Sample records for glacial maximum ca

  1. Glacial History of Southernmost South America and Implications for Movement of the Westerlies and Antarctic Frontal Zone

    NASA Astrophysics Data System (ADS)

    Kaplan, M. R.; Fogwill, C. J.; Hulton, N. R.; Sugden, D. E.; Peter, K. W.

    2004-12-01

    The ~1 Myr glacial geologic record in southern South American is one of the few available terrestrial paleoclimate proxies at orbital and suborbital time scales in the middle latitudes of the Southern Hemisphere. Presently, southernmost Patagonia lies about 3\\deg north of the Antarctic frontal zone and within the middle latitude westerlies and the climate is controlled by the surrounding maritime conditions. Thus, the long-term glacial record provides insight into the history of climatic boundaries over the middle and high latitude southern ocean, including the upwind SE Pacific Ocean, tectonic-glacial evolution of the Andes, and global climate. To date, cosmogenic nuclide and 14C dating have focused on glacial fluctuations between 51 and 53\\deg S (Torres del Paine to northern Tierra del Fuego) during the last glacial cycle, including the late glacial period. At least 4 advances occurred between ca. 25 and 17 ka, with the maximum expansion of ice ca. 25-24 ka. Major deglaciation commenced after ca. 17.5 ka, which was interrupted by a major glacial-climate event ca. 14-12 ka. Modelling experiments suggest that the ice mass needed to form the glacial maximum moraines required about a 6\\deg cooling and a slight drying relative to the present. Such a fundamental temperature reduction, despite high summer isolation, strongly suggests northward movement of the westerlies and the polar front on millennial timescales. The Patagonian record also indicates that on orbital timescales equatorward movement of climate boundaries and glacial growth was in phase with major Northern Hemisphere ice volume change, despite high local summer insolation. At suborbital timescales, the picture is more complex. While major facets of the last glacial maximum appear to be in phase between the hemispheres, at least some late glacial events may be in step with Antarctic climate change. Present and future research will further constrain the timing of glacial events over the last 1 Myr and the relation with mountain valley evolution and Southern Hemisphere climate change.

  2. Late Quaternary loess in northeastern Colorado: Part I - Age and paleoclimatic significance

    USGS Publications Warehouse

    Muhs, D.R.; Aleinikoff, J.N.; Stafford, Thomas W.; Kihl, R.; Been, J.; Mahan, S.A.; Cowherd, S.

    1999-01-01

    Loess in eastern Colorado covers an estimated 14000 km2, and is the westernmost part of the North American midcontinent loess province. Stratigraphic studies indicate there were two periods of loess deposition in eastern Colorado during late Quaternary time. The first period spanned ca. 20 000 to 12 000 14C yr B.P. (ca. 20-14 ka) and correlates reasonably well with the culmination and retreat of Pinedale glaciers in the Colorado Front Range during the last glacial maximum. The second period of loess deposition occurred between ca. 11 000 and 9000 14C yr B.P. This interval may be Holocene or may correlate with a hypothesized Younger Dryas glacial advance in the Colorado Front Range. Sedimentologic, mineralogic, and geochemical data indicate that as many as three sources could have supplied loess in eastern Colorado. These sources include glaciogenic silt (derived from the Colorado Front Range) and two bedrock sources, volcaniclastic silt from the White River Group, and clays from the Pierre Shale. The sediment sources imply a generally westerly paleowind during the last glacial maximum. New carbon isotope data, combined with published faunal data, indicate that the loess was probably deposited on a cool steppe, implying a last glacial maximum July temperature depression, relative to the present, of at least 5-6??C. Overall, loess deposition in eastern Colorado occurred mostly toward the end of the last glacial maximum, under cooler and drier conditions, with generally westerly winds from more than one source.

  3. Comparison of eastern tropical Pacific TEX86 and Globigerinoides ruber Mg/Ca derived sea surface temperatures: Insights from the Holocene and Last Glacial Maximum

    NASA Astrophysics Data System (ADS)

    Hertzberg, Jennifer E.; Schmidt, Matthew W.; Bianchi, Thomas S.; Smith, Richard W.; Shields, Michael R.; Marcantonio, Franco

    2016-01-01

    The use of the TEX86 temperature proxy has thus far come to differing results as to whether TEX86 temperatures are representative of surface or subsurface conditions. In addition, although TEX86 temperatures might reflect sea surface temperatures based on core-top (Holocene) values, this relationship might not hold further back in time. Here, we investigate the TEX86 temperature proxy by comparing TEX86 temperatures to Mg/Ca temperatures of multiple species of planktonic foraminifera for two sites in the eastern tropical Pacific (on the Cocos and Carnegie Ridges) across the Holocene and Last Glacial Maximum. Core-top and Holocene TEX86H temperatures at both study regions agree well, within error, with the Mg/Ca temperatures of Globigerinoides ruber, a surface dwelling planktonic foraminifera. However, during the Last Glacial Maximum, TEX86H temperatures are more representative of upper thermocline temperatures, and are offset from G. ruber Mg/Ca temperatures by 5.8 °C and 2.9 °C on the Cocos Ridge and Carnegie Ridge, respectively. This offset between proxies cannot be reconciled by using different TEX86 temperature calibrations, and instead, we suggest that the offset is due to a deeper export depth of GDGTs at the LGM. We also compare the degree of glacial cooling at both sites based on both temperature proxies, and find that TEX86H temperatures greatly overestimate glacial cooling, especially on the Cocos Ridge. This study has important implications for applying the TEX86 paleothermometer in the eastern tropical Pacific.

  4. Reconstruction of the glacial maximum recorded in the central Cantabrian Mountains (N Iberia)

    NASA Astrophysics Data System (ADS)

    Rodríguez-Rodríguez, Laura; Jiménez-Sánchez, Montserrat; José Domínguez-Cuesta, María

    2014-05-01

    The Cantabrian Mountains is a coastal range up to 2648 m altitude trending parallel to northern Iberian Peninsula edge at a maximum distance of 100 km inland (~43oN 5oW). Glacial sediments and landforms are generally well-preserved at altitudes higher than 1600 m, evidencing the occurrence of former glaciations. Previous research supports a regional glacial maximum prior to ca 38 cal ka BP and an advanced state of deglaciation by the time of the global Last Glacial Maximum (Jiménez-Sánchez et al., 2013). A geomorphological database has been produced in ArcGIS (1:25,000 scale) for an area about 800 km2 that partially covers the Redes Natural Reservation and Picos de Europa Regional Park. A reconstruction of the ice extent and flow pattern of the former glaciers is presented for this area, showing that an ice field was developed on the study area during the local glacial maximum. The maximum length of the ice tongues that drained this icefield was remarkably asymmetric between both slopes, recording 1 to 6 km-long in the northern slope and up to 19 km-long in southern one. The altitude difference between the glacier fronts of both mountain slopes was ca 100 m. This asymmetric character of the ice tongues is related to geologic and topo-climatic factors. Jiménez-Sánchez, M., Rodríguez-Rodríguez, L., García-Ruiz, J.M., Domínguez-Cuesta, M.J., Farias, P., Valero-Garcés, B., Moreno, A., Rico, M., Valcárcel, M., 2013. A review of glacial geomorphology and chronology in northern Spain: timing and regional variability during the last glacial cycle. Geomorphology 196, 50-64. Research funded by the CANDELA project (MINECO-CGL2012-31938). L. Rodríguez-Rodríguez is a PhD student with a grant from the Spanish national FPU Program (MECD).

  5. Interannual physiological and growth responses of glacial Juniperus to changes in atmospheric [CO2] since the Last Glacial Maximum

    NASA Astrophysics Data System (ADS)

    Gerhart, L. M.; Harris, J. M.; Ward, J. K.

    2011-12-01

    During the Last Glacial Maximum, atmospheric [CO2] was as low as 180 ppm and has currently risen to a modern value of 393 ppm as a result of fossil fuel combustion and deforestation. In order to understand how changing [CO2] influenced trees over the last 50,000 years, we analyzed carbon isotope ratios and width of individual tree rings from glacial Juniperus specimens preserved in the Rancho La Brea tar pits in southern California (aged 14-49 kyr BP). Modern trees were also analyzed to compare effects of changing precipitation, temperature and atmospheric [CO2] on physiology and growth. To assess physiological responses, we calculated ci/ca (intercellular [CO2]/atmospheric [CO2]) for each annual ring of each tree. This ratio incorporates numerous aspects of plant physiology, including stomatal conductance and photosynthetic capacity. In addition, we measured ring widths for each sample, and standardized these measurements into indices in order to compare across individuals. Mean ci/ca values remained constant throughout 50,000 years despite major environmental changes, indicating a long-term physiological set point for ci/ca in this group. Constant ci/ca ratios would be maintained through offsetting changes in stomatal conductance and photosynthetic capacity. Glacial Juniperus never experienced ci values below 90 ppm, suggesting a survival compensation point for Juniperus. In addition, glacial trees showed significantly reduced interannual variation in ci/ca, even though interannual climatic variability was as high during the LGM in this region as it is today. A lack of variability in ci/ca of glacial trees suggests that tree physiology was dominated by low [CO2], which shows low interannual variation. Modern trees showed high interannual variation in ci/ca, since water availability dominates current physiological responses and varies greatly from year to year. Interestingly, interannual variation in ring width index did not show significant differences between glacial and modern trees, suggesting these trees were adapted to maintain growth under low [CO2]. These adaptations may constrain the ability of modern trees to fully utilize increases in atmospheric [CO2]. These results have significant implications for our understanding of the adaptations of trees to changing [CO2] and indicate that the environmental factors that most strongly influence plant physiology may have changed over geologic time scales.

  6. Central Equatorial Pacific Sea Surface Temperatures During the Last Glacial Maximum

    NASA Astrophysics Data System (ADS)

    Monteagudo, M. M.; Lynch-Stieglitz, J.; Schmidt, M. W.

    2017-12-01

    The state of the tropical Pacific ocean-atmosphere system during the Last Glacial Maximum (LGM, 19,000-23,000 years BP) remains an area of uncertainty. Spatial patterns of tropical Pacific sea surface temperature (SST) offer insight into atmospheric circulation (i.e. Walker Circulation), however, few records exist for the Central Tropical Pacific (CTP). The few existing glacial CTP SST reconstructions indicate 1-2 °C of warming based on foraminiferal transfer functions (CLIMAP Project Members, 1976). In contrast, evidence from geochemical proxies (Mg/Ca, UK'37, TEX86) show 1-3.5 °C cooling in the eastern and western tropical Pacific (e.g. MARGO Project Members, 2009). In this study we present the first Mg/Ca estimates of glacial CTP SST from a meridional sediment core transect along the Line Islands Ridge (0-7°N, 156-162 °W). We use a time slice approach to establish the magnitude of glacial-interglacial SST change between the LGM (19,000-23,0000 years BP) and the Holocene (0-10,000 years BP) using Mg/Ca in the surface-dwelling foraminifera Globigerinoides ruber. Our results indicate cooling at all latitudes, ranging between 1.2-2.7 °C (Holocene-LGM SST). Northern cores (6.83-2.77 °N) exhibit a smaller glacial-interglacial SST difference than equatorial site 20BB at 1.27 °N. The data generated thus far suggest the glacial meridional SST gradient may have been steeper, possibly as a result of increased zonal winds, equatorial upwelling, or westward expansion of the Eastern Pacific Cold Tongue.

  7. Cosmogenic Surface-Exposure Dating of Boulders on Last-Glacial and Late-Glacial Moraines, Lago Buenos Aires, Argentina: Interpretive Strategies and Paleoclimate Implications

    NASA Astrophysics Data System (ADS)

    Douglass, D. C.; Singer, B. S.; Kaplan, M. R.; Mickelson, D. M.; Caffee, M.

    2005-12-01

    The most substantial and least quantifiable source of uncertainty in cosmogenic surface-exposure datasets is the variable exposure histories of boulders from the same landform. The development of precise and accurate chronologies requires distinguishing boulders that best reflect the age of the landform from those which are outliers. We use the Mean Square of Weighted Deviates statistic and cumulative frequency plots to identify groups of samples that have statistically similar ages based on the number of samples and the uncertainty associated with the analyses. This group of samples most likely represents the best estimate of the landform age. We use these tools to interpret 49 surface-exposure ages from six last-glacial and late-glacial moraines at Lago Buenos Aires, Argentina (LBA; 71.0W, 46.5S). Seven of the orty-nine samples are identified as anomalously young, and are interpreted to have been exhumed after moraine deposition. The remaining samples indicate that glacial advances or still-stands of the ice margin occurred at 22.7±0.9, 21.4±1.9, 19.8±1.1, 17.0±0.8, 15.7±0.6, and 14.4±0.9 ka (±2 σ). This maximum ice extent is roughly synchronous with maximum global ice volume and several of the re-advances are contemporaneous with Heinrich events and other Northern Hemisphere cold periods. The late-glacial readvance at ca. 14.4 ka is contemporaneous with the Antarctic Cold Reversal (ACR), and precedes the Younger Dryas Chronozone (YD). No evidence for a Younger Dryas glacial advance has been found in the Lago Buenos Aires basin. This precise glacial chronology indicates there were significant and important differences in climate across southern South America. The timing of maximum ice extent and onset of deglaciation at LBA occur ~4000 years later than in the Chilean Lake District (41S). Fossil pollen from the CLD area indicates cooler conditions between ca. 14.2 and 11.2, and increased silt in a nearby lake core provides indirect evidence for glacial advances at this time. The onset of this late-glacial cool period precedes the YD, but post-dates the ACR. The LBA glacial record is in better accord with the Strait of Magellan (SM; 52S) than with the CLD. There ice reached its maximum around 25 ka, and a significant late-glacial re-advance occurred between ca. 15 and 11.5 ka. Both LBA and the SM have climate records similar to Antarctica, whereas the climate records from the CLD are combinations of Antarctic and Northern Hemisphere signals.

  8. Evidence for Multiple Late Quaternary Glaciations in the Southernmost Cordillera Blanca, Peru

    NASA Astrophysics Data System (ADS)

    Smith, J. A.; Rodbell, D. T.; Ramage, J. M.

    2007-12-01

    Surface-exposure dating with in-situ-produced cosmogenic isotopes has provided the basis for a growing framework of glacial chronologies in the tropical Andes. In the Peruvian Andes, long chronologies (>400 ka) with relatively small local last glacial maximum (LLGM) advances have been reported for the central Cordillera Blanca (ca. 9°30'S) and Junin Plain (11°00'S), whereas preliminary data suggest a shorter record (<40 ka) in the intervening Cordillera Huayhuash (10°15'S). These seemingly contradictory findings raise several questions: Was the LLGM a relatively minor event in the Peruvian Andes, far exceeded by bigger, older advances? Which combination of geographic and geomorphic factors increases the likelihood that evidence of older advances will be preserved? With these questions in mind, we sought a site with both high peaks and a high-altitude plateau. The glaciated Nevado Jeulla Rajo massif (10°00'S, 77°16'W, peaks ca. 5600 masl) marks the southern end of the Cordillera Blanca and the Callejon de Huaylas valley in the central Peruvian Andes. The Conococha Plain (ca. 4050 masl) borders the western side of the massif. Large lateral moraines extend onto the Conococha Plain from the west-facing valleys and multiple moraine loops lie upvalley, closer to active ice margins. Surface-exposure dating (10Be) indicates that the largest lateral moraines from Jeullesh Valley are compound features deposited during the LLGM (ca. 30 ka) and a late-glacial readvance (ca. 16 ka). The LLGM/late-glacial moraines cross-cut an older pair of lateral moraines (ca. 70 ka) that may provide evidence for a smaller advance during marine isotope stage 4. Although the LLGM/late-glacial moraines are impressively large (ca. 150 m high), they do not represent the maximum ice extent in the region. Fluvial outwash deposits beyond the termini of the moraines on the Conococha Plain are underlain by lodgement till that is up to 20 m thick and extends ca. 6 km across the width of the Plain to the Rió Santa. The wide distribution of the till suggests that at least one older glaciation was far more extensive than any of the late Quaternary advances that we have dated by 10Be. The combination of high peaks, a high-altitude plateau, and an active fault may be ideal for enhancing preservation of older moraines and till deposits.

  9. Seasonality in the Western Mediterranean During the Last Glacial From Paired Oxygen Isotopes and Mg/Ca in Limpet Shells

    NASA Astrophysics Data System (ADS)

    Ferguson, J. E.; Henderson, G. M.; Fa, D.; Finlayson, C.

    2008-12-01

    Molluscs have shown great potential to act as seasonal-resolution archives of sea-surface temperatures (SST) at mid to high latitudes, outside the range of tropical surface corals. Seasonal resolution climate records from higher latitudes are important to allow investigation of the role of seasonality in controlling mean climate on diverse timescales, and of the evolution of climate systems such as the North Atlantic Oscillation. Long sequences of intertidal mollusc shells are difficult to find due to sea level fluctuations over glacial- interglacial periods. This study makes use of Patella shells collected by Neanderthals and humans and transported inland to caves on Gibraltar over at least the last 120 kyrs. Some 30 fossil Patella shells were selected from several hundred excavated from Gorham's and Vanguard Caves at Gibraltar. Oxygen isotope analysis of micromilled samples of modern Patella shells from the Gibraltar coastline demonstrate that the shells accurately record absolute SSTs and capture more than 80% of the full seasonal range. Analysis of fossil Patella shells, dated using 14C, provides records of the change in absolute SST and seasonality during the last glacial. Paired Mg/Ca ratios of micromilled samples in modern Patella shells follow a consistent positive relationship with SST providing an independent paleothermometer, analogous with coral Sr/Ca. Applying this Mg/Ca-SST relationship to fossil Patella shells allows the independent reconstruction of the absolute values and range of SSTs and the reconstruction of seawater δ18O for the western Mediterranean. Results show a cooling of glacial summer SSTs from 36 kyr BP to the LGM with maximum cooling of glacial summer SSTs of 7.5 °C relative to modern. In contrast, winter SSTs show greater variability on millennial timescales with a maximum cooling of up to 10 °C. SST seasonality is therefore extended due to greater winter cooling but SST seasonality is highly variable as a result of large fluctuation in the extent of winter cooling. These results contrast with GCM model estimates of SST values and seasonality during the glacial.

  10. The glacial/deglacial history of sedimentation in Bear Lake, Utah and Idaho

    USGS Publications Warehouse

    Rosenbaum, J.G.; Heil, C.W.

    2009-01-01

    Bear Lake, in northeastern Utah and southern Idaho, lies in a large valley formed by an active half-graben. Bear River, the largest river in the Great Basin, enters Bear Lake Valley ???15 km north of the lake. Two 4-m-long cores provide a lake sediment record extending back ???26 cal k.y. The penetrated section can be divided into a lower unit composed of quartz-rich clastic sediments and an upper unit composed largely of endogenic carbonate. Data from modern fluvial sediments provide the basis for interpreting changes in provenance of detrital material in the lake cores. Sediments from small streams draining elevated topography on the east and west sides of the lake are characterized by abundant dolomite, high magnetic susceptibility (MS) related to eolian magnetite, and low values of hard isothermal remanent magnetization (HIRM, indicative of hematite content). In contrast, sediments from the headwaters of the Bear River in the Uinta Mountains lack carbonate and have high HIRM and low MS. Sediments from lower reaches of the Bear River contain calcite but little dolomite and have low values of MS and HIRM. These contrasts in catchment properties allow interpretation of the following sequence from variations in properties of the lake sediment: (1) ca. 26 cal ka-onset of glaciation; (2) ca. 26-20 cal ka-quasicyclical, millennial-scale variations in the concentrations of hematite-rich glacial fl our derived from the Uinta Mountains, and dolomite- and magnetite-rich material derived from the local Bear Lake catchment (reflecting variations in glacial extent); (3) ca. 20-19 cal ka-maximum content of glacial fl our; (4) ca. 19-17 cal ka-constant content of Bear River sediment but declining content of glacial fl our from the Uinta Mountains; (5) ca. 17-15.5 cal ka-decline in Bear River sediment and increase in content of sediment from the local catchment; and (6) ca. 15.5-14.5 cal ka-increase in content of endogenic calcite at the expense of detrital material. The onset of glaciation indicated in the Bear Lake record postdates the initial rise of Lake Bonneville and roughly corresponds to the Stansbury shoreline. The lake record indicates that maximum glaciation occurred as Lake Bonneville reached its maximum extent ca. 20 cal ka and that deglaciation was under way while Lake Bonneville remained at its peak. The transition from siliciclastic to carbonate sedimentation probably indicates increasingly evaporative conditions and may coincide with the climatically driven fall of Lake Bonneville from the Provo shoreline. Although lake levels fluctuated during the Younger Dryas, the Bear Lake record for this period is more consistent with drier conditions, rather than cooler, moister conditions interpreted from many studies from western North America. Copyright ?? 2009 The Geological Society of America.

  11. Pollen record from Ka'au Crater, Oahu, Hawaii: Evidence for a dry glacial maximum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hotchkiss, S.C.; Juvik, J.O.

    Fossil pollen from a 3.5 m-long core from Ka'au Crater, Hawaii (elev. 460 m), yields a ca. 23,000-year record of regional vegetation history. Results indicate a full-glacial period drier and possibly cooler than present, a warmer and wetter early Holocene, and a somewhat drier late Holocene; this sequence agrees with earlier work by Selling (1948) on other islands. The oldest zone is donated by pollen of Chenopodium oahuense, Acacia koa, and Dodonaea viscosa; post-glacial pollen assemblages feature high percentages of Myrsine and Coprosma, followed by increases in Lycopodium cernuum Ilex anomala. Freycinetia arborea and Pritchardia. After about 8000 years ago,more » Chenopodium, Acacia, and Dodonaea increase, suggesting a return to drier conditions. Abundant pollen of Chenopodium oahuense, a plant of dry regions, during the last glacial maximum implies that neither the trade winds nor cyclonic storms were delivering as much moisture to the regional vegetation as they presently do. This suggests that the ocean surface temperature during the last glacial maximum may have been cooler than present, a finding contradictory to the reconstructions of the CLIMAP (1981) group, which show temperatures near Hawaii equal to or even warmer than present.« less

  12. Intensification of the meridional temperature gradient in the Great Barrier Reef following the Last Glacial Maximum.

    PubMed

    Felis, Thomas; McGregor, Helen V; Linsley, Braddock K; Tudhope, Alexander W; Gagan, Michael K; Suzuki, Atsushi; Inoue, Mayuri; Thomas, Alexander L; Esat, Tezer M; Thompson, William G; Tiwari, Manish; Potts, Donald C; Mudelsee, Manfred; Yokoyama, Yusuke; Webster, Jody M

    2014-06-17

    Tropical south-western Pacific temperatures are of vital importance to the Great Barrier Reef (GBR), but the role of sea surface temperatures (SSTs) in the growth of the GBR since the Last Glacial Maximum remains largely unknown. Here we present records of Sr/Ca and δ(18)O for Last Glacial Maximum and deglacial corals that show a considerably steeper meridional SST gradient than the present day in the central GBR. We find a 1-2 °C larger temperature decrease between 17° and 20°S about 20,000 to 13,000 years ago. The result is best explained by the northward expansion of cooler subtropical waters due to a weakening of the South Pacific gyre and East Australian Current. Our findings indicate that the GBR experienced substantial meridional temperature change during the last deglaciation, and serve to explain anomalous deglacial drying of northeastern Australia. Overall, the GBR developed through significant SST change and may be more resilient than previously thought.

  13. Salinity bias on the foraminifera Mg/Ca thermometry: Correction procedure and implications for past ocean hydrographic reconstructions

    NASA Astrophysics Data System (ADS)

    Mathien-Blard, Elise; Bassinot, Franck

    2009-12-01

    Mg/Ca in foraminiferal calcite has recently been extensively used to estimate past oceanic temperatures. Here we show, however, that the Mg/Ca temperature relationship of the planktonic species Globigerinoides ruber is significantly affected by seawater salinity, with a +1 psu change in salinity resulting in a +1.6°C bias in Mg/Ca temperature calculations. If not accounted for, such a bias could lead, for instance, to systematic overestimations of Mg/Ca temperatures during glacial periods, when global ocean salinity had significantly increased compared to today. We present here a correction procedure to derive unbiased sea surface temperatures (SST) and δ18Osw from G. ruber TMg/Ca and δ18Of measurements. This correction procedure was applied to a sedimentary record to reconstruct hydrographic changes since the Last Glacial Maximum (LGM) in the Western Pacific Warm Pool. While uncorrected TMg/Ca data indicate a 3°C warming of the Western Pacific Warm Pool since the LGM, the salinity-corrected SST result in a stronger warming of 4°C.

  14. Silicate versus carbonate weathering in Iceland: New insights from Ca isotopes

    NASA Astrophysics Data System (ADS)

    Jacobson, Andrew D.; Grace Andrews, M.; Lehn, Gregory O.; Holmden, Chris

    2015-04-01

    Several studies have measured riverine fluxes of Ca and carbonate alkalinity in Iceland with the aim of quantifying the role of basalt weathering in the long-term carbon cycle. A major assumption is that all of the Ca and alkalinity originates from the dissolution of Ca-bearing silicate minerals, such as plagioclase and clinopyroxene. However, hydrothermal calcite occurs throughout Iceland, and even trace levels are expected to impact river geochemistry owing to the mineral's high solubility and fast dissolution rate. To test this hypothesis, we used a new, high-precision Ca isotope MC-TIMS method (δ44/40Ca; 2σSD = ± 0.04 ‰) to trace sources of Ca in Icelandic rivers. We report elemental and Ca isotope data for rivers, high- and low-temperature groundwater, basalt, hydrothermal calcite (including Iceland Spar), and stilbite and heulandite, which are two types of zeolites commonly formed during low-grade metamorphism of basalt. In agreement with previous research, we find that rivers have higher δ44/40Ca values than basalt, with a maximum difference of ∼0.40‰. This difference may reflect isotope fractionation in the weathering zone, i.e., preferential uptake of 40Ca during clay mineral formation, adsorption, and other geochemical processes that cycle Ca. However, calcite δ44/40Ca values are also up to ∼0.40‰ higher than bedrock values, and on a diagram of δ44/40Ca versus Sr/Ca, nearly all waters plot within a plausible mixing domain bounded by the measured compositions of basalt and calcite, with glacial rivers plotting closer to calcite than non-glacial rivers. Calcite and heulandite form during hydrothermal alteration of basalt in the deep lava pile and often occur together in metabasalts now exposed at the surface. Because heulandite δ44/40Ca values are ∼1-2‰ lower than basalt, we suggest that 40Ca uptake by heudlandite explains the relatively high δ44/40Ca values of calcite and that calcite weathering in turn elevates riverine δ44/40Ca values. High mechanical erosion rates are known to facilitate the exposure and weathering of calcite, which explains the isotopic contrast between glacial and non-glacial watersheds. Using a mixing model, we find that calcite weathering provides ∼0-65% of the Ca in non-glacial rivers and ∼25-90% of the Ca in glacial rivers, with silicate weathering providing the remainder. Icelandic hydrothermal calcite contains mantle carbon. Noting that zeolite facies metamorphism and hydrothermal fluid circulation are ubiquitous characteristics of basaltic eruptions and assuming that hydrothermal calcite in other basaltic settings also contains mantle carbon, we suggest that the contribution of basalt weathering to long-term CO2 drawdown and climate regulation may be less significant than previously realized.

