Sample records for giving transparency concepts

  1. Transparency through Structural Disorder: A New Concept for Innovative Transparent Ceramics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Al Saghir, Kholoud; Chenu, Sébastien; Veron, Emmanuel

    2015-01-27

    Transparent polycrystalline ceramics present signi fi cant eco- nomical and functional advantages over single crystal materials for optical, communication, and laser technologies. To date, transparency in these ceramics is ensured either by an optical isotropy (i.e., cubic symmetry) or a nanometric crystallite size, and the main challenge remains to eliminate porosity through complex high pressure - high temperature synthesis. Here we introduce a new concept to achieve ultimate transparency reaching the theoretical limit. We use a controlled degree of chemical disorder in the structure to obtain optical isotropy at the micrometer length scale. This approach can be applied in themore » case of anisotropic structures and micrometer scale crystal size ceramics. We thus report Sr 1+ x /2 Al 2+ x Si 2 - x O 8 (0 < x ≤ 0.4) readily scalable polycrystalline ceramics elaborated by full and congruent crystallization from glass. These materials reach 90% transmittance. This innovative method should drive the development of new highly transparent materials with technologically relevant applications.« less

  2. Multidimensional Ranking: A New Transparency Tool for Higher Education and Research

    ERIC Educational Resources Information Center

    van Vught, Frans; Westerheijden, Don F.

    2010-01-01

    This paper sets out to analyse the need for better "transparency tools" which inform university stakeholders about the quality of universities. First, we give an overview of what we understand by the concept of transparency tools and those that are currently available. We then critique current transparency tools' methodologies, looking in detail…

  3. Soils. Transparency Masters.

    ERIC Educational Resources Information Center

    Clemson Univ., SC. Vocational Education Media Center.

    This document is a collection of 43 overhead transparency masters to be used as teaching aids in a course of study involving soils such as geology, agronomy, hydrology, earth science, or land use study. Some transparencies are in color. Selected titles of transparencies may give the reader a better understanding of the graphic content. Titles are:…

  4. Meaning That Social Studies Teacher Candidates Give to Value Concept and Their Value Rankings

    ERIC Educational Resources Information Center

    Aysegül, Tural

    2018-01-01

    This work determines the role that value education plays in shaping people's personal and social life. This research aims to put forward meaning that social studies teacher candidates give to value concept and its value ranking. To achieve this aim, the opinions of 12 social studies teacher candidates were obtained. During the data collection…

  5. High Temperature Transparent Furnace Development

    NASA Technical Reports Server (NTRS)

    Bates, Stephen C.

    1997-01-01

    This report describes the use of novel techniques for heat containment that could be used to build a high temperature transparent furnace. The primary objective of the work was to experimentally demonstrate transparent furnace operation at 1200 C. Secondary objectives were to understand furnace operation and furnace component specification to enable the design and construction of a low power prototype furnace for delivery to NASA in a follow-up project. The basic approach of the research was to couple high temperature component design with simple concept demonstration experiments that modify a commercially available transparent furnace rated at lower temperature. A detailed energy balance of the operating transparent furnace was performed, calculating heat losses through the furnace components as a result of conduction, radiation, and convection. The transparent furnace shells and furnace components were redesigned to permit furnace operation at at least 1200 C. Techniques were developed that are expected to lead to significantly improved heat containment compared with current transparent furnaces. The design of a thermal profile in a multizone high temperature transparent furnace design was also addressed. Experiments were performed to verify the energy balance analysis, to demonstrate some of the major furnace improvement techniques developed, and to demonstrate the overall feasibility of a high temperature transparent furnace. The important objective of the research was achieved: to demonstrate the feasibility of operating a transparent furnace at 1200 C.

  6. Creating financial transparency in public health: examining best practices of system partners.

    PubMed

    Honoré, Peggy A; Clarke, Richard L; Mead, Dean Michael; Menditto, Susan M

    2007-01-01

    Financial transparency is based on concepts for valid, standardized information that is readily accessible and routinely disseminated to stakeholders. While Congress and others continuously ask for an accounting of public health investments, transparency remains an ignored concept. The objective of this study was to examine financial transparency practices in other industries considered as part of the public health system. Key informants, regarded as financial experts on the operations of hospitals, school systems, and higher education, were a primary source of information. Principal findings were that system partners have espoused some concepts for financial transparency beginning in the early 20th century--signifying an 80-year implementation gap for public health. Critical features that promote accountability included standardized data collection methods and infrastructures, uniform practices for quantitative analysis of financial performance, and credentialing of the financial management workforce. Recommendations are offered on the basis of these findings to aid public health to close this gap by framing a movement toward transparency.

  7. Development and applications of transparent conductive nanocellulose paper

    NASA Astrophysics Data System (ADS)

    Li, Shaohui; Lee, Pooi See

    2017-12-01

    Increasing attention has been paid to the next generation of 'green' electronic devices based on renewable nanocellulose, owing to its low roughness, good thermal stability and excellent optical properties. Various proof-of-concept transparent nanopaper-based electronic devices have been fabricated; these devices exhibit excellent flexibility, bendability and even foldability. In this review, we summarize the recent progress of transparent nanopaper that uses different types of nanocellulose, including pure nanocellulose paper and composite nanocellulose paper. The latest development of transparent and flexible nanopaper electronic devices are illustrated, such as electrochromic devices, touch sensors, solar cells and transistors. Finally, we discuss the advantages of transparent nanopaper compared to conventional flexible plastic substrate and the existing challenges to be tackled in order to realize this promising potential.

  8. Transparent Solar Concentrator for Flat Panel Display

    NASA Astrophysics Data System (ADS)

    Yeh, Chia-Hung; Chang, Fuh-Yu; Young, Hong-Tsu; Hsieh, Tsung-Yen; Chang, Chia-Hsiung

    2012-06-01

    A new concept of the transparent solar concentrator for flat panel display is experimentally demonstrated without adversely affecting the visual effects. The solar concentrator is based on a solar light-guide plate with micro prisms, not only increasing the absorption area of solar energy but also enhancing the conversion efficiency. The incident light is guided by the designed solar light-guide plate according to the total internal reflection (TIR), and converted into electrical power by photovoltaic solar cells. The designed transparent solar concentrator was made and measured with high transparency, namely 94.8%. The developed solar energy system for display can store energy and supply the bias voltage to light on two light-emitting diodes (LEDs) successfully.

  9. Could Transparency Bring Economic Diversity?

    ERIC Educational Resources Information Center

    Kahlenberg, Richard D.

    2007-01-01

    The Spellings Commission report calls for greater access to higher education for low- and moderate-income students, greater transparency in the way higher education works and greater accountability for producing results. These recommendations are all significant in their own right, but the three concepts also converge to provide powerful support…

  10. Recognition and Transparency of Vocational Qualifications; The Way Forward. Discussion Paper = Anerkennung und Transparenz von beruflichen Befahigungsnachweisen; Neue Wege. Diskussionspapier = Reconnaissance et transparence des qualifications professionelles; La voie a suivre. Document de discussion. CEDEFOP Panorama.

    ERIC Educational Resources Information Center

    Bjornavold, Jens; Sellin, Burkart

    The European Union's most important challenge is to establish permanent, reliable methodologies and systems that support transparency and recognition of vocational qualifications. The concept of "transparency of qualifications" has replaced "recognition" and "comparability.""Transparency" points to the need…

  11. Blockchain protocols in clinical trials: Transparency and traceability of consent.

    PubMed

    Benchoufi, Mehdi; Porcher, Raphael; Ravaud, Philippe

    2017-01-01

    Clinical trial consent for protocols and their revisions should be transparent for patients and traceable for stakeholders. Our goal is to implement a process allowing for collection of patients' informed consent, which is bound to protocol revisions, storing and tracking the consent in a secure, unfalsifiable and publicly verifiable way, and enabling the sharing of this information in real time. For that, we build a consent workflow using a trending technology called Blockchain. This is a distributed technology that brings a built-in layer of transparency and traceability. From a more general and prospective point of view, we believe Blockchain technology brings a paradigmatical shift to the entire clinical research field. We designed a Proof-of-Concept protocol consisting of time-stamping each step of the patient's consent collection using Blockchain, thus archiving and historicising the consent through cryptographic validation in a securely unfalsifiable and transparent way. For each protocol revision, consent was sought again.  We obtained a single document, in an open format, that accounted for the whole consent collection process: a time-stamped consent status regarding each version of the protocol. This document cannot be corrupted and can be checked on any dedicated public website. It should be considered a robust proof of data. However, in a live clinical trial, the authentication system should be strengthened to remove the need for third parties, here trial stakeholders, and give participative control to the peer users. In the future, the complex data flow of a clinical trial could be tracked by using Blockchain, which core functionality, named Smart Contract, could help prevent clinical trial events not occurring in the correct chronological order, for example including patients before they consented or analysing case report form data before freezing the database. Globally, Blockchain could help with reliability, security, transparency and could be a

  12. Blockchain protocols in clinical trials: Transparency and traceability of consent

    PubMed Central

    Benchoufi, Mehdi; Porcher, Raphael; Ravaud, Philippe

    2018-01-01

    Clinical trial consent for protocols and their revisions should be transparent for patients and traceable for stakeholders. Our goal is to implement a process allowing for collection of patients’ informed consent, which is bound to protocol revisions, storing and tracking the consent in a secure, unfalsifiable and publicly verifiable way, and enabling the sharing of this information in real time. For that, we build a consent workflow using a trending technology called Blockchain. This is a distributed technology that brings a built-in layer of transparency and traceability. From a more general and prospective point of view, we believe Blockchain technology brings a paradigmatical shift to the entire clinical research field. We designed a Proof-of-Concept protocol consisting of time-stamping each step of the patient’s consent collection using Blockchain, thus archiving and historicising the consent through cryptographic validation in a securely unfalsifiable and transparent way. For each protocol revision, consent was sought again.  We obtained a single document, in an open format, that accounted for the whole consent collection process: a time-stamped consent status regarding each version of the protocol. This document cannot be corrupted and can be checked on any dedicated public website. It should be considered a robust proof of data. However, in a live clinical trial, the authentication system should be strengthened to remove the need for third parties, here trial stakeholders, and give participative control to the peer users. In the future, the complex data flow of a clinical trial could be tracked by using Blockchain, which core functionality, named Smart Contract, could help prevent clinical trial events not occurring in the correct chronological order, for example including patients before they consented or analysing case report form data before freezing the database. Globally, Blockchain could help with reliability, security, transparency and could be

  13. Development and applications of transparent conductive nanocellulose paper

    PubMed Central

    Li, Shaohui; Lee, Pooi See

    2017-01-01

    Abstract Increasing attention has been paid to the next generation of ‘green’ electronic devices based on renewable nanocellulose, owing to its low roughness, good thermal stability and excellent optical properties. Various proof-of-concept transparent nanopaper-based electronic devices have been fabricated; these devices exhibit excellent flexibility, bendability and even foldability. In this review, we summarize the recent progress of transparent nanopaper that uses different types of nanocellulose, including pure nanocellulose paper and composite nanocellulose paper. The latest development of transparent and flexible nanopaper electronic devices are illustrated, such as electrochromic devices, touch sensors, solar cells and transistors. Finally, we discuss the advantages of transparent nanopaper compared to conventional flexible plastic substrate and the existing challenges to be tackled in order to realize this promising potential. PMID:28970870

  14. Applications of one-dimensional structured nanomaterials as biosensors and transparent electronics

    NASA Astrophysics Data System (ADS)

    Ishikawa, Fumiaki

    This dissertation presents applications of one-dimensional structured nanomaterials, carbon nanotubes and In2O3 nanowires, for biosensors and transparent electronics. Chapter 1 gives the motivation to study applications of one-dimensional structured nanomaterials, and also brief introduction to structure, synthesis, and electronic properties of carbon nanotubes and In2O3 nanowires. In Chapter 2, introduction and motivation of biosensors using nanotubes/nanowires is given, followed by an overview on important background knowledge and concepts in biosensing. In Chapter 3, application of carbon nanotube biosensors toward brown tide algae detection is presented. Our devices successfully detected a brown tide marker selectively with real-time response. In Chapter 4, we demonstrate that In2O3 nanowire biosensors coupled with an antibody mimic protein (Fibronectin, Fn) can be used to detect nucleocapsid (N) protein, a biomarker for severe acute respiratory syndrome (SARS), at concentrations to below the sub-nanomolar range. In Chapter 5, we develop an analytical method to calibrate nanowire biosensor responses that can suppress the device-to-device variation in sensing response significantly. In Chapter 6, we investigate the effect of nanotube density on the biosensor performance, and proved that it plays an important role through systematic studies. In Chapter 7, I propose a future direction of nanobiosensors research, and show preliminary results along the proposed direction. I first present a concept of an ideal bioassay system with a list of requirements for the system, and propose the strategy of multi-integration to establish a system based on nanobiosensors that satisfies all of the requirements. In Chapter 8, we demonstrate high performance fully transparent transistors based on transfer printed aligned carbon nanotubes on both rigid and flexible substrates. We achieved device mobility as high as 1,300 cm 2V-1s-1 on glass substrates, which is the highest among

  15. Tailoring mode interference in plasmon-induced transparency metamaterials

    NASA Astrophysics Data System (ADS)

    Liu, Meng; Yang, Quanlong; Xu, Quan; Chen, Xieyu; Tian, Zhen; Gu, Jianqiang; Ouyang, Chunmei; Zhang, Xueqian; Han, Jiaguang; Zhang, Weili

    2018-05-01

    We proposed an approach to tailor the mode interference effect in plasmon-induced transparency (PIT) metamaterials. Through introducing an extra coupling mode using an asymmetric structure configuration at terahertz (THz) frequencies, the well-known single-transparency-window PIT can be switched to dual-transparency-window PIT. Proof-of-concept subwavelength structures were fabricated and experimentally characterized. The measured results are in good agreement with the simulations, and well support our theoretical analysis. The presented research delivers a novel approach toward developing subwavelength devices with varies functionalities, such as ultra-slow group velocities, longitudinal pulse compression and light storage in the THz regime, which can also be extended to other spectral regimes.

  16. Lines that induce phenomenal transparency.

    PubMed

    Grieco, Alba; Roncato, Sergio

    2005-01-01

    Three neighbouring opaque surfaces may appear split into two layers, one transparent and one opaque beneath, if an outline contour is drawn that encompasses two of them. The phenomenon was originally observed by Kanizsa [1955 Rivista di Psicologia 69 3-19; 1979 Organization in Vision: Essays on Gestalt Psychology (New York: Praeger)], for the case where an outline contour is drawn to encompass one of the two parts of a bicoloured figure and a portion of a background of lightest (or darkest) luminance. Preliminary observations revealed that the outline contour yields different effects: in addition to the stratification into layers described by Kanizsa, a second split, opposite in depth order, may occur when the outline contour is close in luminance to one of the three surfaces. An initial experiment was designed to investigate what conditions give rise to the two phenomenal transparencies: this led to the conclusion that an outline contour superimposed on an opaque surface causes this surface to emerge as a transparent layer when the luminances of the contour and the surface differ, in absolute value, by no more than 13.2 cd m(-2). We have named this phenomenon 'transparency of the intercepted surface', to distinguish it from the phenomenal transparency arising when the contour and surface are very different in luminance. When such a difference exists, the contour acts as a factor of surface definition and grouping: the portion of the homogeneous surface it bounds emerges as a fourth surface and groups with a nearby surface if there is one close in luminance. The transparency phenomena ('transparency of the contoured surface') perceived in this context conform to the constraints of Metelli's model, as demonstrated by a second experiment, designed to gather 'opacity' ratings of stimuli. The observer judgments conformed to the values predicted by Metelli's formula for perceived degree of transparency, alpha. The role of the outline contour in conveying figural and

  17. Transparent solar antenna of 28 GHz using transparent conductive oxides (TCO) thin film

    NASA Astrophysics Data System (ADS)

    Ali, N. I. Mohd; Misran, N.; Mansor, M. F.; Jamlos, M. F.

    2017-05-01

    This paper presents the analysis of 28GHz solar patch antenna using the variations of transparent conductive oxides (TCO) thin film as the radiating patch. Solar antenna is basically combining the function of antenna and solar cell into one device and helps to maximize the usage of surface area. The main problem of the existing solar antenna is the radiating patch which made of nontransparent material, such as copper, shadowing the solar cell and degrades the total solar efficiency. Hence, by using the transparent conductive oxides (TCO) thin film as the radiating patch, this problem can be tackled. The TCO thin film used is varied to ITO, FTO, AgHT-4, and AgHT-8 along with glass as substrate. The simulation of the antenna executed by using Computer Simulation Technology (CST) Microwave Studio software demonstrated at 28 GHz operating frequency for 5G band applications. The performance of the transparent antennas is compared with each other and also with the nontransparent patch antenna that using Rogers RT5880 as substrate, operating at the same resonance frequency and then, the material that gives the best performance is identified.

  18. The Effectiveness of Giving Rules in Forming Concepts.

    ERIC Educational Resources Information Center

    Shanlin, Norman T.

    The value of verbal rules given to learners as an instructional aid in forming desired concepts was investigated in this study. Two programs dealing with the concept of conservation of energy in heat exchange between liquids were prepared in the form of self-instructional booklets. One presentation used a picture-rule or expository treatment, and…

  19. The Notion of Adminstrative Transparency among Academic Leaderships at Jordanian Universities

    ERIC Educational Resources Information Center

    Jaradat, Mohammed Hasan

    2013-01-01

    The study aims at identifying the notion of transparency among academic leaderships at Jordanian universities. To this effect, the interview-based approach was used in order to delineate the concept of transparency. Eighty individual academic leaderships were interviewed across various schools in Jordan. Upon collection of data and information,…

  20. Multi-layered hierarchical nanostructures for transparent monolithic dye-sensitized solar cell architectures

    NASA Astrophysics Data System (ADS)

    Passoni, Luca; Fumagalli, Francesco; Perego, Andrea; Bellani, Sebastiano; Mazzolini, Piero; Di Fonzo, Fabio

    2017-06-01

    Monolithic dye-sensitized solar cell (DSC) architectures hold great potential for building-integrated photovoltaics applications. They indeed benefit from lower weight and manufacturing costs as they avoid the use of a transparent conductive oxide (TCO)-coated glass counter electrode. In this work, a transparent monolithic DSC comprising a hierarchical 1D nanostructure stack is fabricated by physical vapor deposition techniques. The proof of concept device comprises hyperbranched TiO2 nanostructures, sensitized by the prototypical N719, as photoanode, a hierarchical nanoporous Al2O3 spacer, and a microporous indium tin oxide (ITO) top electrode. An overall 3.12% power conversion efficiency with 60% transmittance outside the dye absorption spectral window is demonstrated. The introduction of a porous TCO layer allows an efficient trade-off between transparency and power conversion. The porous ITO exhibits submicrometer voids and supports annealing temperatures above 400 °C without compromising its optoelectronical properties. After thermal annealing at 500 °C, the resistivity, mobility, and carrier concentration of the 800 nm-thick porous ITO layer are found to be respectively 2.3 × 10-3 Ω cm-1, 11 cm2 V-1 s-1, and 1.62 × 1020 cm-3, resulting in a series resistance in the complete device architecture of 45 Ω. Electrochemical impedance and intensity-modulated photocurrent/photovoltage spectroscopy give insight into the electronic charge dynamic within the hierarchical monolithic DSCs, paving the way for potential device architecture improvements.

  1. Multi-layered hierarchical nanostructures for transparent monolithic dye-sensitized solar cell architectures.

    PubMed

    Passoni, Luca; Fumagalli, Francesco; Perego, Andrea; Bellani, Sebastiano; Mazzolini, Piero; Di Fonzo, Fabio

    2017-06-16

    Monolithic dye-sensitized solar cell (DSC) architectures hold great potential for building-integrated photovoltaics applications. They indeed benefit from lower weight and manufacturing costs as they avoid the use of a transparent conductive oxide (TCO)-coated glass counter electrode. In this work, a transparent monolithic DSC comprising a hierarchical 1D nanostructure stack is fabricated by physical vapor deposition techniques. The proof of concept device comprises hyperbranched TiO 2 nanostructures, sensitized by the prototypical N719, as photoanode, a hierarchical nanoporous Al 2 O 3 spacer, and a microporous indium tin oxide (ITO) top electrode. An overall 3.12% power conversion efficiency with 60% transmittance outside the dye absorption spectral window is demonstrated. The introduction of a porous TCO layer allows an efficient trade-off between transparency and power conversion. The porous ITO exhibits submicrometer voids and supports annealing temperatures above 400 °C without compromising its optoelectronical properties. After thermal annealing at 500 °C, the resistivity, mobility, and carrier concentration of the 800 nm-thick porous ITO layer are found to be respectively 2.3 × 10 -3 Ω cm -1 , 11 cm 2 V -1 s -1 , and 1.62 × 10 20 cm -3 , resulting in a series resistance in the complete device architecture of 45 Ω. Electrochemical impedance and intensity-modulated photocurrent/photovoltage spectroscopy give insight into the electronic charge dynamic within the hierarchical monolithic DSCs, paving the way for potential device architecture improvements.

  2. Effects of Transparency on Pilot Trust and Agreement in the Autonomous Constrained Flight Planner

    NASA Technical Reports Server (NTRS)

    Sadler, Garrett; Battiste, Henri; Ho, Nhut; Hoffmann, Lauren; Lyons, Joseph; Johnson, Walter; Shively, Robert; Smith, David

    2016-01-01

    We performed a human-in-the-loop study to explore the role of transparency in engendering trust and reliance within highly automated systems. Specifically, we examined how transparency impacts trust in and reliance upon the Autonomous Constrained Flight Planner (ACFP), a critical automated system being developed as part of NASA's Reduced Crew Operations (RCO) Concept. The ACFP is designed to provide an enhanced ground operator, termed a super dispatcher, with recommended diversions for aircraft when their primary destinations are unavailable. In the current study, 12 commercial transport rated pilots who played the role of super dispatchers were given six time-pressured all land scenarios where they needed to use the ACFP to determine diversions for multiple aircraft. Two factors were manipulated. The primary factor was level of transparency. In low transparency scenarios the pilots were given a recommended airport and runway, plus basic information about the weather conditions, the aircraft types, and the airport and runway characteristics at that and other airports. In moderate transparency scenarios the pilots were also given a risk evaluation for the recommended airport, and for the other airports if they requested it. In the high transparency scenario additional information including the reasoning for the risk evaluations was made available to the pilots. The secondary factor was level of risk, either high or low. For high-risk aircraft, all potential diversions were rated as highly risky, with the ACFP giving the best option for a bad situation. For low-risk aircraft the ACFP found only low-risk options for the pilot. Both subjective and objective measures were collected, including rated trust, whether the pilots checked the validity of the automation recommendation, and whether the pilots eventually flew to the recommended diversion airport. Key results show that: 1) Pilots trust increased with higher levels of transparency, 2) Pilots were more likely to

  3. Making Usable, Quality Opaque or Transparent Soap

    ERIC Educational Resources Information Center

    Mabrouk, Suzanne T.

    2005-01-01

    The experiment to make opaque and transparent soap, using cold and semi boiled processes respectively, and surfactant tests that measure the pH of the prepared soap, is introduced. The experiment shows an easy method to make soap by giving a choice to select oils and scents for the soap, which can be used at home.

  4. 'Seeing the Dark': Grounding Phenomenal Transparency and Opacity in Precision Estimation for Active Inference.

    PubMed

    Limanowski, Jakub; Friston, Karl

    2018-01-01

    One of the central claims of the Self-model Theory of Subjectivity is that the experience of being someone - even in a minimal form - arises through a transparent phenomenal self-model, which itself can in principle be reduced to brain processes. Here, we consider whether it is possible to distinguish between phenomenally transparent and opaque states in terms of active inference. We propose a relationship of phenomenal opacity to expected uncertainty or precision; i.e., the capacity for introspective attention and implicit mental action. Thus we associate introspective attention with the deployment of 'precision' that may render the perceptual evidence (for action) opaque, while treating transparency as a necessary aspect of beliefs about action, i.e., 'what I am' doing. We conclude by proposing how we may have to nuance our conception of minimal phenomenal selfhood and agency in light of this active inference conception of transparency-opacity.

  5. Telescience - Concepts And Contributions To The Extreme Ultraviolet Explorer Mission

    NASA Astrophysics Data System (ADS)

    Marchant, Will; Dobson, Carl; Chakrabarti, Supriya; Malina, Roger F.

    1987-10-01

    A goal of the telescience concept is to allow scientists to use remotely located instruments as they would in their laboratory. Another goal is to increase reliability and scientific return of these instruments. In this paper we discuss the role of transparent software tools in development, integration, and postlaunch environments to achieve hands on access to the instrument. The use of transparent tools helps to reduce the parallel development of capability and to assure that valuable pre-launch experience is not lost in the operations phase. We also discuss the use of simulation as a rapid prototyping technique. Rapid prototyping provides a cost-effective means of using an iterative approach to instrument design. By allowing inexpensive produc-tion of testbeds, scientists can quickly tune the instrument to produce the desired scientific data. Using portions of the Extreme Ultraviolet Explorer (EUVE) system, we examine some of the results of preliminary tests in the use of simulation and tran-sparent tools. Additionally, we discuss our efforts to upgrade our software "EUVE electronics" simulator to emulate a full instrument, and give the pros and cons of the simulation facilities we have developed.

  6. Criterion-free measurement of motion transparency perception at different speeds

    PubMed Central

    Rocchi, Francesca; Ledgeway, Timothy; Webb, Ben S.

    2018-01-01

    Transparency perception often occurs when objects within the visual scene partially occlude each other or move at the same time, at different velocities across the same spatial region. Although transparent motion perception has been extensively studied, we still do not understand how the distribution of velocities within a visual scene contribute to transparent perception. Here we use a novel psychophysical procedure to characterize the distribution of velocities in a scene that give rise to transparent motion perception. To prevent participants from adopting a subjective decision criterion when discriminating transparent motion, we used an “odd-one-out,” three-alternative forced-choice procedure. Two intervals contained the standard—a random-dot-kinematogram with dot speeds or directions sampled from a uniform distribution. The other interval contained the comparison—speeds or directions sampled from a distribution with the same range as the standard, but with a notch of different widths removed. Our results suggest that transparent motion perception is driven primarily by relatively slow speeds, and does not emerge when only very fast speeds are present within a visual scene. Transparent perception of moving surfaces is modulated by stimulus-based characteristics, such as the separation between the means of the overlapping distributions or the range of speeds presented within an image. Our work illustrates the utility of using objective, forced-choice methods to reveal the mechanisms underlying motion transparency perception. PMID:29614154

  7. Moving from spatially segregated to transparent motion: a modelling approach

    PubMed Central

    Durant, Szonya; Donoso-Barrera, Alejandra; Tan, Sovira; Johnston, Alan

    2005-01-01

    Motion transparency, in which patterns of moving elements group together to give the impression of lacy overlapping surfaces, provides an important challenge to models of motion perception. It has been suggested that we perceive transparent motion when the shape of the velocity histogram of the stimulus is bimodal. To investigate this further, random-dot kinematogram motion sequences were created to simulate segregated (perceptually spatially separated) and transparent (perceptually overlapping) motion. The motion sequences were analysed using the multi-channel gradient model (McGM) to obtain the speed and direction at every pixel of each frame of the motion sequences. The velocity histograms obtained were found to be quantitatively similar and all were bimodal. However, the spatial and temporal properties of the velocity field differed between segregated and transparent stimuli. Transparent stimuli produced patches of rightward and leftward motion that varied in location over time. This demonstrates that we can successfully differentiate between these two types of motion on the basis of the time varying local velocity field. However, the percept of motion transparency cannot be based simply on the presence of a bimodal velocity histogram. PMID:17148338

  8. Graphene Transparent Conductive Electrodes for Next- Generation Microshutter Arrays

    NASA Technical Reports Server (NTRS)

    Li, Mary; Sultana, Mahmooda; Hess, Larry

    2012-01-01

    Graphene is a single atomic layer of graphite. It is optically transparent and has high electron mobility, and thus has great potential to make transparent conductive electrodes. This invention contributes towards the development of graphene transparent conductive electrodes for next-generation microshutter arrays. The original design for the electrodes of the next generation of microshutters uses indium-tin-oxide (ITO) as the electrode material. ITO is widely used in NASA flight missions. The optical transparency of ITO is limited, and the material is brittle. Also, ITO has been getting more expensive in recent years. The objective of the invention is to develop a graphene transparent conductive electrode that will replace ITO. An exfoliation procedure was developed to make graphene out of graphite crystals. In addition, large areas of single-layer graphene were produced using low-pressure chemical vapor deposition (LPCVD) with high optical transparency. A special graphene transport procedure was developed for transferring graphene from copper substrates to arbitrary substrates. The concept is to grow large-size graphene sheets using the LPCVD system through chemical reaction, transfer the graphene film to a substrate, dope graphene to reduce the sheet resistance, and pattern the film to the dimension of the electrodes in the microshutter array. Graphene transparent conductive electrodes are expected to have a transparency of 97.7%. This covers the electromagnetic spectrum from UV to IR. In comparison, ITO electrodes currently used in microshutter arrays have 85% transparency in mid-IR, and suffer from dramatic transparency drop at a wavelength of near-IR or shorter. Thus, graphene also has potential application as transparent conductive electrodes for Schottky photodiodes in the UV region.

  9. [A transparent, internal complication management concept: results and consequences].

    PubMed

    Wagner, G; Gritzbach, B; Frank, J; Marzi, I

    2010-09-01

    The acquisition of data and public discussion of complications after therapeutic procedures and surgeries is a sensitive subject, which is mostly avoided even in department meetings. However, it is evident that the broad discussion and the expression of different opinions and aspects provide useful information for continuous improvements. Therefore, we established a system for the transparent acquisition of complications in our department. Since January 2005, we systematically register operative and non-operative complications at our department, evaluate them and therefore gain a great benefit. All the complications are presented, discussed and evaluated within the weekly morbidity and mortality conferences. In 2005 and 2006, among a total number of 2730 and, respectively, 3124 operations, 102 (3.7 %) and 71 (2.3 %) complications have been registered and analysed according to different criteria. We have distinguished between complications which required surgery and complications which only required conservative treatment. There was a higher number of complications which needed surgery. In this group, the most common complications have been found in vertebral spine surgery. The groups of complications with conservative treatment were mostly related to nerve lesions and deep venous thrombosis. With the aid of the internal department evaluation of the registered data, especially the number of complications in vertebral spine surgery could be clearly reduced in 2006. The described method has created a transparency of occurring complications because each colleague is informed as well as involved in the solution process. Furthermore, it is planned to evaluate the impact of risk factors on the various performed surgeries. © Georg Thieme Verlag KG Stuttgart · New York.

  10. Radical Transparency: Open Access as a Key Concept in Wiki Pedagogy

    ERIC Educational Resources Information Center

    Baltzersen, Rolf K.

    2010-01-01

    Educators have just started to use wikis and most of the educational research to date has focused primarily on the use of local wikis with access limitations. There seems to be little research related to how students can contribute in global, transparent wiki communities such as "Wikipedia" and "Wikibooks". The purpose of this…

  11. Building integrated semi-transparent photovoltaics: energy and daylighting performance

    NASA Astrophysics Data System (ADS)

    Kapsis, Konstantinos; Athienitis, Andreas K.

    2011-08-01

    This paper focuses on modeling and evaluation of semi-transparent photovoltaic technologies integrated into a coolingdominated office building façade by employing the concept of three-section façade. An energy simulation model is developed, using building simulation software, to investigate the effect of semi-transparent photovoltaic transmittance on the energy performance of an office in a typical office building in Montreal. The analysis is performed for five major façade orientations and two façade configurations. Using semi-transparent photovoltaic integrated into the office façade, electricity savings of up to 53.1% can be achieved compared to a typical office equipped with double glazing with Argon filling and a low emissivity coating, and lighting controlled based on occupancy and daylight levels.e.c

  12. ‘Seeing the Dark’: Grounding Phenomenal Transparency and Opacity in Precision Estimation for Active Inference

    PubMed Central

    Limanowski, Jakub; Friston, Karl

    2018-01-01

    One of the central claims of the Self-model Theory of Subjectivity is that the experience of being someone – even in a minimal form – arises through a transparent phenomenal self-model, which itself can in principle be reduced to brain processes. Here, we consider whether it is possible to distinguish between phenomenally transparent and opaque states in terms of active inference. We propose a relationship of phenomenal opacity to expected uncertainty or precision; i.e., the capacity for introspective attention and implicit mental action. Thus we associate introspective attention with the deployment of ‘precision’ that may render the perceptual evidence (for action) opaque, while treating transparency as a necessary aspect of beliefs about action, i.e., ‘what I am’ doing. We conclude by proposing how we may have to nuance our conception of minimal phenomenal selfhood and agency in light of this active inference conception of transparency-opacity. PMID:29780343

  13. 76 FR 1180 - FDA Transparency Initiative: Improving Transparency to Regulated Industry

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-07

    ...] FDA Transparency Initiative: Improving Transparency to Regulated Industry AGENCY: Food and Drug... the Transparency Initiative, the Food and Drug Administration (FDA) is announcing the availability of a report entitled ``FDA Transparency Initiative: Improving Transparency to Regulated Industry.'' The...

  14. Spectroscopic study of transparency current in mid-infrared quantum cascade lasers.

    PubMed

    Revin, Dmitry G; Hassan, Randa S; Krysa, Andrey B; Wang, Yongrui; Belyanin, Alexey; Kennedy, Kenneth; Atkins, Chris N; Cockburn, John W

    2012-08-13

    We report measurements which give direct insight into the origins of the transparency current for λ ~5 µm In0.6Ga0.4As/In0.42Al0.58As quantum cascade lasers in the temperature range of 80-280 K. The transparency current values have been found from broadband transmission measurements through the laser waveguides under sub-threshold operating conditions. Two active region designs were compared. The active region of the first laser is based on double-LO-phonon relaxation approach, while the second device has only one lower level, without specially designed resonant LO-phonon assisted depopulation. It is shown that transparency current contributes more than 70% to the magnitude of threshold current at high temperatures for both designs.

  15. P-type transparent conducting oxides.

    PubMed

    Zhang, Kelvin H L; Xi, Kai; Blamire, Mark G; Egdell, Russell G

    2016-09-28

    Transparent conducting oxides constitute a unique class of materials combining properties of electrical conductivity and optical transparency in a single material. They are needed for a wide range of applications including solar cells, flat panel displays, touch screens, light emitting diodes and transparent electronics. Most of the commercially available TCOs are n-type, such as Sn doped In2O3, Al doped ZnO, and F doped SnO2. However, the development of efficient p-type TCOs remains an outstanding challenge. This challenge is thought to be due to the localized nature of the O 2p derived valence band which leads to difficulty in introducing shallow acceptors and large hole effective masses. In 1997 Hosono and co-workers (1997 Nature 389 939) proposed the concept of 'chemical modulation of the valence band' to mitigate this problem using hybridization of O 2p orbitals with close-shell Cu 3d (10) orbitals. This work has sparked tremendous interest in designing p-TCO materials together with deep understanding the underlying materials physics. In this article, we will provide a comprehensive review on traditional and recently emergent p-TCOs, including Cu(+)-based delafossites, layered oxychalcogenides, nd (6) spinel oxides, Cr(3+)-based oxides (3d (3)) and post-transition metal oxides with lone pair state (ns (2)). We will focus our discussions on the basic materials physics of these materials in terms of electronic structures, doping and defect properties for p-type conductivity and optical properties. Device applications based on p-TCOs for transparent p-n junctions will also be briefly discussed.

  16. Concealed, Unobtrusive Ear-Centered EEG Acquisition: cEEGrids for Transparent EEG

    PubMed Central

    Bleichner, Martin G.; Debener, Stefan

    2017-01-01

    Electroencephalography (EEG) is an important clinical tool and frequently used to study the brain-behavior relationship in humans noninvasively. Traditionally, EEG signals are recorded by positioning electrodes on the scalp and keeping them in place with glue, rubber bands, or elastic caps. This setup provides good coverage of the head, but is impractical for EEG acquisition in natural daily-life situations. Here, we propose the transparent EEG concept. Transparent EEG aims for motion tolerant, highly portable, unobtrusive, and near invisible data acquisition with minimum disturbance of a user's daily activities. In recent years several ear-centered EEG solutions that are compatible with the transparent EEG concept have been presented. We discuss work showing that miniature electrodes placed in and around the human ear are a feasible solution, as they are sensitive enough to pick up electrical signals stemming from various brain and non-brain sources. We also describe the cEEGrid flex-printed sensor array, which enables unobtrusive multi-channel EEG acquisition from around the ear. In a number of validation studies we found that the cEEGrid enables the recording of meaningful continuous EEG, event-related potentials and neural oscillations. Here, we explain the rationale underlying the cEEGrid ear-EEG solution, present possible use cases and identify open issues that need to be solved on the way toward transparent EEG. PMID:28439233

  17. Reactivity and reactions to regulatory transparency in medicine, psychotherapy and counselling.

    PubMed

    McGivern, Gerry; Fischer, Michael D

    2012-02-01

    We explore how doctors, psychotherapists and counsellors in the U.K. react to regulatory transparency, drawing on qualitative research involving 51 semi-structured interviews conducted during 2008-10. We use the concept of 'reactivity mechanisms' (Espeland & Sauder, 2007) to explain how regulatory transparency disrupts practices through simplifying and decontextualizing them, altering practitioners' reflexivity, leading to defensive forms of practice. We make an empirical contribution by exploring the impact of transparency on doctors compared with psychotherapists and counsellors, who represent an extreme case due to their uniquely complex practice, which is particularly affected by this form of regulation. We make a contribution to knowledge by developing a model of reactivity mechanisms, which explains how clinical professionals make sense of media and professional narratives about regulation in ways that produce emotional reactions and, in turn, defensive reactivity to transparency. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Toward transparent and self-activated graphene harmonic transponder sensors

    NASA Astrophysics Data System (ADS)

    Huang, Haiyu Harry; Sakhdari, Maryam; Hajizadegan, Mehdi; Shahini, Ali; Akinwande, Deji; Chen, Pai-Yen

    2016-04-01

    We propose the concept and design of a transparent, flexible, and self-powered wireless sensor comprising a graphene-based sensor/frequency-modulator circuitry and a graphene antenna. In this all-graphene device, the multilayered-graphene antenna receives the fundamental tone at C band and retransmits the frequency-modulated sensed signal (harmonic tone) at X band. The frequency orthogonality between the received/re-transmitted signals may enable high-performance sensing in severe interference/clutter background. Here, a fully passive, quad-ring frequency multiplier is proposed using graphene field-effect transistors, of which the unique ambipolar charge transports render a frequency doubling effect with conversion gain being chemically sensitive to exposed gas/molecular/chemical/infectious agents. This transparent, light-weight, and self-powered system may potentially benefit a number of wireless sensing and diagnosis applications, particularly for smart contact lenses/glasses and microscope slides that require high optical transparency.

  19. Transparent and flexible electrodes and supercapacitors using polyaniline/single-walled carbon nanotube composite thin films

    NASA Astrophysics Data System (ADS)

    Ge, Jun; Cheng, Guanghui; Chen, Liwei

    2011-08-01

    Large-scale transparent and flexible electronic devices have been pursued for potential applications such as those in touch sensors and display technologies. These applications require that the power source of these devices must also comply with transparent and flexible features. Here we present transparent and flexible supercapacitors assembled from polyaniline (PANI)/single-walled carbon nanotube (SWNT) composite thin film electrodes. The ultrathin, optically homogeneous and transparent, electrically conducting films of the PANI/SWNT composite show a large specific capacitance due to combined double-layer capacitance and pseudo-capacitance mechanisms. A supercapacitor assembled using electrodes with a SWNT density of 10.0 µg cm-2 and 59 wt% PANI gives a specific capacitance of 55.0 F g-1 at a current density of 2.6 A g-1, showing its possibility for transparent and flexible energy storage.

  20. Price Transparency in the Online Age.

    PubMed

    Kaplan, Jonathan L; Mills, Parker H

    2016-05-01

    Plastic surgeons are sometimes hesitant to provide their pricing information online, due to several concerns. However, if implemented right, price transparency can be used as a lead generation tool that provides consumers with the pricing information they want and gives the physician the consumer's contact information for follow-up. This study took place during the author's first year in private practice in a new city. An interactive price transparency platform (ie, cost estimator) was integrated into his website, allowing consumers to submit a "wishlist" of procedures to check pricing on these procedures of interest. However, the consumer must submit their contact information to receive the desired breakdown of costs that are tailored based on the author's medical fees. During that first year, without any advertising expenditure, the author's website received 412 wishlists from 208 unique consumers. Consumers (17.8%) that submitted a wishlist came in for a consultation and 62% of those booked a procedure. The average value of a booked procedure was over US $4000 and cumulatively, all of the leads from this one lead source in that first year generated over US $92,000 in revenue. When compared with non-price-aware patients, price-aware patients were 41% more likely to book a procedure. Price transparency led to greater efficiency and reduced consultations that ended in "sticker shock." When prudently integrated into a medical practice, price transparency can be a great lead generation source for patients that are (1) paying out of pocket for medically necessary services due to a high-deductible health plan or (2) paying for services not typically covered by insurance, such as cosmetic services.

  1. Broadband Absorbing Exciton-Plasmon Metafluids with Narrow Transparency Windows.

    PubMed

    Yang, Jihua; Kramer, Nicolaas J; Schramke, Katelyn S; Wheeler, Lance M; Besteiro, Lucas V; Hogan, Christopher J; Govorov, Alexander O; Kortshagen, Uwe R

    2016-02-10

    Optical metafluids that consist of colloidal solutions of plasmonic and/or excitonic nanomaterials may play important roles as functional working fluids or as means for producing solid metamaterial coatings. The concept of a metafluid employed here is based on the picture that a single ballistic photon, propagating through the metafluid, interacts with a large collection of specifically designed optically active nanocrystals. We demonstrate water-based metafluids that act as broadband electromagnetic absorbers in a spectral range of 200-3300 nm and feature a tunable narrow (∼100 nm) transparency window in the visible-to-near-infrared region. To define this transparency window, we employ plasmonic gold nanorods. We utilize excitonic boron-doped silicon nanocrystals as opaque optical absorbers ("optical wall") in the UV and blue-green range of the spectrum. Water itself acts as an opaque "wall" in the near-infrared to infrared. We explore the limits of the concept of a "simple" metafluid by computationally testing and validating the effective medium approach based on the Beer-Lambert law. According to our simulations and experiments, particle aggregation and the associated decay of the window effect are one example of the failure of the simple metafluid concept due to strong interparticle interactions.

  2. Transparent and flexible electrodes and supercapacitors using polyaniline/single-walled carbon nanotube composite thin films.

    PubMed

    Ge, Jun; Cheng, Guanghui; Chen, Liwei

    2011-08-01

    Large-scale transparent and flexible electronic devices have been pursued for potential applications such as those in touch sensors and display technologies. These applications require that the power source of these devices must also comply with transparent and flexible features. Here we present transparent and flexible supercapacitors assembled from polyaniline (PANI)/single-walled carbon nanotube (SWNT) composite thin film electrodes. The ultrathin, optically homogeneous and transparent, electrically conducting films of the PANI/SWNT composite show a large specific capacitance due to combined double-layer capacitance and pseudo-capacitance mechanisms. A supercapacitor assembled using electrodes with a SWNT density of 10.0 µg cm(-2) and 59 wt% PANI gives a specific capacitance of 55.0 F g(-1) at a current density of 2.6 A g(-1), showing its possibility for transparent and flexible energy storage. This journal is © The Royal Society of Chemistry 2011

  3. The Role of Effective Modeling in the Development of Self-Efficacy: The Case of the Transparent Engine

    ERIC Educational Resources Information Center

    Scheibe, Kevin P.; Mennecke, Brian E.; Luse, Andy

    2007-01-01

    Computing technology augments learning in education in a number of ways. One particular method uses interactive programs to demonstrate complex concepts. The purpose of this article is to examine one type of interactive learning technology, the transparent engine. The transparent engine allows instructors and students to view and directly interact…

  4. Accuracy versus transparency in pharmacoeconomic modelling: finding the right balance.

    PubMed

    Eddy, David M

    2006-01-01

    As modellers push to make their models more accurate, the ability of others to understand the models can decrease, causing the models to lose transparency. When this type of conflict between accuracy and transparency occurs, the question arises, "Where do we want to operate on that spectrum?" This paper argues that in such cases we should give absolute priority to accuracy: push for whatever degree of accuracy is needed to answer the question being asked, try to maximise transparency within that constraint, and find other ways to replace what we wanted to get from transparency. There are several reasons. The fundamental purpose of a model is to help us get the right answer to a question and, by any measure, the expected value of a model is proportional to its accuracy. Ironically, we use transparency as a way to judge accuracy. But transparency is not a very powerful or useful way to do this. It rarely enables us to actually replicate the model's results and, even if we could, replication would not tell us the model's accuracy. Transparency rarely provides even face validity; from the content expert's perspective, the simplifications that modellers have to make usually raise more questions than they answer. Transparency does enable modellers to alert users to weaknesses in their models, but that can be achieved simply by listing the model's limitations and does not get us any closer to real accuracy. Sensitivity analysis tests the importance of uncertainty about the variables in a model, but does not tell us about the variables that were omitted or the structure of the model. What people really want to know is whether a model actually works. Transparency by itself can't answer this; only demonstrations that the model accurately calculates or predicts real events can. Rigorous simulations of clinical trials are a good place to start. This is the type of empirical validation we need to provide if the potential of mathematical models in pharmacoeconomics is to be

  5. Intelligent Agent Transparency in Human-Agent Teaming for Multi-UxV Management.

    PubMed

    Mercado, Joseph E; Rupp, Michael A; Chen, Jessie Y C; Barnes, Michael J; Barber, Daniel; Procci, Katelyn

    2016-05-01

    We investigated the effects of level of agent transparency on operator performance, trust, and workload in a context of human-agent teaming for multirobot management. Participants played the role of a heterogeneous unmanned vehicle (UxV) operator and were instructed to complete various missions by giving orders to UxVs through a computer interface. An intelligent agent (IA) assisted the participant by recommending two plans-a top recommendation and a secondary recommendation-for every mission. A within-subjects design with three levels of agent transparency was employed in the present experiment. There were eight missions in each of three experimental blocks, grouped by level of transparency. During each experimental block, the IA was incorrect three out of eight times due to external information (e.g., commander's intent and intelligence). Operator performance, trust, workload, and usability data were collected. Results indicate that operator performance, trust, and perceived usability increased as a function of transparency level. Subjective and objective workload data indicate that participants' workload did not increase as a function of transparency. Furthermore, response time did not increase as a function of transparency. Unlike previous research, which showed that increased transparency resulted in increased performance and trust calibration at the cost of greater workload and longer response time, our results support the benefits of transparency for performance effectiveness without additional costs. The current results will facilitate the implementation of IAs in military settings and will provide useful data to the design of heterogeneous UxV teams. © 2016, Human Factors and Ergonomics Society.

  6. Transparent lithium-ion batteries

    PubMed Central

    Yang, Yuan; Jeong, Sangmoo; Hu, Liangbing; Wu, Hui; Lee, Seok Woo; Cui, Yi

    2011-01-01

    Transparent devices have recently attracted substantial attention. Various applications have been demonstrated, including displays, touch screens, and solar cells; however, transparent batteries, a key component in fully integrated transparent devices, have not yet been reported. As battery electrode materials are not transparent and have to be thick enough to store energy, the traditional approach of using thin films for transparent devices is not suitable. Here we demonstrate a grid-structured electrode to solve this dilemma, which is fabricated by a microfluidics-assisted method. The feature dimension in the electrode is below the resolution limit of human eyes, and, thus, the electrode appears transparent. Moreover, by aligning multiple electrodes together, the amount of energy stored increases readily without sacrificing the transparency. This results in a battery with energy density of 10 Wh/L at a transparency of 60%. The device is also flexible, further broadening their potential applications. The transparent device configuration also allows in situ Raman study of fundamental electrochemical reactions in batteries. PMID:21788483

  7. The art of transparency.

    PubMed

    Sayim, Bilge; Cavanagh, Patrick

    2011-01-01

    Artists throughout the ages have discovered a number of techniques to depict transparency. With only a few exceptions, these techniques follow closely the properties of physical transparency. The two best known properties are X-junctions and the luminance relations described by Metelli. X-junctions are seen where the contours of a transparent material cross contours of the surface behind; Metelli's constraints on the luminance relations between the direct and filtered portions of the surface specify a range of luminance values that are consistent with transparency. These principles have been used by artists since the time of ancient Egypt. However, artists also discovered that stimuli can be seen as transparent even when these physical constraints are not met. Ancient Greek artists, for example, were able to depict transparent materials in simple black-and-white line drawings. Artists also learned how to represent transparency in cases where neither X-junctions nor Metelli's constraints could apply: for example, where no portions of the objects behind the transparent material extend beyond it. Many painters convincingly portrayed transparency in these cases by depicting the effects the transparent medium would have on material or object properties. Here, we show how artists employed these and other techniques revealing their anticipation of current formalizations of perceived transparency, and we suggest new, as-yet-untested principles.

  8. The art of transparency

    PubMed Central

    Sayim, Bilge; Cavanagh, Patrick

    2011-01-01

    Artists throughout the ages have discovered a number of techniques to depict transparency. With only a few exceptions, these techniques follow closely the properties of physical transparency. The two best known properties are X-junctions and the luminance relations described by Metelli. X-junctions are seen where the contours of a transparent material cross contours of the surface behind; Metelli's constraints on the luminance relations between the direct and filtered portions of the surface specify a range of luminance values that are consistent with transparency. These principles have been used by artists since the time of ancient Egypt. However, artists also discovered that stimuli can be seen as transparent even when these physical constraints are not met. Ancient Greek artists, for example, were able to depict transparent materials in simple black-and-white line drawings. Artists also learned how to represent transparency in cases where neither X-junctions nor Metelli's constraints could apply: for example, where no portions of the objects behind the transparent material extend beyond it. Many painters convincingly portrayed transparency in these cases by depicting the effects the transparent medium would have on material or object properties. Here, we show how artists employed these and other techniques revealing their anticipation of current formalizations of perceived transparency, and we suggest new, as-yet-untested principles. PMID:23145252

  9. Plasmonic transparent conductors

    NASA Astrophysics Data System (ADS)

    Liapis, Andreas C.; Sfeir, Matthew Y.; Black, Charles T.

    2016-09-01

    Many of today's technological applications, such as solar cells, light-emitting diodes, displays, and touch screens, require materials that are simultaneously optically transparent and electrically conducting. Here we explore transparent conductors based on the excitation of surface plasmons in nanostructured metal films. We measure both the optical and electrical properties of films perforated with nanometer-scale features and optimize the design parameters in order to maximize optical transmission without sacrificing electrical conductivity. We demonstrate that plasmonic transparent conductors can out-perform indium tin oxide in terms of both their transparency and their conductivity.

  10. Transparency of Vocational Qualifications: The Leonardo da Vinci Approach. CEDEFOP Panorama Series.

    ERIC Educational Resources Information Center

    Bjornavold, Jens; Pettersson, Sten

    This report gives an overview of the situation of transparency of vocational qualifications by presenting measures introduced at the European Community level and by drawing attention to projects within the Leonardo da Vinci Program dealing with the issue. A 16-page executive summary appears first. Chapter 1 provides general background and aims.…

  11. On the Quality of Collective Decisions in Sociotechnical Systems: Transparency, Fairness, and Efficiency

    NASA Astrophysics Data System (ADS)

    Porello, Daniele

    The aim of this paper is to propose a methodology for evaluating the quality of collective decisions in sociotechnical systems (STS). We propose using a foundational ontology for conceptualizing the complex hierarchy of information involved in decisions in STS (e.g., normative, conceptual, factual, perceptual). Moreover, we introduce the concept of transparency of decisions as a necessary condition in order to assess the quality of decision-making in STS. We further view transparency as an entitlement of the agent affected by the decision: i.e., the collective decision should be justified.

  12. Transparent Conveyor of Dielectric Liquids or Particles

    NASA Technical Reports Server (NTRS)

    Calle, Carlos I.; Mantovani, James G.

    2009-01-01

    The concept of a transparent conveyor of small loose dielectric parti cles or small amounts of dielectric liquids has emerged as an outgro wth of an effort to develop efficient, reliable means of automated re moval of dust from solar cells and from windows of optical instrumen ts. This concept is based on the previously reported concept of an e lectrodynamic screen, according to which a grid-like electric field is established on and near a surface and is moved along the surface p erpendicularly to the grid lines. The resulting electrodynamic force s on loose dielectric particles or dielectric liquid drops in the vic inity would move the particles or drops along the surface. In the or iginal dust-removal application, dust particles would thus be swept out of the affected window area. Other potential applications may occ ur in nanotechnology -- for example, involving mixing of two or more fluids and/or nanoscale particles under optical illumination and/or optical observation.

  13. Transparent 'solution' of ultrathin magnesium hydroxide nanocrystals for flexible and transparent nanocomposite films.

    PubMed

    Wang, Jie-Xin; Sun, Qian; Chen, Bo; Wu, Xi; Zeng, Xiao-Fei; Zhang, Cong; Zou, Hai-Kui; Chen, Jian-Feng

    2015-05-15

    Transparent solutions of nanocrystals exhibit many unique properties, and are thus attractive materials for numerous applications. However, the synthesis of transparent nanocrystal solutions of magnesium hydroxide (MH) with wide applications is yet to be realized. Here, we report a facile two-step process, which includes a direct reactive precipitation in alcohol phase instead of aqueous phase combined with a successive surface modification, to prepare transparent alcohol solutions containing lamellar MH nanocrystals with an average size of 52 nm and an ultrathin thickness of 1-2 nm, which is the thinnest MH nanoplatelet reported in the literatures. Further, highly flexible and transparent nanocomposite films are fabricated with a solution mixing method by adding the transparent MH nanocrystal solutions into PVB solution. Considering the simplicity of the fabrication process, high transparency and good flexibility, this MH/polymer nanocomposite film is promising for flame-resistant applications in plastic electronics and optical devices with high transparency, such as flexible displays, optical filters, and flexible solar cells.

  14. Tuning optical properties of transparent conducting barium stannate by dimensional reduction

    DOE PAGES

    Li, Yuwei; Zhang, Lijun; Ma, Yanming; ...

    2015-01-30

    We report calculations of the electronic structure and optical properties of doped n-type perovskite BaSnO 3 and layered perovskites. While doped BaSnO 3 retains its transparency for energies below the valence to conduction band onset, the doped layered compounds exhibit below band edge optical conductivity due to transitions from the lowest conduction band. This gives absorption in the visible for Ba 2SnO 4. It is important to minimize this phase in transparent conducting oxide (TCO) films. Ba 3Sn 2O 7 and Ba 4Sn 3O 10 have strong transitions only in the red and infrared, respectively. Thus, there may be opportunitiesmore » for using these as wavelength filtering TCO.« less

  15. Teaching Scientific Concepts with Transparent Detector Models: An Example from Optics.

    ERIC Educational Resources Information Center

    Allen, Sue; And Others

    This paper describes an attempt to facilitate students' learning of scientific concepts by using detectors that take as input physical information and output an instantiation of the concept. The principle hypothesis was that students would have a better understanding of the concept of image if they were taught to use a simplified, runnable model…

  16. Fabrication of fully transparent nanowire transistors for transparent and flexible electronics

    NASA Astrophysics Data System (ADS)

    Ju, Sanghyun; Facchetti, Antonio; Xuan, Yi; Liu, Jun; Ishikawa, Fumiaki; Ye, Peide; Zhou, Chongwu; Marks, Tobin J.; Janes, David B.

    2007-06-01

    The development of optically transparent and mechanically flexible electronic circuitry is an essential step in the effort to develop next-generation display technologies, including `see-through' and conformable products. Nanowire transistors (NWTs) are of particular interest for future display devices because of their high carrier mobilities compared with bulk or thin-film transistors made from the same materials, the prospect of processing at low temperatures compatible with plastic substrates, as well as their optical transparency and inherent mechanical flexibility. Here we report fully transparent In2O3 and ZnO NWTs fabricated on both glass and flexible plastic substrates, exhibiting high-performance n-type transistor characteristics with ~82% optical transparency. These NWTs should be attractive as pixel-switching and driving transistors in active-matrix organic light-emitting diode (AMOLED) displays. The transparency of the entire pixel area should significantly enhance aperture ratio efficiency in active-matrix arrays and thus substantially decrease power consumption.

  17. Fabrication of fully transparent nanowire transistors for transparent and flexible electronics.

    PubMed

    Ju, Sanghyun; Facchetti, Antonio; Xuan, Yi; Liu, Jun; Ishikawa, Fumiaki; Ye, Peide; Zhou, Chongwu; Marks, Tobin J; Janes, David B

    2007-06-01

    The development of optically transparent and mechanically flexible electronic circuitry is an essential step in the effort to develop next-generation display technologies, including 'see-through' and conformable products. Nanowire transistors (NWTs) are of particular interest for future display devices because of their high carrier mobilities compared with bulk or thin-film transistors made from the same materials, the prospect of processing at low temperatures compatible with plastic substrates, as well as their optical transparency and inherent mechanical flexibility. Here we report fully transparent In(2)O(3) and ZnO NWTs fabricated on both glass and flexible plastic substrates, exhibiting high-performance n-type transistor characteristics with approximately 82% optical transparency. These NWTs should be attractive as pixel-switching and driving transistors in active-matrix organic light-emitting diode (AMOLED) displays. The transparency of the entire pixel area should significantly enhance aperture ratio efficiency in active-matrix arrays and thus substantially decrease power consumption.

  18. Carbon nanotube based transparent conductive films: progress, challenges, and perspectives

    PubMed Central

    Zhou, Ying; Azumi, Reiko

    2016-01-01

    Abstract Developments in the manufacturing technology of low-cost, high-quality carbon nanotubes (CNTs) are leading to increased industrial applications for this remarkable material. One of the most promising applications, CNT based transparent conductive films (TCFs), are an alternative technology in future electronics to replace traditional TCFs, which use indium tin oxide. Despite significant price competition among various TCFs, CNT-based TCFs have good potential for use in emerging flexible, stretchable and wearable optoelectronics. In this review, we summarize the recent progress in the fabrication, properties, stability and applications of CNT-based TCFs. The challenges of current CNT-based TCFs for industrial use, in comparison with other TCFs, are considered. We also discuss the potential of CNT-based TCFs, and give some possible strategies to reduce the production cost and improve their conductivity and transparency. PMID:27877899

  19. Disorder-induced transparency in a one-dimensional waveguide side coupled with optical cavities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yongyou, E-mail: yyzhang@bit.edu.cn; Dong, Guangda; Zou, Bingsuo

    2014-05-07

    Disorder influence on photon transmission behavior is theoretically studied in a one-dimensional waveguide side coupled with a series of optical cavities. For this sake, we propose a concept of disorder-induced transparency appearing on the low-transmission spectral background. Two kinds of disorders, namely, disorders of optical cavity eigenfrequencies and relative phases in the waveguide side coupled with optical cavities are considered to show the disorder-induced transparency. They both can induce the optical transmission peaks on the low-transmission backgrounds. The statistical mean value of the transmission also increases with increasing the disorders of the cavity eigenfrequencies and relative phases.

  20. Spin Transparent Siberian Snake And Spin Rotator With Solenoids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koop, I. A.; Otboyev, A. V.; Shatunov, P. Yu.

    2007-06-13

    For intermediate energies of electrons and protons it happens that it is more convenient to construct Siberian snakes and spin rotators using solenoidal fields. Strong coupling caused by the solenoids is suppressed by a number of skew and normal quadrupole magnets. More complicate problem of the spin transparency of such devices also can be solved. This paper gives two examples: spin rotator for electron ring in the eRHIC project and Siberian snake for proton (antiproton) storage ring HESR, which cover whole machines working energy region.

  1. Hazy Transparent Cellulose Nanopaper

    PubMed Central

    Hsieh, Ming-Chun; Koga, Hirotaka; Suganuma, Katsuaki; Nogi, Masaya

    2017-01-01

    The aim of this study is to clarify light scattering mechanism of hazy transparent cellulose nanopaper. Clear optical transparent nanopaper consists of 3–15 nm wide cellulose nanofibers, which are obtained by the full nanofibrillation of pulp fibers. At the clear transparent nanopaper with 40 μm thickness, their total transmittance are 89.3–91.5% and haze values are 4.9–11.7%. When the pulp fibers are subjected to weak nanofibrillation, hazy transparent nanopapers are obtained. The hazy transparent nanopaper consists of cellulose nanofibers and some microsized cellulose fibers. At the hazy transparent nanopaper with 40 μm thickness, their total transmittance were constant at 88.6–92.1% but their haze value were 27.3–86.7%. Cellulose nanofibers are solid cylinders, whereas the pulp fibers are hollow cylinders. The hollow shape is retained in the microsized cellulose fibers, but they are compressed flat inside the nanopaper. This compressed cavity causes light scattering by the refractive index difference between air and cellulose. As a result, the nanopaper shows a hazy transparent appearance and exhibits a high thermal durability (295–305 °C), and low thermal expansion (8.5–10.6 ppm/K) because of their high density (1.29–1.55 g/cm3) and crystallinity (73–80%). PMID:28128326

  2. Perceptual transparency from image deformation.

    PubMed

    Kawabe, Takahiro; Maruya, Kazushi; Nishida, Shin'ya

    2015-08-18

    Human vision has a remarkable ability to perceive two layers at the same retinal locations, a transparent layer in front of a background surface. Critical image cues to perceptual transparency, studied extensively in the past, are changes in luminance or color that could be caused by light absorptions and reflections by the front layer, but such image changes may not be clearly visible when the front layer consists of a pure transparent material such as water. Our daily experiences with transparent materials of this kind suggest that an alternative potential cue of visual transparency is image deformations of a background pattern caused by light refraction. Although previous studies have indicated that these image deformations, at least static ones, play little role in perceptual transparency, here we show that dynamic image deformations of the background pattern, which could be produced by light refraction on a moving liquid's surface, can produce a vivid impression of a transparent liquid layer without the aid of any other visual cues as to the presence of a transparent layer. Furthermore, a transparent liquid layer perceptually emerges even from a randomly generated dynamic image deformation as long as it is similar to real liquid deformations in its spatiotemporal frequency profile. Our findings indicate that the brain can perceptually infer the presence of "invisible" transparent liquids by analyzing the spatiotemporal structure of dynamic image deformation, for which it uses a relatively simple computation that does not require high-level knowledge about the detailed physics of liquid deformation.

