NASA Astrophysics Data System (ADS)
Tweed, Sarah O.; Leblanc, Marc; Webb, John A.; Lubczynski, Maciek W.
2007-02-01
Identifying groundwater recharge and discharge areas across catchments is critical for implementing effective strategies for salinity mitigation, surface-water and groundwater resource management, and ecosystem protection. In this study, a synergistic approach has been developed, which applies a combination of remote sensing and geographic information system (GIS) techniques to map groundwater recharge and discharge areas. This approach is applied to an unconfined basalt aquifer, in a salinity and drought prone region of southeastern Australia. The basalt aquifer covers ~11,500 km2 in an agriculturally intensive region. A review of local hydrogeological processes allowed a series of surface and subsurface indicators of groundwater recharge and discharge areas to be established. Various remote sensing and GIS techniques were then used to map these surface indicators including: terrain analysis, monitoring of vegetation activity, and mapping of infiltration capacity. All regions where groundwater is not discharging to the surface were considered potential recharge areas. This approach, applied systematically across a catchment, provides a framework for mapping recharge and discharge areas. A key component in assigning surface and subsurface indicators is the relevance to the dominant recharge and discharge processes occurring and the use of appropriate remote sensing and GIS techniques with the capacity to identify these processes.
NASA Astrophysics Data System (ADS)
Crozier, J. A.; Karlstrom, L.; Yang, K.
2017-12-01
Ice sheet surface topography reflects a complicated combination of processes that act directly upon the surface and that are products of ice advection. Using recently-available high resolution ice velocity, imagery, ice surface elevation, and bedrock elevation data sets, we seek to determine the domain of significance of two important processes - thermal fluvial incision and transfer of bedrock topography through the ice sheet - on controlling surface topography in the ablation zone. Evaluating such controls is important for understanding how melting of the GIS surface during the melt season may be directly imprinted in topography through supraglacial drainage networks, and indirectly imprinted through its contribution to basal sliding that affects bedrock transfer. We use methods developed by (Karlstrom and Yang, 2016) to identify supraglacial stream networks on the GIS, and use high resolution surface digital elevation models as well as gridded ice velocity and melt rate models to quantify surface processes. We implement a numerically efficient Fourier domain bedrock transfer function (Gudmundsson, 2003) to predict surface topography due to ice advection over bedrock topography obtained from radar. Despite a number of simplifying assumptions, the bedrock transfer function predicts the observed ice sheet surface in most regions of the GIS with ˜90% accuracy, regardless of the presence or absence of supraglacial drainage networks. This supports the hypothesis that bedrock is the most significant driver of ice surface topography on wavelengths similar to ice thickness. Ice surface topographic asymmetry on the GIS is common, with slopes in the direction of ice flow steeper than those faced opposite to ice flow, consistent with bedrock transfer theory. At smaller wavelengths, topography consistent with fluvial erosion by surface hydrologic features is evident. We quantify the effect of ice advection versus fluvial thermal erosion on supraglacial longitudinal stream profiles, as a function of location on the GIS (hence ice thickness and background melt rate) using spectral techniques to quantify longitudinal stream profiles. This work should provide a predictive guide for which processes are responsible for ice sheet topography scales from several m (DEM resolution) up to several ice thicknesses.
2015-02-01
WRF ) Model using a Geographic Information System (GIS) by Jeffrey A Smith, Theresa A Foley, John W Raby, and Brian Reen...ARL-TR-7212 ● FEB 2015 US Army Research Laboratory Investigating Surface Bias Errors in the Weather Research and Forecasting ( WRF ) Model...SUBTITLE Investigating surface bias errors in the Weather Research and Forecasting ( WRF ) Model using a Geographic Information System (GIS) 5a
Depth data research of GIS based on clustering analysis algorithm
NASA Astrophysics Data System (ADS)
Xiong, Yan; Xu, Wenli
2018-03-01
The data of GIS have spatial distribution. Geographic data has both spatial characteristics and attribute characteristics, and also changes with time. Therefore, the amount of data is very large. Nowadays, many industries and departments in the society are using GIS. However, without proper data analysis and mining scheme, GIS will not exert its maximum effectiveness and will waste a lot of data. In this paper, we use the geographic information demand of a national security department as the experimental object, combining the characteristics of GIS data, taking into account the characteristics of time, space, attributes and so on, and using cluster analysis algorithm. We further study the mining scheme for depth data, and get the algorithm model. This algorithm can automatically classify sample data, and then carry out exploratory analysis. The research shows that the algorithm model and the information mining scheme can quickly find hidden depth information from the surface data of GIS, thus improving the efficiency of the security department. This algorithm can also be extended to other fields.
DOT National Transportation Integrated Search
2016-09-01
The objectives of this study are to develop and deploy a means for cost-effectively extracting curve information using the widely available GPS and GIS data to support high friction surface treatment (HFST) installation recommendations (i.e., start a...
COSMO-SkyMed and GIS applications
NASA Astrophysics Data System (ADS)
Milillo, Pietro; Sole, Aurelia; Serio, Carmine
2013-04-01
Geographic Information Systems (GIS) and Remote Sensing have become key technology tools for the collection, storage and analysis of spatially referenced data. Industries that utilise these spatial technologies include agriculture, forestry, mining, market research as well as the environmental analysis . Synthetic Aperture Radar (SAR) is a coherent active sensor operating in the microwave band which exploits relative motion between antenna and target in order to obtain a finer spatial resolution in the flight direction exploiting the Doppler effect. SAR have wide applications in Remote Sensing such as cartography, surface deformation detection, forest cover mapping, urban planning, disasters monitoring , surveillance etc… The utilization of satellite remote sensing and GIS technology for this applications has proven to be a powerful and effective tool for environmental monitoring. Remote sensing techniques are often less costly and time-consuming for large geographic areas compared to conventional methods, moreover GIS technology provides a flexible environment for, analyzing and displaying digital data from various sources necessary for classification, change detection and database development. The aim of this work si to illustrate the potential of COSMO-SkyMed data and SAR applications in a GIS environment, in particular a demostration of the operational use of COSMO-SkyMed SAR data and GIS in real cases will be provided for what concern DEM validation, river basin estimation, flood mapping and landslide monitoring.
GIS-based automated management of highway surface crack inspection system
NASA Astrophysics Data System (ADS)
Chung, Hung-Chi; Shinozuka, Masanobu; Soeller, Tony; Girardello, Roberto
2004-07-01
An automated in-situ road surface distress surveying and management system, AMPIS, has been developed on the basis of video images within the framework of GIS software. Video image processing techniques are introduced to acquire, process and analyze the road surface images obtained from a moving vehicle. ArcGIS platform is used to integrate the routines of image processing and spatial analysis in handling the full-scale metropolitan highway surface distress detection and data fusion/management. This makes it possible to present user-friendly interfaces in GIS and to provide efficient visualizations of surveyed results not only for the use of transportation engineers to manage road surveying documentations, data acquisition, analysis and management, but also for financial officials to plan maintenance and repair programs and further evaluate the socio-economic impacts of highway degradation and deterioration. A review performed in this study on fundamental principle of Pavement Management System (PMS) and its implementation indicates that the proposed approach of using GIS concept and its tools for PMS application will reshape PMS into a new information technology-based system that can provide convenient and efficient pavement inspection and management.
Impervious surfaces are a leading contributor to non-point-source water pollution in urban watersheds. These surfaces include such features as roads, parking lots, rooftops and driveways. Arcview GIS and the Image Analysis extension have been utilized to geo-register and map imp...
Holocene thinning of the Greenland ice sheet.
Vinther, B M; Buchardt, S L; Clausen, H B; Dahl-Jensen, D; Johnsen, S J; Fisher, D A; Koerner, R M; Raynaud, D; Lipenkov, V; Andersen, K K; Blunier, T; Rasmussen, S O; Steffensen, J P; Svensson, A M
2009-09-17
On entering an era of global warming, the stability of the Greenland ice sheet (GIS) is an important concern, especially in the light of new evidence of rapidly changing flow and melt conditions at the GIS margins. Studying the response of the GIS to past climatic change may help to advance our understanding of GIS dynamics. The previous interpretation of evidence from stable isotopes (delta(18)O) in water from GIS ice cores was that Holocene climate variability on the GIS differed spatially and that a consistent Holocene climate optimum-the unusually warm period from about 9,000 to 6,000 years ago found in many northern-latitude palaeoclimate records-did not exist. Here we extract both the Greenland Holocene temperature history and the evolution of GIS surface elevation at four GIS locations. We achieve this by comparing delta(18)O from GIS ice cores with delta(18)O from ice cores from small marginal icecaps. Contrary to the earlier interpretation of delta(18)O evidence from ice cores, our new temperature history reveals a pronounced Holocene climatic optimum in Greenland coinciding with maximum thinning near the GIS margins. Our delta(18)O-based results are corroborated by the air content of ice cores, a proxy for surface elevation. State-of-the-art ice sheet models are generally found to be underestimating the extent and changes in GIS elevation and area; our findings may help to improve the ability of models to reproduce the GIS response to Holocene climate.
Genetic landscapes GIS Toolbox: tools to map patterns of genetic divergence and diversity.
Vandergast, Amy G.; Perry, William M.; Lugo, Roberto V.; Hathaway, Stacie A.
2011-01-01
The Landscape Genetics GIS Toolbox contains tools that run in the Geographic Information System software, ArcGIS, to map genetic landscapes and to summarize multiple genetic landscapes as average and variance surfaces. These tools can be used to visualize the distribution of genetic diversity across geographic space and to study associations between patterns of genetic diversity and geographic features or other geo-referenced environmental data sets. Together, these tools create genetic landscape surfaces directly from tables containing genetic distance or diversity data and sample location coordinates, greatly reducing the complexity of building and analyzing these raster surfaces in a Geographic Information System.
Open Source GIS Connectors to NASA GES DISC Satellite Data
NASA Technical Reports Server (NTRS)
Kempler, Steve; Pham, Long; Yang, Wenli
2014-01-01
The NASA Goddard Earth Sciences Data and Information Services Center (GES DISC) houses a suite of high spatiotemporal resolution GIS data including satellite-derived and modeled precipitation, air quality, and land surface parameter data. The data are valuable to various GIS research and applications at regional, continental, and global scales. On the other hand, many GIS users, especially those from the ArcGIS community, have difficulties in obtaining, importing, and using our data due to factors such as the variety of data products, the complexity of satellite remote sensing data, and the data encoding formats. We introduce a simple open source ArcGIS data connector that significantly simplifies the access and use of GES DISC data in ArcGIS.
Sharing knowledge of Planetary Datasets through the Web-Based PRoGIS
NASA Astrophysics Data System (ADS)
Giordano, M. G.; Morley, J. M.; Muller, J. P. M.; Barnes, R. B.; Tao, Y. T.
2015-10-01
The large amount of raw and derived data available from various planetary surface missions (e.g. Mars and Moon in our case) has been integrated withco-registered and geocoded orbital image data to provide rover traverses and camera site locations in universal global co-ordinates [1]. This then allows an integrated GIS to use these geocoded products for scientific applications: we aim to create a web interface, PRoGIS, with minimal controls focusing on the usability and visualisation of the data, to allow planetary geologists to share annotated surface observations. These observations in a common context are shared between different tools and software (PRoGIS, Pro3D, 3D point cloud viewer). Our aim is to use only Open Source components that integrate Open Web Services for planetary data to make available an universal platform with a WebGIS interface, as well as a 3D point cloud and a Panorama viewer to explore derived data. On top of these tools we are building capabilities to make and share annotations amongst users. We use Python and Django for the server-side framework and Open Layers 3 for the WebGIS client. For good performance previewing 3D data (point clouds, pictures on the surface and panoramas) we employ ThreeJS, a WebGL Javascript library. Additionally, user and group controls allow scientists to store and share their observations. PRoGIS not only displays data but also launches sophisticated 3D vision reprocessing (PRoVIP) and an immersive 3D analysis environment (PRo3D).
Development of a GIS-based spill management information system.
Martin, Paul H; LeBoeuf, Eugene J; Daniel, Edsel B; Dobbins, James P; Abkowitz, Mark D
2004-08-30
Spill Management Information System (SMIS) is a geographic information system (GIS)-based decision support system designed to effectively manage the risks associated with accidental or intentional releases of a hazardous material into an inland waterway. SMIS provides critical planning and impact information to emergency responders in anticipation of, or following such an incident. SMIS couples GIS and database management systems (DBMS) with the 2-D surface water model CE-QUAL-W2 Version 3.1 and the air contaminant model Computer-Aided Management of Emergency Operations (CAMEO) while retaining full GIS risk analysis and interpretive capabilities. Live 'real-time' data links are established within the spill management software to utilize current meteorological information and flowrates within the waterway. Capabilities include rapid modification of modeling conditions to allow for immediate scenario analysis and evaluation of 'what-if' scenarios. The functionality of the model is illustrated through a case study of the Cheatham Reach of the Cumberland River near Nashville, TN.
Yager, Douglas B.; Johnson, Raymond H.; Rockwell, Barnaby W.; Caine, Jonathan S.; Smith, Kathleen S.
2013-01-01
Hydrothermally altered bedrock in the Silverton mining area, southwest Colorado, USA, contains sulfide minerals that weather to produce acidic and metal-rich leachate that is toxic to aquatic life. This study utilized a geographic information system (GIS) and statistical approach to identify watershed-scale geologic variables in the Silverton area that influence water quality. GIS analysis of mineral maps produced using remote sensing datasets including Landsat Thematic Mapper, advanced spaceborne thermal emission and reflection radiometer, and a hybrid airborne visible infrared imaging spectrometer and field-based product enabled areas of alteration to be quantified. Correlations between water quality signatures determined at watershed outlets, and alteration types intersecting both total watershed areas and GIS-buffered areas along streams were tested using linear regression analysis. Despite remote sensing datasets having varying watershed area coverage due to vegetation cover and differing mineral mapping capabilities, each dataset was useful for delineating acid-generating bedrock. Areas of quartz–sericite–pyrite mapped by AVIRIS have the highest correlations with acidic surface water and elevated iron and aluminum concentrations. Alkalinity was only correlated with area of acid neutralizing, propylitically altered bedrock containing calcite and chlorite mapped by AVIRIS. Total watershed area of acid-generating bedrock is more significantly correlated with acidic and metal-rich surface water when compared with acid-generating bedrock intersected by GIS-buffered areas along streams. This methodology could be useful in assessing the possible effects that alteration type area has in either generating or neutralizing acidity in unmined watersheds and in areas where new mining is planned.
Effective 3-D surface modeling for geographic information systems
NASA Astrophysics Data System (ADS)
Yüksek, K.; Alparslan, M.; Mendi, E.
2013-11-01
In this work, we propose a dynamic, flexible and interactive urban digital terrain platform (DTP) with spatial data and query processing capabilities of Geographic Information Systems (GIS), multimedia database functionality and graphical modeling infrastructure. A new data element, called Geo-Node, which stores image, spatial data and 3-D CAD objects is developed using an efficient data structure. The system effectively handles data transfer of Geo-Nodes between main memory and secondary storage with an optimized Directional Replacement Policy (DRP) based buffer management scheme. Polyhedron structures are used in Digital Surface Modeling (DSM) and smoothing process is performed by interpolation. The experimental results show that our framework achieves high performance and works effectively with urban scenes independent from the amount of spatial data and image size. The proposed platform may contribute to the development of various applications such as Web GIS systems based on 3-D graphics standards (e.g. X3-D and VRML) and services which integrate multi-dimensional spatial information and satellite/aerial imagery.
Modeling the Hydrologic Effects of Large-Scale Green Infrastructure Projects with GIS
NASA Astrophysics Data System (ADS)
Bado, R. A.; Fekete, B. M.; Khanbilvardi, R.
2015-12-01
Impervious surfaces in urban areas generate excess runoff, which in turn causes flooding, combined sewer overflows, and degradation of adjacent surface waters. Municipal environmental protection agencies have shown a growing interest in mitigating these effects with 'green' infrastructure practices that partially restore the perviousness and water holding capacity of urban centers. Assessment of the performance of current and future green infrastructure projects is hindered by the lack of adequate hydrological modeling tools; conventional techniques fail to account for the complex flow pathways of urban environments, and detailed analyses are difficult to prepare for the very large domains in which green infrastructure projects are implemented. Currently, no standard toolset exists that can rapidly and conveniently predict runoff, consequent inundations, and sewer overflows at a city-wide scale. We demonstrate how streamlined modeling techniques can be used with open-source GIS software to efficiently model runoff in large urban catchments. Hydraulic parameters and flow paths through city blocks, roadways, and sewer drains are automatically generated from GIS layers, and ultimately urban flow simulations can be executed for a variety of rainfall conditions. With this methodology, users can understand the implications of large-scale land use changes and green/gray storm water retention systems on hydraulic loading, peak flow rates, and runoff volumes.
Modeling forest ecosystem changes resulting from surface coal mining in West Virginia
John Brown; Andrew J. Lister; Mary Ann Fajvan; Bonnie Ruefenacht; Christine Mazzarella
2012-01-01
The objective of this project is to assess the effects of surface coal mining on forest ecosystem disturbance and restoration in the Coal River Subbasin in southern West Virginia. Our approach is to develop disturbance impact models for this subbasin that will serve as a case study for testing the feasibility of integrating currently available GIS data layers, remote...
NASA Astrophysics Data System (ADS)
Rao, Mandava Mohana
2017-10-01
Ground resistance of high voltage substations must be as low as possible for safe grounding of their equipment both during normal and fault conditions. However, in gas insulated substations (GIS), even though resistance is low, it does not ensure the step and touch potentials of the grounding system within permissible levels. In the present study, an analytical model has been developed to calculate ground resistance, step and touch potentials of a grounding system used for GIS. Different models have been proposed for the evaluation of number of grounding rods to be inserted in to the ground. The effect of concrete foundations on above performance parameters has been analyzed by considering various fault currents, soil/earth resistivities and number of grounding rods. Finally, design optimization of GIS grounding system has been reported for fault currents in the order of 63 kA located in earth resistivity of 100Ω-m and above.
NASA Astrophysics Data System (ADS)
Wang, Feifeng; Huang, Huimin; Su, Yi; Yan, Dandan; Lu, Yufeng; Xia, Xiaofei; Yang, Jian
2018-05-01
It has accounted for a large proportion of GIS equipment defects, which cause the disconnector switches to incomplete open-close position. Once opening operation is not in place, it will arouse continuous arcing between contacts to reduce insulation strength. Otherwise, the intense heat give rise to burn the contact, which has a severe effect on the safe operation of power grid. This paper analyzes some typical defection cases about the opening operation incomplete for disconnector switches of GIS. The COMSOL Multiphysics is applied to verify the influence on electric field distribution. The results show that moving contact out shield is 20 mm, the electric field distribution of the moving contact surface is uneven, and the maximum electric field value can reach 9.74 kV/mm.
Using geographical information systems and cartograms as a health service quality improvement tool.
Lovett, Derryn A; Poots, Alan J; Clements, Jake T C; Green, Stuart A; Samarasundera, Edgar; Bell, Derek
2014-07-01
Disease prevalence can be spatially analysed to provide support for service implementation and health care planning, these analyses often display geographic variation. A key challenge is to communicate these results to decision makers, with variable levels of Geographic Information Systems (GIS) knowledge, in a way that represents the data and allows for comprehension. The present research describes the combination of established GIS methods and software tools to produce a novel technique of visualising disease admissions and to help prevent misinterpretation of data and less optimal decision making. The aim of this paper is to provide a tool that supports the ability of decision makers and service teams within health care settings to develop services more efficiently and better cater to the population; this tool has the advantage of information on the position of populations, the size of populations and the severity of disease. A standard choropleth of the study region, London, is used to visualise total emergency admission values for Chronic Obstructive Pulmonary Disease and bronchiectasis using ESRI's ArcGIS software. Population estimates of the Lower Super Output Areas (LSOAs) are then used with the ScapeToad cartogram software tool, with the aim of visualising geography at uniform population density. An interpolation surface, in this case ArcGIS' spline tool, allows the creation of a smooth surface over the LSOA centroids for admission values on both standard and cartogram geographies. The final product of this research is the novel Cartogram Interpolation Surface (CartIS). The method provides a series of outputs culminating in the CartIS, applying an interpolation surface to a uniform population density. The cartogram effectively equalises the population density to remove visual bias from areas with a smaller population, while maintaining contiguous borders. CartIS decreases the number of extreme positive values not present in the underlying data as can be found in interpolation surfaces. This methodology provides a technique for combining simple GIS tools to create a novel output, CartIS, in a health service context with the key aim of improving visualisation communication techniques which highlight variation in small scale geographies across large regions. CartIS more faithfully represents the data than interpolation, and visually highlights areas of extreme value more than cartograms, when either is used in isolation. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.
NASA Astrophysics Data System (ADS)
Saravanavel, J.; Ramasamy, S. M.
2014-11-01
The study area falls in the southern part of the Indian Peninsular comprising hard crystalline rocks of Archaeozoic and Proterozoic Era. In the present study, the GIS based 3D visualizations of gravity, magnetic, resistivity and topographic datasets were made and therefrom the basement lineaments, shallow subsurface lineaments and surface lineaments/faults were interpreted. These lineaments were classified as category-1 i.e. exclusively surface lineaments, category-2 i.e. surface lineaments having connectivity with shallow subsurface lineaments and category-3 i.e. surface lineaments having connectivity with shallow subsurface lineaments and basement lineaments. These three classified lineaments were analyzed in conjunction with known mineral occurrences and historical seismicity of the study area in GIS environment. The study revealed that the category-3 NNE-SSW to NE-SW lineaments have greater control over the mineral occurrences and the N-S, NNE-SSW and NE-SW, faults/lineaments control the seismicities in the study area.
A method for locating potential tree-planting sites in urban areas: a case study of Los Angeles, USA
Chunxia Wua; Qingfu Xiaoa; Gregory E. McPherson
2008-01-01
A GIS-based method for locating potential tree-planting sites based on land cover data is introduced. Criteria were developed to identify locations that are spatially available for potential tree planting based on land cover, sufficient distance from impervious surfaces, a minimum amount of pervious surface, and no crown overlap with other trees. In an ArcGIS...
Automated management for pavement inspection system (AMPIS)
NASA Astrophysics Data System (ADS)
Chung, Hung Chi; Girardello, Roberto; Soeller, Tony; Shinozuka, Masanobu
2003-08-01
An automated in-situ road surface distress surveying and management system, AMPIS, has been developed on the basis of video images within the framework of GIS software. Video image processing techniques are introduced to acquire, process and analyze the road surface images obtained from a moving vehicle. ArcGIS platform is used to integrate the routines of image processing and spatial analysis in handling the full-scale metropolitan highway surface distress detection and data fusion/management. This makes it possible to present user-friendly interfaces in GIS and to provide efficient visualizations of surveyed results not only for the use of transportation engineers to manage road surveying documentations, data acquisition, analysis and management, but also for financial officials to plan maintenance and repair programs and further evaluate the socio-economic impacts of highway degradation and deterioration. A review performed in this study on fundamental principle of Pavement Management System (PMS) and its implementation indicates that the proposed approach of using GIS concept and its tools for PMS application will reshape PMS into a new information technology-based system providing a convenient and efficient pavement inspection and management.
Study on Global GIS architecture and its key technologies
NASA Astrophysics Data System (ADS)
Cheng, Chengqi; Guan, Li; Lv, Xuefeng
2009-09-01
Global GIS (G2IS) is a system, which supports the huge data process and the global direct manipulation on global grid based on spheroid or ellipsoid surface. Based on global subdivision grid (GSG), Global GIS architecture is presented in this paper, taking advantage of computer cluster theory, the space-time integration technology and the virtual reality technology. Global GIS system architecture is composed of five layers, including data storage layer, data representation layer, network and cluster layer, data management layer and data application layer. Thereinto, it is designed that functions of four-level protocol framework and three-layer data management pattern of Global GIS based on organization, management and publication of spatial information in this architecture. Three kinds of core supportive technologies, which are computer cluster theory, the space-time integration technology and the virtual reality technology, and its application pattern in the Global GIS are introduced in detail. The primary ideas of Global GIS in this paper will be an important development tendency of GIS.
Study on Global GIS architecture and its key technologies
NASA Astrophysics Data System (ADS)
Cheng, Chengqi; Guan, Li; Lv, Xuefeng
2010-11-01
Global GIS (G2IS) is a system, which supports the huge data process and the global direct manipulation on global grid based on spheroid or ellipsoid surface. Based on global subdivision grid (GSG), Global GIS architecture is presented in this paper, taking advantage of computer cluster theory, the space-time integration technology and the virtual reality technology. Global GIS system architecture is composed of five layers, including data storage layer, data representation layer, network and cluster layer, data management layer and data application layer. Thereinto, it is designed that functions of four-level protocol framework and three-layer data management pattern of Global GIS based on organization, management and publication of spatial information in this architecture. Three kinds of core supportive technologies, which are computer cluster theory, the space-time integration technology and the virtual reality technology, and its application pattern in the Global GIS are introduced in detail. The primary ideas of Global GIS in this paper will be an important development tendency of GIS.
Grasso, Dennis N.
2003-01-01
Surface effects maps were produced for 72 of 89 underground detonations conducted at the Frenchman Flat, Rainier Mesa and Aqueduct Mesa, Climax Stock, Shoshone Mountain, Buckboard Mesa, and Dome Mountain testing areas of the Nevada Test Site between August 10, 1957 (Saturn detonation, Area 12) and September 18, 1992 (Hunters Trophy detonation, Area 12). The ?Other Areas? Surface Effects Map Database, which was used to construct the maps shown in this report, contains digital reproductions of these original maps. The database is provided in both ArcGIS (v. 8.2) geodatabase format and ArcView (v. 3.2) shapefile format. This database contains sinks, cracks, faults, and other surface effects having a combined (cumulative) length of 136.38 km (84.74 mi). In GIS digital format, the user can view all surface effects maps simultaneously, select and view the surface effects of one or more sites of interest, or view specific surface effects by area or site. Three map layers comprise the database. They are: (1) the surface effects maps layer (oase_n27f), (2) the bar symbols layer (oase_bar_n27f), and (3) the ball symbols layer (oase_ball_n27f). Additionally, an annotation layer, named 'Ball_and_Bar_Labels,' and a polygon features layer, named 'Area12_features_poly_n27f,' are contained in the geodatabase version of the database. The annotation layer automatically labels all 295 ball-and-bar symbols shown on these maps. The polygon features layer displays areas of ground disturbances, such as rock spall and disturbed ground caused by the detonations. Shapefile versions of the polygon features layer in Nevada State Plane and Universal Transverse Mercator projections, named 'area12_features_poly_n27f.shp' and 'area12_features_poly_u83m.shp,' are also provided in the archive.
GeoMEx: Geographic Information System (GIS) Prototype for Mars Express Data
NASA Astrophysics Data System (ADS)
Manaud, N.; Frigeri, A.; Ivanov, A. B.
2013-09-01
As of today almost a decade of observational data have been returned by the multidisciplinary instruments on-board the ESA's Mars Express spacecraft. All data are archived into the ESA's Planetary Science Archive (PSA), which is the central repository for all ESA's Solar System missions [1]. Data users can perform advanced queries and retrieve data from the PSA using graphical and map-based search interfaces, or via direct FTP download [2]. However the PSA still offers limited geometrical search and visualisation capabilities that are essential for scientists to identify their data of interest. A former study has shown [3] that this limitation is mostly due to the fact that (1) only a subset of the instruments observations geometry information has been modeled and ingested into the PSA, and (2) that the access to that information from GIS software is impossible without going through a cumbersome and undocumented process. With the increasing number of Mars GIS data sets available to the community [4], GIS software have become invaluable tools for researchers to capture, manage, visualise, and analyse data from various sources. Although Mars Express surface imaging data are natural candidates for use in a GIS environment, other non-imaging instruments data (subsurface, atmosphere, plasma) integration is being investigated [5]. The objective of this work is to develop a GIS prototype that will integrate all the Mars Express instruments observations geometry information into a spatial database that can be accessed from external GIS software using standard WMS and WFS protocols. We will firstly focus on the integration of surface and subsurface instruments data (HRSC, OMEGA, MARSIS). In addition to the geometry information, base and context maps of Mars derived from surface mapping instruments data will also be ingested into the system. The system back-end architecture will be implemented using open-source GIS frameworks: PostgreSQL/PostGIS for the database, and MapServer for the web publishing module. Interfaces with existing GIS front-end software (such as QGIS, GRASS, ArcView, or OpenLayers) will be investigated and tested in a second phase. This prototype is primarily intended to be used by the Mars Express instruments teams in support to their scientific investigations. It will also be used by the mission Archive Scientist in support to the data validation and PSA interface requirements definition tasks. Depending on its success, this prototype might be used in the future to demonstrate the benefit of a GIS component integration to ESA's planetary science operations planning systems.
NASA Astrophysics Data System (ADS)
Plach, Andreas; Hestnes Nisancioglu, Kerim
2016-04-01
The contribution from the Greenland Ice Sheet (GIS) to the global sea level rise during the Eemian interglacial (about 125,000 year ago) was the focus of many studies in the past. A main reason for the interest in this period is the considerable warmer climate during the Eemian which is often seen as an equivalent for possible future climate conditions. Simulated sea level rise during the Eemian can therefore be used to better understand a possible future sea level rise. The most recent assessment report of the Intergovernmental Panel on Climate Change (IPCC AR5) gives an overview of several studies and discusses the possible implications for a future sea level rise. The report also reveals the big differences between these studies in terms of simulated GIS extent and corresponding sea level rise. The present study gives a more exhaustive review of previous work discussing sea level rise from the GIS during the Eemian interglacial. The smallest extents of the GIS simulated by various authors are shown and summarized. A focus is thereby given to the methods used to calculate the surface mass balance. A hypothesis of the present work is that the varying results of the previous studies can largely be explained due to the various methods used to calculate the surface mass balance. In addition, as a first step for future work, the surface mass balance of the GIS for a proxy-data derived forcing ("index method") and a direct forcing with a General Circulation Model (GCM) are shown and discussed.
Accuracy and precision of stream reach water surface slopes estimated in the field and from maps
Isaak, D.J.; Hubert, W.A.; Krueger, K.L.
1999-01-01
The accuracy and precision of five tools used to measure stream water surface slope (WSS) were evaluated. Water surface slopes estimated in the field with a clinometer or from topographic maps used in conjunction with a map wheel or geographic information system (GIS) were significantly higher than WSS estimated in the field with a surveying level (biases of 34, 41, and 53%, respectively). Accuracy of WSS estimates obtained with an Abney level did not differ from surveying level estimates, but conclusions regarding the accuracy of Abney levels and clinometers were weakened by intratool variability. The surveying level estimated WSS most precisely (coefficient of variation [CV] = 0.26%), followed by the GIS (CV = 1.87%), map wheel (CV = 6.18%), Abney level (CV = 13.68%), and clinometer (CV = 21.57%). Estimates of WSS measured in the field with an Abney level and estimated for the same reaches with a GIS used in conjunction with l:24,000-scale topographic maps were significantly correlated (r = 0.86), but there was a tendency for the GIS to overestimate WSS. Detailed accounts of the methods used to measure WSS and recommendations regarding the measurement of WSS are provided.
Greenland ice sheet surface temperature, melt and mass loss: 2000-06
Hall, D.K.; Williams, R.S.; Luthcke, S.B.; DiGirolamo, N.E.
2008-01-01
A daily time series of 'clear-sky' surface temperature has been compiled of the Greenland ice sheet (GIS) using 1 km resolution moderate-resolution imaging spectroradiometer (MODIS) land-surface temperature (LST) maps from 2000 to 2006. We also used mass-concentration data from the Gravity Recovery and Climate Experiment (GRACE) to study mass change in relationship to surface melt from 2003 to 2006. The mean LST of the GIS increased during the study period by ???0.27??Ca-1. The increase was especially notable in the northern half of the ice sheet during the winter months. Melt-season length and timing were also studied in each of the six major drainage basins. Rapid (<15 days) and sustained mass loss below 2000 m elevation was triggered in 2004 and 2005 as recorded by GRACE when surface melt begins. Initiation of large-scale surface melt was followed rapidly by mass loss. This indicates that surface meltwater is flowing rapidly to the base of the ice sheet, causing acceleration of outlet glaciers, thus highlighting the metastability of parts of the GIS and the vulnerability of the ice sheet to air-temperature increases. If air temperatures continue to rise over Greenland, increased surface melt will play a large role in ice-sheet mass loss.
Assessment of surface runoff depth changes in S\\varǎţel River basin, Romania using GIS techniques
NASA Astrophysics Data System (ADS)
Romulus, Costache; Iulia, Fontanine; Ema, Corodescu
2014-09-01
S\\varǎţel River basin, which is located in Curvature Subcarpahian area, has been facing an obvious increase in frequency of hydrological risk phenomena, associated with torrential events, during the last years. This trend is highly related to the increase in frequency of the extreme climatic phenomena and to the land use changes. The present study is aimed to highlight the spatial and quantitative changes occurred in surface runoff depth in S\\varǎţel catchment, between 1990-2006. This purpose was reached by estimating the surface runoff depth assignable to the average annual rainfall, by means of SCS-CN method, which was integrated into the GIS environment through the ArcCN-Runoff extension, for ArcGIS 10.1. In order to compute the surface runoff depth, by CN method, the land cover and the hydrological soil classes were introduced as vector (polygon data), while the curve number and the average annual rainfall were introduced as tables. After spatially modeling the surface runoff depth for the two years, the 1990 raster dataset was subtracted from the 2006 raster dataset, in order to highlight the changes in surface runoff depth.
Modeling surface response of the Greenland Ice Sheet to interglacial climate
NASA Astrophysics Data System (ADS)
Rau, Dominik; Rogozhina, Irina
2013-04-01
We present a new parameterization of surface mass balance (SMB) of the Greenland Ice Sheet (GIS) under interglacial climate conditions validated against recent satellite observations on a regional scale. Based on detailed analysis of the modeled surface melting and refreezing rates, we conclude that the existing SMB parameterizations fail to capture either spatial pattern or amplitude of the observed surface response of the GIS. This is due to multiple simplifying assumptions adopted by the majority of modeling studies within the frame of the positive degree day method. Modeled spatial distribution of surface melting is found to be highly sensitive to a choice of daily temperature standard deviation (SD) and degree-day factors, which are generally assumed to have uniform distribution across the entire Greenland region. However, the use of uniform SD distribution and the range of commonly used SD values are absolutely unsupported by the ERA-40 and ERA-Interim climate data. In this region, SD distribution is highly inhomogeneous and characterized by low amplitudes during the summer months in the areas where most surface ice melting occurs. In addition, the use of identical degree day factors on both the eastern and western slopes of the GIS results in overestimation of surface runoff along the western coast of Greenland and significant underestimation along its eastern coast. Our approach is to make use of (i) spatially and seasonally variable SDs derived from ERA-40 and ERA-Interim time series, and (ii) spatially variable degree-day factors, measured across Greenland, Arctic Canada, Norway, Spitsbergen and Iceland. We demonstrate that the new approach is extremely efficient for modeling the evolution of the GIS during the observational period and the entire Holocene interglacial.
Dose-Response Calculator for ArcGIS
Hanser, Steven E.; Aldridge, Cameron L.; Leu, Matthias; Nielsen, Scott E.
2011-01-01
The Dose-Response Calculator for ArcGIS is a tool that extends the Environmental Systems Research Institute (ESRI) ArcGIS 10 Desktop application to aid with the visualization of relationships between two raster GIS datasets. A dose-response curve is a line graph commonly used in medical research to examine the effects of different dosage rates of a drug or chemical (for example, carcinogen) on an outcome of interest (for example, cell mutations) (Russell and others, 1982). Dose-response curves have recently been used in ecological studies to examine the influence of an explanatory dose variable (for example, percentage of habitat cover, distance to disturbance) on a predicted response (for example, survival, probability of occurrence, abundance) (Aldridge and others, 2008). These dose curves have been created by calculating the predicted response value from a statistical model at different levels of the explanatory dose variable while holding values of other explanatory variables constant. Curves (plots) developed using the Dose-Response Calculator overcome the need to hold variables constant by using values extracted from the predicted response surface of a spatially explicit statistical model fit in a GIS, which include the variation of all explanatory variables, to visualize the univariate response to the dose variable. Application of the Dose-Response Calculator can be extended beyond the assessment of statistical model predictions and may be used to visualize the relationship between any two raster GIS datasets (see example in tool instructions). This tool generates tabular data for use in further exploration of dose-response relationships and a graph of the dose-response curve.
Geographic Information Systems and Web Page Development
NASA Technical Reports Server (NTRS)
Reynolds, Justin
2004-01-01
The Facilities Engineering and Architectural Branch is responsible for the design and maintenance of buildings, laboratories, and civil structures. In order to improve efficiency and quality, the FEAB has dedicated itself to establishing a data infrastructure based on Geographic Information Systems, GIS. The value of GIS was explained in an article dating back to 1980 entitled "Need for a Multipurpose Cadastre" which stated, "There is a critical need for a better land-information system in the United States to improve land-conveyance procedures, furnish a basis for equitable taxation, and provide much-needed information for resource management and environmental planning." Scientists and engineers both point to GIS as the solution. What is GIS? According to most text books, Geographic Information Systems is a class of software that stores, manages, and analyzes mapable features on, above, or below the surface of the earth. GIS software is basically database management software to the management of spatial data and information. Simply put, Geographic Information Systems manage, analyze, chart, graph, and map spatial information. GIS can be broken down into two main categories, urban GIS and natural resource GIS. Further still, natural resource GIS can be broken down into six sub-categories, agriculture, forestry, wildlife, catchment management, archaeology, and geology/mining. Agriculture GIS has several applications, such as agricultural capability analysis, land conservation, market analysis, or whole farming planning. Forestry GIs can be used for timber assessment and management, harvest scheduling and planning, environmental impact assessment, and pest management. GIS when used in wildlife applications enables the user to assess and manage habitats, identify and track endangered and rare species, and monitor impact assessment.
NASA Astrophysics Data System (ADS)
Rios, J. Fernando; Ye, Ming; Wang, Liying; Lee, Paul Z.; Davis, Hal; Hicks, Rick
2013-03-01
Onsite wastewater treatment systems (OWTS), or septic systems, can be a significant source of nitrates in groundwater and surface water. The adverse effects that nitrates have on human and environmental health have given rise to the need to estimate the actual or potential level of nitrate contamination. With the goal of reducing data collection and preparation costs, and decreasing the time required to produce an estimate compared to complex nitrate modeling tools, we developed the ArcGIS-based Nitrate Load Estimation Toolkit (ArcNLET) software. Leveraging the power of geographic information systems (GIS), ArcNLET is an easy-to-use software capable of simulating nitrate transport in groundwater and estimating long-term nitrate loads from groundwater to surface water bodies. Data requirements are reduced by using simplified models of groundwater flow and nitrate transport which consider nitrate attenuation mechanisms (subsurface dispersion and denitrification) as well as spatial variability in the hydraulic parameters and septic tank distribution. ArcNLET provides a spatial distribution of nitrate plumes from multiple septic systems and a load estimate to water bodies. ArcNLET's conceptual model is divided into three sub-models: a groundwater flow model, a nitrate transport and fate model, and a load estimation model which are implemented as an extension to ArcGIS. The groundwater flow model uses a map of topography in order to generate a steady-state approximation of the water table. In a validation study, this approximation was found to correlate well with a water table produced by a calibrated numerical model although it was found that the degree to which the water table resembles the topography can vary greatly across the modeling domain. The transport model uses a semi-analytical solution to estimate the distribution of nitrate within groundwater, which is then used to estimate a nitrate load using a mass balance argument. The estimates given by ArcNLET are suitable for a screening-level analysis.
NASA Astrophysics Data System (ADS)
Zhao, Chunhong
2018-04-01
The Local Climate Zones (LCZs) concept was initiated in 2012 to improve the documentation of Urban Heat Island (UHI) observations. Despite the indispensable role and initial aim of LCZs concept in metadata reporting for atmospheric UHI research, its role in surface UHI investigation also needs to be emphasized. This study incorporated LCZs concept to study surface UHI effect for San Antonio, Texas. LCZ map was developed by a GIS-based LCZs classification scheme with the aid of airborne Lidar dataset and other freely available GIS data. Then, the summer LST was calculated based Landsat imagery, which was used to analyse the relations between LST and LCZs and the statistical significance of the differences of LST among the typical LCZs, in order to test if LCZs are able to efficiently facilitate SUHI investigation. The linkage of LCZs and land surface temperature (LST) indicated that the LCZs mapping can be used to compare and investigate the SUHI. Most of the pairs of LCZs illustrated significant differences in average LSTs with considerable significance. The intra-urban temperature comparison among different urban classes contributes to investigate the influence of heterogeneous urban morphology on local climate formation.
NASA Astrophysics Data System (ADS)
Hargitai, Henrik
2016-10-01
We have created a metacatalog, or catalog or catalogs, of surface features of Mars that also includes the actual data in the catalogs listed. The goal is to make mesoscale surface feature databases available in one place, in a GIS-ready format. The databases can be directly imported to ArcGIS or other GIS platforms, like Google Mars. Some of the catalogs in our database are also ingested into the JMARS platform.All catalogs have been previously published in a peer-reviewed journal, but they may contain updates of the published catalogs. Many of the catalogs are "integrated", i.e. they merge databases or information from various papers on the same topic, including references to each individual features listed.Where available, we have included shapefiles with polygon or linear features, however, most of the catalogs only contain point data of their center points and morphological data.One of the unexpected results of the planetary feature metacatalog is that some features have been described by several papers, using different, i.e., conflicting designations. This shows the need for the development of an identification system suitable for mesoscale (100s m to km sized) features that tracks papers and thus prevents multiple naming of the same feature.The feature database can be used for multicriteria analysis of a terrain, thus enables easy distribution pattern analysis and the correlation of the distribution of different landforms and features on Mars. Such catalog makes a scientific evaluation of potential landing sites easier and more effective during the selection process and also supports automated landing site selections.The catalog is accessible at https://planetarydatabase.wordpress.com/.
DOT National Transportation Integrated Search
2002-05-01
Knowledge of surface and subsurface geology is fundamental to the planning and development of new or modified transportation systems. Toward this : end, we have compiled a model GIS database consisting of important geologic, cartographic, environment...
Ahmad, Zulfiqar; Ashraf, Arshad; Fryar, Alan; Akhter, Gulraiz
2011-02-01
The integration of the Geographic Information System (GIS) with groundwater modeling and satellite remote sensing capabilities has provided an efficient way of analyzing and monitoring groundwater behavior and its associated land conditions. A 3-dimensional finite element model (Feflow) has been used for regional groundwater flow modeling of Upper Chaj Doab in Indus Basin, Pakistan. The approach of using GIS techniques that partially fulfill the data requirements and define the parameters of existing hydrologic models was adopted. The numerical groundwater flow model is developed to configure the groundwater equipotential surface, hydraulic head gradient, and estimation of the groundwater budget of the aquifer. GIS is used for spatial database development, integration with a remote sensing, and numerical groundwater flow modeling capabilities. The thematic layers of soils, land use, hydrology, infrastructure, and climate were developed using GIS. The Arcview GIS software is used as additive tool to develop supportive data for numerical groundwater flow modeling and integration and presentation of image processing and modeling results. The groundwater flow model was calibrated to simulate future changes in piezometric heads from the period 2006 to 2020. Different scenarios were developed to study the impact of extreme climatic conditions (drought/flood) and variable groundwater abstraction on the regional groundwater system. The model results indicated a significant response in watertable due to external influential factors. The developed model provides an effective tool for evaluating better management options for monitoring future groundwater development in the study area.
Rice, C.A.; Abbott, M.M.; Zielinski, R.A.
2007-01-01
Releases of NaCl-rich (>100 000 mg/L) water that is co-produced from petroleum wells can adversely affect the quality of ground and surface waters. To evaluate produced water impacts on lakes, rivers and streams, an assessment of the contamination potential must be attainable using reliable and cost-effective methods. This study examines the feasibility of using geographic information system (GIS) analysis to assess the contamination potential of Cl to Skiatook Lake in the Hominy Creek drainage basin in northeastern Oklahoma. GIS-based predictions of affects of Cl within individual subdrainages are supported by measurements of Cl concentration and discharge in 19 tributaries to Skiatook Lake. Dissolved Cl concentrations measured in October, 2004 provide a snapshot of conditions assumed to be reasonably representative of typical inputs to the lake. Chloride concentrations ranged from 5.8 to 2300 mg/L and compare to a value of 34 mg/L in the lake. At the time of sampling, Hominy Creek provided 63% of the surface water entering the lake and 80% of the Cl load. The Cl load from the other tributaries is relatively small (150 mg/L) were generally in subdrainages with greater well density (>15 wells/km2), relatively large numbers of petroleum wells in close proximity (>2 proximity wells/stream km), and relatively small discharge (<0.005 m3/s). GIS calculations of subdrainage areas can be used to estimate the expected discharge of the tributary for each subdrainage. GIS-based assessment of Cl contamination potential at Skiatook Lake and at other lakes surrounded by oil fields can proceed even when direct measurements of Cl or discharge in tributary streams may be limited or absent.
Integration Of 3D Geographic Information System (GIS) For Effective Waste Management Practice
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rood, G.J.; Hecox, G.R.
2006-07-01
Soil remediation in response to the presence of residual radioactivity resulting from past MED/AEC activities is currently in progress under the Formerly Utilized Sites Remedial Action Program near the St. Louis, MO airport. During GY05, approximately 92,000 cubic meters (120,000 cubic yards) of radioactive soil was excavated, packaged and transported via rail for disposal at U.S. Ecology or Envirocare of Utah, LLC. To facilitate the management of excavation/transportation/disposal activities, a 3D GIS was developed for the site that was used to estimate the in-situ radionuclide activities, activities in excavation block areas, and shipping activities using a sum-of ratio (SOR) methodmore » for combining various radionuclide compounds into applicable transportation and disposal SOR values. The 3D GIS was developed starting with the SOR values for the approximately 900 samples from 90 borings. These values were processed into a three-dimensional (3D) point grid using kriging with nominal grid spacing of 1.5 by 1.5 meter horizontal by 0.3 meter vertical. The final grid, clipped to the area and soil interval above the planned base of excavation, consisted of 210,000 individual points. Standard GIS volumetric and spatial join procedures were used to calculate the volume of soil represented by each grid point, the base of excavation, depth below ground surface, elevation, surface elevation and SOR values for each point in the final grid. To create the maps needed for management, the point grid results were spatially joined to each excavation area in 0.9 meter (3 foot) depth intervals and the average SOR and total volumes were calculations. The final maps were color-coded for easy identification of areas above the specific transportation or disposal criteria. (authors)« less
Tracking acid mine-drainage in Southeast Arizona using GIS and sediment delivery models
Norman, L.M.; Gray, F.; Guertin, D.P.; Wissler, C.; Bliss, J.D.
2008-01-01
This study investigates the application of models traditionally used to estimate erosion and sediment deposition to assess the potential risk of water quality impairment resulting from metal-bearing materials related to mining and mineralization. An integrated watershed analysis using Geographic Information Systems (GIS) based tools was undertaken to examine erosion and sediment transport characteristics within the watersheds. Estimates of stream deposits of sediment from mine tailings were related to the chemistry of surface water to assess the effectiveness of the methodology to assess the risk of acid mine-drainage being dispersed downstream of abandoned tailings and waste rock piles. A watershed analysis was preformed in the Patagonia Mountains in southeastern Arizona which has seen substantial mining and where recent water quality samples have reported acidic surface waters. This research demonstrates an improvement of the ability to predict streams that are likely to have severely degraded water quality as a result of past mining activities. ?? Springer Science+Business Media B.V. 2007.
ERIC Educational Resources Information Center
Ricker, Britta; Thatcher, Jim
2017-01-01
As humans and natural processes continuously reshape the surface of the Earth, there is an unceasing need to document and analyze them through the use of Geographic Information Systems (GIS). The public is gaining more access to spatial technologies that were once only available to highly trained professionals. With technological evolution comes a…
Aaron's Solution, Instructor's Problem: Teaching Surface Analysis Using GIS
ERIC Educational Resources Information Center
Koch, Tom; Denike, Ken
2007-01-01
Teaching GIS is relatively simple, a matter of helping students develop familiarity with the software. Mapping as an aid to thinking is harder to instruct. This article presents a laboratory and lecture package developed to teach the utility of mapping in a course on spatial data analysis. Following a historical review of the use of surface…
The Global Landscape of GIS in Secondary Education
ERIC Educational Resources Information Center
Kerski, Joseph J.; Demirci, Ali; Milson, Andrew J.
2013-01-01
This study analyzes the status of GIS in schools in thirty-three countries and proposes recommendations for advancing the implementation and effectiveness of GIS in secondary education from an international perspective. Thirty-three countries have been evaluated in the study to assess the global landscape of educational GIS by analyzing how GIS is…
Using Web-Based GIS in Introductory Human Geography
ERIC Educational Resources Information Center
Songer, Lynn C.
2010-01-01
Advocates for using a geographic information system (GIS) in education assert that GIS improves student learning. However, studies to clarify the relationship between learning and using GIS are still needed. This study examines the effects of using Web-based GIS maps in place of paper maps on students' geography content knowledge and motivation…
Performance of Gout Impact Scale in a longitudinal observational study of patients with gout
Wallace, Beth; Khanna, Dinesh; Aquino-Beaton, Cleopatra; Singh, Jasvinder A.; Duffy, Erin; Elashoff, David
2016-01-01
Abstract Objective. The aim was to evaluate the reliability, validity and responsiveness to change of the Gout Impact Scale (GIS), a disease-specific measure of patient-reported outcomes, in a multicentre longitudinal prospective cohort of gout patients. Methods. Subjects completed the GIS, a 24-item instrument with five scales: Concern Overall, Medication Side Effects, Unmet Treatment Need, Well-Being during Attack, and Concern Over Attack. The total GIS score was calculated by averaging the GIS scale scores. HAQ-Disability Index (HAQ-DI), Short Form (SF)-36 physical and mental component summaries (PCS and MCS) and physician and patient gout severity assessments were also completed. Reliability was assessed with Cronbach’s α. Baseline GIS scores were compared in subjects with and without gout attacks in the past 3 months using Wilcoxon rank sum tests. Multivariate linear regression was used to evaluate predictors of total GIS. Pearson’s correlation coefficients 0.24–0.36 were considered moderate and >0.37 considered large. The effect size for responsiveness to change was interpreted as follows: 0.20–0.49 small, 0.50–0.79 medium and >0.79 large. Results. In 147 subjects, reliability was acceptable for total GIS (0.93) and all GIS scales (0.82–0.94) except Medication Side Effects and Unmet Treatment Need. Total GIS and all scales except Medication Side Effects discriminated between subjects with and without recent gout attacks (P < 0.05). Total GIS showed moderate-to-large correlations with HAQ-DI, SF-36 PCS and MCS (0.33–0.46). Improvement in total GIS tracked with improved physician and patient severity scores. Worsening physician severity score and recent gout attack predicted worsening total GIS. Conclusion. Total GIS score is reliable, valid and responsive to change in patients with gout, and differentiates between subjects with and without recent gout attacks. PMID:26888852
NASA Astrophysics Data System (ADS)
Xie, Jiayu; Wang, Gongwen; Sha, Yazhou; Liu, Jiajun; Wen, Botao; Nie, Ming; Zhang, Shuai
2017-04-01
Integrating multi-source geoscience information (such as geology, geophysics, geochemistry, and remote sensing) using GIS mapping is one of the key topics and frontiers in quantitative geosciences for mineral exploration. GIS prospective mapping and three-dimensional (3D) modeling can be used not only to extract exploration criteria and delineate metallogenetic targets but also to provide important information for the quantitative assessment of mineral resources. This paper uses the Shangnan district of Shaanxi province (China) as a case study area. GIS mapping and potential granite-hydrothermal uranium targeting were conducted in the study area combining weights of evidence (WofE) and concentration-area (C-A) fractal methods with multi-source geoscience information. 3D deposit-scale modeling using GOCAD software was performed to validate the shapes and features of the potential targets at the subsurface. The research results show that: (1) the known deposits have potential zones at depth, and the 3D geological models can delineate surface or subsurface ore-forming features, which can be used to analyze the uncertainty of the shape and feature of prospectivity mapping at the subsurface; (2) single geochemistry anomalies or remote sensing anomalies at the surface require combining the depth exploration criteria of geophysics to identify potential targets; and (3) the single or sparse exploration criteria zone with few mineralization spots at the surface has high uncertainty in terms of the exploration target.
GIS diagnostics: thermal imaging systems used for poor contact detection
NASA Astrophysics Data System (ADS)
Avital, Doron; Brandenbursky, V.; Farber, A.
2004-04-01
The reliability of GIS is very high but any failure that occurs can cause extensive damage result and the repair times are considerably long. The consequential losses to system security and economically can be high, especially if the nominal GIS voltage is 420 kV and above. In view of these circumstances, increasing attention is being given to diagnostic techniques for in-service maintenance undertaken to improve the reliability and availability of GIS. Recently considerable progress has been made in diagnostic techniques and they are now used successfully during the service life of the equipment. These diagnostic techniques in general focus on the GIS insulation system and are based on partial discharge (PD) measurements in GIS. There are three main methods for in-service PD detection in GIS: - the chemical method that rely on the detection of cracked gas caused by PD, the acoustic method designed to detect the acoustic emission excited by PD, and, the electrical method which is based on detection of electrical resonance at ultra high frequencies (UHF) up to 1.5 GHz caused by PD excitation in GIS chambers (UHF method). These three dielectric diagnostic methods cannot be used for the detection of poor current carrying contacts in GIS. This problem does not always produce partial discharges and at early stages it does not cause gas cracking. An interesting solution to use two techniques - the current unbalance alarm scheme and partial discharge monitoring was advised by A. Salinas from South California Edison Co. Unfortunately this way is complicated and very expensive. The investigations performed in Japan on standing alone SF6 breaker showed that joule heating of the contact accompanied by released power of 1600 Watt produce temperature difference on the enclosure up to 7 degrees centigrade that could be detected by infra-red Thermal Imaging System. According to CIGRE Joint Working Group 33/23.12 Report, 11% of all GIS failures are due to poor current carrying contacts in GIS. The Israel Electric Company (IEC) in seeking a solution to this problem have undertaken experimental work to examine the possibility of in-service diagnostic of poor contact problem in GIS via direct local heating detection, using a Thermal Imaging System. The experiments were carried out on the part of the GIS with nominal SF6 pressure. The following aspects of the problem were examined: - the range of power released in the defective contact that could give the practical temperature rise on the surface of enclosure; - temperature distribution on the surface of enclosure; - the influence of spacer type (with holes or without) on the heat transfer process; - the influence of the length of SF6 tubes and there position (horizontal or vertical); - the temperature difference between upper and lower parts of the tubes in horizontal position; - practical use of the Thermal Imaging System for detecting poor contact problem in GIS.
Assessment of Managed Aquifer Recharge Site Suitability Using a GIS and Modeling.
Russo, Tess A; Fisher, Andrew T; Lockwood, Brian S
2015-01-01
We completed a two-step regional analysis of a coastal groundwater basin to (1) assess regional suitability for managed aquifer recharge (MAR), and (2) quantify the relative impact of MAR activities on groundwater levels and sea water intrusion. The first step comprised an analysis of surface and subsurface hydrologic properties and conditions, using a geographic information system (GIS). Surface and subsurface data coverages were compiled, georeferenced, reclassified, and integrated (including novel approaches for combining related datasets) to derive a spatial distribution of MAR suitability values. In the second step, results from the GIS analysis were used with a regional groundwater model to assess the hydrologic impact of potential MAR placement and operating scenarios. For the region evaluated in this study, the Pajaro Valley Groundwater Basin, California, GIS results suggest that about 7% (15 km2) of the basin may be highly suitable for MAR. Modeling suggests that simulated MAR projects placed near the coast help to reduce sea water intrusion more rapidly, but these projects also result in increased groundwater flows to the ocean. In contrast, projects placed farther inland result in more long-term reduction in sea water intrusion and less groundwater flowing to the ocean. This work shows how combined GIS analysis and modeling can assist with regional water supply planning, including evaluation of options for enhancing groundwater resources. © 2014, National Ground Water Association.
NASA Astrophysics Data System (ADS)
Wang, Lei
Natural and human-induced environmental changes have been altering the earth's surface and hydrological processes, and thus directly contribute to the severity of flood hazards. To understand these changes and their impacts, this research developed a GIS-based hydrological and hydraulic modeling system, which incorporates state-of-the-art remote sensing data to simulate flood under various scenarios. The conceptual framework and technical issues of incorporating multi-scale remote sensing data have been addressed. This research develops an object-oriented hydrological modeling framework. Compared with traditional lumped or cell-based distributed hydrological modeling frameworks, the object-oriented framework allows basic spatial hydrologic units to have various size and irregular shape. This framework is capable of assimilating various GIS and remotely-sensed data with different spatial resolutions. It ensures the computational efficiency, while preserving sufficient spatial details of input data and model outputs. Sensitivity analysis and comparison of high resolution LIDAR DEM with traditional USGS 30m resolution DEM suggests that the use of LIDAR DEMs can greatly reduce uncertainty in calibration of flow parameters in the hydrologic model and hence increase the reliability of modeling results. In addition, subtle topographic features and hydrologic objects like surface depressions and detention basins can be extracted from the high resolution LiDAR DEMs. An innovative algorithm has been developed to efficiently delineate surface depressions and detention basins from LiDAR DEMs. Using a time series of Landsat images, a retrospective analysis of surface imperviousness has been conducted to assess the hydrologic impact of urbanization. The analysis reveals that with rapid urbanization the impervious surface has been increased from 10.1% to 38.4% for the case study area during 1974--2002. As a result, the peak flow for a 100-year flood event has increased by 20% and the floodplain extent has expanded by about 21.6%. The quantitative analysis suggests that the large regional detentions basins have effectively offset the adverse effect of increased impervious surface during the urbanization process. Based on the simulation and scenario analyses of land subsidence and potential climate changes, some planning measures and policy implications have been derived for guiding smart urban growth and sustainable resource development and management to minimize flood hazards.
Satellite Imagery Products - Office of Satellite and Product Operations
» Disclaimer » Web Linking Policy » Use of Data and Products » FAQs: Imagery Contact Us Services Argos DCS : Page | VIS | IR | Water Vapor Sample GOES Watervapor composite Detailed Product List Composite Imagery Surface Data GIS Data Available Through Interactive Internet Mapping GIS Fire and Smoke Detection Web Page
Water quality modeling using geographic information system (GIS) data
NASA Technical Reports Server (NTRS)
Engel, Bernard A
1992-01-01
Protection of the environment and natural resources at the Kennedy Space Center (KSC) is of great concern. The potential for surface and ground water quality problems resulting from non-point sources of pollution was examined using models. Since spatial variation of parameters required was important, geographic information systems (GIS) and their data were used. The potential for groundwater contamination was examined using the SEEPAGE (System for Early Evaluation of the Pollution Potential of Agricultural Groundwater Environments) model. A watershed near the VAB was selected to examine potential for surface water pollution and erosion using the AGNPS (Agricultural Non-Point Source Pollution) model.
NASA Astrophysics Data System (ADS)
Nikolaidis, Andreas; Stylianou, Stavros; Georgiou, Georgios; Hajimitsis, Diofantos; Gravanis, Elias; Akylas, Evangelos
2015-04-01
During the last decade, Rixen (2005) and Alvera-Azkarate (2010) presented the DINEOF (Data Interpolating Empirical Orthogonal Functions) method, a EOF-based technique to reconstruct missing data in satellite images. The application of DINEOF method, proved to provide relative success in various experimental trials (Wang and Liu, 2013; Nikolaidis et al., 2013;2014), and tends to be an effective and computationally affordable solution, on the problem of data reconstruction, for missing data from geophysical fields, such as chlorophyll-a, sea surface temperatures or salinity and geophysical fields derived from satellite data. Implementation of this method in a GIS system will provide with a more complete, integrated approach, permitting the expansion of the applicability over various aspects. This may be especially useful in studies where various data of different kind, have to be examined. For this purpose, in this study we have implemented and present a GIS toolbox that aims to automate the usage of the algorithm, incorporating the DINEOF codes provided by GHER (GeoHydrodynamics and Environment Research Group of University of Liege) into the ArcGIS®. ArcGIS® is a well known standard on Geographical Information Systems, used over the years for various remote sensing procedures, in sea and land environment alike. A case-study of filling the missing satellite derived current data in the Eastern Mediterranean Sea area, for a monthly period is analyzed, as an example for the effectiveness and simplicity of the usage of this toolbox. The specific study focuses to OSCAR satellite data (http://www.oscar.noaa.gov/) collected by NOAA/NESDIS Operational Surface Current Processing and Data Center, from the respective products of OSCAR Project Office Earth and Space Research organization, that provides free online access to unfiltered (1/3 degree) resolution. All the 5-day mean products data coverage were successfully reconstructed. KEY WORDS: Remote Sensing, Cyprus, Mediterranean, DINEOF, ArcGIS, data reconstruction.
Geographic information systems, remote sensing, and spatial analysis activities in Texas, 2002-07
Pearson, D.K.; Gary, R.H.; Wilson, Z.D.
2007-01-01
Geographic information system (GIS) technology has become an important tool for scientific investigation, resource management, and environmental planning. A GIS is a computer-aided system capable of collecting, storing, analyzing, and displaying spatially referenced digital data. GIS technology is particularly useful when analyzing a wide variety of spatial data such as with remote sensing and spatial analysis. Remote sensing involves collecting remotely sensed data, such as satellite imagery, aerial photography, or radar images, and analyzing the data to gather information or investigate trends about the environment or the Earth's surface. Spatial analysis combines remotely sensed, thematic, statistical, quantitative, and geographical data through overlay, modeling, and other analytical techniques to investigate specific research questions. It is the combination of data formats and analysis techniques that has made GIS an essential tool in scientific investigations. This document presents information about the technical capabilities and project activities of the U.S. Geological Survey (USGS) Texas Water Science Center (TWSC) GIS Workgroup from 2002 through 2007.
Surface Exposure Dating of Glaciated Landscapes in Washington Land, Northwest Greenland
NASA Astrophysics Data System (ADS)
Reusche, M.; Ceperley, E. G.; Marcott, S. A.; Brook, E.; Mix, A. C.
2016-12-01
The timing and rate of sea-level contribution from the Greenland ice sheet (GIS) and its outlet glaciers through the 21st century is uncertain. Given the long response time of ice sheets, characterizing the sensitivity of the GIS to both atmospheric and oceanic forcings in the past plays a vital role in forecasting future GIS changes. Our terrestrial-based study is primarily focused along the margins of the marine-terminating Petermann Glacier of northwestern Greenland, and is part of a larger multidisciplinary research effort with oceanographers, geophysicists, and atmospheric scientists that aims to better understand Petermann's response to past perturbations in climate and the primary mechanisms that drive those changes. In order to more accurately determine the ice sheet history of the northwestern sector of the GIS, rock samples from erratic boulders on moraines and from across an expansive ice free region (Washington Land) adjacent to Nares Strait were collected for surface exposure dating with 10Be. The project goal is to apply exposure histories from these glacial erratics to determine the timing and rate of GIS retreat since the last glacial maximum from Nares Strait up to the relatively `fresh' moraines that front the present GIS and Petermann Glacier margins nearly 70 km away. Moraine chronologies will also be constructed from these presumably late Holocene moraines, which serve as unique evidence of pre-Little Ice Age (LIA) Neoglaciation that are often obliterated from the landscape due to the large extent of the LIA advance across much of Greenland. Preliminary exposure ages and results will be presented and discussed within the context of the ice-ocean-atmosphere system of northwestern Greenland and compared to ongoing and prior work.
A GIS tool to analyze forest road sediment production and stream impacts
Ajay Prasad; David G. Tarboton; Charles H. Luce; Thomas A. Black
2005-01-01
A set of GIS tools to analyze the impacts of forest roads on streams considering sediment production, mass wasting risk, and fish passage barriers, has been developed. Sediment production for each road segment is calculated from slope, length, road surface condition and road-side drain vegetation gathered by a GPS inventory and by overlaying the road path on a Digital...
NASA Astrophysics Data System (ADS)
Giali, Gabriela; Schneider, Petra
2015-04-01
USE OF GIS TECHNOLOGY IN SURFACE WATER MONITORING FOR TARGETED POLICY INTERVENTION IN A MOUNTAINOUS CATCHMENT IN ROMANIA The collection of information on surface water quality is a specific activity that takes place systematically and regularly at regional and national scale, and it is important for the assessment of the water quality as well as for water management policy-making. A data base information management using a Geographical Information System (GIS) forms an important aspect of environmental management, which provides the frame for processing and visualisation of water monitoring data and information as well as for the optimisation of monitoring concepts. This paper presents an architecture performed by a GIS which provides a grafic database and attributes the nesessary measurements of the water quality to different sections of the mountainous catchment of the Suceava river in the north of Romania. With this approach the location of the water sampling points can be optimised in terms of the selection and setting of the river sections. To facilitate the setting of the sampling locations in the various sections of water sampling in the river, the presented GIS system provides to the user different information layers with combined or isolated data according to the objectives. In the frame of the research were created 5 layers of information in the basin under study, underlying the determination of a new information layer, namely the "Hydrografic Network Graded to Hydrographic Sections". Practically, in the studied basin were established 8 sections for water sampling locations, and the water quality characterization was done by the consideration of 15 quality indicators. The GIS system presented in this research is a valuable, useful and adaptable to land use changes data base that can be exploited by any number of combinations, its capabilities justify it's role as "tool to support decision making." With this characteristics it supports the policy-making of the competent bodies to fulfil the requirements of EC Water Framework Directive on catchment scale and it serves as planning tool for hydroengineering and water resources management.
Developing a middleware to support HDF data access in ArcGIS
NASA Astrophysics Data System (ADS)
Sun, M.; Jiang, Y.; Yang, C. P.
2014-12-01
Hierarchical Data Format (HDF) is the standard data format for the NASA Earth Observing System (EOS) data products, like the MODIS level-3 data. These data have been widely used in long-term study of the land surface, biosphere, atmosphere, and oceans of the Earth. Several toolkits have been developed to access HDF data, such as the HDF viewer and Geospatial Data Abstraction Library (GDAL), etc. ArcGIS integrated the GDAL providing data user a Graphical User Interface (GUI) to read HDF data. However, there are still some problems when using the toolkits:for example, 1) the projection information is not recognized correctly, 2) the image is dispalyed inverted, and 3) the tool lacks of capability to read the third dimension information stored in the data subsets, etc. Accordingly, in this study we attempt to improve the current HDF toolkits to address the aformentioned issues. Considering the wide-usage of ArcGIS, we develop a middleware for ArcGIS based on GDAL to solve the particular data access problems happening in ArcGIS, so that data users can access HDF data successfully and perform further data analysis with the ArcGIS geoprocessing tools.
3D subsurface geological modeling using GIS, remote sensing, and boreholes data
NASA Astrophysics Data System (ADS)
Kavoura, Katerina; Konstantopoulou, Maria; Kyriou, Aggeliki; Nikolakopoulos, Konstantinos G.; Sabatakakis, Nikolaos; Depountis, Nikolaos
2016-08-01
The current paper presents the combined use of geological-geotechnical insitu data, remote sensing data and GIS techniques for the evaluation of a subsurface geological model. High accuracy Digital Surface Model (DSM), airphotos mosaic and satellite data, with a spatial resolution of 0.5m were used for an othophoto base map compilation of the study area. Geological - geotechnical data obtained from exploratory boreholes and the 1:5000 engineering geological maps were digitized and implemented in a GIS platform for a three - dimensional subsurface model evaluation. The study is located at the North part of Peloponnese along the new national road.
Earthquake-induced ground failures in Italy from a reviewed database
NASA Astrophysics Data System (ADS)
Martino, S.; Prestininzi, A.; Romeo, R. W.
2014-04-01
A database (Italian acronym CEDIT) of earthquake-induced ground failures in Italy is presented, and the related content is analysed. The catalogue collects data regarding landslides, liquefaction, ground cracks, surface faulting and ground changes triggered by earthquakes of Mercalli epicentral intensity 8 or greater that occurred in the last millennium in Italy. As of January 2013, the CEDIT database has been available online for public use (http://www.ceri.uniroma1.it/cn/gis.jsp ) and is presently hosted by the website of the Research Centre for Geological Risks (CERI) of the Sapienza University of Rome. Summary statistics of the database content indicate that 14% of the Italian municipalities have experienced at least one earthquake-induced ground failure and that landslides are the most common ground effects (approximately 45%), followed by ground cracks (32%) and liquefaction (18%). The relationships between ground effects and earthquake parameters such as seismic source energy (earthquake magnitude and epicentral intensity), local conditions (site intensity) and source-to-site distances are also analysed. The analysis indicates that liquefaction, surface faulting and ground changes are much more dependent on the earthquake source energy (i.e. magnitude) than landslides and ground cracks. In contrast, the latter effects are triggered at lower site intensities and greater epicentral distances than the other environmental effects.
Integrating ArcGIS Online with GEOSS Data Access Broker
NASA Astrophysics Data System (ADS)
Lucchi, Roberto; Hogeweg, Marten
2014-05-01
The Global Earth Observation System of Systems (GEOSS) seeks to address 9 societal benefit areas for Earth observations to address: disasters, health, energy, climate, agriculture, ecosystems, biodiversity, water, and weather. As governments and their partners continue to monitor the face of the Earth, the collection, storage, analysis, and sharing of these observations remain fragmented, incomplete, or redundant. Major observational gaps also remain (particularly as we seek to look beneath the surface of the land and the water). As such, GEO's credo is that "decision makers need a global, coordinated, comprehensive, and sustained system of observing systems." Not surprisingly, one of the largest block of issues facing GEOSS is in the area of data: the access to data (including the building services to make the data more accessible), inadequate data integration and interoperability, error and uncertainty of observations, spatial and temporal gaps in observations, and the related issues of user involvement and capacity building. This is especially for people who stand to gain the most benefit from the datasets, but don't have the resources or knowledge to use them. Esri has millions of GIS and imagery users in hundreds of thousands of organizations around the world that work in the aforementioned 9 GEO societal benefit areas. Esri is therefore proud to have entered into a partnership with GEOSS, more specifically by way of a Memorandum of Understanding (MOU) between Esri and the Earth and Space Science Informatics (ESSI) Laboratory of Prof. Stefano Nativi at the CNR (National Research Council of Italy) Institute of Atmospheric Pollution Research. Esri is working with the ESSI Lab to integrate ArcGIS Online by way of the ArcGIS Online API into the GEOSS Data Access Broker (DAB), resulting in the discoverability of all public content from ArcGIS Online through many of the search portals that participate in this network (e.g., DataOne, CEOS, CUAHSI, OneGeology, IOOS). The synergistic efforts will include: 1) Providing the GEOSS community with access to Esri GIS community content, expertise and technology through the GEOSS DAB, as well as to collaboration tools via the ArcGIS platform. 2) Encouraging the Esri GIS community to participate as contributors and users of GEOSS. 3) Supporting the extension of GEOSS to include ArcGIS Online publicly-available data. 4) Collaboration on outreach to both the GIS and GEO communities on effective use of GEOSS, particularly for environmental decision-making. 5) Collaboration on the evolution of GEOSS as an open and interoperable platform in conjunction with the GEOSS community. Protocols such as OPenDAP and formats such as netCDF will play a critical role. This talk will present the initial results of the collaboration which includes the integration of ArcGIS Online in the GEOSS DAB.
NASA Astrophysics Data System (ADS)
Avila-Olivera, Jorge A.; Farina, Paolo; Garduño-Monroy, Victor H.
2008-05-01
In Celaya city, Subsidence-Creep-Fault Processes (SCFP) began to become visible at the beginning of the 1980s with the sprouting of the crackings that gave rise to the surface faults "Oriente" and "Poniente". At the present time, the city is being affected by five surface faults that display a preferential NNW-SSE direction, parallel to the regional faulting system "Taxco-San Miguel de Allende". In order to study the SCFP in the city, the first step was to obtain a map of surface faults, by integrating in a GIS field survey and an urban city plan. The following step was to create a map of the current phreatic level decline in city with the information of deep wells and using the "kriging" method in order to obtain a continuous surface. Finally the interferograms maps resulted of an InSAR analysis of 9 SAR images covering the time interval between July 12 of 2003 and May 27 of 2006 were integrated to a GIS. All the maps generated, show how the surface faults divide the city from North to South, in two zones that behave in a different way. The difference of the phreatic level decline between these two zones is 60 m; and the InSAR study revealed that the Western zone practically remains stable, while sinkings between the surface faults "Oriente" and "Universidad Pedagógica" are present, as well as in portions NE and SE of the city, all of these sinkings between 7 and 10 cm/year.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Avila-Olivera, Jorge A.; Instituto de Investigaciones Metalurgicas, Universidad Michoacana de San Nicolas de Hidalgo, C.U., 58030 Morelia, Michoacan; Farina, Paolo
2008-05-07
In Celaya city, Subsidence-Creep-Fault Processes (SCFP) began to become visible at the beginning of the 1980s with the sprouting of the crackings that gave rise to the surface faults 'Oriente' and 'Poniente'. At the present time, the city is being affected by five surface faults that display a preferential NNW-SSE direction, parallel to the regional faulting system 'Taxco-San Miguel de Allende'. In order to study the SCFP in the city, the first step was to obtain a map of surface faults, by integrating in a GIS field survey and an urban city plan. The following step was to create amore » map of the current phreatic level decline in city with the information of deep wells and using the 'kriging' method in order to obtain a continuous surface. Finally the interferograms maps resulted of an InSAR analysis of 9 SAR images covering the time interval between July 12 of 2003 and May 27 of 2006 were integrated to a GIS. All the maps generated, show how the surface faults divide the city from North to South, in two zones that behave in a different way. The difference of the phreatic level decline between these two zones is 60 m; and the InSAR study revealed that the Western zone practically remains stable, while sinkings between the surface faults 'Oriente' and 'Universidad Pedagogica' are present, as well as in portions NE and SE of the city, all of these sinkings between 7 and 10 cm/year.« less
GIS Education in Taiwanese Senior High Schools: A National Survey among Geography Teachers
ERIC Educational Resources Information Center
Wang, Yao-Hui; Chen, Che-Ming
2013-01-01
Following the integration of GIS into the national curriculum standards of senior high school geography, Taiwan has systematically implemented GIS education for over a decade. However, the effectiveness of this implementation is currently unclear. Therefore, this study investigates the status of GIS education in Taiwanese senior high schools. A…
Modeling of Greenland outlet glaciers response to future climate change
NASA Astrophysics Data System (ADS)
Beckmann, J.
