 0.77 V. Above chi(Ca) = 0.62 and coincident with Ca5Bi3 formation, the calcium activity approached unity. The Ca-Bi system was also characterized by differential scanning calorimetry over the entire range of composition. Based upon these data along with the emf measurements, a revised Ca-Bi binary phase diagram is proposed. (C) 2011 Elsevier Ltd. All rights reserved.« less
New active asteroid 313P/Gibbs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jewitt, David; Hui, Man-To; Li, Jing
We present initial observations of the newly discovered active asteroid 313P/Gibbs (formerly P/2014 S4), taken to characterize its nucleus and comet-like activity. The central object has a radius ∼0.5 km (geometric albedo 0.05 assumed). We find no evidence for secondary nuclei and set (with qualifications) an upper limit to the radii of such objects near 20 m, assuming the same albedo. Both aperture photometry and a morphological analysis of the ejected dust show that mass-loss is continuous at rates ∼0.2–0.4 kg s{sup −1}, inconsistent with an impact origin. Large dust particles, with radii ∼50–100 μm, dominate the optical appearance. Atmore » 2.4 AU from the Sun, the surface equilibrium temperatures are too low for thermal or desiccation stresses to be responsible for the ejection of dust. No gas is spectroscopically detected (limiting the gas mass-loss rate to <1.8 kg s{sup −1}). However, the protracted emission of dust seen in our data and the detection of another episode of dust release near perihelion, in archival observations from 2003, are highly suggestive of an origin by the sublimation of ice. Coincidentally, the orbit of 313P/Gibbs is similar to those of several active asteroids independently suspected to be ice sublimators, including P/2012 T1, 238P/Read, and 133P/Elst–Pizarro, suggesting that ice is abundant in the outer asteroid belt.« less
Third Bose fugacity coefficient in one dimension, as a function of asymptotic quantities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Amaya-Tapia, A., E-mail: jano@fis.unam.mx; Larsen, S.Y.; Lassaut, M.
2011-02-15
In one of the very few exact quantum mechanical calculations of fugacity coefficients, [L.R. Dodd, A.M. Gibbs. J. Math. Phys. 15 (1974) 41] obtained b{sub 2} and b{sub 3} for a one dimensional Bose gas, subject to repulsive delta-function interactions, by direct integration of the wave functions. For b{sub 2}, we have shown [A. Amaya-Tapia, S.Y. Larsen, M. Lassaut. Mol. Phys. 103 (2005) 1301-1306. < (arXiv:physics/0405150)>] that Dodd and Gibbs' result can be obtained from a phase shift formalism, if one also includes the contribution of oscillating terms, usually contributing only in one dimension. Now, we develop an exact expressionmore » for b{sub 3}-b{sub 3}{sup 0} (where b{sub 3}{sup 0} is the free particle fugacity coefficient) in terms of sums and differences of three-body eigenphase shifts. Further, we show that if we obtain these eigenphase shifts in a Distorted-Born approximation, then, to first order, we reproduce the leading low temperature behaviour, obtained from an expansion of the twofold integral of Dodd and Gibbs. The contributions of the oscillating terms cancel. The formalism that we propose is not limited to one dimension, but seeks to provide a general method to obtain virial coefficients, fugacity coefficients, in terms of asymptotic quantities. The exact one dimensional results allow us to confirm the validity of our approach in this domain.« less
NASA Astrophysics Data System (ADS)
Andresen, Juan Carlos; Katzgraber, Helmut G.; Schechter, Moshe
2017-12-01
Random fields disorder Ising ferromagnets by aligning single spins in the direction of the random field in three space dimensions, or by flipping large ferromagnetic domains at dimensions two and below. While the former requires random fields of typical magnitude similar to the interaction strength, the latter Imry-Ma mechanism only requires infinitesimal random fields. Recently, it has been shown that for dilute anisotropic dipolar systems a third mechanism exists, where the ferromagnetic phase is disordered by finite-size glassy domains at a random field of finite magnitude that is considerably smaller than the typical interaction strength. Using large-scale Monte Carlo simulations and zero-temperature numerical approaches, we show that this mechanism applies to disordered ferromagnets with competing short-range ferromagnetic and antiferromagnetic interactions, suggesting its generality in ferromagnetic systems with competing interactions and an underlying spin-glass phase. A finite-size-scaling analysis of the magnetization distribution suggests that the transition might be first order.
On Pfaffian Random Point Fields
NASA Astrophysics Data System (ADS)
Kargin, V.
2014-02-01
We study Pfaffian random point fields by using the Moore-Dyson quaternion determinants. First, we give sufficient conditions that ensure that a self-dual quaternion kernel defines a valid random point field, and then we prove a CLT for Pfaffian point fields. The proofs are based on a new quaternion extension of the Cauchy-Binet determinantal identity. In addition, we derive the Fredholm determinantal formulas for the Pfaffian point fields which use the quaternion determinant.
NASA Technical Reports Server (NTRS)
Barker, R. E., Jr.
1986-01-01
The work includes an investigation of the applicability of the nucleation theory to second and higher order thermodynamic transitions in the Ehrenfest sense, and a number of significant conclusions relevant to first order transitions, as well. The underlying theoretical method consisted of expanding the Gibbs' free energy in a Maclarin or Taylor series and then using fundamental thermodynamic determinable quantities, and interpreting the results. Work was performed on the existence and interpretation of an interfacial energy between phases in a second order transition in addition to an investigation of the solid-liquid interfacial energy for various polymers. Extensive considerations were devoted to various aspects of a particular polymer, polyvinylidene fluoride (PVDF or PVF2), including an experimetal investigation of the effects of an applied electric field on the morphology of melt crystallization and on the nucleation and growth of polarized domains.
Path Flow Estimation Using Time Varying Coefficient State Space Model
NASA Astrophysics Data System (ADS)
Jou, Yow-Jen; Lan, Chien-Lun
2009-08-01
The dynamic path flow information is very crucial in the field of transportation operation and management, i.e., dynamic traffic assignment, scheduling plan, and signal timing. Time-dependent path information, which is important in many aspects, is nearly impossible to be obtained. Consequently, researchers have been seeking estimation methods for deriving valuable path flow information from less expensive traffic data, primarily link traffic counts of surveillance systems. This investigation considers a path flow estimation problem involving the time varying coefficient state space model, Gibbs sampler, and Kalman filter. Numerical examples with part of a real network of the Taipei Mass Rapid Transit with real O-D matrices is demonstrated to address the accuracy of proposed model. Results of this study show that this time-varying coefficient state space model is very effective in the estimation of path flow compared to time-invariant model.
Of bugs and birds: Markov Chain Monte Carlo for hierarchical modeling in wildlife research
Link, W.A.; Cam, E.; Nichols, J.D.; Cooch, E.G.
2002-01-01
Markov chain Monte Carlo (MCMC) is a statistical innovation that allows researchers to fit far more complex models to data than is feasible using conventional methods. Despite its widespread use in a variety of scientific fields, MCMC appears to be underutilized in wildlife applications. This may be due to a misconception that MCMC requires the adoption of a subjective Bayesian analysis, or perhaps simply to its lack of familiarity among wildlife researchers. We introduce the basic ideas of MCMC and software BUGS (Bayesian inference using Gibbs sampling), stressing that a simple and satisfactory intuition for MCMC does not require extraordinary mathematical sophistication. We illustrate the use of MCMC with an analysis of the association between latent factors governing individual heterogeneity in breeding and survival rates of kittiwakes (Rissa tridactyla). We conclude with a discussion of the importance of individual heterogeneity for understanding population dynamics and designing management plans.
Diminution of contact angle hysteresis under the influence of an oscillating force.
Manor, Ofer
2014-06-17
We suggest a simple quantitative model for the diminution of contact angle hysteresis under the influence of an oscillatory force invoked by thermal fluctuations, substrate vibrations, acoustic waves, or oscillating electric fields. Employing force balance rather than the usual description of contact angle hysteresis in terms of Gibbs energy, we highlight that a wetting system, such as a sessile drop or a bubble adhered to a solid substrate, appears at long times to be partially or fully independent of contact angle hysteresis and thus independent of static friction forces, as a result of contact line pinning. We verify this theory by studying several well-known experimental observations such as the approach of an arbitrary contact angle toward the Young contact angle and the apparent decrease (or increase) in an advancing (or a receding) contact angle under the influence of an external oscillating force.
NASA Astrophysics Data System (ADS)
Zhang, Yong-Xing; Jia, Yong
2016-12-01
Three-dimensional Fe-ethylene glycol (Fe-EG) complex microspheres were synthesized by a facile hydrothermal method, and were characterized by field emission scanning electron microscopy and transmission electron microscopy. The adsorption as well as reduction properties of the obtained Fe-EG complex microspheres towards Cr(VI) ions were studied. The experiment data of adsorption kinetic and isotherm were fitted by nonlinear regression approach. In neutral condition, the maximum adsorption capacity was 49.78 mg g-1 at room temperature, and was increased with the increasing of temperature. Thermodynamic parameters including the Gibbs free energy, standard enthalpy and standard entropy revealed that adsorption of Cr(VI) was a feasible, spontaneous and endothermic process. Spectroscopic analysis revealed the adsorption of Cr(VI) was a physical adsorption process. The adsorbed CrO42- ions were partly reduced to Cr(OH)3 by Fe(II) ions and the organic groups in the Fe-EG complex.
Study of thermodynamic properties of liquid binary alloys by a pseudopotential method
NASA Astrophysics Data System (ADS)
Vora, Aditya M.
2010-11-01
On the basis of the Percus-Yevick hard-sphere model as a reference system and the Gibbs-Bogoliubov inequality, a thermodynamic perturbation method is applied with the use of the well-known model potential. By applying a variational method, the hard-core diameters are found which correspond to a minimum free energy. With this procedure, the thermodynamic properties such as the internal energy, entropy, Helmholtz free energy, entropy of mixing, and heat of mixing are computed for liquid NaK binary systems. The influence of the local-field correction functions of Hartree, Taylor, Ichimaru-Utsumi, Farid-Heine-Engel-Robertson, and Sarkar-Sen-Haldar-Roy is also investigated. The computed excess entropy is in agreement with available experimental data in the case of liquid alloys, whereas the agreement for the heat of mixing is poor. This may be due to the sensitivity of the latter to the potential parameters and dielectric function.
Zhao, Yang; Zheng, Wei; Zhuo, Daisy Y; Lu, Yuefeng; Ma, Xiwen; Liu, Hengchang; Zeng, Zhen; Laird, Glen
2017-10-11
Personalized medicine, or tailored therapy, has been an active and important topic in recent medical research. Many methods have been proposed in the literature for predictive biomarker detection and subgroup identification. In this article, we propose a novel decision tree-based approach applicable in randomized clinical trials. We model the prognostic effects of the biomarkers using additive regression trees and the biomarker-by-treatment effect using a single regression tree. Bayesian approach is utilized to periodically revise the split variables and the split rules of the decision trees, which provides a better overall fitting. Gibbs sampler is implemented in the MCMC procedure, which updates the prognostic trees and the interaction tree separately. We use the posterior distribution of the interaction tree to construct the predictive scores of the biomarkers and to identify the subgroup where the treatment is superior to the control. Numerical simulations show that our proposed method performs well under various settings comparing to existing methods. We also demonstrate an application of our method in a real clinical trial.
Development of a Random Field Model for Gas Plume Detection in Multiple LWIR Images.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heasler, Patrick G.
This report develops a random field model that describes gas plumes in LWIR remote sensing images. The random field model serves as a prior distribution that can be combined with LWIR data to produce a posterior that determines the probability that a gas plume exists in the scene and also maps the most probable location of any plume. The random field model is intended to work with a single pixel regression estimator--a regression model that estimates gas concentration on an individual pixel basis.
Tensor Minkowski Functionals for random fields on the sphere
NASA Astrophysics Data System (ADS)
Chingangbam, Pravabati; Yogendran, K. P.; Joby, P. K.; Ganesan, Vidhya; Appleby, Stephen; Park, Changbom
2017-12-01
We generalize the translation invariant tensor-valued Minkowski Functionals which are defined on two-dimensional flat space to the unit sphere. We apply them to level sets of random fields. The contours enclosing boundaries of level sets of random fields give a spatial distribution of random smooth closed curves. We outline a method to compute the tensor-valued Minkowski Functionals numerically for any random field on the sphere. Then we obtain analytic expressions for the ensemble expectation values of the matrix elements for isotropic Gaussian and Rayleigh fields. The results hold on flat as well as any curved space with affine connection. We elucidate the way in which the matrix elements encode information about the Gaussian nature and statistical isotropy (or departure from isotropy) of the field. Finally, we apply the method to maps of the Galactic foreground emissions from the 2015 PLANCK data and demonstrate their high level of statistical anisotropy and departure from Gaussianity.
Global mean-field phase diagram of the spin-1 Ising ferromagnet in a random crystal field
NASA Astrophysics Data System (ADS)
Borelli, M. E. S.; Carneiro, C. E. I.
1996-02-01
We study the phase diagram of the mean-field spin-1 Ising ferromagnet in a uniform magnetic field H and a random crystal field Δi, with probability distribution P( Δi) = pδ( Δi - Δ) + (1 - p) δ( Δi). We analyse the effects of randomness on the first-order surfaces of the Δ- T- H phase diagram for different values of the concentration p and show how these surfaces are affected by the dilution of the crystal field.
NASA Astrophysics Data System (ADS)
Felley, J. D.; Vecchione, M.; Wilson, R. R., Jr.
2008-01-01
Videotapes from manned submersibles diving in the area of the Charlie-Gibbs Fracture Zone of the Mid-Atlantic Ridge were used to investigate the distribution of fishes, large crustaceans, epifaunal and sessile organisms, and environmental features along a series of transects. Submersibles MIR 1 and MIR 2 conducted paired dives in an area of mixed sediment and rock (beginning depth ca. 3000 m) and on a large pocket of abyssal-like sediments (depth ca. 4000 m). In the shallower area, the submersibles passed over extremely heterogeneous terrain with a diversity of nekton, epifaunal forms and sessile forms. In the first pair of dives, MIR 1 rose along the Mid-Atlantic Ridge from 3000 to 1700 m, while MIR 2 remained near the 3000 m isobath. Nekton seen in these relatively shallow dives included large and small macrourids (genus Coryphaenoides), shrimp (infraorder Penaeidea), Halosauropsis macrochir, Aldrovandia sp., Antimora rostrata, and alepocephalids. The last two were more characteristic of the upper areas of the slope reached by MIR 1, as it rose along the Mid-Atlantic Ridge to depths less than 3000 m. Distributions of some forms seemed associated with depth and/or the presence of hard substrate. Sessile organisms such as sponges and large cnidaria were more likely to be found in rocky areas. The second pair of dives occurred in an abyssal area and the submersibles passed over sediment-covered plains, with little relief and many fewer countable organisms and features. The most evident of these were holes, mounds, small cerianthid anemones, small macrourids and the holothurian Benthodytes sp. A few large macrourids and shrimp also were seen in these deeper dives, as well as squat lobsters ( Munidopsis sp.). Sponges and larger cnidaria were mostly associated with a few small areas of rocky substrate. Holes and mounds showed distributions suggesting large-scale patterning. Over all dives, most sessile and epifaunal forms showed clumped distributions. However, large holothurians and large nekton often had distributions not significantly different from random.
An Improved Mnemonic Diagram for Thermodynamic Relationships.
ERIC Educational Resources Information Center
Rodriguez, Joaquin; Brainard, Alan J.
1989-01-01
Considers pressure, volume, entropy, temperature, Helmholtz free energy, Gibbs free energy, enthalpy, and internal energy. Suggests the mnemonic diagram is for use with simple systems that are defined as macroscopically homogeneous, isotropic, uncharged, and chemically inert. (MVL)
A Mechanical Analogue for Chemical Potential, Extent of Reaction, and the Gibbs Energy.
ERIC Educational Resources Information Center
Glass, Samuel V.; DeKock, Roger L.
1998-01-01
Presents an analogy that relates the one-dimensional mechanical equilibrium of a rigid block between two Hooke's law springs and the chemical equilibrium of two perfect gases using ordinary materials. (PVD)
The African Women's Protocol: bringing attention to reproductive rights and the MDGs.
Gerntholtz, Liesl; Gibbs, Andrew; Willan, Samantha
2011-04-01
Andrew Gibbs and colleagues discuss the African Women's Protocol, a framework for ensuring reproductive rights are supported throughout the continent and for supporting interventions to improve women's reproductive health, including the MDGs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mihaescu, Tatiana, E-mail: mihaescu92tatiana@gmail.com; Isar, Aurelian
We describe the evolution of the quantum entanglement of an open system consisting of two bosonic modes interacting with a common thermal environment, described by two different models. The initial state of the system is taken of Gaussian form. In the case of a thermal bath, characterized by temperature and dissipation constant which correspond to an asymptotic Gibbs state of the system, we show that for a zero temperature of the thermal bath an initial entangled Gaussian state remains entangled for all finite times. For an entangled initial squeezed thermal state, the phenomenon of entanglement sudden death takes place andmore » we calculate the survival time of entanglement. For the second model of the environment, corresponding to a non-Gibbs asymptotic state, we study the possibility of generating entanglement. We show that the generation of the entanglement between two uncoupled bosonic modes is possible only for definite values of the temperature and dissipation constant, which characterize the thermal environment.« less
eQuilibrator--the biochemical thermodynamics calculator.
Flamholz, Avi; Noor, Elad; Bar-Even, Arren; Milo, Ron
2012-01-01
The laws of thermodynamics constrain the action of biochemical systems. However, thermodynamic data on biochemical compounds can be difficult to find and is cumbersome to perform calculations with manually. Even simple thermodynamic questions like 'how much Gibbs energy is released by ATP hydrolysis at pH 5?' are complicated excessively by the search for accurate data. To address this problem, eQuilibrator couples a comprehensive and accurate database of thermodynamic properties of biochemical compounds and reactions with a simple and powerful online search and calculation interface. The web interface to eQuilibrator (http://equilibrator.weizmann.ac.il) enables easy calculation of Gibbs energies of compounds and reactions given arbitrary pH, ionic strength and metabolite concentrations. The eQuilibrator code is open-source and all thermodynamic source data are freely downloadable in standard formats. Here we describe the database characteristics and implementation and demonstrate its use.
AC-67/FLTSATCOM Launch with Isolated Cam Views/ Freeze of Lightning/ Press Conference
NASA Technical Reports Server (NTRS)
1987-01-01
The FLTSATCOM system provides worldwide, high-priority UHF communications between naval aircraft, ships, submarines, and ground stations and between the Strategic Air Command and the national command authority network. This videotape shows the attempted launch of the 6th member of the satellite system on an Atlas Centaur rocket. Within a minute of launch a problem developed. The initial sign of the problem was the loss of telemetry data. The videotape shows three isolated views of the launch, and then a freeze shot of a lightning strike shortly after the launch. The tape then shows a press conference, with Mr. Wolmaster, Mr. Gibbs, and Air Force Colonel Alsbrooke. Mr. Gibbs summarizes the steps that would be taken to review the launch failure. The questions from the press mostly concern the weather conditions, and the possibility that the weather might have caused the mission failure.
eQuilibrator—the biochemical thermodynamics calculator
Flamholz, Avi; Noor, Elad; Bar-Even, Arren; Milo, Ron
2012-01-01
The laws of thermodynamics constrain the action of biochemical systems. However, thermodynamic data on biochemical compounds can be difficult to find and is cumbersome to perform calculations with manually. Even simple thermodynamic questions like ‘how much Gibbs energy is released by ATP hydrolysis at pH 5?’ are complicated excessively by the search for accurate data. To address this problem, eQuilibrator couples a comprehensive and accurate database of thermodynamic properties of biochemical compounds and reactions with a simple and powerful online search and calculation interface. The web interface to eQuilibrator (http://equilibrator.weizmann.ac.il) enables easy calculation of Gibbs energies of compounds and reactions given arbitrary pH, ionic strength and metabolite concentrations. The eQuilibrator code is open-source and all thermodynamic source data are freely downloadable in standard formats. Here we describe the database characteristics and implementation and demonstrate its use. PMID:22064852
A possible four-phase coexistence in a single-component system
NASA Astrophysics Data System (ADS)
Akahane, Kenji; Russo, John; Tanaka, Hajime
2016-08-01
For different phases to coexist in equilibrium at constant temperature T and pressure P, the condition of equal chemical potential μ must be satisfied. This condition dictates that, for a single-component system, the maximum number of phases that can coexist is three. Historically this is known as the Gibbs phase rule, and is one of the oldest and venerable rules of thermodynamics. Here we make use of the fact that, by varying model parameters, the Gibbs phase rule can be generalized so that four phases can coexist even in single-component systems. To systematically search for the quadruple point, we use a monoatomic system interacting with a Stillinger-Weber potential with variable tetrahedrality. Our study indicates that the quadruple point provides flexibility in controlling multiple equilibrium phases and may be realized in systems with tunable interactions, which are nowadays feasible in several soft matter systems such as patchy colloids.