  3. Lignin-Retaining Transparent Wood.

    PubMed

    Li, Yuanyuan; Fu, Qiliang; Rojas, Ramiro; Yan, Min; Lawoko, Martin; Berglund, Lars

    2017-09-11

    Optically transparent wood, combining optical and mechanical performance, is an emerging new material for light-transmitting structures in buildings with the aim of reducing energy consumption. One of the main obstacles for transparent wood fabrication is delignification, where around 30 wt % of wood tissue is removed to reduce light absorption and refractive index mismatch. This step is time consuming and not environmentally benign. Moreover, lignin removal weakens the wood structure, limiting the fabrication of large structures. A green and industrially feasible method has now been developed to prepare transparent wood. Up to 80 wt % of lignin is preserved, leading to a stronger wood template compared to the delignified alternative. After polymer infiltration, a high-lignin-content transparent wood with transmittance of 83 %, haze of 75 %, thermal conductivity of 0.23 W mK -1 , and work-tofracture of 1.2 MJ m -3 (a magnitude higher than glass) was obtained. This transparent wood preparation method is efficient and applicable to various wood species. The transparent wood obtained shows potential for application in energy-saving buildings. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  4. Lignin‐Retaining Transparent Wood

    PubMed Central

    Fu, Qiliang; Rojas, Ramiro; Yan, Min; Lawoko, Martin

    2017-01-01

    Abstract Optically transparent wood, combining optical and mechanical performance, is an emerging new material for light‐transmitting structures in buildings with the aim of reducing energy consumption. One of the main obstacles for transparent wood fabrication is delignification, where around 30 wt % of wood tissue is removed to reduce light absorption and refractive index mismatch. This step is time consuming and not environmentally benign. Moreover, lignin removal weakens the wood structure, limiting the fabrication of large structures. A green and industrially feasible method has now been developed to prepare transparent wood. Up to 80 wt % of lignin is preserved, leading to a stronger wood template compared to the delignified alternative. After polymer infiltration, a high‐lignin‐content transparent wood with transmittance of 83 %, haze of 75 %, thermal conductivity of 0.23 W mK−1, and work‐tofracture of 1.2 MJ m−3 (a magnitude higher than glass) was obtained. This transparent wood preparation method is efficient and applicable to various wood species. The transparent wood obtained shows potential for application in energy‐saving buildings. PMID:28719095

  5. Semi-transparent solar cells

    NASA Astrophysics Data System (ADS)

    Sun, J.; Jasieniak, J. J.

    2017-03-01

    Semi-transparent solar cells are a type of technology that combines the benefits of visible light transparency and light-to-electricity conversion. One of the biggest opportunities for such technologies is in their integration as windows and skylights within energy-sustainable buildings. Currently, such building integrated photovoltaics (BIPV) are dominated by crystalline silicon based modules; however, the opaque nature of silicon creates a unique opportunity for the adoption of emerging photovoltaic candidates that can be made truly semi-transparent. These include: amorphous silicon-, kesterite-, chalcopyrite-, CdTe-, dye-sensitized-, organic- and perovskite- based systems. For the most part, amorphous silicon has been the workhorse in the semi-transparent solar cell field owing to its established, low-temperature fabrication processes. Excitement around alternative classes, particularly perovskites and the inorganic candidates, has recently arisen because of the major efficiency gains exhibited by these technologies. Importantly, each of these presents unique opportunities and challenges within the context of BIPV. This topic review provides an overview into the broader benefits of semi-transparent solar cells as building-integrated features, as well as providing the current development status into all of the major types of semi-transparent solar cells technologies.

  6. Second-order nonlinearity induced transparency.

    PubMed

    Zhou, Y H; Zhang, S S; Shen, H Z; Yi, X X

    2017-04-01

    In analogy to electromagnetically induced transparency, optomechanically induced transparency was proposed recently in [Science330, 1520 (2010)SCIEAS0036-807510.1126/science.1195596]. In this Letter, we demonstrate another form of induced transparency enabled by second-order nonlinearity. A practical application of the second-order nonlinearity induced transparency is to measure the second-order nonlinear coefficient. Our scheme might find applications in quantum optics and quantum information processing.

  7. X-ray transparent Microfluidics for Protein Crystallization and Biomineralization

    NASA Astrophysics Data System (ADS)

    Opathalage, Achini

    Protein crystallization demands the fundamental understanding of nucleation and applying techniques to find the optimal conditions to achieve the kinetic pathway for a large and defect free crystal. Classical nucleation theory predicts that the nucleation occurs at high supersaturation conditions. In this dissertation we sought out to develop techniques to attain optimal supersaturation profile to a large defect free crystal and subject it to in-situ X-ray diffraction using microfluidics. We have developed an emulsion-based serial crystallographic technology in nanolitre-sized droplets of protein solution encapsulated in to nucleate one crystal per drop. Diffraction data are measured, one crystal at a time, from a series of room temperature crystals stored on an X-ray semi-transparent microfluidic chip, and a 93% complete data set is obtained by merging single diffraction frames taken from different un-oriented crystals. As proof of concept, the structure of Glucose Isomerase was solved to 2.1 A. We have developed a suite of X-ray semi-transparent micrfluidic devices which enables; controlled evaporation as a method of increasing supersaturation and manipulating the phase space of proteins and small molecules. We exploited the inherently high water permeability of the thin X-ray semi-transparent devices as a mean of increasing the supersaturation by controlling the evaporation. We fabricated the X-ray semi-transparent version of the PhaseChip with a thin PDMS membrane by which the storage and the reservoir layers are separated, and studies the phase transition of amorphous CaCO3.

  8. Transparent conductive coatings

    NASA Technical Reports Server (NTRS)

    Ashok, S.

    1983-01-01

    Thin film transparent conductors are discussed. Materials with electrical conductivity and optical transparency are highly desirable in many optoelectronic applications including photovoltaics. Certain binary oxide semiconductors such as tin oxide (SnO2) and indium oxide (In2O3) offer much better performance tradeoff in optoelectronics as well as better mechanical and chemical stability than thin semitransparent films. These thin-film transparent conductors (TC) are essentially wide-bandgap degenerate semiconductors - invariably n-type - and hence are transparent to sub-bandgap (visible) radiation while affording high electrical conductivity due to the large free electron concentration. The principal performance characteristics of TC's are, of course, electrical conductivity and optical transmission. The TC's have a refractive index of around 2.0 and hence act as very efficient antireflection coatings. For using TC's in surface barrier solar cells, the photovoltaic barrier is of utmost importance and so the work function or electron affinity of the TC is also a very important material parameter. Fabrication processes are discussed.

  9. Positron annihilation in transparent ceramics

    NASA Astrophysics Data System (ADS)

    Husband, P.; Bartošová, I.; Slugeň, V.; Selim, F. A.

    2016-01-01

    Transparent ceramics are emerging as excellent candidates for many photonic applications including laser, scintillation and illumination. However achieving perfect transparency is essential in these applications and requires high technology processing and complete understanding for the ceramic microstructure and its effect on the optical properties. Positron annihilation spectroscopy (PAS) is the perfect tool to study porosity and defects. It has been applied to investigate many ceramic structures; and transparent ceramics field may be greatly advanced by applying PAS. In this work positron lifetime (PLT) measurements were carried out in parallel with optical studies on yttrium aluminum garnet transparent ceramics in order to gain an understanding for their structure at the atomic level and its effect on the transparency and light scattering. The study confirmed that PAS can provide useful information on their microstructure and guide the technology of manufacturing and advancing transparent ceramics.

  10. Association between exposure to ambient air pollution before conception date and likelihood of giving birth to girls in Guangzhou, China

    NASA Astrophysics Data System (ADS)

    Lin, Hualiang; Liang, Zhijiang; Liu, Tao; Di, Qian; Qian, Zhengmin; Zeng, Weilin; Xiao, Jianpeng; Li, Xing; Guo, Lingchuan; Ma, Wenjun; Zhao, Qingguo

    2015-12-01

    A few studies have linked ambient air pollution with sex ratio at birth. Most of these studies examined the long-term effects using spatial or temporal comparison approaches. This study aimed to investigate whether parental exposure to air pollution before conception date could affect the likelihood of the offspring being male or female. We used the information collected in a major maternal hospital in Guangzhou, China. The parental exposure to air pollution was assessed using the air pollution concentration before the conception date. Logistic regression models were used to assess the association between air pollution exposure and birth sex with adjustment for potential confounding factors, such as maternal age, parental education levels, long-term trend, season, and weather condition (mean temperature and relative humidity). The analysis revealed that higher air pollution was associated with higher probability of female newborns, with the effective exposure around one week prior to conception date. In the one-pollutant models, PM10, SO2 and NO2 had significant effects. For example, the excess risk was 0.61% (95% confidence interval (95% CI): 0.36%, 0.86%) for a 10 ug/m3 increase in lag 2 day's PM10, 0.42% (95% CI: 0.21%, 0.64%) for lag 3 day's SO2 and 0.97% (95% CI: 0.44%, 1.50%) for lag 3 day's NO2; and in two-pollutant models, PM10 remained statistically significant. These results suggest that parental exposure to ambient air pollution a few days prior to conception might be a contributing factor to higher probability of giving birth to female offspring in Guangzhou.

  11. Visualisation Ability of Senior High School Students with Using GeoGebra and Transparent Mica

    NASA Astrophysics Data System (ADS)

    Thohirudin, M.; Maryati, TK; Dwirahayu, G.

    2017-04-01

    Visualisation ability is an ability to process, inform, and transform object which suitable for geometry topic in math. This research aims to describe the influence of using software GeoGebra and transparent mica for student’s visualisation ability. GeoGebra is shortness of geometry and algebra. GeoGebra is an open source program that is created for math. Transparent mica is a tool that is created by the author to transform a geometry object. This research is a quantitative experiment model. The subject of this research were students in grade XII of science program in Annajah Senior High School Rumpin with two classes which one as an experiment class (science one) and another one as a control class (science two). Experiment class use GeoGebra and transparent mica in the study, and control class use powerpoint in the study. Data of student’s visualisation ability is collected from posttest with visual questions which are gifted at the end of the research to both classes with topic “transformation geometry”. This research resulted that studying with GeoGebra and transparent mica had a better influence than studying with powerpoint to student’s visualisation ability. The time of study in class and the habit of the students to use software and tool affected the result of research. Although, GeoGebra and transparent mica can give help to students in transformation geometry topic.

  12. Ethics of trial drug use: to give or not to give?

    PubMed Central

    Ebunoluwa, Oduwole O.; Kareem, Fayemi A.

    2017-01-01

    The 2014 outbreak of Ebola viral disease in some West African countries, which later spread to the USA and Spain, has continued to be a subject of global public health debate. While there is no approved vaccine or drug for Ebola cure yet, moral questions of bioethical significance are emerging even as vaccine studies are at different clinical trial phases. This paper, through a normative and critical approach, focuses on the question of whether it is ethical to give any experimental drugs to Ebola victims in West Africa or not. Given the global panic and deadly contagious nature of Ebola, this paper argues on three major compassionate grounds that it is ethical to use experimental drugs on the dying African victims of Ebola. Besides respecting patients and family consent in the intervention process, this paper argues that the use of Ebola trial drugs on West African population will be ethical if it promotes the common good, and does not violate the fundamental principles of transparency and integrity in human research ethics. Using Kantian ethical framework of universality as a basis for moral defense of allowing access to yet approved drugs. This paper provides argument to strengthen the compassionate ground provisional recommendation of the WHO’s Strategic Advisory Group of Experts on Immunization (SAGE) on Ebola vaccines and vaccination. PMID:28367458

  13. Ethics of trial drug use: to give or not to give?

    PubMed

    Ebunoluwa, Oduwole O; Kareem, Fayemi A

    2016-01-01

    The 2014 outbreak of Ebola viral disease in some West African countries, which later spread to the USA and Spain, has continued to be a subject of global public health debate. While there is no approved vaccine or drug for Ebola cure yet, moral questions of bioethical significance are emerging even as vaccine studies are at different clinical trial phases. This paper, through a normative and critical approach, focuses on the question of whether it is ethical to give any experimental drugs to Ebola victims in West Africa or not. Given the global panic and deadly contagious nature of Ebola, this paper argues on three major compassionate grounds that it is ethical to use experimental drugs on the dying African victims of Ebola. Besides respecting patients and family consent in the intervention process, this paper argues that the use of Ebola trial drugs on West African population will be ethical if it promotes the common good, and does not violate the fundamental principles of transparency and integrity in human research ethics. Using Kantian ethical framework of universality as a basis for moral defense of allowing access to yet approved drugs. This paper provides argument to strengthen the compassionate ground provisional recommendation of the WHO's Strategic Advisory Group of Experts on Immunization (SAGE) on Ebola vaccines and vaccination.

  14. Highly Transparent, Stretchable, and Self-Healing Ionic-Skin Triboelectric Nanogenerators for Energy Harvesting and Touch Applications.

    PubMed

    Parida, Kaushik; Kumar, Vipin; Jiangxin, Wang; Bhavanasi, Venkateswarlu; Bendi, Ramaraju; Lee, Pooi See

    2017-10-01

    Recently developed triboelectric nanogenerators (TENGs) act as a promising power source for self-powered electronic devices. However, the majority of TENGs are fabricated using metallic electrodes and cannot achieve high stretchability and transparency, simultaneously. Here, slime-based ionic conductors are used as transparent current-collecting layers of TENG, thus significantly enhancing their energy generation, stretchability, transparency, and instilling self-healing characteristics. This is the first demonstration of using an ionic conductor as the current collector in a mechanical energy harvester. The resulting ionic-skin TENG (IS-TENG) has a transparency of 92% transmittance, and its energy-harvesting performance is 12 times higher than that of the silver-based electronic current collectors. In addition, they are capable of enduring a uniaxial strain up to 700%, giving the highest performance compared to all other transparent and stretchable mechanical-energy harvesters. Additionally, this is the first demonstration of an autonomously self-healing TENG that can recover its performance even after 300 times of complete bifurcation. The IS-TENG represents the first prototype of a highly deformable and transparent power source that is able to autonomously self-heal quickly and repeatedly at room temperature, and thus can be used as a power supply for digital watches, touch sensors, artificial intelligence, and biointegrated electronics. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Altruism, gift giving and reciprocity in organ donation: a review of cultural perspectives and challenges of the concepts.

    PubMed

    Sharp, C; Randhawa, G

    2014-10-01

    Living and deceased organ donation are couched in altruism and gift discourse and this article reviews explores cultural views towards these concepts. Altruism and egoism theories and gift and reciprocity theories are outlined from a social exchange theory perspective to highlight the key differences between altruism and the gift and the wider implications of reciprocation. The notion of altruism as a selfless act without expectation or want for repayment juxtaposed with the Maussian gift where there are the obligations to give, receive and reciprocate. Lay perspectives of altruism and the gift in organ donation are outlined and illustrate that there are differences in motivations to donate in different programmes of living donation and for families who decide to donate their relative's organs. These motivations reflect cultural views of altruism and the gift and perceptions of the body and death. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Care giving and nursing, work conditions and Humanitude®.

    PubMed

    Biquand, Sylvain; Zittel, Benoit

    2012-01-01

    Increased lifespan in western societies causes the increase of hospitalization in the old age, notably for patient showing forms of dementia including Altzheimer disease. These patients relate poorly to care givers and nurses, and cases of maltreatment have repeatedly been reported. To prevent abuse and increase patient's quality of life, Gineste and Pelissier (2007) proposed a philosophy of care based on the Humanitude® concept. Acknowledging that being human is being vertical and related to other humans, the pillars of Humanitude® are gaze, touch, talk, and standing. These modes of relation are systematically developed in care giving techniques derived from the concept. After several studies in geriatric hospitals, to assess psychosocial and ergonomic aspects of work, we present an analysis of the gap between the logic of human care and the logic of hospital organization, impacting employees work conditions and psychological welfare. Care giving is not only a "one to one" relation with the patient but needs to be integrated in the whole organization. Psychologists and ergonomists should be instrumental in defining the project and the organization linking human care giving towards the patients and better work conditions for healthcare employees.

  17. Phenomenal transparency in achromatic checkerboards.

    PubMed

    Masin, S C

    1999-04-01

    The study explored the luminance relations that determine the occurrence of achromatic transparency in phenomenal surfaces on complex backgrounds. Let the luminances of the left and right parts of a transparent surface on a bipartite background and those of the left and right parts of the bipartite background be p and q and m and n, respectively. Metelli proposed that this surface looks transparent when the rule p < q if m < n (or p > q if m > n) is satisfied, and Masin and Fukuda that it looks transparent when the inclusion rule is satisfied, that is, when p epsilon (m, q) or q epsilon (p, n). These rules also apply to achromatic checkerboards formed by one checkerboard enclosed in another checkerboard. This study shows that only the inclusion rule correctly predicted the occurrence of transparency in these checkerboards.

  18. Robot transparency, trust and utility

    NASA Astrophysics Data System (ADS)

    Wortham, Robert H.; Theodorou, Andreas

    2017-07-01

    As robot reasoning becomes more complex, debugging becomes increasingly hard based solely on observable behaviour, even for robot designers and technical specialists. Similarly, non-specialist users have difficulty creating useful mental models of robot reasoning from observations of robot behaviour. The EPSRC Principles of Robotics mandate that our artefacts should be transparent, but what does this mean in practice, and how does transparency affect both trust and utility? We investigate this relationship in the literature and find it to be complex, particularly in nonindustrial environments where, depending on the application and purpose of the robot, transparency may have a wider range of effects on trust and utility. We outline our programme of research to support our assertion that it is nevertheless possible to create transparent agents that are emotionally engaging despite having a transparent machine nature.

  19. Highly Transparent, Nanofiller-Reinforced Scratch-Resistant Polymeric Composite Films Capable of Healing Scratches.

    PubMed

    Li, Yang; Chen, Shanshan; Li, Xiang; Wu, Mengchun; Sun, Junqi

    2015-10-27

    Integration of healability and mechanical robustness is challenging in the fabrication of highly transparent films for applications as protectors in optical and displaying devices. Here we report the fabrication of healable, highly transparent and scratch-resistant polymeric composite films that can conveniently and repeatedly heal severe damage such as cuts of several tens of micrometers wide and deep. The film fabrication process involves layer-by-layer (LbL) assembly of a poly(acrylic acid) (PAA) blend and branched poly(ethylenimine) (bPEI) blend, where each blend contains the same polyelectrolytes of low and high molecular weights, followed by annealing the resulting PAA/bPEI films with aqueous salt solution and incorporation of CaCO3 nanoparticles as nanofillers. The rearrangement of low-molecular-weight PAA and bPEI under aqueous salt annealing plays a critical role in eliminating film defects to produce optically highly transparent polyelectrolyte films. The in situ formation of tiny and well-dispersed CaCO3 nanoparticles gives the resulting composite films enhanced scratch-resistance and also retains the healing ability of the PAA/bPEI matrix films. The reversibility of noncovalent interactions among the PAA, bPEI, and CaCO3 nanoparticles and the facilitated migration of PAA and bPEI triggered by water enable healing of the structural damage and restoration of optical transparency of the PAA/bPEI films reinforced with CaCO3 nanoparticles.

  20. [Concept analysis "Competency-based education"].

    PubMed

    Loosli, Clarence

    2016-03-01

    Competency-based education (CBE) stands out at global level as the best educational practice. Indeed, CBE is supposed to improve the quality of care provided by newly graduated nurses. Yet, there is a dearth of knowledge in nursing literature regarding CBE concept's definition. CBE is implemented differently in each entity even inside the same discipline in a single country. What accounts for CBE in nursing education ? to clarify CBE concept meaning according to literature review in order to propose a definition. Wilson concept analysis method framed our literature review through two databases: CINHAL and ERIC. following the 11 Wilson techniques analysis, we identified CBE concept as a multidimensional concept clustering three dimensions : learning, teaching and assessment. nurses educators are accountable for providing performants newly graduated professional to the society. Schools should struggle for the visibility and the transparency of means they are using to accomplish their educational activities. This first attempt to understand CBE concept opens a matter of debate concerning further development and clarification of the concept. This first description of CBE concept is a step toward its identification and assessment.

  1. Optically transparent semiconducting polymer nanonetwork for flexible and transparent electronics

    PubMed Central

    Yu, Kilho; Park, Byoungwook; Kim, Geunjin; Kim, Chang-Hyun; Park, Sungjun; Kim, Jehan; Jung, Suhyun; Jeong, Soyeong; Kwon, Sooncheol; Kang, Hongkyu; Kim, Junghwan; Yoon, Myung-Han; Lee, Kwanghee

    2016-01-01

    Simultaneously achieving high optical transparency and excellent charge mobility in semiconducting polymers has presented a challenge for the application of these materials in future “flexible” and “transparent” electronics (FTEs). Here, by blending only a small amount (∼15 wt %) of a diketopyrrolopyrrole-based semiconducting polymer (DPP2T) into an inert polystyrene (PS) matrix, we introduce a polymer blend system that demonstrates both high field-effect transistor (FET) mobility and excellent optical transparency that approaches 100%. We discover that in a PS matrix, DPP2T forms a web-like, continuously connected nanonetwork that spreads throughout the thin film and provides highly efficient 2D charge pathways through extended intrachain conjugation. The remarkable physical properties achieved using our approach enable us to develop prototype high-performance FTE devices, including colorless all-polymer FET arrays and fully transparent FET-integrated polymer light-emitting diodes. PMID:27911774

  2. 78 FR 14149 - 2012 Fiscal Transparency Report

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-04

    ... DEPARTMENT OF STATE [Public Notice 8213] 2012 Fiscal Transparency Report AGENCY: Department of... Fiscal Transparency review process in its first annual Fiscal Transparency Report. This report describes... the standard. FY 2012 Fiscal Transparency Report The Department of State hereby presents the findings...

  3. Transparent Armor Cost Benefit Study

    DTIC Science & Technology

    2008-04-01

    2005 2006 UNCLASSIFIED UNCLASSIFIED 4/30/2008 4/17 2006 “Iraqi Pope Glass” 2004-2005 - GPK Recent HistoryEarly OIF Curb Wt: 10,300lbs GVW: 12,100lbs...UNCLASSIFIED UNCLASSIFIED 4/30/2008 5/17 Future Transparent Gun Shields Requirement: Upgrade GPKS with transparent armor for enhanced situational...awareness while maintaining soldier cover within armor envelope. AHI GS & GPK Upgraded Gunner Shield – Transparent Armored Gun Shield (TAGS

  4. Transparent Armor Cost Benefit Study

    DTIC Science & Technology

    2006-10-30

    added this cocoon to approximately 100 HMMWVs in Ramadi. 2006 “Iraqi Pope Glass” 2004-2005 - GPK Recent HistoryEarly OIF Curb Wt: 10,300lbs GVW...12,100lbs UNCLASSIFIED UNCLASSIFIED 10/30/2006 5/14 Future Transparent Gun Shields Requirement: Upgrade GPKS with transparent armor for enhanced...situational awareness while maintaining soldier cover within armor envelope. AHI GS & GPK Upgraded Gunner Shield – Transparent Armored Gun Shield (TAGS

  5. Transparent Armor Cost Benefit Study

    DTIC Science & Technology

    2007-03-06

    Armored HMMWVs (M1114s) 2003 2005 2006 UNCLASSIFIED UNCLASSIFIED 3/6/2007 4/17 2006 “Iraqi Pope Glass” 2004-2005 - GPK Recent HistoryEarly OIF Curb Wt...10,300lbs GVW: 12,100lbs UNCLASSIFIED UNCLASSIFIED 3/6/2007 5/17 Future Transparent Gun Shields Requirement: Upgrade GPKS with transparent armor for...enhanced situational awareness while maintaining soldier cover within armor envelope. AHI GS & GPK Upgraded Gunner Shield – Transparent Armored Gun

  6. Lutetium oxide-based transparent ceramic scintillators

    DOEpatents

    Seeley, Zachary; Cherepy, Nerine; Kuntz, Joshua; Payne, Stephen A.

    2016-01-19

    In one embodiment, a transparent ceramic of sintered nanoparticles includes gadolinium lutetium oxide doped with europium having a chemical composition (Lu.sub.1-xGd.sub.x).sub.2-YEu.sub.YO.sub.3, where X is any value within a range from about 0.05 to about 0.45 and Y is any value within a range from about 0.01 to about 0.2, and where the transparent ceramic exhibits a transparency characterized by a scatter coefficient of less than about 10%/cm. In another embodiment, a transparent ceramic scintillator of sintered nanoparticles, includes a body of sintered nanoparticles including gadolinium lutetium oxide doped with a rare earth activator (RE) having a chemical composition (Lu.sub.1-xGd.sub.x).sub.2-YRE.sub.YO.sub.3, where RE is selected from the group consisting of: Sm, Eu, Tb, and Dy, where the transparent ceramic exhibits a transparency characterized by a scatter coefficient of less than about 10%/cm.

  7. Flexible Transparent Electronic Gas Sensors.

    PubMed

    Wang, Ting; Guo, Yunlong; Wan, Pengbo; Zhang, Han; Chen, Xiaodong; Sun, Xiaoming

    2016-07-01

    Flexible and transparent electronic gas sensors capable of real-time, sensitive, and selective analysis at room-temperature, have gained immense popularity in recent years for their potential to be integrated into various smart wearable electronics and display devices. Here, recent advances in flexible transparent sensors constructed from semiconducting oxides, carbon materials, conducting polymers, and their nanocomposites are presented. The sensing material selection, sensor device construction, and sensing mechanism of flexible transparent sensors are discussed in detail. The critical challenges and future development associated with flexible and transparent electronic gas sensors are presented. Smart wearable gas sensors are believed to have great potential in environmental monitoring and noninvasive health monitoring based on disease biomarkers in exhaled gas. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Environmental Education and Pupils' Conceptions of Matter.

    ERIC Educational Resources Information Center

    Hellden, Gustav

    1995-01-01

    Reports on a seven-year longitudinal study of pupils' (n=25) understanding of ecological processes with emphasis on how their conceptions of matter influence their understanding. Results indicate that initially students expected the plants cultivated in closed transparent boxes to die but later used a "cycle model" to explain how the…

  9. Design Concepts. Teacher Edition. Marketing Education LAPs.

    ERIC Educational Resources Information Center

    Hawley, Jana

    This learning activity packet is designed to help prepare students to acquire a competency: how to use design concepts in preparation for a career in the fashion industry. The unit consists of the competency, four objectives, suggested learning activities, transparency masters, and a pretest/posttest with answer keys. Activities include a…

  10. Effect of Translucency on Transparency and Symbol Learning for Children with and without Cerebral Palsy

    ERIC Educational Resources Information Center

    Huang, Chih-Hsiung; Chen, Ming-Chung

    2011-01-01

    Based on the concept of iconicity, the iconicity hypothesis was emphasized for decades. The aims of this study were to explore the effect of translucency on transparency and symbol learning for children with and without cerebral palsy. Twenty children with cerebral palsy and forty typical peers participated in the study. Ten symbols with high…

  11. Transparent Metal-Salt-Filled Polymeric Radiation Shields

    NASA Technical Reports Server (NTRS)

    Edwards, David; Lennhoff, John; Harris, George

    2003-01-01

    "COR-RA" (colorless atomic oxygen resistant -- radiation shield) is the name of a transparent polymeric material filled with x-ray-absorbing salts of lead, bismuth, cesium, and thorium. COR-RA is suitable for use in shielding personnel against bremsstrahlung radiation from electron-beam welding and industrial and medical x-ray equipment. In comparison with lead-foil and leaded-glass shields that give equivalent protection against x-rays (see table), COR-RA shields are mechanically more durable. COR-RA absorbs not only x-rays but also neutrons and rays without adverse effects on optical or mechanical performance. The formulation of COR-RA with the most favorable mechanical-durability and optical properties contains 22 weight percent of bismuth to absorb x-rays, plus 45 atomic percent hydrogen for shielding against neutrons.

  12. Transmission in Optically Transparent Core Networks

    NASA Astrophysics Data System (ADS)

    Kilper, Dan; Jensen, Rich; Petermann, Klaus; Karasek, Miroslav

    2007-03-01

    Call for Papers: Transmission in Optically Transparent Core Networks

    Guest Feature Editors

    Dan Kilper and Rich Jensen, Coordinating Associate Editors Klaus Petermann and Miroslav Karasek, Guest Feature Editors

    Submission deadline: 15 June 2007
    Optically transparent networks in which optical transport signals are routed uninterrupted through multiple nodes have long been viewed as an important evolutionary step in fiber optic communications. More than a decade of research and development on transparent network technologies together with the requisite traffic growth has culminated in the recent deployment of commercial optically transparent systems. Although many of the traditional research goals of optical transmission remain important, optical transparency introduces new challenges. Greater emphasis is placed on system efficiency and control. The goal of minimizing signal terminations, which has been pursued through increasing reach and channel capacity, also can be realized through wavelength routing techniques. Rather than bounding system operation by rigid engineering rules, the physical layer is controlled and managed by automation tools. Many static signal impairments become dynamic due to network reconfiguration and transient fault events. Recently new directions in transmission research have emerged to address transparent networking problems. This special issue of the Journal of Optical Networking will examine the technologies and theory underpinning transmission in optically transparent core networks, including both metropolitan and long haul systems.

    Scope of Submission

    The special issue editors are soliciting high-quality original research papers related to transmission in optically transparent core networks. Although this does not include edge networks such as access or enterprise networks, core networks that have access capabilities will be considered in scope as will topics

  13. Material Design of p-Type Transparent Amorphous Semiconductor, Cu-Sn-I.

    PubMed

    Jun, Taehwan; Kim, Junghwan; Sasase, Masato; Hosono, Hideo

    2018-03-01

    Transparent amorphous semiconductors (TAS) that can be fabricated at low temperature are key materials in the practical application of transparent flexible electronics. Although various n-type TAS materials with excellent performance, such as amorphous In-Ga-Zn-O (a-IGZO), are already known, no complementary p-type TAS has been realized to date. Here, a material design concept for p-type TAS materials is proposed utilizing the pseudo s-orbital nature of spatially spreading iodine 5p orbitals and amorphous Sn-containing CuI (a-CuSnI) thin film is reported as an example. The resulting a-CuSnI thin films fabricated by spin coating at low temperature (140 °C) have a smooth surface. The Hall mobility increases with the hole concentration and the largest mobility of ≈9 cm 2 V -1 s -1 is obtained, which is comparable with that of conventional n-type TAS. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. 3D-Printed Transparent Glass

    DOE PAGES

    Nguyen, Du T.; Meyers, Cameron; Yee, Timothy D.; ...

    2017-04-28

    In this study, silica inks are developed, which may be 3D printed and thermally processed to produce optically transparent glass structures with sub-millimeter features in forms ranging from scaffolds to monoliths. The inks are composed of silica powder suspended in a liquid and are printed using direct ink writing. The printed structures are then dried and sintered at temperatures well below the silica melting point to form amorphous, solid, transparent glass structures. This technique enables the mold-free formation of transparent glass structures previously inaccessible using conventional glass fabrication processes.

  15. 3D-Printed Transparent Glass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, Du T.; Meyers, Cameron; Yee, Timothy D.

    In this study, silica inks are developed, which may be 3D printed and thermally processed to produce optically transparent glass structures with sub-millimeter features in forms ranging from scaffolds to monoliths. The inks are composed of silica powder suspended in a liquid and are printed using direct ink writing. The printed structures are then dried and sintered at temperatures well below the silica melting point to form amorphous, solid, transparent glass structures. This technique enables the mold-free formation of transparent glass structures previously inaccessible using conventional glass fabrication processes.

  16. Security giving in surrogacy motherhood process as a caring model for commissioning mothers: A theory synthesis.

    PubMed

    Zandi, Mitra; Vanaki, Zohreh; Shiva, Marziyeh; Mohammadi, Eesa; Bagheri-Lankarani, Narges

    2016-07-01

    Despite the increasing use of surrogacy, there are no caring theories/models that serve as the basis for nursing care to surrogacy commissioning mothers. This study has designed a model for caring of surrogacy commissioning mothers in 2013. The theory synthesis of Walker and Avant's strategies of theory construction (2011) was used to design a caring model/theory. The theory synthesis includes three stages: (i) selection of focal concept (the concept of "security giving in motherhood" was selected); (ii) review of studies in order to identify factors related to focal concept relevant studies (42 articles and 13 books) were reviewed, statements and concepts related to focal concept were then extracted and classified, and their relations were specified; and (iii) organization of concepts and statements within a relevant general and effective manifestation of the phenomenon under study which led to developing of a model. In this caring model/theory, entitled "security giving in surrogacy motherhood", nurses roles were conceptualized within the conceptual framework that includes three main roles: (i) coordination; (ii) participation; and (iii) security giving (physical, emotional, and legal support; empowerment; presence; relationship management between both parties and advocacy). Training surrogacy specialist nurses and establishment of surrogacy care centers are important factors for implementation of the model. This model could help to provided better caring for surrogacy clients, especially for commissioning mothers. © 2016 Japan Academy of Nursing Science.

  17. Transparent Alloys Operation

    NASA Image and Video Library

    2018-03-26

    iss055e005543 (March 26, 2018) --- Expedition 55 Flight Engineer and astronaut Scott Tingle is pictured conducting the Transparent Alloys experiment inside the Destiny lab module's Microgravity Science Glovebox. The Transparent Alloys study is a set of five experiments that seeks to improve the understanding of melting-solidification processes in plastics without the interference of Earth's gravity environment. Results may impact the development of new light-weight, high-performance structural materials for space applications. Observations may also impact fuel efficiency, consumption and recycling of materials on Earth potentially reducing costs and increasing industrial competitiveness.

  18. Social Accountable Medical Education: A concept analysis.

    PubMed

    Abdolmaleki, Mohammadreza; Yazdani, Shahram; Momeni, Sedigheh; Momtazmanesh, Nader

    2017-07-01

    Considering the pervasiveness of social accountable medical education concept around the world and the growing trend of literature in this regard as well as various interpretations made about this concept, we found it necessary to analyze the concept of social accountable medical education. In this study, the modified version of McKenna's approach to concept analysis was used to determine the concept, explain structures and substructures and determine the border concepts neighboring and against social accountability in medical education. By studying the selected sources,the components of the concept were obtained to identify it and express an analytic definition of social accountability in medical education system. Then, a model case with all attributes of the given concept and the contrary and related concepts were mentioned to determine the boundary between the main concept and auxiliary ones. According to the results of this study in the field of social accountability, the detailed and transparent analytical definition of social accountable medical education can be used in future studies as well as the function and evaluation of medical education system.

  19. Transparency

    ERIC Educational Resources Information Center

    LaFee, Scott

    2009-01-01

    Citizens now expect access to information, particularly from public institutions like local school districts. They demand input and accountability. Cultural and technological changes, such as the Internet, make it possible for districts to comply. Yet transparency--the easily seen and understood actions of a school district and the thinking behind…

  20. Can We Feel Physics Concepts?

    ERIC Educational Resources Information Center

    Su, Yucheng

    2010-01-01

    There are many ways to improve students' understanding of physics concepts. This article focused on drawing students' attention with picture-embedded questions. Pictures give students a direct impression or feeling about the corresponding concepts, which really makes a difference. However, the effects are limited. Some physics concepts are…

  1. Transparent conductive graphene textile fibers

    PubMed Central

    Neves, A. I. S.; Bointon, T. H.; Melo, L. V.; Russo, S.; de Schrijver, I.; Craciun, M. F.; Alves, H.

    2015-01-01

    Transparent and flexible electrodes are widely used on a variety of substrates such as plastics and glass. Yet, to date, transparent electrodes on a textile substrate have not been explored. The exceptional electrical, mechanical and optical properties of monolayer graphene make it highly attractive as a transparent electrode for applications in wearable electronics. Here, we report the transfer of monolayer graphene, grown by chemical vapor deposition on copper foil, to fibers commonly used by the textile industry. The graphene-coated fibers have a sheet resistance as low as ~1 kΩ per square, an equivalent value to the one obtained by the same transfer process onto a Si substrate, with a reduction of only 2.3 per cent in optical transparency while keeping high stability under mechanical stress. With this approach, we successfully achieved the first example of a textile electrode, flexible and truly embedded in a yarn. PMID:25952133

  2. Highly Conductive Transparent and Flexible Electrodes Including Double-Stacked Thin Metal Films for Transparent Flexible Electronics.

    PubMed

    Han, Jun Hee; Kim, Do-Hong; Jeong, Eun Gyo; Lee, Tae-Woo; Lee, Myung Keun; Park, Jeong Woo; Lee, Hoseung; Choi, Kyung Cheol

    2017-05-17

    To keep pace with the era of transparent and deformable electronics, electrode functions should be improved. In this paper, an innovative structure is suggested to overcome the trade-off between optical and electrical properties that commonly arises with transparent electrodes. The structure of double-stacked metal films showed high conductivity (<3 Ω/sq) and high transparency (∼90%) simultaneously. A proper space between two metal films led to high transmittance by an optical phenomenon. The principle of parallel connection allowed the electrode to have high conductivity. In situ fabrication was possible because the only materials composing the electrode were silver and WO 3 , which can be deposited by thermal evaporation. The electrode was flexible enough to withstand 10 000 bending cycles with a 1 mm bending radius. Furthermore, a few μm scale patterning of the electrode was easily implemented by using photolithography, which is widely employed industrially for patterning. Flexible organic light-emitting diodes and a transparent flexible thin-film transistor were successfully fabricated with the proposed electrode. Various practical applications of this electrode to new transparent flexible electronics are expected.

  3. Student Perceptions of Teaching Transparency

    ERIC Educational Resources Information Center

    Anderson, Alecia D.; Hunt, Andrea N.; Powell, Rachel E.; Dollar, Cindy Brooks

    2013-01-01

    The authors discuss the relationship between teaching transparency and active learning through the perspectives of their students. Active learning directly engages students in the learning process while transparency involves the instructor's divulgence of logic regarding course organization and activity choices. After utilizing these teaching…

  4. Flexible Transparent Supercapacitors Based on Hierarchical Nanocomposite Films.

    PubMed

    Chen, Fanhong; Wan, Pengbo; Xu, Haijun; Sun, Xiaoming

    2017-05-31

    Flexible transparent electronic devices have recently gained immense popularity in smart wearable electronics and touch screen devices, which accelerates the development of the portable power sources with reliable flexibility, robust transparency and integration to couple these electronic devices. For potentially coupled as energy storage modules in various flexible, transparent and portable electronics, the flexible transparent supercapacitors are developed and assembled from hierarchical nanocomposite films of reduced graphene oxide (rGO) and aligned polyaniline (PANI) nanoarrays upon their synergistic advantages. The nanocomposite films are fabricated from in situ PANI nanoarrays preparation in a blended solution of aniline monomers and rGO onto the flexible, transparent, and stably conducting film (FTCF) substrate, which is obtained by coating silver nanowires (Ag NWs) layer with Meyer rod and then coating of rGO layer on polyethylene terephthalate (PET) substrate. Optimization of the transparency, the specific capacitance, and the flexibility resulted in the obtained all-solid state nanocomposite supercapacitors exhibiting enhanced capacitance performance, good cycling stability, excellent flexibility, and superior transparency. It provides promising application prospects for exploiting flexible, low-cost, transparent, and high-performance energy storage devices to be coupled into various flexible, transparent, and wearable electronic devices.

  5. Transparent metals for ultrabroadband electromagnetic waves.

    PubMed

    Fan, Ren-Hao; Peng, Ru-Wen; Huang, Xian-Rong; Li, Jia; Liu, Yongmin; Hu, Qing; Wang, Mu; Zhang, Xiang

    2012-04-17

    Making metals transparent, which could lead to fascinating applications, has long been pursued. Here we demonstrate that with narrow slit arrays metallic plates become transparent for extremely broad bandwidths; the high transmission efficiency is insensitive to the metal thickness. This work provides a guideline to develop novel devices, including transparent conducting panels, broadband metamaterials, and antireflective solar cells. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Clinical trials transparency and the Trial and Experimental Studies Transparency (TEST) act.

    PubMed

    Logvinov, Ilana

    2014-03-01

    Clinical trial research is the cornerstone for successful advancement of medicine that provides hope for millions of people in the future. Full transparency in clinical trials may allow independent investigators to evaluate study designs, perform additional analysis of data, and potentially eliminate duplicate studies. Current regulatory system and publishers rely on investigators and pharmaceutical industries for complete and accurate reporting of results from completed clinical trials. Legislation seems to be the only way to enforce mandatory disclosure of results. The Trial and Experimental Studies Transparency (TEST) Act of 2012 was introduced to the legislators in the United States to promote greater transparency in research industry. Public safety and advancement of science are the driving forces for the proposed policy change. The TEST Act may benefit the society and researchers; however, there are major concerns with participants' privacy and intellectual property protection. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Promoting transparency, accountability, and access through a multi-stakeholder initiative: lessons from the medicines transparency alliance.

    PubMed

    Vian, Taryn; Kohler, Jillian C; Forte, Gilles; Dimancesco, Deirdre

    2017-01-01

    Barriers to expanding access to medicines include weak pharmaceutical sector governance, lack of transparency and accountability, inadequate attention to social services on the political agenda, and financing challenges. Multi-stakeholder initiatives such as the Medicines Transparency Alliance (MeTA) may help overcome these barriers. Between 2008 and 2015, MeTA engaged stakeholders in the pharmaceutical sectors of seven countries (Ghana, Jordan, Kyrgyzstan, Peru, Philippines, Uganda, and Zambia) to promote access goals through greater transparency. We reviewed archival data to document MeTA activities and results related to transparency and accountability in the seven countries where it was implemented. We identified common themes and content areas, noting specific activities used to make information transparent and accessible, how data were used to inform discussions, and the purpose and timing of meetings and advocacy activities to help set priorities and influence governance decisions. The cross-case analysis looked for pathways which might link the MeTA strategies to results such as better policies or program improvements. Countries used evidence gathering, open meetings, and proactive information dissemination to increase transparency. MeTA fostered policy dialogue to bring together the many government, civil society and private company stakeholders concerned with access issues, and provided them with information to understand barriers to access at policy, organizational, and community levels. We found strong evidence that transparency was enhanced. Some evidence suggests that MeTA efforts contributed to new policies and civil society capacity strengthening although the impact on government accountability is not clear. MeTA appears to have achieved its goal of creating a multi-stakeholder shared policy space in which government, civil society, and private sector players can come together and have a voice in the national pharmaceutical policy making process

  8. Transparency and Oversight in Local Wellness Policies

    ERIC Educational Resources Information Center

    Chriqui, Jamie F.; Chaloupka, Frank J.

    2011-01-01

    Background: Advocates have called for increased wellness policy transparency and oversight through the use of health advisory councils. This study examines (1) wellness policy transparency, (2) advisory council requirements, (3) factors associated with each, and (4) whether transparency or advisory council requirements are indicative of a stronger…

  9. Transparent electrode for optical switch

    DOEpatents

    Goldhar, Julius; Henesian, Mark A.

    1986-01-01

    A low pressure gas electrode utilizing ionized gas in a glow discharge regime forms a transparent electrode for electro-optical switches. The transparent electrode comprises a low pressure gas region on both sides of the crystal. When the gas is ionized, e.g., by a glow discharge in the low pressure gas, the plasma formed is a good conductor. The gas electrode acts as a highly uniform conducting electrode. Since the plasma is transparent to a high energy laser beam passing through the crystal, the electrode is a transparent electrode. A crystal exposed from two sides to such a plasma can be charged up uniformly to any desired voltage. The plasma can be created either by the main high voltage pulser used to charge up the crystal or by auxiliary discharges or external sources of ionization. A typical configuration utilizes 10 torr argon in the discharge region adjacent to each crystal face.

  10. Transparency--"Deal or no deal"?

    PubMed

    Lutz, Sandy

    2007-01-01

    In the United States, transparency is becoming an ideal worthy of Mom and apple pie, like quality in healthcare. Physicians, payers, hospitals, business associations, and organizations representing patients have all chimed in expressing support. At the local, state, and national levels a variety of transparency initiatives are under way. How will transparency affect the healthcare industry? Transparency could profoundly change today's balance of power, for it is about information, and information is power. As employers push more cost sharing to workers, hospitals and health systems will have to construct a pricing structure that is meaningful to consumers. What are providers to do? To be successful with this new demand, providers should make sure they are making quality information as well as pricing information available to consumers. They will have to know the market, know what their own prices mean, consider the customer, and reengineer business processes around the patient rather than around the billing side of business.

  11. Collaborative Interactive Visualization Exploratory Concept

    DTIC Science & Technology

    2015-06-01

    the FIAC concepts. It consists of various DRDC-RDDC-2015-N004 intelligence analysis web services build of top of big data technologies exploited...sits on the UDS where validated common knowledge is stored. Based on the Lumify software2, this important component exploits big data technologies such...interfaces. Above this database resides the Big Data Manager responsible for transparent data transmission between the UDS and the rest of the S3

  12. Exploratory Development of Transparent Conductor Materials

    DTIC Science & Technology

    1975-03-01

    silicon c,:ll) or b&%ckwa.U (CdS cells ) electrodes. ’Nn oxide and indium oxide are currently the best known transparent condudwtor materials and they are...From an investigation of its fundamental physical properties it was concluded that cadmium stannate is a viable candidate for transparent solar cell ...transparent backwall electrodes in CdS solar cells . A further objective has been the utilization of the high infrared reflectivity of cadmium

  13. In-vitro corneal transparency measuring system

    NASA Astrophysics Data System (ADS)

    Ventura, Liliane; da Costa Vieira, Marcelo A.; Isaac, Flavio; Chiaradia, Caio; Faria de Sousa, Sidney J.

    2001-06-01

    A system for measuring the average corneal transparency of preserved corneas has been developed in order to provide a more accurate and standard report of the corneal tissue. The donated cornea transparency is one of the features to be analyzed previously to its indication for the transplant. The small portable system consists of two main parts: the optical and the electronic parts. The optical system consists of a white light, lenses and pin-holes that collimate white light beams that illuminates the cornea in its preservative medium. The light that passes through the cornea is detected by a resistive detector and the average corneal transparency is shown in a display. In order to obtain just the tissue transparency, the electronic circuit was built in a way that there is a baseline input of the preservative medium, previous to the measurement of the corneal transparency. Manipulating the system consists of three steps: (1) Adjusting the zero percentage in the absence of light (at this time the detectors in the dark); (2) Placing the preservative medium in the system and adjusting the 100% value (this is the baseline input); (3) Preserving the cornea and placing it in the system. The system provides the tissue transparency. The system is connected to an endothelium evaluation system for Slit Lamp, that we have developed, and statistics about the relationship of the corneal transparency and density of the endothelial cells will be provided in the next years. The system is being used in a public Eye Bank in Brasil.

  14. Challenging assumptions of notational transparency: the case of vectors in engineering mathematics

    NASA Astrophysics Data System (ADS)

    Craig, Tracy S.

    2017-11-01

    The notation for vector analysis has a contentious nineteenth century history, with many different notations describing the same or similar concepts competing for use. While the twentieth century has seen a great deal of unification in vector analysis notation, variation still remains. In this paper, the two primary notations used for expressing the components of a vector are discussed in historical and current context. Popular mathematical texts use the two notations as if they are transparent and interchangeable. In this research project, engineering students' proficiency at vector analysis was assessed and the data were analyzed using the Rasch measurement method. Results indicate that the students found items expressed in unit vector notation more difficult than those expressed in parenthesis notation. The expert experience of notation as transparent and unproblematically symbolic of underlying processes independent of notation is shown to contrast with the student experience where the less familiar notation is experienced as harder to work with.

  15. p-Type Transparent Electronics

    DTIC Science & Technology

    2003-09-25

    thin - film transistors (TTFTs) reported to date in the literature are summarized. 2.2.1 Thin - Film Transistor Structure and Fabrication A TFT ...is incapable of controlling the TFT regardless of gate voltage, as described in Sec. 2.2.3.1. 2.2.4 Transparent Thin - Film Transistors (TTFTs...Transparent thin - film transistors (TTFTs) described in the literature to date are all n-channel devices. Several n-channel TTFTs (n-TTFTs) based on

  16. Broadband telecom transparency of semiconductor-coated metal nanowires: more transparent than glass.

    PubMed

    Paniagua-Domínguez, R; Abujetas, D R; Froufe-Pérez, L S; Sáenz, J J; Sánchez-Gil, J A

    2013-09-23

    Metallic nanowires (NW) coated with a high permittivity dielectric are proposed as means to strongly reduce the light scattering of the conducting NW, rendering them transparent at infrared wavelengths of interest in telecommunications. Based on a simple, universal law derived from electrostatics arguments, we find appropriate parameters to reduce the scattering efficiency of hybrid metal-dielectric NW by up to three orders of magnitude as compared with the scattering efficiency of the homogeneous metallic NW. We show that metal@dielectric structures are much more robust against fabrication imperfections than analogous dielectric@metal ones. The bandwidth of the transparent region entirely covers the near IR telecommunications range. Although this effect is optimum at normal incidence and for a given polarization, rigorous theoretical and numerical calculations reveal that transparency is robust against changes in polarization and angle of incidence, and also holds for relatively dense periodic or random arrangements. A wealth of applications based on metal-NWs may benefit from such invisibility.

  17. Nanocellulose reinforcement of Transparent Composites

    Treesearch

    Joshua Steele; Hong Dong; James F. Snyder; Josh A. Orlicki; Richard S. Reiner; Alan W. Rudie

    2012-01-01

    In this work, we evaluate the impact of nanocellulose reinforcement on transparent composite properties. Due to the small diameter, high modulus, and high strength of cellulose nanocrystals, transparent composites that utilize these materials should show improvement in bulk mechanical performances without a corresponding reduction in optical properties. In this study...

  18. Transparent ambipolar organic thin film transistors based on multilayer transparent source-drain electrodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Nan; Hu, Yongsheng, E-mail: huyongsheng@ciomp.ac.cn, E-mail: liuxy@ciomp.ac.cn; Lin, Jie

    A fabrication method for transparent ambipolar organic thin film transistors with transparent Sb{sub 2}O{sub 3}/Ag/Sb{sub 2}O{sub 3} (SAS) source and drain electrodes has been developed. A pentacene/N,N′-ditridecylperylene-3,4,9,10-tetracarboxylic di-imide (PTCDI-C13) bilayer heterojunction is used as the active semiconductor. The electrodes are deposited by room temperature electron beam evaporation. The devices are fabricated without damaging the active layers. The SAS electrodes have high transmittance (82.5%) and low sheet resistance (8 Ω/sq). High performance devices with hole and electron mobilities of 0.3 cm{sup 2}/V s and 0.027 cm{sup 2}/V s, respectively, and average visible range transmittance of 72% were obtained. These transistors have potential for transparent logicmore » integrated circuit applications.« less

  19. Nanostructured p-type semiconducting transparent oxides: promising materials for nano-active devices and the emerging field of "transparent nanoelectronics".

    PubMed

    Banerjee, Arghya; Chattopadhyay, Kalyan K

    2008-01-01

    Transparent conducting oxides (TCO) with p-type semiconductivity have recently gained renewed interest for the fabrication of all-oxide transparent junctions, having potential applications in the emerging field of 'Transparent' or 'Invisible Electronics'. This kind of transparent junctions can be used as a "functional" window, which will transmit visible portion of solar radiation, but generates electricity by the absorption of the UV part. Therefore, these devices can be used as UV shield as well as UV cells. In this report, a brief review on the research activities on various p-TCO materials is furnished along-with the fabrication of different transparent p-n homojunction, heterojunction and field-effect transistors. Also the reason behind the difficulties in obtaining p-TCO materials and possible solutions are discussed in details. Considerable attention is given in describing the various patent generations on the field of p-TCO materials as well as transparent p-n junction diodes and light emitting devices. Also, most importantly, a detailed review and patenting activities on the nanocrystalline p-TCO materials and transparent nano-active device fabrication are furnished with considerable attention. And finally, a systematic description on the fabrication and characterization of nanocrystalline, p-type transparent conducting CuAlO(2) thin film, deposited by cost-effective low-temperature DC sputtering technique, by our group, is furnished in details. These p-TCO micro/nano-materials have wide range of applications in the field of optoelectronics, nanoelectronics, space sciences, field-emission displays, thermoelectric converters and sensing devices.

  20. Transparent Conductive Nanofiber Paper for Foldable Solar Cells

    PubMed Central

    Nogi, Masaya; Karakawa, Makoto; Komoda, Natsuki; Yagyu, Hitomi; Nge, Thi Thi

    2015-01-01

    Optically transparent nanofiber paper containing silver nanowires showed high electrical conductivity and maintained the high transparency, and low weight of the original transparent nanofiber paper. We demonstrated some procedures of optically transparent and electrically conductive cellulose nanofiber paper for lightweight and portable electronic devices. The nanofiber paper enhanced high conductivity without any post treatments such as heating or mechanical pressing, when cellulose nanofiber dispersions were dropped on a silver nanowire thin layer. The transparent conductive nanofiber paper showed high electrical durability in repeated folding tests, due to dual advantages of the hydrophilic affinity between cellulose and silver nanowires, and the entanglement between cellulose nanofibers and silver nanowires. Their optical transparency and electrical conductivity were as high as those of ITO glass. Therefore, using this conductive transparent paper, organic solar cells were produced that achieved a power conversion of 3.2%, which was as high as that of ITO-based solar cells. PMID:26607742

  1. Airborne Transparencies.

    ERIC Educational Resources Information Center

    Horne, Lois Thommason

    1984-01-01

    Starting from a science project on flight, art students discussed and investigated various means of moving in space. Then they made acetate illustrations which could be used as transparencies. The projection phenomenon made the illustrations look airborne. (CS)

  2. Unraveling the solvent induced welding of silver nanowires for high performance flexible transparent electrodes.

    PubMed

    Zhang, Kui; Li, Jia; Fang, Yunsheng; Luo, Beibei; Zhang, Yanli; Li, Yanqiu; Zhou, Jun; Hu, Bin

    2018-04-25

    A solution processed metal nanowire network is a promising flexible transparent electrode to replace brittle metal oxides for printable optoelectronics applications, but suffers from the issue of pseudo contact between nanowires. Herein, using volatile solvent mists as a powerful "zipper", we demonstrate a simple and rapid method to effectively weld silver nanowires, which dramatically improves the conductivity and robustness of the silver nanowire network based flexible transparent electrodes. We reveal that for a stacked network structure, the unique wedge-shaped nanogaps between the long nanowires and substrate provide a strong capillary force during solvent evaporation, which is much larger than that between zero-dimensional nanoparticles and gives a decisive contribution for nanowire junction welding, and this nanowire-substrate interplay force is positively related to the wettability of the substrate. At the same time, the dissolution-reprecipitation of the capping agent on the silver nanowire surface as the natural adhesive can fix the network on the substrate tightly, which enhances the robustness of the network. Our approach solves two key issues in solution-processed transparent electrodes in one simple step, and is compatible with various mild solution-processed optoelectronic devices, especially those containing heat-sensitive or chemical-sensitive materials. Moreover, a new type of invisible infrared encryption display is demonstrated based on this approach.

  3. Visibly transparent polymer solar cells produced by solution processing.

    PubMed

    Chen, Chun-Chao; Dou, Letian; Zhu, Rui; Chung, Choong-Heui; Song, Tze-Bin; Zheng, Yue Bing; Hawks, Steve; Li, Gang; Weiss, Paul S; Yang, Yang

    2012-08-28

    Visibly transparent photovoltaic devices can open photovoltaic applications in many areas, such as building-integrated photovoltaics or integrated photovoltaic chargers for portable electronics. We demonstrate high-performance, visibly transparent polymer solar cells fabricated via solution processing. The photoactive layer of these visibly transparent polymer solar cells harvests solar energy from the near-infrared region while being less sensitive to visible photons. The top transparent electrode employs a highly transparent silver nanowire-metal oxide composite conducting film, which is coated through mild solution processes. With this combination, we have achieved 4% power-conversion efficiency for solution-processed and visibly transparent polymer solar cells. The optimized devices have a maximum transparency of 66% at 550 nm.

  4. Social Accountable Medical Education: A concept analysis

    PubMed Central

    ABDOLMALEKI, MOHAMMADREZA; YAZDANI, SHAHRAM; MOMENI, SEDIGHEH; MOMTAZMANESH, NADER

    2017-01-01

    Introduction: Considering the pervasiveness of social accountable medical education concept around the world and the growing trend of literature in this regard as well as various interpretations made about this concept, we found it necessary to analyze the concept of social accountable medical education. Methods: In this study, the modified version of McKenna’s approach to concept analysis was used to determine the concept, explain structures and substructures and determine the border concepts neighboring and against social accountability in medical education. Results: By studying the selected sources,the components of the concept were obtained to identify it and express an analytic definition of social accountability in medical education system. Then, a model case with all attributes of the given concept and the contrary and related concepts were mentioned to determine the boundary between the main concept and auxiliary ones. Conclusion: According to the results of this study in the field of social accountability, the detailed and transparent analytical definition of social accountable medical education can be used in future studies as well as the function and evaluation of medical education system. PMID:28761884

  5. Transparency and oversight in local wellness policies.

    PubMed

    Chriqui, Jamie F; Chaloupka, Frank J

    2011-02-01

    Advocates have called for increased wellness policy transparency and oversight through the use of health advisory councils. This study examines (1) wellness policy transparency, (2) advisory council requirements, (3) factors associated with each, and (4) whether transparency or advisory council requirements are indicative of a stronger policy addressing nutrition and physical activity. Policies for school year 2007-2008 were obtained from a nationally representative sample of 641 districts and analyzed for their applicability to elementary, middle, and high school levels. Main outcome measures included (1) policy transparency (online availability), (2) advisory council requirements, and (3) overall policy strength. T-tests assessed variability in policy strength by transparency and advisory council requirements. Multivariate logistic and linear regression analyses controlled for district size, socioeconomic status, race/ethnicity, region, and locale; models of advisory council/policy strength relationships also controlled for state advisory council requirements. More than 41% of districts posted wellness policies online and more than 43% required advisory councils. Transparency was less likely in small-/medium-sized and non-southern districts; and, for elementary school policies, most common in majority Hispanic districts. Advisory council requirements were less likely in small-/medium-sized districts for middle/high school policies and more likely in majority Hispanic districts for elementary school policies. After adjusting for all covariates, transparency was not associated with policy strength, but advisory council requirements significantly predicted policy strength. Transparency may facilitate awareness, but it does not mean that wellness policies will be stronger; however, advisory council requirements may be a marker for stronger policies. © 2011, American School Health Association.

  6. The 12-Month Pregnancy: Giving Your Baby a Healthy Head Start.

    ERIC Educational Resources Information Center

    Herman, Barry; Perry, Susan K.

    1993-01-01

    The weeks just prior to conception and the early weeks of pregnancy are extremely crucial. By adopting a healthy lifestyle, parents can give their babies a head start toward a healthy life. Both men and women play an important role in preconception planning and behavior. (SM)

  7. Self-Powered Human-Interactive Transparent Nanopaper Systems.

    PubMed

    Zhong, Junwen; Zhu, Hongli; Zhong, Qize; Dai, Jiaqi; Li, Wenbo; Jang, Soo-Hwan; Yao, Yonggang; Henderson, Doug; Hu, Qiyi; Hu, Liangbing; Zhou, Jun

    2015-07-28

    Self-powered human-interactive but invisible electronics have many applications in anti-theft and anti-fake systems for human society. In this work, for the first time, we demonstrate a transparent paper-based, self-powered, and human-interactive flexible system. The system is based on an electrostatic induction mechanism with no extra power system appended. The self-powered, transparent paper device can be used for a transparent paper-based art anti-theft system in museums or for a smart mapping anti-fake system in precious packaging and documents, by virtue of the advantages of adding/removing freely, having no impairment on the appearance of the protected objects, and being easily mass manufactured. This initial study bridges the transparent nanopaper with a self-powered and human-interactive electronic system, paving the way for the development of smart transparent paper electronics.

  8. Trigger Laws: Does Signing a Petition Give Parents a Voice?

    ERIC Educational Resources Information Center

    Bacon, David

    2011-01-01

    Parent trigger laws, according to their proponents, give parents power. Gregory McGinity, managing director of policy for the Broad Education Foundation, calls them "a way for parents' voices to be heard." Sounds good. But is the parent trigger concept a way to put parents in charge of their kids' education, or is it part of a political agenda…

  9. Transparency in Europe: A Quantitative Study.

    PubMed

    Bouder, Frederic; Way, Dominic; Löfstedt, Ragnar; Evensen, Darrick

    2015-07-01

    In recent years, European pharmaceutical regulators have increasingly committed to heightening access to raw safety-related data as part of a wave of transparency initiatives (e.g., providing public Internet-mediated access to clinical trials data). Yet, the regulators--who are under significant pressure--have not yet benefited from a systematic review of this new policy. In seeking to inject much needed evidence, this article explores the effects of new transparency policies designed to promote meaningful communication of risks and benefits to patients. Results of a cross-national European survey with respondents from Great Britain, the Netherlands, Spain, France, Germany, and Sweden (N = 5,648) shed light on how patients and the public are likely to react to the regulators' new transparency policies. The findings demonstrate clear national variations in how European citizens are likely to react and emphasize the need to develop evidence-based, reasoned transparency policies that integrate benefit-risk communication. The authors conclude by providing six specific recommendations, informed by the study, that seek to improve the European transparency model both within the medical field and across health, safety, and environmental policy domains. © 2015 Society for Risk Analysis.