  15. Late quaternary sediments, minerals, and inferred geochemical history of Didwana Lake, Thar Desert, India

    USGS Publications Warehouse

    Wasson, R.J.; Smith, G.I.; Agrawal, D.P.

    1984-01-01

    Variations in clastic sediment texture, mineralogy of both evaporites formed at the surface and precipitates formed below the lake floor, and the relative chemical activities of the major dissolved components of the chemical precipitates, have allowed reconstruction of the history of salinity and water-level changes in Didwana Lake, Thar Desert, India. Hypersaline conditions prevailed at about the Last Glacial Maximum, with little evidence of clastic sediments entering the lake. Between ca. 13,000 and 6000 B.P. the lake level fluctuated widely, the lake alternately hypersaline and fresh, and clastic sediments were delivered to the lake at a low rate. Deep-water conditions occurred ca. 6000 B.P. and clastic influx increased abruptly. The water level dropped towards 4000 B.P. when the lake dried briefly. Since 4000 B.P. the lake has been ephemeral with a lowered rate of sedimentation and mildly saline conditions rather like those of today. This sequence of changes documented in the lake parallels changes in vegetation recorded in published pollen diagrams from both the Thar and the Arabian Sea. Correlation of the various lines of evidence suggests that the climate of the Last Glacial Maximum at Didwana was dry and windy with a weak monsson circulation. The monsson was re-established between ca. 13,000 and a little before 6000 B.P., and, when winter rainfall increased ca. 6000 B.P., the lake filled to its maximum depth. ?? 1984.

  16. Late Glacial and Early Holocene Climatic Changes Based on a Multiproxy Lacustrine Sediment Record from Northeast Siberia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kokorowski, H D; Anderson, P M; Sletten, R S

    Palynological (species assemblage, pollen accumulation rate), geochemical (carbon to nitrogen ratios, organic carbon and biogenic silica content), and sedimentological (particle size, magnetic susceptibility) data combined with improved chronology and greater sampling resolution from a new core from Elikchan 4 Lake provide a stronger basis for defining paleoenvironmental changes than was previously possible. Persistence of herb-dominated tundra, slow expansion of Betula and Alnus shrubs, and low percentages of organic carbon and biogenic silica suggest that the Late-Glacial transition (ca. 16,000-11,000 cal. yr BP) was a period of gradual rather than abrupt vegetation and climatic change. Consistency of all Late-Glacial data indicatesmore » no Younger Dryas climatic oscillation. A dramatic peak in pollen accumulation rates (ca. 11,000-9800 cal. yr BP) suggests a possible summer temperature optimum, but finer grain-sizes, low magnetic susceptibility, and greater organic carbon and biogenic silica, while showing significant warming at ca. 11,000 cal. yr BP, offer no evidence of a Holocene thermal maximum. When compared to trends in other paleo-records, the new Elikchan data underscore the apparent spatial complexity of climatic responses in Northeast Siberia to global forcings between ca. 16,000-9000 cal. yr BP.« less

  17. Changes in North Atlantic deep-sea temperature during climatic fluctuations of the last 25,000 years based on ostracode Mg/Ca ratios

    USGS Publications Warehouse

    Dwyer, Gary S.; Cronin, Thomas M.; Baker, Paul A.; Rodriguez-Lazaro, Julio

    2000-01-01

    We reconstructed three time series of last glacial-to-present deep-sea temperature from deep and intermediate water sediment cores from the western North Atlantic using Mg/Ca ratios of benthic ostracode shells. Although the Mg/Ca data show considerable variability (“scatter”) that is common to single-shell chemical analyses, comparisons between cores, between core top shells and modern bottom water temperatures (BWT), and comparison to other paleo-BWT proxies, among other factors, suggest that multiple-shell average Mg/Ca ratios provide reliable estimates of BWT history at these sites. The BWT records show not only glacial-to-interglacial variations but also indicate BWT changes during the deglacial and within the Holocene interglacial stage. At the deeper sites (4500- and 3400-m water depth), BWT decreased during the last glacial maximum (LGM), the late Holocene, and possibly during the Younger Dryas. Maximum deep-sea warming occurred during the latest deglacial and early Holocene, when BWT exceeded modern values by as much as 2.5°C. This warming was apparently most intense around 3000 m, the depth of the modern-day core of North Atlantic deep water (NADW). The BWT variations at the deeper water sites are consistent with changes in thermohaline circulation: warmer BWT signifies enhanced NADW influence relative to Antarctic bottom water (AABW). Thus maximum NADW production and associated heat flux likely occurred during the early Holocene and decreased abruptly around 6500 years B.P., a finding that is largely consistent with paleonutrient studies in the deep North Atlantic. BWT changes in intermediate waters (1000-m water depth) of the subtropical gyre roughly parallel the deep BWT variations including dramatic mid-Holocene cooling of around 4°C. Joint consideration of the Mg/Ca-based BWT estimates and benthic oxygen isotopes suggests that the cooling was accompanied by a decrease in salinity at this site. Subsequently, intermediate waters warmed to modern values that match those of the early Holocene maximum of ∼7°C. Intermediate water BWT changes must also be driven by changes in ocean circulation. These results thus provide independent evidence that supports the hypothesis that deep-ocean circulation is closely linked to climate change over a range of timescales regardless of the mean climate state. More generally, the results further demonstrate the potential of benthic Mg/Ca ratios as a tool for reconstructing past ocean and climate conditions.

  18. Evolution of Temperature and Carbon Storage Within the Deep Southeast Atlantic Ocean Across the Last Glacial/Interglacial Cycle Inferred from a Highly-Resolved Sedimentary Depth Transect

    NASA Astrophysics Data System (ADS)

    Foreman, A. D.; Charles, C. D.; Rae, J. W. B.; Adkins, J. F.; Slowey, N. C.

    2015-12-01

    Many models show that the relative intensity of stratification is a primary variable governing the sequestration and release of carbon from the ocean over ice ages. The wide-scale observations necessary to test these model-derived hypotheses are not yet sufficient, but sedimentary depth transects represent a promising approach for making progress. Here we present paired stable isotopic (d18O, d13C) and trace metal data (Mg/Ca, B/Ca) from benthic foraminifera collected from a highly vertically-resolved depth transect from the mid-depth and deep SE Atlantic. These observations, which cover Marine Isotope Stages 5e, 5d, 5a, 4, and the Last Glacial Maximum, document the evolution of glacial conditions from the previous interglacial, and provide detailed observations regarding the magnitude and timing of changes in temperature and salinity within the deep ocean at key time points over the last glacial/interglacial cycle. Furthermore, the comparison between purely 'physical' tracers (i.e. Mg/Ca, d18O) and tracers sensitive to the carbon cycle (i.e. d13C and B/Ca) provides critical insight into the relationship between deep/mid-depth stratification and global carbon dynamics. Notably among our observations, the paired stable isotope and trace metal results strongly suggest that much of the ice-age cooling of deep South Atlantic occurred at the MIS 5e/5d transition, while the onset of salinity stratification in the mid-depth South Atlantic occurred at the MIS 5/4 transition.

  19. Lake Qinghai sediment geochemistry linked to hydroclimate variability since the last glacial

    NASA Astrophysics Data System (ADS)

    Jin, Zhangdong; An, Zhisheng; Yu, Jimin; Li, Fuchun; Zhang, Fei

    2015-08-01

    Geochemistry of basin sediments from semi-arid regions is valuable to understand past hydroclimatic changes. Here, we investigate the links of sedimentary geochemistry (Rb, Sr, Ca/Zr, TOC, and %CaCO3), carbonate mineralogy and ostracod shell δ18O of Lake Qinghai, a basin proximal to major dust production centers at mid-latitudes of the Northern Hemisphere, to changes in depositional conditions and hydroclimate during the past 32 ka. Surface lacustrine sediments are characterized by low-Rb, high-Sr, low-Rb/Sr, high-%CaCO3 and high-Ca/Zr values, in contrast to the chemical compositions of eolian loess (high-Rb, low-Sr, high-Rb/Sr, low-%CaCO3, and low-Ca/Zr). A direct comparison of soluble Ca and Sr in two short cores with instrumental water discharge data suggests that lacustrine precipitates in Lake Qinghai are dominated by authigenic aragonite formed under Ca2+-limited water conditions, and that the accumulation rate of aragonite dominantly depends on solute fluxes into the lake during the rainy seasons (late May to September). Our high-resolution down-core records show that sediments during the last glacial (∼32-19.8 ka) had high-Rb, low-Sr, low-%CaCO3, and low-Ca/Zr, indicating eolian dust (loess) accumulation in a desiccated basin under dry glacial conditions, further supported by grain size and pollen results. This type of sedimentation was maintained during the last deglacial (∼19.8-11.5 ka), but interrupted by episodic lacustrine precipitates with high-Sr, high-%CaCO3, high-Ca/Zr, and low-Rb. At ∼11.5 ka, sedimentary Rb/Sr, Ca/Zr, %CaCO3 and TOC show dramatic and permanent changes, implying an abrupt shift in the atmospheric circulation at the onset of the Holocene in the Lake Qinghai region. Lacustrine precipitates have persisted throughout the Holocene with a maximum during the early to mid-Holocene (∼10.5-8.0 ka). Since ∼8.0 ka, the gradual and significant decreases in aragonite and Sr accumulations in tandem with increasing dust deposit and more positive ostracod δ18O may be linked to a weakening of Asian summer monsoons during the mid-to-late Holocene. Overall, our records appear to show a high sensitivity of sediment development and geochemistry in Lake Qinghai to the regional hydroclimate changes since the last glacial.

  20. A 33,000-year-old incipient dog from the Altai Mountains of Siberia: evidence of the earliest domestication disrupted by the Last Glacial Maximum.

    PubMed

    Ovodov, Nikolai D; Crockford, Susan J; Kuzmin, Yaroslav V; Higham, Thomas F G; Hodgins, Gregory W L; van der Plicht, Johannes

    2011-01-01

    Virtually all well-documented remains of early domestic dog (Canis familiaris) come from the late Glacial and early Holocene periods (ca. 14,000-9000 calendar years ago, cal BP), with few putative dogs found prior to the Last Glacial Maximum (LGM, ca. 26,500-19,000 cal BP). The dearth of pre-LGM dog-like canids and incomplete state of their preservation has until now prevented an understanding of the morphological features of transitional forms between wild wolves and domesticated dogs in temporal perspective. We describe the well-preserved remains of a dog-like canid from the Razboinichya Cave (Altai Mountains of southern Siberia). Because of the extraordinary preservation of the material, including skull, mandibles (both sides) and teeth, it was possible to conduct a complete morphological description and comparison with representative examples of pre-LGM wild wolves, modern wolves, prehistoric domesticated dogs, and early dog-like canids, using morphological criteria to distinguish between wolves and dogs. It was found that the Razboinichya Cave individual is most similar to fully domesticated dogs from Greenland (about 1000 years old), and unlike ancient and modern wolves, and putative dogs from Eliseevichi I site in central Russia. Direct AMS radiocarbon dating of the skull and mandible of the Razboinichya canid conducted in three independent laboratories resulted in highly compatible ages, with average value of ca. 33,000 cal BP. The Razboinichya Cave specimen appears to be an incipient dog that did not give rise to late Glacial-early Holocene lineages and probably represents wolf domestication disrupted by the climatic and cultural changes associated with the LGM. The two earliest incipient dogs from Western Europe (Goyet, Belguim) and Siberia (Razboinichya), separated by thousands of kilometers, show that dog domestication was multiregional, and thus had no single place of origin (as some DNA data have suggested) and subsequent spread.

  1. Extent of the last ice sheet in northern Scotland tested with cosmogenic 10Be exposure ages

    USGS Publications Warehouse

    Phillips, W.M.; Hall, A.M.; Ballantyne, C.K.; Binnie, S.; Kubik, P.W.; Freeman, S.

    2008-01-01

    The extent of the last British-Irish Ice Sheet (BIIS) in northern Scotland is disputed. A restricted ice sheet model holds that at the global Last Glacial Maximum (LGM; ca. 23-19 ka) the BIIS terminated on land in northern Scotland, leaving Buchan, Caithness and the Orkney Islands ice-free. An alternative model implies that these three areas were ice-covered at the LGM, with the BIIS extending offshore onto the adjacent shelves. We test the two models using cosmogenic 10Be surface exposure dating of erratic boulders and glacially eroded bedrock from the three areas. Our results indicate that the last BIIS covered all of northern Scotland during the LGM, but that widespread deglaciation of Caithness and Orkney occurred prior to rapid warming at ca. 14.5 ka. Copyright ?? 2008 John Wiley & Sons, Ltd.

  2. Asymmetric Signature of Glacial Antarctic Intermediate Water in the Central South Pacific

    NASA Astrophysics Data System (ADS)

    Tapia, R.; Nuernberg, D.; Ho, S. L.; Lamy, F.; Ullermann, J.; Gersonde, R.; Tiedemann, R.

    2017-12-01

    Southern Ocean Intermediate Waters (SOIWs) play a key role in modulating the global climate on glacial-interglacial time scales as they connect the Southern Ocean and the tropics. Despite their importance, the past evolution of the SOIWs in the central South Pacific is largely unknown due to a dearth of sedimentary archives. Here we compare Mg/Ca-temperature, stable carbon and oxygen isotope records from surface-dwelling (G. bulloides) and deep-dwelling (G. inflata) planktic foraminifera at site PS75/059-2 (54°12.9' S, 125°25.53' W; recovery 13.98 m; 3.613 m water depth), located north of the modern Subantarctic Front. Our study focuses on the temperature and salinity variability controlled by SOIWs, which were subducted at the Subantarctic Front during the Last Glacial Maximum (LGM; 29-17ka BP) and the Penultimate Glacial Maximum (PGM; 180-150ka BP). During both glacial periods conditions at the subsurface ocean were colder and fresher relative to the Holocene (<10ka) suggesting an enhanced presence of SOIWs. In spite of the comparable subsurface cooling during both glacial, the subsurface ocean during the PGM was saltier and 0.35‰ more depleted in δ13C in comparison to the LGM. Interestingly, the mean δ13C value of the PGM is comparable to the Carbon Isotope Minimum Events, which might suggests a larger contribution of "old" low δ13C deep waters to the study site during the PGM. A Latitudinal comparison of subsurface proxies suggests glacial asymmetries in the advection of SOIWs into the central Pacific, plausibly related to glacial changes in the convection depth of SOIWs at the South Antarctic Front area rather than changes in production of the SOIWs.

  3. Extensive Quaternary glaciations in eastern Turkey

    NASA Astrophysics Data System (ADS)

    Yeşilyurt, Serdar; Akçar, Naki; Doǧan, Uǧur; Yavuz, Vural; Ivy-Ochs, Susan; Vockenhuber, Christof; Schlunegger, Fritz; Schlüchter, Christian

    2016-04-01

    During cold periods in the Quaternary, global ice volume increased and as a result valley glaciers advanced and the vice versa occurred during the warm periods. Quaternary glacier fluctuations had been also recorded in the Turkish mountains. Recently, the chronology of Late Quaternary advances in the northern and western Turkish mountains was reconstructed by surface exposure dating. However, these advances in the eastern Turkey are not dated yet. In this study, we investigated paleoglaciations in Kavuşşahap Mountains, which is located to the south of Lake Van in eastern Turkey. These mountains are one of the extensively glaciated areas in Turkey. Glacial activity is evidenced by more than 20 U-shaped valleys. For instance, one of the prominent and well-preserved glacial landscapes of Turkey is situated in the Narlıca valley system. Lateral and terminal moraines in the valley system indicate more than 10 glacial advances. To build their chronology, 39 erratic carbonaceous boulders were sampled for surface exposure dating with cosmogenic 36Cl. We also reconstructed the ice margin reconstruction of the Narlıca paleoglacier using the accumulation area ratio and area-altitude balance ratio approaches. We estimated an equilibrium line altitude (ELA) of ca. 2900 m above sea level based on the maximum ice extend, which implied ca. 800 m decrease in the ELA during the Late Quaternary in comparison to the lower bound of the modern ELA estimate. The first results of the surface exposure dating will be presented.

  4. Understanding cold bias: Variable response of skeletal Sr/Ca to seawater pCO2 in acclimated massive Porites corals

    PubMed Central

    Cole, Catherine; Finch, Adrian; Hintz, Christopher; Hintz, Kenneth; Allison, Nicola

    2016-01-01

    Coral skeletal Sr/Ca is a palaeothermometer commonly used to produce high resolution seasonal sea surface temperature (SST) records and to investigate the amplitude and frequency of ENSO and interdecadal climate events. The proxy relationship is typically calibrated by matching seasonal SST and skeletal Sr/Ca maxima and minima in modern corals. Applying these calibrations to fossil corals assumes that the temperature sensitivity of skeletal Sr/Ca is conserved, despite substantial changes in seawater carbonate chemistry between the modern and glacial ocean. We present Sr/Ca analyses of 3 genotypes of massive Porites spp. corals (the genus most commonly used for palaeoclimate reconstruction), cultured under seawater pCO2 reflecting modern, future (year 2100) and last glacial maximum (LGM) conditions. Skeletal Sr/Ca is indistinguishable between duplicate colonies of the same genotype cultured under the same conditions, but varies significantly in response to seawater pCO2 in two genotypes of Porites lutea, whilst Porites murrayensis is unaffected. Within P. lutea, the response is not systematic: skeletal Sr/Ca increases significantly (by 2–4%) at high seawater pCO2 relative to modern in both genotypes, and also increases significantly (by 4%) at low seawater pCO2 in one genotype. This magnitude of variation equates to errors in reconstructed SST of up to −5 °C. PMID:27241795

  5. Understanding cold bias: Variable response of skeletal Sr/Ca to seawater pCO2 in acclimated massive Porites corals.

    PubMed

    Cole, Catherine; Finch, Adrian; Hintz, Christopher; Hintz, Kenneth; Allison, Nicola

    2016-05-31

    Coral skeletal Sr/Ca is a palaeothermometer commonly used to produce high resolution seasonal sea surface temperature (SST) records and to investigate the amplitude and frequency of ENSO and interdecadal climate events. The proxy relationship is typically calibrated by matching seasonal SST and skeletal Sr/Ca maxima and minima in modern corals. Applying these calibrations to fossil corals assumes that the temperature sensitivity of skeletal Sr/Ca is conserved, despite substantial changes in seawater carbonate chemistry between the modern and glacial ocean. We present Sr/Ca analyses of 3 genotypes of massive Porites spp. corals (the genus most commonly used for palaeoclimate reconstruction), cultured under seawater pCO2 reflecting modern, future (year 2100) and last glacial maximum (LGM) conditions. Skeletal Sr/Ca is indistinguishable between duplicate colonies of the same genotype cultured under the same conditions, but varies significantly in response to seawater pCO2 in two genotypes of Porites lutea, whilst Porites murrayensis is unaffected. Within P. lutea, the response is not systematic: skeletal Sr/Ca increases significantly (by 2-4%) at high seawater pCO2 relative to modern in both genotypes, and also increases significantly (by 4%) at low seawater pCO2 in one genotype. This magnitude of variation equates to errors in reconstructed SST of up to -5 °C.

  6. Invasive earthworms deplete key soil inorganic nutrients (Ca, Mg, K, and P) in a northern hardwood forest

    Treesearch

    Kit Resner; Kyungsoo Yoo; Stephen D. Sebestyen; Anthony Aufdenkampe; Cindy Hale; Amy Lyttle; Alex Blum

    2015-01-01

    Hardwood forests of the Great Lakes Region have evolved without earthworms since the Last Glacial Maximum, but are now being invaded by exotic earthworms introduced through agriculture, fishing, and logging. These exotic earthworms are known to increase soil mixing, affect soil carbon storage, and dramatically alter soil morphology. Here we show, using an active...

  7. A multi-proxy palaeoecological and palaeoclimatic record within full glacial lacustrine deposits, western Tennessee, USA

    USGS Publications Warehouse

    Grimley, D.A.; Daniel, L.; Kaplan, S.W.; Yansa, C.H.; Curry, B. Brandon; Oches, E.A.

    2009-01-01

    The Fulton Section, along the Mississippi River in western Tennessee, USA, is a 1km continuous exposure (~20m vertically) of Quaternary fluvial and lacustrine deposits, inset within Eocene sediments and buried by thick loess. Fossiliferous slackwater lake sediments record maximum aggradation during the last two major glaciations, with deposition between ca. 190-140 ka and 24-1814C ka BP, based on amino acid and radiocarbon chronology, respectively. During the onset of full glacial conditions (ca. 24-22 14C ka BP), a relatively permanent shallow lake environment is indicated by ostracods, aquatic molluscs, and both pollen and macrofossils of aquatic plants. By 21.8 14C ka BP, increasing emergent plants, amphibious gastropods (Pomatiopsis) and heavier ??18O compositions suggest marsh-like conditions in a periodically drying lake. The surrounding uplands consisted of Picea-Pinus woodlands mixed with cool-temperate hardwoods (e.g. Quercus, Populus, Carya), grasses and herbs. More open conditions ensued ca. 20 14C ka BP, with loess and slopewash gradually infilling the former lake by 18 14C ka BP. Modern analogue analyses of ostracods and palaeontological evidence imply a full glacial climate similar to today's mixed-boreal zone in central Minnesota, USA, about 98C cooler in mean annual temperature than present-day western Tennessee. Copyright ?? 2009 John Wiley & Sons, Ltd.

  8. Initial Results from the Deep Drilling of Lake Junin, Perú

    NASA Astrophysics Data System (ADS)

    Rodbell, D. T.; Abbott, M. B.; Weidhaas, N.; Hatfield, R. G.; Woods, A.; Hillman, A. L.; Tapia, P. M.; Chen, C. Y.; McGee, D.; Stoner, J. S.

    2016-12-01

    Lake Junín (11.0°S, 76.2°W, 4085 masl) is an intermontane, high-elevation lake in the inner-tropics of the Southern Hemisphere that spans 300 km2. With a maximum water depth of 12m, Lake Junin is dammed at its northern and southern ends by alluvial fans that emanate from glacial valleys in both cordillera. These fans can be traced to moraines that are >250 ka, indicating that the lake is at least this old. During the maximum extent of late Cenozoic glaciation, glaciers reached the lake edge but at no time over the last 1 million years, or more, has Lake Junín been overridden by ice. Lake Junín is thus one of the few lakes in the tropical Andes that predates the maximum extent of glaciation and is in a geomorphic position to record the waxing and waning of alpine glaciers in nearby cordillera. Sediment cores obtained between 1980 and 1996 reveal that sediment deposited during the last glacial cycle ( 30-16 ka) is dominated by glacial flour whereas sediment deposited during the last 16 ka consists predominantly of authigenic calcite (marl) with ostracod carapaces punctuated with intervals of gyttja and peat. In July and August of 2015, piston cores were obtained from three sites in Lake Junin. Multiple overlapping cores from the deepest water site (Site 1) extend to 100 m below lake floor (mblf), and those from two shallow water, paleoglacier-proximal sites (Sites 2 and 3) extend 23 and 51 mblf, respectively. Samples acquired at 8-cm resolution from Site 1 were analyzed for total organic carbon (TOC) and total inorganic carbon [as Ca(Mg)CO3; TIC] by coulometry. Total carbon (TC) was analyzed by combusting 10 mg samples at 1000°C and quantifying the resultant CO2 by coulometry whereas TIC was analyzed by reacting 10 mg samples in 6N H3PO4 and quantifying the resultant CO2 by coulometry; TOC was determined from TOC=TC-TIC. Over the last glacial postglacial cycle (last 30 ka), mean CaCO3 and TOC concentrations in Site 1 cores are higher ( 33% and 7.4%, respectively) than those in shallow water settings ( 9.5% and 4%). Similarly, mean magnetic susceptibility (MS) is lower in Site 1 cores (6.9 SI) than in the most paleoglacier-proximal shallow water site (Site 2, 9.4 SI). Site 1 records 7 glacial and interglacial cycles whereas shallow water locations appear to be dominated by sediment deposited during the last glacial-interglacial cycle.

  9. Glacial lakes in the Indian Himalayas--from an area-wide glacial lake inventory to on-site and modeling based risk assessment of critical glacial lakes.