2017-12-01
Over the past two decades net mass loss from the Greenland ice sheet (GIS) quadrupled, resulting in 25% of the global mean sea level (GMSL) rise. Increased mass loss of the GIS is caused by enhanced surface melting and speedup of the marine-terminating outlet glaciers. This speedup has been related, among other factors, to enhanced submarine melting, which in turn is caused by warming of the surrounding ocean and by increased subglacial, meltwater discharge. Yet, ice-ocean processes are not properly represented in contemporary Greenland Ice Sheet models used to project future changes in the GIS. In this work, we performed numerical experiments with a one-dimensional plume model coupled to a one-dimensional (depth- and width- integrated) ice flow model for several representative outlet glaciers in Greenland. We investigate the dynamic response of the coupled ice-flow plume model to scenarios of future climate change. In particular, we examine the transient response of the outlet glaciers to projected changes in surface melting, ocean temperature and subglacial discharge. With our modeling approach we quantify the amount of the surface and submarine melting and the resulting retreat and mass loss for each individual glacier for the next 100 years.
Albedo Drop on the Greenland Ice Sheet: Relative Impacts of Wet and Dry Snow Processes
NASA Astrophysics Data System (ADS)
Chen, J.; Polashenski, C.
2014-12-01
The energy balance of the Greenland Ice Sheet (GIS) is strongly impacted by changes in snow albedo. MODIS (Moderate Resolution Imaging Spectroradiometer) observations indicate that the GIS albedo has dropped since the early part of this century. We analyze data from the MODIS products MOD10A1 for broadband snow albedo and MOD09A1 for surface spectral reflectance since 2001 to better explain the physical mechanisms driving these changes. The MODIS products are filtered, and the data is masked using microwave-derived surface melt maps to isolate albedo changes due to dry snow processes from those driven by melt impacts. Results show that the majority of recent changes in the GIS albedo - even at high elevations - are driven by snow wetting rather than dry snow processes such as grain metamorphosis and aerosol impurity deposition. The spectral signature of the smaller changes occurring within dry snow areas suggests that grain metamorphosis dominates the albedo decline in these regions.
Geomorphologic Analysis of Drainage Basins in Damavand Volcano Cone, Iran
NASA Astrophysics Data System (ADS)
Zareinejad, M.
2011-12-01
Damavand volcanic cone is located in the center of the Alborz chain, in the southern Caspian Sea in Iran. Damavand is a dormant volcano in Iran. It is not only the country's highest peak but also the highest mountain on the Middle East; its elevation is 5619 m. The main purpose of this paper is recognition and appraisement of drainage basins in Damavand cone from geomorphic point of view. Water causes erosion in nature in different forms and creates diverse forms on the earth surface depending on the manner of its appearance in nature. Although water is itself a former factor, it flows under morphological effect of earth surface. The difference of earth surface topography and as a result water movement on it, cause the formation of sub-basins. Identification of region drainage basins is considered as one of the requirements for Damavand cone morphometric. Thereupon, five drainage basins were identified in this research by relying on main criteria including topographic contours with 10 m intervals, drainage system, DEM map, slope map, aspect map and satellite images. (Fig 1) Area, perimeter, height classification for classifying morphological landforms in different levels, hypsometric calculations, drainage density, etc. were then calculated by using ArcGIS software. (Table 1) Damavand cone, with a height more than 5,000 meters from the sea surface, has very hard pass slopes and our purpose in this paper is to identify the effect of drainage basins conditions in the region on erosion and the formation of morphological landforms by using SPOT, ASTER, satellite images as well as papering of data in GIS environment.
NASA Astrophysics Data System (ADS)
Bandaragoda, C.; Castronova, A. M.; Phuong, J.; Istanbulluoglu, E.; Strauch, R. L.; Nudurupati, S. S.; Tarboton, D. G.; Wang, S. W.; Yin, D.; Barnhart, K. R.; Tucker, G. E.; Hutton, E.; Hobley, D. E. J.; Gasparini, N. M.; Adams, J. M.
2017-12-01
The ability to test hypotheses about hydrology, geomorphology and atmospheric processes is invaluable to research in the era of big data. Although community resources are available, there remain significant educational, logistical and time investment barriers to their use. Knowledge infrastructure is an emerging intellectual framework to understand how people are creating, sharing and distributing knowledge - which has been dramatically transformed by Internet technologies. In addition to the technical and social components in a cyberinfrastructure system, knowledge infrastructure considers educational, institutional, and open source governance components required to advance knowledge. We are designing an infrastructure environment that lowers common barriers to reproducing modeling experiments for earth surface investigation. Landlab is an open-source modeling toolkit for building, coupling, and exploring two-dimensional numerical models. HydroShare is an online collaborative environment for sharing hydrologic data and models. CyberGIS-Jupyter is an innovative cyberGIS framework for achieving data-intensive, reproducible, and scalable geospatial analytics using the Jupyter Notebook based on ROGER - the first cyberGIS supercomputer, so that models that can be elastically reproduced through cloud computing approaches. Our team of geomorphologists, hydrologists, and computer geoscientists has created a new infrastructure environment that combines these three pieces of software to enable knowledge discovery. Through this novel integration, any user can interactively execute and explore their shared data and model resources. Landlab on HydroShare with CyberGIS-Jupyter supports the modeling continuum from fully developed modelling applications, prototyping new science tools, hands on research demonstrations for training workshops, and classroom applications. Computational geospatial models based on big data and high performance computing can now be more efficiently developed, improved, scaled, and seamlessly reproduced among multidisciplinary users, thereby expanding the active learning curriculum and research opportunities for students in earth surface modeling and informatics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Mengjin; Zeng, Yining; Li, Zhen
Here, we examine GBs with respect to non-GB regions (grain surfaces (GSs) and grain interiors (GIs)) in high-quality micrometer-sized perovskite CH 3NH 3PbI 3 (or MAPbI 3) thin films using high-resolution confocal fluorescence-lifetime imaging microscopy in conjunction with kinetic modeling of charge-transport and recombination processes. We show that, contrary to previous studies, GBs in our perovskite MAPbI3 thin films do not lead to increased recombination but that recombination in these films happens primarily in the non-GB regions (i.e., GSs or GIs). We also find that GBs in these films are not transparent to photogenerated carriers, which is likely associated withmore » a potential barrier at GBs. Lastly, even though GBs generally display lower luminescence intensities than GSs/GIs, the lifetimes at GBs are no worse than those at GSs/GIs, further suggesting that GBs do not dominate non-radiative recombination in MAPbI 3 thin films.« less
ERIC Educational Resources Information Center
Goldstein, Donna; Alibrandi, Marsha
2013-01-01
This case study conducted with 1,425 middle school students in Palm Beach County, Florida, included a treatment group receiving GIS instruction (256) and a control group without GIS instruction (1,169). Quantitative analyses on standardized test scores indicated that inclusion of GIS in middle school curriculum had a significant effect on student…
"So "That's" What the Whiskey Rebellion Was!": Teaching Early U.S. History with GIS
ERIC Educational Resources Information Center
Snyder, Jeffrey W.; Hammond, Thomas C.
2012-01-01
The Geographic Information System (GIS) is a tool for effective teacher-centered instruction, powerful student-centered instruction, and engagement in historiography. GIS tools have existed since the 1960s, but only since the 1990s have educators explored their application to social studies. Proponents expect GIS to have a dramatic impact upon…
Using Geographic Information Systems (GIS) at Schools without a Computer Laboratory
ERIC Educational Resources Information Center
Demirci, Ali
2011-01-01
This article reports the results of a study that explored the applicability and effectiveness of a GIS-based exercise implemented by a teacher on a single computer in an ordinary classroom. The GIS-based exercise was implemented in two different environments with two different groups of students. The study reveals that implementing GIS exercises…
The GIS weasel - An interface for the development of spatial information in modeling
Viger, R.J.; Markstrom, S.M.; Leavesley, G.H.; ,
2005-01-01
The GIS Weasel is a map and Graphical User Interface (GUI) driven tool that has been developed as an aid to modelers in the delineation, characterization of geographic features, and their parameterization for use in distributed or lumped parameter physical process models. The interface does not require user expertise in geographic information systems (GIS). The user does need knowledge of how the model will use the output from the GIS Weasel. The GIS Weasel uses Workstation ArcInfo and its the Grid extension. The GIS Weasel will run on all platforms that Workstation ArcInfo runs (i.e. numerous flavors of Unix and Microsoft Windows).The GIS Weasel requires an input ArcInfo grid of some topographical description of the Area of Interest (AOI). This is normally a digital elevation model, but can be the surface of a ground water table or any other data that flow direction can be resolved from. The user may define the AOI as a custom drainage area based on an interactively specified watershed outlet point, or use a previously created map. The user is then able to use any combination of the GIS Weasel's tool set to create one or more maps for depicting different kinds of geographic features. Once the spatial feature maps have been prepared, then the GIS Weasel s many parameterization routines can be used to create descriptions of each element in each of the user s created maps. Over 200 parameterization routines currently exist, generating information about shape, area, and topological association with other features of the same or different maps, as well many types of information based on ancillary data layers such as soil and vegetation properties. These tools easily integrate other similarly formatted data sets.
Study on the total amount control of atmospheric pollutant based on GIS.
Wang, Jian-Ping; Guo, Xi-Kun
2005-08-01
To provide effective environmental management for total amount control of atmospheric pollutants. An atmospheric diffusion model of sulfur dioxide on the surface of the earth was established and tested in Shantou of Guangdong Province on the basis of an overall assessment of regional natural environment, social economic state of development, pollution sources and atmospheric environmental quality. Compared with actual monitoring results in a studied region, simulation values fell within the range of two times of error and were evenly distributed in the two sides of the monitored values. Predicted with the largest emission model method, the largest emission of sulfur dioxide would be 54,279.792 tons per year in 2010. The mathematical model established and revised on the basis of GIS is more rational and suitable for the regional characteristics of total amount control of air pollutants.
Scocco, Paola; Brusaferro, Andrea; Catorci, Andrea
2012-07-01
Although the Geographical Information System (GIS), which integrates computerized drawing computer assisted design (CAD) and relational databases (data base management system (DBMS)), is best known for applications in geographical and planning cartography, it can also use many kinds of information concerning the territory. A multidisciplinary project was initiated since 5 years a multidisciplinary study was initiated to use GIS to integrate environmental and ecological data with findings on animal health, ethology, and anatomy. This study is chiefly aimed at comparing two different methods for measuring the absorptive surface of rumen papillae. To this scope, 21 female sheep (Ovis aries) on different alimentary regimes (e.g., milk and forage mixed diet, early herbaceous diet, dry hay diet, and fresh hay diet at the maximum of pasture flowering and at the maximum of pasture dryness) were used; after slaughtering, 20 papillae were randomly removed from each sample collected from four indicator regions of rumen wall, placed near a metric reference and digitally photographed. The images were developed with the ArcGIS™ software to calculate the area of rumen papillae by means of GIS and to measure their mid-level width and length to calculate the papillae area as previously performed with a different method. Spatial measurements were analyzed using univariate and multivariate methods. This work demonstrates that the GIS methodology can be efficiently used for measuring the absorptive surface of rumen papillae. In addition, GIS demonstrated to be a rapid, precise, and objective tool when compared with previously used method. Copyright © 2012 Wiley Periodicals, Inc.
Application of GIS in Modeling Zilberchai Basin Runoff
NASA Astrophysics Data System (ADS)
Malekani, L.; Khaleghi, S.; Mahmoodi, M.
2014-10-01
Runoff is one of most important hydrological variables that are used in many civil works, planning for optimal use of reservoirs, organizing rivers and warning flood. The runoff curve number (CN) is a key factor in determining runoff in the SCS (Soil Conservation Service) based hydrologic modeling method. The traditional SCS-CN method for calculating the composite curve number consumes a major portion of the hydrologic modeling time. Therefore, geographic information systems (GIS) are now being used in combination with the SCS-CN method. This work uses a methodology of determining surface runoff by Geographic Information System model and applying SCS-CN method that needs the necessary parameters such as land use map, hydrologic soil groups, rainfall data, DEM, physiographic characteristic of the basin. The model is built by implementing some well known hydrologic methods in GIS like as ArcHydro, ArcCN-Runoff for modeling of Zilberchai basin runoff. The results show that the high average weighted of curve number indicate that permeability of the basin is low and therefore likelihood of flooding is high. So the fundamental works is essential in order to increase water infiltration in Zilberchai basin and to avoid wasting surface water resources. Also comparing the results of the computed and observed runoff value show that use of GIS tools in addition to accelerate the calculation of the runoff also increase the accuracy of the results. This paper clearly demonstrates that the integration of GIS with the SCS-CN method provides a powerful tool for estimating runoff volumes in large basins.
NASA Astrophysics Data System (ADS)
Aditiya, A.; Aoki, Y.; Anugrah, R. D.
2018-04-01
Sinabung Volcano which located in northern part of Sumatera island is part of a hundred active volcano in Indonesia. Surface deformation is detected over Sinabung Volcano and surrounded area since the first eruption in 2010 after 400 years long rest. We present multi temporal Interferometric Synthetic Aperture Radar (InSAR) time-series method of ALOS-2 L-band SAR data acquired from December 2014 to July 2017 to reveal surface deformation with high spatial resolution. The method includes focusing the SAR data, generating interferogram and phase unwrapping using SNAPHU tools. The result reveal significant deformation over Sinabung Volcano areas at rates up to 10 cm during observation period and the highest deformation occurs in western part which is trajectory of lava. We concluded the observed deformation primarily caused by volcanic activity respectively after long period of rest. In addition, Geographic Information System (GIS) analysis produces disaster affected areas of Sinabung eruption. GIS is reliable technique to estimate the impact of the hazard scenario to the exposure data and develop scenarios of disaster impacts to inform their contingency and emergency plan. The GIS results include the estimated affected area divided into 3 zones based on pyroclastic lava flow and pyroclastic fall (incandescent rock and ash). The highest impact is occurred in zone II due to many settlements are scattered in this zone. This information will be support stakeholders to take emergency preparation for disaster reduction. The continuation of this high rate of decline tends to endanger the population in next periods.
Watershed Dynamics: Using Web-based GIS to Access Data and Study the Hydrosphere
NASA Astrophysics Data System (ADS)
Buzby, C. K.; Jona, K.
2010-12-01
The Watershed Dynamics project has developed online GIS tools and curriculum to provide high school earth science students with access to data and analysis tools to perform investigations on their local watershed. Using FieldScope web-based GIS tools from National Geographic, students investigate precipitation, stream discharge, and land cover data for the US. Students use the data to study water availability across the US and the world, human impacts on the watershed, and more. Curriculum developers at the Office of STEM Education Partnerships (OSEP) at Northwestern University and the GLOBE Program have created two complete units which scaffold students on their way to independent research using GIS. In the Water Availability unit, students work with precipitation, evaporation, and surface runoff to investigate the water cycle and how it varies regionally and seasonally. In the Human Impact unit, students analyze land cover change over time and investigate stream discharge to figure out how humans are impacting their watershed. These units can be used together or individually, but provide students progressively more research independence, leading them to ask their own questions about the watershed using GIS data. Both units have been pilot tested in high school classrooms and found to be successful at increasing student content knowledge about the water cycle. They are being modified for use at the undergraduate level. The web-based GIS interface has the functionality of desktop GIS, but allows for a simpler user-experience and direct links to relevant data. Students can use these tools to learn scientific content and as a stepping-stone for further GIS investigations.
NASA Astrophysics Data System (ADS)
Chuang, Yi-Ting
The advancement of mobile computing technology has provided diverse way for education. Combination of mobile devices and GIS tools has become a trend in many geospatial technology applications (i.e., Google Maps application on smartphones). This research aims to develop an iBook prototype (a GIS textbook) for GIS education on Apple iPads and to evaluate the effectiveness of adopting the GIS iBook in classes and fieldwork exercises. We conducted the evaluation tests in two GIS courses (GEOG104 and GEOG381) in Fall 2014 at San Diego State University. There are two main research questions in this study: (1) How to assess and evaluate the effectiveness of location-based learning exercises (from iBook) and fieldwork exercises for first-time GIS students? (2) What were major technical challenges and opportunities to utilize mobile device and mobile technology in GIS education? The procedures of developing and evaluating the prototype of the GIS iBook include creating two new chapters (chapter three: Wander the World through Remote Sensing Data and chapter four: Internet and Mobile GIS), interviewing five educators from high schools and community colleges, and improving the contents of the GIS iBook after the interview. There were 31 students who tested the GIS iBook and did a fieldwork exercise with iPads. The 31 students were required to finish five questionnaires after the exercise to express their user experiences and thoughts about the GIS iBook. Based on the result of questionnaires, most students preferred to take GIS classes with the free GIS iBook and thought fieldwork exercise can help their learning. The students also performed better in knowledge oriented survey after reading the GIS iBook. This research also adopts the SWOT analysis method to evaluate the prototype of the GIS iBook. The result of the SWOT analysis indicates that utilizing mobile device in GIS education does have a great potential value in enhancing student's understanding. The strengths of utilizing mobile device in GIS education include portability, easy update contents and abundant free development resources, while the weaknesses include distracting multimedia widgets, lack of Internet access, and security issues. The opportunities of SWOT analysis include financial plan for iPads and lack of competitors, while the threats include higher price and incompatibility of iBooks on other tablet computers. The major limitations and key challenges are limited survey time, small sample size, and technical difficulties of developing the GIS iBook.
We developed a technique for assessing the accuracy of sub-pixel derived estimates of impervious surface extracted from LANDSAT TM imagery. We utilized spatially coincident
sub-pixel derived impervious surface estimates, high-resolution planimetric GIS data, vector--to-
r...
Using GIS to produce impervious surface coefficients from National Land Cover Data
National Laud Cover Data (NLCD) and county level planimetric impervious surface data were utilized to derive an impervious coefficient per NLCD class. Results show that coefficients fall in...
Initiating the Use of GIS Technology in Wyoming Public Schools through In-Service Workshops.
ERIC Educational Resources Information Center
Buss, Alan R.; McClurg, Patricia A.
This paper reports the results of a 2-year study investigating the types of experiences and support necessary for in-service teachers to effectively integrate Geographic Information Systems (GIS) in their teaching/learning environments. The complex nature of GIS software prompted the authors to ask whether GIS can be a useful tool in the…
Geographic information systems, remote sensing, and spatial analysis activities in Texas, 2008-09
,
2009-01-01
Geographic information system (GIS) technology has become an important tool for scientific investigation, resource management, and environmental planning. A GIS is a computer-aided system capable of collecting, storing, analyzing, and displaying spatially referenced digital data. GIS technology is useful for analyzing a wide variety of spatial data. Remote sensing involves collecting remotely sensed data, such as satellite imagery, aerial photography, or radar images, and analyzing the data to gather information or investigate trends about the environment or the Earth's surface. Spatial analysis combines remotely sensed, thematic, statistical, quantitative, and geographical data through overlay, modeling, and other analytical techniques to investigate specific research questions. It is the combination of data formats and analysis techniques that has made GIS an essential tool in scientific investigations. This fact sheet presents information about the technical capabilities and project activities of the U.S. Geological Survey (USGS) Texas Water Science Center (TWSC) GIS Workgroup during 2008 and 2009. After a summary of GIS Workgroup capabilities, brief descriptions of activities by project at the local and national levels are presented. Projects are grouped by the fiscal year (October-September 2008 or 2009) the project ends and include overviews, project images, and Internet links to additional project information and related publications or articles.
Lampkin, Derrick; Peng, Rui
2008-01-01
Accelerated ice flow near the equilibrium line of west-central Greenland Ice Sheet (GIS) has been attributed to an increase in infiltrated surface melt water as a response to climate warming. The assessment of surface melting events must be more than the detection of melt onset or extent. Retrieval of surface melt magnitude is necessary to improve understanding of ice sheet flow and surface melt coupling. In this paper, we report on a new technique to quantify the magnitude of surface melt. Cloud-free dates of June 10, July 5, 7, 9, and 11, 2001 Moderate Resolution Imaging Spectroradiometer (MODIS) daily reflectance Band 5 (1.230-1.250μm) and surface temperature images rescaled to 1km over western Greenland were used in the retrieval algorithm. An optical-thermal feature space partitioned as a function of melt magnitude was derived using a one-dimensional thermal snowmelt model (SNTHERM89). SNTHERM89 was forced by hourly meteorological data from the Greenland Climate Network (GC-Net) at reference sites spanning dry snow, percolation, and wet snow zones in the Jakobshavn drainage basin in western GIS. Melt magnitude or effective melt (E-melt) was derived for satellite composite periods covering May, June, and July displaying low fractions (0-1%) at elevations greater than 2500m and fractions at or greater than 15% at elevations lower than 1000m assessed for only the upper 5 cm of the snow surface. Validation of E-melt involved comparison of intensity to dry and wet zones determined from QSCAT backscatter. Higher intensities (> 8%) were distributed in wet snow zones, while lower intensities were grouped in dry zones at a first order accuracy of ∼ ±2%. PMID:27873793
Lampkin, Derrick; Peng, Rui
2008-08-22
Accelerated ice flow near the equilibrium line of west-central Greenland Ice Sheet (GIS) has been attributed to an increase in infiltrated surface melt water as a response to climate warming. The assessment of surface melting events must be more than the detection of melt onset or extent. Retrieval of surface melt magnitude is necessary to improve understanding of ice sheet flow and surface melt coupling. In this paper, we report on a new technique to quantify the magnitude of surface melt. Cloud-free dates of June 10, July 5, 7, 9, and 11, 2001 Moderate Resolution Imaging Spectroradiometer (MODIS) daily reflectance Band 5 (1.230-1.250μm) and surface temperature images rescaled to 1km over western Greenland were used in the retrieval algorithm. An optical-thermal feature space partitioned as a function of melt magnitude was derived using a one-dimensional thermal snowmelt model (SNTHERM89). SNTHERM89 was forced by hourly meteorological data from the Greenland Climate Network (GC-Net) at reference sites spanning dry snow, percolation, and wet snow zones in the Jakobshavn drainage basin in western GIS. Melt magnitude or effective melt (E-melt) was derived for satellite composite periods covering May, June, and July displaying low fractions (0-1%) at elevations greater than 2500m and fractions at or greater than 15% at elevations lower than 1000m assessed for only the upper 5 cm of the snow surface. Validation of E-melt involved comparison of intensity to dry and wet zones determined from QSCAT backscatter. Higher intensities (> 8%) were distributed in wet snow zones, while lower intensities were grouped in dry zones at a first order accuracy of ~ ±2%.
The Continental Margins Program in Georgia
Cocker, M.D.; Shapiro, E.A.
1999-01-01
From 1984 to 1993, the Georgia Geologic Survey (GGS) participated in the Minerals Management Service-funded Continental Margins Program. Geological and geophysical data acquisition focused on offshore stratigraphic framework studies, phosphate-bearing Miocene-age strata, distribution of heavy minerals, near-surface alternative sources of groundwater, and development of a PC-based Coastal Geographic Information System (GIS). Seven GGS publications document results of those investigations. In addition to those publications, direct benefits of the GGS's participation include an impetus to the GGS's investigations of economic minerals on the Georgia coast, establishment of a GIS that includes computer hardware and software, and seeds for additional investigations through the information and training acquired as a result of the Continental Margins Program. These addtional investigations are quite varied in scope, and many were made possible because of GIS expertise gained as a result of the Continental Margins Program. Future investigations will also reap the benefits of the Continental Margins Program.From 1984 to 1993, the Georgia Geologic Survey (GGS) participated in the Minerals Management Service-funded Continental Margins Program. Geological and geophysical data acquisition focused on offshore stratigraphic framework studies, phosphate-bearing Miocene-age strata, distribution of heavy minerals, near-surface alternative sources of groundwater, and development of a PC-based Coastal Geographic Information System (GIS). Seven GGS publications document results of those investigations. In addition to those publications, direct benefits of the GGS's participation include an impetus to the GGS's investigations of economic minerals on the Georgia coast, establishment of a GIS that includes computer hardware and software, and seeds for additional investigations through the information and training acquired as a result of the Continental Margins Program. These additional investigations are quite varied in scope, and many were made possible because of GIS expertise gained as a result of the Continental Margins Program. Future investigations will also reap the benefits of the Continental Margins Program.
ERIC Educational Resources Information Center
Goldstein, Donna L.
2010-01-01
The purpose of this study was to explore outcomes of a GIS/GPS integration process: to (a) examine student responses to GIS and GPS inclusion in their curriculum, (b) determine whether a relationship exists between inclusion of GIS into existing K-12 curriculum and student achievement, (c) examine the effectiveness of GIS professional development…
GIS Application System Design Applied to Information Monitoring
NASA Astrophysics Data System (ADS)
Qun, Zhou; Yujin, Yuan; Yuena, Kang
Natural environment information management system involves on-line instrument monitoring, data communications, database establishment, information management software development and so on. Its core lies in collecting effective and reliable environmental information, increasing utilization rate and sharing degree of environment information by advanced information technology, and maximizingly providing timely and scientific foundation for environmental monitoring and management. This thesis adopts C# plug-in application development and uses a set of complete embedded GIS component libraries and tools libraries provided by GIS Engine to finish the core of plug-in GIS application framework, namely, the design and implementation of framework host program and each functional plug-in, as well as the design and implementation of plug-in GIS application framework platform. This thesis adopts the advantages of development technique of dynamic plug-in loading configuration, quickly establishes GIS application by visualized component collaborative modeling and realizes GIS application integration. The developed platform is applicable to any application integration related to GIS application (ESRI platform) and can be as basis development platform of GIS application development.
Open Source GIS Connectors to the NASA GES DISC Satellite Data
NASA Astrophysics Data System (ADS)
Pham, L.; Kempler, S. J.; Yang, W.
2014-12-01
The NASA Goddard Earth Sciences Data and Information Services Center (GES DISC) houses a suite of satellite-derived GIS data including high spatiotemporal resolution precipitation, air quality, and modeled land surface parameter data. The data are extremely useful to various GIS research and applications at regional, continental, and global scales, as evidenced by the growing GIS user requests to the data. On the other hand, we also found that some GIS users, especially those from the ArcGIS community, having difficulties in obtaining, importing, and using our data, primarily due to the unfamiliarity of the users with our products and GIS software's lack of capabilities in dealing with the predominately raster form data in various sometimes very complicated formats. In this presentation, we introduce a set of open source ArcGIS data connectors that significantly simplify the access and use of our data in ArcGIS. With the connectors, users do not need to know the data access URLs, the access protocols or syntaxes, and data formats. Nor do they need to browse through a long list of variables that are often embedded into one single science data file and whose names may sometimes be confusing to those not familiar with the file (such as variable CH4_VMR_D for "CH4 Volume mixing ratio from the descending orbit" and variable EVPsfc for "Total Evapotranspiration"). The connectors will expose most GIS-related variables to the users with easy to understand names. User can simply define the spatiotemporal range of their study, select interested parameter(s), and have the needed data be downloaded, imported, and displayed in ArcGIS. The connectors are python text files and there is no installation process. They can be placed at any user directory and be started by simply clicking on it. In the presentation, we'll also demonstrate how to use the tools to load GES DISC time series air quality data with a few clicks and how such data depict the spatial and temporal patterns of air quality in different parts of the world during the past decade.
Sackett, Dana K.; Pow, Crystal Lee; Rubino, Matthew J.; Aday, D.D.; Cope, W. Gregory; Kullman, Seth W.; Rice, J.A.; Kwak, Thomas J.; Law, L.M.
2015-01-01
The presence of endocrine-disrupting compounds (EDCs), particularly estrogenic compounds, in the environment has drawn public attention across the globe, yet a clear understanding of the extent and distribution of estrogenic EDCs in surface waters and their relationship to potential sources is lacking. The objective of the present study was to identify and examine the potential input of estrogenic EDC sources in North Carolina water bodies using a geographic information system (GIS) mapping and analysis approach. Existing data from state and federal agencies were used to create point and nonpoint source maps depicting the cumulative contribution of potential sources of estrogenic EDCs to North Carolina surface waters. Water was collected from 33 sites (12 associated with potential point sources, 12 associated with potential nonpoint sources, and 9 reference), to validate the predictive results of the GIS analysis. Estrogenicity (measured as 17β-estradiol equivalence) ranged from 0.06 ng/L to 56.9 ng/L. However, the majority of sites (88%) had water 17β-estradiol concentrations below 1 ng/L. Sites associated with point and nonpoint sources had significantly higher 17β-estradiol levels than reference sites. The results suggested that water 17β-estradiol was reflective of GIS predictions, confirming the relevance of landscape-level influences on water quality and validating the GIS approach to characterize such relationships.
Sackett, Dana K; Pow, Crystal Lee; Rubino, Matthew J; Aday, D Derek; Cope, W Gregory; Kullman, Seth; Rice, James A; Kwak, Thomas J; Law, Mac
2015-02-01
The presence of endocrine-disrupting compounds (EDCs), particularly estrogenic compounds, in the environment has drawn public attention across the globe, yet a clear understanding of the extent and distribution of estrogenic EDCs in surface waters and their relationship to potential sources is lacking. The objective of the present study was to identify and examine the potential input of estrogenic EDC sources in North Carolina water bodies using a geographic information system (GIS) mapping and analysis approach. Existing data from state and federal agencies were used to create point and nonpoint source maps depicting the cumulative contribution of potential sources of estrogenic EDCs to North Carolina surface waters. Water was collected from 33 sites (12 associated with potential point sources, 12 associated with potential nonpoint sources, and 9 reference), to validate the predictive results of the GIS analysis. Estrogenicity (measured as 17β-estradiol equivalence) ranged from 0.06 ng/L to 56.9 ng/L. However, the majority of sites (88%) had water 17β-estradiol concentrations below 1 ng/L. Sites associated with point and nonpoint sources had significantly higher 17β-estradiol levels than reference sites. The results suggested that water 17β-estradiol was reflective of GIS predictions, confirming the relevance of landscape-level influences on water quality and validating the GIS approach to characterize such relationships. © 2014 SETAC.
Stone, Byron D.; DiGiacomo-Cohen, Mary L.
2006-01-01
The surficial geologic map layer shows the distribution of nonlithified earth materials at land surface in an area of 24 7.5-minute quadrangles (555 mi2 total) in southeast Massachusetts. Across Massachusetts, these materials range from a few feet to more than 500 ft in thickness. They overlie bedrock, which crops out in upland hills and as resistant ledges in valley areas. On Cape Cod and adjacent islands, these materials completely cover the bedrock surface. The geologic map differentiates surficial materials of Quaternary age on the basis of their lithologic characteristics (such as grain size and sedimentary structures), constructional geomorphic features, stratigraphic relations, and age. Surficial earth materials significantly affect human use of the land, and an accurate description of their distribution is particularly important for assessing water resources, construction aggregate resources, and earth-surface hazards, and for making land-use decisions. This work is part of a comprehensive study to produce a statewide digital map of the surficial geology at a 1:24,000-scale level of accuracy. This report includes explanatory text (PDF), quadrangle maps at 1:24,000 scale (PDF files), GIS data layers (ArcGIS shapefiles), metadata for the GIS layers, scanned topographic base maps (TIF), and a readme.txt file.
MOBIDIC-U: a watershed-scale model for stormwater attenuation through green infrastructures design
NASA Astrophysics Data System (ADS)
Ercolani, G.; Masseroni, D.; Chiaradia, E. A.; Bischetti, G. B.; Gandolfi, C.; Castelli, F.
2017-12-01
Surface water degradation resulting from the effects of urbanization on hydrology, water quality, habitat as well as ecological and environmental compartments represents an issue of primary focus for multiple agencies at the national, regional and local levels. Many management actions are needed throughout urban watersheds to achieve the desired effects on flow mitigation and pollutant reduction, but no single standardized solution can be effective in all locations. In this work, the distributed hydrological model MOBIDIC, already applied for hydrological balance simulations and flood prevention in different Italian regions, is adapted to the urban context (MOBIDIC-U) in order to evaluate alternative plans for stormwater quality management and flow abatement techniques through the adoption of green infrastructures (GIs). In particular the new modules included in MOBIDIC-U allow to (i) automatically define the upstream flow path as well as watershed boundary starting from a selected watershed closure point on the urban drainage network and (ii) obtain suitable graphical outputs for the visualization of flow peak and volume attenuation at the closure point. Moreover, MOBIDIC-U provides a public domain tool capable of evaluating the optimal location, type, and cost of the stormwater management practices needed to meet water quantity and quality goals. Despite the scalability of the model to different urban contexts, the current version of MOBIDIC-U has been developed for the area of the metropolitan city of Milan, Northern Italy. The model is implemented on a GIS platform, which already contains (i) the structure of the urban drainage network of the metropolitan city of Milan; (ii) the database of actual geomorphological and meteorological data for the previous domain (iii) the list of potential GIs, their standard size, installation and maintenance costs. Therefore, MOBIDIC-U provides an easy to use tool to local professionals to design and evaluate urban stormwater management measures based on GIs.
We used National Land Cover Data 92 (NLCD92), vector impervious surface data, and raster GIS overlay methods to derive impervious surface coefficients per NLCD92 class in portions of the Nfid-Atlantic physiographic region. The methods involve a vector to raster conversion of the ...
On-line applications of numerical models in the Black Sea GIS
NASA Astrophysics Data System (ADS)
Zhuk, E.; Khaliulin, A.; Zodiatis, G.; Nikolaidis, A.; Nikolaidis, M.; Stylianou, Stavros
2017-09-01
The Black Sea Geographical Information System (GIS) is developed based on cutting edge information technologies, and provides automated data processing and visualization on-line. Mapserver is used as a mapping service; the data are stored in MySQL DBMS; PHP and Python modules are utilized for data access, processing, and exchange. New numerical models can be incorporated in the GIS environment as individual software modules, compiled for a server-based operational system, providing interaction with the GIS. A common interface allows setting the input parameters; then the model performs the calculation of the output data in specifically predefined files and format. The calculation results are then passed to the GIS for visualization. Initially, a test scenario of integration of a numerical model into the GIS was performed, using software, developed to describe a two-dimensional tsunami propagation in variable basin depth, based on a linear long surface wave model which is legitimate for more than 5 m depth. Furthermore, the well established oil spill and trajectory 3-D model MEDSLIK (http://www.oceanography.ucy.ac.cy/medslik/) was integrated into the GIS with more advanced GIS functionality and capabilities. MEDSLIK is able to forecast and hind cast the trajectories of oil pollution and floating objects, by using meteo-ocean data and the state of oil spill. The MEDSLIK module interface allows a user to enter all the necessary oil spill parameters, i.e. date and time, rate of spill or spill volume, forecasting time, coordinates, oil spill type, currents, wind, and waves, as well as the specification of the output parameters. The entered data are passed on to MEDSLIK; then the oil pollution characteristics are calculated for pre-defined time steps. The results of the forecast or hind cast are then visualized upon a map.
Urban stormwater inundation simulation based on SWMM and diffusive overland-flow model.
Chen, Wenjie; Huang, Guoru; Zhang, Han
2017-12-01
With rapid urbanization, inundation-induced property losses have become more and more severe. Urban inundation modeling is an effective way to reduce these losses. This paper introduces a simplified urban stormwater inundation simulation model based on the United States Environmental Protection Agency Storm Water Management Model (SWMM) and a geographic information system (GIS)-based diffusive overland-flow model. SWMM is applied for computation of flows in storm sewer systems and flooding flows at junctions, while the GIS-based diffusive overland-flow model simulates surface runoff and inundation. One observed rainfall scenario on Haidian Island, Hainan Province, China was chosen to calibrate the model and the other two were used for validation. Comparisons of the model results with field-surveyed data and InfoWorks ICM (Integrated Catchment Modeling) modeled results indicated the inundation model in this paper can provide inundation extents and reasonable inundation depths even in a large study area.
Greenland ice sheet melt from MODIS and associated atmospheric variability.
Häkkinen, Sirpa; Hall, Dorothy K; Shuman, Christopher A; Worthen, Denise L; DiGirolamo, Nicolo E
2014-03-16
Daily June-July melt fraction variations over the Greenland ice sheet (GIS) derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) (2000-2013) are associated with atmospheric blocking forming an omega-shape ridge over the GIS at 500 hPa height. Blocking activity with a range of time scales, from synoptic waves breaking poleward (<5 days) to full-fledged blocks (≥5 days), brings warm subtropical air masses over the GIS controlling daily surface temperatures and melt. The temperature anomaly of these subtropical air mass intrusions is also important for melting. Based on the years with the greatest melt (2002 and 2012) during the MODIS era, the area-average temperature anomaly of 2 standard deviations above the 14 year June-July mean results in a melt fraction of 40% or more. Though the summer of 2007 had the most blocking days, atmospheric temperature anomalies were too small to instigate extreme melting. Short-term atmospheric blocking over Greenland contributes to melt episodesAssociated temperature anomalies are equally important for the meltDuration and strength of blocking events contribute to surface melt intensity.
The use of GIS tools for road infrastructure safety management
NASA Astrophysics Data System (ADS)
Budzyński, Marcin; Kustra, Wojciech; Okraszewska, Romanika; Jamroz, Kazimierz; Pyrchla, Jerzy
2018-01-01
There are many factors that influence accidents and their severity. They can be grouped within the system of man, vehicle and environment. The article focuses on how GIS tools can be used to manage road infrastructure safety. To ensure a better understanding and identification of road factors, GIS tools help with the acquisition of road parameter data. Their other role is helping with a clear and effective presentation of risk ranking. GIS is key to identifying high-risk sections and supports the effective communication of safety levels. This makes it a vital element of safety management. The article describes the use of GIS for the collection and visualisation of road parameter data which are not available in any of the existing databases, i.e. horizontal curve parameters. As we know from research and statistics, they are important factors that determine the safety of road infrastructure. Finally, new research is proposed as well as the possibilities for applying GIS tools for the purposes of road safety inspection.
D'Agnese, F. A.; Faunt, C.C.; Keith, Turner A.
1996-01-01
The recharge and discharge components of the Death Valley regional groundwater flow system were defined by remote sensing and GIS techniques that integrated disparate data types to develop a spatially complex representation of near-surface hydrological processes. Image classification methods were applied to multispectral satellite data to produce a vegetation map. This map provided a basis for subsequent evapotranspiration and infiltration estimations. The vegetation map was combined with ancillary data in a GIS to delineate different types of wetlands, phreatophytes and wet playa areas. Existing evapotranspiration-rate estimates were then used to calculate discharge volumes for these areas. A previously used empirical method of groundwater recharge estimation was modified by GIS methods to incorporate data describing soil-moisture conditions, and a recharge potential map was produced. These discharge and recharge maps were readily converted to data arrays for numerical modelling codes. Inverse parameter estimation techniques also used these data to evaluate the reliability and sensitivity of estimated values.
High geothermal heat flux in close proximity to the Northeast Greenland Ice Stream.
Rysgaard, Søren; Bendtsen, Jørgen; Mortensen, John; Sejr, Mikael K
2018-01-22
The Greenland ice sheet (GIS) is losing mass at an increasing rate due to surface melt and flow acceleration in outlet glaciers. Currently, there is a large disagreement between observed and simulated ice flow, which may arise from inaccurate parameterization of basal motion, subglacial hydrology or geothermal heat sources. Recently it was suggested that there may be a hidden heat source beneath GIS caused by a higher than expected geothermal heat flux (GHF) from the Earth's interior. Here we present the first direct measurements of GHF from beneath a deep fjord basin in Northeast Greenland. Temperature and salinity time series (2005-2015) in the deep stagnant basin water are used to quantify a GHF of 93 ± 21 mW m -2 which confirm previous indirect estimated values below GIS. A compilation of heat flux recordings from Greenland show the existence of geothermal heat sources beneath GIS and could explain high glacial ice speed areas such as the Northeast Greenland ice stream.
Do grain boundaries dominate non-radiative recombination in CH 3NH 3PbI 3 perovskite thin films?
Yang, Mengjin; Zeng, Yining; Li, Zhen; ...
2017-01-13
Here, we examine GBs with respect to non-GB regions (grain surfaces (GSs) and grain interiors (GIs)) in high-quality micrometer-sized perovskite CH 3NH 3PbI 3 (or MAPbI 3) thin films using high-resolution confocal fluorescence-lifetime imaging microscopy in conjunction with kinetic modeling of charge-transport and recombination processes. We show that, contrary to previous studies, GBs in our perovskite MAPbI3 thin films do not lead to increased recombination but that recombination in these films happens primarily in the non-GB regions (i.e., GSs or GIs). We also find that GBs in these films are not transparent to photogenerated carriers, which is likely associated withmore » a potential barrier at GBs. Lastly, even though GBs generally display lower luminescence intensities than GSs/GIs, the lifetimes at GBs are no worse than those at GSs/GIs, further suggesting that GBs do not dominate non-radiative recombination in MAPbI 3 thin films.« less
NASA Astrophysics Data System (ADS)
Stepinski, T. F.; Mitasova, H.; Jasiewicz, J.; Neteler, M.; Gebbert, S.
2014-12-01
GRASS GIS is a leading open source GIS for geospatial analysis and modeling. In addition to being utilized as a desktop GIS it also serves as a processing engine for high performance geospatial computing for applications in diverse disciplines. The newly released GRASS GIS 7 supports big data analysis including temporal framework, image segmentation, watershed analysis, synchronized 2D/3D animations and many others. This presentation will focus on new GRASS GIS 7-powered tools for geoprocessing giga-size earth observation (EO) data using spatial pattern analysis. Pattern-based analysis connects to human visual perception of space as well as makes geoprocessing of giga-size EO data possible in an efficient and robust manner. GeoPAT is a collection of GRASS GIS 7 modules that fully integrates procedures for pattern representation of EO data and patterns similarity calculations with standard GIS tasks of mapping, maps overlay, segmentation, classification(Fig 1a), change detections etc. GeoPAT works very well on a desktop but it also underpins several GeoWeb applications (http://sil.uc.edu/ ) which allow users to do analysis on selected EO datasets without the need to download them. The GRASS GIS 7 temporal framework and high resolution visualizations will be illustrated using time series of giga-size, lidar-based digital elevation models representing the dynamics of North Carolina barrier islands over the past 15 years. The temporal framework supports efficient raster and vector data series analysis and simplifies data input for visual analysis of dynamic landscapes (Fig. 1b) allowing users to rapidly identify vulnerable locations, changes in built environment and eroding coastlines. Numerous improvements in GRASS GIS 7 were implemented to support terabyte size data processing for reconstruction of MODIS land surface temperature (LST) at 250m resolution using multiple regressions and PCA (Fig. 1c) . The new MODIS LST series (http://gis.cri.fmach.it/eurolst/) includes 4 maps per day since year 2000, provide improved data for the epidemiological predictions, viticulture, assessment of urban heat islands and numerous other applications. The presentation will conclude with outline of future development for big data interfaces to further enhance the web-based GRASS GIS data analysis.
Using GIS for spatial analysis of rectal lesions in the human body.
Garb, Jane L; Ganai, Sabha; Skinner, Ric; Boyd, Christopher S; Wait, Richard B
2007-03-15
Geographic Information Systems (GIS) have been used in a wide variety of applications to integrate data and explore the spatial relationship of geographic features. Traditionally this has referred to features on the surface of the earth. However, it is possible to apply GIS in medicine, at the scale of the human body, to visualize and analyze anatomic and clinical features. In the present study we used GIS to examine the findings of transanal endoscopic microsurgery (TEM), a minimally-invasive procedure to locate and remove both benign and cancerous lesions of the rectum. Our purpose was to determine whether anatomic features of the human rectum and clinical findings at the time of surgery could be rendered in a GIS and spatially analyzed for their relationship to clinical outcomes. Maps of rectal topology were developed in two and three dimensions. These maps highlight anatomic features of the rectum and the location of lesions found on TEM. Spatial analysis demonstrated a significant relationship between anatomic location of the lesion and procedural failure. This study demonstrates the feasibility of rendering anatomical locations and clinical events in a GIS and its value in clinical research. This allows the visualization and spatial analysis of clinical and pathologic features, increasing our awareness of the relationship between anatomic features and clinical outcomes as well as enhancing our understanding and management of this disease process.
Kistemann, T; Dangendorf, F; Exner, M
2001-03-01
The main tributaries of three drinking water reservoirs of Northrhine-Westfalia (Germany) were monitored within a 14-month period mainly for bacterial and parasitic contamination. In this context a detailed geo-ecological characterisation within the differing catchment areas was carried out to reveal a reliable informational basis for tracing back the origin of microbial loads present in the watercourses. To realise a microbial risk assessing geo-ecological information system (MRA-GIS), a Geographical Information System (GIS) has been implemented for the study areas. The results of the microbiological investigations of the watercourses showed an input of pathogens into all three of the tributaries. It could be demonstrated that the use of MRA-GIS database and some GIS-techniques substantially support the spatial analysis of the microbial contamination patterns. From the hygienic point of view, it is of the utmost importance to protect catchment areas of surface water reservoirs from microbial contamination stemming from human activities and animal sources. This constitutes essential part of the multi-barrier concept which stresses the importance of reducing diffuse and point pollution in catchment areas of water resources intended for human consumption. MRA-GIS proves to be helpful to manage multi-barrier water protection in catchment areas and ideally assists the application of the HACCP concept on drinking water production.
Using GIS for spatial analysis of rectal lesions in the human body
Garb, Jane L; Ganai, Sabha; Skinner, Ric; Boyd, Christopher S; Wait, Richard B
2007-01-01
Background Geographic Information Systems (GIS) have been used in a wide variety of applications to integrate data and explore the spatial relationship of geographic features. Traditionally this has referred to features on the surface of the earth. However, it is possible to apply GIS in medicine, at the scale of the human body, to visualize and analyze anatomic and clinical features. In the present study we used GIS to examine the findings of transanal endoscopic microsurgery (TEM), a minimally-invasive procedure to locate and remove both benign and cancerous lesions of the rectum. Our purpose was to determine whether anatomic features of the human rectum and clinical findings at the time of surgery could be rendered in a GIS and spatially analyzed for their relationship to clinical outcomes. Results Maps of rectal topology were developed in two and three dimensions. These maps highlight anatomic features of the rectum and the location of lesions found on TEM. Spatial analysis demonstrated a significant relationship between anatomic location of the lesion and procedural failure. Conclusion This study demonstrates the feasibility of rendering anatomical locations and clinical events in a GIS and its value in clinical research. This allows the visualization and spatial analysis of clinical and pathologic features, increasing our awareness of the relationship between anatomic features and clinical outcomes as well as enhancing our understanding and management of this disease process. PMID:17362510
Agricultural land use and N losses to water: the case study of a fluvial park in northern Italy.
Morari, F; Lugato, E; Borin, M
2003-01-01
An integrated water resource management programme has been under way since 1999 to reduce agricultural water pollution in the River Mincio fluvial park. The experimental part of the programme consisted of: a) a monitoring phase to evaluate the impact of conventional and environmentally sound techniques (Best Management Practices, BMPs) on water quality; this was done on four representative landscape units, where twelve fields were instrumented to monitor the soil, surface and subsurface water quality; b) a modelling phase to extend the results obtained at field scale to the whole territory of the Mincio watershed. For this purpose a GIS developed in the Arc/Info environment was integrated into the CropSyst model. The model had previously been calibrated to test its ability to describe the complexity of the agricultural systems. The first results showed a variable efficiency of the BMPs depending on the interaction between management and pedo-climatic conditions. In general though, the BMPs had positive effects in improving the surface and subsurface water quality. The CropSyst model was able to describe the agricultural systems monitored and its linking with the GIS represented a valuable tool for identifying the vulnerable areas within the watershed.
Quantifying Groundwater Fluctuations in the Southern High Plains with GIS and Geostatistics
NASA Astrophysics Data System (ADS)
Whitehead, B.
2008-12-01
Groundwater as a dwindling non-renewable natural resource has been an important research theme in agricultural studies coupled with human-environment interaction. This research incorporated contemporary Geographic Information System (GIS) methodologies and a universal kriging interpolator (geostatistics) to develop depth to groundwater surfaces for the southern portion of the High Plains, or Ogallala, aquifer. The variations in the interpolated surfaces were used to calculate the volume of water mined from the aquifer from 1980 to 2005. The findings suggest a nearly inverse relationship to the water withdrawal scenarios derived by the United States Geological Survey (USGS) during the Regional Aquifer System Analysis (RASA) performed in the early 1980's. These results advocate further research into regional climate change, groundwater-surface water interaction, and recharge mechanisms in the region, and provide a substantial contribution to the continuing and contentious issue concerning the environmental sustainability of the High Plains.
Study on GIS-based sport-games information system
NASA Astrophysics Data System (ADS)
Peng, Hongzhi; Yang, Lingbin; Deng, Meirong; Han, Yongshun
2008-10-01
With the development of internet and such info-technologies as, Information Superhighway, Computer Technology, Remote Sensing(RS), Global Positioning System(GPS), Digital Communication and National Information Network(NIN),etc. Geographic Information System (GIS) becomes more and more popular in fields of science and industries. It is not only feasible but also necessary to apply GIS to large-scale sport games. This paper firstly discussed GIS technology and its application, then elaborated on the frame and content of Sport-Games Geography Information System(SG-GIS) with the function of gathering, storing, processing, sharing, exchanging and utilizing all kind of spatial-temporal information about sport games, and lastly designed and developed a public service GIS for the 6th Asian Winter Games in Changchun, China(CAWGIS). The application of CAWGIS showed that the established SG-GIS was feasible and GIS-based sport games information system was able to effectively process a large amount of sport-games information and provide the real-time sport games service for governors, athletes and the public.
Applications and issues of GIS as tool for civil engineering modeling
Miles, S.B.; Ho, C.L.
1999-01-01
A tool that has proliferated within civil engineering in recent years is geographic information systems (GIS). The goal of a tool is to supplement ability and knowledge that already exists, not to serve as a replacement for that which is lacking. To secure the benefits and avoid misuse of a burgeoning tool, engineers must understand the limitations, alternatives, and context of the tool. The common benefits of using GIS as a supplement to engineering modeling are summarized. Several brief case studies of GIS modeling applications are taken from popular civil engineering literature to demonstrate the wide use and varied implementation of GIS across the discipline. Drawing from the case studies, limitations regarding traditional GIS data models find the implementation of civil engineering models within current GIS are identified and countered by discussing the direction of the next generation of GIS. The paper concludes by highlighting the potential for the misuse of GIS in the context of engineering modeling and suggests that this potential can be reduced through education and awareness. The goal of this paper is to promote awareness of the issues related to GIS-based modeling and to assist in the formulation of questions regarding the application of current GIS. The technology has experienced much publicity of late, with many engineers being perhaps too excited about the usefulness of current GIS. An undoubtedly beneficial side effect of this, however, is that engineers are becoming more aware of GIS and, hopefully, the associated subtleties. Civil engineers must stay informed of GIS issues and progress, but more importantly, civil engineers must inform the GIS community to direct the technology development optimally.
The Future Role of GIS Education in Creating Critical Spatial Thinkers
ERIC Educational Resources Information Center
Bearman, Nick; Jones, Nick; André, Isabel; Cachinho, Herculano Alberto; DeMers, Michael
2016-01-01
Teaching of critical spatial thinking in higher education empowers graduates to effectively engage with spatial data. Geographic information systems (GIS) and science are taught to undergraduates across many disciplines; we evaluate how this contributes to critical spatial thinking. The discipline of GIS covers the whole process of spatial…
Albedo Spatial Variability and Causes on the Western Greenland Ice Sheet Percolation Zone
NASA Astrophysics Data System (ADS)
Lewis, G.; Osterberg, E. C.; Hawley, R. L.; Koffman, B. G.; Marshall, H. P.; Birkel, S. D.; Dibb, J. E.
2016-12-01
Many recent studies have concluded that Greenland Ice Sheet (GIS) mass loss has been accelerating over recent decades, but spatial and temporal variations in GIS mass balance remain poorly understood due to a complex relationship among precipitation and temperature changes, increasing melt and runoff, ice discharge, and surface albedo. Satellite measurements from MODerate resolution Imaging Spectroradiometer (MODIS) indicate that albedo has been declining over the past decade, but the cause and extent of GIS albedo change remains poorly constrained by field data. As fresh snow (albedo > 0.85) warms and melts, its albedo decreases due to snow grain growth, promoting solar absorption, higher snowpack temperatures and further melt. However, dark impurities like soot and dust can also significantly reduce snow albedo, even in the dry snow zone. While many regional climate models (e.g. the Regional Atmospheric Climate MOdel - RACMO2) calculate albedo spatial resolutions on the order of 10-30 km, and MODIS averages albedo over 500 m, surface features like sastrugi can affect albedo on much smaller scales. Here we assess the relative importance of grain size and shape vs. impurity concentrations on albedo in the western GIS percolation zone. We collected broadband albedo measurements (300-2500 nm at 3-8 nm resolution) at 35 locations using an ASD FieldSpec4 spectroradiometer to simultaneously quantify radiative fluxes and spectral reflectance. Measurements were collected on 10 x 10 m, 1 x 1 km, 5 x 5 km, and 10 x 10 km grids to determine the spatial variability of albedo as part of the 850-km Greenland Traverse for Accumulation and Climate Studies (GreenTrACS) traverse from Raven/Dye 2 to Summit. Additionally, we collected shallow (0-50 cm) snow pit samples every 5 cm at ASD measurement sites to quantify black carbon and mineral dust concentrations and size distributions using a Single Particle Soot Photometer and Coulter Counter, respectively. Preliminary results indicate larger albedo variability in the infrared than visible and near infrared. We compare our in situ field measurements with co-located albedo data from airplanes, satellites, and climate models, and discuss implications for GIS surface mass balance.
Spatial and temporal distribution of mass loss from the Greenland Ice Sheet since AD 1900.
Kjeldsen, Kristian K; Korsgaard, Niels J; Bjørk, Anders A; Khan, Shfaqat A; Box, Jason E; Funder, Svend; Larsen, Nicolaj K; Bamber, Jonathan L; Colgan, William; van den Broeke, Michiel; Siggaard-Andersen, Marie-Louise; Nuth, Christopher; Schomacker, Anders; Andresen, Camilla S; Willerslev, Eske; Kjær, Kurt H
2015-12-17
The response of the Greenland Ice Sheet (GIS) to changes in temperature during the twentieth century remains contentious, largely owing to difficulties in estimating the spatial and temporal distribution of ice mass changes before 1992, when Greenland-wide observations first became available. The only previous estimates of change during the twentieth century are based on empirical modelling and energy balance modelling. Consequently, no observation-based estimates of the contribution from the GIS to the global-mean sea level budget before 1990 are included in the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Here we calculate spatial ice mass loss around the entire GIS from 1900 to the present using aerial imagery from the 1980s. This allows accurate high-resolution mapping of geomorphic features related to the maximum extent of the GIS during the Little Ice Age at the end of the nineteenth century. We estimate the total ice mass loss and its spatial distribution for three periods: 1900-1983 (75.1 ± 29.4 gigatonnes per year), 1983-2003 (73.8 ± 40.5 gigatonnes per year), and 2003-2010 (186.4 ± 18.9 gigatonnes per year). Furthermore, using two surface mass balance models we partition the mass balance into a term for surface mass balance (that is, total precipitation minus total sublimation minus runoff) and a dynamic term. We find that many areas currently undergoing change are identical to those that experienced considerable thinning throughout the twentieth century. We also reveal that the surface mass balance term shows a considerable decrease since 2003, whereas the dynamic term is constant over the past 110 years. Overall, our observation-based findings show that during the twentieth century the GIS contributed at least 25.0 ± 9.4 millimetres of global-mean sea level rise. Our result will help to close the twentieth-century sea level budget, which remains crucial for evaluating the reliability of models used to predict global sea level rise.
Spatial and temporal distribution of mass loss from the Greenland Ice Sheet since AD 1900
NASA Astrophysics Data System (ADS)
Kjeldsen, Kristian K.; Korsgaard, Niels J.; Bjørk, Anders A.; Khan, Shfaqat A.; Box, Jason E.; Funder, Svend; Larsen, Nicolaj K.; Bamber, Jonathan L.; Colgan, William; van den Broeke, Michiel; Siggaard-Andersen, Marie-Louise; Nuth, Christopher; Schomacker, Anders; Andresen, Camilla S.; Willerslev, Eske; Kjær, Kurt H.
2015-12-01
The response of the Greenland Ice Sheet (GIS) to changes in temperature during the twentieth century remains contentious, largely owing to difficulties in estimating the spatial and temporal distribution of ice mass changes before 1992, when Greenland-wide observations first became available. The only previous estimates of change during the twentieth century are based on empirical modelling and energy balance modelling. Consequently, no observation-based estimates of the contribution from the GIS to the global-mean sea level budget before 1990 are included in the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Here we calculate spatial ice mass loss around the entire GIS from 1900 to the present using aerial imagery from the 1980s. This allows accurate high-resolution mapping of geomorphic features related to the maximum extent of the GIS during the Little Ice Age at the end of the nineteenth century. We estimate the total ice mass loss and its spatial distribution for three periods: 1900-1983 (75.1 ± 29.4 gigatonnes per year), 1983-2003 (73.8 ± 40.5 gigatonnes per year), and 2003-2010 (186.4 ± 18.9 gigatonnes per year). Furthermore, using two surface mass balance models we partition the mass balance into a term for surface mass balance (that is, total precipitation minus total sublimation minus runoff) and a dynamic term. We find that many areas currently undergoing change are identical to those that experienced considerable thinning throughout the twentieth century. We also reveal that the surface mass balance term shows a considerable decrease since 2003, whereas the dynamic term is constant over the past 110 years. Overall, our observation-based findings show that during the twentieth century the GIS contributed at least 25.0 ± 9.4 millimetres of global-mean sea level rise. Our result will help to close the twentieth-century sea level budget, which remains crucial for evaluating the reliability of models used to predict global sea level rise.
Teaching Thousands with Cloud-based GIS
NASA Astrophysics Data System (ADS)
Gould, Michael; DiBiase, David; Beale, Linda
2016-04-01
Teaching Thousands with Cloud-based GIS Educators often draw a distinction between "teaching about GIS" and "teaching with GIS." Teaching about GIS involves helping students learn what GIS is, what it does, and how it works. On the other hand, teaching with GIS involves using the technology as a means to achieve education objectives in the sciences, social sciences, professional disciplines like engineering and planning, and even the humanities. The same distinction applies to CyberGIS. Understandably, early efforts to develop CyberGIS curricula and educational resources tend to be concerned primarily with CyberGIS itself. However, if CyberGIS becomes as functional, usable and scalable as it aspires to be, teaching with CyberGIS has the potential to enable large and diverse global audiences to perform spatial analysis using hosted data, mapping and analysis services all running in the cloud. Early examples of teaching tens of thousands of students across the globe with cloud-based GIS include the massive open online courses (MOOCs) offered by Penn State University and others, as well as the series of MOOCs more recently developed and offered by Esri. In each case, ArcGIS Online was used to help students achieve educational objectives in subjects like business, geodesign, geospatial intelligence, and spatial analysis, as well as mapping. Feedback from the more than 100,000 total student participants to date, as well as from the educators and staff who supported these offerings, suggest that online education with cloud-based GIS is scalable to very large audiences. Lessons learned from the course design, development, and delivery of these early examples may be useful in informing the continuing development of CyberGIS education. While MOOCs may have passed the peak of their "hype cycle" in higher education, the phenomenon they revealed persists: namely, a global mass market of educated young adults who turn to free online education to expand their horizons. The ability of CyberGIS to attract and effectively serve this market may be one measure of its success.
NASA Astrophysics Data System (ADS)
Umar, Da'u. Abba; Ramli, Mohammad Firuz; Aris, Ahmad Zaharin; Sulaiman, Wan Nor Azmin; Kura, Nura Umar; Tukur, Abubakar Ibrahim
2017-07-01
This paper presents an overview assessment of the effectiveness and popularity of some methods adopted in measuring river bank filtration (RBF). The review is aim at understanding some of the appropriate methods used in measuring riverbank filtration, their frequencies of use, and their spatial applications worldwide. The most commonly used methods and techniques in riverbank filtration studies are: Geographical Information System (GIS) (site suitability/surface characterization), Geophysical, Pumping Test and borehole logging (sub-surface), Hydrochemical, Geochemical, and Statistical techniques (hydrochemistry of water), Numerical modelling, Tracer techniques and Stable Isotope Approaches (degradation and contaminants attenuation processes). From the summary in Table 1, hydrochemical, numerical modelling and pumping test are the frequently used and popular methods, while geophysical, GIS and statistical techniques are the less attractive. However, many researchers prefer integrated approach especially that riverbank filtration studies involve diverse and interrelated components. In term of spatial popularity and successful implementation of riverbank filtration, it is explicitly clear that the popularity and success of the technology is more pronounced in developed countries like U.S. and most European countries. However, it is gradually gaining ground in Asia and Africa, although it is not far from its infancy state in Africa, where the technology could be more important considering the economic status of the region and its peculiarity when it comes to water resources predicaments.
Vector-Based Ground Surface and Object Representation Using Cameras
2009-12-01
representations and it is a digital data structure used for the representation of a ground surface in geographical information systems ( GIS ). Figure...Vision API library, and the OpenCV library. Also, the Posix thread library was utilized to quickly capture the source images from cameras. Both
NASA Astrophysics Data System (ADS)
Chaudhary, B. S.
Remote Sensing as the term signifies is the technique of gathering information about an object or surface phenomenon without being in physical contact with it and essentially by using electromagnetic radiation. The principle of remote sensing is based on the solar radiation reflected or emitted from the surface of the earth. As different objects behave differently for the incoming solar radiation and have different thermal properties, the amount of solar radiation reflected, absorbed or emitted is also different. GIS is defined as an information system that is used to input, store, retrieve, manipulate, analyze and output geographically referenced data or geospatial data in order to support decision making for planning and management of natural resources. It has four essential components - hardware, software, geospatial data and the users. GIS is needed because of some inherent demerits in the manual methods. The conventional methods of surveying and mapping are time consuming, labour intensive and tedious. The techniques of Remote Sensing (RS) and GIS are effective in timely and efficient generation of database of various resources. The synoptic view and multi resolution satellite data is helpful in generating information at various scales. The mapping and monitoring of dynamic phenomenon such as floods, water logging, deforestation can be done very effectively with the aid of RS and GIS. The effective planning for water resources conservation and management at district level can be made if the data is generated on 1:50,000 scale. Hydrogeomorphological maps on 1:50,000 scale showing different ground water prospect zones have been prepared for different districts in Haryana State, India. This information has been supplemented with the available inputs from existing sources about the depth to water level and ground water quality. The other maps prepared under National (Natural) Resources Information System (NRIS) such as land use/ land cover, geomorphology, drainage/ canal network and soils etc have also been consulted for preparing water resources action plan. The maps thus prepared depict different units for further ground water prospecting. It is to mention here that some of the Palaeo-channels have been picked up first time. Various sites has been suggested for site specific water resources conservation measures such check dams/ gully plugging, earthen dams etc for recharging the ground water. The information thus developed has been submitted to PWD (Public Health) Department, Govt. of Haryana as well as other district agencies involved in the planning and management of natural resources, for further implementation of the activities suggested in different areas. During visit to different areas, it was found that the water resources action plans suggested are being implemented in the field to its maximum possibility both in the direction of fresh ground water areas exploration as well as water resources conservation. The ground water in the areas suggested is being recharged and the people are taking good crops.
Zhang, Chaosheng
2006-08-01
Galway is a small but rapidly growing tourism city in western Ireland. To evaluate its environmental quality, a total of 166 surface soil samples (0-10 cm depth) were collected from parks and grasslands at the density of 1 sample per 0.25 km2 at the end of 2004. All samples were analysed using ICP-AES for the near-total concentrations of 26 chemical elements. Multivariate statistics and GIS techniques were applied to classify the elements and to identify elements influenced by human activities. Cluster analysis (CA) and principal component analysis (PCA) classified the elements into two groups: the first group predominantly derived from natural sources, the second being influenced by human activities. GIS mapping is a powerful tool in identifying the possible sources of pollutants. Relatively high concentrations of Cu, Pb and Zn were found in the city centre, old residential areas, and along major traffic routes, showing significant effects of traffic pollution. The element As is enriched in soils of the old built-up areas, which can be attributed to coal and peat combustion for home heating. Such significant spatial patterns of pollutants displayed by urban soils may imply potential health threat to residents of the contaminated areas of the city.
An integrated GIS application system for soil moisture data assimilation
NASA Astrophysics Data System (ADS)
Wang, Di; Shen, Runping; Huang, Xiaolong; Shi, Chunxiang
2014-11-01
The gaps in knowledge and existing challenges in precisely describing the land surface process make it critical to represent the massive soil moisture data visually and mine the data for further research.This article introduces a comprehensive soil moisture assimilation data analysis system, which is instructed by tools of C#, IDL, ArcSDE, Visual Studio 2008 and SQL Server 2005. The system provides integrated service, management of efficient graphics visualization and analysis of land surface data assimilation. The system is not only able to improve the efficiency of data assimilation management, but also comprehensively integrate the data processing and analysis tools into GIS development environment. So analyzing the soil moisture assimilation data and accomplishing GIS spatial analysis can be realized in the same system. This system provides basic GIS map functions, massive data process and soil moisture products analysis etc. Besides,it takes full advantage of a spatial data engine called ArcSDE to effeciently manage, retrieve and store all kinds of data. In the system, characteristics of temporal and spatial pattern of soil moiture will be plotted. By analyzing the soil moisture impact factors, it is possible to acquire the correlation coefficients between soil moisture value and its every single impact factor. Daily and monthly comparative analysis of soil moisture products among observations, simulation results and assimilations can be made in this system to display the different trends of these products. Furthermore, soil moisture map production function is realized for business application.
Processing Uav and LIDAR Point Clouds in Grass GIS
NASA Astrophysics Data System (ADS)
Petras, V.; Petrasova, A.; Jeziorska, J.; Mitasova, H.
2016-06-01
Today's methods of acquiring Earth surface data, namely lidar and unmanned aerial vehicle (UAV) imagery, non-selectively collect or generate large amounts of points. Point clouds from different sources vary in their properties such as number of returns, density, or quality. We present a set of tools with applications for different types of points clouds obtained by a lidar scanner, structure from motion technique (SfM), and a low-cost 3D scanner. To take advantage of the vertical structure of multiple return lidar point clouds, we demonstrate tools to process them using 3D raster techniques which allow, for example, the development of custom vegetation classification methods. Dense point clouds obtained from UAV imagery, often containing redundant points, can be decimated using various techniques before further processing. We implemented and compared several decimation techniques in regard to their performance and the final digital surface model (DSM). Finally, we will describe the processing of a point cloud from a low-cost 3D scanner, namely Microsoft Kinect, and its application for interaction with physical models. All the presented tools are open source and integrated in GRASS GIS, a multi-purpose open source GIS with remote sensing capabilities. The tools integrate with other open source projects, specifically Point Data Abstraction Library (PDAL), Point Cloud Library (PCL), and OpenKinect libfreenect2 library to benefit from the open source point cloud ecosystem. The implementation in GRASS GIS ensures long term maintenance and reproducibility by the scientific community but also by the original authors themselves.
ArcAtlas in the Classroom: Pattern Identification, Description, and Explanation
ERIC Educational Resources Information Center
DeMers, Michael N.; Vincent, Jeffrey S.
2007-01-01
The use of geographic information systems (GIS) in the classroom provides a robust and effective method of teaching the primary spatial skills of identification, description, and explanation of spatial pattern. A major handicap for the development of GIS-based learning experiences, especially for non-GIS specialist educators, is the availability…
Designing GIS Learning Materials for K-12 Teachers
ERIC Educational Resources Information Center
Hong, Jung Eun
2017-01-01
Although previous studies have proven the usefulness and effectiveness of geographic information system (GIS) use in the K-12 classroom, the rate of teacher adoption remains low. The identified major barrier to its use is a lack of teachers' background and experience. To solve this limitation, many organisations have provided GIS-related teacher…
NASA Astrophysics Data System (ADS)
Kavoura, K.; Kordouli, M.; Nikolakopoulos, K.; Elias, P.; Sykioti, O.; Tsagaris, V.; Drakatos, G.; Rondoyanni, Th.; Tsiambaos, G.; Sabatakakis, N.; Anastasopoulos, V.
2014-08-01
Landslide phenomena constitute a major geological hazard in Greece and especially in the western part of the country as a result of anthropogenic activities, growing urbanization and uncontrolled land - use. More frequent triggering events and increased susceptibility of the ground surface to instabilities as consequence of climate change impacts (continued deforestation mainly due to the devastating forest wildfires and extreme meteorological events) have also increased the landslide risk. The studied landslide occurrence named "Platanos" has been selected within the framework of "Landslide Vulnerability Model - LAVMO" project that aims at creating a persistently updated electronic platform assessing risks related with landslides. It is a coastal area situated between Korinthos and Patras at the northwestern part of the elongated graben of the Corinth Gulf. The paper presents the combined use of geological-geotechnical insitu data, remote sensing data and GIS techniques for the evaluation of a subsurface geological model. High accuracy Digital Surface Model (DSM), airphotos mosaic and satellite data, with a spatial resolution of 0.5m were used for an othophoto base map compilation of the study area. Geological - geotechnical data obtained from exploratory boreholes were digitized and implemented in a GIS platform with engineering geological maps for a three - dimensional subsurface model evaluation. This model is provided for being combined with inclinometer measurements for sliding surface location through the instability zone.
NASA Astrophysics Data System (ADS)
Mishra, P. K.; Bernini Campos, H. E.
2016-12-01
The lower portion of the Salinas River in Monterey bay, California has a history of flood, lots of study has been made ab out the water quality since the river provides water for the crops around, but is still in need a detailed study about the river behavior and flood analysis. The floods did significant damage, affecting valuable landing farms, residences and businesses in Monterey County. The first step for this study is comprehend and collect the river bathymetry and surroundings and then analyze the discharge and how it is going to change with time. This thesis develops a model about the specific site, recruiting real data from GIS and performing a flow simulation according to flow data provided by USGS, to verify water surface elevation and floodplain. The ArcMap, developed by ESRI, was used along with an extension (HEC-GeoRAS) because it was indeed the most appropriate model to work with the Digital Elevation Model, develop the floodplain and characterizing the land surface accurately in the study site. The HEC-RAS software, developed by US Army Corp of Engineers, was used to compute one-dimension steady flow and two-dimension unsteady flow, providing flow velocity, water surface elevation and profiles, total surface area, head and friction loss and other characteristics, allowing the analysis of the flow. A mean discharge, a mean peak streamflow and a peak discharge were used for the steady flow and a Hydrograph was used for the unsteady flow, both are based on the 1995 flood and discharge history. This study provides important information about water surface elevation and water flow, allowing stakeholders and the government to analyze solutions to avoid damage to the society and landowners.
Automation technology using Geographic Information System (GIS)
NASA Technical Reports Server (NTRS)
Brooks, Cynthia L.
1994-01-01
Airport Surface Movement Area is but one of the actions taken to increase the capacity and safety of existing airport facilities. The System Integration Branch (SIB) has designed an integrated system consisting of an electronic moving display in the cockpit, and includes display of taxi routes which will warn controllers and pilots of the position of other traffic and warning information automatically. Although, this system has in test simulation proven to be accurate and helpful; the initial process of obtaining an airport layout of the taxi-routes and designing each of them is a very tedious and time-consuming process. Other methods of preparing the display maps are being researched. One such method is the use of the Geographical Information System (GIS). GIS is an integrated system of computer hardware and software linking topographical, demographic and other resource data that is being referenced. The software can support many areas of work with virtually unlimited information compatibility due to the system's open architecture. GIS will allow us to work faster with increased efficiency and accuracy while providing decision making capabilities. GIS is currently being used at the Langley Research Center with other applications and has been validated as an accurate system for that task. GIS usage for our task will involve digitizing aerial photographs of the topology for each taxi-runway and identifying each position according to its specific spatial coordinates. The information currently being used can be integrated with the GIS system, due to its ability to provide a wide variety of user interfaces. Much more research and data analysis will be needed before this technique will be used, however we are hopeful this will lead to better usage of man-power and technological capabilities for the future.
Stone, Byron D.; Stone, Janet R.
2007-01-01
The surficial geologic map shows the distribution of nonlithified earth materials at land surface in an area of eleven 7.5-minute quadrangles (total 505 mi2) in northeast-central Massachusetts. The geologic map differentiates surficial materials of Quaternary age on the basis of their lithologic characteristics (such as grain size and sedimentary structures), constructional geomorphic features, stratigraphic relationships, and age. Surficial earth materials significantly affect human use of the land, and an accurate description of their distribution is particularly important for water resources, construction aggregate resources, earth-surface hazards assessments, and land-use decisions. This compilation of surficial geologic materials is an interim product that defines the areas of exposed bedrock, and the boundaries between glacial till, glacial stratified deposits, and overlying postglacial deposits. This work is part of a comprehensive study to produce a statewide digital map of the surficial geology at a 1:24,000-scale level of accuracy. This report includes explanatory text (PDF), a regional map at 1:50,000 scale (PDF), quadrangle maps at 1:24,000 scale (PDF files), GIS data layers (ArcGIS shapefiles), metadata for the GIS layers, scanned topographic base maps (TIF), and a readme.txt file.
Stone, Byron D.; Stone, Janet Radway; DiGiacomo-Cohen, Mary L.