  10. Polarized linewidth-controllable double-trapping electromagnetically induced transparency spectra in a resonant plasmon nanocavity

    PubMed Central

    Wang, Luojia; Gu, Ying; Chen, Hongyi; Zhang, Jia-Yu; Cui, Yiping; Gerardot, Brian D.; Gong, Qihuang

    2013-01-01

    Surface plasmons with ultrasmall optical mode volume and strong near field enhancement can be used to realize nanoscale light-matter interaction. Combining surface plasmons with the quantum system provides the possibility of nanoscale realization of important quantum optical phenomena, including the electromagnetically induced transparency (EIT), which has many applications in nonlinear quantum optics and quantum information processing. Here, using a custom-designed resonant plasmon nanocavity, we demonstrate polarized position-dependent linewidth-controllable EIT spectra at the nanoscale. We analytically obtain the double coherent population trapping conditions in a double-Λ quantum system with crossing damping, which give two transparent points in the EIT spectra. The linewidths of the three peaks are extremely sensitive to the level spacing of the excited states, the Rabi frequencies and detunings of pump fields, and the Purcell factors. In particular the linewidth of the central peak is exceptionally narrow. The hybrid system may have potential applications in ultra-compact plasmon-quantum devices. PMID:24096943

  11. Methods and apparatus for transparent display using scattering nanoparticles

    DOEpatents

    Hsu, Chia Wei; Qiu, Wenjun; Zhen, Bo; Shapira, Ofer; Soljacic, Marin

    2017-06-14

    Transparent displays enable many useful applications, including heads-up displays for cars and aircraft as well as displays on eyeglasses and glass windows. Unfortunately, transparent displays made of organic light-emitting diodes are typically expensive and opaque. Heads-up displays often require fixed light sources and have limited viewing angles. And transparent displays that use frequency conversion are typically energy inefficient. Conversely, the present transparent displays operate by scattering visible light from resonant nanoparticles with narrowband scattering cross sections and small absorption cross sections. More specifically, projecting an image onto a transparent screen doped with nanoparticles that selectively scatter light at the image wavelength(s) yields an image on the screen visible to an observer. Because the nanoparticles scatter light at only certain wavelengths, the screen is practically transparent under ambient light. Exemplary transparent scattering displays can be simple, inexpensive, scalable to large sizes, viewable over wide angular ranges, energy efficient, and transparent simultaneously.

  12. Methods and apparatus for transparent display using scattering nanoparticles

    DOEpatents

    Hsu, Chia Wei; Qiu, Wenjun; Zhen, Bo; Shapira, Ofer; Soljacic, Marin

    2016-05-10

    Transparent displays enable many useful applications, including heads-up displays for cars and aircraft as well as displays on eyeglasses and glass windows. Unfortunately, transparent displays made of organic light-emitting diodes are typically expensive and opaque. Heads-up displays often require fixed light sources and have limited viewing angles. And transparent displays that use frequency conversion are typically energy inefficient. Conversely, the present transparent displays operate by scattering visible light from resonant nanoparticles with narrowband scattering cross sections and small absorption cross sections. More specifically, projecting an image onto a transparent screen doped with nanoparticles that selectively scatter light at the image wavelength(s) yields an image on the screen visible to an observer. Because the nanoparticles scatter light at only certain wavelengths, the screen is practically transparent under ambient light. Exemplary transparent scattering displays can be simple, inexpensive, scalable to large sizes, viewable over wide angular ranges, energy efficient, and transparent simultaneously.

  13. Theory of wave propagation in magnetized near-zero-epsilon metamaterials: evidence for one-way photonic states and magnetically switched transparency and opacity.

    PubMed

    Davoyan, Arthur R; Engheta, Nader

    2013-12-20

    We study propagation of transverse-magnetic electromagnetic waves in the bulk and at the surface of a magnetized epsilon-near-zero (ENZ) medium in a Voigt configuration. We reveal that in a certain range of material parameters novel regimes of wave propagation emerge; we show that the transparency of the medium can be altered with the magnetization leading either to magnetically induced Hall opacity or Hall transparency of the ENZ. In our theoretical study, we demonstrate that surface waves at the interface between either a transparent or an opaque Hall medium and a homogeneous medium may, under certain conditions, be predominantly one way. Moreover, we predict that one-way photonic surface states may exist at the interface of an opaque Hall ENZ and a regular metal, giving rise to the possibility for backscattering immune wave propagation and isolation.

  14. One-dimensional nanostructures for novel biosensor and transparent electronics applications

    NASA Astrophysics Data System (ADS)

    Chang, Hsiao-Kang

    -walled carbon nanotubes. The printed nanosensors exhibit reliable sensing to pH variation. We have successfully achieved the detection of Estradial, a commonly used hormone biomarker, as a proof of concept for using printed nanobiosensors on disease diagnosis. High-performance fully transparent thin-film transistors (TTFTs) on both rigid and flexible substrates with transfer printed aligned nanotubes as the active channel and indium-tin oxide as the source, drain and gate electrodes is reported in chapter 6. Such transistors are fabricated through low temperature processing, which allows device fabrication even on flexible substrates. Transparent transistors with high effective mobilities (˜1,300 cm2V -1s-1) were first demonstrated on glass substrates via engineering of the source and drain contacts, and high on/off ratio (3 x 104) was achieved using electrical breakdown. In addition, flexible TTFTs with good transparency were also fabricated and successfully operated under bending up to 120°. All of the devices showed good transparency (˜80% on average). The transparent transistors were further utilized to construct a fully transparent and flexible logic inverter on a plastic substrate, and also used to control commercial GaN light-emitting diodes (LEDs) with light intensity modulation of 103. Our results suggest that aligned nanotubes have great potential to work as building blocks for future transparent electronics. In chapter 7, a summary of all topics in this dissertation is described. Future work regarding the nanobiosensor project is also proposed.

  15. Workshop II: Nanotechnology and Advanced Cell Concepts

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Workshop focused on few emerging concepts(beyond tandem cells): 1. Engineering incident sun spectrum and transparency losses a) Nano emitters (dot concentrator); b) Surface plasmonics; c) Up converters; d) Down converter. 2. Intermediate band solar cells a) Efficiency projections (detail energy balance projections); b) Inserting 0,1 and 2D semiconductor structures in solar cells 3. Polymer and hybrid cells a) Nanotubes/dot polymers; b) Exciton dissociation.

  16. Situated cognition in clinical visualization: the role of transparency in GammaKnife neurosurgery planning.

    PubMed

    Dinka, David; Nyce, James M; Timpka, Toomas

    2009-06-01

    The aim of this study was to investigate how the clinical use of visualization technology can be advanced by the application of a situated cognition perspective. The data were collected in the GammaKnife radiosurgery setting and analyzed using qualitative methods. Observations and in-depth interviews with neurosurgeons and physicists were performed at three clinics using the Leksell GammaKnife. The users' ability to perform cognitive tasks was found to be reduced each time visualizations incongruent with the particular user's perception of clinical reality were used. The main issue here was a lack of transparency, i.e. a black box problem where machine representations "stood between" users and the cognitive tasks they wanted to perform. For neurosurgeons, transparency meant their previous experience from traditional surgery could be applied, i.e. that they were not forced to perform additional cognitive work. From the view of the physicists, on the other hand, the concept of transparency was associated with mathematical precision and avoiding creating a cognitive distance between basic patient data and what is experienced as clinical reality. The physicists approached clinical visualization technology as though it was a laboratory apparatus--one that required continual adjustment and assessment in order to "capture" a quantitative clinical reality. Designers of visualization technology need to compare the cognitive interpretations generated by the new visualization systems to conceptions generated during "traditional" clinical work. This means that the viewpoint of different clinical user groups involved in a given clinical task would have to be taken into account as well. A way forward would be to acknowledge that visualization is a socio-cognitive function that has practice-based antecedents and consequences, and to reconsider what analytical and scientific challenges this presents us with.

  17. Review and comparison of non-conventional imaging systems for three-dimensional digitization of transparent objects

    NASA Astrophysics Data System (ADS)

    Mériaudeau, Fabrice; Rantoson, Rindra; Fofi, David; Stolz, Christophe

    2012-04-01

    Fashion and design greatly influence the conception of manufactured products which now exhibit complex forms and shapes. Two-dimensional quality control procedures (e.g., shape, textures, colors, and 2D geometry) are progressively being replaced by 3D inspection methods (e.g., 3D geometry, colors, and texture on the 3D shape) therefore requiring a digitization of the object surface. Three dimensional surface acquisition is a topic which has been studied to a large extent, and a significant number of techniques for acquiring 3D shapes has been proposed, leading to a wide range of commercial solutions available on the market. These systems cover a wide range from micro-scale objects such as shape from focus and shape from defocus techniques, to several meter sized objects (time of flight technique). Nevertheless, the use of such systems still encounters difficulties when dealing with non-diffuse (non Lambertian) surfaces as is the case for transparent, semi-transparent, or highly reflective materials (e.g., glass, crystals, plastics, and shiny metals). We review and compare various systems and approaches which were recently developed for 3D digitization of transparent objects.

  18. Transparent Materials for Armor - A Cost Study

    DTIC Science & Technology

    2010-01-11

    UNCLASSIFIED UNCLASSIFIED Example: M1114 Recent History 2006 “Iraqi Pope Glass” 2004-2005 GPK (Gunner Protection Kit) Early OIF Curb Wt: 10,300lbs GVW...12,100lbs More Vehicles More Attacks More Glass UNCLASSIFIED UNCLASSIFIED Future Transparent Gun Shields Requirement: Upgrade GPKs with transparent...Objective AHI GS & GPK Baseline Field Modified GS & APK UNCLASSIFIED UNCLASSIFIED •Average Total ($) for transparent armor increased by about 20% (each

  19. Give as I give: Adult influence on children's giving in two cultures.

    PubMed

    Blake, Peter R; Corbit, John; Callaghan, Tara C; Warneken, Felix

    2016-12-01

    Adult influence on children's altruistic behavior may differ between cultural communities. We used an experimental approach to assess the influence of adult models on children's altruistic giving in a city in the United States and rural villages in India. Children between 3 and 8 years of age were tested with their parents in the United States (n=163) and India (n=154). Parents modeled either a generous or stingy donation; children then performed a similar task in private. Children in both communities were influenced by the stingy model, but only children in India increased their giving after viewing a generous model. The model's influence also increased with age in India. Results of a questionnaire revealed that parents in both communities believed that children learned sharing behavior from them. We consider these results in light of differences between these societies, including different socialization goals, cultural values, and content biases that may affect altruistic giving. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Improving the Transparency of IAEA Safeguards Reporting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Toomey, Christopher; Hayman, Aaron M.; Wyse, Evan T.

    2011-07-17

    In 2008, the Standing Advisory Group on Safeguards Implementation (SAGSI) indicated that the International Atomic Energy Agency's (IAEA) Safeguards Implementation Report (SIR) has not kept pace with the evolution of safeguards and provided the IAEA with a set of recommendations for improvement. The SIR is the primary mechanism for providing an overview of safeguards implementation in a given year and reporting on the annual safeguards findings and conclusions drawn by the Secretariat. As the IAEA transitions to State-level safeguards approaches, SIR reporting must adapt to reflect these evolutionary changes. This evolved report will better reflect the IAEA's transition to amore » more qualitative and information-driven approach, based upon State-as-a-whole considerations. This paper applies SAGSI's recommendations to the development of multiple models for an evolved SIR and finds that an SIR repurposed as a 'safeguards portal' could significantly enhance information delivery, clarity, and transparency. In addition, this paper finds that the 'portal concept' also appears to have value as a standardized information presentation and analysis platform for use by Country Officers, for continuity of knowledge purposes, and the IAEA Secretariat in the safeguards conclusion process. Accompanying this paper is a fully functional prototype of the 'portal' concept, built using commercial software and IAEA Annual Report data.« less

  1. Blinded by the light? Nearshore energy pathway coupling and relative predator biomass increase with reduced water transparency across lakes.

    PubMed

    Tunney, Tyler D; McCann, Kevin S; Jarvis, Lauren; Lester, Nigel P; Shuter, Brian J

    2018-04-01

    Habitat coupling is a concept that refers to consumer integration of resources derived from different habitats. This coupling unites fundamental food web pathways (e.g., cross-habitat trophic linkages) that mediate key ecological processes such as biomass flows, nutrient cycling, and stability. We consider the influence of water transparency, an important environmental driver in aquatic ecosystems, on habitat coupling by a light-sensitive predator, walleye (Sander vitreus), and its prey in 33 Canadian lakes. Our large-scale, across-lake study shows that the contribution of nearshore carbon (δ 13 C) relative to offshore carbon (δ 13 C) to walleye is higher in less transparent lakes. To a lesser degree, the contribution of nearshore carbon increased with a greater proportion of prey in nearshore compared to offshore habitats. Interestingly, water transparency and habitat coupling predict among-lake variation in walleye relative biomass. These findings support the idea that predator responses to changing conditions (e.g., water transparency) can fundamentally alter carbon pathways, and predator biomass, in aquatic ecosystems. Identifying environmental factors that influence habitat coupling is an important step toward understanding spatial food web structure in a changing world.

  2. [Pregnant women's attitudes towards the acceptable age limits for conceiving and giving birth to a child].

    PubMed

    Dakov, T; Dimitrova, V; Todorov, T

    2014-01-01

    To assess whether there are socially determined permissible and desirable age limits for conceiving and childbirth among pregnant women in Bulgaria and their relation to age, general and obstetrical medical history, method of conception, level of education and whether pregnancy has been postponed or not. 388 patients from the Fetal Medicine Clinic of the State University Hospital "Maichin Dom" in Sofia were provided with anonymous questionnaires, containing 38 questions. Two of the questions were essensial: 1) "What is the maximal permissible age for a woman to become pregnant and give birth to a child?". 2) "What is the maximal desirable age for a woman to become pregnant and deliver the planned numberof children?". The questionnaire contained also 23 questions related to the demographic characteristics of the participants and to their general and obstetric medical history. Data were processed with SPSS 13.0 statistical package. Descriptive and comparative analysis was performed after grouping according to one or mare chracteristics. P values < 0.05 were considered statistically significant. 54.2% (208/388) of the respondents determined a limit of the maximal permissible age for woman to conceive and give birth to a child. 53.4% (111/208) of them set the age limit of 40 years (28.9% of all patients). 63.6% (245/388) of the interrogated set a desirable age limit for conception and giving birth. Among then 82.9% (203/245) have set the limit at 40 years. The factors that influenced significantly the attitude towards the permissible age forconception/giving birth were the mode of conception, age and the level of education. Patients who had conceived spontaneously and had higher educational level were more confident when assessing the permissible age for conception/giving birth. Patients who had conceived by IVF/ICSI were significantly less confident answering the questions about age limits. The understanding for the permissible age for conception was not influenced by

  3. Transparency in Distributed File Systems

    DTIC Science & Technology

    1989-01-01

    ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASK Computer Science Department AREA & WORK UNIT NUMBERS 734 Comouter Studies Bldc . University of...sistency control , file and director) placement, and file and directory migration in a way that pro- 3 vides full network transparency. This transparency...areas of naming, replication, con- sistency control , file and directory placement, and file and directory migration in a way that pro- 3 vides full

  4. [The transparency commission: evaluation and re-evaluation].

    PubMed

    Bergmann, J F

    The purpose of the French Transparency Commission is to provide scientific advice concerning the usefulness, interest and good use of drugs. The work of the Transparency Commission lies at the interface between the French or European marketing approval procedures and the health and economic prerequisites of the French community. The opinion of the French Transparency Commission is used to assess the medical service provided by a new drug and the improvement of this medical service subsequent to its use. This opinion is taken into consideration for establishing the reimbursement rate applied by the social security organizations and the selling price set by the administration. The expert opinions and recommendations established by the Transparency Commission participate in implementing good use of drugs.

  5. Transparent Stretchable Self-Powered Patchable Sensor Platform with Ultrasensitive Recognition of Human Activities.

    PubMed

    Hwang, Byeong-Ung; Lee, Ju-Hyuck; Trung, Tran Quang; Roh, Eun; Kim, Do-Il; Kim, Sang-Woo; Lee, Nae-Eung

    2015-09-22

    Monitoring of human activities can provide clinically relevant information pertaining to disease diagnostics, preventive medicine, care for patients with chronic diseases, rehabilitation, and prosthetics. The recognition of strains on human skin, induced by subtle movements of muscles in the internal organs, such as the esophagus and trachea, and the motion of joints, was demonstrated using a self-powered patchable strain sensor platform, composed on multifunctional nanocomposites of low-density silver nanowires with a conductive elastomer of poly(3,4-ethylenedioxythiophene):polystyrenesulfonate/polyurethane, with high sensitivity, stretchability, and optical transparency. The ultra-low-power consumption of the sensor, integrated with both a supercapacitor and a triboelectric nanogenerator into a single transparent stretchable platform based on the same nanocomposites, results in a self-powered monitoring system for skin strain. The capability of the sensor to recognize a wide range of strain on skin has the potential for use in new areas of invisible stretchable electronics for human monitoring. A new type of transparent, stretchable, and ultrasensitive strain sensor based on a AgNW/PEDOT:PSS/PU nanocomposite was developed. The concept of a self-powered patchable sensor system integrated with a supercapacitor and a triboelectric nanogenerator that can be used universally as an autonomous invisible sensor system was used to detect the wide range of strain on human skin.

  6. Unraveling the physics of vertical organic field effect transistors through nanoscale engineering of a self-assembled transparent electrode.

    PubMed

    Ben-Sasson, Ariel J; Tessler, Nir

    2012-09-12

    While organic transistors' performances are continually pushed to achieve lower power consumption, higher working frequencies, and higher current densities, a new type of organic transistors characterized by a vertical architecture offers a radically different design approach to outperform its traditional counterparts. Naturally, the distinct vertical architecture gives way to different governing physical ground rules and structural key features such as the need for an embedded transparent electrode. In this paper, we make use of a zero-frequency electric field-transparent patterned electrode produced through block-copolymer self-assembly based lithography to control the performances of the vertical organic field effect transistor (VOFET) and to study its governing physical mechanisms. Unlike other VOFET structures, this design, involving well-defined electrode architecture, is fully tractable, allowing for detailed modeling, analysis, and optimization. We provide for the first time a complete account of the physics underpinning the VOFET operation, considering two complementary mechanisms: the virtual contact formation (Schottky barrier lowering) and the induced potential barrier (solid-state triode-like shielding). We demonstrate how each mechanism, separately, accounts for the link between controllable nanoscale structural modifications in the patterned electrode and the VOFET performances. For example, the ON/OFF current ratio increases by up to 2 orders of magnitude when the perforations aspect ratio (height/width) decreases from ∼0.2 to ∼0.1. The patterned electrode is demonstrated to be not only penetrable to zero-frequency electric fields but also transparent in the visible spectrum, featuring uniformity, spike-free structure, material diversity, amenability with flexible surfaces, low sheet resistance (20-2000 Ω sq(-1)) and high transparency (60-90%). The excellent layer transparency of the patterned electrode and the VOFET's exceptional electrical

  7. Zinc oxyfluoride transparent conductor

    DOEpatents

    Gordon, Roy G.

    1991-02-05

    Transparent, electrically conductive and infrared-reflective films of zinc oxyfluoride are produced by chemical vapor deposition from vapor mixtures of zinc, oxygen and fluorine-containing compounds. The substitution of fluorine for some of the oxygen in zinc oxide results in dramatic increases in the electrical conductivity. For example, diethyl zinc, ethyl alcohol and hexafluoropropene vapors are reacted over a glass surface at 400.degree. C. to form a visibly transparent, electrically conductive, infrared reflective and ultraviolet absorptive film of zinc oxyfluoride. Such films are useful in liquid crystal display devices, solar cells, electrochromic absorbers and reflectors, energy-conserving heat mirrors, and antistatic coatings.

  8. Stereo transparency and the disparity gradient limit

    NASA Technical Reports Server (NTRS)

    McKee, Suzanne P.; Verghese, Preeti

    2002-01-01

    Several studies (Vision Research 15 (1975) 583; Perception 9 (1980) 671) have shown that binocular fusion is limited by the disparity gradient (disparity/distance) separating image points, rather than by their absolute disparity values. Points separated by a gradient >1 appear diplopic. These results are sometimes interpreted as a constraint on human stereo matching, rather than a constraint on fusion. Here we have used psychophysical measurements on stereo transparency to show that human stereo matching is not constrained by a gradient of 1. We created transparent surfaces composed of many pairs of dots, in which each member of a pair was assigned a disparity equal and opposite to the disparity of the other member. For example, each pair could be composed of one dot with a crossed disparity of 6' and the other with uncrossed disparity of 6', vertically separated by a parametrically varied distance. When the vertical separation between the paired dots was small, the disparity gradient for each pair was very steep. Nevertheless, these opponent-disparity dot pairs produced a striking appearance of two transparent surfaces for disparity gradients ranging between 0.5 and 3. The apparent depth separating the two transparent planes was correctly matched to an equivalent disparity defined by two opaque surfaces. A test target presented between the two transparent planes was easily detected, indicating robust segregation of the disparities associated with the paired dots into two transparent surfaces with few mismatches in the target plane. Our simulations using the Tsai-Victor model show that the response profiles produced by scaled disparity-energy mechanisms can account for many of our results on the transparency generated by steep gradients.

  9. Flexible transparent conductors based on metal nanowire networks

    DOE PAGES

    Guo, Chuan Fei; Ren, Zhifeng

    2015-04-01

    Few conductors are transparent and flexible. Metals have the best electrical conductivity, but they are opaque and stiff in bulk form. However, metals can be transparent and flexible when they are very thin or properly arranged on the nanoscale. This review focuses on the flexible transparent conductors based on percolating networks of metal. Specifically, we discuss the fabrication, the means to improve the electrical conductivity, the large stretchability and its mechanism, and the applications of these metal networks. We also suggest some criteria for evaluating flexible transparent conductors and propose some new research directions in this emerging field.

  10. Local modulation of double optomechanically induced transparency and amplification.

    PubMed

    Yang, Q; Hou, B P; Lai, D G

    2017-05-01

    We consider the probe absorption properties in a mechanically coupled optomechanical system in which the two coupled nanomechanical oscillators are driven by the time-dependent forces, respectively. It is found that the mechanical interaction splits the transparency window for a usual single-mode optomechanical system into two parts and then leads to appearance of the double optomechanically induced transparency. The distance between the two transparency positions (the frequency for the maximal transparency) is determined by the mechanical interaction amplitude. This can be explained by using optomechanical dressed-mode picture which is analogue to the interacting dark resonances in coherent atoms. When the mechanical resonators are driven by the external forces, the transparencies in the double-transparency spectrum can be increased into amplifications or be suppressed by tuning the amplitude of the forces. Additionally, it is shown that the double transparencies or the amplifications oscillate with the initial phases of the forces with a period of 2π. These investigations will be useful for more flexible controllability of multi-channel optical communication based on the optomechanical systems.

  11. Motion transparency: making models of motion perception transparent.

    PubMed

    Snowden; Verstraten

    1999-10-01

    In daily life our visual system is bombarded with motion information. We see cars driving by, flocks of birds flying in the sky, clouds passing behind trees that are dancing in the wind. Vision science has a good understanding of the first stage of visual motion processing, that is, the mechanism underlying the detection of local motions. Currently, research is focused on the processes that occur beyond the first stage. At this level, local motions have to be integrated to form objects, define the boundaries between them, construct surfaces and so on. An interesting, if complicated case is known as motion transparency: the situation in which two overlapping surfaces move transparently over each other. In that case two motions have to be assigned to the same retinal location. Several researchers have tried to solve this problem from a computational point of view, using physiological and psychophysical results as a guideline. We will discuss two models: one uses the traditional idea known as 'filter selection' and the other a relatively new approach based on Bayesian inference. Predictions from these models are compared with our own visual behaviour and that of the neural substrates that are presumed to underlie these perceptions.

  12. Two-color holography concept (T-CHI)

    NASA Technical Reports Server (NTRS)

    Vikram, C. S.; Caulfield, H. J.; Workman, G. L.; Trolinger, J. D.; Wood, C. P.; Clark, R. L.; Kathman, A. D.; Ruggiero, R. M.

    1990-01-01

    The Material Processing in the Space Program of NASA-MSFC was active in developing numerous optical techniques for the characterization of fluids in the vicinity of various materials during crystallization and/or solidification. Two-color holographic interferometry demonstrates that temperature and concentration separation in transparent (T-CHI) model systems is possible. The experiments were performed for particular (succinonitrile) systems. Several solutions are possible in Microgravity Sciences and Applications (MSA) experiments on future Shuttle missions. The theory of the T-CHI concept is evaluated. Although particular cases are used for explanations, the concepts developed will be universal. A breadboard system design is also presented for ultimate fabrication and testing of theoretical findings. New developments in holography involving optical fibers and diode lasers are also incorporated.

  13. Effective work function modulation of graphene/carbon nanotube composite films as transparent cathodes for organic optoelectronics.

    PubMed

    Huang, Jen-Hsien; Fang, Jheng-Hao; Liu, Chung-Chun; Chu, Chih-Wei

    2011-08-23

    In this study, we found that the work functions (Φ(w)) of solution-processable, functional graphene/carbon nanotube-based transparent conductors were readily manipulated, varying between 5.1 and 3.4 eV, depending on the nature of the doping alkali carbonate salt. We used the graphene-based electrodes possessing lower values of Φ(w) as cathodes in inverted-architecture polymer photovoltaic devices to effectively collect electrons, giving rise to an optimal power conversion efficiency of 1.27%. © 2011 American Chemical Society

  14. Method of forming macro-structured high surface area transparent conductive oxide electrodes

    DOEpatents

    Forman, Arnold J.; Chen, Zhebo; Jaramillo, Thomas F.

    2016-01-05

    A method of forming a high surface area transparent conducting electrode is provided that includes depositing a transparent conducting thin film on a conductive substrate, where the transparent conducting thin film includes transparent conductive particles and a solution-based transparent conducting adhesive layer which serves to coat and bind together the transparent conducting particles, and heat treating the transparent conducting adhesion layer on the conductive substrate, where an increased surface area transparent conducting electrode is formed.

  15. Research Studies on Electromagnetically Induced Transparency

    DTIC Science & Technology

    2010-01-20

    allowing the same simple equations to be used to simulate nonlinear and quantum optics with the N-photon states generated in this regime. One...induced transparency, photon interactions with atoms, nonclassical states of the electromagnetic field, including entangled photon states , quantum ...them. This is important because optical nonlinearities when produced using electromagnetically induced transparency continue to increase in the

  16. Optically transparent/colorless polyimides

    NASA Technical Reports Server (NTRS)

    Stclair, A. K.; Stclair, T. L.; Slemp, W.; Ezzell, K. S.

    1985-01-01

    Several series of linear aromatic polyimide films have been synthesized and characterized with the objective of obtaining maximum optical transparency. Two approaches have been used as part of this structure-property relationship study. The first approach is to vary the molecular structure so as to separate chromophoric centers and reduce electronic interactions between polymer chains to lower the intensity of color in the resulting polymer films. A second and concurrent approach is to perform polymerizations with highly purified monomers. Glass transition temperatures of thermally cured polyimide films are obtained by thermomechanical analysis and thermal decomposition temperatures are determined by thermogravimetric analysis. Transmittance UV-visible spectra of the polyimide films are compared to that of a commercial polyimide film. Fully imidized films are tested for solubility in common organic solvents. The more transparent films prepared in this study are evaluated for use on second-surface mirror thermal control coating systems. Lightly colored to colorless films are characterized by UV-visible spectroscopy before and after exposure to 300 equivalent solar hours UV irradiation and varying doses of 1 MeV electron irradiation. The effects of monomer purity, casting solvent and cure atmosphere on polyimide film transparency are also investigated.

  17. "On Cloud Nine" and "On All Fours": Which Is More Transparent? Elements in EFL Learners' Transparency Assumptions

    ERIC Educational Resources Information Center

    Lin, Crystal Jia-yi

    2015-01-01

    Idiom transparency refers to how speakers think the meaning of the individual words contributes to the figurative meaning of an idiom as a whole (Gibbs, Nayak, & Cutting, 1989). However, it is not clear how speakers or language learners form their assumptions about an idiom's transparency level. This study set out to discover whether there are…

  18. The Value of Transparency in Distributed Solar PV Markets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    OShaughnessy, Eric J; Zamzam, Ahmed S

    Market transparency refers to the degree of customer awareness of product options and fair market prices for a given good. In The Value of Transparency in Distributed Solar PV Markets, we use residential solar photovoltaic (PV) quote data to study the value of transparency in distributed solar PV markets. We find that improved market transparency results in lower installation offer prices. Further, the results of this study suggest that PV customers benefit from gaining access to more PV quotes.

  19. Transparent graphene microstrip filters for wireless communications

    NASA Astrophysics Data System (ADS)

    Wang, Jinchen; Guan, Yifei; Yu, Hua; Li, Na; Wang, Shuopei; Shen, Cheng; Dai, Zhijiang; Gan, Decheng; Yang, Rong; He, Songbai; Zhang, Guangyu

    2017-08-01

    A microstrip is an indispensable component for wireless communication circuits. With the development of 5G technology, optically transparent microstrip filters urgently need to be developed. In this work, we have theoretically and experimentally demonstrated the immense potential of graphene microstrips for transparent wireless communication circuits in the 5G era. Both wideband and dual-band transparent graphene microstrip filters have shown more than 80% optical transmissivity in the region from 250 nm to 2000 nm with good frequency responses. S and C band microwave signals can transmit along the graphene microstrip lines effectively while coupling excitations produce relatively large insertion losses. Our results show that transparent microstrips designed with high-quality graphene will largely scale down the size of the wireless devices and thus play an irreplaceable role in the 5G era.

  20. Demonstration of transparent solar array module design

    NASA Technical Reports Server (NTRS)

    Pack, G. J.

    1984-01-01

    This report discusses the design, development, fabrication and testing of IR transparent solar array modules. Three modules, consisting of a baseline design using back surface reflector cells, and two modules using gridded back contact, IR transparent cells, were subjected to vacuum thermal balance testing to verify analytical predictions of lower operating emperature and increased efficiency. As a result of this test program, LMSC has verified that a significant degree of IR transparency can be designed into a flexible solar array. Test data correlates with both steady state and transient thermal analysis.

  1. Is the Universe transparent?

    NASA Astrophysics Data System (ADS)

    Liao, Kai; Avgoustidis, A.; Li, Zhengxiang

    2015-12-01

    We present our study on cosmic opacity, which relates to changes in photon number as photons travel from the source to the observer. Cosmic opacity may be caused by absorption or scattering due to matter in the Universe, or by extragalactic magnetic fields that can turn photons into unobserved particles (e.g., light axions, chameleons, gravitons, Kaluza-Klein modes), and it is crucial to correctly interpret astronomical photometric measurements like type Ia supernovae observations. On the other hand, the expansion rate at different epochs, i.e., the observational Hubble parameter data H (z ), are obtained from differential ageing of passively evolving galaxies or from baryon acoustic oscillations and thus are not affected by cosmic opacity. In this work, we first construct opacity-free luminosity distances from H (z ) determinations, taking into consideration correlations between different redshifts for our error analysis. Moreover, we let the light-curve fitting parameters, accounting for distance estimation in type Ia supernovae observations, free to ensure that our analysis is authentically cosmological-model independent and gives a robust result. Any nonzero residuals between these two kinds of luminosity distances can be deemed as an indication of the existence of cosmic opacity. While a transparent Universe is currently consistent with the data, our results show that strong constraints on opacity (and consequently on physical mechanisms that could cause it) can be obtained in a cosmological-model-independent fashion.

  2. Transparent, conformable, active multielectrode array using organic electrochemical transistors.

    PubMed

    Lee, Wonryung; Kim, Dongmin; Matsuhisa, Naoji; Nagase, Masae; Sekino, Masaki; Malliaras, George G; Yokota, Tomoyuki; Someya, Takao

    2017-10-03

    Mechanically flexible active multielectrode arrays (MEA) have been developed for local signal amplification and high spatial resolution. However, their opaqueness limited optical observation and light stimulation during use. Here, we show a transparent, ultraflexible, and active MEA, which consists of transparent organic electrochemical transistors (OECTs) and transparent Au grid wirings. The transparent OECT is made of Au grid electrodes and has shown comparable performance with OECTs with nontransparent electrodes/wirings. The transparent active MEA realizes the spatial mapping of electrocorticogram electrical signals from an optogenetic rat with 1-mm spacing and shows lower light artifacts than noise level. Our active MEA would open up the possibility of precise investigation of a neural network system with direct light stimulation.

  3. Limits of transparency of transparent conducting oxides

    NASA Astrophysics Data System (ADS)

    Peelaers, Hartwin

    A fundamental understanding of the factors that limit transparency in transparent conducting oxides (TCOs) is essential for further progress in materials and applications. These materials have a sufficiently large band gap, so that direct optical transitions do not lead to absorption of light within the visible spectrum. Since the presence of free carriers is essential for conductivity and thus for device applications, this introduces the possibility of additional absorption processes. In particular, indirect processes are possible, and these will constitute a fundamental limit of the material. The Drude theory is widely used to describe free-carrier absorption, but it is phenomenological in nature and tends to work poorly at shorter wavelengths, where band-structure effects are important. We will present calculations of phonon- and defect-assisted free-carrier absorption in a TCO completely from first principles. We will focus in detail on SnO2, but the methodology is general and we will also compare the results obtained for other TCO materials such as In2O3. These calculations provide not just quantitative results but also deeper insights in the mechanisms that govern absorption processes, which is essential for engineering improved materials to be used in more efficient devices. This work was performed in collaboration with E. Kioupakis and C.G. Van de Walle and was supported by ARO and NSF.

  4. Rapid synthesis of ultra-long silver nanowires for tailor-made transparent conductive electrodes: proof of concept in organic solar cells.

    PubMed

    José Andrés, Luis; Fe Menéndez, María; Gómez, David; Luisa Martínez, Ana; Bristow, Noel; Paul Kettle, Jeffrey; Menéndez, Armando; Ruiz, Bernardino

    2015-07-03

    Rapid synthesis of ultralong silver nanowires (AgNWs) has been obtained using a one-pot polyol-mediated synthetic procedure. The AgNWs have been prepared from the base materials in less than one hour with nanowire lengths reaching 195 μm, which represents the quickest synthesis and one of the highest reported aspect ratios to date. These results have been achieved through a joint analysis of all reaction parameters, which represents a clear progress beyond the state of the art. Dispersions of the AgNWs have been used to prepare thin, flexible, transparent and conducting films using spray coating. Due to the higher aspect ratio, an improved electrical percolation network is observed. This allows a low sheet resistance (RS = 20.2 Ω/sq), whilst maintaining high optical film transparency (T = 94.7%), driving to the highest reported figure-of-merit (FoM = 338). Owing to the light-scattering influence of the AgNWs, the density of the AgNW network can also be varied to enable controllability of the optical haze through the sample. Based on the identification of the optimal haze value, organic photovoltaics (OPVs) have been fabricated using the AgNWs as the transparent electrode and have been benchmarked against indium tin oxide (ITO) electrodes. Overall, the performance of OPVs made using AgNWs sees a small decrease in power conversion efficiency (PCE), primarily due to a fall in open-circuit voltage (50 mV). This work indicates that AgNWs can provide a low cost, rapid and roll-to-roll compatible alternative to ITO in OPVs, with only a small compromise in PCE needed.

  5. Rapid synthesis of ultra-long silver nanowires for tailor-made transparent conductive electrodes: proof of concept in organic solar cells

    NASA Astrophysics Data System (ADS)

    José Andrés, Luis; Menéndez, María Fe; Gómez, David; Martínez, Ana Luisa; Bristow, Noel; Kettle, Jeffrey Paul; Menéndez, Armando; Ruiz, Bernardino

    2015-07-01

    Rapid synthesis of ultralong silver nanowires (AgNWs) has been obtained using a one-pot polyol-mediated synthetic procedure. The AgNWs have been prepared from the base materials in less than one hour with nanowire lengths reaching 195 μm, which represents the quickest synthesis and one of the highest reported aspect ratios to date. These results have been achieved through a joint analysis of all reaction parameters, which represents a clear progress beyond the state of the art. Dispersions of the AgNWs have been used to prepare thin, flexible, transparent and conducting films using spray coating. Due to the higher aspect ratio, an improved electrical percolation network is observed. This allows a low sheet resistance (RS = 20.2 Ω/sq), whilst maintaining high optical film transparency (T = 94.7%), driving to the highest reported figure-of-merit (FoM = 338). Owing to the light-scattering influence of the AgNWs, the density of the AgNW network can also be varied to enable controllability of the optical haze through the sample. Based on the identification of the optimal haze value, organic photovoltaics (OPVs) have been fabricated using the AgNWs as the transparent electrode and have been benchmarked against indium tin oxide (ITO) electrodes. Overall, the performance of OPVs made using AgNWs sees a small decrease in power conversion efficiency (PCE), primarily due to a fall in open-circuit voltage (50 mV). This work indicates that AgNWs can provide a low cost, rapid and roll-to-roll compatible alternative to ITO in OPVs, with only a small compromise in PCE needed.

  6. Interplay between transparency and efficiency in dye sensitized solar cells.

    PubMed

    Tagliaferro, Roberto; Colonna, Daniele; Brown, Thomas M; Reale, Andrea; Di Carlo, Aldo

    2013-02-11

    In this paper we analyze the interplay between transparency and efficiency in dye sensitized solar cells by varying fabrication parameters such as the thickness of the nano-crystalline TiO(2) layer, the dye loading and the dye type. Both transparency and efficiency show a saturation trend when plotted versus dye loading. By introducing the transparency-efficiency plot, we show that the relation between transparency and efficiency is linear and is almost independent on the TiO(2) thickness for a certain thickness range. On the contrary, the relation between transparency and efficiency depends strongly on the type of the dye. Moreover, we show that co-sensitization techniques can be effectively used to access regions of the transparency-efficiency space that are forbidden for single dye sensitization. The relation found between transparency and efficiency (T&E) can be the general guide for optimization of Dye Solar Cells in building integration applications.

  7. Brightness and transparency in the early visual cortex.

    PubMed

    Salmela, Viljami R; Vanni, Simo

    2013-06-24

    Several psychophysical studies have shown that transparency can have drastic effects on brightness and lightness. However, the neural processes generating these effects have remained unresolved. Several lines of evidence suggest that the early visual cortex is important for brightness perception. While single cell recordings suggest that surface brightness is represented in the primary visual cortex, the results of functional magnetic resonance imaging (fMRI) studies have been discrepant. In addition, the location of the neural representation of transparency is not yet known. We investigated whether the fMRI responses in areas V1, V2, and V3 correlate with brightness and transparency. To dissociate the blood oxygen level-dependent (BOLD) response to brightness from the response to local border contrast and mean luminance, we used variants of White's brightness illusion, both opaque and transparent, in which luminance increments and decrements cancel each other out. The stimuli consisted of a target surface and a surround. The surround luminance was always sinusoidally modulated at 0.5 Hz to induce brightness modulation to the target. The target luminance was constant or modulated in counterphase to null brightness modulation. The mean signal changes were calculated from the voxels in V1, V2, and V3 corresponding to the retinotopic location of the target surface. The BOLD responses were significantly stronger for modulating brightness than for stimuli with constant brightness. In addition, the responses were stronger for transparent than for opaque stimuli, but there was more individual variation. No interaction between brightness and transparency was found. The results show that the early visual areas V1-V3 are sensitive to surface brightness and transparency and suggest that brightness and transparency are represented separately.

  8. Contour junctions defined by dynamic image deformations enhance perceptual transparency.

    PubMed

    Kawabe, Takahiro; Nishida, Shin'ya

    2017-11-01

    The majority of work on the perception of transparency has focused on static images with luminance-defined contour junctions, but recent work has shown that dynamic image sequences with dynamic image deformations also provide information about transparency. The present study demonstrates that when part of a static image is dynamically deformed, contour junctions at which deforming and nondeforming contours are connected facilitate the deformation-based perception of a transparent layer. We found that the impression of a transparent layer was stronger when a dynamically deforming area was adjacent to static nondeforming areas than when presented alone. When contour junctions were not formed at the dynamic-static boundaries, however, the impression of a transparent layer was not facilitated by the presence of static surrounding areas. The effect of the deformation-defined junctions was attenuated when the spatial pattern of luminance contrast at the junctions was inconsistent with the perceived transparency related to luminance contrast, while the effect did not change when the spatial luminance pattern was consistent with it. In addition, the results showed that contour completions across the junctions were required for the perception of a transparent layer. These results indicate that deformation-defined junctions that involve contour completion between deforming and nondeforming regions enhance the perception of a transparent layer, and that the deformation-based perceptual transparency can be promoted by the simultaneous presence of appropriately configured luminance and contrast-other features that can also by themselves produce the sensation of perceiving transparency.

  9. Transparent, conformable, active multielectrode array using organic electrochemical transistors

    PubMed Central

    Lee, Wonryung; Kim, Dongmin; Matsuhisa, Naoji; Nagase, Masae; Sekino, Masaki; Malliaras, George G.; Yokota, Tomoyuki; Someya, Takao

    2017-01-01

    Mechanically flexible active multielectrode arrays (MEA) have been developed for local signal amplification and high spatial resolution. However, their opaqueness limited optical observation and light stimulation during use. Here, we show a transparent, ultraflexible, and active MEA, which consists of transparent organic electrochemical transistors (OECTs) and transparent Au grid wirings. The transparent OECT is made of Au grid electrodes and has shown comparable performance with OECTs with nontransparent electrodes/wirings. The transparent active MEA realizes the spatial mapping of electrocorticogram electrical signals from an optogenetic rat with 1-mm spacing and shows lower light artifacts than noise level. Our active MEA would open up the possibility of precise investigation of a neural network system with direct light stimulation. PMID:28923928

  10. Transparency in Canadian public drug advisory committees.

    PubMed

    Rosenberg-Yunger, Zahava R S; Bayoumi, Ahmed M

    2014-11-01

    Transparency in health care resource allocation decisions is a criterion of a fair process. We used qualitative methods to explore transparency across 11 Canadian drug advisory committees. We developed seven criteria to assess transparency (disclosure of members' names, disclosure of membership selection criteria, disclosure of conflict of interest guidelines and members' conflicts, public posting of decisions not to fund drugs, public posting of rationales for decisions, stakeholder input, and presence of an appeals mechanism) and two sub-criteria for when rationales were posted (direct website link and readability). We interviewed a purposeful sample of key informants who were conversant in English and a current or past member of either a committee or a stakeholder group. We analyzed data using a thematic approach. Interviewing continued until saturation was reached. We examined documents from 10 committees and conducted 27 interviews. The median number of criteria addressed by committees was 2 (range 0-6). Major interview themes included addressing: (1) accessibility issues, including stakeholders' degree of access to the decision making process and appeal mechanisms; (2) communication issues, including improving internal and external communication and public access to information; and (3) confidentiality issues, including the use of proprietary evidence. Most committees have some mechanisms to address transparency but none had a fully transparent process. The most important ways to improve transparency include creating formal appeal mechanisms, improving communication, and establishing consistent rules about the use of, and public access to, proprietary evidence. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  11. Synthesis of transparent dispersions of aluminium hydroxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Chen, Bo; Wang, Jie-Xin; Wang, Dan; Zeng, Xiao-Fei; Clarke, Stuart M.; Chen, Jian-Feng

    2018-07-01

    Transparent dispersions of inorganic nanoparticles are attractive materials in many fields. However, a facile method for preparing such dispersions of aluminium hydroxide nanoparticles is yet to be realized. Here, we report a direct reactive method to prepare transparent dispersions of pseudo-boehmite nanoparticles (1 wt%) without any surface modification, and with an average particle size of 80 nm in length and 10 nm in width, as well as excellent optical transparency over 94% in the visible range. Furthermore, transparent dispersions of boehmite nanoparticles (1.5 wt%) were also achieved after an additional hydrothermal treatment. However, the optical transparency of dispersions decreased with the rise of hydrothermal temperature and the shape of particles changed from rhombs to hexagons. In particular, monodisperse hexagonal boehmite nanoplates with an average lateral size of 58 nm and a thickness of 12.5 nm were obtained at a hydrothermal temperature of 220 °C. The selectivity of crystal growth direction was speculated as the possible formation mechanism of these as-prepared aluminium hydroxide nanoparticles. Besides, two values of 19.6 wt% and 14.64 wt% were separately measured for the weight loss of pseudo-boehmite and boehmite nanoparticles after a continuous heating, indicating their potential flame-resistant applications in the fabrication of plastic electronics and optical devices with high transparency.

  12. Synthesis of transparent dispersions of aluminium hydroxide nanoparticles.

    PubMed

    Chen, Bo; Wang, Jie-Xin; Wang, Dan; Zeng, Xiao-Fei; Clarke, Stuart M; Chen, Jian-Feng

    2018-07-27

    Transparent dispersions of inorganic nanoparticles are attractive materials in many fields. However, a facile method for preparing such dispersions of aluminium hydroxide nanoparticles is yet to be realized. Here, we report a direct reactive method to prepare transparent dispersions of pseudo-boehmite nanoparticles (1 wt%) without any surface modification, and with an average particle size of 80 nm in length and 10 nm in width, as well as excellent optical transparency over 94% in the visible range. Furthermore, transparent dispersions of boehmite nanoparticles (1.5 wt%) were also achieved after an additional hydrothermal treatment. However, the optical transparency of dispersions decreased with the rise of hydrothermal temperature and the shape of particles changed from rhombs to hexagons. In particular, monodisperse hexagonal boehmite nanoplates with an average lateral size of 58 nm and a thickness of 12.5 nm were obtained at a hydrothermal temperature of 220 °C. The selectivity of crystal growth direction was speculated as the possible formation mechanism of these as-prepared aluminium hydroxide nanoparticles. Besides, two values of 19.6 wt% and 14.64 wt% were separately measured for the weight loss of pseudo-boehmite and boehmite nanoparticles after a continuous heating, indicating their potential flame-resistant applications in the fabrication of plastic electronics and optical devices with high transparency.

  13. 45 CFR 155.1040 - Transparency in coverage.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ....1040 Public Welfare Department of Health and Human Services REQUIREMENTS RELATING TO HEALTH CARE ACCESS... Functions: Certification of Qualified Health Plans § 155.1040 Transparency in coverage. (a) General requirement. The Exchange must collect information relating to coverage transparency as described in § 156.220...

  14. 45 CFR 155.1040 - Transparency in coverage.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ....1040 Public Welfare DEPARTMENT OF HEALTH AND HUMAN SERVICES REQUIREMENTS RELATING TO HEALTH CARE ACCESS... Functions: Certification of Qualified Health Plans § 155.1040 Transparency in coverage. (a) General requirement. The Exchange must collect information relating to coverage transparency as described in § 156.220...

  15. Promoting Improved Ballistic Resistance of Transparent Armor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wereszczak, Andrew A; Patel, P; Templeton, D W

    2011-01-01

    Transparent armor is a material or system of materials designed to be optically transparent, yet protect from fragmentation or ballistic impacts. Although engineered to defeat specific threats, or a range of threats, there are general requirements common to all of these designs. The primary requirement for a transparent armor system is to not only defeat the designated threat but also provide a multi-hit capability with minimized distortion of surrounding areas. Ground platforms have several parameters that must be optimized, such as weight, space efficiency, and cost versus performance. Glass exhibits tensile failure stress that is very much dependent on themore » amount of material being stressed, the side being tensile-stressed (i.e., air-versus tin-side if a float glass), and where it is being tensile stressed (i.e., in the middle or near an edge). An axiom arising from those effects is a greater amount of allowable deflection (i.e., higher failure stress) of a ballistically impacted transparent armor will result in improved ballistic resistance. Therefore, the interpretation and management of those tensile-failure-stress dependencies shall ultimately improve ballistic resistance and its predictability of transparent armor. Each of those three dependencies (size, side, and location) in a soda-lime silicate glass is described.« less

  16. Medical regulation, spectacular transparency and the blame business.

    PubMed

    McGivern, Gerry; Fischer, Michael

    2010-01-01

    The purpose of this paper is to explore general practitioners' (GPs') and psychiatrists' views and experiences of transparent forms of medical regulation in practice, as well as those of medical regulators and those representing patients and professionals. The research included interviews with GPs, psychiatrists and others involved in medical regulation, representing patients and professionals. A qualitative narrative analysis of the interviews was then conducted. Narratives suggest rising levels of complaints, legalisation and blame within the National Health Service (NHS). Three key themes emerge. First, doctors feel "guilty until proven innocent" within increasingly legalised regulatory systems and are consequently practising more defensively. Second, regulation is described as providing "spectacular transparency", driven by political responses to high profile scandals rather than its effects in practice, which can be seen as a social defence. Finally, it is suggested that a "blame business" is driving this form of transparency, in which self-interested regulators, the media, lawyers, and even some patient organisations are fuelling transparency in a wider culture of blame. A relatively small number of people were interviewed, so further research testing the findings would be useful. Transparency has some perverse effects on doctors' practice. Rising levels of blame has perverse consequences for patient care, as doctors are practicing more defensively as a result, as well as significant financial implications for NHS funding. Transparent forms of regulation are assumed to be beneficial and yet little research has examined its effects in practice. In this paper we highlight a number of perverse effects of transparency in practice.

  17. Variable-transparency wall regulates temperatures of structures

    NASA Technical Reports Server (NTRS)

    Osullivan, W. J., Jr.

    1964-01-01

    An effective temperature regulating wall consists of one layer /e.g., one of the paraffins/ relatively opaque to thermal radiation in the solid state and transparent to it in the molten state and placed between two transparent layers. A mirror coating is applied to back layer.

  18. An Excel sheet for inferring children's number-knower levels from give-N data.

    PubMed

    Negen, James; Sarnecka, Barbara W; Lee, Michael D

    2012-03-01

    Number-knower levels are a series of stages of number concept development in early childhood. A child's number-knower level is typically assessed using the give-N task. Although the task procedure has been highly refined, the standard ways of analyzing give-N data remain somewhat crude. Lee and Sarnecka (Cogn Sci 34:51-67, 2010, in press) have developed a Bayesian model of children's performance on the give-N task that allows knower level to be inferred in a more principled way. However, this model requires considerable expertise and computational effort to implement and apply to data. Here, we present an approximation to the model's inference that can be computed with Microsoft Excel. We demonstrate the accuracy of the approximation and provide instructions for its use. This makes the powerful inferential capabilities of the Bayesian model accessible to developmental researchers interested in estimating knower levels from give-N data.

  19. Copper Nanowires as Fully Transparent Conductive Electrodes

    PubMed Central

    Guo, Huizhang; Lin, Na; Chen, Yuanzhi; Wang, Zhenwei; Xie, Qingshui; Zheng, Tongchang; Gao, Na; Li, Shuping; Kang, Junyong; Cai, Duanjun; Peng, Dong-Liang

    2013-01-01

    In pondering of new promising transparent conductors to replace the cost rising tin-doped indium oxide (ITO), metal nanowires have been widely concerned. Herein, we demonstrate an approach for successful synthesis of long and fine Cu nanowires (NWs) through a novel catalytic scheme involving nickel ions. Such Cu NWs in high aspect ratio (diameter of 16.2 ± 2 nm and length up to 40 μm) provide long distance for electron transport and, meanwhile, large space for light transmission. Transparent electrodes fabricated using the Cu NW ink achieve a low sheet resistance of 1.4 Ohm/sq at 14% transmittance and a high transparency of 93.1% at 51.5 Ohm/sq. The flexibility and stability were tested with 100-timebending by 180°and no resistance change occurred. Ohmic contact was achieved to the p- and n-GaN on blue light emitting diode chip and bright electroluminescence from the front face confirmed the excellent transparency. PMID:23900572

  20. Transparent and Flexible Supercapacitors with Networked Electrodes.

    PubMed

    Kiruthika, S; Sow, Chaitali; Kulkarni, G U

    2017-10-01

    Transparent and flexible energy storage devices have received immense attention due to their suitability for innovative electronics and displays. However, it remains a great challenge to fabricate devices with high storage capacity and high degree of transmittance. This study describes a simple process for fabrication of supercapacitors with ≈75% of visible transparency and areal capacitance of ≈3 mF cm -2 with high stability tested over 5000 cycles of charging and discharging. The electrodes consist of Au wire networks obtained by a simple crackle template method which are coated with MnO 2 nanostructures by electrodeposition process. Importantly, the membrane separator itself is employed as substrate to bring in the desired transparency and light weight while additionally exploiting its porous nature in enhancing the interaction of electrolyte with the active material from both sides of the substrate, thereby enhancing the storage capacity. The method opens up new ways for fabricating transparent devices. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Lighting innovations in concept cars

    NASA Astrophysics Data System (ADS)

    Berlitz, Stephan; Huhn, Wolfgang

    2005-02-01

    Concept cars have their own styling process. Because of the big media interest they give a big opportunity to bring newest technology with styling ideas to different fairgrounds. The LED technology in the concept cars Audi Pikes Peak, Nuvolari and Le Mans will be explained. Further outlook for the Audi LED strategy starting with LED Daytime Running Lamp will be given. The close work between styling and technical engineers results in those concept cars and further technical innovations based on LED technologies.

  2. [Transparency in public health decision-making].

    PubMed

    García-Altés, Anna; Argimon, Josep M

    2016-11-01

    Improving the quality and transparency of governmental healthcare decision-making has an impact on the health of the population through policies, organisational management and clinical practice. Moreover, the comparison between healthcare centres and the transparent feedback of results to professionals and to the wider public contribute directly to improved results. The "Results Centre" of the Catalan healthcare system measures and disseminates the results achieved by the different healthcare centres in order to facilitate a shared decision-making process, thereby enhancing the quality of healthcare provided to the population of Catalonia (Spain). This is a pioneering initiative in Spain and is aligned with the most advanced countries in terms of policies of transparency and accountability. Copyright © 2016 SESPAS. Publicado por Elsevier España, S.L.U. All rights reserved.

  3. Semantic transparency affects morphological priming . . . eventually.

    PubMed

    Heyer, Vera; Kornishova, Dana

    2018-05-01

    Semantic transparency has been in the focus of psycholinguistic research for decades, with the controversy about the time course of the application of morpho-semantic information during the processing of morphologically complex words not yet resolved. This study reports two masked priming studies with English - ness and Russian - ost' nominalisations, investigating how semantic transparency modulates native speakers' morphological priming effects at short and long stimulus onset asynchronies (SOAs). In both languages, we found increased morphological priming for nominalisations at the transparent end of the scale (e.g. paleness - pale) in comparison to items at the opaque end of the scale (e.g. business - busy) but only at longer prime durations. The present findings are in line with models that posit an initial phase of morpho-orthographic (semantically blind) decomposition.

  4. Restoration of Corneal Transparency by Mesenchymal Stem Cells.

    PubMed

    Mittal, Sharad K; Omoto, Masahiro; Amouzegar, Afsaneh; Sahu, Anuradha; Rezazadeh, Alexandra; Katikireddy, Kishore R; Shah, Dhvanit I; Sahu, Srikant K; Chauhan, Sunil K

    2016-10-11

    Transparency of the cornea is indispensable for optimal vision. Ocular trauma is a leading cause of corneal opacity, leading to 25 million cases of blindness annually. Recently, mesenchymal stem cells (MSCs) have gained prominence due to their inflammation-suppressing and tissue repair functions. Here, we investigate the potential of MSCs to restore corneal transparency following ocular injury. Using an in vivo mouse model of ocular injury, we report that MSCs have the capacity to restore corneal transparency by secreting high levels of hepatocyte growth factor (HGF). Interestingly, our data also show that HGF alone can restore corneal transparency, an observation that has translational implications for the development of HGF-based therapy. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  5. EDITORIAL: On display with transparent conducting films On display with transparent conducting films

    NASA Astrophysics Data System (ADS)

    Demming, Anna

    2012-03-01

    Transparent conducting films were already featuring in scientific literature over one hundred years ago. In 1894 Aryton and Mather described a conducting varnish for coating the screens of electric apparatus so they would not charge when accidentally brushed by a coat sleeve or other material [1]. Their method began with a similar approach to that used to make savoury jellies; by dissolving gelatine in vinegar, after which less palatable ingredients were incorporated including sulphuric acid and an antisulphuric enamel. While the search for transparent conducting films continued to attract other researchers, the same problem remained: the transparency would be compromised if the film was too thick, and the conductivity would be compromised if the film was too thin. In the early 1950s Gillham and Preston reported that thin gold films sputtered on bismuth oxide and heated resulted in a material that successfully combined the previously mutually exclusive properties of transparency and conductivity [2]. Other oxide films were also found to favourably combine these properties, including tin oxide, as reported by Ishiguro and colleagues in Japan in 1958 [3]. Today tin oxide doped with indium (ITO) has become the industry standard for transparent conducting films in a range of applications including photovoltaic technology and displays. It is perhaps the mounting ubiquity of electronic displays as a result of the increasingly digitised and computerised environment of the modern day world that has begun to underline the main drawback of ITO: expense. In this issue, a collaboration of researchers in Korea present an overview of graphene as a transparent conducting material with the potential to replace ITO in a range of electronic and optoelectronic applications [4]. One of the first innovations in optical microscopy was the use of dyes. This principle first came into practice with the use of ultraviolet light to reveal previously indistinguishable features. As explained

  6. Transparent conducting oxides and production thereof

    DOEpatents

    Gessert, Timothy A; Yoshida, Yuki; Coutts, Timothy J

    2014-05-27

    Transparent conducting oxides and production thereof are disclosed. An exemplary method of producing a transparent conducting oxide (TCO) material may comprise: providing a TCO target (110) doped with either a high-permittivity oxide or a low-permittivity oxide in a process chamber (100). The method may also comprise depositing a metal oxide on the target (110) to form a thin film having enhanced optical properties without substantially decreasing electrical quality.

  7. Transparent conducting oxides and production thereof

    DOEpatents

    Gessert, Timothy A.; Yoshida, Yuki; Coutts, Timothy J.

    2014-06-10

    Transparent conducting oxides and production thereof are disclosed. An exemplary method of producing a transparent conducting oxide (TCO) material may comprise: providing a TCO target doped with either a high-permittivity oxide or a low-permittivity oxide in a process chamber. The method may also comprise depositing a metal oxide on the target in the process chamber to form a thin film having enhanced optical properties without substantially decreasing electrical quality.

  8. Tunable phonon-induced transparency in bilayer graphene nanoribbons.

    PubMed

    Yan, Hugen; Low, Tony; Guinea, Francisco; Xia, Fengnian; Avouris, Phaedon

    2014-08-13

    In the phenomenon of plasmon-induced transparency, which is a classical analogue of electromagnetically induced transparency (EIT) in atomic gases, the coherent interference between two plasmon modes results in an optical transparency window in a broad absorption spectrum. With the requirement of contrasting lifetimes, typically one of the plasmon modes involved is a dark mode that has limited coupling to the electromagnetic radiation and possesses relatively longer lifetime. Plasmon-induced transparency not only leads to light transmission at otherwise opaque frequency regions but also results in the slowing of light group velocity and enhanced optical nonlinearity. In this article, we report an analogous behavior, denoted as phonon-induced transparency (PIT), in AB-stacked bilayer graphene nanoribbons. Here, light absorption due to the plasmon excitation is suppressed in a narrow window due to the coupling with the infrared active Γ-point optical phonon, whose function here is similar to that of the dark plasmon mode in the plasmon-induced transparency. We further show that PIT in bilayer graphene is actively tunable by electrostatic gating and estimate a maximum slow light factor of around 500 at the phonon frequency of 1580 cm(-1), based on the measured spectra. Our demonstration opens an avenue for the exploration of few-photon nonlinear optics and slow light in this novel two-dimensional material.

  9. Transparent, Flexible, Conformal Capacitive Pressure Sensors with Nanoparticles.

    PubMed

    Kim, Hyeohn; Kim, Gwangmook; Kim, Taehoon; Lee, Sangwoo; Kang, Donyoung; Hwang, Min-Soo; Chae, Youngcheol; Kang, Shinill; Lee, Hyungsuk; Park, Hong-Gyu; Shim, Wooyoung

    2018-02-01

    The fundamental challenge in designing transparent pressure sensors is the ideal combination of high optical transparency and high pressure sensitivity. Satisfying these competing demands is commonly achieved by a compromise between the transparency and usage of a patterned dielectric surface, which increases pressure sensitivity, but decreases transparency. Herein, a design strategy for fabricating high-transparency and high-sensitivity capacitive pressure sensors is proposed, which relies on the multiple states of nanoparticle dispersity resulting in enhanced surface roughness and light transmittance. We utilize two nanoparticle dispersion states on a surface: (i) homogeneous dispersion, where each nanoparticle (≈500 nm) with a size comparable to the visible light wavelength has low light scattering; and (ii) heterogeneous dispersion, where aggregated nanoparticles form a micrometer-sized feature, increasing pressure sensitivity. This approach is experimentally verified using a nanoparticle-dispersed polymer composite, which has high pressure sensitivity (1.0 kPa -1 ), and demonstrates excellent transparency (>95%). We demonstrate that the integration of nanoparticle-dispersed capacitor elements into an array readily yields a real-time pressure monitoring application and a fully functional touch device capable of acting as a pressure sensor-based input device, thereby opening up new avenues to establish processing techniques that are effective on the nanoscale yet applicable to macroscopic processing. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Space-Derived Transparency: Players, Policies, Implications, and Synergies

    NASA Astrophysics Data System (ADS)

    Kinnan, C. J.

    2001-06-01

    Space-derived transparency will become a common means of monitoring, preventing, and mitigating crises, verifying compliance with treaties and law, and enabling confidence and security building measures. Democratization and globalization, the proliferation of information technologies, the availability of commercial space high-resolution imagery, and the growing influence of NGOs invite this question: What is (space-derived) transparency and what effect does it have on US security policy? Three camps have emerged in the debate -Horaeists who seek to build a transnational society through complete transparency; Preservationists, mostly military, who fear the threat to national security, want to deny most space-derived information to non-traditional/non-state actors; and Synergists who seek to capitalize on the best of both camps. There is evidence suggesting that space-derived transparency is an inevitable trend and will resist even the best means of preservationist control. Space-derived transparency may change the dynamic of the security environment by introducing new players into the policy fomentation and implementation process. These players, if not properly schooled in imagery analysis or the potential effects of their use of misinterpreted space-derived imagery, could force policy makers to make fast, ill-considered decisions in order to respond to incidents. In some cases this fast response will defuse potential crises and in other situations these rushed decisions might result in policies without considering the potential consequences, which could turn incidents into crises. Space-derived transparency is a step forward into the future for each camp . . . the challenge for the United States lies in forging synergies in an increasingly transparent world while maintaining the balance between openness and security.