A Bayesian Nonparametric Approach to Image Super-Resolution.
Polatkan, Gungor; Zhou, Mingyuan; Carin, Lawrence; Blei, David; Daubechies, Ingrid
2015-02-01
Super-resolution methods form high-resolution images from low-resolution images. In this paper, we develop a new Bayesian nonparametric model for super-resolution. Our method uses a beta-Bernoulli process to learn a set of recurring visual patterns, called dictionary elements, from the data. Because it is nonparametric, the number of elements found is also determined from the data. We test the results on both benchmark and natural images, comparing with several other models from the research literature. We perform large-scale human evaluation experiments to assess the visual quality of the results. In a first implementation, we use Gibbs sampling to approximate the posterior. However, this algorithm is not feasible for large-scale data. To circumvent this, we then develop an online variational Bayes (VB) algorithm. This algorithm finds high quality dictionaries in a fraction of the time needed by the Gibbs sampler.
NASA Technical Reports Server (NTRS)
Gottlieb, David; Shu, Chi-Wang
1994-01-01
We continue our investigation of overcoming Gibbs phenomenon, i.e., to obtain exponential accuracy at all points (including at the discontinuities themselves), from the knowledge of a spectral partial sum of a discontinuous but piecewise analytic function. We show that if we are given the first N Gegenbauer expansion coefficients, based on the Gegenbauer polynomials C(sub k)(sup mu)(x) with the weight function (1 - x(exp 2))(exp mu - 1/2) for any constant mu is greater than or equal to 0, of an L(sub 1) function f(x), we can construct an exponentially convergent approximation to the point values of f(x) in any subinterval in which the function is analytic. The proof covers the cases of Chebyshev or Legendre partial sums, which are most common in applications.
The Gibbs paradox and the physical criteria for indistinguishability of identical particles
NASA Astrophysics Data System (ADS)
Unnikrishnan, C. S.
2016-08-01
Gibbs paradox in the context of statistical mechanics addresses the issue of additivity of entropy of mixing gases. The usual discussion attributes the paradoxical situation to classical distinguishability of identical particles and credits quantum theory for enabling indistinguishability of identical particles to solve the problem. We argue that indistinguishability of identical particles is already a feature in classical mechanics and this is clearly brought out when the problem is treated in the language of information and associated entropy. We pinpoint the physical criteria for indistinguishability that is crucial for the treatment of the Gibbs’ problem and the consistency of its solution with conventional thermodynamics. Quantum mechanics provides a quantitative criterion, not possible in the classical picture, for the degree of indistinguishability in terms of visibility of quantum interference, or overlap of the states as pointed out by von Neumann, thereby endowing the entropy expression with mathematical continuity and physical reasonableness.
Tightness of the Ising-Kac Model on the Two-Dimensional Torus
NASA Astrophysics Data System (ADS)
Hairer, Martin; Iberti, Massimo
2018-05-01
We consider the sequence of Gibbs measures of Ising models with Kac interaction defined on a periodic two-dimensional discrete torus near criticality. Using the convergence of the Glauber dynamic proven by Mourrat and Weber (Commun Pure Appl Math 70:717-812, 2017) and a method by Tsatsoulis and Weber employed in (arXiv:1609.08447 2016), we show tightness for the sequence of Gibbs measures of the Ising-Kac model near criticality and characterise the law of the limit as the Φ ^4_2 measure on the torus. Our result is very similar to the one obtained by Cassandro et al. (J Stat Phys 78(3):1131-1138, 1995) on Z^2, but our strategy takes advantage of the dynamic, instead of correlation inequalities. In particular, our result covers the whole critical regime and does not require the large temperature/large mass/small coupling assumption present in earlier results.
Robie, R.A.; Wiggins, L.B.; Barton, P.B.; Hemingway, B.S.
1985-01-01
The heat capacity of CuFeS2 (chalcopyrite) was measured between 6.3 and 303.5 K. At 298.15 K, Cp,mo and Smo(T) are (95.67??0.14) J??K-1??mol-1 and (124.9??0.2) J??K-1??mol-1, respectively. From a consideration of the results of two sets of equilibrium measurements we conclude that ??fHmo(CuFeS2, cr, 298.15 K) = -(193.6??1.6) kJ??mol-1 and that the recent bomb-calorimetric determination by Johnson and Steele (J. Chem. Thermodynamics 1981, 13, 991) is in error. The standard molar Gibbs free energy of formation of bornite (Cu5FeS4) is -(444.9??2.1) kJ??mol-1 at 748 K. ?? 1985.
NASA Technical Reports Server (NTRS)
Sudbrack, Chantal K.; Noebe, Ronald D.; Seidman, David N.
2006-01-01
For a Ni-5.2 Al-14.2 Cr at.% alloy with moderate solute supersaturations, the compositional pathways, as measured with atom-probe tomography, during early to later stage y'(LI2)-precipitation (R = 0.45-10 nm), aged at 873 K, are discussed in light of a multi-component coarsening model. Employing nondilute thermodynamics, detailed model analyses during quasistationary coarsening of the experimental data establish that the y/y' interfacial free-energy is 22- 23+/-7 mJ/sq m. Additionally, solute diffusivities are significantly slower than model estimates. Strong quantitative evidence indicates that an observed y'-supersaturation of Al results from the Gibbs-Thomson effect, providing the first experimental verification of this phenomenon. The Gibbs-Thomson relationship, for a ternary system, as well as differences in measured phase equilibria with CALPHAD assessments, are considered in great detail.
Sampling and counting genome rearrangement scenarios
2015-01-01
Background Even for moderate size inputs, there are a tremendous number of optimal rearrangement scenarios, regardless what the model is and which specific question is to be answered. Therefore giving one optimal solution might be misleading and cannot be used for statistical inferring. Statistically well funded methods are necessary to sample uniformly from the solution space and then a small number of samples are sufficient for statistical inferring. Contribution In this paper, we give a mini-review about the state-of-the-art of sampling and counting rearrangement scenarios, focusing on the reversal, DCJ and SCJ models. Above that, we also give a Gibbs sampler for sampling most parsimonious labeling of evolutionary trees under the SCJ model. The method has been implemented and tested on real life data. The software package together with example data can be downloaded from http://www.renyi.hu/~miklosi/SCJ-Gibbs/ PMID:26452124
Quenching the XXZ spin chain: quench action approach versus generalized Gibbs ensemble
NASA Astrophysics Data System (ADS)
Mestyán, M.; Pozsgay, B.; Takács, G.; Werner, M. A.
2015-04-01
Following our previous work (Pozsgay et al 2014 Phys. Rev. Lett. 113 117203) we present here a detailed comparison of the quench action approach and the predictions of the generalized Gibbs ensemble, with the result that while the quench action formalism correctly captures the steady state, the GGE does not give a correct description of local short-distance correlation functions. We extend our studies to include another initial state, the so-called q-dimer state. We present important details of our construction, including new results concerning exact overlaps for the dimer and q-dimer states, and we also give an exact solution of the quench-action-based overlap-TBA for the q-dimer. Furthermore, we extend our computations to include the xx spin correlations besides the zz correlations treated previously, and give a detailed discussion of the underlying reasons for the failure of the GGE, especially in the light of new developments.
Hemingway, Bruch S.; Seal, Robert R.; Chou, I-Ming
2002-01-01
Enthalpy of formation, Gibbs energy of formation, and entropy values have been compiled from the literature for the hydrated ferrous sulfate minerals melanterite, rozenite, and szomolnokite, and a variety of other hydrated sulfate compounds. On the basis of this compilation, it appears that there is no evidence for an excess enthalpy of mixing for sulfate-H2O systems, except for the first H2O molecule of crystallization. The enthalpy and Gibbs energy of formation of each H2O molecule of crystallization, except the first, in the iron(II) sulfate - H2O system is -295.15 and -238.0 kJ?mol-1, respectively. The absence of an excess enthalpy of mixing is used as the basis for estimating thermodynamic values for a variety of ferrous, ferric, and mixed-valence sulfate salts of relevance to acid-mine drainage systems.
Sampling schemes and parameter estimation for nonlinear Bernoulli-Gaussian sparse models
NASA Astrophysics Data System (ADS)
Boudineau, Mégane; Carfantan, Hervé; Bourguignon, Sébastien; Bazot, Michael
2016-06-01
We address the sparse approximation problem in the case where the data are approximated by the linear combination of a small number of elementary signals, each of these signals depending non-linearly on additional parameters. Sparsity is explicitly expressed through a Bernoulli-Gaussian hierarchical model in a Bayesian framework. Posterior mean estimates are computed using Markov Chain Monte-Carlo algorithms. We generalize the partially marginalized Gibbs sampler proposed in the linear case in [1], and build an hybrid Hastings-within-Gibbs algorithm in order to account for the nonlinear parameters. All model parameters are then estimated in an unsupervised procedure. The resulting method is evaluated on a sparse spectral analysis problem. It is shown to converge more efficiently than the classical joint estimation procedure, with only a slight increase of the computational cost per iteration, consequently reducing the global cost of the estimation procedure.
Naumov, Sergej; von Sonntag, Clemens
2011-11-01
Free radicals are common intermediates in the chemistry of ozone in aqueous solution. Their reactions with ozone have been probed by calculating the standard Gibbs free energies of such reactions using density functional theory (Jaguar 7.6 program). O(2) reacts fast and irreversibly only with simple carbon-centered radicals. In contrast, ozone also reacts irreversibly with conjugated carbon-centered radicals such as bisallylic (hydroxycylohexadienyl) radicals, with conjugated carbon/oxygen-centered radicals such as phenoxyl radicals, and even with nitrogen- oxygen-, sulfur-, and halogen-centered radicals. In these reactions, further ozone-reactive radicals are generated. Chain reactions may destroy ozone without giving rise to products other than O(2). This may be of importance when ozonation is used in pollution control, and reactions of free radicals with ozone have to be taken into account in modeling such processes.
A possible four-phase coexistence in a single-component system
Akahane, Kenji; Russo, John; Tanaka, Hajime
2016-01-01
For different phases to coexist in equilibrium at constant temperature T and pressure P, the condition of equal chemical potential μ must be satisfied. This condition dictates that, for a single-component system, the maximum number of phases that can coexist is three. Historically this is known as the Gibbs phase rule, and is one of the oldest and venerable rules of thermodynamics. Here we make use of the fact that, by varying model parameters, the Gibbs phase rule can be generalized so that four phases can coexist even in single-component systems. To systematically search for the quadruple point, we use a monoatomic system interacting with a Stillinger–Weber potential with variable tetrahedrality. Our study indicates that the quadruple point provides flexibility in controlling multiple equilibrium phases and may be realized in systems with tunable interactions, which are nowadays feasible in several soft matter systems such as patchy colloids. PMID:27558452
Tian; Holt; Apfel
1997-03-01
The experimental results of droplet shape oscillations are reported and applied to the analysis of surface rheological properties of surfactant solutions. An acoustic levitation technique is used to suspend the test drop in air and excite it into quadrupole shape oscillations. The equilibrium surface tension, Gibbs elasticity, and surface dilatational viscosity are determined from the measurements of droplet static shape under different levitation sound pressure, oscillation frequency, and free damping constant. Aqueous solutions of sodium dodecyl sulfate, dodecyltrimethylammonium bromide, and n-octyl beta-d-glucopyranoside are tested with this system. The concentrations of the solutions are below the critical micelle concentration. For these solutions it is found that the surface Gibbs elasticity approaches a maximum at a moderate concentration, and its value is less than that directly calculated from the state equation of a static liquid surface. The surface dilatational viscosity is found to be in a range around 0.1 cps.
Fast Bayesian Inference of Copy Number Variants using Hidden Markov Models with Wavelet Compression
Wiedenhoeft, John; Brugel, Eric; Schliep, Alexander
2016-01-01
By integrating Haar wavelets with Hidden Markov Models, we achieve drastically reduced running times for Bayesian inference using Forward-Backward Gibbs sampling. We show that this improves detection of genomic copy number variants (CNV) in array CGH experiments compared to the state-of-the-art, including standard Gibbs sampling. The method concentrates computational effort on chromosomal segments which are difficult to call, by dynamically and adaptively recomputing consecutive blocks of observations likely to share a copy number. This makes routine diagnostic use and re-analysis of legacy data collections feasible; to this end, we also propose an effective automatic prior. An open source software implementation of our method is available at http://schlieplab.org/Software/HaMMLET/ (DOI: 10.5281/zenodo.46262). This paper was selected for oral presentation at RECOMB 2016, and an abstract is published in the conference proceedings. PMID:27177143
Connectivity ranking of heterogeneous random conductivity models
NASA Astrophysics Data System (ADS)
Rizzo, C. B.; de Barros, F.
2017-12-01
To overcome the challenges associated with hydrogeological data scarcity, the hydraulic conductivity (K) field is often represented by a spatial random process. The state-of-the-art provides several methods to generate 2D or 3D random K-fields, such as the classic multi-Gaussian fields or non-Gaussian fields, training image-based fields and object-based fields. We provide a systematic comparison of these models based on their connectivity. We use the minimum hydraulic resistance as a connectivity measure, which it has been found to be strictly correlated with early time arrival of dissolved contaminants. A computationally efficient graph-based algorithm is employed, allowing a stochastic treatment of the minimum hydraulic resistance through a Monte-Carlo approach and therefore enabling the computation of its uncertainty. The results show the impact of geostatistical parameters on the connectivity for each group of random fields, being able to rank the fields according to their minimum hydraulic resistance.
NASA Astrophysics Data System (ADS)
Corsi, A.; Gujrati, P. D.
2000-03-01
The Flory model of crystallization of polymers is well known and forms the cornerstone of the Gibbs-DiMarzio theory of glass transition. The model has no known exact solution and the original calculation [1] was shown to be incorrect [2]. Still it is interesting to know the order of the phase transition, if it has one. We have studied the thermodynamics of the model in the limit of infinite molecular weight. We have solved it exactly on a recursive lattice with coordination number q=4, relevant for a tetrahedral lattice. Our results show that there is a continuous, i.e. a second-order, transition at which the entropy of the system is continuous. It is finite at all temperatures and approaches 0 as T goes to 0 so that the system is never completely ordered except at T=0. As the temperature is raised above T=0 the system begins to disorder with a degree of disorder that depends on T, which is in accordance with the analysis of Gujrati and Goldstein [2]. Since there is no first order transition there is no Kauzmann paradox. Similarly there is no possible metastable extension in the model which is central to the Gibbs-DiMarzio conjecture for an ideal glass transition. Thus, our solution does not justify their conjecture. [1] P.J. Flory, Proc. R. Soc. London Ser., A234, 60 (1956) [2] P.D. Gujrati, J. Phys. A: Math. Gen., 13, L437 (1980), P.D. Gujrati, M. Goldstein, J. Chem. Phys., 74(4), 2596 (1981)
Recommendations for terminology and databases for biochemical thermodynamics.
Alberty, Robert A; Cornish-Bowden, Athel; Goldberg, Robert N; Hammes, Gordon G; Tipton, Keith; Westerhoff, Hans V
2011-05-01
Chemical equations are normally written in terms of specific ionic and elemental species and balance atoms of elements and electric charge. However, in a biochemical context it is usually better to write them with ionic reactants expressed as totals of species in equilibrium with each other. This implies that atoms of elements assumed to be at fixed concentrations, such as hydrogen at a specified pH, should not be balanced in a biochemical equation used for thermodynamic analysis. However, both kinds of equations are needed in biochemistry. The apparent equilibrium constant K' for a biochemical reaction is written in terms of such sums of species and can be used to calculate standard transformed Gibbs energies of reaction Δ(r)G'°. This property for a biochemical reaction can be calculated from the standard transformed Gibbs energies of formation Δ(f)G(i)'° of reactants, which can be calculated from the standard Gibbs energies of formation of species Δ(f)G(j)° and measured apparent equilibrium constants of enzyme-catalyzed reactions. Tables of Δ(r)G'° of reactions and Δ(f)G(i)'° of reactants as functions of pH and temperature are available on the web, as are functions for calculating these properties. Biochemical thermodynamics is also important in enzyme kinetics because apparent equilibrium constant K' can be calculated from experimentally determined kinetic parameters when initial velocities have been determined for both forward and reverse reactions. Specific recommendations are made for reporting experimental results in the literature. Copyright © 2011 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Tang, Huanfeng; Huang, Zaiyin; Xiao, Ming; Liang, Min; Chen, Liying; Tan, XueCai
2017-09-01
The activities, selectivities, and stabilities of nanoparticles in heterogeneous reactions are size-dependent. In order to investigate the influencing laws of particle size and temperature on kinetic parameters in heterogeneous reactions, cubic nano-Cu2O particles of four different sizes in the range of 40-120 nm have been controllably synthesized. In situ microcalorimetry has been used to attain thermodynamic data on the reaction of Cu2O with aqueous HNO3 and, combined with thermodynamic principles and kinetic transition-state theory, the relevant reaction kinetic parameters have been evaluated. The size dependences of the kinetic parameters are discussed in terms of the established kinetic model and the experimental results. It was found that the reaction rate constants increased with decreasing particle size. Accordingly, the apparent activation energy, pre-exponential factor, activation enthalpy, activation entropy, and activation Gibbs energy decreased with decreasing particle size. The reaction rate constants and activation Gibbs energies increased with increasing temperature. Moreover, the logarithms of the apparent activation energies, pre-exponential factors, and rate constants were found to be linearly related to the reciprocal of particle size, consistent with the kinetic models. The influence of particle size on these reaction kinetic parameters may be explained as follows: the apparent activation energy is affected by the partial molar enthalpy, the pre-exponential factor is affected by the partial molar entropy, and the reaction rate constant is affected by the partial molar Gibbs energy. [Figure not available: see fulltext.