    PubMed

    Worni, Raphael; Huggel, Christian; Stoffel, Markus

    2013-12-01

    Glacial lake hazards and glacial lake distributions are investigated in many glaciated regions of the world, but comparably little attention has been given to these topics in the Indian Himalayas. In this study we present a first area-wide glacial lake inventory, including a qualitative classification at 251 glacial lakes >0.01 km(2). Lakes were detected in the five states spanning the Indian Himalayas, and lake distribution pattern and lake characteristics were found to differ significantly between regions. Three glacial lakes, from different geographic and climatic regions within the Indian Himalayas were then selected for a detailed risk assessment. Lake outburst probability, potential outburst magnitudes and associated damage were evaluated on the basis of high-resolution satellite imagery, field assessments and through the use of a dynamic model. The glacial lakes analyzed in the states of Jammu and Kashmir and Himachal Pradesh were found to present moderate risks to downstream villages, whereas the lake in Sikkim severely threatens downstream locations. At the study site in Sikkim, a dam breach could trigger drainage of ca. 16×10(6)m(3) water and generate maximum lake discharge of nearly 7000 m(3) s(-). The identification of critical glacial lakes in the Indian Himalayas and the detailed risk assessments at three specific sites allow prioritizing further investigations and help in the definition of risk reduction actions. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Cosmogenic evidence for limited local LGM glacial expansion, Denton Hills, Antarctica

    NASA Astrophysics Data System (ADS)

    Joy, Kurt; Fink, David; Storey, Bryan; De Pascale, Gregory P.; Quigley, Mark; Fujioka, Toshiyuki

    2017-12-01

    The geomorphology of the Denton Hills provides insight into the timing and magnitude of glacial retreats in a region of Antarctica isolated from the influence of the East Antarctic ice sheet. We present 26 Beryllium-10 surface exposure ages from a variety of glacial and lacustrine features in the Garwood and Miers valleys to document the glacial history of the area from 10 to 286 ka. Our data show that the cold-based Miers, Joyce and Garwood glaciers retreated little since their maximum positions at 37.2 ± 6.9 (1σ n = 4), 35.1 ± 1.5 (1σ, n = 3) and 35.6 ± 10.1 (1σ, n = 6) ka respectively. The similar timing of advance of all three glaciers and the lack of a significant glacial expansion during the global LGM suggests a local LGM for the Denton Hills between ca. 26 and 51 ka, with a mean age of 36.0 ± 7.5 (1σ, n = 13) ka. A second cohort of exposure ages provides constraints to the behaviour of Glacial Lake Trowbridge that formerly occupied Miers Valley in the late Pleistocene. These data show active modification of the landscape from ∼20 ka until the withdrawal of ice from the valley mouths, and deposition of Ross Sea Drift, at 10-14 ka.

  11. Reconstructing Oceanographic Conditions From the Holocene to the Last Glacial Maximum in the Bay of Bengal

    NASA Astrophysics Data System (ADS)

    Miller, J.; Dekens, P. S.; Weber, M. E.; Spiess, V.; France-Lanord, C.

    2015-12-01

    The International Ocean Discovery Program (IODP) Expedition 354 drilled 7 sites in the Bay of Bengal, providing a unique opportunity to improve our understanding of the link between glacial cycles, tropical oceanographic changes, and monsoon strength. Deep-sea sediment cores of the Bengal Fan fluctuate between sand, hemipelagic and terrestrial sediment layers. All but one of the sites (U1454) contain a layer of calcareous clay in the uppermost part of the core that is late Pleistocene in age. During Expedition 354 site U1452C was sampled at high resolution (every 2cm) by a broad group of collaborators with the goal of reconstructing monsoon strength and oceanographic conditions using a variety of proxies. The top 480 cm of site U1452C (8ºN, 87ºE, 3671m water depth) contains primarily nannofossil rich calcareous clay. The relatively high abundance of foraminifera will allow us to generate a high resolution record of sea surface temperature (SST) and sea surface salinity (SSS) using standard foraminifera proxies. We will present oxygen isotopes (δ18O) and Mg/Ca data of mixed layer planktonic foraminifera from the top 70cm of the core, representing the Holocene to the last glacial maximum. δ18O of planktonic foraminifera records global ice volume and local SST and SSS, while Mg/Ca of foraminifera is a proxy for SST. The paired Mg/Ca and δ18O measurements on the same samples of foraminifera, together with published estimates with global ocean δ18O, can be used to reconstruct both SST and local δ18O of seawater, which is a function of the evaporation/precipitation balance. In future work, the local SSS and SST during the LGM will be paired with terrestrial and other oceanic proxies to increase our understanding of how global climate is connected to monsoon strength.

  12. Luminescence dating of paleolake deltas and glacial deposits in Garwood Valley, Antarctica: Implications for climate, Ross ice sheet dynamics, and paleolake duration

    USGS Publications Warehouse

    Levy, Joseph S.; Rittenour, Tammy M.; Fountain, Andrew G.; O'Connor, Jim E.

    2017-01-01

    The formation of perched deltas and other lacustrine deposits in the McMurdo Dry Valleys of Antarctica is widely considered to be evidence of valley-filling lakes dammed by the grounded Ross Sea ice sheet during the local Last Glacial Maximum, with lake drainage interpreted as a record of grounding line retreat. We used luminescence dating to determine the age of paleolake deltas and glacial tills in Garwood Valley, a coastal dry valley that opens to the Ross Sea. Luminescence ages are stratigraphically consistent with radiocarbon results from algal mats within the same delta deposits but suggest radiocarbon dates from lacustrine carbonates may overestimate deposit ages by thousands of years. Results suggest that late Holocene delta deposition into paleolake Howard in Garwood Valley persisted until ca. 3.5 ka. This is significantly younger than the date when grounded ice is thought to have retreated from the Ross Sea. Our evidence suggests that the local, stranded ice-cored till topography in Garwood Valley, rather than regional ice-sheet dynamics, may have controlled lake levels for some McMurdo Dry Valleys paleolakes. Age control from the supraglacial Ross Sea drift suggests grounding and up-valley advance of the Ross Sea ice sheet into Garwood valley during marine oxygen isotope stage (MIS) 4 (71–78 ka) and the local Last Glacial Maximum (9–10 ka). This work demonstrates the power of combining luminescence dating with existing radiocarbon data sets to improve understanding of the relationships among paleolake formation, glacial position, and stream discharge in response to climate change.

  13. A review of the evidence for a human role in the extinction of Australian megafauna and an alternative interpretation

    NASA Astrophysics Data System (ADS)

    Wroe, Stephen; Field, Judith

    2006-11-01

    Arguments that megafaunal extinctions in Australia were anthropogenically mediated have focused on establishing terminal appearance ages. This approach has been underpinned by three principle tenets: (1) if megafauna disappeared before significant climate change, but after human colonisation, then it can be inferred that extinctions were human mediated; (2) climate change within the last glacial cycle was unremarkable relative to previous cycles; and (3) all or most Pleistocene megafauna were present when people arrived on the continent. We review the evidence for human causation and note mounting evidence suggesting that the last 400-300 ka in Australia has been characterised by escalating aridity and climatic variability, culminating in the breach of a hydrological threshold within the last glacial cycle. Only 21 species (35%) of megafauna whose disappearance has been attributed to human activity are known to have persisted after the Penultimate Glacial Maximum, a time of undoubtedly severe climate change. Thus, 39 species of megafauna (65%) cannot be reliably placed within 85,000 years of firm evidence for human arrival, ca 50-43 ka. At most eight species (13%) were clearly present at this time. Four or more persisted until the onset of full glacial conditions at ca 30 ka. We argue for a falsifiable model of staggered extinction in which most megafaunal extinctions predated human arrival and with the influence of people as a minor superimposition on broader trends in train since middle Pleistocene times.

  14. Paleolithic human exploitation of plant foods during the last glacial maximum in North China

    PubMed Central

    Liu, Li; Bestel, Sheahan; Shi, Jinming; Song, Yanhua; Chen, Xingcan

    2013-01-01

    Three grinding stones from Shizitan Locality 14 (ca. 23,000–19,500 calendar years before present) in the middle Yellow River region were subjected to usewear and residue analyses to investigate human adaptation during the last glacial maximum (LGM) period, when resources were generally scarce and plant foods may have become increasingly important in the human diet. The results show that these tools were used to process various plants, including Triticeae and Paniceae grasses, Vigna beans, Dioscorea opposita yam, and Trichosanthes kirilowii snakegourd roots. Tubers were important food resources for Paleolithic hunter–gatherers, and Paniceae grasses were exploited about 12,000 y before their domestication. The long tradition of intensive exploitation of certain types of flora helped Paleolithic people understand the properties of these plants, including their medicinal uses, and eventually led to the plants' domestication. This study sheds light on the deep history of the broad spectrum subsistence strategy characteristic of late Pleistocene north China before the origins of agriculture in this region. PMID:23509257

  15. Paleolithic human exploitation of plant foods during the last glacial maximum in North China.

    PubMed

    Liu, Li; Bestel, Sheahan; Shi, Jinming; Song, Yanhua; Chen, Xingcan

    2013-04-02

    Three grinding stones from Shizitan Locality 14 (ca. 23,000-19,500 calendar years before present) in the middle Yellow River region were subjected to usewear and residue analyses to investigate human adaptation during the last glacial maximum (LGM) period, when resources were generally scarce and plant foods may have become increasingly important in the human diet. The results show that these tools were used to process various plants, including Triticeae and Paniceae grasses, Vigna beans, Dioscorea opposita yam, and Trichosanthes kirilowii snakegourd roots. Tubers were important food resources for Paleolithic hunter-gatherers, and Paniceae grasses were exploited about 12,000 y before their domestication. The long tradition of intensive exploitation of certain types of flora helped Paleolithic people understand the properties of these plants, including their medicinal uses, and eventually led to the plants' domestication. This study sheds light on the deep history of the broad spectrum subsistence strategy characteristic of late Pleistocene north China before the origins of agriculture in this region.

  16. Quaternary glacial geomorphosites from the Cantabrian Mountains (northern Iberian Peninsula): the Redes Natural Reservation and Picos de Europa Regional Park

    NASA Astrophysics Data System (ADS)

    Rodríguez-Rodríguez, Laura; Jiménez-Sánchez, Montserrat; José Domínguez-Cuesta, María

    2013-04-01

    The Cantabrian Mountains is a mountain range 480 km-long and up to 2,648 m altitude (Torre Cerredo Peak) trending parallel to the Cantabrian Coastline between Pyrenees and the northwest corner of the Iberian Peninsula (~43oN 5oW). This mountain range is an outstanding area to research the climatic patterns across South Europe during the Quaternary glaciations since well-preserved glacial features evidence the occurrence of past mountain glaciations in a climatic environment marked by the transition from a maritime climate (Atlantic) to Mediterranean one across the mountain range. The available studies in the Cantabrian Mountains stand that the regional glacial maximum recorded here is prior to ca 38, and that glaciers were in some locations remarkably retreated by the time of the global Last Glacial Maximum (Jiménez-Sánchez et al., in press; Serrano et al., in press). This study is focused on an area about 800 km2 that includes 36 peaks over 2,000 m (Pico Mampodre; 2,192 m) and partially covers the Redes Natural Reservation and Picos de Europa Regional Park. A geomorphologic database in ArcGIS was produced for this area as a previous step to reconstruct in detail the extent, flow pattern and chronology of the former glaciers (PhD under progress). Here we present a selection of 18 glacial geomorphosites classified according to genetic criteria in sites that show: (i) a nicely preserved moraine sequence recording the transition from glacial to periglacial conditions; (ii) glacial erosion features; (iii) glacial and ice related deposits (like moraines, ice-dammed deposits, erratic boulders or fluvio-glacial deposits); (iv) slope instability related to glacial debuttressing (complex landslides and rock avalanches); and (v) the interaction between the landscape and human activity. The interest of the geomorphosites is supported by its good quality of preservation, allowing its use as a basis to reconstruct the glacial and paraglacial processes in this region during the Quaternary glaciations, especially after the last local glacial maximum. Jiménez-Sánchez, M., Rodríguez-Rodríguez, L., García-Ruiz, J.M., Domínguez-Cuesta, M.J., Farias, P., Valero-Garcés, B., Moreno, A., Rico, M., Valcárcel, M., in press. A review of glacial geomorphology and chronology in northern Spain: timing and regional variability during the last glacial cycle. Geomorphology, doi: 10.1016/j.geomorph.2012.06.009. Serrano, E., González-Trueba, J.J., Pellitero, R., González-García, M., Gómez-Lende, M., in press. Quaternary glacial evolution in the Central Cantabrian Mountains (Northern Spain). Geomorphology, doi:10.1016/j.geomorph.2012.05.001. Research funded by the project CANDELA (CGL2012-31938) of the Spanish national research program in Earth Sciences and Hydric Resources (MICINN) and the project FC-11-PC-10-14 (FICYT-Asturias). L. Rodríguez-Rodríguez has developed her research under a grant of the Severo Ochoa Program (FICYT- Asturias).

  17. The Southern Glacial Maximum 65,000 years ago and its Unfinished Termination

    NASA Astrophysics Data System (ADS)

    Schaefer, Joerg M.; Putnam, Aaron E.; Denton, George H.; Kaplan, Michael R.; Birkel, Sean; Doughty, Alice M.; Kelley, Sam; Barrell, David J. A.; Finkel, Robert C.; Winckler, Gisela; Anderson, Robert F.; Ninneman, Ulysses S.; Barker, Stephen; Schwartz, Roseanne; Andersen, Bjorn G.; Schluechter, Christian

    2015-04-01

    Glacial maxima and their terminations provide key insights into inter-hemispheric climate dynamics and the coupling of atmosphere, surface and deep ocean, hydrology, and cryosphere, which is fundamental for evaluating the robustness of earth's climate in view of ongoing climate change. The Last Glacial Maximum (LGM, ∼26-19 ka ago) is widely seen as the global cold peak during the last glacial cycle, and its transition to the Holocene interglacial, dubbed 'Termination 1 (T1)', as the most dramatic climate reorganization during this interval. Climate records show that over the last 800 ka, ice ages peaked and terminated on average every 100 ka ('100 ka world'). However, the mechanisms pacing glacial-interglacial transitions remain controversial and in particular the hemispheric manifestations and underlying orbital to regional driving forces of glacial maxima and subsequent terminations remain poorly understood. Here we show evidence for a full glacial maximum in the Southern Hemisphere 65.1 ± 2.7 ka ago and its 'Unfinished Termination'. Our 10Be chronology combined with a model simulation demonstrates that New Zealand's glaciers reached their maximum position of the last glacial cycle during Marine Isotope Stage-4 (MIS-4). Southern ocean and greenhouse gas records indicate coeval peak glacial conditions, making the case for the Southern Glacial Maximum about halfway through the last glacial cycle and only 15 ka after the last warm period (MIS-5a). We present the hypothesis that subsequently, driven by boreal summer insolation forcing, a termination began but remained unfinished, possibly because the northern ice sheets were only moderately large and could not supply enough meltwater to the North Atlantic through Heinrich Stadial 6 to drive a full termination. Yet the Unfinished Termination left behind substantial ice on the northern continents (about 50% of the full LGM ice volume) and after another 45 ka of cooling and ice sheet growth the earth was at inter-hemispheric Last Glacial Maximum configuration, when similar orbital forcing hit maximum-size northern ice sheets and ushered in T1 and thus the ongoing interglacial. This argument highlights the critical role of full glacial conditions in both hemispheres for terminations and implies that the Southern Hemisphere climate could transition from interglacial to full glacial conditions in about 15,000 years, while the Northern Hemisphere and its continental ice-sheets required half a glacial cycle.

  18. Orbital-scale Central Arctic Ocean Temperature Records from Benthic Foraminiferal δ18O and Ostracode Mg/Ca Ratios

    NASA Astrophysics Data System (ADS)

    Keller, K.; Cronin, T. M.; Dwyer, G. S.; Farmer, J. R.; Poirier, R. K.; Schaller, M. F.

    2017-12-01

    Orbital-scale climate variability is often amplified in the polar region, for example in changes in seawater temperature, sea-ice cover, deep-water formation, ecosystems, heat storage and carbon cycling. Yet, the relationship between the Arctic Ocean and global climate remains poorly understood due largely to limited orbital-scale paleoclimate records, the complicated nature of sea-ice response to climate and limited abundance of deep sea biological proxies. Here we reconstruct central Arctic Ocean bottom temperatures over the last 600 kyr using ostracode Mg/Ca ratios (genus Krithe) and benthic foraminiferal oxygen isotope ratios (δ18Obf - I. teretis, O. tener, P. bulloides, C. reniforme, C. wuellerstorfi) in six sediment cores recovered from the Mendeleev and Northwind Ridges (700- 2726 m water depth). We examined glacial-interglacial cycles in Arctic seawater temperatures and Arctic δ18Obf chronostratigraphy to reconcile effects of changing bottom water temperature, ice volume and regional hydrography on δ18Obf records. Results show lower ( 10-12 mmol/mol) interglacial and higher ( 16-23 mmol/mol) glacial Mg/Ca ratios, signifying intermediate depth ocean warming during glacials of up to 2 ºC. These temperature maxima are likely related to a deepening of the halocline and the corresponding deeper influence of warm Atlantic water. Glacial-interglacial δ18Obf ranges are smaller in the Arctic ( 0.8-1‰ VPDB) than in the global ocean ( 1.8 ‰). However, when the distinct glacial-interglacial temperature histories of the Arctic (glacial warming) and global ocean (glacial cooling) are accounted for, both Arctic and global ocean seawater δ18O values (δ18Osw) exhibit similar 1.2-1.3 ‰ glacial-interglacial ranges. Thus, Arctic δ18Obf confirms glacial Arctic warming inferred from ostracode Mg/Ca. This study will discuss the strengths and limitations of applying paired Mg/Ca and oxygen isotope proxies in reconstructing more robust paleoceanographic changes in the Arctic Ocean.

  19. A fresh look at the Last Glacial Maximum using Paleoclimate Data Assimilation

    NASA Astrophysics Data System (ADS)

    Malevich, S. B.; Tierney, J. E.; Hakim, G. J.; Tardif, R.

    2017-12-01

    Quantifying climate conditions during the Last Glacial Maximum ( 21ka) can help us to understand climate responses to forcing and climate states that are poorly represented in the instrumental record. Paleoclimate proxies may be used to estimate these climate conditions, but proxies are sparsely distributed and possess uncertainties from environmental and biogeochemical processes. Alternatively, climate model simulations provide a full-field view, but may predict unrealistic climate states or states not faithful to proxy records. Here, we use data assimilation - combining climate proxy records with a theoretical understanding from climate models - to produce field reconstructions of the LGM that leverage the information from both data and models. To date, data assimilation has mainly been used to produce reconstructions of climate fields through the last millennium. We expand this approach in order to produce a climate fields for the Last Glacial Maximum using an ensemble Kalman filter assimilation. Ensemble samples were formed from output from multiple models including CCSM3, CESM2.1, and HadCM3. These model simulations are combined with marine sediment proxies for upper ocean temperature (TEX86, UK'37, Mg/Ca and δ18O of foraminifera), utilizing forward models based on a newly developed suite of Bayesian proxy system models. We also incorporate age model and radiocarbon reservoir uncertainty into our reconstructions using Bayesian age modeling software. The resulting fields show familiar patterns based on comparison with previous proxy-based reconstructions, but additionally reveal novel patterns of large-scale shifts in ocean-atmosphere dynamics, as the surface temperature data inform upon atmospheric circulation and precipitation patterns.

  20. Late Pleistocene glaciations of the arid subtropical Andes and new results from the Chajnantor Plateau, northern Chile

    NASA Astrophysics Data System (ADS)

    Ward, Dylan J.; Cesta, Jason M.; Galewsky, Joseph; Sagredo, Esteban

    2015-11-01

    The spatiotemporal pattern of glaciation along the Andes Mountains is an important proxy record reflecting the varying influence of global and regional circulation features on South American climate. However, the timing and extent of glaciation in key parts of the orogen, particularly the deglaciated arid Andes, are poorly constrained. We present new cosmogenic 10Be and 36Cl exposure ages for glacial features on and near the Chajnantor Plateau (23 °S). The new dates, although scattered due to cosmogenic inheritance, imply that the most recent extensive glacial occupation ended before or during the global Last Glacial Maximum (LGM). We discuss this new record in the context of published glacial chronologies from glacial features in Peru, Bolivia, and northern Chile rescaled using the latest cosmogenic 10Be production rate calibration for the tropical Andes. The results imply regionally synchronous moraine stabilization ca. 25-40 ka, 15-17 ka, and 12-14 ka, with the youngest of these moraines absent in records south of ∼20 °S, including in our new Chajnantor area chronology. This spatial pattern implicates easterly moisture in generating sufficient snowfall to glaciate the driest parts of the Andes, while allowing a role for westerly moisture, possibly modulated by the migration of the Southern Westerly Wind belt, in the regions near and south of the Atacama Desert.

  1. CO2 availability influences hydraulic function of C3 and C4 grass leaves

    PubMed Central

    Blackman, Chris J

    2018-01-01

    Abstract Atmospheric CO2 (ca) has increased since the last glacial period, increasing photosynthetic water use efficiency and improving plant productivity. Evolution of C4 photosynthesis at low ca led to decreased stomatal conductance (gs), which provided an advantage over C3 plants that may be reduced by rising ca. Using controlled environments, we determined how increasing ca affects C4 water use relative to C3 plants. Leaf gas exchange and mass per area (LMA) were measured for four C3 and four C4 annual, crop-related grasses at glacial (200 µmol mol−1), ambient (400 µmol mol−1), and super-ambient (640 µmol mol−1) ca. C4 plants had lower gs, which resulted in a water use efficiency advantage at all ca and was broadly consistent with slower stomatal responses to shade, indicating less pressure on leaf water status. At glacial ca, net CO2 assimilation and LMA were lower for C3 than for C4 leaves, and C3 and C4 grasses decreased leaf hydraulic conductance (Kleaf) similarly, but only C4 leaves decreased osmotic potential at turgor loss. Greater carbon availability in C4 leaves at glacial ca generated a different hydraulic adjustment relative to C3 plants. At current and future ca, C4 grasses have advantages over C3 grasses due to lower gs, lower stomatal sensitivity, and higher absolute water use efficiency. PMID:29538702

  2. 231Pa/230Th evidence for a weakened but persistent Atlantic meridional overturning circulation during Heinrich Stadial 1.

    PubMed

    Bradtmiller, Louisa I; McManus, Jerry F; Robinson, Laura F

    2014-12-18

    The strength of Atlantic meridional overturning circulation is believed to affect the climate over glacial-interglacial and millennial timescales. The marine sedimentary (231)Pa/(230)Th ratio is a promising paleocirculation proxy, but local particle effects may bias individual reconstructions. Here we present new Atlantic sedimentary (231)Pa/(230)Th data from the Holocene, the last glacial maximum and Heinrich Stadial 1, a period of abrupt cooling ca. 17,500 years ago. We combine our results with published data from these intervals to create a spatially distributed sedimentary (231)Pa/(230)Th database. The data reveal a net (231)Pa deficit during each period, consistent with persistent (231)Pa export. In highly resolved cores, Heinrich (231)Pa/(230)Th ratios exceed glacial ratios at nearly all depths, indicating a significant reduction, although not cessation, of overturning during Heinrich Stadial 1. These results support the inference that weakened overturning was a driver of Heinrich cooling, while suggesting that abrupt climate oscillations do not necessarily require a complete shutdown of overturning.

  3. King penguin demography since the last glaciation inferred from genome-wide data

    PubMed Central

    Trucchi, Emiliano; Gratton, Paolo; Whittington, Jason D.; Cristofari, Robin; Le Maho, Yvon; Stenseth, Nils Chr; Le Bohec, Céline

    2014-01-01

    How natural climate cycles, such as past glacial/interglacial patterns, have shaped species distributions at the high-latitude regions of the Southern Hemisphere is still largely unclear. Here, we show how the post-glacial warming following the Last Glacial Maximum (ca 18 000 years ago), allowed the (re)colonization of the fragmented sub-Antarctic habitat by an upper-level marine predator, the king penguin Aptenodytes patagonicus. Using restriction site-associated DNA sequencing and standard mitochondrial data, we tested the behaviour of subsets of anonymous nuclear loci in inferring past demography through coalescent-based and allele frequency spectrum analyses. Our results show that the king penguin population breeding on Crozet archipelago steeply increased in size, closely following the Holocene warming recorded in the Epica Dome C ice core. The following population growth can be explained by a threshold model in which the ecological requirements of this species (year-round ice-free habitat for breeding and access to a major source of food such as the Antarctic Polar Front) were met on Crozet soon after the Pleistocene/Holocene climatic transition. PMID:24920481

  4. Invariance of the carbonate chemistry of the South China Sea from the glacial period to the Holocene and its implications to the Pacific Ocean carbonate system

    NASA Astrophysics Data System (ADS)

    Luo, Yiming; Kienast, Markus; Boudreau, Bernard P.

    2018-06-01

    Substantial and correlated changes in marine carbonate (CaCO3) content of oceanic sediments commonly accompany the transitions from cold glacial periods to warm interglacial periods. The South China Sea (SCS) is said to be ocean-dominated at depth, and its CaCO3 records should reflect and preserve the effects of changes in the carbonate chemistry of the (western) Pacific Ocean. Using published and newly acquired CaCO3 data and a model for carbonate compensation dynamics, we show that a significant change with respect to carbonate saturation is unlikely to have occurred in the SCS during the last glacial-interglacial transition. Instead, the results from a carbonate deposition model argue that the saturation state of the SCS was largely invariant; a separate diagenetic model argues that changes in sediment CaCO3 content can be explained by alterations in lithogenic input. In turn, this could indicate that the carbonate ion concentration of the (western) Pacific at depths shallower than the sill to the SCS (ca. 2,400 m) has not changed appreciably between the last glacial period and the present interglacial.

  5. North Atlantic Deep Water Production during the Last Glacial Maximum

    PubMed Central

    Howe, Jacob N. W.; Piotrowski, Alexander M.; Noble, Taryn L.; Mulitza, Stefan; Chiessi, Cristiano M.; Bayon, Germain

    2016-01-01

    Changes in deep ocean ventilation are commonly invoked as the primary cause of lower glacial atmospheric CO2. The water mass structure of the glacial deep Atlantic Ocean and the mechanism by which it may have sequestered carbon remain elusive. Here we present neodymium isotope measurements from cores throughout the Atlantic that reveal glacial–interglacial changes in water mass distributions. These results demonstrate the sustained production of North Atlantic Deep Water under glacial conditions, indicating that southern-sourced waters were not as spatially extensive during the Last Glacial Maximum as previously believed. We demonstrate that the depleted glacial δ13C values in the deep Atlantic Ocean cannot be explained solely by water mass source changes. A greater amount of respired carbon, therefore, must have been stored in the abyssal Atlantic during the Last Glacial Maximum. We infer that this was achieved by a sluggish deep overturning cell, comprised of well-mixed northern- and southern-sourced waters. PMID:27256826

  6. Hydrological and climate changes in southeast Siberia over the last 33 kyr

    NASA Astrophysics Data System (ADS)

    Katsuta, Nagayoshi; Ikeda, Hisashi; Shibata, Kenji; Saito-Kokubu, Yoko; Murakami, Takuma; Tani, Yukinori; Takano, Masao; Nakamura, Toshio; Tanaka, Atsushi; Naito, Sayuri; Ochiai, Shinya; Shichi, Koji; Kawakami, Shin-ichi; Kawai, Takayoshi

    2018-05-01

    Paleoenvironmental and paleoclimate changes in intracontinental Siberia were reconstructed by continuous, high-resolution records (biogenic silica, U, total organic carbon and N, total S, and grain size) from a sediment core retrieved from the Buguldeika Saddle, Lake Baikal, dating back to the last 33 cal. ka BP. The Holocene climate was wet relative to the last glacial period. The climate became gradually warm and wet from the early to middle Holocene, followed by a shift at ca. 6.5 cal. ka BP toward warm and dry, possibly because of evapotranspiration. This suggests that the climate system transition from the glacial to interglacial state occurred at that time. In the last glacial, the deposition of carbonate mud from the Primorsky Range was associated with Heinrich events (H3 and H1) and the Selenga River inflow during the Last Glacial Maximum was caused by meltwater of mountain glaciers in the Khamar-Daban Range. The anoxic bottom-water during the Allerød-Younger Dryas was probably a result of weakened ventilation associated with reduced Selenga River inflow and microbial decomposition of organic matters originating from moderate input of nutrients from the Primorsky Range. The rapid decline in precipitation during the early Holocene may have been a response to the 8.2 ka cooling event.