2006-01-01
The surficial geologic map shows the distribution of nonlithified earth materials at land surface in an area of 16 7.5-minute quadrangles (total 658 mi2) in northeast Massachusetts. The geologic map differentiates surficial materials of Quaternary age on the basis of their lithologic characteristics (grain size, sedimentary structures, mineral and rock-particle composition), constructional geomorphic features, stratigraphic relationships, and age. Surficial earth materials significantly affect human use of the land, and an accurate description of their distribution is particularly important for water resources, construction aggregate resources, earth-surface hazards assessments, and land-use decisions. This compilation of surficial geologic materials is an interim product that defines the areas of exposed bedrock, and the boundaries between glacial till, glacial stratified deposits, and overlying postglacial deposits. This work is part of a comprehensive study to produce a statewide digital map of the surficial geology at a 1:24,000-scale level of accuracy. This report includes explanatory text (PDF), a regional map at 1:50,000 scale (PDF), quadrangle maps at 1:24,000 scale (PDF files), GIS data layers (ArcGIS shapefiles), metadata for the GIS layers, scanned topographic base maps (TIF), and a readme.txt file.
The Effects of Gravitational Instabilities on Gas Giant Planet Migration in Protoplanetary Disks
NASA Astrophysics Data System (ADS)
Michael, Scott A.; Durisen, R. H.
2010-05-01
In this paper we conduct several three-dimensional radiative hydrodynamic simulations to explore the effect of the inclusion of gas giant planets in gravitationally unstable protoplanetary disks. We compare several simulations carried out with the CHYMERA code including: a baseline simulation without a planet, and three simulations including planets of various masses 0.3, 1 and 3 Jupiter masses. The planets are inserted into the baseline simulation after the gravitational instabilities (GIs) have grown to non-linear amplitude. The planets are inserted at the same radius, which coincides with the co-rotation radius of the dominant global mode in the baseline simulation. We examine the effect that the GIs have on migration rates as well as the potential of halting inward migration. We also examine the effect the insertion of the planet has on the global torques caused by the GIs. Furthermore, we explore the relationship between planet mass and migration rates and effect on GIs.
NASA Technical Reports Server (NTRS)
Betts, M.; Tsegaye, T.; Tadesse, W.; Coleman, T. L.; Fahsi, A.
1998-01-01
The spatial and temporal distribution of near surface soil moisture is of fundamental importance to many physical, biological, biogeochemical, and hydrological processes. However, knowledge of these space-time dynamics and the processes which control them remains unclear. The integration of geographic information systems (GIS) and geostatistics together promise a simple mechanism to evaluate and display the spatial and temporal distribution of this vital hydrologic and physical variable. Therefore, this research demonstrates the use of geostatistics and GIS to predict and display soil moisture distribution under vegetated and non-vegetated plots. The research was conducted at the Winfred Thomas Agricultural Experiment Station (WTAES), Hazel Green, Alabama. Soil moisture measurement were done on a 10 by 10 m grid from tall fescue grass (GR), alfalfa (AA), bare rough (BR), and bare smooth (BS) plots. Results indicated that variance associated with soil moisture was higher for vegetated plots than non-vegetated plots. The presence of vegetation in general contributed to the spatial variability of soil moisture. Integration of geostatistics and GIS can improve the productivity of farm lands and the precision of farming.
NASA Astrophysics Data System (ADS)
Li, Yanran; Chen, Duo; Li, Li; Zhang, Jiwei; Li, Guang; Liu, Hongxia
2017-11-01
GIS (gas insulated switchgear), is an important equipment in power system. Partial discharge plays an important role in detecting the insulation performance of GIS. UHF method and ultrasonic method frequently used in partial discharge (PD) detection for GIS. However, few studies have been conducted on comparison of this two methods. From the view point of safety, it is necessary to investigate UHF method and ultrasonic method for partial discharge in GIS. This paper presents study aimed at clarifying the effect of UHF method and ultrasonic method for partial discharge caused by free metal particles in GIS. Partial discharge tests were performed in laboratory simulated environment. Obtained results show the ability of anti-interference of signal detection and the accuracy of fault localization for UHF method and ultrasonic method. A new method based on UHF method and ultrasonic method of PD detection for GIS is proposed in order to greatly enhance the ability of anti-interference of signal detection and the accuracy of detection localization.
Montes, Rubén Vidal; Martínez-Graña, Antonio Miguel; Martínez Catalán, José Ramón; Arribas, Puy Ayarza; Sánchez San Román, Francisco Javier; Zazo, Caridad
2017-11-10
The present work envisages the possible geometry of a contaminated plume of groundwater near hospital facilities by combining GIS (Geographic Information System) and geophysical methods. The rock underlying the soil and thin sedimentary cover of the study area is moderately fractured quartzite, which makes aquifers vulnerable to pollution. The GIS methodology is used to calculate the area that would be affected by the effluent source of residual water, based on algorithms that consider ground surface mapping (slopes, orientations, accumulated costs and cost per distance). Geophysical methods (electromagnetic induction and electric resistivity tomography) use changes in the electrical conductivity or resistivity of the subsurface to determine the geometry of the discharge and the degree of contamination. The model presented would allow a preliminary investigation regarding potential corrective measures.
Montes, Rubén Vidal; Sánchez San Román, Francisco Javier; Zazo, Caridad
2017-01-01
The present work envisages the possible geometry of a contaminated plume of groundwater near hospital facilities by combining GIS (Geographic Information System) and geophysical methods. The rock underlying the soil and thin sedimentary cover of the study area is moderately fractured quartzite, which makes aquifers vulnerable to pollution. The GIS methodology is used to calculate the area that would be affected by the effluent source of residual water, based on algorithms that consider ground surface mapping (slopes, orientations, accumulated costs and cost per distance). Geophysical methods (electromagnetic induction and electric resistivity tomography) use changes in the electrical conductivity or resistivity of the subsurface to determine the geometry of the discharge and the degree of contamination. The model presented would allow a preliminary investigation regarding potential corrective measures. PMID:29125556
NASA Astrophysics Data System (ADS)
King, Steven Gray
Geographic information systems (GIS) reveal relationships and patterns from large quantities of diverse data in the form of maps and reports. The United States spends billions of dollars to use GIS to improve decisions made during responses to natural disasters and terrorist attacks, but precisely how GIS improves or impairs decision making is not known. This research examined how GIS affect decision making during natural disasters, and how GIS can be more effectively used to improve decision making for emergency management. Using a qualitative case study methodology, this research examined decision making at the U.S. Department of Homeland Security (DHS) during a large full-scale disaster exercise. This study indicates that GIS provided decision makers at DHS with an outstanding context for information that would otherwise be challenging to understand, especially through the integration of multiple data sources and dynamic three-dimensional interactive maps. Decision making was hampered by outdated information, a reliance on predictive models based on hypothetical data rather than actual event data, and a lack of understanding of the capabilities of GIS beyond cartography. Geospatial analysts, emergency managers, and other decision makers who use GIS should take specific steps to improve decision making based on GIS for disaster response and emergency management.
Recent work reports a warming trend in Pacific Ocean temperatures over the last 50 years. Coastal regions along western North America are particularly sensitive to climatic change, an important indicator of which is sea surface temperature (SST). In situ SST measurements (typica...
Development and methods for an open-sourced data visualization tool
USDA-ARS?s Scientific Manuscript database
This paper presents an open source on-demand web tool, which is specifically addressed to scientists and researchers that are non-expert in converting time series data into a time surface visualization. Similar to a GIS environment the time surface shows time on two axes; time of day vs. day of year...
D'Agnese, F. A.; Faunt, C.C.; Turner, A.K.; ,
1996-01-01
The recharge and discharge components of the Death Valley regional groundwater flow system were defined by techniques that integrated disparate data types to develop a spatially complex representation of near-surface hydrological processes. Image classification methods were applied to multispectral satellite data to produce a vegetation map. The vegetation map was combined with ancillary data in a GIS to delineate different types of wetlands, phreatophytes and wet playa areas. Existing evapotranspiration-rate estimates were used to calculate discharge volumes for these area. An empirical method of groundwater recharge estimation was modified to incorporate data describing soil-moisture conditions, and a recharge potential map was produced. These discharge and recharge maps were readily converted to data arrays for numerical modelling codes. Inverse parameter estimation techniques also used these data to evaluate the reliability and sensitivity of estimated values.The recharge and discharge components of the Death Valley regional groundwater flow system were defined by remote sensing and GIS techniques that integrated disparate data types to develop a spatially complex representation of near-surface hydrological processes. Image classification methods were applied to multispectral satellite data to produce a vegetation map. This map provided a basis for subsequent evapotranspiration and infiltration estimations. The vegetation map was combined with ancillary data in a GIS to delineate different types of wetlands, phreatophytes and wet playa areas. Existing evapotranspiration-rate estimates were then used to calculate discharge volumes for these areas. A previously used empirical method of groundwater recharge estimation was modified by GIS methods to incorporate data describing soil-moisture conditions, and a recharge potential map was produced. These discharge and recharge maps were readily converted to data arrays for numerical modelling codes. Inverse parameter estimation techniques also used these data to evaluate the reliability and sensitivity of estimated values.
Web-GIS visualisation of permafrost-related Remote Sensing products for ESA GlobPermafrost
NASA Astrophysics Data System (ADS)
Haas, A.; Heim, B.; Schaefer-Neth, C.; Laboor, S.; Nitze, I.; Grosse, G.; Bartsch, A.; Kaab, A.; Strozzi, T.; Wiesmann, A.; Seifert, F. M.
2016-12-01
The ESA GlobPermafrost (www.globpermafrost.info) provides a remote sensing service for permafrost research and applications. The service comprises of data product generation for various sites and regions as well as specific infrastructure allowing overview and access to datasets. Based on an online user survey conducted within the project, the user community extensively applies GIS software to handle remote sensing-derived datasets and requires preview functionalities before accessing them. In response, we develop the Permafrost Information System PerSys which is conceptualized as an open access geospatial data dissemination and visualization portal. PerSys will allow visualisation of GlobPermafrost raster and vector products such as land cover classifications, Landsat multispectral index trend datasets, lake and wetland extents, InSAR-based land surface deformation maps, rock glacier velocity fields, spatially distributed permafrost model outputs, and land surface temperature datasets. The datasets will be published as WebGIS services relying on OGC-standardized Web Mapping Service (WMS) and Web Feature Service (WFS) technologies for data display and visualization. The WebGIS environment will be hosted at the AWI computing centre where a geodata infrastructure has been implemented comprising of ArcGIS for Server 10.4, PostgreSQL 9.2 and a browser-driven data viewer based on Leaflet (http://leafletjs.com). Independently, we will provide an `Access - Restricted Data Dissemination Service', which will be available to registered users for testing frequently updated versions of project datasets. PerSys will become a core project of the Arctic Permafrost Geospatial Centre (APGC) within the ERC-funded PETA-CARB project (www.awi.de/petacarb). The APGC Data Catalogue will contain all final products of GlobPermafrost, allow in-depth dataset search via keywords, spatial and temporal coverage, data type, etc., and will provide DOI-based links to the datasets archived in the long-term, open access PANGAEA data repository.
Hadoop-GIS: A High Performance Spatial Data Warehousing System over MapReduce.
Aji, Ablimit; Wang, Fusheng; Vo, Hoang; Lee, Rubao; Liu, Qiaoling; Zhang, Xiaodong; Saltz, Joel
2013-08-01
Support of high performance queries on large volumes of spatial data becomes increasingly important in many application domains, including geospatial problems in numerous fields, location based services, and emerging scientific applications that are increasingly data- and compute-intensive. The emergence of massive scale spatial data is due to the proliferation of cost effective and ubiquitous positioning technologies, development of high resolution imaging technologies, and contribution from a large number of community users. There are two major challenges for managing and querying massive spatial data to support spatial queries: the explosion of spatial data, and the high computational complexity of spatial queries. In this paper, we present Hadoop-GIS - a scalable and high performance spatial data warehousing system for running large scale spatial queries on Hadoop. Hadoop-GIS supports multiple types of spatial queries on MapReduce through spatial partitioning, customizable spatial query engine RESQUE, implicit parallel spatial query execution on MapReduce, and effective methods for amending query results through handling boundary objects. Hadoop-GIS utilizes global partition indexing and customizable on demand local spatial indexing to achieve efficient query processing. Hadoop-GIS is integrated into Hive to support declarative spatial queries with an integrated architecture. Our experiments have demonstrated the high efficiency of Hadoop-GIS on query response and high scalability to run on commodity clusters. Our comparative experiments have showed that performance of Hadoop-GIS is on par with parallel SDBMS and outperforms SDBMS for compute-intensive queries. Hadoop-GIS is available as a set of library for processing spatial queries, and as an integrated software package in Hive.
Hadoop-GIS: A High Performance Spatial Data Warehousing System over MapReduce
Aji, Ablimit; Wang, Fusheng; Vo, Hoang; Lee, Rubao; Liu, Qiaoling; Zhang, Xiaodong; Saltz, Joel
2013-01-01
Support of high performance queries on large volumes of spatial data becomes increasingly important in many application domains, including geospatial problems in numerous fields, location based services, and emerging scientific applications that are increasingly data- and compute-intensive. The emergence of massive scale spatial data is due to the proliferation of cost effective and ubiquitous positioning technologies, development of high resolution imaging technologies, and contribution from a large number of community users. There are two major challenges for managing and querying massive spatial data to support spatial queries: the explosion of spatial data, and the high computational complexity of spatial queries. In this paper, we present Hadoop-GIS – a scalable and high performance spatial data warehousing system for running large scale spatial queries on Hadoop. Hadoop-GIS supports multiple types of spatial queries on MapReduce through spatial partitioning, customizable spatial query engine RESQUE, implicit parallel spatial query execution on MapReduce, and effective methods for amending query results through handling boundary objects. Hadoop-GIS utilizes global partition indexing and customizable on demand local spatial indexing to achieve efficient query processing. Hadoop-GIS is integrated into Hive to support declarative spatial queries with an integrated architecture. Our experiments have demonstrated the high efficiency of Hadoop-GIS on query response and high scalability to run on commodity clusters. Our comparative experiments have showed that performance of Hadoop-GIS is on par with parallel SDBMS and outperforms SDBMS for compute-intensive queries. Hadoop-GIS is available as a set of library for processing spatial queries, and as an integrated software package in Hive. PMID:24187650
Automatic 3D high-fidelity traffic interchange modeling using 2D road GIS data
NASA Astrophysics Data System (ADS)
Wang, Jie; Shen, Yuzhong
2011-03-01
3D road models are widely used in many computer applications such as racing games and driving simulations. However, almost all high-fidelity 3D road models were generated manually by professional artists at the expense of intensive labor. There are very few existing methods for automatically generating 3D high-fidelity road networks, especially for those existing in the real world. Real road network contains various elements such as road segments, road intersections and traffic interchanges. Among them, traffic interchanges present the most challenges to model due to their complexity and the lack of height information (vertical position) of traffic interchanges in existing road GIS data. This paper proposes a novel approach that can automatically produce 3D high-fidelity road network models, including traffic interchange models, from real 2D road GIS data that mainly contain road centerline information. The proposed method consists of several steps. The raw road GIS data are first preprocessed to extract road network topology, merge redundant links, and classify road types. Then overlapped points in the interchanges are detected and their elevations are determined based on a set of level estimation rules. Parametric representations of the road centerlines are then generated through link segmentation and fitting, and they have the advantages of arbitrary levels of detail with reduced memory usage. Finally a set of civil engineering rules for road design (e.g., cross slope, superelevation) are selected and used to generate realistic road surfaces. In addition to traffic interchange modeling, the proposed method also applies to other more general road elements. Preliminary results show that the proposed method is highly effective and useful in many applications.
Sun, Li-Li; Zhou, Zhong-Jing; An, Li-Jun; An, Yan; Zhao, Yong-Qin; Meng, Xiao-Fang; Steele-King, Clare; Gan, Yin-Bo
2013-07-01
Arabidopsis trichomes are large branched single cells that protrude from the epidermis. The first morphological indication of trichome development is an increase in nuclear content resulting from an initial cycle of endoreduplication. Our previous study has shown that the C2H2 zinc finger protein GLABROUS INFLORESCENCE STEMS (GIS) is required for trichome initiation in the inflorescence organ and for trichome branching in response to gibberellic acid signaling, although GIS gene does not play a direct role in regulating trichome cell division. Here, we describe a novel role of GIS, controlling trichome cell division indirectly by interacting genetically with a key endoreduplication regulator SIAMESE (SIM). Our molecular and genetic studies have shown that GIS might indireclty control cell division and trichome branching by acting downstream of SIM. A loss of function mutation of SIM signficantly reduced the expression of GIS. Futhermore, the overexpression of GIS rescued the trichome cluster cell phenotypes of sim mutant. The gain or loss of function of GIS had no significant effect on the expression of SIM. These results suggest that GIS may play an indirect role in regulating trichome cell division by genetically interacting with SIM.
NASA Astrophysics Data System (ADS)
Bilsley, N. A.; Love, C. A.; Minster, J. B. H.
2014-12-01
Geographic Information Systems (GIS) offer a plethora of applications for numerous fields, from geological sciences to urban planning. Therefore, developing a practical GIS curriculum for students from a diverse selection of majors can be challenging, especially since time constraints presented by the course term limit the number of projects that can cater to each student's academic focus. However, open ended assignments that allow students the freedom to personalize their projects present an opportunity to teach the universal functionality of GIS, as well as stimulate curiosity of students from all backgrounds by allowing them to tailor a project to their personal interests. During an introductory GIS course at the University of California, San Diego, projects prompted students to utilize ArcGIS in ways of their choice that raised awareness of local environmental issues, as well as encouraged students to incorporate environmentally sustainable practices into their lives. In view of the frequently stated interest of students to enter careers where they can use their newly learned GIS skills, the educational platform of choice is ESRI's ArcGIS, but the choice of platform remains flexible. As GIS resources become more accessible with the development of programs such as OpenGIS and OpenStreetMap, the potential for GIS to effectively communicate environmental issues to the public is growing fast. Incorporating these environmental issues into a curriculum not only allows students to personalize their education, but also raises awareness of such problems and provides students with the ability to communicate those issues using GIS.
NASA Astrophysics Data System (ADS)
Hagevik, Rita Anne
This study investigated the effects of using Geographic Information Systems (GIS) to improve middle school students' and their teachers' understanding of environmental content and GIS. Constructivism provided the theoretical framework with Bonnstetter's inquiry evolution and Swartz's problem solving as the conceptual framework for designing these GIS units and interpreting the results. Teachers from nine schools in five counties attended a one-week workshop and follow-up session, where they learned how to teach the online Mapping Our School Site (www.ncsu.edu/scilink/studysite) and CITYgreen GIS inquiry-based problem-solving units. Two years after the workshop, two teachers from the workshop taught the six week Mapping Our School Site (MOSS) unit in the fall and one teacher from a different school taught the MOSS unit in the fall and the CITYgreen GIS unit in the spring. The students in the MOSS experimental group (n = 131) and the CITYgreen GIS comparison group (n = 33) were compared for differences in understanding of environmental content. Other factors were investigated such as students' spatial abilities, experiences, and learning preferences. Teachers and students completed the online Learning Styles Inventory (LSI), Spatial Experience Survey (SES), and the Purdue Spatial Visualization Test: Rotations (PSVT:R). Using qualitative and quantitative analyses, results indicated that the CITYgreen GIS group learned the environmental content better than the MOSS group. The MOSS group better understood how to design experiments and to use GIS to analyze problem questions. Both groups improved in problem identification and problem solving, data accuracy, and hypothesis testing. The spatial reasoning score was compared to learning style as reported on the LSI, and other spatial experiences as reported on the SES. Males scored higher than females on the spatial reasoning test, the more computer games played the higher the score, and the fewer shop classes taken the higher the score. Results indicated that 75% of the teachers' integrated GIS into classroom instruction two years after the GIS workshop. Even though teaching experience was negatively related to spatial reasoning test scores, implementation of GIS by teachers in the workshop was not influenced by years of teaching experience. The results indicate that GIS can be universally used for classroom instruction.
WPC 48-Hour Surface Weather Forecast
Summaries Heat Index Tropical Products Daily Weather Map GIS Products Current Watches/ Warnings Satellite and Radar Imagery GOES-East Satellite GOES-West Satellite National Radar Product Archive WPC
WPC 12-Hour Surface Weather Forecast
Summaries Heat Index Tropical Products Daily Weather Map GIS Products Current Watches/ Warnings Satellite and Radar Imagery GOES-East Satellite GOES-West Satellite National Radar Product Archive WPC
WPC 36-Hour Surface Weather Forecast
Summaries Heat Index Tropical Products Daily Weather Map GIS Products Current Watches/ Warnings Satellite and Radar Imagery GOES-East Satellite GOES-West Satellite National Radar Product Archive WPC
WPC 24-Hour Surface Weather Forecast
Summaries Heat Index Tropical Products Daily Weather Map GIS Products Current Watches/ Warnings Satellite and Radar Imagery GOES-East Satellite GOES-West Satellite National Radar Product Archive WPC
NASA Astrophysics Data System (ADS)
Mirkhalili, Seyedhamzeh
2016-07-01
Chlorophyll is an extremely important bio-molecule, critical in photosynthesis, which allows plants to absorb energy from light. At the base of the ocean food web are single-celled algae and other plant-like organisms known as Phytoplankton. Like plants on land, Phytoplankton use chlorophyll and other light-harvesting pigments to carry out photosynthesis. Where Phytoplankton grow depends on available sunlight, temperature, and nutrient levels. In this research a GIS Approach using ARCGIS software and QuikSCAT satellite data was applied to visualize WIND,SST(Sea Surface Temperature) and CHL(Chlorophyll) variations in the Caspian Sea.Results indicate that increase in chlorophyll concentration in coastal areas is primarily driven by terrestrial nutrients and does not imply that warmer SST will lead to an increase in chlorophyll concentration and consequently Phytoplankton abundance.
Zimmermann, Mark; Reid, Jane A.; Golden, Nadine
2016-01-01
In this analysis we demonstrate how preferred fish habitat can be predicted and mapped for juveniles of two Alaskan groundfish species – Pacific halibut (Hippoglossus stenolepis) and flathead sole (Hippoglossoides elassodon) – at five sites (Kiliuda Bay, Izhut Bay, Port Dick, Aialik Bay, and the Barren Islands) in the central Gulf of Alaska. The method involves using geographic information system (GIS) software to extract appropriate information from National Ocean Service (NOS) smooth sheets that are available from NGDC (the National Geophysical Data Center). These smooth sheets are highly detailed charts that include more soundings, substrates, shoreline and feature information than the more commonly-known navigational charts. By bringing the information from smooth sheets into a GIS, a variety of surfaces, such as depth, slope, rugosity and mean grain size were interpolated into raster surfaces. Other measurements such as site openness, shoreline length, proportion of bay that is near shore, areas of rocky reefs and kelp beds, water volumes, surface areas and vertical cross-sections were also made in order to quantify differences between the study sites. Proper GIS processing also allows linking the smooth sheets to other data sets, such as orthographic satellite photographs, topographic maps and precipitation estimates from which watersheds and runoff can be derived. This same methodology can be applied to larger areas, taking advantage of these free data sets to describe predicted groundfish essential fish habitat (EFH) in Alaskan waters.
Stone, Janet R.; DiGiacomo-Cohen, Mary L.
2010-01-01
The surficial geologic map layer shows the distribution of nonlithified earth materials at land surface in an area of 24 7.5-minute quadrangles (1,238 mi2 total) in west-central Massachusetts. Across Massachusetts, these materials range from a few feet to more than 500 ft in thickness. They overlie bedrock, which crops out in upland hills and as resistant ledges in valley areas. The geologic map differentiates surficial materials of Quaternary age on the basis of their lithologic characteristics (such as grain size and sedimentary structures), constructional geomorphic features, stratigraphic relationships, and age. Surficial materials also are known in engineering classifications as unconsolidated soils, which include coarse-grained soils, fine-grained soils, and organic fine-grained soils. Surficial materials underlie and are the parent materials of modern pedogenic soils, which have developed in them at the land surface. Surficial earth materials significantly affect human use of the land, and an accurate description of their distribution is particularly important for assessing water resources, construction aggregate resources, and earth-surface hazards, and for making land-use decisions. This work is part of a comprehensive study to produce a statewide digital map of the surficial geology at a 1:24,000-scale level of accuracy. This report includes explanatory text, quadrangle maps at 1:24,000 scale (PDF files), GIS data layers (ArcGIS shapefiles), metadata for the GIS layers, scanned topographic base maps (TIF), and a readme.txt file.
Stone, Byron D.; Stone, Janet R.; DiGiacomo-Cohen, Mary L.; Kincare, Kevin A.
2012-01-01
The surficial geologic map shows the distribution of nonlithified earth materials at land surface in an area of 23 7.5-minute quadrangles (919 mi2 total) in southeastern Massachusetts. Across Massachusetts, these materials range from a few feet to more than 500 ft in thickness. They overlie bedrock, which crops out in upland hills and as resistant ledges in valley areas. The geologic map differentiates surficial materials of Quaternary age on the basis of their lithologic characteristics (such as grain size and sedimentary structures), constructional geomorphic features, stratigraphic relationships, and age. Surficial materials also are known in engineering classifications as unconsolidated soils, which include coarse-grained soils, fine-grained soils, and organic fine-grained soils. Surficial materials underlie and are the parent materials of modern pedogenic soils, which have developed in them at the land surface. Surficial earth materials significantly affect human use of the land, and an accurate description of their distribution is particularly important for assessing water resources, construction aggregate resources, and earth-surface hazards, and for making land-use decisions. This work is part of a comprehensive study to produce a statewide digital map of the surficial geology at a 1:24,000-scale level of accuracy. This report includes explanatory text (PDF), quadrangle maps at 1:24,000 scale (PDF files), GIS data layers (ArcGIS shapefiles), metadata for the GIS layers, scanned topographic base maps (TIF), and a readme.txt file.
Stone, Janet R.
2013-01-01
The surficial geologic map shows the distribution of nonlithified earth materials at land surface in an area of 24 7.5-minute quadrangles (1,238 mi2 total) in central Massachusetts. Across Massachusetts, these materials range from a few feet to more than 500 ft in thickness. They overlie bedrock, which crops out in upland hills and as resistant ledges in valley areas. The geologic map differentiates surficial materials of Quaternary age on the basis of their lithologic characteristics (such as grain size and sedimentary structures), constructional geomorphic features, stratigraphic relationships, and age. Surficial materials also are known in engineering classifications as unconsolidated soils, which include coarse-grained soils, fine-grained soils, and organic fine-grained soils. Surficial materials underlie and are the parent materials of modern pedogenic soils, which have developed in them at the land surface. Surficial earth materials significantly affect human use of the land, and an accurate description of their distribution is particularly important for assessing water resources, construction-aggregate resources, and earth-surface hazards, and for making land-use decisions. This work is part of a comprehensive study to produce a statewide digital map of the surficial geology at a 1:24,000-scale level of accuracy. This report includes explanatory text (PDF), quadrangle maps at 1:24,000 scale (PDF files), GIS data layers (ArcGIS shapefiles), metadata for the GIS layers, scanned topographic base maps (TIF), and a readme.txt file.
NASA Astrophysics Data System (ADS)
Zimmermann, Mark; Reid, Jane A.; Golden, Nadine
2016-10-01
In this analysis we demonstrate how preferred fish habitat can be predicted and mapped for juveniles of two Alaskan groundfish species - Pacific halibut (Hippoglossus stenolepis) and flathead sole (Hippoglossoides elassodon) - at five sites (Kiliuda Bay, Izhut Bay, Port Dick, Aialik Bay, and the Barren Islands) in the central Gulf of Alaska. The method involves using geographic information system (GIS) software to extract appropriate information from National Ocean Service (NOS) smooth sheets that are available from NGDC (the National Geophysical Data Center). These smooth sheets are highly detailed charts that include more soundings, substrates, shoreline and feature information than the more commonly-known navigational charts. By bringing the information from smooth sheets into a GIS, a variety of surfaces, such as depth, slope, rugosity and mean grain size were interpolated into raster surfaces. Other measurements such as site openness, shoreline length, proportion of bay that is near shore, areas of rocky reefs and kelp beds, water volumes, surface areas and vertical cross-sections were also made in order to quantify differences between the study sites. Proper GIS processing also allows linking the smooth sheets to other data sets, such as orthographic satellite photographs, topographic maps and precipitation estimates from which watersheds and runoff can be derived. This same methodology can be applied to larger areas, taking advantage of these free data sets to describe predicted groundfish essential fish habitat (EFH) in Alaskan waters.
Cardazone, Gina; U Sy, Angela; Chik, Ivan; Corlew, Laura Kate
2014-06-01
Network analysis and GIS enable the presentation of meaningful data about organizational relationships and community characteristics, respectively. Together, these tools can provide a concrete representation of the ecological context in which coalitions operate, and may help coalitions identify opportunities for growth and enhanced effectiveness. This study uses network analysis and GIS mapping as part of an evaluation of the One Strong 'Ohana (OSO) campaign. The OSO campaign was launched in 2012 via a partnership between the Hawai'i Children's Trust Fund (HCTF) and the Joyful Heart Foundation. The OSO campaign uses a collaborative approach aimed at increasing public awareness of child maltreatment and protective factors that can prevent maltreatment, as well as enhancing the effectiveness of the HCTF Coalition. This study focuses on three elements of the OSO campaign evaluation: (1) Network analysis exploring the relationships between 24 active Coalition member organizations, (2) GIS mapping of responses to a randomized statewide phone survey (n = 1,450) assessing awareness of factors contributing to child maltreatment, and (3) Combined GIS maps and network data, illustrating opportunities for geographically-targeted coalition building and public awareness activities.
Greenland Ice Sheet Melt from MODIS and Associated Atmospheric Variability
NASA Technical Reports Server (NTRS)
Hakkinen, Sirpa; Hall, Dorothy K.; Shuman, Christopher A.; Worthen, Denise L.; DiGirolamo, Nicolo E.
2014-01-01
Daily June-July melt fraction variations over the Greenland Ice Sheet (GIS) derived from the MODerate-resolution Imaging Spectroradiometer (MODIS) (2000-2013) are associated with atmospheric blocking forming an omega-shape ridge over the GIS at 500hPa height (from NCEPNCAR). Blocking activity with a range of time scales, from synoptic waves breaking poleward ( 5 days) to full-fledged blocks (5 days), brings warm subtropical air masses over the GIS controlling daily surface temperatures and melt. The temperature anomaly of these subtropical air mass intrusions is also important for melting. Based on the largest MODIS melt years (2002 and 2012), the area-average temperature anomaly of 2 standard deviations above the 14-year June-July mean, results in a melt fraction of 40 or more. Summer 2007 had the most blocking days, however atmospheric temperature anomalies were too small to instigate extreme melting.
Teachers' Perceptions of Esri Story Maps as Effective Teaching Tools
ERIC Educational Resources Information Center
Strachan, Caitlin; Mitchell, Jerry
2014-01-01
The current study explores teachers' perceptions of Esri Story Maps as effective teaching tools. Story Maps are a relatively new web application created using Esri's cloud-based GIS platform, ArcGIS Online. They combine digitized, dynamic web maps with other story elements to help the creator effectively convey a message. The relative ease…
A System for Drawing Synthetic Images of Forested Landscapes
Timothy P. McDonald
1997-01-01
A software package for drawing images of forested landscapes was developed. Programs included in the system convert topographic and stand polygon information output from a GIS into a form that can be read by a general-purpose ray-tracing renderer. Other programs generate definitions for surface features, mainly trees but ground surface textural properties as well. The...
Prioritising sewerage maintenance using inferred sewer age: a case study for Edinburgh.
Arthur, S; Burkhard, R
2010-01-01
The reported research project focuses on using a database which contains details of customer contacts and CCTV data for a key Scottish catchment to construct a GIS based sewer condition model. Given the nature of the asset registry, a key research challenge was estimating the age of individual lengths of pipe. Within this context, asset age was inferred using the estimated age of surface developments-this involved overlaying the network in a GIS with historical digital maps. The paper illustrates that inferred asset age can reliably be used to highlight assets which are more likely to fail.
Development of a Carbon Management Geographic Information System (GIS) for the United States
DOE Office of Scientific and Technical Information (OSTI.GOV)
Howard Herzog; Holly Javedan
In this project a Carbon Management Geographical Information System (GIS) for the US was developed. The GIS stored, integrated, and manipulated information relating to the components of carbon management systems. Additionally, the GIS was used to interpret and analyze the effect of developing these systems. This report documents the key deliverables from the project: (1) Carbon Management Geographical Information System (GIS) Documentation; (2) Stationary CO{sub 2} Source Database; (3) Regulatory Data for CCS in United States; (4) CO{sub 2} Capture Cost Estimation; (5) CO{sub 2} Storage Capacity Tools; (6) CO{sub 2} Injection Cost Modeling; (7) CO{sub 2} Pipeline Transport Costmore » Estimation; (8) CO{sub 2} Source-Sink Matching Algorithm; and (9) CO{sub 2} Pipeline Transport and Cost Model.« less
Kim, Jun-Hyun; Gu, Donghwan; Sohn, Wonmin; Kil, Sung-Ho; Kim, Hwanyong; Lee, Dong-Kun
2016-09-02
Rapid urbanization has accelerated land use and land cover changes, and generated the urban heat island effect (UHI). Previous studies have reported positive effects of neighborhood landscapes on mitigating urban surface temperatures. However, the influence of neighborhood landscape spatial patterns on enhancing cooling effects has not yet been fully investigated. The main objective of this study was to assess the relationships between neighborhood landscape spatial patterns and land surface temperatures (LST) by using multi-regression models considering spatial autocorrelation issues. To measure the influence of neighborhood landscape spatial patterns on LST, this study analyzed neighborhood environments of 15,862 single-family houses in Austin, Texas, USA. Using aerial photos, geographic information systems (GIS), and remote sensing, FRAGSTATS was employed to calculate values of several landscape indices used to measure neighborhood landscape spatial patterns. After controlling for the spatial autocorrelation effect, results showed that larger and better-connected landscape spatial patterns were positively correlated with lower LST values in neighborhoods, while more fragmented and isolated neighborhood landscape patterns were negatively related to the reduction of LST.
Kim, Jun-Hyun; Gu, Donghwan; Sohn, Wonmin; Kil, Sung-Ho; Kim, Hwanyong; Lee, Dong-Kun
2016-01-01
Rapid urbanization has accelerated land use and land cover changes, and generated the urban heat island effect (UHI). Previous studies have reported positive effects of neighborhood landscapes on mitigating urban surface temperatures. However, the influence of neighborhood landscape spatial patterns on enhancing cooling effects has not yet been fully investigated. The main objective of this study was to assess the relationships between neighborhood landscape spatial patterns and land surface temperatures (LST) by using multi-regression models considering spatial autocorrelation issues. To measure the influence of neighborhood landscape spatial patterns on LST, this study analyzed neighborhood environments of 15,862 single-family houses in Austin, Texas, USA. Using aerial photos, geographic information systems (GIS), and remote sensing, FRAGSTATS was employed to calculate values of several landscape indices used to measure neighborhood landscape spatial patterns. After controlling for the spatial autocorrelation effect, results showed that larger and better-connected landscape spatial patterns were positively correlated with lower LST values in neighborhoods, while more fragmented and isolated neighborhood landscape patterns were negatively related to the reduction of LST. PMID:27598186
Contextualising and Analysing Planetary Rover Image Products through the Web-Based PRoGIS
NASA Astrophysics Data System (ADS)
Morley, Jeremy; Sprinks, James; Muller, Jan-Peter; Tao, Yu; Paar, Gerhard; Huber, Ben; Bauer, Arnold; Willner, Konrad; Traxler, Christoph; Garov, Andrey; Karachevtseva, Irina
2014-05-01
The international planetary science community has launched, landed and operated dozens of human and robotic missions to the planets and the Moon. They have collected various surface imagery that has only been partially utilized for further scientific purposes. The FP7 project PRoViDE (Planetary Robotics Vision Data Exploitation) is assembling a major portion of the imaging data gathered so far from planetary surface missions into a unique database, bringing them into a spatial context and providing access to a complete set of 3D vision products. Processing is complemented by a multi-resolution visualization engine that combines various levels of detail for a seamless and immersive real-time access to dynamically rendered 3D scenes. PRoViDE aims to (1) complete relevant 3D vision processing of planetary surface missions, such as Surveyor, Viking, Pathfinder, MER, MSL, Phoenix, Huygens, and Lunar ground-level imagery from Apollo, Russian Lunokhod and selected Luna missions, (2) provide highest resolution & accuracy remote sensing (orbital) vision data processing results for these sites to embed the robotic imagery and its products into spatial planetary context, (3) collect 3D Vision processing and remote sensing products within a single coherent spatial data base, (4) realise seamless fusion between orbital and ground vision data, (5) demonstrate the potential of planetary surface vision data by maximising image quality visualisation in 3D publishing platform, (6) collect and formulate use cases for novel scientific application scenarios exploiting the newly introduced spatial relationships and presentation, (7) demonstrate the concepts for MSL, (9) realize on-line dissemination of key data & its presentation by a web-based GIS and rendering tool named PRoGIS (Planetary Robotics GIS). PRoGIS is designed to give access to rover image archives in geographical context, using projected image view cones, obtained from existing meta-data and updated according to processing results, as a means to interact with and explore the archive. However PRoGIS is more than a source data explorer. It is linked to the PRoVIP (Planetary Robotics Vision Image Processing) system which includes photogrammetric processing tools to extract terrain models, compose panoramas, and explore and exploit multi-view stereo (where features on the surface have been imaged from different rover stops). We have started with the Opportunity MER rover as our test mission but the system is being designed to be multi-mission, taking advantage in particular of UCL MSSL's PDS mirror, and we intend to at least deal with both MER rovers and MSL. For the period of ProViDE until end of 2015 the further intent is to handle lunar and other Martian rover & descent camera data. The presentation discusses the challenges of integrating rover and orbital derived data into a single geographical framework, especially reconstructing view cones; our human-computer interaction intentions in creating an interface to the rover data that is accessible to planetary scientists; how we handle multi-mission data in the database; and a demonstration of the resulting system & its processing capabilities. The research leading to these results has received funding from the European Community's Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 312377 PRoViDE.
Stone, Janet R.; Stone, Byron D.
2006-01-01
The surficial geologic map shows the distribution of nonlithified earth materials at land surface in an area of twelve 7.5-minute quadrangles (total 660 square miles) in east-central Massachusetts. The geologic map differentiates surficial materials of Quaternary age on the basis of their lithologic characteristics (grain size, sedimentary structures, mineral and rock-particle composition), constructional geomorphic features, stratigraphic relationships, and age. Surficial earth materials significantly affect human use of the land, and an accurate description of their distribution is particularly important for water resources, construction aggregate resources, earth-surface hazards assessments, and land-use decisions. This compilation of surficial geologic materials is an interim product that defines the areas of exposed bedrock, and the boundaries between glacial till, glacial stratified deposits, and overlying postglacial deposits. This work is part of a comprehensive study to produce a statewide digital map of the surficial geology at a 1:24,000-scale level of accuracy. This report includes explanatory text (PDF), a regional map at 1:50,000 scale (PDF), quadrangle maps at 1:24,000 scale (12 PDF files), GIS data layers (ArcGIS shapefiles), scanned topographic base maps (TIF), metadata for the GIS layers, and a readme.txt file.
GIS based procedure of cumulative environmental impact assessment.
Balakrishna Reddy, M; Blah, Baiantimon
2009-07-01
Scale and spatial limits of impact assessment study in a GIS platform are two very important factors that could have a bearing on the genuineness and quality of impact assessment. While effect of scale has been documented and well understood, no significant study has been carried out on spatial considerations in an impact assessment study employing GIS technique. A novel technique of impact assessment demonstrable through GIS approach termed hereby as 'spatial data integrated GIS impact assessment method (SGIAM)' is narrated in this paper. The technique makes a fundamental presumption that the importance of environmental impacts is dependent, among other things, on spatial distribution of the effects of the proposed action and of the affected receptors in a study area. For each environmental component considered (e.g., air quality), impact indices are calculated through aggregation of impact indicators which are measures of the severity of the impact. The presence and spread of environmental descriptors are suitably quantified through modeling techniques and depicted. The environmental impact index is calculated from data exported from ArcINFO, thus giving significant importance to spatial data in the impact assessment exercise.
Integrating Multiple Criteria Evaluation and GIS in Ecotourism: a Review
NASA Astrophysics Data System (ADS)
Mohd, Z. H.; Ujang, U.
2016-09-01
The concept of 'Eco-tourism' is increasingly heard in recent decades. Ecotourism is one adventure that environmentally responsible intended to appreciate the nature experiences and cultures. Ecotourism should have low impact on environment and must contribute to the prosperity of local residents. This article reviews the use of Multiple Criteria Evaluation (MCE) and Geographic Information System (GIS) in ecotourism. Multiple criteria evaluation mostly used to land suitability analysis or fulfill specific objectives based on various attributes that exist in the selected area. To support the process of environmental decision making, the application of GIS is used to display and analysis the data through Analytic Hierarchy Process (AHP). Integration between MCE and GIS tool is important to determine the relative weight for the criteria used objectively. With the MCE method, it can resolve the conflict between recreation and conservation which is to minimize the environmental and human impact. Most studies evidences that the GIS-based AHP as a multi criteria evaluation is a strong and effective in tourism planning which can aid in the development of ecotourism industry effectively.
NASA Astrophysics Data System (ADS)
Li, Yanran; Chen, Duo; Zhang, Jiwei; Chen, Ning; Li, Xiaoqi; Gong, Xiaojing
2017-09-01
GIS (gas insulated switchgear), is an important equipment in power system. Partial discharge plays an important role in detecting the insulation performance of GIS. UHF method and ultrasonic method frequently used in partial discharge (PD) detection for GIS. It is necessary to investigate UHF method and ultrasonic method for partial discharge in GIS. However, very few studies have been conducted on the method combined this two methods. From the view point of safety, a new method based on UHF method and ultrasonic method of PD detection for GIS is proposed in order to greatly enhance the ability of anti-interference of signal detection and the accuracy of fault localization. This paper presents study aimed at clarifying the effect of the new method combined UHF method and ultrasonic method. Partial discharge tests were performed in laboratory simulated environment. Obtained results show the ability of anti-interference of signal detection and the accuracy of fault localization for this new method combined UHF method and ultrasonic method.
NASA Astrophysics Data System (ADS)
Nikolaidis, Andreas; Stylianou, Stavros; Georgiou, Georgios; Hadjimitsis, Diofantos; Akylas, Evangelos
2014-05-01
ArcGIS® is a well known standard on Geographical Information Systems, used over the years for various remote sensing procedures. During the last decade, Rixen (2003) and Azcarate (2011) presented the DINEOF (Data Interpolating Empirical Orthogonal Functions) method, a EOF-based technique to reconstruct missing data in satellite images. The recent results of the DINEOF method in various experimental trials (Wang and Liu, 2013; Nikolaidis et al., 2013;2014) showed that this computationally affordable method leads to effective reconstruction of missing data from geophysical fields, such as chlorophyll-a, sea surface temperatures or salinities and geophysical fields derived from satellite data. Implementing the method in a GIS system will lead to a complete and integrated approach, enhancing its applicability. The inclusion of statistical tools within the GIS, will multiply the effectiveness, providing interoperability with other sources in the same application environment. This may be especially useful in studies where various different kinds of data are of interest. For this purpose, in this study we have implemented a new GIS toolbox that aims at automating the usage of the algorithm, incorporating the DINEOF codes provided by GHER (GeoHydrodynamics and Environment Research Group of University of Liege) into the ArcGIS®. A case-study of filling the chlorophyll-a missing data in the Mediterranean Sea area, for a 18-day period is analyzed, as an example for the effectiveness and simplicity of the toolbox. More specifically, we focus on chlorophyll-a MODIS satellite data collected by CNR-ISAC (Italian National Research Council, Institute of Atmospheric Sciences and Climate), from the respective products of MyOcean2® organization, that provides free online access to Level 3, with 1 km resolution. All the daily products with an initial level of only 27% data coverage were successfully reconstructed over the Mediterranean Sea. [1] Alvera-Azcárate A., Barth A.,Sirjacobs D., Lenartz F., Beckers J.-M.. Data Interpolating Empirical Orthogonal Functions (DINEOF): a tool for geophysical data analyses. Medit. Mar. Sci., 5-11, (2011). [2] Rixen M., Beckers J. M.,, EOF Calculations and Data Filling from Incomplete Oceanographic Datasets. Journal of Atmospheric and Oceanic Technology, Vol. 20(12), pp. 1839-1856, (2003) [3] Nikolaidis A., Georgiou G., Hadjimitsis D. and E. Akylas, Applying a DINEOF algorithm on cloudy sea-surface temperature satellite data over the eastern Mediterranean Sea, Central European Journal of Geosciences 6(1), pp. 1-16, (2014) [4] Nikolaidis A., Georgiou G., Hadjimitsis D. and E. Akylas Applying DINEOF algorithm on cloudy sea-surface temperature satellite data over the eastern Mediterranean Sea, Proc. SPIE 8795, First International Conference on Remote Sensing and Geoinformation of the Environment (RSCy2013), 87950L, 8-10 April 2013, Paphos, Cyprus, 10.1117/12.2029085 [5] Wang Y. and D. Liu (2014), Reconstruction of satellite chlorophyll-a data using a modified DINEOF method: a case study in the Bohai and Yellow seas, China, International Journal of Remote Sensing, Vol. 35(1), 204-217, (2014).
Geographic Information Systems and Web Page Development
NASA Technical Reports Server (NTRS)
Reynolds, Justin
2004-01-01
The Facilities Engineering and Architectural Branch is responsible for the design and maintenance of buildings, laboratories, and civil structures. In order to improve efficiency and quality, the FEAB has dedicated itself to establishing a data infrastructure based on Geographic Information Systems, GIs. The value of GIS was explained in an article dating back to 1980 entitled "Need for a Multipurpose Cadastre which stated, "There is a critical need for a better land-information system in the United States to improve land-conveyance procedures, furnish a basis for equitable taxation, and provide much-needed information for resource management and environmental planning." Scientists and engineers both point to GIS as the solution. What is GIS? According to most text books, Geographic Information Systems is a class of software that stores, manages, and analyzes mapable features on, above, or below the surface of the earth. GIS software is basically database management software to the management of spatial data and information. Simply put, Geographic Information Systems manage, analyze, chart, graph, and map spatial information. At the outset, I was given goals and expectations from my branch and from my mentor with regards to the further implementation of GIs. Those goals are as follows: (1) Continue the development of GIS for the underground structures. (2) Extract and export annotated data from AutoCAD drawing files and construct a database (to serve as a prototype for future work). (3) Examine existing underground record drawings to determine existing and non-existing underground tanks. Once this data was collected and analyzed, I set out on the task of creating a user-friendly database that could be assessed by all members of the branch. It was important that the database be built using programs that most employees already possess, ruling out most AutoCAD-based viewers. Therefore, I set out to create an Access database that translated onto the web using Internet Explorer as the foundation. After some programming, it was possible to view AutoCAD files and other GIS-related applications on Internet Explorer, while providing the user with a variety of editing commands and setting options. I was also given the task of launching a divisional website using Macromedia Flash and other web- development programs.
NASA Astrophysics Data System (ADS)
Rothenberger, Meghan B.; Burkholder, Joann M.; Brownie, Cavell
2009-09-01
The watershed of the Neuse River, a major tributary of the largest lagoonal estuary on the U.S. mainland, has sustained rapid growth of human and swine populations. This study integrated a decade of available land cover and water quality data to examine relationships between land use changes and surface water quality. Geographic Information Systems (GIS) analysis was used to characterize 26 subbasins throughout the watershed for changes in land use during 1992-2001, considering urban, agricultural (cropland, animal as pasture, and densities of confined animal feed operations [CAFOs]), forested, grassland, and wetland categories and numbers of wastewater treatment plants (WWTPs). GIS was also used together with longitudinal regression analysis to identify specific land use characteristics that influenced surface water quality. Total phosphorus concentrations were significantly higher during summer in subbasins with high densities of WWTPs and CAFOs. Nitrate was significantly higher during winter in subbasins with high numbers of WWTPs, and organic nitrogen was higher in subbasins with higher agricultural coverage, especially with high coverage of pastures fertilized with animal manure. Ammonium concentrations were elevated after high precipitation. Overall, wastewater discharges in the upper, increasingly urbanized Neuse basin and intensive swine agriculture in the lower basin have been the highest contributors of nitrogen and phosphorus to receiving surface waters. Although nonpoint sources have been emphasized in the eutrophication of rivers and estuaries such as the Neuse, point sources continue to be major nutrient contributors in watersheds sustaining increasing human population growth. The described correlation and regression analyses represent a rapid, reliable method to relate land use patterns to water quality, and they can be adapted to watersheds in any region.
NASA Astrophysics Data System (ADS)
Lei, Xiaohui; Wang, Yuhui; Liao, Weihong; Jiang, Yunzhong; Tian, Yu; Wang, Hao
2011-09-01
Many regions are still threatened with frequent floods and water resource shortage problems in China. Consequently, the task of reproducing and predicting the hydrological process in watersheds is hard and unavoidable for reducing the risks of damage and loss. Thus, it is necessary to develop an efficient and cost-effective hydrological tool in China as many areas should be modeled. Currently, developed hydrological tools such as Mike SHE and ArcSWAT (soil and water assessment tool based on ArcGIS) show significant power in improving the precision of hydrological modeling in China by considering spatial variability both in land cover and in soil type. However, adopting developed commercial tools in such a large developing country comes at a high cost. Commercial modeling tools usually contain large numbers of formulas, complicated data formats, and many preprocessing or postprocessing steps that may make it difficult for the user to carry out simulation, thus lowering the efficiency of the modeling process. Besides, commercial hydrological models usually cannot be modified or improved to be suitable for some special hydrological conditions in China. Some other hydrological models are open source, but integrated into commercial GIS systems. Therefore, by integrating hydrological simulation code EasyDHM, a hydrological simulation tool named MWEasyDHM was developed based on open-source MapWindow GIS, the purpose of which is to establish the first open-source GIS-based distributed hydrological model tool in China by integrating modules of preprocessing, model computation, parameter estimation, result display, and analysis. MWEasyDHM provides users with a friendly manipulating MapWindow GIS interface, selectable multifunctional hydrological processing modules, and, more importantly, an efficient and cost-effective hydrological simulation tool. The general construction of MWEasyDHM consists of four major parts: (1) a general GIS module for hydrological analysis, (2) a preprocessing module for modeling inputs, (3) a model calibration module, and (4) a postprocessing module. The general GIS module for hydrological analysis is developed on the basis of totally open-source GIS software, MapWindow, which contains basic GIS functions. The preprocessing module is made up of three submodules including a DEM-based submodule for hydrological analysis, a submodule for default parameter calculation, and a submodule for the spatial interpolation of meteorological data. The calibration module contains parallel computation, real-time computation, and visualization. The postprocessing module includes model calibration and model results spatial visualization using tabular form and spatial grids. MWEasyDHM makes it possible for efficient modeling and calibration of EasyDHM, and promises further development of cost-effective applications in various watersheds.
Refining the maintenance techniques for Interlocking Concrete Paver GIs
Surface clogging adversely affects the performance of Interlocking Concrete Pavements (ICP) by reducing their ability to infiltrate stormwater runoff. The clogging rate is a function of pavement type, traffic loading, surrounding physical environment and maintenance treatments. ...
NASA Astrophysics Data System (ADS)
Mitasova, H.; Hardin, E. J.; Kratochvilova, A.; Landa, M.
2012-12-01
Multitemporal data acquired by modern mapping technologies provide unique insights into processes driving land surface dynamics. These high resolution data also offer an opportunity to improve the theoretical foundations and accuracy of process-based simulations of evolving landforms. We discuss development of new generation of visualization and analytics tools for GRASS GIS designed for 3D multitemporal data from repeated lidar surveys and from landscape process simulations. We focus on data and simulation methods that are based on point sampling of continuous fields and lead to representation of evolving surfaces as series of raster map layers or voxel models. For multitemporal lidar data we present workflows that combine open source point cloud processing tools with GRASS GIS and custom python scripts to model and analyze dynamics of coastal topography (Figure 1) and we outline development of coastal analysis toolbox. The simulations focus on particle sampling method for solving continuity equations and its application for geospatial modeling of landscape processes. In addition to water and sediment transport models, already implemented in GIS, the new capabilities under development combine OpenFOAM for wind shear stress simulation with a new module for aeolian sand transport and dune evolution simulations. Comparison of observed dynamics with the results of simulations is supported by a new, integrated 2D and 3D visualization interface that provides highly interactive and intuitive access to the redesigned and enhanced visualization tools. Several case studies will be used to illustrate the presented methods and tools and demonstrate the power of workflows built with FOSS and highlight their interoperability.Figure 1. Isosurfaces representing evolution of shoreline and a z=4.5m contour between the years 1997-2011at Cape Hatteras, NC extracted from a voxel model derived from series of lidar-based DEMs.
An assessment of gas emanation hazard using a geographic information system and geostatistics.
Astorri, F; Beaubien, S E; Ciotoli, G; Lombardi, S
2002-03-01
This paper describes the use of geostatistical analysis and GIS techniques to assess gas emanation hazards. The Mt. Vulsini volcanic district was selected for this study because of the wide range of natural phenomena locally present that affect gas migration in the near surface. In addition, soil gas samples that were collected in this area should allow for a calibration between the generated risk/hazard models and the measured distribution of toxic gas species at surface. The approach used during this study consisted of three general stages. First data were digitally organized into thematic layers, then software functions in the GIS program "ArcView" were used to compare and correlate these various layers, and then finally the produced "potential-risk" map was compared with radon soil gas data in order to validate the model and/or to select zones for further, more-detailed soil gas investigations.
Orographic barriers GIS-based definition of the Campania-Lucanian Apennine Range (Southern Italy)
NASA Astrophysics Data System (ADS)
Cuomo, Albina; Guida, Domenico
2010-05-01
The presence of mountains on the land surfaces plays a central role in the space-time dynamics of the hydrological, geomorphic and ecological systems (Roe G. H., 2005). The aim of this paper is to identify, delimitate and classify the orographic relief in the Campania - Lucanian Apennine (Southern Italy) to investigate the effects of large-scale orographic and small-scale windward-leeward phenomena on distribution, frequency and duration of rainfall. The scale-dependent effects derived from the topographic relief favor the utilization of a hierarchical and multi-scale approach. The approach is based on a GIS procedure applied on Digital Elevation Model (DEM) with 20 meters cell size and derived from Regional Technical Map (CTR) of Campania region (1:5000). The DEM has been smoothed from data spikes and pits and we have then proceed to: a) Identify the three basic landforms of the relief (summit, hillslope and plain) by generalizing a previous 10-type landforms using the TPI method (Weiss A. 2001) and by simplifying the established rules of the differential geometry on topographic surface; b) Delimitate the mountain relief by modifying the method proposed by O. Z. Chaudhry and W. A. Mackaness (2008). It is based on three concepts: prominence , morphological variability and parent-child relationship. Graphical results have shown a good spatial correspondence between the digital definition of mountains and their morpho-tectonic structure derived from tectonic geomorphological studies; c) Classify, by using a set rules of spatial statistics (Cluster analysis) on geomorphometric parameters (elevation, curvature, slope, aspect, relative relief and form factor). Finally, we have recognized three prototypal orographic barriers shapes: cone, tableland and ridge, which are fundamental to improve the models of orographic rainfall in the Southern Apennines. References Chaudhry O. Z.and Mackaness W. A. (2008). Creating Mountains out of Mole Hills: Automatic Identification of Hills and Ranges Using Morphometric Analysis. Transactions in GIS. 12(5), pp. 567-589 Roe Gerard H. 2005. Orographic precipitation. Annual Review of Earth and Planetary Sciences. Vol. 33: 645-671. Weiss A., 2001. Topographic position and landform analysis. Poster Presentation. ESRI User Conference. San Diego, CA.
NASA Astrophysics Data System (ADS)
Applegate, Patrick J.; Keller, Klaus
2015-08-01
Albedo modification (AM) is sometimes characterized as a potential means of avoiding climate threshold responses, including large-scale ice sheet mass loss. Previous work has investigated the effects of AM on total sea-level rise over the present century, as well as AM’s ability to reduce long-term (≫103 yr) contributions to sea-level rise from the Greenland Ice Sheet (GIS). These studies have broken new ground, but neglect important feedbacks in the GIS system, or are silent on AM’s effectiveness over the short time scales that may be most relevant for decision-making (<103 yr). Here, we assess AM’s ability to reduce GIS sea-level contributions over decades to centuries, using a simplified ice sheet model. We drive this model using a business-as-usual base temperature forcing scenario, as well as scenarios that reflect AM-induced temperature stabilization or temperature drawdown. Our model results suggest that (i) AM produces substantial near-term reductions in the rate of GIS-driven sea-level rise. However, (ii) sea-level rise contributions from the GIS continue after AM begins. These continued sea level rise contributions persist for decades to centuries after temperature stabilization and temperature drawdown begin, unless AM begins in the next few decades. Moreover, (iii) any regrowth of the GIS is delayed by decades or centuries after temperature drawdown begins, and is slow compared to pre-AM rates of mass loss. Combined with recent work that suggests AM would not prevent mass loss from the West Antarctic Ice Sheet, our results provide a nuanced picture of AM’s possible effects on future sea-level rise.
Current and future darkening of the Greenland ice sheet
NASA Astrophysics Data System (ADS)
Tedesco, Marco; Stroeve, Julienne; Fettweis, Xavier; Warren, Stephen; Doherty, Sarah; Noble, Erik; Alexander, Patrick
2015-04-01
Surface melting over the Greenland ice sheet (GIS) promotes snow grains growth, reducing albedo and further enhancing melting through the increased amount of absorbed solar radiation. Using a combination of remote sensing data and outputs of a regional climate model, we show that albedo over the GIS decreased significantly from 1996 to 2012. Further, we show that most of this darkening can be accounted for by enhanced snow grain growth and the expansion of areas where bare ice is exposed, both of which are driven by increases in snow warming. An analysis of the impact of light-absorbing impurities on albedo trends detected from spaceborne measurements was inconclusive because the estimated impact for concentrations of impurities of order of magnitude found in Greenland is within the albedo uncertainty retrievable from space-based instruments. However, neither models nor observations show an increase in pollutants (black carbon and associated organics) in the atmosphere over the GIS in this time period. Additionally, we could not identify trends in the number of fires over North America and Russia, assumed to be among the sources of soot for Greenland. We did find that a 'dark band' of tilted ice plays a crucial role in decreasing albedo along the west margin, and there is some indication that dust deposition to the GIS may be decreasing albedo in this region but this is not conclusive. In addition to looking at the direct impact of impurities on albedo, we estimated the impact of impurities on albedo via their influence on grain growth and found it is relatively small (~ 1- 2 %), though more sophisticated analysis needs to be carried out. Projections obtained under different warming scenarios consistently point to a continued darkening, with anomalies in albedo driven solely by the effects of climate warming of as much as -0.12 along the west margin of the GIS by the end of this century (with respect to year 2000). Projected darkening is likely underestimated because of an underestimation in melting and because the model used to project albedo does not account for the influence of light-absorbing impurities.
A Geo-referenced 3D model of the Juan de Fuca Slab and associated seismicity
Blair, J.L.; McCrory, P.A.; Oppenheimer, D.H.; Waldhauser, F.
2011-01-01
We present a Geographic Information System (GIS) of a new 3-dimensional (3D) model of the subducted Juan de Fuca Plate beneath western North America and associated seismicity of the Cascadia subduction system. The geo-referenced 3D model was constructed from weighted control points that integrate depth information from hypocenter locations and regional seismic velocity studies. We used the 3D model to differentiate earthquakes that occur above the Juan de Fuca Plate surface from earthquakes that occur below the plate surface. This GIS project of the Cascadia subduction system supersedes the one previously published by McCrory and others (2006). Our new slab model updates the model with new constraints. The most significant updates to the model include: (1) weighted control points to incorporate spatial uncertainty, (2) an additional gridded slab surface based on the Generic Mapping Tools (GMT) Surface program which constructs surfaces based on splines in tension (see expanded description below), (3) double-differenced hypocenter locations in northern California to better constrain slab location there, and (4) revised slab shape based on new hypocenter profiles that incorporate routine depth uncertainties as well as data from new seismic-reflection and seismic-refraction studies. We also provide a 3D fly-through animation of the model for use as a visualization tool.
Water environmental management with the aid of remote sensing and GIS technology
NASA Astrophysics Data System (ADS)
Chen, Xiaoling; Yuan, Zhongzhi; Li, Yok-Sheung; Song, Hong; Hou, Yingzi; Xu, Zhanhua; Liu, Honghua; Wai, Onyx W.
2005-01-01
Water environment is associated with many disciplinary fields including sciences and management which makes it difficult to study. Timely observation, data getting and analysis on water environment are very important for decision makers who play an important role to maintain the sustainable development. This study focused on developing a plateform of water environment management based on remote sensing and GIS technology, and its main target is to provide with necessary information on water environment through spatial analysis and visual display in a suitable way. The work especially focused on three points, and the first one is related to technical issues of spatial data organization and communication with a combination of GIS and statistical software. A data-related model was proposed to solve the data communication between the mentioned systems. The second one is spatio-temporal analysis based on remote sensing and GIS. Water quality parameters of suspended sediment concentration and BOD5 were specially analyzed in this case, and the results suggested an obvious influence of land source pollution quantitatively in a spatial domain. The third one is 3D visualization of surface feature based on RS and GIS technology. The Pearl River estuary and HongKong's coastal waters in the South China Sea were taken as a case in this study. The software ARCGIS was taken as a basic platform to develop a water environmental management system. The sampling data of water quality in 76 monitoring stations of coastal water bodies and remote sensed images were selected in this study.
Boulos, Maged N Kamel
2004-01-01
The term "Geographic Information Systems" (GIS) has been added to MeSH in 2003, a step reflecting the importance and growing use of GIS in health and healthcare research and practices. GIS have much more to offer than the obvious digital cartography (map) functions. From a community health perspective, GIS could potentially act as powerful evidence-based practice tools for early problem detection and solving. When properly used, GIS can: inform and educate (professionals and the public); empower decision-making at all levels; help in planning and tweaking clinically and cost-effective actions, in predicting outcomes before making any financial commitments and ascribing priorities in a climate of finite resources; change practices; and continually monitor and analyse changes, as well as sentinel events. Yet despite all these potentials for GIS, they remain under-utilised in the UK National Health Service (NHS). This paper has the following objectives: (1) to illustrate with practical, real-world scenarios and examples from the literature the different GIS methods and uses to improve community health and healthcare practices, e.g., for improving hospital bed availability, in community health and bioterrorism surveillance services, and in the latest SARS outbreak; (2) to discuss challenges and problems currently hindering the wide-scale adoption of GIS across the NHS; and (3) to identify the most important requirements and ingredients for addressing these challenges, and realising GIS potential within the NHS, guided by related initiatives worldwide. The ultimate goal is to illuminate the road towards implementing a comprehensive national, multi-agency spatio-temporal health information infrastructure functioning proactively in real time. The concepts and principles presented in this paper can be also applied in other countries, and on regional (e.g., European Union) and global levels. PMID:14748927
Using GIS to monitor emergency room use in a large urban hospital in Chicago.
Rafalski, Edward; Zun, Leslie
2004-06-01
Geographic Information System (GIS) technology is being used at Mount Sinai Hospital in Chicago to better understand utilization patterns by the city's fire department and the subsequent effects on the rates of trauma cases who leave without being treated (LWOT) and throughput times. In this process, opportunities for process improvement in data capture, categorization, and analysis are being realized. Further, to more intelligently apply resources, a surge protocol has been developed calling for deploying physician assistants, which is having a positive effect on throughput times and LWOT rates. Finally, opportunities for GIS application in urban mass casualty planning are offered for consideration.
EAARL topography-Potato Creek watershed, Georgia, 2010
Bonisteel-Cormier, J.M.; Nayegandhi, Amar; Fredericks, Xan; Jones, J.W.; Wright, C.W.; Brock, J.C.; Nagle, D.B.
2011-01-01
This DVD contains lidar-derived first-surface (FS) and bare-earth (BE) topography GIS datasets of a portion of the Potato Creek watershed in the Apalachicola-Chattahoochee-Flint River basin, Georgia. These datasets were acquired on February 27, 2010.
Refining the maintenance techniques for Interlocking Concrete Paver GIs - abstract
Surface clogging adversely affects the performance of Interlocking Concrete Pavements (ICP) by reducing their ability to infiltrate stormwater runoff. Determining the correct methods for remedial maintenances is crucial to recovering and maintaining efficient ICP performance. T...
Effects of a GIS Course on Self-Assessment of Spatial Habits of Mind (SHOM)
ERIC Educational Resources Information Center
Kim, Minsung; Bednarz, Robert
2013-01-01
This study identified five subdimensions of spatial habits of mind--pattern recognition, spatial description, visualization, spatial concept use, and spatial tool use--and created an inventory to measure them. In addition, the effects of GIS learning on spatial habits of mind were investigated. Pre- and post-tests were conducted at the beginning…
Spatio-Temporal Process Simulation of Dam-Break Flood Based on SPH
NASA Astrophysics Data System (ADS)
Wang, H.; Ye, F.; Ouyang, S.; Li, Z.
2018-04-01
On the basis of introducing the SPH (Smooth Particle Hydrodynamics) simulation method, the key research problems were given solutions in this paper, which ere the spatial scale and temporal scale adapting to the GIS(Geographical Information System) application, the boundary condition equations combined with the underlying surface, and the kernel function and parameters applicable to dam-break flood simulation. In this regards, a calculation method of spatio-temporal process emulation with elaborate particles for dam-break flood was proposed. Moreover the spatio-temporal process was dynamic simulated by using GIS modelling and visualization. The results show that the method gets more information, objectiveness and real situations.
NASA Astrophysics Data System (ADS)
Qi, Bo; Gao, Chunjia; Lv, Yuzhen; Li, Chengrong; Tu, Youping; Xiong, Jun
2018-06-01
The flashover phenomenon of the insulator is the main cause for insulating failure of GIS/GIL, and one of the most critical impacting factors is the accumulation of surface charge. The common methods to restrain the surface charge accumulation are reviewed in this paper. Through the reasonable comparison and analysis of these methods, nano-coatings for the insulator were selected as a way to restrain the surface charge accumulation. Based on this, six nano-coated epoxy resin samples with different concentrations of P25-TiO2 nanoparticles were produced. A high precision 3D surface charge measurement system was developed in this paper with a spatial resolution of 4.0 mm2 and a charge resolution of 0.01 µC (m2 · mV)‑1. The experimental results for the epoxy resin sample showed that with the concentration of nanoparticles of the coating material increasing, the surface charge density tended to first decrease and then increase. In the sample coated with 0.5% concentration of nanoparticles, the suppression effect is the optimum, leading to a 63.8% reduction of charge density under DC voltage. The application test for actual nano-coated GIS/GIL basin insulator indicated that the maximum suppression degree for the charge density under DC voltage could reach 48.3%, while it could reach 22.2% for switching impulse voltage and 12.5% for AC context. The control mechanism of nano-coatings on charge accumulation was proposed based on the analysis for surface morphology features and traps characteristics; the shallow traps dominate in the migration of charges while the deep traps operate on the charge accumulation. With the concentration of nanoparticles in nano-coating material mounting up, the density of shallow traps continuously increases, while for deep traps, it first decreases and then increases. For the sample with 0.5% concentration of nanoparticles coated, the competition between shallow traps and deep traps comes to the most balanced state, producing the most significant suppression impact on surface charge accumulation.
GIS Methodology for Planning Planetary-Rover Operations
NASA Technical Reports Server (NTRS)
Powell, Mark; Norris, Jeffrey; Fox, Jason; Rabe, Kenneth; Shu, I-Hsiang
2007-01-01
A document describes a methodology for utilizing image data downlinked from cameras aboard a robotic ground vehicle (rover) on a remote planet for analyzing and planning operations of the vehicle and of any associated spacecraft. Traditionally, the cataloging and presentation of large numbers of downlinked planetary-exploration images have been done by use of two organizational methods: temporal organization and correlation between activity plans and images. In contrast, the present methodology involves spatial indexing of image data by use of the computational discipline of geographic information systems (GIS), which has been maturing in terrestrial applications for decades, but, until now, has not been widely used in support of exploration of remote planets. The use of GIS to catalog data products for analysis is intended to increase efficiency and effectiveness in planning rover operations, just as GIS has proven to be a source of powerful computational tools in such terrestrial endeavors as law enforcement, military strategic planning, surveying, political science, and epidemiology. The use of GIS also satisfies the need for a map-based user interface that is intuitive to rover-activity planners, many of whom are deeply familiar with maps and know how to use them effectively in field geology.
Crisis GIS: Preparing for the Next Volcanic Crisis in the United States
NASA Astrophysics Data System (ADS)
Ramsey, D. W.; Robinson, J. E.; Schilling, S. P.; Schaefer, J. R.; Kimberly, P.; Trusdell, F. A.; Guffanti, M. C.; Mayberry, G. C.; Cameron, C. E.; Smith, J. G.; McIntire, J. A.; Snedigar, S.; Ewert, J. W.
2004-12-01
Geographic Information Systems (GIS) specialists from the Volcano Hazards Program (VHP) of the U.S. Geological Survey (USGS), including personnel at Menlo Park, California, the Cascades Volcano Observatory in Vancouver, Washington, the Alaska Volcano Observatory in Anchorage and Fairbanks, Alaska, the Hawaiian Volcano Observatory in Hawaii National Park, Hawaii, and the Smithsonian Institution Global Volcanism Program in Washington, DC, are developing a GIS response plan in the event of a volcano crisis. This plan, referred to as "Crisis GIS", outlines how VHP can ensure rapid, reliable delivery of spatial and ancillary information for data analysis and visualization at any required location during a volcanic crisis or event within the United States. An effective Crisis GIS needs the capacity to store multiple, large datasets, including: base layer data, elevation data, geologic maps, hazard assessment maps, satellite data, and aerial photography for volcanoes around the U.S. It must be readily accessible by VHP GIS specialists stationed around the Nation. Such a GIS should also support installations of monitoring instruments and telemetry equipment that relay monitoring signals, and provision of updates to public officials, the media, and the public during a crisis. GIS technology has proven to be an invaluable tool for crisis response. Recently, GIS was applied as part of the response efforts to two large-scale crises: the terrorist attacks of September 11, 2001, and the Southern California wildfires of Fall 2003. In each case, GIS was used to organize large quantities of spatial data and to produce electronic and paper maps that illustrated hazards, supported decision making, and communicated developing situations to responsible emergency-management authorities and to the populace affected (Kant, 2002, and Pratt, 2003). VHP GIS specialists are currently testing the software and hardware employed in recent major crisis response efforts and are learning to adapt the technology for volcano crisis response.
PAIRS, The GIS-Based Incident Response System for Pennsylvania, and NASA
NASA Technical Reports Server (NTRS)
Conrad, Eric; Arbegast, Daniel; Maynard, Nancy; Vicente, Gilberto
2003-01-01
Over the past several years the Pennsylvania Departments of Environmental Protection (DEP), Health (DOH), and Agriculture (PDA) built the GIs-based Pennsylvania West Nile Surveillance System. That system has become a model for collecting data that has a field component, laboratory component, reporting and mapping component, and a public information component. Given the success of the West Nile Virus System and the events of September 11, 2001, DEP then embarked on the development of the Pennsylvania Incident Response System, or PAIRS. PAIRS is an effective GIs-based approach to providing a system for response to incidents of any kind, including terrorism because it is building upon the existing experience, infrastructure and databases that were successfully developed to respond to the West Nile Virus by DEP, DOH, and PDA. The proposed system can be described as one that supports data acquisition, laboratory forensics, decision making/response, and communications. Decision makers will have tools to view and analyze data from various sources and, at the same time, to communicate with the large numbers of people responding to the same incident. Recent collaborations with NASA partners are creating mechanisms for the PAIRS system to incorporate space-based and other remote sensing geophysical parameters relevant to public health assessment and management, such as surface temperatures, precipitation, land cover/land use change, and humidity. This presentation will describe the PAIRS system and outline the Pennsylvania-NASA collaboration for integration of space-based data into the PAIRS system.
Zobeck, T.M.; Parker, N.C.; Haskell, S.; Guoding, K.
2000-01-01
Factors that affect wind erosion such as surface vegetative and other cover, soil properties and surface roughness usually change spatially and temporally at the field-scale to produce important field-scale variations in wind erosion. Accurate estimation of wind erosion when scaling up from fields to regions, while maintaining meaningful field-scale process details, remains a challenge. The objectives of this study were to evaluate the feasibility of using a field-scale wind erosion model with a geographic information system (GIS) to scale up to regional levels and to quantify the differences in wind erosion estimates produced by different scales of soil mapping used as a data layer in the model. A GIS was used in combination with the revised wind erosion equation (RWEQ), a field-scale wind erosion model, to estimate wind erosion for two 50 km2 areas. Landsat Thematic Mapper satellite imagery from 1993 with 30 m resolution was used as a base map. The GIS database layers included land use, soils, and other features such as roads. The major land use was agricultural fields. Data on 1993 crop management for selected fields of each crop type were collected from local government agency offices and used to 'train' the computer to classify land areas by crop and type of irrigation (agroecosystem) using commercially available software. The land area of the agricultural land uses was overestimated by 6.5% in one region (Lubbock County, TX, USA) and underestimated by about 21% in an adjacent region (Terry County, TX, USA). The total estimated wind erosion potential for Terry County was about four times that estimated for adjacent Lubbock County. The difference in potential erosion among the counties was attributed to regional differences in surface soil texture. In a comparison of different soil map scales in Terry County, the generalised soil map had over 20% more of the land area and over 15% greater erosion potential in loamy sand soils than did the detailed soil map. As a result, the wind erosion potential determined using the generalised soil map Was about 26% greater than the erosion potential estimated by using the detailed soil map in Terry County. This study demonstrates the feasibility of scaling up from fields to regions to estimate wind erosion potential by coupling a field-scale wind erosion model with GIS and identifies possible sources of error with this approach.
Merged GIS, GPS data assist siting for gulf gas line
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scott, D.R.; Schmidt, J.A.
1998-06-29
A GIS-based decision-support system was developed for a US Gulf of Mexico onshore and offshore pipeline that has assisted in locating a cost-effective pipeline route based on landcover type, wetland distribution, and proximity to other environmentally sensitive resources. Described here are the methods used to integrate various sources of available GIS data with satellite imagery and surveyed information. Costs of collecting and processing these data are compared with benefits of the system over use of manual methods.