Thermodynamic States in Explosion Fields
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuhl, A L
2010-03-12
We investigate the thermodynamic states occurring in explosion fields from condensed explosive charges. These states are often modeled with a Jones-Wilkins-Lee (JWL) function. However, the JWL function is not a Fundamental Equation of Thermodynamics, and therefore cannot give a complete specification of such states. We use the Cheetah code of Fried to study the loci of states of the expanded detonation products gases from C-4 charges, and their combustion products air. In the Le Chatelier Plane of specific-internal-energy versus temperature, these loci are fit with a Quadratic Model function u(T), which has been shown to be valid for T
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vlcek, Lukas; Uhlik, Filip; Moucka, Filip
We evaluate the ability of selected classical molecular models to describe the thermodynamic and structural aspects of gas-phase hydration of alkali halide ions and the formation of small water clusters. To understand the effect of many-body interactions (polarization) and charge penetration effects on the accuracy of a force field, we perform Monte Carlo simulations with three rigid water models using different functional forms to account for these effects: (i) point charge non-polarizable SPC/E, (ii) Drude point charge polarizable SWM4- DP, and (iii) Drude Gaussian charge polarizable BK3. Model predictions are compared with experimental Gibbs free energies and enthalpies of ionmore » hydration, and with microscopic structural properties obtained from quantum DFT calculations. We find that all three models provide comparable predictions for pure water clusters and cation hydration, but differ significantly in their description of anion hydration. None of the investigated classical force fields can consistently and quantitatively reproduce the experimental gas phase hydration thermodynamics. The outcome of this study highlights the relation between the functional form that describes the effective intermolecular interactions and the accuracy of the resulting ion hydration properties.« less
Spectral Gap Estimates in Mean Field Spin Glasses
NASA Astrophysics Data System (ADS)
Ben Arous, Gérard; Jagannath, Aukosh
2018-05-01
We show that mixing for local, reversible dynamics of mean field spin glasses is exponentially slow in the low temperature regime. We introduce a notion of free energy barriers for the overlap, and prove that their existence imply that the spectral gap is exponentially small, and thus that mixing is exponentially slow. We then exhibit sufficient conditions on the equilibrium Gibbs measure which guarantee the existence of these barriers, using the notion of replicon eigenvalue and 2D Guerra Talagrand bounds. We show how these sufficient conditions cover large classes of Ising spin models for reversible nearest-neighbor dynamics and spherical models for Langevin dynamics. Finally, in the case of Ising spins, Panchenko's recent rigorous calculation (Panchenko in Ann Probab 46(2):865-896, 2018) of the free energy for a system of "two real replica" enables us to prove a quenched LDP for the overlap distribution, which gives us a wider criterion for slow mixing directly related to the Franz-Parisi-Virasoro approach (Franz et al. in J Phys I 2(10):1869-1880, 1992; Kurchan et al. J Phys I 3(8):1819-1838, 1993). This condition holds in a wider range of temperatures.
Hedgehogs and foxes (and a bear)
NASA Astrophysics Data System (ADS)
Gibb, Bruce
2017-02-01
The chemical universe is big. Really big. You just won't believe how vastly, hugely, mind-bogglingly big it is. Bruce Gibb reminds us that it's somewhat messy too, and so we succeed by recognizing the limits of our knowledge.
NASA Astrophysics Data System (ADS)
Gibb, Bruce C.
2015-11-01
Carl Wilhelm Scheele had a hand in the discovery of at least six elements and contributed to the early development of chemistry in numerous other ways. Bruce Gibb looks into Scheele's story and considers why he doesn't get the credit that he deserves.
Statistical analysis of loopy belief propagation in random fields
NASA Astrophysics Data System (ADS)
Yasuda, Muneki; Kataoka, Shun; Tanaka, Kazuyuki
2015-10-01
Loopy belief propagation (LBP), which is equivalent to the Bethe approximation in statistical mechanics, is a message-passing-type inference method that is widely used to analyze systems based on Markov random fields (MRFs). In this paper, we propose a message-passing-type method to analytically evaluate the quenched average of LBP in random fields by using the replica cluster variation method. The proposed analytical method is applicable to general pairwise MRFs with random fields whose distributions differ from each other and can give the quenched averages of the Bethe free energies over random fields, which are consistent with numerical results. The order of its computational cost is equivalent to that of standard LBP. In the latter part of this paper, we describe the application of the proposed method to Bayesian image restoration, in which we observed that our theoretical results are in good agreement with the numerical results for natural images.
Inflation with a graceful exit in a random landscape
NASA Astrophysics Data System (ADS)
Pedro, F. G.; Westphal, A.
2017-03-01
We develop a stochastic description of small-field inflationary histories with a graceful exit in a random potential whose Hessian is a Gaussian random matrix as a model of the unstructured part of the string landscape. The dynamical evolution in such a random potential from a small-field inflation region towards a viable late-time de Sitter (dS) minimum maps to the dynamics of Dyson Brownian motion describing the relaxation of non-equilibrium eigenvalue spectra in random matrix theory. We analytically compute the relaxation probability in a saddle point approximation of the partition function of the eigenvalue distribution of the Wigner ensemble describing the mass matrices of the critical points. When applied to small-field inflation in the landscape, this leads to an exponentially strong bias against small-field ranges and an upper bound N ≪ 10 on the number of light fields N participating during inflation from the non-observation of negative spatial curvature.
NASA Astrophysics Data System (ADS)
Graham, Wendy D.; Tankersley, Claude D.
1994-05-01
Stochastic methods are used to analyze two-dimensional steady groundwater flow subject to spatially variable recharge and transmissivity. Approximate partial differential equations are developed for the covariances and cross-covariances between the random head, transmissivity and recharge fields. Closed-form solutions of these equations are obtained using Fourier transform techniques. The resulting covariances and cross-covariances can be incorporated into a Bayesian conditioning procedure which provides optimal estimates of the recharge, transmissivity and head fields given available measurements of any or all of these random fields. Results show that head measurements contain valuable information for estimating the random recharge field. However, when recharge is treated as a spatially variable random field, the value of head measurements for estimating the transmissivity field can be reduced considerably. In a companion paper, the method is applied to a case study of the Upper Floridan Aquifer in NE Florida.
The random field Blume-Capel model revisited
NASA Astrophysics Data System (ADS)
Santos, P. V.; da Costa, F. A.; de Araújo, J. M.
2018-04-01
We have revisited the mean-field treatment for the Blume-Capel model under the presence of a discrete random magnetic field as introduced by Kaufman and Kanner (1990). The magnetic field (H) versus temperature (T) phase diagrams for given values of the crystal field D were recovered in accordance to Kaufman and Kanner original work. However, our main goal in the present work was to investigate the distinct structures of the crystal field versus temperature phase diagrams as the random magnetic field is varied because similar models have presented reentrant phenomenon due to randomness. Following previous works we have classified the distinct phase diagrams according to five different topologies. The topological structure of the phase diagrams is maintained for both H - T and D - T cases. Although the phase diagrams exhibit a richness of multicritical phenomena we did not found any reentrant effect as have been seen in similar models.
A New Algorithm with Plane Waves and Wavelets for Random Velocity Fields with Many Spatial Scales
NASA Astrophysics Data System (ADS)
Elliott, Frank W.; Majda, Andrew J.
1995-03-01
A new Monte Carlo algorithm for constructing and sampling stationary isotropic Gaussian random fields with power-law energy spectrum, infrared divergence, and fractal self-similar scaling is developed here. The theoretical basis for this algorithm involves the fact that such a random field is well approximated by a superposition of random one-dimensional plane waves involving a fixed finite number of directions. In general each one-dimensional plane wave is the sum of a random shear layer and a random acoustical wave. These one-dimensional random plane waves are then simulated by a wavelet Monte Carlo method for a single space variable developed recently by the authors. The computational results reported in this paper demonstrate remarkable low variance and economical representation of such Gaussian random fields through this new algorithm. In particular, the velocity structure function for an imcorepressible isotropic Gaussian random field in two space dimensions with the Kolmogoroff spectrum can be simulated accurately over 12 decades with only 100 realizations of the algorithm with the scaling exponent accurate to 1.1% and the constant prefactor accurate to 6%; in fact, the exponent of the velocity structure function can be computed over 12 decades within 3.3% with only 10 realizations. Furthermore, only 46,592 active computational elements are utilized in each realization to achieve these results for 12 decades of scaling behavior.
SMERFS: Stochastic Markov Evaluation of Random Fields on the Sphere
NASA Astrophysics Data System (ADS)
Creasey, Peter; Lang, Annika
2018-04-01
SMERFS (Stochastic Markov Evaluation of Random Fields on the Sphere) creates large realizations of random fields on the sphere. It uses a fast algorithm based on Markov properties and fast Fourier Transforms in 1d that generates samples on an n X n grid in O(n2 log n) and efficiently derives the necessary conditional covariance matrices.
NASA Astrophysics Data System (ADS)
Xiong, Z.; Tsuchiya, T.
2017-12-01
Element partitioning is an important property in recording geochemical processes during the core-mantle differentiation. However, experimental measurements of element partitioning coefficients under extreme temperature and pressure condition are still challenging. Theoretical modeling is also not easy, because it requires estimation of high temperature Gibbs free energy, which is not directly accessible by the standard molecular dynamics method. We recently developed an original technique to simulate Gibbs free energy based on the thermodynamics integration method[1]. We apply it to element partitioning of geochemical intriguing trace elements between molten silicate and liquid iron such as potassium, helium and argon as starting examples. Radiogenic potassium in the core can provide energy for Earth's magnetic field, convection in the mantle and outer core[2]. However, its partitioning behavior between silicate and iron remains unclear under high pressure[3,4]. Our calculations suggest that a clear positive temperature dependence of the partitioning coefficient but an insignificant pressure effect. Unlike sulfur and silicon, oxygen dissolved in the metals considerably enhances potassium solubility. Calculated electronic structures reveal alkali-metallic feature of potassium in liquid iron, favoring oxygen with strong electron affinity. Our results suggest that 40K could serve as a potential radiogenic heat source in the outer core if oxygen is the major light element therein. We now further extend our technique to partitioning behaviors of other elements, helium and argon, to get insides into the `helium paradox' and `missing argon' problems. References [1] T. Taniuchi, and T. Tsuchiya, Phys.Rev.B. In press [2] B.A. Buffett, H.E. Huppert, J.R. Lister, and A.W. Woods, Geophys.Res.Lett. 29 (1996) 7989-8006. [3] V.R. Murthy, W. Westrenen, and Y. Fei, Nature. 426 (2003) 163-165. [4] A. Corgne, S.Keshav, Y. Fei, and W.F. McDonough, Earth.Planet.Sci.Lett. 256 (2007) 567-576
Q-space truncation and sampling in diffusion spectrum imaging.
Tian, Qiyuan; Rokem, Ariel; Folkerth, Rebecca D; Nummenmaa, Aapo; Fan, Qiuyun; Edlow, Brian L; McNab, Jennifer A
2016-12-01
To characterize the q-space truncation and sampling on the spin-displacement probability density function (PDF) in diffusion spectrum imaging (DSI). DSI data were acquired using the MGH-USC connectome scanner (G max = 300 mT/m) with b max = 30,000 s/mm 2 , 17 × 17 × 17, 15 × 15 × 15 and 11 × 11 × 11 grids in ex vivo human brains and b max = 10,000 s/mm 2 , 11 × 11 × 11 grid in vivo. An additional in vivo scan using b max =7,000 s/mm 2 , 11 × 11 × 11 grid was performed with a derated gradient strength of 40 mT/m. PDFs and orientation distribution functions (ODFs) were reconstructed with different q-space filtering and PDF integration lengths, and from down-sampled data by factors of two and three. Both ex vivo and in vivo data showed Gibbs ringing in PDFs, which becomes the main source of artifact in the subsequently reconstructed ODFs. For down-sampled data, PDFs interfere with the first replicas or their ringing, leading to obscured orientations in ODFs. The minimum required q-space sampling density corresponds to a field-of-view approximately equal to twice the mean displacement distance (MDD) of the tissue. The 11 × 11 × 11 grid is suitable for both ex vivo and in vivo DSI experiments. To minimize the effects of Gibbs ringing, ODFs should be reconstructed from unfiltered q-space data with the integration length over the PDF constrained to around the MDD. Magn Reson Med 76:1750-1763, 2016. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.
Thermodynamics of Dilute Solutions.
ERIC Educational Resources Information Center
Jancso, Gabor; Fenby, David V.
1983-01-01
Discusses principles and definitions related to the thermodynamics of dilute solutions. Topics considered include dilute solution, Gibbs-Duhem equation, reference systems (pure gases and gaseous mixtures, liquid mixtures, dilute solutions), real dilute solutions (focusing on solute and solvent), terminology, standard states, and reference systems.…
Learning that Prepares for More Learning: Symbolic Mathematics in Physical Chemistry
ERIC Educational Resources Information Center
Zielinski, Theresa Julia
2004-01-01
The well-crafted templates are useful to learn the new concepts of chemistry. The templates focus on pressure-volume work, the Boltzmann distribution, the Gibbs free energy function, intermolecular potentials, the second virial coefficient and quantum mechanical tunneling.
Restoration of dimensional reduction in the random-field Ising model at five dimensions
NASA Astrophysics Data System (ADS)
Fytas, Nikolaos G.; Martín-Mayor, Víctor; Picco, Marco; Sourlas, Nicolas
2017-04-01
The random-field Ising model is one of the few disordered systems where the perturbative renormalization group can be carried out to all orders of perturbation theory. This analysis predicts dimensional reduction, i.e., that the critical properties of the random-field Ising model in D dimensions are identical to those of the pure Ising ferromagnet in D -2 dimensions. It is well known that dimensional reduction is not true in three dimensions, thus invalidating the perturbative renormalization group prediction. Here, we report high-precision numerical simulations of the 5D random-field Ising model at zero temperature. We illustrate universality by comparing different probability distributions for the random fields. We compute all the relevant critical exponents (including the critical slowing down exponent for the ground-state finding algorithm), as well as several other renormalization-group invariants. The estimated values of the critical exponents of the 5D random-field Ising model are statistically compatible to those of the pure 3D Ising ferromagnet. These results support the restoration of dimensional reduction at D =5 . We thus conclude that the failure of the perturbative renormalization group is a low-dimensional phenomenon. We close our contribution by comparing universal quantities for the random-field problem at dimensions 3 ≤D <6 to their values in the pure Ising model at D -2 dimensions, and we provide a clear verification of the Rushbrooke equality at all studied dimensions.
Restoration of dimensional reduction in the random-field Ising model at five dimensions.
Fytas, Nikolaos G; Martín-Mayor, Víctor; Picco, Marco; Sourlas, Nicolas
2017-04-01
The random-field Ising model is one of the few disordered systems where the perturbative renormalization group can be carried out to all orders of perturbation theory. This analysis predicts dimensional reduction, i.e., that the critical properties of the random-field Ising model in D dimensions are identical to those of the pure Ising ferromagnet in D-2 dimensions. It is well known that dimensional reduction is not true in three dimensions, thus invalidating the perturbative renormalization group prediction. Here, we report high-precision numerical simulations of the 5D random-field Ising model at zero temperature. We illustrate universality by comparing different probability distributions for the random fields. We compute all the relevant critical exponents (including the critical slowing down exponent for the ground-state finding algorithm), as well as several other renormalization-group invariants. The estimated values of the critical exponents of the 5D random-field Ising model are statistically compatible to those of the pure 3D Ising ferromagnet. These results support the restoration of dimensional reduction at D=5. We thus conclude that the failure of the perturbative renormalization group is a low-dimensional phenomenon. We close our contribution by comparing universal quantities for the random-field problem at dimensions 3≤D<6 to their values in the pure Ising model at D-2 dimensions, and we provide a clear verification of the Rushbrooke equality at all studied dimensions.
Ferrando, Nicolas; Lachet, Véronique; Boutin, Anne
2010-07-08
Ketone and aldehyde molecules are involved in a large variety of industrial applications. Because they are mainly present mixed with other compounds, the prediction of phase equilibrium of mixtures involving these classes of molecules is of first interest particularly to design and optimize separation processes. The main goal of this work is to propose a transferable force field for ketones and aldehydes that allows accurate molecular simulations of not only pure compounds but also complex mixtures. The proposed force field is based on the anisotropic united-atoms AUA4 potential developed for hydrocarbons, and it introduces only one new atom, the carbonyl oxygen. The Lennard-Jones parameters of this oxygen atom have been adjusted on saturated thermodynamic properties of both acetone and acetaldehyde. To simulate mixtures, Monte Carlo simulations are carried out in a specific pseudoensemble which allows a direct calculation of the bubble pressure. For polar mixtures involved in this study, we show that this approach is an interesting alternative to classical calculations in the isothermal-isobaric Gibbs ensemble. The pressure-composition diagrams of polar + polar and polar + nonpolar binary mixtures are well reproduced. Mutual solubilities as well as azeotrope location, if present, are accurately predicted without any empirical binary interaction parameters or readjustment. Such result highlights the transferability of the proposed force field, which is an essential feature toward the simulation of complex oxygenated mixtures of industrial interest.
Bayesian approach to non-Gaussian field statistics for diffusive broadband terahertz pulses.
Pearce, Jeremy; Jian, Zhongping; Mittleman, Daniel M
2005-11-01
We develop a closed-form expression for the probability distribution function for the field components of a diffusive broadband wave propagating through a random medium. We consider each spectral component to provide an individual observation of a random variable, the configurationally averaged spectral intensity. Since the intensity determines the variance of the field distribution at each frequency, this random variable serves as the Bayesian prior that determines the form of the non-Gaussian field statistics. This model agrees well with experimental results.
Random walk study of electron motion in helium in crossed electromagnetic fields
NASA Technical Reports Server (NTRS)
Englert, G. W.
1972-01-01
Random walk theory, previously adapted to electron motion in the presence of an electric field, is extended to include a transverse magnetic field. In principle, the random walk approach avoids mathematical complexity and concomitant simplifying assumptions and permits determination of energy distributions and transport coefficients within the accuracy of available collisional cross section data. Application is made to a weakly ionized helium gas. Time of relaxation of electron energy distribution, determined by the random walk, is described by simple expressions based on energy exchange between the electron and an effective electric field. The restrictive effect of the magnetic field on electron motion, which increases the required number of collisions per walk to reach a terminal steady state condition, as well as the effect of the magnetic field on electron transport coefficients and mean energy can be quite adequately described by expressions involving only the Hall parameter.
ERIC Educational Resources Information Center
Smith, Michael J.; Vincent, Colin A.
1989-01-01
Uses reversible electrochemical cells near equilibrium to study basic thermodynamic concepts such as maximum work and free energy. Selects sealed, miniature, commercial cells to obtain accurate measurement of enthalpy, entropy, and Gibbs free energy. (MVL)
Persistence and Lifelong Fidelity of Phase Singularities in Optical Random Waves.
De Angelis, L; Alpeggiani, F; Di Falco, A; Kuipers, L
2017-11-17
Phase singularities are locations where light is twisted like a corkscrew, with positive or negative topological charge depending on the twisting direction. Among the multitude of singularities arising in random wave fields, some can be found at the same location, but only when they exhibit opposite topological charge, which results in their mutual annihilation. New pairs can be created as well. With near-field experiments supported by theory and numerical simulations, we study the persistence and pairing statistics of phase singularities in random optical fields as a function of the excitation wavelength. We demonstrate how such entities can encrypt fundamental properties of the random fields in which they arise.
Persistence and Lifelong Fidelity of Phase Singularities in Optical Random Waves
NASA Astrophysics Data System (ADS)
De Angelis, L.; Alpeggiani, F.; Di Falco, A.; Kuipers, L.
2017-11-01
Phase singularities are locations where light is twisted like a corkscrew, with positive or negative topological charge depending on the twisting direction. Among the multitude of singularities arising in random wave fields, some can be found at the same location, but only when they exhibit opposite topological charge, which results in their mutual annihilation. New pairs can be created as well. With near-field experiments supported by theory and numerical simulations, we study the persistence and pairing statistics of phase singularities in random optical fields as a function of the excitation wavelength. We demonstrate how such entities can encrypt fundamental properties of the random fields in which they arise.