  11. 2009 Annual Health Physics Report for the HEU Transparency Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Radev, R

    2010-04-14

    During the 2009 calendar year, Lawrence Livermore National Laboratory (LLNL) provided health physics support for the Highly Enriched Uranium (HEU) Transparency Program for external and internal radiation protection. LLNL also provided technical expertise related to BDMS radioactive sources and Russian radiation safety regulatory compliance. For the calendar year 2009, there were 159 person-trips that required dose monitoring of the U.S. monitors. Of the 159 person-trips, 149 person-trips were SMVs and 10 person-trips were Transparency Monitoring Office (TMO) trips. There were 4 monitoring visits by TMO monitors to facilities other than UEIE and 10 to UEIE itself. LLNL's Hazard Control Departmentmore » laboratories provided the dosimetry services for the HEU Transparency monitors. In 2009, the HEU Transparency activities in Russia were conducted in a radiologically safe manner for the HEU Transparency monitors in accordance with the expectations of the HEU Transparency staff, NNSA and DOE. The HEU Transparency Program now has over fifteen years of successful experience in developing and providing health and safety support in meeting its technical objectives.« less

  12. Transparency and Its Determinants at Colombian Universities

    ERIC Educational Resources Information Center

    Flórez-Parra, Jesús Mauricio; López-Pérez, María Victoria; López-Hernández, Antonio Manuel

    2017-01-01

    Over the past decade, one of the demands upon public institutions, among which we find universities, has been for transparency and improvement of accountability. In this context, Colombian universities are introducing different methods of management and governance aimed at addressing the demands of society generally in relation to transparency and…

  13. Large-Area Cross-Aligned Silver Nanowire Electrodes for Flexible, Transparent, and Force-Sensitive Mechanochromic Touch Screens.

    PubMed

    Cho, Seungse; Kang, Saewon; Pandya, Ashish; Shanker, Ravi; Khan, Ziyauddin; Lee, Youngsu; Park, Jonghwa; Craig, Stephen L; Ko, Hyunhyub

    2017-04-25

    Silver nanowire (AgNW) networks are considered to be promising structures for use as flexible transparent electrodes for various optoelectronic devices. One important application of AgNW transparent electrodes is the flexible touch screens. However, the performances of flexible touch screens are still limited by the large surface roughness and low electrical to optical conductivity ratio of random network AgNW electrodes. In addition, although the perception of writing force on the touch screen enables a variety of different functions, the current technology still relies on the complicated capacitive force touch sensors. This paper demonstrates a simple and high-throughput bar-coating assembly technique for the fabrication of large-area (>20 × 20 cm 2 ), highly cross-aligned AgNW networks for transparent electrodes with the sheet resistance of 21.0 Ω sq -1 at 95.0% of optical transmittance, which compares favorably with that of random AgNW networks (sheet resistance of 21.0 Ω sq -1 at 90.4% of optical transmittance). As a proof of concept demonstration, we fabricate flexible, transparent, and force-sensitive touch screens using cross-aligned AgNW electrodes integrated with mechanochromic spiropyran-polydimethylsiloxane composite film. Our force-sensitive touch screens enable the precise monitoring of dynamic writings, tracing and drawing of underneath pictures, and perception of handwriting patterns with locally different writing forces. The suggested technique provides a robust and powerful platform for the controllable assembly of nanowires beyond the scale of conventional fabrication techniques, which can find diverse applications in multifunctional flexible electronic and optoelectronic devices.

  14. Basic self-knowledge and transparency.

    PubMed

    Borgoni, Cristina

    2018-01-01

    Cogito -like judgments, a term coined by Burge (1988), comprise thoughts such as, I am now thinking , I [hereby] judge that Los Angeles is at the same latitude as North Africa, or I [hereby] intend to go to the opera tonight. It is widely accepted that we form cogito -like judgments in an authoritative and not merely empirical manner. We have privileged self-knowledge of the mental state that is self-ascribed in a cogito -like judgment. Thus, models of self-knowledge that aim to explain privileged self-knowledge should have the resources to explain the special self-knowledge involved in cogito judgments. My objective in this paper is to examine whether a transparency model of self-knowledge (i.e., models based on Evans ' 1982 remarks) can provide such an explanation: granted that cogito judgments are paradigmatic cases of privileged self-knowledge, does the transparency procedure explain why this is so? The paper advances a negative answer, arguing that the transparency procedure cannot generate the type of thought constitutive of cogito judgments.

  15. Avoiding Resistance Limitations in High-Performance Transparent Supercapacitor Electrodes Based on Large-Area, High-Conductivity PEDOT:PSS Films.

    PubMed

    Higgins, Thomas M; Coleman, Jonathan N

    2015-08-05

    This work describes the potential of thin, spray-deposited, large-area poly(3,4-ethylenedioxythiophene)/poly(styrene-4-sulfonate) ( PSS) conducting polymer films for use as transparent supercapacitor electrodes. To facilitate this, we provide a detailed explanation of the factors limiting the performance of such electrodes. These films have a very low optical conductivity of σop = 24 S/cm (at 550 nm), crucial for this application, and a reasonable volumetric capacitance of CV = 41 F/cm(3). Secondary doping with formic acid gives these films a DC conductivity of σDC = 936 S/cm, allowing them to perform both as a transparent conductor/current collector and transparent supercapacitor electrode. Small-area films (A ∼ 1 cm(2)) display measured areal capacitance as high as 1 mF/cm(2), even for reasonably transparent electrodes (T ∼ 80%). However, in real devices, the absolute capacitance will be maximized by increasing the device area. As such, here, we measure the electrode performance as a function of its length and width. We find that the measured areal capacitance falls dramatically with scan rate and sample length but is independent of width. We show that this is because the measured areal capacitance is limited by the electrical resistance of the electrode. We have derived an equation for the measured areal capacitance as a function of scan rate and electrode lateral dimensions that fits the data extremely well up to scan rates of ∼1000 mV/s (corresponding to charge/discharge times > 0.6 s). These results are self-consistent with independent analysis of the electrical and impedance properties of the electrodes. These results can be used to find limiting combinations of electrode length and scan rate, beyond which electrode performance falls dramatically. We use these insights to build large-area (∼100 cm(2)) supercapacitors using electrodes that are 95% transparent, providing a capacitance of ∼12 mF (at 50 mV/s), significantly higher than that of any

  16. Where Are the Facts? "Jason's Gold" Gives Meaning to the Yukon Gold Rush

    ERIC Educational Resources Information Center

    Wasta, Stephanie; Lott, Carolyn

    2006-01-01

    This article discusses how fictional works can give a purposeful context and an appropriate venue for developing essential social studies concepts in middle-school students. The author uses the example of a National Council for the Social Studies (NCSS) notable book, "Jason's Gold" that blends history with story to become historical…

  17. Dipole-Induced Electromagnetic Transparency

    NASA Astrophysics Data System (ADS)

    Puthumpally-Joseph, Raiju; Sukharev, Maxim; Atabek, Osman; Charron, Eric

    2014-10-01

    We determine the optical response of a thin and dense layer of interacting quantum emitters. We show that, in such a dense system, the Lorentz redshift and the associated interaction broadening can be used to control the transmission and reflection spectra. In the presence of overlapping resonances, a dipole-induced electromagnetic transparency (DIET) regime, similar to electromagnetically induced transparency (EIT), may be achieved. DIET relies on destructive interference between the electromagnetic waves emitted by quantum emitters. Carefully tuning material parameters allows us to achieve narrow transmission windows in, otherwise, completely opaque media. We analyze in detail this coherent and collective effect using a generalized Lorentz model and show how it can be controlled. Several potential applications of the phenomenon, such as slow light, are proposed.

  18. Counter-ion Dependent, Longitudinal Unzipping of Multi-Walled Carbon Nanotubes to Highly Conductive and Transparent Graphene Nanoribbons

    PubMed Central

    Shinde, Dhanraj B.; Majumder, Mainak; Pillai, Vijayamohanan K.

    2014-01-01

    Here we report for the first time, a simple hydrothermal approach for the bulk production of highly conductive and transparent graphene nanoribbons (GNRs) using several counter ions from K2SO4, KNO3, KOH and H2SO4 in aqueous media, where, selective intercalation followed by exfoliation gives highly conducting GNRs with over 80% yield. In these experiments, sulfate and nitrate ions act as a co-intercalant along with potassium ions resulting into exfoliation of multi-walled carbon nanotubes (MWCNTs) in an effective manner. The striking similarity of experimental results in KOH and H2SO4 that demonstrates partially damaged MWCNTs, implies that no individual K+, SO42− ion plays a key role in unwrapping of MWCNTs, rather this process is largely effective in the presence of both cations and anions working in a cooperative manner. The GNRs can be used for preparing conductive 16 kΩsq−1, transparent (82%) and flexible thin films using low cost fabrication method. PMID:24621526

  19. Transparent Information Systems through Gateways, Front Ends, Intermediaries, and Interfaces.

    ERIC Educational Resources Information Center

    Williams, Martha E.

    1986-01-01

    Provides overview of design requirements for transparent information retrieval (implies that user sees through complexity of retrieval activities sequence). Highlights include need for transparent systems; history of transparent retrieval research; information retrieval functions (automated converters, routers, selectors, evaluators/analyzers);…

  20. Exploring women's personal experiences of giving birth in Gonabad city: a qualitative study.

    PubMed

    Askari, Fariba; Atarodi, Alireza; Torabi, Shirin; Moshki, Mahdi

    2014-05-08

    Women's health is an important task in society. The aim of this qualitative study that used a phenomenological approach was to explain women's personal experiences of giving birth in Gonabad city that had positive experiences of giving birth in order to establish quality cares and the related factors of midwifery cares for this physiological phenomenon. The participants were 21 primiparae women who gave a normal and or uncomplicated giving birth in the hospital of Gonabad University of medical sciences. Based on a purposeful approach in-depth interviews were continued to reach data saturation. The data were collected through open and semi-structured interactional in-depth interviews with all the participants. All the interviews were taped, transcribed and then analyzed through a qualitative content analysis method to identify the concepts and themes. Some categories were emerged. A quiet and safe environment was the most urgent need of the most women giving birth. Unnecessary routine interventions that are performed on all women regardless of their needs and should be avoided were considered such as: "absolute rest, establishing vein, frequent vaginal examinations, fasting and early Amniotomy". All the women wanted to take part actively in their giving birth, because they believed it could affect their giving birth. We hope that the women's experiences of giving birth will be a pleasant and enjoyable experience for all the mothers giving birth.

  1. Applied teaching concepts of animated motion slides in otolaryngology.

    PubMed

    Duberstein, L E; Josephs, J A; Kilgo, J

    1978-01-01

    Motion is an essential part of otolaryngologic function, and an understanding of concepts of motion is critical in teaching otolaryngology. Standard movie projection devices have intrinsic defects, such as considerable expense to make, complexity of operation, and a lack of flexibility. Slide projection transparencies (2X2) offer instructional flexibility but could not be used to project motion until recently. Using applications of gelatin films of images with polarizing light, we have been able to produce an illusion of motion similar to that used in creating the motion in cartoons. We have produced a series of slides for instructional purposes to show concepts in otolaryngology.

  2. Graphene, microscale metallic mesh, and transparent dielectric hybrid structure for excellent transparent electromagnetic interference shielding and absorbing

    NASA Astrophysics Data System (ADS)

    Lu, Zhengang; Ma, Limin; Tan, Jiubin; Wang, Heyan; Ding, Xuemei

    2017-06-01

    A high-performance transparent electromagnetic interference (EMI) shielding material based on a graphene/metallic mesh/transparent dielectric (GMTD) hybrid structure is designed and characterized. It consists of stacked graphene and metallic mesh layers, with neighboring layers separated by a quartz-glass substrsate. The GMTD hybrid structure combines the microwave-reflecting characteristics of the metallic mesh and the microwave-absorbing characteristics of graphene to achieve simultaneously high visible transmittance, strong microwave shielding effectiveness (SE), and low microwave reflection. Experiments show that a double-graphene and double-metallic mesh GMTD hybrid structure with a mesh periodicity of 160 µm provides microwave SE exceeding 47.79 dB in the K u-band, and an SE exceeding 32.12 dB in the K a-band, with a maximum value of 37.78 dB at 26.5 GHz. SE by absorption exceeds 30.78 dB in the K a-band, with a maximum value of 34.55 dB at 26.5 GHz, while maintaining a normalized visible transmittance of ~85% at 700 nm. This remarkable performance favors the application of the proposed structure as a transparent microwave shield and absorber, and offers a new strategy for transparent EMI shielding.

  3. Transparency in the ePortfolio Creation Process

    ERIC Educational Resources Information Center

    Jones, Stephanie A.; Downs, Elizabeth; Jenkins, Stephen J.

    2015-01-01

    This paper presents the findings of a study examining the effect of transparency on the ePortfolio creation process. The purpose of the study was to examine whether increased awareness of other students' ePortfolios through the implementation of transparency and peer review would positively affect the quality of performance of school library media…

  4. Plasmon-Induced Transparency Based on Triple Arc-Ring Resonators.

    PubMed

    Dong, Guang-Xi; Xie, Qin; Zhang, Qi; Wang, Ben-Xin; Huang, Wei-Qing

    2018-06-06

    This paper presents a plasmon-induced transparency (PIT) using an easy-fabricating metamaterial composed of three pieces of metallic arc-rings on top of a dielectric substrate. The transmission of the transparent peak of 1.32 THz reaches approximately 93%. The utilization of the coupled Lorentzian oscillator model and the distribution of electromagnetic fields together explain the cause of the transparent peak. The simulation results further demonstrate that the bandwidth of the transmission peak can be narrowed by changing the sizes of the arc-rings. Moreover, an on/off effect based on the transparent peak is discussed by introducing photosensitive silicon into the air gaps of the suggested metamaterial structure.

  5. Transparent conducting oxide nanotubes

    NASA Astrophysics Data System (ADS)

    Alivov, Yahya; Singh, Vivek; Ding, Yuchen; Nagpal, Prashant

    2014-09-01

    Thin film or porous membranes made of hollow, transparent, conducting oxide (TCO) nanotubes, with high chemical stability, functionalized surfaces and large surface areas, can provide an excellent platform for a wide variety of nanostructured photovoltaic, photodetector, photoelectrochemical and photocatalytic devices. While large-bandgap oxide semiconductors offer transparency for incident light (below their nominal bandgap), their low carrier concentration and poor conductivity makes them unsuitable for charge conduction. Moreover, materials with high conductivity have nominally low bandgaps and hence poor light transmittance. Here, we demonstrate thin films and membranes made from TiO2 nanotubes heavily-doped with shallow Niobium (Nb) donors (up to 10%, without phase segregation), using a modified electrochemical anodization process, to fabricate transparent conducting hollow nanotubes. Temperature dependent current-voltage characteristics revealed that TiO2 TCO nanotubes, doped with 10% Nb, show metal-like behavior with resistivity decreasing from 6.5 × 10-4 Ωcm at T = 300 K (compared to 6.5 × 10-1 Ωcm for nominally undoped nanotubes) to 2.2 × 10-4 Ωcm at T = 20 K. Optical properties, studied by reflectance measurements, showed light transmittance up to 90%, within wavelength range 400 nm-1000 nm. Nb doping also improves the field emission properties of TCO nanotubes demonstrating an order of magnitude increase in field-emitter current, compared to undoped samples.

  6. Printable Transparent Conductive Films for Flexible Electronics.

    PubMed

    Li, Dongdong; Lai, Wen-Yong; Zhang, Yi-Zhou; Huang, Wei

    2018-03-01

    Printed electronics are an important enabling technology for the development of low-cost, large-area, and flexible optoelectronic devices. Transparent conductive films (TCFs) made from solution-processable transparent conductive materials, such as metal nanoparticles/nanowires, carbon nanotubes, graphene, and conductive polymers, can simultaneously exhibit high mechanical flexibility, low cost, and better photoelectric properties compared to the commonly used sputtered indium-tin-oxide-based TCFs, and are thus receiving great attention. This Review summarizes recent advances of large-area flexible TCFs enabled by several roll-to-roll-compatible printed techniques including inkjet printing, screen printing, offset printing, and gravure printing using the emerging transparent conductive materials. The preparation of TCFs including ink formulation, substrate treatment, patterning, and postprocessing, and their potential applications in solar cells, organic light-emitting diodes, and touch panels are discussed in detail. The rational combination of a variety of printed techniques with emerging transparent conductive materials is believed to extend the opportunities for the development of printed electronics within the realm of flexible electronics and beyond. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Linear and nonlinear transparencies in binocular vision.

    PubMed Central

    Langley, K; Fleet, D J; Hibbard, P B

    1998-01-01

    When the product of a vertical square-wave grating (contrast envelope) and a horizontal sinusoidal grating (carrier) are viewed binocularly with different disparity cues they can be perceived transparently at different depths. We found, however, that the transparency was asymmetric; it only occurred when the envelope was perceived to be the overlaying surface. When the same two signals were added, the percept of transparency was symmetrical; either signal could be seen in front of or behind the other at different depths. Differences between these multiplicative and additive signal combinations were examined in two experiments. In one, we measured disparity thresholds for transparency as a function of the spatial frequency of the envelope. In the other, we measured disparity discrimination thresholds. In both experiments the thresholds for the multiplicative condition, unlike the additive condition, showed distinct minima at low envelope frequencies. The different sensitivity curves found for multiplicative and additive signal combinations suggest that different processes mediated the disparity signal. The data are consistent with a two-channel model of binocular matching, with multiple depth cues represented at single retinal locations. PMID:9802240

  8. Transparent and stretchable high-performance supercapacitors based on wrinkled graphene electrodes.

    PubMed

    Chen, Tao; Xue, Yuhua; Roy, Ajit K; Dai, Liming

    2014-01-28

    Transparent and/or stretchable energy storage devices have attracted intense attention due to their unique optical and/or mechanical properties as well as their intrinsic energy storage function. However, it remains a great challenge to integrate transparent and stretchable properties into an energy storage device because the currently developed electrodes are either transparent or stretchable, but not both. Herein, we report a simple method to fabricate wrinkled graphene with high stretchability and transparency. The resultant wrinkled graphene sheets were used as both current collector and electrode materials to develop transparent and stretchable supercapacitors, which showed a high transparency (57% at 550 nm) and can be stretched up to 40% strain without obvious performance change over hundreds of stretching cycles.

  9. Bend, stretch, and touch: Locating a finger on an actively deformed transparent sensor array

    PubMed Central

    Sarwar, Mirza Saquib; Dobashi, Yuta; Preston, Claire; Wyss, Justin K. M.; Mirabbasi, Shahriar; Madden, John David Wyndham

    2017-01-01

    The development of bendable, stretchable, and transparent touch sensors is an emerging technological goal in a variety of fields, including electronic skin, wearables, and flexible handheld devices. Although transparent tactile sensors based on metal mesh, carbon nanotubes, and silver nanowires demonstrate operation in bent configurations, we present a technology that extends the operation modes to the sensing of finger proximity including light touch during active bending and even stretching. This is accomplished using stretchable and ionically conductive hydrogel electrodes, which project electric field above the sensor to couple with and sense a finger. The polyacrylamide electrodes are embedded in silicone. These two widely available, low-cost, transparent materials are combined in a three-step manufacturing technique that is amenable to large-area fabrication. The approach is demonstrated using a proof-of-concept 4 × 4 cross-grid sensor array with a 5-mm pitch. The approach of a finger hovering a few centimeters above the array is readily detectable. Light touch produces a localized decrease in capacitance of 15%. The movement of a finger can be followed across the array, and the location of multiple fingers can be detected. Touch is detectable during bending and stretch, an important feature of any wearable device. The capacitive sensor design can be made more or less sensitive to bending by shifting it relative to the neutral axis. Ultimately, the approach is adaptable to the detection of proximity, touch, pressure, and even the conformation of the sensor surface. PMID:28345045

  10. Bend, stretch, and touch: Locating a finger on an actively deformed transparent sensor array.

    PubMed

    Sarwar, Mirza Saquib; Dobashi, Yuta; Preston, Claire; Wyss, Justin K M; Mirabbasi, Shahriar; Madden, John David Wyndham

    2017-03-01

    The development of bendable, stretchable, and transparent touch sensors is an emerging technological goal in a variety of fields, including electronic skin, wearables, and flexible handheld devices. Although transparent tactile sensors based on metal mesh, carbon nanotubes, and silver nanowires demonstrate operation in bent configurations, we present a technology that extends the operation modes to the sensing of finger proximity including light touch during active bending and even stretching. This is accomplished using stretchable and ionically conductive hydrogel electrodes, which project electric field above the sensor to couple with and sense a finger. The polyacrylamide electrodes are embedded in silicone. These two widely available, low-cost, transparent materials are combined in a three-step manufacturing technique that is amenable to large-area fabrication. The approach is demonstrated using a proof-of-concept 4 × 4 cross-grid sensor array with a 5-mm pitch. The approach of a finger hovering a few centimeters above the array is readily detectable. Light touch produces a localized decrease in capacitance of 15%. The movement of a finger can be followed across the array, and the location of multiple fingers can be detected. Touch is detectable during bending and stretch, an important feature of any wearable device. The capacitive sensor design can be made more or less sensitive to bending by shifting it relative to the neutral axis. Ultimately, the approach is adaptable to the detection of proximity, touch, pressure, and even the conformation of the sensor surface.

  11. Transparent and durable superhydrophobic coatings for anti-bioadhesion.

    PubMed

    Zhao, Xia; Yu, Bo; Zhang, Junping

    2017-09-01

    Although thousands of superhydrophobic coatings have been reported, transparent ones with high durability are rare. Here, transparent and durable superhydrophobic coatings were prepared by using multiwalled carbon nanotubes (MWCNTs) as the templates. The superhydrophobic coatings were prepared by spray-coating the homogeneous suspension of polysiloxane-modified MWCNTs (MWCNTs@POS) in toluene onto glass slides, calcination in air at 500°C to form the silica nanotubes (SNTs), and then chemical vapor deposition of polydimethylsiloxane at 200°C onto the surface of the SNTs coatings. The MWCNTs@POS suspension was prepared by hydrolytic condensation of hexadecyltrimethoxysilane and tetraethoxysilane on the surface of MWCNTs. The coatings showed excellent superhydrophobicity (water contact angle=166.6°, sliding angle=1°) and high transparency (83.1% at 600nm). In addition, the transparent superhydrophobic coatings featured high mechanical, chemical and thermal durability. The coatings retained the excellent superhydrophobicity after intensive water jetting at 100kPa for 60min, immersion in various corrosive liquids for 24h, or kept at 390°C for 1h. Moreover, the transparent and durable superhydrophobic coatings exhibited very good anti-bioadhesive properties. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Making structured metals transparent for ultrabroadband electromagnetic waves and acoustic waves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fan, Ren-Hao; Peng, Ru-Wen, E-mail: rwpeng@nju.edu.cn; Huang, Xian-Rong

    2015-07-15

    In this review, we present our recent work on making structured metals transparent for broadband electromagnetic waves and acoustic waves via excitation of surface waves. First, we theoretically show that one-dimensional metallic gratings can become transparent and completely antireflective for extremely broadband electromagnetic waves by relying on surface plasmons or spoof surface plasmons. Second, we experimentally demonstrate that metallic gratings with narrow slits are highly transparent for broadband terahertz waves at oblique incidence and high transmission efficiency is insensitive to the metal thickness. Further, we significantly develop oblique metal gratings transparent for broadband electromagnetic waves (including optical waves and terahertzmore » ones) under normal incidence. In the third, we find the principles of broadband transparency for structured metals can be extended from one-dimensional metallic gratings to two-dimensional cases. Moreover, similar phenomena are found in sonic artificially metallic structures, which present the transparency for broadband acoustic waves. These investigations provide guidelines to develop many novel materials and devices, such as transparent conducting panels, antireflective solar cells, and other broadband metamaterials and stealth technologies. - Highlights: • Making structured metals transparent for ultrabroadband electromagnetic waves. • Non-resonant excitation of surface plasmons or spoof surface plasmons. • Sonic artificially metallic structures transparent for broadband acoustic waves.« less

  13. 2011 Annual Health Physics Report for the HEU transparency Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Radev, R

    2012-04-30

    During the 2008 calendar year, Lawrence Livermore National Laboratory (LLNL) provided health physics support for the Highly Enriched Uranium (HEU) Transparency Program for external and internal radiation protection. They also provided technical expertise related to BDMS radioactive sources and Russian radiation safety regulatory compliance. For the calendar year 2008, there were 158 person-trips that required dose monitoring of the U.S. monitors. Of the 158 person-trips, 148 person-trips were SMVs and 10 person-trips were Transparency Monitoring Office (TMO) trips. There were 6 monitoring visits by TMO monitors to facilities other than UEIE and 8 to UEIE itself. There were three monitoringmore » visits (source changes) that were back-to-back with a total of 24 monitors. LLNL's Hazard Control Department laboratories provided the dosimetry services for the HEU Transparency monitors. In 2008, the HEU Transparency activities in Russia were conducted in a radiologically safe manner for the HEU Transparency monitors in accordance with the expectations of the HEU Transparency staff, NNSA and DOE. The HEU Transparency now has thirteen years of successful experience in developing and providing health and safety support in meeting its technical objectives.« less

  14. 2008 Annual Health Physics Report for the HEU Transparency Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Radev, R.

    2009-03-24

    During the 2008 calendar year, Lawrence Livermore National Laboratory (LLNL) provided health physics support for the Highly Enriched Uranium (HEU) Transparency Program for external and internal radiation protection. They also provided technical expertise related to BDMS radioactive sources and Russian radiation safety regulatory compliance. For the calendar year 2008, there were 158 person-trips that required dose monitoring of the U.S. monitors. Of the 158 person-trips, 148 person-trips were SMVs and 10 person-trips were Transparency Monitoring Office (TMO) trips. There were 6 monitoring visits by TMO monitors to facilities other than UEIE and 8 to UEIE itself. There were three monitoringmore » visits (source changes) that were back-to-back with a total of 24 monitors. LLNL’s Hazard Control Department laboratories provided the dosimetry services for the HEU Transparency monitors. In 2008, the HEU Transparency activities in Russia were conducted in a radiologically safe manner for the HEU Transparency monitors in accordance with the expectations of the HEU Transparency staff, NNSA and DOE. The HEU Transparency now has thirteen years of successful experience in developing and providing health and safety support in meeting its technical objectives.« less

  15. Tunable Transmission-Line Metamaterials Mimicking Electromagnetically Induced Transparency

    NASA Astrophysics Data System (ADS)

    Feng, T. H.; Han, H. P.

    2016-11-01

    Tunable transmission-line (TL) metamaterials mimicking electromagnetically induced transparency (EIT) have been studied. Firstly, two types of tunable TL EIT-like metamaterial, based on the double split-ring resonator (DSRR) and single split-ring resonator (SSRR), were fabricated and their transmission properties carefully compared. The results showed that the transmittance maximum was almost invariable with shift of the transparency window for the tunable DSRR-based TL EIT-like metamaterial, but for the tunable SSRR-based TL EIT-like metamaterial, the transmittance maximum gradually diminished with shift of the transparency window toward the center of the absorption band. Moreover, the reason for these different transmission properties was explored, revealing that the reduction of the transmittance maximum of the transparency window for the tunable SSRR-based TL EIT-like metamaterial is mainly due to energy loss caused by the resistance of the loaded varactor diodes.

  16. The Value of Transparency in Distributed Solar PV Markets | Solar Research

    Science.gov Websites

    | NREL The Value of Transparency in Distributed Solar PV Markets The Value of Transparency in Distributed Solar PV Markets NREL research analyzes data from a U.S. quote aggregator to study the effects of transparency on distributed solar photovoltaic (PV) markets. The study shows lower prices in more transparent

  17. Micromachined edge illuminated optically transparent automotive light guide panels

    NASA Astrophysics Data System (ADS)

    Ronny, Rahima Afrose; Knopf, George K.; Bordatchev, Evgueni; Tauhiduzzaman, Mohammed; Nikumb, Suwas

    2012-03-01

    Edge-lit backlighting has been used extensively for a variety of small and medium-sized liquid crystal displays (LCDs). The shape, density and spatial distribution pattern of the micro-optical elements imprinted on the surface of the flat light-guide panel (LGP) are often "optimized" to improve the overall brightness and luminance uniformity. A similar concept can be used to develop interior convenience lighting panels and exterior tail lamps for automotive applications. However, costly diffusive sheeting and brightness enhancement films are not be considered for these applications because absolute luminance uniformity and the minimization of Moiré fringe effects are not significant factors in assessing quality of automotive lighting. A new design concept that involves micromilling cylindrical micro-optical elements on optically transparent plastic substrates is described in this paper. The variable parameter that controls illumination over the active regions of the panel is the depth of the individual cylindrical micro-optical elements. LightTools™ is the optical simulation tool used to explore how changing the micro-optical element depth can alter the local and global luminance. Numerical simulation and microfabrication experiments are performed on several (100mmx100mmx6mm) polymethylmethacrylate (PMMA) test samples in order to verify the illumination behavior.

  18. Ultrasmooth, extremely deformable and shape recoverable Ag nanowire embedded transparent electrode

    PubMed Central

    Nam, Sanggil; Song, Myungkwan; Kim, Dong-Ho; Cho, Byungjin; Lee, Hye Moon; Kwon, Jung-Dae; Park, Sung-Gyu; Nam, Kee-Seok; Jeong, Yongsoo; Kwon, Se-Hun; Park, Yun Chang; Jin, Sung-Ho; Kang, Jae-Wook; Jo, Sungjin; Kim, Chang Su

    2014-01-01

    Transparent electrodes have been widely used in electronic devices such as solar cells, displays, and touch screens. Highly flexible transparent electrodes are especially desired for the development of next generation flexible electronic devices. Although indium tin oxide (ITO) is the most commonly used material for the fabrication of transparent electrodes, its brittleness and growing cost limit its utility for flexible electronic devices. Therefore, the need for new transparent conductive materials with superior mechanical properties is clear and urgent. Ag nanowire (AgNW) has been attracting increasing attention because of its effective combination of electrical and optical properties. However, it still suffers from several drawbacks, including large surface roughness, instability against oxidation and moisture, and poor adhesion to substrates. These issues need to be addressed before wide spread use of metallic NW as transparent electrodes can be realized. In this study, we demonstrated the fabrication of a flexible transparent electrode with superior mechanical, electrical and optical properties by embedding a AgNW film into a transparent polymer matrix. This technique can produce electrodes with an ultrasmooth and extremely deformable transparent electrode that have sheet resistance and transmittance comparable to those of an ITO electrode. PMID:24763248

  19. Ultrasmooth, extremely deformable and shape recoverable Ag nanowire embedded transparent electrode.

    PubMed

    Nam, Sanggil; Song, Myungkwan; Kim, Dong-Ho; Cho, Byungjin; Lee, Hye Moon; Kwon, Jung-Dae; Park, Sung-Gyu; Nam, Kee-Seok; Jeong, Yongsoo; Kwon, Se-Hun; Park, Yun Chang; Jin, Sung-Ho; Kang, Jae-Wook; Jo, Sungjin; Kim, Chang Su

    2014-04-25

    Transparent electrodes have been widely used in electronic devices such as solar cells, displays, and touch screens. Highly flexible transparent electrodes are especially desired for the development of next generation flexible electronic devices. Although indium tin oxide (ITO) is the most commonly used material for the fabrication of transparent electrodes, its brittleness and growing cost limit its utility for flexible electronic devices. Therefore, the need for new transparent conductive materials with superior mechanical properties is clear and urgent. Ag nanowire (AgNW) has been attracting increasing attention because of its effective combination of electrical and optical properties. However, it still suffers from several drawbacks, including large surface roughness, instability against oxidation and moisture, and poor adhesion to substrates. These issues need to be addressed before wide spread use of metallic NW as transparent electrodes can be realized. In this study, we demonstrated the fabrication of a flexible transparent electrode with superior mechanical, electrical and optical properties by embedding a AgNW film into a transparent polymer matrix. This technique can produce electrodes with an ultrasmooth and extremely deformable transparent electrode that have sheet resistance and transmittance comparable to those of an ITO electrode.

  20. Optical control of light propagation in photonic crystal based on electromagnetically induced transparency

    NASA Astrophysics Data System (ADS)

    Dan, Wang; Jin-Ze, Wu; Jun-Xiang, Zhang

    2016-06-01

    A kind of photonic crystal structure with modulation of the refractive index is investigated both experimentally and theoretically for exploiting electromagnetically induced transparency (EIT). The combination of EIT with periodically modulated refractive index medium gives rise to high efficiency reflection as well as forbidden transmission in a three-level atomic system coupled by standing wave. We show an accurate theoretical simulation via transfer-matrix theory, automatically accounting for multilayer reflections, thus fully demonstrate the existence of photonic crystal structure in atomic vapor. Project supported by the National Natural Science Foundation of China (Grant No. 11574188) and the Project for Excellent Research Team of the National Natural Science Foundation of China (Grant No. 61121064).

  1. Keyboards for the handicapped. A new concept.

    PubMed

    Johnson, E L

    1986-06-01

    A keyboard has been designed and constructed for persons restricted to using a head or mouth stick. The keyboard is not a modification of existing keyboard technology but involves a completely new concept. The keyboard, called a 2DOF keyboard, requires only two degrees of freedom motion for actuation. The problems of simultaneous key requirements, accidental key strikes, and multiple strikes of the same key have been solved. The keyboard is transparent to the personal computer to which it is connected, allowing use of any available software.

  2. Stress Wave and Damage Propagation in Transparent Laminates at Elevated Temperatures

    DTIC Science & Technology

    2010-03-01

    materials like Starphire (a registered trademark of PPG Industries, Pittsburgh, PA) soda - lime glass , borosilicate glass , fused silica , and the...in transparent armor materials like Starphire soda - lime glass , borosilicate glass , fused silica , and the transparent ceramic AlON.1 Since...transparent ceramic AlON. Since transparent armor consists of glass laminates with polymer interlayer and backing, the influence of interlayer type and

  3. Basic materials physics of transparent conducting oxides.

    PubMed

    Edwards, P P; Porch, A; Jones, M O; Morgan, D V; Perks, R M

    2004-10-07

    Materials displaying the remarkable combination of high electrical conductivity and optical transparency already from the basis of many important technological applications, including flat panel displays, solar energy capture and other opto-electronic devices. Here we present the basic materials physics of these important materials centred on the nature of the doping process to generate n-type conductivity in transparent conducting oxides, the associated transition to the metallic (conducting) state and the detailed properties of the degenerate itinerant electron gas. The aim is to fully understand the origins of the basic performance limits of known materials and to set the scene for new or improved materials which will breach those limits for new-generation transparent conducting materials, either oxides, or beyond oxides.

  4. Federal Funding Accountability and Transparency Act frequently asked questions

    EPA Pesticide Factsheets

    One stop shop for Federal Funding Accountability and Transparency Act (FFATA) questions. This frequently asked document will assist with Federal Funding Accountability and Transparency Act (FFATA) related questions.

  5. Grayscale transparent metasurface holograms

    DOE PAGES

    Wang, Lei; Kruk, Sergey; Tang, Hanzhi; ...

    2016-12-16

    In this paper, we demonstrate transparent metaholograms based on silicon metasurfaces that allow high-resolution grayscale images to be encoded. Finally, the holograms feature the highest diffraction and transmission efficiencies, and operate over a broad spectral range.

  6. Complicating Methodological Transparency

    ERIC Educational Resources Information Center

    Bridges-Rhoads, Sarah; Van Cleave, Jessica; Hughes, Hilary E.

    2016-01-01

    A historical indicator of the quality, validity, and rigor of qualitative research has been the documentation and disclosure of the behind-the-scenes work of the researcher. In this paper, we use what we call "methodological data" as a tool to complicate the possibility and desirability of such transparency. Specifically, we draw on our…

  7. Adaptive lenses using transparent dielectric elastomer actuators

    NASA Astrophysics Data System (ADS)

    Shian, Samuel; Diebold, Roger; Clarke, David

    2013-03-01

    Variable focal lenses, used in a vast number of applications such as endoscope, digital camera, binoculars, information storage, communication, and machine vision, are traditionally constructed as a lens system consisting of solid lenses and actuating mechanisms. However, such lens system is complex, bulky, inefficient, and costly. Each of these shortcomings can be addressed using an adaptive lens that performs as a lens system. In this presentation, we will show how we push the boundary of adaptive lens technology through the use of a transparent electroactive polymer actuator that is integral to the optics. Detail of our concepts and lens construction will be described as well as electromechanical and optical performances. Preliminary data indicate that our adaptive lens prototype is capable of varying its focus by more than 100%, which is higher than that of human eyes. Furthermore, we will show how our approach can be used to achieve certain controls over the lens characteristics such as adaptive aberration and optical axis, which are difficult or impossible to achieve in other adaptive lens configurations.

  8. A reinterpretation of transparency perception in terms of gamut relativity.

    PubMed

    Vladusich, Tony

    2013-03-01

    Classical approaches to transparency perception assume that transparency constitutes a perceptual dimension corresponding to the physical dimension of transmittance. Here I present an alternative theory, termed gamut relativity, that naturally explains key aspects of transparency perception. Rather than being computed as values along a perceptual dimension corresponding to transmittance, gamut relativity postulates that transparency is built directly into the fabric of the visual system's representation of surface color. The theory, originally developed to explain properties of brightness and lightness perception, proposes how the relativity of the achromatic color gamut in a perceptual blackness-whiteness space underlies the representation of foreground and background surface layers. Whereas brightness and lightness perception were previously reanalyzed in terms of the relativity of the achromatic color gamut with respect to illumination level, transparency perception is here reinterpreted in terms of relativity with respect to physical transmittance. The relativity of the achromatic color gamut thus emerges as a fundamental computational principle underlying surface perception. A duality theorem relates the definition of transparency provided in gamut relativity with the classical definition underlying the physical blending models of computer graphics.

  9. Silver nanowire-based transparent, flexible, and conductive thin film

    PubMed Central

    2011-01-01

    The fabrication of transparent, conductive, and uniform silver nanowire films using the scalable rod-coating technique is described in this study. Properties of the transparent conductive thin films are investigated, as well as the approaches to improve the performance of transparent silver nanowire electrodes. It is found that silver nanowires are oxidized during the coating process. Incubation in hydrogen chloride (HCl) vapor can eliminate oxidized surface, and consequently, reduce largely the resistivity of silver nanowire thin films. After HCl treatment, 175 Ω/sq and approximately 75% transmittance are achieved. The sheet resistivity drops remarkably with the rise of the film thickness or with the decrease of transparency. The thin film electrodes also demonstrated excellent flexible stability, showing < 2% resistance change after over 100 bending cycles. PMID:21711602

  10. Highly transparent supercapacitors based on ZnO/MnO2 nanostructures.

    PubMed

    Borysiewicz, M A; Ekielski, M; Ogorzałek, Z; Wzorek, M; Kaczmarski, J; Wojciechowski, T

    2017-06-08

    The recent rapid development of transparent electronics, notably displays and control circuits, requires the development of highly transparent energy storage devices, such as supercapacitors. The devices reported to date utilize carbon-based electrodes for high performance, however at the cost of their low transparency around 50%, insufficient for real transparent devices. To overcome this obstacle, in this communication highly transparent supercapacitors were fabricated based on ZnO/MnO 2 nanostructured electrodes. ZnO served as an intrinsically transparent skeleton for increasing the electrode surface, while MnO 2 nanoparticles were applied for high capacitance. Two MnO 2 synthesis routes were followed, based on the reaction of KMnO 4 with Mn(Ac) 2 and PAH, leading to the synthesis of β-MnO 2 with minority α-MnO 2 nanoparticles and amorphous MnO 2 with embedded β-MnO 2 , respectively. The devices based on such electrodes showed high capacitances of 2.6 mF cm -2 and 1.6 mF cm -2 , respectively, at a scan rate of 1 mV s -1 and capacitances of 104 μF cm -2 and 204 μF cm -2 at a very high rate of 1 V s -1 , not studied for transparent supercapacitors previously. Additionally, the Mn(Ac) 2 devices exhibited very high transparencies of 86% vs. air, far superior to other transparent energy storage devices reported with similar charge storage properties. This high device performance was achieved with a non-acidic LiCl gel electrolyte, reducing corrosion and handling risks associated with conventional highly concentrated acidic electrolytes, enabling applications in safe, wearable, transparent devices.

  11. 78 FR 57409 - U.S. Extractive Industries Transparency Initiative Public Outreach

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-18

    .... Extractive Industries Transparency Initiative Public Outreach AGENCY: Office of the Secretary, Interior... Industries Transparency Initiative (USEITI) candidacy application. By this notice, Interior is providing the...' commitment to participate in the Extractive Industries Transparency Initiative. EITI is a signature...

  12. Water transparency drives intra-population divergence in Eurasian Perch (Perca fluviatilis).

    PubMed

    Bartels, Pia; Hirsch, Philipp E; Svanbäck, Richard; Eklöv, Peter

    2012-01-01

    Trait combinations that lead to a higher efficiency in resource utilization are important drivers of divergent natural selection and adaptive radiation. However, variation in environmental features might constrain foraging in complex ways and therefore impede the exploitation of critical resources. We tested the effect of water transparency on intra-population divergence in morphology of Eurasian perch (Perca fluviatilis) across seven lakes in central Sweden. Morphological divergence between near-shore littoral and open-water pelagic perch substantially increased with increasing water transparency. Reliance on littoral resources increased strongly with increasing water transparency in littoral populations, whereas littoral reliance was not affected by water transparency in pelagic populations. Despite the similar reliance on pelagic resources in pelagic populations along the water transparency gradient, the utilization of particular pelagic prey items differed with variation in water transparency in pelagic populations. Pelagic perch utilized cladocerans in lakes with high water transparency and copepods in lakes with low water transparency. We suggest that under impaired visual conditions low utilization of littoral resources by littoral perch and utilization of evasive copepods by pelagic perch may lead to changes in morphology. Our findings indicate that visual conditions can affect population divergence in predator populations through their effects on resource utilization.

  13. Water Transparency Drives Intra-Population Divergence in Eurasian Perch (Perca fluviatilis)

    PubMed Central

    Bartels, Pia; Hirsch, Philipp E.; Svanbäck, Richard; Eklöv, Peter

    2012-01-01

    Trait combinations that lead to a higher efficiency in resource utilization are important drivers of divergent natural selection and adaptive radiation. However, variation in environmental features might constrain foraging in complex ways and therefore impede the exploitation of critical resources. We tested the effect of water transparency on intra-population divergence in morphology of Eurasian perch (Perca fluviatilis) across seven lakes in central Sweden. Morphological divergence between near-shore littoral and open-water pelagic perch substantially increased with increasing water transparency. Reliance on littoral resources increased strongly with increasing water transparency in littoral populations, whereas littoral reliance was not affected by water transparency in pelagic populations. Despite the similar reliance on pelagic resources in pelagic populations along the water transparency gradient, the utilization of particular pelagic prey items differed with variation in water transparency in pelagic populations. Pelagic perch utilized cladocerans in lakes with high water transparency and copepods in lakes with low water transparency. We suggest that under impaired visual conditions low utilization of littoral resources by littoral perch and utilization of evasive copepods by pelagic perch may lead to changes in morphology. Our findings indicate that visual conditions can affect population divergence in predator populations through their effects on resource utilization. PMID:22912895

  14. Making structured metals transparent for ultrabroadband electromagnetic waves and acoustic waves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fan, Ren-Hao; Peng, Ru-Wen; Huang, Xian-Rong

    2015-07-01

    In this review, we present our recent work on making structured metals transparent for broadband electromagnetic waves and acoustic waves via excitation of surface waves. First, we theoretically show that one-dimensional metallic gratings can become transparent and completely antireflective for extremely broadband electromagnetic waves by relying on surface plasmons or spoof surface plasmons. Second, we experimentally demonstrate that metallic gratings with narrow slits are highly transparent for broadband terahertz waves at oblique incidence and high transmission efficiency is insensitive to the metal thickness. Further, we significantly develop oblique metal gratings transparent for broadband electromagnetic waves (including optical waves and terahertzmore » ones) under normal incidence. In the third, we find the principles of broadband transparency for structured metals can be extended from one-dimensional metallic gratings to two-dimensional cases. Moreover, similar phenomena are found in sonic artificially metallic structures, which present the transparency for broadband acoustic waves. These investigations provide guidelines to develop many novel materials and devices, such as transparent conducting panels, antireflective solar cells, and other broadband metamaterials and stealth technologies.« less

  15. Mining Diagnostic Assessment Data for Concept Similarity

    ERIC Educational Resources Information Center

    Madhyastha, Tara; Hunt, Earl

    2009-01-01

    This paper introduces a method for mining multiple-choice assessment data for similarity of the concepts represented by the multiple choice responses. The resulting similarity matrix can be used to visualize the distance between concepts in a lower-dimensional space. This gives an instructor a visualization of the relative difficulty of concepts…

  16. Radiation Attenuation and Stability of ClearView Radiation Shielding TM-A Transparent Liquid High Radiation Shield.

    PubMed

    Bakshi, Jayeesh

    2018-04-01

    Radiation exposure is a limiting factor to work in sensitive environments seen in nuclear power and test reactors, medical isotope production facilities, spent fuel handling, etc. The established choice for high radiation shielding is lead (Pb), which is toxic, heavy, and abidance by RoHS. Concrete, leaded (Pb) bricks are used as construction materials in nuclear facilities, vaults, and hot cells for radioisotope production. Existing transparent shielding such as leaded glass provides minimal shielding attenuation in radiotherapy procedures, which in some cases is not sufficient. To make working in radioactive environments more practicable while resolving the lead (Pb) issue, a transparent, lightweight, liquid, and lead-free high radiation shield-ClearView Radiation Shielding-(Radium Incorporated, 463 Dinwiddie Ave, Waynesboro, VA). was developed. This paper presents the motivation for developing ClearView, characterization of certain aspects of its use and performance, and its specific attenuation testing. Gamma attenuation testing was done using a 1.11 × 10 Bq Co source and ANSI/HPS-N 13.11 standard. Transparency with increasing thickness, time stability of liquid state, measurements of physical properties, and performance in freezing temperatures are reported. This paper also presents a comparison of ClearView with existing radiation shields. Excerpts from LaSalle nuclear power plant are included, giving additional validation. Results demonstrated and strengthened the expected performance of ClearView as a radiation shield. Due to the proprietary nature of the work, some information is withheld.

  17. An optically transparent metasurface for broadband microwave antireflection

    NASA Astrophysics Data System (ADS)

    Zhao, Jie; Zhang, Cheng; Cheng, Qiang; Yang, Jin; Cui, Tie Jun

    2018-02-01

    Metamaterial absorbers and diffusers provide powerful routes to decrease the backward reflection significantly with advantages of ultrathin profile and customized bandwidth. Simultaneous control of the absorption and scattering behaviors of the metamaterials which helps to improve the suppression capabilities of backward reflection, however, still remains a challenge. Aiming at this goal, we propose a metasurface constituted by two kinds of elements in a pseudorandom arrangement. By the use of indium tin oxide with moderate sheet resistance in the meta-atoms, enhanced absorption of energy can be achieved in a broad spectrum when interacted with illuminated waves. In the meanwhile, electromagnetic diffusion will be invoked from the destructive interference among the elements, giving rise to significant reduction of specular reflection as a result. Excellent agreements are observed between simulation and experiment with pronounced reflection suppression from 6.8 GHz to 19.4 GHz. In addition, the optical transparence of the patterns and substrates makes the proposed metasurface a promising candidate for future applications like photovoltaic solar cells and electromagnetic shielding glasses.

  18. C.A.D. and ergonomic workstations conception

    NASA Astrophysics Data System (ADS)

    Keravel, Francine

    1986-07-01

    Computer Aided Design is able to perform workstation's conception. An ergonomic data could be complete this view and warrant a coherent fiability conception. Complexe form representation machines, anthropometric data and environment factors are allowed to perceive the limit points between humain and new technology situation. Work ability users, safety, confort and human efficiency could be also included. Such a programm with expert system integration will give a complete listing appreciation about workstation's conception.

  19. Fabrication of transparent ceramics using nanoparticles

    DOEpatents

    Cherepy, Nerine J; Tillotson, Thomas M; Kuntz, Joshua D; Payne, Stephen A

    2012-09-18

    A method of fabrication of a transparent ceramic using nanoparticles synthesized via organic acid complexation-combustion includes providing metal salts, dissolving said metal salts to produce an aqueous salt solution, adding an organic chelating agent to produce a complexed-metal sol, heating said complexed-metal sol to produce a gel, drying said gel to produce a powder, combusting said powder to produce nano-particles, calcining said nano-particles to produce oxide nano-particles, forming said oxide nano-particles into a green body, and sintering said green body to produce the transparent ceramic.

  20. Digital Thickness Measurement of a Transparent Plastic Orthodontic Device

    NASA Astrophysics Data System (ADS)

    Kim, Yoon-Hwan; Rhim, Sung-Han

    2018-05-01

    A transparent orthodontic device is used to move the teeth to the final calibration position to form a proper set of teeth. Because the uniform thickness of the device plays an important role in tooth positioning, the accuracy of the device's thickness profile is important for effective orthodontic treatment. However, due to the complexity of the device's geometry and the transparency of the device's material, measuring the complete thickness profile has been difficult. In the present study, a new optical scanning method to measure the thickness profile of transparent plastic orthodontic devices is proposed and evaluated by using scanning electron microscopy (SEM). The error of the new measurement method is less than ±18 μm. The new method can be used to measure the thickness of non-specific, multi-curved, transparent orthodontic devices.

  1. Transparent conductors based on microscale/nanoscale materials for high performance devices

    NASA Astrophysics Data System (ADS)

    Gao, Tongchuan

    Transparent conductors are important as the top electrode for a variety of optoelectronic devices, including solar cells, light-emitting diodes (LEDs), at panel displays, and touch screens. Doped indium tin oxide (ITO) thin films are the predominant transparent conductor material. However, ITO thin films are brittle, making them unsuitable for the emerging flexible devices, and suffer from high material and processing cost. In my thesis, we developed a variety of transparent conductors toward a performance comparable with or superior to ITO thin films, with lower cost and potential for scalable manufacturing. Metal nanomesh (NM), hierarchical graphene/metal microgrid (MG), and hierarchical metal NM/MG materials were investigated. Simulation methods were used as a powerful tool to predict the transparency and sheet resistance of the transparent conductors by solving Maxwell's equations and Poisson's equation. Affordable and scalable fabrication processes were developed thereafter. Transparent conductors with over 90% transparency and less than 10 O/square sheet resistance were successfully fabricated on both rigid and flexible substrates. Durability tests, such as bending, heating and tape tests, were carried out to evaluate the robustness of the samples. Haze factor, which characterizes how blurry a transparent conductor appears, was also studied in-depth using analytical calculation and numerical simulation. We demonstrated a tunable haze factor for metal NM transparent conductors and analyzed the principle for tuning the haze factor. Plasmonic effects, excited by some transparent conductors, can lead to enhanced performance in photovoltaic devices. We systematically studied the effect of incorporating metal NM into ultrathin film silicon solar cells using numerical simulation, with the aid of optimization algorithms to reduce the optimization time. Mechanisms contributing to the enhanced performance were then identified and analyzed. Over 72% enhancement in short

  2. Contrast enhancement of transparencies

    NASA Technical Reports Server (NTRS)

    Shulman, A. R.; Lee, S. H.

    1976-01-01

    System can enhance or reduce contrast of photographic transparency for printing or projection by using constructive and destructive interference of collimated laser beam. System is potentially less expensive than electronic CRT methods and is more accurate than trial-and-error manual techniques.

  3. Designing and implementing transparency for real time inspection of autonomous robots

    NASA Astrophysics Data System (ADS)

    Theodorou, Andreas; Wortham, Robert H.; Bryson, Joanna J.

    2017-07-01

    The EPSRC's Principles of Robotics advises the implementation of transparency in robotic systems, however research related to AI transparency is in its infancy. This paper introduces the reader of the importance of having transparent inspection of intelligent agents and provides guidance for good practice when developing such agents. By considering and expanding upon other prominent definitions found in literature, we provide a robust definition of transparency as a mechanism to expose the decision-making of a robot. The paper continues by addressing potential design decisions developers need to consider when designing and developing transparent systems. Finally, we describe our new interactive intelligence editor, designed to visualise, develop and debug real-time intelligence.

  4. Why the concept ''lifestyle diseases'' should be avoided.

    PubMed

    Vallgårda, Signild

    2011-11-01

    The concept lifestyle disease is used about a number of different diseases such as coronary heart disease, diabetes, lung cancer etc. The concept indicates that people's behaviours cause the diseases. This is only partly true. All diseases, both so-called lifestyle diseases and infectious diseases, have multiple causes. Singling out only one type of causes, such as is implied in the concept of lifestyle diseases can lead prevention to focus only on changing people s behaviours or lifestyles, and thus to neglect other possibilities to improve health. Mortality due to chronic diseases has increased during the last century and the main cause behind this is the decrease in the mortality in infectious diseases among younger people. More people live long enough to develop the chronic diseases. The concept lifestyle disease gives a too narrow picture of causes death and should be abandoned and give place for a broader understanding of causes and preventive options.

  5. Highly transparent and flexible circuits through patterning silver nanowires into microfluidic channels.

    PubMed

    Sun, Jing; Zhou, Wenhui; Yang, Haibo; Zhen, Xue; Ma, Longfei; Williams, Dirk; Sun, Xudong; Lang, Ming-Fei

    2018-05-10

    The development of flexible and transparent devices requires completely transparent and flexible circuits (TFCs). To overcome the disadvantages of the previously reported TFCs that are partially transparent, lacking pattern control, or labor consuming, we achieve true TFCs via a facile process with precise pattern control, exhibiting concurrent high transparency, conductivity, flexibility, stretchability, and robustness. A highly transparent and flexible conductive film is first made through spin coating silver nanowires (AgNWs) onto polydimethylsiloxane (PDMS), and demonstrates simultaneous high transparency (90.86%) and low sheet resistance (3.22 Ω sq-1). Taking advantage of microfluidic technology, circuits with ultraprecise and complex patterns from the microscale to milliscale are obtained through spin coating of AgNWs into microfluidic channels on PDMS. Without elaborate processing, this method may be suitable for mass production, which would contribute enormously to potential applications in wearable medical equipment and transparent electronic devices.

  6. Dawn Blue Glow Artist Concept

    NASA Image and Video Library

    2015-03-02

    This artist concept shows NASA Dawn spacecraft arriving at the dwarf planet Ceres. Dawn travels through space using a technology called ion propulsion, with ions glowing with blue light are accelerated out of an engine, giving the spacecraft thrust.

  7. Transparent 3D display for augmented reality

    NASA Astrophysics Data System (ADS)

    Lee, Byoungho; Hong, Jisoo

    2012-11-01

    Two types of transparent three-dimensional display systems applicable for the augmented reality are demonstrated. One of them is a head-mounted-display-type implementation which utilizes the principle of the system adopting the concave floating lens to the virtual mode integral imaging. Such configuration has an advantage in that the threedimensional image can be displayed at sufficiently far distance resolving the accommodation conflict with the real world scene. Incorporating the convex half mirror, which shows a partial transparency, instead of the concave floating lens, makes it possible to implement the transparent three-dimensional display system. The other type is the projection-type implementation, which is more appropriate for the general use than the head-mounted-display-type implementation. Its imaging principle is based on the well-known reflection-type integral imaging. We realize the feature of transparent display by imposing the partial transparency to the array of concave mirror which is used for the screen of reflection-type integral imaging. Two types of configurations, relying on incoherent and coherent light sources, are both possible. For the incoherent configuration, we introduce the concave half mirror array, whereas the coherent one adopts the holographic optical element which replicates the functionality of the lenslet array. Though the projection-type implementation is beneficial than the head-mounted-display in principle, the present status of the technical advance of the spatial light modulator still does not provide the satisfactory visual quality of the displayed three-dimensional image. Hence we expect that the head-mounted-display-type and projection-type implementations will come up in the market in sequence.

  8. The health care value transparency movement and its implications for radiology.

    PubMed

    Durand, Daniel J; Narayan, Anand K; Rybicki, Frank J; Burleson, Judy; Nagy, Paul; McGinty, Geraldine; Duszak, Richard

    2015-01-01

    The US health care system is in the midst of disruptive changes intended to expand access, improve outcomes, and lower costs. As part of this movement, a growing number of stakeholders have advocated dramatically increasing consumer transparency into the quality and price of health care services. The authors review the general movement toward American health care value transparency within the public, private, and nonprofit sectors, with an emphasis on those initiatives most relevant to radiology. They conclude that radiology, along with other "ancillary services," has been a major focus of early efforts to enhance consumer price transparency. By contrast, radiology as a field remains in the "middle of the pack" with regard to quality transparency. There is thus the danger that radiology value transparency in its current form will stimulate primarily price-based competition, erode provider profit margins, and disincentivize quality. The authors conclude with suggested actions radiologists can take to ensure that a more optimal balance is struck between quality transparency and price transparency, one that will enable true value-based competition among radiologists rather than commoditization. Copyright © 2015 American College of Radiology. Published by Elsevier Inc. All rights reserved.

  9. Transparency and public involvement in animal research.

    PubMed

    Pound, Pandora; Blaug, Ricardo

    2016-05-01

    To be legitimate, research needs to be ethical, methodologically sound, of sufficient value to justify public expenditure and be transparent. Animal research has always been contested on ethical grounds, but there is now mounting evidence of poor scientific method, and growing doubts about its clinical value. So what of transparency? Here we examine the increasing focus on openness within animal research in the UK, analysing recent developments within the Home Office and within the main group representing the interests of the sector, Understanding Animal Research. We argue that, while important steps are being taken toward greater transparency, the legitimacy of animal research continues to be undermined by selective openness. We propose that openness could be increased through public involvement, and that this would bring about much needed improvements in animal research, as it has done in clinical research. 2016 FRAME.

  10. Strengthening Transparency in Regulatory Science

    EPA Pesticide Factsheets

    Where available and appropriate, EPA will use peer-reviewed information, standardized test methods, consistent data evaluation procedures, and good laboratory practices to ensure transparent, understandable, and reproducible scientific assessments.

  11. Deep understanding of electromagnetism using crosscutting concepts

    NASA Astrophysics Data System (ADS)

    De Poorter, John; De Lange, Jan; Devoldere, Lies; Van Landeghem, Jouri; Strubbe, Katrien

    2017-01-01

    Crosscutting concepts like patterns and models are fundamental parts in both the American framework of science education (from the AAAS) and our proposals for a new science education framework in Flanders. These concepts deepen the insight of both students and teachers. They help students to ask relevant questions during an inquiry and they give an understanding in how scientists built up their scientific theories. We illustrate the didactical possibilities of crosscutting concepts within the field of electromagnetism.

  12. Introducing modern technology to promote transparency in health services.

    PubMed

    Islam, Mohammad Shafiqul

    2015-01-01

    Quantitative indicators show that Bangladeshi maternal and child healthcare is progressing satisfactorily. However, healthcare quality is still inadequate. It is hypothesised that modern technology enhances healthcare quality. Therefore, the purpose of this paper is to investigate how modern technology such as electronic record keeping and the internet can contribute to enhancing Bangladeshi healthcare quality. This study also explores how socio-economic and political factors affect the healthcare quality. This paper is based on a qualitative case study involving 68 in-depth interviews with healthcare professionals, elected representatives, local informants and five focus group discussions with healthcare service users to understand technology's effect on health service quality. The study has been conducted in one rural and one urban service organisations to understand how various factors contribute differently to healthcare quality. The findings show that modern technology, such as the internet and electronic devices for record keeping, contribute significantly to enhancing health service transparency, which in turn leads to quality health and family planning services. The findings also show that information and communication technology (ICT) is an effective mechanism for reducing corruption and promoting transparency. However, resource constraints impact adversely on the introduction of technology, which leads to less transparent healthcare. Progress in education and general socio-economic conditions makes it suitable to enhance ICT usage, which could lead to healthcare transparency, but political and bureaucratic factors pose a major challenge to ensure transparency. This paper can be a useful guide for promoting governance and healthcare quality in developing countries including Bangladesh. It analyses the ICT challenges that healthcare staff face when promoting transparent healthcare. This paper provides a deeper understanding of transparency and healthcare

  13. 20-micron transparency and atmospheric water vapor at the Wyoming Infrared Observatory

    NASA Technical Reports Server (NTRS)

    Grasdalen, G. L.; Gehrz, R. D.; Hackwell, J. A.; Freedman, R.

    1985-01-01

    The atmospheric transparency at 19.5 and 23 microns from the Wyoming Infrared Observatory over the past six years has been examined. It is found that the transparency is largely controlled by the season. Four months: June, July, August, and September have very poor 20-micron transparency. During the rest of the year the transparency is usually quite good at 19.5 microns and moderately good at 23 microns. Using rawinsonde data and theoretical calculations for the expected infrared transparency, the measures of 20-micron transparency were calibrated in terms of atmospheric water-vapor content. The water vapor over the Wyoming Infrared Observatory is found to compare favorably with that above other proposed or developed sites: Mauna Kea, Mount Graham, and Wheeler Peak.

  14. High quality transparent conducting oxide thin films

    DOEpatents

    Gessert, Timothy A.; Duenow, Joel N.; Barnes, Teresa; Coutts, Timothy J.

    2012-08-28

    A transparent conducting oxide (TCO) film comprising: a TCO layer, and dopants selected from the elements consisting of Vanadium, Molybdenum, Tantalum, Niobium, Antimony, Titanium, Zirconium, and Hafnium, wherein the elements are n-type dopants; and wherein the transparent conducting oxide is characterized by an improved electron mobility of about 42 cm.sup.2/V-sec while simultaneously maintaining a high carrier density of .about.4.4e.times.10.sup.20 cm.sup.-3.