Coupling groundwater and riparian vegetation models to assess effects of reservoir releases
Springer, Abraham E.; Wright, Julie M.; Shafroth, Patrick B.; Stromberg, Juliet C.; Patten, Duncan T.
1999-01-01
Although riparian areas in the arid southwestern United States are critical for maintaining species diversity, their extent and health have been declining since Euro‐American settlement. The purpose of this study was to develop a methodology to evaluate the potential for riparian vegetation restoration and groundwater recharge. A numerical groundwater flow model was coupled with a conceptual riparian vegetation model to predict hydrologic conditions favorable to maintaining riparian vegetation downstream of a reservoir. A Geographic Information System (GIS) was used for this one‐way coupling. Constant and seasonally varying releases from the dam were simulated using volumes anticipated to be permitted by a regional water supplier. Simulations indicated that seasonally variable releases would produce surface flow 5.4–8.5 km below the dam in a previously dry reach. Using depth to groundwater simulations from the numerical flow model with conceptual models of depths to water necessary for maintenance of riparian vegetation, the GIS analysis predicted a 5‐ to 6.5‐fold increase in the area capable of sustaining riparian vegetation.
NASA Astrophysics Data System (ADS)
Snow, T.; Shepherd, B.; Abdalati, W.; Scambos, T. A.
2016-12-01
Dynamic processes at marine-terminating outlet glaciers are responsible for over one-third of Greenland Ice Sheet (GIS) mass loss. Enhanced intrusion of warm ocean waters at the termini of these glaciers has contributed to elevated rates of ice thinning and terminus retreat over the last two decades. In situ oceanographic measurements and modeling studies show that basal melting of glaciers and subglacial discharge can cause buoyant plumes of water to rise to the fjord surface and influence fjord circulation characteristics. The temperature of these surface waters holds clues about ice-ocean interactions and small-scale circulation features along the glacier terminus that could contribute to outlet glacier mass loss, but the magnitude and duration of temperature variability remains uncertain. Satellite remote sensing has proven very effectiver for acquiring sea surface temperatuer (SST) data from these remote regions on a long-term, consistent basis and shows promise for identifying temperature anomalies at the ice front. However, these data sets have not been widely utilized to date. Here, we use satellite-derived sea surface temperatures to identify fjord surface outflow characteristics from 2000 to present at the Petermann Glacier, which drains 4% of the GIS and is experiencing 80% of its mass loss from basal melt. We find a general SST warming trend that coincides with early sea ice breakup and precedes two major calving events and ice speedup that began in 2010. Persistent SST anomalies along the terminus provide evidence of warm outflow that is consistent with buoyant plume model predictions. However, the anomalies are not evident early in the time series, suggesting that ocean inflow and ice-ocean interactions have experienced a regime shift since 2000. Our results provide valuable insight into fjord circulation patterns and the forcing mechanisms that contribute to terminus retreat. Comparing our results to ongoing modeling experiments, time series from other outlet glaciers, and coincident in situ measurements, will help to further explain the physical processes occurring at the ice-ocean boundary and provide useful insights into the changes taking place at other GIS marine-terminating outlet glaciers.
EAARL coastal topography-Assategue Island National Seashore, Maryland and Virginia, 2010
Bonisteel-Cormier, J.M.; Nayegandhi, Amar; Wright, C.W.; Brock, J.C.; Nagle, D.B.; Vivekanandan, Saisudha; Klipp, E.S.; Fredericks, Xan; Stevens, Sara
2011-01-01
This DVD contains lidar-derived bare-earth (BE) and first-surface (FS) topography GIS datasets of a portion of the Assateague Island National Seashore in Maryland and Virginia. These datasets were acquired on March 19 and 24, 2010.
EAARL topography-Three Mile Creek and Mobile-Tensaw Delta, Alabama, 2010
Nayegandhi, Amar; Bonisteel-Cormier, J.M.; Clark, A.P.; Wright, C.W.; Brock, J.C.; Nagle, D.B.; Vivekanandan, Saisudha; Fredericks, Xan
2011-01-01
This DVD contains lidar-derived first-surface (FS) and bare-earth (BE) topography GIS datasets of a portion of the Mobile-Tensaw Delta region and Three Mile Creek in Alabama. These datasets were acquired on March 6, 2010.
Battaglin, William A.; Kuhn, Gerhard; Parker, Randolph S.
1993-01-01
The U.S. Geological Survey Precipitation-Runoff Modeling System, a modular, distributed-parameter, watershed-modeling system, is being applied to 20 smaller watersheds within the Gunnison River basin. The model is used to derive a daily water balance for subareas in a watershed, ultimately producing simulated streamflows that can be input into routing and accounting models used to assess downstream water availability under current conditions, and to assess the sensitivity of water resources in the basin to alterations in climate. A geographic information system (GIS) is used to automate a method for extracting physically based hydrologic response unit (HRU) distributed parameter values from digital data sources, and for the placement of those estimates into GIS spatial datalayers. The HRU parameters extracted are: area, mean elevation, average land-surface slope, predominant aspect, predominant land-cover type, predominant soil type, average total soil water-holding capacity, and average water-holding capacity of the root zone.
The use of a GIS Red-Amber-Green (RAG) system to define search priorities for burials
NASA Astrophysics Data System (ADS)
Somma, Roberta; Silvestro, Massimiliano; Cascio, Maria; Dawson, Lorna; Donnelly, Laurance; Harrison, Mark; McKinley, Jennifer; Ruffell, Alastair
2016-04-01
The aim of this research is to promote among the Italian police, magistrates, and geologists, the applications of a Geographical Information System (GIS)-based RAG system for use in ground searches for burials. To date the RAG system has not been used and documented in Italy and would potentially be useful for searches related to clandestine burial sites. This technique, was originally documented by the British Army in the 1st World War. The RAG method is based on the construction of theme maps. RAG maps can facilitate the deployment of appropriate search assets (such as geophysics, probe or search dogs) and therefore applied to ground searches for the potential location of homicide graves or other buried objects (including weapons, explosives, etc.). RAG maps also may assist in the management of resources such as the deployment of search personnel, search teams and dogs. A GIS RAG (Red-Amber-Green) system related to a search for a homicide grave was applied to a test site in Italy, simulating the concealment of a victim in the area of Alì. This is an area of hill in Sicily, characterized by Palaeozoic phyllites. It was assumed during this test that information was provided by an observer who saw a suspect carrying tools on his land during daylight hours. A desktop study of the rural area was first implemented. Data was collated from previous geological, geomorphological, hydrogeological, geophysical and land use surveys. All these data were stored and independently analysed in a GIS using ArcGIS software. For the development of the GIS-based RAG map a digital elevation model (DEM) including a digital surface model (DTS) and digital terrain model (DTM) types were used. These were integrated with data from soil surveys to provide a preliminary assessment of "diggability" - including the possible thickness of loose superficial deposits and soils. Data were stored in different layers within the GIS. These included the delineation of the search area with consideration of access/exit points, diggability (easy: red, difficult: green), ground slope (<27°: red, >27°: green), vegetation type (easy access: red, difficult access: green), geomorphology (stable area: red, unstable area: green), anthropogenic structures (not present: red, present: green), visibility of the site from a potential eyewitnesses perspective (not visible: red, visible: green). Overlaying these layers, using the ArcGIS tools, enabled the RAG map to be composed with red showing the high priority search areas, amber the intermediate priority search areas and green the low priority search areas. The GIS-based RAG map of the simulated test-site allowed the original extent of the search area of 39.315m2, to be significantly reduced to 7.45% (2.930m2: extension red area) by desktop study and to 2.93% (1.152m2) with a further reconnaissance site visit. During subsequent field training conducted by forensic geology students at Messina University, the grave was found after 2 hours of searching, both using the RAG map and a soil probe and observing topographic disturbances. A subsidence of some centimeters and an anomalous growth of vegetation was found on the superficial surface of the grave (75cm deep).
Modeling of Aerosol Vertical Profiles Using GIS and Remote Sensing
Wong, Man Sing; Nichol, Janet E.; Lee, Kwon Ho
2009-01-01
The use of Geographic Information Systems (GIS) and Remote Sensing (RS) by climatologists, environmentalists and urban planners for three dimensional modeling and visualization of the landscape is well established. However no previous study has implemented these techniques for 3D modeling of atmospheric aerosols because air quality data is traditionally measured at ground points, or from satellite images, with no vertical dimension. This study presents a prototype for modeling and visualizing aerosol vertical profiles over a 3D urban landscape in Hong Kong. The method uses a newly developed technique for the derivation of aerosol vertical profiles from AERONET sunphotometer measurements and surface visibility data, and links these to a 3D urban model. This permits automated modeling and visualization of aerosol concentrations at different atmospheric levels over the urban landscape in near-real time. Since the GIS platform permits presentation of the aerosol vertical distribution in 3D, it can be related to the built environment of the city. Examples are given of the applications of the model, including diagnosis of the relative contribution of vehicle emissions to pollution levels in the city, based on increased near-surface concentrations around weekday rush-hour times. The ability to model changes in air quality and visibility from ground level to the top of tall buildings is also demonstrated, and this has implications for energy use and environmental policies for the tall mega-cities of the future. PMID:22408531
Modeling of Aerosol Vertical Profiles Using GIS and Remote Sensing.
Wong, Man Sing; Nichol, Janet E; Lee, Kwon Ho
2009-01-01
The use of Geographic Information Systems (GIS) and Remote Sensing (RS) by climatologists, environmentalists and urban planners for three dimensional modeling and visualization of the landscape is well established. However no previous study has implemented these techniques for 3D modeling of atmospheric aerosols because air quality data is traditionally measured at ground points, or from satellite images, with no vertical dimension. This study presents a prototype for modeling and visualizing aerosol vertical profiles over a 3D urban landscape in Hong Kong. The method uses a newly developed technique for the derivation of aerosol vertical profiles from AERONET sunphotometer measurements and surface visibility data, and links these to a 3D urban model. This permits automated modeling and visualization of aerosol concentrations at different atmospheric levels over the urban landscape in near-real time. Since the GIS platform permits presentation of the aerosol vertical distribution in 3D, it can be related to the built environment of the city. Examples are given of the applications of the model, including diagnosis of the relative contribution of vehicle emissions to pollution levels in the city, based on increased near-surface concentrations around weekday rush-hour times. The ability to model changes in air quality and visibility from ground level to the top of tall buildings is also demonstrated, and this has implications for energy use and environmental policies for the tall mega-cities of the future.
GIS Toolsets for Planetary Geomorphology and Landing-Site Analysis
NASA Astrophysics Data System (ADS)
Nass, Andrea; van Gasselt, Stephan
2015-04-01
Modern Geographic Information Systems (GIS) allow expert and lay users alike to load and position geographic data and perform simple to highly complex surface analyses. For many applications dedicated and ready-to-use GIS tools are available in standard software systems while other applications require the modular combination of available basic tools to answer more specific questions. This also applies to analyses in modern planetary geomorphology where many of such (basic) tools can be used to build complex analysis tools, e.g. in image- and terrain model analysis. Apart from the simple application of sets of different tools, many complex tasks require a more sophisticated design for storing and accessing data using databases (e.g. ArcHydro for hydrological data analysis). In planetary sciences, complex database-driven models are often required to efficiently analyse potential landings sites or store rover data, but also geologic mapping data can be efficiently stored and accessed using database models rather than stand-alone shapefiles. For landings-site analyses, relief and surface roughness estimates are two common concepts that are of particular interest and for both, a number of different definitions co-exist. We here present an advanced toolset for the analysis of image and terrain-model data with an emphasis on extraction of landing site characteristics using established criteria. We provide working examples and particularly focus on the concepts of terrain roughness as it is interpreted in geomorphology and engineering studies.
Communication and implementation of GIS data in fire management: a case study
Kenneth G. Boykin; Douglas I. Boykin; Rusty Stovall; Ryan Whitaker
2008-01-01
Remotely sensed data and Geographical Information Systems (GIS) can be an effective tool in fire management. For the inclusion of these tools, fire management and research personnel must be effective in communication regarding needs and limitations of the data and implementing that data at various scales. A number of personnel can be involved within fire management...
Real-time GIS data model and sensor web service platform for environmental data management.
Gong, Jianya; Geng, Jing; Chen, Zeqiang
2015-01-09
Effective environmental data management is meaningful for human health. In the past, environmental data management involved developing a specific environmental data management system, but this method often lacks real-time data retrieving and sharing/interoperating capability. With the development of information technology, a Geospatial Service Web method is proposed that can be employed for environmental data management. The purpose of this study is to determine a method to realize environmental data management under the Geospatial Service Web framework. A real-time GIS (Geographic Information System) data model and a Sensor Web service platform to realize environmental data management under the Geospatial Service Web framework are proposed in this study. The real-time GIS data model manages real-time data. The Sensor Web service platform is applied to support the realization of the real-time GIS data model based on the Sensor Web technologies. To support the realization of the proposed real-time GIS data model, a Sensor Web service platform is implemented. Real-time environmental data, such as meteorological data, air quality data, soil moisture data, soil temperature data, and landslide data, are managed in the Sensor Web service platform. In addition, two use cases of real-time air quality monitoring and real-time soil moisture monitoring based on the real-time GIS data model in the Sensor Web service platform are realized and demonstrated. The total time efficiency of the two experiments is 3.7 s and 9.2 s. The experimental results show that the method integrating real-time GIS data model and Sensor Web Service Platform is an effective way to manage environmental data under the Geospatial Service Web framework.
U.S.A. National Surface Rock Density Map - Part 2
NASA Astrophysics Data System (ADS)
Winester, D.
2016-12-01
A map of surface rock densities over the USA has been developed by the NOAA-National Geodetic Survey (NGS) as part of its Gravity for the Redefinition of the American Vertical Datum (GRAV-D) Program. GRAV-D is part of an international effort to generate a North American gravimetric geoid for use as the vertical datum reference surface. As a part of modeling process, it is necessary to eliminate from the observed gravity data the topographic and density effects of all masses above the geoid. However, the long-standing tradition in geoid modeling, which is to use an average rock density (e.g. 2.67 g/cm3), does not adequately represent the variety of lithologies in the USA. The U.S. Geological Survey has assembled a downloadable set of surface geologic formation maps (typically 1:100,000 to 1:500, 000 scale in NAD27) in GIS format. The lithologies were assigned densities typical of their rock type (Part 1) and these variety of densities were then rasterized and averaged over one arc-minute areas. All were then transformed into WGS84 datum. Thin layers of alluvium and some water bodies (interpreted to be less than 40 m thick) have been ignored in deference to underlying rocks. Deep alluvial basins have not been removed, since they represent significant fraction of local mass. The initial assumption for modeling densities will be that the surface rock densities extend down to the geoid. If this results in poor modeling, variable lithologies with depth can be attempted. Initial modeling will use elevations from the SRTM DEM. A map of CONUS densities is presented (denser lithologies are shown brighter). While a visual map at this scale does show detailed features, digital versions are available upon request. Also presented are some pitfalls of using source GIS maps digitized from variable reference sources, including the infamous `state line faults.'
Spatial analysis of fluvial terraces in GRASS GIS accessing R functionality
NASA Astrophysics Data System (ADS)
Józsa, Edina
2017-04-01
Terrace research along the Danube is a major topic of Hungarian traditional geomorphology because of the socio-economic role of terrace surfaces and their importance in paleo-environmental reconstructions. Semi-automated mapping of fluvial landforms from a coherent digital elevation dataset allow objective analysis of hydrogeomorphic characteristics with low time and cost requirements. New results obtained with unified GIS-based algorithms can be integrated with previous findings regarding landscape evolution. The complementary functionality of GRASS GIS and R provides the possibility to develop a flexible terrain analysing tool for the delineation and quantifiable analysis of terrace remnants. Using R as an intermediate analytical environment and visualisation tool gives great added value to the algorithm, while GRASS GIS is capable of handling the large digital elevation datasets and perform the demanding computations to prepare necessary raster derivatives (Bivand, R.S. et al. 2008). The proposed terrace mapping algorithm is based on the work of Demoulin, A. et al. (2007), but it is further improved in the form of GRASS GIS script tool accessing R functionality. In the first step the hydrogeomorphic signatures of the given study site are explored and the area is divided along clearly recognizable structural-morphological boundaries.The algorithm then cuts up the subregions into parallel sections in the flow direction and determines cells potentially belonging to terrace surfaces based on local slope characteristics and a minimum area size threshold. As a result an output report is created that contains a histogram of altitudes, a swath-profile of the landscape, scatter plots to represent the relation of the relative elevations and slope values in the analysed sections and a final plot showing the longitudinal profile of the river with the determined height ranges of terrace levels. The algorithm also produces a raster map of extracted terrace remnants. From this dataset it is possible to interpolate a new digital elevation model approximating the former terraced valley surface using the Ordinary Kriging method (Troiani, F. and Della Seta, M. 2011). The applicability of the algorithm was tested on the northern foreland of Gerecse Mountains, an antecedent valley section of the Danube, with terrace remnants expected in 6 to 8 altitude ranges. Methodological issues arising from determining the optimal threshold values were explored using an artificial hillslope model, while the terrace profiles and terrace-top surfaces raster generated from the digital elevation model were validated with the previous findings of traditional geomorphological surveys. This research was supported by the Human Capacities Grant Management Office and the Hungarian Ministry of Human Capacities in the framework of the NTP-NFTÖ-16 project. References: Bivand, R.S. et al. (2008). Applied Spatial Data Analysis with R. New York: Springer. 378 p. Demoulin, A. et al. (2007). An automated method to extract fluvial terraces from digital elevation models: The Vesdre valley, a case study in eastern Belgium. - Geomorphology 91 (1-2): 51-64. Troiani, E. and Della Seta, M. (2011). Geomorphological response of fluvial and coastal terraces to Quaternary tectonics and climate as revealed by geostatistical topographic analysis. - Earth Surface Processes and Landforms 36: 1193-1208.
DOT National Transportation Integrated Search
1995-06-30
Topographic surface modeling using a Geographic Information System (GIS) can be useful for the prediction of soil erosion resulting from highway construction projects. The assumption is that terrain, along with other parameters, will influence the po...
An information model for managing multi-dimensional gridded data in a GIS
NASA Astrophysics Data System (ADS)
Xu, H.; Abdul-Kadar, F.; Gao, P.
2016-04-01
Earth observation agencies like NASA and NOAA produce huge volumes of historical, near real-time, and forecasting data representing terrestrial, atmospheric, and oceanic phenomena. The data drives climatological and meteorological studies, and underpins operations ranging from weather pattern prediction and forest fire monitoring to global vegetation analysis. These gridded data sets are distributed mostly as files in HDF, GRIB, or netCDF format and quantify variables like precipitation, soil moisture, or sea surface temperature, along one or more dimensions like time and depth. Although the data cube is a well-studied model for storing and analyzing multi-dimensional data, the GIS community remains in need of a solution that simplifies interactions with the data, and elegantly fits with existing database schemas and dissemination protocols. This paper presents an information model that enables Geographic Information Systems (GIS) to efficiently catalog very large heterogeneous collections of geospatially-referenced multi-dimensional rasters—towards providing unified access to the resulting multivariate hypercubes. We show how the implementation of the model encapsulates format-specific variations and provides unified access to data along any dimension. We discuss how this framework lends itself to familiar GIS concepts like image mosaics, vector field visualization, layer animation, distributed data access via web services, and scientific computing. Global data sources like MODIS from USGS and HYCOM from NOAA illustrate how one would employ this framework for cataloging, querying, and intuitively visualizing such hypercubes. ArcGIS—an established platform for processing, analyzing, and visualizing geospatial data—serves to demonstrate how this integration brings the full power of GIS to the scientific community.
On the long-term memory of the Greenland Ice Sheet
NASA Astrophysics Data System (ADS)
Rogozhina, I.; Martinec, Z.; Hagedoorn, J. M.; Thomas, M.; Fleming, K.
2011-03-01
In this study, the memory of the Greenland Ice Sheet (GIS) with respect to its past states is analyzed. According to ice core reconstructions, the present-day GIS reflects former climatic conditions dating back to at least 250 thousand years before the present (kyr BP). This fact must be considered when initializing an ice sheet model. The common initialization techniques are paleoclimatic simulations driven by atmospheric forcing inferred from ice core records and steady state simulations driven by the present-day or past climatic conditions. When paleoclimatic simulations are used, the information about the past climatic conditions is partly reflected in the resulting present-day state of the GIS. However, there are several important questions that need to be clarified. First, for how long does the model remember its initial state? Second, it is generally acknowledged that, prior to 100 kyr BP, the longest Greenland ice core record (GRIP) is distorted by ice-flow irregularities. The question arises as to what extent do the uncertainties inherent in the GRIP-based forcing influence the resulting GIS? Finally, how is the modeled thermodynamic state affected by the choice of initialization technique (paleo or steady state)? To answer these questions, a series of paleoclimatic and steady state simulations is carried out. We conclude that (1) the choice of an ice-covered initial configuration shortens the initialization simulation time to 100 kyr, (2) the uncertainties in the GRIP-based forcing affect present-day modeled ice-surface topographies and temperatures only slightly, and (3) the GIS forced by present-day climatic conditions is overall warmer than that resulting from a paleoclimatic simulation.
3D Visualization Development of SIUE Campus
NASA Astrophysics Data System (ADS)
Nellutla, Shravya
Geographic Information Systems (GIS) has progressed from the traditional map-making to the modern technology where the information can be created, edited, managed and analyzed. Like any other models, maps are simplified representations of real world. Hence visualization plays an essential role in the applications of GIS. The use of sophisticated visualization tools and methods, especially three dimensional (3D) modeling, has been rising considerably due to the advancement of technology. There are currently many off-the-shelf technologies available in the market to build 3D GIS models. One of the objectives of this research was to examine the available ArcGIS and its extensions for 3D modeling and visualization and use them to depict a real world scenario. Furthermore, with the advent of the web, a platform for accessing and sharing spatial information on the Internet, it is possible to generate interactive online maps. Integrating Internet capacity with GIS functionality redefines the process of sharing and processing the spatial information. Enabling a 3D map online requires off-the-shelf GIS software, 3D model builders, web server, web applications and client server technologies. Such environments are either complicated or expensive because of the amount of hardware and software involved. Therefore, the second objective of this research was to investigate and develop simpler yet cost-effective 3D modeling approach that uses available ArcGIS suite products and the free 3D computer graphics software for designing 3D world scenes. Both ArcGIS Explorer and ArcGIS Online will be used to demonstrate the way of sharing and distributing 3D geographic information on the Internet. A case study of the development of 3D campus for the Southern Illinois University Edwardsville is demonstrated.
Sharma, Pankaj; Song, Ju-Sub; Han, Moon Hee; Cho, Churl-Hee
2016-01-01
GIS-NaP1 zeolite samples were synthesized using seven different Si/Al ratios (5–11) of the hydrothermal reaction mixtures having chemical composition Al2O3:xSiO2:14Na2O:840H2O to study the impact of Si/Al molar ratio on the water vapour adsorption potential, phase purity, morphology and crystal size of as-synthesized GIS-NaP1 zeolite crystals. The X-ray diffraction (XRD) observations reveal that Si/Al ratio does not affect the phase purity of GIS-NaP1 zeolite samples as high purity GIS-NaP1 zeolite crystals were obtained from all Si/Al ratios. Contrary, Si/Al ratios have remarkable effect on the morphology, crystal size and porosity of GIS-NaP1 zeolite microspheres. Transmission electron microscopy (TEM) evaluations of individual GIS-NaP1 zeolite microsphere demonstrate the characteristic changes in the packaging/arrangement, shape and size of primary nano crystallites. Textural characterisation using water vapour adsorption/desorption, and nitrogen adsorption/desorption data of as-synthesized GIS-NaP1 zeolite predicts the existence of mix-pores i.e., microporous as well as mesoporous character. High water storage capacity 1727.5 cm3 g−1 (138.9 wt.%) has been found for as-synthesized GIS-NaP1 zeolite microsphere samples during water vapour adsorption studies. Further, the total water adsorption capacity values for P6 (1299.4 mg g−1) and P7 (1388.8 mg g−1) samples reveal that these two particular samples can absorb even more water than their own weights. PMID:26964638
Sharma, Pankaj; Song, Ju-Sub; Han, Moon Hee; Cho, Churl-Hee
2016-03-11
GIS-NaP1 zeolite samples were synthesized using seven different Si/Al ratios (5-11) of the hydrothermal reaction mixtures having chemical composition Al2O3:xSiO2:14Na2O:840H2O to study the impact of Si/Al molar ratio on the water vapour adsorption potential, phase purity, morphology and crystal size of as-synthesized GIS-NaP1 zeolite crystals. The X-ray diffraction (XRD) observations reveal that Si/Al ratio does not affect the phase purity of GIS-NaP1 zeolite samples as high purity GIS-NaP1 zeolite crystals were obtained from all Si/Al ratios. Contrary, Si/Al ratios have remarkable effect on the morphology, crystal size and porosity of GIS-NaP1 zeolite microspheres. Transmission electron microscopy (TEM) evaluations of individual GIS-NaP1 zeolite microsphere demonstrate the characteristic changes in the packaging/arrangement, shape and size of primary nano crystallites. Textural characterisation using water vapour adsorption/desorption, and nitrogen adsorption/desorption data of as-synthesized GIS-NaP1 zeolite predicts the existence of mix-pores i.e., microporous as well as mesoporous character. High water storage capacity 1727.5 cm(3) g(-1) (138.9 wt.%) has been found for as-synthesized GIS-NaP1 zeolite microsphere samples during water vapour adsorption studies. Further, the total water adsorption capacity values for P6 (1299.4 mg g(-1)) and P7 (1388.8 mg g(-1)) samples reveal that these two particular samples can absorb even more water than their own weights.
Effective 3-D surface modeling for geographic information systems
NASA Astrophysics Data System (ADS)
Yüksek, K.; Alparslan, M.; Mendi, E.
2016-01-01
In this work, we propose a dynamic, flexible and interactive urban digital terrain platform with spatial data and query processing capabilities of geographic information systems, multimedia database functionality and graphical modeling infrastructure. A new data element, called Geo-Node, which stores image, spatial data and 3-D CAD objects is developed using an efficient data structure. The system effectively handles data transfer of Geo-Nodes between main memory and secondary storage with an optimized directional replacement policy (DRP) based buffer management scheme. Polyhedron structures are used in digital surface modeling and smoothing process is performed by interpolation. The experimental results show that our framework achieves high performance and works effectively with urban scenes independent from the amount of spatial data and image size. The proposed platform may contribute to the development of various applications such as Web GIS systems based on 3-D graphics standards (e.g., X3-D and VRML) and services which integrate multi-dimensional spatial information and satellite/aerial imagery.
Kenneth A. Baerenklau; Armando González-Cabán; Catrina I. Páez; Edgard Chávez
2009-01-01
The U.S. Forest Service is responsible for developing tools to facilitate effective and efficient fire management on wildlands and urban-wildland interfaces. Existing GIS-based fire modeling software only permits estimation of the costs of fire prevention and mitigation efforts as well as the effects of those efforts on fire behavior. This research demonstrates how the...
ERIC Educational Resources Information Center
Aladag, Elif
2010-01-01
This study sought to determine the effect of Geographic Information Systems (GIS) on the academic achievement and motivation of seventh-grade students. The study used a quasi-experimental design and a set of social studies lessons. The study was conducted over the 2006-2007 academic year on the students of a primary school at Ankara, Turkey's…
The Effects of Stellar Irradiation on Gravitational Instabilities in Protoplanetary Disks
NASA Astrophysics Data System (ADS)
Cai, Kai; Durisen, R. H.; Zhu, Z.
2009-01-01
It has been suggested that giant protoplanets form in protoplanetary disks when the disks undergo rapid cooling and fragment into dense Jupiter-mass clumps under the disks' own self-gravity. Previous three-dimensional simulations of protoplanetary disks investigated the effects of envelope irradiation on the development of gravitational instabilities (GIs) in such disks. We found that the irradiation tends to suppress the nonlinear amplitude of GIs and no dense clumps form, arguing against direct formation of giant planets by disk instability in irradiated disks (Cai et al. 2008). In this work, by utilizing an improved radiative cooling scheme in the optically thin regions, we present some preliminary results from simulations with a variable irradiation temperature that mimics the effects of stellar irradiation. Comparisons with results from an envelope-irradiated disk suggest that stellar irradiation may be more effective in suppressing GIs than envelope irradiation.
WebGIS based on semantic grid model and web services
NASA Astrophysics Data System (ADS)
Zhang, WangFei; Yue, CaiRong; Gao, JianGuo
2009-10-01
As the combination point of the network technology and GIS technology, WebGIS has got the fast development in recent years. With the restriction of Web and the characteristics of GIS, traditional WebGIS has some prominent problems existing in development. For example, it can't accomplish the interoperability of heterogeneous spatial databases; it can't accomplish the data access of cross-platform. With the appearance of Web Service and Grid technology, there appeared great change in field of WebGIS. Web Service provided an interface which can give information of different site the ability of data sharing and inter communication. The goal of Grid technology was to make the internet to a large and super computer, with this computer we can efficiently implement the overall sharing of computing resources, storage resource, data resource, information resource, knowledge resources and experts resources. But to WebGIS, we only implement the physically connection of data and information and these is far from the enough. Because of the different understanding of the world, following different professional regulations, different policies and different habits, the experts in different field will get different end when they observed the same geographic phenomenon and the semantic heterogeneity produced. Since these there are large differences to the same concept in different field. If we use the WebGIS without considering of the semantic heterogeneity, we will answer the questions users proposed wrongly or we can't answer the questions users proposed. To solve this problem, this paper put forward and experienced an effective method of combing semantic grid and Web Services technology to develop WebGIS. In this paper, we studied the method to construct ontology and the method to combine Grid technology and Web Services and with the detailed analysis of computing characteristics and application model in the distribution of data, we designed the WebGIS query system driven by ontology based on Grid technology and Web Services.
NASA Astrophysics Data System (ADS)
Ryazanova, A. A.; Okladnikov, I. G.; Gordov, E. P.
2017-11-01
The frequency of occurrence and magnitude of precipitation and temperature extreme events show positive trends in several geographical regions. These events must be analyzed and studied in order to better understand their impact on the environment, predict their occurrences, and mitigate their effects. For this purpose, we augmented web-GIS called “CLIMATE” to include a dedicated statistical package developed in the R language. The web-GIS “CLIMATE” is a software platform for cloud storage processing and visualization of distributed archives of spatial datasets. It is based on a combined use of web and GIS technologies with reliable procedures for searching, extracting, processing, and visualizing the spatial data archives. The system provides a set of thematic online tools for the complex analysis of current and future climate changes and their effects on the environment. The package includes new powerful methods of time-dependent statistics of extremes, quantile regression and copula approach for the detailed analysis of various climate extreme events. Specifically, the very promising copula approach allows obtaining the structural connections between the extremes and the various environmental characteristics. The new statistical methods integrated into the web-GIS “CLIMATE” can significantly facilitate and accelerate the complex analysis of climate extremes using only a desktop PC connected to the Internet.
Xiaodan, Wang; Xianghao, Zhong; Pan, Gao
2010-10-01
Regional eco-security assessment is an intricate, challenging task. In previous studies, the integration of eco-environmental models and geographical information systems (GIS) usually takes two approaches: loose coupling and tight coupling. However, the present study used a full coupling approach to develop a GIS-based regional eco-security assessment decision support system (ESDSS). This was achieved by merging the pressure-state-response (PSR) model and the analytic hierarchy process (AHP) into ArcGIS 9 as a dynamic link library (DLL) using ArcObjects in ArcGIS and Visual Basic for Applications. Such an approach makes it easy to capitalize on the GIS visualization and spatial analysis functions, thereby significantly supporting the dynamic estimation of regional eco-security. A case study is presented for the Tibetan Plateau, known as the world's "third pole" after the Arctic and Antarctic. Results verified the usefulness and feasibility of the developed method. As a useful tool, the ESDSS can also help local managers to make scientifically-based and effective decisions about Tibetan eco-environmental protection and land use. Copyright (c) 2010 Elsevier Ltd. All rights reserved.
Hiloidhari, Moonmoon; Baruah, D C; Singh, Anoop; Kataki, Sampriti; Medhi, Kristina; Kumari, Shilpi; Ramachandra, T V; Jenkins, B M; Thakur, Indu Shekhar
2017-10-01
Sustainability of a bioenergy project depends on precise assessment of biomass resource, planning of cost-effective logistics and evaluation of possible environmental implications. In this context, this paper reviews the role and applications of geo-spatial tool such as Geographical Information System (GIS) for precise agro-residue resource assessment, biomass logistic and power plant design. Further, application of Life Cycle Assessment (LCA) in understanding the potential impact of agro-residue bioenergy generation on different ecosystem services has also been reviewed and limitations associated with LCA variability and uncertainty were discussed. Usefulness of integration of GIS into LCA (i.e. spatial LCA) to overcome the limitations of conventional LCA and to produce a holistic evaluation of the environmental benefits and concerns of bioenergy is also reviewed. Application of GIS, LCA and spatial LCA can help alleviate the challenges faced by ambitious bioenergy projects by addressing both economics and environmental goals. Copyright © 2017 Elsevier Ltd. All rights reserved.
EAARL coastal topography-Northern Outer Banks, North Carolina, post-Nor'Ida, 2009
Bonisteel-Cormier, J.M.; Nayegandhi, Amar; Wright, C.W.; Sallenger, A.H.; Brock, J.C.; Nagle, D.B.; Vivekanandan, Saisudha; Klipp, E.S.; Fredericks, Xan
2011-01-01
This DVD contains lidar-derived first-surface (FS) and bare-earth (BE) topography GIS datasets of a portion of the northern Outer Banks beachface in North Carolina. These datasets were acquired post-Nor'Ida on November 27 and 29, 2009.
Assessing Wetland Anthropogenic Stress using GIS; a Multi-scale Watershed Approach
Watersheds are widely recognized as essential summary units for ecosystem research and management, particularly in aquatic systems. As the drainage basin in which surface water drains toward a lake, stream, river, or wetland at a lower elevation, watersheds represent spatially e...
ICLUS Tools and Datasets (Version 1.3.2)
As a part of the Integrated Climate and Land Use Scenarios (ICLUS) project, this Geographic Information System (GIS) tool can be used to generate scenarios of housing-density changes and calculate impervious surface cover for the conterminous United States. The ICLUS User’s Guid...
NASA Astrophysics Data System (ADS)
Sokoła-Szewioła, Violetta; Żogała, Monika
2016-12-01
Nowadays the mining companies use the Spatial Information System in order to facilitate data management, gathered during the mining activity. For these purposes various kinds of applications and software information are used. They allow for faster and easier data processing. In the paper there are presented the possibilities of using the ArcGIS system to support the tasks performed in the mining industry in the scope of the analysis of the influence of the mining tremors, induced by the longwall exploitation on the facilities construction sited on the surface area. These possibilities are presented by the example of the database developed for the coal mine KWK "Rydułtowy-Anna." The developed database was created using ArcGIS software for Desktop 10. 1. It contains the values of parameters, specified for its implementation relevant to the analyses of the influence of the mining tremors on the surface structures.
NASA Astrophysics Data System (ADS)
Bel Hadj Kacem, Mohamed Salah
All hydrological processes are affected by the spatial variability of the physical parameters of the watershed, and also by human intervention on the landscape. The water outflow from a watershed strictly depends on the spatial and temporal variabilities of the physical parameters of the watershed. It is now apparent that the integration of mathematical models into GIS's can benefit both GIS and three-dimension environmental models: a true modeling capability can help the modeling community bridge the gap between planners, scientists, decision-makers and end-users. The main goal of this research is to design a practical tool to simulate run-off water surface using Geographic design a practical tool to simulate run-off water surface using Geographic Information Systems and the simulation of the hydrological behavior by the Finite Element Method.
Vizcaíno, P; Pistocchi, A
2010-10-01
The MAPPE GIS based multimedia model is used to produce a quantitative description of the behaviour of gamma-hexachlorocyclohexane (gamma-HCH) in Europe, with emphasis on continental surface waters. The model is found to reasonably reproduce gamma-HCH distributions and variations along the years in atmosphere and soil; for continental surface waters, concentrations were reasonably well predicted for year 1995, when lindane was still used in agriculture, while for 2005, assuming severe restrictions in use, yields to substantial underestimation. Much better results were yielded when same mode of release as in 1995 was considered, supporting the conjecture that for gamma-HCH, emission data rather that model structure and parameterization can be responsible for wrong estimation of concentrations. Future research should be directed to improve the quality of emission data. Joint interpretation of monitoring and modelling results, highlights that lindane emissions in Europe, despite the marked decreasing trend, persist beyond the provisions of existing legislation. Copyright (c) 2010 Elsevier Ltd. All rights reserved.
Gan, Yinbo; Kumimoto, Rod; Liu, Chang; Ratcliffe, Oliver; Yu, Hao; Broun, Pierre
2006-06-01
As a plant shoot matures, it transitions through a series of growth phases in which successive aerial organs undergo distinct developmental changes. This process of phase change is known to be influenced by gibberellins (GAs). We report the identification of a putative transcription factor, GLABROUS INFLORESCENCE STEMS (GIS), which regulates aspects of shoot maturation in Arabidopsis thaliana. GIS loss-of-function mutations affect the epidermal differentiation of inflorescence organs, causing a premature decrease in trichome production on successive leaves, stem internodes, and branches. Overexpression has the opposite effect on trichome initiation and causes other heterochronic phenotypes, affecting flowering and juvenile-adult leaf transition and inducing the formation of rosette leaves on inflorescence stems. Genetic and gene expression analyses suggest that GIS acts in a GA-responsive pathway upstream of the trichome initiation regulator GLABROUS1 (GL1) and downstream of the GA signaling repressor SPINDLY (SPY). GIS mediates the induction of GL1 expression by GA in inflorescence organs and is antagonized in its action by the DELLA repressor GAI. The implication of GIS in the broader regulation of phase change is further suggested by the delay in flowering caused by GIS loss of function in the spy background. The discovery of GIS reveals a novel mechanism in the control of shoot maturation, through which GAs regulate cellular differentiation in plants.
Spangler, Lawrence E.; Angeroth, Cory E.; Walton, Sarah J.
2008-01-01
Relations between the elevation of the static water level in wells and the elevation of the accounting surface within the Colorado River aquifer in the vicinity of Vidal, California, the Chemehuevi Indian Reservation, California, and on Mohave Mesa, Arizona, were used to determine which wells outside the flood plain of the Colorado River are presumed to yield water that will be replaced by water from the Colorado River. Wells that have a static water-level elevation equal to or below the elevation of the accounting surface are presumed to yield water that will be replaced by water from the Colorado River. Geographic Information System (GIS) interpolation tools were used to produce maps of areas where water levels are above, below, and near (within ? 0.84 foot) the accounting surface. Calculated water-level elevations and interpolated accounting-surface elevations were determined for 33 wells in the vicinity of Vidal, 16 wells in the Chemehuevi area, and 35 wells on Mohave Mesa. Water-level measurements generally were taken in the last 10 years with steel and electrical tapes accurate to within hundredths of a foot. A Differential Global Positioning System (DGPS) was used to determine land-surface elevations to within an operational accuracy of ? 0.43 foot, resulting in calculated water-level elevations having a 95-percent confidence interval of ? 0.84 foot. In the Vidal area, differences in elevation between the accounting surface and measured water levels range from -2.7 feet below to as much as 17.6 feet above the accounting surface. Relative differences between the elevation of the water level and the elevation of the accounting surface decrease from west to east and from north to south. In the Chemehuevi area, differences in elevation range from -3.7 feet below to as much as 8.7 feet above the accounting surface, which is established at 449.6 feet in the vicinity of Lake Havasu. In all of the Mohave Mesa area, the water-level elevation is near or below the elevation of the accounting surface. Differences in elevation between water levels and the accounting surface range from -0.2 to -11.3 feet, with most values exceeding -7.0 feet. In general, the ArcGIS Triangulated Irregular Network (TIN) Contour and Natural Neighbor tools reasonably represent areas where the elevation of water levels in wells is above, below, and near (within ? 0.84 foot) the elevation of the accounting surface in the Vidal and Chemehuevi study areas and accurately delineate areas around outlying wells and where anomalies exist. The TIN Contour tool provides a strict linear interpolation while the Natural Neighbor tool provides a smoothed interpolation. Using the default options in ArcGIS, the Inverse Distance Weighted (IDW) and Spline tools also reasonably represent areas above, below, and near the accounting surface in the Vidal and Chemehuevi areas. However, spatial extent of and boundaries between areas above, below, and near the accounting surface vary among the GIS methods, which results largely from the fundamentally different mathematical approaches used by these tools. The limited number and spatial distribution of wells in comparison to the size of the areas, and the locations and relative differences in elevation between water levels and the accounting surface of wells with anomalous water levels also influence the contouring by each of these methods. Qualitatively, the Natural Neighbor tool appears to provide the best representation of the difference between water-level and accounting-surface elevations in the study areas, on the basis of available well data.
Development of Critical Spatial Thinking through GIS Learning
ERIC Educational Resources Information Center
Kim, Minsung; Bednarz, Robert
2013-01-01
This study developed an interview-based critical spatial thinking oral test and used the test to investigate the effects of Geographic Information System (GIS) learning on three components of critical spatial thinking: evaluating data reliability, exercising spatial reasoning, and assessing problem-solving validity. Thirty-two students at a large…
GIS Teacher Training: Empirically-Based Indicators of Effectiveness
ERIC Educational Resources Information Center
Höhnle, Steffen; Fögele, Janis; Mehren, Rainer; Schubert, Jan Christoph
2016-01-01
In spite of various actions, the implementation of GIS (geographic information systems) in German schools is still very low. In the presented research, teaching experts as well as teaching novices were presented with empirically based constraints for implementation stemming from an earlier survey. In the process of various group discussions, the…
Analytic Hierarchy Process for Personalising Environmental Information
ERIC Educational Resources Information Center
Kabassi, Katerina
2014-01-01
This paper presents how a Geographical Information System (GIS) can be incorporated in an intelligent learning software system for environmental matters. The system is called ALGIS and incorporates the GIS in order to present effectively information about the physical and anthropogenic environment of Greece in a more interactive way. The system…
DOT National Transportation Integrated Search
1998-09-16
This paper and presentation discuss some of the benefits of integrating travel : demand models and desktop GIS (ArchInfo and ArcView for PCs) as a : cost-effective and staff saving tool, as well as specific improvements to : transportation planning m...
NASA Astrophysics Data System (ADS)
Rui, H.; Strub, R.; Teng, W. L.; Vollmer, B.; Mocko, D. M.; Maidment, D. R.; Whiteaker, T. L.
2013-12-01
The way NASA earth sciences data are typically archived (by time steps, one step per file, often containing multiple variables) is not optimal for their access by the hydrologic community, particularly if the data volume and/or number of data files are large. To enhance the access to and use of these NASA data, the NASA Goddard Earth Sciences Data and Information Services Center (GES DISC) adopted two approaches, in a project supported by the NASA ACCESS Program. The first is to optimally reorganize two large hydrological data sets for more efficient access, as time series, and to integrate the time series data (aka 'data rods') into hydrologic community tools, such as CUAHSI-HIS, EPA-BASINS, and Esri-ArcGIS. This effort has thus far resulted in the reorganization and archive (as data rods) of the following variables from the North American and Global Land Data Assimilation Systems (NLDAS and GLDAS, respectively): precipitation, soil moisture, evapotranspiration, runoff, near-surface specific humidity, potential evaporation, soil temperature, near surface air temperature, and near-surface wind. The second approach is to leverage the NASA Simple Subset Wizard (SSW), which was developed to unite data search and subsetters at various NASA EOSDIS data centers into a single, simple, seamless process. Data accessed via SSW are converted to time series before being made available via Web service. Leveraging SSW makes all data accessible via SSW potentially available to HIS users, which increases the number of data sets available as time series beyond those available as data rods. Thus far, a set of selected variables from the NASA Modern Era-Retrospective Analysis for Research and Applications Land Surface (MERRA-Land) data set has been integrated into CUAHSI-HIS, including evaporation, land surface temperature, runoff, soil moisture, soil temperature, precipitation, and transpiration. All data integration into these tools has been conducted in collaboration with their respective communities. Specifically, the GES DISC worked closely with the University of Texas (also part of the NASA ACCESS project) to seamlessly integrate these hydrology-related variables into CUAHSI-HIS. With NLDAS, GLDAS, and MERRA data integrated into CUAHSI-HIS, the data can be accessed via HydroDesktop (a windows-based GIS application) along with other existing HIS data, and analyzed with the built-in functions for water-cycle-related applications, research, and data validation. Case studies will be presented on the access to and use of NLDAS, GLDAS, and MERRA data for drought monitoring, Probable Maximum Precipitation (PMP), hurricane rainfall effects on soil moisture and runoff, as well as data inter-comparison. An example of GLDAS in ArcGIS Online, World Soil Moisture, will also be given. Featured with the long time series of GLDAS soil moisture data and powered by Esri-ArcGIS, the World Soil Moisture server allows users to click on any location in the world to view its soil moisture in ASCII or as a time series plot. Full records of the NLDAS, GLDAS, and MERRA data are accessible from NASA GES DISC via Mirador (http://mirador.gsfc.nasa.gov/), SSW (http://disc.sci.gsfc.nasa.gov/SSW/), Giovanni (http://disc.sci.gsfc.nasa.gov/giovanni/overview), OPeNDAP/GDS (http://disc.sci.gsfc.nasa.gov/services), as well as direct FTP.
Application of GIS-based Procedure on Slopeland Use Classification and Identification
NASA Astrophysics Data System (ADS)
KU, L. C.; LI, M. C.
2016-12-01
In Taiwan, the "Slopeland Conservation and Utilization Act" regulates the management of the slopelands. It categorizes the slopeland into land suitable for agricultural or animal husbandry, land suitable for forestry and land for enhanced conservation, according to the environmental factors of average slope, effective soil depth, soil erosion and parental rock. Traditionally, investigations of environmental factors require cost-effective field works. It has been confronted with many practical issues such as non-evaluated cadastral parcels, evaluation results depending on expert's opinion, difficulties in field measurement and judgment, and time consuming. This study aimed to develop a GIS-based procedure involved in the acceleration of slopeland use classification and quality improvement. First, the environmental factors of slopelands were analyzed by GIS and SPSS software. The analysis involved with the digital elevation model (DEM), soil depth map, land use map and satellite images. Second, 5% of the analyzed slopelands were selected to perform the site investigations and correct the results of classification. Finally, a 2nd examination was involved by randomly selected 2% of the analyzed slopelands to perform the accuracy evaluation. It was showed the developed procedure is effective in slopeland use classification and identification. Keywords: Slopeland Use Classification, GIS, Management
Emily Heaton; Colin Brooks; Adina Merenlender; Mark Reynolds; Mary Chase
2002-01-01
Vineyard expansion into Californiaâs oak woodlands is creating an increasingly fragmented and altered landscape for wildlife. This landscape-level study is designed to provide information about the effects of vineyard development and oak habitat retention on oak-associated bird communities in northern coastal California. We have used Geographic Information System (GIS...
NASA Astrophysics Data System (ADS)
Salmi, H. Al; Abdulmuttalib, H. M.
2012-07-01
Urban Sustainability expresses the level of conservation of a city while living a town or consuming its urban resources, but the measurement of urban sustainability depends on what are considered important indicators of conservation besides the permitted levels of consumption in accordance with adopted criteria. This criterion should have common factors that are shared for all the members tested or cities to be evaluated as in this particular case for Abu Dhabi, but also have specific factors that are related to the geographic place, community and culture, that is the measures of urban sustainability specific to a middle east climate, community and culture where GIS Vector and Raster analysis have a role or add a value in urban sustainability measurements or grading are considered herein. Scenarios were tested using various GIS data types to replicate urban history (ten years period), current status and expected future of Abu Dhabi City setting factors to climate, community needs and culture. The useful Vector or Raster GIS data sets that are related to every scenario where selected and analysed in the sense of how and how much it can benefit the urban sustainability ranking in quantity and quality tests, this besides assessing the suitable data nature, type and format, the important topology rules to be considered, the useful attributes to be added, the relationships which should be maintained between data types of a geo- database, and specify its usage in a specific scenario test, then setting weights to each and every data type representing some elements of a phenomenon related to urban suitability factor. The results of assessing the role of GIS analysis provided data collection specifications such as the measures of accuracy reliable to a certain type of GIS functional analysis used in an urban sustainability ranking scenario tests. This paper reflects the prior results of the research that is conducted to test the multidiscipline evaluation of urban sustainability using different indicator metrics, that implement vector GIS Analysis and Raster GIS analysis as basic tools to assist the evaluation and increase of its reliability besides assessing and decomposing it, after which a hypothetical implementation of the chosen evaluation model represented by various scenarios was implemented on the planned urban sustainability factors for a certain period of time to appraise the expected future grade of urban sustainability and come out with advises associated with scenarios for assuring gap filling and relative high urban future sustainability. The results this paper is reflecting are concentrating on the elements of vector and raster GIS analysis that assists the proper urban sustainability grading within the chosen model, the reliability of spatial data collected; analysis selected and resulted spatial information. Starting from selecting some important indicators to comprise the model which include regional culture, climate and community needs an example of what was used is Energy Demand & Consumption (Cooling systems). Thus, this factor is related to the climate and it's regional specific as the temperature varies around 30-45 degrees centigrade in city areas, GIS 3D Polygons of building data used to analyse the volume of buildings, attributes "building heights", estimate the number of floors from the equation, following energy demand was calculated and consumption for the unit volume, and compared it in scenario with possible sustainable energy supply or using different environmental friendly cooling systems this is followed by calculating the cooling system effects on an area unit selected to be 1 sq. km, combined with the level of greenery area, and open space, as represented by parks polygons, trees polygons, empty areas, pedestrian polygons and road surface area polygons. (initial measures showed that cooling system consumption can be reduced by around 15-20% with a well-planned building distributions, proper spaces and with using environmental friendly products and building material, temperature levels were also combined in the scenario extracted from satellite images as interpreted from thermal bands 3 times during the period of assessment. Other examples of the assessment of GIS analysis to urban sustainability took place included Waste Productivity, some effects of greenhouse gases measured by the intensity of road polygons and closeness to dwelling areas, industry areas as defined from land use land cover thematic maps produced from classified satellite images then vectors were created to take part in defining their role within the scenarios. City Noise and light intensity assessment was also investigated, as the region experiences rapid development and noise is magnified due to construction activities, closeness of the airports, and highways. The assessment investigated the measures taken by urban planners to reduce degradation or properly manage it. Finally as a conclusion tables were presented to reflect the scenario results in combination with GIS data types, analysis types, and the level of GIS data reliability to measure the sustainability level of a city related to cultural and regional demands.
NASA Astrophysics Data System (ADS)
Yaghi, Y.; Salim, H.
2017-09-01
Recently the topic of the quality of surface water (rivers - lakes) and the sea is an important topics at different levels. It is known that there are two major groups of pollutants: Point Source Pollution (PSP) and non-point Source pollution (NPSP). Historically most of the surface water pollution protection programs dealing with the first set of pollutants which comes from sewage pipes and factories drainage. With the growing need for current and future water security must stand on the current reality of the coastal rivers basin in terms of freshness and cleanliness and condition of water pollution. This research aims to assign the NPS pollutants that reach Al Abrash River and preparation of databases and producing of risk Pollution map for NPS pollutants in order to put the basin management plan to ensure the reduction of pollutants that reach the river. This research resulted of establishing of Databases of NPSP (Like pesticides and fertilizers) and producing of thematic maps for pollution severity and pollution risk based on the pollution models designed in GIS environment and utilizing from remote sensing data. Preliminary recommendations for managing these pollutants were put.
An ArcGIS approach to include tectonic structures in point data regionalization.
Darsow, Andreas; Schafmeister, Maria-Theresia; Hofmann, Thilo
2009-01-01
Point data derived from drilling logs must often be regionalized. However, aquifers may show discontinuous surface structures, such as the offset of an aquitard caused by tectonic faults. One main challenge has been to incorporate these structures into the regionalization process of point data. We combined ordinary kriging and inverse distance weighted (IDW) interpolation to account for neotectonic structures in the regionalization process. The study area chosen to test this approach is the largest porous aquifer in Austria. It consists of three basins formed by neotectonic events and delimited by steep faults with a vertical offset of the aquitard up to 70 m within very short distances. First, ordinary kriging was used to incorporate the characteristic spatial variability of the aquitard location by means of a variogram. The tectonic faults could be included into the regionalization process by using breaklines with buffer zones. All data points inside the buffer were deleted. Last, IDW was performed, resulting in an aquitard map representing the discontinuous surface structures. This approach enables one to account for such surfaces using the standard software package ArcGIS; therefore, it could be adopted in many practical applications.
NASA Astrophysics Data System (ADS)
Drosos, Vasileios C.; Liampas, Sarantis-Aggelos G.; Doukas, Aristotelis-Kosmas G.
2014-08-01
In our time, the Geographic Information Systems (GIS) have become important tools, not only in the geosciences and environmental sciences, as well as virtually for all researches that require monitoring, planning or land management. The purpose of this paper was to develop a planning tool and decision making tool using AutoCAD Map software, ArcGIS and Google Earth with emphasis on the investigation of the suitability of forest roads' mapping and the range of its implementation in Greece in prefecture level. Integrating spatial information into a database makes data available throughout the organization; improving quality, productivity, and data management. Also working in such an environment, you can: Access and edit information, integrate and analyze data and communicate effectively. To select desirable information such as forest road network in a very early stage in the planning of silviculture operations, for example before the planning of the harvest is carried out. The software programs that were used were AutoCAD Map for the export in shape files for the GPS data, and ArcGIS in shape files (ArcGlobe), while Google Earth with KML files (Keyhole Markup Language) in order to better visualize and evaluate existing conditions, design in a real-world context and exchange information with government agencies, utilities, and contractors in both CAD and GIS data formats. The automation of the updating procedure and transfer of any files between agencies-departments is one of the main tasks of the integrated GIS-tool among the others should be addressed.
NASA Astrophysics Data System (ADS)
Gonzalez, S.; Gou, S.; Miller, G. R.
2012-12-01
Ecosystems which rely on either the surface expression or subsurface presence of groundwater are known as groundwater dependent ecosystems (GDEs). A comprehensive inventory of GDE locations at a management scale is a necessary first-step for sustainable management of effected aquifers; however, this information is unavailable for most areas of concern. To address this gap, this study derives algorithms to identify the spatial distribution of GDEs at the state and aquifer scales and to generate an example geospatial database of potential GDEs located throughout Texas. We first constructed a geospatial information system (GIS) database with current climate, topography, hydrology, and ecology data, synthesized from both existing feature sets and sets created with information from published documents. The created features included potential groundwater dependent vegetation types in Texas and gaining and loosing streams produces with data from flow measuring stations. The resulting state-scale GIS database was used to delineate the areas where conditions are favorable for GDEs. Next, an aquifer-scale remote sensing based algorithm was created to identify the ecosystems that exhibit the physiological hallmarks groundwater dependence. This algorithm used Landsat 7 and MODIS images to calculate the seasonal and inter-annual changes of NDVI for each vegetation pixel. The NDVI dynamics were used to identify the vegetation with high potential to use groundwater—such plants remain mostly green and physiologically active during extended dry periods of the year and also exhibit low inter-annual leaf area changes between dry and wet years. Combining the results of GIS and remote sensing methods, we group the vegetated areas into five levels from "very high" to "very low" potential to use groundwater. The product of this research, a state-level GIS database of potential GDEs in Texas, indicates that the vegetation with highest groundwater use possibility is around the springs, along the gaining streams, or within the shallow water table areas. It also reveals that the Edwards aquifer region has the highest density of potential GDEs. Out of a total area of 105 km2 in this region, 24% was found to have a high or very high probability of having GDEs. In addition, we highlight the significance of GDE identification to sustainable groundwater management and demonstrate the necessity of unconfined groundwater table monitoring.
Planetary mapping—The datamodel's perspective and GIS framework
NASA Astrophysics Data System (ADS)
van Gasselt, S.; Nass, A.
2011-09-01
Demands for a broad range of integrated geospatial data-analysis tools and methods for planetary data organization have been growing considerably since the late 1990s when a plethora of missions equipped with new instruments entered planetary orbits or landed on the surface. They sent back terabytes of new data which soon became accessible for the scientific community and public and which needed to be organized. On the terrestrial side, issues of data access, organization and utilization for scientific and economic analyses are handled by using a range of well-established geographic information systems (GIS) that also found their way into the field of planetary sciences in the late 1990s. We here address key issues concerning the field of planetary mapping by making use of established GIS environments and discuss methods of addressing data organization and mapping requirements by using an easily integrable datamodel that is - for the time being - designed as file-geodatabase (FileGDB) environment in ESRI's ArcGIS. A major design-driving requirement for this datamodel is its extensibility and scalability for growing scientific as well as technical needs, e.g., the utilization of such a datamodel for surface mapping of different planetary objects as defined by their respective reference system and by using different instrument data. Furthermore, it is a major goal to construct a generic model which allows to perform combined geologic as well as geomorphologic mapping tasks making use of international standards without loss of information and by maintaining topologic integrity. An integration of such a datamodel within a geospatial DBMS context can practically be performed by individuals as well as groups without having to deal with the details of administrative tasks and data ingestion issues. Besides the actual mapping, key components of such a mapping datamodel deal with the organization and search for image-sensor data and previous mapping efforts, as well as the proper organization of cartographic representations and assignments of geologic/geomorphologic units within their stratigraphic context.
NASA Astrophysics Data System (ADS)
Kaya, S.; Alganci, U.; Sertel, E.; Ustundag, B.
2015-12-01
Throughout the history, agricultural activities have been performed close to urban areas. Main reason behind this phenomenon is the need of fast marketing of the agricultural production to urban residents and financial provision. Thus, using the areas nearby cities for agricultural activities brings out advantage of easy transportation of productions and fast marketing. For decades, heavy migration to cities has directly and negatively affected natural grasslands, forests and agricultural lands. This pressure has caused agricultural lands to be changed into urban areas. Dense urbanization causes increase in impervious surfaces, heat islands and many other problems in addition to destruction of agricultural lands. Considering the negative impacts of urbanization on agricultural lands and natural resources, a periodic monitoring of these changes becomes indisputably important. At this point, satellite images are known to be good data sources for land cover / use change monitoring with their fast data acquisition, large area coverages and temporal resolution properties. Classification of the satellite images provides thematic the land cover / use maps of the earth surface and changes can be determined with GIS based analysis multi-temporal maps. In this study, effects of heavy urbanization over agricultural lands in Istanbul, metropolitan city of Turkey, were investigated with use of multi-temporal Landsat TM satellite images acquired between 1984 and 2011. Images were geometrically registered to each other and classified using supervised maximum likelihood classification algorithm. Resulting thematic maps were exported to GIS environment and destructed agricultural lands by urbanization were determined using spatial analysis.
ICLUS Tools and Datasets (Version 1.3 & 1.3.1)
As a part of the Integrated Climate and Land Use Scenarios (ICLUS) project, this Geographic Information System (GIS) tool can be used to generate scenarios of housing-density changes and calculate impervious surface cover for the conterminous United States. The ICLUS User’s Guid...
The architecture of a virtual grid GIS server
NASA Astrophysics Data System (ADS)
Wu, Pengfei; Fang, Yu; Chen, Bin; Wu, Xi; Tian, Xiaoting
2008-10-01
The grid computing technology provides the service oriented architecture for distributed applications. The virtual Grid GIS server is the distributed and interoperable enterprise application GIS architecture running in the grid environment, which integrates heterogeneous GIS platforms. All sorts of legacy GIS platforms join the grid as members of GIS virtual organization. Based on Microkernel we design the ESB and portal GIS service layer, which compose Microkernel GIS. Through web portals, portal GIS services and mediation of service bus, following the principle of SoC, we separate business logic from implementing logic. Microkernel GIS greatly reduces the coupling degree between applications and GIS platforms. The enterprise applications are independent of certain GIS platforms, and making the application developers to pay attention to the business logic. Via configuration and orchestration of a set of fine-grained services, the system creates GIS Business, which acts as a whole WebGIS request when activated. In this way, the system satisfies a business workflow directly and simply, with little or no new code.
Evaluation of GIS Technology in Assessing and Modeling Land Management Practices
NASA Technical Reports Server (NTRS)
Archer, F.; Coleman, T. L.; Manu, A.; Tadesse, W.; Liu, G.
1997-01-01
There is an increasing concern of land owners to protect and maintain healthy and sustainable agroecosystems through the implementation of best management practices (BMP). The objectives of this study were: (1) To develop and evaluate the use of a Geographic Information System (GIS) technology for enhancing field-scale management practices; (2) evaluate the use of 2-dimensional displays of the landscape and (3) define spatial classes of variables from interpretation of geostatistical parameters. Soil samples were collected to a depth of 2 m at 15 cm increments. Existing data from topographic, land use, and soil survey maps of the Winfred Thomas Agricultural Research Station were converted to digital format. Additional soils data which included texture, pH, and organic matter were also generated. The digitized parameters were used to create a multilayered field-scale GIS. Two dimensional (2-D) displays of the parameters were generated using the ARC/INFO software. The spatial distribution of the parameters evaluated in both fields were similar which could be attributed to the similarity in vegetation and surface elevation. The ratio of the nugget to total semivariance, expressed as a percentage, was used to assess the degree of spatial variability. The results indicated that most of the parameters were moderate spatially dependent Biophysical constraint maps were generated from the database layers, and used in multiple combination to visualize results of the BMP. Understanding the spatial relationships of physical and chemical parameters that exists within a field should enable land managers to more effectively implement BMP to ensure a safe and sustainable environment.
Ellis, Alisha M.; Marot, Marci E.; Wheaton, Cathryn J.; Bernier, Julie C.; Smith, Christopher G.
2016-02-03
This report is an archive for sedimentological data derived from the surface sediment of Chincoteague Bay. Data are available for the spring (March/April 2014) and fall (October 2014) samples collected. Downloadable data are provided as Excel spreadsheets and as JPEG files. Additional files include ArcGIS shapefiles of the sampling sites, detailed results of sediment grain-size analyses, and formal Federal Geographic Data Committee metadata (data downloads).
Schröder, Winfried
2006-05-01
By the example of environmental monitoring, some applications of geographic information systems (GIS), geostatistics, metadata banking, and Classification and Regression Trees (CART) are presented. These tools are recommended for mapping statistically estimated hot spots of vectors and pathogens. GIS were introduced as tools for spatially modelling the real world. The modelling can be done by mapping objects according to the spatial information content of data. Additionally, this can be supported by geostatistical and multivariate statistical modelling. This is demonstrated by the example of modelling marine habitats of benthic communities and of terrestrial ecoregions. Such ecoregionalisations may be used to predict phenomena based on the statistical relation between measurements of an interesting phenomenon such as, e.g., the incidence of medically relevant species and correlated characteristics of the ecoregions. The combination of meteorological data and data on plant phenology can enhance the spatial resolution of the information on climate change. To this end, meteorological and phenological data have to be correlated. To enable this, both data sets which are from disparate monitoring networks have to be spatially connected by means of geostatistical estimation. This is demonstrated by the example of transformation of site-specific data on plant phenology into surface data. The analysis allows for spatial comparison of the phenology during the two periods 1961-1990 and 1991-2002 covering whole Germany. The changes in both plant phenology and air temperature were proved to be statistically significant. Thus, they can be combined by GIS overlay technique to enhance the spatial resolution of the information on the climate change and use them for the prediction of vector incidences at the regional scale. The localisation of such risk hot spots can be done by geometrically merging surface data on promoting factors. This is demonstrated by the example of the transfer of heavy metals through soils. The predicted hot spots of heavy metal transfer can be validated empirically by measurement data which can be inquired by a metadata base linked with a geographic information system. A corresponding strategy for the detection of vector hot spots in medical epidemiology is recommended. Data on incidences and habitats of the Anophelinae in the marsh regions of Lower Saxony (Germany) were used to calculate a habitat model by CART, which together with climate data and data on ecoregions can be further used for the prediction of habitats of medically relevant vector species. In the future, this approach should be supported by an internet-based information system consisting of three components: metadata questionnaire, metadata base, and GIS to link metadata, surface data, and measurement data on incidences and habitats of medically relevant species and related data on climate, phenology, and ecoregional characteristic conditions.
Groundwater resource exploration in Salem district, Tamil Nadu using GIS and remote sensing
NASA Astrophysics Data System (ADS)
Maheswaran, G.; Selvarani, A. Geetha; Elangovan, K.
2016-03-01
Since last decade, the value per barrel of potable groundwater has outpaced the value of a barrel of oil in many areas of the world. Hence, proper assessment of groundwater potential and management practices are the needs of the day. Establishing relationship between remote sensing data and hydrologic phenomenon can maximize the efficiency of water resources development projects. Present study focuses on groundwater potential assessment in Salem district, Tamil Nadu to investigate groundwater resource potential. At the same, all thematic layers important from ground water occurrence and movement point of view were digitized and integrated in the GIS environment. The weights of different parameters/themes were computed using weighed index overlay analysis (WIOA), analytic hierarchy process (AHP) and fuzzy logic technique. Through this integrated GIS analysis, groundwater prospect map of the study area was prepared qualitatively. Field verification at observation wells was used to verify identified potential zones and depth of water measured at observation wells. Generated map from weighed overlay using AHP performed very well in predicting the groundwater surface and hence this methodology proves to be a promising tool for future.
Using GIS to Enhance Programs Serving Emancipated Youth Leaving Foster Care
ERIC Educational Resources Information Center
Batsche, Catherine J.; Reader, Steven
2012-01-01
This article describes a GIS prototype designed to assist with the identification and evaluation of housing that is affordable, safe, and effective in supporting the educational goals and parental status of youth transitioning from foster care following emancipation. Spatial analysis was used to identify rental properties based on three inclusion…
ERIC Educational Resources Information Center
Kamruzzaman, M.
2014-01-01
This study reports an action research undertaken at Queensland University of Technology. It evaluates the effectiveness of the integration of geographic information systems (GIS) within the substantive domains of an existing land use planning course in 2011. Using student performance, learning experience survey, and questionnaire survey data, it…
Towards a gestural 3D interaction for tangible and three-dimensional GIS visualizations
NASA Astrophysics Data System (ADS)
Partsinevelos, Panagiotis; Agadakos, Ioannis; Pattakos, Nikolas; Maragakis, Michail
2014-05-01
The last decade has been characterized by a significant increase of spatially dependent applications that require storage, visualization, analysis and exploration of geographic information. GIS analysis of spatiotemporal geographic data is operated by highly trained personnel under an abundance of software and tools, lacking interoperability and friendly user interaction. Towards this end, new forms of querying and interaction are emerging, including gestural interfaces. Three-dimensional GIS representations refer to either tangible surfaces or projected representations. Making a 3D tangible geographic representation touch-sensitive may be a convenient solution, but such an approach raises the cost significantly and complicates the hardware and processing required to combine touch-sensitive material (for pinpointing points) with deformable material (for displaying elevations). In this study, a novel interaction scheme upon a three dimensional visualization of GIS data is proposed. While gesture user interfaces are not yet fully acceptable due to inconsistencies and complexity, a non-tangible GIS system where 3D visualizations are projected, calls for interactions that are based on three-dimensional, non-contact and gestural procedures. Towards these objectives, we use the Microsoft Kinect II system which includes a time of flight camera, allowing for a robust and real time depth map generation, along with the capturing and translation of a variety of predefined gestures from different simultaneous users. By incorporating these features into our system architecture, we attempt to create a natural way for users to operate on GIS data. Apart from the conventional pan and zoom features, the key functions addressed for the 3-D user interface is the ability to pinpoint particular points, lines and areas of interest, such as destinations, waypoints, landmarks, closed areas, etc. The first results shown, concern a projected GIS representation where the user selects points and regions of interest while the GIS component responds accordingly by changing the scenario in a natural disaster application. Creating a 3D model representation of geospatial data provides a natural way for users to perceive and interact with space. To the best of our knowledge it is the first attempt to use Kinect II for GIS applications and generally virtual environments using novel Human Computer Interaction methods. Under a robust decision support system, the users are able to interact, combine and computationally analyze information in three dimensions using gestures. This study promotes geographic awareness and education and will prove beneficial for a wide range of geoscience applications including natural disaster and emergency management. Acknowledgements: This work is partially supported under the framework of the "Cooperation 2011" project ATLANTAS (11_SYN_6_1937) funded from the Operational Program "Competitiveness and Entrepreneurship" (co-funded by the European Regional Development Fund (ERDF)) and managed by the Greek General Secretariat for Research and Technology.
A trial map and GIS class on junior high school with university collaboration in Yokohama, Japan
NASA Astrophysics Data System (ADS)
Tabe, Toshimitsu; Ohnishi, Koji
2018-05-01
On the new curriculum of high school in Japan, geography will be compulsory subject in Japan from 2022. The indexes of new high school geography as compulsory subject will be 1. Using of maps and GIS, 2. Understanding of the world and International collaboration: Life and culture, issues of world, 3. Disaster prevention and ESD: natural environment and disaster, and construction of ideal society. The instruction of the GIS will be one of the issues for social studies teachers in the new curriculum. The aim of this study is to make the utilize map and GIS education content through trial class in junior high school. Trial class was done on Tsurugamine junior high school in Yokohama city with university and Yokohama city school board collaboration. In the trial class, the teacher indicated the old and new topographical maps to students and asked them to consider the characteristics of the area and the land use change. Transparent sheets overlaying is useful this activity. Transparent usage indicated the GIS function of overlay. It is good activity for students to understand the function of GIS. After the considering land use changes, they considered the future of their town. The several unused lands are spread in this area. Students present their opinions how to develop them. The important thing to carry out map and GIS class through neighborhood area is preparation of adequate maps. For this preparation, collaboration with university geography stuffs or undergraduate students are effective.
GIS-BASED MODELING OF THE LONG-TERM IMPACTS OF LAND-USE CHANGE ON SURFACE HYDROLOGY. (R825871)
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
GIS-based channel flow and sediment transport simulation using CCHE1D coupled with AnnAGNPS
USDA-ARS?s Scientific Manuscript database
CCHE1D (Center for Computational Hydroscience and Engineering 1-Dimensional model) simulates unsteady free-surface flows with nonequilibrium, nonuniform sediment transport in dendritic channel networks. Since early 1990’s, the model and its software packages have been developed and continuously main...
The US EPA, Environmental Sciences Division-Las Vegas is using a variety of geopspatical and statistical modeling approaches to locate and assess the complex functions of wetland ecosystems. These assessments involve measuring landscape characteristrics and change, at multiple s...
Teaching Complex Concepts in the Geosciences by Integrating Analytical Reasoning with GIS
ERIC Educational Resources Information Center
Houser, Chris; Bishop, Michael P.; Lemmons, Kelly
2017-01-01
Conceptual models have long served as a means for physical geographers to organize their understanding of feedback mechanisms and complex systems. Analytical reasoning provides undergraduate students with an opportunity to develop conceptual models based upon their understanding of surface processes and environmental conditions. This study…
Security attack detection algorithm for electric power gis system based on mobile application
NASA Astrophysics Data System (ADS)
Zhou, Chao; Feng, Renjun; Wang, Liming; Huang, Wei; Guo, Yajuan
2017-05-01
Electric power GIS is one of the key information technologies to satisfy the power grid construction in China, and widely used in power grid construction planning, weather, and power distribution management. The introduction of electric power GIS based on mobile applications is an effective extension of the geographic information system that has been widely used in the electric power industry. It provides reliable, cheap and sustainable power service for the country. The accurate state estimation is the important conditions to maintain the normal operation of the electric power GIS. Recent research has shown that attackers can inject the complex false data into the power system. The injection attack of this new type of false data (load integrity attack LIA) can successfully bypass the routine detection to achieve the purpose of attack, so that the control center will make a series of wrong decision. Eventually, leading to uneven distribution of power in the grid. In order to ensure the safety of the electric power GIS system based on mobile application, it is very important to analyze the attack mechanism and propose a new type of attack, and to study the corresponding detection method and prevention strategy in the environment of electric power GIS system based on mobile application.
GIS as a vital tool for Environmental Impact Assessment and Mitigation
NASA Astrophysics Data System (ADS)
Gharehbaghi, Koorosh; Scott-Young, Christina
2018-03-01
Environmental Impact Assessment (EIA) is a course of action which provides information to various stakeholders such as planners and relevant authorities about the planned development and its subsequent effects of the environment and the immediate ambiances. Furthermore, the EIA and mitigation are the inclusive process of collecting, analyzing information and the determination of the application for development or construction approval, which could be accessible by the concerned communities and organizations. Although the set regulations of EIA and mitigation vary from jurisdictions, they are, however, very precise and need to be integrated with the specific geographical data. In addition, the Geographical Information System (GIS) is a software intended to encapsulate and present all types of physical, biological, environmental, ecological and geological information. Conversely, GIS is the integration of statistical analysis and information technology, and can also be further broken down into two different categories of; Topological Modelling and Map overlay. To ensure that the EIA and mitigation are receptive the GIS will provide the decisive apparatus. Using GIS not only improves the overall EIA and mitigation process, but also provides valuable mapping strategies, including holistic environmental system approach. Accordingly, the main objective of this paper is to discuss the importance of the GIS and Environmental Data integration progression, to further enhance the overall EIA and Mitigation processes.
TerraLook: GIS-Ready Time-Series of Satellite Imagery for Monitoring Change
,
2008-01-01
TerraLook is a joint project of the U.S. Geological Survey (USGS) and the National Aeronautics and Space Administration (NASA) Jet Propulsion Laboratory (JPL) with a goal of providing satellite images that anyone can use to see changes in the Earth's surface over time. Each TerraLook product is a user-specified collection of satellite images selected from imagery archived at the USGS Earth Resources Observation and Science (EROS) Center. Images are bundled with standards-compliant metadata, a world file, and an outline of each image's ground footprint, enabling their use in geographic information systems (GIS), image processing software, and Web mapping applications. TerraLook images are available through the USGS Global Visualization Viewer (http://glovis.usgs.gov).