Random scalar fields and hyperuniformity
NASA Astrophysics Data System (ADS)
Ma, Zheng; Torquato, Salvatore
2017-06-01
Disordered many-particle hyperuniform systems are exotic amorphous states of matter that lie between crystals and liquids. Hyperuniform systems have attracted recent attention because they are endowed with novel transport and optical properties. Recently, the hyperuniformity concept has been generalized to characterize two-phase media, scalar fields, and random vector fields. In this paper, we devise methods to explicitly construct hyperuniform scalar fields. Specifically, we analyze spatial patterns generated from Gaussian random fields, which have been used to model the microwave background radiation and heterogeneous materials, the Cahn-Hilliard equation for spinodal decomposition, and Swift-Hohenberg equations that have been used to model emergent pattern formation, including Rayleigh-Bénard convection. We show that the Gaussian random scalar fields can be constructed to be hyperuniform. We also numerically study the time evolution of spinodal decomposition patterns and demonstrate that they are hyperuniform in the scaling regime. Moreover, we find that labyrinth-like patterns generated by the Swift-Hohenberg equation are effectively hyperuniform. We show that thresholding (level-cutting) a hyperuniform Gaussian random field to produce a two-phase random medium tends to destroy the hyperuniformity of the progenitor scalar field. We then propose guidelines to achieve effectively hyperuniform two-phase media derived from thresholded non-Gaussian fields. Our investigation paves the way for new research directions to characterize the large-structure spatial patterns that arise in physics, chemistry, biology, and ecology. Moreover, our theoretical results are expected to guide experimentalists to synthesize new classes of hyperuniform materials with novel physical properties via coarsening processes and using state-of-the-art techniques, such as stereolithography and 3D printing.
Feldon, Steven E
2004-01-01
ABSTRACT Purpose To validate a computerized expert system evaluating visual fields in a prospective clinical trial, the Ischemic Optic Neuropathy Decompression Trial (IONDT). To identify the pattern and within-pattern severity of field defects for study eyes at baseline and 6-month follow-up. Design Humphrey visual field (HVF) change was used as the outcome measure for a prospective, randomized, multi-center trial to test the null hypothesis that optic nerve sheath decompression was ineffective in treating nonarteritic anterior ischemic optic neuropathy and to ascertain the natural history of the disease. Methods An expert panel established criteria for the type and severity of visual field defects. Using these criteria, a rule-based computerized expert system interpreted HVF from baseline and 6-month visits for patients randomized to surgery or careful follow-up and for patients who were not randomized. Results A computerized expert system was devised and validated. The system was then used to analyze HVFs. The pattern of defects found at baseline for patients randomized to surgery did not differ from that of patients randomized to careful follow-up. The most common pattern of defect was a superior and inferior arcuate with central scotoma for randomized eyes (19.2%) and a superior and inferior arcuate for nonrandomized eyes (30.6%). Field patterns at 6 months and baseline were not different. For randomized study eyes, the superior altitudinal defects improved (P = .03), as did the inferior altitudinal defects (P = .01). For nonrandomized study eyes, only the inferior altitudinal defects improved (P = .02). No treatment effect was noted. Conclusions A novel rule-based expert system successfully interpreted visual field defects at baseline of eyes enrolled in the IONDT. PMID:15747764
A priori motion models for four-dimensional reconstruction in gated cardiac SPECT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lalush, D.S.; Tsui, B.M.W.; Cui, Lin
1996-12-31
We investigate the benefit of incorporating a priori assumptions about cardiac motion in a fully four-dimensional (4D) reconstruction algorithm for gated cardiac SPECT. Previous work has shown that non-motion-specific 4D Gibbs priors enforcing smoothing in time and space can control noise while preserving resolution. In this paper, we evaluate methods for incorporating known heart motion in the Gibbs prior model. The new model is derived by assigning motion vectors to each 4D voxel, defining the movement of that volume of activity into the neighboring time frames. Weights for the Gibbs cliques are computed based on these {open_quotes}most likely{close_quotes} motion vectors.more » To evaluate, we employ the mathematical cardiac-torso (MCAT) phantom with a new dynamic heart model that simulates the beating and twisting motion of the heart. Sixteen realistically-simulated gated datasets were generated, with noise simulated to emulate a real Tl-201 gated SPECT study. Reconstructions were performed using several different reconstruction algorithms, all modeling nonuniform attenuation and three-dimensional detector response. These include ML-EM with 4D filtering, 4D MAP-EM without prior motion assumption, and 4D MAP-EM with prior motion assumptions. The prior motion assumptions included both the correct motion model and incorrect models. Results show that reconstructions using the 4D prior model can smooth noise and preserve time-domain resolution more effectively than 4D linear filters. We conclude that modeling of motion in 4D reconstruction algorithms can be a powerful tool for smoothing noise and preserving temporal resolution in gated cardiac studies.« less
Yip, Ngai Yin; Elimelech, Menachem
2012-05-01
The Gibbs free energy of mixing dissipated when fresh river water flows into the sea can be harnessed for sustainable power generation. Pressure retarded osmosis (PRO) is one of the methods proposed to generate power from natural salinity gradients. In this study, we carry out a thermodynamic and energy efficiency analysis of PRO work extraction. First, we present a reversible thermodynamic model for PRO and verify that the theoretical maximum extractable work in a reversible PRO process is identical to the Gibbs free energy of mixing. Work extraction in an irreversible constant-pressure PRO process is then examined. We derive an expression for the maximum extractable work in a constant-pressure PRO process and show that it is less than the ideal work (i.e., Gibbs free energy of mixing) due to inefficiencies intrinsic to the process. These inherent inefficiencies are attributed to (i) frictional losses required to overcome hydraulic resistance and drive water permeation and (ii) unutilized energy due to the discontinuation of water permeation when the osmotic pressure difference becomes equal to the applied hydraulic pressure. The highest extractable work in constant-pressure PRO with a seawater draw solution and river water feed solution is 0.75 kWh/m(3) while the free energy of mixing is 0.81 kWh/m(3)-a thermodynamic extraction efficiency of 91.1%. Our analysis further reveals that the operational objective to achieve high power density in a practical PRO process is inconsistent with the goal of maximum energy extraction. This study demonstrates thermodynamic and energetic approaches for PRO and offers insights on actual energy accessible for utilization in PRO power generation through salinity gradients. © 2012 American Chemical Society
NASA Astrophysics Data System (ADS)
Harvey, Jean-Philippe; Gheribi, Aïmen E.; Chartrand, Patrice
2012-10-01
In this work, the glass forming ability of Al-Zr alloys is quantified using Monte Carlo (MC) and molecular dynamic (MD) simulations as well as classical thermodynamic calculations. The total energy of each studied structure of the Al-Zr system is described using the modified embedded atom model in the second-nearest-neighbour formalism. The parameterized Al-Zr cross potential which has been extensively validated using available experimental and ab initio data for several solid structures and for the liquid phase is used to evaluate thermodynamic, structural, and physical properties of the glass state and of the fully disordered (FD) face-centered cubic (FCC) solid solution with no short range order (SRO). The local environment of the Al-Zr amorphous phase is identified to be similar to that of a FCC solid structure with short range chemical order. A new approach to model the Gibbs energy of the amorphous phase based on the cluster variation method in the tetrahedron approximation is presented. The Gibbs energy of the fully disordered FCC solid solution with no short range order is determined and compared to the Gibbs energy of the amorphous phase. According to our volumetric and energetic criteria defined in our work to evaluate the possible formation of a glass structure at room temperature and zero pressure, a glass forming range of (0.25≤XZr≤0.75) and of (0.21≤XZr≤0.75) are identified, respectively. All the available quantitative experimental data regarding the amorphization of Al-Zr alloys are compared to the prediction of our MD/MC simulations throughout this study.
Gu, Jinghua; Xuan, Jianhua; Riggins, Rebecca B; Chen, Li; Wang, Yue; Clarke, Robert
2012-08-01
Identification of transcriptional regulatory networks (TRNs) is of significant importance in computational biology for cancer research, providing a critical building block to unravel disease pathways. However, existing methods for TRN identification suffer from the inclusion of excessive 'noise' in microarray data and false-positives in binding data, especially when applied to human tumor-derived cell line studies. More robust methods that can counteract the imperfection of data sources are therefore needed for reliable identification of TRNs in this context. In this article, we propose to establish a link between the quality of one target gene to represent its regulator and the uncertainty of its expression to represent other target genes. Specifically, an outlier sum statistic was used to measure the aggregated evidence for regulation events between target genes and their corresponding transcription factors. A Gibbs sampling method was then developed to estimate the marginal distribution of the outlier sum statistic, hence, to uncover underlying regulatory relationships. To evaluate the effectiveness of our proposed method, we compared its performance with that of an existing sampling-based method using both simulation data and yeast cell cycle data. The experimental results show that our method consistently outperforms the competing method in different settings of signal-to-noise ratio and network topology, indicating its robustness for biological applications. Finally, we applied our method to breast cancer cell line data and demonstrated its ability to extract biologically meaningful regulatory modules related to estrogen signaling and action in breast cancer. The Gibbs sampler MATLAB package is freely available at http://www.cbil.ece.vt.edu/software.htm. xuan@vt.edu Supplementary data are available at Bioinformatics online.
Gu, Jinghua; Xuan, Jianhua; Riggins, Rebecca B.; Chen, Li; Wang, Yue; Clarke, Robert
2012-01-01
Motivation: Identification of transcriptional regulatory networks (TRNs) is of significant importance in computational biology for cancer research, providing a critical building block to unravel disease pathways. However, existing methods for TRN identification suffer from the inclusion of excessive ‘noise’ in microarray data and false-positives in binding data, especially when applied to human tumor-derived cell line studies. More robust methods that can counteract the imperfection of data sources are therefore needed for reliable identification of TRNs in this context. Results: In this article, we propose to establish a link between the quality of one target gene to represent its regulator and the uncertainty of its expression to represent other target genes. Specifically, an outlier sum statistic was used to measure the aggregated evidence for regulation events between target genes and their corresponding transcription factors. A Gibbs sampling method was then developed to estimate the marginal distribution of the outlier sum statistic, hence, to uncover underlying regulatory relationships. To evaluate the effectiveness of our proposed method, we compared its performance with that of an existing sampling-based method using both simulation data and yeast cell cycle data. The experimental results show that our method consistently outperforms the competing method in different settings of signal-to-noise ratio and network topology, indicating its robustness for biological applications. Finally, we applied our method to breast cancer cell line data and demonstrated its ability to extract biologically meaningful regulatory modules related to estrogen signaling and action in breast cancer. Availability and implementation: The Gibbs sampler MATLAB package is freely available at http://www.cbil.ece.vt.edu/software.htm. Contact: xuan@vt.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:22595208
Thermodynamic and structural aspects of novel 1,2,4-thiadiazoles in solid and biological mediums.
Perlovich, German L; Proshin, Alexey N; Volkova, Tatyana V; Bui, Cong Trinh; Bachurin, Sergey O
2011-10-03
Novel 1,2,4-thiadiazoles were synthesized. Crystal structures of these compounds were solved by X-ray diffraction experiments, and comparative analysis of packing architecture and hydrogen bond networks was carried out. Thermodynamic aspects of sublimation processes of the compounds under study were analyzed using temperature dependencies of vapor pressure. Thermophysical characteristics of the molecular crystals were obtained and compared with the sublimation and structural parameters. The melting points correlate with sublimation Gibbs energies. Moreover, an increase of donor-acceptor interactions in crystal structures leads to growth of Gibbs energy values. Relationships between the melting points and the fragmental contributions to the packing energies were established: R(1)-R(4) fragmental interactions are responsible for the fusion processes of this class of compounds. Solubility and solvation processes of 1,2,4-thiadiazoles in buffer, n-hexane and n-octanol were studied within a wide range of temperature intervals, and their thermodynamic functions were calculated. Specific and nonspecific interactions of molecules resolved in crystals and solvents were estimated and compared. It was found that the melting points correlate with sublimation Gibbs energies. Distribution processes of compounds in buffer/n-octanol and buffer/n-hexane systems (describing different types of membranes) were investigated. Transfer processes of the studied molecules from the buffer to n-octanol/n-hexane phases were analyzed by the diagram method with evaluation of the enthalpic and entropic terms. This approach allowed us to design drug molecules with optimal passive transport properties. Calcium-blocking properties of the substances were evaluated. The trend between the ability to inhibit Glu-Ca uptake and the distribution coefficients in buffer/hexane system was observed.
NASA Astrophysics Data System (ADS)
Saavedra-Vélez, Margarita Virginia; Correa-Basurto, José; Matus, Myrna H.; Gasca-Pérez, Eloy; Bello, Martiniano; Cuevas-Hernández, Roberto; García-Rodríguez, Rosa Virginia; Trujillo-Ferrara, José; Ramos-Morales, Fernando Rafael
2014-12-01
The aim of this study was to identify compounds that possess anticonvulsant activity by using a pentylenetetrazol (PTZ)-induced seizure model. Theoretical studies of a set of ligands, explored the binding affinities of the ligands for the GABAA receptor (GABAAR), including some benzodiazepines. The ligands satisfy the Lipinski rules and contain a pharmacophore core that has been previously reported to be a GABAAR activator. To select the ligands with the best physicochemical properties, all of the compounds were analyzed by quantum mechanics and the energies of the highest occupied molecular orbital and lowest unoccupied molecular orbital were determined. Docking calculations between the ligands and the GABAAR were used to identify the complexes with the highest Gibbs binding energies. The identified compound D1 (dibenzo( b,f)(1,4)diazocine-6,11(5H,12H)-dione) was synthesized, experimentally tested, and the GABAAR-D1 complex was submitted to 12-ns-long molecular dynamics (MD) simulations to corroborate the binding conformation obtained by docking techniques. MD simulations were also used to analyze the decomposition of the Gibbs binding energy of the residues involved in the stabilization of the complex. To validate our theoretical results, molecular docking and MD simulations were also performed for three reference compounds that are currently in commercial use: clonazepam (CLZ), zolpidem and eszopiclone. The theoretical results show that the GABAAR-D1, and GABAAR-CLZ complexes bind to the benzodiazepine binding site, share a similar map of binding residues, and have similar Gibbs binding energies and entropic components. Experimental studies using a PTZ-induced seizure model showed that D1 possesses similar activity to CLZ, which corroborates the predicted binding free energy identified by theoretical calculations.
Random Assignment: Practical Considerations from Field Experiments.
ERIC Educational Resources Information Center
Dunford, Franklyn W.
1990-01-01
Seven qualitative issues associated with randomization that have the potential to weaken or destroy otherwise sound experimental designs are reviewed and illustrated via actual field experiments. Issue areas include ethics and legality, liability risks, manipulation of randomized outcomes, hidden bias, design intrusiveness, case flow, and…
New constraints on modelling the random magnetic field of the MW
NASA Astrophysics Data System (ADS)
Beck, Marcus C.; Beck, Alexander M.; Beck, Rainer; Dolag, Klaus; Strong, Andrew W.; Nielaba, Peter
2016-05-01
We extend the description of the isotropic and anisotropic random component of the small-scale magnetic field within the existing magnetic field model of the Milky Way from Jansson & Farrar, by including random realizations of the small-scale component. Using a magnetic-field power spectrum with Gaussian random fields, the NE2001 model for the thermal electrons and the Galactic cosmic-ray electron distribution from the current GALPROP model we derive full-sky maps for the total and polarized synchrotron intensity as well as the Faraday rotation-measure distribution. While previous work assumed that small-scale fluctuations average out along the line-of-sight or which only computed ensemble averages of random fields, we show that these fluctuations need to be carefully taken into account. Comparing with observational data we obtain not only good agreement with 408 MHz total and WMAP7 22 GHz polarized intensity emission maps, but also an improved agreement with Galactic foreground rotation-measure maps and power spectra, whose amplitude and shape strongly depend on the parameters of the random field. We demonstrate that a correlation length of 0≈22 pc (05 pc being a 5σ lower limit) is needed to match the slope of the observed power spectrum of Galactic foreground rotation-measure maps. Using multiple realizations allows us also to infer errors on individual observables. We find that previously-used amplitudes for random and anisotropic random magnetic field components need to be rescaled by factors of ≈0.3 and 0.6 to account for the new small-scale contributions. Our model predicts a rotation measure of -2.8±7.1 rad/m2 and 04.4±11. rad/m2 for the north and south Galactic poles respectively, in good agreement with observations. Applying our model to deflections of ultra-high-energy cosmic rays we infer a mean deflection of ≈3.5±1.1 degree for 60 EeV protons arriving from CenA.
On the Distribution of Earthquake Interevent Times and the Impact of Spatial Scale
NASA Astrophysics Data System (ADS)
Hristopulos, Dionissios
2013-04-01
The distribution of earthquake interevent times is a subject that has attracted much attention in the statistical physics literature [1-3]. A recent paper proposes that the distribution of earthquake interevent times follows from the the interplay of the crustal strength distribution and the loading function (stress versus time) of the Earth's crust locally [4]. It was also shown that the Weibull distribution describes earthquake interevent times provided that the crustal strength also follows the Weibull distribution and that the loading function follows a power-law during the loading cycle. I will discuss the implications of this work and will present supporting evidence based on the analysis of data from seismic catalogs. I will also discuss the theoretical evidence in support of the Weibull distribution based on models of statistical physics [5]. Since other-than-Weibull interevent times distributions are not excluded in [4], I will illustrate the use of the Kolmogorov-Smirnov test in order to determine which probability distributions are not rejected by the data. Finally, we propose a modification of the Weibull distribution if the size of the system under investigation (i.e., the area over which the earthquake activity occurs) is finite with respect to a critical link size. keywords: hypothesis testing, modified Weibull, hazard rate, finite size References [1] Corral, A., 2004. Long-term clustering, scaling, and universality in the temporal occurrence of earthquakes, Phys. Rev. Lett., 9210) art. no. 108501. [2] Saichev, A., Sornette, D. 2007. Theory of earthquake recurrence times, J. Geophys. Res., Ser. B 112, B04313/1-26. [3] Touati, S., Naylor, M., Main, I.G., 2009. Origin and nonuniversality of the earthquake interevent time distribution Phys. Rev. Lett., 102 (16), art. no. 168501. [4] Hristopulos, D.T., 2003. Spartan Gibbs random field models for geostatistical applications, SIAM Jour. Sci. Comput., 24, 2125-2162. [5] I. Eliazar and J. Klafter, 2006. Growth-collapse and decay-surge evolutions, and geometric Langevin equations, Physica A, 367, 106 - 128.
Free Energies of Formation Measurements on Solid-State Electrochemical Cells
ERIC Educational Resources Information Center
Rollino, J. A.; Aronson, S.
1972-01-01
A simple experiment is proposed that can provide the student with some insight into the chemical properties of solids. It also demonstrates the relationship between the Gibbs free energy of formation of an ionic solid and the emf of an electrochemical cell. (DF)
ERIC Educational Resources Information Center
Debbasch, F.
2011-01-01
The logical structure of classical thermodynamics is presented in a modern, geometrical manner. The first and second law receive clear, operatively oriented statements and the Gibbs free energy extremum principle is fully discussed. Applications relevant to chemistry, such as phase transitions, dilute solutions theory and, in particular, the law…
Controlling plant architecture by manipulation of gibberellic acid signalling in petunia
USDA-ARS?s Scientific Manuscript database
Gibberellic acid (GA), a plant hormone, regulates many crucial growth and developmental processes, including seed germination, leaf expansion, induction of flowering and stem elongation. A common problem in the production of ornamental potted plants is undesirably tall growth, so inhibitors of gibbe...
Making Difficult Things Easy and Easy Things Difficult.
ERIC Educational Resources Information Center
Campbell, J. Arthur; Bent, Henry A.