  7. Influence of external forcings on abrupt millennial-scale climate changes: a statistical modelling study

    NASA Astrophysics Data System (ADS)

    Mitsui, Takahito; Crucifix, Michel

    2017-04-01

    The last glacial period was punctuated by a series of abrupt climate shifts, the so-called Dansgaard-Oeschger (DO) events. The frequency of DO events varied in time, supposedly because of changes in background climate conditions. Here, the influence of external forcings on DO events is investigated with statistical modelling. We assume two types of simple stochastic dynamical systems models (double-well potential-type and oscillator-type), forced by the northern hemisphere summer insolation change and/or the global ice volume change. The model parameters are estimated by using the maximum likelihood method with the NGRIP Ca^{2+} record. The stochastic oscillator model with at least the ice volume forcing reproduces well the sample autocorrelation function of the record and the frequency changes of warming transitions in the last glacial period across MISs 2, 3, and 4. The model performance is improved with the additional insolation forcing. The BIC scores also suggest that the ice volume forcing is relatively more important than the insolation forcing, though the strength of evidence depends on the model assumption. Finally, we simulate the average number of warming transitions in the past four glacial periods, assuming the model can be extended beyond the last glacial, and compare the result with an Iberian margin sea-surface temperature (SST) record (Martrat et al. in Science 317(5837): 502-507, 2007). The simulation result supports the previous observation that abrupt millennial-scale climate changes in the penultimate glacial (MIS 6) are less frequent than in the last glacial (MISs 2-4). On the other hand, it suggests that the number of abrupt millennial-scale climate changes in older glacial periods (MISs 6, 8, and 10) might be larger than inferred from the SST record.

  8. The early rise and late demise of New Zealand’s last glacial maximum

    PubMed Central

    Rother, Henrik; Fink, David; Shulmeister, James; Mifsud, Charles; Evans, Michael; Pugh, Jeremy

    2014-01-01

    Recent debate on records of southern midlatitude glaciation has focused on reconstructing glacier dynamics during the last glacial termination, with different results supporting both in-phase and out-of-phase correlations with Northern Hemisphere glacial signals. A continuing major weakness in this debate is the lack of robust data, particularly from the early and maximum phase of southern midlatitude glaciation (∼30–20 ka), to verify the competing models. Here we present a suite of 58 cosmogenic exposure ages from 17 last-glacial ice limits in the Rangitata Valley of New Zealand, capturing an extensive record of glacial oscillations between 28–16 ka. The sequence shows that the local last glacial maximum in this region occurred shortly before 28 ka, followed by several successively less extensive ice readvances between 26–19 ka. The onset of Termination 1 and the ensuing glacial retreat is preserved in exceptional detail through numerous recessional moraines, indicating that ice retreat between 19–16 ka was very gradual. Extensive valley glaciers survived in the Rangitata catchment until at least 15.8 ka. These findings preclude the previously inferred rapid climate-driven ice retreat in the Southern Alps after the onset of Termination 1. Our record documents an early last glacial maximum, an overall trend of diminishing ice volume in New Zealand between 28–20 ka, and gradual deglaciation until at least 15 ka. PMID:25071171

  9. The early rise and late demise of New Zealand's last glacial maximum.

    PubMed

    Rother, Henrik; Fink, David; Shulmeister, James; Mifsud, Charles; Evans, Michael; Pugh, Jeremy

    2014-08-12

    Recent debate on records of southern midlatitude glaciation has focused on reconstructing glacier dynamics during the last glacial termination, with different results supporting both in-phase and out-of-phase correlations with Northern Hemisphere glacial signals. A continuing major weakness in this debate is the lack of robust data, particularly from the early and maximum phase of southern midlatitude glaciation (∼30-20 ka), to verify the competing models. Here we present a suite of 58 cosmogenic exposure ages from 17 last-glacial ice limits in the Rangitata Valley of New Zealand, capturing an extensive record of glacial oscillations between 28-16 ka. The sequence shows that the local last glacial maximum in this region occurred shortly before 28 ka, followed by several successively less extensive ice readvances between 26-19 ka. The onset of Termination 1 and the ensuing glacial retreat is preserved in exceptional detail through numerous recessional moraines, indicating that ice retreat between 19-16 ka was very gradual. Extensive valley glaciers survived in the Rangitata catchment until at least 15.8 ka. These findings preclude the previously inferred rapid climate-driven ice retreat in the Southern Alps after the onset of Termination 1. Our record documents an early last glacial maximum, an overall trend of diminishing ice volume in New Zealand between 28-20 ka, and gradual deglaciation until at least 15 ka.

  10. Regional ice-mass changes and glacial-isostatic adjustment in Antarctica from GRACE

    NASA Astrophysics Data System (ADS)

    Sasgen, Ingo; Martinec, Zdeněk; Fleming, Kevin

    2007-12-01

    We infer regional mass changes in Antarctica using ca. 4 years of Gravity Recovery and Climate Experiment (GRACE) level 2 data. We decompose the time series of the Stokes coefficients into their linear as well as annual and semi-annual components by a least-squares adjustment and apply a statistical reliability test to the Stokes potential-coefficients' linear temporal trends. Mass changes in three regions of Antarctica that display prominent geoid-height change are determined by adjusting predictions of glacier melting at the tip of the Antarctic Peninsula and in the Amundsen Sea Sector, and of the glacial-isostatic adjustment (GIA) over the Ronne Ice Shelf. We use the GFZ RL04, CNES RL01C, JPL RL04 and CSR RL04 potential-coefficient releases, and show that, although all data sets consistently reflect the prominent mass changes, differences in the mass-change estimates are considerably larger than the uncertainties estimated by the propagation of the GRACE errors. We then use the bootstrapping method based on the four releases and six time intervals, each with 3.5 years of data, to quantify the variability of the mean mass-change estimates. We find 95% of our estimates to lie within 0.08 and 0.09 mm/a equivalent sea-level (ESL) change for the Antarctic Peninsula and within 0.18 and 0.20 mm/a ESL for the Amundsen Sea Sector. Forward modelling of the GIA over the Ronne Ice Shelf region suggests that the Antarctic continent was covered by 8.4 to 9.4 m ESL of additional ice during the Last-Glacial Maximum (ca. 22 to 15 ka BP). With regards to the mantle-viscosity values and the glacial history used, this value is considered as a minimum estimate. The mass-change estimates derived from all GRACE releases and time intervals lie within ca. 20% (Amundsen Sea Sector), 30% (Antarctic Peninsula) and 50% (Ronne Ice Shelf region) of the bootstrap-estimated mean, demonstrating the reliability of results obtained using GRACE observations.

  11. Source-to-sink sediment transfer in the Piave River system (North-Eastern Italy) since the Last Glacial Maximum

    NASA Astrophysics Data System (ADS)

    Carton, Alberto; Bondesan, Aldino; Fontana, Alessandro; Meneghel, Mirco; Miola, Antonella; Mozzi, Paolo; Primon, Sandra; Surian, Nicola

    2010-05-01

    Aim of this study is the definition of sediment production, transfer and deposition in the Piave River system from the Last Glacial Maximum to the Present, through a basin-scale approach. The Piave River flows from North to South in the eastern sector of the Italian Alps and reaches the Adriatic Sea. Its length is 220 km and the catchment is 3899 km2. The fluvial system consists of a mountainous portion, with maximum elevation of 3343 m a.s.l., and a lower part where the river flows in the Venetian alluvial plain. Average precipitation is 1350 mm/a; the runoff coefficient is 0.63 and the mean discharge at the mouth is 60 m3/s. The highest sediment delivery to the plain was at the peak of LGM, when the Piave glacier had its maximum expansion and reached the Alpine piedmont. In this period the Piave megafan received large volumes of sediments through glaciofluvial streams and achieved its maximum expansion. LGM alluvial sediments in the distal portion of the megafan are 20-30 m thick. The last glacial advance in the Vittorio Veneto terminal moraines, at the debouch of the valley in the Venetian Plain, dates 17.6 ka 14C BP. Deglaciation started immediately afterwards and the retreat of the glacial front was rather fast, considering that at around 15.0 ka 14C BP the Prealpine tract of valley was already ice-free. Following the onset of deglaciation until about 8.0 ka 14C BP, alluvial sediments were mostly trapped in the terminal valley tracts, while the whole alluvial plain experienced a severe erosive phase, comprising the whole Lateglacial and early Holocene. At ca. 8.0 ka 14C BP, the Piave River started to downcut its Prealpine valley fill, an event which re-mobilized the alluvial sediments and contributed to delta formation on the Adriatic coast since 6.0 ka 14C BP. Post-glacial aggradation in the distal tract of the Nervesa megafan started only at about 4.0 - 3.0 ka 14C BP. In Roman times the fluvial system was rather stable, while between the 5th and 10th century AD there were several major avulsions in the distal Nervesa megafan. The last 100 years are characterized by a dramatic decrease of sediment transport due to a range of human activities (e.g. sediment mining and dams). Climate change was the main external driving factor in this fluvial system at the LGM termination, controlling both sediment production in the catchment and sea-level position. Local factors, such as the occurrence of large landslides, lake formation, post-glacial reforestation and valley topography had a major impact on sediment transfer from source to sink. Holocene millennial- and centennial-scale climatic fluctuations were able to modulate the sediment flux, increasingly intermingling with human impact during the last 6 millennia.

  12. The Arrival of Homo sapiens into the Southern Cone at 14,000 Years Ago.

    PubMed

    Politis, Gustavo G; Gutiérrez, María A; Rafuse, Daniel J; Blasi, Adriana

    The Arroyo Seco 2 site contains a rich archaeological record, exceptional for South America, to explain the expansion of Homo sapiens into the Americas and their interaction with extinct Pleistocene mammals. The following paper provides a detailed overview of material remains found in the earliest cultural episodes at this multi-component site, dated between ca. 12,170 14C yrs B.P. (ca. 14,064 cal yrs B.P.) and 11,180 14C yrs B.P. (ca. 13,068 cal yrs B.P.). Evidence of early occupations includes the presence of lithic tools, a concentration of Pleistocene species remains, human-induced fractured animal bones, and a selection of skeletal parts of extinct fauna. The occurrence of hunter-gatherers in the Southern Cone at ca. 14,000 cal yrs B.P. is added to the growing list of American sites that indicate a human occupation earlier than the Clovis dispersal episode, but posterior to the onset of the deglaciation of the Last Glacial Maximum (LGM) in the North America.

  13. Late Quaternary deglacial history of the Mérida Andes, Venezuela

    NASA Astrophysics Data System (ADS)

    Stansell, Nathan D.; Abbott, Mark B.; Polissar, Pratigya J.; Wolfe, Alexander P.; Bezada, Maximiliano; Rull, Valentí

    2005-10-01

    Radiocarbon-dated sediment cores from seven lakes and two bogs spanning the Cordillera de Mérida in the Venezuelan Andes were used to identify and date the regional history of late Pleistocene and Holocene glacial activity. Coring sites were selected at different elevations across a pronounced rain shadow from southeast (wet) to northwest (dry). Sediment lithostratigraphy and magnetic susceptibility, in conjunction with AMS radiocarbon dates on macrofossils and charcoal, were used to constrain deglaciation. The local expression of the Last Glacial Maximum occurred between 22 750 and 19 960 cal. yr BP. On the wetter southeastern side of the Cordillera de Mérida, glaciers had significantly retreated by 15 700 cal. yr BP, followed by several minor glacial advances and retreats between 14 850 and 13 830 cal. yr BP. At least one major glacial readvance occurred between 13 830 and 10 000 cal. yrBP in the wetter southeastern sector of the region. The drier northwest side of the Cordillera de Mérida records initial glacial retreat by 14240cal.yrBP. Multiple sites on both sides of the Mérida Andes record a further phase of extensive deglaciation approximately 10000cal.yrBP. However, the north-northwest facing Mucubají catchment remained partially glaciated until ca. 6000cal.yrBP. Deglacial ages from the Venezuelan Andes are consistently younger than those reported from the Southern Hemisphere Andes, suggesting an inter-hemispheric deglacial lag in the northern tropics of the order of two thousand years.

  14. Orbital pacing and ocean circulation-induced collapses of the Mesoamerican monsoon over the past 22,000 y.

    PubMed

    Lachniet, Matthew S; Asmerom, Yemane; Bernal, Juan Pablo; Polyak, Victor J; Vazquez-Selem, Lorenzo

    2013-06-04

    The dominant controls on global paleomonsoon strength include summer insolation driven by precession cycles, ocean circulation through its influence on atmospheric circulation, and sea-surface temperatures. However, few records from the summer North American Monsoon system are available to test for a synchronous response with other global monsoons to shared forcings. In particular, the monsoon response to widespread atmospheric reorganizations associated with disruptions of the Atlantic Meridional Overturning Circulation (AMOC) during the deglacial period remains unconstrained. Here, we present a high-resolution and radiometrically dated monsoon rainfall reconstruction over the past 22,000 y from speleothems of tropical southwestern Mexico. The data document an active Last Glacial Maximum (18-24 cal ka B.P.) monsoon with similar δ(18)O values to the modern, and that the monsoon collapsed during periods of weakened AMOC during Heinrich stadial 1 (ca. 17 ka) and the Younger Dryas (12.9-11.5 ka). The Holocene was marked by a trend to a weaker monsoon that was paced by orbital insolation. We conclude that the Mesoamerican monsoon responded in concert with other global monsoon regions, and that monsoon strength was driven by variations in the strength and latitudinal position of the Intertropical Convergence Zone, which was forced by AMOC variations in the North Atlantic Ocean. The surprising observation of an active Last Glacial Maximum monsoon is attributed to an active but shallow AMOC and proximity to the Intertropical Convergence Zone. The emergence of agriculture in southwestern Mexico was likely only possible after monsoon strengthening in the Early Holocene at ca. 11 ka.

  15. Orbital pacing and ocean circulation-induced collapses of the Mesoamerican monsoon over the past 22,000 y

    PubMed Central

    Lachniet, Matthew S.; Asmerom, Yemane; Bernal, Juan Pablo; Polyak, Victor J.; Vazquez-Selem, Lorenzo

    2013-01-01

    The dominant controls on global paleomonsoon strength include summer insolation driven by precession cycles, ocean circulation through its influence on atmospheric circulation, and sea-surface temperatures. However, few records from the summer North American Monsoon system are available to test for a synchronous response with other global monsoons to shared forcings. In particular, the monsoon response to widespread atmospheric reorganizations associated with disruptions of the Atlantic Meridional Overturning Circulation (AMOC) during the deglacial period remains unconstrained. Here, we present a high-resolution and radiometrically dated monsoon rainfall reconstruction over the past 22,000 y from speleothems of tropical southwestern Mexico. The data document an active Last Glacial Maximum (18–24 cal ka B.P.) monsoon with similar δ18O values to the modern, and that the monsoon collapsed during periods of weakened AMOC during Heinrich stadial 1 (ca. 17 ka) and the Younger Dryas (12.9–11.5 ka). The Holocene was marked by a trend to a weaker monsoon that was paced by orbital insolation. We conclude that the Mesoamerican monsoon responded in concert with other global monsoon regions, and that monsoon strength was driven by variations in the strength and latitudinal position of the Intertropical Convergence Zone, which was forced by AMOC variations in the North Atlantic Ocean. The surprising observation of an active Last Glacial Maximum monsoon is attributed to an active but shallow AMOC and proximity to the Intertropical Convergence Zone. The emergence of agriculture in southwestern Mexico was likely only possible after monsoon strengthening in the Early Holocene at ca. 11 ka. PMID:23690596

  16. Patterns of hydroclimatic change in the Rocky Mountains and surrounding regions since the last glacial maximum

    NASA Astrophysics Data System (ADS)

    Shuman, Bryan N.; Serravezza, Marc

    2017-10-01

    The paleohydrologic record of western North America since the last glacial maximum reveals a wide range of hydroclimatic variability in time and space. To improve the understanding of abrupt hydroclimatic shifts and millennial-scale hydrologic changes in the central Rocky Mountains, we reconstruct the lake-level histories of two small lakes in the Beartooth and Bighorn Mountains in northern Wyoming over the past 17 ka. To do so, we use ground-penetrating radar (GPR) and sediment cores to track the elevations of shoreline sediments within the lakes through time. We compare the stratigraphies with those from four other lakes in Wyoming and Colorado, and find widespread evidence for a Terminal Pleistocene Drought from 15 to 11 ka, an early Holocene humid period from 11 to 8 ka, and mid-Holocene aridity from 8 to 5.5 ka. The northern Wyoming lakes also provide evidence of high levels in the Pleistocene, possibly before ca. 15 ka, and rapid hydroclimatic changes that may have correlated with Heinrich Event 1 (ca. 16.8 ka). We place the changes in a broad context by summarizing and mapping water-level changes from 107 additional, previously studied lakes. Important patterns include 1) extensive drying across the western U.S. after 15 ka; 2) sub-regional differences during the Pleistocene-Holocene transition; 3) a north-south contrast from 9 to 6 ka consistent with a northward shift in storm tracks as the influence of the Laurentide Ice Sheet diminished; and 4) rapid increases in effective moisture across much of western North America from 6 to 4 ka.

  17. Phylogeographic Insights into a Peripheral Refugium: The Importance of Cumulative Effect of Glaciation on the Genetic Structure of Two Endemic Plants

    PubMed Central

    Zecca, Giovanni; Minuto, Luigi

    2016-01-01

    Quaternary glaciations and mostly last glacial maximum have shaped the contemporary distribution of many species in the Alps. However, in the Maritime and Ligurian Alps a more complex picture is suggested by the presence of many Tertiary paleoendemisms and by the divergence time between lineages in one endemic species predating the Late Pleistocene glaciation. The low number of endemic species studied limits the understanding of the processes that took place within this region. We used species distribution models and phylogeographical methods to infer glacial refugia and to reconstruct the phylogeographical pattern of Silene cordifolia All. and Viola argenteria Moraldo & Forneris. The predicted suitable area for last glacial maximum roughly fitted current known distribution. Our results suggest that separation of the major clades predates the last glacial maximum and the following repeated glacial and interglacial periods probably drove differentiations. The complex phylogeographical pattern observed in the study species suggests that both populations and genotypes extinction was minimal during the last glacial maximum, probably due to the low impact of glaciations and to topographic complexity in this area. This study underlines the importance of cumulative effect of previous glacial cycles in shaping the genetic structure of plant species in Maritime and Ligurian Alps, as expected for a Mediterranean mountain region more than for an Alpine region. PMID:27870888

  18. A biomarker record of temperature and phytoplankton community in Okinawa Trough since the last glacial maximum

    NASA Astrophysics Data System (ADS)

    Ruan, Jiaping

    2017-04-01

    A variety of biomarkers were examined from Ocean Drilling Program (ODP) core 1202B to reconstruct temperature and phytoplankton community structures in the southern Okinawa Trough for the past ca. 20000 years. Two molecular temperature proxies (Uk37 and TEX86) show 5-6 ℃ warming during the glacial/interglacial transition. Prior to the Holocene, the Uk37-derived temperature was generally 1-4 ℃ higher than TEX86-derived temperature. This difference, however, was reduced to <1 ℃ in the Holocene when the Kuroshio Current was intensified. Correspondingly, the phytoplankton biomarkers (e.g., C37:2 alkenone, brassicasterol, C30 1,15-diols and dinosterol) suggest a shift of planktonic community assemblages with coccolithophorids becoming more abundant in the Holocene at the expense of diatoms/dinoflagellates. Such a shift is related to the variability of nutrient, temperature and salinity in the Okinawa Trough, controlled by the sea level and the intensity of Kuroshio Current. The phytoplankton community change may have profound implications on atmospheric CO2 fluctuations during glacial/interglacial cycles since diatoms and dinoflagellates have a higher efficiency of biological pump than coccolithophorids.

  19. Last Glacial mammals in South America: a new scenario from the Tarija Basin (Bolivia)

    NASA Astrophysics Data System (ADS)

    Coltorti, M.; Abbazzi, L.; Ferretti, M. P.; Iacumin, P.; Rios, F. Paredes; Pellegrini, M.; Pieruccini, P.; Rustioni, M.; Tito, G.; Rook, L.

    2007-04-01

    The chronology, sedimentary history, and paleoecology of the Tarija Basin (Bolivia), one of the richest Pleistocene mammalian sites in South America, are revised here based on a multidisciplinary study, including stratigraphy, sedimentology, geomorphology, paleontology, isotope geochemistry, and 14C geochronology. Previous studies have indicated a Middle Pleistocene age for this classic locality. We have been able to obtain a series of 14C dates encompassing all the fossil-bearing sequences previously studied in the Tarija Basin. The dated layers range in age from about 44,000 to 21,000 radiocarbon years before present (BP), indicating that the Tarija fauna is much younger than previously thought. Glacial advances correlated to marine isotopic stages (MIS) 4 and 2 (ca. 62 and 20 ka BP, respectively) are also documented at the base and at the very top of the Tarija Padcaya succession, respectively, indicating that the Bolivian Altiplano was not dry but sustained an ice cap during the Last Glacial Maximum. The results of this multidisciplinary study enable us to redefine the chronological limits of the Tarija sequence and of its faunal assemblage and to shift this paleontological, paleoclimatological, and paleoecological framework to the time interval from MIS 4 to MIS 2.

  20. King penguin demography since the last glaciation inferred from genome-wide data.

    PubMed

    Trucchi, Emiliano; Gratton, Paolo; Whittington, Jason D; Cristofari, Robin; Le Maho, Yvon; Stenseth, Nils Chr; Le Bohec, Céline

    2014-07-22

    How natural climate cycles, such as past glacial/interglacial patterns, have shaped species distributions at the high-latitude regions of the Southern Hemisphere is still largely unclear. Here, we show how the post-glacial warming following the Last Glacial Maximum (ca 18 000 years ago), allowed the (re)colonization of the fragmented sub-Antarctic habitat by an upper-level marine predator, the king penguin Aptenodytes patagonicus. Using restriction site-associated DNA sequencing and standard mitochondrial data, we tested the behaviour of subsets of anonymous nuclear loci in inferring past demography through coalescent-based and allele frequency spectrum analyses. Our results show that the king penguin population breeding on Crozet archipelago steeply increased in size, closely following the Holocene warming recorded in the Epica Dome C ice core. The following population growth can be explained by a threshold model in which the ecological requirements of this species (year-round ice-free habitat for breeding and access to a major source of food such as the Antarctic Polar Front) were met on Crozet soon after the Pleistocene/Holocene climatic transition. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  1. A multi-proxy record of MIS 11-12 deglaciation and glacial MIS 12 instability from the Sulmona basin (central Italy)

    NASA Astrophysics Data System (ADS)

    Regattieri, Eleonora; Giaccio, Biagio; Galli, Paolo; Nomade, Sebastien; Peronace, Edoardo; Messina, Paolo; Sposato, Andrea; Boschi, Chiara; Gemelli, Maurizio

    2016-01-01

    A multi-proxy record (lithology, XRF, CaCO3 content, carbonate δ18O and δ13C) was acquired from a sediment core drilled in the intermountain Sulmona basin (central Italy). Tephrostratigraphic analyses of three volcanic ash layers ascribe the investigated succession to the MIS 12-MIS 11 period, spanning the interval ca. 500-410 ka. Litho-pedo facies assemblage indicates predominant lacustrine deposition, interrupted by a minor sub-aerial and lake low stand episode. Variations in major and minor elements concentrations are related to changes in the clastic input to the lake. The oxygen isotopic composition of carbonate (δ18Oc) intervals is interpreted mainly as a proxy for the amount of precipitation in the high-altitude catchment of the karst recharge system. The record shows pronounced hydrological variability at orbital and millennial time-scales, which appears closely related to the Northern Hemisphere summer insolation pattern and replicates North Atlantic and west Mediterranean Sea Surface Temperature (SST) fluctuations. The MIS 12 glacial inception is marked by an abrupt reduction of precipitation, lowering of the lake level and enhanced catchment erosion. A well-defined and isotopically prominent interstadial with increased precipitation maybe related to insolation maxima-precession minima at ca. 465 ka. This interstadial ends abruptly at ca. 457 ka and it is followed by a phase of strong short-term instability. Drastic lake-level lowering and enhanced clastic flux characterized the MIS 12 glacial maximum. Lacustrine deposition restarted about 440 ka ago. The MIS 12-MIS 11 transition is characterized by a rapid increase in the precipitation, lake-level rise and reduction in the clastic input, interrupted by a short and abrupt return to drier conditions. Comparison with marine records from the Iberian margin and western Mediterranean suggests that major events of ice rafted debris deposition, related to southward migrations of the polar front, match the harshest periods in central Italy. This indicates strong teleconnections between Northern hemisphere ice sheet dynamics, North Atlantic oceanic conditions and Mediterranean continental hydrology.

  2. Insights into Penultimate Interglacial-Glacial Climate Change on Vegetation History at Lake Van, Turkey

    NASA Astrophysics Data System (ADS)

    Pickarski, N.; Litt, T.