Malone, J B; Bergquist, N R; Huh, O K; Bavia, M E; Bernardi, M; El Bahy, M M; Fuentes, M V; Kristensen, T K; McCarroll, J C; Yilma, J M; Zhou, X N
2001-04-27
At a team residency sponsored by the Rockefeller Foundation in Bellagio, Italy, 10-14 April 2000 an organizational plan was conceived to create a global network of collaborating health workers and earth scientists dedicated to the development of computer-based models that can be used for improved control programs for schistosomiasis and other snail-borne diseases of medical and veterinary importance. The models will be assembled using GIS methods, global climate model data, sensor data from earth observing satellites, disease prevalence data, the distribution and abundance of snail hosts, and digital maps of key environmental factors that affect development and propagation of snail-borne disease agents. A work plan was developed for research collaboration and data sharing, recruitment of new contributing researchers, and means of access of other medical scientists and national control program managers to GIS models that may be used for more effective control of snail-borne disease. Agreement was reached on the use of compatible GIS formats, software, methods and data resources, including the definition of a 'minimum medical database' to enable seamless incorporation of results from each regional GIS project into a global model. The collaboration plan calls for linking a 'central resource group' at the World Health Organization, the Food and Agriculture Organization, Louisiana State University and the Danish Bilharziasis Laboratory with regional GIS networks to be initiated in Eastern Africa, Southern Africa, West Africa, Latin America and Southern Asia. An Internet site, www.gnosisGIS.org, (GIS Network On Snail-borne Infections with special reference to Schistosomiasis), has been initiated to allow interaction of team members as a 'virtual research group'. When completed, the site will point users to a toolbox of common resources resident on computers at member organizations, provide assistance on routine use of GIS health maps in selected national disease control programs and provide a forum for development of GIS models to predict the health impacts of water development projects and climate variation.
NASA Astrophysics Data System (ADS)
Weigel, A. M.; Griffin, R.; Knupp, K. R.; Molthan, A.; Coleman, T.
2017-12-01
Northern Alabama is among the most tornado-prone regions in the United States. This region has a higher degree of spatial variability in both terrain and land cover than the more frequently studied North American Great Plains region due to its proximity to the southern Appalachian Mountains and Cumberland Plateau. More research is needed to understand North Alabama's high tornado frequency and how land surface heterogeneity influences tornadogenesis in the boundary layer. Several modeling and simulation studies stretching back to the 1970's have found that variations in the land surface induce tornadic-like flow near the surface, illustrating a need for further investigation. This presentation introduces research investigating the hypothesis that horizontal gradients in land surface roughness, normal to the direction of flow in the boundary layer, induce vertically oriented vorticity at the surface that can potentially aid in tornadogenesis. A novel approach was implemented to test this hypothesis using a GIS-based quadrant pattern analysis method. This method was developed to quantify spatial relationships and patterns between horizontal variations in land surface roughness and locations of tornadogenesis. Land surface roughness was modeled using the Noah land surface model parameterization scheme which, was applied to MODIS 500 m and Landsat 30 m data in order to compare the relationship between tornadogenesis locations and roughness gradients at different spatial scales. This analysis found a statistical relationship between areas of higher roughness located normal to flow surrounding tornadogenesis locations that supports the tested hypothesis. In this presentation, the innovative use of satellite remote sensing data and GIS technologies to address interactions between the land and atmosphere will be highlighted.
Viramontes-Hörner, Daniela; Márquez-Sandoval, Fabiola; Martín-del-Campo, Fabiola; Vizmanos-Lamotte, Barbara; Sandoval-Rodríguez, Ana; Armendáriz-Borunda, Juan; García-Bejarano, Héctor; Renoirte-López, Karina; García-García, Guillermo
2015-05-01
The study aimed to assess the effect of a symbiotic gel on presence and severity of gastrointestinal symptoms (GIS) in hemodialysis patients. A double-blinded, placebo-controlled, randomized, clinical trial was designed. The study was conducted at 2 public hospitals in Guadalajara, Mexico. Twenty-two patients were randomized to the intervention group (nutritional counseling + symbiotic gel) and 20 patients were randomized to the control group (nutritional counseling + placebo), during 2 months of follow-up. Presence and monthly episodes of GIS were assessed by direct interview and severity by using the self-administered GIS questionnaire. Additionally, biochemical parameters, inflammatory markers, and nutritional status (dietary intake, subjective global assessment, anthropometry, and body composition) were evaluated. After a 2-month treatment, intervention group had a significant reduction in prevalence and monthly episodes of vomit, heartburn, and stomachache, as well as a significant decrease in GIS severity compared with control group. Moreover, intervention group had a greater yet not significant decrease in the prevalence of malnutrition and a trend to reduce their C-reactive protein and tumor necrosis factor α levels compared with control group. No symbiotic-related adverse side effects were shown in these patients. Clinical studies with longer follow-up and sample size are needed to confirm these results. We concluded that administration of a symbiotic gel is a safe and simple way to improve common GIS in dialysis patients. Copyright © 2015 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cao, Yanni; Cervone, Guido; Barkley, Zachary
Most atmospheric models, including the Weather Research and Forecasting (WRF) model, use a spherical geographic coordinate system to internally represent input data and perform computations. However, most geographic information system (GIS) input data used by the models are based on a spheroid datum because it better represents the actual geometry of the earth. WRF and other atmospheric models use these GIS input layers as if they were in a spherical coordinate system without accounting for the difference in datum. When GIS layers are not properly reprojected, latitudinal errors of up to 21 km in the midlatitudes are introduced. Recent studiesmore » have suggested that for very high-resolution applications, the difference in datum in the GIS input data (e.g., terrain land use, orography) should be taken into account. However, the magnitude of errors introduced by the difference in coordinate systems remains unclear. This research quantifies the effect of using a spherical vs. a spheroid datum for the input GIS layers used by WRF to study greenhouse gas transport and dispersion in northeast Pennsylvania.« less
Cao, Yanni; Cervone, Guido; Barkley, Zachary; ...
2017-09-19
Most atmospheric models, including the Weather Research and Forecasting (WRF) model, use a spherical geographic coordinate system to internally represent input data and perform computations. However, most geographic information system (GIS) input data used by the models are based on a spheroid datum because it better represents the actual geometry of the earth. WRF and other atmospheric models use these GIS input layers as if they were in a spherical coordinate system without accounting for the difference in datum. When GIS layers are not properly reprojected, latitudinal errors of up to 21 km in the midlatitudes are introduced. Recent studiesmore » have suggested that for very high-resolution applications, the difference in datum in the GIS input data (e.g., terrain land use, orography) should be taken into account. However, the magnitude of errors introduced by the difference in coordinate systems remains unclear. This research quantifies the effect of using a spherical vs. a spheroid datum for the input GIS layers used by WRF to study greenhouse gas transport and dispersion in northeast Pennsylvania.« less
NASA Astrophysics Data System (ADS)
Cao, Yanni; Cervone, Guido; Barkley, Zachary; Lauvaux, Thomas; Deng, Aijun; Taylor, Alan
2017-09-01
Most atmospheric models, including the Weather Research and Forecasting (WRF) model, use a spherical geographic coordinate system to internally represent input data and perform computations. However, most geographic information system (GIS) input data used by the models are based on a spheroid datum because it better represents the actual geometry of the earth. WRF and other atmospheric models use these GIS input layers as if they were in a spherical coordinate system without accounting for the difference in datum. When GIS layers are not properly reprojected, latitudinal errors of up to 21 km in the midlatitudes are introduced. Recent studies have suggested that for very high-resolution applications, the difference in datum in the GIS input data (e.g., terrain land use, orography) should be taken into account. However, the magnitude of errors introduced by the difference in coordinate systems remains unclear. This research quantifies the effect of using a spherical vs. a spheroid datum for the input GIS layers used by WRF to study greenhouse gas transport and dispersion in northeast Pennsylvania.
GIS embedded hydrological modeling: the SID&GRID project
NASA Astrophysics Data System (ADS)
Borsi, I.; Rossetto, R.; Schifani, C.
2012-04-01
The SID&GRID research project, started April 2010 and funded by Regione Toscana (Italy) under the POR FSE 2007-2013, aims to develop a Decision Support System (DSS) for water resource management and planning based on open source and public domain solutions. In order to quantitatively assess water availability in space and time and to support the planning decision processes, the SID&GRID solution consists of hydrological models (coupling 3D existing and newly developed surface- and ground-water and unsaturated zone modeling codes) embedded in a GIS interface, applications and library, where all the input and output data are managed by means of DataBase Management System (DBMS). A graphical user interface (GUI) to manage, analyze and run the SID&GRID hydrological models based on open source gvSIG GIS framework (Asociación gvSIG, 2011) and a Spatial Data Infrastructure to share and interoperate with distributed geographical data is being developed. Such a GUI is thought as a "master control panel" able to guide the user from pre-processing spatial and temporal data, running the hydrological models, and analyzing the outputs. To achieve the above-mentioned goals, the following codes have been selected and are being integrated: 1. Postgresql/PostGIS (PostGIS, 2011) for the Geo Data base Management System; 2. gvSIG with Sextante (Olaya, 2011) geo-algorithm library capabilities and Grass tools (GRASS Development Team, 2011) for the desktop GIS; 3. Geoserver and Geonetwork to share and discover spatial data on the web according to Open Geospatial Consortium; 4. new tools based on the Sextante GeoAlgorithm framework; 5. MODFLOW-2005 (Harbaugh, 2005) groundwater modeling code; 6. MODFLOW-LGR (Mehl and Hill 2005) for local grid refinement; 7. VSF (Thoms et al., 2006) for the variable saturated flow component; 8. new developed routines for overland flow; 9. new algorithms in Jython integrated in gvSIG to compute the net rainfall rate reaching the soil surface, as input for the unsaturated/saturated flow model. At this stage of the research (which will end April 2013), two primary components of the master control panel are being developed: i. a SID&GRID toolbar integrated into gvSIG map context; ii. a new Sextante set of geo-algorithm to pre- and post-process the spatial data to run the hydrological models. The groundwater part of the code has been fully integrated and tested and 3D visualization tools are being developed. The LGR capability has been extended to the 3D solution of the Richards' equation in order to solve in detail the unsaturated zone where required. To be updated about the project, please follow us at the website: http://ut11.isti.cnr.it/SIDGRID/
NASA Astrophysics Data System (ADS)
Mohamed, G. S.; Venkatchalam, R. V.; Ramamurthhy, M.; Gummidipoondi, R. J.; Ramillah, M.
2012-07-01
Thiruvallur town is about 44 km from Chennai in Tamil nadu state of India with a population of 130000 , covering 10.75 sq km area. It is about 2km from Sri Venkateswara College of Engineering and Technology. It was Taluk (Sub Division'.s) head quarters and from 1991 it was upgraded as District head quarters after the formation of Thiruvallur District. With rapid growth of town the Population density of Thiruvallur has increased in the past three decades from 300 persons/sq.km in 1951, to 6000 persons/sq.km in 1981 and now it is 12925 persons/sq.km in 2011. The creation of District administrative collector office, headquarters offices for police, judicial courts and Tamil Nadu and Federal Government development department's offices, establishment of multinationals major industries like Caterpillar, Kingfishers,Hindustan Motors, Mahendra Automobiles, Coco cola, Japanese Glass industry, Korean LOTO etc apart from mushrooming growth of about 41 Engineering, Nursing, Education, Medical, Naval, Arts and Science colleges, International Public schools,Governmentt, Private schools and Polytechnics added to the population of this Town. It is well connected by National Highways and Railways and upgraded as District Municipality. This resulted in urban drainage problem and conversion of Agriculture land and lakes for housing, establishment of major Govt and Private Hospitals including special units for Eye care, Cardiology, and Health Clinics, pharmacies etc. The effect of urbanization on environment of this once silent rural temple town which was supporting intensive agriculture activities , green with paddy fields is studied with high resolution satellite data is know the impact on health and environment changes from 2008 to 2011, using 2.5m resolution PAN stereo data of Cartosat 1 merged with 5.8 m resolution Multi Spectral data of LISS 4 of Resourcesat 1 of Indian Remote sensing satellites and Geo Eye satellite image of 2011 from Google Earth web site for the western part of Thiruvallur Municipality Area between North Western Thiruvallur town from the Temple Tank of Sri Veeraragavasamy temple to junction of National Highways connecting Thiruvallur to Tirupathi and Thiruvallur- Poondi- Uthukottai at the West. These data are used to create environment monitoring GIS to understand the use of High resolution Indian satellite data for local urban environmental planning to manage the health and environmental issues. ARC GIS 10 and Lieca photogrammetry software are used with satellite data to create different layer for creating GIS on urban infrastructure like houses, public buildings, roads, municipal surface drainage net work, underground sewerage drainage net work, drinking water pipe lines net work, landfills, solid waste disposal yards, pumping stations, degraded areas, heath services infrastructure, wet lands , low lying areas with bushes, abandoned lakes which are the breeding grounds for mosquito's in rainy season, etc These layers are correlated with the municipal ward map of this segment of the town. The stereo data of Cartosat 1 is useful for mapping the households, roads, agricultural fields, bushy areas, slopes to map the natural drainage of the area and for delineation of micro watersheds. When the layer of municipal ward maps are integrated with the GIS the drainage, drinking water lines, street names and house numbers etc can be added to the attribute data to make this as a complete Environment management GIS. The use of PAN merged data of Cartosat 1 with LISS 4, MSS Resourcesat 1 in natural colour and it's cost effectiveness is studied to explain the usefulness of creation of Environment Health GIS. The non stereo Geo Eye latest data from Google Earth web site or Cartosat 2 can be used for upgrading the land use changes and identify current environmental as on 2011.The study will provide GIS to monitor environmental issues with multi date large scale data for Thiruvallur Town.
A GIS-Enabled, Michigan-Specific, Hierarchical Groundwater Modeling and Visualization System
NASA Astrophysics Data System (ADS)
Liu, Q.; Li, S.; Mandle, R.; Simard, A.; Fisher, B.; Brown, E.; Ross, S.
2005-12-01
Efficient management of groundwater resources relies on a comprehensive database that represents the characteristics of the natural groundwater system as well as analysis and modeling tools to describe the impacts of decision alternatives. Many agencies in Michigan have spent several years compiling expensive and comprehensive surface water and groundwater inventories and other related spatial data that describe their respective areas of responsibility. However, most often this wealth of descriptive data has only been utilized for basic mapping purposes. The benefits from analyzing these data, using GIS analysis functions or externally developed analysis models or programs, has yet to be systematically realized. In this talk, we present a comprehensive software environment that allows Michigan groundwater resources managers and frontline professionals to make more effective use of the available data and improve their ability to manage and protect groundwater resources, address potential conflicts, design cleanup schemes, and prioritize investigation activities. In particular, we take advantage of the Interactive Ground Water (IGW) modeling system and convert it to a customized software environment specifically for analyzing, modeling, and visualizing the Michigan statewide groundwater database. The resulting Michigan IGW modeling system (IGW-M) is completely window-based, fully interactive, and seamlessly integrated with a GIS mapping engine. The system operates in real-time (on the fly) providing dynamic, hierarchical mapping, modeling, spatial analysis, and visualization. Specifically, IGW-M allows water resources and environmental professionals in Michigan to: * Access and utilize the extensive data from the statewide groundwater database, interactively manipulate GIS objects, and display and query the associated data and attributes; * Analyze and model the statewide groundwater database, interactively convert GIS objects into numerical model features, automatically extract data and attributes, and simulate unsteady groundwater flow and contaminant transport in response to water and land management decisions; * Visualize and map model simulations and predictions with data from the statewide groundwater database in a seamless interactive environment. IGW-M has the potential to significantly improve the productivity of Michigan groundwater management investigations. It changes the role of engineers and scientists in modeling and analyzing the statewide groundwater database from heavily physical to cognitive problem-solving and decision-making tasks. The seamless real-time integration, real-time visual interaction, and real-time processing capability allows a user to focus on critical management issues, conflicts, and constraints, to quickly and iteratively examine conceptual approximations, management and planning scenarios, and site characterization assumptions, to identify dominant processes, to evaluate data worth and sensitivity, and to guide further data-collection activities. We illustrate the power and effectiveness of the M-IGW modeling and visualization system with a real case study and a real-time, live demonstration.
ERIC Educational Resources Information Center
Jadallah, May; Hund, Alycia M.; Thayn, Jonathan; Studebaker, Joel Garth; Roman, Zachary J.; Kirby, Elizabeth
2017-01-01
This study explores the effects of geographic information systems (GIS) curriculum on fifth-grade students' spatial ability and map-analysis skills. A total of 174 students from an urban public school district and their teachers participated in a quasi-experimental design study. Four teachers implemented a GIS curriculum in experimental classes…
ERIC Educational Resources Information Center
Mitzman, Stephanie; Snyder, Lori Unruh; Schulze, Darrell G.; Owens, Phillip R.; Bracke, Marianne Stowell
2011-01-01
Recent National Research Council reports make compelling arguments for the need to incorporate spatial abilities and use spatial technologies throughout our educational system. We conducted a pilot study to determine the pedagogical effectiveness of teaching with geographic information systems (GIS) by using a web-based GIS tool of Indiana soils.…
DOT National Transportation Integrated Search
2005-02-25
This study developed a GIS-based Intersection Inventory System (GIS-IIS) for the signalized : intersections on the state-maintained highway system of IDOT District 6. GIS-IIS is a tool to have an : easy access to intersection inventory data, photogra...
Application of GIS Technology for Town Planning Tasks Solving
NASA Astrophysics Data System (ADS)
Kiyashko, G. A.
2017-11-01
For developing territories, one of the most actual town-planning tasks is to find out the suitable sites for building projects. The geographic information system (GIS) allows one to model complex spatial processes and can provide necessary effective tools to solve these tasks. We propose several GIS analysis models which can define suitable settlement allocations and select appropriate parcels for construction objects. We implement our models in the ArcGIS Desktop package and verify by application to the existing objects in Primorsky Region (Primorye Territory). These suitability models use several variations of the analysis method combinations and include various ways to resolve the suitability task using vector data and a raster data set. The suitability models created in this study can be combined, and one model can be integrated into another as its part. Our models can be updated by other suitability models for further detailed planning.
Building a functional, integrated GIS/remote sensing resource analysis and planning system. [Utah
NASA Technical Reports Server (NTRS)
Ridd, M. K.; Wheeler, D. J.
1985-01-01
To be an effective tool for resource analysis and planning, a geographic information system (GIS) needs to be integrated with a digital remote sensing capability. To be truly functional, the paired system must be driven by grass roots local needs. A case study couched in a Soil Conservation District in northern Utah is presented. Agency representatives determined that the most fundamental data sets to be entered into the GIS system analysis system in the first round were: land use/land cover; geomorphic/soil unit data; hydrologic unit data; and digital terrain. The least expensive and best ways to obtain these data were determined. Data were acquired and formatted to enter the state's PRIME/ARC-INFO GIS, and are being interrogated for resource management decisions related to such issues as agricultural preservation, urban expansion, soil erosion control, and dam siting.
NASA Astrophysics Data System (ADS)
Abdelbaki, Chérifa; Benchaib, Mohamed Mouâd; Benziada, Salim; Mahmoudi, Hacène; Goosen, Mattheus
2017-06-01
For more effective management of water distribution network in an arid region, Mapinfo GIS (8.0) software was coupled with a hydraulic model (EPANET 2.0) and applied to a case study region, Chetouane, situated in the north-west of Algeria. The area is characterized not only by water scarcity but also by poor water management practices. The results showed that a combination of GIS and modeling permits network operators to better analyze malfunctions with a resulting more rapid response as well as facilitating in an improved understanding of the work performed on the network. The grouping of GIS and modeling as an operating tool allows managers to diagnosis a network, to study solutions of problems and to predict future situations. The later can assist them in making informed decisions to ensure an acceptable performance level for optimal network operation.
ArcGIS Digitization of Apollo Surface Traverses
NASA Technical Reports Server (NTRS)
Petro, N. E.; Bleacher, J. E.; Gladdis, L. R.; Garry, W. B.; Lam, F.; Mest, S. C.
2012-01-01
The Apollo surface activities were documented in extraordinary detail, with every action performed by the astronauts while on the surface recorded either in photo, audio, film, or by written testimony [1]. The samples and in situ measurements the astronauts collected while on the lunar surface have shaped our understanding of the geologic history of the Moon, and the earliest history and evolution of the inner Solar System. As part of an ongoing LASERfunded effort, we are digitizing and georeferencing data from astronaut traverses and spatially associating them to available, co-registered remote sensing data. Here we introduce the products produced so far for Apollo 15, 16, and 17 missions.
GPS and GIS-Based Data Collection and Image Mapping in the Antarctic Peninsula
Sanchez, Richard D.
1999-01-01
High-resolution satellite images combined with the rapidly evolving global positioning system (GPS) and geographic information system (GIS) technology may offer a quick and effective way to gather information in Antarctica. GPS- and GIS-based data collection systems are used in this project to determine their applicability for gathering ground truthing data in the Antarctic Peninsula. These baseline data will be used in a later study to examine changes in penguin habitats resulting in part from regional climate warming. The research application in this study yields important information on the usefulness and limits of data capture and high-resolution images for mapping in the Antarctic Peninsula.
Effects of habitat map generalization in biodiversity assessment
NASA Technical Reports Server (NTRS)
Stoms, David M.
1992-01-01
Species richness is being mapped as part of an inventory of biological diversity in California (i.e., gap analysis). Species distributions are modeled with a GIS on the basis of maps of each species' preferred habitats. Species richness is then tallied in equal-area sampling units. A GIS sensitivity analysis examined the effects of the level of generalization of the habitat map on the predicted distribution of species richness in the southern Sierra Nevada. As the habitat map was generalized, the number of habitat types mapped within grid cells tended to decrease with a corresponding decline in numbers of species predicted. Further, the ranking of grid cells in order of predicted numbers of species changed dramatically between levels of generalization. Areas predicted to be of greatest conservation value on the basis of species richness may therefore be sensitive to GIS data resolution.
GRASS GIS: a peer-reviewed scientific platform and future research repository
NASA Astrophysics Data System (ADS)
Chemin, Yann; Petras, Vaclav; Petrasova, Anna; Landa, Martin; Gebbert, Sören; Zambelli, Pietro; Neteler, Markus; Löwe, Peter; Di Leo, Margherita
2015-04-01
Geographical Information System (GIS) is known for its capacity to spatially enhance the management of natural resources. While being often used as an analytical tool, it also represents a collaborative scientific platform to develop new algorithms. Thus, it is critical that GIS software as well as the algorithms are open and accessible to anybody [18]. We present how GRASS GIS, a free and open source GIS, is used by many scientists to implement and perform geoprocessing tasks. We will show how integrating scientific algorithms into GRASS GIS helps to preserve reproducibility of scientific results over time [15]. Moreover, subsequent improvements are tracked in the source code version control system and are immediately available to the public. GRASS GIS therefore acts as a repository of scientific peer-reviewed code, algorithm library, and knowledge hub for future generation of scientists. In the field of hydrology, with the various types of actual evapotranspiration (ET) models being developed in the last 20 years, it becomes necessary to inter-compare methods. Most of already published ETa models comparisons address few number of models, and small to medium areas [3, 6, 7, 22, 23]. With the large amount of remote sensing data covering the Earth, and the daily information available for the past ten years (i.e. Aqua/Terra-MODIS) for each pixel location, it becomes paramount to have a more complete comparison, in space and time. To address this new experimental requirement, a distributed computing framework was designed, and created [3, 4]. The design architecture was built from original satellite datasets to various levels of processing until reaching the requirement of various ETa models input dataset. Each input product is computed once and reused in all ETa models requiring such input. This permits standardization of inputs as much as possible to zero-in variations of models to the models internals/specificities. All of the ET models are available in the new GRASS GIS version 7 as imagery modules and replicability is complete for future research. A set of modules for multiscale analysis of landscape structure was added in 1992 by [1], who developed the r.le model similar to FRAGSTATS ([10]). The modules were gradually improved to become r.li in 2006. Further development continued, with a significant speed up [9] and new interactive user interface. The development of spatial interpolation module v.surf.rst started in 1988 [11] and continued by introduction of new interpolation methods and finally full integration into GRASS GIS version 4 [13]. Since then it was improved several times [8]. The module is an important part of GRASS GIS and is taught at geospatial modeling courses, for example at North Carolina State University [14]. GRASS GIS entails several modules that constitute the result of active research on natural hazard. The r.sim.water simulation model [12] for overland flow under rainfall excess conditions was integrated into the Emergency Routing Decision Planning system as a WPS [17]. It was also utilized by [16] and is now part of Tangible Landscape, a tangible GIS system, which also incorporated the r.damflood, a dam break inundation simulation [2]. The wildfire simulation toolset, originally developed by [24], implementing Rothermel's model [21], available through the GRASS GIS modules r.ros and r.spread, is object of active research. It has been extensively tested and recently adapted to European fuel types ([5, 19, 20]). References [1] Baker, W.L., Cai, Y., 1992. The r.le programs for multiscale analysis of landscape structure using the GRASS geographical information system. Landscape Ecology, 7(4):291-302. [2] Cannata M. and Marzocchi R., 2012. Two-dimensional dam break flooding simulation: a GIS embedded approach. - Natural Hazards 61(3):1143-1159. [3] Chemin, Y.H., 2012. A Distributed Benchmarking Framework for Actual ET Models. In Evapotranspiration - Remote Sensing and Modeling, Intech (Eds). [4] Chemin, Y. H. , 2014. Remote Sensing Raster Programming, 3rd Ed., Lulu (Eds). [5] Di Leo, M., de Rigo, D., Rodriguez-Aseretto, D., Bosco, C., Petroliagkis, T., Camia, A., San-Miguel-Ayanz, J., 2013. Dynamic data driven ensemble for wildfire behaviour assessment: A case study. IFIP Advances in Information and Communication Technology, vol. 413, pp. 11-22, 2013, ISSN:1868-4238. Special issue: "Environmental Software Systems. Fostering sharing information". [6] García, M., Villagarcía, L., Contreras, S., Domingo, F. & Puigdefábregas, J. (2007). Comparison of three operative models for estimating the surface water deficit using aster reflective and thermal data, Sensors 7(6): 860-883. [7] Gao, Y. & Long, D. ,2008. Intercomparison of remote sensing-based models for estimation of evapotranspiration and accuracy assessment based on swat, Hydrological Processes 22: 4850-4869. [8] GRASS GIS Trac, changelog for v.surf.rst, 2015. http://trac.osgeo.org/grass/ [9] GRASS GIS Trac, changelog for r.li, 2015. http://trac.osgeo.org/grass/ [10] McGarigal, K., and B. J. Marks. 1995. FRAGSTATS: spatial pattern analysis program for quantifying landscape structure. USDA For. Serv. Gen. Tech. Rep. PNW-351 [11] Mitas, L., and Mitasova H., 1988, General variational approach to the approximation problem, Computers and Mathematics with Applications, v.16, p. 983-992. [12] Mitas, L., and Mitasova, H., 1998, Distributed soil erosion simulation for effective erosion prevention. Water Resources Research, 34(3), 505-516. [13] Mitasova, H. and Mitas, L., 1993: Interpolation by Regularized Spline with Tension: I. Theory and Implementation, Mathematical Geology, 25, 641-655. [14] North Carolina State University, Geospatial Modeling Course, GIS/MEA582, 2015. http://courses.ncsu.edu/ [15] Petras, V., Gebbert, S., 2014. Testing framework for GRASS GIS: ensuring reproducibility of scientific geospatial computing. Poster presented at: AGU Fall Meeting, December 15-19, 2014, San Francisco, USA. [16] Petrasova, A., Harmon, B., Petras, V., Mitasova, H., 2014. GIS-based environmental modeling with tangible interaction and dynamic visualization. In: Ames, D.P., Quinn, N.W.T., Rizzoli, A.E. (Eds.), Proceedings of the 7th International Congress on Environmental Modelling and Software, June 15-19, San Diego, California, USA. ISBN: 978-88-9035-744-2 [17] Raghavan, v., Choosumrong, S., Yoshida, D., Vinayaraj, P., 2014. Deploying Dynamic Routing Service for Emergency Scenarios using pgRouting, GRASS and ZOO. In Proc. of FOSS4G Europe, Jacobs University, Bremen, Germany, July 15-17, 2014. [18] Rocchini, D., Neteler, M. ,2012. Let the four freedoms paradigm apply to ecology. Trends in Ecology & Evolution, 27: 310-311. [19] Rodriguez-Aseretto, D., de Rigo, D., Di Leo, M., Cortés, A., and San-Miguel-Ayanz, J., 2013. A data-driven model for large wildfire behaviour prediction in europe. Procedia Computer Science, vol. 18, pp. 1861-1870. [20] de Rigo, D., Rodriguez-Aseretto, D., Bosco, C., Di Leo, M., and San-Miguel-Ayanz, J., 2013. An architecture for adaptive robust modelling of wildfire behaviour under deep uncertainty. in Environmental Software Systems. Fostering Information Sharing, ser. IFIP Advances in Information and Communication Technology, J. Ȟrebíˇ cek, G. Schimak, M. Kubásek, and A. Rizzoli, Eds. Springer Berlin Heidelberg, 2013, vol. 413, pp. 367-380. [21] Rothermel, R. C., 1983. How to predict the spread and intensity of forest and range fires. US Forest Service, Gen. Tech. Rep. INT-143. Ogden, Utah. [22] Suleiman, A., Al-Bakri, J., Duqqah, M. & Crago, R. ,2008. Intercomparison ofevapotranspiration estimates at the different ecological zones in jordan, Journal of Hydrometeorology 9(5): 903-919. [23] Timmermans, W. J., Kustas, W. P., Anderson, M. C. & French, A. N. ,2007. An intercomparison of the surface energy balance algorithm for land (sebal) and the two-source energy balance (tseb) modeling schemes, Remote Sensing of Environment 108(4): 369 - 384. [24] Xu, Jianping, 1994. Simulating the spread of wildfires using a geographic information system and remote sensing. Ph. D. Dissertation, Rutgers University, New Brunswick, New Jersey.
Teaching with a GIS using existing grade 7--12 curricula
NASA Astrophysics Data System (ADS)
Brown, Stephen Castlebury
As Geographic Information Systems (GIS) become less expensive and easier to use, the demand for individuals knowledgeable of this technology increases. Associated with this is the current and future necessity of a public who understands the wide range of technical proficiencies needed for accurate GIS mapping. On a nationwide basis, GIS education in K--12 schools is rare. In the few instances where a school teaches students about these technologies, it is usually led by a single teacher and is not taught on a school-wide basis. This situation exists despite some research indicating that a classroom GIS might enhance the learning of students. Two primary barriers to teacher use and acceptance of a classroom GIS have been identified. First, most teachers lack any training in the use of a GIS. Secondly, there is conflict over focusing upon teaching about the use of a GIS or teaching with a GIS. Beginning in August of 1996 and concluding in August of 1998, nine separate GIS education programs were conducted for a variety of youths and adult educator audiences. Observations of participant's interactions with the GIS program ArcView would lead to the development of a demonstration curriculum and GIS application. To overcome institutional and educational barriers to youth GIS education, a curriculum partly adapted from existing materials and partly created from original materials was developed in Hypertext Markup Language (HTML). A corresponding GIS application was developed to teach about a GIS while instructing with a GIS. The curriculum was distributed for use on CD-ROM and called Georom. The hypertext curriculum provided lessons and exercises that addressed National Science Education Standards and was accessed using an Internet web browser. The curriculum included World Wide Web links to Internet sites with more information about specific topics. Modifications were made to ArcView's Graphical User Interface (GUI) that maintained the general appearance of its standard GUI, but increased its functionality for classroom use. It was observed that the availability and premise of the hypertext curriculum and GIS application increased school administrator acceptance of classroom GIS education. However, the curriculum and GIS application is still not a completely acceptable alternative to quality inservice education on GIS for many teachers.
Identifying Skill Requirements for GIS Positions: A Content Analysis of Job Advertisements
ERIC Educational Resources Information Center
Hong, Jung Eun
2016-01-01
This study identifies the skill requirements for geographic information system (GIS) positions, including GIS analysts, programmers/developers/engineers, specialists, and technicians, through a content analysis of 946 GIS job advertisements from 2007-2014. The results indicated that GIS job applicants need to possess high levels of GIS analysis…
GIS WORK GROUP: AN OVERVIEW (INCLUDES GIS-QA AND AUDITING GIS DATABASE SYSTEMS)
In order to promote cooperation in the implementation of GIS in regional offices, a GIS Regional Workgroup was established by the ten Regions in 1989. Since that time the GIS Work Group evolved and now consists of members from each of the ten EPA Regional Offices, the Office of A...
Peterson, Jennifer
2017-01-01
In recent years the use of geographic information systems (GIS) in healthcare has expanded rapidly. Although the use of GIS has increased quickly, very little consensus has been reached on which healthcare professionals are best suited to be trained in and use GIS. A moderate amount of research has addressed the use of GIS in healthcare, but very little research has addressed selecting and training healthcare professionals in the area of GIS. As the use of GIS becomes more closely tied to electronic health records (EHRs), the thought arises that those best versed in EHRs, health information management (HIM) professionals, would be best suited to take on the GIS role. This mixed-methods study explored the current status of HIM professionals' role in GIS as well as the extent to which GIS is being taught in health information educational programs. Although the findings indicate that few HIM professionals are currently using GIS in their jobs and few HIM programs are currently teaching GIS, there is interest in GIS in the future for HIM professionals and in HIM educational programs.
The Role of Health Information Management Professionals in the Use of Geographic Information Systems
Peterson, Jennifer
2017-01-01
In recent years the use of geographic information systems (GIS) in healthcare has expanded rapidly. Although the use of GIS has increased quickly, very little consensus has been reached on which healthcare professionals are best suited to be trained in and use GIS. A moderate amount of research has addressed the use of GIS in healthcare, but very little research has addressed selecting and training healthcare professionals in the area of GIS. As the use of GIS becomes more closely tied to electronic health records (EHRs), the thought arises that those best versed in EHRs, health information management (HIM) professionals, would be best suited to take on the GIS role. This mixed-methods study explored the current status of HIM professionals’ role in GIS as well as the extent to which GIS is being taught in health information educational programs. Although the findings indicate that few HIM professionals are currently using GIS in their jobs and few HIM programs are currently teaching GIS, there is interest in GIS in the future for HIM professionals and in HIM educational programs. PMID:28855855
White Sands Missile Range Main Cantonment and NASA Area Faults, New Mexico
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nash, Greg
This is a zipped ArcGIS shapefile containing faults mapped for the Tularosa Basin geothermal play fairway analysis project. The faults were interpolated from gravity and seismic (NASA area) data, and from geomorphic features on aerial photography. Field work was also done for validation of faults which had surface expressions.
This draft Geographic Information System (GIS) tool can be used to generate scenarios of housing-density changes and calculate impervious surface cover for the conterminous United States. A draft User’s Guide accompanies the tool. This product distributes the population project...
Compositing MODIS Terra and Aqua 250m daily surface reflectance data sets for vegetation monitoring
USDA-ARS?s Scientific Manuscript database
Remote sensing based vegetation Indices have been proven valuable in providing a spatially complete view of crop’s vegetation condition, which also manifests the impact of the disastrous events such as massive flood and drought. VegScape, a web GIS application for crop vegetation condition monitorin...
ICLUS Tools and Datasets (Version 1.2) and User's Manual ...
This draft Geographic Information System (GIS) tool can be used to generate scenarios of housing-density changes and calculate impervious surface cover for the conterminous United States. A draft User’s Guide accompanies the tool. This product distributes the population projections and creates land use data described in the 2009 EPA report
A Multiple Resource Inventory of Delaware Using an Airborne Profiling Laser
NASA Technical Reports Server (NTRS)
Nelson, Ross; Short, Austin; Valenti, Michael A.; Keller, Cherry; Smith, David E. (Technical Monitor)
2002-01-01
An airborne profiling laser is used to monitor multiple resources related to landscape structure, both natural and man-made, across regions encompassing hundreds of thousands of hectares. A small, lightweight, inexpensive airborne profiling laser is used to inventory Delaware forests, to estimate impervious surface area statewide, and to locate potentially Suitable Delmarva Fox Squirrel (Scrotum niger cinereus) habitat. Merchantable volume estimates are within 14% of US Forest Service estimates at the county level and within 4% statewide. Total above-ground dry biomass estimates are within 19% of USES estimates at the county level and within 16% statewide. Mature forest stands suitable for reintroduction of the Delmarva Fox Squirrel, an endangered species historically endemic to the eastern shores of Delaware, Maryland, and Virginia, are identified and mapped along the laser transacts. Intersection lengths with various types of impervious surface (roofs, concrete/asphalt) and open water are tallied to estimate percent and areal coverage statewide, by stratum and county. Laser estimates of open water are within 7% of photointerpreted GIS estimates at the county level and within 3% of the GIS at the state level.
Xu, M; Cao, C X; Wang, D C; Kan, B; Xu, Y F; Ni, X L; Zhu, Z C
2016-04-01
Cholera is one of a number of infectious diseases that appears to be influenced by climate, geography and other natural environments. This study analysed the environmental factors of the spatial distribution of cholera in China. It shows that temperature, precipitation, elevation, and distance to the coastline have significant impact on the distribution of cholera. It also reveals the oceanic environmental factors associated with cholera in Zhejiang, which is a coastal province of China, using both remote sensing (RS) and geographical information systems (GIS). The analysis has validated the correlation between indirect satellite measurements of sea surface temperature (SST), sea surface height (SSH) and ocean chlorophyll concentration (OCC) and the local number of cholera cases based on 8-year monthly data from 2001 to 2008. The results show the number of cholera cases has been strongly affected by the variables of SST, SSH and OCC. Utilizing this information, a cholera prediction model has been established based on the oceanic and climatic environmental factors. The model indicates that RS and GIS have great potential for designing an early warning system for cholera.
Karst features detection and mapping using airphotos, DSMs and GIS techniques
NASA Astrophysics Data System (ADS)
Kakavas, M. P.; Nikolakopoulos, K. G.; Zagana, E.
2015-10-01
The aim of this work is to detect and qualify natural karst depressions in the Aitoloakarnania Prefecture, Western Greece, using remote sensing data in conjunction with the Geographical Information Systems - GIS. The study area is a part of the Ionian geotectonic zone, and its geological background consists of the Triassic Evaporates. The Triassic carbonate breccias where formed as a result of the tectonic and orogenetic setting of the external Hellenides and the diaper phenomena of the Triassic Evaporates. The landscape characterized by exokarst features closed depressions in the Triassic carbonate breccias. At the threshold of this study, an in situ observation was performed in order to identify dolines and swallow holes. The creation of sinkholes, in general, is based on the collapse of the surface layer due to chemical dissolution of carbonate rocks. In the current study airphotos stereopairs, DSMs and GIS were combined in order to detect and map the karst features. Thirty seven airphotos were imported in Leica Photogrammetry Suite and a stereo model of the study area was created. Then in 3D view possible karst features were detected and digitized. Those sites were verified during the in situ survey. ASTER GDEM, SRTM DEM, high resolution airphoto DSM created from the Greek Cadastral and a DEM from digitized contours from the 1/50,000 topographic were also evaluated in GIS environment for the automatic detection of the karst depressions. The results are presented in this study.
Chinen, Kazue; Lau, Sim-Lin; Nonezyan, Michael; McElroy, Elizabeth; Wolfe, Becky; Suffet, Irwin H; Stenstrom, Michael K
2016-10-01
Pyrethroid pesticide mass loadings in the Ballona Creek Watershed were calculated using the volume-concentration method with a Geographic Information Systems (GIS) to explore potential relationships between urban land use, impervious surfaces, and pyrethroid runoff flowing into an urban stream. A calibration of the GIS volume-concentration model was performed using 2013 and 2014 wet-weather sampling data. Permethrin and lambda-cyhalothrin were detected as the highest concentrations; deltamethrin, lambda-cyhalothrin, permethrin and cyfluthrin were the most frequently detected synthetic pyrethroids. Eight neighborhoods within the watershed were highlighted as target areas based on a Weighted Overlay Analysis (WOA) in GIS. Water phase concentration of synthetic pyrethroids (SPs) were calculated from the reported usage. The need for stricter BMP and consumer product controls was identified as a possible way of reducing the detections of pyrethroids in Ballona Creek. This model has significant implications for determining mass loadings due to land use influence, and offers a flexible method to extrapolate data for a limited amount of samplings for a larger watershed, particularly for chemicals that are not subject to environmental monitoring. Offered as a simple approach to watershed management, the GIS-volume concentration model has the potential to be applied to other target pesticides and is useful for simulating different watershed scenarios. Further research is needed to compare results against other similar urban watersheds situated in mediterranean climates. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Perez, Adriana Evangelina
The primary goal of this dissertation was to utilize a geographic information system (GIS) to better understand geological, geophysical, forestry and environmental issues in the west Texas-New Mexico region. Studies such as these are especially important in the border region where economic limitations are usually a factor in studying and solving some of these problems. The availability of satellite imagery through the Pan-American Center for Earth and Environmental Studies (PACES), data from the Geospatial Center and the collaboration with the United States Department of Agriculture (USDA) and National Forest entities (Guadalupe and Lincoln Ranger Districts) enhance the value of our investigation. Research was conducted in two distinct areas: Cloudcroft-Ruidoso, New Mexico, and the Salt Flat basin of southwest Texas (Figure 1). The dissertation will be presented as a set of independent chapters. Chapter 1. A GIS and remote sensing investigation of the effects of interactions of terrain, soil, and other physiographic factors on the Pine Community of Lincoln National Park in the Sacramento Mountains of Southwest New Mexico. This study utilized GIS and remote sensing to better understand the dynamics of White Pine Blister Rust (WPBR) infestation in the white pine community of the Sacramento Mountains of southwest New Mexico. Both field spectral sampling of the needles and imagery analysis were incorporated to better understand the infestation, progression and vulnerability of the forest to this and other diseases. A major contribution of this study was to construct a GIS database, which was utilized to analyze USDA, elevation, satellite imagery, geological, and hydrological data to produce a hazard-rating map. The GIS environment also allowed for a 3-D perspective on the data, which was very useful in spatial visualization. Chapter 2. An integrated study of the basin structure of the Salt Flat basin. In this study we utilized, gravity and magnetic data, satellite imagery and geological digital data to analyze various anomalies and crustal stucture of the basin and to produce an updated, georeferenced, and integrated basin model. Salt Flat basin has been modeled as a graben with Neogene sediment fill ranging in thickness from 450 to 600 meters. A major contribution of this work was to integrate recently available technologies and data such as Geonet data repository (gravity and magnetic), the PACES GIS database, USGS Quaternary faults database, satellite imagery, and digital elevation models from the National Elevation dataset (NED). The compilation of all available resources enabled us to produce, update, and delineate boundaries, layers and maps in a Geographic Information System (GIS). An important product of this project was to produce a manageable database (SALT.mxd project) that can be used by future researchers to view, investigate, and produce new maps and models. Chapter 3. Dust production and transport within the playa systems of the Salt Flat basin. This investigation has been conducted in order to better understand the processes of dust mobilization, provenance and trajectory in the Salt Flat basin region of western Texas (USA). Acquisition of a dust signature of the area was examined through several techniques such as Proton Induced X-Ray Emission (PIXE), X-Ray Diffraction (XRD), Ion Chromatography (IC), and particulate size distribution. Our investigation found that the type, amount, and size of particulate matter generated and transported from the Salt Flat basin is highly dependent on spatial, and temporal parameters. Geo-morphological, land cover, and wind current variations affect the amount and type of surface material and aerosols that will be produced at different areas of the Salt Flat basin floor. For the duration of the study the Salt Flat did not appear to be a biasing agent for the dust that is received in the GUMO IMPROVE sampler. Thus the IMPROVE network at Guadalupe Mountains National Park appears to be a valid regional sampler that is not greatly influenced by emissions from the Salt Flat basin. A major contribution of this study was to provide independent analysis of local and regional dust composition to validate the effectiveness of GUMO as an effective regional sampler. (Abstract shortened by UMI.)
Yang, Guo-Jing; Vounatsou, Penelope; Zhou, Xiao-Nong; Utzinger, Jürg; Tanner, Marcel
2005-01-01
Geographic information system (GIS) and remote sensing (RS) technologies offer new opportunities for rapid assessment of endemic areas, provision of reliable estimates of populations at risk, prediction of disease distributions in areas that lack baseline data and are difficult to access, and guidance of intervention strategies, so that scarce resources can be allocated in a cost-effective manner. Here, we focus on the epidemiology and control of schistosomiasis in China and review GIS and RS applications to date. These include mapping prevalence and intensity data of Schistosoma japonicum at a large scale, and identifying and predicting suitable habitats for Oncomelania hupensis, the intermediate host snail of S. japonicum, at a small scale. Other prominent applications have been the prediction of infection risk due to ecological transformations, particularly those induced by floods and water resource developments, and the potential impact of climate change. We also discuss the limitations of the previous work, and outline potential new applications of GIS and RS techniques, namely quantitative GIS, WebGIS, and utilization of emerging satellite information, as they hold promise to further enhance infection risk mapping and disease prediction. Finally, we stress current research needs to overcome some of the remaining challenges of GIS and RS applications for schistosomiasis, so that further and sustained progress can be made to control this disease in China and elsewhere.
NASA Astrophysics Data System (ADS)
Lan, Hengxing; Derek Martin, C.; Lim, C. H.
2007-02-01
Geographic information system (GIS) modeling is used in combination with three-dimensional (3D) rockfall process modeling to assess rockfall hazards. A GIS extension, RockFall Analyst (RA), which is capable of effectively handling large amounts of geospatial information relative to rockfall behaviors, has been developed in ArcGIS using ArcObjects and C#. The 3D rockfall model considers dynamic processes on a cell plane basis. It uses inputs of distributed parameters in terms of raster and polygon features created in GIS. Two major components are included in RA: particle-based rockfall process modeling and geostatistics-based rockfall raster modeling. Rockfall process simulation results, 3D rockfall trajectories and their velocity features either for point seeders or polyline seeders are stored in 3D shape files. Distributed raster modeling, based on 3D rockfall trajectories and a spatial geostatistical technique, represents the distribution of spatial frequency, the flying and/or bouncing height, and the kinetic energy of falling rocks. A distribution of rockfall hazard can be created by taking these rockfall characteristics into account. A barrier analysis tool is also provided in RA to aid barrier design. An application of these modeling techniques to a case study is provided. The RA has been tested in ArcGIS 8.2, 8.3, 9.0 and 9.1.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lathrop, R.G. Jr.
1988-01-01
The utility of three operational satellite remote sensing systems, namely, the Landsat Thematic Mapper (TM), the SPOT High Resolution Visible (HRV) sensors and the NOAA Advanced Very High Resolution Radiometer (AVHRR), were evaluated as a means of estimating water quality and surface temperature. Empirical calibration through linear regression techniques was used to relate near-simultaneously acquired satellite radiance/reflectance data and water quality observations obtained in Green Bay and the nearshore waters of Lake Michigan. Four dates of TM and one date each of SPOT and AVHRR imagery/surface reference data were acquired and analyzed. Highly significant relationships were identified between the TMmore » and SPOT data and secchi disk depth, nephelometric turbidity, chlorophyll a, total suspended solids (TSS), absorbance, and surface temperature (TM only). The AVHRR data were not analyzed independently but were used for comparison with the TM data. Calibrated water quality image maps were input to a PC-based raster GIS package, EPPL7. Pattern interpretation and spatial analysis techniques were used to document the circulation dynamics and model mixing processes in Green Bay. A GIS facilitates the retrieval, query and spatial analysis of mapped information and provides the framework for an integrated operational monitoring system for the Great Lakes.« less
NASA Astrophysics Data System (ADS)
Kurdoğlu, B. C.; Çelik, K. T.; Konakoğlu, S. S. Kurt; Erbaş, Y. S.
2016-10-01
The purpose of this study, 2369 street furniture at the campus mentioned to the thesis study named "Generating a GIS-Based Campus Street Furniture Information System (YEDBIS): Example of Kanuni Campus - Karadeniz Technical University" are to question the harmony statuses of space form, actual activity in space, space size, natural materials used space, usage density of space, surface materials of space, users, and the other of them. The harmony statuses of the street furniture were fixed by observation works and field determinations at the campus. Findings obtained observations were recorded to identification cards by writing "0" value for disharmony, "1" value for partly harmony and "2" value for harmony. Then, the data were analyzed in YEDBIS, which is based on GIS. Then, the data were analyzed in YEDBIS, which is based on GIS, by using ArcMap 10.0 programme. However, due to the absence of web support generated for the YEDBIS, with current data querying and analysis of this data was carried out only in a computer where YEDBIS is located. The results of the analysis indicates that 2369 street furniture were found to be disharmony with space form, with surface materials of space, with natural materials used space and with other street furniture in space, and to be partly harmony actual activity in space, space size, usage density of space and users. Also, the regions and nearby around of the buildings at the campus where were disharmony, partly harmony and harmony of the street furniture were established by using YEDBIS.
NASA Astrophysics Data System (ADS)
Bowman, A.; Cardace, D.; August, P.
2012-12-01
Springs sourced in the mantle units of ophiolites serve as windows to the deep biosphere, and thus hold promise in elucidating survival strategies of extremophiles, and may also inform discourse on the origin of life on Earth. Understanding how organisms can survive in extreme environments provides clues to how microbial life responds to gradients in pH, temperature, and oxidation-reduction potential. Spring locations associated with serpentinites have traditionally been located using a variety of field techniques. The aqueous alteration of ultramafic rocks to serpentinites is accompanied by the production of very unusual formation fluids, accessed by drilling into subsurface flow regimes or by sampling at related surface springs. The chemical properties of these springs are unique to water associated with actively serpentinizing rocks; they reflect a reducing subsurface environment reacting at low temperatures producing high pH, Ca-rich formation fluids with high dissolved hydrogen and methane. This study applies GIS site suitability analysis to locate high pH springs upwelling from Coast Range Ophiolite serpentinites in Northern California. We used available geospatial data (e.g., geologic maps, topography, fault locations, known spring locations, etc.) and ArcGIS software to predict new spring localities. Important variables in the suitability model were: (a) bedrock geology (i.e., unit boundaries and contacts for peridotite, serpentinite, possibly pyroxenite, or chromite), (b) fault locations, (c) regional data for groundwater characteristics such as pH, Ca2+, and Mg2+, and (d) slope-aspect ratio. The GIS model derived from these geological and environmental data sets predicts the latitude/longitude points for novel and known high pH springs sourced in serpentinite outcrops in California. Field work confirms the success of the model, and map output can be merged with published environmental microbiology data (e.g., occurrence of hydrogen-oxidizers) to showcase patterns in microbial community structure. Discrepancies between predicted and actual spring locations are then used to tune GIS suitability analysis, re-running the model with corrected geo-referenced data. This presentation highlights a powerful GIS-based technique for accelerating field exploration in this area of ongoing research.
Gis-Based Multi-Criteria Decision Analysis for Forest Fire Risk Mapping
NASA Astrophysics Data System (ADS)
Akay, A. E.; Erdoğan, A.
2017-11-01
The forested areas along the coastal zone of the Mediterranean region in Turkey are classified as first-degree fire sensitive areas. Forest fires are major environmental disaster that affects the sustainability of forest ecosystems. Besides, forest fires result in important economic losses and even threaten human lives. Thus, it is critical to determine the forested areas with fire risks and thereby minimize the damages on forest resources by taking necessary precaution measures in these areas. The risk of forest fire can be assessed based on various factors such as forest vegetation structures (tree species, crown closure, tree stage), topographic features (slope and aspect), and climatic parameters (temperature, wind). In this study, GIS-based Multi-Criteria Decision Analysis (MCDA) method was used to generate forest fire risk map. The study was implemented in the forested areas within Yayla Forest Enterprise Chiefs at Dursunbey Forest Enterprise Directorate which is classified as first degree fire sensitive area. In the solution process, "extAhp 2.0" plug-in running Analytic Hierarchy Process (AHP) method in ArcGIS 10.4.1 was used to categorize study area under five fire risk classes: extreme risk, high risk, moderate risk, and low risk. The results indicated that 23.81 % of the area was of extreme risk, while 25.81 % was of high risk. The result indicated that the most effective criterion was tree species, followed by tree stages. The aspect had the least effective criterion on forest fire risk. It was revealed that GIS techniques integrated with MCDA methods are effective tools to quickly estimate forest fire risk at low cost. The integration of these factors into GIS can be very useful to determine forested areas with high fire risk and also to plan forestry management after fire.
Performance and Long Duration Test of a 30 kw Thermal Arcjet Engine.
1987-11-01
Surface ____________________________ 69 50. SEM Close-up of Cathode Crater Surface Completely Covered with Arc Microspots and Splashed Tung- sten ...gaskets, and possibly stretching the bolts and/or nuts. 17 CL 4- C4 ---- 40 as 00 CiC E 18~ le J .Ir e 5 Figure 11 is a composite picture of the... composition . This transducer was zeroed both electronically and with reference to an ion gauge in a second vacuum system pumped by 26 F6 W. 320 a 280- (n, gis
NASA Astrophysics Data System (ADS)
Boori, Mukesh S.; Choudhary, Komal; Kupriyanov, Alexander; Sugimoto, Atsuko; Evers, Mariele
2016-10-01
The aim of this research work is to understand natural and environmental vulnerability situation and its cause such as intensity, distribution and socio-economic effect in the Indigirka River basin, Eastern Siberia, Russia. This paper identifies, assess and classify natural and environmental vulnerability using landscape pattern from multidisciplinary approach, based on remote sensing and Geographical Information System (GIS) techniques. A model was developed by following thematic layers: land use/cover, vegetation, wetland, geology, geomorphology and soil in ArcGIS 10.2 software. According to numerical results vulnerability classified into five levels: low, sensible, moderate, high and extreme vulnerability by mean of cluster principal. Results are shows that in natural vulnerability maximum area covered by moderate (29.84%) and sensible (38.61%) vulnerability and environmental vulnerability concentrated by moderate (49.30%) vulnerability. So study area has at medial level vulnerability. The results found that the methodology applied was effective enough in the understanding of the current conservation circumstances of the river basin in relation to their environment with the help of remote sensing and GIS. This study is helpful for decision making for eco-environmental recovering and rebuilding as well as predicting the future development.
NASA Astrophysics Data System (ADS)
Hamilton, Randy M.
Remote sensing and geographic information systems (GIS) are rapidly developing technologies that offer new opportunities and potentially more effective methods for detecting and monitoring insect pests, as well as understanding their spatial dynamics. These technologies (coupled with traditional trapping) were investigated for their use in managing Japanese beetle (Popillia japonica Newman) adults and grubs and studying their spatial distribution and dynamics. Japanese beetle grubs are important root-feeding pests of turfgrass in the Midwest and eastern United States. No non-invasive methods exist to detect grub infestations before unsightly damage has occurred. Studies were conducted to determine whether remote sensing could be used to detect the pre-visible symptoms of simulated and natural grub damage in turfgrass. Simulated grub damage was detected with surface temperature measurements (but not with spectrometer data) before significant visual differences were found. Plots infested with grubs were distinguished from uninfested plots using spectrometer data 10--16 days before significant differences in visual ratings were found. Results using multispectral imagery were mixed. Currently, Japanese beetles are not established in the western United States. There is great concern over their inadvertent transportation into Pacific costal states via cargo transport planes. Beetles may fly onboard cargo planes while they are loaded or unloaded and be accidentally transported to the western states. A study was initiated to evaluate trapping as a method to reliably detect Japanese beetle hotspots near cargo terminals at the Indianapolis International Airport and to assess the spatial variability of the population around the airport. The potential influence of land use on beetle abundance was also assessed, using a GIS. Baited Japanese beetle traps were placed around the perimeter of the airport and emptied daily. Location-dependent variation in trap catch was found. Seasonal average trap catches were highly correlated from year to year, by location. A mark-release-recapture study showed that Japanese beetles frequently flew up to 500m during a day, but could travel up to 700m. Using a GIS, a spatially explicit map of land use and trap location was created. Agricultural land within 500m of the traps was generally positively correlated with trap catch.
NASA Astrophysics Data System (ADS)
Cummings, Joshua I.
The Icelandic whale-watching industry has experienced rapid growth since its inception in 1991, and today represents the fastest growing economic activity of the country. Skjalfandi Bay in Northeast Iceland has become the epicenter of whale-watching in Iceland, yet little is known about the local effects of the whale-watching industry on cetaceans. I used theodolite techniques and GIS to examine boat effects on the swimming speed, directionality, inter-breath intervals, and surface feeding events of minke whales (Balaenoptera acutorostrata) in Skjalfandi Bay. The proximity and number of vessels did not have a statistically significant effect on any aspect of minke behavior. These results contradict a previous study from Faxafloi Bay, suggesting that differences exist between the two locations, and that management strategies may need to be location-specific.
Multimodeling Framework for Predicting Water Quality in Fragmented Agriculture-Forest Ecosystems
NASA Astrophysics Data System (ADS)
Rose, J. B.; Guber, A.; Porter, W. F.; Williams, D.; Tamrakar, S.; Dechen Quinn, A.
2012-12-01
Both livestock and wildlife are major contributors of nonpoint pollution of surface water bodies. The interactions among them can substantially increase the chance of contamination especially in fragmented agriculture-forest landscapes, where wildlife (e.g. white tailed deer) can transmit diseases between remote farms. Unfortunately, models currently available for predicting fate and transport of microorganisms in these ecosystems do not account for such interactions. The objectives of this study are to develop and test a multimodeling framework that assesses the risk of microbial contamination of surface water caused by wildlife-livestock interactions in fragmented agriculture-forest ecosystems. The framework consists of a modified Soil Water Assessment Tool (SWAT), KINematic Runoff and EROSion model (KINEROS2) with the add-on module STWIR (Microorganism Transport with Infiltration and Runoff), RAMAS GIS, SIR compartmental model and Quantitative Microbial Risk Assessment model (QMRA). The watershed-scale model SWAT simulates plant biomass growth, wash-off of microorganisms from foliage and soil, overland and in-stream microbial transport, microbial growth, and die-off in foliage and soil. RAMAS GIS model predicts the most probable habitat and subsequent population of white-tailed deer based on land use and crop biomass. KINEROS-STWIR simulates overland transport of microorganisms released from soil, surface applied manure, and fecal deposits during runoff events at high temporal and special resolutions. KINEROS-STWIR and RAMAS GIS provide input for an SIR compartmental model which simulates disease transmission within and between deer groups. This information is used in SWAT model to account for transmission and deposition of pathogens by white tailed deer in stream water, foliage and soil. The QMRA approach extends to microorganisms inactivated in forage and water consumed by deer. Probabilities of deer infections and numbers of infected animals are computed based on a dose-response approach, including Beta Poisson and Maximum Risk models, which take into account pathogen variation in infectivity. An example of the Multimodeling framework performance for a fragmented agriculture-forest ecosystem will be shown in the presentation.
NASA Astrophysics Data System (ADS)
Laiti, Lavinia; Giovannini, Lorenzo; Zardi, Dino
2015-04-01
The accurate assessment of the solar radiation available at the Earth's surface is essential for a wide range of energy-related applications, such as the design of solar power plants, water heating systems and energy-efficient buildings, as well as in the fields of climatology, hydrology, ecology and agriculture. The characterization of solar radiation is particularly challenging in complex-orography areas, where topographic shadowing and altitude effects, together with local weather phenomena, greatly increase the spatial and temporal variability of such variable. At present, approaches ranging from surface measurements interpolation to orographic down-scaling of satellite data, to numerical model simulations are adopted for mapping solar radiation. In this contribution a high-resolution (200 m) solar atlas for the Trentino region (Italy) is presented, which was recently developed on the basis of hourly observations of global radiation collected from the local radiometric stations during the period 2004-2012. Monthly and annual climatological irradiation maps were obtained by the combined use of a GIS-based clear-sky model (r.sun module of GRASS GIS) and geostatistical interpolation techniques (kriging). Moreover, satellite radiation data derived by the MeteoSwiss HelioMont algorithm (2 km resolution) were used for missing-data reconstruction and for the final mapping, thus integrating ground-based and remote-sensing information. The results are compared with existing solar resource datasets, such as the PVGIS dataset, produced by the Joint Research Center Institute for Energy and Transport, and the HelioMont dataset, in order to evaluate the accuracy of the different datasets available for the region of interest.
Klein, T.L.; Church, S.E.; Caine, Jonathan S.; Schmidt, T.S.; deWitt, E.H.
2008-01-01
Cooperative studies by USDA Forest Service, National Park Service supported by the USGS Mineral Resources Program (MRP), and National Cooperative Geologic Mapping Programs (NCGMP) contributed to the mineral-resource assessment and included regional geologic mapping at the scale 1:100,000, collection and geochemical studies of stream sediments, surface water, and bedrock samples, macroinvertebrate and biofilm studies in the riparian environment, remote-sensing studies, and geochronology. Geoscience information available as GIS layers has improved understanding of the distribution of metallic, industrial, and aggregate resources, location of areas that have potential for their discovery or development, helped to understand the relation of tectonics, magmatism, and paleohydrology to the genesis of the metal deposits in the region, and provided insight on the geochemical and environmental effects that historical mining and natural, mineralized rock exposures have on surface water, ground water, and aquatic life.
Soil conservation applications with C-band SAR
NASA Technical Reports Server (NTRS)
Brisco, B.; Brown, R. J.; Naunheimer, J.; Bedard, D.
1992-01-01
Soil conservation programs are becoming more important as the growing human population exerts greater pressure on this non-renewable resource. Indeed, soil degradation affects approximately 10 percent of Canada's agricultural land with an estimated loss of 6,000 hectares of topsoil annually from Ontario farmland alone. Soil loss not only affects agricultural productivity but also decreases water quality and can lead to siltation problems. Thus, there is a growing demand for soil conservation programs and a need to develop an effective monitoring system. Topography and soil type information can easily be handled within a geographic information system (GIS). Information about vegetative cover type and surface roughness, which both experience considerable temporal change, can be obtained from remote sensing techniques. For further development of the technology to produce an operational soil conservation monitoring system, an experiment was conducted in Oxford County, Ontario which investigated the separability of fall surface cover type using C-band Synthetic Aperture Radar (SAR) data.
Identifying Environmental Risk Factors of Cholera in a Coastal Area with Geospatial Technologies
Xu, Min; Cao, Chunxiang; Wang, Duochun; Kan, Biao
2014-01-01
Satellites contribute significantly to environmental quality and public health. Environmental factors are important indicators for the prediction of disease outbreaks. This study reveals the environmental factors associated with cholera in Zhejiang, a coastal province of China, using both Remote Sensing (RS) and Geographic information System (GIS). The analysis validated the correlation between the indirect satellite measurements of sea surface temperature (SST), sea surface height (SSH) and ocean chlorophyll concentration (OCC) and the local cholera magnitude based on a ten-year monthly data from the year 1999 to 2008. Cholera magnitude has been strongly affected by the concurrent variables of SST and SSH, while OCC has a one-month time lag effect. A cholera prediction model has been established based on the sea environmental factors. The results of hot spot analysis showed the local cholera magnitude in counties significantly associated with the estuaries and rivers. PMID:25551518
Identifying environmental risk factors of cholera in a coastal area with geospatial technologies.
Xu, Min; Cao, Chunxiang; Wang, Duochun; Kan, Biao
2014-12-29
Satellites contribute significantly to environmental quality and public health. Environmental factors are important indicators for the prediction of disease outbreaks. This study reveals the environmental factors associated with cholera in Zhejiang, a coastal province of China, using both Remote Sensing (RS) and Geographic information System (GIS). The analysis validated the correlation between the indirect satellite measurements of sea surface temperature (SST), sea surface height (SSH) and ocean chlorophyll concentration (OCC) and the local cholera magnitude based on a ten-year monthly data from the year 1999 to 2008. Cholera magnitude has been strongly affected by the concurrent variables of SST and SSH, while OCC has a one-month time lag effect. A cholera prediction model has been established based on the sea environmental factors. The results of hot spot analysis showed the local cholera magnitude in counties significantly associated with the estuaries and rivers.
Griffith, J.A.; Trettin, C.C.; O'Neill, R. V.
2002-01-01
Geographic information systems (GIS) are increasingly being used in environmental impact assessments (EIA) because GIS is useful for analysing spatial impacts of various development scenarios. Spatially representing these impacts provides another tool for landscape ecology in environmental and geographical investigations by facilitating analysis of the effects of landscape patterns on ecological processes and examining change over time. Landscape ecological principles are applied in this study to a hypothetical geothermal development project on the Island of Hawaii. Some common landscape pattern metrics were used to analyse dispersed versus condensed development scenarios and their effect on landscape pattern. Indices of fragmentation and patch shape did not appreciably change with additional development. The amount of forest to open edge, however, greatly increased with the dispersed development scenario. In addition, landscape metrics showed that a human disturbance had a greater simplifying effect on patch shape and also increased fragmentation than a natural disturbance. The use of these landscape pattern metrics can advance the methodology of applying GIS to EIA.
Geoscience after ITPart G. Familiarization with spatial analysis
NASA Astrophysics Data System (ADS)
Pundt, Hardy; Brinkkötter-Runde, Klaus
2000-04-01
Field based and GPS supported GIS are increasingly applied in various spatial disciplines. Such systems represent more sophisticated, time and cost effective tools than traditional field forms for data acquisition. Meanwhile, various systems are on the market. These mostly enable the user to define geo-objects by means of GPS information, supported by functionalities to collect and analyze geometric information. The digital acquisition of application specific attributes is often underrepresented within such systems. This is surprising because pen computer based GIS can be used to collect attributes in a profitable manner, thus adequately supporting the requirements of the user. Visualization and graphic displays of spatial data are helpful means to improve such a data collection process. In section one and two basic aspects of visualization and current uses of visualization techniques for field based GIS are described. Section three mentions new developments within the framework of wearable computing and augmented reality. Section four describes current activities aimed at the realization of real time online field based GIS. This includes efforts to realize an online GIS data link to improve the efficiency and the quality of fieldwork. A brief discussion in section five leads to conclusions and some key issues for future research.
GeoInquiries: Addressing a Grand Challenge for Teaching with GIS in Schools
NASA Astrophysics Data System (ADS)
DiBiase, D.; Baker, T.
2016-12-01
According to the National Research Council (2006), geographic information systems (GIS) is a powerful tool for expanding students' abilities to think spatially, a critical skill for future STEM professionals. However, educators in mainstream subjects in U.S. education have struggled for decades to use GIS effectively in classrooms. GeoInquiries are no cost, standards-based (NGSS or AP), Creative Commons-licensed instructional activities that guide inquiry around map-based concepts found in key subjects like Earth and environmental science. Web maps developed for GeoInquiries expand upon printed maps in leading textbooks by taking advantage of 21st GIS capabilities. GeoInquiry collections consist of 15 activities, each chosen to offer a map-based activity every few weeks throughout the school year. GeoInquiries use a common inquiry instructional framework, learned by many educators during their teacher preparation coursework. GeoInquiries are instructionally flexible - acting as much like building blocks for crafting custom activities as finished instructional materials. Over a half million geoinquiries will be accessed in the next twelve months - serving an anticipated 15 million students. After a generation of outreach to the educators, GIS is finally finding its way the mainstream.
Herrera, Victoria L M; Pasion, Khristine A; Moran, Ann Marie; Ruiz-Opazo, Nelson
2013-01-01
The prevalence of hypertension increases after menopause with 75% of postmenopausal women developing hypertension in the United States, along with hypertensive end organ diseases. While human and animal model studies have indicated a protective role for estrogen against cardiovascular disease and glomerulosclerosis, clinical studies of hormone replacement therapy in postmenopausal women have shown polar results with some improvement in hypertension but worsening of hypertensive kidney disease, or no effect at all. These observations suggest that the pathogenesis of postmenopausal hypertension and its target organ complications is more complex than projected, and that loss of endogenous estrogens induces epigenetic changes that alter genetic susceptibility to end-organ complications per se resulting in pathogenetic mechanisms beyond correction by hormone replacement. We studied postmenopausal-induced changes in renal disease and performed a total genome scan for quantitative trait loci (QTLs) affecting kidney disease in postmenopausal 16m-old F2[Dahl S x R]-intercross female rats. We used glomerular injury score (GIS) as quantitative trait. We compared QTLs amongst premenopausal, ovariectomized and postmenopausal F2[Dahl S x R]-intercross rats using identical phenotype characterization. Postmenopausal F2[Dahl S x R]-intercross rats exhibited increased hypertensive glomerulosclerosis (P<0.01) and equivalent levels of kidney disease when compared to premenopausal and ovariectomized F2[Dahl S x R]-intercross rats respectively. We detected three significant to highly significant GIS-QTLs (GIS-pm1 on chromosome 4, LOD 3.54; GIS-pm2 on chromosome 3, LOD 2.72; GIS-pm3 on chromosome 5, LOD 2.37) and two suggestive GIS-QTLs (GIS-pm4 on chromosome 2, LOD 1.70; GIS-pm5 on chromosome 7, LOD 1.28), all of which were unique to this postmenopausal population. Detection of increased renal disease phenotype in postmenopausal and ovariectomized subjects suggests a protective role of ovarian hormones. Furthermore, the detection of distinct GIS-QTLs in postmenopausal intercross female rats suggests that distinct genetic mechanisms underlie hypertensive glomerulosclerosis in premenopausal and postmenopausal states.
Herrera, Victoria L. M.; Pasion, Khristine A.; Moran, Ann Marie; Ruiz-Opazo, Nelson
2013-01-01
The prevalence of hypertension increases after menopause with 75% of postmenopausal women developing hypertension in the United States, along with hypertensive end organ diseases. While human and animal model studies have indicated a protective role for estrogen against cardiovascular disease and glomerulosclerosis, clinical studies of hormone replacement therapy in postmenopausal women have shown polar results with some improvement in hypertension but worsening of hypertensive kidney disease, or no effect at all. These observations suggest that the pathogenesis of postmenopausal hypertension and its target organ complications is more complex than projected, and that loss of endogenous estrogens induces epigenetic changes that alter genetic susceptibility to end-organ complications per se resulting in pathogenetic mechanisms beyond correction by hormone replacement. We studied postmenopausal-induced changes in renal disease and performed a total genome scan for quantitative trait loci (QTLs) affecting kidney disease in postmenopausal 16m-old F2[Dahl S x R]-intercross female rats. We used glomerular injury score (GIS) as quantitative trait. We compared QTLs amongst premenopausal, ovariectomized and postmenopausal F2[Dahl S x R]-intercross rats using identical phenotype characterization. Postmenopausal F2[Dahl S x R]-intercross rats exhibited increased hypertensive glomerulosclerosis (P<0.01) and equivalent levels of kidney disease when compared to premenopausal and ovariectomized F2[Dahl S x R]-intercross rats respectively. We detected three significant to highly significant GIS-QTLs (GIS-pm1 on chromosome 4, LOD 3.54; GIS-pm2 on chromosome 3, LOD 2.72; GIS-pm3 on chromosome 5, LOD 2.37) and two suggestive GIS-QTLs (GIS-pm4 on chromosome 2, LOD 1.70; GIS-pm5 on chromosome 7, LOD 1.28), all of which were unique to this postmenopausal population. Detection of increased renal disease phenotype in postmenopausal and ovariectomized subjects suggests a protective role of ovarian hormones. Furthermore, the detection of distinct GIS-QTLs in postmenopausal intercross female rats suggests that distinct genetic mechanisms underlie hypertensive glomerulosclerosis in premenopausal and postmenopausal states. PMID:23393608
NASA Astrophysics Data System (ADS)
Gordov, Evgeny; Okladnikov, Igor; Titov, Alexander
2017-04-01
For comprehensive usage of large geospatial meteorological and climate datasets it is necessary to create a distributed software infrastructure based on the spatial data infrastructure (SDI) approach. Currently, it is generally accepted that the development of client applications as integrated elements of such infrastructure should be based on the usage of modern web and GIS technologies. The paper describes the Web GIS for complex processing and visualization of geospatial (mainly in NetCDF and PostGIS formats) datasets as an integral part of the dedicated Virtual Research Environment for comprehensive study of ongoing and possible future climate change, and analysis of their implications, providing full information and computing support for the study of economic, political and social consequences of global climate change at the global and regional levels. The Web GIS consists of two basic software parts: 1. Server-side part representing PHP applications of the SDI geoportal and realizing the functionality of interaction with computational core backend, WMS/WFS/WPS cartographical services, as well as implementing an open API for browser-based client software. Being the secondary one, this part provides a limited set of procedures accessible via standard HTTP interface. 2. Front-end part representing Web GIS client developed according to a "single page application" technology based on JavaScript libraries OpenLayers (http://openlayers.org/), ExtJS (https://www.sencha.com/products/extjs), GeoExt (http://geoext.org/). It implements application business logic and provides intuitive user interface similar to the interface of such popular desktop GIS applications, as uDIG, QuantumGIS etc. Boundless/OpenGeo architecture was used as a basis for Web-GIS client development. According to general INSPIRE requirements to data visualization Web GIS provides such standard functionality as data overview, image navigation, scrolling, scaling and graphical overlay, displaying map legends and corresponding metadata information. The specialized Web GIS client contains three basic tires: • Tier of NetCDF metadata in JSON format • Middleware tier of JavaScript objects implementing methods to work with: o NetCDF metadata o XML file of selected calculations configuration (XML task) o WMS/WFS/WPS cartographical services • Graphical user interface tier representing JavaScript objects realizing general application business logic Web-GIS developed provides computational processing services launching to support solving tasks in the area of environmental monitoring, as well as presenting calculation results in the form of WMS/WFS cartographical layers in raster (PNG, JPG, GeoTIFF), vector (KML, GML, Shape), and binary (NetCDF) formats. It has shown its effectiveness in the process of solving real climate change research problems and disseminating investigation results in cartographical formats. The work is supported by the Russian Science Foundation grant No 16-19-10257.