1982-01-01
Suggestions are offered to illustrate concepts and processes by using simple materials such as paper, paper clip, rubber band (bonding, entropy, endothermic processes). Also suggests using basic terminology: elementary ratios, percent, reaction chemistry for entropy function; equilibrium constants for Gibbs energies; and chemical mechanics for…
Quinone Photoreactivity: An Undergraduate Experiment in Photochemistry
ERIC Educational Resources Information Center
Vaughan, Pamela P.; Cochran, Michael; Haubrich, Nicole
2010-01-01
An experiment exploring the photochemical properties of quinones was developed. Their unique photochemistry and highly reactive nature make them an ideal class of compounds for examining structure-activity relationships. For several substituted quinones, photochemical reactivity was related to structure and ultimately to the Gibbs energy for…
Thermodynamics--A Practical Subject.
ERIC Educational Resources Information Center
Jones, Hugh G.
1984-01-01
Provides a simplified, synoptic overview of the area of thermodynamics, enumerating and explaining the four basic laws, and introducing the mathematics involved in a stepwise fashion. Discusses such basic tools of thermodynamics as enthalpy, entropy, Helmholtz free energy, and Gibbs free energy, and their uses in problem solving. (JM)
On Euler's Theorem for Homogeneous Functions and Proofs Thereof.
ERIC Educational Resources Information Center
Tykodi, R. J.
1982-01-01
Euler's theorem for homogenous functions is useful when developing thermodynamic distinction between extensive and intensive variables of state and when deriving the Gibbs-Duhem relation. Discusses Euler's theorem and thermodynamic applications. Includes six-step instructional strategy for introducing the material to students. (Author/JN)
Quantification of Microbial Phenotypes
Martínez, Verónica S.; Krömer, Jens O.
2016-01-01
Metabolite profiling technologies have improved to generate close to quantitative metabolomics data, which can be employed to quantitatively describe the metabolic phenotype of an organism. Here, we review the current technologies available for quantitative metabolomics, present their advantages and drawbacks, and the current challenges to generate fully quantitative metabolomics data. Metabolomics data can be integrated into metabolic networks using thermodynamic principles to constrain the directionality of reactions. Here we explain how to estimate Gibbs energy under physiological conditions, including examples of the estimations, and the different methods for thermodynamics-based network analysis. The fundamentals of the methods and how to perform the analyses are described. Finally, an example applying quantitative metabolomics to a yeast model by 13C fluxomics and thermodynamics-based network analysis is presented. The example shows that (1) these two methods are complementary to each other; and (2) there is a need to take into account Gibbs energy errors. Better estimations of metabolic phenotypes will be obtained when further constraints are included in the analysis. PMID:27941694
DOE Office of Scientific and Technical Information (OSTI.GOV)
Das, Chandan K.; Singh, Jayant K., E-mail: jayantks@iitk.ac.in
Three-stage pseudo-supercritical transformation path and multiple-histogram reweighting technique are employed for the determination of solid-liquid coexistence of the Lennard-Jones (12-6) fluid, in a structureless cylindrical pore of radius, R, ranging from 4 to 20 molecular diameters. The Gibbs free energy difference is evaluated using thermodynamic integration method by connecting solid and liquid phases under confinement via one or more intermediate states without any first order phase transition among them. The thermodynamic melting temperature, T{sub m}, is found to oscillate for pore size, R < 8, which is in agreement with the behavior observed for the melting temperature in slit pores.more » However, T{sub m} for almost all pore sizes is less than the bulk case, which is contrary to the behavior seen for the slit pore. The oscillation in T{sub m} decays at around pore radius R = 8, and beyond that shift in the melting temperature with respect to the bulk case is in line with the prediction of the Gibbs-Thomson equation.« less
Demonstration and resolution of the Gibbs paradox of the first kind
NASA Astrophysics Data System (ADS)
Peters, Hjalmar
2014-01-01
The Gibbs paradox of the first kind (GP1) refers to the false increase in entropy which, in statistical mechanics, is calculated from the process of combining two gas systems S1 and S2 consisting of distinguishable particles. Presented in a somewhat modified form, the GP1 manifests as a contradiction to the second law of thermodynamics. Contrary to popular belief, this contradiction affects not only classical but also quantum statistical mechanics. This paper resolves the GP1 by considering two effects. (i) The uncertainty about which particles are located in S1 and which in S2 contributes to the entropies of S1 and S2. (ii) S1 and S2 are correlated by the fact that if a certain particle is located in one system, it cannot be located in the other. As a consequence, the entropy of the total system consisting of S1 and S2 is not the sum of the entropies of S1 and S2.
Quantum Enhanced Inference in Markov Logic Networks
NASA Astrophysics Data System (ADS)
Wittek, Peter; Gogolin, Christian
2017-04-01
Markov logic networks (MLNs) reconcile two opposing schools in machine learning and artificial intelligence: causal networks, which account for uncertainty extremely well, and first-order logic, which allows for formal deduction. An MLN is essentially a first-order logic template to generate Markov networks. Inference in MLNs is probabilistic and it is often performed by approximate methods such as Markov chain Monte Carlo (MCMC) Gibbs sampling. An MLN has many regular, symmetric structures that can be exploited at both first-order level and in the generated Markov network. We analyze the graph structures that are produced by various lifting methods and investigate the extent to which quantum protocols can be used to speed up Gibbs sampling with state preparation and measurement schemes. We review different such approaches, discuss their advantages, theoretical limitations, and their appeal to implementations. We find that a straightforward application of a recent result yields exponential speedup compared to classical heuristics in approximate probabilistic inference, thereby demonstrating another example where advanced quantum resources can potentially prove useful in machine learning.
Mechanistic Studies on the Dibenzofuran Formation from Phenanthrene, Fluorene and 9–Fluorenone
Li, Shanqing; Zhang, Qingzhu
2015-01-01
We carried out molecular orbital theory calculations for the homogeneous gas‑phase formation of dibenzofuran from phenanthrene, fluorene, 9-methylfluorene and 9-fluorenone. Dibenzofuran will be formed if ∙OH adds to C8a, and the order of reactivity follows as 9-fluorenone > 9-methylfluorene > fluorene > phenanthrene. The oxidations initiated by ClO∙ are more favorable processes, considering that the standard reaction Gibbs energies are at least 21.63 kcal/mol lower than those of the equivalent reactions initiated by ∙OH. The adding of ∙OH and then O2 to phenanthrene is a more favorable route than adding ∙OH to C8a of phenanthrene, when considering the greater reaction extent. The reaction channel from fluorene and O2 to 9-fluorenone and H2O seems very important, not only because it contains only three elementary reactions, but because the standard reaction Gibbs energies are lower than −80.07 kcal/mol. PMID:25756381
Haas, John L.; Robinson, Glipin R.; Hemingway, Bruch S.
1981-01-01
The standard thermodynamic properties of phases in the lime‐alumina‐silica‐ water system between 273.15 and 1800 K at 101.325 kPa (1 atm) were evalated from published experimental data. Phases included in the compilation are boehmite, diaspore, gibbsite, kaolinite, dickite, halloysite, andalusite, kyanite, sillimanite, Ca‐Al cliniopyroxene, anorthite, gehlenite, grossular, prehnite, zoisite, margarite, wollastonite, cyclowollastonite ( = pseudowollastonite), larnite, Ca olivine, hatrurite, and rankinite. The properties include heat capacity, entropy, relative enthalpy, and the Gibbs energy function of the phases and the enthalpies, Gibbs energies, and equilibrium constants for formation both from the elements and the oxides. Tabulated values are given at 50 K intervals with the 2‐sigma confidence limit at 250 K intervals. Summaries for each phase give the temperature‐ dependent functions for heat capacity, entropy, and relative enthalpy and the experimental data used in the final evaluation.
NASA Astrophysics Data System (ADS)
Farrukh, Muhammad Akhyar; Kauser, Robina; Adnan, Rohana
2013-09-01
The kinetics of vitamin C by ferric chloride hexahydrate has been investigated in the aqueous ethanol solution of basic surfactant viz. octadecylamine (ODA) under pseudo-first order conditions. The critical micelle concentration (CMC) of surfactant was determined by surface tension measurement. The effect of pH (2.5-4.5) and temperature (15-35°C) in the presence and absence of surfactant were investigated. Activation parameters, Δ E a, Δ H #, Δ S #, Δ G ≠, for the reaction were calculated by using Arrhenius and Eyring plot. Surface excess concentration (Γmax), minimum area per surfactant molecule ( A min), average area occupied by each molecule of surfactant ( a), surface pressure at the CMC (Πmax), Gibb's energy of micellization (Δ G M°), Gibb's energy of adsorption (Δ G ad°), were calculated. It was found that the reaction in the presence of surfactant showed faster oxidation rate than the aqueous ethanol solution. Reaction mechanism has been deduced in the presence and absence of surfactant.
Phase transition thermodynamics of bisphenols.
Costa, José C S; Dávalos, Juan Z; Santos, Luís M N B F
2014-10-16
Herein we have studied, presented, and analyzed the phase equilibria thermodynamics of a bisphenols (BP-A, BP-E, BP-F, BP-AP, and BP-S) series. In particular, the heat capacities, melting temperatures, and vapor pressures at different temperatures as well as the standard enthalpies, entropies, and Gibbs energies of phase transition (fusion and sublimation) were experimentally determined. Also, we have presented the phase diagrams of each bisphenol derivative and investigated the key parameters related to the thermodynamic stability of the condensed phases. When all the bisphenol derivatives are compared at the same conditions, solids BP-AP and BP-S present lower volatilities (higher Gibbs energy of sublimation) and high melting temperatures due to the higher stability of their solid phases. Solids BP-A and BP-F present similar stabilities, whereas BP-E is more volatile. The introduction of -CH3 groups in BP-F (giving BP-E and BP-A) leads an entropic differentiation in the solid phase, whereas in the isotropic liquids the enthalpic and entropic differentiations are negligible.
Consideration of some dilute-solution phenomena based on an expression for the Gibbs free energy
NASA Astrophysics Data System (ADS)
Jonah, D. A.
1986-07-01
Rigorous expressions based on the Lennard-Jones (6 12) potential, are presented for the Gibbs and Helmholtz free energy of a dilute mixture. These expressions give the free energy of the mixture in terms of the thermodynamic properties of the pure solvent, thereby providing a convenient means of correlating dilute mixture behavior with that of the pure solvent. Expressions for the following dilute binary solution properties are derived: Henry's constant, limiting activity coefficients with their derivatives, solid solubilities in supercritical gases, and mixed second virial coefficients. The Henry's constant expression suggests a linear temperature dependence; application to solubility data for various gases in methane and water shows a good agreement between theory and experiment. In the thermodynamic modeling of supercritical fluid extraction, we have demonstrated how to predict new solubility-pressure isotherms from a given isotherm, with encouraging results. The mixed second virial coefficient expression has also been applied to experimental data; the agreement with theory is good.
On the thermodynamic framework of generalized coupled thermoelastic-viscoplastic-damage modeling
NASA Technical Reports Server (NTRS)
Arnold, S. M.; Saleeb, A. F.
1991-01-01
A complete potential based framework using internal state variables is put forth for the derivation of reversible and irreversible constitutive equations. In this framework, the existence of the total (integrated) form of either the (Helmholtz) free energy or the (Gibbs) complementary free energy are assumed a priori. Two options for describing the flow and evolutionary equations are described, wherein option one (the fully coupled form) is shown to be over restrictive while the second option (the decoupled form) provides significant flexibility. As a consequence of the decoupled form, a new operator, i.e., the Compliance operator, is defined which provides a link between the assumed Gibb's and complementary dissipation potential and ensures a number of desirable numerical features, for example the symmetry of the resulting consistent tangent stiffness matrix. An important conclusion reached, is that although many theories in the literature do not conform to the general potential framework outlined, it is still possible in some cases, by slight modifications of the used forms, to restore the complete potential structure.
Analytic second derivatives of the energy in the fragment molecular orbital method
NASA Astrophysics Data System (ADS)
Nakata, Hiroya; Nagata, Takeshi; Fedorov, Dmitri G.; Yokojima, Satoshi; Kitaura, Kazuo; Nakamura, Shinichiro
2013-04-01
We developed the analytic second derivatives of the energy for the fragment molecular orbital (FMO) method. First we derived the analytic expressions and then introduced some approximations related to the first and second order coupled perturbed Hartree-Fock equations. We developed a parallel program for the FMO Hessian with approximations in GAMESS and used it to calculate infrared (IR) spectra and Gibbs free energies and to locate the transition states in SN2 reactions. The accuracy of the Hessian is demonstrated in comparison to ab initio results for polypeptides and a water cluster. By using the two residues per fragment division, we achieved the accuracy of 3 cm-1 in the reduced mean square deviation of vibrational frequencies from ab initio for all three polyalanine isomers, while the zero point energy had the error not exceeding 0.3 kcal/mol. The role of the secondary structure on IR spectra, zero point energies, and Gibbs free energies is discussed.
The activity of calcium in calcium-metal-fluoride fluxes
NASA Astrophysics Data System (ADS)
Ochifuji, Yuichiro; Tsukihashi, Fumitaka; Sano, Nobuo
1995-08-01
The standard Gibbs energy of reaction Ca (1) + O (mass pct, in Zr) = CaO (s) has been determined as follows by equilibrating molten calcium with solid zirconium in a CaO crucible: Δ G° = -64,300(±700) + 19.8(±3.5) T J/mol (1373 to 1623 K) The activities of calcium in the CaOsatd-Ca- MF2 ( M: Ca, Ba, Mg) and CaOsatd-Ca-NaF systems were measured as a function of calcium composition at high calcium contents at 1473 K on the basis of the standard Gibbs energy. The activities of calcium increase in the order of CaF2, BaF2, and MgF2 at the same calcium fraction of these fluxes. The observed activities are compared with those estimated by using the Temkin model for ionic solutions. Furthermore, the possibility of the removal of tramp elements such as tin, arsenic, antimony, bismuth, and lead from carbon-saturated iron by using calcium-metal-fluoride fluxes is discussed.
The fall of the black hole firewall: natural nonmaximal entanglement for the Page curve
NASA Astrophysics Data System (ADS)
Hotta, Masahiro; Sugita, Ayumu
2015-12-01
The black hole firewall conjecture is based on the Page curve hypothesis, which claims that entanglement between a black hole and its Hawking radiation is almost maximum. Adopting canonical typicality for nondegenerate systems with nonvanishing Hamiltonians, we show the entanglement becomes nonmaximal, and energetic singularities (firewalls) do not emerge for general systems. An evaporating old black hole must evolve in Gibbs states with exponentially small error probability after the Page time as long as the states are typical. This means that the ordinarily used microcanonical states are far from typical. The heat capacity computed from the Gibbs states should be nonnegative in general. However, the black hole heat capacity is actually negative due to the gravitational instability. Consequently the states are not typical until the last burst. This requires inevitable modification of the Page curve, which is based on the typicality argument. For static thermal pure states of a large AdS black hole and its Hawking radiation, the entanglement entropy equals the thermal entropy of the smaller system.
Quantum Enhanced Inference in Markov Logic Networks.
Wittek, Peter; Gogolin, Christian
2017-04-19
Markov logic networks (MLNs) reconcile two opposing schools in machine learning and artificial intelligence: causal networks, which account for uncertainty extremely well, and first-order logic, which allows for formal deduction. An MLN is essentially a first-order logic template to generate Markov networks. Inference in MLNs is probabilistic and it is often performed by approximate methods such as Markov chain Monte Carlo (MCMC) Gibbs sampling. An MLN has many regular, symmetric structures that can be exploited at both first-order level and in the generated Markov network. We analyze the graph structures that are produced by various lifting methods and investigate the extent to which quantum protocols can be used to speed up Gibbs sampling with state preparation and measurement schemes. We review different such approaches, discuss their advantages, theoretical limitations, and their appeal to implementations. We find that a straightforward application of a recent result yields exponential speedup compared to classical heuristics in approximate probabilistic inference, thereby demonstrating another example where advanced quantum resources can potentially prove useful in machine learning.
Quantum Enhanced Inference in Markov Logic Networks
Wittek, Peter; Gogolin, Christian
2017-01-01
Markov logic networks (MLNs) reconcile two opposing schools in machine learning and artificial intelligence: causal networks, which account for uncertainty extremely well, and first-order logic, which allows for formal deduction. An MLN is essentially a first-order logic template to generate Markov networks. Inference in MLNs is probabilistic and it is often performed by approximate methods such as Markov chain Monte Carlo (MCMC) Gibbs sampling. An MLN has many regular, symmetric structures that can be exploited at both first-order level and in the generated Markov network. We analyze the graph structures that are produced by various lifting methods and investigate the extent to which quantum protocols can be used to speed up Gibbs sampling with state preparation and measurement schemes. We review different such approaches, discuss their advantages, theoretical limitations, and their appeal to implementations. We find that a straightforward application of a recent result yields exponential speedup compared to classical heuristics in approximate probabilistic inference, thereby demonstrating another example where advanced quantum resources can potentially prove useful in machine learning. PMID:28422093
Second Order Boltzmann-Gibbs Principle for Polynomial Functions and Applications
NASA Astrophysics Data System (ADS)
Gonçalves, Patrícia; Jara, Milton; Simon, Marielle
2017-01-01
In this paper we give a new proof of the second order Boltzmann-Gibbs principle introduced in Gonçalves and Jara (Arch Ration Mech Anal 212(2):597-644, 2014). The proof does not impose the knowledge on the spectral gap inequality for the underlying model and it relies on a proper decomposition of the antisymmetric part of the current of the system in terms of polynomial functions. In addition, we fully derive the convergence of the equilibrium fluctuations towards (1) a trivial process in case of super-diffusive systems, (2) an Ornstein-Uhlenbeck process or the unique energy solution of the stochastic Burgers equation, as defined in Gubinelli and Jara (SPDEs Anal Comput (1):325-350, 2013) and Gubinelli and Perkowski (Arxiv:1508.07764, 2015), in case of weakly asymmetric diffusive systems. Examples and applications are presented for weakly and partial asymmetric exclusion processes, weakly asymmetric speed change exclusion processes and hamiltonian systems with exponential interactions.
Spatial Distribution of Phase Singularities in Optical Random Vector Waves.
De Angelis, L; Alpeggiani, F; Di Falco, A; Kuipers, L
2016-08-26
Phase singularities are dislocations widely studied in optical fields as well as in other areas of physics. With experiment and theory we show that the vectorial nature of light affects the spatial distribution of phase singularities in random light fields. While in scalar random waves phase singularities exhibit spatial distributions reminiscent of particles in isotropic liquids, in vector fields their distribution for the different vector components becomes anisotropic due to the direct relation between propagation and field direction. By incorporating this relation in the theory for scalar fields by Berry and Dennis [Proc. R. Soc. A 456, 2059 (2000)], we quantitatively describe our experiments.
NASA Astrophysics Data System (ADS)
Yüksel, Yusuf
2018-05-01
We propose an atomistic model and present Monte Carlo simulation results regarding the influence of FM/AF interface structure on the hysteresis mechanism and exchange bias behavior for a spin valve type FM/FM/AF magnetic junction. We simulate perfectly flat and roughened interface structures both with uncompensated interfacial AF moments. In order to simulate rough interface effect, we introduce the concept of random exchange anisotropy field induced at the interface, and acting on the interface AF spins. Our results yield that different types of the random field distributions of anisotropy field may lead to different behavior of exchange bias.
Stabilities and defect-mediated lithium-ion conduction in a ground state cubic Li 3 N structure
Nguyen, Manh Cuong; Hoang, Khang; Wang, Cai-Zhuang; ...