    2017-12-01

    A new detailed pollen and oxygen isotope record of the penultimate interglacial-glacial cycle (ca. 250-129 ka; MIS 7-6), has been generated from the sediment core at Lake Van, Turkey. The integration of all available proxies (pollen, microscopic charcoal, δ18Obulk, and XRF) shows three temperate intervals of high effective soil moisture availability. This is evidenced by the predominance of oak steppe-forested landscapes similar to the present interglacial vegetation in this sensitive semiarid region. The wettest/warmest stage, as indicated by highest temperate tree percentages, can be broadly correlated with MIS 7c, while the amplitude of the tree population maximum during the oldest penultimate interglacial (MIS 7e) appears to be reduced due to warm but drier climatic conditions. A detailed comparison of the penultimate interglacial complex (MIS 7) to the last interglacial (MIS 5e) and the current interglacial (MIS 1) provides a vivid illustration of possible differences in the successive climatic cycles. Intervening periods of treeless vegetation (MIS 7d, 7a) were predominated by steppe elements. The occurrence of Artemisia and Chenopodiaceae during MIS 7d indicates very dry and cold climatic conditions, while higher temperate tree percentages (mainly deciduous Quercus) points to relatively humid and mild conditions throughout MIS 7b. Despite the general dominance of dry and cold desert-steppe vegetation during the penultimate glacial (MIS 6), this period can be divided into two parts: an early stage (ca. 193-157 ka) with higher oscillations in tree percentages and a later stage (ca. 157-131 ka) with lower tree percentages and subdued oscillations. Furthermore, we are able to identify the MIS 6e event (ca. 179-159 ka), which reveals clear climate variability due to rapid alternation in the vegetation cover. In comparison with long European pollen archives, speleothem isotope records from the Near East, and global climate parameters, the new high-resolution record presents an improved insight into regional vegetation dynamics and climate variability in the eastern Mediterranean region.

  3. Climate, not Aboriginal landscape burning, controlled the historical demography and distribution of fire-sensitive conifer populations across Australia

    PubMed Central

    Sakaguchi, Shota; Bowman, David M. J. S.; Prior, Lynda D.; Crisp, Michael D.; Linde, Celeste C.; Tsumura, Yoshihiko; Isagi, Yuji

    2013-01-01

    Climate and fire are the key environmental factors that shape the distribution and demography of plant populations in Australia. Because of limited palaeoecological records in this arid continent, however, it is unclear as to which factor impacted vegetation more strongly, and what were the roles of fire regime changes owing to human activity and megafaunal extinction (since ca 50 kya). To address these questions, we analysed historical genetic, demographic and distributional changes in a widespread conifer species complex that paradoxically grows in fire-prone regions, yet is very sensitive to fire. Genetic demographic analysis showed that the arid populations experienced strong bottlenecks, consistent with range contractions during the Last Glacial Maximum (ca 20 kya) predicted by species distribution models. In southern temperate regions, the population sizes were estimated to have been mostly stable, followed by some expansion coinciding with climate amelioration at the end of the last glacial period. By contrast, in the flammable tropical savannahs, where fire risk is the highest, demographic analysis failed to detect significant population bottlenecks. Collectively, these results suggest that the impact of climate change overwhelmed any modifications to fire regimes by Aboriginal landscape burning and megafaunal extinction, a finding that probably also applies to other fire-prone vegetation across Australia. PMID:24174110

  4. Environmental evolution in the Picos de Europa (Cantabrian Mountains, SW Europe) since the Last Glaciation

    NASA Astrophysics Data System (ADS)

    Ruiz-Fernández, Jesús; Oliva, Marc; Cruces, Anabela; Lopes, Vera; Freitas, Maria da Conceição; Andrade, César; García-Hernández, Cristina; López-Sáez, José Antonio; Geraldes, Miguel

    2016-04-01

    The Western Massif of the Picos de Europa (latitude 43° N, longitude 4-5° W) includes some of the highest peaks in the Cantabrian Mountains. This massif was heavily glaciated during the Last Glaciation, though the post-glacial environmental evolution is still poorly understood. Using a complementary geomorphological and sedimentological approach, we have reconstructed the environmental events occurred in this massif since the last Pleistocene glaciation. The geomorphological distribution of glacial landforms suggests the occurrence of four main glacial stages: maximum glacial advance, glacial expansion after the maximum advance, Late Glacial and Little Ice Age. Moreover, a 5.4-m long sedimentary sequence was retrieved from the karstic depression of Belbín providing a continuous record of the paleoenvironmental conditions in this area since the Last Glaciation until nowadays. This section suggests that the maximum glacial expansion occurred at a minimum age of 37.2 ka cal BP, significantly prior to the global Last Glacial Maximum. Subsequently, periglacial processes prevailed in the mid lands of the massif until glaciers expanded between 22.5 and 18.7 ka cal BP. Following the melting of the glaciers, a shallow lake appeared in the Belbín depression. Lake sediments do not show evidence of a cold stage during the Late Glacial, when moraine systems formed at higher locations. The terrestrification of this lake started at 8 ka cal BP and the area turned into grassland. At 4.9 ka cal BP the existence of charcoal particles in the sediments of Belbín sequence reveals the onset of human occupation in the massif through the use of fire activity for grazing purposes. Finally, the presence of moraines inside the highest northern cirques shows evidence of the last glacial phase that occurred during the Little Ice Age cold event. Since then, the warming climate has led to the melting of these glaciers and periglacial processes prevail in the high lands of the massif.

  5. Pliocene and Pleistocene chronostratigraphy of continental sediments underlying the Altiplano at La Paz, Bolivia

    NASA Astrophysics Data System (ADS)

    Roberts, Nicholas J.; Barendregt, René W.; Clague, John J.

    2018-06-01

    Continental sediments underlying the Altiplano plateau provide insight into the late Cenozoic evolution of the Central Andes. We characterize the magnetostratigraphy and lithostratigraphy of the upper part of this fill sequence along a transect extending southwestward from the Cordillera Real at La Paz, Bolivia, where it is best exposed. Multiple polarity reversals and the locally extensive, 2.74-Ma Chijini Tuff enable correlation between our six sections and three previously reported sections. The tuff ties the composite polarity sequence to the geomagnetic polarity time scale, demonstrating that the stratigraphic record extends from the latest Gilbert Chron (ca. 3.8 Ma) to the late Olduvai subchron (ca. 1.8 Ma), or possibly Jaramillo subchron (ca. 1.0 Ma). The sequence provides Earth's longest known record of low-latitude glaciation and the only record of Pliocene tropical glaciation. It includes evidence for 16 late Pliocene and Early Pleistocene glaciations, separated by interglacials of sufficient length (>103-104 a) to produce mature soil profiles. Successively larger ice caps formed directly before, during, and after the globally warm mid-Piacenzian (3.265-3.025 Ma), and throughout Plio-Pleistocene climate deterioration. The late Pliocene glacial units predate the onset of widespread Northern Hemisphere continental glaciation and in most cases unambiguously correspond to specific cool peaks of the astronomically tuned, benthic oxygen isotope (δ18O) record, including marine isotope stages MG2, M2, KM2, and G10. The glacial events broadly coincide with those nearer both poles, suggesting inter-hemispheric climate linkages. The early formation and subsequent expansion of ice caps beyond glacier margins of the Last Glacial Maximum suggest that the Cordillera Real likely attained its modern height before ca. 3.4 Ma. The number and timing of glaciations, and long-term sediment accumulation and incision rates suggest that the local Altiplano surface formed by ca. 1.8 Ma, after which headwaters of the Amazon River system breached the Cordillera Real and began to incise the fill sequence. The sequence spans at least 2 Ma before and during the first main pulses of the Great American Biotic Interchange, providing an important record of faunal migration. The arrival of savanna-adapted North American mammals in the Central Andes during this period points to the influence of glaciation on faunal migration in the southern tropics, similar to influences proposed in North and Central America.

  6. Responses of the deep ocean carbonate system to carbon reorganization during the Last Glacial-interglacial cycle

    NASA Astrophysics Data System (ADS)

    Yu, Jimin; Anderson, Robert F.; Jin, Zhangdong; Rae, James W. B.; Opdyke, Bradley N.; Eggins, Stephen M.

    2013-09-01

    We present new deep water carbonate ion concentration ([CO32-]) records, reconstructed using Cibicidoides wuellerstorfi B/Ca, for one core from Caribbean Basin (water depth = 3623 m, sill depth = 1.8 km) and three cores located at 2.3-4.3 km water depth from the equatorial Pacific Ocean during the Last Glacial-interglacial cycle. The pattern of deep water [CO32-] in the Caribbean Basin roughly mirrors that of atmospheric CO2, reflecting a dominant influence from preformed [CO32-] in the North Atlantic Ocean. Compared to the amplitude of ˜65 μmol/kg in the deep Caribbean Basin, deep water [CO32-] in the equatorial Pacific Ocean has varied by no more than ˜15 μmol/kg due to effective buffering of CaCO3 on deep-sea pH in the Pacific Ocean. Our results suggest little change in the global mean deep ocean [CO32-] between the Last Glacial Maximum (LGM) and the Late Holocene. The three records from the Pacific Ocean show long-term increases in [CO32-] by ˜7 μmol/kg from Marine Isotope Stage (MIS) 5c to mid MIS 3, consistent with the response of the deep ocean carbonate system to a decline in neritic carbonate production associated with ˜60 m drop in sea-level (the “coral-reef” hypothesis). Superimposed upon the long-term trend, deep water [CO32-] in the Pacific Ocean displays transient changes, which decouple with δ13C in the same cores, at the start and end of MIS 4. These changes in [CO32-] and δ13C are consistent with what would be expected from vertical nutrient fractionation and carbonate compensation. The observed ˜4 μmol/kg [CO32-] decline in the two Pacific cores at >3.4 km water depth from MIS 3 to the LGM indicate further strengthening of deep ocean stratification, which contributed to the final step of atmospheric CO2 drawdown during the last glaciation. The striking similarity between deep water [CO32-] and 230Th-normalized CaCO3 flux at two adjacent sites from the central equatorial Pacific Ocean provides convincing evidence that deep-sea carbonate dissolution dominantly controlled CaCO3 preservation at these sites in the past. Our results offer new and quantitative constraints from deep ocean carbonate chemistry to understand roles of various mechanisms in atmospheric CO2 changes over the Last Glacial-interglacial cycle.

  7. Geomorphological and sedimentological evidences in the Western Massif of Picos de Europa since the Last Glaciation

    NASA Astrophysics Data System (ADS)

    Ruiz-Fernández, Jesus; Oliva, Marc; Cruces, Anabela; Lopes, Vera; Conceição Freitas, Maria; García-Hernández, Cristina; Nieuwendam, Alexandre; López-Sáez, José Antonio; Gallinar, David; Geraldes, Miguel

    2015-04-01

    The Western Massif of Picos de Europa includes some of the highest peaks of the Cantabrian Mountains. However, the environmental evolution in this massif since the Last Glaciation is still poorly understood. This research provides a new geochronological approach to the sequence of environmental events occurred here since the maximum expansion of glaciers during the last Pleistocene glaciation. The distribution of the glacial landforms suggests four main stages regarding the environmental evolution in the massif: maximum glacial advance, phase of second maximum glacial expansion, Late Glacial and Little Ice Age. A 5.4-m long sedimentological section retrieved from the kame terrace of Belbín, in a mid-height area of the massif, complements the geomorphological interpretation and provides a continuous paleoenvironmental sequence from this area since the Last Glaciation until nowadays. This section suggests that the maximum glacial expansion occurred at a minimum age of 37.2 ka cal BP, significantly prior to the global Last Glacial Maximum. Subsequently, a new glacial expansion occurred around 18.7-22.5 ka cal BP. The melting of the glaciers after this phase generated a shallow lake in the Belbín depression. Lake sediments do not reveal the occurrence of a cold stage during the Late Glacial, whilst, at higher locations, moraine complexes were formed suggesting a glacier readvance. The terrestrification of this lake started at 8 ka cal BP, when Belbín changed to a peaty environment. At 5 ka cal BP human occupation started at the high lands of the massif according to the existence of charcoal particles in the section. The presence of moraines in the highest northern cirques evidences the last phase with formation of small glaciers in the Western Massif of Picos de Europa, corresponding to the Little Ice Age cold event. Since then, the warming climate has led to the melting of these glaciers.

  8. Cyclostratigraphic constraints on the duration of the Datangpo Formation and the onset age of the Nantuo (Marinoan) glaciation in South China

    NASA Astrophysics Data System (ADS)

    Bao, Xiujuan; Zhang, Shihong; Jiang, Ganqing; Wu, Huaichun; Li, Haiyan; Wang, Xinqiang; An, Zhengze; Yang, Tianshui

    2018-02-01

    Constructing an accurate timeline is critical for reconstructing the Earth systems through critical transitions in climate, geochemistry, and life. Existing dates constrain synchronous initiation (ca. 717 Ma) and termination (ca. 660 Ma) of the Sturtian glaciation from multiple continents. The termination of the younger Marinoan glaciation is also well dated at ca. 635 Ma, but the onset of this glaciation is only roughly constrained as ≤ ca. 654 Ma (South China) and ≥ ca. 639 Ma (Namibia). To test if the Marinoan glaciation started close to ca. 654 Ma or ca. 639 Ma, we have conducted a cyclostratigraphic study on the Cryogenian non-glacial Datangpo Formation that conformably overlies and underlies Sturtian and Marinoan glacial diamictites, respectively, in a deep-water basin section in South China. A total of 28,765 magnetic susceptibility (MS) measurements from a drillcore of the 292-m-thick, muddy siltstone- and shale-dominated Datangpo Formation are used for cyclostratigraphic analysis. The results reveal significant decameter- to meter-scale sedimentary cycles of 16-12 m, 3.6-3.0 m, 1.0-0.8 m, and 0.6-0.4 m. The ratios of these cycle wavelengths match well with those of the Milankovitch cycles calibrated for the Cryogenian Period. The established astrochronologic time scale suggests that the duration of the Datangpo Formation is about 9.8 million years. Together with the radiometric age of ca. 660 Ma for the termination of the Sturtian glaciation, the cyclostratigraphic data suggest that the Nantuo (Marinoan) glaciation in South China initiated at ca. 650 Ma, which is slightly younger than but consistent with the ca. 654 Ma U-Pb age from the top of the Datangpo Formation in shelf sections. This age, however, is significantly older than the ages obtained from Marinoan-age glacial diamictites in South China (ca. 636 Ma) and Namibia (ca. 639 Ma). Given that most of the shelf sections may have suffered from glacial erosion, obtaining the onset age of the Marinoan glaciation should focus on relatively complete, deep-water successions.

  9. The Search for Eight Glacial Cycles of Deep-Water Temperatures and Global ice Volume From the Southern Hemisphere

    NASA Astrophysics Data System (ADS)

    Ferretti, P.; Elderfield, H.; Greaves, M.; McCave, N.

    2007-12-01

    It has been recently suggested "a substantial portion of the marine 100-ky cycle that has been object of so much attention over the past quarter of a century is, in reality, a deep-water temperature signal and not an ice volume signal" (Shackleton, 2000). There are currently few records available of deep-water temperature variations during the Pleistocene and most of our understanding is inferred from the oxygen isotopic composition (δ18O) of benthic foraminifera from deep-sea sediments. However, variations in benthic δ18O reflect some combination of local to regional changes in water mass properties (largely deep- water temperature) as well as global changes in seawater δ18O (δ18Osw) resulting from the growth and decay of continental ice. Recent studies suggest that benthic foraminiferal Mg/Ca may be useful in reconstructing deep-water temperature changes, but the application of this method to benthic species has been hampered by a number of unresolved issues, such as uncertainties related to the calibration for benthic Mg at the coldest temperatures. Here we present deep-sea Mg/Ca and δ18O records for the past eight glacial cycles in benthic foraminiferal ( Uvigerina spp.) calcite from a marine sediment core recovered in the mid Southern latitudes. Ocean Drilling Program Site 1123 was retrieved from Chatham Rise, east of New Zealand in the Southwest Pacific Ocean (3290 m water depth). This site lies under the Deep Western Boundary Current (DWBC) that flows into the Pacific Ocean, and is responsible for most of the deep water in that ocean; DWBC strength is directly related to processes occurring around Antarctica. Temperatures derived via pore fluid modeling of the last glacial maximum are available from Site 1123 and represent an important tool to constrain deep-water temperatures estimates using Mg/Ca. In selected time slices, we measured B/Ca ratios in Uvigerina in order to gain information on the deep-water carbonate saturation state and have data of Mg/Ca and B/Ca on planktonic species, which also provides evidence on carbonate saturation state. These results permit preliminary discussion of the magnitude of the deep-water temperature changes during glacial/interglacial transitions and the interglacials themselves. In particular, our deep-water temperature estimates confirm that interglacial stages before 430 ka were characterized by less pronounced warmth - at least in the deeper southern Pacific - than those of the past four climatic cycles, a pattern previously observed in the deuterium record from EPICA Dome C. We examine the relative contributions of deep-water temperature and ice volume to the benthic δ18O signal. The phase relationship between the two signals is tentatively assessed for the middle/late Pleistocene, when different patterns of climate variability have been inferred from marine and ice cores records.

  10. The Arrival of Homo sapiens into the Southern Cone at 14,000 Years Ago

    PubMed Central

    Politis, Gustavo G.; Gutiérrez, María A.; Blasi, Adriana

    2016-01-01

    The Arroyo Seco 2 site contains a rich archaeological record, exceptional for South America, to explain the expansion of Homo sapiens into the Americas and their interaction with extinct Pleistocene mammals. The following paper provides a detailed overview of material remains found in the earliest cultural episodes at this multi-component site, dated between ca. 12,170 14C yrs B.P. (ca. 14,064 cal yrs B.P.) and 11,180 14C yrs B.P. (ca. 13,068 cal yrs B.P.). Evidence of early occupations includes the presence of lithic tools, a concentration of Pleistocene species remains, human-induced fractured animal bones, and a selection of skeletal parts of extinct fauna. The occurrence of hunter-gatherers in the Southern Cone at ca. 14,000 cal yrs B.P. is added to the growing list of American sites that indicate a human occupation earlier than the Clovis dispersal episode, but posterior to the onset of the deglaciation of the Last Glacial Maximum (LGM) in the North America. PMID:27683248

  11. Different nature of glacial CaCO3 constituents between MIS 2 and MIS 12 in the East Sea/Japan Sea and its paleoceanographic implication

    NASA Astrophysics Data System (ADS)

    Khim, Boo-Keun; Tada, Ryuji; Itaki, Takuya

    2014-05-01

    Two piston cores (PC-05 and PC-08) were collected on the Yamato Rise in the East Sea/Japan Sea during the KR07-12 cruise. A composite core was achieved with the successful replacement of almost half of the upper part of core PC-05 by the entirety of core PC-08 based on the co-equivalence of L* values and the dark layers, because an interval (170 cm to 410 cm) of core PC-05 was considerably disturbed due to fluidization during the core execution. Chronostratigraphy of the composite core was constructed by the direct comparison of L* values to the well-dated core MD01-2407 that was obtained in the Oki Ridge. The lower-bottom of the composite core reached back to Marine Isotope Stage (MIS) 14, based on the age estimate by LR04 stacks. Downcore opal variation of the composite core exhibited the distinct orbital-scale cyclic changes; high during the interglacial and low during the glacial periods. However, downcore CaCO3 variation showed no corresponding orbital-scale cyclic change between glacial and interglacial periods. Some intervals of both periods were high in CaCO3 content. Frequent and large fluctuations in CaCO3 content seemed to be more related to the presence of dark layers containing thin lamination (TL) within the glacial and interglacial intervals. It is worthy to note that MIS 2 and MIS 12 are characterized by distinctly high CaCO3 content, showing up to 18% and 73%, respectively, among the glacial periods. Furthermore, in terms of lithology, MIS 2 was characterized by a thick dark layer (low L* values) with TL, whereas MIS 12 preserved the distinctly light layer (high L* values) with parallel laminations. Another remarkable dissimilarity between MIS 2 and MIS 12 was the nature of their CaCO3 constituent; the CaCO3 constituent of MIS 2 consisted of mostly planktonic foraminifera, whereas that of MIS 12 was mostly dump of coccolithophorids, regardless the presence of planktonic foraminifera. The distinctness of the CaCO3 constituents between MIS 2 and MIS 12 indicates that the preservation of CaCO3 contents was different temporarily during the glacial periods in the East Sea/Japan Sea. Enhanced CaCO3 preservation in MIS 2 is attributed primarily to less dissolution during the sinking through the water column or at the seafloor, but increased CaCO3 preservation in MIS 12 is mainly due to the high primary production in the surface water. With respect to the different function of the biological pump which controls CO2 cycles, the East Sea/Japan Sea clearly experienced carbonate-ocean-like state during MIS 12, despite normally silica-ocean-like state.

  12. Fossils reject climate change as the cause of extinction of Caribbean bats

    PubMed Central

    Soto-Centeno, J. Angel; Steadman, David W.

    2015-01-01

    We combined novel radiocarbon dates of bat fossils with time-scaled ecological niche models (ENM) to study bat extinctions in the Caribbean. Radiocarbon-dated fossils show that late Quaternary losses of bat populations took place during the late Holocene (<4 ka) rather than late Pleistocene (>10 ka). All bat radiocarbon dates from Abaco (Bahamas) that represent extirpated populations are younger than 4 ka. We include data on six bat species, three of which are Caribbean endemics, and include nectarivores as well as insectivores. Climate-based ENMs from the Last Glacial Maximum to the present reflect overall stability in distributions, with suitable climatic habitat being present over time. In the absence of radiocarbon dates, bat extinctions had been presumed to take place during the last glacial-interglacial transition (ca. 10 ka). Now we see that extirpation of bats on these tropical islands is more complex than previously thought and primarily postdates the major climate changes that took place during the late Pleistocene-Holocene transition. PMID:25610991

  13. Fossils reject climate change as the cause of extinction of Caribbean bats.

    PubMed

    Soto-Centeno, J Angel; Steadman, David W

    2015-01-22

    We combined novel radiocarbon dates of bat fossils with time-scaled ecological niche models (ENM) to study bat extinctions in the Caribbean. Radiocarbon-dated fossils show that late Quaternary losses of bat populations took place during the late Holocene (<4 ka) rather than late Pleistocene (>10 ka). All bat radiocarbon dates from Abaco (Bahamas) that represent extirpated populations are younger than 4 ka. We include data on six bat species, three of which are Caribbean endemics, and include nectarivores as well as insectivores. Climate-based ENMs from the Last Glacial Maximum to the present reflect overall stability in distributions, with suitable climatic habitat being present over time. In the absence of radiocarbon dates, bat extinctions had been presumed to take place during the last glacial-interglacial transition (ca. 10 ka). Now we see that extirpation of bats on these tropical islands is more complex than previously thought and primarily postdates the major climate changes that took place during the late Pleistocene-Holocene transition.

  14. A reference time scale for Site U1385 (Shackleton Site) on the SW Iberian Margin

    NASA Astrophysics Data System (ADS)

    Hodell, D.; Lourens, L.; Crowhurst, S.; Konijnendijk, T.; Tjallingii, R.; Jiménez-Espejo, F.; Skinner, L.; Tzedakis, P. C.; Abrantes, Fatima; Acton, Gary D.; Alvarez Zarikian, Carlos A.; Bahr, André; Balestra, Barbara; Barranco, Estefanìa Llave; Carrara, Gabriela; Ducassou, Emmanuelle; Flood, Roger D.; Flores, José-Abel; Furota, Satoshi; Grimalt, Joan; Grunert, Patrick; Hernández-Molina, Javier; Kim, Jin Kyoung; Krissek, Lawrence A.; Kuroda, Junichiro; Li, Baohua; Lofi, Johanna; Margari, Vasiliki; Martrat, Belen; Miller, Madeline D.; Nanayama, Futoshi; Nishida, Naohisa; Richter, Carl; Rodrigues, Teresa; Rodríguez-Tovar, Francisco J.; Roque, Ana Cristina Freixo; Sanchez Goñi, Maria F.; Sierro Sánchez, Francisco J.; Singh, Arun D.; Sloss, Craig R.; Stow, Dorrik A. V.; Takashimizu, Yasuhiro; Tzanova, Alexandrina; Voelker, Antje; Xuan, Chuang; Williams, Trevor

    2015-10-01

    We produced a composite depth scale and chronology for Site U1385 on the SW Iberian Margin. Using log(Ca/Ti) measured by core scanning XRF at 1-cm resolution in all holes, a composite section was constructed to 166.5 meter composite depth (mcd) that corrects for stretching and squeezing in each core. Oxygen isotopes of benthic foraminifera were correlated to a stacked δ18O reference signal (LR04) to produce an oxygen isotope stratigraphy and age model. Variations in sediment color contain very strong precession signals at Site U1385, and the amplitude modulation of these cycles provides a powerful tool for developing an orbitally-tuned age model. We tuned the U1385 record by correlating peaks in L* to the local summer insolation maxima at 37°N. The benthic δ18O record of Site U1385, when placed on the tuned age model, generally agrees with other time scales within their respective chronologic uncertainties. The age model is transferred to down-core data to produce a continuous time series of log(Ca/Ti) that reflect relative changes of biogenic carbonate and detrital sediment. Biogenic carbonate increases during interglacial and interstadial climate states and decreases during glacial and stadial periods. Much of the variance in the log(Ca/Ti) is explained by a linear combination of orbital frequencies (precession, tilt and eccentricity), whereas the residual signal reflects suborbital climate variability. The strong correlation between suborbital log(Ca/Ti) variability and Greenland temperature over the last glacial cycle at Site U1385 suggests that this signal can be used as a proxy for millennial-scale climate variability over the past 1.5 Ma. Millennial climate variability, as expressed by log(Ca/Ti) at Site U1385, was a persistent feature of glacial climates over the past 1.5 Ma, including glacial periods of the early Pleistocene ('41-kyr world') when boundary conditions differed significantly from those of the late Pleistocene ('100-kyr world'). Suborbital variability was suppressed during interglacial stages and enhanced during glacial periods, especially when benthic δ18O surpassed 3.3-3.5‰. Each glacial inception was marked by appearance of strong millennial variability and each deglaciation was preceded by a terminal stadial event. Suborbital variability may be a symptomatic feature of glacial climate or, alternatively, may play a more active role in the inception and/or termination of glacial cycles.

  15. A continuous record of glacial-interglacial cycles spanning more than 500 kyr from Lake Junín, Perú

    NASA Astrophysics Data System (ADS)

    Rodbell, D. T.; Abbott, M. B.; McGee, D.; Chen, C. Y.; Stoner, J. S.; Hatfield, R. G.; Tapia, P. M.; Bush, M. B.; Weidhaas, N.; Woods, A.; Valero-Garces, B. L.; Lehmann, S. B.; Bustamante, M. G.; Larsen, D. J.