  15. Transparent wood for functional and structural applications

    NASA Astrophysics Data System (ADS)

    Li, Yuanyuan; Fu, Qiliang; Yang, Xuan; Berglund, Lars

    2017-12-01

    Optically transparent wood combines mechanical performance with optical functionalities is an emerging candidate for applications in smart buildings and structural optics and photonics. The present review summarizes transparent wood preparation methods, optical and mechanical performance, and functionalization routes, and discusses potential applications. The various challenges are discussed for the purpose of improved performance, scaled-up production and realization of advanced applications. This article is part of a discussion meeting issue `New horizons for cellulose nanotechnology'.

  16. Nonperiodic metallic gratings transparent for broadband terahertz waves

    NASA Astrophysics Data System (ADS)

    Fan, Ren-Hao; Ren, Xiao-Ping; Peng, Ru-Wen; Huang, Xian-Rong; Wang, Mu

    Recently, we demonstrate both theoretically and experimentally that nonperiodic metallic gratings can become transparent for broadband terahertz waves. Quasiperiodic and disordered metallic gratings effectively weaken and even eliminate Wood's anomalies, which are the diffraction-related characters of periodic gratings. Consequently, both the transparence bandwidth and transmission efficiency are significantly increased due to the structural aperiodicity. Furthermore, we show that for a specific light source, for example, a line source, a corresponding nonperiodic transparent grating can be also designed. We expect that our findings can be applied for transparent conducting panels, perfect white-beam polarizers, antireflective conducting solar cells, and beyond. References: X. P. Ren, R. H. Fan, R. W. Peng, X. R. Huang, D. H. Xu, Y. Zhou, and Mu Wang, Physical Review B, 91, 045111 (2015); R. H. Fan, R. W. Peng, X. R. Huang, J. Li, Y. Liu, Q. Hu, Mu. Wang, and X. Zhang, Advanced Materials, 24, 1980 (2012); and X. R. Huang, R. W. Peng, and R. H. Fan. Physical Review Letters, 105, 243901 (2010).

  17. What is and what is not electromagnetically induced transparency in whispering-gallery microcavities.

    PubMed

    Peng, Bo; Özdemir, Sahin Kaya; Chen, Weijian; Nori, Franco; Yang, Lan

    2014-10-24

    There has been an increasing interest in all-optical analogues of electromagnetically induced transparency and Autler-Townes splitting. Despite the differences in their underlying physics, both electromagnetically induced transparency and Autler-Townes splitting are quantified by a transparency window in the absorption or transmission spectrum, which often leads to a confusion about its origin. While the transparency window in electromagnetically induced transparency is a result of Fano interference among different transition pathways, in Autler-Townes splitting it is the result of strong field-driven interactions leading to the splitting of energy levels. Being able to tell objectively whether an observed transparency window is because of electromagnetically induced transparency or Autler-Townes splitting is crucial for applications and for clarifying the physics involved. Here we demonstrate the pathways leading to electromagnetically induced transparency, Fano resonances and Autler-Townes splitting in coupled whispering-gallery-mode resonators. Moreover, we report the application of the Akaike Information Criterion discerning between all-optical analogues of electromagnetically induced transparency and Autler-Townes splitting and clarifying the transition between them.

  18. The transparency trap.

    PubMed

    Bernstein, Ethan

    2014-10-01

    To promote accountability, productivity, and shared learning, many organizations create open work environments and gather reams of data on how individuals spend their time. A few years ago, HBS professor Ethan Bernstein set out to find empirical evidence that such approaches improve organizational performance. What he discovered is that this kind of transparency often has an unintended consequence: It can leave employees feeling vulnerable and exposed. When that happens, they conceal any conduct that deviates from the norm so that they won't have to explain it. Unrehearsed, experimental behaviors sometimes stop altogether. But Bernstein also discovered organizations that had established zones of privacy within open environments by setting four types of boundaries: around teams, between feedback and evaluation, between decision rights and improvement rights, and around periods of experimentation. Moreover, across several studies, the companies that had done all this were the ones that consistently got the most creative, efficient, and thoughtful work from their employees. Bernstein's conclusion? By balancing transparency and privacy, organizations can capture the benefits of both, and encourage just the right amount of "positive deviance" needed to increase innovation and productivity.

  19. Flexible transparent electrode

    NASA Astrophysics Data System (ADS)

    Demiryont, Hulya; Shannon, Kenneth C., III; Moorehead, David; Bratcher, Matthew

    2011-06-01

    This paper presents the properties of the EclipseTECTM transparent conductor. EclipseTECTM is a room temperature deposited nanostructured thin film coating system comprised of metal-oxide semiconductor elements. The system possesses metal-like conductivity and glass-like transparency in the visible region. These highly conductive TEC films exhibit high shielding efficiency (35dB at 1 to 100GHz). EclipseTECTM can be deposited on rigid or flexible substrates. For example, EclipseTECTM deposited on polyethylene terephthalate (PET) is extremely flexible that can be rolled around a 9mm diameter cylinder with little or no reduction in electrical conductivity and that can assume pre-extension states after an applied stress is relieved. The TEC is colorless and has been tailored to have high visible transmittance which matches the eye sensitivity curve and allows the viewing of true background colors through the coating. EclipseTECTM is flexible, durable and can be tailored at the interface for applications such as electron- or hole-injecting OLED electrodes as well as electrodes in flexible displays. Tunable work function and optical design flexibility also make EclipseTECTM well-suited as a candidate for grid electrode replacement in next-generation photovoltaic cells.

  20. Highly efficient fully transparent inverted OLEDs

    NASA Astrophysics Data System (ADS)

    Meyer, J.; Winkler, T.; Hamwi, S.; Schmale, S.; Kröger, M.; Görrn, P.; Johannes, H.-H.; Riedl, T.; Lang, E.; Becker, D.; Dobbertin, T.; Kowalsky, W.

    2007-09-01

    One of the unique selling propositions of OLEDs is their potential to realize highly transparent devices over the visible spectrum. This is because organic semiconductors provide a large Stokes-Shift and low intrinsic absorption losses. Hence, new areas of applications for displays and ambient lighting become accessible, for instance, the integration of OLEDs into the windshield or the ceiling of automobiles. The main challenge in the realization of fully transparent devices is the deposition of the top electrode. ITO is commonly used as transparent bottom anode in a conventional OLED. To obtain uniform light emission over the entire viewing angle and a low series resistance, a TCO such as ITO is desirable as top contact as well. However, sputter deposition of ITO on top of organic layers causes damage induced by high energetic particles and UV radiation. We have found an efficient process to protect the organic layers against the ITO rf magnetron deposition process of ITO for an inverted OLED (IOLED). The inverted structure allows the integration of OLEDs in more powerful n-channel transistors used in active matrix backplanes. Employing the green electrophosphorescent material Ir(ppy) 3 lead to IOLED with a current efficiency of 50 cd/A and power efficiency of 24 lm/W at 100 cd/m2. The average transmittance exceeds 80 % in the visible region. The on-set voltage for light emission is lower than 3 V. In addition, by vertical stacking we achieved a very high current efficiency of more than 70 cd/A for transparent IOLED.

  1. Multimodal sensing strategies for detecting transparent barriers indoors from a mobile platform

    NASA Astrophysics Data System (ADS)

    Acevedo, Isaiah; Kleine, R. Kaleb; Kraus, Dustan; Mascareñas, David

    2015-04-01

    There is currently an interest in developing mobile sensing platforms that fly indoors. The primary goal for these platforms is to be able to successfully navigate a building under various lighting and environmental conditions. There are numerous research challenges associated with this goal, one of which is the platform's ability to detect and identify the presence of transparent barriers. Transparent barriers could include windows, glass partitions, or skylights. For example, in order to successfully navigate inside of a structure, these platforms will need to sense if a space contains a transparent barrier and whether or not this space can be traversed. This project's focus has been developing a multimodal sensing system that can successfully identify such transparent barriers under various lighting conditions while aboard a mobile platform. Along with detecting transparent barriers, this sensing platform is capable of distinguishing between reflective, opaque, and transparent barriers. It will be critical for this system to be able to identify transparent barriers in real-time in order for the navigation system to maneuver accordingly. The properties associated with the interaction between various frequencies of light and transparent materials were one of the techniques leveraged to solve this problem.

  2. On-chip plasmon-induced transparency based on plasmonic coupled nanocavities

    PubMed Central

    Zhu, Yu; Hu, Xiaoyong; Yang, Hong; Gong, Qihuang

    2014-01-01

    On-chip plasmon-induced transparency offers the possibility of realization of ultrahigh-speed information processing chips. Unfortunately, little experimental progress has been made to date because it is difficult to obtain on-chip plasmon-induced transparency using only a single meta-molecule in plasmonic circuits. Here, we report a simple and efficient strategy to realize on-chip plasmon-induced transparency in a nanoscale U-shaped plasmonic waveguide side-coupled nanocavity pair. High tunability in the transparency window is achieved by covering the pair with different organic polymer layers. It is possible to realize ultrafast all-optical tunability based on pump light-induced refractive index change of a graphene cover layer. Compared with previous reports, the overall feature size of the plasmonic nanostructure is reduced by more than three orders of magnitude, while ultrahigh tunability of the transparency window is maintained. This work also provides a superior platform for the study of the various physical effects and phenomena of nonlinear optics and quantum optics. PMID:24435059

  3. On-chip plasmon-induced transparency based on plasmonic coupled nanocavities.

    PubMed

    Zhu, Yu; Hu, Xiaoyong; Yang, Hong; Gong, Qihuang

    2014-01-17

    On-chip plasmon-induced transparency offers the possibility of realization of ultrahigh-speed information processing chips. Unfortunately, little experimental progress has been made to date because it is difficult to obtain on-chip plasmon-induced transparency using only a single meta-molecule in plasmonic circuits. Here, we report a simple and efficient strategy to realize on-chip plasmon-induced transparency in a nanoscale U-shaped plasmonic waveguide side-coupled nanocavity pair. High tunability in the transparency window is achieved by covering the pair with different organic polymer layers. It is possible to realize ultrafast all-optical tunability based on pump light-induced refractive index change of a graphene cover layer. Compared with previous reports, the overall feature size of the plasmonic nanostructure is reduced by more than three orders of magnitude, while ultrahigh tunability of the transparency window is maintained. This work also provides a superior platform for the study of the various physical effects and phenomena of nonlinear optics and quantum optics.

  4. All-dielectric resonant cavity-enabled metals with broadband optical transparency

    NASA Astrophysics Data System (ADS)

    Liu, Zhengqi; Zhang, Houjiao; Liu, Xiaoshan; Pan, Pingping; Liu, Yi; Tang, Li; Liu, Guiqiang

    2017-06-01

    Metal films with broadband optical transparency are desirable in many optoelectronic devices, such as displays, smart windows, light-emitting diodes and infrared detectors. As bare metal is opaque to light, this issue of transparency attracts great scientific interest. In this work, we proposed and demonstrated a feasible and universal approach for achieving broadband optical transparent (BOT) metals by utilizing all-dielectric resonant cavities. Resonant dielectrics provide optical cavity modes and couple strongly with the surface plasmons of the metal film, and therefore produce a broadband near-unity optical transparent window. The relative enhancement factor (EF) of light transmission exceeds 3400% in comparison with that of pure metal film. Moreover, the transparent metal motif can be realized by other common metals including gold (Au), silver (Ag) and copper (Cu). These optical features together with the fully retained electric and mechanical properties of a natural metal suggest that it will have wide applications in optoelectronic devices.

  5. Computer-Based Tutoring of Visual Concepts: From Novice to Experts.

    ERIC Educational Resources Information Center

    Sharples, Mike

    1991-01-01

    Description of ways in which computers might be used to teach visual concepts discusses hypermedia systems; describes computer-generated tutorials; explains the use of computers to create learning aids such as concept maps, feature spaces, and structural models; and gives examples of visual concept teaching in medical education. (10 references)…

  6. High carrier concentration p-type transparent conducting oxide films

    DOEpatents

    Yan, Yanfa; Zhang, Shengbai

    2005-06-21

    A p-type transparent conducting oxide film is provided which is consisting essentially of, the transparent conducting oxide and a molecular doping source, the oxide and doping source grown under conditions sufficient to deliver the doping source intact onto the oxide.

  7. Climatic Concepts and Regions.

    ERIC Educational Resources Information Center

    Thomas, Paul F.

    Designed for students in grades 7 through 12, this teaching unit presents illustrative resource materials depicting concepts related to climate and geographic regions. Emphasis is on giving students an understanding of climatic elements and factors, not as isolated, disjointed entities, but as a dynamic interplay of forces having a very definite…

  8. Transparent Proxy for Secure E-Mail

    NASA Astrophysics Data System (ADS)

    Michalák, Juraj; Hudec, Ladislav

    2010-05-01

    The paper deals with the security of e-mail messages and e-mail server implementation by means of a transparent SMTP proxy. The security features include encryption and signing of transported messages. The goal is to design and implement a software proxy for secure e-mail including its monitoring, administration, encryption and signing keys administration. In particular, we focus on automatic public key on-the-fly encryption and signing of e-mail messages according to S/MIME standard by means of an embedded computer system whose function can be briefly described as a brouter with transparent SMTP proxy.

  9. Exploring Women’s Personal Experiences of Giving Birth in Gonabad City: A Qualitative Study

    PubMed Central

    Askari, Fariba; Atarodi, Alireza; Torabi, Shirin; Moshki, Mahdi

    2014-01-01

    Background: Women’s health is an important task in society. The aim of this qualitative study that used a phenomenological approach was to explain women’s personal experiences of giving birth in Gonabad city that had positive experiences of giving birth in order to establish quality cares and the related factors of midwifery cares for this physiological phenomenon. Methods: The participants were 21 primiparae women who gave a normal and or uncomplicated giving birth in the hospital of Gonabad University of medical sciences. Based on a purposeful approach in-depth interviews were continued to reach data saturation. The data were collected through open and semi-structured interactional in-depth interviews with all the participants. All the interviews were taped, transcribed and then analyzed through a qualitative content analysis method to identify the concepts and themes. Findings: Some categories were emerged. A quiet and safe environment was the most urgent need of the most women giving birth. Unnecessary routine interventions that are performed on all women regardless of their needs and should be avoided were considered such as: “absolute rest, establishing vein, frequent vaginal examinations, fasting and early Amniotomy”. All the women wanted to take part actively in their giving birth, because they believed it could affect their giving birth. Conclusion: We hope that the women’s experiences of giving birth will be a pleasant and enjoyable experience for all the mothers giving birth. PMID:25168980

  10. Lattice Transparency of Graphene.

    PubMed

    Chae, Sieun; Jang, Seunghun; Choi, Won Jin; Kim, Youn Sang; Chang, Hyunju; Lee, Tae Il; Lee, Jeong-O

    2017-03-08

    Here, we demonstrated the transparency of graphene to the atomic arrangement of a substrate surface, i.e., the "lattice transparency" of graphene, by using hydrothermally grown ZnO nanorods as a model system. The growth behaviors of ZnO nanocrystals on graphene-coated and uncoated substrates with various crystal structures were investigated. The atomic arrangements of the nucleating ZnO nanocrystals exhibited a close match with those of the respective substrates despite the substrates being bound to the other side of the graphene. By using first-principles calculations based on density functional theory, we confirmed the energetic favorability of the nucleating phase following the atomic arrangement of the substrate even with the graphene layer present in between. In addition to transmitting information about the atomic lattice of the substrate, graphene also protected its surface. This dual role enabled the hydrothermal growth of ZnO nanorods on a Cu substrate, which otherwise dissolved in the reaction conditions when graphene was absent.

  11. Patients' views on price shopping and price transparency.

    PubMed

    Semigran, Hannah L; Gourevitch, Rebecca; Sinaiko, Anna D; Cowling, David; Mehrotra, Ateev

    2017-06-01

    Driven by the growth of high deductibles and price transparency initiatives, patients are being encouraged to search for prices before seeking care, yet few do so. To understand why this is the case, we interviewed individuals who were offered access to a widely used price transparency website through their employer. Qualitative interviews. We interviewed individuals enrolled in a preferred provider organization product through their health plan about their experience using the price transparency tool (if they had done so), their past medical experiences, and their opinions on shopping for care. All interviews were transcribed and manually coded using a thematic coding guide. In general, respondents expressed frustration with healthcare costs and had a positive opinion of the idea of price shopping in theory, but 2 sets of barriers limited their ability to do so in reality. The first was the salience of searching for price information. For example, respondents recognized that due to their health plan benefits design, they would not save money by switching to a lower-cost provider. Second, other factors were more important than price for respondents when choosing a provider, including quality and loyalty to current providers. We found a disconnect between respondents' enthusiasm for price shopping and their reported use of a price transparency tool to shop for care. However, many did find the tool useful for other purposes, including checking their claims history. Addressing the barriers to price shopping identified by respondents can help inform ongoing and future price transparency initiatives.

  12. The Navigation Guide systematic review methodology: a rigorous and transparent method for translating environmental health science into better health outcomes.

    PubMed

    Woodruff, Tracey J; Sutton, Patrice

    2014-10-01

    Synthesizing what is known about the environmental drivers of health is instrumental to taking prevention-oriented action. Methods of research synthesis commonly used in environmental health lag behind systematic review methods developed in the clinical sciences over the past 20 years. We sought to develop a proof of concept of the "Navigation Guide," a systematic and transparent method of research synthesis in environmental health. The Navigation Guide methodology builds on best practices in research synthesis in evidence-based medicine and environmental health. Key points of departure from current methods of expert-based narrative review prevalent in environmental health include a prespecified protocol, standardized and transparent documentation including expert judgment, a comprehensive search strategy, assessment of "risk of bias," and separation of the science from values and preferences. Key points of departure from evidence-based medicine include assigning a "moderate" quality rating to human observational studies and combining diverse evidence streams. The Navigation Guide methodology is a systematic and rigorous approach to research synthesis that has been developed to reduce bias and maximize transparency in the evaluation of environmental health information. Although novel aspects of the method will require further development and validation, our findings demonstrated that improved methods of research synthesis under development at the National Toxicology Program and under consideration by the U.S. Environmental Protection Agency are fully achievable. The institutionalization of robust methods of systematic and transparent review would provide a concrete mechanism for linking science to timely action to prevent harm.

  13. [The function of a general concept of disease from an historical perspective].

    PubMed

    Hess, V; Herrn, R

    2015-01-01

    This article questions why medicine fails to provide a general concept of disease for use by doctors, patients and society because the lack of such a unified concept inhibits any definitive distinction between "deviant" and "disease". By providing an historical overview of the particularities related to this question the authors demonstrate that the ever-changing concepts of disease were not driven by the process through which medicine became a science. In contrast to naturalistic concepts of disease, anthropological, sociocultural and psychosomatic concepts are grounded in an understanding of disease that cannot be determined, described and categorized by pathology alone. As a consequence, disease can only be determined or defined in relation to social and scientific frames of reference, as illustrated by an example from the Berlin Nervenklinik (psychiatric clinic) in the early twentieth century. The ways in which the definition of a disease concept represents a normative interpretation can be observed. The authors of this paper argue for the acceptance of this normative definition as a matter of societal agreement. Consequently, transparency is required in the shaping of general disease concepts.

  14. Thinking Connections: Concept Maps for Life Science. Book B.

    ERIC Educational Resources Information Center

    Burggraf, Frederick

    The concept maps contained in this book (for grades 7-12) span 35 topics in life science. Topics were chosen using the National Science Education Standards as a guide. The practice exercise in concept mapping is included to give students an idea of what the tasks ahead will be in content rich maps. Two levels of concept maps are included for each…

  15. Metal{Polymer Hybrid Materials For Flexible Transparent Conductors

    NASA Astrophysics Data System (ADS)

    Narayanan, Sudarshan

    The field of organic electronics, till recently a mere research topic, is currently making rapid strides and tremendous progress into entering the mainstream electronics industry with several applications and products such as OLED televisions, curved displays, wearable devices, flexible solar cells, etc. already having been commercialized. A major component in these devices, especially for photovoltaic applications, is a transparent conductor used as one of the electrodes, which in most commercial applications are highly doped wide bandgap semiconducting oxides also called Transparent Conducting Oxides (TCOs). However, TCOs exhibit inherent disadvantages such as limited supply, brittle mechanical properties, expensive processing that present major barriers for the more widespread economic use in applications such as exible transparent conductors, owing to which suitable alternative materials are being sought. In this context we present two approaches in realizing alternative TCs using metal-polymer hybrid materials, with high figures of merit that are easily processable, reasonably inexpensive and mechanically robust as well. In this context, our first approach employs laminated metal-polymer photonic bandgap structures to effectively tune optical and electrical properties by an appropriate design of the material stack, factoring in the effect of the materials involved, the number of layers and layer properties. We have found that in the case of a four-bilayer Au/polystyrene (AujPS) laminate structure, an enhancement in optical transmittance of ˜ 500% in comparison to a monolithic A film of equivalent thickness, can be achieved. The high conductivity (˜ 106 O--1cm--1) of the metallic component, Au in this case, also ensures planar conductivity; metallic inclusions in the dielectric polymer layer can in principle give rise to out-of-plane conductivity as well enabling a fully functional TC. Such materials also have immense potential for several other applications

  16. Yet Another Lunar Surface Geologic Exploration Architecture Concept (What, Again?): A Senior Field Geologist's Integrated View

    NASA Technical Reports Server (NTRS)

    Eppler, D. B.

    2015-01-01

    Lunar surface geological exploration should be founded on a number of key elements that are seemingly disparate, but which can form an integrated operational concept when properly conceived and deployed. If lunar surface geological exploration is to be useful, this integration of key elements needs to be undertaken throughout the development of both mission hardware, training and operational concepts. These elements include the concept of mission class, crew makeup and training, surface mobility assets that are matched with mission class, and field tools and IT assets that make data collection, sharing and archiving transparent to the surface crew.

  17. Projection type transparent 3D display using active screen

    NASA Astrophysics Data System (ADS)

    Kamoshita, Hiroki; Yendo, Tomohiro

    2015-05-01

    Equipment to enjoy a 3D image, such as a movie theater, television and so on have been developed many. So 3D video are widely known as a familiar image of technology now. The display representing the 3D image are there such as eyewear, naked-eye, the HMD-type, etc. They has been used for different applications and location. But have not been widely studied for the transparent 3D display. If transparent large 3D display is realized, it is useful to display 3D image overlaid on real scene in some applications such as road sign, shop window, screen in the conference room etc. As a previous study, to produce a transparent 3D display by using a special transparent screen and number of projectors is proposed. However, for smooth motion parallax, many projectors are required. In this paper, we propose a display that has transparency and large display area by time multiplexing projection image in time-division from one or small number of projectors to active screen. The active screen is composed of a number of vertically-long small rotate mirrors. It is possible to realize the stereoscopic viewing by changing the image of the projector in synchronism with the scanning of the beam.3D vision can be realized by light is scanned. Also, the display has transparency, because it is possible to see through the display when the mirror becomes perpendicular to the viewer. We confirmed the validity of the proposed method by using simulation.

  18. Process for forming transparent aerogel insulating arrays

    DOEpatents

    Tewari, Param H.; Hunt, Arlon J.

    1986-01-01

    An improved supercritical drying process for forming transparent silica aerogel arrays is described. The process is of the type utilizing the steps of hydrolyzing and condensing aloxides to form alcogels. A subsequent step removes the alcohol to form aerogels. The improvement includes the additional step, after alcogels are formed, of substituting a solvent, such as CO.sub.2, for the alcohol in the alcogels, the solvent having a critical temperature less than the critical temperature of the alcohol. The resulting gels are dried at a supercritical temperature for the selected solvent, such as CO.sub.2, to thereby provide a transparent aerogel array within a substantially reduced (days-to-hours) time period. The supercritical drying occurs at about 40.degree. C. instead of at about 270.degree. C. The improved process provides increased yields of large scale, structurally sound arrays. The transparent aerogel array, formed in sheets or slabs, as made in accordance with the improved process, can replace the air gap within a double glazed window, for example, to provide a substantial reduction in heat transfer. The thus formed transparent aerogel arrays may also be utilized, for example, in windows of refrigerators and ovens, or in the walls and doors thereof or as the active material in detectors for analyzing high energy elementry particles or cosmic rays.

  19. Process for forming transparent aerogel insulating arrays

    DOEpatents

    Tewari, P.H.; Hunt, A.J.

    1985-09-04

    An improved supercritical drying process for forming transparent silica aerogel arrays is described. The process is of the type utilizing the steps of hydrolyzing and condensing aloxides to form alcogels. A subsequent step removes the alcohol to form aerogels. The improvement includes the additional step, after alcogels are formed, of substituting a solvent, such as CO/sub 2/, for the alcohol in the alcogels, the solvent having a critical temperature less than the critical temperature of the alcohol. The resulting gels are dried at a supercritical temperature for the selected solvent, such as CO/sub 2/, to thereby provide a transparent aerogel array within a substantially reduced (days-to-hours) time period. The supercritical drying occurs at about 40/sup 0/C instead of at about 270/sup 0/C. The improved process provides increased yields of large scale, structurally sound arrays. The transparent aerogel array, formed in sheets or slabs, as made in accordance with the improved process, can replace the air gap within a double glazed window, for example, to provide a substantial reduction in heat transfer. The thus formed transparent aerogel arrays may also be utilized, for example, in windows of refrigerators and ovens, or in the walls and doors thereof or as the active material in detectors for analyzing high energy elementary particles or cosmic rays.

  20. Are the Most Prestigious Medical Journals Transparent Enough?

    PubMed

    Dal-Ré, Rafael

    2016-09-01

    The International Committee of Medical Journal Editors (ICMJE) has played a critical role in enhancing medical science reporting. Transparency in research is one of its most important objectives and the ICMJE has issued requirements for various stakeholders. However, ICMJE member journals have repeatedly failed to fully comply with a few transparency requirements. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. All-solution processed transparent organic light emitting diodes

    NASA Astrophysics Data System (ADS)

    Zhang, Min; Höfle, Stefan; Czolk, Jens; Mertens, Adrian; Colsmann, Alexander

    2015-11-01

    In this work, we report on indium tin oxide-free, all-solution processed transparent organic light emitting diodes (OLEDs) with inverted device architecture. Conductive polymer layers are employed as both transparent cathodes and transparent anodes, with the top anodes having enhanced conductivities from a supporting stochastic silver nanowire mesh. Both electrodes exhibit transmittances of 80-90% in the visible spectral regime. Upon the incorporation of either yellow- or blue-light emitting fluorescent polymers, the OLEDs show low onset voltages, demonstrating excellent charge carrier injection from the polymer electrodes into the emission layers. Overall luminances and current efficiencies equal the performance of opaque reference OLEDs with indium tin oxide and aluminium electrodes, proving excellent charge carrier-to-light conversion within the device.

  2. Ground to Grits. Scientific Concepts in Nutrition/Agriculture.

    ERIC Educational Resources Information Center

    Cain, Peggy W.; And Others

    This curriculum guide presents an activity-oriented program designed to give students experiences that will help them understand concepts concerning the relationship between science, agriculture, and nutritional needs. Covered in the six units of the guide are reasons for eating certain foods (taste and smell); the nature of food (the concept of…

  3. Friend or foe: exploiting sensor failures for transparent object localization and classification

    NASA Astrophysics Data System (ADS)

    Seib, Viktor; Barthen, Andreas; Marohn, Philipp; Paulus, Dietrich

    2017-02-01

    In this work we address the problem of detecting and recognizing transparent objects using depth images from an RGB-D camera. Using this type of sensor usually prohibits the localization of transparent objects since the structured light pattern of these cameras is not reflected by transparent surfaces. Instead, transparent surfaces often appear as undefined values in the resulting images. However, these erroneous sensor readings form characteristic patterns that we exploit in the presented approach. The sensor data is fed into a deep convolutional neural network that is trained to classify and localize drinking glasses. We evaluate our approach with four different types of transparent objects. To our best knowledge, no datasets offering depth images of transparent objects exist so far. With this work we aim at closing this gap by providing our data to the public.

  4. Optically Transparent Microwave Polarizer Based On Quasi-Metallic Graphene.

    PubMed

    Grande, Marco; Bianco, Giuseppe Valerio; Vincenti, Maria Antonietta; de Ceglia, Domenico; Capezzuto, Pio; Scalora, Michael; D'Orazio, Antonella; Bruno, Giovanni

    2015-11-25

    In this paper, we report on the engineering and the realization of optically transparent graphene-based microwave devices using Chemical Vapour Deposition (CVD) graphene whose sheet resistance may be tailored down to values below 30 Ω/sq. In particular, we show that the process was successfully used to realize and characterize a simple, optically transparent graphene-based wire-grid polarizer at microwave frequencies (X band). The availability of graphene operating in a quasi-metallic region may allow the integration of graphene layers in several microwave components, thus leading to the realization of fully transparent (and flexible) microwave devices.

  5. Optically Transparent Microwave Polarizer Based On Quasi-Metallic Graphene

    PubMed Central

    Grande, Marco; Bianco, Giuseppe Valerio; Vincenti, Maria Antonietta; de Ceglia, Domenico; Capezzuto, Pio; Scalora, Michael; D’Orazio, Antonella; Bruno, Giovanni

    2015-01-01

    In this paper, we report on the engineering and the realization of optically transparent graphene-based microwave devices using Chemical Vapour Deposition (CVD) graphene whose sheet resistance may be tailored down to values below 30 Ω/sq. In particular, we show that the process was successfully used to realize and characterize a simple, optically transparent graphene-based wire-grid polarizer at microwave frequencies (X band). The availability of graphene operating in a quasi-metallic region may allow the integration of graphene layers in several microwave components, thus leading to the realization of fully transparent (and flexible) microwave devices. PMID:26603112

  6. WE-G-BRA-02: Visual Demonstrations of Medical Physics Concepts of Transmission Imaging for Resident Education.

    PubMed

    Sechopoulos, I

    2012-06-01

    To improve the radiology residents' understanding of medical physics concepts through visualization of physical phenomena. Several medical physics concepts in x-ray transmission imaging are relevant to many radiographic modalities, not only to planar radiography. Therefore, it is important that the diagnostic radiology residents obtain a good understanding of these concepts. However, standard PowerPoint slides or blackboard-based graphical representations are not always effective ways to communicate these novel concepts to the residents. To improve upon the understanding of these concepts, the computer, projector and screen in the lecture room are used as surrogates of an x-ray imaging system. The projector is the source of light (x-rays) with PowerPoint slides defining the pattern emitted (x-ray field) on to the projector screen (detector/monitor). Several different transparencies and acrylic objects are used to demonstrate varied medical physics phenomena relevant to transmission imaging, such as: straight-line travel of electromagnetic radiation; tissue superimposition; object, subject, image and display contrast; linear systems; point spread functions; frequency domain; contrast and modulation transfer functions; quantum and image noise; noise frequency and noise power spectrum; anatomical noise; magnification and geometric unsharpness; inverse square distance relationship; sampling and aliasing; and x-ray scatter. The residents' comprehension and ability to explain these concepts has substantially improved, in addition to their interest in these topics. This was reflected on improved test scores and on anonymous feedback surveys post- lectures. The use of demonstrations that mimic the conditions and physical phenomena found in transmission imaging by taking advantage of the projector and screen together with transparencies and other objects improves the residents' grasp of basic radiographic concepts and promotes live interactions between the residents and the

  7. Fully transparent and rollable electronics.

    PubMed

    Mativenga, Mallory; Geng, Di; Kim, Byungsoon; Jang, Jin

    2015-01-28

    Major obstacles toward the manufacture of transparent and flexible display screens include the difficulty of finding transparent and flexible semiconductors and electrodes, temperature restrictions of flexible plastic substrates, and bulging or warping of the flexible electronics during processing. Here we report the fabrication and performance of fully transparent and rollable thin-film transistor (TFT) circuits for display applications. The TFTs employ an amorphous indium-gallium-zinc oxide semiconductor (with optical band gap of 3.1 eV) and amorphous indium-zinc oxide transparent conductive electrodes, and are built on 15-μm-thick solution-processed colorless polyimide (CPI), resulting in optical transmittance >70% in the visible range. As the CPI supports processing temperatures >300 °C, TFT performance on plastic is similar to that on glass, with typical field-effect mobility, turn-on voltage, and subthreshold voltage swing of 12.7 ± 0.5 cm(2)/V·s, -1.7 ± 0.2 V, and 160 ± 29 mV/dec, respectively. There is no significant degradation after rolling the TFTs 100 times on a cylinder with a radius of 4 mm or when shift registers, each consisting of 40 TFTs, are operated while bent to a radius of 2 mm. For handling purposes, carrier glass is used during fabrication, together with a very thin (∼1 nm) solution-processed carbon nanotube (CNT)/graphene oxide (GO) backbone that is first spin-coated on the glass to decrease adhesion of the CPI to the glass; peel strength of the CPI from glass decreases from 0.43 to 0.10 N/cm, which eases the process of detachment performed after device fabrication. Given that the CNT/GO remains embedded under the CPI after detachment, it minimizes wrinkling and decreases the substrate's tensile elongation from 8.0% to 4.6%. Device performance is also stable under electrostatic discharge exposures up to 10 kV, as electrostatic charge can be released via the conducting CNTs.

  8. Free-Standing and Transparent Graphene Membrane of Polyhedron Box-Shaped Basic Building Units Directly Grown Using a NaCl Template for Flexible Transparent and Stretchable Solid-State Supercapacitors.

    PubMed

    Li, Na; Yang, Gongzheng; Sun, Yong; Song, Huawei; Cui, Hao; Yang, Guowei; Wang, Chengxin

    2015-05-13

    Transparency has never been integrated into freestanding flexible graphene paper (FF-GP), although FF-GP has been discussed extensively, because a thin transparent graphene sheet will fracture easily when the template or substrate is removed using traditional methods. Here, transparent FF-GP (FFT-GP) was developed using NaCl as the template and was applied in transparent and stretchable supercapacitors. The capacitance was improved by nearly 1000-fold compared with that of the laminated or wrinkled chemical vapor deposition graphene-film-based supercapacitors.

  9. Coca-Cola - a model of transparency in research partnerships? A network analysis of Coca-Cola's research funding (2008-2016).

    PubMed

    Serôdio, Paulo M; McKee, Martin; Stuckler, David

    2018-06-01

    To (i) evaluate the extent to which Coca-Cola's 'Transparency Lists' of 218 researchers that it funds are comprehensive; (ii) map all scientific research acknowledging funding from Coca-Cola; (iii) identify those institutions, authors and research topics funded by Coca-Cola; and (iv) use Coca-Cola's disclosure to gauge whether its funded researchers acknowledge the source of funding. Using Web of Science Core Collection database, we retrieved all studies declaring receipt of direct funding from the Coca-Cola brand, published between 2008 and 2016. Using conservative eligibility criteria, we iteratively removed studies and recreated Coca-Cola's transparency lists using our data. We used network analysis and structural topic modelling to assess the structure, organization and thematic focus of Coca-Cola's research enterprise, and string matching to evaluate the completeness of Coca-Cola's transparency lists. Three hundred and eighty-nine articles, published in 169 different journals, and authored by 907 researchers, cite funding from The Coca-Cola Company. Of these, Coca-Cola acknowledges funding forty-two authors (<5 %). We observed that the funded research focuses mostly on nutrition and emphasizes the importance of physical activity and the concept of 'energy balance'. The Coca-Cola Company appears to have failed to declare a comprehensive list of its research activities. Further, several funded authors appear to have failed to declare receipt of funding. Most of Coca-Cola's research support is directed towards physical activity and disregards the role of diet in obesity. Despite initiatives for greater transparency of research funding, the full scale of Coca-Cola's involvement is still not known.

  10. Transparency for international trade

    Treesearch

    K. R. Lakin; G. A. Fowler; W. D. Bailey; J. Cavey; P. Lehtonen

    2003-01-01

    U.S. Department of Agriculture - Animal and Plant Health Inspection Service - Plant Protection and Quarantine (USDA-APHIS-PPQ) has developed a Regulated Plant Pest List (RPPL). This provides trading partners with an official list of plant pests of concern to the U.S., along with providing greater transparency of Agency actions.

  11. Theory-driven design of hole-conducting transparent oxides

    NASA Astrophysics Data System (ADS)

    Trimarchi, G.; Peng, H.; Im, J.; Freeman, A. J.; Cloet, V.; Raw, A.; Poeppelmeier, K. R.; Biswas, K.; Lany, S.; Zunger, A.

    2012-02-01

    The design of p-type transparent conducting oxides (TCOs) aims at simultaneously achieving transparency and high hole concentration and hole conductivity in one compound. Such design principles (DPs) define a multi-objective optimization problem that is to be solved by searching a large set of compounds for optimum ones. Here, we screen a large set of ternary compounds, including Ag and Cu oxides and chalcogenides, by calculating via first-principles methods the design properties of each compound, in order to search for optimum p-type TCOs. We first select Ag3VO4 as a case study of the application of ab-initio methods to assess a compound as a candidate p-type TCO. We predict Ag3VO4 (i) to have a hole concentration of 10^14 cm-3 at room temperature, (ii) to be at the verge of transparency, and (iii) to have lower hole effective mass than the prototype p-type TCO CuAlO2. We then map the hole effective mass vs. the band gap in the selected compounds and determine those that best meet the DPs by having simultaneously minimum effective mass and a band gap large enough for transparency.

  12. Inventory transparency for agricultural produce through IOT

    NASA Astrophysics Data System (ADS)

    Srinivasan, S. P.; Sorna Shanthi, D.; Anand, Aashish V.

    2017-06-01

    Re-structuring the practices of traditional inventory management is becoming more essential to optimize the supply chain transparency and accuracy of agricultural produce. A flexible and transparent inventory management system is becoming the need of any agricultural commodity. It was noticed that the major setback for the farmers who are the suppliers of the farm produce is due to poor supply chain integration. The recent advent technologies and IT explosion can bring up a greater impact in the process of storing, tracking, distributing and monitoring perishable agriculture produce of day to day life. The primary focus of this paper is to integrate IoT into inventory management and other inbound logistics management of agriculture produce. The unique features of agricultural produce like a prediction of supply, demand, the location of warehouses, distribution and tracking of inventory can be integrated through IoT. This paper proposes a conceptual framework for inventory management transparency involved in the supply chain of agriculture produce.

  13. Photon number dependent group velocity in vacuum induced transparency

    NASA Astrophysics Data System (ADS)

    Lauk, Nikolai; Fleischhauer, Michael

    2015-05-01

    Vacuum induced transparency (VIT) is an effect which occurs in an ensemble of three level atoms in a Λ configuration that interact with two quantized fields. Coupling of one transition to a cavity mode induces transparency for the second field on the otherwise opaque transition similar to the well known EIT effect. In the strong coupling regime even an empty cavity leads to transparency, in contrast to EIT where the presence of a strong control field is required. This transparency is accompanied by a reduction of the group velocity for the propagating field. However, unlike in EIT the group velocity in VIT depends on the number of incoming photons, i.e. different photon number components propagate with different velocities. Here we investigate the possibility of using this effect to spatially separate different photon number components of an initially coherent pulse. We present the results of our calculations and discuss a possible experimental realization.

  14. Role-modeling and conversations about giving in the socialization of adolescent charitable giving and volunteering.

    PubMed

    Ottoni-Wilhelm, Mark; Estell, David B; Perdue, Neil H

    2014-01-01

    This study investigated the relationship between the monetary giving and volunteering behavior of adolescents and the role-modeling and conversations about giving provided by their parents. The participants are a large nationally-representative sample of 12-18 year-olds from the Panel Study of Income Dynamics' Child Development Supplement (n = 1244). Adolescents reported whether they gave money and whether they volunteered. In a separate interview parents reported whether they talked to their adolescent about giving. In a third interview, parents reported whether they gave money and volunteered. The results show that both role-modeling and conversations about giving are strongly related to adolescents' giving and volunteering. Knowing that both role-modeling and conversation are strongly related to adolescents' giving and volunteering suggests an often over-looked way for practitioners and policy-makers to nurture giving and volunteering among adults: start earlier, during adolescence, by guiding parents in their role-modeling of, and conversations about, charitable giving and volunteering. Copyright © 2013 The Foundation for Professionals in Services for Adolescents. Published by Elsevier Ltd. All rights reserved.

  15. Is the cosmic transparency spatially homogeneous?

    NASA Astrophysics Data System (ADS)

    Chen, Jun; Wu, Puxun; Yu, Hongwei; Li, Zhengxiang

    2012-10-01

    We study the constraints on the cosmic opacity using the latest BAO and Union2 SNIa data in this paper and find that the best fit values seem to indicate that an opaque universe is preferred in redshift regions 0.20-0.35, 0.35-0.44 and 0.60-0.73, whereas, a transparent universe is favored in redshift regions 0.106-0.20, 0.44-0.57 and 0.57-0.60. However, our result is still consistent with a transparent universe at the 1σ confidence level, even though the best-fit cosmic opacity oscillates between zero and some nonzero values as the redshift varies.

  16. Concept of Operations: Essence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hutton, William J.

    This concept of operations is designed to give the reader a brief overview of the National Rural Electric Cooperative Association’s Essence project and a description of the Essence device design. The data collected by the device, how the data are used, and how the data are protected are also discussed in this document.

  17. LEARNING NONADJACENT DEPENDENCIES IN PHONOLOGY: TRANSPARENT VOWELS IN VOWEL HARMONY

    PubMed Central

    Finley, Sara

    2015-01-01

    Nonadjacent dependencies are an important part of the structure of language. While the majority of syntactic and phonological processes occur at a local domain, there are several processes that appear to apply at a distance, posing a challenge for theories of linguistic structure. This article addresses one of the most common nonadjacent phenomena in phonology: transparent vowels in vowel harmony. Vowel harmony occurs when adjacent vowels are required to share the same phonological feature value (e.g. V+F C V+F). However, transparent vowels create a second-order nonadjacent pattern because agreement between two vowels can ‘skip’ the transparent neutral vowel in addition to consonants (e.g. V+F C VT−F C V+F). Adults are shown to display initial learning biases against second-order nonadjacency in experiments that use an artificial grammar learning paradigm. Experiments 1–3 show that adult learners fail to learn the second-order long-distance dependency created by the transparent vowel (as compared to a control condition). In experiments 4–5, training in terms of overall exposure as well as the frequency of relevant transparent items was increased. With adequate exposure, learners reliably generalize to novel words containing transparent vowels. The experiments suggest that learners are sensitive to the structure of phonological representations, even when learning occurs at a relatively rapid pace.* PMID:26146423

  18. Topics in nuclear chromodynamics: Color transparency and hadronization in the nucleus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brodsky, S.J.

    1988-03-01

    The nucleus plays two complimentary roles in quantum chromodynamics: (1) A nuclear target can be used as a control medium or background field to modify or probe quark and gluon subprocesses. Some novel examples are color transparency, the predicted transparency of the nucleus to hadrons participating in high momentum transfer exclusive reactions, and formation zone phenomena, the absence of hard, collinear, target-induced radiation by a quark or gluon interacting in a high momentum transfer inclusive reaction if its energy is large compared to a scale proportional to the length of the target. (Soft radiation and elastic initial state interactions inmore » the nucleus still occur.) Coalescence with co-moving spectators is discussed as a mechanism which can lead to increased open charm hadroproduction, but which also suppresses forward charmonium production (relative to lepton pairs) in heavy ion collisions. Also discussed are some novel features of nuclear diffractive amplitudes--high energy hadronic or electromagnetic reactions which leave the entire nucleus intact and give nonadditive contributions to the nuclear structure function at low /kappa cur//sub Bj/. (2) Conversely, the nucleus can be studied as a QCD structure. At short distances, nuclear wave functions and nuclear interactions necessarily involve hidden color, degrees of freedom orthogonal to the channels described by the usual nucleon or isobar degrees of freedom. At asymptotic momentum transfer, the deuteron form factor and distribution amplitude are rigorously calculable. One can also derive new types of testable scaling laws for exclusive nuclear amplitudes in terms of the reduced amplitude formalism.« less

  19. Physical impairment aware transparent optical networks

    NASA Astrophysics Data System (ADS)

    Antona, Jean-Christophe; Morea, Annalisa; Zami, Thierry; Leplingard, Florence

    2009-11-01

    As illustrated by optical fiber and optical amplification, optical telecommunications have appeared for the last ten years as one of the most promising candidates to increase the transmission capacities. More recently, the concept of optical transparency has been investigated and introduced: it consists of the optical routing of Wavelength Division Multiplexed (WDM) channels without systematic optoelectronic processing at nodes, as long as propagation impairments remain acceptable [1]. This allows achieving less power-consuming, more scalable and flexible networks, and today partial optical transparency has become a reality in deployed systems. However, because of the evolution of traffic features, optical networks are facing new challenges such as demand for higher transmitted capacity, further upgradeability, and more automation. Making all these evolutions compliant on the same current network infrastructure with a minimum of upgrades is one of the main issues for equipment vendors and operators. Hence, an automatic and efficient management of the network needs a control plan aware of the expected Quality of Transmission (QoT) of the connections to set-up with respect to numerous parameters such as: the services demanded by the customers in terms of protection/restoration; the modulation rate and format of the connection under test and also of its adjacent WDM channels; the engineering rules of the network elements traversed with an accurate knowledge of the associated physical impairments. Whatever the method and/or the technology used to collect this information, the issue about its accuracy is one of the main concerns of the network system vendors, because an inaccurate knowledge could yield a sub-optimal dimensioning and so additional costs when installing the network in the field. Previous studies [1], [2] illustrated the impact of this knowledge accuracy on the ability to predict the connection feasibility. After describing usual methods to build

  20. The Navigation Guide Systematic Review Methodology: A Rigorous and Transparent Method for Translating Environmental Health Science into Better Health Outcomes

    PubMed Central

    Sutton, Patrice

    2014-01-01

    Background: Synthesizing what is known about the environmental drivers of health is instrumental to taking prevention-oriented action. Methods of research synthesis commonly used in environmental health lag behind systematic review methods developed in the clinical sciences over the past 20 years. Objectives: We sought to develop a proof of concept of the “Navigation Guide,” a systematic and transparent method of research synthesis in environmental health. Discussion: The Navigation Guide methodology builds on best practices in research synthesis in evidence-based medicine and environmental health. Key points of departure from current methods of expert-based narrative review prevalent in environmental health include a prespecified protocol, standardized and transparent documentation including expert judgment, a comprehensive search strategy, assessment of “risk of bias,” and separation of the science from values and preferences. Key points of departure from evidence-based medicine include assigning a “moderate” quality rating to human observational studies and combining diverse evidence streams. Conclusions: The Navigation Guide methodology is a systematic and rigorous approach to research synthesis that has been developed to reduce bias and maximize transparency in the evaluation of environmental health information. Although novel aspects of the method will require further development and validation, our findings demonstrated that improved methods of research synthesis under development at the National Toxicology Program and under consideration by the U.S. Environmental Protection Agency are fully achievable. The institutionalization of robust methods of systematic and transparent review would provide a concrete mechanism for linking science to timely action to prevent harm. Citation: Woodruff TJ, Sutton P. 2014. The Navigation Guide systematic review methodology: a rigorous and transparent method for translating environmental health science into

  1. Embedded Ag Grid Electrodes as Current Collector for Ultraflexible Transparent Solid-State Supercapacitor.

    PubMed

    Xu, Jian-Long; Liu, Yan-Hua; Gao, Xu; Sun, Yilin; Shen, Su; Cai, Xinlei; Chen, Linsen; Wang, Sui-Dong

    2017-08-23

    Flexible transparent solid-state supercapacitors have attracted immerse attention for the power supply of next-generation flexible "see-through" or "invisible" electronics. For fabrication of such devices, high-performance flexible transparent current collectors are highly desired. In this paper, the utilization of embedded Ag grid transparent conductive electrodes (TCEs) fabricated by a facile soft ultraviolet imprinting lithography method combined with scrap techniques, as the current collector for flexible transparent solid-state supercapacitors, is demonstrated. The embedded Ag grid TCEs exhibit not only excellent optoelectronic properties (R S ∼ 2.0 Ω sq -1 and T ∼ 89.74%) but also robust mechanical properties, which could meet the conductivity, transparency, and flexibility needs of current collectors for flexible transparent supercapacitors. The obtained supercapacitor exhibits large specific capacitance, long cycling life, high optical transparency (T ∼ 80.58% at 550 nm), high flexibility, and high stability. Owing to the embedded Ag grid TCE structure, the device shows a slight capacitance loss of 2.6% even after 1000 cycles of repetitive bending for a bending radius of up to 2.0 mm. This paves the way for developing high-performance current collectors and thus flexible transparent energy storage devices, and their general applicability opens up opportunities for flexible transparent electronics.

  2. Feedback-giving behaviour in performance evaluations during clinical clerkships.

    PubMed

    Bok, Harold G J; Jaarsma, Debbie A D C; Spruijt, Annemarie; Van Beukelen, Peter; Van Der Vleuten, Cees P M; Teunissen, Pim W

    2016-01-01

    Narrative feedback documented in performance evaluations by the teacher, i.e. the clinical supervisor, is generally accepted to be essential for workplace learning. Many studies have examined factors of influence on the usage of mini-clinical evaluation exercise (mini-CEX) instruments and provision of feedback, but little is known about how these factors influence teachers' feedback-giving behaviour. In this study, we investigated teachers' use of mini-CEX in performance evaluations to provide narrative feedback in undergraduate clinical training. We designed an exploratory qualitative study using an interpretive approach. Focusing on the usage of mini-CEX instruments in clinical training, we conducted semi-structured interviews to explore teachers' perceptions. Between February and June 2013, we conducted interviews with 14 clinicians participated as teachers during undergraduate clinical clerkships. Informed by concepts from the literature, we coded interview transcripts and iteratively reduced and displayed data using template analysis. We identified three main themes of interrelated factors that influenced teachers' practice with regard to mini-CEX instruments: teacher-related factors; teacher-student interaction-related factors, and teacher-context interaction-related factors. Four issues (direct observation, relationship between teacher and student, verbal versus written feedback, formative versus summative purposes) that are pertinent to workplace-based performance evaluations were presented to clarify how different factors interact with each other and influence teachers' feedback-giving behaviour. Embedding performance observation in clinical practice and establishing trustworthy teacher-student relationships in more longitudinal clinical clerkships were considered important in creating a learning environment that supports and facilitates the feedback exchange. Teachers' feedback-giving behaviour within the clinical context results from the interaction

  3. Effect of sintering on transparent TiO2 18NR-T type thin films as the working electrode for transparent solar cells

    NASA Astrophysics Data System (ADS)

    Supriyanto, A.; Nandani; Wahyuningsih, S.; Ramelan, A. H.

    2018-03-01

    The working electrode based on semiconductor transparent TiO2 type 18NR-T for transparent solar cells have been grown by screen printing method. This study aim is to determine the effect of sintering on TiO2 thin films transparent as the working electrode of transparent solar cells. TiO2 films will be sintered at temperature 450°C, 500°C, 550°C and 600°C. TiO2 films optical properties were characterized using UV-Vis spectrophotometer, electrical properties were characterized using 4 point probemethods and the crystallization was characterized by X-Ray Diffraction (XRD). The lowest transmittance due to the treatment of annealing temperature variations is 550°C because the 550°C TiO2 layer is more absorbing. The peaks resulted from the annealing temperature treatment show that the high temperature the more anatase peaks. Characterization using four-point probe showed that the highest conductivity of TiO2 18NR-T thin film was 2.42 x 102 Ω-1m-1 at annealing temperature 550°C.

  4. Pediatric Price Transparency: Still Opaque With Opportunities for Improvement.

    PubMed

    Faherty, Laura J; Wong, Charlene A; Feingold, Jordyn; Li, Joan; Town, Robert; Fieldston, Evan; Werner, Rachel M

    2017-10-01

    Price transparency is gaining importance as families' portion of health care costs rise. We describe (1) online price transparency data for pediatric care on children's hospital Web sites and state-based price transparency Web sites, and (2) the consumer experience of obtaining an out-of-pocket estimate from children's hospitals for a common procedure. From 2015 to 2016, we audited 45 children's hospital Web sites and 38 state-based price transparency Web sites, describing availability and characteristics of health care prices and personalized cost estimate tools. Using secret shopper methodology, we called children's hospitals and submitted online estimate requests posing as a self-paying family requesting an out-of-pocket estimate for a tonsillectomy-adenoidectomy. Eight children's hospital Web sites (18%) listed prices. Twelve (27%) provided personalized cost estimate tool (online form n = 5 and/or phone number n = 9). All 9 hospitals with a phone number for estimates provided the estimated patient liability for a tonsillectomy-adenoidectomy (mean $6008, range $2622-$9840). Of the remaining 36 hospitals without a dedicated price estimate phone number, 21 (58%) provided estimates (mean $7144, range $1200-$15 360). Two of 4 hospitals with online forms provided estimates. Fifteen (39%) state-based Web sites distinguished between prices for pediatric and adult care. One had a personalized cost estimate tool. Meaningful prices for pediatric care were not widely available online through children's hospital or state-based price transparency Web sites. A phone line or online form for price estimates were effective strategies for hospitals to provide out-of-pocket price information. Opportunities exist to improve pediatric price transparency. Copyright © 2017 by the American Academy of Pediatrics.

  5. Strong-field adiabatic passage in the continuum: Electromagnetically induced transparency and stimulated Raman adiabatic passage

    NASA Astrophysics Data System (ADS)

    Eilam, A.; Shapiro, M.

    2012-01-01

    We present a fully quantum-mechanical theory of the mutual light-matter effects when two laser pulses interact with three discrete states coupled to a (quasi)continuum. Our formulation uses a single set of equations to describe the time dependence of the discrete and continuum populations, as well as pulse propagation in electromagnetically induced transparency (EIT) and stimulated Raman adiabatic passage (STIRAP) situations, for both weak and strong laser pulses. The theory gives a mechanistic picture of the “slowing down of light” and the state of spontaneously emitted photons during this process. Surprising features regarding the time dependence of material and radiative transients as well as limitations on quantum light storage and retrieval are unraveled.

  6. Telemetry: Summary of concept and rationale

    NASA Astrophysics Data System (ADS)

    1987-12-01

    This report presents the concept and supporting rationale for the telemetry system developed by the Consultative Committee for Space Data Systems (CCSDS). The concepts, protocols and data formats developed for the telemetry system are designed for flight and ground data systems supporting conventional, contemporary free-flyer spacecraft. Data formats are designed with efficiency as a primary consideration, i.e., format overhead is minimized. The results reflect the consensus of experts from many space agencies. An overview of the CCSDS telemetry system introduces the notion of architectural layering to achieve transparent and reliable delivery of scientific and engineering sensor data (generated aboard space vehicles) to users located in space or on earth. The system is broken down into two major conceptual categories: a packet telemetry concept and a telemetry channel coding concept. Packet telemetry facilitates data transmission from source to user in a standardized and highly automated manner. It provides a mechanism for implementing common data structures and protocols which can enhance the development and operation of space mission systems. Telemetry channel coding is a method by which data can be sent from a source to a destination by processing it in such a way that distinct messages are created which are easily distinguishable from one another. This allows construction of the data with low error probability, thus improving performance of the channel.

  7. Thermal modifications of root transparency and implications for aging: a pilot study.

    PubMed

    Gibelli, Daniele; De Angelis, Danilo; Rossetti, Francesca; Cappella, Annalisa; Frustaci, Michela; Magli, Francesca; Mazzarelli, Debora; Mazzucchi, Alessandra; Cattaneo, Cristina

    2014-01-01

    Root transparency has proven to be related to age and has been considered by different odontological methods for age estimation. Very little is known concerning possible variations of root transparency with heat, although the applicability of the method to burnt remains depends on the possible modifications of this specific variable. This pilot study presents the results of an experiment performed on 105 teeth obtained from dental patients and autopsy material, heated in an industrial oven at 50°C, 100°C, 150°C and 200°C. Root transparency was measured before and after the charring experiment. The heating process proved to radically modify root transparency, which decreased in 20% of samples at 50°C, in 34.6% at 100°C, in 50% at 150°C, in 77% at 200°C. The overall correlation index (CI) between decrease in root transparency and increase in temperature amounted to 0.96. These results show that heat may modify root transparency and suggest caution in using methods based on root transparency for age estimation. © 2013 American Academy of Forensic Sciences.

  8. Measurement of transparency ratios for protons from short-range correlated pairs

    NASA Astrophysics Data System (ADS)

    Hen, O.; Hakobyan, H.; Shneor, R.; Piasetzky, E.; Weinstein, L. B.; Brooks, W. K.; May-Tal Beck, S.; Gilad, S.; Korover, I.; Beck, A.; Adhikari, K. P.; Aghasyan, M.; Amaryan, M. J.; Anefalos Pereira, S.; Arrington, J. R.; Baghdasaryan, H.; Ball, J.; Battaglieri, M.; Batourine, V.; Bedlinskiy, I.; Biselli, A. S.; Bono, J.; Boiarinov, S.; Briscoe, W. J.; Burkert, V. D.; Carman, D. S.; Celentano, A.; Chandavar, S.; Cole, P. L.; Contalbrigo, M.; Crede, V.; D'Angelo, A.; Dashyan, N.; De Vita, R.; De Sanctis, E.; Deur, A.; Djalali, C.; Dodge, G. E.; Doughty, D.; Dupre, R.; Egiyan, H.; El Alaoui, A.; El Fassi, L.; Eugenio, P.; Fedotov, G.; Fegan, S.; Fleming, J. A.; Gabrielyan, M. Y.; Gevorgyan, N.; Gilfoyle, G. P.; Giovanetti, K. L.; Girod, F. X.; Goetz, J. T.; Gohn, W.; Golovatch, E.; Gothe, R. W.; Griffioen, K. A.; Guo, L.; Hafidi, K.; Harrison, N.; Heddle, D.; Hicks, K.; Holtrop, M.; Hyde, C. E.; Ilieva, Y.; Ireland, D. G.; Ishkhanov, B. S.; Isupov, E. L.; Jo, H. S.; Joo, K.; Keller, D.; Khandaker, M.; Khetarpal, P.; Kim, A.; Klein, F. J.; Koirala, S.; Kubarovsky, A.; Kubarovsky, V.; Kuhn, S. E.; Livingston, K.; Lu, H. Y.; MacGregor, I. J. D.; Martinez, D.; Mayer, M.; McKinnon, B.; Mineeva, T.; Mokeev, V.; Montgomery, R. A.; Moutarde, H.; Munevar, E.; Munoz Camacho, C.; Mustapha, B.; Nadel-Turonski, P.; Nasseripour, R.; Niccolai, S.; Niculescu, G.; Niculescu, I.; Osipenko, M.; Ostrovidov, A. I.; Pappalardo, L. L.; Paremuzyan, R.; Park, K.; Park, S.; Pasyuk, E.; Phelps, E.; Phillips, J. J.; Pisano, S.; Pivnyuk, N.; Pogorelko, O.; Pozdniakov, S.; Price, J. W.; Procureur, S.; Protopopescu, D.; Puckett, A. J. R.; Raue, B. A.; Rimal, D.; Ripani, M.; Ritchie, B. G.; Rosner, G.; Rossi, P.; Sabatié, F.; Saini, M. S.; Schott, D.; Schumacher, R. A.; Seraydaryan, H.; Sharabian, Y. G.; Smith, G. D.; Sober, D. I.; Sokhan, D.; Stepanyan, S. S.; Stepanyan, S.; Strauch, S.; Taiuti, M.; Tang, W.; Taylor, C. E.; Tian, Ye; Tkachenko, S.; Ungaro, M.; Vernarsky, B.; Vlassov, A.; Voskanyan, H.; Voutier, E.; Walford, N. K.; Watts, D. P.; Wood, M. H.; Zachariou, N.; Zana, L.; Zhang, J.; Zheng, X.; Zonta, I.

    2013-05-01

    Nuclear transparency, Tp (A), is a measure of the average probability for a struck proton to escape the nucleus without significant re-interaction. Previously, nuclear transparencies were extracted for quasi-elastic A (e ,e‧ p) knockout of protons with momentum below the Fermi momentum, where the spectral functions are well known. In this Letter we extract a novel observable, the transparency ratio, Tp (A) /Tp(12 C), for knockout of high-missing-momentum protons from the breakup of short-range correlated pairs (2N-SRC) in Al, Fe and Pb nuclei relative to C. The ratios were measured at momentum transfer Q2 ⩾ 1.5(GeV /c) 2 and xB ⩾ 1.2 where the reaction is expected to be dominated by electron scattering from 2N-SRC. The transparency ratios of the knocked-out protons coming from 2N-SRC breakup are 20-30% lower than those of previous results for low missing momentum. They agree with Glauber calculations and agree with renormalization of the previously published transparencies as proposed by recent theoretical investigations. The new transparencies scale as A - 1 / 3, which is consistent with dominance of scattering from nucleons at the nuclear surface.

  9. Digital photography and transparency-based methods for measuring wound surface area.

    PubMed

    Bhedi, Amul; Saxena, Atul K; Gadani, Ravi; Patel, Ritesh

    2013-04-01

    To compare and determine a credible method of measurement of wound surface area by linear, transparency, and photographic methods for monitoring progress of wound healing accurately and ascertaining whether these methods are significantly different. From April 2005 to December 2006, 40 patients (30 men, 5 women, 5 children) admitted to the surgical ward of Shree Sayaji General Hospital, Baroda, had clean as well as infected wound following trauma, debridement, pressure sore, venous ulcer, and incision and drainage. Wound surface areas were measured by these three methods (linear, transparency, and photographic methods) simultaneously on alternate days. The linear method is statistically and significantly different from transparency and photographic methods (P value <0.05), but there is no significant difference between transparency and photographic methods (P value >0.05). Photographic and transparency methods provided measurements of wound surface area with equivalent result and there was no statistically significant difference between these two methods.

  10. Thermally Diffused Al:ZnO Thin Films for Broadband Transparent Conductor.

    PubMed

    Tong, Chong; Yun, Juhyung; Chen, Yen-Jen; Ji, Dengxin; Gan, Qiaoqiang; Anderson, Wayne A

    2016-02-17

    Here, we report an approach to realize highly transparent low resistance Al-doped ZnO (AZO) films for broadband transparent conductors. Thin Al films are deposited on ZnO surfaces, followed by thermal diffusion processes, introducing the Al doping into ZnO thin films. By utilizing the interdiffusion of Al, Zn, and O, the chemical state of Al on the surfaces can be converted to a fully oxidized state, resulting in a low sheet resistance of 6.2 Ω/sq and an excellent transparency (i.e., 96.5% at 550 nm and higher than 85% up to 2500 nm), which is superior compared with some previously reported values for indium tin oxide, solution processed AZO, and many transparent conducting materials using novel nanostructures. Such AZO films are also applied as transparent conducting layers for AZO/Si heterojunction solar cells, demonstrating their applications in optoelectronic devices.