Clasen, Frederick Johannes; Pierneef, Rian Ewald; Slippers, Bernard; Reva, Oleg
2018-05-03
Genomic islands (GIs) are inserts of foreign DNA that have potentially arisen through horizontal gene transfer (HGT). There are evidences that GIs can contribute significantly to the evolution of prokaryotes. The acquisition of GIs through HGT in eukaryotes has, however, been largely unexplored. In this study, the previously developed GI prediction tool, SeqWord Gene Island Sniffer (SWGIS), is modified to predict GIs in eukaryotic chromosomes. Artificial simulations are used to estimate ratios of predicting false positive and false negative GIs by inserting GIs into different test chromosomes and performing the SWGIS v2.0 algorithm. Using SWGIS v2.0, GIs are then identified in 36 fungal, 22 protozoan and 8 invertebrate genomes. SWGIS v2.0 predicts GIs in large eukaryotic chromosomes based on the atypical nucleotide composition of these regions. Averages for predicting false negative and false positive GIs were 20.1% and 11.01% respectively. A total of 10,550 GIs were identified in 66 eukaryotic species with 5299 of these GIs coding for at least one functional protein. The EuGI web-resource, freely accessible at http://eugi.bi.up.ac.za , was developed that allows browsing the database created from identified GIs and genes within GIs through an interactive and visual interface. SWGIS v2.0 along with the EuGI database, which houses GIs identified in 66 different eukaryotic species, and the EuGI web-resource, provide the first comprehensive resource for studying HGT in eukaryotes.
NASA Astrophysics Data System (ADS)
Wigglesworth, John C.
2000-06-01
Geographic Information Systems (GIS) is a powerful computer software package that emphasizes the use of maps and the management of spatially referenced environmental data archived in a systems data base. Professional applications of GIS have been in place since the 1980's, but only recently has GIS gained significant attention in the K--12 classroom. Students using GIS are able to manipulate and query data in order to solve all manners of spatial problems. Very few studies have examined how this technological innovation can support classroom learning. In particular, there has been little research on how experience in using the software correlates with a child's spatial cognition and his/her ability to understand spatial relationships. This study investigates the strategies used by middle school students to solve a wayfinding (route-finding) problem using the ArcView GIS software. The research design combined an individual background questionnaire, results from the Group Assessment of Logical Thinking (GALT) test, and analysis of reflective think-aloud sessions to define the characteristics of the strategies students' used to solve this particular class of spatial problem. Three uniquely different spatial problem solving strategies were identified. Visual/Concrete Wayfinders used a highly visual strategy; Logical/Abstract Wayfinders used GIS software tools to apply a more analytical and systematic approach; Transitional Wayfinders used an approach that showed evidence of one that was shifting from a visual strategy to one that was more analytical. The triangulation of data sources indicates that this progression of wayfinding strategy can be correlated both to Piagetian stages of logical thought and to experience with the use of maps. These findings suggest that GIS teachers must be aware that their students' performance will lie on a continuum that is based on cognitive development, spatial ability, and prior experience with maps. To be most effective, GIS teaching strategies and curriculum development should also represent a progression that correlates to the learners' current skills and experience.
Development of web-based GIS services for sustainable soil resource management at farm level
NASA Astrophysics Data System (ADS)
Papadopoulos, Antonis; Kolovos, Chronis; Troyanos, Yerasimos; Doula, Maria
2017-09-01
Modern farms situated in urban or suburban areas, include various and in most cases diverse land covers. Land uses in such farms may serve residential, structured, aesthetic and agricultural purposes, usually delimited inside the boundaries of a single property. The environmental conditions across a farm, especially if it is situated on an irregular terrain, can be highly differentiated. Managing soil resources in a small scale diverse farm environment in a holistic and sustainable way should have spatial and temporal reference and take advantage of cut-edge geospatial technologies. In present study, an 8 hectare farm with various land uses in the southern suburbs of Attica Prefecture, Greece was systematically monitored regarding its soil, water and plant resources. Almost 80% of the farm's area is covered with trees, shrubs and low vegetation planted in a mosaic of parterres. Farm data collected concerned soil and water physicochemical characteristics, plant species, topographical features, irrigation network, valves and infrastructure. All data were imported and developed in a GIS geodatabase. Furthermore, web GIS services and a mobile GIS app were developed in order to monitor, update and synchronize present status and future changes performed in the farm. Through the web services and using the mobile GIS app, the user has access to all data stored in the geodatabase and according to access rights he can view or edit the spatial entities. The user can easily make query to specific features, combine their properties with other overlaying spatial data and reach accurate decisions. The app can be downloaded and implemented in mobile devices like smartphones and tablets for extending its functionality. As proven in this study, web GIS services and mobile GIS apps constitute an attractive suite of methodologies for effective and user friendly management of natural resources at farm level.
An Approach to Integrate a Space-Time GIS Data Model with High Performance Computers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Dali; Zhao, Ziliang; Shaw, Shih-Lung
2011-01-01
In this paper, we describe an approach to integrate a Space-Time GIS data model on a high performance computing platform. The Space-Time GIS data model has been developed on a desktop computing environment. We use the Space-Time GIS data model to generate GIS module, which organizes a series of remote sensing data. We are in the process of porting the GIS module into an HPC environment, in which the GIS modules handle large dataset directly via parallel file system. Although it is an ongoing project, authors hope this effort can inspire further discussions on the integration of GIS on highmore » performance computing platforms.« less
The social problems and strategies of the government GIS in China
NASA Astrophysics Data System (ADS)
Chen, Nan; Fu, Zhongliang
2007-06-01
GIS has wider and wider applications. The application in the field of administrative management and assistant decision-making have formed a specific research area--the government GIS. As an information industry with great sociality, GIS and its development are influenced by many technical factors and social factors. As for the government GIS in China, the social factors often play a more important role in it. A description of the current development status of the government GIS, both in China and abroad, was made in this paper. After the description, researchers pointed out the deficiency of Chinese government GIS. On the basis of this, the rational suggestion of government GIS in China were put forward at last.
Regional scale net radiation estimation by means of Landsat and TERRA/AQUA imagery and GIS modeling
NASA Astrophysics Data System (ADS)
Cristóbal, J.; Ninyerola, M.; Pons, X.; Llorens, P.; Poyatos, R.
2009-04-01
Net radiation (Rn) is one of the most important variables for the estimation of surface energy budget and is used for various applications including agricultural meteorology, climate monitoring and weather prediction. Moreover, net radiation is an essential input variable for potential as well as actual evapotranspiration modeling. Nowadays, radiometric measurements provided by Remote Sensing and GIS analysis are the technologies used to compute net radiation at regional scales in a feasible way. In this study we present a regional scale estimation of the daily Rn on clear days, (Catalonia, NE of the Iberian Peninsula), using a set of 22 Landsat images (17 Landsat-5 TM and 5 Landsat-7 ETM+) and 171 TERRA/AQUA images MODIS from 2000 to 2007 period. TERRA/AQUA MODIS images have been downloaded by means of the EOS Gateway. We have selected three different types of products which contain the remote sensing data we have used to model daily Rn: daily LST product, daily calibrated reflectances product and daily atmospheric water vapour product. Landsat-5 TM images have been corrected by means of conventional techniques based on first order polynomials taking into account the effect of land surface relief using a Digital Elevation Model, obtaining an RMS less than 30 m. Radiometric correction of Landsat non-thermal bands has been done following the methodology proposed by Pons and Solé (1994), which allows to reduce the number of undesired artifacts that are due to the effects of the atmosphere or to the differential illumination which is, in turn, due to the time of the day, the location in the Earth and the relief (zones being more illuminated than others, shadows, etc). Atmospheric correction of Landsat thermal band has been carried out by means of a single-channel algorithm improvement developed by Cristóbal et al. (2009) and the land surface emissivity computed by means of the methodology proposed by Sobrino and Raissouni (2000). Rn has been estimated through the balance among the net shortwave radiation Rn and the net longwave radiation. In addition, two types of approaches have been carried out for its determination: the estimation of the variables implied in the calculation of Rn at daily level (Rndl); and the calculation of the Rn at the time of satellite pass (Rni) and its subsequent conversion to daily Rn by means of the Rn ratio. Net shortwave radiation has been computed by means of albedo and a solar radiation model obtained through a DEM following the methodology of Pons and Ninyerola (2008).This methodology takes into account the position of the Sun, the angles of incidence, the projected shadows and the distance from the Earth to the Sun at one hour intervals. The diffuse radiation is estimated from the direct radiaton and the exoatmospheric direct solar irradiance is estimated with the Page equation (1986) and fitted by Baldasano et al. (1994). Net longwave radiation has been calculated through land surface temperature and emissivity, atmospheric water vapour and air temperature. Air temperature has been modeled by means of multiple regression analysis and GIS interpolation using ground meteorological stations. Finally, air emissivity has been computed using air temperature models and atmospheric water vapour following the methodology developed by Dilley and O'Brien (1998). Finally, models have been validated through a set of 13 ground meteorological standard stations and an experimental station placed in a Mediterranean mountain area over a Pinus sylvestris stand. Obtained results show a mean RMSE of 20 W m-2 in the case of Landsat and a mean RMSE of 22 W m-2 in the case of TERRA/AQUA MODIS, being these results in agreement with other published results, but also offering better RMSE in some cases. Keywords: Net radiation, Landsat, TERRA/AQUA MODIS, GIS modeling, regional scale.
Heather Heward; Kathy H. Schon
2009-01-01
As technology continues to evolve in the area of fuel and wildland fire management so does the need to have effective tools and training on these technologies. The National Interagency Fuels Coordination Group has chartered a team of professionals to coordinate, develop, and transfer consistent, efficient, science-based fuel and fire ecology assessment GIS tools and...
NASA Astrophysics Data System (ADS)
Martín-Loeches, Miguel; Reyes-López, Jaime; Ramírez-Hernández, Jorge; Temiño-Vela, Javier; Martínez-Santos, Pedro
2018-02-01
In poverty-stricken regions of Sub-Saharan Africa, groundwater for supply is often obtained by means of hand pumps, which means that low-yield boreholes are acceptable. However, boreholes are often sited without sufficient hydrogeological information due to budget constraints, which leads to high failure rates. Cost-effective techniques for borehole siting need to be developed in order to maximize the success rate. In regions underlain by granite, weathered formations are usually targeted for drilling, as these are generally presented as a better cost-benefit ratio than the fractured basement. Within this context, this research focuses on a granite region of Angola. A comparison of two mapping techniques for borehole siting-groundwater prospect is presented. A classic hydrogeomorphological map was developed first based on aerial photographs, field mapping and a geophysical survey. This map represents a considerable time investment and was developed by qualified technicians. The second map (RS/GIS) is considerably simpler and more cost-effective. It was developed by the integration in a GIS platform of six maps of equal importance-slope, drainage density, vegetation vigor, presence of clay in the soil, lineaments and rock outcrops-prepared from Landsat 8 imagery and a Digital Elevation Model (DEM). Similar results were obtained in both cases. By means of a supervised classification of Landsat images, RS/GIS analysis allows for the identification of granitic outcrops, house clusters and sandy alluvial valleys. This in turn allows for the delineation of low-interest or contamination-prone areas, thus contributing additional qualitative information. The position of a well that is going to be powered by a handpump is chosen also upon social and local matters as the distance to the stakeholders, information that are not difficult to integrate in the GIS. Although the second map needs some field inputs (i.e. surveys to determine the thickness of the weathered pack), results show that RS/GIS analyses such as this one provide a valuable and cost-effective alternative for siting low-yield boreholes in remote regions.
GIS-based accident location and analysis system (GIS-ALAS) : project report : phase I
DOT National Transportation Integrated Search
1998-04-06
This report summarizes progress made in Phase I of the geographic information system (GIS) based Accident Location and Analysis System (GIS-ALAS). The GIS-ALAS project builds on PC-ALAS, a locationally-referenced highway crash database query system d...
Rine, J.M.; Berg, R.C.; Shafer, J.M.; Covington, E.R.; Reed, J.K.; Bennett, C.B.; Trudnak, J.E.
1998-01-01
A methodology was developed to evaluate and map the contamination potential or aquifer sensitivity of the upper groundwater flow system of a portion of the General Separations Area (GSA) at the Department of Energy's Savannah River Site (SRS) in South Carolina. A Geographic Information System (GIS) was used to integrate diverse subsurface geologic data, soils data, and hydrology utilizing a stack-unit mapping approach to construct mapping layers. This is the first time that such an approach has been used to delineate the hydrogeology of a coastal plain environment. Unit surface elevation maps were constructed for the tops of six Tertiary units derived from over 200 boring logs. Thickness or isopach maps were created for five hydrogeologic units by differencing top and basal surface elevations. The geologic stack-unit map was created by stacking the five isopach maps and adding codes for each stack-unit polygon. Stacked-units were rated according to their hydrogeologic properties and ranked using a logarithmic approach (utility theory) to establish a contamination potential index. Colors were assigned to help display relative importance of stacked-units in preventing or promoting transport of contaminants. The sensitivity assessment included the effects of surface soils on contaminants which are particularly important for evaluating potential effects from surface spills. Hydrogeologic/hydrologic factors did not exhibit sufficient spatial variation to warrant incorporation into contamination potential assessment. Development of this contamination potential mapping system provides a useful tool for site planners, environmental scientists, and regulatory agencies.A methodology was developed to evaluate and map the contamination potential or aquifer sensitivity of the upper groundwater flow system of a portion of the General Separations Area (GSA) at the Department of Energy's Savannah River Site (SRS) in South Carolina. A Geographic Information System (GIS) was used to integrate diverse subsurface geologic data, soils data, and hydrology utilizing a stack-unit mapping approach to construct mapping layers. This is the first time that such an approach has been used to delineate the hydrogeology of a coastal plain environment. Unit surface elevation maps were constructed for the tops of six Tertiary units derived from over 200 boring logs. Thickness or isopach maps were created for five hydrogeologic units by differencing top and basal surface elevations. The geologic stack-unit map was created by stacking the five isopach maps and adding codes for each stack-unit polygon. Stacked-units were rated according to their hydrogeologic properties and ranked using a logarithmic approach (utility theory) to establish a contamination potential index. Colors were assigned to help display relative importance of stacked-units in preventing or promoting transport of contaminants. The sensitivity assessment included the effects of surface soils on contaminants which are particularly important for evaluating potential effects from surface spills. Hydrogeologic/hydrologic factors did not exhibit sufficient spatial variation to warrant incorporation into contamination potential assessment. Development of this contamination potential mapping system provides a useful tool for site planners, environmental scientists, and regulatory agencies.
Li, Ying-jie; Zhang, Lie-yu; Wu, Yi-wen; Li, Cao-le; Yang, Tian-xue; Tang, Jun
2016-04-15
To understand pollution of heavy metals in surface sediments of shallow lakes, surface sediments samples of 11 lakes in Jiangsu province were collected to determine the content of six heavy metals including As, Cr, Cu, Pb, Zn and Ni. GIS was used to analyze the spatial distribution of heavy metals, and geological accumulation index (Igeo), modified contamination index (mCd) pollution load index (PLI) and potential ecological risk index (RI) were used to evaluate heavy metal contamination in the sediments. The results showed that: in the lakes' surface sediments, the average content of As, Cu, Zn, Cr, Pb, Ni in multiples of soil background of Jiangsu province were 1.74-3.85, 0.65-2.66, 0.48-3.56, 0.43-1.52, 0.02-1.49 and 0.12-1.42. According to the evaluation results of Igeo and RI, As, which had high degree of enrichment and great potential ecological risk, was the main pollutant, followed by Cu, and pollution of the rest of heavy metals was relatively light. Combining the results of several evaluation methods, in surface sediments of Sanjiu Lake, Gaoyou Lake and Shaobo Lake, these heavy metals had the most serious pollution, the maximum pollution loading and moderate potential ecological risk; in surface sediments of Gehu Lake, Baima Lake and Hongze Lake, some regions were polluted by certain metals, the overall trend of pollution was aggravating, the pollution loading was large, and the potential ecological risk reached moderate; in the other 5 lakes, the risk of sediments polluted by heavy metals, as well as the pollution loading, was small, and the overall was not polluted.
Rupert, Michael G.; Cannon, Susan H.; Gartner, Joseph E.
2003-01-01
Logistic regression was used to predict the probability of debris flows occurring in areas recently burned by wildland fires. Multiple logistic regression is conceptually similar to multiple linear regression because statistical relations between one dependent variable and several independent variables are evaluated. In logistic regression, however, the dependent variable is transformed to a binary variable (debris flow did or did not occur), and the actual probability of the debris flow occurring is statistically modeled. Data from 399 basins located within 15 wildland fires that burned during 2000-2002 in Colorado, Idaho, Montana, and New Mexico were evaluated. More than 35 independent variables describing the burn severity, geology, land surface gradient, rainfall, and soil properties were evaluated. The models were developed as follows: (1) Basins that did and did not produce debris flows were delineated from National Elevation Data using a Geographic Information System (GIS). (2) Data describing the burn severity, geology, land surface gradient, rainfall, and soil properties were determined for each basin. These data were then downloaded to a statistics software package for analysis using logistic regression. (3) Relations between the occurrence/non-occurrence of debris flows and burn severity, geology, land surface gradient, rainfall, and soil properties were evaluated and several preliminary multivariate logistic regression models were constructed. All possible combinations of independent variables were evaluated to determine which combination produced the most effective model. The multivariate model that best predicted the occurrence of debris flows was selected. (4) The multivariate logistic regression model was entered into a GIS, and a map showing the probability of debris flows was constructed. The most effective model incorporates the percentage of each basin with slope greater than 30 percent, percentage of land burned at medium and high burn severity in each basin, particle size sorting, average storm intensity (millimeters per hour), soil organic matter content, soil permeability, and soil drainage. The results of this study demonstrate that logistic regression is a valuable tool for predicting the probability of debris flows occurring in recently-burned landscapes.
Sieverling, Jennifer B.; Char, Stephen J.; San Juan, Carma A.
2005-01-01
Introduction: The U.S. Geological Survey (USGS) Fourth Biennial Geographic Information Science (GIS) Workshop (USGS-GIS 2001) was held April 23-27, 2001, at the Denver Federal Center in Denver, Colorado. The workshop provided an environment for participants to improve their knowledge about GIS and GIS-related applications that are used within the USGS. Two major topics of USGS-GIS 2001 were the application of GIS technology to interdisciplinary science and the distribution and sharing of USGS GIS products. Additionally, several presentations included GIS technology and tools, project applications of GIS, and GIS data management. USGS-GIS 2001 included user and vendor presentations, demonstrations, and hands-on technical workshops. Presentation abstracts that were submitted for publication are included in these proceedings. The keynote speaker was Karen Siderelis, the USGS Associate Director for Information (Geographic Information Officer). In addition to the USGS, other Federal agencies, GIS-related companies, and university researchers presented lectures or demonstrations or conducted hands-on sessions. USGS employees and contractors from every discipline and region attended the workshop. To facilitate the interaction between the Federal agencies, each of the presenting Federal agencies was invited to send a representative to the workshop. One of the most beneficial activities of USGS-GIS 2001, as identified by an informal poll of attendees, was the Monday evening poster session in which more than 75 poster presentations gave attendees a chance to learn of work being performed throughout the USGS. A feature new to USGS-GIS 2001 was internet participation of USGS personnel through cyber seminars of the morning plenary sessions.
A. Bytnerowicz; R.F. Johnson; L. Zhang; G.D. Jenerette; M.E. Fenn; S.L. Schilling; I. Gonzalez-Fernandez
2015-01-01
The empirical inferential method (EIM) allows for spatially and temporally-dense estimates of atmospheric nitrogen (N) deposition to Mediterranean ecosystems. This method, set within a GIS platform, is based on ambient concentrations of NH3, NO, NO2 and HNO3; surface conductance of NH4...
Abandoned Uranium Mine (AUM) Surface Areas, Navajo Nation, 2016, US EPA Region 9
This GIS dataset contains polygon features that represent all Abandoned Uranium Mines (AUMs) on or within one mile of the Navajo Nation. Attributes include mine names, aliases, Potentially Responsible Parties, reclaimation status, EPA mine status, links to AUM reports, and the region in which an AUM is located. This dataset contains 608 features.
This last year, broad geographic areas in Europe experienced significant levels of flooding causing extensive loss of human lives and property. In North America, the US Environmental Protection Agency has been using GIS and remotely sensed data to assess the distribution and exte...
USDA-ARS?s Scientific Manuscript database
Nitrogen inputs to agricultural systems are important for their sustainability. However, when N inputs are unnecessarily high, the excess can contribute to greater agricultural N losses that impact air, surface water and groundwater quality. It is paramount to reduce off-site transport of N by using...
Aklıbaşında, Meliha; Bulut, Yahya
2014-09-01
The use and utilization areas of geographic information system (GIS) increase every day due to both enabling easiness in storing, updating, grouping, analyzing, correlating, and mapping of data about evaluation factors in planning studies and having quite low error margin depending on the accuracy of data stored. In fact, GIS is also used both in visualization and in various analyses in planning tourism terrains. In this study, the effectiveness of GIS on holistic evaluation of natural and cultural resources in planning tourism terrains was analyzed. Natural and cultural resources in Kayseri Yahyalı were quantified by using ArcGIS 9.3 software from GIS software; data were analyzed and potential tourism and recreation terrains, level of suitability, and rate of coverage were determined. As a result of the analyses, it was determined that 11.847 ha area (6,53%) was quite suitable for such kind of activities, 103.010 ha (56,77%) was suitable, 39.278 ha (21,65%) was less suitable, and 27.314 ha area (15,05%) was not suitable. In the next stage, landscape properties which are suitable for tourism and recreation were evaluated and landscape types were classified in the sense of their tourist attraction. It was determined that the water resources and valley landscapes were the basic sources of the tourism and recreation activities of Yahyalı, and it was determined that the landscape of the forest and mountain was important for variety of the tourism and recreation activities of Yahyalı.
A GIS-based modeling system for petroleum waste management. Geographical information system.
Chen, Z; Huang, G H; Li, J B
2003-01-01
With an urgent need for effective management of petroleum-contaminated sites, a GIS-aided simulation (GISSIM) system is presented in this study. The GISSIM contains two components: an advanced 3D numerical model and a geographical information system (GIS), which are integrated within a general framework. The modeling component undertakes simulation for the fate of contaminants in subsurface unsaturated and saturated zones. The GIS component is used in three areas throughout the system development and implementation process: (i) managing spatial and non-spatial databases; (ii) linking inputs, model, and outputs; and (iii) providing an interface between the GISSIM and its users. The developed system is applied to a North American case study. Concentrations of benzene, toluene, and xylenes in groundwater under a petroleum-contaminated site are dynamically simulated. Reasonable outputs have been obtained and presented graphically. They provide quantitative and scientific bases for further assessment of site-contamination impacts and risks, as well as decisions on practical remediation actions.
NASA Astrophysics Data System (ADS)
Jung, Chinte; Sun, Chih-Hong
2006-10-01
Motivated by the increasing accessibility of technology, more and more spatial data are being made digitally available. How to extract the valuable knowledge from these large (spatial) databases is becoming increasingly important to businesses, as well. It is essential to be able to analyze and utilize these large datasets, convert them into useful knowledge, and transmit them through GIS-enabled instruments and the Internet, conveying the key information to business decision-makers effectively and benefiting business entities. In this research, we combine the techniques of GIS, spatial decision support system (SDSS), spatial data mining (SDM), and ArcGIS Server to achieve the following goals: (1) integrate databases from spatial and non-spatial datasets about the locations of businesses in Taipei, Taiwan; (2) use the association rules, one of the SDM methods, to extract the knowledge from the integrated databases; and (3) develop a Web-based SDSS GIService as a location-selection tool for business by the product of ArcGIS Server.
NASA Astrophysics Data System (ADS)
Chupakhina, Nataliia; Skrypnik, Lubov; Maslennikov, Pavel; Belov, Nicolai; Feduraev, Pavel; Chupakhina, Galina
2017-04-01
Urbanization can be described as a global socio-economic process, accompanied by a profound change of the anthropogenic environment and as a replacement of the natural ecosystems by the urban ones. Heavy metals occupy an important place among the different types of urban environmental pollutants. Since they do not undergo physico-chemical and biological degradation, they can accumulate in the surface soil layer for a long time, being available for the roots of plants and actively involved in the migration processes via trophic pathways. Study of accumulation of heavy metals in the most important component of urban ecosystems, which is soils, allows us to get a reliable estimate of the intensity of technogenic processes and to trace the major migration flows of these toxicants in the urbanized area. The geographic information systems (GIS) are a useful tool for collection, analysis, processing, synthesis and management of the spatially-distributed and other types of data. They provide the two-way communication between cartographic objects and databases. The aim of this study was to investigate the possibility of using of GIS technologies for estimating of distribution of heavy metals in the soil of the city of Kaliningrad. A Kaliningrad land region of 18.4 sq.km was investigated. Locations for the collection of samples were determined based on the analysis of anthropogenic loading of the streets of Kaliningrad. The total number of the locations was 57. The selected locations were marked with squares of 1.5 km per 1.5 km. Within each square 7-9 soil samples were collected using the "envelope" method, each sample was collected three times. The abundances of heavy metals (strontium, lead, zinc, copper, nickel, chromium, arsenic) in the soil was determined using the X-ray fluorescence method (Spectroscan Max, NPO Spektron, Saint-Petersburg, Russia). Each sample was purified, in order to remove roots, large rocks, glass, etc., before placing to the cell of the spectrometer. Purified samples of 10-50 g were dried to constant mass at a specified temperature (105 ± 2) ° C and then were grounded using an agate mortar to reduce the particle size to ≤71 microns. The analysis was simultaneously performed for two parts of each sample. For calculation of the surface distribution of the heavy metals we used the geographic GIS package QuantumGIS 2.8. The coordinates of the sampling points were first marked at the raster substrate and then were exported to a vector layer in the Shapefile format. To calculate the surface distribution in the raster format we used the topotorastr module, which includes different interpolation methods. For the visualization of this study we used two methods: inverse-weighted state (IDW) and natural neighborhood methods). The results obtained with the IDW method appeared to be not representative and we further used only the method of natural neighborhood. Using the built-in tools of the QuantumGIS the heavy metal abundances were divided into 9 classes and the raster surfaces were obtained. We then built contour plots of the distribution of the studied heavy metals. The described approach revealed two areas in which the lead abundance 4,5-5,4 times exceeded the maximum permitted norms, arsenic 9.5 - 11 times, zinc 7.2 - 9.6 times and nickel 5.2 - 6.75 times.
77 FR 69899 - Public Conference on Geographic Information Systems (GIS) in Transportation Safety
Federal Register 2010, 2011, 2012, 2013, 2014
2012-11-21
... NATIONAL TRANSPORTATION SAFETY BOARD Public Conference on Geographic Information Systems (GIS) in... Geographic Information Systems (GIS) in transportation safety on December 4-5, 2012. GIS is a rapidly... visualization of data. The meeting will bring researchers and practitioners in transportation safety and GIS...
Viger, Roland J.
2008-01-01
This fact sheet provides a high-level description of the GIS Weasel, a software system designed to aid users in preparing spatial information as input to lumped and distributed parameter environmental simulation models (ESMs). The GIS Weasel provides geographic information system (GIS) tools to help create maps of geographic features relevant to the application of a user?s ESM and to generate parameters from those maps. The operation of the GIS Weasel does not require a user to be a GIS expert, only that a user has an understanding of the spatial information requirements of the model. The GIS Weasel software system provides a GIS-based graphical user interface (GUI), C programming language executables, and general utility scripts. The software will run on any computing platform where ArcInfo Workstation (version 8.1 or later) and the GRID extension are accessible. The user controls the GIS Weasel by interacting with menus, maps, and tables.
Adding Value: A GIS Minor to Complement the Geology Major
NASA Astrophysics Data System (ADS)
Rhodes, D. D.
2008-12-01
Geographic Information Systems (GIS) has proven to be a valuable addition to the geology curriculum at Georgia Southern University. The Department of Geology and Geography offers course work in GIS required for the geography major and has used these courses to create a minor in GIS. Approximately half the students graduating with degrees in geology during the last 5 years have taken the GIS minor. A working knowledge of GIS has helped students secure summer employment and internships. For some of them it was the key to immediate employment upon graduation and for others it was a valuable additional skill to present as part of graduate school applications. Although once daunting in the financial and intellectual capital required to create a program, GIS software has become much more user friendly and standard PCs are now the platform on which most GIS work is conducted. Georgia Southern's GIS minor is based on five courses taught by four members of the faculty (3 geographers and 1 geologist). The foundation of the minor is two courses integrating the fundamentals of GIS and cartography. The other three courses cover data bases and web-based applications of GIS, remote sensing, and a semester long project in applied GIS. Although missing topics that are part of the curriculum for certificates or degrees in GIS, this five-course sequence provides a sound basis for introductory level positions in government and industry and graduate programs in geology.
Quantarctica: A Unique, Open, Standalone GIS Package for Antarctic Research and Education
NASA Astrophysics Data System (ADS)
Roth, G.; Matsuoka, K.; Skoglund, A.; Melvaer, Y.; Tronstad, S.
2016-12-01
The Norwegian Polar Institute has developed Quantarctica, an open GIS package for use by the international Antarctic community. Quantarctica includes a wide range of cartographic basemap layers, geophysical and glaciological datasets, and satellite imagery in standardized file formats with a consistent Antarctic map projection and customized layer and labeling styles for quick, effective cartography. Quantarctica's strengths as an open science platform lie in 1) The complete, ready-to-use data package which includes full-resolution, original-quality vector and raster data, 2) A policy for freely-redistributable and modifiable data including all metadata and citations, and 3) QGIS, a free, full-featured, modular, offline-capable open-source GIS suite with a rapid and active development and support community. The Quantarctica team is actively seeking new contributions of peer-reviewed, freely distributable pan-Antarctic geospatial datasets for the next version release in 2017. As part of this ongoing development, we are investigating the best approaches for quickly and seamlessly distributing new and updated data to users, storing datasets in efficient file formats while maintaining full quality, and coexisting with numerous online data portals in a way that most actively benefits the Antarctic community. A recent survey of Quantarctica users showed broad geographical adoption among Antarctic Treaty countries, including those outside the large US and UK Antarctic programs. Maps and figures produced by Quantarctica have also appeared in open-access journals and outside of the formal scientific community on popular science and GIS blogs. Our experience with the Quantarctica project has shown the tremendous value of education and outreach, not only in promoting open software, data formats, and practices, but in empowering Antarctic science groups to more effectively use GIS and geospatial data. Open practices are making a huge impact in Antarctic GIS, where individual countries have historically maintained their own restricted Antarctic geodatabases and where a majority of the next generation of scientists are entering the field with experience in using geospatial thinking for planning, visualization, and problem solving.
Lee, Cholyoung; Kim, Kyehyun; Lee, Hyuk
2018-01-15
Impervious surfaces are mainly artificial structures such as rooftops, roads, and parking lots that are covered by impenetrable materials. These surfaces are becoming the major causes of nonpoint source (NPS) pollution in urban areas. The rapid progress of urban development is increasing the total amount of impervious surfaces and NPS pollution. Therefore, many cities worldwide have adopted a stormwater utility fee (SUF) that generates funds needed to manage NPS pollution. The amount of SUF is estimated based on the impervious ratio, which is calculated by dividing the total impervious surface area by the net area of an individual land parcel. Hence, in order to identify the exact impervious ratio, large-scale impervious surface maps (ISMs) are necessary. This study proposes and assesses various methods for generating large-scale ISMs for urban areas by using existing GIS data. Bupyeong-gu, a district in the city of Incheon, South Korea, was selected as the study area. Spatial data that were freely offered by national/local governments in S. Korea were collected. First, three types of ISMs were generated by using the land-cover map, digital topographic map, and orthophotographs, to validate three methods that had been proposed conceptually by Korea Environment Corporation. Then, to generate an ISM of higher accuracy, an integration method using all data was proposed. Error matrices were made and Kappa statistics were calculated to evaluate the accuracy. Overlay analyses were performed to examine the distribution of misclassified areas. From the results, the integration method delivered the highest accuracy (Kappa statistic of 0.99) compared to the three methods that use a single type of spatial data. However, a longer production time and higher cost were limiting factors. Among the three methods using a single type of data, the land-cover map showed the highest accuracy with a Kappa statistic of 0.91. Thus, it was judged that the mapping method using the land-cover map is more appropriate than the others. In conclusion, it is desirable to apply the integration method when generating the ISM with the highest accuracy. However, if time and cost are constrained, it would be effective to primarily use the land-cover map. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Schaefer, J. M.; Finkel, R. C.; Fifield, L. K.; Balco, G.; Caffee, M.; Alley, R. B.; Briner, J. P.; Young, N. E.; Gow, A. J.; Schwartz, R.
2017-12-01
The Greenland Ice Sheet (GIS) contains the equivalent of 7.4 meters (24 feet) of global sea-level rise. Its stability in our warming climate is therefore a pressing concern. However, the scarcity of proxy evidence of the palaeo-stability of the GIS means that its history remains controversial (for example 1 vs. 2). Current model simulations of the past GIS configuration during warm periods remain ambiguous but do show that both the magnitude and the duration of warmth are critical to ice-sheet stability. Much of this uncertainty reflects the fact that the direct evidence, if it exists, is buried beneath the present ice sheet. Here we attempt to overcome this obstacle via cosmogenic nuclide analysis of sub-GIS bedrock. Cosmogenic nuclides directly monitor periods of surface exposure to cosmic ray bombardment and thus ice-free conditions, and the ratios between cosmogenic nuclides of differing half-lives are diagnostic for periods the GIS shielded the bedrock. We focus on the bedrock underneath the 3042 m long GISP2 ice core, retrieved in 1993, and recently published the 10Be (half-life 1.4 Myr) and 26Al (half-life 0.7 Myr) analyses from quartz of this bedrock core 3. The published results show that Greenland was nearly ice-free for extended periods during the Pleistocene (2.6 Myr -11.7 kyr ago) and narrow the spectrum of possible GIS histories: the longest period of stability of the present ice sheet that is consistent with the 10Be and 26Al measurements is 1.1 Myr, assuming that this was preceded by more than 280 kyr of ice-free conditions. More dynamic scenarios, in which Greenland was ice-free during any or all Pleistocene interglacials, would be also consistent with the 10Be and 26Al data. We now present 36Cl (half-life 0.3 Myr) data from feldspars separated from this bedrock core. The measured 36Cl depth profile is consistent with the 10Be and 26Al data, indicating that most of the analyzed 36Cl was produced by neutron spallation during periods of nearly ice-free Greenland. We discuss the implications of these new, direct evidence from the GISP2 bedrock core for the past, present and future GIS stability. References 1 de Vernal, A. & Hillaire-Marcel, C. Science 320, 1622-1625 (2008). 2 Bierman, P. R., et al. Nature 540, 256-258 (2016). 3 Schaefer, J. M. et al. Nature 540, 252-255 (2016).
Zhang, Na; Yang, Li; Luo, Sha; Wang, Xutong; Wang, Wei; Cheng, Yuxin; Tian, Hainan; Zheng, Kaijie; Cai, Ling; Wang, Shucai
2018-04-13
Trichome formation in Arabidopsis is regulated by a MBW complex formed by MYB, bHLH and WD40 transcriptional factors, which can activate GLABRA2 (GL2) and the R3 MYB transcription factor genes. GL2 promotes trichome formation, whereas R3 MYBs are able to block the formation of the MBW complex. It has been reported that the C2H2 transcription factor GIS (GLABROUS INFLORESCENCE STEMS) functions upstream of the MBW activator complex to regulate trichome formation, and that the expression of TCL1 is not regulated by the MBW complex. However, gis and the R3 MYB gene mutant tcl1 (trichomeless 1) have opposite inflorescence trichome phenotypes, but their relationship in regulating trichome formation remained unknown. By generating and characterization of the gis tcl1 double mutant, we found that trichome formation in the gis tcl1double and the tcl1 single mutants were largely indistinguishable, but the trichome formation in the 35S:TCL1/gis transgenic plant was similar to that in the gis mutant. By using quantitative RT-PCR analysis, we showed that expression level of GIS was increased in the triple mutant tcl1 try cpc, but the expression level of TCL1 was not affected in the gis mutant. On the other hand, trichome morphology in both gis tcl1 and 35S:TCL1/gis plants was similar to that in the gis mutant. In summary, our results indicate that GIS may work downstream of TCL1 to regulate trichome formation, and GIS has a dominant role in controlling trichome morphology.
NASA Astrophysics Data System (ADS)
Na, So-Yeong; Kim, Yeo-Myeong; Yoon, Da-Jeong; Yoon, Sung-Min
2017-12-01
The effects of atomic layer deposition (ALD) conditions for the HfO2 gate insulators (GI) on the device characteristics of the InGaZnO (IGZO) thin film transistors (TFTs) were investigated when the ALD temperature and Hf precursor purge time were varied to 200, 225, and 250 °C, and 15 and 30 s, respectively. The HfO2 thin films showed low leakage current density of 10-8 A cm-2, high dielectric constant of over 20, and smooth surface roughness at all ALD conditions. The IGZO TFTs using the HfO2 GIs showed good device characteristics such as a saturation mobility as high as 11 cm2 V-1 s-1, a subthreshold swing as low as 0.10 V/dec, and all the devices could be operated at a gate voltage as low as ±3 V. While there were no marked differences in transfer characteristics and PBS stabilities among the fabricated devices, the NBIS instabilities could be improved by increasing the ALD temperature for the formation of HfO2 GIs by reducing the oxygen vacancies within the IGZO channel.
Kristensen, Esben Astrup; Baattrup-Pedersen, Annette; Andersen, Hans Estrup
2012-03-01
Increasing human impact on stream ecosystems has resulted in a growing need for tools helping managers to develop conservations strategies, and environmental monitoring is crucial for this development. This paper describes the development of models predicting the presence of fish assemblages in lowland streams using solely cost-effective GIS-derived land use variables. Three hundred thirty-five stream sites were separated into two groups based on size. Within each group, fish abundance data and cluster analysis were used to determine the composition of fish assemblages. The occurrence of assemblages was predicted using a dataset containing land use variables at three spatial scales (50 m riparian corridor, 500 m riparian corridor and the entire catchment) supplemented by a dataset on in-stream variables. The overall classification success varied between 66.1-81.1% and was only marginally better when using in-stream variables than when applying only GIS variables. Also, the prediction power of a model combining GIS and in-stream variables was only slightly better than prediction based solely on GIS variables. The possibility of obtaining precise predictions without using costly in-stream variables offers great potential in the design of monitoring programmes as the distribution of monitoring sites along a gradient in ecological quality can be done at a low cost.
NASA Astrophysics Data System (ADS)
Zhu, Yan; Ye, Ming; Roeder, Eberhard; Hicks, Richard W.; Shi, Liangsheng; Yang, Jinzhong
2016-01-01
This paper presents a recently developed software, ArcGIS-based Nitrogen Load Estimation Toolkit (ArcNLET), for estimating nitrogen loading from septic systems to surface water bodies. The load estimation is important for managing nitrogen pollution, a world-wide challenge to water resources and environmental management. ArcNLET simulates coupled transport of ammonium and nitrate in both vadose zone and groundwater. This is a unique feature that cannot be found in other ArcGIS-based software for nitrogen modeling. ArcNLET is designed to be flexible for the following four simulating scenarios: (1) nitrate transport alone in groundwater; (2) ammonium and nitrate transport in groundwater; (3) ammonium and nitrate transport in vadose zone; and (4) ammonium and nitrate transport in both vadose zone and groundwater. With this flexibility, ArcNLET can be used as an efficient screening tool in a wide range of management projects related to nitrogen pollution. From the modeling perspective, this paper shows that in areas with high water table (e.g. river and lake shores), it may not be correct to assume a completed nitrification process that converts all ammonium to nitrate in the vadose zone, because observation data can indicate that substantial amount of ammonium enters groundwater. Therefore, in areas with high water table, simulating ammonium transport and estimating ammonium loading, in addition to nitrate transport and loading, are important for avoiding underestimation of nitrogen loading. This is demonstrated in the Eggleston Heights neighborhood in the City of Jacksonville, FL, USA, where monitoring well observations included a well with predominant ammonium concentrations. The ammonium loading given by the calibrated ArcNLET model can be 10-18% of the total nitrogen load, depending on various factors discussed in the paper.
NASA Astrophysics Data System (ADS)
Tsai, JuiPin; Chen, Yu Wen; Chang, Liang Cheng; Chiang, Chun Jung; Chen, Jui Er; Chen, You Cheng
2013-04-01
Groundwater recharge areas are regions with high permeability that accept surface water more readily than other regions. If the land use/cover were changed, it would affect the groundwater recharge. Also, if this area were polluted, the contamination easily infiltrates into the groundwater system. Therefore, the goal of this study is to delineate the recharge area of Choshuihsi Alluvial Fan. This study applies 6 recharge potential scale factors, including land use/land cover, soil, drainage density, annual average rainfall, hydraulic conductivity and aquifer thickness to estimate the infiltration ability and storage capacity of study area. The fundamental data of these factors were digitized using GIS (Geographic Information System) technology and their GIS maps were created. Then each of these maps was translated to a score map ranged from 1 to 100. Moreover, these score maps are integrated as a recharge potential map using arithmetic average, and this map shows recharge potential in 5 levels, such as very poor, poor, moderate, good and excellent. The result shows that majority of "good" and "excellent" areas is located at the top of the fan. This is because the land use of top-fan is agricultural and its surface soil type is gravel and coarse. The top-fan, which is close to mountain areas, has a higher average annual rainfall than other areas. Also, the aquifer thickness of top-fan is much thicker than other areas. The percentage of the areas ranged as "good" and above is 9.63% of total area, and most areas located at top-fan. As a result, we suggest that the top-fan of study area should be protected and more field surveys are required to accurately delineate the recharge area boundary.
Three-dimensional GIS approach for management of assets
NASA Astrophysics Data System (ADS)
Lee, S. Y.; Yee, S. X.; Majid, Z.; Setan, H.
2014-02-01
Assets play an important role in human life, especially to an organization. Organizations strive and put more effort to improve its operation and assets management. The development of GIS technology has become a powerful tool in management as it is able to provide a complete inventory for managing assets with location-based information. Spatial information is one of the requirements in decision making in various areas, including asset management in the buildings. This paper describes a 3D GIS approach for management of assets. An asset management system was developed by integrating GIS concept and 3D model assets. The purposes of 3D visualization to manage assets are to facilitate the analysis and understanding in the complex environment. Behind the 3D model of assets is a database to store the asset information. A user-friendly interface was also designed for more easier to operate the application. In the application developed, location of each individual asset can be easily tracked according to the referring spatial information and 3D viewing. The 3D GIS approach described in this paper is certainly would be useful in asset management. Systematic management of assets can be carried out and this will lead to less-time consuming and cost-effective. The results in this paper will show a new approach to improve asset management.
From healthy start to hurricane Katrina: using GIS to eliminate disparities in perinatal health.
Curtis, Andrew
2008-09-10
This paper provides a summary of the invited talk at the 2007 CDC & ATSDR 11th Biennial Symposium on Statistical Methods conference in which a university-non-profit collaboration targeted the elimination of racial disparities in perinatal health with the use of a Geographic Information System (GIS). This program will be described in four temporal stages; the pre-program early years (1999--2001) where the health burden is defined, leading to the Healthy Start years (2001--2005), in which spatial analyses, methods to effectively disseminate GIS results, the creation of the Baton Rouge Healthy Start database, and a move toward a conceptual goal of creating a holistic neighborhood GIS-health model are all described. The Katrina years (September 2005--early 2006) portrays the impact of the disaster and how the collaboration changed as resources from both were directed toward both response and recovery. The final section of the paper, the Post-Katrina years (early 2006 and ongoing) describes how the health landscape of Louisiana, including Baton Rouge as well as New Orleans, has worsened after the storms. An argument is made that the relationships and GIS structure developed during the collaboration's pre-Katrina years, even though stretched, provide the flexibility to analyze and cope with a Katrina-type shock to the system.
Adams, Marc A; Ryan, Sherry; Kerr, Jacqueline; Sallis, James F; Patrick, Kevin; Frank, Lawrence D; Norman, Gregory J
2009-01-01
Concurrent validity of Neighborhood Environment Walkability Scale (NEWS) items was evaluated with objective measures of the built environment using geographic information systems (GIS). A sample of 878 parents of children 10 to 16 years old (mean age 43.5 years, SD = 6.8, 34.8% non-White, 63.8% overweight) completed NEWS and the International Physical Activity Questionnaire. GIS was used to develop 1-mile street network buffers around participants' residences. GIS measures of the built environment within participants' buffers included percent of commercial and institutional land uses; number of schools and colleges, recreational facilities, parks, transit stops, and trees; land topography; and traffic congestion. Except for trees and traffic, concordance between the NEWS and GIS measures were significant, with weak to moderate effect sizes (r = -0.09 to -0.36, all P < or = 01). After participants were stratified by physical activity level, stronger concordance was observed among active participants for some measures. A sensitivity analysis of self-reported distance to 15 neighborhood destinations found a 20-minute (compared with 10- or 30-minute) walking threshold generally had the strongest correlations with GIS measures. These findings provide evidence of the concurrent validity of self-reported built environment items with objective measures. Physically active adults may be more knowledgeable about their neighborhood characteristics.
[Ecological environmental quality assessment of Hangzhou urban area based on RS and GIS].
Xu, Pengwei; Zhao, Duo
2006-06-01
In allusion to the shortage of traditional ecological environmental quality assessment, this paper studied the spatial distribution of assessing factors at a mid-small scale, and the conversion of integer character to girding assessing cells. The main assessing factors including natural environmental condition, environmental quality, natural landscape and urbanization pressure, which were classified into four types with about eleven assessing factors, were selected from RS images and GIS-spatial analyzing environmental quality vector graph. Based on GIS, a comprehensive assessment model for the ecological environmental quality in Hangzhou urban area was established. In comparison with observed urban heat island effects, the assessment results were in good agreement with the ecological environmental quality in the urban area of Hangzhou.
Segregation and Neighborhood Change in Northern Cities: New Historical GIS Data from 1900-1930.
Shertzer, Allison; Walsh, Randall P; Logan, John R
2016-01-01
Most quantitative research on segregation and neighborhood change in American cities prior to 1940 has utilized data published by the Census Bureau at the ward level. The transcription of census manuscripts has made it possible to aggregate individual records to a finer level, the enumeration district (ED). Advances in Geographic Information Systems (GIS) have facilitated mapping these data, opening new possibilities for historical GIS research. We report here the creation of a mapped public use data set for EDs in ten northern cities for each decade from 1900 to 1930. We illustrate a range of research topics that can now be pursued: recruitment into ethnic neighborhoods, the effects of comprehensive zoning on neighborhood change, and white flight from black neighbors.
GIS based solid waste management information system for Nagpur, India.
Vijay, Ritesh; Jain, Preeti; Sharma, N; Bhattacharyya, J K; Vaidya, A N; Sohony, R A
2013-01-01
Solid waste management is one of the major problems of today's world and needs to be addressed by proper utilization of technologies and design of effective, flexible and structured information system. Therefore, the objective of this paper was to design and develop a GIS based solid waste management information system as a decision making and planning tool for regularities and municipal authorities. The system integrates geo-spatial features of the city and database of existing solid waste management. GIS based information system facilitates modules of visualization, query interface, statistical analysis, report generation and database modification. It also provides modules like solid waste estimation, collection, transportation and disposal details. The information system is user-friendly, standalone and platform independent.
GIS Data Downloads | USDA Plant Hardiness Zone Map
Acknowledgments & Citation Copyright Map & Data Downloads Map Downloads Geography (GIS) Downloads Multi & Data Downloads / GIS Data Downloads Topics Map Downloads Geography (GIS) Downloads Multi-Zip Code
On Using GIS to Teach in the Social Sciences
ERIC Educational Resources Information Center
Harris, Jill S.
2012-01-01
In this article, the author discusses how a professor can harness the power of Geographic Information Systems (GIS) and use GIS to teach in the social sciences. She shows examples of how GIS can illustrate concepts during lecture or discussion, and provides two specific GIS assignments: one for undergraduate students and the other for graduate…
Yamashita, Takashi; Carr, Dawn C; Brown, J Scott
2014-01-01
Public health policies are designed for specific subsets of the population. Evidence that a policy is effectively designed should be based on whether it effectively addresses its mission. A critical factor is determining whether utilization patterns reflect the mission and the efficacy of public health policies, particularly during early stages of implementation. We assert that utilization patterns can be effectively assessed using geographic information systems (GIS). This paper uses the Silver Alert program, a recently implemented public health policy, as a case for how and why GIS can be used to examine utilization patterns. GIS are employed to visualize and spatially analyze a new health policy--North Carolina's Silver Alert policy. We use visualized data and spatial statistics to assess utilization patterns and mission adherence. Results show disproportionate utilization patterns of the Silver Alert policy. In particular, an outstanding number of Silver Alerts were used in Wake County and its surrounding counties, which are both the political and media center of North Carolina. Other counties, including populous counties, had few if any alerts. Findings suggest that the North Carolina's Silver Alert policy needs to be adjusted to more effectively address its mission. We identify several factors that need further examination prior to a statewide evaluation. From this case study, we propose ways future programs, particularly the introduction of the Affordable Care Act (ACA) in 2014, might use GIS to examine utilization patterns as a means to better understand whether and in what ways the health care needs of the public are being met with such a policy.
NASA Astrophysics Data System (ADS)
Welton, B.; Chouinard, K.; Sultan, M.; Becker, D.; Milewski, A.; Becker, R.
2010-12-01
Rising populations in the arid and semi arid parts of the World are increasing the demand for fresh water supplies worldwide. Many data sets needed for assessment of hydrologic applications across vast regions of the world are expensive, unpublished, difficult to obtain, or at varying scales which complicates their use. Fortunately, this situation is changing with the development of global remote sensing datasets and web-based platforms such as GIS Server. GIS provides a cost effective vehicle for comparing, analyzing, and querying a variety of spatial datasets as geographically referenced layers. We have recently constructed a web-based GIS, that incorporates all relevant geological, geochemical, geophysical, and remote sensing data sets that were readily used to identify reservoir types and potential well locations on local and regional scales in various tectonic settings including: (1) extensional environment (Red Sea rift), (2) transcurrent fault system (Najd Fault in the Arabian-Nubian Shield), and (3) compressional environments (Himalayas). The web-based GIS could also be used to detect spatial and temporal trends in precipitation, recharge, and runoff in large watersheds on local, regional, and continental scales. These applications were enabled through the construction of a web-based ArcGIS Server with Google Map’s interface and the development of customized geoprocessing tools. ArcGIS Server provides out-of-the-box setups that are generic in nature. This platform includes all of the standard web based GIS tools (e.g. pan, zoom, identify, search, data querying, and measurement). In addition to the standard suite of tools provided by ArcGIS Server an additional set of advanced data manipulation and display tools was also developed to allow for a more complete and customizable view of the area of interest. The most notable addition to the standard GIS Server tools is the custom on-demand geoprocessing tools (e.g., graph, statistical functions, custom raster creation, profile, TRMM). The generation of a wide range of derivative maps (e.g., buffer zone, contour map, graphs, temporal rainfall distribution maps) from various map layers (e.g., geologic maps, geophysics, satellite images) allows for more user flexibility. The use of these tools along with Google Map’s API which enables the website user to utilize high quality GeoEye 2 images provide by Google in conjunction with our data, creates a more complete image of the area being observed and allows for custom derivative maps to be created in the field and viewed immediately on the web, processes that were restricted to offline databases.
Lunar Navigation Determination System - LaNDS
NASA Technical Reports Server (NTRS)
Quinn, David; Talabac, Stephen
2012-01-01
A portable comprehensive navigational system has been developed that both robotic and human explorers can use to determine their location, attitude, and heading anywhere on the lunar surface independent of external infrastructure (needs no Lunar satellite network, line of sight to the Sun or Earth, etc.). The system combines robust processing power with an extensive topographical database to create a real-time atlas (GIS Geospatial Information System) that is able to autonomously control and monitor both single unmanned rovers and fleets of rovers, as well as science payload stations. The system includes provisions for teleoperation and tele-presence. The system accepts (but does not require) inputs from a wide range of sensors. A means was needed to establish a location when the search is taken deep in a crater (looking for water ice) and out of view of Earth or any other references. A star camera can be employed to determine the user's attitude in menial space and stellar map in body space. A local nadir reference (e.g., an accelerometer that orients the nadir vector in body space) can be used in conjunction with a digital ephemeris and gravity model of the Moon to isolate the latitude, longitude, and azimuth of the user on the surface. That information can be used in conjunction with a Lunar GIS and advanced navigation planning algorithms to aid astronauts (or other assets) to navigate on the Lunar surface.
A GIS System for Inferring Subsurface Geology and Material Properties: Proof of Concept
2006-09-01
geologic structure. For example, interbedded sedimentary rocks comprise significant proportions of the Appalachian Mountains as well as various mountain ...Pitted surfaces a. Shallow, rounded, non-uniform b. More or less circular Hills and Mountains … Drainage...pear-shaped ap - pendages; talus common at bases of slopes along boundaries; strongly verti- cally jointed; vertical escarpments; co- lumnar jointing
ERIC Educational Resources Information Center
Mulrooney, Timothy J.
2009-01-01
A Geographic Information System (GIS) serves as the tangible and intangible means by which spatially related phenomena can be created, analyzed and rendered. GIS metadata serves as the formal framework to catalog information about a GIS data set. Metadata is independent of the encoded spatial and attribute information. GIS metadata is a subset of…
Use of the Geographic Information System (GIS) in nurseries
Brent Olson; Chad Loreth
2002-01-01
The use of GIs in nursery operations provides a variety of opportunities. All planning activities can be incorporated into an accessible database. GIS can be used to create ways for employees to access and analyze data. The program can be used for historical record keeping. Use of GIS in planning can improve the efficiency of nursery operations. GIS can easily be used...
ERIC Educational Resources Information Center
Chirowodza, Admire; van Rooyen, Heidi; Joseph, Philip; Sikotoyi, Sindisiwe; Richter, Linda; Coates, Thomas
2009-01-01
Recent attempts to integrate geographic information systems (GIS) and participatory techniques, have given rise to terminologies such as "participatory GIS" and "community-integrated GIS". Although GIS was initially developed for physical geographic application, it can be used for the management and analysis of health and…
NASA Astrophysics Data System (ADS)
Stam, C. N.; Neal, A.; Park, S.; Mielke, R.; Tsapin, A. I.; Bhartia, R.; Salas, E.; Hug, W.; Behar, A. E.; Nadeau, J. L.
2011-12-01
Microbial interactions with synthetic polymers in open ocean is poorly understood. Plastics are a major and persistent contaminant of ocean waters. Many of these plastics are contaminated with toxic and synthetic chemicals that persist in the environment with minimal degradation. The purpose of this study is to look at the effects that microbial biofilm communities have on both surface and chemical structures of pre-production resin pellets (PRPs). Pseudomonas aeruignosa was grown with PRPs under multiple growth and nutrient conditions. These conditions were combined with varying lengths of UV exposures common to ocean environments. Material degradation of the PRPs and the changing surface and chemical structures of these synthetic polymers was evaluated using a combination of Fourier transform infrared spectroscopy, environmental scanning electron microscopy, scanning transmission electron microscopy, X-ray microtomography, and ArcGIS mapping. This study correlates with previous studies conducted on environmental PRP's , collected on the 2009 Project Kaisei expedition in the Subtropical Convergence Zone of the North Pacific Gyre. Further studies are needed to develop a full understanding of degradation rates of synthetic polymers in oceanic environments.
Integration of GIS and Bim for Indoor Geovisual Analytics
NASA Astrophysics Data System (ADS)
Wu, B.; Zhang, S.
2016-06-01
This paper presents an endeavour of integration of GIS (Geographical Information System) and BIM (Building Information Modelling) for indoor geovisual analytics. The merits of two types of technologies, GIS and BIM are firstly analysed in the context of indoor environment. GIS has well-developed capabilities of spatial analysis such as network analysis, while BIM has the advantages for indoor 3D modelling and dynamic simulation. This paper firstly investigates the important aspects for integrating GIS and BIM. Different data standards and formats such as the IFC (Industry Foundation Classes) and GML (Geography Markup Language) are discussed. Their merits and limitations in data transformation between GIS and BIM are analysed in terms of semantic and geometric information. An optimized approach for data exchange between GIS and BIM datasets is then proposed. After that, a strategy of using BIM for 3D indoor modelling, GIS for spatial analysis, and BIM again for visualization and dynamic simulation of the analysis results is presented. Based on the developments, this paper selects a typical problem, optimized indoor emergency evacuation, to demonstrate the integration of GIS and BIM for indoor geovisual analytics. The block Z of the Hong Kong Polytechnic University is selected as a test site. Detailed indoor and outdoor 3D models of the block Z are created using a BIM software Revit. The 3D models are transferred to a GIS software ArcGIS to carry out spatial analysis. Optimized evacuation plans considering dynamic constraints are generated based on network analysis in ArcGIS assuming there is a fire accident inside the building. The analysis results are then transferred back to BIM software for visualization and dynamic simulation. The developed methods and results are of significance to facilitate future development of GIS and BIM integrated solutions in various applications.
Haluska, Tana L.; Snyder, Daniel T.
2007-01-01
This report presents the parcel and inundation area geographic information system (GIS) layers for various surface-water stages. It also presents data tables containing the water stage, inundation area, and water volume relations developed from analysis of detailed land surface elevation derived from Light Detection and Ranging (LiDAR) data recently collected for the Wood River Valley at the northern margin of Agency Lake in Klamath County, Oregon. Former shoreline wetlands that have been cut off from Upper Klamath and Agency Lakes by dikes might in the future be reconnected to Upper Klamath and Agency Lakes by breaching the dikes. Issues of interest associated with restoring wetlands in this way include the area that will be inundated, the volume of water that may be stored, the change in wetland habitat, and the variation in these characteristics as surface-water stage is changed. Products from this analysis can assist water managers in assessing the effect of breaching dikes and changing surface-water stage. The study area is in the approximate former northern margins of Upper Klamath and Agency Lakes in the Wood River Valley.
A GIS planning model for urban oil spill management.
Li, J
2001-01-01
Oil spills in industrialized cities pose a significant threat to their urban water environment. The largest city in Canada, the city of Toronto, has an average 300-500 oil spills per year with an average total volume of about 160,000 L/year. About 45% of the spills was eventually cleaned up. Given the enormous amount of remaining oil entering into the fragile urban ecosystem, it is important to develop an effective pollution prevention and control plan for the city. A Geographic Information System (GIS) planning model has been developed to characterize oil spills and determine preventive and control measures available in the city. A database of oil spill records from 1988 to 1997 was compiled and geo-referenced. Attributes to each record such as spill volume, oil type, location, road type, sector, source, cleanup percentage, and environmental impacts were created. GIS layers of woodlots, wetlands, watercourses, Environmental Sensitive Areas, and Areas of Natural and Scientific Interest were obtained from the local Conservation Authority. By overlaying the spill characteristics with the GIS layers, evaluation of preventive and control solutions close to these environmental features was conducted. It was found that employee training and preventive maintenance should be improved as the principal cause of spills was attributed to human errors and equipment failure. Additionally, the cost of using oil separators at strategic spill locations was found to be $1.4 million. The GIS model provides an efficient planning tool for urban oil spill management. Additionally, the graphical capability of GIS allows users to integrate environmental features and spill characteristics in the management analysis.
Ahmadi, Maryam; Valinejadi, Ali; Goodarzi, Afshin; Safari, Ameneh; Hemmat, Morteza; Majdabadi, Hesamedin Askari; Mohammadi, Ali
2017-06-01
Traffic accidents are one of the more important national and international issues, and their consequences are important for the political, economical, and social level in a country. Management of traffic accident information requires information systems with analytical and accessibility capabilities to spatial and descriptive data. The aim of this study was to determine the capabilities of a Geographic Information System (GIS) in management of traffic accident information. This qualitative cross-sectional study was performed in 2016. In the first step, GIS capabilities were identified via literature retrieved from the Internet and based on the included criteria. Review of the literature was performed until data saturation was reached; a form was used to extract the capabilities. In the second step, study population were hospital managers, police, emergency, statisticians, and IT experts in trauma, emergency and police centers. Sampling was purposive. Data was collected using a questionnaire based on the first step data; validity and reliability were determined by content validity and Cronbach's alpha of 75%. Data was analyzed using the decision Delphi technique. GIS capabilities were identified in ten categories and 64 sub-categories. Import and process of spatial and descriptive data and so, analysis of this data were the most important capabilities of GIS in traffic accident information management. Storing and retrieving of descriptive and spatial data, providing statistical analysis in table, chart and zoning format, management of bad structure issues, determining the cost effectiveness of the decisions and prioritizing their implementation were the most important capabilities of GIS which can be efficient in the management of traffic accident information.
Stellman, Jeanne Mager; Stellman, Steven D; Weber, Tracy; Tomasallo, Carrie; Stellman, Andrew B; Christian, Richard
2003-03-01
Between 1961 and 1971, U.S. military forces dispersed more than 19 million gallons of phenoxy and other herbicidal agents in the Republic of Vietnam, including more than 12 million gallons of dioxin-contaminated Agent Orange, yet only comparatively limited epidemiologic and environmental research has been carried out on the distribution and health effects of this contamination. As part of a response to a National Academy of Sciences' request for development of exposure methodologies for carrying out epidemiologic research, a conceptual framework for estimating exposure opportunity to herbicides and a geographic information system (GIS) have been developed. The GIS is based on a relational database system that integrates extensive data resources on dispersal of herbicides (e.g., HERBS records of Ranch Hand aircraft flight paths, gallonage, and chemical agent), locations of military units and bases, dynamic movement of combat troops in Vietnam, and locations of civilian population centers. The GIS can provide a variety of proximity counts for exposure to 9,141 herbicide application missions. In addition, the GIS can be used to generate a quantitative exposure opportunity index that accounts for quantity of herbicide sprayed, distance, and environmental decay of a toxic factor such as dioxin, and is flexible enough to permit substitution of other mathematical exposure models by the user. The GIS thus provides a basis for estimation of herbicide exposure for use in large-scale epidemiologic studies. To facilitate widespread use of the GIS, a user-friendly software package was developed to permit researchers to assign exposure opportunity indexes to troops, locations, or individuals.
The Development of GIS Educational Resources Sharing among Central Taiwan Universities
NASA Astrophysics Data System (ADS)
Chou, T.-Y.; Yeh, M.-L.; Lai, Y.-C.
2011-09-01
Using GIS in the classroom enhance students' computer skills and explore the range of knowledge. The paper highlights GIS integration on e-learning platform and introduces a variety of abundant educational resources. This research project will demonstrate tools for e-learning environment and delivers some case studies for learning interaction from Central Taiwan Universities. Feng Chia University (FCU) obtained a remarkable academic project subsidized by Ministry of Education and developed e-learning platform for excellence in teaching/learning programs among Central Taiwan's universities. The aim of the project is to integrate the educational resources of 13 universities in central Taiwan. FCU is serving as the hub of Center University. To overcome the problem of distance, e-platforms have been established to create experiences with collaboration enhanced learning. The e-platforms provide coordination of web service access among the educational community and deliver GIS educational resources. Most of GIS related courses cover the development of GIS, principles of cartography, spatial data analysis and overlaying, terrain analysis, buffer analysis, 3D GIS application, Remote Sensing, GPS technology, and WebGIS, MobileGIS, ArcGIS manipulation. In each GIS case study, students have been taught to know geographic meaning, collect spatial data and then use ArcGIS software to analyze spatial data. On one of e-Learning platforms provide lesson plans and presentation slides. Students can learn Arc GIS online. As they analyze spatial data, they can connect to GIS hub to get data they need including satellite images, aerial photos, and vector data. Moreover, e-learning platforms provide solutions and resources. Different levels of image scales have been integrated into the systems. Multi-scale spatial development and analyses in Central Taiwan integrate academic research resources among CTTLRC partners. Thus, establish decision-making support mechanism in teaching and learning. Accelerate communication, cooperation and sharing among academic units
NASA Astrophysics Data System (ADS)
Teves, Justine; Sola, Eula Fae; Pintor, Ben Hur; Ang, Ma. Rosario Concepcion
2016-10-01
Solar energy is emerging as one of the top options for renewable energy sources in the Philippines, with largescale solar photovoltaic (PV) farms being built all over the country. Solar energy resource in the urban environment has great potential in making a city self-sustaining, but has not been fully explored for the country. In order to represent its potential, reliable resource assessment should be done. This study aims to assess the available solar energy resource in Davao City, a trade and commerce hub in southern Philippines. The functions of GRASS GIS, specifically the r.sun module, in modelling incoming solar radiation is discussed, along with the use of a one-meter LiDAR Digital Surface Model (DSM) and Linke Turbidity coefficients as inputs. The average Julian day of each month was used to compute the Global Horizontal Irradiation (GHI) values under clear-sky or cloudless conditions. To account for the effects of the clouds in the study area, the clear-sky indices (Kc) were computed using data from solar recording stations of the Bureau of Soils and Water Management (BSWM) found within and around the region. These were multiplied to the modelled clear-sky GHI rasters to get the real-sky GHI. The results show that the city's average GHI potential ranges from 2693.79 Wh/m2 and 4453.13 Wh/m2. Average values are particularly higher around the months of March and April, while lower values are seen in the months of November and January. Areas with higher potential are seen in the southern portion of the city, consistent in built-up areas.
Formation of fluvial knickzones in Japanese mountainous areas: A spatial analysis using GIS and DEMs
NASA Astrophysics Data System (ADS)
Hayakawa, Y. S.; Oguchi, T.
2006-12-01
Fluvial knickzones are the elements of bedrock rivers that can enhance stream erosion into bedrock, and they can be key morphologies highlighting interactions among earth surface processes such as erosion, tectonics, and volcanism. This study examines the longitudinal profiles of Japanese mountain rivers to illustrate the distribution of knickzones and discusses their role in the landscape development. Using 50-m DEMs, knickzones were extracted based on a quantitative criterion, and 5,753 knickzones were identified in the rivers of ca. 65,000 km long. The location of the knickzones was then examined along with other GIS data including topography, geology and precipitation. Overall, topographical conditions have the strongest influences on knickzone abundance, and upstream steep reaches of the rivers are more favorable for knickzone existence. The knickzone abundance for each rock type is also controlled by stream gradients, and lighologic boundaries do not show significant correlations with the knickzone locations. The controls of lithologic substrate on the knickzone locations are therefore limited. The abundant knickzones in steep river reaches indicate a hydraulic origin of knickzones, where stream erosions have enough strength in shaping the bedrock. Moreover, the knickzones are frequently observed in reaches slightly upstream from the major confluences at which stream discharge abruptly increases, indicating that the hydraulic anomalies of water flows at the confluences can cause knickzones which may later migrate upstream. The other possible causes of knickzone initiation including volcanic, tectonic and climatic effects are also suggested. The abundant knickzones in Japanese mountain rivers, resulted from the interactions among surface processes, suggest that river morphology modeling needs to consider the initiation and development of knickzones. tokyo.ac.jp/~hayakawa/
NASA Astrophysics Data System (ADS)
Cross, J. A.
2006-12-01
A Geographical Information System (GIS) is an invaluable tool in the estimation of land use changes and spatial variability in urban areas. (Non-Point Source (NPS) models provide hypothetical opportunities to assess impacts which storm water management strategies and land use changes have on watersheds by predicting loadings on a watershed scale. This study establishes a methodology for analyzing land use changes and management associated with them by utilizing a GIS analysis of impervious surfaces and AGricultural Non- Point Source (AGNPS) modeling. The GIS analysis of Total Impervious Area (TIA) was used to quantify increases in development and provided land use data for use in AGNPS modeling in a small artificially- delineated urban watershed. AGNPS modeling was executed in several different scenarios to predict changes in NPS loadings associated with increases in TIA and its subsequent management in a small artificially- delineated urban watershed. Data editing, creation and extracting was completed using ArcView (3.2) GeoMedia (6) GIS systems. The GIS analysis quantified the increase in urbanization via TIA within the Bluebonnet Swamp Watershed (BSW) in East Baton Rouge Parish (EBRP), Louisiana. The BSW had significant increases in urbanization in the 8 year time span of 1996 2004 causing and increase in quantity and decrease in quality of subsequent runoff. Datasets made available from the GIS analysis included TIA and the change in percentage from 1996 to 2004. This information is fundamental for the AGNPS model because it was used to calculate TIA percentages within each AGNPS cell. A 30 year daily climate file was used to execute AGNPS in different land use and storm water management scenarios within the 1100 acre BSW. Runoff qualities and quantities were then compared for different periods of 1996 and 2004. Predictions of sediment, erosion and runoff were compared according by scenario year. Management practices were also simulated by changing the Runoff Curve Number (RCN) within AGNPS and their results were also compared. This study provides an aid to planners and managers in estimating increases in urbanization by artificially- delineated watershed. It also in illustrates how to use AGNPS to predict NPS pollution and the influence that change in TIA, land use and storm water management strategies have on sediment loadings, erosion and runoff in a watershed.
Use NASA GES DISC Data in ArcGIS
NASA Technical Reports Server (NTRS)
Yang, Wenli; Pham, Long B.; Kempler, Steve
2015-01-01
This presentation describes GIS relevant data at NASA Goddard Earth Sciences Data and Information Services Center (GES DISC), GES DISC Services and Support for GIS Users, and use cases of GES DISC data in ArcGIS.
Analyzing rasters, vectors and time series using new Python interfaces in GRASS GIS 7
NASA Astrophysics Data System (ADS)
Petras, Vaclav; Petrasova, Anna; Chemin, Yann; Zambelli, Pietro; Landa, Martin; Gebbert, Sören; Neteler, Markus; Löwe, Peter
2015-04-01
GRASS GIS 7 is a free and open source GIS software developed and used by many scientists (Neteler et al., 2012). While some users of GRASS GIS prefer its graphical user interface, significant part of the scientific community takes advantage of various scripting and programing interfaces offered by GRASS GIS to develop new models and algorithms. Here we will present different interfaces added to GRASS GIS 7 and available in Python, a popular programming language and environment in geosciences. These Python interfaces are designed to satisfy the needs of scientists and programmers under various circumstances. PyGRASS (Zambelli et al., 2013) is a new object-oriented interface to GRASS GIS modules and libraries. The GRASS GIS libraries are implemented in C to ensure maximum performance and the PyGRASS interface provides an intuitive, pythonic access to their functionality. GRASS GIS Python scripting library is another way of accessing GRASS GIS modules. It combines the simplicity of Bash and the efficiency of the Python syntax. When full access to all low-level and advanced functions and structures from GRASS GIS library is required, Python programmers can use an interface based on the Python ctypes package. Ctypes interface provides complete, direct access to all functionality as it would be available to C programmers. GRASS GIS provides specialized Python library for managing and analyzing spatio-temporal data (Gebbert and Pebesma, 2014). The temporal library introduces space time datasets representing time series of raster, 3D raster or vector maps and allows users to combine various spatio-temporal operations including queries, aggregation, sampling or the analysis of spatio-temporal topology. We will also discuss the advantages of implementing scientific algorithm as a GRASS GIS module and we will show how to write such module in Python. To facilitate the development of the module, GRASS GIS provides a Python library for testing (Petras and Gebbert, 2014) which helps researchers to ensure the robustness of the algorithm, correctness of the results in edge cases as well as the detection of changes in results due to new development. For all modules GRASS GIS automatically creates standardized command line and graphical user interfaces and documentation. Finally, we will show how GRASS GIS can be used together with powerful Python tools such as the NumPy package and the IPython Notebook. References: Gebbert, S., Pebesma, E., 2014. A temporal GIS for field based environmental modeling. Environmental Modelling & Software 53, 1-12. Neteler, M., Bowman, M.H., Landa, M. and Metz, M., 2012. GRASS GIS: a multi-purpose Open Source GIS. Environmental Modelling & Software 31: 124-130. Petras, V., Gebbert, S., 2014. Testing framework for GRASS GIS: ensuring reproducibility of scientific geospatial computing. Poster presented at: AGU Fall Meeting, December 15-19, 2014, San Francisco, USA. Zambelli, P., Gebbert, S., Ciolli, M., 2013. Pygrass: An Object Oriented Python Application Programming Interface (API) for Geographic Resources Analysis Support System (GRASS) Geographic Information System (GIS). ISPRS International Journal of Geo-Information 2, 201-219.
Identification of craters on Moon using Crater Density Parameter
NASA Astrophysics Data System (ADS)
Vandana, Vandana
2016-07-01
Lunar craters are the most noticeable features on the face of the moon. They take up 40.96% of the lunar surface and, their accumulated area is approximately three times as much as the lunar surface area. There are many myths about the moon. Some says moon is made of cheese. The moon and the sun chase each other across the sky etc. but scientifically the moon are closest and are only natural satellite of earth. The orbit plane of the moon is tilted by 5° and orbit period around the earth is 27-3 days. There are two eclipse i.e. lunar eclipse and solar eclipse which always comes in pair. Moon surface has 3 parts i.e. highland, Maria, and crater. For crater diagnostic crater density parameter is one of the means for measuring distance can be easily identity the density between two craters. Crater size frequency distribution (CSFD) is being computed for lunar surface using TMC and MiniSAR image data and hence, also the age for the selected test sites of mars is also determined. The GIS-based program uses the density and orientation of individual craters within LCCs (as vector points) to identify potential source craters through a series of cluster identification and ejection modeling analyses. JMars software is also recommended and operated only the time when connected with server but work can be done in Arc GIS with the help of Arc Objects and Model Builder. The study plays a vital role to determine the lunar surface based on crater (shape, size and density) and exploring affected craters on the basis of height, weight and velocity. Keywords: Moon; Crater; MiniSAR.
NASA Astrophysics Data System (ADS)
Graeter, K.; Osterberg, E. C.; Hawley, R. L.; Thundercloud, Z. R.; Marshall, H. P.; Ferris, D. G.; Lewis, G.
2016-12-01
Predictions of the Greenland Ice Sheet's (GIS) contribution to sea-level rise in a warming climate depend on our ability to model the surface mass balance (SMB) processes occurring across the ice sheet. These processes are poorly constrained in the percolation zone, the region of the ice sheet where surface melt refreezes in the firn, thus preventing that melt from directly contributing to GIS mass loss. In this way, the percolation zone serves as a buffer to higher temperatures increasing mass loss. However, it is unknown how the percolation zone is evolving in a changing climate and to what extent the region will continue to serve as a buffer to future runoff. We collected seven shallow ( 22-30 m) firn cores from the Western Greenland percolation zone in May-June 2016 as part of the Greenland Traverse for Accumulation and Climate Studies (GreenTrACS) project. Here we present data on melt layer stratigraphy, density, and annual accumulation for each core to determine: (1) the temporal and spatial accumulation and melt refreeze patterns in the percolation zone of W. Greenland over the past 40 - 55 years, and (2) the impacts of changing melt and refreeze patterns on the near-surface density profile of the percolation zone. Three of the GreenTrACS firn cores re-occupy firn core sites collected in the 1970's-1990's, allowing us to more accurately quantify the evolution of the percolation zone surface melt and firn density during the most recent decades of summertime warming. This work is the basis for broader investigations into how changes in W. Greenland summertime climate are impacting the SMB of the Greenland Ice Sheet.