    2017-12-01

    Lake Junín (11.0°S, 76.2°W) is a shallow (zmax 12 m), intermontane, high-elevation (4080 masl) lake in the inner-tropics of the Southern Hemisphere that spans 300 km2. It is dammed by coalescing alluvial fans that are >250 ka that emanate from glacial valleys. Lake Junín has not been overrun by glacial ice in several hundred thousand years and is ideally located to receive glacigenic sediment. The Junín basin is underlain by carbonate rocks that have provided a source of Ca and HCO3 ions; precipitation of CaCO3 in the western margin of the lake during the present interglacial period has occurred at 1mm yr-1. An airgun seismic survey revealed a strong reflector at 105 meters depth, which marks the base of the lacustrine section. Drilling focused on three sites. Site 1, located near the depocenter and most distal to glacial sources, yielded a composite sediment thickness of 95m; Site 2, proximal to glacial outwash fans, yielded a composite thickness of 28 m; Site 3, located at an intermediate distance yielded a sediment thickness of 55m. The stratigraphy of Site 1 is marked by 8 glacial/interglacial cycles; the latter are characterized by low bulk density and magnetic susceptibility (MS) and high CaCO3. These units are intercalated with glacigenic sediment that has high density and MS, and low CaCO3. The age model for Site 1 is based on AMS radiocarbon dates on terrestrial macrofossils and dozens of U/Th ages on authigenic CaCO3. Strong and protracted interglacial periods appear to be associated with intervals of reduced variability of solar insolation in the Southern Hemisphere tropics. During these intervals there is strong covariation (r2>0.9) between the δ13C and δ18O of authigenic calcium carbonate, and δ18O values are relatively enriched (-12 to -2‰); examples include interglacial periods correlative with marine isotope stages (MIS) 1, 13, and 15. The magnitude of tropical glaciation appears to have been greater during glacial cycles prior to the LGM ( MIS 2-4) and this is consistent with dated moraine sequences in glacial valleys within the Junin basin, but contrasts with the record of global ice volume. Sediment correlative with the LGM at Site 1 is marked by cycles of grain size variability that may be associated with short term variations in glacier mass balance, ablation rates, and/or subglacial plumbing.

  16. Hydrological Changes in the Indian Ocean Around the Last Glacial Maximum and Deglaciation

    NASA Astrophysics Data System (ADS)

    Camille, L.; Laurent, L.; Harry, E.; Mervyn, G.; Franck, B.; Francois, G.; Martine, P.; Xuan, D.; Marie-alexandrine, S.

    2001-12-01

    The tropical ocean plays a key role in the global climate system. However, changes in tropical circulation have far reaching and hitherto unknown effects which could trigger global changes in climate. Precisely dated reconstructions of past sea surface temperature (SST) changes are therefore mandatory in order to establish the exact phase between tropical and high latitude climate variability during past abrupt climate events. Few SST records are sufficiently detailed to constrain accurately the low latitude climatology around the last glacial maximum. Available results are presented from 2 high sedimentation rate cores (IMAGES MD9821-65 and MD9821-72) with additional material from older cruises. These cores are located within the inner part of the Indonesian arc and in the vicinity of the outflow straits (between Timor and Sumbawa). With high resolution records (about 100 yr.) for the past 20 kyr and lower resolution records back to 300 kyr., planktonic and benthic isotopic records set the general stratigraphy and the hydrology of surface and deep waters. Sea surface temperature is reconstructed using Mg/Ca content from G.ruber (analysed in Cambridge's ICP\\-AES), foraminiferal assemblages (MAT) and alkenone unsaturation index Uḱ37. Sea surface salinity is derived from the coupled G.ruber δ 18O and Mg/Ca ratio. The time scale is constrained by AMS14C and the benthic foraminifera δ 18O. Preliminary results would indicate that at the initiation of the deglaciation SST leads planktic δ 18O by about 1 kyr but are in phase with benthic δ 18O. Similar lead of the benthic vs planktic δ 18O is also observed in other cores from the Indian Ocean.

  17. Ice-age survival of Atlantic cod: agreement between palaeoecology models and genetics

    PubMed Central

    Bigg, Grant R; Cunningham, Clifford W; Ottersen, Geir; Pogson, Grant H; Wadley, Martin R; Williamson, Phillip

    2007-01-01

    Scant scientific attention has been given to the abundance and distribution of marine biota in the face of the lower sea level, and steeper latitudinal gradient in climate, during the ice-age conditions that have dominated the past million years. Here we examine the glacial persistence of Atlantic cod (Gadus morhua) populations using two ecological-niche-models (ENM) and the first broad synthesis of multi-locus gene sequence data for this species. One ENM uses a maximum entropy approach (Maxent); the other is a new ENM for Atlantic cod, using ecophysiological parameters based on observed reproductive events rather than adult distribution. Both the ENMs were tested for present-day conditions, then used to hindcast ranges at the last glacial maximum (LGM) ca 21 kyr ago, employing climate model data. Although the LGM range of Atlantic cod was much smaller, and fragmented, both the ENMs agreed that populations should have been able to persist in suitable habitat on both sides of the Atlantic. The genetic results showed a degree of trans-Atlantic divergence consistent with genealogically continuous populations on both sides of the North Atlantic since long before the LGM, confirming the ENM results. In contrast, both the ENMs and the genetic data suggest that the Greenland G. morhua population post-dates the LGM. PMID:17999951

  18. Breakup of last glacial deep stratification in the South Pacific

    NASA Astrophysics Data System (ADS)

    Basak, Chandranath; Fröllje, Henning; Lamy, Frank; Gersonde, Rainer; Benz, Verena; Anderson, Robert F.; Molina-Kescher, Mario; Pahnke, Katharina

    2018-02-01

    Stratification of the deep Southern Ocean during the Last Glacial Maximum is thought to have facilitated carbon storage and subsequent release during the deglaciation as stratification broke down, contributing to atmospheric CO2 rise. Here, we present neodymium isotope evidence from deep to abyssal waters in the South Pacific that confirms stratification of the deepwater column during the Last Glacial Maximum. The results indicate a glacial northward expansion of Ross Sea Bottom Water and a Southern Hemisphere climate trigger for the deglacial breakup of deep stratification. It highlights the important role of abyssal waters in sustaining a deep glacial carbon reservoir and Southern Hemisphere climate change as a prerequisite for the destabilization of the water column and hence the deglacial release of sequestered CO2 through upwelling.

  19. Postglacial species displacement in Triturus newts deduced from asymmetrically introgressed mitochondrial DNA and ecological niche models

    PubMed Central

    2012-01-01

    Background If the geographical displacement of one species by another is accompanied by hybridization, mitochondrial DNA can introgress asymmetrically, from the outcompeted species into the invading species, over a large area. We explore this phenomenon using the two parapatric crested newt species, Triturus macedonicus and T. karelinii, distributed on the Balkan Peninsula in south-eastern Europe, as a model. Results We first delimit a ca. 54,000 km2 area in which T. macedonicus contains T. karelinii mitochondrial DNA. This introgression zone bisects the range of T. karelinii, cutting off a T. karelinii enclave. The high similarity of introgressed mitochondrial DNA haplotypes with those found in T. karelinii suggests a recent transfer across the species boundary. We then use ecological niche modeling to explore habitat suitability of the location of the present day introgression zone under current, mid-Holocene and Last Glacial Maximum conditions. This area was inhospitable during the Last Glacial Maximum for both species, but would have been habitable at the mid-Holocene. Since the mid-Holocene, habitat suitability generally increased for T. macedonicus, whereas it decreased for T. karelinii. Conclusion The presence of a T. karelinii enclave suggests that T. karelinii was the first to colonize the area where the present day introgression zone is positioned after the Last Glacial Maximum. Subsequently, we propose T. karelinii was outcompeted by T. macedonicus, which captured T. karelinii mitochondrial DNA via introgressive hybridization in the process. Ecological niche modeling suggests that this replacement was likely facilitated by a shift in climate since the mid-Holocene. We suggest that the northwestern part of the current introgression zone was probably never inhabited by T. karelinii itself, and that T. karelinii mitochondrial DNA spread there through T. macedonicus exclusively. Considering the spatial distribution of the introgressed mitochondrial DNA and the signal derived from ecological niche modeling, we do not favor the hypothesis that foreign mitochondrial DNA was pulled into the T. macedonicus range by natural selection. PMID:22935041

  20. Postglacial species displacement in Triturus newts deduced from asymmetrically introgressed mitochondrial DNA and ecological niche models.

    PubMed

    Wielstra, Ben; Arntzen, Jan W

    2012-08-30

    If the geographical displacement of one species by another is accompanied by hybridization, mitochondrial DNA can introgress asymmetrically, from the outcompeted species into the invading species, over a large area. We explore this phenomenon using the two parapatric crested newt species, Triturus macedonicus and T. karelinii, distributed on the Balkan Peninsula in south-eastern Europe, as a model. We first delimit a ca. 54,000 km(2) area in which T. macedonicus contains T. karelinii mitochondrial DNA. This introgression zone bisects the range of T. karelinii, cutting off a T. karelinii enclave. The high similarity of introgressed mitochondrial DNA haplotypes with those found in T. karelinii suggests a recent transfer across the species boundary. We then use ecological niche modeling to explore habitat suitability of the location of the present day introgression zone under current, mid-Holocene and Last Glacial Maximum conditions. This area was inhospitable during the Last Glacial Maximum for both species, but would have been habitable at the mid-Holocene. Since the mid-Holocene, habitat suitability generally increased for T. macedonicus, whereas it decreased for T. karelinii. The presence of a T. karelinii enclave suggests that T. karelinii was the first to colonize the area where the present day introgression zone is positioned after the Last Glacial Maximum. Subsequently, we propose T. karelinii was outcompeted by T. macedonicus, which captured T. karelinii mitochondrial DNA via introgressive hybridization in the process. Ecological niche modeling suggests that this replacement was likely facilitated by a shift in climate since the mid-Holocene. We suggest that the northwestern part of the current introgression zone was probably never inhabited by T. karelinii itself, and that T. karelinii mitochondrial DNA spread there through T. macedonicus exclusively. Considering the spatial distribution of the introgressed mitochondrial DNA and the signal derived from ecological niche modeling, we do not favor the hypothesis that foreign mitochondrial DNA was pulled into the T. macedonicus range by natural selection.

  1. 10Be dating of late Pleistocene megafloods and Cordilleran Ice Sheet retreat in the northwestern United States

    USGS Publications Warehouse

    Balbas, Andrea M.; Barth, Aaron M.; Clark, Peter U.; Clark, Jorie; Caffee, Marc A.; O'Connor, Jim E.; Baker, Victor R.; Konrad, Kevin; Bjornstad, Bruce

    2017-01-01

    During the late Pleistocene, multiple floods from drainage of glacial Lake Missoula further eroded a vast anastomosing network of bedrock channels, coulees, and cataracts, forming the Channeled Scabland of eastern Washington State (United States). However, the timing and exact pathways of these Missoula floods remain poorly constrained, thereby limiting our understanding of the evolution of this spectacular landscape. Here we report cosmogenic 10Be ages that directly date flood and glacial features important to understanding the flood history, the evolution of the Channeled Scabland, and relationships to the Cordilleran Ice Sheet (CIS). One of the largest floods occurred at 18.2 ± 1.5 ka, flowing down the northwestern Columbia River valley prior to blockage of this route by advance of the Okanogan lobe of the CIS, which dammed glacial Lake Columbia and diverted later Missoula floods to more eastern routes through the Channeled Scabland. The Okanogan and Purcell Trench lobes of the CIS began to retreat from their maximum extent at ca. 15.5 ka, likely in response to onset of surface warming of the northeastern Pacific Ocean. Upper Grand Coulee fully opened as a flood route after 15.6 ± 1.3 ka, becoming the primary path for later Missoula floods until the last ones from glacial Lake Missoula at 14.7 ± 1.2 ka. The youngest dated flood(s) (14.0 ± 1.4 ka to 14.4 ± 1.3 ka) came down the northwestern Columbia River valley and were likely from glacial Lake Columbia, indicating that the lake persisted for a few centuries after the last Missoula flood.

  2. Geochemical Weathering in Glacial and Proglacial Environments

    NASA Astrophysics Data System (ADS)

    Tranter, M.

    2003-12-01

    It seems counterintuitive that chemical erosion in glaciated regions proceeds at rates comparable to those of temperate catchments with comparable specific runoff (Anderson et al., 1997). All the usual factors that are associated with elevated rates of chemical weathering ( Drever, 1988, 1994), such as water, soil, and vegetation, are either entirely absent or absent for much of the year. For example, glaciated regions are largely frozen for significant periods each year, the residence time of liquid water in the catchment is low ( Knight, 1999), there are thin, skeletal soils at best, and vegetation is either absent or limited ( French, 1997). Other chapters in this volume have highlighted how these factors are important in other, more temperate and tropical environments. Even so, chemical erosion rates in glaciated terrain are usually near to or greater than the continental average ( Sharp et al., 1995; Wadham et al., 1997; Hodson et al., 2000). This is because glaciated catchments usually have high specific runoff, there are high concentrations of freshly comminuted rock flour, which is typically silt sized and coated with microparticles, and adsorbed organic matter or surface precipitates that may hinder water-rock interactions are largely absent ( Tranter, 1982). In short, the rapid flow of water over fine-grained, recently crushed, reactive mineral surfaces maximizes both the potential rates of chemical weathering and chemical erosion.A range of both lab- and field-based studies of glacial chemical weathering have been undertaken, mainly on the smaller glaciers of Continental Europe (e.g., Brown et al., 1993a, b), Svalbard (e.g., Hodson et al., 2002), and North America (e.g., Anderson et al., 2000). The field-based studies typically generate hydrographs of glacier runoff, which show a characteristic diurnal cycle during summer in low latitudes ( Figure 1), and more subdued diurnal cycles at high latitudes (Figure 2 and Figure 3). The concentration of ions in solution, typically monitored by electrical conductivity, is often inverse with discharge on both a diurnal and a seasonal basis at lower latitudes, but ismore complex at higher latitudes (Figure 1, Figure 2 and Figure 3). Figure 1, Figure 2 and Figure 3 also show that the total flux of glacial solutes is usually dominated by fluxes associated with high discharge, dilute waters. The chemical weathering reactions that are inferred to occur from the field studies have been supported, in part, by controlled laboratory studies (e.g., Brown et al., 1993a). Recent stable-isotope studies have reported the key involvement of microbial processes in certain regions of the glacier bed ( Bottrell and Tranter, 2002), and these processes are yet to be incorporated in lab-based chemical weathering studies. (14K)Figure 1. (a) The temporal variation of discharge and in non-sea-salt calcium (*Ca2+) concentration in runoff from Haut Glacier d'Arolla, a small, warm-based, valley glacier in the Swiss Alps, during 1989 (Brown et al., 1993a). (b) The temporal variation in *Ca2+ flux from Haut Glacier d'Arolla during 1989. Maximum fluxes are associated with higher discharge waters. (9K)Figure 2. (a) The temporal variation of discharge (Q) and non-sea-salt *Ca2+ concentration in runoff from Manitsoq Glacier, a small outlet glacier on the SW margin of the Greenland Ice Sheet, during 1999. The glacier is warm based, but has a cold-based margin during the winter and early ablation season, so displays polythermal-based hydrological features (Skidmore et al., in preparation). (b) The temporal variation in *Ca2+ flux from Manitsoq Glacier during 1999. Maximum flux is associated with an early season "outburst" event, where longer stored subglacial water first exits the glacier. Otherwise, maximum fluxes are associated with higher discharge waters. (10K)Figure 3. (a) The temporal variation of discharge and *Ca2+ concentration in runoff from Scott Turnerbreen, a small, cold-based, valley glacier on Svalbard, during 1994 (after Hodgkins et al., 1997). (b) The temporal variation in *Ca2+ flux from Scott Turnerbreen during 1994. Maximum fluxes are associated with higher discharge waters, although the precise associations are complex. This chapter will expand on these themes, and endeavor to integrate ongoing research into a state-of-the-science review, as well as indicating the areas into which the next generation of studies are likely to proceed. It is first necessary to understand a little basic glaciology and glacier hydrology to appreciate the principal features of the different chemical weathering environments that will be described below. The following sections summarize the types of glacial environments in which water flows, their typical debris content, the relative residence time of water, and the typical reactions that occur within them.

  3. Glacial and volcanic evolution on Nevado Coropuna (Tropical Andes) based on cosmogenic 36Cl surface exposure dating

    NASA Astrophysics Data System (ADS)

    Úbeda, J.; Palacios, D.; Vázquez-Selém, L.

    2012-04-01

    We have reconstructed the evolution of the paleo-glaciers of the volcanic complex Nevado Coropuna (15°S, 72°W; 6377 m asl) through the interpretation and dating of geomorphological evidences. Surface exposure dating (SED) based on the accumulation of 36Cl on the surface of moraine boulders, polished bedrock and lava flows allowed: 1) to confirm that the presence of ice masses in the region dates back to >80ka; 2) to produce chronologies of glacial and volcanic phases for the last ~21 ka; and 3) to obtain evidences of the reactivation of volcanic activity after the Last Glacial Maximum. Bromley et al. (2009) presented 3He SED ages of 21 ka for moraine boulders on the Mapa Mayo valley, to the North of Nevado Coropuna. Our 36Cl SED SED for moraine boulders from the valleys on the NE sector of the volcanic complex suggest a maximum initial advance between 20 and 16 ka, followed by another expansion of similar extent at 12-11 ka. On the Southern slope of Nevado Coropuna, the 36Cl ages show a maximum initial advance that reaches to the level of the Altiplano at 14 ka, and a re-advance at ~10-9 ka BP. Other data show minor re-advances at 9 ka on the Northern slope and at 6 ka to the South of the volcanic complex. These minor positive pulses interrupted a fast deglaciation process during the Holocene as shown by two series of 36Cl SED from polished rock surfaces on successively higher altitudes along the valleys of rivers Blanco and Cospanja, to the SW and SE. Despite the global warming occuring since 20 ka, deduced from the record of sea surface paleo-temperature of the Galapago Islands (Lea et al, 2006), the evolution of the fresh-water plankton from Lake Titicaca (Fritz et al, 2007) is consistent with sustained glacial conditions until 10-9 ka as suggested by the present work. Exposure ages of three lava flows indicate a reactivation of the magmatic system as the paleo-glaciers abandonned the slopes. The eruptive activity migrated from the West, where we found a lava flow of 6 ka, to the East, where we dated two units similar to the previous one at 2 and <1ka. Bromley, G.R. et al., 2009. Relative timing of last glacial maximum and late-glacial events in the central tropical Andes. Quaternary Science Reviews, 1-13. Bromley, R.M. et al., 2011. Glacier fluctuations in the southern Peruvian Andes during the late-glacial period, constrained with cosmogenic 3He. Journal of Quaternary Science, 26 (1): 37-43. Fritz, S.C. et al., 2007. Lake Titicaca 370KYr LT01-2B Sediment Database. Lake Titicaca 370KYr LT01-2B Sediment Data. IGBP PAGES/World Data Center-A for Paleoclimatology Data Contribution Series # 92-008. NOAA/NGDC Paleoclimatology Program. Boulder (EEUU). Lea, D.W. et al., 2006. Galápagos TR163-22 Foraminiferal ^18O and Mg/Ca Data and SST Reconstruction. IGBP PAGES/World Data Center for Paleoclimatology Data Contribution Series # 2006-090. NOAA/NCDC Paleoclimatology Program, Boulder (EEUU). Research funded by CGL2009-7343 project, Government of Spain.

  4. Late-glacial and Holocene records of fire and vegetation from Cradle Mountain National Park, Tasmania, Australia

    NASA Astrophysics Data System (ADS)

    Stahle, Laura N.; Chin, Hahjung; Haberle, Simon; Whitlock, Cathy

    2017-12-01

    Fire activity was reconstructed at five sites and vegetation history at three sites in northwest Tasmania, Australia in order to examine the climate and human drivers of environmental change in the region. Watershed-scale reconstructions of fire were compared to regional vegetation history. Fire activity was very low until ca. 12,000 cal yr BP. An early-Holocene fire maximum, ca. 11,800-9800 cal yr BP, occurred during the warmest interval of the Holocene as recorded by regional paleoclimate proxy records. This period of elevated burning was also coincident with an increase in arboreal sclerophyll plant taxa. A maximum in rainforest taxa occurred at ca. 8500-5800 cal yr BP concurrent with sharply diminished biomass burning compared with the early Holocene. The increase in rainforest taxa is attributed to elevated effective moisture during this period. Conditions were drier and variable in the late Holocene as compared with earlier periods. A rise in fire activity at ca. 4800-3200 cal yr BP was accompanied by an increase in sclerophyll taxa and decline of rainforest and subalpine taxa. Elevated palynological richness during the late Holocene co-occurred with high levels of charcoal suggesting that fires promoted high floristic diversity. At Cradle Mountain, there is no clear evidence that fire regimes or vegetation were extensively modified by humans prior to European settlement. Climate was the primary driver of fire activity over millennial timescales as explained by the close relationship between charcoal and climate proxy data.

  5. Thirty Thousand Years of Vegetation Changes in the Alabama Hills, Owens Valley, California

    NASA Astrophysics Data System (ADS)

    Koehler, Peter A.; Anderson, R. Scott

    1995-03-01

    Twenty packrat ( Neotoma) middens recovered from three sites (1265-1535 m) in the Alabama Hills, Inyo County, California, provide a ca. 31,450-yr record of vegetation change. Located ca. 7 km east of the Sierra Nevada, the middens document that Utah juniper ( Juniperus osteosperma), Joshua tree ( Yucca brevifolia), and bitterbush ( Purshia tridentata) occupied the site between 31,450 and 19,070 yr B.P. Joshua tree and bitterbush departed by ca. 17,760 yr B.P., with cliffrose ( Purshia mexicana) and joint-fir ( Ephedra viridis) appearing. By 13,350 yr B.P., blackbush ( Coleogyne ramosissima) and cholla ( Opuntia echinocarpa) entered the record. Between 9540 and 7990 yr B.P., Utah juniper and other species now extralocal to the sites departed and modern components such as wolfberry ( Lycium andersonii) and rubber rabbitbrush ( Chrysothamnus teretifolius) appeared. The middle Holocene records little variation in plant macrofossil composition; however, pollen analysis reflects an increase in aquatic pollen types which might suggest more-open conditions. The transition to the modern vegetation associations at the sites occurred after ca. 2800 yr B.P. The record from the Alabama Hills correlates well with that of other regional vegetation data but documents conditions of increasing aridity earlier than many other packrat midden sites. A shift in understory vegetation between 19,070 and 17,760 yr B.P. may reflect a transition from glacial maximum to post-maximum conditions in the eastern Sierra Nevada.

  6. Modeling of depth to base of Last Glacial Maximum and seafloor sediment thickness for the California State Waters Map Series, eastern Santa Barbara Channel, California

    USGS Publications Warehouse

    Wong, Florence L.; Phillips, Eleyne L.; Johnson, Samuel Y.; Sliter, Ray W.

    2012-01-01

    Models of the depth to the base of Last Glacial Maximum and sediment thickness over the base of Last Glacial Maximum for the eastern Santa Barbara Channel are a key part of the maps of shallow subsurface geology and structure for offshore Refugio to Hueneme Canyon, California, in the California State Waters Map Series. A satisfactory interpolation of the two datasets that accounted for regional geologic structure was developed using geographic information systems modeling and graphics software tools. Regional sediment volumes were determined from the model. Source data files suitable for geographic information systems mapping applications are provided.

  7. Glacial stages and post-glacial environmental evolution in the Upper Garonne valley, Central Pyrenees.

    PubMed

    Fernandes, M; Oliva, M; Palma, P; Ruiz-Fernández, J; Lopes, L

    2017-04-15

    The maximum glacial extent in the Central Pyrenees during the Last Glaciation is known to have occurred before the global Last Glacial Maximum, but the succession of cold events afterwards and their impact on the landscape are still relatively unknown. This study focuses on the environmental evolution in the upper valley of the Garonne River since the Last Glaciation. Geomorphological mapping allows analysis of the spatial distribution of inherited and current processes and landforms in the study area. The distribution of glacial records (moraines, till, erratic boulders, glacial thresholds) suggests the existence of four glacial stages, from the maximum expansion to the end of the glaciation. GIS modeling allows quantification of the Equilibrium Line Altitude, extent, thickness and volume of ice in each glacial stage. During the first stage, the Garonne glacier reached 460m in the Loures-Barousse-Barbazan basin, where it formed a piedmont glacier 88km from the head and extended over 960km 2 . At a second stage of glacier stabilization during the deglaciation process, the valley glaciers were 12-23km from the head until elevations of 1000-1850m, covering an area of 157km 2 . Glaciers during stage three remained isolated in the upper parts of the valley, at heights of 2050-2200m and 2.6-4.5km from the head, with a glacial surface of 16km 2 . In stage four, cirque glaciers were formed between 2260m and 2590m, with a length of 0.4-2km and a glacial area of 5.7km 2 . Also, the wide range of periglacial, slope, nival and alluvial landforms existing in the formerly glaciated environments allows reconstruction of the post-glacial environmental dynamics in the upper Garonne basin. Today, the highest lands are organized following three elevation belts: subnival (1500-1900m), nival (1900-2300m) and periglacial/cryonival (2300-2800m). Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Inland post-glacial dispersal in East Asia revealed by mitochondrial haplogroup M9a'b.