  11. Transparency has its limits. Questions arise about why the transparency-preaching Blues association is getting quiet about its members' fiscal results.

    PubMed

    Benko, Laura B

    2006-08-07

    The Blue Cross and Blue Shield Association was touting its plans' devotion to transparency last week, unveiling a database offering insight into a variety of healthcare trends. But some are doubting the Blues' sincerity, given the association's decision to withhold aggregate plan financial results. "It seems very inconsistent with their new emphasis on transparency and empowering people with information," says Bruce McPherson, left.

  12. Exoplanet Yield Estimation for Decadal Study Concepts using EXOSIMS

    NASA Astrophysics Data System (ADS)

    Morgan, Rhonda; Lowrance, Patrick; Savransky, Dmitry; Garrett, Daniel

    2016-01-01

    The anticipated upcoming large mission study concepts for the direct imaging of exo-earths present an exciting opportunity for exoplanet discovery and characterization. While these telescope concepts would also be capable of conducting a broad range of astrophysical investigations, the most difficult technology challenges are driven by the requirements for imaging exo-earths. The exoplanet science yield for these mission concepts will drive design trades and mission concept comparisons.To assist in these trade studies, the Exoplanet Exploration Program Office (ExEP) is developing a yield estimation tool that emphasizes transparency and consistent comparison of various design concepts. The tool will provide a parametric estimate of science yield of various mission concepts using contrast curves from physics-based model codes and Monte Carlo simulations of design reference missions using realistic constraints, such as solar avoidance angles, the observatory orbit, propulsion limitations of star shades, the accessibility of candidate targets, local and background zodiacal light levels, and background confusion by stars and galaxies. The python tool utilizes Dmitry Savransky's EXOSIMS (Exoplanet Open-Source Imaging Mission Simulator) design reference mission simulator that is being developed for the WFIRST Preliminary Science program. ExEP is extending and validating the tool for future mission concepts under consideration for the upcoming 2020 decadal review. We present a validation plan and preliminary yield results for a point design.

  13. Observation of electromagnetically induced transparency and absorption in Yttrium Iron Garnet loaded split ring resonator

    NASA Astrophysics Data System (ADS)

    Tay, Z. J.; Soh, W. T.; Ong, C. K.

    2018-04-01

    In this paper, we propose a new method of controlling microwave transmission from Electromagnetically Induced Absorption (EIA) to Electromagnetically Induced Transparency (EIT). EIA describes the state where the system strongly absorbs microwaves, whereas EIT describes the state in which the system is transparent to microwaves. Control is achieved via coupling of the 3 GHz photon mode of a metamaterial Split Ring Resonator (SRR) to the spin wave magnon modes of a Yttrium Iron Garnet (YIG) bulk. The system is described by a 2-body interaction matrix with an additional fitting parameter τ which takes into account the fact that the microstrip feed line could excite the SRR as well as the YIG. The parameter τ reveals the effect of geometry and shielding on the coupling behaviour and gives rise to unique physics. In low τ (τ ⩽ 2) configurations, only EIT is reported. However, in high τ (τ ≈ 10) configurations, EIA is reported. Furthermore, we report that the system can be easily changed from a low τ to high τ configuration by shielding the SRR from the microstrip with a thin metal piece. Varying the τ parameter through shielding is thus proposed as a new method of controlling the microwave transmission at the coupling region.

  14. Bioinspired Transparent Laminated Composite Film for Flexible Green Optoelectronics.

    PubMed

    Lee, Daewon; Lim, Young-Woo; Im, Hyeon-Gyun; Jeong, Seonju; Ji, Sangyoon; Kim, Yong Ho; Choi, Gwang-Mun; Park, Jang-Ung; Lee, Jung-Yong; Jin, Jungho; Bae, Byeong-Soo

    2017-07-19

    Herein, we report a new version of a bioinspired chitin nanofiber (ChNF) transparent laminated composite film (HCLaminate) made of siloxane hybrid materials (hybrimers) reinforced with ChNFs, which mimics the nanofiber-matrix structure of hierarchical biocomposites. Our HCLaminate is produced via vacuum bag compressing and subsequent UV-curing of the matrix resin-impregnated ChNF transparent paper (ChNF paper). It is worthwhile to note that this new type of ChNF-based transparent substrate film retains the strengths of the original ChNF paper and compensates for ChNF paper's drawbacks as a flexible transparent substrate. As a result, compared with high-performance synthetic plastic films, such as poly(ethylene terephthalate), poly(ether sulfone), poly(ethylene naphthalate), and polyimide, our HCLaminate is characterized to exhibit extremely smooth surface topography, outstanding optical clarity, high elastic modulus, high dimensional stability, etc. To prove our HCLaminate as a substrate film, we use it to fabricate flexible perovskite solar cells and a touch-screen panel. As far as we know, this work is the first to demonstrate flexible optoelectronics, such as flexible perovskite solar cells and a touch-screen panel, actually fabricated on a composite film made of ChNF. Given its desirable macroscopic properties, we envision our HCLaminate being utilized as a transparent substrate film for flexible green optoelectronics.

  15. [Part-time concepts in anaesthesia -example of a department of anaesthesiology at a university hospital in Germany].

    PubMed

    Höltje, Maike; Osthaus, W Alexander; Koppert, Wolfgang

    2015-05-01

    Part-time work concepts are requested for different reasons from an increasing number of employees. Despite this fact there are no systematic part-time work concepts published in the German literature, especially for physicians working in hospitals. This article describes background and circumstances of a part-time work concept which was established two years ago in a department of anaesthesiology at a university hospital in Germany. This concept considers needs of young families as well as older employees. We are convinced that a transparent part-time work concept is a good argument for job-seeking physicians when deciding for an employer. The benefit for the already employed colleagues has at least the same value. © Georg Thieme Verlag Stuttgart · New York.

  16. [Biometric bases: basic concepts of probability calculation].

    PubMed

    Dinya, E

    1998-04-26

    The author gives or outline of the basic concepts of probability theory. The bases of the event algebra, definition of the probability, the classical probability model and the random variable are presented.

  17. Demystifying patient price estimates. The advantages of transparency.

    PubMed

    Kane, Cheri S; Harvey, Gayla

    2015-05-01

    With the increase of high-deductible health plans, more consumers want to know the cost of their health care before they purchase services. A healthcare organization should formulate transparent price policies that: Fit with its intentions, processes, and goals. Ensure consumers are thoroughly educated about their financial responsibilities. Include the use of consumer pricing tools that help patients feel like empowered consumers. Reflect an enterprisewide culture of transparency.

  18. Collision Avoidance for Airport Traffic Concept Evaluation

    NASA Technical Reports Server (NTRS)

    Jones, Denise R.; Prinzel, Lawrence J., III; Otero, Sharon D.; Barker, Glover D.

    2009-01-01

    An initial Collision Avoidance for Airport Traffic (CAAT) concept for the Terminal Maneuvering Area (TMA) was evaluated in a simulation study at the National Aeronautics and Space Administration (NASA) Langley Research Center. CAAT is being designed to enhance surface situation awareness and provide cockpit alerts of potential conflicts during runway, taxi, and low altitude air-to-air operations. The purpose of the study was to evaluate the initial concept for an aircraft-based method of conflict detection and resolution (CD&R) in the TMA focusing on conflict detection algorithms and alerting display concepts. This paper gives an overview of the CD&R concept, simulation study, and test results.

  19. Transparent Conductive Ink for Additive Manufacturing

    NASA Technical Reports Server (NTRS)

    Patlan, X. J.; Rolin, T. D.

    2017-01-01

    NASA analyzes, tests, packages, and fabricates electrical, electronic, and electromechanical (EEE) parts. Nanotechnology is listed in NASA's Technology Roadmap as a key area to invest for further development.1 This research project focused on using nanotechnology to improve electroluminescent lighting in terms of additive manufacturing and to increase energy efficiency. Specifically, this project's goal was to produce a conductive but transparent printable ink that can be sprayed on any surface for use as one of the electrodes in electroluminescent device design. This innovative work is known as thick film dielectric electroluminescent (TDEL) technology. TDEL devices are used for "backlighting, illumination, and identification due to their tunable color output, scalability, and efficiency" (I.K. Small, T.D. Rolin, and A.D. Shields, "3D Printed Electroluminescent Light Panels," NASA Fiscal Year 2017 Center Innovation Fund Proposal, unpublished data, 2017). These devices use a 'front-to-back' printing method, where the substrate is the transparent layer, and the dielectric and phosphor are layered on top. This project is a first step in the process of creating a 3D printable 'back-to-front' electroluminescent device. Back-to-front 3D-printed devices are beneficial because they can be printed onto different substrates and embedded in different surfaces, and the substrate is not required to be transparent, all because the light is emitted from the top surface through the transparent conductor. Advances in this area will help further development of printing TDEL devices on an array of different surfaces. Figure 1 demonstrates the layering of the two electrodes that are aligned in a parallel plate capacitor structure (I.K. Small, T.D. Rolin, and A.D. Shields, "3D Printed Electroluminescent Light Panels," NASA Fiscal Year 2017 Center Innovation Fund Proposal, unpublished data, 2017). Voltage is applied across the device, and the subsequent electron excitation results in

  20. Flexible, transparent electrodes using carbon nanotubes

    PubMed Central

    2012-01-01

    We prepare thin single-walled carbon nanotube networks on a transparent and flexible substrate with different densities, using a very simple spray method. We measure the electric impedance at different frequencies Z(f) in the frequency range of 40 Hz to 20 GHz using two different methods: a two-probe method in the range up to 110 MHz and a coaxial (Corbino) method in the range of 10 MHz to 20 GHz. We measure the optical absorption and electrical conductivity in order to optimize the conditions for obtaining optimum performance films with both high electrical conductivity and transparency. We observe a square resistance of 1 to 8.5 kΩ for samples showing 65% to 85% optical transmittance, respectively. For some applications, we need flexibility and not transparency: for this purpose, we deposit a thick film of single-walled carbon nanotubes on a flexible silicone substrate by spray method from an aqueous suspension of carbon nanotubes in a surfactant (sodium dodecyl sulphate), thereby obtaining a flexible conducting electrode showing an electrical resistance as low as 200 Ω/sq. When stretching up to 10% and 20%, the electrical resistance increases slightly, recovering the initial value for small elongations up to 10%. We analyze the stretched and unstretched samples by Raman spectroscopy and observe that the breathing mode on the Raman spectra is highly sensitive to stretching. The high-energy Raman modes do not change, which indicates that no defects are introduced when stretching. Using this method, flexible conducting films that may be transparent are obtained just by employing a very simple spray method and can be deposited on any type or shape of surface. PMID:23074999

  1. Electromagnetically Induced Transparency In Rydberg Atomic Medium

    NASA Astrophysics Data System (ADS)

    Deng, Li; Cong, Lu; Chen, Ai-Xi

    2018-03-01

    Due to possessing big principal quantum number, Rydberg atom has some unique properties, for example: its radiative lifetime is long, dipole moment is large, and interaction between atoms is strong and so on. These properties make one pay attention to Rydberg atoms. In this paper we investigate the effects of Rydberg dipole-dipole interactions on electromagnetically induced transparency (EIT) schemes and group velocity in three-level systems of ladder type, which provides theoretical foundation for exploring the linear and nonlinear characteristics of light in a Rydberg electromagnetically-induced-transparency medium.

  2. Highly Transparent and Self-Extinguishing Nanofibrillated Cellulose-Monolayer Clay Nanoplatelet Hybrid Films.

    PubMed

    Ming, Siyi; Chen, Gang; He, Jiahao; Kuang, Yudi; Liu, Yu; Tao, Ruiqiang; Ning, Honglong; Zhu, Penghui; Liu, Yingyao; Fang, Zhiqiang

    2017-08-29

    A viable solution toward "green" optoelectronics is rooted in our ability to fabricate optoelectronics on transparent nanofibrillated cellulose (NFC) film substrates. However, the flammability of transparent NFC film poses a severe fire hazard in optoelectronic devices. Despite many efforts toward enhancing the fire-retardant features of transparent NFC film, making NFC film fire-retardant while maintaining its high transparency (≥90%) remains an ambitious objective. Herein, we combine NFC with NFC-dispersed monolayer clay nanoplatelets as a fire retardant to prepare highly transparent NFC-monolayer clay nanoplatelet hybrid films with a superb self-extinguishing behavior. Homogeneous and stable monolayer clay nanoplatelet dispersion was initially obtained by using NFC as a green dispersing agent with the assistance of ultrasonication and then used to blend with NFC to prepare highly transparent and self-extinguishing hybrid films by a water evaporation-induced self-assembly process. As the content of monolayer clay nanoplatelets increased from 5 wt % to 50 wt %, the obtained hybrid films presented enhanced self-extinguishing behavior (limiting oxygen index sharply increased from 21% to 96.5%) while retaining a ∼90% transparency at 600 nm. More significantly, the underlying mechanisms for the high transparency and excellent self-extinguishing behavior of these hybrid films with a clay nanoplatelet content of over 30 wt % were unveiled by a series of characterizations such as SEM, XRD, TGA, and limiting oxygen index tester. This work offers an alternative environmentally friendly, self-extinguishing, and highly transparent substrate to next-generation optoelectronics, and is aimed at providing a viable solution to environmental concerns that are caused by ever-increasing electronic waste.

  3. Concepts in solid tumor evolution.

    PubMed

    Sidow, Arend; Spies, Noah

    2015-04-01

    Evolutionary mechanisms in cancer progression give tumors their individuality. Cancer evolution is different from organismal evolution, however, and we discuss where concepts from evolutionary genetics are useful or limited in facilitating an understanding of cancer. Based on these concepts we construct and apply the simplest plausible model of tumor growth and progression. Simulations using this simple model illustrate the importance of stochastic events early in tumorigenesis, highlight the dominance of exponential growth over linear growth and differentiation, and explain the clonal substructure of tumors. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Investigating Novice and Expert Conceptions of Genetically Modified Organisms

    ERIC Educational Resources Information Center

    Potter, Lisa M.; Bissonnette, Sarah A.; Knight, Jonathan D.; Tanner, Kimberly D.

    2017-01-01

    The aspiration of biology education is to give students tools to apply knowledge learned in the classroom to everyday life. Genetic modification is a real-world biological concept that relies on an in-depth understanding of the molecular behavior of DNA and proteins. This study investigated undergraduate biology students' conceptions of…

  5. Transparent garnet ceramic scintillators for gamma-ray detection

    NASA Astrophysics Data System (ADS)

    Wang, Yimin; Baldoni, Gary; Rhodes, William H.; Brecher, Charles; Shah, Ananya; Shirwadkar, Urmila; Glodo, Jarek; Cherepy, Nerine; Payne, Stephen

    2012-10-01

    Lanthanide gallium/aluminum-based garnets have a great potential as host structures for scintillation materials for medical imaging. Particularly attractive features are their high density, chemical radiation stability and more importantly, their cubic structure and isotropic optical properties, which allow them to be fabricated into fully transparent, highperformance polycrystalline optical ceramics. Lutetium/gadolinium aluminum/gallium garnets (described by formulas ((Gd,Lu)3(Al,Ga)5O12:Ce, Gd3(Al,Ga)5O12:Ce and Lu3Al5O12:Pr)) feature high effective atomic number and good scintillation properties, which make them particularly attractive for Positron Emission Tomography (PET) and other γ- ray detection applications. The ceramic processing route offers an attractive alternative to single crystal growth for obtaining scintillator materials at relatively low temperatures and at a reasonable cost, with flexibility in dimension control as well as activator concentration adjustment. In this study, optically transparent polycrystalline ceramics mentioned above were prepared by the sintering-HIP approach, employing nano-sized starting powders. The properties and microstructures of the ceramics were controlled by varying the processing parameters during consolidation. Single-phase, high-density, transparent specimens were obtained after sintering followed by a pressure-assisted densification process, i.e. hot-isostatic-pressing. The transparent ceramics displayed high contact and distance transparency as well as high light yield as high as 60,000-65,000 ph/MeV under gamma-ray excitation, which is about 2 times that of a LSO:Ce single crystal. The excellent scintillation and optical properties make these materials promising candidates for medical imaging and γ-ray detection applications.

  6. Effect of annealing over optoelectronic properties of graphene based transparent electrodes

    NASA Astrophysics Data System (ADS)

    Yadav, Shriniwas; Kaur, Inderpreet

    2016-04-01

    Graphene, an atom-thick two dimensional graphitic material have led various fundamental breakthroughs in the field of science and technology. Due to their exceptional optical, physical and electrical properties, graphene based transparent electrodes have shown several applications in organic light emitting diodes, solar cells and thin film transistors. Here, we are presenting effect of annealing over optoelectronic properties of graphene based transparent electrodes. Graphene based transparent electrodes have been prepared by wet chemical approach over glass substrates. After fabrication, these electrodes tested for optical transmittance in visible region. Sheet resistance was measured using four probe method. Effect of thermal annealing at 200 °C was studied over optical and electrical performance of these electrodes. Optoelectronic performance was judged from ratio of direct current conductivity to optical conductivity (σdc/σopt) as a figure of merit for transparent conductors. The fabricated electrodes display good optical and electrical properties. Such electrodes can be alternatives for doped metal oxide based transparent electrodes.

  7. Water-based metamaterial absorbers for optical transparency and broadband microwave absorption

    NASA Astrophysics Data System (ADS)

    Pang, Yongqiang; Shen, Yang; Li, Yongfeng; Wang, Jiafu; Xu, Zhuo; Qu, Shaobo

    2018-04-01

    Naturally occurring water is a promising candidate for achieving broadband absorption. In this work, by virtue of the optically transparent character of the water, the water-based metamaterial absorbers (MAs) are proposed to achieve the broadband absorption at microwave frequencies and optical transparence simultaneously. For this purpose, the transparent indium tin oxide (ITO) and polymethyl methacrylate (PMMA) are chosen as the constitutive materials. The water is encapsulated between the ITO backed plate and PMMA, serving as the microwave loss as well as optically transparent material. Numerical simulations show that the broadband absorption with the efficiency over 90% in the frequency band of 6.4-30 GHz and highly optical transparency of about 85% in the visible region can be achieved and have been well demonstrated experimentally. Additionally, the proposed water-based MA displays a wide-angle absorption performance for both TE and TM waves and is also robust to the variations of the structure parameters, which is much desired in a practical application.

  8. 47 CFR 8.3 - Transparency.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... FEDERAL COMMUNICATIONS COMMISSION GENERAL PRESERVING THE OPEN INTERNET § 8.3 Transparency. A person engaged in the provision of broadband Internet access service shall publicly disclose accurate information regarding the network management practices, performance, and commercial terms of its broadband Internet...

  9. 47 CFR 8.3 - Transparency.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... FEDERAL COMMUNICATIONS COMMISSION GENERAL PRESERVING THE OPEN INTERNET § 8.3 Transparency. A person engaged in the provision of broadband Internet access service shall publicly disclose accurate information regarding the network management practices, performance, and commercial terms of its broadband Internet...

  10. 47 CFR 8.3 - Transparency.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... FEDERAL COMMUNICATIONS COMMISSION GENERAL PRESERVING THE OPEN INTERNET § 8.3 Transparency. A person engaged in the provision of broadband Internet access service shall publicly disclose accurate information regarding the network management practices, performance, and commercial terms of its broadband Internet...

  11. 47 CFR 8.3 - Transparency.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... FEDERAL COMMUNICATIONS COMMISSION GENERAL PRESERVING THE OPEN INTERNET § 8.3 Transparency. A person engaged in the provision of broadband Internet access service shall publicly disclose accurate information regarding the network management practices, performance, and commercial terms of its broadband Internet...

  12. Thin-film transistor fabricated in single-crystalline transparent oxide semiconductor.

    PubMed

    Nomura, Kenji; Ohta, Hiromichi; Ueda, Kazushige; Kamiya, Toshio; Hirano, Masahiro; Hosono, Hideo

    2003-05-23

    We report the fabrication of transparent field-effect transistors using a single-crystalline thin-film transparent oxide semiconductor, InGaO3(ZnO)5, as an electron channel and amorphous hafnium oxide as a gate insulator. The device exhibits an on-to-off current ratio of approximately 106 and a field-effect mobility of approximately 80 square centimeters per volt per second at room temperature, with operation insensitive to visible light irradiation. The result provides a step toward the realization of transparent electronics for next-generation optoelectronics.

  13. Synthesis of transparent nanocomposite monoliths for gamma scintillation

    NASA Astrophysics Data System (ADS)

    Liu, Chao; Hajagos, Tibor J.; Kishpaugh, David; Jin, Yunxia; Hu, Wei; Chen, Qi; Pei, Qibing

    2015-08-01

    During the past decade, inorganic nanoparticles/polymer nanocomposites have been intensively studied to provide a low cost, high performance alternative for gamma scintillation. However, the aggregation of nanoparticles often occurs even at low nanoparticle concentrations and thus deteriorates the transparency and performance of these nanocomposite scintillators. Here we report an efficient fabrication protocol of transparent nanocomposite monoliths based on surface modified hafnium oxide nanoparticles. Using hafnium oxide nanoparticles with surface-grafted methacrylate groups, highly transparent bulk-size nanocomposite monoliths (2 mm thick, transmittance at 550 nm >75%) are fabricated with nanoparticle loadings up to 40 wt% (net hafnium wt% up to 28.5%). These nanocomposite monoliths of 1 cm diameter and 2 mm thickness are capable of producing a full energy photopeak for 662 keV gamma rays, with the best deconvoluted photopeak energy resolution reaching 8%.

  14. Solving the Controversy on the Wetting Transparency of Graphene.

    PubMed

    Kim, Donggyu; Pugno, Nicola M; Buehler, Markus J; Ryu, Seunghwa

    2015-10-26

    Since its discovery, the wetting transparency of graphene, the transmission of the substrate wetting property over graphene coating, has gained significant attention due to its versatility for potential applications. Yet, there have been debates on the interpretation and validity of the wetting transparency. Here, we present a theory taking two previously disregarded factors into account and elucidate the origin of the partial wetting transparency. We show that the liquid bulk modulus is crucial to accurately calculate the van der Waals interactions between the liquid and the surface, and that various wetting states on rough surfaces must be considered to understand a wide range of contact angle measurements that cannot be fitted with a theory considering the flat surface. In addition, we reveal that the wetting characteristic of the substrate almost vanishes when covered by any coating as thick as graphene double layers. Our findings reveal a more complete picture of the wetting transparency of graphene as well as other atomically thin coatings, and can be applied to study various surface engineering problems requiring wettability-tuning.

  15. Solving the Controversy on the Wetting Transparency of Graphene

    PubMed Central

    Kim, Donggyu; Pugno, Nicola M.; Buehler, Markus J.; Ryu, Seunghwa

    2015-01-01

    Since its discovery, the wetting transparency of graphene, the transmission of the substrate wetting property over graphene coating, has gained significant attention due to its versatility for potential applications. Yet, there have been debates on the interpretation and validity of the wetting transparency. Here, we present a theory taking two previously disregarded factors into account and elucidate the origin of the partial wetting transparency. We show that the liquid bulk modulus is crucial to accurately calculate the van der Waals interactions between the liquid and the surface, and that various wetting states on rough surfaces must be considered to understand a wide range of contact angle measurements that cannot be fitted with a theory considering the flat surface. In addition, we reveal that the wetting characteristic of the substrate almost vanishes when covered by any coating as thick as graphene double layers. Our findings reveal a more complete picture of the wetting transparency of graphene as well as other atomically thin coatings, and can be applied to study various surface engineering problems requiring wettability-tuning. PMID:26496835

  16. Impact of data transparency: Scientific publications

    PubMed Central

    Joshi, Mohit; Bhardwaj, Payal

    2018-01-01

    Data transparency has been an important aspect of medical research as it helps in enabling evidence-based decisions in medicine which leads to foster trust among the patients and research community alike. Currently, it is one of the key talking points owing to a number of initiatives taken by the pharmaceutical organizations, regulatory bodies, and the other decision enablers of the industry. Thanks to this, there are a number of ways by which a single piece of datum is available through multiple access points, namely, clinical trial disclosures (CTDs), clinical study reports (CSRs), plain language summaries, and scientific publications including abstracts, posters, and manuscripts, to name a few. This may pose a burden of documentation on the pharmaceutical organizations, demanding downsizing of medical writing documents. Since CTDs, CSRs, and other regulatory document are more or less template driven; there may not be much scope to interfere with their structure and submission timings. Scientific publications, on the other hand, provide the flexibility of presenting the clinical data that is typically not dependent on a particular format and timelines. The present paper discusses how the upcoming data transparency initiatives could affect the publication practices across the pharmaceutical industry and what could pharmaceutical companies do to get the maximum benefit out of the data transparency initiatives. PMID:29430415

  17. Impact of data transparency: Scientific publications.

    PubMed

    Joshi, Mohit; Bhardwaj, Payal

    2018-01-01

    Data transparency has been an important aspect of medical research as it helps in enabling evidence-based decisions in medicine which leads to foster trust among the patients and research community alike. Currently, it is one of the key talking points owing to a number of initiatives taken by the pharmaceutical organizations, regulatory bodies, and the other decision enablers of the industry. Thanks to this, there are a number of ways by which a single piece of datum is available through multiple access points, namely, clinical trial disclosures (CTDs), clinical study reports (CSRs), plain language summaries, and scientific publications including abstracts, posters, and manuscripts, to name a few. This may pose a burden of documentation on the pharmaceutical organizations, demanding downsizing of medical writing documents. Since CTDs, CSRs, and other regulatory document are more or less template driven; there may not be much scope to interfere with their structure and submission timings. Scientific publications, on the other hand, provide the flexibility of presenting the clinical data that is typically not dependent on a particular format and timelines. The present paper discusses how the upcoming data transparency initiatives could affect the publication practices across the pharmaceutical industry and what could pharmaceutical companies do to get the maximum benefit out of the data transparency initiatives.

  18. Wave-mixing-induced transparency with zero phase shift in atomic vapors

    NASA Astrophysics Data System (ADS)

    Zhou, F.; Zhu, C. J.; Li, Y.

    2017-12-01

    We present a wave-mixing induced transparency that can lead to a hyper-Raman gain-clamping effect. This new type of transparency is originated from a dynamic gain cancellation effect in a multiphoton process where a highly efficient light field of new frequency is generated and amplified. We further show that this novel dynamic gain cancellation effect not only makes the medium transparent to a probe light field at appropriate frequency but also eliminates the probe field propagation phase shift. This gain-cancellation-based induced transparency holds for many potential applications on optical communication and may lead to effective suppression of parasitic Raman/hyper-Raman noise field generated in high intensity optical fiber transmissions.

  19. A concept analysis of forensic risk.

    PubMed

    Kettles, A M

    2004-08-01

    Forensic risk is a term used in relation to many forms of clinical practice, such as assessment, intervention and management. Rarely is the term defined in the literature and as a concept it is multifaceted. Concept analysis is a method for exploring and evaluating the meaning of words. It gives precise definitions, both theoretical and operational, for use in theory, clinical practice and research. A concept analysis provides a logical basis for defining terms through providing defining attributes, case examples (model, contrary, borderline, related), antecedents and consequences and the implications for nursing. Concept analysis helps us to refine and define a concept that derives from practice, research or theory. This paper will use the strategy of concept analysis to find a working definition for the concept of forensic risk. In conclusion, the historical background and literature are reviewed using concept analysis to bring the term into focus and to define it more clearly. Forensic risk is found to derive both from forensic practice and from risk theory. A proposed definition of forensic risk is given.

  20. Design Parameters for Subwavelength Transparent Conductive Nanolattices

    DOE PAGES

    Diaz Leon, Juan J.; Feigenbaum, Eyal; Kobayashi, Nobuhiko P.; ...

    2017-09-29

    Recent advancements with the directed assembly of block copolymers have enabled the fabrication over cm 2 areas of highly ordered metal nanowire meshes, or nanolattices, which are of significant interest as transparent electrodes. Compared to randomly dispersed metal nanowire networks that have long been considered the most promising next-generation transparent electrode material, such ordered nanolattices represent a new design paradigm that is yet to be optimized. Here in this paper, through optical and electrical simulations, we explore the potential design parameters for such nanolattices as transparent conductive electrodes, elucidating relationships between the nanowire dimensions, defects, and the nanolattices’ conductivity andmore » transmissivity. We find that having an ordered nanowire network significantly decreases the length of nanowires required to attain both high transmissivity and high conductivity, and we quantify the network’s tolerance to defects in relation to other design constraints. Furthermore, we explore how both optical and electrical anisotropy can be introduced to such nanolattices, opening an even broader materials design space and possible set of applications.« less

  1. Graphene-Based Flexible and Transparent Tunable Capacitors.

    PubMed

    Man, Baoyuan; Xu, Shicai; Jiang, Shouzheng; Liu, Aihua; Gao, Shoubao; Zhang, Chao; Qiu, Hengwei; Li, Zhen

    2015-12-01

    We report a kind of electric field tunable transparent and flexible capacitor with the structure of graphene-Bi1.5MgNb1.5O7 (BMN)-graphene. The graphene films with low sheet resistance were grown by chemical vapor deposition. The BMN thin films were fabricated on graphene by using laser molecular beam epitaxy technology. Compared to BMN films grown on Au, the samples on graphene substrates show better quality in terms of crystallinity, surface morphology, leakage current, and loss tangent. By transferring another graphene layer, we fabricated flexible and transparent capacitors with the structure of graphene-BMN-graphene. The capacitors show a large dielectric constant of 113 with high dielectric tunability of ~40.7 % at a bias field of 1.0 MV/cm. Also, the capacitor can work stably in the high bending condition with curvature radii as low as 10 mm. This flexible film capacitor has a high optical transparency of ~90 % in the visible light region, demonstrating their potential application for a wide range of flexible electronic devices.

  2. Design Parameters for Subwavelength Transparent Conductive Nanolattices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Diaz Leon, Juan J.; Feigenbaum, Eyal; Kobayashi, Nobuhiko P.

    Recent advancements with the directed assembly of block copolymers have enabled the fabrication over cm 2 areas of highly ordered metal nanowire meshes, or nanolattices, which are of significant interest as transparent electrodes. Compared to randomly dispersed metal nanowire networks that have long been considered the most promising next-generation transparent electrode material, such ordered nanolattices represent a new design paradigm that is yet to be optimized. Here in this paper, through optical and electrical simulations, we explore the potential design parameters for such nanolattices as transparent conductive electrodes, elucidating relationships between the nanowire dimensions, defects, and the nanolattices’ conductivity andmore » transmissivity. We find that having an ordered nanowire network significantly decreases the length of nanowires required to attain both high transmissivity and high conductivity, and we quantify the network’s tolerance to defects in relation to other design constraints. Furthermore, we explore how both optical and electrical anisotropy can be introduced to such nanolattices, opening an even broader materials design space and possible set of applications.« less

  3. Transparent and Self-Supporting Graphene Films with Wrinkled- Graphene-Wall-Assembled Opening Polyhedron Building Blocks for High Performance Flexible/Transparent Supercapacitors.

    PubMed

    Li, Na; Huang, Xuankai; Zhang, Haiyan; Li, Yunyong; Wang, Chengxin

    2017-03-22

    Improving mass loading while maintaining high transparency and large surface area in one self-supporting graphene film is still a challenge. Unfortunately, all of these factors are absolutely essential for enhancing the energy storage performance of transparent supercapacitors for practical applications. To solve the above bottleneck problem, we produce a novel self-supporting flexible and transparent graphene film (STF-GF) with wrinkled-wall-assembled opened-hollow polyhedron building units. Taking advantage of the microscopic morphology, the STF-GF exhibits improved mass loading with high transmittance (70.2% at 550 nm), a large surface area (1105.6 m 2 /g), and good electrochemical performance: high energy (552.3 μWh/cm 3 ), power densities (561.9 mW/cm 3 ), a superlong cycle life, and good cycling stability (the capacitance retention is ∼94.8% after 20,000 cycles).

  4. Orthographic Transparency Enhances Morphological Segmentation in Children Reading Hebrew Words.

    PubMed

    Haddad, Laurice; Weiss, Yael; Katzir, Tami; Bitan, Tali

    2017-01-01

    Morphological processing of derived words develops simultaneously with reading acquisition. However, the reader's engagement in morphological segmentation may depend on the language morphological richness and orthographic transparency, and the readers' reading skills. The current study tested the common idea that morphological segmentation is enhanced in non-transparent orthographies to compensate for the absence of phonological information. Hebrew's rich morphology and the dual version of the Hebrew script (with and without diacritic marks) provides an opportunity to study the interaction of orthographic transparency and morphological segmentation on the development of reading skills in a within-language design. Hebrew speaking 2nd ( N = 27) and 5th ( N = 29) grade children read aloud 96 noun words. Half of the words were simple mono-morphemic words and half were bi-morphemic derivations composed of a productive root and a morphemic pattern. In each list half of the words were presented in the transparent version of the script (with diacritic marks), and half in the non-transparent version (without diacritic marks). Our results show that in both groups, derived bi-morphemic words were identified more accurately than mono-morphemic words, but only for the transparent, pointed, script. For the un-pointed script the reverse was found, namely, that bi-morphemic words were read less accurately than mono-morphemic words, especially in second grade. Second grade children also read mono-morphemic words faster than bi-morphemic words. Finally, correlations with a standardized measure of morphological awareness were found only for second grade children, and only in bi-morphemic words. These results, showing greater morphological effects in second grade compared to fifth grade children suggest that for children raised in a language with a rich morphology, common and easily segmented morphemic units may be more beneficial for younger compared to older readers. Moreover, in

  5. Orthographic Transparency Enhances Morphological Segmentation in Children Reading Hebrew Words

    PubMed Central

    Haddad, Laurice; Weiss, Yael; Katzir, Tami; Bitan, Tali

    2018-01-01

    Morphological processing of derived words develops simultaneously with reading acquisition. However, the reader’s engagement in morphological segmentation may depend on the language morphological richness and orthographic transparency, and the readers’ reading skills. The current study tested the common idea that morphological segmentation is enhanced in non-transparent orthographies to compensate for the absence of phonological information. Hebrew’s rich morphology and the dual version of the Hebrew script (with and without diacritic marks) provides an opportunity to study the interaction of orthographic transparency and morphological segmentation on the development of reading skills in a within-language design. Hebrew speaking 2nd (N = 27) and 5th (N = 29) grade children read aloud 96 noun words. Half of the words were simple mono-morphemic words and half were bi-morphemic derivations composed of a productive root and a morphemic pattern. In each list half of the words were presented in the transparent version of the script (with diacritic marks), and half in the non-transparent version (without diacritic marks). Our results show that in both groups, derived bi-morphemic words were identified more accurately than mono-morphemic words, but only for the transparent, pointed, script. For the un-pointed script the reverse was found, namely, that bi-morphemic words were read less accurately than mono-morphemic words, especially in second grade. Second grade children also read mono-morphemic words faster than bi-morphemic words. Finally, correlations with a standardized measure of morphological awareness were found only for second grade children, and only in bi-morphemic words. These results, showing greater morphological effects in second grade compared to fifth grade children suggest that for children raised in a language with a rich morphology, common and easily segmented morphemic units may be more beneficial for younger compared to older readers. Moreover

  6. Exploiting both optical and electrical anisotropy in nanowire electrodes for higher transparency.

    PubMed

    Dong, Jianjin; Goldthorpe, Irene A

    2018-01-26

    Transparent electrodes such as indium tin oxide and random meshes of silver nanowires (AgNWs) have isotropic in-plane properties. However, we show that imparting some alignment to AgNWs can create anisotropic transparency and electrical conductivity characteristics that may benefit many applications. For example, liquid crystal displays and the touch sensors on top of them often only need to be transparent to one type of polarized light as well as predominantly conductive in only one direction. Herein, AgNWs are slightly preferentially aligned during their deposition by rod coating. Compared to randomly oriented AgNW films, the alignment boosts the transparency to perpendicularly polarized light, as well as achieves a higher transparency for a given sheet resistance in one direction compared to randomly oriented AgNWs films. These factors together increase the transparency of a 16 Ω/sq electrode by 7.3 percentage points. The alignment technique is cheap and scalable, compatible with roll-to-roll processes, and most importantly does not require extra processing steps, as rod coating is already a standard process for AgNW electrode fabrication.

  7. Exploiting both optical and electrical anisotropy in nanowire electrodes for higher transparency

    NASA Astrophysics Data System (ADS)

    Dong, Jianjin; Goldthorpe, Irene A.

    2018-01-01

    Transparent electrodes such as indium tin oxide and random meshes of silver nanowires (AgNWs) have isotropic in-plane properties. However, we show that imparting some alignment to AgNWs can create anisotropic transparency and electrical conductivity characteristics that may benefit many applications. For example, liquid crystal displays and the touch sensors on top of them often only need to be transparent to one type of polarized light as well as predominantly conductive in only one direction. Herein, AgNWs are slightly preferentially aligned during their deposition by rod coating. Compared to randomly oriented AgNW films, the alignment boosts the transparency to perpendicularly polarized light, as well as achieves a higher transparency for a given sheet resistance in one direction compared to randomly oriented AgNWs films. These factors together increase the transparency of a 16 Ω/sq electrode by 7.3 percentage points. The alignment technique is cheap and scalable, compatible with roll-to-roll processes, and most importantly does not require extra processing steps, as rod coating is already a standard process for AgNW electrode fabrication.

  8. Transparent air filter for high-efficiency PM2.5 capture.

    PubMed

    Liu, Chong; Hsu, Po-Chun; Lee, Hyun-Wook; Ye, Meng; Zheng, Guangyuan; Liu, Nian; Li, Weiyang; Cui, Yi

    2015-02-16

    Particulate matter (PM) pollution has raised serious concerns for public health. Although outdoor individual protection could be achieved by facial masks, indoor air usually relies on expensive and energy-intensive air-filtering devices. Here, we introduce a transparent air filter for indoor air protection through windows that uses natural passive ventilation to effectively protect the indoor air quality. By controlling the surface chemistry to enable strong PM adhesion and also the microstructure of the air filters to increase the capture possibilities, we achieve transparent, high air flow and highly effective air filters of ~90% transparency with >95.00% removal of PM2.5 under extreme hazardous air-quality conditions (PM2.5 mass concentration >250 μg m(-3)). A field test in Beijing shows that the polyacrylonitrile transparent air filter has the best PM2.5 removal efficiency of 98.69% at high transmittance of ~77% during haze occurrence.

  9. Transparent air filter for high-efficiency PM2.5 capture

    NASA Astrophysics Data System (ADS)

    Liu, Chong; Hsu, Po-Chun; Lee, Hyun-Wook; Ye, Meng; Zheng, Guangyuan; Liu, Nian; Li, Weiyang; Cui, Yi

    2015-02-01

    Particulate matter (PM) pollution has raised serious concerns for public health. Although outdoor individual protection could be achieved by facial masks, indoor air usually relies on expensive and energy-intensive air-filtering devices. Here, we introduce a transparent air filter for indoor air protection through windows that uses natural passive ventilation to effectively protect the indoor air quality. By controlling the surface chemistry to enable strong PM adhesion and also the microstructure of the air filters to increase the capture possibilities, we achieve transparent, high air flow and highly effective air filters of ~90% transparency with >95.00% removal of PM2.5 under extreme hazardous air-quality conditions (PM2.5 mass concentration >250 μg m-3). A field test in Beijing shows that the polyacrylonitrile transparent air filter has the best PM2.5 removal efficiency of 98.69% at high transmittance of ~77% during haze occurrence.

  10. Two-dimensional materials based transparent flexible electronics

    NASA Astrophysics Data System (ADS)

    Yu, Lili; Ha, Sungjae; El-Damak, Dina; McVay, Elaine; Ling, Xi; Chandrakasan, Anantha; Kong, Jing; Palacios, Tomas

    2015-03-01

    Two-dimensional (2D) materials have generated great interest recently as a set of tools for electronics, as these materials can push electronics beyond traditional boundaries. These materials and their heterostructures offer excellent mechanical flexibility, optical transparency, and favorable transport properties for realizing electronic, sensing, and optical systems on arbitrary surfaces. These thin, lightweight, bendable, highly rugged and low-power devices may bring dramatic changes in information processing, communications and human-electronic interaction. In this report, for the first time, we demonstrate two complex transparent flexible systems based on molybdenum disulfide (MoS2) grown by chemical vapor method: a transparent active-matrix organic light-emitting diode (AMOLED) display and a MoS2 wireless link for sensor nodes. The 1/2 x 1/2 square inch, 4 x 5 pixels AMOLED structures are built on transparent substrates, containing MoS2 back plane circuit and OLEDs integrated on top of it. The back plane circuit turns on and off the individual pixel with two MoS2 transistors and a capacitor. The device is designed and fabricated based on SPICE simulation to achieve desired DC and transient performance. We have also demonstrated a MoS2 wireless self-powered sensor node. The system consists of as energy harvester, rectifier, sensor node and logic units. AC signals from the environment, such as near-field wireless power transfer, piezoelectric film and RF signal, are harvested, then rectified into DC signal by a MoS2 diode. CIQM, CICS, SRC.

  11. 75 FR 26916 - Federal Acquisition Regulation: FAR Case 2009-004, Enhancing Contract Transparency

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-13

    ... Regulation: FAR Case 2009-004, Enhancing Contract Transparency AGENCY: Department of Defense (DoD), General... commercial or financial information. This transparency effort is intended to promote efficiency in Government... the Administration's memorandum entitled Transparency and Open Government (January 21, 2009...

  12. Fused Silica and Other Transparent Window Materials

    NASA Technical Reports Server (NTRS)

    Salem, Jon

    2016-01-01

    Several transparent ceramics, such as spinel and AlONs are now being produced in sufficient large areas to be used in space craft window applications. The work horse transparent material for space missions from Apollo to the International Space Station has been fused silica due in part to its low coefficient of expansion and optical quality. Despite its successful use, fused silica exhibits anomalies in its crack growth behavior, depending on environmental preconditioning and surface damage. This presentation will compare recent optical ceramics to fused silica and discuss sources of variation in slow crack growth behavior.

  13. The Effect of Media on Charitable Giving and Volunteering: Evidence from the "Give Five" Campaign

    ERIC Educational Resources Information Center

    Yoruk, Baris K.

    2012-01-01

    Fundraising campaigns advertised via mass media are common. To what extent such campaigns affect charitable behavior is mostly unknown, however. Using giving and volunteering surveys conducted biennially from 1988 to 1996, I investigate the effect of a national fundraising campaign, "Give Five," on charitable giving and volunteering patterns. The…

  14. Improved thermal oxidation stability of solution-processable silver nanowire transparent electrode by reduced graphene oxide.

    PubMed

    Ahn, Yumi; Jeong, Youngjun; Lee, Youngu

    2012-12-01

    Solution-processable silver nanowire-reduced graphene oxide (AgNW-rGO) hybrid transparent electrode was prepared in order to replace conventional ITO transparent electrode. AgNW-rGO hybrid transparent electrode exhibited high optical transmittance and low sheet resistance, which is comparable to ITO transparent electrode. In addition, it was found that AgNW-rGO hybrid transparent electrode exhibited highly enhanced thermal oxidation and chemical stabilities due to excellent gas-barrier property of rGO passivation layer onto AgNW film. Furthermore, the organic solar cells with AgNW-rGO hybrid transparent electrode showed good photovoltaic behavior as much as solar cells with AgNW transparent electrode. It is expected that AgNW-rGO hybrid transparent electrode can be used as a key component in various optoelectronic application such as display panels, touch screen panels, and solar cells.

  15. Broadband polarization-independent and low-profile optically transparent metamaterial absorber

    NASA Astrophysics Data System (ADS)

    Li, Long; Xi, Rui; Liu, Haixia; Lv, Zhiyong

    2018-05-01

    A transparent metamaterial absorber with simultaneously high optical transparency and broadband microwave absorption is presented in this paper. Consisting of a two-layer soda-lime glass substrate and three-layer patch-shaped indium tin oxide (ITO) films, the proposed absorber has advantages of broadband absorption with an absorptivity higher than 85% in the range from 6.1 to 22.1 GHz, good polarization insensitiveness, a high transparency, a low profile, and wide-incident-angle stability. A prototype of the proposed absorber is fabricated and experimentally measured to demonstrate its excellent performance. The measured results agree well with the theoretical design and numerical simulations.

  16. Transparent, flexible, and solid-state supercapacitors based on graphene electrodes

    NASA Astrophysics Data System (ADS)

    Gao, Y.; Zhou, Y. S.; Xiong, W.; Jiang, L. J.; Mahjouri-samani, M.; Thirugnanam, P.; Huang, X.; Wang, M. M.; Jiang, L.; Lu, Y. F.

    2013-07-01

    In this study, graphene-based supercapacitors with optical transparency and mechanical flexibility have been achieved using a combination of poly(vinyl alcohol)/phosphoric acid gel electrolyte and graphene electrodes. An optical transmittance of ˜67% in a wavelength range of 500-800 nm and a 92.4% remnant capacitance under a bending angle of 80° have been achieved for the supercapacitors. The decrease in capacitance under bending is ascribed to the buckling of the graphene electrode in compression. The supercapacitors with high optical transparency, electrochemical stability, and mechanical flexibility hold promises for transparent and flexible electronics.

  17. Situation awareness-based agent transparency for human-autonomy teaming effectiveness

    NASA Astrophysics Data System (ADS)

    Chen, Jessie Y. C.; Barnes, Michael J.; Wright, Julia L.; Stowers, Kimberly; Lakhmani, Shan G.

    2017-05-01

    We developed the Situation awareness-based Agent Transparency (SAT) model to support human operators' situation awareness of the mission environment through teaming with intelligent agents. The model includes the agent's current actions and plans (Level 1), its reasoning process (Level 2), and its projection of future outcomes (Level 3). Human-inthe-loop simulation experiments have been conducted (Autonomous Squad Member and IMPACT) to illustrate the utility of the model for human-autonomy team interface designs. Across studies, the results consistently showed that human operators' task performance improved as the agents became more transparent. They also perceived transparent agents as more trustworthy.

  18. Two-Channel Transparency-Optimized Control Architectures in Bilateral Teleoperation With Time Delay.

    PubMed

    Kim, Jonghyun; Chang, Pyung Hun; Park, Hyung-Soon

    2013-01-01

    This paper introduces transparency-optimized control architectures (TOCAs) using two communication channels. Two classes of two-channel TOCAs are found, thereby showing that two channels are sufficient to achieve transparency. These TOCAs achieve a greater level of transparency but poorer stability than three-channel TOCAs and four-channel TOCAs. Stability of the two-channel TOCAs has been enhanced while minimizing transparency degradation by adding a filter; and a combined use of the two classes of two-channel TOCAs is proposed for both free space and constrained motion, which involve switching between two TOCAs for transition between free space and constrained motions. The stability condition of the switched teleoperation system is derived for practical applications. Through the one degree-of-freedom (DOF) experiment, the proposed two-channel TOCAs were shown to operate stably, while achieving better transparency under time delay than the other TOCAs.

  19. Projection transparencies from printed material

    NASA Technical Reports Server (NTRS)

    Grunewald, L. S.; Nickerson, T. B.

    1968-01-01

    Method for preparing project transparencies, or view graphs, permits the use of almost any expendable printed material, pictures, charts, or text, in unlimited color or black and white. The method can be accomplished by either of two techniques, with a slight difference in materials.

  20. Developing the Surface Chemistry of Transparent Butyl Rubber for Impermeable Stretchable Electronics.

    PubMed

    Vohra, Akhil; Carmichael, R Stephen; Carmichael, Tricia Breen

    2016-10-11

    Transparent butyl rubber is a new elastomer that has the potential to revolutionize stretchable electronics due to its intrinsically low gas permeability. Encapsulating organic electronic materials and devices with transparent butyl rubber protects them from problematic degradation due to oxygen and moisture, preventing premature device failure and enabling the fabrication of stretchable organic electronic devices with practical lifetimes. Here, we report a methodology to alter the surface chemistry of transparent butyl rubber to advance this material from acting as a simple device encapsulant to functioning as a substrate primed for direct device fabrication on its surface. We demonstrate a combination of plasma and chemical treatment to deposit a hydrophilic silicate layer on the transparent butyl rubber surface to create a new layered composite that combines Si-OH surface chemistry with the favorable gas-barrier properties of bulk transparent butyl rubber. We demonstrate that these surface Si-OH groups react with organosilanes to form self-assembled monolayers necessary for the deposition of electronic materials, and furthermore demonstrate the fabrication of stretchable gold wires using nanotransfer printing of gold films onto transparent butyl rubber modified with a thiol-terminated self-assembled monolayer. The surface modification of transparent butyl rubber establishes this material as an important new elastomer for stretchable electronics and opens the way to robust, stretchable devices.

  1. Direct ink write fabrication of transparent ceramic gain media

    NASA Astrophysics Data System (ADS)

    Jones, Ivy Krystal; Seeley, Zachary M.; Cherepy, Nerine J.; Duoss, Eric B.; Payne, Stephen A.

    2018-01-01

    Solid-state laser gain media based on the garnet structure with two spatially distinct but optically contiguous regions have been fabricated. Transparent gain media comprised of a central core of Y2.97Nd0.03Al5.00O12.00 (Nd:YAG) and an undoped cladding region of Y3Al5O12 (YAG) were fabricated by direct ink write and transparent ceramic processing. Direct ink write (DIW) was employed to form the green body, offering a general route to preparing functionally structured solid-state laser gain media. Fully-dense transparent optical ceramics in a "top hat" geometry with YAG/Nd:YAG have been fabricated by DIW methods with optical scatter at 1064 nm of <3%/cm.

  2. The Value of Transparency in Distributed Solar PV Markets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    OShaughnessy, Eric J.; Margolis, Robert M.

    Distributed solar photovoltaic (PV) markets are relatively non-transparent: PV price and product information is not readily available, searching for this information is costly (in terms of time and effort), and customers are mostly unfamiliar with the new technology. Quote aggregation, where third-party companies collect PV quotes on behalf of customers, may be one way to increase PV market transparency. In this paper, quote aggregation data are analyzed to study the value of transparency for distributed solar PV markets. The results suggest that easier access to more quotes results in lower prices. We find that installers tend to offer lower pricesmore » in more competitive market environments. We supplement the empirical analysis with key findings from interviews of residential PV installers.« less

  3. Direct ink write fabrication of transparent ceramic gain media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, Ivy Krystal; Seeley, Zachary M.; Cherepy, Nerine J.

    Solid-state laser gain media based on the garnet structure with two spatially distinct but optically contiguous regions have been fabricated. Transparent gain media comprised of a central core of Y 2.97Nd 0.03Al 5.00O 12.00 (Nd:YAG) and an undoped cladding region of Y 3Al 5O 12 (YAG) were fabricated by direct ink write and transparent ceramic processing. Direct ink write (DIW) was employed to form the green body, offering a general route to preparing functionally structured solid-state laser gain media. Lastly, fully-dense transparent optical ceramics in a “top hat” geometry with YAG/Nd:YAG have been fabricated by DIW methods with optical scattermore » at 1064 nm of <3%/cm.« less

  4. Direct ink write fabrication of transparent ceramic gain media

    DOE PAGES

    Jones, Ivy Krystal; Seeley, Zachary M.; Cherepy, Nerine J.; ...

    2018-11-06

    Solid-state laser gain media based on the garnet structure with two spatially distinct but optically contiguous regions have been fabricated. Transparent gain media comprised of a central core of Y 2.97Nd 0.03Al 5.00O 12.00 (Nd:YAG) and an undoped cladding region of Y 3Al 5O 12 (YAG) were fabricated by direct ink write and transparent ceramic processing. Direct ink write (DIW) was employed to form the green body, offering a general route to preparing functionally structured solid-state laser gain media. Lastly, fully-dense transparent optical ceramics in a “top hat” geometry with YAG/Nd:YAG have been fabricated by DIW methods with optical scattermore » at 1064 nm of <3%/cm.« less

  5. Flexible transparent and free-standing silicon nanowires paper.

    PubMed

    Pang, Chunlei; Cui, Hao; Yang, Guowei; Wang, Chengxin

    2013-10-09

    If the flexible transparent and free-standing paper-like materials that would be expected to meet emerging technological demands, such as components of transparent electrical batteries, flexible solar cells, bendable electronics, paper displays, wearable computers, and so on, could be achieved in silicon, it is no doubt that the traditional semiconductor materials would be rejuvenated. Bulk silicon cannot provide a solution because it usually exhibits brittleness at below their melting point temperature due to high Peierls stress. Fortunately, when the silicon's size goes down to nanoscale, it possesses the ultralarge straining ability, which results in the possibility to design flexible transparent and self-standing silicon nanowires paper (FTS-SiNWsP). However, realization of the FTS-SiNWsP is still a challenging task due largely to the subtlety in the preparation of a unique interlocking alignment with free-catalyst controllable growth. Herein, we present a simple synthetic strategy by gas flow directed assembly of a unique interlocking alignment of the Si nanowires (SiNWs) to produce, for the first time, the FTS-SiNWsP, which consisted of interconnected SiNWs with the diameter of ~10 nm via simply free-catalyst thermal evaporation in a vertical high-frequency induction furnace. This approach opens up the possibility for creating various flexible transparent functional devices based on the FTS-SiNWsP.

  6. Transparency of near-critical density plasmas under extreme laser intensities

    NASA Astrophysics Data System (ADS)

    Ji, Liangliang; Shen, Baifei; Zhang, Xiaomei

    2018-05-01

    We investigated transparency of near-critical plasma targets for highly intense incident lasers and discovered that beyond relativistic transparency, there exists an anomalous opacity regime, where the plasma target tend to be opaque at extreme light intensities. The unexpected phenomenon is found to originate from the trapping of ions under exotic conditions. We found out the propagation velocity and the amplitude of the laser-driven charge separation field in a large parameter range and derived the trapping probability of ions. The model successfully interpolates the emergence of anomalous opacity in simulations. The trend is more significant when radiation reaction comes into effect, leaving a transparency window in the intensity domain. Transparency of a plasma target defines the electron dynamics and thereby the emission mechanisms of gamma-photons in the ultra-relativistic regime. Our findings are not only of fundamental interest but also imply the proper mechanisms for generating desired electron/gamma sources.

  7. Magnetic assembly of transparent and conducting graphene-based functional composites

    NASA Astrophysics Data System (ADS)

    Le Ferrand, Hortense; Bolisetty, Sreenath; Demirörs, Ahmet F.; Libanori, Rafael; Studart, André R.; Mezzenga, Raffaele

    2016-06-01

    Innovative methods producing transparent and flexible electrodes are highly sought in modern optoelectronic applications to replace metal oxides, but available solutions suffer from drawbacks such as brittleness, unaffordability and inadequate processability. Here we propose a general, simple strategy to produce hierarchical composites of functionalized graphene in polymeric matrices, exhibiting transparency and electron conductivity. These are obtained through protein-assisted functionalization of graphene with magnetic nanoparticles, followed by magnetic-directed assembly of the graphene within polymeric matrices undergoing sol-gel transitions. By applying rotating magnetic fields or magnetic moulds, both graphene orientation and distribution can be controlled within the composite. Importantly, by using magnetic virtual moulds of predefined meshes, graphene assembly is directed into double-percolating networks, reducing the percolation threshold and enabling combined optical transparency and electrical conductivity not accessible in single-network materials. The resulting composites open new possibilities on the quest of transparent electrodes for photovoltaics, organic light-emitting diodes and stretchable optoelectronic devices.

  8. Magnetic assembly of transparent and conducting graphene-based functional composites

    PubMed Central

    Le Ferrand, Hortense; Bolisetty, Sreenath; Demirörs, Ahmet F.; Libanori, Rafael; Studart, André R.; Mezzenga, Raffaele

    2016-01-01

    Innovative methods producing transparent and flexible electrodes are highly sought in modern optoelectronic applications to replace metal oxides, but available solutions suffer from drawbacks such as brittleness, unaffordability and inadequate processability. Here we propose a general, simple strategy to produce hierarchical composites of functionalized graphene in polymeric matrices, exhibiting transparency and electron conductivity. These are obtained through protein-assisted functionalization of graphene with magnetic nanoparticles, followed by magnetic-directed assembly of the graphene within polymeric matrices undergoing sol–gel transitions. By applying rotating magnetic fields or magnetic moulds, both graphene orientation and distribution can be controlled within the composite. Importantly, by using magnetic virtual moulds of predefined meshes, graphene assembly is directed into double-percolating networks, reducing the percolation threshold and enabling combined optical transparency and electrical conductivity not accessible in single-network materials. The resulting composites open new possibilities on the quest of transparent electrodes for photovoltaics, organic light-emitting diodes and stretchable optoelectronic devices. PMID:27354243

  9. Federal Funding Accountability and Transparency Act

    EPA Pesticide Factsheets

    Public Law 109-282, the Federal Funding Accountability and Transparency Act of 2006 as amended (FFATA), requires disclosure of all entities and organizations receiving Federal funds through a single publicly accessible website.

  10. Corneal structure and transparency

    PubMed Central

    Meek, Keith M.; Knupp, Carlo

    2015-01-01

    The corneal stroma plays several pivotal roles within the eye. Optically, it is the main refracting lens and thus has to combine almost perfect transmission of visible light with precise shape, in order to focus incoming light. Furthermore, mechanically it has to be extremely tough to protect the inner contents of the eye. These functions are governed by its structure at all hierarchical levels. The basic principles of corneal structure and transparency have been known for some time, but in recent years X-ray scattering and other methods have revealed that the details of this structure are far more complex than previously thought and that the intricacy of the arrangement of the collagenous lamellae provides the shape and the mechanical properties of the tissue. At the molecular level, modern technologies and theoretical modelling have started to explain exactly how the collagen fibrils are arranged within the stromal lamellae and how proteoglycans maintain this ultrastructure. In this review we describe the current state of knowledge about the three-dimensional stromal architecture at the microscopic level, and about the control mechanisms at the nanoscopic level that lead to optical transparency. PMID:26145225

  11. Transparency in Cooperative Online Education

    ERIC Educational Resources Information Center

    Dalsgaard, Christian; Paulsen, Morten Flate

    2009-01-01

    The purpose of this article is to discuss the following question: What is the potential of social networking within cooperative online education? Social networking does not necessarily involve communication, dialogue, or collaboration. Instead, the authors argue that "transparency" is a unique feature of social networking services.…

  12. An optically transparent, flexible, patterned and conductive silk biopolymer film (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Umar, Muhammad; Min, Kyungtaek; Kim, Sunghwan

    2017-02-01

    Transparent, flexible, and conducting films are of great interest for wearable electronics. For better biotic/abiotic interface, the films to integrate the electronics components requires the patterned surface conductors with optical transparency, smoothness, good electrical conductivity, along with the biofriendly traits of films. We focus on silk fibroin, a natural biopolymer extracted from the Bombyx mori cocoons, for this bioelectronics applications. Here we report an optically transparent, flexible, and patterned surface conductor on a silk film by burying a silver nanowires (AgNW) network below the surface of the silk film. The conducting silk film reveals high optical transparency of 80% and the excellent electronic conductivity of 15 Ω/sq, along with smooth surface. The integration of light emitting diode (LED) chip on the patterned electrodes confirms that the current can flow through the transparent and patterned electrodes on the silk film, and this result shows an application for integration of functional electronic/opto-electronic devices. Additionally, we fabricate a transparent and flexible radio frequency (RF) antenna and resistor on a silk film and apply these as a food sensor by monitoring the increasing resistance by the flow of gases from the spoiled food.

  13. Highly conductive transparent organic electrodes with multilayer structures for rigid and flexible optoelectronics.

    PubMed

    Guo, Xiaoyang; Liu, Xingyuan; Lin, Fengyuan; Li, Hailing; Fan, Yi; Zhang, Nan

    2015-05-27

    Transparent electrodes are essential components for optoelectronic devices, such as touch panels, organic light-emitting diodes, and solar cells. Indium tin oxide (ITO) is widely used as transparent electrode in optoelectronic devices. ITO has high transparency and low resistance but contains expensive rare elements, and ITO-based devices have poor mechanical flexibility. Therefore, alternative transparent electrodes with excellent opto-electrical performance and mechanical flexibility will be greatly demanded. Here, organics are introduced into dielectric-metal-dielectric structures to construct the transparent electrodes on rigid and flexible substrates. We show that organic-metal-organic (OMO) electrodes have excellent opto-electrical properties (sheet resistance of below 10 Ω sq(-1) at 85% transmission), mechanical flexibility, thermal and environmental stabilities. The OMO-based polymer photovoltaic cells show performance comparable to that of devices based on ITO electrodes. This OMO multilayer structure can therefore be used to produce transparent electrodes suitable for use in a wide range of optoelectronic devices.

  14. Two-Channel Transparency-Optimized Control Architectures in Bilateral Teleoperation With Time Delay

    PubMed Central

    Kim, Jonghyun; Chang, Pyung Hun; Park, Hyung-Soon

    2013-01-01

    This paper introduces transparency-optimized control architectures (TOCAs) using two communication channels. Two classes of two-channel TOCAs are found, thereby showing that two channels are sufficient to achieve transparency. These TOCAs achieve a greater level of transparency but poorer stability than three-channel TOCAs and four-channel TOCAs. Stability of the two-channel TOCAs has been enhanced while minimizing transparency degradation by adding a filter; and a combined use of the two classes of two-channel TOCAs is proposed for both free space and constrained motion, which involve switching between two TOCAs for transition between free space and constrained motions. The stability condition of the switched teleoperation system is derived for practical applications. Through the one degree-of-freedom (DOF) experiment, the proposed two-channel TOCAs were shown to operate stably, while achieving better transparency under time delay than the other TOCAs. PMID:23833548

  15. Principle-based analysis of the concept of telecare.

    PubMed

    Solli, Hilde; Bjørk, Ida Torunn; Hvalvik, Sigrun; Hellesø, Ragnhild

    2012-12-01

    To report a concept analysis of telecare. Lately telecare has become a worldwide, modern way of giving care over distance by means of technology. Other concepts, like telemedicine, e-health, and telehealth, focus on the same topic though the boundaries between them seem to be blurred. Sources comprise 44 English language research articles retrieved from the database of Medline and Cinahl (1995-October 2011). Literature Review. A principle-based analysis was undertaken through content analysis of the definitions, attributes, preconditions, and outcomes of the concept. The attributes are well described according to the use of technology, caring activity, persons involved, and accessibility. Preconditions and outcomes are well described concerning individual and health political needs and benefits. The concept did not hold its boundaries through theoretical integration with the concept of telemedicine and telehealth. The definition of telecare competes with concepts like home-based e-health, telehomecare, telephonecare, telephone-based psychosocial services, telehealth, and telemedicine. Assessment of the definitions resulted in a suggestion of a new definition: Telecare is the use of information, communication, and monitoring technologies which allow healthcare providers to remotely evaluate health status, give educational intervention, or deliver health and social care to patients in their homes. The logical principle was assessed to be partly immature, whereas the pragmatical and linguistical principles were found to be mature. A new definition is suggested and this has moved the epistemological principle forward to maturity. © 2012 Blackwell Publishing Ltd.