Landfill site selection using combination of GIS and fuzzy AHP, a case study: Iranshahr, Iran.
Torabi-Kaveh, M; Babazadeh, R; Mohammadi, S D; Zaresefat, M
2016-03-09
One of the most important recent challenges in solid waste management throughout the world is site selection of sanitary landfill. Commonly, because of simultaneous effects of social, environmental, and technical parameters on suitability of a landfill site, landfill site selection is a complex process and depends on several criteria and regulations. This study develops a multi-criteria decision analysis (MCDA) process, which combines geographic information system (GIS) analysis with a fuzzy analytical hierarchy process (FAHP), to determine suitable sites for landfill construction in Iranshahr County, Iran. The GIS was used to calculate and classify selected criteria and FAHP was used to assess the criteria weights based on their effectiveness on selection of potential landfill sites. Finally, a suitability map was prepared by overlay analyses and suitable areas were identified. Four suitability classes within the study area were separated, including high, medium, low, and very low suitability areas, which represented 18%, 15%, 55%, and 12% of the study area, respectively. © The Author(s) 2016.
Monitoring Metal Pollution Levels in Mine Wastes around a Coal Mine Site Using GIS
NASA Astrophysics Data System (ADS)
Sanliyuksel Yucel, D.; Yucel, M. A.; Ileri, B.
2017-11-01
In this case study, metal pollution levels in mine wastes at a coal mine site in Etili coal mine (Can coal basin, NW Turkey) are evaluated using geographical information system (GIS) tools. Etili coal mine was operated since the 1980s as an open pit. Acid mine drainage is the main environmental problem around the coal mine. The main environmental contamination source is mine wastes stored around the mine site. Mine wastes were dumped over an extensive area along the riverbeds, and are now abandoned. Mine waste samples were homogenously taken at 10 locations within the sampling area of 102.33 ha. The paste pH and electrical conductivity values of mine wastes ranged from 2.87 to 4.17 and 432 to 2430 μS/cm, respectively. Maximum Al, Fe, Mn, Pb, Zn and Ni concentrations of wastes were measured as 109300, 70600, 309.86, 115.2, 38 and 5.3 mg/kg, respectively. The Al, Fe and Pb concentrations of mine wastes are higher than world surface rock average values. The geochemical analysis results from the study area were presented in the form of maps. The GIS based environmental database will serve as a reference study for our future work.
Bennema, S C; Molento, M B; Scholte, R G; Carvalho, O S; Pritsch, I
2017-11-01
Fascioliasis is a condition caused by the trematode Fasciola hepatica. In this paper, the spatial distribution of F. hepatica in bovines in Brazil was modelled using a decision tree approach and a logistic regression, combined with a geographic information system (GIS) query. In the decision tree and the logistic model, isothermality had the strongest influence on disease prevalence. Also, the 50-year average precipitation in the warmest quarter of the year was included as a risk factor, having a negative influence on the parasite prevalence. The risk maps developed using both techniques, showed a predicted higher prevalence mainly in the South of Brazil. The prediction performance seemed to be high, but both techniques failed to reach a high accuracy in predicting the medium and high prevalence classes to the entire country. The GIS query map, based on the range of isothermality, minimum temperature of coldest month, precipitation of warmest quarter of the year, altitude and the average dailyland surface temperature, showed a possibility of presence of F. hepatica in a very large area. The risk maps produced using these methods can be used to focus activities of animal and public health programmes, even on non-evaluated F. hepatica areas.
NASA Astrophysics Data System (ADS)
Hofierka, Jaroslav; Lacko, Michal; Zubal, Stanislav
2017-10-01
In this paper, we describe the parallelization of three complex and computationally intensive modules of GRASS GIS using the OpenMP application programming interface for multi-core computers. These include the v.surf.rst module for spatial interpolation, the r.sun module for solar radiation modeling and the r.sim.water module for water flow simulation. We briefly describe the functionality of the modules and parallelization approaches used in the modules. Our approach includes the analysis of the module's functionality, identification of source code segments suitable for parallelization and proper application of OpenMP parallelization code to create efficient threads processing the subtasks. We document the efficiency of the solutions using the airborne laser scanning data representing land surface in the test area and derived high-resolution digital terrain model grids. We discuss the performance speed-up and parallelization efficiency depending on the number of processor threads. The study showed a substantial increase in computation speeds on a standard multi-core computer while maintaining the accuracy of results in comparison to the output from original modules. The presented parallelization approach showed the simplicity and efficiency of the parallelization of open-source GRASS GIS modules using OpenMP, leading to an increased performance of this geospatial software on standard multi-core computers.
Delivering integrated HAZUS-MH flood loss analyses and flood inundation maps over the Web.
Hearn, Paul P; Longenecker, Herbert E; Aguinaldo, John J; Rahav, Ami N
2013-01-01
Catastrophic flooding is responsible for more loss of life and damages to property than any other natural hazard. Recently developed flood inundation mapping technologies make it possible to view the extent and depth of flooding on the land surface over the Internet; however, by themselves these technologies are unable to provide estimates of losses to property and infrastructure. The Federal Emergency Management Agency's (FEMA's) HAZUS-MH software is extensively used to conduct flood loss analyses in the United States, providing a nationwide database of population and infrastructure at risk. Unfortunately, HAZUS-MH requires a dedicated Geographic Information System (GIS) workstation and a trained operator, and analyses are not adapted for convenient delivery over the Web. This article describes a cooperative effort by the US Geological Survey (USGS) and FEMA to make HAZUS-MH output GIS and Web compatible and to integrate these data with digital flood inundation maps in USGS's newly developed Inundation Mapping Web Portal. By running the computationally intensive HAZUS-MH flood analyses offline and converting the output to a Web-GIS compatible format, detailed estimates of flood losses can now be delivered to anyone with Internet access, thus dramatically increasing the availability of these forecasts to local emergency planners and first responders.
Delivering integrated HAZUS-MH flood loss analyses and flood inundation maps over the Web
Hearn,, Paul P.; Longenecker, Herbert E.; Aguinaldo, John J.; Rahav, Ami N.
2013-01-01
Catastrophic flooding is responsible for more loss of life and damages to property than any other natural hazard. Recently developed flood inundation mapping technologies make it possible to view the extent and depth of flooding on the land surface over the Internet; however, by themselves these technologies are unable to provide estimates of losses to property and infrastructure. The Federal Emergency Management Agency’s (FEMA's) HAZUS-MH software is extensively used to conduct flood loss analyses in the United States, providing a nationwide database of population and infrastructure at risk. Unfortunately, HAZUS-MH requires a dedicated Geographic Information System (GIS) workstation and a trained operator, and analyses are not adapted for convenient delivery over the Web. This article describes a cooperative effort by the US Geological Survey (USGS) and FEMA to make HAZUS-MH output GIS and Web compatible and to integrate these data with digital flood inundation maps in USGS’s newly developed Inundation Mapping Web Portal. By running the computationally intensive HAZUS-MH flood analyses offline and converting the output to a Web-GIS compatible format, detailed estimates of flood losses can now be delivered to anyone with Internet access, thus dramatically increasing the availability of these forecasts to local emergency planners and first responders.
NASA Astrophysics Data System (ADS)
Massarelli, Carmine; Matarrese, Raffaella; Felice Uricchio, Vito
2014-05-01
In the last years, thermal images collected by airborne systems have made the detection of thermal anomalies possible. These images are an important tool to monitor natural inflows and legal or illegal dumping in coastal waters. By the way, the potential of these kinds of data is not well exploited by the Authorities who supervises the territory. The main reason is the processing of remote sensing data that requires very specialized operators and softwares which are usually expensive and complex. In this study, we adopt a simple methodology that uses GRASS, a free open-source GIS software, which has allowed us to map surface water thermal anomalies and, consequently, to identify and locate coastal inflows, as well as manmade or natural watershed drains or submarine springs (in italian citri) in the Taranto Sea (South of Italy). Taranto sea represents a coastal marine ecosystem that has been gradually modified by mankind. One of its inlet, the Mar Piccolo, is a part of the National Priority List site identified by the National Program of Environmental Remediation and Restoration because of the size and high presence of industrial activities, past and present, that have had and continue to seriously compromise the health status of the population and the environment. In order to detect thermal anomalies, two flights have been performed respectively on March 3rd and on April 7th, 2013. A total of 13 TABI images have been acquired to map the whole Mar Piccolo with 1m of spatial resolution. TABI-320 is an airborne thermal camera by ITRES, with a continuous spectral range between 8 and 12 microns. On July 15th, 2013, an in-situ survey was carried out along the banks to retrieve clear visible points of natural or artificial inflows, detecting up to 72 of discharges. GRASS GIS (Geographic Resources Analysis Support System), is a free and open source Geographic Information System (GIS) software suite used for geospatial data management and analysis, image processing, graphics and maps production, spatial modeling, and visualization. In this study, we used three GRASS modules: r.clump, r.contour and v.generalize. The first module recategorizes data by grouping cells in discrete areas into a unique category preserving category distinctions in the input raster map layer. R.contour transforms an input surface raster data into an isolines vector data. The third module simplifies and smoothes the lines, reducing the complexity of vector features. As result, we produced a map of thermal anomalies around the coast surprisingly coincident with the inflows detected during the survey. Furthermore, the use of airborne images allowed us to identify other discharges in areas impossible to reach with the boat, due to the presence of algae, mussel-culture or forbidden military zones. With this study we demonstrated how it is possible to use GRASS GIS modules in a new combination in order to process remote sensed data achieving the same results of the expensive and complex specialized softwares. This work was funded by Regional Agency for Environmental Protection and Prevention in the Puglia region (ARPA Puglia).
Section 4. The GIS Weasel User's Manual
Viger, Roland J.; Leavesley, George H.
2007-01-01
INTRODUCTION The GIS Weasel was designed to aid in the preparation of spatial information for input to lumped and distributed parameter hydrologic or other environmental models. The GIS Weasel provides geographic information system (GIS) tools to help create maps of geographic features relevant to a user's model and to generate parameters from those maps. The operation of the GIS Weasel does not require the user to be a GIS expert, only that the user have an understanding of the spatial information requirements of the environmental simulation model being used. The GIS Weasel software system uses a GIS-based graphical user interface (GUI), the C programming language, and external scripting languages. The software will run on any computing platform where ArcInfo Workstation (version 8.0.2 or later) and the GRID extension are accessible. The user controls the processing of the GIS Weasel by interacting with menus, maps, and tables. The purpose of this document is to describe the operation of the software. This document is not intended to describe the usage of this software in support of any particular environmental simulation model. Such guides are published separately.
DIY-style GIS service in mobile navigation system integrated with web and wireless GIS
NASA Astrophysics Data System (ADS)
Yan, Yongbin; Wu, Jianping; Fan, Caiyou; Wang, Minqi; Dai, Sheng
2007-06-01
Mobile navigation system based on handheld device can not only provide basic GIS services, but also enable these GIS services to be provided without location limit, to be more instantly interacted between users and devices. However, we still see that most navigation systems have common defects on user experience like limited map format, few map resources, and unable location share. To overcome the above defects, we propose DIY-style GIS service which provide users a more free software environment and allow uses to customize their GIS services. These services include defining geographical coordinate system of maps which helps to hugely enlarge the map source, editing vector feature, related property information and hotlink images, customizing covered area of download map via General Packet Radio Service (GPRS), and sharing users' location information via SMS (Short Message Service) which establishes the communication between users who needs GIS services. The paper introduces the integration of web and wireless GIS service in a mobile navigation system and presents an implementation sample of a DIY-Style GIS service in a mobile navigation system.
NASA Astrophysics Data System (ADS)
Zhong, Shaobo; Lan, Guiwen; Zhu, Haiguo; Wen, Renqiang; Zhao, Qiansheng; Huang, Quanyi
2008-12-01
Because of their inherent advantages, Geographic Information System (GIS) and Remote Sensing (RS) are extremely useful for dealing with geographically referenced information. In the study of epidemics, most data are geographically referenced, which makes GIS and RS the perfect even necessary tools for processing, analysis, representation of epidemic data. Comprehensively considering the data requirements in the study of highly pathogenic avian influenza (HPAI) coupled with the quality of the existing remotely sensed data in terms of the resolution of space, time and spectra, the data sensed by MODIS are chosen and the relevant methods and procedures of data processing from RS and GIS for some environmental factors are proposed. Through using spatial analysis functions and Exploratory Spatial Data Analysis (ESDA) of GIS, some results of relationship between HPAI occurrences and these potential factors are presented. The role played by bird migration is also preliminarily illustrated with some operations such as visualization, overlapping etc. provided by GIS. Through the work of this paper, we conclude: Firstly, the migration of birds causes the spread of HPAI all over the country in 2004-2005. Secondly, the migration of birds is the reason why the spread of HPAI is perturbed. That is, for some classic communicable diseases, their spread exhibits obvious spatial diffusion process. However, the spread of HPAI breaks this general rule. We think leap diffusion and time lag are the probable reasons for this kind of phenomena. Potential distribution of HPAI viruses (corresponding to the distribution of flyways and putative risk sources) is not completely consistent with the occurrences of HPAI. For this phenomenon, we think, in addition to the flyways of birds, all kinds of geographical, climatic factors also have important effect on the occurrences of HPAI. Through the case study of HPAI, we can see that GIS and RS can play very important roles in the study of epidemics.
GIS scientists and QA Professionals have combined their efforts to create this one day course that provides the QA community with a basic understanding of Geographic Information Systems (GIS). The course emphasizes the QA Aspects of GIS so that the QA Professional is better prep...
ERIC Educational Resources Information Center
Henry, Paul; Semple, Hugh
2012-01-01
GIS has shown promise in Project Based Learning (PBL) environments, but many obstacles exist in its integration into school curriculums. This article discusses the development and utilization of an online GIS tool that was created to illustrate that the perceptual gap between relevance and ease of use of GIS software can be bridged at the K-12…
CampusGIS of the University of Cologne: a tool for orientation, navigation, and management
NASA Astrophysics Data System (ADS)
Baaser, U.; Gnyp, M. L.; Hennig, S.; Hoffmeister, D.; Köhn, N.; Laudien, R.; Bareth, G.
2006-10-01
The working group for GIS and Remote Sensing at the Department of Geography at the University of Cologne has established a WebGIS called CampusGIS of the University of Cologne. The overall task of the CampusGIS is the connection of several existing databases at the University of Cologne with spatial data. These existing databases comprise data about staff, buildings, rooms, lectures, and general infrastructure like bus stops etc. These information were yet not linked to their spatial relation. Therefore, a GIS-based method is developed to link all the different databases to spatial entities. Due to the philosophy of the CampusGIS, an online-GUI is programmed which enables users to search for staff, buildings, or institutions. The query results are linked to the GIS database which allows the visualization of the spatial location of the searched entity. This system was established in 2005 and is operational since early 2006. In this contribution, the focus is on further developments. First results of (i) including routing services in, (ii) programming GUIs for mobile devices for, and (iii) including infrastructure management tools in the CampusGIS are presented. Consequently, the CampusGIS is not only available for spatial information retrieval and orientation. It also serves for on-campus navigation and administrative management.
Cloud Computing and Its Applications in GIS
NASA Astrophysics Data System (ADS)
Kang, Cao
2011-12-01
Cloud computing is a novel computing paradigm that offers highly scalable and highly available distributed computing services. The objectives of this research are to: 1. analyze and understand cloud computing and its potential for GIS; 2. discover the feasibilities of migrating truly spatial GIS algorithms to distributed computing infrastructures; 3. explore a solution to host and serve large volumes of raster GIS data efficiently and speedily. These objectives thus form the basis for three professional articles. The first article is entitled "Cloud Computing and Its Applications in GIS". This paper introduces the concept, structure, and features of cloud computing. Features of cloud computing such as scalability, parallelization, and high availability make it a very capable computing paradigm. Unlike High Performance Computing (HPC), cloud computing uses inexpensive commodity computers. The uniform administration systems in cloud computing make it easier to use than GRID computing. Potential advantages of cloud-based GIS systems such as lower barrier to entry are consequently presented. Three cloud-based GIS system architectures are proposed: public cloud- based GIS systems, private cloud-based GIS systems and hybrid cloud-based GIS systems. Public cloud-based GIS systems provide the lowest entry barriers for users among these three architectures, but their advantages are offset by data security and privacy related issues. Private cloud-based GIS systems provide the best data protection, though they have the highest entry barriers. Hybrid cloud-based GIS systems provide a compromise between these extremes. The second article is entitled "A cloud computing algorithm for the calculation of Euclidian distance for raster GIS". Euclidean distance is a truly spatial GIS algorithm. Classical algorithms such as the pushbroom and growth ring techniques require computational propagation through the entire raster image, which makes it incompatible with the distributed nature of cloud computing. This paper presents a parallel Euclidean distance algorithm that works seamlessly with the distributed nature of cloud computing infrastructures. The mechanism of this algorithm is to subdivide a raster image into sub-images and wrap them with a one pixel deep edge layer of individually computed distance information. Each sub-image is then processed by a separate node, after which the resulting sub-images are reassembled into the final output. It is shown that while any rectangular sub-image shape can be used, those approximating squares are computationally optimal. This study also serves as a demonstration of this subdivide and layer-wrap strategy, which would enable the migration of many truly spatial GIS algorithms to cloud computing infrastructures. However, this research also indicates that certain spatial GIS algorithms such as cost distance cannot be migrated by adopting this mechanism, which presents significant challenges for the development of cloud-based GIS systems. The third article is entitled "A Distributed Storage Schema for Cloud Computing based Raster GIS Systems". This paper proposes a NoSQL Database Management System (NDDBMS) based raster GIS data storage schema. NDDBMS has good scalability and is able to use distributed commodity computers, which make it superior to Relational Database Management Systems (RDBMS) in a cloud computing environment. In order to provide optimized data service performance, the proposed storage schema analyzes the nature of commonly used raster GIS data sets. It discriminates two categories of commonly used data sets, and then designs corresponding data storage models for both categories. As a result, the proposed storage schema is capable of hosting and serving enormous volumes of raster GIS data speedily and efficiently on cloud computing infrastructures. In addition, the scheme also takes advantage of the data compression characteristics of Quadtrees, thus promoting efficient data storage. Through this assessment of cloud computing technology, the exploration of the challenges and solutions to the migration of GIS algorithms to cloud computing infrastructures, and the examination of strategies for serving large amounts of GIS data in a cloud computing infrastructure, this dissertation lends support to the feasibility of building a cloud-based GIS system. However, there are still challenges that need to be addressed before a full-scale functional cloud-based GIS system can be successfully implemented. (Abstract shortened by UMI.)
Flood area and damage estimation in Zhejiang, China.
Liu, Renyi; Liu, Nan
2002-09-01
A GIS-based method to estimate flood area and damage is presented in this paper, which is oriented to developing countries like China, where labor is readily available for GIS data collecting, and tools such as, HEC-GeoRAS might not be readily available. At present local authorities in developing countries are often not predisposed to pay for commercial GIS platforms. To calculate flood area, two cases, non-source flood and source flood, are distinguished and a seed-spread algorithm suitable for source-flooding is described. The flood damage estimation is calculated in raster format by overlaying the flood area range with thematic maps and relating this to other socioeconomic data. Several measures used to improve the geometric accuracy and computing efficiency are presented. The management issues related to the application of this method, including the cost-effectiveness of approximate method in practice and supplementing two technical lines (self-programming and adopting commercial GIS software) to each other, are also discussed. The applications show that this approach has practical significance to flood fighting and control in developing countries like China.
Exploring childhood lead exposure through GIS: a review of the recent literature.
Akkus, Cem; Ozdenerol, Esra
2014-06-18
Childhood exposure to lead remains a critical health control problem in the US. Integration of Geographic Information Systems (GIS) into childhood lead exposure studies significantly enhanced identifying lead hazards in the environment and determining at risk children. Research indicates that the toxic threshold for lead exposure was updated three times in the last four decades: 60 to 30 micrograms per deciliter (µg/dL) in 1975, 25 µg/dL in 1985, and 10 µb/dL in 1991. These changes revealed the extent of lead poisoning. By 2012 it was evident that no safe blood lead threshold for the adverse effects of lead on children had been identified and the Center for Disease Control (CDC) currently uses a reference value of 5 µg/dL. Review of the recent literature on GIS-based studies suggests that numerous environmental risk factors might be critical for lead exposure. New GIS-based studies are used in surveillance data management, risk analysis, lead exposure visualization, and community intervention strategies where geographically-targeted, specific intervention measures are taken.
The Effects of "Girls in Science Day" on Middle School Girls' Attitudes and Interests in Science
NASA Astrophysics Data System (ADS)
Dixon, Carmen S.
Because of the underrepresentation of women in STEM fields, many organizations are hosting days to promote middle school girls' interest in science. The purpose of this dissertation examines one of these days, and is three-fold: Number one, to determine if the event "Girls in Science Day [GIS]" affected the interests and attitudes of the middle school girls who attend. Number two, to examine how GIS affected their interests and attitudes in science, and number three, to examine if there is a long time impact on the girls who attend GIS in middle school by interviewing them when they are older and determine if attending GIS made lasting impressions on their lives. It utilizes a mixed-methods approach by using a quantitative Likert-type scale to determine the first purpose mentioned, pre- and post- attendance interviews to examine purpose two, and longitudinal interviews of past participants to determine purpose three. These methods are then combined using meta-inference and results and implications are examined. Future research is then recommended to improve the status of women in science careers.
Exploring Childhood Lead Exposure through GIS: A Review of the Recent Literature
Akkus, Cem; Ozdenerol, Esra
2014-01-01
Childhood exposure to lead remains a critical health control problem in the US. Integration of Geographic Information Systems (GIS) into childhood lead exposure studies significantly enhanced identifying lead hazards in the environment and determining at risk children. Research indicates that the toxic threshold for lead exposure was updated three times in the last four decades: 60 to 30 micrograms per deciliter (µg/dL) in 1975, 25 µg/dL in 1985, and 10 µb/dL in 1991. These changes revealed the extent of lead poisoning. By 2012 it was evident that no safe blood lead threshold for the adverse effects of lead on children had been identified and the Center for Disease Control (CDC) currently uses a reference value of 5 µg/dL. Review of the recent literature on GIS-based studies suggests that numerous environmental risk factors might be critical for lead exposure. New GIS-based studies are used in surveillance data management, risk analysis, lead exposure visualization, and community intervention strategies where geographically-targeted, specific intervention measures are taken. PMID:24945189
From bed topography to ice thickness: GlaRe, a GIS tool to reconstruct the surface of palaeoglaciers
NASA Astrophysics Data System (ADS)
Pellitero, Ramon; Rea, Brice; Spagnolo, Matteo; Bakke, Jostein; Ivy-Ochs, Susan; Frew, Craig; Hughes, Philip; Ribolini, Adriano; Renssen, Hans; Lukas, Sven
2016-04-01
We present GlaRe, A GIS tool that automatically reconstructs the 3D geometry for palaeoglaciers given the bed topography. This tool utilises a numerical approach and can work using a minimum of morphological evidence i.e. the position of the palaeoglacier front. The numerical approach is based on an iterative solution to the perfect plasticity assumption for ice rheology, explained in Benn and Hulton (2010). The tool can be run in ArcGIS 10.1 (ArcInfo license) and later updates and the toolset is written in Python code. The GlaRe toolbox presented in this paper implements a well-established approach for the determination of palaeoglacier equilibrium profiles. Significantly it permits users to quickly run multiple glacier reconstructions which were previously very laborious and time consuming (typically days for a single valley glacier). The implementation of GlaRe will facilitate the reconstruction of large numbers of palaeoglaciers which will provide opportunities for such research addressing at least two fundamental problems: 1. Investigation of the dynamics of palaeoglaciers. Glacier reconstructions are often based on a rigorous interpretation of glacial landforms but not always sufficient attention and/or time has been given to the actual reconstruction of the glacier surface, which is crucial for the calculation of palaeoglacier ELAs and subsequent derivation of quantitative palaeoclimatic data. 2. the ability to run large numbers of reconstructions and over much larger spatial areas provides an opportunity to undertake palaeoglaciers reconstructions across entire mountain, ranges, regions or even continents, allowing climatic gradients and atmospheric circulation patterns to be elucidated. The tool performance has been evaluated by comparing two extant glaciers, an icefield and a cirque/valley glacier from which the subglacial topography is known with a basic reconstruction using GlaRe. Results from the comparisons between extant glacier surfaces and modelled ones show very similar ELA values on the order of 10-20 meter error (which would account for a 0.065-0.13 K degree variation on a typical -6.5 K altitudinal gradient), and these can be improved further by increasing the number of flowlines and using F factors where needed. GlaRe is able to quickly generate robust palaeoglacier surfaces based on the very limited inputs often available from the geomorphological record.
The Effects of Metallicity and Grain Size on Gravitational Instabilities in Protoplanetary Disks
NASA Astrophysics Data System (ADS)
Cai, Kai; Durisen, Richard H.; Michael, Scott; Boley, Aaron C.; Mejía, Annie C.; Pickett, Megan K.; D'Alessio, Paola
2006-01-01
Observational studies show that the probability of finding gas giant planets around a star increases with the star's metallicity. Our latest simulations of disks undergoing gravitational instabilities (GIs) with realistic radiative cooling indicate that protoplanetary disks with lower metallicity generally cool faster and thus show stronger overall GI activity. More importantly, the global cooling times in our simulations are too long for disk fragmentation to occur, and the disks do not fragment into dense protoplanetary clumps. Our results suggest that direct gas giant planet formation via disk instabilities is unlikely to be the mechanism that produced most observed planets. Nevertheless, GIs may still play an important role in a hybrid scenario, compatible with the observed metallicity trend, where structure created by GIs accelerates planet formation by core accretion.
The Effects of Metallicity and Grain Size on Gravitational Instabilities in Protoplanetary Disks
NASA Astrophysics Data System (ADS)
Cai, K.; Durisen, R. H.; Michael, S.; Boley, A. C.; Mejía, A. C.; Pickett, M. K.; D'Alessio, P.
Observational studies show that the probability of finding gas giant planets around a star increases with the star's metallicity. Our latest simulations of disks undergoing gravitational instabilities (GIs) with realistic radiative cooling indicate that protoplanetary disks with lower metallicity generally cool faster and thus show stronger overall GI-activity. More importantly, the global cooling times in our simulations are too long for disk fragmentation to occur, and the disks do not fragment into dense protoplanetary clumps. Our results suggest that direct gas giant planet formation via disk instabilities is unlikely to be the mechanism that produced most observed planets. Nevertheless, GIs may still play an important role in a hybrid scenario, compatible with the observed metallicity trend, where structure created by GIs accelerates planet formation by core accretion.
Assessment of sand encroachment in Kuwait using GIS
NASA Astrophysics Data System (ADS)
Al-Helal, Anwar B.; Al-Awadhi, Jasem M.
2006-04-01
Assessment of sand encroachment in Kuwait using Geographical Information System (GIS) technology has been formulated as a Multi-Criteria Decision Making problem. The Delphi method and Analytical Hierarchy Process were adopted as evaluating techniques, in which experts’ judgments were analyzed for objectively estimating and weighting control factors. Seven triggering factors, depicted in the form of maps, were identified and ordered according to their priority. These factors are (1) wind energy; (2) surface sediment; (3) vegetation density; (4) land use; (5) drainage density; (6) topographic change and (7) vegetation type. The factor maps were digitized, converted to raster data and overlaid to determine their possible spatial relationships. Applying a susceptibility model, a map of sand encroachment susceptibility in Kuwait was developed. The map showed that the areas of very high and high sand encroachment susceptibility are located within the main corridor of sand pathway that coincides with the northwesterly dominant wind direction.
Evaluating the perennial stream using logistic regression in central Taiwan
NASA Astrophysics Data System (ADS)
Ruljigaljig, T.; Cheng, Y. S.; Lin, H. I.; Lee, C. H.; Yu, T. T.
2014-12-01
This study produces a perennial stream head potential map, based on a logistic regression method with a Geographic Information System (GIS). Perennial stream initiation locations, indicates the location of the groundwater and surface contact, were identified in the study area from field survey. The perennial stream potential map in central Taiwan was constructed using the relationship between perennial stream and their causative factors, such as Catchment area, slope gradient, aspect, elevation, groundwater recharge and precipitation. Here, the field surveys of 272 streams were determined in the study area. The areas under the curve for logistic regression methods were calculated as 0.87. The results illustrate the importance of catchment area and groundwater recharge as key factors within the model. The results obtained from the model within the GIS were then used to produce a map of perennial stream and estimate the location of perennial stream head.
Towards Automatic Processing of Virtual City Models for Simulations
NASA Astrophysics Data System (ADS)
Piepereit, R.; Schilling, A.; Alam, N.; Wewetzer, M.; Pries, M.; Coors, V.
2016-10-01
Especially in the field of numerical simulations, such as flow and acoustic simulations, the interest in using virtual 3D models to optimize urban systems is increasing. The few instances in which simulations were already carried out in practice have been associated with an extremely high manual and therefore uneconomical effort for the processing of models. Using different ways of capturing models in Geographic Information System (GIS) and Computer Aided Engineering (CAE), increases the already very high complexity of the processing. To obtain virtual 3D models suitable for simulation, we developed a tool for automatic processing with the goal to establish ties between the world of GIS and CAE. In this paper we introduce a way to use Coons surfaces for the automatic processing of building models in LoD2, and investigate ways to simplify LoD3 models in order to reduce unnecessary information for a numerical simulation.
Coolbaugh, M.F.; Taranik, J.V.; Raines, G.L.; Shevenell, L.A.; Sawatzky, D.L.; Bedell, R.; Minor, T.B.
2002-01-01
Spatial analysis with a GIS was used to evaluate geothermal systems in Nevada using digital maps of geology, heat flow, young faults, young volcanism, depth to groundwater, groundwater geochemistry, earthquakes, and gravity. High-temperature (>160??C) extensional geothermal systems are preferentially associated with northeast-striking late Pleistocene and younger faults, caused by crustal extension, which in most of Nevada is currently oriented northwesterly (as measured by GPS). The distribution of sparse young (160??C) geothermal systems in Nevada are more likely to occur in areas where the groundwater table is shallow (<30m). Undiscovered geothermal systems may occur where groundwater levels are deeper and hot springs do not issue at the surface. A logistic regression exploration model was developed for geothermal systems, using young faults, young volcanics, positive gravity anomalies, and earthquakes to predict areas where deeper groundwater tables are most likely to conceal geothermal systems.
SSE Announcement - New GIS Web Mapping Applications and Services
Atmospheric Science Data Center
2016-06-30
Dear SSE Users, We are excited to announce SSE-GIS v1.0.3 is now available! If you haven’t already noticed the link to the new SSE-GIS web application on the SSE homepage entitled “GIS Web Mapping ...
Estimating the Limits of Infiltration in the Urban Appalachian Plateau
NASA Astrophysics Data System (ADS)
Lavin, S. M.; Bain, D.; Hopkins, K. G.; Pfeil-McCullough, E. K.; Copeland, E.
2014-12-01
Green infrastructure in urbanized areas commonly uses infiltration systems, such as rain gardens, swales and trenches, to convey surface runoff from impervious surfaces into surrounding soils. However, precipitation inputs can exceed soil infiltration rates, creating a limit to infiltration-based storm water management, particularly in urban areas covered by impervious surfaces. Given the limited availability and varied quality of soil infiltration rate data, we synthesized information from national databases, available field test data, and applicable literature to characterize soil infiltration rate distributions, focusing on Allegheny County, Pennsylvania as a case study. A range of impervious cover conditions was defined by sampling available GIS data (e.g., LiDAR and street edge lines) with analysis windows placed randomly across urbanization gradients. Changes in effective precipitation caused by impervious cover were calculated across these gradients and compared to infiltration rate distributions to identify thresholds in impervious coverage where these limits are exceeded. Many studies have demonstrated the effects of urbanization on infiltration, but the identification of these thresholds will clarify interactions between impervious cover and soil infiltration. These methods can help identify sections of urban areas that require augmentation of infiltration-based systems with additional infrastructural strategies, especially as green infrastructure moves beyond low impact development towards more frequent application during infilling of existing urban systems.
Black Sea GIS developed in MHI
NASA Astrophysics Data System (ADS)
Zhuk, E.; Khaliulin, A.; Zodiatis, G.; Nikolaidis, A.; Isaeva, E.
2016-08-01
The work aims at creating the Black Sea geoinformation system (GIS) and complementing it with a model bank. The software for data access and visualization was developed using client server architecture. A map service based on MapServer and MySQL data management system were chosen for the Black Sea GIS. Php-modules and python-scripts are used to provide data access, processing, and exchange between the client application and the server. According to the basic data types, the module structure of GIS was developed. Each type of data is matched to a module which allows selection and visualization of the data. At present, a GIS complement with a model bank (the models build in to the GIS) and users' models (programs launched on users' PCs but receiving and displaying data via GIS) is developed.
Feasibility of Creating a Comprehensive Real Property Database for Colombia
2002-08-01
practices familiar to conservationists can be effective in areas where private property dominates or where it is mixed with public lands. These practices...broadly accurate. According to many familiar with the system of appraisals and the market for real property, an appraisal of around fifty percent of...Geografía de la Violencia ) 27 Regional and Local GIS data The feasibility study considered local GIS efforts in Bogotá, Cali, Medellín, Popayán and
Snyder, Daniel T.; Haluska, Tana L.; Respini-Irwin, Darius
2013-01-01
The Shoreline Management Tool is a geographic information system (GIS) based program developed to assist water- and land-resource managers in assessing the benefits and effects of changes in surface-water stage on water depth, inundated area, and water volume. Additionally, the Shoreline Management Tool can be used to identify aquatic or terrestrial habitat areas where conditions may be suitable for specific plants or animals as defined by user-specified criteria including water depth, land-surface slope, and land-surface aspect. The tool can also be used to delineate areas for use in determining a variety of hydrologic budget components such as surface-water storage, precipitation, runoff, or evapotranspiration. The Shoreline Management Tool consists of two parts, a graphical user interface for use with Esri™ ArcMap™ GIS software to interact with the user to define scenarios and map results, and a spreadsheet in Microsoft® Excel® developed to display tables and graphs of the results. The graphical user interface allows the user to define a scenario consisting of an inundation level (stage), land areas (parcels), and habitats (areas meeting user-specified conditions) based on water depth, slope, and aspect criteria. The tool uses data consisting of land-surface elevation, tables of stage/volume and stage/area, and delineated parcel boundaries to produce maps (data layers) of inundated areas and areas that meet the habitat criteria. The tool can be run in a Single-Time Scenario mode or in a Time-Series Scenario mode, which uses an input file of dates and associated stages. The spreadsheet part of the tool uses a macro to process the results from the graphical user interface to create tables and graphs of inundated water volume, inundated area, dry area, and mean water depth for each land parcel based on the user-specified stage. The macro also creates tables and graphs of the area, perimeter, and number of polygons comprising the user-specified habitat areas within each parcel. The Shoreline Management Tool is highly transferable, using easily generated or readily available data. The capabilities of the tool are demonstrated using data from the lower Wood River Valley adjacent to Upper Klamath and Agency Lakes in southern Oregon.
Ferguson, William J; Kemp, Karen; Kost, Gerald
2016-03-01
Rapid and accurate diagnosis drives evidence-based care in health. Point-of-care testing (POCT) aids diagnosis by bringing advanced technologies closer to patients. Health small-world networks are constrained by natural connectivity in the interactions between geography of resources and social forces. Using a geographic information system (GIS) we can understand how populations utilize their health networks, visualize their inefficiencies, and compare alternatives. This project focuses on cardiac care resource in rural Isaan, Thailand. A health care access analysis was created using ArcGIS Network Analyst 10.1 from data representing aggregated population, roads, health resource facilities, and diagnostic technologies. The analysis quantified cardiac health care access and identified ways to improve it using both widespread and resource-limited strategies. Results indicated that having diagnostic technologies closer to populations streamlines critical care paths. GIS allowed us to compare the effectiveness of the implementation strategies and put into perspective the benefits of adopting rapid POCT within health networks. Geospatial analyses derive high impact by improving alternative diagnostic placement strategies in limited-resource settings and by revealing deficiencies in health care access pathways. Additionally, the GIS provides a platform for comparing relative costs, assessing benefits, and improving outcomes. This approach can be implemented effectively by health ministries seeking to enhance cardiac care despite limited resources.
NASA Astrophysics Data System (ADS)
Zhang, X.; Srinivasan, R.
2008-12-01
In this study, a user friendly GIS tool was developed for evaluating and improving NEXRAD using raingauge data. This GIS tool can automatically read in raingauge and NEXRAD data, evaluate the accuracy of NEXRAD for each time unit, implement several geostatistical methods to improve the accuracy of NEXRAD through raingauge data, and output spatial precipitation map for distributed hydrologic model. The geostatistical methods incorporated in this tool include Simple Kriging with varying local means, Kriging with External Drift, Regression Kriging, Co-Kriging, and a new geostatistical method that was newly developed by Li et al. (2008). This tool was applied in two test watersheds at hourly and daily temporal scale. The preliminary cross-validation results show that incorporating raingauge data to calibrate NEXRAD can pronouncedly change the spatial pattern of NEXRAD and improve its accuracy. Using different geostatistical methods, the GIS tool was applied to produce long term precipitation input for a distributed hydrologic model - Soil and Water Assessment Tool (SWAT). Animated video was generated to vividly illustrate the effect of using different precipitation input data on distributed hydrologic modeling. Currently, this GIS tool is developed as an extension of SWAT, which is used as water quantity and quality modeling tool by USDA and EPA. The flexible module based design of this tool also makes it easy to be adapted for other hydrologic models for hydrological modeling and water resources management.
Visualization of Traffic Accidents
NASA Technical Reports Server (NTRS)
Wang, Jie; Shen, Yuzhong; Khattak, Asad
2010-01-01
Traffic accidents have tremendous impact on society. Annually approximately 6.4 million vehicle accidents are reported by police in the US and nearly half of them result in catastrophic injuries. Visualizations of traffic accidents using geographic information systems (GIS) greatly facilitate handling and analysis of traffic accidents in many aspects. Environmental Systems Research Institute (ESRI), Inc. is the world leader in GIS research and development. ArcGIS, a software package developed by ESRI, has the capabilities to display events associated with a road network, such as accident locations, and pavement quality. But when event locations related to a road network are processed, the existing algorithm used by ArcGIS does not utilize all the information related to the routes of the road network and produces erroneous visualization results of event locations. This software bug causes serious problems for applications in which accurate location information is critical for emergency responses, such as traffic accidents. This paper aims to address this problem and proposes an improved method that utilizes all relevant information of traffic accidents, namely, route number, direction, and mile post, and extracts correct event locations for accurate traffic accident visualization and analysis. The proposed method generates a new shape file for traffic accidents and displays them on top of the existing road network in ArcGIS. Visualization of traffic accidents along Hampton Roads Bridge Tunnel is included to demonstrate the effectiveness of the proposed method.
A web GIS based integrated flood assessment modeling tool for coastal urban watersheds
NASA Astrophysics Data System (ADS)
Kulkarni, A. T.; Mohanty, J.; Eldho, T. I.; Rao, E. P.; Mohan, B. K.
2014-03-01
Urban flooding has become an increasingly important issue in many parts of the world. In this study, an integrated flood assessment model (IFAM) is presented for the coastal urban flood simulation. A web based GIS framework has been adopted to organize the spatial datasets for the study area considered and to run the model within this framework. The integrated flood model consists of a mass balance based 1-D overland flow model, 1-D finite element based channel flow model based on diffusion wave approximation and a quasi 2-D raster flood inundation model based on the continuity equation. The model code is written in MATLAB and the application is integrated within a web GIS server product viz: Web Gram Server™ (WGS), developed at IIT Bombay, using Java, JSP and JQuery technologies. Its user interface is developed using open layers and the attribute data are stored in MySQL open source DBMS. The model is integrated within WGS and is called via Java script. The application has been demonstrated for two coastal urban watersheds of Navi Mumbai, India. Simulated flood extents for extreme rainfall event of 26 July, 2005 in the two urban watersheds of Navi Mumbai city are presented and discussed. The study demonstrates the effectiveness of the flood simulation tool in a web GIS environment to facilitate data access and visualization of GIS datasets and simulation results.
Using GIS and Ahp for Planning Primer Transportation of Forest Products
NASA Astrophysics Data System (ADS)
Akay, A. E.; Yılmaz, B.
2017-11-01
Primer transportation is one of the most costly and time consuming forestry activities in extraction of timber from forest lands. Transportation methods are essentially determined based on terrain characteristics, especially ground slope. Besides, unsuitable machine selection and unplanned operations may cause ecological damages such as soil disturbance. Soil damage can lead to long term impacts on forest ecosystem. Thus, the optimum transportation methods should be determined by considering not only economic factors but also topographical factors and soil conditions. In recent decades, some of the advanced features of Geographical Information System (GIS) assist decision makers to solve such complex transportation problems with various constraints. In this study, it was aimed to plan forest transportation operation by using GIS integrated Analytical Hierarchy Process (AHP) method, considering ground slope, soil type, and available transportation equipment in the region. This method was implemented within the border of İnegöl Forest Enterprise Chief in the city of Bursa in Turkey. Alternative transportation method included cable system, chute system, skidder, and farm tractor. GIS-based method integrated with AHP found that skidder was the optimal transportation method for about 60% of the study area, while farm tractor was the second most suitable method with 25% ground cover. The results indicated that GIS-based decision support systems can be effectively used as rational, quick, and economic tool for forest transportation planning.
Study of water-table behaviour for the Indian Punjab using GIS.
Kaur, Samanpreet; Aggarwal, Rajan; Soni, Ashwani
2011-01-01
The state of Punjab (India) has witnessed a spectacular increase in agricultural production in the last few decades. This has been possible due to high use of fertilizers, good quality seeds and increased use of water resources. This increased demand of water resources has resulted in extensive use of groundwater in the central districts of the state and surface water (canals) in South-West Punjab, where groundwater is of poor quality in general. The state has been facing the twin problem of water table decline/rise in different parts. Efficient management relies on comprehensive database and regular monitoring of the resources. GIS is one of the important tools for integrating and analyzing spatial information from different sources or disciplines. It helps to integrate, analyze and represent spatial information and database of any resource, which could be easily used for planning of resource development, environmental protection and scientific researches and investigations. Geographical Information Systems (GIS) have been used for a variety of groundwater studies. Groundwater level change maps are useful in determining areas of greatest changes in storage in the regional systems. In this study, an attempt has been made to assess the long term groundwater behaviour of the state using GIS to visually and spatially analyze water level data obtained from the state and central agencies. The data was analysed for 0-3 m, 3-10 m, 10-20 m and beyond 20 m. The study revealed that per cent area with water table depth > 10 m was 20% in 1998 and has increased to 58% by 2006 which is critical limit for shifting from centrifugal pump to submersible pump.
Digital floodplain mapping and an analysis of errors involved
Hamblen, C.S.; Soong, D.T.; Cai, X.
2007-01-01
Mapping floodplain boundaries using geographical information system (GIS) and digital elevation models (DEMs) was completed in a recent study. However convenient this method may appear at first, the resulting maps potentially can have unaccounted errors. Mapping the floodplain using GIS is faster than mapping manually, and digital mapping is expected to be more common in the future. When mapping is done manually, the experience and judgment of the engineer or geographer completing the mapping and the contour resolution of the surface topography are critical in determining the flood-plain and floodway boundaries between cross sections. When mapping is done digitally, discrepancies can result from the use of the computing algorithm and digital topographic datasets. Understanding the possible sources of error and how the error accumulates through these processes is necessary for the validation of automated digital mapping. This study will evaluate the procedure of floodplain mapping using GIS and a 3 m by 3 m resolution DEM with a focus on the accumulated errors involved in the process. Within the GIS environment of this mapping method, the procedural steps of most interest, initially, include: (1) the accurate spatial representation of the stream centerline and cross sections, (2) properly using a triangulated irregular network (TIN) model for the flood elevations of the studied cross sections, the interpolated elevations between them and the extrapolated flood elevations beyond the cross sections, and (3) the comparison of the flood elevation TIN with the ground elevation DEM, from which the appropriate inundation boundaries are delineated. The study area involved is of relatively low topographic relief; thereby, making it representative of common suburban development and a prime setting for the need of accurately mapped floodplains. This paper emphasizes the impacts of integrating supplemental digital terrain data between cross sections on floodplain delineation. ?? 2007 ASCE.
Conceptual model of sediment processes in the upper Yuba River watershed, Sierra Nevada, CA
Curtis, J.A.; Flint, L.E.; Alpers, Charles N.; Yarnell, S.M.
2005-01-01
This study examines the development of a conceptual model of sediment processes in the upper Yuba River watershed; and we hypothesize how components of the conceptual model may be spatially distributed using a geographical information system (GIS). The conceptual model illustrates key processes controlling sediment dynamics in the upper Yuba River watershed and was tested and revised using field measurements, aerial photography, and low elevation videography. Field reconnaissance included mass wasting and channel storage inventories, assessment of annual channel change in upland tributaries, and evaluation of the relative importance of sediment sources and transport processes. Hillslope erosion rates throughout the study area are relatively low when compared to more rapidly eroding landscapes such as the Pacific Northwest and notable hillslope sediment sources include highly erodible andesitic mudflows, serpentinized ultramafics, and unvegetated hydraulic mine pits. Mass wasting dominates surface erosion on the hillslopes; however, erosion of stored channel sediment is the primary contributor to annual sediment yield. We used GIS to spatially distribute the components of the conceptual model and created hillslope erosion potential and channel storage models. The GIS models exemplify the conceptual model in that landscapes with low potential evapotranspiration, sparse vegetation, steep slopes, erodible geology and soils, and high road densities display the greatest hillslope erosion potential and channel storage increases with increasing stream order. In-channel storage in upland tributaries impacted by hydraulic mining is an exception. Reworking of stored hydraulic mining sediment in low-order tributaries continues to elevate upper Yuba River sediment yields. Finally, we propose that spatially distributing the components of a conceptual model in a GIS framework provides a guide for developing more detailed sediment budgets or numerical models making it an inexpensive way to develop a roadmap for understanding sediment dynamics at a watershed scale.
Precipitation regimes over central Greenland inferred from 5 years of ICECAPS observations
NASA Astrophysics Data System (ADS)
Pettersen, Claire; Bennartz, Ralf; Merrelli, Aronne J.; Shupe, Matthew D.; Turner, David D.; Walden, Von P.
2018-04-01
A novel method for classifying Arctic precipitation using ground based remote sensors is presented. Using differences in the spectral variation of microwave absorption and scattering properties of cloud liquid water and ice, this method can distinguish between different types of snowfall events depending on the presence or absence of condensed liquid water in the clouds that generate the precipitation. The classification reveals two distinct, primary regimes of precipitation over the Greenland Ice Sheet (GIS): one originating from fully glaciated ice clouds and the other from mixed-phase clouds. Five years of co-located, multi-instrument data from the Integrated Characterization of Energy, Clouds, Atmospheric state, and Precipitation at Summit (ICECAPS) are used to examine cloud and meteorological properties and patterns associated with each precipitation regime. The occurrence and accumulation of the precipitation regimes are identified and quantified. Cloud and precipitation observations from additional ICECAPS instruments illustrate distinct characteristics for each regime. Additionally, reanalysis products and back-trajectory analysis show different synoptic-scale forcings associated with each regime. Precipitation over the central GIS exhibits unique microphysical characteristics due to the high surface elevations as well as connections to specific large-scale flow patterns. Snowfall originating from the ice clouds is coupled to deep, frontal cloud systems advecting up and over the southeast Greenland coast to the central GIS. These events appear to be associated with individual storm systems generated by low pressure over Baffin Bay and Greenland lee cyclogenesis. Snowfall originating from mixed-phase clouds is shallower and has characteristics typical of supercooled cloud liquid water layers, and slowly propagates from the south and southwest of Greenland along a quiescent flow above the GIS.
Use of environmental isotope tracer and GIS techniques to estimate basin recharge
NASA Astrophysics Data System (ADS)
Odunmbaku, Abdulganiu A. A.
The extensive use of ground water only began with the advances in pumping technology at the early portion of 20th Century. Groundwater provides the majority of fresh water supply for municipal, agricultural and industrial uses, primarily because of little to no treatment it requires. Estimating the volume of groundwater available in a basin is a daunting task, and no accurate measurements can be made. Usually water budgets and simulation models are primarily used to estimate the volume of water in a basin. Precipitation, land surface cover and subsurface geology are factors that affect recharge; these factors affect percolation which invariably affects groundwater recharge. Depending on precipitation, soil chemistry, groundwater chemical composition, gradient and depth, the age and rate of recharge can be estimated. This present research proposes to estimate the recharge in Mimbres, Tularosa and Diablo Basin using the chloride environmental isotope; chloride mass-balance approach and GIS. It also proposes to determine the effect of elevation on recharge rate. Mimbres and Tularosa Basin are located in southern New Mexico State, and extend southward into Mexico. Diablo Basin is located in Texas in extends southward. This research utilizes the chloride mass balance approach to estimate the recharge rate through collection of groundwater data from wells, and precipitation. The data were analysed statistically to eliminate duplication, outliers, and incomplete data. Cluster analysis, piper diagram and statistical significance were performed on the parameters of the groundwater; the infiltration rate was determined using chloride mass balance technique. The data was then analysed spatially using ArcGIS10. Regions of active recharge were identified in Mimbres and Diablo Basin, but this could not be clearly identified in Tularosa Basin. CMB recharge for Tularosa Basin yields 0.04037mm/yr (0.0016in/yr), Diablo Basin was 0.047mm/yr (0.0016 in/yr), and 0.2153mm/yr (0.00848in/yr) for Mimbres Basin. The elevation where active recharge occurs was determined to be 1,500m for Mimbres and Tularosa Basin and 1,200m for Diablo Basin. The results obtained in this study were consistent with result obtained by other researchers working in basins with similar semiarid mountainous conditions, thereby validating the applicability of CMB in the three basins. Keywords: Recharge, chloride mass balance, elevation, Mimbres, Tularosa, Diablo, Basin, GIS, chloride, elevation.
Potential Technologies for Assessing Risk Associated with a Mesoscale Forecast
2015-10-01
American GFS models, and informally applied on the Weather Research and Forecasting ( WRF ) model. The current CI equation is as follows...Reen B, Penc R. Investigating surface bias errors in the Weather Research and Forecasting ( WRF ) model using a Geographic Information System (GIS). J...Forecast model ( WRF -ARW) with extensions that might include finer terrain resolutions and more detailed representations of the underlying atmospheric
ICLUS Tools and Datasets (Version 1.3 & 1.3.1) | Science ...
As a part of the Integrated Climate and Land Use Scenarios (ICLUS) project, this Geographic Information System (GIS) tool can be used to generate scenarios of housing-density changes and calculate impervious surface cover for the conterminous United States. The ICLUS User’s Guide accompanies the tool. This product distributes the population projections and creates land use data described in the 2009 EPA report
ICLUS Tools and Datasets (Version 1.3.2) | Science Inventory ...
As a part of the Integrated Climate and Land Use Scenarios (ICLUS) project, this Geographic Information System (GIS) tool can be used to generate scenarios of housing-density changes and calculate impervious surface cover for the conterminous United States. The ICLUS User’s Guide accompanies the tool. This product distributes the population projections and creates land use data described in the 2009 EPA report
The FOSS GIS Workbench on the GFZ Load Sharing Facility compute cluster
NASA Astrophysics Data System (ADS)
Löwe, P.; Klump, J.; Thaler, J.
2012-04-01
Compute clusters can be used as GIS workbenches, their wealth of resources allow us to take on geocomputation tasks which exceed the limitations of smaller systems. To harness these capabilities requires a Geographic Information System (GIS), able to utilize the available cluster configuration/architecture and a sufficient degree of user friendliness to allow for wide application. In this paper we report on the first successful porting of GRASS GIS, the oldest and largest Free Open Source (FOSS) GIS project, onto a compute cluster using Platform Computing's Load Sharing Facility (LSF). In 2008, GRASS6.3 was installed on the GFZ compute cluster, which at that time comprised 32 nodes. The interaction with the GIS was limited to the command line interface, which required further development to encapsulate the GRASS GIS business layer to facilitate its use by users not familiar with GRASS GIS. During the summer of 2011, multiple versions of GRASS GIS (v 6.4, 6.5 and 7.0) were installed on the upgraded GFZ compute cluster, now consisting of 234 nodes with 480 CPUs providing 3084 cores. The GFZ compute cluster currently offers 19 different processing queues with varying hardware capabilities and priorities, allowing for fine-grained scheduling and load balancing. After successful testing of core GIS functionalities, including the graphical user interface, mechanisms were developed to deploy scripted geocomputation tasks onto dedicated processing queues. The mechanisms are based on earlier work by NETELER et al. (2008). A first application of the new GIS functionality was the generation of maps of simulated tsunamis in the Mediterranean Sea for the Tsunami Atlas of the FP-7 TRIDEC Project (www.tridec-online.eu). For this, up to 500 processing nodes were used in parallel. Further trials included the processing of geometrically complex problems, requiring significant amounts of processing time. The GIS cluster successfully completed all these tasks, with processing times lasting up to full 20 CPU days. The deployment of GRASS GIS on a compute cluster allows our users to tackle GIS tasks previously out of reach of single workstations. In addition, this GRASS GIS cluster implementation will be made available to other users at GFZ in the course of 2012. It will thus become a research utility in the sense of "Software as a Service" (SaaS) and can be seen as our first step towards building a GFZ corporate cloud service.
Quantarctica: A Unique, Open, Standalone GIS Package for Antarctic Research and Education
NASA Astrophysics Data System (ADS)
Roth, George; Matsuoka, Kenichi; Skoglund, Anders; Melvær, Yngve; Tronstad, Stein
2017-04-01
The Norwegian Polar Institute has developed Quantarctica (http://quantarctica.npolar.no), an open GIS package for use by the international Antarctic community. Quantarctica includes a wide range of cartographic basemap layers, geophysical and glaciological datasets, and satellite imagery in standardized open file formats with a consistent Antarctic map projection and customized layer and labeling styles for quick, effective cartography. Quantarctica's strengths as an open science platform lie in 1) The complete, ready-to-use data package which includes full-resolution, original-quality vector and raster data, 2) A policy for freely-redistributable and modifiable data including all metadata and citations, and 3) QGIS, a free, full-featured, modular, offline-capable open-source GIS suite with a rapid and active development and support community. The Quantarctica team is actively incorporating more up-to-date, peer-reviewed, freely distributable pan-Antarctic geospatial datasets for the next version release in 2017. As part of this ongoing development, we are investigating the best approaches for quickly and seamlessly distributing new and updated data to users, storing datasets in efficient, open file formats while maintaining full data integrity, and coexisting with numerous online data portals in a way that most actively benefits the Antarctic community. A recent survey of Quantarctica users showed broad geographical adoption among Antarctic Treaty countries, including those outside the large US and UK Antarctic programs. Maps and figures produced by Quantarctica have also appeared in open-access journals and outside of the formal scientific community on popular science and GIS blogs. Our experience with the Quantarctica project has shown the tremendous value of education and outreach, not only in promoting open software, data formats, and practices, but in empowering Antarctic science groups to more effectively use GIS and geospatial data. Open practices are making a huge impact in Antarctic GIS, where individual countries have historically maintained their own restricted Antarctic geodatabases and where the next generation of scientists are entering the field with experience in using geospatial thinking for planning, visualization, and problem solving.
Hadjichristodoulou, Christos; Soteriades, Elpidoforos S; Kolonia, Virginia; Falagas, Matthew E; Pantelopoulos, Efstathios; Panagakos, Georgios; Mouchtouri, Varvara; Kremastinou, Jeni
2005-09-02
The use of geographical information system (GIS) technologies in public health surveillance is gradually gaining momentum around the world and many applications have already been reported in the literature. In this study, GIS technology was used to help county departments of Public Health to implement environmental health surveillance for the Athens 2004 Olympic and Para Olympic Games. In order to assess the workload in each Olympic county, 19 registry forms and 17 standardized inspection forms were developed to register and inspect environmental health items requiring inspection (Hotels, restaurants, swimming pools, water supply system etc), respectively. Furthermore, related databases were created using Epi Info 2002 and a geographical information system (GIS) were used to implement an integrated Environmental Health inspection program. The project was conducted in Athens by the Olympic Planning Unit (OPU) of the National School of Public Health, in close cooperation with the Ministry of Health and Social Solidarity and the corresponding departments of Public Health in all municipalities that were scheduled to host events during the Athens 2004 Olympic and Para Olympic games. A total of 44,741 premises of environmental health interest were geocoded into GIS databases and several electronic maps were developed. Using such maps in association with specific criteria, we first identified the maximum workload required to execute environmental health inspections in all premises within the eleven Olympic County Departments of Public Health. Six different scenarios were created for each county, based on devised algorithms in order to design the most effective and realistic inspection program using the available inspectors from each municipality. Furthermore, GIS applications were used to organize the daily inspection program for the Olympic games, provide coloured displays of the inspection results and link those results with the public health surveillance of specific cases or outbreak investigation. Our computerised program exhibited significant efficiency in facilitating the prudent use of public health resources in implementing environmental health inspections in densely populated urban areas as well as in rural counties. Furthermore, the application of simple algorithms in integrating human and other resources provided tailored and cost-effective applications to different public health agencies.
The Project-Approach to GIS as an Integrative Classroom Technology: An Environmental Case Study.
ERIC Educational Resources Information Center
Gatrell, Jay D.; Oshiro, Kenji K.
2001-01-01
Explains how Geographic Information Systems (GIS) influences geography curricula and how project-based learning can be applied to GIS experiences. Introduces a project investigating non-geography college students' design and implementation of a environmental GIS application. (Contains 16 references.) (YDS)
GIS In-Service Teacher Training Based on TPACK
ERIC Educational Resources Information Center
Hong, Jung Eun; Stonier, Francis
2015-01-01
This article introduces the geographic information systems (GIS) in-service teacher training, focusing on the intersection of technological, pedagogical, and content knowledge (TPACK) for successful implementation of GIS in the classroom. Eleven social studies teachers in Georgia learned GIS technologies, inquiry-based learning, and social studies…
WebGIS Platform Adressed to Forest Fire Management Methodologies
NASA Astrophysics Data System (ADS)
André Ramos-Simões, Nuno; Neto Paixão, Helena Maria; Granja Martins, Fernando Miguel; Pedras, Celestina; Lança, Rui; Silva, Elisa; Jordán, António; Zavala, Lorena; Soares, Cristina
2015-04-01
Forest fires are one of the natural disasters that causes more damages in nature, as well as high material costs, and sometimes, a significant losses in human lives. In summer season, when high temperatures are attained, fire may rapidly progress and destroy vast areas of forest and also rural and urban areas. The forest fires have effect on forest species, forest composition and structure, soil properties and soil capacity for nutrient retention. In order to minimize the negative impact of the forest fires in the environment, many studies have been developed, e.g. Jordán et al (2009), Cerdà & Jordán (2010), and Gonçalves & Vieira (2013). Nowadays, Remote Sensing (RS) and Geographic Information System (GIS) technologies are used as support tools in fire management decisions, namely during the fire, but also before and after. This study presents the development of a user-friendly WebGIS dedicated to share data, maps and provide updated information on forest fire management for stakeholders in Iberia Peninsula. The WebGIS platform was developed with ArcGIS Online, ArcGIS for Desktop; HyperText Markup Language (HTML) and Javascript. This platform has a database that includes spatial and alphanumeric information, such as: origin, burned areas, vegetation change over time, terrain natural slope, land use, soil erosion and fire related hazards. The same database contains also the following relevant information: water sources, forest tracks and traffic ways, lookout posts and urban areas. The aim of this study is to provide the authorities with a tool to assess risk areas and manage more efficiently forest fire hazards, giving more support to their decisions and helping the populations when facing this kind of phenomena.
Ahmadi, Maryam; Valinejadi, Ali; Goodarzi, Afshin; Safari, Ameneh; Hemmat, Morteza; Majdabadi, Hesamedin Askari; Mohammadi, Ali
2017-01-01
Background Traffic accidents are one of the more important national and international issues, and their consequences are important for the political, economical, and social level in a country. Management of traffic accident information requires information systems with analytical and accessibility capabilities to spatial and descriptive data. Objective The aim of this study was to determine the capabilities of a Geographic Information System (GIS) in management of traffic accident information. Methods This qualitative cross-sectional study was performed in 2016. In the first step, GIS capabilities were identified via literature retrieved from the Internet and based on the included criteria. Review of the literature was performed until data saturation was reached; a form was used to extract the capabilities. In the second step, study population were hospital managers, police, emergency, statisticians, and IT experts in trauma, emergency and police centers. Sampling was purposive. Data was collected using a questionnaire based on the first step data; validity and reliability were determined by content validity and Cronbach’s alpha of 75%. Data was analyzed using the decision Delphi technique. Results GIS capabilities were identified in ten categories and 64 sub-categories. Import and process of spatial and descriptive data and so, analysis of this data were the most important capabilities of GIS in traffic accident information management. Conclusion Storing and retrieving of descriptive and spatial data, providing statistical analysis in table, chart and zoning format, management of bad structure issues, determining the cost effectiveness of the decisions and prioritizing their implementation were the most important capabilities of GIS which can be efficient in the management of traffic accident information. PMID:28848627
Kim, Jong-Seo; Fillmore, Thomas L; Liu, Tao; Robinson, Errol; Hossain, Mahmud; Champion, Boyd L; Moore, Ronald J; Camp, David G; Smith, Richard D; Qian, Wei-Jun
2011-12-01
Selected reaction monitoring (SRM)-MS is an emerging technology for high throughput targeted protein quantification and verification in biomarker discovery studies; however, the cost associated with the application of stable isotope-labeled synthetic peptides as internal standards can be prohibitive for screening a large number of candidate proteins as often required in the preverification phase of discovery studies. Herein we present a proof of concept study using an (18)O-labeled proteome reference as global internal standards (GIS) for SRM-based relative quantification. The (18)O-labeled proteome reference (or GIS) can be readily prepared and contains a heavy isotope ((18)O)-labeled internal standard for every possible tryptic peptide. Our results showed that the percentage of heavy isotope ((18)O) incorporation applying an improved protocol was >99.5% for most peptides investigated. The accuracy, reproducibility, and linear dynamic range of quantification were further assessed based on known ratios of standard proteins spiked into the labeled mouse plasma reference. Reliable quantification was observed with high reproducibility (i.e. coefficient of variance <10%) for analyte concentrations that were set at 100-fold higher or lower than those of the GIS based on the light ((16)O)/heavy ((18)O) peak area ratios. The utility of (18)O-labeled GIS was further illustrated by accurate relative quantification of 45 major human plasma proteins. Moreover, quantification of the concentrations of C-reactive protein and prostate-specific antigen was illustrated by coupling the GIS with standard additions of purified protein standards. Collectively, our results demonstrated that the use of (18)O-labeled proteome reference as GIS provides a convenient, low cost, and effective strategy for relative quantification of a large number of candidate proteins in biological or clinical samples using SRM.
Gülci, Sercan; Akay, Abdullah Emin
2015-12-01
Major roads cause barrier effect and fragmentation on wildlife habitats that are suitable places for feeding, mating, socializing, and hiding. Due to wildlife collisions (Wc), human-wildlife conflicts result in lost lives and loss of biodiversity. Geographical information system (GIS)-based multi criteria evaluation (MCE) methods have been successfully used in short-term planning of road networks considering wild animals. Recently, wildlife passages have been effectively utilized as road engineering structures provide quick and certain solutions for traffic safety and wildlife conservation problems. GIS-based MCE methods provide decision makers with optimum location for ecological passages based on habitat suitability models (HSMs) that classify the areas based on ecological requirements of target species. In this study, ecological passages along Motorway 52 within forested areas in Mediterranean city of Osmaniye in Turkey were evaluated. Firstly, HSM coupled with nine eco-geographic decision variables were developed based on ecological requirements of roe deer (Capreolus capreolus) that were chosen as target species. Then specified decision variables were evaluated using GIS-based weighted linear combination (WLC) method to estimate movement corridors and mitigation points along the motorway. In the solution process, two linkage nodes were evaluated for eco-passages which were determined based on the least-cost movement corridor intersecting with the motorway. One of the passages was identified as a natural wildlife overpass while the other was suggested as underpass construction. The results indicated that computer-based models provide accurate and quick solutions for positioning ecological passages to reduce environmental effects of road networks on wild animals.
The GIS portal based on JSR168 portlet technology and WSRP
NASA Astrophysics Data System (ADS)
Wu, Defu; Chen, Nengcheng; Zhu, Xinyan; Gong, Jianya
2005-10-01
A portal is a powerful Web site that gives users a single point of access to applications and information in a unified interface. A portal lets users view each application or web page in its own window, called a portlet, and a single browser window can contain multiple portlets. The portlet based on JSP168&WSRP is a new technology for interactive, user-facing web services that plug and play with portals. Thanks to the development of Portal&Web GIS, the GIS Poratl is focused on more and more by the researcheres. This paper studies the GIS Portal defined by ESRI and analyzes the development's status, compares with the commercial Portal and points out the great shortage of the ESRI GIS Portal: lack in Personal content and UI. Therefor this paper goes into depth on the discussion of design and implementation scheme of real GIS Portal, and proposes the new idea of developing customized, plug and play GIS Portal Module based on JSP168 Portlet technology and WSRP standard. This way can resolve the difficult problem of the GIS Portal on lacking of content and customization function. According to this idea, this paper plans to use the JaveBeans provided by GeoSurf to develop visual portlet which have basic operating fuction of GIS. Finally deploys the GIS Portal uing the WebLogic Portal.
Providing open-access online materials and hands-on sessions for GIS exercises
NASA Astrophysics Data System (ADS)
Oguchi, T.; Yamauchi, H.; Hayakawa, Y. S.
2017-12-01
Researchers of GIS (Geographical Information Systems/Sciences) in Japan have collaborated to provide materials for GIS lecture classes in universities for the last 20 years. The major outcomes include 1) a GIS core curriculum, 2) a GIS "body of knowledge" explaining the details of the curriculum, 3) a series of PowerPoint presentations, and 4) a comprehensive GIS textbook. However, materials for GIS exercises at university classes using GIS software have been limited in Japan. Therefore, we launched a project to provide such materials which will be available online and accessible by anybody. The materials cover broad basic aspects of GIS including geoscientific applications such as terrain analysis using digital elevation models. The materials utilize public-domain and open-source software packages such as QGIS and GRASS. The data used are also freely available ones such as those from the Geospatial Information Authority of Japan. The use of the GitHub platform to distribute the materials allow easier online interactions by both material producers and users. Selected sets of the materials have been utilized for hands-on activities including both official university classes and public instructions. We have been updating the materials based on the opinions of people who took the hands-on courses for better GIS education. The current materials are in Japanese, but we plan to translate some of them into English.
Development of 72kV High Pressure Air-insulated GIS with Vacuum Circuit Breaker
NASA Astrophysics Data System (ADS)
Rokunohe, Toshiaki; Yagihashi, Yoshitaka; Endo, Fumihiro; Aoyagi, Kenji; Saitoh, Hitoshi; Oomori, Takashi
SF6 gas has excellent dielectric strength and interruption performance. For these reasons, it has been widely used for gas insulated switchgear (GIS). However, use of SF6 gas has become regulated under agreements set at the 1997 COP3. So investigation and development for GIS with a lower amount of SF6 gas are being carried out worldwide. Presently, SF6 gas-free GIS has been commercialized for the 24kV class. Air or N2 gas is used as insulation gas for this GIS. On the other hand, SF6 gas-free GIS has not been commercialized for 72kV class GIS. Dielectric strengths of air and N2 gas are approximately 1/3 that of SF6 gas. So to enhance insulation performance of air and N2, we have investigated a hybrid gas insulation system which has the combined features of providing an insulation coating and suitable insulation gas. We have developed the world's first 72kV SF6 gas-free GIS. This paper deals with key technologies for SF6 gas-free GIS such as the hybrid insulation structure, bellows for the high pressure vacuum circuit breaker, a newly designed disconnector and spacer and prevention of particle levitation. Test results of 72kV high pressure air-insulated GIS with the vacuum circuit breaker are described.
Smart caching based on mobile agent of power WebGIS platform.
Wang, Xiaohui; Wu, Kehe; Chen, Fei
2013-01-01
Power information construction is developing towards intensive, platform, distributed direction with the expansion of power grid and improvement of information technology. In order to meet the trend, power WebGIS was designed and developed. In this paper, we first discuss the architecture and functionality of power WebGIS, and then we study caching technology in detail, which contains dynamic display cache model, caching structure based on mobile agent, and cache data model. We have designed experiments of different data capacity to contrast performance between WebGIS with the proposed caching model and traditional WebGIS. The experimental results showed that, with the same hardware environment, the response time of WebGIS with and without caching model increased as data capacity growing, while the larger the data was, the higher the performance of WebGIS with proposed caching model improved.
Managing Data in a GIS Environment
NASA Technical Reports Server (NTRS)
Beltran, Maria; Yiasemis, Haris
1997-01-01
A Geographic Information System (GIS) is a computer-based system that enables capture, modeling, manipulation, retrieval, analysis and presentation of geographically referenced data. A GIS operates in a dynamic environment of spatial and temporal information. This information is held in a database like any other information system, but performance is more of an issue for a geographic database than a traditional database due to the nature of the data. What distinguishes a GIS from other information systems is the spatial and temporal dimensions of the data and the volume of data (several gigabytes). Most traditional information systems are usually based around tables and textual reports, whereas GIS requires the use of cartographic forms and other visualization techniques. Much of the data can be represented using computer graphics, but a GIS is not a graphics database. A graphical system is concerned with the manipulation and presentation of graphical objects whereas a GIS handles geographic objects that have not only spatial dimensions but non-visual, i e., attribute and components. Furthermore, the nature of the data on which a GIS operates makes the traditional relational database approach inadequate for retrieving data and answering queries that reference spatial data. The purpose of this paper is to describe the efficiency issues behind storage and retrieval of data within a GIS database. Section 2 gives a general background on GIS, and describes the issues involved in custom vs. commercial and hybrid vs. integrated geographic information systems. Section 3 describes the efficiency issues concerning the management of data within a GIS environment. The paper ends with a summary of the main concerns of this paper.
GIS4schools: custom-made GIS-applications for educational use
NASA Astrophysics Data System (ADS)
Demharter, Timo; Michel, Ulrich
2013-10-01
From a didactic point of view the procurement and the application of modern geographical methods and functions become more and more important. Although the integration of GIS in the classroom is repeatedly demanded, inter alia in Baden-Württemberg, Germany, the number of GIS users is small in comparison to other European countries or the USA. Possible reasons for this could, for instance, lie in the lack of GIS and computer knowledge of the teachers themselves and the subsequent extensive training effort in Desktop-GIS [1]. Today you have the technological possibilities to provide the broad public with geoinformation and geotechnology: Web technologies offer access to web-based, mobile and local applications through simple gateways. The objective of the project "GIS4schools" is to generate a service-based infrastructure, which can be operated via mobile clients as well as via Desktop-GIS or a Browser. Due to the easy availability of the services the focus is in particular on students. This circumstance is a novelty through which a differentiated approach to the implementation of GIS in schools is established. Accordingly, the pilot nature of this project becomes apparent as well as its greater importance beyond its actual content especially for the sector of media development at colleges of education. The continuity from Web-GIS to Desktop-GIS is innovative: The goal is to create an adapted multi-level solution which allows both, an easy introduction if desired or a detailed analysis - either to be achieved with a focus especially on students and their cooperation among one another.
GIS4schools: a new approach in GIS education
NASA Astrophysics Data System (ADS)
Demharter, Timo; Michel, Ulrich
2012-10-01
From a didactic point of view the procurement and the application of modern geographical methods and functions become more and more important. Although the integration of GIS in the classroom is repeatedly demanded, inter alia in Baden-Württemberg, Germany, the number of GIS users is small in comparison to other European countries or the USA. Possible reasons for this could, for instance, lie in the lack of GIS and computer knowledge of the teachers themselves and the subsequent extensive training effort in Desktop-GIS (KERSKI 2000, SCHLEICHER 2004). Today you have the technological possibilities to provide the broad public with geoinformation and geotechnology: Web technologies offer access to web-based, mobile and local applications through simple gateways. The objective of the project "GIS4schools" is to generate a service-based infrastructure, which can be operated via mobile clients as well as via Desktop-GIS or a Browser. Due to the easy availability of the services the focus is in particular on students. This circumstance is a novelty through which a differentiated approach to the implementation of GIS in schools is established. Accordingly, the pilot nature of this project becomes apparent as well as its greater importance beyond its actual content especially for the sector of media development at colleges of education. The continuity from Web-GIS to Desktop-GIS is innovative: The goal is to create an adapted multi-level solution which allows both, an easy introduction if desired or a detailed analysis - either to be achieved with a focus especially on students and their cooperation among one another.