2016-01-07
A stable ground state structure with cubic symmetry of Li 3N (c-Li 3N) is found by ab initio initially symmetric random-generated crystal structure search method. Gibbs free energy, calculated within quasi-harmonic approximation, shows that c-Li 3N is the ground state structure for a wide range of temperature. The c-Li 3N structure has a negative thermal expansion coefficient at temperatures lower than room temperature, due mainly to two transverse acoustic phonon modes. This c-Li 3N phase is a semiconductor with an indirect band gap of 1.90 eV within hybrid density functional calculation. We also investigate the migration and energetics of nativemore » point defects in c-Li 3N, including lithium and nitrogen vacancies, interstitials, and anti-site defects. Lithium interstitials are found to have a very low migration barrier (~0.12 eV) and the lowest formation energy among all possible defects. Thus, the ionic conduction in c-Li 3N is expected to occur via an interstitial mechanism, in contrast to that in the well-known α-Li 3N phase which occurs via a vacancy mechanism.« less
Melting processes of oligomeric α and β isotactic polypropylene crystals at ultrafast heating rates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ji, Xiaojing; He, Xuehao, E-mail: xhhe@tju.edu.cn, E-mail: scjiang@tju.edu.cn; Jiang, Shichun, E-mail: xhhe@tju.edu.cn, E-mail: scjiang@tju.edu.cn
The melting behaviors of α (stable) and β (metastable) isotactic polypropylene (iPP) crystals at ultrafast heating rates are simulated with atomistic molecular dynamics method. Quantitative information about the melting processes of α- and β-iPP crystals at atomistic level is achieved. The result shows that the melting process starts from the interfaces of lamellar crystal through random dislocation of iPP chains along the perpendicular direction of lamellar crystal structure. In the melting process, the lamellar crystal gradually expands but the corresponding thickness decreases. The analysis shows that the system expansion lags behind the crystallinity decreasing and the lagging extents for α-more » and β-iPP are significantly different. The apparent melting points of α- and β-iPP crystals rise with the increase of the heating rate and lamellar crystal thickness. The apparent melting point of α-iPP crystal is always higher than that of β-iPP at differently heating rates. Applying the Gibbs-Thomson rule and the scaling property of the melting kinetics, the equilibrium melting points of perfect α- and β-iPP crystals are finally predicted and it shows a good agreement with experimental result.« less
NASA Astrophysics Data System (ADS)
van Rossum, Anne C.; Lin, Hai Xiang; Dubbeldam, Johan; van der Herik, H. Jaap
2018-04-01
In machine vision typical heuristic methods to extract parameterized objects out of raw data points are the Hough transform and RANSAC. Bayesian models carry the promise to optimally extract such parameterized objects given a correct definition of the model and the type of noise at hand. A category of solvers for Bayesian models are Markov chain Monte Carlo methods. Naive implementations of MCMC methods suffer from slow convergence in machine vision due to the complexity of the parameter space. Towards this blocked Gibbs and split-merge samplers have been developed that assign multiple data points to clusters at once. In this paper we introduce a new split-merge sampler, the triadic split-merge sampler, that perform steps between two and three randomly chosen clusters. This has two advantages. First, it reduces the asymmetry between the split and merge steps. Second, it is able to propose a new cluster that is composed out of data points from two different clusters. Both advantages speed up convergence which we demonstrate on a line extraction problem. We show that the triadic split-merge sampler outperforms the conventional split-merge sampler. Although this new MCMC sampler is demonstrated in this machine vision context, its application extend to the very general domain of statistical inference.
Summer School Effects in a Randomized Field Trial
ERIC Educational Resources Information Center
Zvoch, Keith; Stevens, Joseph J.
2013-01-01
This field-based randomized trial examined the effect of assignment to and participation in summer school for two moderately at-risk samples of struggling readers. Application of multiple regression models to difference scores capturing the change in summer reading fluency revealed that kindergarten students randomly assigned to summer school…
Thomson, Chloe A; Gibbs, Robyn A; Heyworth, Jane S; Giele, Carolien; Firth, Martin J; Effler, Paul V
2016-12-07
The effect of pretravel health advice (PTHA) on travel-related illness rates is poorly understood, and to date there are no published randomized controlled trials evaluating the impact of PTHA outcomes. This study aims to determine the effect of an online PTHA intervention on travel-related illness rates in Western Australians visiting Bali, Indonesia. Western Australian travelers to Bali will be recruited online before departure and will be randomly allocated to an intervention or control group by computer algorithm. The intervention in this study is a short animated video, with accompanying text, containing PTHA relevant to Bali. An online posttravel survey will be administered to all participants within two weeks of their return from Bali. The primary outcome is the difference in self-reported travel-related illness rates between control and intervention groups. Secondary outcomes include the difference in risk prevention behaviors and health risk knowledge between the control and intervention groups. Further secondary outcomes include whether individuals in the control group who sought external PTHA differ from those who did not with respect to risk prevention behaviors, health risk knowledge, and health risk perception, as well as the rate of self-reported travel-related illness. The study began recruitment in September 2016 and will conclude in September 2017. Data analysis will take place in late 2017, with results disseminated via peer-reviewed journals in early 2018. This will be the first randomized controlled trial to examine the effect of a novel PTHA intervention upon travel-related illness. In addition, this study builds upon the limited existing data on the effectiveness of PTHA on travel-related illness. Australian New Zealand Clinical Trials Registry (ANZCTR): ACTRN12615001230549; https://www.anzctr.org.au/Trial/Registration/TrialReview.aspx?id=369567 (Archived by WebCite at http://www.webcitation.org/6m0G7xJg1). ©Chloe Thomson, Robyn A Gibbs, Jane S Heyworth, Carolien Giele, Martin J Firth, Paul V Effler. Originally published in JMIR Research Protocols (http://www.researchprotocols.org), 07.12.2016.
Spin dynamics of random Ising chain in coexisting transverse and longitudinal magnetic fields
NASA Astrophysics Data System (ADS)
Liu, Zhong-Qiang; Jiang, Su-Rong; Kong, Xiang-Mu; Xu, Yu-Liang
2017-05-01
The dynamics of the random Ising spin chain in coexisting transverse and longitudinal magnetic fields is studied by the recursion method. Both the spin autocorrelation function and its spectral density are investigated by numerical calculations. It is found that system's dynamical behaviors depend on the deviation σJ of the random exchange coupling between nearest-neighbor spins and the ratio rlt of the longitudinal and the transverse fields: (i) For rlt = 0, the system undergoes two crossovers from N independent spins precessing about the transverse magnetic field to a collective-mode behavior, and then to a central-peak behavior as σJ increases. (ii) For rlt ≠ 0, the system may exhibit a coexistence behavior of a collective-mode one and a central-peak one. When σJ is small (or large enough), system undergoes a crossover from a coexistence behavior (or a disordered behavior) to a central-peak behavior as rlt increases. (iii) Increasing σJ depresses effects of both the transverse and the longitudinal magnetic fields. (iv) Quantum random Ising chain in coexisting magnetic fields may exhibit under-damping and critical-damping characteristics simultaneously. These results indicate that changing the external magnetic fields may control and manipulate the dynamics of the random Ising chain.
Evolution of biofunctional semiconductor nanocrystals: a calorimetric investigation.
Ghosh, Debasmita; Mondal, Somrita; Roy, Chandra Nath; Saha, Abhijit
2013-12-14
Semiconductor nanomaterials have found numerous applications in optoelectronic device fabrication and in platforms for drug delivery and hyperthermia cancer treatment, and in various other biomedical fields because of their high photochemical stability and size-tunable photoluminescence (PL). However, little attention has been paid to exploring the energetics of formation of these semiconductor nanoparticles. We demonstrate that formation of nanocrystals with biofunctionalization supported by widely used groups, BSA and cysteine, is an exothermic spontaneous process driven by enthalpy. The whole energetics of the reaction shows that formation of smaller particles is favored with lower synthesis temperature. Further, it is shown that the thermodynamics of nanoparticle formation is strongly influenced by the conformation of the protein matrix. We also demonstrate that protein supported formation of nanocrystals is thermodynamically more favorable compared to that involving smaller organic thiol groups. The favorable enthalpy of formation compensates unfavorable entropy, resulting in favorable Gibbs free energy. Thus, this study can open up new avenues for establishing a thermodynamic basis for the design of nanosystems with new and tunable properties.
Sarkar, Debasish; Mandal, Kalyan; Mandal, Madhuri
2014-03-01
Here solvo-thermal technique has been used to synthesize hollow-nanospheres of magnetite. We have shown that PVP plays an important role to control the particle size and also helps the particles to take the shape of hollow spheres. Structural analysis was done by XRD measurement and morphological measurements like SEM and TEM were performed to confirm the hollow type spherical particles formation and their shape and sizes were also investigated. The detail ac-dc magnetic measurements give an idea about the application of these nano spheres for hyperthermia therapy and spontaneous dye adsorption properties (Gibbs free energy deltaG0 = -0.526 kJ/mol for Eosin and -1.832 kJ/mol for MB) of these particles indicate its use in dye manufacturing company. Being hollow in structure and magnetic in nature such materials will also be useful in other application fields like in drug delivery, arsenic and heavy metal removal by adsorption technique, magnetic separation etc.
NASA Astrophysics Data System (ADS)
Krishna kumar, S.; Logeshkumaran, A.; Magesh, N. S.; Godson, Prince S.; Chandrasekar, N.
2015-12-01
In the present study, the geochemical characteristics of groundwater and drinking water quality has been studied. 24 groundwater samples were collected and analyzed for pH, electrical conductivity, total dissolved solids, carbonate, bicarbonate, chloride, sulphate, nitrate, calcium, magnesium, sodium, potassium and total hardness. The results were evaluated and compared with WHO and BIS water quality standards. The studied results reveal that the groundwater is fresh to brackish and moderately high to hard in nature. Na and Cl are dominant ions among cations and anions. Chloride, calcium and magnesium ions are within the allowable limit except few samples. According to Gibbs diagram, the predominant samples fall in the rock-water interaction dominance and evaporation dominance field. The piper trilinear diagram shows that groundwater samples are Na-Cl and mixed CaMgCl type. Based on the WQI results majority of the samples are falling under excellent to good category and suitable for drinking water purposes.
A numerical spectral approach to solve the dislocation density transport equation
NASA Astrophysics Data System (ADS)
Djaka, K. S.; Taupin, V.; Berbenni, S.; Fressengeas, C.
2015-09-01
A numerical spectral approach is developed to solve in a fast, stable and accurate fashion, the quasi-linear hyperbolic transport equation governing the spatio-temporal evolution of the dislocation density tensor in the mechanics of dislocation fields. The approach relies on using the Fast Fourier Transform algorithm. Low-pass spectral filters are employed to control both the high frequency Gibbs oscillations inherent to the Fourier method and the fast-growing numerical instabilities resulting from the hyperbolic nature of the transport equation. The numerical scheme is validated by comparison with an exact solution in the 1D case corresponding to dislocation dipole annihilation. The expansion and annihilation of dislocation loops in 2D and 3D settings are also produced and compared with finite element approximations. The spectral solutions are shown to be stable, more accurate for low Courant numbers and much less computation time-consuming than the finite element technique based on an explicit Galerkin-least squares scheme.
Hybrid Stars in the Light of GW170817
NASA Astrophysics Data System (ADS)
Nandi, Rana; Char, Prasanta
2018-04-01
We have studied the effect of the tidal deformability constraint given by the binary neutron star merger event GW170817 on the equations of state (EOS) of hybrid stars. The EOS are constructed by matching the hadronic EOS described by the relativistic mean-field model and parameter sets NL3, TM1, and NL3ωρ with the quark matter EOS described by the modified MIT bag model, via a Gibbs construction. It is found that the tidal deformability constraints along with the lower bound on the maximum mass (M max = 2.01 ± 0.04 M ⊙) significantly limits the bag model parameter space ({B}eff}1/4, a 4). We also obtain upper limits on the radius of 1.4 M ⊙ and 1.6 M ⊙ stars as R 1.4 ≤ 13.2–13.5 km and R 1.6 ≤ 13.2–13.4 km, respectively, for the different hadronic EOS considered here.
NASA Astrophysics Data System (ADS)
Ozrin, V. D.; Subbotin, M. V.; Nikitin, S. M.
2004-04-01
We have developed PLASS (Protein-Ligand Affinity Statistical Score), a pair-wise potential of mean-force for rapid estimation of the binding affinity of a ligand molecule to a protein active site. This scoring function is derived from the frequency of occurrence of atom-type pairs in crystallographic complexes taken from the Protein Data Bank (PDB). Statistical distributions are converted into distance-dependent contributions to the Gibbs free interaction energy for 10 atomic types using the Boltzmann hypothesis, with only one adjustable parameter. For a representative set of 72 protein-ligand structures, PLASS scores correlate well with the experimentally measured dissociation constants: a correlation coefficient R of 0.82 and RMS error of 2.0 kcal/mol. Such high accuracy results from our novel treatment of the volume correction term, which takes into account the inhomogeneous properties of the protein-ligand complexes. PLASS is able to rank reliably the affinity of complexes which have as much diversity as in the PDB.
Critical point and phase behavior of the pure fluid and a Lennard-Jones mixture
NASA Astrophysics Data System (ADS)
Potoff, Jeffrey J.; Panagiotopoulos, Athanassios Z.
1998-12-01
Monte Carlo simulations in the grand canonical ensemble were used to obtain liquid-vapor coexistence curves and critical points of the pure fluid and a binary mixture of Lennard-Jones particles. Critical parameters were obtained from mixed-field finite-size scaling analysis and subcritical coexistence data from histogram reweighting methods. The critical parameters of the untruncated Lennard-Jones potential were obtained as Tc*=1.3120±0.0007, ρc*=0.316±0.001 and pc*=0.1279±0.0006. Our results for the critical temperature and pressure are not in agreement with the recent study of Caillol [J. Chem. Phys. 109, 4885 (1998)] on a four-dimensional hypersphere. Mixture parameters were ɛ1=2ɛ2 and σ1=σ2, with Lorentz-Berthelot combining rules for the unlike-pair interactions. We determined the critical point at T*=1.0 and pressure-composition diagrams at three temperatures. Our results have much smaller statistical uncertainties relative to comparable Gibbs ensemble simulations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Das, Saptarshi; Bera, Mrinal K.; Tong, Sheng
2016-06-21
We report the discovery of an electrochemical process that converts two dimensional layered materials of arbitrary thicknesses into monolayers. The lateral dimensions of the monolayers obtained by the process within a few seconds time at room temperature were as large as 0.5 mm. The temporal and spatial dynamics of this physical phenomenon, studied on MoS2 flakes using ex-situ AFM imaging, Raman mapping, and photoluminescence measurements trace the origin of monolayer formation to a substrate-assisted self-limiting electrochemical ablation process. Electronic structure and atomistic calculations point to the interplay between three essential factors in the process: (1) strong covalent interaction of monolayermore » MoS2 with the substrate; (2) electric-field induced differences in Gibbs free energy of exfoliation; (3) dispersion of MoS2 in aqueous solution of hydrogen peroxide. This process was successful in obtaining monolayers of other 2D transition metal dichalcogenides, like WS2 and MoTe2 as well.« less
NASA Astrophysics Data System (ADS)
Basso, Vittorio; Sasso, Carlo P.; Skokov, Konstantin P.; Gutfleisch, Oliver; Khovaylo, Vladimir V.
2012-01-01
Hysteresis features of the direct and inverse magnetocaloric effect associated with first-order magnetostructural phase transitions in Ni-Mn-X (X = Ga, Sn) Heusler alloys have been disclosed by differential calorimetry measurements performed either under a constant magnetic field, H, or by varying H in isothermal conditions. We have shown that the magnetocaloric effect in these alloys crucially depends on the employed measuring protocol. Experimentally observed peculiarities of the magnetocaloric effect have been explained in the framework of a model that accounts for different contributions to the Gibbs energy of austenitic gA and martensitic gM phases. Obtained experimental results have been summarized by plotting a phase fraction of the austenite xA versus the driving force gM-gA. The developed approach allows one to predict reversible and irreversible features of the direct as well as inverse magnetocaloric effect in a variety of materials with first-order magnetic phase transitions.
NASA Astrophysics Data System (ADS)
Bobák, A.; Abubrig, F. O.; Balcerzak, T.
2003-12-01
The phase diagram of the ABpC1-p ternary alloy consisting of Ising spins SA=3/2, SB=1, and SC=5/2 in the presence of a single-ion anisotropy is investigated by the use of a mean-field theory based on the Bogoliubov inequality for the Gibbs free energy. To simulate the structure of the ternary metal Prussian blue analog such as (NiIIpMnII1-p)1.5[CrIII(CN)6]ṡzH2O, we assume that the A and X (either B or C) ions are alternately connected and the couplings between the A and X ions include both ferromagnetic (JAB>0) and antiferromagnetic (JAC<0) interactions. At the finite temperatures by changing values of the parameters of the model many different types of phase diagrams are obtained, including a variety of multicritical points such as tricritical points, fourth-order point, critical end points, isolated critical points, and triple points.
Barra, Adriano; Genovese, Giuseppe; Sollich, Peter; Tantari, Daniele
2018-02-01
Restricted Boltzmann machines are described by the Gibbs measure of a bipartite spin glass, which in turn can be seen as a generalized Hopfield network. This equivalence allows us to characterize the state of these systems in terms of their retrieval capabilities, both at low and high load, of pure states. We study the paramagnetic-spin glass and the spin glass-retrieval phase transitions, as the pattern (i.e., weight) distribution and spin (i.e., unit) priors vary smoothly from Gaussian real variables to Boolean discrete variables. Our analysis shows that the presence of a retrieval phase is robust and not peculiar to the standard Hopfield model with Boolean patterns. The retrieval region becomes larger when the pattern entries and retrieval units get more peaked and, conversely, when the hidden units acquire a broader prior and therefore have a stronger response to high fields. Moreover, at low load retrieval always exists below some critical temperature, for every pattern distribution ranging from the Boolean to the Gaussian case.
Mercer, David
2002-04-01
Since the late 1970s, there has been considerable debate surrounding the question of whether or not exposures to non-ionizing radiation and electric and magnetic fields (EMF), produced by powerlines and electrical and telecommunications technologies, are harmful to health. Whilst there has been some recent evidence of regulatory fatigue, and attempts to enforce closure, the EMF debate nevertheless still continues. This paper will explore the rôle played by competing images of scientific method in the argumentative strategies used by two of the main protagonists in an Australian public inquiry (held in 1990-91) which investigated the EMF issue: 'Inquiry into Community Needs and High Voltage (132kv and above) Transmission Line Development', the so-called Gibbs Inquiry. Apart from documenting some of the epistemologically intricate features of the EMF controversy, the following discussion will also consider the way scientific method discourses can contribute to enhancing the durability of knowledge claims in legal and regulatory settings.
Data Analysis with Graphical Models: Software Tools
NASA Technical Reports Server (NTRS)
Buntine, Wray L.
1994-01-01
Probabilistic graphical models (directed and undirected Markov fields, and combined in chain graphs) are used widely in expert systems, image processing and other areas as a framework for representing and reasoning with probabilities. They come with corresponding algorithms for performing probabilistic inference. This paper discusses an extension to these models by Spiegelhalter and Gilks, plates, used to graphically model the notion of a sample. This offers a graphical specification language for representing data analysis problems. When combined with general methods for statistical inference, this also offers a unifying framework for prototyping and/or generating data analysis algorithms from graphical specifications. This paper outlines the framework and then presents some basic tools for the task: a graphical version of the Pitman-Koopman Theorem for the exponential family, problem decomposition, and the calculation of exact Bayes factors. Other tools already developed, such as automatic differentiation, Gibbs sampling, and use of the EM algorithm, make this a broad basis for the generation of data analysis software.