  16. Transparent electrodes fabricated via the self-assembly of silver nanowires using a bubble template.

    PubMed

    Tokuno, Takehiro; Nogi, Masaya; Jiu, Jinting; Sugahara, Tohru; Suganuma, Katsuaki

    2012-06-26

    To shore up the demand of transparent electrodes for wide applications such as organic light emitting diodes and solar cells, transparent electrodes are required as an alternative for indium tin oxide electrodes. Herein the self-assembly method with a bubble template paves the way for cost-effective fabrication of transparent electrodes with high conductivity and transparency using self-assembly of silver nanowires (AgNWs) in a bubble template. AgNWs were first dispersed in water that was bubbled with a surfactant and a thickening agent. Furthermore, these AgNWs were assembled by lining along the bubble ridges. When the bubbles containing the AgNWs were sandwiched between two glass substrates, the bubble ridges including the AgNWs formed continuous polygonal structures. Mesh structures were formed on both glass substrates after air-drying. The mesh structures evolved into mesh transparent electrodes following heat-treatment. The AgNW mesh structure exhibited a low sheet resistance of 6.2 Ω/square with a transparency of 84% after heat treatment at 200 °C for 20 min. The performance is higher than that of transparent electrodes with random networks of AgNWs. Furthermore, the conductivity and transparency of the mesh transparent electrodes can be adjusted by changing the amount of the AgNW suspension and the space between the two glass substrates.

  17. Transparent conducting oxides: A δ-doped superlattice approach

    PubMed Central

    Cooper, Valentino R.; Seo, Sung S. Ambrose; Lee, Suyoun; Kim, Jun Sung; Choi, Woo Seok; Okamoto, Satoshi; Lee, Ho Nyung

    2014-01-01

    Metallic states appearing at interfaces between dissimilar insulating oxides exhibit intriguing phenomena such as superconductivity and magnetism. Despite tremendous progress in understanding their origins, very little is known about how to control the conduction pathways and the distribution of charge carriers. Using optical spectroscopic measurements and density-functional theory (DFT) simulations, we examine the effect of SrTiO3 (STO) spacer layer thickness on the optical transparency and carrier distribution in La δ-doped STO superlattices. We experimentally observe that these metallic superlattices remain highly transparent to visible light; a direct consequence of the appropriately large gap between the O 2p and Ti 3d states. In superlattices with relatively thin STO layers, we predict that three-dimensional conduction would occur due to appreciable overlap of quantum mechanical wavefunctions between neighboring δ-doped layers. These results highlight the potential for using oxide heterostructures in optoelectronic devices by providing a unique route for creating novel transparent conducting oxides. PMID:25109668

  18. A transparent and data-driven global tectonic regionalization model for seismic hazard assessment

    NASA Astrophysics Data System (ADS)

    Chen, Yen-Shin; Weatherill, Graeme; Pagani, Marco; Cotton, Fabrice

    2018-05-01

    A key concept that is common to many assumptions inherent within seismic hazard assessment is that of tectonic similarity. This recognizes that certain regions of the globe may display similar geophysical characteristics, such as in the attenuation of seismic waves, the magnitude scaling properties of seismogenic sources or the seismic coupling of the lithosphere. Previous attempts at tectonic regionalization, particularly within a seismic hazard assessment context, have often been based on expert judgements; in most of these cases, the process for delineating tectonic regions is neither reproducible nor consistent from location to location. In this work, the regionalization process is implemented in a scheme that is reproducible, comprehensible from a geophysical rationale, and revisable when new relevant data are published. A spatial classification-scheme is developed based on fuzzy logic, enabling the quantification of concepts that are approximate rather than precise. Using the proposed methodology, we obtain a transparent and data-driven global tectonic regionalization model for seismic hazard applications as well as the subjective probabilities (e.g. degree of being active/degree of being cratonic) that indicate the degree to which a site belongs in a tectonic category.

  19. Conception of a cost accounting model for doctors' offices.

    PubMed

    Britzelmaier, Bernd; Eller, Brigitte

    2004-01-01

    Physicians are required, due to economical, financial, competitive, demographical and market-induced framework conditions, to pay increasing attention to the entrepreneurial administration of their offices. Because of restructuring policies throughout the public health system--on the grounds of increasing financing problems--more and better transparency of costs will be indispensable in all fields of medical activities in the future. The more cost-conscious public health insurance institutions or other public health funds will need professional cost accounting systems, which will provide, for minimum maintenance expense, standardised basis cost information as a device for decision. The conception of cost accounting for doctors' offices presented in this paper shows an integrated cost accounting approach based on activity and marginal costing philosophy. The conception presented provides a suitable basis for the development of standard software for cost accounting systems for doctors' offices.

  20. Partially Transparent Petaled Mask/Occulter for Visible-Range Spectrum

    NASA Technical Reports Server (NTRS)

    Shiri, Ron Shahram; Wasylkiwskyj, Wasyl

    2013-01-01

    The presence of the Poisson Spot, also known as the spot of Arago, has been known since the 18th century. This spot is the consequence of constructive interference of light diffracted by the edge of the obstacle where the central position can be determined by symmetry of the object. More recently, many NASA missions require the suppression of this spot in the visible range. For instance, the exoplanetary missions involving space telescopes require telescopes to image the planetary bodies orbiting central stars. For this purpose, the starlight needs to be suppressed by several orders of magnitude in order to image the reflected light from the orbiting planet. For the Earth-like planets, this suppression needs to be at least ten orders of magnitude. One of the common methods of suppression involves sharp binary petaled occulters envisioned to be placed many thousands of miles away from the telescope blocking the starlight. The suppression of the Poisson Spot by binary sharp petal tips can be problematic when the thickness of the tips becomes smaller than the wavelength of the incident beam. First they are difficult to manufacture and also it invalidates the laws of physical optics. The proposed partially transparent petaled masks/occulters compensate for this sharpness with transparency along the surface of the petals. Depending on the geometry of the problem, this transparency can be customized such that only a small region of the petal is transparent and the remaining of the surface is opaque. This feature allows easy fabrication of this type of occultation device either as a mask or occulter. A partially transparent petaled mask/ occulter has been designed for the visible spectrum range. The mask/occulter can suppress the intensity along the optical axis up to ten orders of magnitude. The design process can tailor the mask shape, number of petals, and transparency level to the near-field and farfield diffraction region. The mask/occulter can be used in space

  1. Effectively Transparent Front Contacts for Optoelectronic Devices

    DOE PAGES

    Saive, Rebecca; Borsuk, Aleca M.; Emmer, Hal S.; ...

    2016-06-10

    Effectively transparent front contacts for optoelectronic devices achieve a measured transparency of up to 99.9% and a measured sheet resistance of 4.8 Ω sq-1. These 3D microscale triangular cross-section grid fingers redirect incoming photons efficiently to the active semiconductor area and can replace standard grid fingers as well as transparent conductive oxide layers in optoelectronic devices. Optoelectronic devices such as light emitting diodes, photodiodes, and solar cells play an important and expanding role in modern technology. Photovoltaics is one of the largest optoelectronic industry sectors and an ever-increasing component of the world's rapidly growing renewable carbon-free electricity generation infrastructure. Inmore » recent years, the photovoltaics field has dramatically expanded owing to the large-scale manufacture of inexpensive crystalline Si and thin film cells and modules. The current record efficiency (η = 25.6%) Si solar cell utilizes a heterostructure intrinsic thin layer (HIT) design[1] to enable increased open circuit voltage, while more mass-manufacturable solar cell architectures feature front contacts.[2, 3] Thus improved solar cell front contact designs are important for future large-scale photovoltaics with even higher efficiency.« less

  2. An Overburdened Term: Dewey's Concept of "Experience" as Curriculum Theory

    ERIC Educational Resources Information Center

    Seaman, Jayson; Nelsen, Peter J.

    2011-01-01

    This article examines Dewey's concept of "experience" in light of his analysis of industrial capitalism, his anthropological thinking, and his critique of early 20th century educational ideologies, giving the concept a more expansive meaning than what is typically represented in the educational literature. We also outline the specific curricular…

  3. Aging Aircraft Transparencies: AN Italian Air Force Fleet Case History

    NASA Astrophysics Data System (ADS)

    Caucci, D.; Aiello, L.; Bagnoli, F.; Bernabei, M.

    2008-08-01

    Aircraft acrylic transparencies are structural components that must withstand flight and ground loads. Crazing occurrence, known as Environmental Stress Cracking (ESC), causes their substitution during aircraft maintenance operations. This form of aging is mainly a physical phenomenon due to the interaction of transparencies base material with an active liquid and leads craze formation at lower stress that would be required in air. In this paper, an extensive phenomenon of network ESC occurred on transparencies of many aircrafts operating in the same fleet was investigated. Cover application while parking was found to be the critical aspect in crazing appearance, thus acting as physical shield for condensed water and heat transferring.

  4. Coloured Rings Produced on Transparent Plates

    ERIC Educational Resources Information Center

    Suhr, Wilfried; Schlichting, H. Joachim

    2007-01-01

    Beautiful colored interference rings can be produced by using transparent plates such as window glass. A simple model explains this effect, which was described by Newton but has almost been forgotten. (Contains 11 figures.)

  5. Transparent perovskite light-emitting diodes by employing organic-inorganic multilayer transparent top electrodes

    NASA Astrophysics Data System (ADS)

    Liang, Junqing; Guo, Xiaoyang; Song, Li; Lin, Jie; Hu, Yongsheng; Zhang, Nan; Liu, Xingyuan

    2017-11-01

    Perovskite light-emitting diodes (PeLEDs) have attracted much attention in the past two years due to their high photoluminescence quantum efficiencies and wavelength tuneable characteristics. In this work, transparent PeLEDs (TPeLEDs) have been reported with organic-inorganic multilayer transparent top electrodes that have more convenient control of the organic/electrode interface. By optimizing the thickness of the MoO3 layer in the top electrode, the best average transmittance of 47.21% has been obtained in the TPeLED in the wavelength range of 380-780 nm. In addition, the TPeLED exhibits a maximum luminance of 6380 cd/m2, a maximum current efficiency (CE) of 3.50 cd/A, and a maximum external quantum efficiency (EQE) of 0.85% from the bottom side together with a maximum luminance of 3380 cd/m2, a maximum CE of 1.47 cd/A, and a maximum EQE of 0.36% from the top side. The total EQE of the TPeLED is about 86% of that of the reference device, indicating efficient TPeLED achieved in this work, which could have significant contribution to PeLEDs for see-through displays.

  6. Transparency and Opacity: Levinasian Reflections on Accountability in Australian Schooling

    ERIC Educational Resources Information Center

    Sellar, Sam

    2015-01-01

    This article draws on the philosophy of Emmanuel Levinas to consider, from an ethical perspective, the current transparency and accountability agenda in Australian schooling. It focuses on the case of the "My School" website and the argument that transparent publication of comparative performance data via the website provides a basis for…

  7. Silver-Nanowire-Embedded Transparent Metal-Oxide Heterojunction Schottky Photodetector.

    PubMed

    Abbas, Sohail; Kumar, Mohit; Kim, Hong-Sik; Kim, Joondong; Lee, Jung-Ho

    2018-05-02

    We report a self-biased and transparent Cu 4 O 3 /TiO 2 heterojunction for ultraviolet photodetection. The dynamic photoresponse improved 8.5 × 10 4 % by adding silver nanowires (AgNWs) Schottky contact and maintaining 39% transparency. The current density-voltage characteristics revealed a strong interfacial electric field, responsible for zero-bias operation. In addition, the dynamic photoresponse measurement endorsed the effective holes collection by embedded-AgNWs network, leading to fast rise and fall time of 0.439 and 0.423 ms, respectively. Similarly, a drastic improvement in responsivity and detectivity of 187.5 mAW -1 and of 5.13 × 10 9 Jones, is observed, respectively. The AgNWs employed as contact electrode can ensure high-performance for transparent and flexible optoelectronic applications.

  8. Automated methods of tree boundary extraction and foliage transparency estimation from digital imagery

    Treesearch

    Sang-Mook Lee; Neil A. Clark; Philip A. Araman

    2003-01-01

    Foliage transparency in trees is an important indicator for forest health assessment. This paper helps advance transparency measurement research by presenting methods of automatic tree boundary extraction and foliage transparency estimation from digital images taken from the ground of open grown trees.Extraction of proper boundaries of tree crowns is the...

  9. Missile Defense: European Phased Adaptive Approach Acquisitions Face Synchronization, Transparency, and Accountability Challenges

    DTIC Science & Technology

    2010-12-21

    House of Representatives Subject: Missile Defense: European Phased Adaptive Approach Acquisitions Face Synchronization , Transparency, and...TITLE AND SUBTITLE Missile Defense: European Phased Adaptive Approach Acquisitions Face Synchronization , Transparency, and Accountability...However, we found that DOD has not fully implemented a management process that synchronizes EPAA acquisition activities and ensures transparency and

  10. Mathematical expressions using fringe projections for transparent objects

    NASA Astrophysics Data System (ADS)

    Su, Wei-Hung; Cheng, Chau-Jern

    2017-08-01

    A setup using fringe projection techniques to perform 3D profile measurements for transparent objects is presented. The related mathematical equations are derived as well. A fringe pattern is illuminated onto the transparent object. Fringes passing through the inspected object are then projected onto a screen. A CCD camera is employed to record the transmitted fringes on the screen. Fringe on the screen are deformed by the refractive index and the surface structure, and therefore are desirable to describe the shape of the inspected sample.

  11. Fermat's least-time principle and the embedded transparent lens

    NASA Astrophysics Data System (ADS)

    Kantowski, R.; Chen, B.; Dai, X.

    2013-10-01

    We present a simplified version of the lowest-order embedded point mass gravitational lens theory and then make the extension of this theory to any embedded transparent lens. Embedding a lens effectively reduces the gravitational potential’s range, i.e., partially shields the lensing potential because the lens mass is made a contributor to the mean mass density of the Universe and not simply superimposed upon it. We give the time-delay function for the embedded point mass lens from which we can derive the simplified lens equation by applying Fermat’s least-time principle. Even though rigorous derivations are only made for the point mass in a flat background, the generalization of the lens equation to lowest order for any distributed lens in any homogeneous background is obvious. We find from this simplified theory that embedding can introduce corrections above the few percent level in weak lensing shears caused by large clusters but only at large impacts. The potential part of the time delay is also affected in strong lensing at the few percent level. Additionally we again confirm that the presence of a cosmological constant alters the gravitational deflection of passing photons.

  12. Highly Transparent, Visible-Light Photodetector Based on Oxide Semiconductors and Quantum Dots.

    PubMed

    Shin, Seung Won; Lee, Kwang-Ho; Park, Jin-Seong; Kang, Seong Jun

    2015-09-09

    Highly transparent phototransistors that can detect visible light have been fabricated by combining indium-gallium-zinc oxide (IGZO) and quantum dots (QDs). A wide-band-gap IGZO film was used as a transparent semiconducting channel, while small-band-gap QDs were adopted to absorb and convert visible light to an electrical signal. Typical IGZO thin-film transistors (TFTs) did not show a photocurrent with illumination of visible light. However, IGZO TFTs decorated with QDs showed enhanced photocurrent upon exposure to visible light. The device showed a responsivity of 1.35×10(4) A/W and an external quantum efficiency of 2.59×10(4) under illumination by a 635 nm laser. The origin of the increased photocurrent in the visible light was the small band gap of the QDs combined with the transparent IGZO films. Therefore, transparent phototransistors based on IGZO and QDs were fabricated and characterized in detail. The result is relevant for the development of highly transparent photodetectors that can detect visible light.

  13. Characterization of transparent dentin in attrited teeth using optical coherence tomography.

    PubMed

    Mandurah, Mona M; Sadr, Alireza; Bakhsh, Turki A; Shimada, Yasushi; Sumi, Yasunori; Tagami, Junji

    2015-05-01

    Attrition and wear of tooth surface occur with aging and result in loss of enamel, with exposure and histological changes in dentin. Dealing with attrited teeth and restoration of the lost tissue are clinically challenging. The main objective of this study is to characterize the exposed transparent dentin in the occlusal surface of attrited teeth by optical coherence tomography (OCT). Naturally attrited, extracted human teeth with occlusal-transparent dentin were investigated in comparison to sound and carious teeth. The teeth were subjected to OCT imaging and then cross-sectioned and polished. OCT B-scans were compared to light microscopy images of the same cross section. In OCT images, some changes were evident at the transparent dentin in attrited teeth. An OCT attenuation coefficient parameter (μ t) was derived based on the Beer-Lambert law as a function of backscatter signal slope. The mean values of μ t were 1.05 ± 0.3, 2.23 ± 0.4, and 0.61 ± 0.27 mm(-1) for sound, carious, and transparent dentins, respectively. One-way ANOVA with Tukey's post-hoc showed a significant difference between groups (p < 0.05). Physiological changes in transparent dentin that involve deposition of mineral casts in the dentinal tubules lead to lower attenuation of OCT signal. OCT has a potential role to detect transparent dentin on the surface of attrited teeth and can be used in the future as a clinical adjunct tool.

  14. Transparent magnesium aluminate spinel: a prospective biomaterial for esthetic orthodontic brackets.

    PubMed

    Krishnan, Manu; Tiwari, Brijesh; Seema, Saraswathy; Kalra, Namitha; Biswas, Papiya; Rajeswari, Kotikalapudi; Suresh, Madireddy Buchi; Johnson, Roy; Gokhale, Nitin M; Iyer, Satish R; Londhe, Sanjay; Arora, Vimal; Tripathi, Rajendra P

    2014-11-01

    Adult orthodontics is recently gaining popularity due to its importance in esthetics, oral and general health. However, none of the currently available alumina or zirconia based ceramic orthodontic brackets meet the esthetic demands of adult patients. Inherent hexagonal lattice structure and associated birefringence limits the visible light transmission in polycrystalline alumina and make them appear white and non transparent. Hence focus of the present study was to assess the feasibility of using magnesium aluminate (MgAl2O4) spinel; a member of the transparent ceramic family for esthetic orthodontic brackets. Transparent spinel specimens were developed from commercially available white spinel powder through colloidal shaping followed by pressureless sintering and hot isostatic pressing at optimum conditions of temperature and pressure. Samples were characterized for chemical composition, phases, density, hardness, flexural strength, fracture toughness and optical transmission. Biocompatibility was evaluated with in-vitro cell line experiments for cytotoxicity, apoptosis and genotoxicity. Results showed that transparent spinel samples had requisite physico-chemical, mechanical, optical and excellent biocompatibility for fabricating orthodontic brackets. Transparent spinel developed through this method demonstrated its possibility as a prospective biomaterial for developing esthetic orthodontic brackets.

  15. Transparent, conducting films based on metal/dielectric photonic band gaps

    NASA Astrophysics Data System (ADS)

    Bloemer, Mark J.; Scalora, Michael; D'Aguanno, G.; Bowden, Charles M.; Baglio, Salvatore; Sibilia, Concita; Centini, Marco; Bertolotti, Mario

    1999-07-01

    A transparent conductor has been developed based on 1D metal/dielectric photonic band gap structures. Laminated metal/dielectric filters containing 100 nm of silver have been fabricated with > 50% transmittance. Applications for transparent, conducting films include antennas embedded in windshields, electrodes on flat panel displays, electromagnetic shielding, and solar window panes.

  16. Preschoolers' use of reflective properties: identification of reflections on partially transparent surfaces.

    PubMed

    Costanzo, E S; Wittgenstein, K M; Benson, K

    2001-12-01

    This exploratory study extended past studies of children's ability to reference the mirror as a tool in locating the source of reflected images to preschoolers' ability to use the affordances of a transparency. Thirty-six children (3.5 to 5 years old) were shown nonreflected lights and lights reflected on a partially transparent, glassy surface. Children did not spontaneously locate the source of the reflected image. However, they were able to verbally discriminate reflected from nonreflected images following training. These findings indicate that, although preschoolers may not spontaneously use transparencies as a perceptual tool, the ability to distinguish visual differences of reflected from nonreflected images on transparencies is likely within preschool children's developmental capacity.

  17. Transparent active matrix organic light-emitting diode displays driven by nanowire transistor circuitry.

    PubMed

    Ju, Sanghyun; Li, Jianfeng; Liu, Jun; Chen, Po-Chiang; Ha, Young-Geun; Ishikawa, Fumiaki; Chang, Hsiaokang; Zhou, Chongwu; Facchetti, Antonio; Janes, David B; Marks, Tobin J

    2008-04-01

    Optically transparent, mechanically flexible displays are attractive for next-generation visual technologies and portable electronics. In principle, organic light-emitting diodes (OLEDs) satisfy key requirements for this application-transparency, lightweight, flexibility, and low-temperature fabrication. However, to realize transparent, flexible active-matrix OLED (AMOLED) displays requires suitable thin-film transistor (TFT) drive electronics. Nanowire transistors (NWTs) are ideal candidates for this role due to their outstanding electrical characteristics, potential for compact size, fast switching, low-temperature fabrication, and transparency. Here we report the first demonstration of AMOLED displays driven exclusively by NW electronics and show that such displays can be optically transparent. The displays use pixel dimensions suitable for hand-held applications, exhibit 300 cd/m2 brightness, and are fabricated at temperatures suitable for integration on plastic substrates.

  18. Charitable giving expenditures and the faith factor.

    PubMed

    Showers, Vince E; Showers, Linda S; Beggs, Jeri M; Cox, James E

    2011-01-01

    Using a permanent income hypothesis approach and an income-giving status interaction effect, a double hurdle model provides evidence of significant differences from the impact of household income and various household characteristics on both a household's likelihood of giving and its level of giving to religion, charity, education, others outside the household, and politics. An analysis of resulting income elasticity estimates revealed that households consider religious giving a necessity good at all levels of income, while other categories of giving are generally found to be luxury goods. Further, those who gave to religion were found to give more to education and charity then those not giving to religion, and higher education households were more likely to give to religion than households with less education. This analysis suggests that there may be more to religious giving behavior than has been assumed in prior studies and underscores the need for further research into the motivation for religious giving. Specifically, these findings point to an enduring, internal motivation for giving rather than an external, “What do I get for what I give,” motive.

  19. 78 FR 6342 - U.S. Extractive Industries Transparency Initiative Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-30

    ... Industries Transparency Initiative Advisory Committee AGENCY: Interior, Office of the Secretary. ACTION... Initiative Advisory Committee will meet as indicated below. DATES: Wednesday, February 13, 2013, from 8:30 a... Transparency Initiative (EITI). The Committee includes representatives from Government agencies, extractive...

  20. Design for All in Scandinavia - a strong concept.

    PubMed

    Bendixen, Karin; Benktzon, Maria

    2015-01-01

    Design for All is more than an appealing point of view. It is a concept that offers a set of challenges capable of generating innovation and giving design added value and weight. In the Scandinavian tradition, the concept has developed from a purely social dimension to a design topic that is discussed both in terms of its business potential and in relation to Corporate Social Responsibility, CSR. This article gives a State of the Art of the development of Design for All in the Scandinavian countries: Denmark, Norway, Sweden and Finland during the past 15 years, beginning with a common review and joint Scandinavian projects, followed by an overall review country by country which include selected case studies over the past 15 years. Copyright © 2013 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  1. Silicon-Induced UV Transparency in Phosphate Glasses and Its Application to the Enhancement of the UV Type B Emission of Gd3.

    PubMed

    Jiménez, José A

    2017-05-10

    The silicon route to improve the ultraviolet (UV) transparency in phosphate glasses is investigated and further exploited to enhance the UV type B (280-320 nm) emission of gadolinium(III) relevant for biomedical applications. The glasses were synthesized with a barium phosphate composition by melt-quenching in ambient atmosphere and the optical properties investigated by optical absorption and photoluminescence (PL) spectroscopy including emission decay kinetics. An improvement in the UV transparency was gradually developed for the glasses melted merely with increasing amounts of Si powder. A particular PL in the visible was also exhibited for such glasses under excitation at 275 nm, consistent with the presence of Si-induced defects. For Si-Gd codoped glasses, the UV transparency was likewise manifested, while the UV emission from Gd 3+ around 312 nm was enhanced with the increase in Si concentration (up to ∼6.7 times). Moreover, along with the Gd 3+ PL intensity enhancement, a linear correlation was revealed between the increase in decay times for the Gd 3+6 P 7/2 -emitting state and the amount of silicon. It is then suggested that the improved PL properties of gadolinium(III) originate from the increased UV transparency of the host and the consequent precluding of a nonradiative energy transfer from Gd 3+ to the matrix. Accordingly, a role of Si as PL quenching inhibitor is supported. The demonstrated efficacy of the Si-Gd codoping concept realized by a facile glass synthesis procedure may appeal to the application of the UV-emitting glasses for phototherapy lamps.

  2. Transparent, flexible supercapacitors from nano-engineered carbon films.

    PubMed

    Jung, Hyun Young; Karimi, Majid B; Hahm, Myung Gwan; Ajayan, Pulickel M; Jung, Yung Joon

    2012-01-01

    Here we construct mechanically flexible and optically transparent thin film solid state supercapacitors by assembling nano-engineered carbon electrodes, prepared in porous templates, with morphology of interconnected arrays of complex shapes and porosity. The highly textured graphitic films act as electrode and current collector and integrated with solid polymer electrolyte, function as thin film supercapacitors. The nanostructured electrode morphology and the conformal electrolyte packaging provide enough energy and power density for the devices in addition to excellent mechanical flexibility and optical transparency, making it a unique design in various power delivery applications.

  3. Transparent, flexible supercapacitors from nano-engineered carbon films

    PubMed Central

    Jung, Hyun Young; Karimi, Majid B.; Hahm, Myung Gwan; Ajayan, Pulickel M.; Jung, Yung Joon

    2012-01-01

    Here we construct mechanically flexible and optically transparent thin film solid state supercapacitors by assembling nano-engineered carbon electrodes, prepared in porous templates, with morphology of interconnected arrays of complex shapes and porosity. The highly textured graphitic films act as electrode and current collector and integrated with solid polymer electrolyte, function as thin film supercapacitors. The nanostructured electrode morphology and the conformal electrolyte packaging provide enough energy and power density for the devices in addition to excellent mechanical flexibility and optical transparency, making it a unique design in various power delivery applications. PMID:23105970

  4. Transparent, flexible supercapacitors from nano-engineered carbon films

    NASA Astrophysics Data System (ADS)

    Jung, Hyun Young; Karimi, Majid B.; Hahm, Myung Gwan; Ajayan, Pulickel M.; Jung, Yung Joon

    2012-10-01

    Here we construct mechanically flexible and optically transparent thin film solid state supercapacitors by assembling nano-engineered carbon electrodes, prepared in porous templates, with morphology of interconnected arrays of complex shapes and porosity. The highly textured graphitic films act as electrode and current collector and integrated with solid polymer electrolyte, function as thin film supercapacitors. The nanostructured electrode morphology and the conformal electrolyte packaging provide enough energy and power density for the devices in addition to excellent mechanical flexibility and optical transparency, making it a unique design in various power delivery applications.

  5. Rain droplet erosion mechanisms in transparent plastic materials

    NASA Technical Reports Server (NTRS)

    Schmitt, G. F., Jr.

    1974-01-01

    Tests were conducted to determine the damaging effects of rain erosion on optically transparent materials. The rotating arm test equipment used for the tests is described. Typical transparent materials such as those found in windshields, infrared windows, lasers, and television systems were tested. Nominal velocities of 400, 500, and 600 miles per hour and rainfall conditions of one inch per hour simulated rainfall were used in the tests. It was determined that an 80 percent reduction in laser transmittance can occur in plastics submitted to rain erosion. Significant results of the environmental tests are explained.

  6. Low Velocity Impact Testing and Nondestructive Evaluation of Transparent Materials

    NASA Astrophysics Data System (ADS)

    Brennan, R. E.; Green, W. H.

    2011-06-01

    Advanced transparent materials are used in protective systems for enhancing the survivability of ground vehicles, air vehicles, and personnel in applications such as face shields, riot gear, and vehicle windows. Low velocity impact damage can limit visibility and compromise the structural integrity of a transparent system, increasing the likelihood of further damage or penetration from a high velocity impact strike. For this reason, it is critical to determine damage tolerance levels of transparent systems to indicate whether or not a component should be replaced. In this study, transparent laminate systems will be tested by comparing baseline conditions to experimentally controlled damage states. Destructive testing including air gun and sphere impact testing will be used to replicate low velocity impacts in the field. Characterization of the damaged state will include basic visual inspection as well as nondestructive techniques including cross-polarization, x-ray, and ultrasound. The combination of destructive testing and characterization of the resulting damage can help to establish a damage acceptance criterion for materials used in protective systems.

  7. Mid-twentieth-century anatomical transparencies and the depiction of three-dimensional form.

    PubMed

    Wall, Shelley

    2010-11-01

    Before the advent of digital visualization, the "anatomical transparency"--layered images of organ systems, printed on a transparent medium--flourished in the mid-twentieth century as an interactive means to represent complex anatomical relationships to medical professionals and lay audiences. This article introduces the transparency work of medical illustrators Gladys McHugh and Ernest W. Beck, situating it in the historical context of strategies to represent three-dimensional anatomical relationships using print media.

  8. Improving Transparency in the Reporting of Safeguards Implementation: FY11 Update

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Toomey, Christopher; Odlaug, Christopher S.; Wyse, Evan T.

    2011-09-30

    In 2008, the Standing Advisory Group on Safeguards Implementation (SAGSI) indicated that the International Atomic Energy Agency's (IAEA) Safeguards Implementation Report (SIR) has not kept pace with the evolution of safeguards and provided the IAEA with a set of recommendations for improvement. The SIR is the primary mechanism for providing an overview of safeguards implementation in a given year and reporting on the annual safeguards findings and conclusions drawn by the Secretariat. As the IAEA transitions to State-level safeguards approaches, SIR reporting must adapt to reflect these evolutionary changes. This evolved report will better reflect the IAEA's transition to amore » more qualitative and information-driven approach, based upon State-as-a-whole considerations. This paper applies SAGSI's recommendations to the development of multiple models for an evolved SIR and finds that an SIR repurposed as a 'safeguards portal' could significantly enhance information delivery, clarity, and transparency. In addition, this paper finds that the 'portal concept' also appears to have value as a standardized information presentation and analysis platform for use by Country Officers, for continuity of knowledge purposes, and the IAEA Secretariat in the safeguards conclusion process. Accompanying this paper is a fully functional prototype of the 'portal' concept, built using commercial software and IAEA Annual Report data and available for viewing at http://safeguardsportal.pnnl.gov.« less

  9. Transparent, flexible, and high-performance supercapacitor based on ultrafine nickel cobaltite nanospheres

    NASA Astrophysics Data System (ADS)

    Liu, Xinyue; Wang, Jianxing; Yang, Guowei

    2017-07-01

    There has been growing interest in transparent and flexible electronic devices such as wrist watch, cell phone, and so on. These devices need the power sources which also have transparent and flexible features. Here, we demonstrate a transparent and flexible energy storage device with outstanding electrochemical performance, high energy density, and super-long life based on ultrafine NiCo2O4 nanospheres which are synthesized by an innovative method concerning laser ablation in liquid and hydrothermal process. The ultrafine NiCo2O4 nanospheres provide high electrochemical activity and the synthesized colloidal solution is suitable for transparent devices. The transparent and flexible device shows a high specific capacitance of 299.7 F/g at the scan rate of 1 mV/s and a long cycling life of 90.4% retention rate after 10,000 cycles at a scan rate of 10 mV/s, which is superior to that of previously reported transparent and flexible energy storage device. In addition, an optical transmittance up to 55% at the wavelength of 550 nm is obtained, and the bending test shows that the bending angle makes no difference to the specific capacitance of the device. In addition, it shows an outstanding energy density of 10.41 Wh/kg. The integrated electrochemical performances of the device are good based on NiCo2O4 nanospheres. These findings make the ultrafine NiCo2O4 nanospheres being promising electrode materials for transparent and flexible energy storage devices.

  10. Giving what one should: explanations for the knowledge-behavior gap for altruistic giving.

    PubMed

    Blake, Peter R

    2018-04-01

    Several studies have shown that children struggle to give what they believe that they should: the so-called knowledge-behavior gap. Over a dozen recent Dictator Game studies find that, although young children believe that they should give half of a set of resources to a peer, they typically give less and often keep all of the resources for themselves. This article reviews recent evidence for five potential explanations for the gap and how children close it with age: self-regulation, social distance, theory of mind, moral knowledge and social learning. I conclude that self-regulation, social distance, and social learning show the most promising evidence for understanding the mechanisms that can close the gap. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Transparency in a Pediatric Quality Improvement Collaborative: A Passionate Journey by NPC-QIC Clinicians and Parents.

    PubMed

    Lihn, Stacey L; Kugler, John D; Peterson, Laura E; Lannon, Carole M; Pickles, Diane; Beekman, Robert H

    2015-01-01

    Transparency-sharing data or information about outcomes, processes, protocols, and practices-may be the most powerful driver of health care improvement. In this special article, the development and growth of transparency within the National Pediatric Cardiology Quality Improvement Collaborative is described. The National Pediatric Cardiology Quality Improvement Collaborative transparency journey is guided by equal numbers of clinicians and parents of children with congenital heart disease working together in a Transparency Work Group. Activities are organized around four interrelated levels of transparency (individual, organizational, collaborative, and system), each with a specified purpose and aim. A number of Transparency Work Group recommendations have been operationalized. Aggregate collaborative performance is now reported on the public-facing web site. Specific information that the Transparency Work Group recommends centers provide to parents has been developed and published. Almost half of National Pediatric Cardiology Quality Improvement Collaborative centers participated in a pilot of transparently sharing their outcomes achieved with one another. Individual centers have also begun successfully implementing recommended transparency activities. Despite progress, barriers to full transparency persist, including health care organization concerns about potential negative effects of disclosure on reputation and finances, and lack of reliable definitions, data, and reporting standards for fair comparisons of centers. The National Pediatric Cardiology Quality Improvement Collaborative's transparency efforts have been a journey that continues, not a single goal or destination. Balanced participation of clinicians and parents has been a critical element of the collaborative's success on this issue. Plans are in place to guide implementation of additional transparency recommendations across all four levels, including extension of the activities beyond the

  12. Producing high-quality negatives from ERTS black-and-white transparancies

    Treesearch

    Richard J. Myhre

    1973-01-01

    A method has been devised for producing high-quality black-and-white negatives quickly and efficiently from dense transparencies orgininating from Earth Resources Technology Satellite imagery. Transparencies are evaluated on a standard light source to determine exposure and processing information needed for making negatives. A “System ASA Rating” was developed by...

  13. Clinical reasoning: concept analysis.

    PubMed

    Simmons, Barbara

    2010-05-01

    This paper is a report of a concept analysis of clinical reasoning in nursing. Clinical reasoning is an ambiguous term that is often used synonymously with decision-making and clinical judgment. Clinical reasoning has not been clearly defined in the literature. Healthcare settings are increasingly filled with uncertainty, risk and complexity due to increased patient acuity, multiple comorbidities, and enhanced use of technology, all of which require clinical reasoning. Data sources. Literature for this concept analysis was retrieved from several databases, including CINAHL, PubMed, PsycINFO, ERIC and OvidMEDLINE, for the years 1980 to 2008. Rodgers's evolutionary method of concept analysis was used because of its applicability to concepts that are still evolving. Multiple terms have been used synonymously to describe the thinking skills that nurses use. Research in the past 20 years has elucidated differences among these terms and identified the cognitive processes that precede judgment and decision-making. Our concept analysis defines one of these terms, 'clinical reasoning,' as a complex process that uses cognition, metacognition, and discipline-specific knowledge to gather and analyse patient information, evaluate its significance, and weigh alternative actions. This concept analysis provides a middle-range descriptive theory of clinical reasoning in nursing that helps clarify meaning and gives direction for future research. Appropriate instruments to operationalize the concept need to be developed. Research is needed to identify additional variables that have an impact on clinical reasoning and what are the consequences of clinical reasoning in specific situations.

  14. 77 FR 31377 - U.S. Extractive Industries Transparency Initiative Tribal Consultation

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-25

    ... Industries Transparency Initiative Tribal Consultation AGENCY: Office of the Secretary, Interior. ACTION... regarding the United States Extractive Industries Transparency Initiative, to be held at the National... tribes in the months of June and July regarding this initiative. Interior also invites tribes to...

  15. 78 FR 37623 - Transparent Value Trust, et al.; Notice of Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-21

    ...] Transparent Value Trust, et al.; Notice of Application June 14, 2013. AGENCY: Securities and Exchange... (e) certain registered management investment companies and unit investment trusts outside of the same group of investment companies as the series to acquire Shares. Applicants: Transparent Value Trust...

  16. Tunable far-infrared plasmonically induced transparency in graphene based nano-structures

    NASA Astrophysics Data System (ADS)

    Dolatabady, Alireza; Granpayeh, Nosrat

    2018-07-01

    In this paper, a structure is proposed to show the phenomenon of tunable far-infrared plasmonically induced transparency. The structure includes a nano-ribbon waveguide side-coupled to nano-stub resonators. The realized effect is due to the coupling between the consecutive nano-stub resonators spaced in properly designed distances, providing a constructive interference in the virtually created Fabry–Perot cavity. Due to the Fabry–Perot like cavity created between two consecutive nano-stubs, periodic values of nano-stubs separation can produce transparency windows. Increasing the number of nano-stubs would increase the number of transparency windows in different frequencies. The structure is theoretically investigated and numerically simulated by using the finite difference time domain method. Owing to the chemical potential dependency of graphene conductivity, the transparency windows can be actively tuned. The proposed component can be extensively utilized in nano-scale switching and slow-light systems.

  17. Films of Carbon Nanomaterials for Transparent Conductors

    PubMed Central

    Ho, Xinning; Wei, Jun

    2013-01-01

    The demand for transparent conductors is expected to grow rapidly as electronic devices, such as touch screens, displays, solid state lighting and photovoltaics become ubiquitous in our lives. Doped metal oxides, especially indium tin oxide, are the commonly used materials for transparent conductors. As there are some drawbacks to this class of materials, exploration of alternative materials has been conducted. There is an interest in films of carbon nanomaterials such as, carbon nanotubes and graphene as they exhibit outstanding properties. This article reviews the synthesis and assembly of these films and their post-treatment. These processes determine the film performance and understanding of this platform will be useful for future work to improve the film performance. PMID:28809267

  18. Cosmic transparency and acceleration

    NASA Astrophysics Data System (ADS)

    Holanda, R. F. L.; Pereira, S. H.; Jain, Deepak

    2018-01-01

    In this paper, by considering an absorption probability independent of photon wavelength, we show that current type Ia supernovae (SNe Ia) and gamma-ray burst (GRB) observations plus high-redshift measurements of the cosmic microwave background (CMB) radiation temperature support cosmic acceleration regardless of the transparent-universe assumption. Two flat scenarios are considered in our analyses: the Λ CDM model and a kinematic model. We consider τ (z )=2 ln (1 +z )ɛ, where τ (z ) denotes the opacity between an observer at z =0 and a source at z . This choice is equivalent to deforming the cosmic distance duality relation as DLDA-1=(1 +z )2+ɛ and, if the absorption probability is independent of photon wavelength, the CMB temperature evolution law is TCMB(z )=T0(1 +z )1+2 ɛ /3. By marginalizing on the ɛ parameter, our analyses rule out a decelerating universe at 99.99% C.L. for all scenarios considered. Interestingly, by considering only SNe Ia and GRBs observations, we obtain that a decelerated universe—indicated by ΩΛ≤0.33 and q0>0 —is ruled out around 1.5 σ C.L. and 2 σ C.L., respectively, regardless of the transparent-universe assumption.

  19. Active control and switching of broadband electromagnetically induced transparency in symmetric metadevices

    NASA Astrophysics Data System (ADS)

    Yahiaoui, Riad; Manjappa, Manukumara; Srivastava, Yogesh Kumar; Singh, Ranjan

    2017-07-01

    Electromagnetically induced transparency (EIT) arises from coupling between the bright and dark mode resonances that typically involve subwavelength structures with broken symmetry, which results in an extremely sharp transparency band. Here, we demonstrate a tunable broadband EIT effect in a symmetry preserved metamaterial structure at the terahertz frequencies. Alongside, we also envisage a photo-active EIT effect in a hybrid metal-semiconductor metamaterial, where the transparency window can be dynamically switched by shining near-infrared light beam. A robust coupled oscillator model explains the coupling mechanism in the proposed design, which shows a good agreement with the observed results on tunable broadband transparency effect. Such active, switchable, and broadband metadevices could have applications in delay bandwidth management, terahertz filtering, and slow light effects.

  20. Conveying the 3D Shape of Transparent Surfaces Via Texture

    NASA Technical Reports Server (NTRS)

    Interrante, Victoria; Fuchs, Henry; Pizer, Stephen

    1997-01-01

    Transparency can be a useful device for depicting multiple overlapping surfaces in a single image. The challenge is to render the transparent surfaces in such a way that their three-dimensional shape can be readily understood and their depth distance from underlying structures clearly perceived. This paper describes our investigations into the use of sparsely-distributed discrete, opaque texture as an 'artistic device' for more explicitly indicating the relative depth of a transparent surface and for communicating the essential features of its 3D shape in an intuitively meaningful and minimally occluding way. The driving application for this work is the visualization of layered surfaces in radiation therapy treatment planning data, and the technique is illustrated on transparent isointensity surfaces of radiation dose. We describe the perceptual motivation and artistic inspiration for defining a stroke texture that is locally oriented in the direction of greatest normal curvature (and in which individual strokes are of a length proportional to the magnitude of the curvature in the direction they indicate), and discuss several alternative methods for applying this texture to isointensity surfaces defined in a volume. We propose an experimental paradigm for objectively measuring observers' ability to judge the shape and depth of a layered transparent surface, in the course of a task relevant to the needs of radiotherapy treatment planning, and use this paradigm to evaluate the practical effectiveness of our approach through a controlled observer experiment based on images generated from actual clinical data.

  1. Global dimming and brightening versus atmospheric column transparency, Europe, 1906-2007

    NASA Astrophysics Data System (ADS)

    Ohvril, Hanno; Teral, Hilda; Neiman, Lennart; Kannel, Martin; Uustare, Marika; Tee, Mati; Russak, Viivi; Okulov, Oleg; Jõeveer, Anne; Kallis, Ain; Ohvril, Tiiu; Terez, Edward I.; Terez, Galina A.; Gushchin, Gennady K.; Abakumova, Galina M.; Gorbarenko, Ekaterina V.; Tsvetkov, Anatoly V.; Laulainen, Nels

    2009-05-01

    Multiannual changes in atmospheric column transparency based on measurements of direct solar radiation allow us to assess various tendencies in climatic changes. Variability of the atmospheric integral (broadband) transparency coefficient, calculated according to the Bouguer-Lambert law and transformed to a solar elevation of 30°, is used for two Russian locations, Pavlovsk and Moscow, one Ukrainian location, Feodosiya, and three Estonian locations, Tartu, Tõravere, and Tiirikoja, covering together a 102-year period, 1906-2007. The comparison of time series revealed significant parallelism. Multiannual trends demonstrate decrease in transparency during the postwar period until 1983/1984. The trend ends with a steep decline of transparency after a series of four volcanic eruptions of Soufriere (1979), Saint Helens (1980), Alaid (1981), and El Chichón (1982). From 1984/1985 to 1990 the atmosphere remarkably restored its clarity, which almost reached again the level of the 1960s. Following the eruption of Mount Pinatubo (June 1991), there was the most significant reduction in column transparency of the postwar period. However, from the end of 1990s, the atmosphere in all considered locations is characterized with high values of transparency. The clearing of the atmosphere (from 1993) evidently indicates a decrease in the content of aerosol particles and, besides the decline of volcanic activity, may therefore be also traced to environmentally oriented changes in technology (pollution prevention), to general industrial and agricultural decline in the territory of the former USSR and Eastern Europe after deep political changes in 1991, and in part to migration of some industries out of Europe.

  2. Effects of electronic and lattice polarization on the band structure of delafossite transparent conductive oxides.

    PubMed

    Vidal, Julien; Trani, Fabio; Bruneval, Fabien; Marques, Miguel A L; Botti, Silvana

    2010-04-02

    We use hybrid functionals and restricted self-consistent GW, state-of-the-art theoretical approaches for quasiparticle band structures, to study the electronic states of delafossite Cu(Al,In)O2, the first p-type and bipolar transparent conductive oxides. We show that a self-consistent GW approximation gives remarkably wider band gaps than all the other approaches used so far. Accounting for polaronic effects in the GW scheme we recover a very nice agreement with experiments. Furthermore, the modifications with respect to the Kohn-Sham bands are strongly k dependent, which makes questionable the common practice of using a scissor operator. Finally, our results support the view that the low energy structures found in optical experiments, and initially attributed to an indirect transition, are due to intrinsic defects in the samples.

  3. National transparency assessment of Kuwait's pharmaceutical sector.

    PubMed

    Badawi, Dalia A; Alkhamis, Yousif; Qaddoumi, Mohammad; Behbehani, Kazem

    2015-09-01

    Corruption is one of several factors that may hinder the access to pharmaceuticals. Since Kuwait has the highest per-capita spending on pharmaceuticals in the region, we wanted to evaluate the level of transparency in its pharmaceutical sector using an established assessment tool adapted by the World Health Organization. Standardized questionnaires were conducted via semi-structured interviews with key informants to measure the level of transparency in eight functions of the public pharmaceutical sector. The scores for the degree of vulnerability to corruption reflected marginal to moderate venerability to corruption for most pharmaceutical sectors. The perceived strengths included availability of appropriate laws, the presence of clear standard operating procedures, and the use of an efficient registration/distribution system. Weaknesses included lack of conflict of interest guidelines and written terms of reference, absence of pharmacoeconomic studies, and inconsistencies in law enforcement. Findings reveal that few functions of Kuwait pharmaceutical sector remain fairly vulnerable to corruption. However, the willingness of Kuwait Ministry of Health to adopt the assessment study and the acknowledgement of the weaknesses of current processes of the pharmaceutical sector may assist to achieve a transparent pharmaceutical system in the near future. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  4. Concepts for the translation of genome-based innovations into public health: a comprehensive overview.

    PubMed

    Syurina, Elena V; Schulte In den Bäumen, Tobias; Brand, Angela; Ambrosino, Elena; Feron, Frans Jm

    2013-03-01

    Recent vast and rapid development of genome-related sciences is followed by the development of different assessment techniques or attempts to adapt the existing ones. The aim of this article is to give an overview of existing concepts for the assessment and translation of innovations into healthcare, applying a descriptive analysis of their present use by public health specialists and policy makers. The international literature review identified eight concepts including Health Technology Assessment, analytic validity, clinical validity, clinical utility, ethical, legal and social implications, Public Health Wheel and others. This study gives an overview of these concepts (including the level of current use) applying a descriptive analysis of their present use by public health specialists and policy makers. Despite the heterogeneity of the analyzed concepts and difference in use in everyday healthcare practice, the cross-integration of these concepts is important in order to improve translation speed and quality. Finally, some recommendations are made regarding the most applicable translational concepts.

  5. Transparent capacitors with hybrid ZnO:Al and Ag nanowires as electrodes.

    PubMed

    Zhang, Guozhen; Wu, Hao; Wang, Xiao; Wang, Ti; Liu, Chang

    2016-03-11

    Transparent conducting films with a composite structure of AlZnO-Ag nanowires (AgNWs) have been prepared by atomic layer deposition. The sheet resistance was reduced from 120 to 9 Ω when the AgNW networks were involved. Transparent capacitors with Al2O3-TiO2-Al2O3 dielectrics were fabricated on the composite electrodes and demonstrated a capacitance density of 10.1 fF μm(-2), which was significantly higher than that of capacitors with AlZnO electrodes (8.8 fF μm(-1)). The capacitance density remained almost unchanged in a broad frequency range from 3 kHz to 1 MHz. Moreover, a low leakage current density of 2.4 × 10(-7) A cm(-2) at 1 V was achieved. Transparent and flexible capacitors were also fabricated using the composite electrodes, and demonstrated an improved bendability. The transparent capacitors showed an average optical transmittance over 70% in the visible range, and thus open the door to practical applications in transparent integrated circuits.

  6. 3D-PRINTING OF TRANSPARENT BIO-MICROFLUIDIC DEVICES IN PEG-DA

    PubMed Central

    Urrios, Arturo; Parra-Cabrera, Cesar; Bhattacharjee, Nirveek; Gonzalez-Suarez, Alan M.; Rigat-Brugarolas, Luis G.; Nallapatti, Umashree; Samitier, Josep; DeForest, Cole A.; Posas, Francesc; Garcia-Cordero, José L.; Folch, Albert

    2016-01-01

    The vast majority of microfluidic systems are molded in poly(dimethylsiloxane) (PDMS) by soft lithography due to the favorable properties of PDMS: biocompatible, elastomeric, transparent, gas-permeable, inexpensive, and copyright-free. However, PDMS molding involves tedious manual labor, which makes PDMS devices prone to assembly failures and difficult to disseminate to research and clinical settings. Furthermore, the fabrication procedures limit the 3D complexity of the devices to layered designs. Stereolithography (SL), a form of 3D-printing, has recently attracted attention as a way to customize the fabrication of biomedical devices due to its automated, assembly-free 3D fabrication, rapidly decreasing costs, and fast-improving resolution and throughput. However, existing SL resins are not biocompatible and patterning transparent resins at high resolution remains difficult. Here we report procedures for the preparation and patterning of a transparent resin based on low-MW poly(ethylene glycol) diacrylate (MW 250) (PEG-DA-250). The 3D-printed devices are highly transparent and cells can be cultured on PEG-DA-250 prints for several days. This biocompatible SL resin and printing process solves some of the main drawbacks of 3D-printed microfluidic devices: biocompatibility and transparency. In addition, it should also enable the production of non-microfluidic biomedical devices. PMID:27217203

  7. Size of Self-Gravity Wakes from Cassini UVIS Tracking Occultations and Ring Transparency Statistics

    NASA Astrophysics Data System (ADS)

    Esposito, Larry W.; Rehnberg, Morgan; Colwell, Joshua E.; Sremcevic, Miodrag

    2017-10-01

    We compare two methods for determining the size of self-gravity wakes in Saturn’s rings. Analysis of gaps seen in UVIS occultations gives a power law distribution from 10-100m (Rehnberg etal 2017). Excess variance from UVIS occultations can be related to characteristic clump widths, a method which extends the work of Showalter and Nicholson (1990) to more arbitrary shadow distributions. In the middle A ring, we use results from Colwell etal (2017) for the variance and results from Jerousek etal (2016) for the relative size of gaps and wakes to estimate the wake width consistent with the excess variance observed there. Our method gives:W= sqrt (A) * E/T2 * (1+ S/W)Where A is the area observed by UVIS in an integration period, E is the measured excess variance above Poisson statistics, T is the mean transparency, and S and W are the separation and width of self-gravity wakes in the granola bar model of Colwell etal (2006). We find:W ~ 10m and infer the wavelength of the fastest growing instabilityLambda(TOOMRE) = S + W ~ 30m.This is consistent with the calculation of the Toomre wavelength from the surface mass density of the A ring, and with the highest resolution UVIS star occultations.

  8. Size of Self-Gravity Wakes from Cassini UVIS Tracking Occultations and Ring Transparency Statistics

    NASA Astrophysics Data System (ADS)

    Esposito, L. W.; Rehnberg, M.; Colwell, J. E.; Sremcevic, M.

    2017-12-01

    We compare two methods for determining the size of self-gravity wakes in Saturn's rings. Analysis of gaps seen in UVIS occultations gives a power law distribution from 10-100m (Rehnberg etal 2017). Excess variance from UVIS occultations can be related to characteristic clump widths, a method which extends the work of Showalter and Nicholson (1990) to more arbitrary shadow distributions. In the middle A ring, we use results from Colwell etal (2017) for the variance and results from Jerousek etal (2016) for the relative size of gaps and wakes to estimate the wake width consistent with the excess variance observed there. Our method gives: W= sqrt (A) * E/T2 * (1+ S/W)Where A is the area observed by UVIS in an integration period, E is the measured excess variance above Poisson statistics, T is the mean transparency, and S and W are the separation and width of self-gravity wakes in the granola bar model of Colwell etal (2006). We find: W 10m and infer the wavelength of the fastest growing instability lamdaT = S + W 30m. This is consistent with the calculation of the Toomre wavelength from the surface mass density of the A ring, and with the highest resolution UVIS star occultations.

  9. Slip casting nano-particle powders for making transparent ceramics

    DOEpatents

    Kuntz, Joshua D [Livermore, CA; Soules, Thomas F [Livermore, CA; Landingham, Richard Lee [Livermore, CA; Hollingsworth, Joel P [Oakland, CA

    2011-04-12

    A method of making a transparent ceramic including the steps of providing nano-ceramic powders in a processed or unprocessed form, mixing the powders with de-ionized water, the step of mixing the powders with de-ionized water producing a slurry, sonifing the slurry to completely wet the powder and suspend the powder in the de-ionized water, separating very fine particles from the slurry, molding the slurry, and curing the slurry to produce the transparent ceramic.

  10. How to Safely Give Acetaminophen

    MedlinePlus

    ... Educators Search English Español How to Safely Give Acetaminophen KidsHealth / For Parents / How to Safely Give Acetaminophen ... without getting a doctor's OK first. What Is Acetaminophen Also Called? Acetaminophen is the generic name of ...

  11. Highly Transparent Compositionally Graded Buffers for New Metamorphic Multijunction Solar Cell Designs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schulte, Kevin L.; France, Ryan M.; Geisz, John F.

    The development of compositionally graded buffer layers (CGBs) with enhanced transparency would enable novel five and six junction solar cells, with efficiencies approaching 50% under high concentration. Here, we demonstrate highly transparent grades between the GaAs and InP lattice constants on both A- and B-miscut GaAs substrates, employing Al xGayIn 1-x-yAs and highly Se-doped Burstein-Moss (BM) shifted Ga xIn 1-xP. Transparency to >810 and >890 nm wavelengths is demonstrated with BM-shifted Ga xIn 1-xP on B-miscut substrates and Al xGayIn 1-x-yAs/Ga xIn 1-xP(Se) combined grades on A-miscut substrates, respectively. 0.74 eV GaInAs solar cells grown on these transparent CGBs exhibitmore » Woc = 0.41 V at mA/ cm 2, performance comparable with the state-of-the-art Ga xIn 1-xP grade employed in the four-junction-inverted metamorphic multijunction (IMM) cell. A GaAs/0.74cV GaInAs tandem cell was grown with a transparent BM-shifted Ga xIn 1-xP CGB to verify the CGB performance in a multijunction device structure. Quantum efficiency measurements indicate that the CGB is completely transparent to photons below the GaAs bandedge, validating its use in 4-6 junction IMM devices with a single-graded buffer. Furthermore, this tandem represents a highly efficient two-junction band gap combination, achieving 29.6% ± 1.2% efficiency under the AM1.5 global spectrum, demonstrating how the additional transparency enables new device structures.« less

  12. Highly Transparent Compositionally Graded Buffers for New Metamorphic Multijunction Solar Cell Designs

    DOE PAGES

    Schulte, Kevin L.; France, Ryan M.; Geisz, John F.

    2016-11-11

    The development of compositionally graded buffer layers (CGBs) with enhanced transparency would enable novel five and six junction solar cells, with efficiencies approaching 50% under high concentration. Here, we demonstrate highly transparent grades between the GaAs and InP lattice constants on both A- and B-miscut GaAs substrates, employing Al xGayIn 1-x-yAs and highly Se-doped Burstein-Moss (BM) shifted Ga xIn 1-xP. Transparency to >810 and >890 nm wavelengths is demonstrated with BM-shifted Ga xIn 1-xP on B-miscut substrates and Al xGayIn 1-x-yAs/Ga xIn 1-xP(Se) combined grades on A-miscut substrates, respectively. 0.74 eV GaInAs solar cells grown on these transparent CGBs exhibitmore » Woc = 0.41 V at mA/ cm 2, performance comparable with the state-of-the-art Ga xIn 1-xP grade employed in the four-junction-inverted metamorphic multijunction (IMM) cell. A GaAs/0.74cV GaInAs tandem cell was grown with a transparent BM-shifted Ga xIn 1-xP CGB to verify the CGB performance in a multijunction device structure. Quantum efficiency measurements indicate that the CGB is completely transparent to photons below the GaAs bandedge, validating its use in 4-6 junction IMM devices with a single-graded buffer. Furthermore, this tandem represents a highly efficient two-junction band gap combination, achieving 29.6% ± 1.2% efficiency under the AM1.5 global spectrum, demonstrating how the additional transparency enables new device structures.« less

  13. Price and quality transparency: how effective for health care reform?

    PubMed

    Nyman, John A; Li, Chia-Hsuan W

    2009-07-01

    Many in Minnesota and the United States are promoting price and quality transparency as a means for reforming health care. The assumption is that with such information, consumers and providers would be motivated to change their behavior and this would lead to lower costs and higher-quality care.This article attempts to determine the extent to which publicizing information about the cost and quality of medical care does, in fact, improve quality and lower costs, and thus should be included in any reform strategy. The authors reviewed a number of studies and concluded that there is a general lack of empirical evidence on the effect of price transparency on health care costs and that the evidence on the effectiveness of quality transparency is mixed.

  14. What Do Graded Effects of Semantic Transparency Reveal about Morphological Processing?

    ERIC Educational Resources Information Center

    Feldman, Laurie Beth; Soltano, Emily G.; Pastizzo, Matthew J.; Francis, Sarah E.

    2004-01-01

    We examined the influence of semantic transparency on morphological facilitation in English in three lexical decision experiments. Decision latencies to visual targets (e.g., CASUALNESS) were faster after semantically transparent (e.g., CASUALLY) than semantically opaque (e.g., CASUALTY) primes whether primes were auditory and presented…

  15. Transparent resistive switching memory using aluminum oxide on a flexible substrate

    NASA Astrophysics Data System (ADS)

    Yeom, Seung-Won; Shin, Sang-Chul; Kim, Tan-Young; Ha, Hyeon Jun; Lee, Yun-Hi; Shim, Jae Won; Ju, Byeong-Kwon

    2016-02-01

    Resistive switching memory (ReRAM) has attracted much attention in recent times owing to its fast switching, simple structure, and non-volatility. Flexible and transparent electronic devices have also attracted considerable attention. We therefore fabricated an Al2O3-based ReRAM with transparent indium-zinc-oxide (IZO) electrodes on a flexible substrate. The device transmittance was found to be higher than 80% in the visible region (400-800 nm). Bended states (radius = 10 mm) of the device also did not affect the memory performance because of the flexibility of the two transparent IZO electrodes and the thin Al2O3 layer. The conduction mechanism of the resistive switching of our device was explained by ohmic conduction and a Poole-Frenkel emission model. The conduction mechanism was proved by oxygen vacancies in the Al2O3 layer, as analyzed by x-ray photoelectron spectroscopy analysis. These results encourage the application of ReRAM in flexible and transparent electronic devices.

  16. Managerial coaching: a concept analysis.

    PubMed

    Batson, Vicki D; Yoder, Linda H

    2012-07-01

    This article presents a report of a concept analysis of managerial coaching. Managerial coaching has been identified as a means for managers to give support to staff nurses, however, no clear delineation of what behaviours and attributes constitute managerial coaching or differentiate it from other career development relationships is provided in the current nursing literature. The CINAHL, ProQuest, Business Source Complete and PscyhIFNO databases were searched for articles published between 1980-2009 using the keywords coaching, managerial coaching, nurse manager support, nursing leadership, self-efficacy, work environment and empowerment. A hybrid approach was used, incorporating both Walker and Avant's method of concept analysis and King's conceptual system and Theory of Goal Attainment to explore the meaning of managerial coaching. Inclusive years of search ranged from 1980-2009. Managerial coaching is a specific dyadic relationship between the nurse manager and staff nurse intended to improve skills and knowledge as they relate to expected job performance. Antecedents and consequences are categorized at the individual and organizational level. Defining attributes, empirical referents and a model case are presented. The theoretical definition for this concept helps to differentiate it from other types of career development relationships and will give a basis for nurse managers to understand what skills and attributes are necessary to establish an effective managerial coaching relationship with staff nurses. Conceptualization will also assist in developing empirical studies examining managerial coaching behaviours in the work environment. © 2012 Blackwell Publishing Ltd.

  17. A new optically transparent silicon containing polyimide film

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, D.; Gupta, A.D.

    1995-12-31

    A new optically transparent, heat-resistant, flexible silicon containing polyimide (PI)(SIDA-BAPB) film has been developed. It was characterized by UV-Visible, FT-IR, differential scanning calorimetery (DSC), thermomechanical analysis (TMA) and thermogravimetric (TGA) analysis. The developed film showed high optical transparency in the 350-600 nm range of electromagnetic spectrum. The DSC analysis of the film showed glass transition temperature (T{sub g}) at 200{degrees}C. The dynamic thermogravimetric analysis (TGA) demonstrated its polymer decomposition temperature at 425{degrees}C. The char yield of the amorphous film in nitrogen at 800{degrees}C was 61%.