Procedure for assessing the performance of a rockfall fragmentation model
NASA Astrophysics Data System (ADS)
Matas, Gerard; Lantada, Nieves; Corominas, Jordi; Gili, Josep Antoni; Ruiz-Carulla, Roger; Prades, Albert
2017-04-01
A Rockfall is a mass instability process frequently observed in road cuts, open pit mines and quarries, steep slopes and cliffs. It is frequently observed that the detached rock mass becomes fragmented when it impacts with the slope surface. The consideration of the fragmentation of the rockfall mass is critical for the calculation of block's trajectories and their impact energies, to further assess their potential to cause damage and design adequate preventive structures. We present here the performance of the RockGIS model. It is a GIS-Based tool that simulates stochastically the fragmentation of the rockfalls, based on a lumped mass approach. In RockGIS, the fragmentation initiates by the disaggregation of the detached rock mass through the pre-existing discontinuities just before the impact with the ground. An energy threshold is defined in order to determine whether the impacting blocks break or not. The distribution of the initial mass between a set of newly generated rock fragments is carried out stochastically following a power law. The trajectories of the new rock fragments are distributed within a cone. The model requires the calibration of both the runout of the resultant blocks and the spatial distribution of the volumes of fragments generated by breakage during their propagation. As this is a coupled process which is controlled by several parameters, a set of performance criteria to be met by the simulation have been defined. The criteria includes: position of the centre of gravity of the whole block distribution, histogram of the runout of the blocks, extent and boundaries of the young debris cover over the slope surface, lateral dispersion of trajectories, total number of blocks generated after fragmentation, volume distribution of the generated fragments, the number of blocks and volume passages past a reference line and the maximum runout distance Since the number of parameters to fit increases significantly when considering fragmentation, the final parameters selected after the calibration process are a compromise which meet all considered criteria. This methodology has been tested in some recent rockfall where high fragmentation was observed. The RockGIS tool and the fragmentation laws using data collected from recent rockfall have been developed within the RockRisk project (2014-2016, BIA2013-42582-P). This project was funded by the Spanish Ministerio de Economía y Competitividad.
Facilitating Spatial Thinking in World Geography Using Web-Based GIS
ERIC Educational Resources Information Center
Jo, Injeong; Hong, Jung Eun; Verma, Kanika
2016-01-01
Advocates for geographic information system (GIS) education contend that learning about GIS promotes students' spatial thinking. Empirical studies are still needed to elucidate the potential of GIS as an instructional tool to support spatial thinking in other geography courses. Using a non-equivalent control group research design, this study…
Advanced GIS Exercise: Predicting Rainfall Erosivity Index Using Regression Analysis
ERIC Educational Resources Information Center
Post, Christopher J.; Goddard, Megan A.; Mikhailova, Elena A.; Hall, Steven T.
2006-01-01
Graduate students from a variety of agricultural and natural resource fields are incorporating geographic information systems (GIS) analysis into their graduate research, creating a need for teaching methodologies that help students understand advanced GIS topics for use in their own research. Graduate-level GIS exercises help students understand…
SSE-GIS v1.03 Web Mapping Application Now Available
Atmospheric Science Data Center
2018-03-16
SSE-GIS v1.03 Web Mapping Application Now Available Wednesday, July 6, 2016 ... you haven’t already noticed the link to the new SSE-GIS web application on the SSE homepage entitled “GIS Web Mapping Applications and Services”, we invite you to visit the site. ...
An Approach to Teaching Applied GIS: Implementation for Local Organizations.
ERIC Educational Resources Information Center
Benhart, John, Jr.
2000-01-01
Describes the instructional method, Client-Life Cycle GIS Project Learning, used in a course at Indiana University of Pennsylvania that enables students to learn with and about geographic information system (GIS). Discusses the course technical issues in GIS and an example project using this method. (CMK)
STRATEGIC PLAN FOR GEOGRAPHIC INFORMATION SYSTEM (GIS) QUALITY ASSURANCE IN THE EPA
The EPA GIS-QA Team was created to fill the gap between the EPA Quality Assurance (QA) and Geographic Information Systems (GIS) communities. All EPA Offices and Regions were invited to participate. Currently, the EPA GIS-QA Team consists of members from the EPA Regional Offices...
a Map Mash-Up Application: Investigation the Temporal Effects of Climate Change on Salt Lake Basin
NASA Astrophysics Data System (ADS)
Kirtiloglu, O. S.; Orhan, O.; Ekercin, S.
2016-06-01
The main purpose of this paper is to investigate climate change effects that have been occurred at the beginning of the twenty-first century at the Konya Closed Basin (KCB) located in the semi-arid central Anatolian region of Turkey and particularly in Salt Lake region where many major wetlands located in and situated in KCB and to share the analysis results online in a Web Geographical Information System (GIS) environment. 71 Landsat 5-TM, 7-ETM+ and 8-OLI images and meteorological data obtained from 10 meteorological stations have been used at the scope of this work. 56 of Landsat images have been used for extraction of Salt Lake surface area through multi-temporal Landsat imagery collected from 2000 to 2014 in Salt lake basin. 15 of Landsat images have been used to make thematic maps of Normalised Difference Vegetation Index (NDVI) in KCB, and 10 meteorological stations data has been used to generate the Standardized Precipitation Index (SPI), which was used in drought studies. For the purpose of visualizing and sharing the results, a Web GIS-like environment has been established by using Google Maps and its useful data storage and manipulating product Fusion Tables which are all Google's free of charge Web service elements. The infrastructure of web application includes HTML5, CSS3, JavaScript, Google Maps API V3 and Google Fusion Tables API technologies. These technologies make it possible to make effective "Map Mash-Ups" involving an embedded Google Map in a Web page, storing the spatial or tabular data in Fusion Tables and add this data as a map layer on embedded map. The analysing process and map mash-up application have been discussed in detail as the main sections of this paper.
NASA Astrophysics Data System (ADS)
Rossetto, Rudy; De Filippis, Giovanna; Borsi, Iacopo; Foglia, Laura; Toegl, Anja; Cannata, Massimiliano; Neumann, Jakob; Vazquez-Sune, Enric; Criollo, Rotman
2017-04-01
In order to achieve sustainable and participated ground-water management, innovative software built on the integration of numerical models within GIS software is a perfect candidate to provide a full characterization of quantitative and qualitative aspects of ground- and surface-water resources maintaining the time and spatial dimension. The EU H2020 FREEWAT project (FREE and open source software tools for WATer resource management; Rossetto et al., 2015) aims at simplifying the application of EU water-related Directives through an open-source and public-domain, GIS-integrated simulation platform for planning and management of ground- and surface-water resources. The FREEWAT platform allows to simulate the whole hydrological cycle, coupling the power of GIS geo-processing and post-processing tools in spatial data analysis with that of process-based simulation models. This results in a modeling environment where large spatial datasets can be stored, managed and visualized and where several simulation codes (mainly belonging to the USGS MODFLOW family) are integrated to simulate multiple hydrological, hydrochemical or economic processes. So far, the FREEWAT platform is a large plugin for the QGIS GIS desktop software and it integrates the following capabilities: • the AkvaGIS module allows to produce plots and statistics for the analysis and interpretation of hydrochemical and hydrogeological data; • the Observation Analysis Tool, to facilitate the import, analysis and visualization of time-series data and the use of these data to support model construction and calibration; • groundwater flow simulation in the saturated and unsaturated zones may be simulated using MODFLOW-2005 (Harbaugh, 2005); • multi-species advective-dispersive transport in the saturated zone can be simulated using MT3DMS (Zheng & Wang, 1999); the possibility to simulate viscosity- and density-dependent flows is further accomplished through SEAWAT (Langevin et al., 2007); • sustainable management of combined use of ground- and surface-water resources in rural environments is accomplished by the Farm Process module embedded in MODFLOW-OWHM (Hanson et al., 2014), which allows to dynamically integrate crop water demand and supply from ground- and surface-water; • UCODE_2014 (Poeter et al., 2014) is implemented to perform sensitivity analysis and parameter estimation to improve the model fit through an inverse, regression method based on the evaluation of an objective function. Through creating a common environment among water research/professionals, policy makers and implementers, FREEWAT aims at enhancing science and participatory approach and evidence-based decision making in water resource management, hence producing relevant outcomes for policy implementation. Acknowledgements This paper is presented within the framework of the project FREEWAT, which has received funding from the European Union's HORIZON 2020 research and innovation programme under Grant Agreement n. 642224. References Hanson, R.T., Boyce, S.E., Schmid, W., Hughes, J.D., Mehl, S.M., Leake, S.A., Maddock, T., Niswonger, R.G. One-Water Hydrologic Flow Model (MODFLOW-OWHM), U.S. Geological Survey, Techniques and Methods 6-A51, 2014 134 p. Harbaugh A.W. (2005) - MODFLOW-2005, The U.S. Geological Survey Modular Ground-Water Model - the Ground-Water Flow Process. U.S. Geological Survey, Techniques and Methods 6-A16, 253 p. Langevin C.D., Thorne D.T. Jr., Dausman A.M., Sukop M.C. & Guo Weixing (2007) - SEAWAT Version 4: A Computer Program for Simulation of Multi-Species Solute and Heat Transport. U.S. Geological Survey Techniques and Methods 6-A22, 39 pp. Poeter E.P., Hill M.C., Lu D., Tiedeman C.R. & Mehl S. (2014) - UCODE_2014, with new capabilities to define parameters unique to predictions, calculate weights using simulated values, estimate parameters with SVD, evaluate uncertainty with MCMC, and more. Integrated Groundwater Modeling Center Report Number GWMI 2014-02. Rossetto, R., Borsi, I. & Foglia, L. FREEWAT: FREE and open source software tools for WATer resource management, Rendiconti Online Società Geologica Italiana, 2015, 35, 252-255. Zheng C. & Wang P.P. (1999) - MT3DMS, A modular three-dimensional multi-species transport model for simulation of advection, dispersion and chemical reactions of contaminants in groundwater systems. U.S. Army Engineer Research and Development Center Contract Report SERDP-99-1, Vicksburg, MS, 202 pp.
NASA Astrophysics Data System (ADS)
Frew, Craig R.; Pellitero, Ramón; Rea, Brice R.; Spagnolo, Matteo; Bakke, Jostein; Hughes, Philip D.; Ivy-Ochs, Susan; Lukas, Sven; Renssen, Hans; Ribolini, Adriano
2014-05-01
Reconstruction of glacier equilibrium line altitudes (ELAs) associated with advance stages of former ice masses is widely used as a tool for palaeoclimatic reconstruction. This requires an accurate reconstruction of palaeo-glacier surface hypsometry, based on mapping of available ice-marginal landform evidence. Classically, the approach used to define ice-surface elevations, using such evidence, follows the 'cartographic method', whereby contours are estimated based on an 'understanding' of the typical surface form of contemporary ice masses. This method introduces inherent uncertainties in the palaeoclimatic interpretation of reconstructed ELAs, especially where the upper limits of glaciation are less well constrained and/or the age of such features in relation to terminal moraine sequences is unknown. An alternative approach is to use equilibrium profile models to define ice surface elevations. Such models are tuned, generally using basal shear stress, in order to generate an ice surface that reaches 'target elevations' defined by geomorphology. In areas where there are no geomorphological constraints for the former ice surface, the reconstruction is undertaken using glaciologiaclly representative values for basal shear stress. Numerical reconstructions have been shown to produce glaciologically "realistic" ice surface geometries, allowing for more objective and robust comparative studies at local to regional scales. User-friendly tools for the calculation of equilibrium profiles are presently available in the literature. Despite this, their use is not yet widespread, perhaps owing to the difficult and time consuming nature of acquiring the necessary inputs from contour maps or digital elevation models. Here we describe a tool for automatically reconstructing palaeo-glacier surface geometry using an equilibrium profile equation implemented in ArcGIS. The only necessary inputs for this tool are 1) a suitable digital elevation model and 2) mapped outlines of the former glacier terminus position (usually a frontal moraine system) and any relevant geomorphological constraints on ice surface elevation (e.g. lateral moraines, trimlines etc.). This provides a standardised method for glacier reconstruction that can be applied rapidly and systematically to large geomorphological datasets.
Simulation of scenario earthquake influenced field by using GIS
Zuo, H.-Q.; Xie, L.-L.; Borcherdt, R.D.
1999-01-01
The method for estimating the site effect on ground motion specified by Borcherdt (1994a, 1994b) is briefly introduced in the paper. This method and the detail geological data and site classification data in San Francisco bay area of California, the United States, are applied to simulate the influenced field of scenario earthquake by GIS technology, and the software for simulating has been drawn up. The paper is a partial result of cooperative research project between China Seismological Bureau and US Geological Survey.
Real-time shipboard displays for science operation and planning on CGC Healy
NASA Astrophysics Data System (ADS)
Roberts, S.; Chayes, D.; Arko, R.
2007-12-01
To facilitate effective science planning and decision making, we have developed a real-time geospatial browser and other displays widely used by many if not all members of USCGC Healy's science cruises and some officers and crew since 2004. In order to enable a 'zero-configuration' experience to the end user with nearly any modern browser, on any platform, anywhere on the ship with wired (or wireless) network access, we chose a Web-based/server-centric approach that provides a very low barrier to access in an environment where we have many participants constantly coming and going, often with their own computers. The principle interface for planning and operational decision making is a georeferenced, Web-based user interface built on the MapServer Web GIS platform developed at the University of Minnesota (http://mapserver.gis.umn.edu/), using the PostGIS spatial database extensions (http://postgis.refractions.net/) to enable live database connectivity. Data available include current ship position and orientation, historical ship tracks and data, seafloor bathymetry, station locations, RADARSAT, and subbottom profiles among others. In addition to the user interfaces that are part of individual instrumentation (such as the sonars and navigation systems), custom interfaces have been developed to centralize data with high update rates such as sea surface temperature, vessel attitude, position, etc. Underlying data acquisition and storage is provided by the Lamont Data System (LDS) and the NOAA SCS system. All data are stored on RAIDed disk systems and shared across a switched network with a gigabit fiber backbone. The real-time displays access data in a number of ways including real-time UDP datagrams from LDS, accessing files on disk, and querying a PostgreSQL relational backend. This work is supported by grants from the U.S. National Science Foundation, Office of Polar Programs, Arctic Science section.
NASA Astrophysics Data System (ADS)
Basavarajappa, T. H.
2012-07-01
Landfill site selection is a complex process involving geological, hydrological, environmental and technical parameters as well as government regulations. As such, it requires the processing of a good amount of geospatial data. Landfill site selection techniques have been analyzed for identifying their suitability. Application of Geographic Information System (GIS) is suitable to find best locations for such installations which use multiple criteria analysis. The use of Artificial intelligence methods, such as expert systems, can also be very helpful in solid waste planning and management. The waste disposal and its pollution around major cities in Karnataka are important problems affecting the environment. The Mysore is one of the major cities in Karnataka. The landfill site selection is the best way to control of pollution from any region. The main aim is to develop geographic information system to study the Landuse/ Landcover, natural drainage system, water bodies, and extents of villages around Mysore city, transportation, topography, geomorphology, lithology, structures, vegetation and forest information for landfill site selection. GIS combines spatial data (maps, aerial photographs, and satellite images) with quantitative, qualitative, and descriptive information database, which can support a wide range of spatial queries. For the Site Selection of an industrial waste and normal daily urban waste of a city town or a village, combining GIS with Analytical Hierarchy Process (AHP) will be more appropriate. This method is innovative because it establishes general indices to quantify overall environmental impact as well as individual indices for specific environmental components (i.e. surface water, groundwater, atmosphere, soil and human health). Since this method requires processing large quantities of spatial data. To automate the processes of establishing composite evaluation criteria, performing multiple criteria analysis and carrying out spatial clustering a suitable methodology was developed. The feasibility of site selection in the study area based on different criteria was used to obtain the layered data by integrating Remote Sensing and GIS. This methodology is suitable for all practical applications in other cities, also.
NASA Astrophysics Data System (ADS)
de Winnaar, G.; Jewitt, G. P. W.; Horan, M.
Water scarce countries such as South Africa are subject to various hydrological constraints which can often be attributed to poor rainfall partitioning, particularly within resource poor farming communities that are reliant on rainfed agriculture. Recent initiatives to address this have shifted focus to explore more efficient alternatives to water supply and the recognition of numerous opportunities to implement runoff harvesting as a means to supplement water availability. However, increasing the implementation of runoff harvesting, without encountering unintended impacts on downstream hydrological and ecological systems, requires better understanding of the hydrologic and environmental impacts at catchment scale. In this paper the representation of spatial variations in landscape characteristics such as soil, land use, rainfall and slope information is shown to be an important step in identifying potential runoff harvesting sites, after which modelling the hydrological response in catchments where extensive runoff harvesting is being considered can be performed and likely impacts assessed. Geographic information systems (GIS) was utilised as an integrating tool to store, analyse and manage spatial information and when linked to hydrological response models, provided a rational means to facilitate decision making by providing catchment level identification, planning and assessment of runoff harvesting sites as illustrated by a case study at the Potshini catchment, a small sub-catchment in the Thukela River basin, South Africa. Through the linked GIS, potential runoff harvesting sites are identified relative to areas that concentrate runoff and where the stored water will be appropriately distributed. Based on GIS analysis it was found that 17% percent of the Potshini catchment area has a high potential for generating surface runoff, whereas an analysis of all factors which influence the location of such systems, shows that 18% is highly suitable for runoff harvesting. Details of the spatially explicit method that was adopted in this paper are provided and output from the integrated GIS modelling system is presented using suitability maps. It is concluded that providing an accurate spatial representation of the runoff generation potential within a catchment is an important step in developing a strategic runoff harvesting plan for any catchment.
NASA Astrophysics Data System (ADS)
Warghat, Sumedh R.; Das, Sandipan; Doad, Atul; Mali, Sagar; Moon, Vishal S.
2012-07-01
Karad City is situated on the bank of confluence of river Krishna & Koyana, which is severely flood prone area. The floodwaters enter the city through the roads and disrupt the infrastructure in the whole city. Furthermore, due to negligence of the authorities and unplanned growth of the city, the people living in the city have harnessed the natural flow of water by constructing unnecessary embankments in the river Koyna. Due to this reason now river koyna is flowing in the form of a narrow channel, which very easily over-flows during very minor flooding.Flood Vulnerabilty Analysis has been done for the karad region of satara district, maharashtra using remote sensing and geographic information system technique. The aim of this study is to identify flood vulnerability zone by using GIS and RS technique and an attempt has been to demonstrat the application of remote sensing and GIS in order to map flood vulnerabilty area by utilizing ArcMap, and Erdas software. Flood vulnerabilty analysis of part the Karad Regian of Satara District, Maharashtra has been carried out with the objectives - Identify the Flood Prone area in the Koyana and Krishna river basin, Calculate surface runoff and Delineate flood sensitive areas. Delineate classified hazard Map, Evaluate the Flood affected area, Prepare the Flood Vulnerability Map by utilizing Remote Sensing and GIS technique. (C.J. Kumanan;S.M. Ramasamy)The study is based on GIS and spatial technique is used for analysis and understanding of flood problem in Karad Tahsil. The flood affected areas of the different magnitude has been identified and mapped using Arc GIS software. The analysis is useful for local planning authority for identification of risk areas and taking proper decision in right moment. In the analysis causative factors for flooding in watershed are taken into account as annual rainfall, size of watershed, basin slope, drainage density of natural channels and land use. (Dinand Alkema; Farah Aziz.)This study of flood vulnerable area determination in a part of Karad Tahsil is employed to illustrate the different approaches.
NASA Astrophysics Data System (ADS)
Liu, C.; Liu, J.; Hu, Y.; Zheng, C.
2015-05-01
Managing surface water and groundwater as a unified system is important for water resource exploitation and aquatic ecosystem conservation. The unified approach to water management needs accurate characterization of surface water and groundwater interactions. Temperature is a natural tracer for identifying surface water and groundwater interactions, and the use of remote sensing techniques facilitates basin-scale temperature measurement. This study focuses on the Heihe River basin, the second largest inland river basin in the arid and semi-arid northwest of China where surface water and groundwater undergoes dynamic exchanges. The spatially continuous river-surface temperature of the midstream section of the Heihe River was obtained by using an airborne pushbroom hyperspectral thermal sensor system. By using the hot spot analysis toolkit in the ArcGIS software, abnormally cold water zones were identified as indicators of the spatial pattern of groundwater discharge to the river.
Open cyberGIS software for geospatial research and education in the big data era
NASA Astrophysics Data System (ADS)
Wang, Shaowen; Liu, Yan; Padmanabhan, Anand
CyberGIS represents an interdisciplinary field combining advanced cyberinfrastructure, geographic information science and systems (GIS), spatial analysis and modeling, and a number of geospatial domains to improve research productivity and enable scientific breakthroughs. It has emerged as new-generation GIS that enable unprecedented advances in data-driven knowledge discovery, visualization and visual analytics, and collaborative problem solving and decision-making. This paper describes three open software strategies-open access, source, and integration-to serve various research and education purposes of diverse geospatial communities. These strategies have been implemented in a leading-edge cyberGIS software environment through three corresponding software modalities: CyberGIS Gateway, Toolkit, and Middleware, and achieved broad and significant impacts.
NASA Technical Reports Server (NTRS)
Zhou, Yuyu; Weng, Qihao; Gurney, Kevin R.; Shuai, Yanmin; Hu, Xuefei
2012-01-01
This paper examined the relationship between remotely sensed anthropogenic heat discharge and energy use from residential and commercial buildings across multiple scales in the city of Indianapolis, Indiana, USA. The anthropogenic heat discharge was estimated with a remote sensing-based surface energy balance model, which was parameterized using land cover, land surface temperature, albedo, and meteorological data. The building energy use was estimated using a GIS-based building energy simulation model in conjunction with Department of Energy/Energy Information Administration survey data, the Assessor's parcel data, GIS floor areas data, and remote sensing-derived building height data. The spatial patterns of anthropogenic heat discharge and energy use from residential and commercial buildings were analyzed and compared. Quantitative relationships were evaluated across multiple scales from pixel aggregation to census block. The results indicate that anthropogenic heat discharge is consistent with building energy use in terms of the spatial pattern, and that building energy use accounts for a significant fraction of anthropogenic heat discharge. The research also implies that the relationship between anthropogenic heat discharge and building energy use is scale-dependent. The simultaneous estimation of anthropogenic heat discharge and building energy use via two independent methods improves the understanding of the surface energy balance in an urban landscape. The anthropogenic heat discharge derived from remote sensing and meteorological data may be able to serve as a spatial distribution proxy for spatially-resolved building energy use, and even for fossil-fuel CO2 emissions if additional factors are considered.
NASA Astrophysics Data System (ADS)
Ballester, M. R.; Krusche, A. V.; Victoria, R. L.; Richey, J. E.; Deegan, L.; Neill, C.
2011-12-01
To evaluate physical and human controls organic matter carbon composition in tropical rivers, we applied an integrated analysis of landscape properties and riverine isotopic composition. Our goal was to establish the relationships between basin attributes and forms and composition of dissolved and particulate organic matter in rivers. A GIS template was developed as tool to support the understanding of the biogeochemistry of the surface waters of the Ji-Paraná (Western Amazonia) and the Piracicaba (southeastern of Brazil)rivers. Each basin was divided into drainage units, organized according to river network morphology and degree of land-use impact. The delineated drainage areas were individually characterized in terms of topography, soils and land use using data sets compiled as layers in ArcGis and ERDAS-IMAGINE software. DOM and POM carbon stable isotopic composition were determined at several sites along the main tributaries and small streams. The effects of these drivers on the fluvial carbon was quantified by a multiple linear regression analysis, relating basin characteristics and river isotopic composition. The results showed that relatively recent land cover changes have already had an impact on the composition of the riverine DOM and POM, indicating that, as in natural ecosystems, the vegetation plays a key role in the composition of the riverine organic matter in agricultural systems.
NASA Astrophysics Data System (ADS)
Huang, Tielan; Wang, Yunpeng; Zhang, Jinlan
2017-07-01
In this study, simulation and evaluation of low impact development in resident district was carried out based on Storm Water Management Model (SWMM) and GIS method. In the evaluation model, we added 3 kinds of low impact development facilities, namely permeable pavement, rainwater garden, and green roof. These facilities are used alone or in combination. The model was run under five different rainfall reappearing periods. The simulation results using low impact development facilities were compared with simulation results under the current situation and undeveloped state. The results show that the total amount of runoff was greatly reduced by using various types of low impact development facilities in the urban residential district. The maximum reduction rate was using permeable pavement, reached 29.9%, followed was using rainwater garden, and the worst was using green roof. The lowest cost of reduction of the total amount of runoff was using permeable pavement, the followed was using rainwater garden, and the highest was using green roof. The combination scheme of various low impact development facilities has the highest efficiency of reducing total amount of runoff, and the lowest cost, which considering of the actual situation of the study area. The study indicated that application of low impact development facilities can reduce surface runoff effectively, which should be a useful way for prevention of urban waterlogging.
Archuleta County CO Lineaments
Richard E. Zehner
2012-01-01
This layer traces apparent topographic and air-photo lineaments in the area around Pagosa springs in Archuleta County, Colorado. It was made in order to identify possible fault and fracture systems that might be conduits for geothermal fluids. Geothermal fluids commonly utilize fault and fractures in competent rocks as conduits for fluid flow. Geothermal exploration involves finding areas of high near-surface temperature gradients, along with a suitable plumbing system that can provide the necessary permeability. Geothermal power plants can sometimes be built where temperature and flow rates are high. To do this, georeferenced topographic maps and aerial photographs were utilized in an existing GIS, using ESRI ArcMap 10.0 software. The USA_Topo_Maps and World_Imagery map layers were chosen from the GIS Server at server.arcgisonline.com, using a UTM Zone 13 NAD27 projection. This line shapefile was then constructed over that which appeared to be through-going structural lineaments in both the aerial photographs and topographic layers, taking care to avoid manmade features such as roads, fence lines, and right-of-ways. These lineaments may be displaced somewhat from their actual location, due to such factors as shadow effects with low sun angles in the aerial photographs. Note: This shape file was constructed as an aid to geothermal exploration in preparation for a site visit for field checking. We make no claims as to the existence of the lineaments, their location, orientation, and nature.
NASA Astrophysics Data System (ADS)
Rai, Praveen Kumar; Chandel, Rajeev Singh; Mishra, Varun Narayan; Singh, Prafull
2018-03-01
Satellite based remote sensing technology has proven to be an effectual tool in analysis of drainage networks, study of surface morphological features and their correlation with groundwater management prospect at basin level. The present study highlights the effectiveness and advantage of remote sensing and GIS-based analysis for quantitative and qualitative assessment of flood plain region of lower Kosi river basin based on morphometric analysis. In this study, ASTER DEM is used to extract the vital hydrological parameters of lower Kosi river basin in ARC GIS software. Morphometric parameters, e.g., stream order, stream length, bifurcation ratio, drainage density, drainage frequency, drainage texture, form factor, circularity ratio, elongation ratio, etc., have been calculated for the Kosi basin and their hydrological inferences were discussed. Most of the morphometric parameters such as bifurcation ratio, drainage density, drainage frequency, drainage texture concluded that basin has good prospect for water management program for various purposes and also generated data base that can provide scientific information for site selection of water-harvesting structures and flood management activities in the basin. Land use land cover (LULC) of the basin were also prepared from Landsat data of 2005, 2010 and 2015 to assess the change in dynamic of the basin and these layers are very noteworthy for further watershed prioritization.
Carter, V.
1991-01-01
The US Geological Survey collects and disseminates, in written and digital formats, groundwater and surface-water information related to the tidal and nontidal wetlands of the United States. This information includes quantity, quality, and availability of groundwater and surface water; groundwater and surface-water interactions (recharge-discharge); groundwater flow; and the basic surface-water characteristics of streams, rivers, lakes, and wetlands. Water resources information in digital format can be used in geographic information systems (GISs) for many purposes related to wetlands. US Geological Survey wetland-related activities include collection of information important for assessing and mitigating coastal wetland loss and modification, hydrologic data collection and interpretation, GIS activities, identification of national trends in water quality and quantity, and process-oriented wetland research. -Author
Geographic information systems in public health and medicine.
Mullner, Ross M; Chung, Kyusuk; Croke, Kevin G; Mensah, Edward K
2004-06-01
Geographic information systems (GIS) are increasingly being used in public health and medicine. Advances in computer technology, the encouragement of its use by the federal government, and the wide availability of academic and commercial courses on GIS are responsible for its growth. Some view GIS as only a tool for spatial research and policy analysis, while others believe it is part of a larger emerging new science including geography, cartography, geodesy, and remote sensing. The specific advantages and problems of GIS are discussed. The greatest potential of GIS is its ability to clearly show the results of complex analyses through maps. Problems in using GIS include its costs, the need to adequately train staff, the use of appropriate spatial units, and the risk it poses to violating patient confidentiality. Lastly, the fourteen articles in this special issue devoted to GIS are introduced and briefly discussed.
When Informationists Get Involved: the CHICA-GIS Project.
Whipple, Elizabeth C; Odell, Jere D; Ralston, Rick K; Liu, Gilbert C
2013-01-01
Child Health Improvement through Computer Automation (CHICA) is a computer decision support system (CDSS) that interfaces with existing electronic medical record systems (EMRS) and delivers "just-in-time" patient-relevant guidelines to physicians during the clinical encounter and accurately captures structured data from all who interact with the system. "Delivering Geospatial Intelligence to Health Care Professionals (CHICA-GIS)" (1R01LM010923-01) expands the medical application of Geographic Information Systems (GIS) by integrating a geographic information system with CHICA. To provide knowledge management support for CHICA-GIS, three informationists at the Indiana University School of Medicine were awarded a supplement from the National Library Medicine. The informationists will enhance CHICA-GIS by: improving the accuracy and accessibility of information, managing and mapping the knowledge which undergirds the CHICA-GIS decision support tool, supporting community engagement and consumer health information outreach, and facilitating the dissemination of new CHICA-GIS research results and services.
Thornton, Lukar E; Pearce, Jamie R; Kavanagh, Anne M
2011-07-01
Features of the built environment are increasingly being recognised as potentially important determinants of obesity. This has come about, in part, because of advances in methodological tools such as Geographic Information Systems (GIS). GIS has made the procurement of data related to the built environment easier and given researchers the flexibility to create a new generation of environmental exposure measures such as the travel time to the nearest supermarket or calculations of the amount of neighbourhood greenspace. Given the rapid advances in the availability of GIS data and the relative ease of use of GIS software, a glossary on the use of GIS to assess the built environment is timely. As a case study, we draw on aspects the food and physical activity environments as they might apply to obesity, to define key GIS terms related to data collection, concepts, and the measurement of environmental features.
Cloud GIS Based Watershed Management
NASA Astrophysics Data System (ADS)
Bediroğlu, G.; Colak, H. E.
2017-11-01
In this study, we generated a Cloud GIS based watershed management system with using Cloud Computing architecture. Cloud GIS is used as SAAS (Software as a Service) and DAAS (Data as a Service). We applied GIS analysis on cloud in terms of testing SAAS and deployed GIS datasets on cloud in terms of DAAS. We used Hybrid cloud computing model in manner of using ready web based mapping services hosted on cloud (World Topology, Satellite Imageries). We uploaded to system after creating geodatabases including Hydrology (Rivers, Lakes), Soil Maps, Climate Maps, Rain Maps, Geology and Land Use. Watershed of study area has been determined on cloud using ready-hosted topology maps. After uploading all the datasets to systems, we have applied various GIS analysis and queries. Results shown that Cloud GIS technology brings velocity and efficiency for watershed management studies. Besides this, system can be easily implemented for similar land analysis and management studies.
NASA Astrophysics Data System (ADS)
Chen, Shaobin; Zhang, Xubo; Wang, Wenyuan; Zhou, Chengping; Ding, Mingyue
2007-11-01
Nowadays many Geographic Information System (GIS) have been widely used in many municipal corporations. Water-supplying corporations in many cities developed GIS application system based on SiCAD/Open GIS platform several years ago for their daily management and engineering construction. With the increasing of commercial business, many corporations now need to add the functionality of three dimensional to display to their GIS System without too much financial cost. Because of the expensiveness of updating SiCAD/Open GIS system to the up-to-date version, the introduction of a third-part 3D display technology is considered. In our solution, Visualization Toolkit (VTK) is used to achieve three dimensional display of underground water-supplying network on the basis of an existing SiCAD/Open GIS system. This paper addresses on the system architecture and key implementation technologies of this solution.
Smart Caching Based on Mobile Agent of Power WebGIS Platform
Wang, Xiaohui; Wu, Kehe; Chen, Fei
2013-01-01
Power information construction is developing towards intensive, platform, distributed direction with the expansion of power grid and improvement of information technology. In order to meet the trend, power WebGIS was designed and developed. In this paper, we first discuss the architecture and functionality of power WebGIS, and then we study caching technology in detail, which contains dynamic display cache model, caching structure based on mobile agent, and cache data model. We have designed experiments of different data capacity to contrast performance between WebGIS with the proposed caching model and traditional WebGIS. The experimental results showed that, with the same hardware environment, the response time of WebGIS with and without caching model increased as data capacity growing, while the larger the data was, the higher the performance of WebGIS with proposed caching model improved. PMID:24288504
Using a Web GIS Plate Tectonics Simulation to Promote Geospatial Thinking
ERIC Educational Resources Information Center
Bodzin, Alec M.; Anastasio, David; Sharif, Rajhida; Rutzmoser, Scott
2016-01-01
Learning with Web-based geographic information system (Web GIS) can promote geospatial thinking and analysis of georeferenced data. Web GIS can enable learners to analyze rich data sets to understand spatial relationships that are managed in georeferenced data visualizations. We developed a Web GIS plate tectonics simulation as a capstone learning…
ERIC Educational Resources Information Center
Miller, Fred; Mangold, W. Glynn; Holmes, Terry
2006-01-01
Although the value of geographic information systems (GIS) technologies is recognized by practitioners and educators alike, GIS instruction has yet to make significant inroads into business curricula. In this article, the authors discuss the constraints of integrating GIS tools into business education. They develop a prototype module for…
GIS applications to wilderness management: potential uses and limitations
Peter Landres; David R. Spildie; Lloyd P. Queen
2001-01-01
Geographic Information Systems (GIS) are increasingly being used in all areas of natural resource management. This paper first presents a brief primer on GIS, and then discusses potential applications of GIS to wilderness management in the areas of inventorying, monitoring, analysis, planning, and communication. Outlined are the limitations and pitfalls that could...
Integrating 3D Visualization and GIS in Planning Education
ERIC Educational Resources Information Center
Yin, Li
2010-01-01
Most GIS-related planning practices and education are currently limited to two-dimensional mapping and analysis although 3D GIS is a powerful tool to study the complex urban environment in its full spatial extent. This paper reviews current GIS and 3D visualization uses and development in planning practice and education. Current literature…
A Field-Based Learning Experience for Introductory Level GIS Students
ERIC Educational Resources Information Center
Carlson, Tom
2007-01-01
This article describes a pedagogic foundation for introducing a field-based geographic information systems (GIS) experience to the GIS curriculum at the university level and uses a dual evaluation methodology to monitor student learning and satisfaction. Students learned the basics of field-based global position systems (GPS) and GIS data…
Forest Ecosystem Analysis Using a GIS
S.G. McNulty; W.T. Swank
1996-01-01
Forest ecosystem studies have expanded spatially in recent years to address large scale environmental issues. We are using a geographic information system (GIS) to understand and integrate forest processes at landscape to regional spatial scales. This paper presents three diverse research studies using a GIS. First, we used a GIS to develop a landscape scale model to...
Teaching Practical Science Online Using GIS: A Cautionary Tale of Coping Strategies
ERIC Educational Resources Information Center
Argles, Tom
2017-01-01
Strong demand for GIS and burgeoning cohorts have encouraged the delivery of GIS teaching via online distance education models. This contribution reviews a brief foray (2012-2014) into this field by the Open University, deploying open source GIS software to enable students to perform practical science investigations online. The "Remote…
Format conversion between CAD data and GIS data based on ArcGIS
NASA Astrophysics Data System (ADS)
Xie, Qingqing; Wei, Bo; Zhang, Kailin; Wang, Zhichao
2015-12-01
To make full use of the data resources and realize a sharing for the different types of data in different industries, a method of format conversion between CAD data and GIS data based on ArcGIS was proposed. To keep the integrity of the converted data, some key steps to process CAD data before conversion were made in AutoCAD. For examples, deleting unnecessary elements such as title, border and legend avoided the appearance of unnecessary elements after conversion, as layering data again by a national standard avoided the different types of elements to appear in a same layer after conversion. In ArcGIS, converting CAD data to GIS data was executed by the correspondence of graphic element classification between AutoCAD and ArcGIS. In addition, an empty geographic database and feature set was required to create in ArcGIS for storing the text data of CAD data. The experimental results show that the proposed method avoids a large amount of editing work in data conversion and maintains the integrity of spatial data and attribute data between before and after conversion.
Boulos, Maged N Kamel; Honda, Kiyoshi
2006-01-01
Open Source Web GIS software systems have reached a stage of maturity, sophistication, robustness and stability, and usability and user friendliness rivalling that of commercial, proprietary GIS and Web GIS server products. The Open Source Web GIS community is also actively embracing OGC (Open Geospatial Consortium) standards, including WMS (Web Map Service). WMS enables the creation of Web maps that have layers coming from multiple different remote servers/sources. In this article we present one easy to implement Web GIS server solution that is based on the Open Source University of Minnesota (UMN) MapServer. By following the accompanying step-by-step tutorial instructions, interested readers running mainstream Microsoft® Windows machines and with no prior technical experience in Web GIS or Internet map servers will be able to publish their own health maps on the Web and add to those maps additional layers retrieved from remote WMS servers. The 'digital Asia' and 2004 Indian Ocean tsunami experiences in using free Open Source Web GIS software are also briefly described. PMID:16420699
Study on application of dynamic monitoring of land use based on mobile GIS technology
NASA Astrophysics Data System (ADS)
Tian, Jingyi; Chu, Jian; Guo, Jianxing; Wang, Lixin
2006-10-01
The land use dynamic monitoring is an important mean to maintain the real-time update of the land use data. Mobile GIS technology integrates GIS, GPS and Internet. It can update the historic al data in real time with site-collected data and realize the data update in large scale with high precision. The Monitoring methods on the land use change data with the mobile GIS technology were discussed. Mobile terminal of mobile GIS has self-developed for this study with GPS-25 OEM and notebook computer. The RTD (real-time difference) operation mode is selected. Mobile GIS system of dynamic monitoring of land use have developed with Visual C++ as operation platform, MapObjects control as graphic platform and MSCmm control as communication platform, which realizes organic integration of GPS, GPRS and GIS. This system has such following basic functions as data processing, graphic display, graphic editing, attribute query and navigation. Qinhuangdao city was selected as the experiential area. Shown by the study result, the mobile GIS integration system of dynamic monitoring of land use developed by this study has practical application value.
Enriching and improving the quality of linked data with GIS
NASA Astrophysics Data System (ADS)
Iwaniak, Adam; Kaczmarek, Iwona; Strzelecki, Marek; Lukowicz, Jaromar; Jankowski, Piotr
2016-06-01
Standardization of methods for data exchange in GIS has along history predating the creation of World Wide Web. The advent of World Wide Web brought the emergence of new solutions for data exchange and sharing including; more recently, standards proposed by the W3C for data exchange involving Semantic Web technologies and linked data. Despite the growing interest in integration, GIS and linked data are still two separate paradigms for describing and publishing spatial data on the Web. At the same time, both paradigms offer complementary ways of representing real world phenomena and means of analysis using different processing functions. The complementarity of linked data and GIS can be leveraged to synergize both paradigms resulting in richer data content and more powerful inferencing. The article presents an approach aimed at integrating linked data with GIS. The approach relies on the use of GIS tools for integration, verification and enrichment of linked data. The GIS tools are employed to enrich linked data by furnishing access to collection of data resources, defining relationship between data resources, and subsequently facilitating GIS data integration with linked data. The proposed approach is demonstrated with examples using data from DBpedia, OSM, and tools developed by the authors for standard GIS software.
Mahmoud, Shereif H.; Alazba, A. A.
2015-01-01
The hydrological response to land cover changes induced by human activities in arid regions has attracted increased research interest in recent decades. The study reported herein assessed the spatial and quantitative changes in surface runoff resulting from land cover change in the Al-Baha region of Saudi Arabia between 1990 and 2000 using an ArcGIS-surface runoff model and predicted land cover and surface runoff depth in 2030 using Markov chain analysis. Land cover maps for 1990 and 2000 were derived from satellite images using ArcGIS 10.1. The findings reveal a 26% decrease in forest and shrubland area, 28% increase in irrigated cropland, 1.5% increase in sparsely vegetated land and 0.5% increase in bare soil between 1990 and 2000. Overall, land cover changes resulted in a significant decrease in runoff depth values in most of the region. The decrease in surface runoff depth ranged from 25-106 mm/year in a 7020-km2 area, whereas the increase in such depth reached only 10 mm/year in a 243-km2 area. A maximum increase of 73 mm/year was seen in a limited area. The surface runoff depth decreased to the greatest extent in the central region of the study area due to the huge transition in land cover classes associated with the construction of 25 rainwater harvesting dams. The land cover prediction revealed a greater than twofold increase in irrigated cropland during the 2000-2030 period, whereas forest and shrubland are anticipated to occupy just 225 km2 of land area by 2030, a significant decrease from the 747 km2 they occupied in 2000. Overall, changes in land cover are predicted to result in an annual increase in irrigated cropland and dramatic decline in forest area in the study area over the next few decades. The increase in surface runoff depth is likely to have significant implications for irrigation activities. PMID:25923712
Bij de Vaate, A J M; Brölmann, H A M; van der Slikke, J W; Emanuel, M H; Huirne, J A F
2010-04-01
To compare gel instillation sonohysterography (GIS) with saline contrast sonohysterography (SCSH) as diagnostic methods for the evaluation of the uterine cavity. A prospective cohort study was performed at the Department of Obstetrics and Gynecology of the VU University Medical Center, Amsterdam, between September 2007 and April 2008. We included 65 women suspected of having an intrauterine abnormality with an indication for SCSH/GIS. First SCSH and subsequently GIS were performed in all women. Distension of the uterine cavity, image quality, visualization of intrauterine abnormalities and pain experienced on a visual analog scale (VAS score) were recorded for both procedures. The mean distension with GIS was 9.0 mm and with SCSH it was 8.5 mm (P = 0.15). The mean image quality, on a scale from 0 to 5, for SCSH was 4.0 and for GIS it was 3.6 (P = 0.01). No difference was found for the visualization of intrauterine abnormalities, and the VAS scores for pain experienced on SCSH and GIS were 1.5 and 1.6, respectively (P = 0.62). The image quality of SCSH is slightly better than that of GIS. This difference is likely to be attributable to the presence of air bubbles in the gel. The small difference in uterine cavity distension in favor of GIS and comparable stable distension during at least 4 min make GIS a suitable alternative for SCSH if air bubbles can be prevented. Copyright 2009 ISUOG. Published by John Wiley & Sons, Ltd.
Bring NASA Scientific Data into GIS
NASA Astrophysics Data System (ADS)
Xu, H.
2016-12-01
NASA's Earth Observation System (EOS) and many other missions produce data of huge volume and near real time which drives the research and understanding of climate change. Geographic Information System (GIS) is a technology used for the management, visualization and analysis of spatial data. Since it's inception in the 1960s, GIS has been applied to many fields at the city, state, national, and world scales. People continue to use it today to analyze and visualize trends, patterns, and relationships from the massive datasets of scientific data. There is great interest in both the scientific and GIS communities in improving technologies that can bring scientific data into a GIS environment, where scientific research and analysis can be shared through the GIS platform to the public. Most NASA scientific data are delivered in the Hierarchical Data Format (HDF), a format is both flexible and powerful. However, this flexibility results in challenges when trying to develop supported GIS software - data stored with HDF formats lack a unified standard and convention among these products. The presentation introduces an information model that enables ArcGIS software to ingest NASA scientific data and create a multidimensional raster - univariate and multivariate hypercubes - for scientific visualization and analysis. We will present the framework how ArcGIS leverages the open source GDAL (Geospatial Data Abstract Library) to support its raster data access, discuss how we overcame the GDAL drivers limitations in handing scientific products that are stored with HDF4 and HDF5 formats and how we improve the way in modeling the multidimensionality with GDAL. In additional, we will talk about the direction of ArcGIS handling NASA products and demonstrate how the multidimensional information model can help scientists work with various data products such as MODIS, MOPPIT, SMAP as well as many data products in a GIS environment.
Patterns and architecture of genomic islands in marine bacteria
2012-01-01
Background Genomic Islands (GIs) have key roles since they modulate the structure and size of bacterial genomes displaying a diverse set of laterally transferred genes. Despite their importance, GIs in marine bacterial genomes have not been explored systematically to uncover possible trends and to analyze their putative ecological significance. Results We carried out a comprehensive analysis of GIs in 70 selected marine bacterial genomes detected with IslandViewer to explore the distribution, patterns and functional gene content in these genomic regions. We detected 438 GIs containing a total of 8152 genes. GI number per genome was strongly and positively correlated with the total GI size. In 50% of the genomes analyzed the GIs accounted for approximately 3% of the genome length, with a maximum of 12%. Interestingly, we found transposases particularly enriched within Alphaproteobacteria GIs, and site-specific recombinases in Gammaproteobacteria GIs. We described specific Homologous Recombination GIs (HR-GIs) in several genera of marine Bacteroidetes and in Shewanella strains among others. In these HR-GIs, we recurrently found conserved genes such as the β-subunit of DNA-directed RNA polymerase, regulatory sigma factors, the elongation factor Tu and ribosomal protein genes typically associated with the core genome. Conclusions Our results indicate that horizontal gene transfer mediated by phages, plasmids and other mobile genetic elements, and HR by site-specific recombinases play important roles in the mobility of clusters of genes between taxa and within closely related genomes, modulating the flexible pool of the genome. Our findings suggest that GIs may increase bacterial fitness under environmental changing conditions by acquiring novel foreign genes and/or modifying gene transcription and/or transduction. PMID:22839777
FOSS GIS on the GFZ HPC cluster: Towards a service-oriented Scientific Geocomputation Environment
NASA Astrophysics Data System (ADS)
Loewe, P.; Klump, J.; Thaler, J.
2012-12-01
High performance compute clusters can be used as geocomputation workbenches. Their wealth of resources enables us to take on geocomputation tasks which exceed the limitations of smaller systems. These general capabilities can be harnessed via tools such as Geographic Information System (GIS), provided they are able to utilize the available cluster configuration/architecture and provide a sufficient degree of user friendliness to allow for wide application. While server-level computing is clearly not sufficient for the growing numbers of data- or computation-intense tasks undertaken, these tasks do not get even close to the requirements needed for access to "top shelf" national cluster facilities. So until recently such kind of geocomputation research was effectively barred due to lack access to of adequate resources. In this paper we report on the experiences gained by providing GRASS GIS as a software service on a HPC compute cluster at the German Research Centre for Geosciences using Platform Computing's Load Sharing Facility (LSF). GRASS GIS is the oldest and largest Free Open Source (FOSS) GIS project. During ramp up in 2011, multiple versions of GRASS GIS (v 6.4.2, 6.5 and 7.0) were installed on the HPC compute cluster, which currently consists of 234 nodes with 480 CPUs providing 3084 cores. Nineteen different processing queues with varying hardware capabilities and priorities are provided, allowing for fine-grained scheduling and load balancing. After successful initial testing, mechanisms were developed to deploy scripted geocomputation tasks onto dedicated processing queues. The mechanisms are based on earlier work by NETELER et al. (2008) and allow to use all 3084 cores for GRASS based geocomputation work. However, in practice applications are limited to fewer resources as assigned to their respective queue. Applications of the new GIS functionality comprise so far of hydrological analysis, remote sensing and the generation of maps of simulated tsunamis in the Mediterranean Sea for the Tsunami Atlas of the FP-7 TRIDEC Project (www.tridec-online.eu). This included the processing of complex problems, requiring significant amounts of processing time up to full 20 CPU days. This GRASS GIS-based service is provided as a research utility in the sense of "Software as a Service" (SaaS) and is a first step towards a GFZ corporate cloud service.
NASA Astrophysics Data System (ADS)
Löwe, Peter
2015-04-01
Many Free and Open Source Software (FOSS) tools have been created for the various application fields within geoscience. While FOSS allows re-implementation of functionalities in new environments by access to the original codebase, the easiest approach to build new software solutions for new problems is the combination or merging of existing software tools. Such mash-ups are implemented by embedding and encapsulating FOSS tools within each another, effectively focusing the use of the embedded software to the specific role it needs to perform in the given scenario, while ignoring all its other capabilities. GRASS GIS is a powerful and established FOSS GIS for raster, vector and volume data processing while the Generic Mapping Tools (GMT) are a suite of powerful Open Source mapping tools, which exceed the mapping capabilities of GRASS GIS. This poster reports on the new GRASS GIS add-on module r.out.polycones. It enables users to utilize non-continuous projections for map production within the GRASS production environment. This is implemented on the software level by encapsulating a subset of GMT mapping capabilities into a GRASS GIS (Version 6.x) add-on module. The module was developed at the German National Library of Science and Technology (TIB) to provide custom global maps of scientific collaboration networks, such as the DataCite consortium, the registration agency for Digital Object Identifiers (DOI) for research data. The GRASS GIS add-on module can be used for global mapping of raster data into a variety of non continuous sinosoidal projections, allowing the creation of printable biangles (gores) to be used for globe making. Due to the well structured modular nature of GRASS modules, technical follow-up work will focus on API-level Python-based integration in GRASS 7 [1]. Based on this, GMT based mapping capabilities in GRASS will be extended beyond non-continuous sinosoidal maps and advanced from raster-layers to content GRASS display monitors. References: [1] Petras, V., Petrasova, A., Chemin, Y., Zambelli, P., Landa, M., Gebbert, S., Neteler, N., Löwe, P.: Analyzing rasters, vectors and time series using new Python interfaces in GRASS GIS 7, Geophysical Research Abstracts Vol. 17, EGU2015-8142, 2015 (in preparation)
Scotch, Matthew; Parmanto, Bambang; Monaco, Valerie
2008-06-09
Data analysis in community health assessment (CHA) involves the collection, integration, and analysis of large numerical and spatial data sets in order to identify health priorities. Geographic Information Systems (GIS) enable for management and analysis using spatial data, but have limitations in performing analysis of numerical data because of its traditional database architecture.On-Line Analytical Processing (OLAP) is a multidimensional datawarehouse designed to facilitate querying of large numerical data. Coupling the spatial capabilities of GIS with the numerical analysis of OLAP, might enhance CHA data analysis. OLAP-GIS systems have been developed by university researchers and corporations, yet their potential for CHA data analysis is not well understood. To evaluate the potential of an OLAP-GIS decision support system for CHA problem solving, we compared OLAP-GIS to the standard information technology (IT) currently used by many public health professionals. SOVAT, an OLAP-GIS decision support system developed at the University of Pittsburgh, was compared against current IT for data analysis for CHA. For this study, current IT was considered the combined use of SPSS and GIS ("SPSS-GIS"). Graduate students, researchers, and faculty in the health sciences at the University of Pittsburgh were recruited. Each round consisted of: an instructional video of the system being evaluated, two practice tasks, five assessment tasks, and one post-study questionnaire. Objective and subjective measurement included: task completion time, success in answering the tasks, and system satisfaction. Thirteen individuals participated. Inferential statistics were analyzed using linear mixed model analysis. SOVAT was statistically significant (alpha = .01) from SPSS-GIS for satisfaction and time (p < .002). Descriptive results indicated that participants had greater success in answering the tasks when using SOVAT as compared to SPSS-GIS. Using SOVAT, tasks were completed more efficiently, with a higher rate of success, and with greater satisfaction, than the combined use of SPSS and GIS. The results from this study indicate a potential for OLAP-GIS decision support systems as a valuable tool for CHA data analysis.
Scotch, Matthew; Parmanto, Bambang; Monaco, Valerie
2008-01-01
Background Data analysis in community health assessment (CHA) involves the collection, integration, and analysis of large numerical and spatial data sets in order to identify health priorities. Geographic Information Systems (GIS) enable for management and analysis using spatial data, but have limitations in performing analysis of numerical data because of its traditional database architecture. On-Line Analytical Processing (OLAP) is a multidimensional datawarehouse designed to facilitate querying of large numerical data. Coupling the spatial capabilities of GIS with the numerical analysis of OLAP, might enhance CHA data analysis. OLAP-GIS systems have been developed by university researchers and corporations, yet their potential for CHA data analysis is not well understood. To evaluate the potential of an OLAP-GIS decision support system for CHA problem solving, we compared OLAP-GIS to the standard information technology (IT) currently used by many public health professionals. Methods SOVAT, an OLAP-GIS decision support system developed at the University of Pittsburgh, was compared against current IT for data analysis for CHA. For this study, current IT was considered the combined use of SPSS and GIS ("SPSS-GIS"). Graduate students, researchers, and faculty in the health sciences at the University of Pittsburgh were recruited. Each round consisted of: an instructional video of the system being evaluated, two practice tasks, five assessment tasks, and one post-study questionnaire. Objective and subjective measurement included: task completion time, success in answering the tasks, and system satisfaction. Results Thirteen individuals participated. Inferential statistics were analyzed using linear mixed model analysis. SOVAT was statistically significant (α = .01) from SPSS-GIS for satisfaction and time (p < .002). Descriptive results indicated that participants had greater success in answering the tasks when using SOVAT as compared to SPSS-GIS. Conclusion Using SOVAT, tasks were completed more efficiently, with a higher rate of success, and with greater satisfaction, than the combined use of SPSS and GIS. The results from this study indicate a potential for OLAP-GIS decision support systems as a valuable tool for CHA data analysis. PMID:18541037
GRASS GIS: The first Open Source Temporal GIS
NASA Astrophysics Data System (ADS)
Gebbert, Sören; Leppelt, Thomas
2015-04-01
GRASS GIS is a full featured, general purpose Open Source geographic information system (GIS) with raster, 3D raster and vector processing support[1]. Recently, time was introduced as a new dimension that transformed GRASS GIS into the first Open Source temporal GIS with comprehensive spatio-temporal analysis, processing and visualization capabilities[2]. New spatio-temporal data types were introduced in GRASS GIS version 7, to manage raster, 3D raster and vector time series. These new data types are called space time datasets. They are designed to efficiently handle hundreds of thousands of time stamped raster, 3D raster and vector map layers of any size. Time stamps can be defined as time intervals or time instances in Gregorian calendar time or relative time. Space time datasets are simplifying the processing and analysis of large time series in GRASS GIS, since these new data types are used as input and output parameter in temporal modules. The handling of space time datasets is therefore equal to the handling of raster, 3D raster and vector map layers in GRASS GIS. A new dedicated Python library, the GRASS GIS Temporal Framework, was designed to implement the spatio-temporal data types and their management. The framework provides the functionality to efficiently handle hundreds of thousands of time stamped map layers and their spatio-temporal topological relations. The framework supports reasoning based on the temporal granularity of space time datasets as well as their temporal topology. It was designed in conjunction with the PyGRASS [3] library to support parallel processing of large datasets, that has a long tradition in GRASS GIS [4,5]. We will present a subset of more than 40 temporal modules that were implemented based on the GRASS GIS Temporal Framework, PyGRASS and the GRASS GIS Python scripting library. These modules provide a comprehensive temporal GIS tool set. The functionality range from space time dataset and time stamped map layer management over temporal aggregation, temporal accumulation, spatio-temporal statistics, spatio-temporal sampling, temporal algebra, temporal topology analysis, time series animation and temporal topology visualization to time series import and export capabilities with support for NetCDF and VTK data formats. We will present several temporal modules that support parallel processing of raster and 3D raster time series. [1] GRASS GIS Open Source Approaches in Spatial Data Handling In Open Source Approaches in Spatial Data Handling, Vol. 2 (2008), pp. 171-199, doi:10.1007/978-3-540-74831-19 by M. Neteler, D. Beaudette, P. Cavallini, L. Lami, J. Cepicky edited by G. Brent Hall, Michael G. Leahy [2] Gebbert, S., Pebesma, E., 2014. A temporal GIS for field based environmental modeling. Environ. Model. Softw. 53, 1-12. [3] Zambelli, P., Gebbert, S., Ciolli, M., 2013. Pygrass: An Object Oriented Python Application Programming Interface (API) for Geographic Resources Analysis Support System (GRASS) Geographic Information System (GIS). ISPRS Intl Journal of Geo-Information 2, 201-219. [4] Löwe, P., Klump, J., Thaler, J. (2012): The FOSS GIS Workbench on the GFZ Load Sharing Facility compute cluster, (Geophysical Research Abstracts Vol. 14, EGU2012-4491, 2012), General Assembly European Geosciences Union (Vienna, Austria 2012). [5] Akhter, S., Aida, K., Chemin, Y., 2010. "GRASS GIS on High Performance Computing with MPI, OpenMP and Ninf-G Programming Framework". ISPRS Conference, Kyoto, 9-12 August 2010
Determination of incoming solar radiation in major tree species in Turkey.
Yilmaz, Osman Yalcin; Sevgi, Orhan; Koc, Ayhan
2012-07-01
Light requirements and spatial distribution of major forest tree species in Turkey hasn't been analyzed yet. Continuous surface solar radiation data, especially at mountainous-forested areas, are needed to put forward this relationship between forest tree species and solar radiation. To achieve this, GIS-based modeling of solar radiation is one of the methods used in rangelands to estimate continuous surface solar radiation. Therefore, mean monthly and annual total global solar radiation maps of whole Turkey were computed spatially using GRASS GIS software "r.sun" model under clear-sky (cloudless) conditions. 147498 pure forest stand point-based data were used in the study for calculating mean global solar radiation values of all the major forest tree species of Turkey. Beech had the lowest annual mean total global solar radiation value of 1654.87 kWh m(-2), whereas juniper had the highest value of 1928.89 kWh m(-2). The rank order of tree species according to the mean monthly and annual total global solar radiation values, using a confidence level of p < 0.05, was as follows: Beech < Spruce < Fir species < Oak species < Scotch pine < Red pine < Cedar < Juniper. The monthly and annual solar radiation values of sites and light requirements of forest trees ranked similarly.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Faber, B.G.; Thomas, V.L.; Thomas, M.R.
This paper describes a spatial decision support system that facilitates land-related negotiations and resolving conflicts. This system, called Active Response Geographic Information System (AR/GIS), uses a geographic information system to examine land resource management issues which involve multiple stakeholder groups. In this process, participants are given the opportunity and tools needed to share ideas in a facilitated land resource allocation negotiation session. Participants are able to assess current land status, develop objectives, propose alternative planning scenarios, and evaluate the effects or impacts of each alternative. AR/GIS is a unique tool that puts geographic information directly at the fingertips of non-technicalmore » policy analysts, decision makers, and representatives of stakeholder groups during the negotiation process. AR/GIS enhances individual comprehension and ownership of the decision making process and increasing the efficiency and effectiveness of group debate. It is most beneficial to planning tasks which are inherently geographic in nature, which require consideration of a large number of physical constraints and economic implications, and which involve publicly sensitive tradeoffs.« less
Application of geographical information system in disposal site selection for hazardous wastes.
Rezaeimahmoudi, Mehdi; Esmaeli, Abdolreza; Gharegozlu, Alireza; Shabanian, Hassan; Rokni, Ladan
2014-01-01
The aim of this study was to provide a scientific method based on Geographical Information System (GIS) regarding all sustainable development measures to locate a proper landfill for disposal of hazardous wastes, especially industrial (radioactive) wastes. Seven effective factors for determining hazardous waste landfill were applied in Qom Province, central Iran. These criteria included water, slope, population centers, roads, fault, protected areas and geology. The Analysis Hierarchical Process (AHP) model based on pair comparison was used. First, the weight of each factor was determined by experts; afterwards each layer of maps entered to ARC GIS and with special weight multiplied together, finally the best suitable site was introduced. The most suitable sites for burial were in northwest and west of Qom Province and eventually five zones were introduced as the sample sites. GIs and AHP model is introduced as the technical, useful and accelerator tool for disposal site selection. Furthermore it is determined that geological factor is the most effective layer for site selection. It is suggested that geological conditions should be considered primarily then other factors are taken into consideration.
ERIC Educational Resources Information Center
Riihelä, Juha; Mäki, Sanna
2015-01-01
This article describes initiatives implemented in Finland to create an online learning environment for studying geographic information systems (GIS). A development project produced an online GIS tool called PaikkaOppi, aimed at promoting GIS studies and spatial thinking skills in upper secondary schools. The project is reviewed through analysis of…
ERIC Educational Resources Information Center
Cheng, Liang; Zhang, Wen; Wang, Jiechen; Li, Manchun; Zhong, Lishan
2014-01-01
Geographic information science (GIS) features a wide range of disciplines and has broad applicability. Challenges associated with rapidly developing GIS technology and the currently limited teaching and practice materials hinder universities from cultivating highly skilled GIS graduates. Based on the idea of "small core, big network," a…
ERIC Educational Resources Information Center
Acquah, Prince C.; Asamoah, Jack N.; Konadu, Daniel D.
2017-01-01
Geographic Information System (GIS) continue to play very important role in improving spatial thinking skills of graduates from higher educational institutions. However, teaching and learning of GIS at the technical university level in Ghana remains very limited due to some implementation challenges. This paper reviews the implementation of GIS in…
Student Attitudes and the Impact of GIS on Thinking Skills and Motivation
ERIC Educational Resources Information Center
West, Bryan A.
2003-01-01
The value of GIS within school curricula seems well perceived but ill-substantiated. This paper discusses the role of GIS in the development of higher order thinking skills and in motivating student learning. It then reports on attitudinal surveys undertaken before and after student exposure to GIS-related tasks. The tasks formed part of four…
ERIC Educational Resources Information Center
Akinyemi, Felicia O.
2016-01-01
Technology use is evident in all spheres of human endeavour. Focusing on technology use in education, this paper examines teachers' attitudes towards geographic information system (GIS). An assessment was made of GIS teachers in Rwandan secondary schools. Key areas covered include how GIS is implemented in schools, teachers' attitudes and…
ERIC Educational Resources Information Center
Liu, Suxia; Zhu, Xuan
2008-01-01
Geographic information systems (GIS) are computer-based tools for geographic data analysis and spatial visualization. They have become one of the information and communications technologies for education at all levels. This article reviews the current status of GIS in schools, analyzes the requirements of a GIS-based learning environment from…
Study on the key technology of grain logistics tracking system
NASA Astrophysics Data System (ADS)
Zhen, Tong; Ge, Hongyi; Jiang, Yuying; Che, Yi
2010-07-01
In recent year, with the rapid development of GIS technology, more and more programming problems depend on the GIS technology and professional model system. The solution of auxiliary programming problem by using GIS technology, which has become very popular. GIS is an important tool and technology, that captures, stores, analyzes, manages, and presents data that are linked to location. A grain logistics distribution system based on GIS is established, which provides a visualization scheme during the process of grain circulation and supports users making decision and analyzing for grain logistics enterprise.
Applications of Geographic Information System (GIS) analysis of Lake Uluabat.
Hacısalihoğlu, Saadet; Karaer, Feza; Katip, Aslıhan
2016-06-01
Lake Uluabat is one of the most important wetlands in Turkey because of its rich biodiversity, lying on a migratory bird route with almost all its shores being covered by submerged plants. The lake has been protected by the Ramsar Convention since 1998. However, the Lake is threatened by natural and anthropogenic stressors as a consequence of its location. Geographic Information System (GIS) analysis is a tool that has been widely used, especially for water quality management in recent years. This study aimed to investigate the water quality and determined most polluted points using GIS analysis of the lake. Temperature, pH, dissolved oxygen, chemical oxygen demand, Kjeldahl nitrogen, total phosphorus, chlorophyll-a, arsenic, boron, iron, and manganese were monitored monthly from June 2008 to May 2009, with the samples taken from 8 points in the lake. Effect of pH, relation of temperature, and Chl-a with other water quality parameters and metals are designated as statistically significant. Data were mapped using ArcGIS 9.1 software and were assessed according to the Turkish Water Pollution Control Regulations (TWPCR). The research also focused on classifying and mapping the water quality in the lake by using the spatial analysis functions of GIS. As a result, it was determined that Lake Uluabat belonged to the 4th class, i.e., highly polluted water, including any water of lower quality. A remarkable portion of the pollution in the water basin was attributed to domestic wastewater discharges, industrial and agricultural activities, and mining.
NASA Astrophysics Data System (ADS)
Malekmohammadi, Bahram; Ramezani Mehrian, Majid; Jafari, Hamid Reza
2012-11-01
One of the most important water-resources management strategies for arid lands is managed aquifer recharge (MAR). In establishing a MAR scheme, site selection is the prime prerequisite that can be assisted by geographic information system (GIS) tools. One of the most important uncertainties in the site-selection process using GIS is finite ranges or intervals resulting from data classification. In order to reduce these uncertainties, a novel method has been developed involving the integration of multi-criteria decision making (MCDM), GIS, and a fuzzy inference system (FIS). The Shemil-Ashkara plain in the Hormozgan Province of Iran was selected as the case study; slope, geology, groundwater depth, potential for runoff, land use, and groundwater electrical conductivity have been considered as site-selection factors. By defining fuzzy membership functions for the input layers and the output layer, and by constructing fuzzy rules, a FIS has been developed. Comparison of the results produced by the proposed method and the traditional simple additive weighted (SAW) method shows that the proposed method yields more precise results. In conclusion, fuzzy-set theory can be an effective method to overcome associated uncertainties in classification of geographic information data.
Practical applications of remote sensing technology
NASA Technical Reports Server (NTRS)
Whitmore, Roy A., Jr.
1990-01-01
Land managers increasingly are becoming dependent upon remote sensing and automated analysis techniques for information gathering and synthesis. Remote sensing and geographic information system (GIS) techniques provide quick and economical information gathering for large areas. The outputs of remote sensing classification and analysis are most effective when combined with a total natural resources data base within the capabilities of a computerized GIS. Some examples are presented of the successes, as well as the problems, in integrating remote sensing and geographic information systems. The need to exploit remotely sensed data and the potential that geographic information systems offer for managing and analyzing such data continues to grow. New microcomputers with vastly enlarged memory, multi-fold increases in operating speed and storage capacity that was previously available only on mainframe computers are a reality. Improved raster GIS software systems have been developed for these high performance microcomputers. Vector GIS systems previously reserved for mini and mainframe systems are available to operate on these enhanced microcomputers. One of the more exciting areas that is beginning to emerge is the integration of both raster and vector formats on a single computer screen. This technology will allow satellite imagery or digital aerial photography to be presented as a background to a vector display.
GIS application on modern Mexico
NASA Astrophysics Data System (ADS)
Prakash, Bharath
This is a GIS based tool for showcasing the history of modern Mexico starting from the post-colonial era to the elections of 2012. The tool is developed using simple language and is flexible so as to allow for future enhancements. The application consists of numerous images and textual information, and also some links which can be used by primary and high school students to understand the history of modern Mexico, and also by tourists to look for all the international airports and United States of America consulates. This software depicts the aftermaths of the Colonial Era or the Spanish rule of Mexico. It covers various topics like the wars, politics, important personalities, drug cartels and violence. All these events are shown on GIS (Geographic information Science) maps. The software can be customized according to the user requirements and is developed using JAVA and GIS technology. The user interface is created using JAVA and MOJO which contributes to effective learning and understanding of the concepts with ease. Some of the user interface features provided in this tool includes zoom-in, zoom-out, legend editing, location identifier, print command, adding a layer and numerous menu items.
Wang, Bao-Zhen; Chen, Zhi
2013-01-01
This article presents a GIS-based multi-source and multi-box modeling approach (GMSMB) to predict the spatial concentration distributions of airborne pollutant on local and regional scales. In this method, an extended multi-box model combined with a multi-source and multi-grid Gaussian model are developed within the GIS framework to examine the contributions from both point- and area-source emissions. By using GIS, a large amount of data including emission sources, air quality monitoring, meteorological data, and spatial location information required for air quality modeling are brought into an integrated modeling environment. It helps more details of spatial variation in source distribution and meteorological condition to be quantitatively analyzed. The developed modeling approach has been examined to predict the spatial concentration distribution of four air pollutants (CO, NO(2), SO(2) and PM(2.5)) for the State of California. The modeling results are compared with the monitoring data. Good agreement is acquired which demonstrated that the developed modeling approach could deliver an effective air pollution assessment on both regional and local scales to support air pollution control and management planning.
NASA Astrophysics Data System (ADS)
Michael, Scott A.; Steiman-Cameron, T.; Durisen, R.; Boley, A.
2008-05-01
Using 3D simulations of a cooling disk undergoing gravitational instabilities (GIs), we compute the effective Shakura and Sunyaev (1973) alphas due to gravitational torques and compare them to predictions from an analytic local theory for thin disks by Gammie (2001). Our goal is to determine how accurately a locally defined alpha can characterize mass and angular momentum transport by GIs in disks. Cases are considered both with cooling by an imposed constant global cooling time (Mejia et al. 2005) and with realistic radiative transfer (Boley et al. 2007). Grid spacing in the azimuthal direction is varied to investigate how the computed alpha is affected by numerical resolution. The azimuthal direction is particularly important, because higher resolution in azimuth allows GI power to spread to higher-order (multi-armed) modes that behave more locally. We find that, in many important respects, the transport of mass and angular momentum by GIs is an intrinsically global phenomenon. Effective alphas are variable on a dynamic time scale over global spatial scales. Nevertheless, preliminary results at the highest resolutions for an imposed cooling time show that our computed alphas, though systematically higher, tend on average to follow Gammie's prediction to within perhaps a factor of two. Our computed alphas include only gravitational stresses, while in Gammie's treatment the effective alpha is due equally to hydrodynamic (Reynolds) and gravitational stresses. So Gammie's prediction may significantly underestimate the true average stresses in a GI-active disk. Our effective alphas appear to be reasonably well converged for 256 and 512 azimuthal zones. We also have a high-resolution simulation under way to test the extent of radial mixing by GIs of gas and its entrained dust for comparison with Stardust observations. Results will be presented if available at the time of the meeting.
Integration of aerial remote sensing imaging data in a 3D-GIS environment
NASA Astrophysics Data System (ADS)
Moeller, Matthias S.
2003-03-01
For some years sensor systems have been available providing digital images of a new quality. Especially aerial stereo scanners acquire digital multispectral images with an extremely high ground resolution of about 0.10 - 0.15m and provide in addition a Digital Surface Models (DSM). These imaging products both can be used for a detailed monitoring at scales up to 1:500. The processed georeferenced multispectral orthoimages can be readily integrated into GIS making them useful for a number of applications. The DSM, derived from forward and backward facing sensors of an aerial imaging system provides a ground resolution of 0.5 m and can be used for 3D visualization purposes. In some cases it is essential, to store the ground elevation as a Digital Terrain Model (DTM) and also the height of 3-dimensional objects in a separated database. Existing automated algorithms do not work precise for the extraction of DTM from aerial scanner DSM. This paper presents a new approach which combines the visible image data and the DSM data for the generation of DTM with a reliable geometric accuracy. Already existing cadastral data can be used as a knowledge base for the extraction of building heights in cities. These elevation data is the essential source for a GIS based urban information system with a 3D visualization component.
The impacts of Segura River (Spain) channelization on the coastal seabed.
Aragonés, L; Pagán, J I; López, M P; García-Barba, J
2016-02-01
Human actions over rivers and coasts have generated great changes along seaboard. In order to know future development of those changes, it is necessary to understand the development of the coast during the past. When there is a complex morphologic system as a result of the combination of natural elements with human construction elements, the study of the abovementioned changes requires a wider perspective than the one provided by traditional two-dimensional methods. Thus, the Geographic Information Systems (GIS) become a suitable tool for that kind of studies. In this work, GIS are used to understand changes in bathymetry, sediments properties and transport, as well as surface variations of plant species occurred in the Segura River mouth (Spain) within a period of 17 years due to the channelization of the river low course. The methodology followed here implies the integration of data coming from different sources and with different formats in a GIS, what allows for a spatial analysis. Results obtained show the grain-size spatial distribution for every period of time studied, as well as bathymetry changes and seabed morphology. It can be concluded that the construction works carried out in the riverbed have affected sediment grain-size in the area. Clays have nearly disappeared and consequently there is a descent of seabed level that affects plant species, such as Posidonia oceanica. Copyright © 2015 Elsevier B.V. All rights reserved.
A GIS approach to urban heat island research: The case of Huntsville, Alabama
NASA Technical Reports Server (NTRS)
Lo, Chor Pong
1994-01-01
The urban heat island represents a case of inadvertent human modification of climate in an urban environment. Urbanization changes the nature of the surface and atmospheric properties of a region. As a result, radiation balance in the urban areas is altered and sensible heat is added to the point that urban areas are warmer than surrounding rural areas. At the boundary between the rural and urban area, a sharp rise in temperature occurs, culminating to a peak temperature at the central business district of the city, hence the name 'urban heat island'. The extent and intensity of the urban heat island are a function of population size, land use, and topography. Because the urban heat island exhibits spatial variations of temperatures, the use of Geographic Information System (GIS) is appropriate. The research on the urban heat island focuses on the acquisition of 15 bands of visible and thermal infrared data (ranging from 0.45 to 12.2 microns) from an aerial platform using NASA's ATLAS (Airborne Thermal/Visible Land Application Sensor) over Huntsville, Alabama. The research reported in this paper is an analysis of the impact of population, land use, and topography on the shape of the urban heat island that could be developed in Huntsville using the GIS approach. The outcome of this analysis can then be verified using the acquired remotely sensed data.
NASA Astrophysics Data System (ADS)
Wang, M. X.; Liu, G. D.; Wu, W. L.; Bao, Y. H.; Liu, W. N.
2006-07-01
In recent years, nitrate contamination of groundwater has become a growing concern for people in rural areas in North China Plain (NCP) where groundwater is used as drinking water. The objective of this study was to simulate agriculture derived groundwater nitrate pollution patterns with artificial neural network (ANN), which has been proved to be an effective tool for prediction in many branches of hydrology when data are not sufficient to understand the physical process of the systems but relative accurate predictions is needed. In our study, a back propagation neural network (BPNN) was developed to simulate spatial distribution of NO3-N concentrations in groundwater with land use information and site-specific hydrogeological properties in Huantai County, a typical agriculture dominated region of NCP. Geographic information system (GIS) tools were used in preparing and processing input-output vectors data for the BPNN. The circular buffer zones centered on the sampling wells were designated so as to consider the nitrate contamination of groundwater due to neighboring field. The result showed that the GIS-based BPNN simulated groundwater NO3-N concentration efficiently and captured the general trend of groundwater nitrate pollution patterns. The optimal result was obtained with a learning rate of 0.02, a 4-7-1 architecture and a buffer zone radius of 400 m. Nitrogen budget combined with GIS-based BPNN can serve as a cost-effective tool for prediction and management of groundwater nitrate pollution in an agriculture dominated regions in North China Plain.