Study of Thermodynamics of Liquid Noble-Metals Alloys Through a Pseudopotential Theory
NASA Astrophysics Data System (ADS)
Vora, Aditya M.
2010-09-01
The Gibbs-Bogoliubov (GB) inequality is applied to investigate the thermodynamic properties of some equiatomic noble metal alloys in liquid phase such as Au-Cu, Ag-Cu, and Ag-Au using well recognized pseudopotential formalism. For description of the structure, well known Percus-Yevick (PY) hard sphere model is used as a reference system. By applying a variation method the best hard core diameters have been found which correspond to minimum free energy. With this procedure the thermodynamic properties such as entropy and heat of mixing have been computed. The influence of local field correction function viz; Hartree (H), Taylor (T), Ichimaru-Utsumi (IU), Farid et al. (F), and Sarkar et al. (S) is also investigated. The computed results of the excess entropy compares favourably in the case of liquid alloys while the agreement with experiment is poor in the case of heats of mixing. This may be due to the sensitivity of the heats of mixing with the potential parameters and the dielectric function.
Topics in Non-Equilibrium Dynamics and the Emergence of Spacetime
NASA Astrophysics Data System (ADS)
Engelhardt, Dalit
The Anti-de Sitter / Conformal Field Theory (AdS/CFT) correspondence that arises in string theory has had implications for the study of phenomena across a range of subfields in physics, from spacetime geometry to the behavior of condensed matter systems. Two major themes that have featured prominently in these investigations have been the behavior of systems out of equilibrium, and the emergence of spacetime. In this thesis, aspects of these themes are considered and analyzed. The question of equilibration and thermalization in 2D conformal field theories is addressed and refined via a number of observations about local versus global thermalization in such systems, the validity of particular diagnostics of thermalization, the dependence of the equilibration behavior of a conformal field theory on its operator spectrum, and the holographic dual of the generalized Gibbs ensemble that is of interest in studies of equilibration in systems with a large number of conserved quantities. A formalism for analyzing the non-equilibrium dynamics of 1+1-dimensional conformal field theories is discussed, and its physical relevance is motivated with an example connecting such a system to an experimental system that exhibited unusual equilibration behavior. Qualitative agreement is demonstrated between the CFT picture and the experimental observations. The emergence of spacetime geometry from quantum entanglement, while largely a byproduct of considerations from holographic dualities, has also been proposed to have a direct, non-holographic manifestation. Here a particular realization of such a direct emergence is presented through a demonstration that, in the presence of quantum entanglement alone, certain observations of electric fields in the entangled system appear qualitatively the same as the corresponding observations in a physically-connected geometric spacetime, so that the entanglement effectively mimics particular features associated with geometric connectivity.
A force field for 3,3,3-fluoro-1-propenes, including HFO-1234yf.
Raabe, Gabriele; Maginn, Edward J
2010-08-12
The European Union (EU) legislation 2006/40/EC bans from January 2011 the cooperative marketing of new car types that use refrigerants in their heating, ventilation, and air conditioning (HVAC) systems with global warming potentials (GWP) higher than 150. Thus, the phase-out of the presently used tetrafluoroethane refrigerant R134a necessitates the adoption of alternative refrigerants. Fluoropropenes such as 2,3,3,3-tetrafluoro-1-propene (HFO-1234yf) are currently regarded as promising low GWP refrigerants, but the lack of experimental data on their thermophysical properties hampers independent studies on their performance in HVAC systems or in other technical applications. In principle, molecular modeling can be used to predict the relevant properties of refrigerants, but adequate intermolecular potential functions ("force fields") are lacking for fluoropropenes. Thus, we developed a transferable force field for fluoropropenes composed of CF(3)-, -CF=, -CH=, CF(2)=, and CH(2)= groups and applied the force field to study 3,3,3 trifluoro-1-propene (HFO-1243zf), 2,3,3,3-tetrafluoro-1-propene (HFO-1234yf), and hexafluoro-1-propene (HFO-1216). We performed Gibbs ensemble simulations on these three fluoropropenes to compute the vapor pressure, saturated densities, and heats of vaporization. In addition, molecular dynamics simulations were conducted to provide predictions for the density, thermal expansivity, isobaric heat capacity, and transport properties of liquid HFO-1234yf in the temperature range from 263.15 to 310 K and pressures up to 2 MPa. Agreement between simulation results and experimental data and/or correlations (when available) was good, thereby validating the predictive ability of the force field.
NASA Astrophysics Data System (ADS)
Ata, Metin; Kitaura, Francisco-Shu; Chuang, Chia-Hsun; Rodríguez-Torres, Sergio; Angulo, Raul E.; Ferraro, Simone; Gil-Marín, Hector; McDonald, Patrick; Hernández Monteagudo, Carlos; Müller, Volker; Yepes, Gustavo; Autefage, Mathieu; Baumgarten, Falk; Beutler, Florian; Brownstein, Joel R.; Burden, Angela; Eisenstein, Daniel J.; Guo, Hong; Ho, Shirley; McBride, Cameron; Neyrinck, Mark; Olmstead, Matthew D.; Padmanabhan, Nikhil; Percival, Will J.; Prada, Francisco; Rossi, Graziano; Sánchez, Ariel G.; Schlegel, David; Schneider, Donald P.; Seo, Hee-Jong; Streblyanska, Alina; Tinker, Jeremy; Tojeiro, Rita; Vargas-Magana, Mariana
2017-06-01
We present a Bayesian phase-space reconstruction of the cosmic large-scale matter density and velocity fields from the Sloan Digital Sky Survey-III Baryon Oscillations Spectroscopic Survey Data Release 12 CMASS galaxy clustering catalogue. We rely on a given Λ cold dark matter cosmology, a mesh resolution in the range of 6-10 h-1 Mpc, and a lognormal-Poisson model with a redshift-dependent non-linear bias. The bias parameters are derived from the data and a general renormalized perturbation theory approach. We use combined Gibbs and Hamiltonian sampling, implemented in the argo code, to iteratively reconstruct the dark matter density field and the coherent peculiar velocities of individual galaxies, correcting hereby for coherent redshift space distortions. Our tests relying on accurate N-body-based mock galaxy catalogues show unbiased real space power spectra of the non-linear density field up to k ˜ 0.2 h Mpc-1, and vanishing quadrupoles down to r ˜ 20 h-1 Mpc. We also demonstrate that the non-linear cosmic web can be obtained from the tidal field tensor based on the Gaussian component of the reconstructed density field. We find that the reconstructed velocities have a statistical correlation coefficient compared to the true velocities of each individual light-cone mock galaxy of r ˜ 0.68 including about 10 per cent of satellite galaxies with virial motions (about r = 0.75 without satellites). The power spectra of the velocity divergence agree well with theoretical predictions up to k ˜ 0.2 h Mpc-1. This work will be especially useful to improve, for example, baryon acoustic oscillation reconstructions, kinematic Sunyaev-Zeldovich, integrated Sachs-Wolfe measurements or environmental studies.
Cosmic Rays in Intermittent Magnetic Fields
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shukurov, Anvar; Seta, Amit; Bushby, Paul J.
The propagation of cosmic rays in turbulent magnetic fields is a diffusive process driven by the scattering of the charged particles by random magnetic fluctuations. Such fields are usually highly intermittent, consisting of intense magnetic filaments and ribbons surrounded by weaker, unstructured fluctuations. Studies of cosmic-ray propagation have largely overlooked intermittency, instead adopting Gaussian random magnetic fields. Using test particle simulations, we calculate cosmic-ray diffusivity in intermittent, dynamo-generated magnetic fields. The results are compared with those obtained from non-intermittent magnetic fields having identical power spectra. The presence of magnetic intermittency significantly enhances cosmic-ray diffusion over a wide range of particlemore » energies. We demonstrate that the results can be interpreted in terms of a correlated random walk.« less
Reduction of substituted p-Benzoquinones by Fe II near neutral pH
USDA-ARS?s Scientific Manuscript database
The oxidation of dihydroxyaromatics to benzoquinones by FeIII (hydr)oxides is important in respiratory electron shuttling by microorganisms and has been extensively studied. Prior publications have noted that the Gibbs Free Energy (DG) for the forward reaction is sensitive to dihydroxyaromatic struc...
BIOTROL SOIL WASHING SYSTEM FOR TREATMENT OF A WOOD PRESERVING SITE - APPLICATIONS ANALYSIS REPORT
The report analyzes the results of the SITE Program demonstration of BioTrol's Soil Washing System at the MacGillis & Gibbs wood treatment facility in New Brighton, MN. The contaminants of primary interest are pentachlorophenol (penta) and polynuclear aromatic hydrocarbons (PAHs)...
Elastic constants of stressed and unstressed materials in the phase-field crystal model
NASA Astrophysics Data System (ADS)
Wang, Zi-Le; Huang, Zhi-Feng; Liu, Zhirong
2018-04-01
A general procedure is developed to investigate the elastic response and calculate the elastic constants of stressed and unstressed materials through continuum field modeling, particularly the phase-field crystal (PFC) models. It is found that for a complete description of system response to elastic deformation, the variations of all the quantities of lattice wave vectors, their density amplitudes (including the corresponding anisotropic variation and degeneracy breaking), the average atomic density, and system volume should be incorporated. The quantitative and qualitative results of elastic constant calculations highly depend on the physical interpretation of the density field used in the model, and also importantly, on the intrinsic pressure that usually pre-exists in the model system. A formulation based on thermodynamics is constructed to account for the effects caused by constant pre-existing stress during the homogeneous elastic deformation, through the introducing of a generalized Gibbs free energy and an effective finite strain tensor used for determining the elastic constants. The elastic properties of both solid and liquid states can be well produced by this unified approach, as demonstrated by an analysis for the liquid state and numerical evaluations for the bcc solid phase. The numerical calculations of bcc elastic constants and Poisson's ratio through this method generate results that are consistent with experimental conditions, and better match the data of bcc Fe given by molecular dynamics simulations as compared to previous work. The general theory developed here is applicable to the study of different types of stressed or unstressed material systems under elastic deformation.
Introduction to the Special Issue.
ERIC Educational Resources Information Center
Petrosino, Anthony
2003-01-01
Introduces the articles of this special issue focusing on randomized field trials in criminology. In spite of the overall lack of randomized field trials in criminology, some agencies and individuals are able to mount an impressive number of field trials, and these articles focus on their experiences. (SLD)
Introduction to the Paper Symposium
NASA Astrophysics Data System (ADS)
Carpenter, D. K.
1996-05-01
Most students of physical chemistry, as well as their teachers, regard equilibrium chemical thermodynamics as an impressive, useful, and stable subject that was "finished" long ago. As part of their education, students in physical chemistry have been taught the importance and the usefulness of the Gibbs function (formerly called the Gibbs free energy function). The antiquity of the subject and the presumed mastery of its basics by physical chemistry teachers are taken for granted as given parts of the educational and scientific scene in chemical education. It comes as a surprise to occasionally discover that even those who teach this venerable subject sometimes disagree, not merely in matters of style or organization of the subject, or in matters of mathematical elegance, but in matters of real substance. The following four papers are examples of this. My role here is simply to introduce this set of papers and to provide some orientation regarding their contents. The authors have been in private communication with each other for a period of over four years about the use and the proper definition of the Gibbs function. The lengthy period of correspondence has not resulted in any significant agreement. The Editor of this Journal was unable to settle the resulting controversy by normal review procedures. In an attempt to break the deadlock he asked me, as an impartial outsider to the situation, for assistance in deciding an appropriate literary form in which the authors could present their own points of view as well as comments on the views of the other authors. The original hope was that agreement could eventually be reached on disputed points by the give and take of the interchange of further correspondence, and that the outcome would be published in the form of a "paper symposium" on the subject, with me as the "chairman" of the symposium. It must be said at the outset that the prolonged correspondence has not produced much agreement among the authors. This is surprising (and disappointing) since (a) all of these authors are experienced teachers of physical chemistry and thermodynamics, and (b) most readers of this Journal would suppose that the nature of the Gibbs function and the manner in which it is to be used are issues that have been settled long ago, and that there are no disagreements of any significance between practitioners of thermodynamics regarding these matters. Historical Background. The beginning of the controversy was occasioned by a paper of Schomaker and Waser (1), in which they dealt with an ancient problem going back to Bates. This problem is by now variously described as the "Ether Problem", or the "Bates Problem", or the "Bates-Tykodi Problem". It considers the change occurring when a two-phase system of liquid (e.g., ether) and its vapor, coexisting at equilibrium at a given temperature, is allowed to expand into a larger space (originally evacuated), with a final state consisting of the liquid and vapor still at equilibrium at the same temperature, but now occupying a larger volume (with the volumes of the liquid and vapor phases being smaller and larger, respectively, than in the original state). Since the initial and final states of the ether are both two-phase liquid/vapor systems at the same temperature and pressure, then of course deltaG = 0 for the ether itself; but how should the spontaneous nature of this process be expressed thermodynamically? Schomaker and Waser showed straightforwardly that when the ether and its surroundings are considered together, then deltaS > q/T as required by the Second Law. They further showed that deltaA < 0 for the system that consists of the original two-phase liquid-vapor system and the originally evacuated space into which the ether expands. This is also a traditional result since for a system whose volume remains constant at a given temperature, the Second Law condition for a spontaneous process is that deltaA < 0. Schomaker and Waser took things a step further and by so doing initiated the discussion and controversy that eventually led to the following four papers. In this step they took as the thermodynamic system of interest not just the ether but the ether together with the entire container that separates it from the surrounding constant-temperature, constant-pressure fluid. For this system, they argued, the criterion deltaG < 0 is valid. This conclusion of theirs has been seriously criticized, especially by Tykodi (2), and later by Noyes (3). Extensive discussion ensued, including several other people who were drawn into the controversy, of whom only Wood and Battino (4) chose to submit a manuscript as part of this symposium. The original controversy dealt with the question: is deltaG for the Bates process negative as argued by Schomaker and Waser (1), or zero (or almost so), as argued by Tykodi (2)? This led to concerns by Noyes about how the pressure should be defined (3) and by Wood and Battino that it is not appropriate to utilize the Gibbs function in describing the Bates process (4). The various authors not only disagreed, sometimes sharply, on these matters but eventually carried the discussion into related but somewhat more distant areas including the following: The role of the container walls, which experience a change in the differential pressure on the inside and outside surfaces (5). The question of whether it is possible to define a Gibbs function for anisotropic solids (6) and if it is, how it should be done (5,7). The use of "Global" intensive properties (in particular pressure) of the surroundings to characterize a system in which such properties may not be uniform (5). The relationship of the variance (in the sense of the phase rule) of a system to its most appropriate thermodynamic function (4). A historical issue--exactly what did J. W. Gibbs say regarding the definition of a Gibbs function for systems in which the pressure was not uniform and/or there were anisotropic solids present (5-7)? When it finally became apparent that there was to be no resolution of the disputed points it was decided to publish the papers in the present form, which allows each contributor to make his positions as forcefully and clearly as possible, along with his assessment of the deficiencies of the other papers as seen from his own perspective. Bearing in mind that although the set of papers originally had as basis the "expansion of ether into a vacuum" problem, the set of questions and the interests eventually addressed by the various authors diverged somewhat as discussion proceeded. Here we merely point out some of the main issues addressed in the four papers in order to guide the reader to a quicker path to reading them in context. Some Main Issues Considered in the Four Papers Schomaker and Waser These authors emphasize the importance of "global variables" of a system. By this term they mean that the pressure and temperature of the surroundings are the values that determine the thermodynamic properties of the system (even if there might be variations of the pressure within the system). From their point of view, the pressure "of" a system is the pressure exerted on it by the surrounding fluid with which it is in thermal and mechanical equilibrium, and is therefore the pressure that is appropriate to such expressions as G= U + pV - TS. They believe that this takes care of the possibility that regions within a system may have different pressures, or even have pressures that are undefined; all that is required is that the pressures within the system are functions of the external pressure (that of the surroundings). As one of their main convictions, Schomaker and Waser hold that if the surroundings of a system are kept at fixed temperature and pressure, then any process that is isothermostatic and isobarostatic (in their sense) will conform to the condition deltaG is less than or equal to 0 in a quite general sense, even in the special case of a system confined to a fixed volume by an ideally rigid container. Schomaker and Waser have given considerable attention to the thermodynamic properties of systems that are exposed simultaneously to different pressures, such as is the case for the walls of a container for which the inner and outer pressures differ. To deal with this they applied elasticity theory to irregularly shaped solids. Although I requested that the details of such calculations be omitted from their manuscript, they did introduce the notion that the container walls may contribute significantly to the overall change in the Gibbs function. Although it is not a subject of controversy between the authors of the other papers, Schomaker and Waser also emphasize a distinction between the changes in the values of the energy, entropy, etc. and the changes in the corresponding functions, cf. their discussion of the difference between deltau and deltaU in sections I and II of their paper. Tykodi Tykodi's contribution is largely a reaction to the work of Schomaker and Waser. In particular: Tykodi has also considered in detail just how the changes in the Gibbs function for container walls should be evaluated; here, too, I requested that the details be omitted from the manuscript. His conclusion--the contribution of the walls to the overall value of deltaG can not be evaluated (or even defined) in the general case but for the special case of ideally rigid walls it is not negative, and is very small. He contends that the way in which Schomaker and Waser define the Gibbs function for a system that has a different pressure from its surroundings is misleading, and that what they call the Gibbs function for a composite system is really the Availability function. His views on the Availability function have been published previously (8). Noyes Whereas both Schomaker and Waser and Tykodi have regarded the original Bates problem as an incentive to extend the traditional views regarding the Gibbs function to systems in which pressure differentials may exist, Noyes has concluded that such efforts are misguided and meaningless. He holds that certain statements of J.Willard Gibbs should be interpreted in this sense (Schomaker and Waser disagree). Noyes has even concluded that it is not meaningful to attempt to define a Gibbs function for systems in which anynonuniformity of pressure may exist, e.g., systems that contain anisotropic solids. He also concludes that a system should be defined in a way that excludes the walls of its container. Wood and Battino Wood and Battino stay closer to the issues raised directly by the original Bates problem. They are primarily concerned to emphasize various traditional points regarding the definition of a system, definitions of spontaneity and reversibility, the relationship between the external constraints of a system, and the corresponding thermodynamic potential that is appropriate for the simplest description. Their most provocative idea, perhaps, is that the Gibbs function is not an appropriate function for the description of changes in a one-component system containing two phases at constant temperature and pressure. They therefore conclude that the whole controversy occurs because of a misguided effort to use the Gibbs function in an inappropriate situation. Conclusion. It is hoped that readers of these symposium papers will profit from the experience of seeing how even experts in thermodynamics can argue themselves into positions that although plausible from the individual author's standpoint, are nevertheless difficult to reconcile. As is usual in science, time will tell which of the sharply expressed and tenaciously held views present in these papers can be maintained. In the meantime, perhaps teachers of thermodynamics may be inspired to greater efforts to clarify basic concepts in their own teaching and be inclined to greater tolerance in dealing with their students' attempts to express their own understanding. Literature Cited Schomaker, V.; Waser, J. J.Chem. Educ. 1988, 65, 968; 1990, 67, 384. Tykodi, R. J. J.Chem. Educ. 1990, 67, 383. Noyes, R. M. J.Chem. Educ. 1992, 69, 470. Wood, S. E.; Battino, R. J.Chem. Educ. 1996, 73, 408. Schomaker, V.; Waser, J.J. Chem. Educ. 1996, 73, 396. Noyes, R. M. J. Chem. Educ. 1996, 73, 404. Tykodi, R. J. J. Chem. Educ. 1996, 73, 398. Tykodi, R.J. J.Chem. Educ. 1995, 72, 103.