  18. Transparent Seismic Mitigation for Community Resilience

    NASA Astrophysics Data System (ADS)

    Poland, C. D.; Pekelnicky, R.

    2008-12-01

    Healthy communities continuously grow by leveraging their intellectual capital to drive economic development while protecting their cultural heritage. Success, in part, depends on the support of a healthy built environment that is rooted in contemporary urban planning, sustainability and disaster resilience. Planners and policy makers are deeply concerned with all aspects of their communities, including its seismic safety. Their reluctance to implement the latest plans for achieving seismic safety is rooted in a misunderstanding of the hazard they face and the risk it poses to their built environment. Probabilistic lingo and public debate about how big the "big one" will be drives them to resort to their own experience and intuition. There is a fundamental lack of transparency related to what is expected to happen, and it is partially blocking the policy changes that are needed. The solution: craft the message in broad based, usable terms that name the hazard, defines performance, and establishes a set of performance goals that represent the resiliency needed to drive a community's natural ability to rebound from a major seismic event. By using transparent goals and measures with an intuitive vocabulary for both performance and hazard, earthquake professionals, working with the San Francisco Urban Planning and Research Association (SPUR), have defined a level of resiliency that needs to be achieved by the City of San Francisco to assure their response to an event will be manageable and full recovery achievable within three years. Five performance measures for buildings and three for lifeline systems have been defined. Each declares whether people will be safe inside, whether the building will be able to be repaired and whether they will be usable during repairs. Lifeline systems are further defined in terms of the time intervals to restore 90%, 95%, and full service. These transparent categories are used in conjunction with the expected earthquake level to describe

  19. Tunable optical analog to electromagnetically induced transparency in graphene-ring resonators system

    PubMed Central

    Wang, Yonghua; Xue, Chenyang; Zhang, Zengxing; Zheng, Hua; Zhang, Wendong; Yan, Shubin

    2016-01-01

    The analogue of electromagnetically induced transparency in optical ways has shown great potential in optical delay and quantum-information technology due to its flexible design and easy implementation. The chief drawback for these devices is the bad tunability. Here we demonstrate a tunable optical transparency system formed by graphene-silicon microrings which could control the transparent window by electro-optical means. The device consists of cascaded coupled ring resonators and a graphene/graphene capacitor which integrated on one of the rings. By tuning the Fermi level of the graphene sheets, we can modulate the round-trip ring loss so that the transparency window can be dynamically tuned. The results provide a new method for the manipulation and transmission of light in highly integrated optical circuits and quantum information storage devices. PMID:27941895

  20. Tunable optical analog to electromagnetically induced transparency in graphene-ring resonators system.

    PubMed

    Wang, Yonghua; Xue, Chenyang; Zhang, Zengxing; Zheng, Hua; Zhang, Wendong; Yan, Shubin

    2016-12-12

    The analogue of electromagnetically induced transparency in optical ways has shown great potential in optical delay and quantum-information technology due to its flexible design and easy implementation. The chief drawback for these devices is the bad tunability. Here we demonstrate a tunable optical transparency system formed by graphene-silicon microrings which could control the transparent window by electro-optical means. The device consists of cascaded coupled ring resonators and a graphene/graphene capacitor which integrated on one of the rings. By tuning the Fermi level of the graphene sheets, we can modulate the round-trip ring loss so that the transparency window can be dynamically tuned. The results provide a new method for the manipulation and transmission of light in highly integrated optical circuits and quantum information storage devices.

  1. Transparent actuators and robots based on single-layer superaligned carbon nanotube sheet and polymer composites

    NASA Astrophysics Data System (ADS)

    Chen, Luzhuo; Weng, Mingcen; Zhang, Wei; Zhou, Zhiwei; Zhou, Yi; Xia, Dan; Li, Jiaxin; Huang, Zhigao; Liu, Changhong; Fan, Shoushan

    2016-03-01

    Transparent actuators have been attracting emerging interest recently, as they demonstrate potential applications in the fields of invisible robots, tactical displays, variable-focus lenses, and flexible cellular phones. However, previous technologies did not simultaneously realize macroscopic transparent actuators with advantages of large-shape deformation, low-voltage-driven actuation and fast fabrication. Here, we develop a fast approach to fabricate a high-performance transparent actuator based on single-layer superaligned carbon nanotube sheet and polymer composites. Various advantages of single-layer nanotube sheets including high transparency, considerable conductivity, and ultra-thin dimensions together with selected polymer materials completely realize all the above required advantages. Also, this is the first time that a single-layer nanotube sheet has been used to fabricate actuators with high transparency, avoiding the structural damage to the single-layer nanotube sheet. The transparent actuator shows a transmittance of 72% at the wavelength of 550 nm and bends remarkably with a curvature of 0.41 cm-1 under a DC voltage for 5 s, demonstrating a significant advance in technological performances compared to previous conventional actuators. To illustrate their great potential usage, a transparent wiper and a humanoid robot ``hand'' were elaborately designed and fabricated, which initiate a new direction in the development of high-performance invisible robotics and other intelligent applications with transparency.Transparent actuators have been attracting emerging interest recently, as they demonstrate potential applications in the fields of invisible robots, tactical displays, variable-focus lenses, and flexible cellular phones. However, previous technologies did not simultaneously realize macroscopic transparent actuators with advantages of large-shape deformation, low-voltage-driven actuation and fast fabrication. Here, we develop a fast approach to

  2. Medicare payment transparency

    PubMed Central

    Jones, Lyell K.; Craft, Karolina; Fritz, Joseph V.

    2016-01-01

    Abstract In 2014, the Centers for Medicare and Medicaid Services began a now annual process of releasing payment data made to physicians and other providers from Medicare Part B. The unprecedented availability of detailed payment information has generated considerable interest among policymakers, the public, and the media, and raised concerns from a number of physician groups. In the current climate of financial transparency, publication of Medicare payment data will likely continue. In an effort to prepare neurologists for future releases of payment data, we review the background, limitations, potential benefits, and appropriate responses to Medicare payment data releases. PMID:29443257

  3. Highly Efficient and Reliable Transparent Electromagnetic Interference Shielding Film.

    PubMed

    Jia, Li-Chuan; Yan, Ding-Xiang; Liu, Xiaofeng; Ma, Rujun; Wu, Hong-Yuan; Li, Zhong-Ming

    2018-04-11

    Electromagnetic protection in optoelectronic instruments such as optical windows and electronic displays is challenging because of the essential requirements of a high optical transmittance and an electromagnetic interference (EMI) shielding effectiveness (SE). Herein, we demonstrate the creation of an efficient transparent EMI shielding film that is composed of calcium alginate (CA), silver nanowires (AgNWs), and polyurethane (PU), via a facile and low-cost Mayer-rod coating method. The CA/AgNW/PU film with a high optical transmittance of 92% achieves an EMI SE of 20.7 dB, which meets the requirements for commercial shielding applications. A superior EMI SE of 31.3 dB could be achieved, whereas the transparent film still maintains a transmittance of 81%. The integrated efficient EMI SE and high transmittance are superior to those of most previously reported transparent EMI shielding materials. Moreover, our transparent films exhibit a highly reliable shielding ability in a complex service environment, with 98 and 96% EMI SE retentions even after 30 min of ultrasound treatment and 5000 bending cycles (1.5 mm radius), respectively. The comprehensive performance that is associated with the facile fabrication strategy imparts the CA/AgNW/PU film with great potential as an optimized EMI shielding material in emerging optoelectronic devices, such as flexible solar cells, displays, and touch panels.

  4. Transparent, wear-resistant, superhydrophobic and superoleophobic poly(dimethylsiloxane) (PDMS) surfaces.

    PubMed

    Martin, Samuel; Bhushan, Bharat

    2017-02-15

    Superoleophobic surfaces that exhibit self-cleaning, antifouling, low-drag, and anti-smudge properties with high transparency are of interest in industrial applications including optical devices, solar panels, and self-cleaning windows. In many superoleophobic surfaces created to date, the lack of mechanical durability has been an issue. In this work, for the first time, transparent, wear-resistant, superhydrophobic and superoleophobic surfaces were developed for polydimethylsiloxane (PDMS) using a simple and scalable fabrication technique. PDMS is of importance in biomedical applications as it is biocompatible, chemically stable, and transparent. PDMS was made superhydrophobic either through micropatterning or an applied coating of hydrophobic SiO 2 nanoparticles with a binder of methylphenyl silicone resin. Through the addition of fluorination via fluorosilane, the nanoparticle/binder coating was made superoleophobic. Intermediate steps using ultraviolet-ozone treatment were required for improved deposition and adhesion of the coatings. The effects of surface treatments were examined through contact angle and tilt angle measurements. The coating was found to have re-entrant geometries desirable for superoleophobicity and to exhibit mechanical wear resistance and transparent properties. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Development of a Novel Transparent Flexible Capacitive Micromachined Ultrasonic Transducer

    PubMed Central

    Pang, Da-Chen; Chang, Cheng-Min

    2017-01-01

    This paper presents the world’s first transparent flexible capacitive micromachined ultrasonic transducer (CMUT) that was fabricated through a roll-lamination technique. This polymer-based CMUT has advantages of transparency, flexibility, and non-contacting detection which provide unique functions in display panel applications. Comprising an indium tin oxide-polyethylene terephthalate (ITO-PET) substrate, SU-8 sidewall and vibrating membranes, and silver nanowire transparent electrode, the transducer has visible-light transmittance exceeding 80% and can operate on curved surfaces with a 40 mm radius of curvature. Unlike the traditional silicon-based high temperature process, the CMUT can be fabricated on a flexible substrate at a temperature below 100 °C to reduce residual stress introduced at high temperature. The CMUT on the curved surfaces can detect a flat target and finger at distances up to 50 mm and 40 mm, respectively. The transparent flexible CMUT provides a better human-machine interface than existing touch panels because it can be integrated with a display panel for non-contacting control in a health conscious environment and the flexible feature is critical for curved display and wearable electronics. PMID:28632157

  6. Information Transparency in Education: Three Sides of a Two-Sided Process

    ERIC Educational Resources Information Center

    Mertsalova, T. A.

    2015-01-01

    Information transparency is the result of informational globalization and the avalanche of information and communication technologies: thus, these processes are natural for the whole modern society. Statistics show that during the past several years the transparency situation not just in education but in the entire society has expanded…

  7. Analysis of multi-layered films. [determining dye densities by applying a regression analysis to the spectral response of the composite transparency

    NASA Technical Reports Server (NTRS)

    Scarpace, F. L.; Voss, A. W.

    1973-01-01

    Dye densities of multi-layered films are determined by applying a regression analysis to the spectral response of the composite transparency. The amount of dye in each layer is determined by fitting the sum of the individual dye layer densities to the measured dye densities. From this, dye content constants are calculated. Methods of calculating equivalent exposures are discussed. Equivalent exposures are a constant amount of energy over a limited band-width that will give the same dye content constants as the real incident energy. Methods of using these equivalent exposures for analysis of photographic data are presented.

  8. Graphene and silver-nanoprism dispersion for printing optically-transparent electrodes

    NASA Astrophysics Data System (ADS)

    Sinar, Dogan; Knopf, George K.; Nikumb, Suwas

    2017-02-01

    Optically transparent electrodes (OTEs) are used for bioelectronics, touch screens, visual displays, and photovoltaic cells. Although the conductive coating for these electrodes is often composed of indium tin oxide (ITO), indium is a very expensive material and thin ITO films are relatively brittle compared to conductive polymer or graphene thin films. An alternative highly conductive optically transparent thin film based on a graphene (G) and silver-nanoprism (AgNP) dispersion is introduced in this paper. The aqueous G ink is first synthesized using carboxymethyl cellulose (CMC) as a stabilizing agent. Silver (Ag) nanoprisms are then prepared separately by a simple thermal process which involves the reduction of silver nitrate by sodium borohydride. These Ag nanoprisms are only a few nanometers thick but have relatively large surface areas (>1000 nm2). As a consequence, the nanoprisms provide more efficient injection of free carriers to the G layer. The concentrated G-AgNP dispersions are then deposited on optically transparent glass and polyimide substrates using an inkjet printer with a HP6602A print head. After printing, these optically thin films can be thermally treated to further increase electrical conductivity. Thermal treatment decomposes CMC which frees elemental carbon from polymer chain and, simultaneously, causes the film to become hydrophobic. Preliminary experiments demonstrate that the G-AgNP films on glass substrates exhibit high conductivity at 70% transparency (550 nm). Additional tests on the Gr-AgNP thin films printed on polymide substrates show mechanical stability under bending with minimal reduction in electrical conductivity or optical transparency.

  9. Energy Dependence of Nuclear Transparency in C (p,2p) Scattering

    NASA Astrophysics Data System (ADS)

    Leksanov, A.; Alster, J.; Asryan, G.; Averichev, Y.; Barton, D.; Baturin, V.; Bukhtoyarova, N.; Carroll, A.; Heppelmann, S.; Kawabata, T.; Makdisi, Y.; Malki, A.; Minina, E.; Navon, I.; Nicholson, H.; Ogawa, A.; Panebratsev, Yu.; Piasetzky, E.; Schetkovsky, A.; Shimanskiy, S.; Tang, A.; Watson, J. W.; Yoshida, H.; Zhalov, D.

    2001-11-01

    The transparency of carbon for (p,2p) quasielastic events was measured at beam momenta ranging from 5.9 to 14.5 GeV/c at 90° c.m. The four-momentum transfer squared (Q2) ranged from 4.7 to 12.7 (GeV/c)2. We present the observed beam momentum dependence of the ratio of the carbon to hydrogen cross sections. We also apply a model for the nuclear momentum distribution of carbon to obtain the nuclear transparency. We find a sharp rise in transparency as the beam momentum is increased to 9 GeV/c and a reduction to approximately the Glauber level at higher energies.

  10. Low-temperature-processed efficient semi-transparent planar perovskite solar cells for bifacial and tandem applications

    PubMed Central

    Fu, Fan; Feurer, Thomas; Jäger, Timo; Avancini, Enrico; Bissig, Benjamin; Yoon, Songhak; Buecheler, Stephan; Tiwari, Ayodhya N.

    2015-01-01

    Semi-transparent perovskite solar cells are highly attractive for a wide range of applications, such as bifacial and tandem solar cells; however, the power conversion efficiency of semi-transparent devices still lags behind due to missing suitable transparent rear electrode or deposition process. Here we report a low-temperature process for efficient semi-transparent planar perovskite solar cells. A hybrid thermal evaporation–spin coating technique is developed to allow the introduction of PCBM in regular device configuration, which facilitates the growth of high-quality absorber, resulting in hysteresis-free devices. We employ high-mobility hydrogenated indium oxide as transparent rear electrode by room-temperature radio-frequency magnetron sputtering, yielding a semi-transparent solar cell with steady-state efficiency of 14.2% along with 72% average transmittance in the near-infrared region. With such semi-transparent devices, we show a substantial power enhancement when operating as bifacial solar cell, and in combination with low-bandgap copper indium gallium diselenide we further demonstrate 20.5% efficiency in four-terminal tandem configuration. PMID:26576667

  11. Low-temperature-processed efficient semi-transparent planar perovskite solar cells for bifacial and tandem applications.

    PubMed

    Fu, Fan; Feurer, Thomas; Jäger, Timo; Avancini, Enrico; Bissig, Benjamin; Yoon, Songhak; Buecheler, Stephan; Tiwari, Ayodhya N

    2015-11-18

    Semi-transparent perovskite solar cells are highly attractive for a wide range of applications, such as bifacial and tandem solar cells; however, the power conversion efficiency of semi-transparent devices still lags behind due to missing suitable transparent rear electrode or deposition process. Here we report a low-temperature process for efficient semi-transparent planar perovskite solar cells. A hybrid thermal evaporation-spin coating technique is developed to allow the introduction of PCBM in regular device configuration, which facilitates the growth of high-quality absorber, resulting in hysteresis-free devices. We employ high-mobility hydrogenated indium oxide as transparent rear electrode by room-temperature radio-frequency magnetron sputtering, yielding a semi-transparent solar cell with steady-state efficiency of 14.2% along with 72% average transmittance in the near-infrared region. With such semi-transparent devices, we show a substantial power enhancement when operating as bifacial solar cell, and in combination with low-bandgap copper indium gallium diselenide we further demonstrate 20.5% efficiency in four-terminal tandem configuration.

  12. Transparency Master: Planaria in the Classroom.

    ERIC Educational Resources Information Center

    Jensen, Lauritz A.; Allen, A. Lester

    1983-01-01

    Background information on the morphology and physiology of planarians and uses of the organism in schools is provided. Also provided is a transparency master demonstrating a planarian with an everted proboscis, two-headed/two-tailed planarians, and a planarian demonstrating the digestive tract. (JN)

  13. Data Transparency | Distributed Generation Interconnection Collaborative |

    Science.gov Websites

    quality and availability are increasingly vital for reducing the costs of distributed generation completion in certain areas, increasing accountability for utility application processing. As distributed PV NREL, HECO, TSRG Improving Data Transparency for the Distributed PV Interconnection Process: Emergent

  14. Clear as glass: transparent financial reporting.

    PubMed

    Valletta, Robert M

    2005-08-01

    To be transparent, financial information needs to be easily accessible, timely, content-rich, and narrative. Not-for-profit hospitals and health systems should report detailed financial information quarterly. They need internal controls to reduce the level of complexity throughout the organization by creating standardized processes.

  15. Cellulose nanofibers/reduced graphene oxide flexible transparent conductive paper.

    PubMed

    Gao, Kezheng; Shao, Ziqiang; Wu, Xue; Wang, Xi; Li, Jia; Zhang, Yunhua; Wang, Wenjun; Wang, Feijun

    2013-08-14

    The cellulose nanofibers (CNFs) paper exhibit high visible light transmittance, high mechanical strength, and excellent flexibility. Therefore, CNFs paper may be an excellent substrate material for flexible transparent electronic devices. In this paper, we endeavor to prepare CNFs-based flexible transparent conductive paper by layer-by-layer (LbL) assembly using divalent copper ions (Cu(2+)) as the crosslinking agent. The thickness of the reduced graphene oxide (RGO) active layer in the CNFs paper can be controlled by the cycle times of the LbL assembly. CNFs/[RGO]20 paper has the sheet resistances of ∼2.5 kΩ/□, and the transmittance of about 76% at a wavelength of 550 nm. Furthermore, CNFs/[RGO]20 paper inherits the excellent mechanical properties of CNFs paper, and the ultimate strength is about 136 MPa. CNFs-based flexible transparent conductive paper also exhibits excellent electrical stability and flexibility. Copyright © 2013. Published by Elsevier Ltd.

  16. Transparent Democratic Foresight Strategies in the California EMF Program.

    PubMed

    Neutra, Raymond Richard; Delpizzo, Vincent

    2002-01-01

    A California Department of Health Services program dealt with possible health effects from Electric and Magnetic Fields (EMF) from power lines. With the advice of stakeholders, and well before any risk determinations were made, transparent policy analyses about the power grid and schools asked the question, "How confident must one be of how big an effect before one would adopt cheap or expensive EMF avoidance measures?" A risk evaluation was carried out with features that promoted transparency. It was formatted to provide a policy-neutral "degree of certainty of causality" to adherents of utilitarian, environmental justice, and libertarian policy frameworks. Though the program had many features advocated by adherents of the precautionary principle, it might be better characterized as following "Transparent Democratic Foresight Strategies," since no single principle justifies the strategies used in this participatory program, and it examined the pros and cons of options but made no recommendations, precautionary or otherwise.

  17. Giving That Doesn't Hurt

    ERIC Educational Resources Information Center

    Dunseth, William B.

    1978-01-01

    The annuity and trust income program (deferred giving) permits donors to give more than they thought they could. Suggestions for establishing and monitoring such programs are offered in this article, which is a condensation of remarks at the National Conference on Trusteeship. (Author/LBH)

  18. Highly transparent, low-haze, hybrid cellulose nanopaper as electrodes for flexible electronics.

    PubMed

    Xu, Xuezhu; Zhou, Jian; Jiang, Long; Lubineau, Gilles; Ng, Tienkhee; Ooi, Boon S; Liao, Hsien-Yu; Shen, Chao; Chen, Long; Zhu, J Y

    2016-06-16

    Paper is an excellent candidate to replace plastics as a substrate for flexible electronics due to its low cost, renewability and flexibility. Cellulose nanopaper (CNP), a new type of paper made of nanosized cellulose fibers, is a promising substrate material for transparent and flexible electrodes due to its potentially high transparency and high mechanical strength. Although CNP substrates can achieve high transparency, they are still characterized by high diffuse transmittance and small direct transmittance, resulting in high optical haze of the substrates. In this study, we proposed a simple methodology for large-scale production of high-transparency, low-haze CNP comprising both long cellulose nanofibrils (CNFs) and short cellulose nanocrystals (CNCs). By varying the CNC/CNF ratio in the hybrid CNP, we could tailor its total transmittance, direct transmittance and diffuse transmittance. By increasing the CNC content, the optical haze of the hybrid CNP could be decreased and its transparency could be increased. The direct transmittance and optical haze of the CNP were 75.1% and 10.0%, respectively, greatly improved from the values of previously reported CNP (31.1% and 62.0%, respectively). Transparent, flexible electrodes were fabricated by coating the hybrid CNP with silver nanowires (AgNWs). The electrodes showed a low sheet resistance (minimum 1.2 Ω sq(-1)) and a high total transmittance (maximum of 82.5%). The electrodes were used to make a light emitting diode (LED) assembly to demonstrate their potential use in flexible displays.

  19. Evidence for the onset of color transparency in ρ0 electroproduction off nuclei

    NASA Astrophysics Data System (ADS)

    CLAS Collaboration; El Fassi, L.; Zana, L.; Hafidi, K.; Holtrop, M.; Mustapha, B.; Brooks, W. K.; Hakobyan, H.; Zheng, X.; Adhikari, K. P.; Adikaram, D.; Aghasyan, M.; Amaryan, M. J.; Anghinolfi, M.; Arrington, J.; Avakian, H.; Baghdasaryan, H.; Battaglieri, M.; Batourine, V.; Bedlinskiy, I.; Biselli, A. S.; Bookwalter, C.; Branford, D.; Briscoe, W. J.; Bültmann, S.; Burkert, V. D.; Carman, D. S.; Celentano, A.; Chandavar, S.; Cole, P. L.; Contalbrigo, M.; Crede, V.; D'Angelo, A.; Daniel, A.; Dashyan, N.; De Vita, R.; De Sanctis, E.; Deur, A.; Dey, B.; Dickson, R.; Djalali, C.; Dodge, G. E.; Doughty, D.; Dupre, R.; Egiyan, H.; El Alaoui, A.; Elouadrhiri, L.; Eugenio, P.; Fedotov, G.; Fegan, S.; Gabrielyan, M. Y.; Garçon, M.; Gevorgyan, N.; Gilfoyle, G. P.; Giovanetti, K. L.; Girod, F. X.; Goetz, J. T.; Gohn, W.; Golovatch, E.; Gothe, R. W.; Griffioen, K. A.; Guidal, M.; Guo, L.; Hanretty, C.; Heddle, D.; Hicks, K.; Holt, R. J.; Hyde, C. E.; Ilieva, Y.; Ireland, D. G.; Ishkhanov, B. S.; Isupov, E. L.; Jawalkar, S. S.; Keller, D.; Khandaker, M.; Khetarpal, P.; Kim, A.; Kim, W.; Klein, A.; Klein, F. J.; Kubarovsky, V.; Kuhn, S. E.; Kuleshov, S. V.; Kuznetsov, V.; Laget, J. M.; Lu, H. Y.; MacGregor, I. J. D.; Mao, Y.; Markov, N.; Mayer, M.; McAndrew, J.; McKinnon, B.; Meyer, C. A.; Mineeva, T.; Mirazita, M.; Mokeev, V.; Moreno, B.; Moutarde, H.; Munevar, E.; Nadel-Turonski, P.; Ni, A.; Niccolai, S.; Niculescu, G.; Niculescu, I.; Osipenko, M.; Ostrovidov, A. I.; Pappalardo, L. L.; Paremuzyan, R.; Park, K.; Park, S.; Pasyuk, E.; Anefalos Pereira, S.; Phelps, E.; Pozdniakov, S.; Price, J. W.; Procureur, S.; Protopopescu, D.; Raue, B. A.; Reimer, P. E.; Ricco, G.; Rimal, D.; Ripani, M.; Ritchie, B. G.; Rosner, G.; Rossi, P.; Sabatié, F.; Saini, M. S.; Salgado, C.; Schott, D.; Schumacher, R. A.; Seraydaryan, H.; Sharabian, Y. G.; Smith, E. S.; Smith, G. D.; Sober, D. I.; Sokhan, D.; Stepanyan, S. S.; Stepanyan, S.; Stoler, P.; Strauch, S.; Taiuti, M.; Tang, W.; Taylor, C. E.; Tedeschi, D. J.; Tkachenko, S.; Ungaro, M.; Vernarsky, B.; Vineyard, M. F.; Voskanyan, H.; Voutier, E.; Watts, D.; Weinstein, L. B.; Weygand, D. P.; Wood, M. H.; Zachariou, N.; Zhao, B.; Zhao, Z. W.

    2012-06-01

    We have measured the nuclear transparency of the incoherent diffractive A(e,e‧ρ0) process in 12C and 56Fe targets relative to 2H using a 5 GeV electron beam. The nuclear transparency, the ratio of the produced ρ0's on a nucleus relative to deuterium, which is sensitive to ρA interaction, was studied as function of the coherence length (lc), a lifetime of the hadronic fluctuation of the virtual photon, and the four-momentum transfer squared (Q2). While the transparency for both 12C and 56Fe showed no lc dependence, a significant Q2 dependence was measured, which is consistent with calculations that included the color transparency effects.

  20. Test of the cosmic transparency with the standard candles and the standard ruler

    NASA Astrophysics Data System (ADS)

    Chen, Jun

    In this paper, the cosmic transparency is constrained by using the latest baryon acoustic oscillation (BAO) data and the type Ia supernova data with a model-independent method. We find that a transparent universe is consistent with observational data at the 1σ confidence level, except for the case of BAO+ Union 2.1 without the systematic errors where a transparent universe is favored only at the 2σ confidence level. To investigate the effect of the uncertainty of the Hubble constant on the test of the cosmic opacity, we assume h to be a free parameter and obtain that the observations favor a transparent universe at the 1σ confidence level.

  1. Highly Transparent and Conductive Metallized Nanofibers by Electrospinning and Electroplating

    NASA Astrophysics Data System (ADS)

    Yoon, Sam S.; Yarin, Alexander L.

    2017-11-01

    Transparent conducting films (TCFs) and transparent heaters (THs) are of interest for a wide variety of applications, from displays to window defrosters. Here, we demonstrate production of highly flexible, conducting, and transparent copper (Cu), nickel (Ni), platinum (Pt), and silver (Ag) nanofibers suitable for use not only in TCFs and THs but also in some other engineering applications. The merging of fibers at their intersections (i.e. self-junctioning) minimizes contact resistance in these films. These metallized nanofibers exhibited a remarkably low sheet resistance at a high optical transmittance. This low sheet resistance allows them to serve as low-voltage heaters, achieving a high heating temperature at a relatively low applied voltage. These nanofibers are free-standing, flexible, stretchable, and their mechanical reliability was confirmed through various mechanical endurance tests.

  2. The value of price transparency in residential solar photovoltaic markets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Shaughnessy, Eric; Margolis, Robert

    Installed prices for residential solar photovoltaic (PV) systems have declined significantly in recent years. However price dispersion and limited customer access to PV quotes prevents some prospective customers from obtaining low price offers. This study shows that improved customer access to prices - also known as price transparency - is a potential policy lever for further PV price reductions. We use customer search and strategic pricing theory to show that PV installation companies face incentives to offer lower prices in markets with more price transparency. We test this theoretical framework using a unique residential PV quote dataset. Our results showmore » that installers offer lower prices to customers that are expected to receive more quotes. Our study provides a rationale for policies to improve price transparency in residential PV markets.« less

  3. The value of price transparency in residential solar photovoltaic markets

    DOE PAGES

    O'Shaughnessy, Eric; Margolis, Robert

    2018-04-05

    Installed prices for residential solar photovoltaic (PV) systems have declined significantly in recent years. However price dispersion and limited customer access to PV quotes prevents some prospective customers from obtaining low price offers. This study shows that improved customer access to prices - also known as price transparency - is a potential policy lever for further PV price reductions. We use customer search and strategic pricing theory to show that PV installation companies face incentives to offer lower prices in markets with more price transparency. We test this theoretical framework using a unique residential PV quote dataset. Our results showmore » that installers offer lower prices to customers that are expected to receive more quotes. Our study provides a rationale for policies to improve price transparency in residential PV markets.« less

  4. Atomic-Layer-Deposited Transparent Electrodes for Silicon Heterojunction Solar Cells

    DOE PAGES

    Demaurex, Benedicte; Seif, Johannes P.; Smit, Sjoerd; ...

    2014-11-01

    We examine damage-free transparent-electrode deposition to fabricate high-efficiency amorphous silicon/crystalline silicon heterojunction solar cells. Such solar cells usually feature sputtered transparent electrodes, the deposition of which may damage the layers underneath. Using atomic layer deposition, we insert thin protective films between the amorphous silicon layers and sputtered contacts and investigate their effect on device operation. We find that a 20-nm-thick protective layer suffices to preserve, unchanged, the amorphous silicon layers beneath. Insertion of such protective atomic-layer-deposited layers yields slightly higher internal voltages at low carrier injection levels. However, we identify the presence of a silicon oxide layer, formed during processing,more » between the amorphous silicon and the atomic-layer-deposited transparent electrode that acts as a barrier, impeding hole and electron collection.« less

  5. 2007 Annual Health Physics Report for the HEU Transparency Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Radev, R

    2008-04-09

    During the 2007 calendar year, Lawrence Livermore National Laboratory (LLNL) provided health physics support for the Highly Enriched Uranium (HEU) Transparency Program for external and internal radiation protection and technical expertise related to BDMS radioactive sources and Russian radiation safety regulatory compliance. For the calendar year 2007, there were 172 person-trips that required dose monitoring of the U.S. monitors. Of the 172 person-trips, 160 person-trips were SMVs and 12 person-trips were Transparency Monitoring Office (TMO) trips. There were 12 monitoring visits by TMO monitors to facilities other than UEIE and 10 to UEIE itself. There were two monitoring visits (sourcemore » changes) that were back to back with 14 monitors. LLNL's Hazard Control Division laboratories provided the dosimetry services for the HEU Transparency monitors.« less

  6. Transparency Film for Demonstration of Biaxial Optics.

    ERIC Educational Resources Information Center

    Camp, Paul R.

    1994-01-01

    Explains why transparency film demonstrates biaxial optical properties. Provides detailed descriptions of the procedure and equipment needed for large-scale optics demonstrations of the polarization interference pattern produced by biaxial crystals. (DDR)

  7. Optical and electrical properties of Cu-based all oxide semi-transparent photodetector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Hong-Sik; Patel, Malkeshkumar; Yadav, Pankaj

    2016-09-05

    Zero-bias operating Cu oxide-based photodetector was achieved by using large-scale available sputtering method. Cu oxide (Cu{sub 2}O or CuO) was used as p-type transparent layer to form a heterojunction by contacting n-type ZnO layer. All metal-oxide materials were employed to realize transparent device at room temperature and showed a high transparency (>75% at 600 nm) with excellent photoresponses. The structural, morphological, optical, and electrical properties of Cu oxides of CuO and Cu{sub 2}O are evaluated in depth by UV-visible spectrometer, X-ray diffraction, scanning electron microscopy, atomic force microscopy, Kelvin probe force microscopy, and Hall measurements. We may suggest a route ofmore » high-functional Cu oxide-based photoelectric devices for the applications in flexible and transparent electronics.« less

  8. Water transparency distribution under varied currents in the largest river-connected lake of China.

    PubMed

    Wang, Hua; Zhao, Yijun; Zhang, Zhizhang; Pang, Yong; Liang, Dongfang

    2017-01-01

    Water transparency is an important ecological indicator for shallow lakes. The largest shallow lake, Poyang Lake, as well as the most typical river-connected lake in China was selected as the research area. In view of the complicated water-sediment conditions induced by its frequent water exchange with external rivers, the dominant factors driving water transparency were determined against the field investigated data from 2003 to 2013 and a specific driving function was established. A numerical model coupling suspended sediment, Chl-a and chemical oxygen demand was developed and validated, and the spatial water transparency distributions under three typical current structures in Poyang Lake, Gravity-style, Jacking-style and Backflow-style, were quantitatively estimated. The following results stood out: water transparency in the lake varied distinctly with the current status; Backflow-style current was basically characterized by the lowest water transparency, while that under Jacking-style was the highest due to the lower sediment carrying capacity. In some outlying regions in the lake, where the water current is hardly influenced by the mainstream, the water transparency was always kept at a stable level.

  9. Tuneable complementary metamaterial structures based on graphene for single and multiple transparency windows

    PubMed Central

    Ding, Jun; Arigong, Bayaner; Ren, Han; Zhou, Mi; Shao, Jin; Lu, Meng; Chai, Yang; Lin, Yuankun; Zhang, Hualiang

    2014-01-01

    Novel graphene-based tunable plasmonic metamaterials featuring single and multiple transparency windows are numerically studied in this paper. The designed structures consist of a graphene layer perforated with quadrupole slot structures and dolmen-like slot structures printed on a substrate. Specifically, the graphene-based quadrupole slot structure can realize a single transparency window, which is achieved without breaking the structure symmetry. Further investigations have shown that the single transparency window in the proposed quadrupole slot structure is more likely originated from the quantum effect of Autler-Townes splitting. Then, by introducing a dipole slot to the quadrupole slot structure to form the dolmen-like slot structure, an additional transmission dip could occur in the transmission spectrum, thus, a multiple-transparency-window system can be achieved (for the first time for graphene-based devices). More importantly, the transparency windows for both the quadrupole slot and the dolmen-like slot structures can be dynamically controlled over a broad frequency range by varying the Fermi energy levels of the graphene layer (through electrostatic gating). The proposed slot metamaterial structures with tunable single and multiple transparency windows could find potential applications in many areas such as multiple-wavelength slow-light devices, active plasmonic switching, and optical sensing. PMID:25146672

  10. Tuneable complementary metamaterial structures based on graphene for single and multiple transparency windows.

    PubMed

    Ding, Jun; Arigong, Bayaner; Ren, Han; Zhou, Mi; Shao, Jin; Lu, Meng; Chai, Yang; Lin, Yuankun; Zhang, Hualiang

    2014-08-22

    Novel graphene-based tunable plasmonic metamaterials featuring single and multiple transparency windows are numerically studied in this paper. The designed structures consist of a graphene layer perforated with quadrupole slot structures and dolmen-like slot structures printed on a substrate. Specifically, the graphene-based quadrupole slot structure can realize a single transparency window, which is achieved without breaking the structure symmetry. Further investigations have shown that the single transparency window in the proposed quadrupole slot structure is more likely originated from the quantum effect of Autler-Townes splitting. Then, by introducing a dipole slot to the quadrupole slot structure to form the dolmen-like slot structure, an additional transmission dip could occur in the transmission spectrum, thus, a multiple-transparency-window system can be achieved (for the first time for graphene-based devices). More importantly, the transparency windows for both the quadrupole slot and the dolmen-like slot structures can be dynamically controlled over a broad frequency range by varying the Fermi energy levels of the graphene layer (through electrostatic gating). The proposed slot metamaterial structures with tunable single and multiple transparency windows could find potential applications in many areas such as multiple-wavelength slow-light devices, active plasmonic switching, and optical sensing.

  11. Novel design for transparent high-pressure fuel injector nozzles.

    PubMed

    Falgout, Z; Linne, M

    2016-08-01

    The efficiency and emissions of internal combustion (IC) engines are closely tied to the formation of the combustible air-fuel mixture. Direct-injection engines have become more common due to their increased practical flexibility and efficiency, and sprays dominate mixture formation in these engines. Spray formation, or rather the transition from a cylindrical liquid jet to a field of isolated droplets, is not completely understood. However, it is known that nozzle orifice flow and cavitation have an important effect on the formation of fuel injector sprays, even if the exact details of this effect remain unknown. A number of studies in recent years have used injectors with optically transparent nozzles (OTN) to allow observation of the nozzle orifice flow. Our goal in this work is to design various OTN concepts that mimic the flow inside commercial injector nozzles, at realistic fuel pressures, and yet still allow access to the very near nozzle region of the spray so that interior flow structure can be correlated with primary breakup dynamics. This goal has not been achieved until now because interior structures can be very complex, and the most appropriate optical materials are brittle and easily fractured by realistic fuel pressures. An OTN design that achieves realistic injection pressures and grants visual access to the interior flow and spray formation will be explained in detail. The design uses an acrylic nozzle, which is ideal for imaging the interior flow. This nozzle is supported from the outside with sapphire clamps, which reduces tensile stresses in the nozzle and increases the nozzle's injection pressure capacity. An ensemble of nozzles were mechanically tested to prove this design concept.

  12. Hole conduction pathways in transparent amorphous tin oxides

    NASA Astrophysics Data System (ADS)

    Wahila, Matthew; Lebens-Higgins, Zachary; Quackenbush, Nicholas; Piper, Louis; Butler, Keith; Hendon, Christopher; Walsh, Aron; Watson, Graeme

    P-type transparent amorphous oxide semiconductors (TAOS) have yet to be sufficiently demonstrated or commercialized, severely limiting the possible device architecture of transparent and flexible oxide electronics. The lack of p-type amorphous oxide candidates mainly originates from the directional oxygen 2 p character of their topmost valence states. Previous attempts to create p-type oxides have involved hybridization of the O 2 p with metal orbitals, such as with CuAlO2 and its Cu 3 d - O 2 p hybridization. However, the highly directional nature of the utilized orbitals means that structural disorder inhibits hybridization and severely disrupts hole-conduction pathways. Crystalline stannous oxide (SnO) and other lone-pair active post-transition metal oxides can have reduced localization at the valence band edge due to complex hybridization between the O 2 p, metal p, and spherical metal s-orbitals. I will discuss our investigation of structural disorder in SnO. Using a combination of synchrotron spectroscopy, and atomistic calculations, our investigation elucidates the important interplay between atomistic and electronic structure in establishing continuous hole conduction pathways at the valence band edge of transparent amorphous oxides.

  13. The Impact of Price Transparency for Surgical Services.

    PubMed

    Mehta, Ambar; Xu, Tim; Bai, Ge; Hawley, Kristy L; Makary, Martin A

    2018-04-01

    Increasing insurance deductibles have prompted some medical centers to initiate transparent pricing. However, the impact of price transparency (PT) on surgical volume, revenue, and patient satisfaction is unknown, along with the barriers to achieving PT. We identified ambulatory surgical centers in the Free Market Medical Association database that publicly list prices for surgical services online. Six of eight centers (75%) responded to our data collection inquiry. Among five centers that reported their patient volume and revenue after adopting PT, patient volume increased by a median of 50 per cent (range 10-200%) at one year. Four centers (80%) reported an increase in revenue by a median of 30 per cent (range 4-75%), whereas three centers (60%) experienced an increase in third-party administrator contracts with the average increase being seven new third-party administrator contracts (range = 2-12 contracts). Three centers (50%) reported a reduction in their administrative burden and five centers (83%) reported an increase in patient satisfaction and patient engagement after PT. The leading barrier reported to making prices transparent was discouragement from another practice, hospital, or insurance company. The findings of this preliminary study may help guide medical practices in designing and implementing PT strategies.

  14. Induced Transparency and Absorption in Coupled Microresonators

    NASA Technical Reports Server (NTRS)

    Smith, David D.; Chang, Hongrok

    2004-01-01

    We review the conditions for the occurrence of coherence phenomena in passive coupled optical microresonators. We derive the effective steady-state response and determine conditions for induced transparency and absorption in these systems.

  15. Income Tax Policy and Charitable Giving

    ERIC Educational Resources Information Center

    Brooks, Arthur C.

    2007-01-01

    Many studies over the past 20 years have looked at the response of charitable donations to tax incentives--the tax price elasticity of giving. Generally, authors have assumed this elasticity is constant across all types of giving. Using the 2001 Panel Study of Income Dynamics data on charitable giving, this paper estimates the tax price elasticity…

  16. A repeated halving approach to fabricate ultrathin single-walled carbon nanotube films for transparent supercapacitors.

    PubMed

    Niu, Zhiqiang; Zhou, Weiya; Chen, Jun; Feng, Guoxing; Li, Hong; Hu, Yongsheng; Ma, Wenjun; Dong, Haibo; Li, Jinzhu; Xie, Sishen

    2013-02-25

    Ultrathin SWCNT transparent and conductive films on flexible and transparent substrates are prepared via repeatedly halving the directly grown SWCNT films and flexible and transparent supercapacitors with excellent performance were fabricated. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Optically transparent, superhydrophobic, biocompatible thin film coatings and methods for producing same

    DOEpatents

    Armstrong, Beth L.; Aytug, Tolga; Paranthaman, Mariappan Parans; Simpson, John T.; Hillesheim, Daniel A.; Trammell, Neil E.

    2017-09-05

    An optically transparent, hydrophobic coating, exhibiting an average contact angle of at least 100 degrees with a drop of water. The coating can be produced using low-cost, environmentally friendly components. Methods of preparing and using the optically transparent, hydrophobic coating.

  18. Co-Percolating Graphene-Wrapped Silver Nanowire Network for High Performance, Highly Stable, Transparent Conducting Electrodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Ruiyi; Das, Suprem R; Jeong, Changwook

    Transparent conducting electrodes (TCEs) require high transparency and low sheet resistance for applications in photovoltaics, photodetectors, flat panel displays, touch screen devices, and imagers. Indium tin oxide (ITO), or other transparent conductive oxides, have been used, and provide a baseline sheet resistance (RS) vs. transparency (T) relationship. Several alternative material systems have been investigated. The development of high-performance hybrid structures provides a route towards robust, scalable and low-cost approaches for realizing high-performance TCE.

  19. Transparent ceramic scintillators for gamma spectroscopy and radiography

    NASA Astrophysics Data System (ADS)

    Cherepy, N. J.; Kuntz, J. D.; Seeley, Z. M.; Fisher, S. E.; Drury, O. B.; Sturm, B. W.; Hurst, T. A.; Sanner, R. D.; Roberts, J. J.; Payne, S. A.

    2010-08-01

    Transparent ceramics combine the scintillation performance of single crystals with the ruggedness and processability of glass. We have developed a versatile, scaleable fabrication method, wherein nanoparticle feedstock is consolidated at temperatures well below melting to form inch-scale phase-pure transparent ceramics with optical scatter of α <0.1 cm-1. We have fabricated Cerium-doped Gadolinium Garnets with light yields of ~50,000 Ph/MeV and energy resolution of <5% at 662 keV. We have also developed methods to form sheets of the high-Z ceramic scintillator, Europium-doped Lutetium Oxide Bixbyite, producing ~75,000 Ph/MeV for radiographic imaging applications.

  20. Fabrication of optically transparent chitin nanocomposites

    NASA Astrophysics Data System (ADS)

    Shams, M. Iftekhar; Ifuku, Shinsuke; Nogi, Masaya; Oku, Takeshi; Yano, Hiroyuki

    2011-02-01

    This paper demonstrates the preparation of chitin nanofibers from crab shells using a simple mechanical treatment. The nanofibers are small enough to retain the transparency of neat acrylic resin. Possessing hydroxyl and amine/ N-acetyl functionalities, water suspension of chitin nanofibers was vacuum-filtered 9 times faster than cellulose nanofibers to prepare a nanofiber sheet of 90 mm in diameter. This is a prominent advantage of chitin nanofibers over cellulose nanofibers in terms of commercial application. Interestingly, chitin acrylic resin films exhibited much higher transparency than cellulose acrylic resin films owing to the close affinity between less hydrophilic chitin and hydrophobic resin. Furthermore, the incorporation of chitin nanofibers contributes to the significant improvement of the thermal expansion and mechanical properties of the neat acrylic resin. The properties of high light transmittance and low thermal expansion make chitin nanocomposites promising candidates for the substrate in a continuous roll-to-roll process in the manufacturing of various optoelectronic devices such as flat panel displays, bendable displays, and solar cells.

  1. A GPU accelerated PDF transparency engine

    NASA Astrophysics Data System (ADS)

    Recker, John; Lin, I.-Jong; Tastl, Ingeborg

    2011-01-01

    As commercial printing presses become faster, cheaper and more efficient, so too must the Raster Image Processors (RIP) that prepare data for them to print. Digital press RIPs, however, have been challenged to on the one hand meet the ever increasing print performance of the latest digital presses, and on the other hand process increasingly complex documents with transparent layers and embedded ICC profiles. This paper explores the challenges encountered when implementing a GPU accelerated driver for the open source Ghostscript Adobe PostScript and PDF language interpreter targeted at accelerating PDF transparency for high speed commercial presses. It further describes our solution, including an image memory manager for tiling input and output images and documents, a PDF compatible multiple image layer blending engine, and a GPU accelerated ICC v4 compatible color transformation engine. The result, we believe, is the foundation for a scalable, efficient, distributed RIP system that can meet current and future RIP requirements for a wide range of commercial digital presses.

  2. First Language Grapheme-Phoneme Transparency Effects in Adult Second Language Learning

    ERIC Educational Resources Information Center

    Ijalba, Elizabeth; Obler, Loraine K.

    2015-01-01

    The Spanish writing system has consistent grapheme-to-phoneme correspondences (GPC), rendering it more transparent than English. We compared first-language (L1) orthographic transparency on how monolingual English- and Spanish-readers learned a novel writing system with a 1:1 (LT) and a 1:2 (LO) GPC. Our dependent variables were learning time,…

  3. Identification and design principles of low hole effective mass p-type transparent conducting oxides

    PubMed Central

    Hautier, Geoffroy; Miglio, Anna; Ceder, Gerbrand; Rignanese, Gian-Marco; Gonze, Xavier

    2013-01-01

    The development of high-performance transparent conducting oxides is critical to many technologies from transparent electronics to solar cells. Whereas n-type transparent conducting oxides are present in many devices, their p-type counterparts are not largely commercialized, as they exhibit much lower carrier mobilities due to the large hole effective masses of most oxides. Here we conduct a high-throughput computational search on thousands of binary and ternary oxides and identify several highly promising compounds displaying exceptionally low hole effective masses (up to an order of magnitude lower than state-of-the-art p-type transparent conducting oxides), as well as wide band gaps. In addition to the discovery of specific compounds, the chemical rationalization of our findings opens new directions, beyond current Cu-based chemistries, for the design and development of future p-type transparent conducting oxides. PMID:23939205

  4. Transparent Conductive Adhesives for Tandem Solar Cells Using Polymer-Particle Composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klein, Talysa; Lee, Benjamin G; Schnabel, Manuel

    2018-02-14

    Transparent conductive adhesives (TCAs) can enable conductivity between two substrates, which is useful for a wide range of electronic devices. Here, we have developed a TCA composed of a polymer-particle blend with ethylene-vinyl acetate as the transparent adhesive and metal-coated flexible poly(methyl methacrylate) microspheres as the conductive particles that can provide conductivity and adhesion regardless of the surface texture. This TCA layer was designed to be nearly transparent, conductive in only the out-of-plane direction, and of practical adhesive strength to hold the substrates together. The series resistance was measured at 0.3 and 0.8 O cm2 for 8 and 0.2% particlemore » coverage, respectively, while remaining over 92% was transparent in both cases. For applications in photovoltaic devices, such as mechanically stacked multijunction III-V/Si cells, a TCA with 1% particle coverage will have less than 0.5% power loss due to the resistance and less than 1% shading loss to the bottom cell.« less

  5. Transparent self-cleaning dust shield

    DOEpatents

    Mazumder, Malay K.; Sims, Robert A.; Wilson, James D.

    2005-06-28

    A transparent electromagnetic shield to protect solar panels and the like from dust deposition. The shield is a panel of clear non-conducting (dielectric) material with embedded parallel electrodes. The panel is coated with a semiconducting film. Desirably the electrodes are transparent. The electrodes are connected to a single-phase AC signal or to a multi-phase AC signal that produces a travelling electromagnetic wave. The electromagnetic field produced by the electrodes lifts dust particles away from the shield and repels charged particles. Deposited dust particles are removed when the electrodes are activated, regardless of the resistivity of the dust. Electrostatic charges on the panel are discharged by the semiconducting film. When used in conjunction with photovoltaic cells, the power for the device may be obtained from the cells themselves. For other surfaces, such as windshields, optical windows and the like, the power must be derived from an external source. One embodiment of the invention employs monitoring and detection devices to determine when the level of obscuration of the screen by dust has reached a threshold level requiring activation of the dust removal feature.

  6. Transparent actuators and robots based on single-layer superaligned carbon nanotube sheet and polymer composites.

    PubMed

    Chen, Luzhuo; Weng, Mingcen; Zhang, Wei; Zhou, Zhiwei; Zhou, Yi; Xia, Dan; Li, Jiaxin; Huang, Zhigao; Liu, Changhong; Fan, Shoushan

    2016-03-28

    Transparent actuators have been attracting emerging interest recently, as they demonstrate potential applications in the fields of invisible robots, tactical displays, variable-focus lenses, and flexible cellular phones. However, previous technologies did not simultaneously realize macroscopic transparent actuators with advantages of large-shape deformation, low-voltage-driven actuation and fast fabrication. Here, we develop a fast approach to fabricate a high-performance transparent actuator based on single-layer superaligned carbon nanotube sheet and polymer composites. Various advantages of single-layer nanotube sheets including high transparency, considerable conductivity, and ultra-thin dimensions together with selected polymer materials completely realize all the above required advantages. Also, this is the first time that a single-layer nanotube sheet has been used to fabricate actuators with high transparency, avoiding the structural damage to the single-layer nanotube sheet. The transparent actuator shows a transmittance of 72% at the wavelength of 550 nm and bends remarkably with a curvature of 0.41 cm(-1) under a DC voltage for 5 s, demonstrating a significant advance in technological performances compared to previous conventional actuators. To illustrate their great potential usage, a transparent wiper and a humanoid robot "hand" were elaborately designed and fabricated, which initiate a new direction in the development of high-performance invisible robotics and other intelligent applications with transparency.

  7. Optical properties of transparent glass–ceramics containing lithium–mica nanocrystals: Crystallization effect

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khani, V.; Alizadeh, P., E-mail: p-alizadeh@modares.ac.ir; Shakeri, M.S.

    2013-09-01

    Graphical abstract: Optical properties of transparent Li{sub 2}O–MgO–Al{sub 2}O{sub 3}–SiO{sub 2}–F glasses containing lithium–mica nanocrystals are studied and crystallization condition has been evaluated and optimized to produce transparent glass–ceramics. Crystallization temperatures were determined by differential thermal analysis and crystalline phases were identified and quantified by X-ray diffraction. Scanning electron microscopy was used for morphological variations and UV–vis absorption spectroscopy for comparative analysis of transparency. In order to investigate the optical properties of transparent glass–ceramics, optical band gap, Fermi energy level and Urbach energy are calculated. The results of the investigation illustrate that band gap is reduced with increases in crystallizationmore » time and temperature. Enhanced orderliness in the arrangement of atoms might be regarded as possible reasons for the above changes. - Highlights: • The optimum temperature and time of crystallization were determined. • Li–mica nanocrystals with size of <30 nm were formed using a two-step heat-treatment. • Optical band gap and Fermi energy of nanocrystalline materials decreased with increasing of crystallization temperature and time. • Urbach band tailing was decreased with increasing of crystallization condition. - Abstract: Optical properties of transparent Li{sub 2}O–MgO–Al{sub 2}O{sub 3}–SiO{sub 2}–F glasses containing lithium–mica nanocrystals were studied. The crystallization condition of these glasses was evaluated and optimized to produce transparent glass–ceramics. Crystallization temperatures were determined by differential thermal analysis and crystalline phases were identified and quantified by X-ray diffraction. Scanning electron microscopy was used to detect morphological changes and UV–vis absorption spectroscopy was used for comparative analysis of transparency. In order to investigate the optical properties

  8. Screen printed, transparent, and flexible electrodes based on graphene nanoplatelet pastes

    NASA Astrophysics Data System (ADS)

    Wróblewski, Grzegorz; Janczak, Daniel

    Transparent, flexible and conducting graphene films were produced by screen printing method using printing pastes based on graphene nanoplatelets in polymer matrix. The transparency of received layers and the mechanical resistivity in several bending cycles were measured. Subsequently percolation threshold was investigated. Graphene layers were printed on diverse substrates (glass, Al2O3, PET) and afterwards for samples printed on glass different firing atmospheres (N2, H2, air) were studied. Best firing results (resistance decrease) were obtained for treatment in 250 °C in atmosphere of air. Finally investigation results were used to produce a transparent and elastic electrode for an electroluminescent display, showing the application potential of our graphene nanocomposite pastes.

  9. Mosaic Transparent Armor System Final Report CRADA No. TC02162.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuntz, J. D.; Breslin, M.

    This was a collaborative effort between Lawrence Livermore National Security, LLC as manager and operator of Lawrence Livermore National Laboratory (LLNL) and The Protective Group, Inc. (TPG) to improve the performance of the mosaic transparent armor system (MTAS) for transparent armor applications, military and civilian. LLNL was to provide the unique MTAS technology and designs to TPG for innovative construction and ballistic testing of improvements needed for current and near future application of the armor windows on vehicles and aircraft. The goal of the project was to advance the technology of MTAS to the point that these mosaic transparent windowsmore » would be introduced and commercially manufactured for military vehicles and aircraft.« less

  10. Semi-transparent perovskite solar cells for tandems with silicon and CIGS

    DOE PAGES

    Bailie, Colin D.; Christoforo, M. Greyson; Mailoa, Jonathan P.; ...

    2014-12-23

    A promising approach for upgrading the performance of an established low-bandgap solar technology without adding much cost is to deposit a high bandgap polycrystalline semiconductor on top to make a tandem solar cell. We use a transparent silver nanowire electrode on perovskite solar cells to achieve a semi-transparent device. We place the semi-transparent cell in a mechanically-stacked tandem configuration onto copper indium gallium diselenide (CIGS) and low-quality multicrystalline silicon (Si) to achieve solid-state polycrystalline tandem solar cells with a net improvement in efficiency over the bottom cell alone. Furthermore, this work paves the way for integrating perovskites into a low-costmore » and high-efficiency (>25%) tandem cell.« less

  11. Environmentally benign processing of YAG transparent wafers

    NASA Astrophysics Data System (ADS)

    Yang, Yan; Wu, Yiquan

    2015-12-01

    Transparent yttrium aluminum garnet (YAG) wafers were successfully produced via aqueous tape casting and vacuum sintering techniques using a new environmentally friendly binder, a copolymer of isobutylene and maleic anhydride with the commercial name ISOBAM (noted as ISOBAM). Aqueous YAG slurries were mixed by ball-milling, which was followed by de-gassing and tape casting of wafers. The final YAG green tapes were homogenous and flexible, and could be bent freely without cracking. After the drying and sintering processes, transparent YAG wafers were achieved. The microstructures of both the green tape and vacuum-sintered YAG ceramic were observed by scanning electronic microscopy (SEM). Phase compositions were examined by X-ray diffraction (XRD). Optical transmittance was measured in UV-VIS regions with the result that the transmittance is 82.6% at a wavelength of 800 nm.

  12. The Importance of Reunion Giving.

    ERIC Educational Resources Information Center

    Cooke, Edward S.

    1980-01-01

    An organized and aggressive reunion-giving program is seen as a major component of every college's annual giving campaign. The advent of a major reunion is a natural time for alumni to refocus attention and interest on their alma mater. Getting people involved, setting goals, and campaigns are discussed. (Author/MLW)

  13. Optically Transparent Wood from a Nanoporous Cellulosic Template: Combining Functional and Structural Performance.

    PubMed

    Li, Yuanyuan; Fu, Qiliang; Yu, Shun; Yan, Min; Berglund, Lars

    2016-04-11

    Optically transparent wood (TW) with transmittance as high as 85% and haze of 71% was obtained using a delignified nanoporous wood template. The template was prepared by removing the light-absorbing lignin component, creating nanoporosity in the wood cell wall. Transparent wood was prepared by successful impregnation of lumen and the nanoscale cellulose fiber network in the cell wall with refractive-index-matched prepolymerized methyl methacrylate (MMA). During the process, the hierarchical wood structure was preserved. Optical properties of TW are tunable by changing the cellulose volume fraction. The synergy between wood and PMMA was observed for mechanical properties. Lightweight and strong transparent wood is a potential candidate for lightweight low-cost, light-transmitting buildings and transparent solar cell windows.

  14. Evidence for the onset of color transparency in ρ 0 electroproduction off nuclei

    DOE PAGES

    Guo, L.; Hanretty, C.; Hicks, K.; ...

    2012-05-11

    We have measured the nuclear transparency of the incoherent diffractive A(e,e'ρ 0) process in 12C and 56Fe targets relative to 2H using a 5 GeV electron beam. The nuclear transparency, the ratio of the produced {rho}{sup 0}'s on a nucleus relative to deuterium, which is sensitive to ρA interaction, was studied as function of the coherence length (I c), a lifetime of the hadronic fluctuation of the virtual photon, and the four-momentum transfer squared (Q 2). Thus, while the transparency for both 12C and 56Fe showed no I c dependence, a significant Q 2 dependence was measured, which is consistentmore » with calculations that included the color transparency effects.« less

  15. Color waveguide transparent screen using lens array holographic optical element

    NASA Astrophysics Data System (ADS)

    Liu, Siqi; Sun, Peng; Wang, Chang; Zheng, Zhenrong

    2017-11-01

    A color transparent screen was designed in this paper, a planar glass was used as a waveguide structure and the lens array holographic optical element (HOE) was used as a display unit. The lens array HOE was exposed by two coherent beams. One was the reference wave which directly illuminated on the holographic material and the other was modulated by the micro lens array. The lens array HOE can display the images with see-through abilities. Unlike the conventional lens array HOE, a planar glass was adopted as the waveguide in the experiment. The projecting light was totally internal-reflected in the planar glass to eliminate the undesired zero-order diffracted light. By using waveguide, it also brings advantage of compact structure. Colorful display can be realized in our system as the holographic materials were capable for multi-wavelength display. In this paper, a color transparent screen utilizing the lens array HOE and waveguide were designed. Experiment results showed a circular display area on the transparent screen. The diameter of the area is 20 mm and it achieved the pixel resolution of 100 μm. This simple and effective method could be an alternative in the augment reality (AR) applications, such as transparent phone and television.

  16. Using Concept Space to Verify Hyponymy in Building a Hyponymy Lexicon

    NASA Astrophysics Data System (ADS)

    Liu, Lei; Zhang, Sen; Diao, Lu Hong; Yan, Shu Ying; Cao, Cun Gen

    Verification of hyponymy relations is a basic problem in knowledge acquisition. We present a method of hyponymy verification based on concept space. Firstly, we give the definition of concept space about a group of candidate hyponymy relations. Secondly we analyze the concept space and define a set of hyponymy features based on the space structure. Then we use them to verify candidate hyponymy relations. Experimental results show that the method can provide adequate verification of hyponymy.

  17. Giving behavior of millionaires.

    PubMed

    Smeets, Paul; Bauer, Rob; Gneezy, Uri

    2015-08-25

    This paper studies conditions influencing the generosity of wealthy people. We conduct incentivized experiments with individuals who have at least €1 million in their bank account. The results show that millionaires are more generous toward low-income individuals in a giving situation when the other participant has no power, than in a strategic setting, where the other participant can punish unfair behavior. Moreover, the level of giving by millionaires is higher than in any other previous study. Our findings have important implications for charities and financial institutions that deal with wealthy individuals.

  18. Giving behavior of millionaires

    PubMed Central

    Smeets, Paul; Bauer, Rob; Gneezy, Uri

    2015-01-01

    This paper studies conditions influencing the generosity of wealthy people. We conduct incentivized experiments with individuals who have at least €1 million in their bank account. The results show that millionaires are more generous toward low-income individuals in a giving situation when the other participant has no power, than in a strategic setting, where the other participant can punish unfair behavior. Moreover, the level of giving by millionaires is higher than in any other previous study. Our findings have important implications for charities and financial institutions that deal with wealthy individuals. PMID:26261327

  19. Methods and apparatus for transparent display using up-converting nanoparticles

    DOEpatents

    Hsu, Chia Wei; Qiu, Wenjun; Zhen, Bo; Shapira, Ofer; Soljacic, Marin

    2016-10-04

    Disclosed herein are transparent color displays with nanoparticles made with nonlinear materials and/or designed to exhibit optical resonances. These nanoparticles are embedded in or hosted on a transparent substrate, such as a flexible piece of clear plastic or acrylic. Illuminating the nanoparticles with invisible light (e.g., infrared or ultraviolet light) causes them to emit visible light. For example, a rare-earth doped nanoparticle may emit visible light when illuminated simultaneoulsy with a first infrared beam at a first wavelength .lamda..sub.1 and a second infrared beam at a second wavelength .lamda..sub.2. And a frequency-doubling nanoparticle may emit visible light when illuminated with a single infrared beam at the nanoparticle's resonant frequency. Selectively addressing these nanoparticles with appropiately selected pump beams yields visible light emitted from the nanoparticles hosted by the transparent substrate in a desired pattern.

  20. Trials, tricks and transparency: how disclosure rules affect clinical knowledge.

    PubMed

    Dahm, Matthias; González, Paula; Porteiro, Nicolás

    2009-12-01

    Scandals of selective reporting of clinical trial results by pharmaceutical firms have underlined the need for more transparency in clinical trials. We provide a theoretical framework which reproduces incentives for selective reporting and yields three key implications concerning regulation. First, a compulsory clinical trial registry complemented through a voluntary clinical trial results database can implement full transparency (the existence of all trials as well as their results is known). Second, full transparency comes at a price. It has a deterrence effect on the incentives to conduct clinical trials, as it reduces the firms' gains from trials. Third, in principle, a voluntary clinical trial results database without a compulsory registry is a superior regulatory tool; but we provide some qualified support for additional compulsory registries when medical decision-makers cannot anticipate correctly the drug companies' decisions whether to conduct trials.