    PubMed

    Peng, Min-Sheng; Palanichamy, Malliya Gounder; Yao, Yong-Gang; Mitra, Bikash; Cheng, Yao-Ting; Zhao, Mian; Liu, Jia; Wang, Hua-Wei; Pan, Hui; Wang, Wen-Zhi; Zhang, A-Mei; Zhang, Wen; Wang, Dong; Zou, Yang; Yang, Yang; Chaudhuri, Tapas Kumar; Kong, Qing-Peng; Zhang, Ya-Ping

    2011-01-10

    Archaeological studies have revealed a series of cultural changes around the Last Glacial Maximum in East Asia; whether these changes left any signatures in the gene pool of East Asians remains poorly indicated. To achieve deeper insights into the demographic history of modern humans in East Asia around the Last Glacial Maximum, we extensively analyzed mitochondrial DNA haplogroup M9a'b, a specific haplogroup that was suggested to have some potential for tracing the migration around the Last Glacial Maximum in East Eurasia. A total of 837 M9a'b mitochondrial DNAs (583 from the literature, while the remaining 254 were newly collected in this study) pinpointed from over 28,000 subjects residing across East Eurasia were studied here. Fifty-nine representative samples were further selected for total mitochondrial DNA sequencing so we could better understand the phylogeny within M9a'b. Based on the updated phylogeny, an extensive phylogeographic analysis was carried out to reveal the differentiation of haplogroup M9a'b and to reconstruct the dispersal histories. Our results indicated that southern China and/or Southeast Asia likely served as the source of some post-Last Glacial Maximum dispersal(s). The detailed dissection of haplogroup M9a'b revealed the existence of an inland dispersal in mainland East Asia during the post-glacial period. It was this dispersal that expanded not only to western China but also to northeast India and the south Himalaya region. A similar phylogeographic distribution pattern was also observed for haplogroup F1c, thus substantiating our proposition. This inland post-glacial dispersal was in agreement with the spread of the Mesolithic culture originating in South China and northern Vietnam.

  9. Th-U-total Pb Geochronology of Authigenic Monazite Near the top of the Sturtian-Marinoan Interglacial, Adelaide Rift Complex, South Australia

    NASA Astrophysics Data System (ADS)

    Mahan, K. H.; Wernicke, B. P.; Jercinovic, M. J.

    2007-12-01

    The Adelaide Rift Complex in South Australia contains the type sections for Sturtian and Marinoan glacial deposits. The litho- and chemostratigraphy of these deposits play a central role in evaluating global Neoproterozoic ice age hypotheses ("snowball Earth") and Rodinia supercontinent reconstructions, but precise ages on igneous units do not yet exist. We report preliminary results of in situ Th-U-total Pb electron microprobe dating of monazite in sandstones within the Holowilena Ironstone ("older" Sturtian glacial at Enorama Creek) and at the top of the Enorama Shale (youngest pre-Marinoan, interglacial clastics at Elatina Creek). Several distinct populations are recognized. First, rounded cores with high Th, U, and Y + HREE abundances are interpreted as igneous or metamorphic detrital grains and yield ca. 1590 Ma, ca. 1280-1300 Ma, and ca. 1040 Ma dates related to well-known orogenic events in surrounding cratonic regions. A second group also occurs as "cores" but contains significantly lower U and Y + HREE, characteristics that may be indicative of an authigenic origin. Some rounded domains may represent "recycled" authigenic grains and yield dates of ca. 880 Ma and ca. 760 Ma. However, a subset observed in the Enorama sample occurs as very small (~2 x 10 microns), euhedral lathes that are unlikely to have survived a detrital history and yield a date of 680 +/-23 Ma. The youngest population forms very low Th and U, inclusion-rich overgrowths with ca. 500 Ma dates (Delamerian Orogeny) that probably grew hydrothermally. The recognition of "recycled" authigenic monazite further emphasizes the detail in textural and petrological documentation that is required for accurate geochronological interpretations. The date of 680 +/-23 Ma (1) provides an estimate for the age of the base of the Trezona carbon isotopic anomaly just beneath the Marinoan glacial deposits, (2) provides an absolute minimum age constraint on the underlying Sturtian glacial deposits, and (3) is confirming of proposed correlations between type Marinoan deposits and precisely dated glacial deposits in Namibia and China.

  10. Estimating Last Glacial Maximum Ice Thickness Using Porosity and Depth Relationships: Examples from AND-1B and AND-2A Cores, McMurdo Sound, Antarctica

    NASA Astrophysics Data System (ADS)

    Hayden, T. G.; Kominz, M. A.; Magens, D.; Niessen, F.

    2009-12-01

    We have estimated ice thicknesses at the AND-1B core during the Last Glacial Maximum by adapting an existing technique to calculate overburden. As ice thickness at Last Glacial Maximum is unknown in existing ice sheet reconstructions, this analysis provides constraint on model predictions. We analyze the porosity as a function of depth and lithology from measurements taken on the AND-1B core, and compare these results to a global dataset of marine, normally compacted sediments compiled from various legs of ODP and IODP. Using this dataset we are able to estimate the amount of overburden required to compact the sediments to the porosity observed in AND-1B. This analysis is a function of lithology, depth and porosity, and generates estimates ranging from zero to 1,000 meters. These overburden estimates are based on individual lithologies, and are translated into ice thickness estimates by accounting for both sediment and ice densities. To do this we use a simple relationship of Xover * (ρsed/ρice) = Xice; where Xover is the overburden thickness, ρsed is sediment density (calculated from lithology and porosity), ρice is the density of glacial ice (taken as 0.85g/cm3), and Xice is the equalivant ice thickness. The final estimates vary considerably, however the “Best Estimate” behavior of the 2 lithologies most likely to compact consistently is remarkably similar. These lithologies are the clay and silt units (Facies 2a/2b) and the diatomite units (Facies 1a) of AND-1B. These lithologies both produce best estimates of approximately 1,000 meters of ice during Last Glacial Maximum. Additionally, while there is a large range of possible values, no combination of reasonable lithology, compaction, sediment density, or ice density values result in an estimate exceeding 1,900 meters of ice. This analysis only applies to ice thicknesses during Last Glacial Maximum, due to the overprinting effect of Last Glacial Maximum on previous ice advances. Analysis of the AND-2A core is underway, and results will be compared to those of AND-1B.

  11. 1.5 My benthic foraminiferal B/Ca record of carbonate chemistry in the deep Atlantic: Implications for ocean alkalinity and atmospheric CO2

    NASA Astrophysics Data System (ADS)

    Rosenthal, Y.; Sosdian, S. M.; Toggweiler, J. R.

    2017-12-01

    Most hypotheses to explain glacial-interglacial changes in atmospheric CO2 invoke shifts in ocean alkalinity explain roughly half the reduction in glacial CO2 via CaCO3 compensatory mechanism. It follows that changes in CaCO3 burial occur in response to an increase in deep ocean respired carbon content. To date our understanding of this process comes from benthic carbon isotope and %CaCO3 records. However, to understand the nature of the ocean's buffering capacity and its role in modulating pCO2, orbitally resolved reconstructions of the deep ocean carbonate system parameters are necessary. Here we present a 1.5 Myr orbitally resolved deep ocean calcite saturation record (ΔCO32-) derived from benthic foraminiferal B/Ca ratios in the North Atlantic. Glacial B/Ca values decline across the mid-Pleistocene transition (MPT) suggesting increased sequestration of carbon in the deep Atlantic. The magnitude, timing, and structure of deep Atlantic Ocean ΔCO32- and %CaCO3 cycles contrast with the small amplitude, anti-phased swings in IndoPacific ΔCO32- and %CaCO3 during the mid-to-late Pleistocene. Increasing corrosivity of the deep Atlantic causes the locus of CaCO3 burial to shift into the equatorial Pacific where the flux of CaCO3 to the seafloor is high enough to establish and maintain a new "hot spot". We propose that the CO32- in the deep IndoPacific rises in response to the same mechanism that keeps the CO32- in the deep Atlantic low and the atmospheric CO2 low. The increase in interglacial atmospheric pCO2 levels following the Mid-Brunhes event ( 400ka) are associated with increased G/IG ΔCO3 amplitude, expressed by a decrease in the glacial ΔCO32- values. We propose the low persistent ΔCO32- levels at Marine Isotope Stage (MIS) 12 set the stage for the high pCO2 levels at MIS 11 via an increase in whole ocean alkalinity followed by enhanced CaCO3 preservation. Based on this, we suggest that the development of classic (`anticorrelated') CaCO3 patterns was driven by increased stratification and worsening ventilation in the deep Atlantic across the MPT.

  12. Relative timing of last glacial maximum and late-glacial events in the central tropical Andes

    NASA Astrophysics Data System (ADS)

    Bromley, Gordon R. M.; Schaefer, Joerg M.; Winckler, Gisela; Hall, Brenda L.; Todd, Claire E.; Rademaker, Kurt M.

    2009-11-01

    Whether or not tropical climate fluctuated in synchrony with global events during the Late Pleistocene is a key problem in climate research. However, the timing of past climate changes in the tropics remains controversial, with a number of recent studies reporting that tropical ice age climate is out of phase with global events. Here, we present geomorphic evidence and an in-situ cosmogenic 3He surface-exposure chronology from Nevado Coropuna, southern Peru, showing that glaciers underwent at least two significant advances during the Late Pleistocene prior to Holocene warming. Comparison of our glacial-geomorphic map at Nevado Coropuna to mid-latitude reconstructions yields a striking similarity between Last Glacial Maximum (LGM) and Late-Glacial sequences in tropical and temperate regions. Exposure ages constraining the maximum and end of the older advance at Nevado Coropuna range between 24.5 and 25.3 ka, and between 16.7 and 21.1 ka, respectively, depending on the cosmogenic production rate scaling model used. Similarly, the mean age of the younger event ranges from 10 to 13 ka. This implies that (1) the LGM and the onset of deglaciation in southern Peru occurred no earlier than at higher latitudes and (2) that a significant Late-Glacial event occurred, most likely prior to the Holocene, coherent with the glacial record from mid and high latitudes. The time elapsed between the end of the LGM and the Late-Glacial event at Nevado Coropuna is independent of scaling model and matches the period between the LGM termination and Late-Glacial reversal in classic mid-latitude records, suggesting that these events in both tropical and temperate regions were in phase.

  13. Fingerprinting of glacial silt in lake sediments yields continuous records of alpine glaciation (35–15 ka), western USA

    USGS Publications Warehouse

    Rosenbaum, Joseph G.; Reynolds, Richard L.; Colman, Steven M.

    2012-01-01

    Fingerprinting glacial silt in last glacial-age sediments from Upper Klamath Lake (UKL) and Bear Lake (BL) provides continuous radiocarbon-dated records of glaciation for the southeastern Cascade Range and northwestern Uinta Mountains, respectively. Comparing of these records to cosmogenic exposure ages from moraines suggests that variations in glacial flour largely reflect glacial extent. The two areas are at similar latitudes and yield similar records of glacial growth and recession, even though UKL lies less than 200 km from the ocean and BL is in the continental interior. As sea level began to fall prior to the global Last Glacial Maximum (LGM), existing glaciers in the UKL area expanded. Near the beginning of the global LGM (26.5 ka), the BL record indicates onset of glaciation and UKL-area glaciers underwent further expansion. Both records indicate that local glaciers reached their maximum extents near the end of the global LGM, remained near their maxima for ~1000 yr, and underwent two stages of retreat separated by a short period of expansion.

  14. Fingerprinting of glacial silt in lake sediments yields continuous records of alpine glaciation (35-15 ka), western USA

    NASA Astrophysics Data System (ADS)

    Rosenbaum, Joseph G.; Reynolds, Richard L.; Colman, Steven M.

    2012-09-01

    Fingerprinting glacial silt in last glacial-age sediments from Upper Klamath Lake (UKL) and Bear Lake (BL) provides continuous radiocarbon-dated records of glaciation for the southeastern Cascade Range and northwestern Uinta Mountains, respectively. Comparing of these records to cosmogenic exposure ages from moraines suggests that variations in glacial flour largely reflect glacial extent. The two areas are at similar latitudes and yield similar records of glacial growth and recession, even though UKL lies less than 200 km from the ocean and BL is in the continental interior. As sea level began to fall prior to the global Last Glacial Maximum (LGM), existing glaciers in the UKL area expanded. Near the beginning of the global LGM (26.5 ka), the BL record indicates onset of glaciation and UKL-area glaciers underwent further expansion. Both records indicate that local glaciers reached their maximum extents near the end of the global LGM, remained near their maxima for ~ 1000 yr, and underwent two stages of retreat separated by a short period of expansion.

  15. Younger Dryas glacial stillstands on the Bolivian Altiplano: pattern and climatic implications

    NASA Astrophysics Data System (ADS)

    Martin, Léo; Blard, Pierre-Henri; Lave, Jérôme; Premaillon, Melody; Charreau, Julien; Jomelli, Vincent; Brunstein, Daniel

    2014-05-01

    Modifications of the global climate during the last deglaciation have been characterized by regional reorganization that may have in turn amplified or attenuated the global changes. Notably, the respective influences of the Southern and Northern Hemispheres are poorly understood in the Tropics. This underlines the importance of studying past climate variations in the Tropics, particularly in the poorly documented tropical moutain areas. Cosmogenic exposure dating applied to the glacial landscapes provides temporal constraints on glacier fluctuations in response of climate variations. This permits high-resolution reconstructions of regional climates. In this work we present new cosmogenic ages from two different locations of the Bolivian Altiplano, the Nevado Sajama volcano (S18.11° - W66.88°) and the Zongo Valley (S16.25°- W68.11°). On the Sajama, new cosmogenic 3He dates support a late local glacial maximum, synchronous with the plaeolake Tauca highstand (ca. 16 ka) and contemporary to the north Atlantic Heinrich 1 (H1) event, with an equilibrium line altitude (ELA) at ca. 5200 m. Our data document also several recession episodes with the youngest one, characterized by an ELA of 5350 m, that seems to correspond to the Younger Dryas (YD) stadial (ca. 12 ka). In the Zongo valley, two recessional moraines have indistinguishable cosmogenic 10Be ages of ca. 17 ka, synchronous with the transgression of the Lake Tauca, with respective ELA of 4760 and 4640 m. Upstream, we identified an intermediate recessional moraine that could either be synchronous with Heinrich 1 or with the Antarctic Cold Reversal episode. Upward along the valley, a Younger Dryas stadial is clearly established by well-clustered cosmogenic 10Be ages, yielding a moraine age of ca. 12 ka, contemporary with the paleolake Coipasa highstand, with an ELA of 5000 m. These results confirm the sensitivity of South Hemisphere tropical glaciers to North Atlantic climate events, such as H1 or the YD. These glacial stadials are probably strongly driven by the wet conditions that prevailed during the central Altiplano palaeolake episodes. The identification of a Younger Dryas stadial in the Zongo valley, and also probably on the Sajama and Tunupa volcanoes (dating dupliquates are still in progress), is an unprecedented report in this region. During the YD event, the ELAs were ~150m (Sajama) to ~300 m (Tunupa, Zongo valley) higher than during the H1 event. Whereas glaciers advances and paleolake data indicate that the YD in the tropical Altiplano was characterized by higher temperature and lower precipitation than during H1, the climatic conditions during the YD in the Southern Tropics must have been far colder and wetter than today. Indeed, present day ELAs are more than 400 m higher in the Zongo, and more than 600 m higher in the Sajama and the Tunupa than they were during the Younger Dryas.

  16. High-resolution mineral dust and sea ice proxy records from the Talos Dome ice core

    NASA Astrophysics Data System (ADS)

    Schüpbach, S.; Federer, U.; Kaufmann, P. R.; Albani, S.; Barbante, C.; Stocker, T. F.; Fischer, H.

    2013-12-01

    In this study we report on new non-sea salt calcium (nssCa2+, mineral dust proxy) and sea salt sodium (ssNa+, sea ice proxy) records along the East Antarctic Talos Dome deep ice core in centennial resolution reaching back 150 thousand years (ka) before present. During glacial conditions nssCa2+ fluxes in Talos Dome are strongly related to temperature as has been observed before in other deep Antarctic ice core records, and has been associated with synchronous changes in the main source region (southern South America) during climate variations in the last glacial. However, during warmer climate conditions Talos Dome mineral dust input is clearly elevated compared to other records mainly due to the contribution of additional local dust sources in the Ross Sea area. Based on a simple transport model, we compare nssCa2+ fluxes of different East Antarctic ice cores. From this multi-site comparison we conclude that changes in transport efficiency or atmospheric lifetime of dust particles do have a minor effect compared to source strength changes on the large-scale concentration changes observed in Antarctic ice cores during climate variations of the past 150 ka. Our transport model applied on ice core data is further validated by climate model data. The availability of multiple East Antarctic nssCa2+ records also allows for a revision of a former estimate on the atmospheric CO2 sensitivity to reduced dust induced iron fertilisation in the Southern Ocean during the transition from the Last Glacial Maximum to the Holocene (T1). While a former estimate based on the EPICA Dome C (EDC) record only suggested 20 ppm, we find that reduced dust induced iron fertilisation in the Southern Ocean may be responsible for up to 40 ppm of the total atmospheric CO2 increase during T1. During the last interglacial, ssNa+ levels of EDC and EPICA Dronning Maud Land (EDML) are only half of the Holocene levels, in line with higher temperatures during that period, indicating much reduced sea ice extent in the Atlantic as well as the Indian Ocean sector of the Southern Ocean. In contrast, Holocene ssNa+ flux in Talos Dome is about the same as during the last interglacial, indicating that there was similar ice cover present in the Ross Sea area during MIS 5.5 as during the Holocene.

  17. Termination of the Last Glacial Maximum sea-level lowstand: The Sunda-Shelf data revisited

    NASA Astrophysics Data System (ADS)

    Hanebuth, T. J. J.; Stattegger, K.; Bojanowski, A.

    2009-03-01

    The sea-level history around the last glaciation is in the focus of recent, controversial debates. A profound understanding of sea-level changes during this time interval is, however, essential since sea level is a central parameter in the climate system as well as a major force on continental margin sedimentation. Here, we present a seismic record together with augmented data from the Sunda Shelf [Hanebuth, T.J.J., Stattegger, K., Saito, Y., 2002. The architecture of the central Sunda Shelf (SE Asia) recorded by shallow-seismic surveying. Geo-Marine Letters 22, 86-94.] and compare our results in a careful evaluation with the sparse existing data sets of global validity, i.e. the Bonaparte Gulf record [Yokoyama, Y., Lambeck, K., DeDeckker, P., Johnston, P., Fifield, L.K., 2000. Timing of the Last Glacial Maximum from observed sea-level minima. Nature 406, 713-716.; Yokoyama, Y., De Deckker, P., Lambeck, K., Johnston, P., Fifield, L.K., 2001. Sea-level at the Last Glacial Maximum: evidence from nortwestern Australia to constrain ice volumes for oxygen isotope stage 2. Paleogeography Paleoclimatology Paleoecology 165, 281-297.], the Barbados coral record [Fairbanks, R.G., 1989. A 17,000-year glacio-eustatic sea level record: influence of glacial melting dates on the Younger Dryas event and deep ocean circulation. Nature 342, 637-642.; Peltier, W.R., Fairbanks, R.G., 2006. Global glacial ice volume and Last Glacial Maximum duration from an extended Barbados sea level record. Quaternary Science Reviews 25 (23-24), 3322-3337.] and the latest numerical model of continental deglaciation [Peltier, W.R., Fairbanks, R.G., 2006. Global glacial ice volume and Last Glacial Maximum duration from an extended Barbados sea level record. Quaternary Science Reviews 25 (23-24), 3322-3337.]. Sea level seems to have been lower shortly prior to the conventional Last Glacial Maximum (LGM; 21-19 cal kyr BP). The time interval around this glacial lowstand is not covered by ages from the Sunda Shelf, but documented by an ancient barrier — tidal-flat system. These palaeo-coastal relict forms indicate such an early lowstand some 5 m deeper than sea level was during LGM times. The LGM sea level on the Sunda shelf is recalculated to - 123 ± 2 m modern water depth. This depth fits nicely with the lowstand data derived from Barbados and the Bonaparte Gulf. The recently assumed 19-kyr sea-level rise is supported by the Sunda and Bonaparte data sets combined, although it might have started already as early as at 19.6 cal kyr BP lasting for some 800 kyr with an amplitude of at least 10 m. This early pulse-like rise might have played a crucial role in the physical preservation of the high-glacial to early deglacial deposits on the Sunda Shelf. The modelled sea-level history is, thus, supported with respect to an initial high-glacial lowstand prior to the LGM, which might be in apparent contrast to observations from Bonaparte. Nevertheless, field data suggest a glacial sea-level evolution about 10 m deeper than the model. Also, the gradual rising trend from 26 to 16 cal kyr BP, as deduced from the model, can definitively not be approved by any field data. However, our knowledge is still unsatisfactory and an expansion of field data from suited areas is urgently needed.

  18. Breakup of last glacial deep stratification in the South Pacific.

    PubMed

    Basak, Chandranath; Fröllje, Henning; Lamy, Frank; Gersonde, Rainer; Benz, Verena; Anderson, Robert F; Molina-Kescher, Mario; Pahnke, Katharina

    2018-02-23

    Stratification of the deep Southern Ocean during the Last Glacial Maximum is thought to have facilitated carbon storage and subsequent release during the deglaciation as stratification broke down, contributing to atmospheric CO 2 rise. Here, we present neodymium isotope evidence from deep to abyssal waters in the South Pacific that confirms stratification of the deepwater column during the Last Glacial Maximum. The results indicate a glacial northward expansion of Ross Sea Bottom Water and a Southern Hemisphere climate trigger for the deglacial breakup of deep stratification. It highlights the important role of abyssal waters in sustaining a deep glacial carbon reservoir and Southern Hemisphere climate change as a prerequisite for the destabilization of the water column and hence the deglacial release of sequestered CO 2 through upwelling. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  19. Climatic implications of correlated upper Pleistocene glacial and fluvial deposits on the Cinca and Gallego rivers, NE Spain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewis, Claudia J; Mcdonald, Eric; Sancho, Carlos

    We correlate Upper Pleistocene glacial and fluvial deposits of the Cinca and Gallego River valleys (south central Pyrenees and Ebro basin, Spain) using geomorphic position, luminescence dates, and time-related trends in soil development. The ages obtained from glacial deposits indicate glacial periods at 85 {+-} 5 ka, 64 {+-} 11 ka, and 36 {+-} 3 ka (from glacial till) and 20 {+-} 3 ka (from loess). The fluvial drainage system, fed by glaciers in the headwaters, developed extensive terrace systems in the Cinca River valley at 178 {+-} 21 ka, 97 {+-} 16 ka, 61 {+-} 4 ka, 47 {+-}more » 4 ka, and 11 {+-} 1 ka, and in the Gallego River valley at 151 {+-} 11 ka, 68 {+-} 7 ka, and 45 {+-} 3 ka. The times of maximum geomorphic activity related to cold phases coincide with Late Pleistocene marine isotope stages and heinrich events. The maximum extent of glaciers during the last glacial occurred at 64 {+-} 11 ka, and the terraces correlated with this glacial phase are the most extensive in both the Cinca (61 {+-} 4 ka) and Gallego (68 {+-} 7 ka) valleys, indicating a strong increase in fluvial discharge and availability of sediments related to the transition to deglaciation. The global Last Glacial Maximum is scarcely represented in the south central Pyrenees owing to dominantly dry conditions at that time. Precipitation must be controlled by the position of the Iberian Peninsula with respect to the North Atlantic atmospheric circulation system. The glacial systems and the associated fluvial dynamic seem sensitive to (1) global climate changes controlled by insolation, (2) North Atlantic thermohaline circulation influenced by freshwater pulses into the North Atlantic, and (3) anomalies in atmospheric circulation in the North Atlantic controlling precipitation on the Iberian peninsula. The model of glacial and fluvial evolution during the Late Pleistocene in northern Spain could be extrapolated to other glaciated mountainous areas in southern Europe.« less

  20. Changes in biomass allocation buffer low CO2 effects on tree growth during the last glaciation

    PubMed Central

    Li, Guangqi; Gerhart, Laci M.; Harrison, Sandy P.; Ward, Joy K.; Harris, John M.; Prentice, I. Colin

    2017-01-01

    Isotopic measurements on junipers growing in southern California during the last glacial, when the ambient atmospheric [CO2] (ca) was ~180 ppm, show the leaf-internal [CO2] (ci) was approaching the modern CO2 compensation point for C3 plants. Despite this, stem growth rates were similar to today. Using a coupled light-use efficiency and tree growth model, we show that it is possible to maintain a stable ci/ca ratio because both vapour pressure deficit and temperature were decreased under glacial conditions at La Brea, and these have compensating effects on the ci/ca ratio. Reduced photorespiration at lower temperatures would partly mitigate the effect of low ci on gross primary production, but maintenance of present-day radial growth also requires a ~27% reduction in the ratio of fine root mass to leaf area. Such a shift was possible due to reduced drought stress under glacial conditions at La Brea. The necessity for changes in allocation in response to changes in [CO2] is consistent with increased below-ground allocation, and the apparent homoeostasis of radial growth, as ca increases today. PMID:28233772

  1. The effect of ocean alkalinity and carbon transfer on deep-sea carbonate ion concentration during the past five glacial cycles

    NASA Astrophysics Data System (ADS)

    Kerr, Joanna; Rickaby, Rosalind; Yu, Jimin; Elderfield, Henry; Sadekov, Aleksey Yu.

    2017-08-01

    Glacial-interglacial deep Indo-Pacific carbonate ion concentration ([CO32-]) changes were mainly driven by two mechanisms that operated on different timescales: 1) a long-term increase during glaciation caused by a carbonate deposition reduction on shelves (i.e., the coral reef hypothesis), and 2) transient carbonate compensation responses to deep ocean carbon storage changes. To investigate these mechanisms, we have used benthic foraminiferal B/Ca to reconstruct deep-water [CO32-] in cores from the deep Indian and Equatorial Pacific Oceans during the past five glacial cycles. Based on our reconstructions, we suggest that the shelf-to-basin shift of carbonate deposition raised deep-water [CO32-], on average, by 7.3 ± 0.5 (SE) μmol/kg during glaciations. Oceanic carbon reorganisations during major climatic transitions caused deep-water [CO32-] deviations away from the long-term trend, and carbonate compensation processes subsequently acted to restore the ocean carbonate system to new steady state conditions. Deep-water [CO32-] showed similar patterns to sediment carbonate content (%CaCO3) records on glacial-interglacial timescales, suggesting that past seafloor %CaCO3 variations were dominated by deep-water carbonate preservation changes at our studied sites.

  2. Change in atmospheric mineral aerosols in response to climate: Last glacial period, preindustrial, modern, and doubled carbon dioxide climates

    USGS Publications Warehouse

    Mahowald, N.M.; Muhs, D.R.; Levis, S.; Rasch, P.J.; Yoshioka, M.; Zender, C.S.; Luo, C.