Unsupervised Bayesian linear unmixing of gene expression microarrays.
Bazot, Cécile; Dobigeon, Nicolas; Tourneret, Jean-Yves; Zaas, Aimee K; Ginsburg, Geoffrey S; Hero, Alfred O
2013-03-19
This paper introduces a new constrained model and the corresponding algorithm, called unsupervised Bayesian linear unmixing (uBLU), to identify biological signatures from high dimensional assays like gene expression microarrays. The basis for uBLU is a Bayesian model for the data samples which are represented as an additive mixture of random positive gene signatures, called factors, with random positive mixing coefficients, called factor scores, that specify the relative contribution of each signature to a specific sample. The particularity of the proposed method is that uBLU constrains the factor loadings to be non-negative and the factor scores to be probability distributions over the factors. Furthermore, it also provides estimates of the number of factors. A Gibbs sampling strategy is adopted here to generate random samples according to the posterior distribution of the factors, factor scores, and number of factors. These samples are then used to estimate all the unknown parameters. Firstly, the proposed uBLU method is applied to several simulated datasets with known ground truth and compared with previous factor decomposition methods, such as principal component analysis (PCA), non negative matrix factorization (NMF), Bayesian factor regression modeling (BFRM), and the gradient-based algorithm for general matrix factorization (GB-GMF). Secondly, we illustrate the application of uBLU on a real time-evolving gene expression dataset from a recent viral challenge study in which individuals have been inoculated with influenza A/H3N2/Wisconsin. We show that the uBLU method significantly outperforms the other methods on the simulated and real data sets considered here. The results obtained on synthetic and real data illustrate the accuracy of the proposed uBLU method when compared to other factor decomposition methods from the literature (PCA, NMF, BFRM, and GB-GMF). The uBLU method identifies an inflammatory component closely associated with clinical symptom scores collected during the study. Using a constrained model allows recovery of all the inflammatory genes in a single factor.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zentner, I.; Ferré, G., E-mail: gregoire.ferre@ponts.org; Poirion, F.
2016-06-01
In this paper, a new method for the identification and simulation of non-Gaussian and non-stationary stochastic fields given a database is proposed. It is based on two successive biorthogonal decompositions aiming at representing spatio–temporal stochastic fields. The proposed double expansion allows to build the model even in the case of large-size problems by separating the time, space and random parts of the field. A Gaussian kernel estimator is used to simulate the high dimensional set of random variables appearing in the decomposition. The capability of the method to reproduce the non-stationary and non-Gaussian features of random phenomena is illustrated bymore » applications to earthquakes (seismic ground motion) and sea states (wave heights).« less
Makowski, David; Bancal, Rémi; Bensadoun, Arnaud; Monod, Hervé; Messéan, Antoine
2017-09-01
According to E.U. regulations, the maximum allowable rate of adventitious transgene presence in non-genetically modified (GM) crops is 0.9%. We compared four sampling methods for the detection of transgenic material in agricultural non-GM maize fields: random sampling, stratified sampling, random sampling + ratio reweighting, random sampling + regression reweighting. Random sampling involves simply sampling maize grains from different locations selected at random from the field concerned. The stratified and reweighting sampling methods make use of an auxiliary variable corresponding to the output of a gene-flow model (a zero-inflated Poisson model) simulating cross-pollination as a function of wind speed, wind direction, and distance to the closest GM maize field. With the stratified sampling method, an auxiliary variable is used to define several strata with contrasting transgene presence rates, and grains are then sampled at random from each stratum. With the two methods involving reweighting, grains are first sampled at random from various locations within the field, and the observations are then reweighted according to the auxiliary variable. Data collected from three maize fields were used to compare the four sampling methods, and the results were used to determine the extent to which transgene presence rate estimation was improved by the use of stratified and reweighting sampling methods. We found that transgene rate estimates were more accurate and that substantially smaller samples could be used with sampling strategies based on an auxiliary variable derived from a gene-flow model. © 2017 Society for Risk Analysis.
Rotating hairy black holes in arbitrary dimensions
NASA Astrophysics Data System (ADS)
Erices, Cristián; Martínez, Cristián
2018-01-01
A class of exact rotating black hole solutions of gravity nonminimally coupled to a self-interacting scalar field in arbitrary dimensions is presented. These spacetimes are asymptotically locally anti-de Sitter manifolds and have a Ricci-flat event horizon hiding a curvature singularity at the origin. The scalar field is real and regular everywhere, and its effective mass, coming from the nonminimal coupling with the scalar curvature, saturates the Breitenlohner-Freedman bound for the corresponding spacetime dimension. The rotating black hole is obtained by applying an improper coordinate transformation to the static one. Although both spacetimes are locally equivalent, they are globally different, as it is confirmed by the nonvanishing angular momentum of the rotating black hole. It is found that the mass is bounded from below by the angular momentum, in agreement with the existence of an event horizon. The thermodynamical analysis is carried out in the grand canonical ensemble. The first law is satisfied, and a Smarr formula is exhibited. The thermodynamical local stability of the rotating hairy black holes is established from their Gibbs free energy. However, the global stability analysis establishes that the vacuum spacetime is always preferred over the hairy black hole. Thus, the hairy black hole is likely to decay into the vacuum one for any temperature.
NASA Astrophysics Data System (ADS)
Edjah, A. K. M.; Akiti, T. T.; Osae, S.; Adotey, D.; Glover, E. T.
2017-05-01
An integrated approach based on the hydrogeochemistry and the isotope hydrology of surface water and groundwater was carried out in the Ellembelle district of the Western Region of Ghana. Measurement of physical parameters (pH, temperature, salinity, total dissolved solutes, total hardness and conductivity), major ions (Ca2+, Mg2+, Na+, K+, HCO3 -, Cl-, SO4 2- and NO3 -), and stable isotopes (δ2H and δ18O) in 7 rivers, 13 hand-dug wells and 18 boreholes were taken. Na+ was the dominant cation and HCO3 - was the dominant anion for both rivers and groundwater. The dominant hydrochemical facies for the rivers were Na-K-HCO3 - type while that of the groundwater (hand-dug wells and boreholes) were Na-Cl and Na-HCO3 - type. According to the Gibbs diagram, majority of the rivers fall in the evaporation-crystallization field and majority of the hand-dug wells and the boreholes fall in the rock dominance field. From the stable isotope composition measurements, all the rivers appeared to be evaporated, 60 % of the hand-dug wells and 70 % of the boreholes clustered along and in between the global meteoric water line and the local meteoric water line, suggesting an integrative and rapid recharge from meteoric origin.
NASA Astrophysics Data System (ADS)
Miao, Yan-Gang; Xu, Zhen-Ming
2017-06-01
We investigate the P{-}V criticality and the Maxwell equal area law for a five-dimensional spherically symmetric AdS black hole with a scalar hair in the absence of and in the presence of a Maxwell field, respectively. Especially in the charged case, we give the exact P{-}V critical values. More importantly, we analyze the validity and invalidity of the Maxwell equal area law for the AdS hairy black hole in the scenarios without and with charges, respectively. Within the scope of validity of the Maxwell equal area law, we point out that there exists a representative van der Waals-type oscillation in the P{-}V diagram. This oscillating part, which indicates the phase transition from a small black hole to a large one, can be replaced by an isobar. The small and large black holes have the same Gibbs free energy. We also give the distribution of the critical points in the parameter space both without and with charges, and we obtain for the uncharged case the fitting formula of the co-existence curve. Meanwhile, the latent heat is calculated, which gives the energy released or absorbed between the small and large black hole phases in the isothermal-isobaric procedure.
Magnetic field line random walk in models and simulations of reduced magnetohydrodynamic turbulence
DOE Office of Scientific and Technical Information (OSTI.GOV)
Snodin, A. P.; Ruffolo, D.; Oughton, S.
2013-12-10
The random walk of magnetic field lines is examined numerically and analytically in the context of reduced magnetohydrodynamic (RMHD) turbulence, which provides a useful description of plasmas dominated by a strong mean field, such as in the solar corona. A recently developed non-perturbative theory of magnetic field line diffusion is compared with the diffusion coefficients obtained by accurate numerical tracing of magnetic field lines for both synthetic models and direct numerical simulations of RMHD. Statistical analysis of an ensemble of trajectories confirms the applicability of the theory, which very closely matches the numerical field line diffusion coefficient as a functionmore » of distance z along the mean magnetic field for a wide range of the Kubo number R. This theory employs Corrsin's independence hypothesis, sometimes thought to be valid only at low R. However, the results demonstrate that it works well up to R = 10, both for a synthetic RMHD model and an RMHD simulation. The numerical results from the RMHD simulation are compared with and without phase randomization, demonstrating a clear effect of coherent structures on the field line random walk for a very low Kubo number.« less
CORRELATION OF THE GLASS TRANSITION TEMPERATURE OF PLASTICIZED PVC USING A LATTICE FLUID MODEL
A model has been developed to describe the composition dependence of the glass transition temperature (Tg) of polyvinyl chloride (PVC) + plasticizer mixtures. The model is based on Sanchez-Lacombe equation of state and the Gibbs-Di Marzio criterion, which states that th...
Bayesian Analysis of Nonlinear Structural Equation Models with Nonignorable Missing Data
ERIC Educational Resources Information Center
Lee, Sik-Yum
2006-01-01
A Bayesian approach is developed for analyzing nonlinear structural equation models with nonignorable missing data. The nonignorable missingness mechanism is specified by a logistic regression model. A hybrid algorithm that combines the Gibbs sampler and the Metropolis-Hastings algorithm is used to produce the joint Bayesian estimates of…
This report provides the in-depth data analysis from the SITE Program's six-week demonstration of BioTrol's Aqueous Treatment System (BATS) at the MacGillis and Gibbs Company wood treatment facility in New Brighton, Minnesota. he pilot scale (5gpm), fixed-film biological system u...
The report presents and evaluates the extensive database from the SITE Program demonstration at the MacGillis and Gibbs wood treatment facility in New Brighton, MN. Soil washing and segregation, biotreatment of contaminated process water, and biodegradation of a slurry of the con...
Dipentyl Phthalate F1 Male rat necropsy data, requested by a mathematical statistician in NCEA
This is a dataset, and it has no abstract. See the manuscript for additional information. Gray LE Jr, Furr J, Tatum-Gibbs KR, Lambright C, Sampson H, Hannas BR, Wilson VS, Hotchkiss A, Foster PM. Establishing the "Biological Relevance" of DipentylPhthalate Reductions ...
GIBBs: A new soil biology index to quantify beneficial bacteria in the soil
USDA-ARS?s Scientific Manuscript database
Microbial diversity has been linked to soil resilience and health but few microbial indices explicitly link diversity to function. Many of the thousands of bacteria species present in soils enhance plant nutrition, confer stress tolerance, and promote plant growth and productivity through specific m...
Discovering Implicit Networks from Point Process Data
2013-08-03
Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 SOCIAL NETWORK ANALYSIS Szell et al, Nature 2012 Saturday, August 3, 13 (a) Adjacency...processes: ‣ Seismology ‣ Epidemiology ‣ Economics ‣ Modeling dependence is challenging - “beyond Poisson” ‣ Strauss and Gibbs Processes ‣ Determinantal
A Model for Rivalry between Cognitive Contours
1990-04-01
three minutes, the next press of any button marked the end of the experimental run , and triggered an acoustical signal. Time intervals for each of the...1955) Margini quasi-percettivi in campi con stimolazione omogenea. Rivista di Psicologia 49, 17-30. Lawson, R.B., Cowan, E., Gibbs, T.D. & Whitmore
Genetics Home Reference: DOORS syndrome
... reduce or eliminate the function of the TBC1D24 protein, but the specific mechanism by which loss of TBC1D24 function leads to the ... RC, Gibbs RA, Lee BH, Sisodiya SM. The genetic basis of DOORS syndrome: an exome-sequencing study. Lancet Neurol. 2014 Jan;13(1):44- ...
Genetics Home Reference: ALG12-congenital disorder of glycosylation
... CDG are likely due to impaired glycosylation of proteins and lipids that are needed for normal function of many organs and tissues, ... R, Gibbs RA, Lee BH, Cohn D, Campeau PM. Diagnosis of ALG12-CDG by exome sequencing in a case of severe skeletal dysplasia. Mol ...
Hemingway, B.S.; Robie, R.A.
1984-01-01
Measured heat capacities between 15 and 305 K and calculated heat capacities, entropies, enthalpy functions and Gibbs energy functions are reported and analysed for phillipsite and clinoptilolite. - J.A.Z.
Monte Carlo Algorithms for a Bayesian Analysis of the Cosmic Microwave Background
NASA Technical Reports Server (NTRS)
Jewell, Jeffrey B.; Eriksen, H. K.; ODwyer, I. J.; Wandelt, B. D.; Gorski, K.; Knox, L.; Chu, M.
2006-01-01
A viewgraph presentation on the review of Bayesian approach to Cosmic Microwave Background (CMB) analysis, numerical implementation with Gibbs sampling, a summary of application to WMAP I and work in progress with generalizations to polarization, foregrounds, asymmetric beams, and 1/f noise is given.
Fitting Organizational Behavior and Socialization into the Rehabilitation Counseling Curriculum
ERIC Educational Resources Information Center
Mitus, Jamie S.; Hart, Zachary P.
2008-01-01
High unemployment persists among individuals with disabilities in part due to problems with job retention (Gibbs, 1990; Kirsch, 2000; Louis Harris and Associates, 2000). A contributor to the problem may be the lack of academic training offered by rehabilitation counseling programs on organizational behavior and socialization concepts relevant to…
Critical Homeland Infrastructure Protection
2007-01-01
talent. Examples include: * Detection of surveillance activities; * Stand-off detection of chemical, biological, nuclear, radiation and explosive ...Manager Guardian DARPA Overview Mr. Roger Gibbs DARPA LLNL Technologies in Support of Infrastructure Mr. Don Prosnitz LLNL Protection Sandia National...FP Antiterrorism/Force Protection CBRNE Chemical Biological Radiological Nuclear Explosive CERT Commuter Emergency Response Team CIA Central
Order-Constrained Bayes Inference for Dichotomous Models of Unidimensional Nonparametric IRT
ERIC Educational Resources Information Center
Karabatsos, George; Sheu, Ching-Fan
2004-01-01
This study introduces an order-constrained Bayes inference framework useful for analyzing data containing dichotomous scored item responses, under the assumptions of either the monotone homogeneity model or the double monotonicity model of nonparametric item response theory (NIRT). The framework involves the implementation of Gibbs sampling to…
ERIC Educational Resources Information Center
Privat, Romain; Jaubert, Jean-Noe¨l; Berger, Etienne; Coniglio, Lucie; Lemaitre, Ce´cile; Meimaroglou, Dimitrios; Warth, Vale´rie
2016-01-01
Robust and fast methods for chemical or multiphase equilibrium calculation are routinely needed by chemical-process engineers working on sizing or simulation aspects. Yet, while industrial applications essentially require calculation tools capable of discriminating between stable and nonstable states and converging to nontrivial solutions,…
Motivational Triggers of Faculty Members: The Process of Teaching Practice Transformation
ERIC Educational Resources Information Center
Sanchez, Julie A.
2011-01-01
In recent years, there have been sizeable shifts in higher education. These shifts include more diverse student populations, advancements in pedagogy, and research progress within discipline-specific knowledge (Austin, 2002; Braxton, 2006; Gibbs & Coffey, 2004; Sunal et al, 2001; Trigwell & Prosser, 1996). These changes along with student…
Subcritical Multiplicative Chaos for Regularized Counting Statistics from Random Matrix Theory
NASA Astrophysics Data System (ADS)
Lambert, Gaultier; Ostrovsky, Dmitry; Simm, Nick
2018-05-01
For an {N × N} Haar distributed random unitary matrix U N , we consider the random field defined by counting the number of eigenvalues of U N in a mesoscopic arc centered at the point u on the unit circle. We prove that after regularizing at a small scale {ɛN > 0}, the renormalized exponential of this field converges as N \\to ∞ to a Gaussian multiplicative chaos measure in the whole subcritical phase. We discuss implications of this result for obtaining a lower bound on the maximum of the field. We also show that the moments of the total mass converge to a Selberg-like integral and by taking a further limit as the size of the arc diverges, we establish part of the conjectures in Ostrovsky (Nonlinearity 29(2):426-464, 2016). By an analogous construction, we prove that the multiplicative chaos measure coming from the sine process has the same distribution, which strongly suggests that this limiting object should be universal. Our approach to the L 1-phase is based on a generalization of the construction in Berestycki (Electron Commun Probab 22(27):12, 2017) to random fields which are only asymptotically Gaussian. In particular, our method could have applications to other random fields coming from either random matrix theory or a different context.
NASA Technical Reports Server (NTRS)
Weger, R. C.; Lee, J.; Zhu, Tianri; Welch, R. M.
1992-01-01
The current controversy existing in reference to the regularity vs. clustering in cloud fields is examined by means of analysis and simulation studies based upon nearest-neighbor cumulative distribution statistics. It is shown that the Poisson representation of random point processes is superior to pseudorandom-number-generated models and that pseudorandom-number-generated models bias the observed nearest-neighbor statistics towards regularity. Interpretation of this nearest-neighbor statistics is discussed for many cases of superpositions of clustering, randomness, and regularity. A detailed analysis is carried out of cumulus cloud field spatial distributions based upon Landsat, AVHRR, and Skylab data, showing that, when both large and small clouds are included in the cloud field distributions, the cloud field always has a strong clustering signal.
NASA Astrophysics Data System (ADS)
Hadjiagapiou, Ioannis A.; Velonakis, Ioannis N.
2018-07-01
The Sherrington-Kirkpatrick Ising spin glass model, in the presence of a random magnetic field, is investigated within the framework of the one-step replica symmetry breaking. The two random variables (exchange integral interaction Jij and random magnetic field hi) are drawn from a joint Gaussian probability density function characterized by a correlation coefficient ρ, assuming positive and negative values. The thermodynamic properties, the three different phase diagrams and system's parameters are computed with respect to the natural parameters of the joint Gaussian probability density function at non-zero and zero temperatures. The low temperature negative entropy controversy, a result of the replica symmetry approach, has been partly remedied in the current study, leading to a less negative result. In addition, the present system possesses two successive spin glass phase transitions with characteristic temperatures.
Pre-relaxation in weakly interacting models
NASA Astrophysics Data System (ADS)
Bertini, Bruno; Fagotti, Maurizio
2015-07-01
We consider time evolution in models close to integrable points with hidden symmetries that generate infinitely many local conservation laws that do not commute with one another. The system is expected to (locally) relax to a thermal ensemble if integrability is broken, or to a so-called generalised Gibbs ensemble if unbroken. In some circumstances expectation values exhibit quasi-stationary behaviour long before their typical relaxation time. For integrability-breaking perturbations, these are also called pre-thermalisation plateaux, and emerge e.g. in the strong coupling limit of the Bose-Hubbard model. As a result of the hidden symmetries, quasi-stationarity appears also in integrable models, for example in the Ising limit of the XXZ model. We investigate a weak coupling limit, identify a time window in which the effects of the perturbations become significant and solve the time evolution through a mean-field mapping. As an explicit example we study the XYZ spin-\\frac{1}{2} chain with additional perturbations that break integrability. One of the most intriguing results of the analysis is the appearance of persistent oscillatory behaviour. To unravel its origin, we study in detail a toy model: the transverse-field Ising chain with an additional nonlocal interaction proportional to the square of the transverse spin per unit length (2013 Phys. Rev. Lett. 111 197203). Despite being nonlocal, this belongs to a class of models that emerge as intermediate steps of the mean-field mapping and shares many dynamical properties with the weakly interacting models under consideration.