    2006-01-01

    Desert dust simulations generated by the National Center for Atmospheric Research's Community Climate System Model for the current climate are shown to be consistent with present day satellite and deposition data. The response of the dust cycle to last glacial maximum, preindustrial, modern, and doubled-carbon dioxide climates is analyzed. Only natural (non-land use related) dust sources are included in this simulation. Similar to some previous studies, dust production mainly responds to changes in the source areas from vegetation changes, not from winds or soil moisture changes alone. This model simulates a +92%, +33%, and -60% change in dust loading for the last glacial maximum, preindustrial, and doubled-carbon dioxide climate, respectively, when impacts of carbon dioxide fertilization on vegetation are included in the model. Terrestrial sediment records from the last glacial maximum compiled here indicate a large underestimate of deposition in continental regions, probably due to the lack of simulation of glaciogenic dust sources. In order to include the glaciogenic dust sources as a first approximation, we designate the location of these sources, and infer the size of the sources using an inversion method that best matches the available data. The inclusion of these inferred glaciogenic dust sources increases our dust flux in the last glacial maximum from 2.1 to 3.3 times current deposition. Copyright 2006 by the American Geophysical Union.

  3. Sea Level Rise Drove Enhanced Coastal Erosion following the Last Glacial Maximum, Southern California, U.S.A.

    NASA Astrophysics Data System (ADS)

    Sharman, G.; Covault, J. A.; Stockli, D. F.; Sickmann, Z.; Malkowski, M. A.; Johnstone, S.

    2017-12-01

    Seacliff erosion poses a major threat to southern California coastal communities, including the propensity for episodic cliff failure and damage to residential and commercial property. Rising sea level is predicted to accelerate seacliff retreat, yet few constraints exist on how rapid sea level rise influenced coastal erosion rates in pre-modern timescales. Here we look to the geologic record in submarine fans to investigate changes in relative sediment supply from rivers and coastal erosion, the latter including seacliff retreat and bluffland erosion. To understand how sea level rise driven by past global warming impacted coastal erosion rates, we sampled modern rivers of the Peninsular Ranges and latest Pleistocene-Holocene submarine canyon-fan systems in southern California for detrital zircon U-Pb geochronology (1369 analyses from 10 samples). Modern river samples show a systematic north-south change in grain age populations broadly distributed across Cretaceous time (ca. 70-135 Ma) to a predominance of middle Cretaceous grain ages (ca. 95-115 Ma), reflecting variations in the geologic age of units within each river catchment. The Carlsbad and La Jolla submarine canyon-fan systems, deposited during sea level lowstand and highstand, respectively, exhibit detrital zircon age distributions consistent with derivation from upstream rivers, with mixing in the littoral zone. However, a sample from the Oceanside fan, deposited during rapid sea level rise at ca. 13 ka, is dominated by detrital ages that lack a local source in the northern Peninsular Ranges, including latest Cretaceous, late Jurassic, and Proterozoic ages. However, such grain ages are widespread in Paleogene sedimentary rocks that comprise the shelf and coastal area, suggesting increased sediment supply from coastal and shelf erosion. Assuming that the Oceanside sample is representative of sediment production during sea level rise, sediment mixing calculations suggest a one to two orders of magnitude increase in sediment from coastal erosion relative to river-supplied sediment. Our results thus suggest a significant increase in coastal erosion rates following the Last Glacial Maximum, highlighting the risk that future sea level rise poses to coastal communities.

  4. North Pacific atmospheric rivers and their influence on western North America at the Last Glacial Maximum

    NASA Astrophysics Data System (ADS)

    Lora, Juan M.; Mitchell, Jonathan L.; Risi, Camille; Tripati, Aradhna E.

    2017-01-01

    Southwestern North America was wetter than present during the Last Glacial Maximum. The causes of increased water availability have been recently debated, and quantitative precipitation reconstructions have been underutilized in model-data comparisons. We investigate the climatological response of North Pacific atmospheric rivers to the glacial climate using model simulations and paleoclimate reconstructions. Atmospheric moisture transport due to these features shifted toward the southeast relative to modern. Enhanced southwesterly moisture delivery between Hawaii and California increased precipitation in the southwest while decreasing it in the Pacific Northwest, in agreement with reconstructions. Coupled climate models that are best able to reproduce reconstructed precipitation changes simulate decreases in sea level pressure across the eastern North Pacific and show the strongest southeastward shifts of moisture transport relative to a modern climate. Precipitation increases of ˜1 mm d-1, due largely to atmospheric rivers, are of the right magnitude to account for reconstructed pluvial conditions in parts of southwestern North America during the Last Glacial Maximum.

  5. Submarine glacial landforms and interactions with volcanism around Sub-Antarctic Heard and McDonald Islands

    NASA Astrophysics Data System (ADS)

    Picard, K.; Watson, S. J.; Fox, J. M.; Post, A.; Whittaker, J. M.; Lucieer, V.; Carey, R.; Coffin, M. F.; Hodgson, D.; Hogan, K.; Graham, A. G. C.

    2017-12-01

    Unravelling the glacial history of Sub-Antarctic islands can provide clues to past climate and Antarctic ice sheet stability. The glacial history of many sub-Antarctic islands is poorly understood, including the Heard and McDonald Islands (HIMI) located on the Kerguelen Plateau in the southern Indian Ocean. The geomorphologic development of HIMI has involved a combination of construction via hotspot volcanism and mechanical erosion caused by waves, weather, and glaciers. Today, the 2.5 km2 McDonald Islands are not glacierised; in contrast, the 368 km2 Heard Island has 12 major glaciers, some extending from the summit of 2813 m to sea level. Historical accounts from Heard Island suggest that the glaciers were more extensive in the 1850s to 1870s, and have retreated at least 12% (33.89 km2) since 1997. However, surrounding bathymetry suggests a much more extensive previous glaciation of the HIMI region that encompassed 9,585 km2, likely dating back at least to the Last Glacial Maximum (LGM) ca. 26.5 -19 ka. We present analyses of multibeam bathymetry and backscatter data, acquired aboard RV Investigator in early 2016, that support the previous existence of an extensive icecap. These data reveal widespread ice-marginal and subglacial features including moraines, over-deepened troughs, drumlins and crag-and-tails. Glacial landforms suggest paleo-ice flow directions and a glacial extent that are consistent with previously documented broad scale morphological features. We identify >660 iceberg keel scours in water depths ranging from 150 - 530 m. The orientations of the iceberg keel scours reflect the predominantly east-flowing Antarctic Circumpolar Current and westerly winds in the region. 40Ar/39Ar dating of volcanic rocks from submarine volcanoes around McDonald Islands suggests that volcanism and glaciation coincided. The flat-topped morphology of these volcanoes may result from lava-ice interaction or erosion by glaciers post eruption during a time of extensive ice-sheet cover and/or wave base erosion during sea level low stands. The prevalence and range of glacial landforms around HIMI suggest extensive past glaciation, and that glaciers have exerted a major influence on submarine geomorphology.

  6. Earliest Human Presence in North America Dated to the Last Glacial Maximum: New Radiocarbon Dates from Bluefish Caves, Canada.

    PubMed

    Bourgeon, Lauriane; Burke, Ariane; Higham, Thomas

    2017-01-01

    The timing of the first entry of humans into North America is still hotly debated within the scientific community. Excavations conducted at Bluefish Caves (Yukon Territory) from 1977 to 1987 yielded a series of radiocarbon dates that led archaeologists to propose that the initial dispersal of human groups into Eastern Beringia (Alaska and the Yukon Territory) occurred during the Last Glacial Maximum (LGM). This hypothesis proved highly controversial in the absence of other sites of similar age and concerns about the stratigraphy and anthropogenic signature of the bone assemblages that yielded the dates. The weight of the available archaeological evidence suggests that the first peopling of North America occurred ca. 14,000 cal BP (calibrated years Before Present), i.e., well after the LGM. Here, we report new AMS radiocarbon dates obtained on cut-marked bone samples identified during a comprehensive taphonomic analysis of the Bluefish Caves fauna. Our results demonstrate that humans occupied the site as early as 24,000 cal BP (19,650 ± 130 14C BP). In addition to proving that Bluefish Caves is the oldest known archaeological site in North America, the results offer archaeological support for the "Beringian standstill hypothesis", which proposes that a genetically isolated human population persisted in Beringia during the LGM and dispersed from there to North and South America during the post-LGM period.

  7. Earliest Human Presence in North America Dated to the Last Glacial Maximum: New Radiocarbon Dates from Bluefish Caves, Canada

    PubMed Central

    Bourgeon, Lauriane; Burke, Ariane; Higham, Thomas

    2017-01-01

    The timing of the first entry of humans into North America is still hotly debated within the scientific community. Excavations conducted at Bluefish Caves (Yukon Territory) from 1977 to 1987 yielded a series of radiocarbon dates that led archaeologists to propose that the initial dispersal of human groups into Eastern Beringia (Alaska and the Yukon Territory) occurred during the Last Glacial Maximum (LGM). This hypothesis proved highly controversial in the absence of other sites of similar age and concerns about the stratigraphy and anthropogenic signature of the bone assemblages that yielded the dates. The weight of the available archaeological evidence suggests that the first peopling of North America occurred ca. 14,000 cal BP (calibrated years Before Present), i.e., well after the LGM. Here, we report new AMS radiocarbon dates obtained on cut-marked bone samples identified during a comprehensive taphonomic analysis of the Bluefish Caves fauna. Our results demonstrate that humans occupied the site as early as 24,000 cal BP (19,650 ± 130 14C BP). In addition to proving that Bluefish Caves is the oldest known archaeological site in North America, the results offer archaeological support for the “Beringian standstill hypothesis”, which proposes that a genetically isolated human population persisted in Beringia during the LGM and dispersed from there to North and South America during the post-LGM period. PMID:28060931

  8. Paleohydrology of tropical South America and paleoceanography of the tropical Atlantic as deduced from two new sediment cores on the Brazilian continental slope

    NASA Astrophysics Data System (ADS)

    Nace, T.; Baker, P. A.; Dwyer, G. S.; Silva, C. G.; Hollander, D. J.; Rigsby, C. A.; Giosan, L.; Burns, S. J.

    2011-12-01

    Paleoclimate/paleoceanographic reconstructions of the Amazon Basin, Brazilian Nordeste, and western equatorial Atlantic have been undertaken on two new sediment cores located on the Brazilian continental slope (Core CDH-5 at 1708 mbsl, 4N, 48W, 32m long, ~30 ka record; Core CDH-86 at 3708 mbsl, 0N/S, 44W, 30m long, ~100ka record). High-resolution XRF analyses of Fe, Ti, and Ca are used to define the paleohydrologic history of the adjacent continent at both sites. Large and abrupt excursions of Ti/Ca ratios are observed in both cores, but are significantly better defined in the southern core, representative of Nordeste conditions. In this core there are a total of 9 Ti/Ca excursions, the oldest recovered dating to ~98ka. These excursions correlate well with Heinrich events from the North Atlantic. High-resolution stable oxygen isotopic analysis and Mg/Ca paleothermometry undertaken on the near-surface-dwelling planktic foraminiferal species Globierinoides ruber provide a picture of paleoceanographic forcings in the western equatorial Atlantic. The northern and southern cores respectively exhibit rapid warming of ~3C and ~3.5C between the last glacial maximum and the early Holocene. Furthermore, in almost all cases, during the last glacial stage, there was a 0.5C to 2C warming of the western equatorial Atlantic during the periods of high Ti/Ca ratios that correlate with Heinrich events. Thus, as observed in some previous studies, the western equatorial Atlantic was warm and the adjacent southern tropical continent was wet at the same time that the high-latitude North Atlantic was cold. The largely accepted paradigm is that Northern hemisphere cold events result in a southward migration of the Intertropical Convergence Zone (ITCZ), contributing to drier conditions at the northern extent of the ITCZ annual range (Cariaco Basin) and increased precipitation in the southern tropics of South America. The ITCZ appears to have been influenced by millennial variability of North-South Atlantic sea surface temperature (SST) gradients, with a southward migration in the zone of maximum tropical SSTs leading to a southward migration of the ITCZ. It is commonly modeled that Northern Hemisphere stadial events are associated with a SST increase in the equatorial Atlantic and a cooling of the North Atlantic. Our records of increased runoff synchronous with warmer SSTs in the western equatorial Atlantic coincident with cold Heinrich events of the north Atlantic strongly support this interpretation.

  9. Laurentide Ice Sheet meltwater and the Atlantic meridional overturning circulation since the last glacial maximum: A view from the Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Flower, B. P.; Williams, C.; Brown, E. A.; Hastings, D. W.; Hendricks, J.; Goddard, E. A.

    2010-12-01

    The influence of ice sheet meltwater on the Atlantic meridional overturning circulation (AMOC) since the last glacial maximum represents an important issue in abrupt climate change. Comparison of Greenland and Antarctic ice core records has revealed a complex interhemispheric linkage and led to different models of ocean circulation including the “bipolar seesaw.” Meltwater input from the Laurentide Ice Sheet has been invoked as a cause of proximal sea-surface temperature (SST) and salinity change in the North Atlantic, and of regional to global climate change via its influence on the AMOC. We present published and new Mg/Ca, Ba/Ca, and δ18O data on the planktic foraminifer Globigerinoides ruber from northern Gulf of Mexico sediment cores that provide detailed records of SST, δ18O of seawater (δ18Osw), and inferred salinity for the 20-8 ka interval. Age control for Orca Basin core MD02-2550 is based on >40 AMS 14C dates on Globigerinoides ruber and documents continuous sedimentation at rates >35 cm/kyr. Early meltwater input is inferred from δ18Osw and Ba/Ca data prior to and during the Mystery Interval, consistent with a high sensitivity to solar insolation and greenhouse forcing. New bulk sediment δ18O data show major spikes reaching -5.5‰ ca. 14.6 and 12.6 ka. We speculate that these excursions represent fine carbonate sediment from Canadian Paleozoic marine carbonates, analogous to detrital carbonate in the North Atlantic which has a δ18O value of -5‰. Partial support for our hypothesis comes from SEM photomicrographs of bulk sediment from this section, which show no coccoliths or foraminifera in contrast to other intervals. The biogenic carbonate flux seems to have been greatly reduced by fine sediment input. Inferred peak meltwater flow appears to have been associated with the Bolling warming and meltwater pulse 1a. Finally, meltwater reduction at the start of the Younger Dryas supports models for a diversion to North Atlantic outlets and AMOC reduction ca. 12.9 ka, but alternatively could represent diminished ice melting. Overall, the relations between Gulf of Mexico meltwater input, Heinrich events, Antarctic warm events, and AMOC variability suggest bipolar warming and enhanced seasonality during meltwater episodes. We formulate a “meltwater capacitor” hypothesis for understanding enhanced seasonality in the North Atlantic region during abrupt climate change.

  10. Climate variability during the deglaciation and Holocene in a high-altitude alpine lake deduced from the sedimentary record from Laguna Seca, Sierra Nevada, southern Iberian Peninsula

    NASA Astrophysics Data System (ADS)

    Camuera, Jon; Jiménez-Moreno, Gonzalo; José Ramos-Román, María; García-Alix, Antonio; Jiménez-Espejo, Francisco; Anderson, R. Scott

    2017-04-01

    High-resolution X-ray fluorescence (XRF), magnetic susceptibility (MS), color and lithological analyses have been carried out on a 3.6 m-long sediment core from Laguna Seca, a high-elevation dry lake from Sierra Nevada mountain range, southern Spain. This is the longest sedimentary record retrieved from an alpine lake in southern Iberian Peninsula. Besides, alpine lakes are very sensitive environments to climate changes and previous studies showed that Laguna Seca could provide an excellent record to identify millennial-scale climate variations during deglaciation and the whole Holocene. XRF analyses, in particular high calcium and low K/Ca ratios, show aridity phases, very well represented during Last Glacial Maximum (LGM) and the Younger Dryas (YD). Arid events are also shown at ca. 8.1 ka BP, ca. 4.4 ka BP and the latest Holocene. On the other hand, negative values in calcium and positive values in K/Ca appear in the Bølling-Allerød (BA) and during the early Holocene until ca. 6 ka BP, indicating more humidity and higher run-off. A progressive aridification trend is also observed in the Holocene, changing from more humid conditions during the early Holocene to more aridity during the late Holocene.

  11. Crustal Uplift In The Alps and Why The Drainage Pattern Matters: An Alternative Way To Interpret Geodetic Data

    NASA Astrophysics Data System (ADS)

    Schlunegger, F.; Hinderer, M.

    The Alpine drainage system comprises two large orogen-parallel drainage basins in the core of the Alps (the Rhone and Rhein valleys), and smaller orogen-normal ori- ented systems. Discharge of the large rivers is ca. 5-10 higher than that of the small ones. Also, the courses of the Rhone and Rhein Rivers are trapped by faults and thrusts that display lower erosional resistance than the neighbouring lithologies. Enhanced discharge of these rivers and low erosional resistance of bedrocks potentially enhances surface erosion. Indeed, present-day and glacial sediment yields have been ca. 1.6-1.7 times higher in these valleys than in the orogen-normal systems. Interestingly, geode- tic measurements indicate that rates of crustal uplift are also enhanced in the Rhein and Rhone valleys, where rates of ca. 1.4-1.6 mm/yr are currently measured. We inter- pret the spatial coincidence between the location of enhanced erosion and maximum crustal uplift rates to reflect a positive feedback between surface erosion and tectonic forcing.

  12. Terrestrial biosphere changes over the last 120 kyr

    NASA Astrophysics Data System (ADS)

    Hoogakker, B. A. A.; Smith, R. S.; Singarayer, J. S.; Marchant, R.; Prentice, I. C.; Allen, J. R. M.; Anderson, R. S.; Bhagwat, S. A.; Behling, H.; Borisova, O.; Bush, M.; Correa-Metrio, A.; de Vernal, A.; Finch, J. M.; Fréchette, B.; Lozano-Garcia, S.; Gosling, W. D.; Granoszewski, W.; Grimm, E. C.; Grüger, E.; Hanselman, J.; Harrison, S. P.; Hill, T. R.; Huntley, B.; Jiménez-Moreno, G.; Kershaw, P.; Ledru, M.-P.; Magri, D.; McKenzie, M.; Müller, U.; Nakagawa, T.; Novenko, E.; Penny, D.; Sadori, L.; Scott, L.; Stevenson, J.; Valdes, P. J.; Vandergoes, M.; Velichko, A.; Whitlock, C.; Tzedakis, C.

    2016-01-01

    A new global synthesis and biomization of long (> 40 kyr) pollen-data records is presented and used with simulations from the HadCM3 and FAMOUS climate models and the BIOME4 vegetation model to analyse the dynamics of the global terrestrial biosphere and carbon storage over the last glacial-interglacial cycle. Simulated biome distributions using BIOME4 driven by HadCM3 and FAMOUS at the global scale over time generally agree well with those inferred from pollen data. Global average areas of grassland and dry shrubland, desert, and tundra biomes show large-scale increases during the Last Glacial Maximum, between ca. 64 and 74 ka BP and cool substages of Marine Isotope Stage 5, at the expense of the tropical forest, warm-temperate forest, and temperate forest biomes. These changes are reflected in BIOME4 simulations of global net primary productivity, showing good agreement between the two models. Such changes are likely to affect terrestrial carbon storage, which in turn influences the stable carbon isotopic composition of seawater as terrestrial carbon is depleted in 13C.

  13. Early warming of tropical South America at the last glacial-interglacial transition.

    PubMed

    Seltzer, G O; Rodbell, D T; Baker, P A; Fritz, S C; Tapia, P M; Rowe, H D; Dunbar, R B

    2002-05-31

    Glaciation in the humid tropical Andes is a sensitive indicator of mean annual temperature. Here, we present sedimentological data from lakes beyond the glacial limit in the tropical Andes indicating that deglaciation from the Last Glacial Maximum led substantial warming at high northern latitudes. Deglaciation from glacial maximum positions at Lake Titicaca, Peru/Bolivia (16 degrees S), and Lake Junin, Peru (11 degrees S), occurred 22,000 to 19,500 calendar years before the present, several thousand years before the Bølling-Allerød warming of the Northern Hemisphere and deglaciation of the Sierra Nevada, United States (36.5 degrees to 38 degrees N). The tropical Andes deglaciated while climatic conditions remained regionally wet, which reflects the dominant control of mean annual temperature on tropical glaciation.

  14. Postglacial Terrestrial Carbon Dynamics and Atmospheric CO2

    NASA Astrophysics Data System (ADS)

    Prentice, C. I.; Harrison, S. P.; Kaplan, J. O.

    2002-12-01

    Combining PMIP climate model results from the last glacial maximum (LGM) with biome modelling indicates the involvement of both cold, dry climate and physiological effects of low atmospheric CO2 in reducing tree cover on the continents. Further results with the LPJ dynamic vegetation model agree with independent evidence for greatly reduced terrestrial carbon storage at LGM, and suggest that terrestrial carbon storage continued to increase during the Holocene. These results point to predominantly oceanic explanations for preindustrial changes in atmospheric CO2, although land changes after the LGM may have contributed indirectly by reducing the aeolian marine Fe source and (on a longer time scale) by triggering CaCO3 compensation in the ocean.

  15. An 500,000 yr record of tropical glaciation recovered during the Lake Junin (Peru) Drilling Project

    NASA Astrophysics Data System (ADS)

    Rodbell, Donald; Abbott, Mark; Chen, Christine; McGee, David; Hatfield, Robert; Stoner, Joseph; Tapia, Pedro; Valero Garces, Blas; Weidhaas, Nicholas; Woods, Arielle; Hillman, Aubrey; Larsen, Darren; Valencia, Bryan; Bush, Mark

    2017-04-01

    Lake Junín (11.0°S, 76.2°W) is a shallow (zmax 12 m), intermontane, high-elevation (4080 masl) lake in the inner-tropics of the Southern Hemisphere that spans 300 km2. It is dammed by coalescing alluvial fans that are >250 ka that emanate from glacial valleys. Lake Junín has not been overrun by glacial ice in several hundred thousand years and is ideally located to receive glacigenic sediment. The Junín basin is underlain by carbonate rocks that have provided a source of Ca and HCO3 ions; during the present interglacial period precipitation of CaCO3 in the western margin of the lake has occurred at 1mm yr-1. An airgun seismic survey reveals a strong reflector at 105 meters depth, which marks the base of the lacustrine section. Drilling focused on three sites. Site 1, located near the depocenter and most distal to glacial sources, yielded a composite sediment thickness of 95m; Site 2, proximal to glacial outwash fans, yielded a composite thickness of 28 m; Site 3, located at an intermediate distance yielded a sediment thickness of 55m. The stratigraphy of Site 1 is marked by 8 interstadial units that are characterized by low bulk density and magnetic susceptibility (MS)and high CaCO3. These units are intercalated with glacigenic sediment that has high density and MS, and low CaCO3. The age model for Site 1 is based on numerous AMS radiocarbon dates on terrestrial macrofossils and dozens of U/Th ages on authigenic CaCO3. Comparison of the MS record of glaciation in Junín over the past 700 ka with the global ice volume record reveals many common features and several prominent differences. The high resolution signal of the last 50 ka suggests that glacial pulses are correlative with increases in tropical moisture and steep meridional sea surface temperature gradients in the North Atlantic.

  16. Glacial flour in lacustrine sediments: Records of alpine glaciation in the western U.S.A. during the last glacial interval

    NASA Astrophysics Data System (ADS)

    Rosenbaum, J. G.; Reynolds, R. L.

    2010-12-01

    Sediments in Bear Lake (UT/ID) and Upper Klamath Lake (OR) contain glacial flour derived during the last glacial interval from the Uinta Mountains and the southern Cascade Range, respectively. Magnetic properties provide measures of glacial-flour content and, in concert with elemental and grain-size analyses, yield high-resolution records of glacial growth and decay. Creation and preservation of such records requires that (1) properties of glacial flour contrast with those of other sedimentary components and (2) magnetic minerals are neither formed nor destroyed after deposition. In the Bear Lake watershed, glaciers were confined to a small headwater area of the Bear River underlain by hematite-rich rocks of the Uinta Mountain Group (UMG), which are not exposed elsewhere in the catchment. Because UMG detritus is abundant only in Bear Lake sediments of glacial age, hard isothermal remanent magnetization (a measure of hematite content) provides a proxy for glacial flour. In contrast, the entire Upper Klamath Lake catchment, which lies to the east of the Cascade Range in southern Oregon, is underlain largely by basalt and basaltic andesite. Magnetic properties of fresh titanomagnetite-rich rock flour from glaciers on a composite volcano contrast sharply with those of detritus from unglaciated areas in which weathering destroyed some of the titanomagnetite. Ideally, well-dated records of the flux of glacial flour can be compared to ages of glacial features (e.g., moraines). For Upper Klamath Lake, quantitative measures of rock-flour content (from magnetic properties) and excellent chronology allow accurate calculation of flux. However, ages of glacial features are lacking and mafic volcanic rocks, which weather rapidly in this environment, are not well suited for cosmogenic exposure dating. At Bear Lake, estimates of glacial-flour content are less quantitative and chronology within the glacial interval must be interpolated from radiocarbon ages above and below the glacial-age sediments, but cosmogenic dating (by Laabs et al.) of highly resistant quartzite boulders provide ages from terminal moraines in the Bear River drainage. Glacial flour appears abruptly at ~26 cal ka in Bear Lake, whereas it is present at the base of the Upper Klamath Lake core (~37 cal ka). Both glacial flour records (1) contain millennial-scale variations (uncertainties in chronology prevent precise correlation of these features), (2) attain maxima circa 19 cal ka, and (3) rapidly decline beginning prior to 18 cal ka. At Bear Lake the age of the decline in glacial flour coincides with cosmogenic exposure ages (18.1 - 18.7 ka) of terminal moraines in the upper Bear River valley. This concurrence supports the interpretation that the maximum amount and subsequent decrease in glacial flour are indicative of maximum glacial extent and glacial retreat, respectively, and more generally that increases and decreases in rock flour in these lake sediments represent waxing and waning of glaciers. Laabs, B,J.C., et al., 2007, Chronology of the last glacial maximum in the upper Bear River basin, Utah, Arctic and Alpine Research, v. 39, p. 537 - 548.

  17. The Overmyer mastodon (Mammut americanum) from Fulton County, Indiana

    USGS Publications Warehouse

    Woodman, N.; Branstrator, J.W.

    2008-01-01

    In June 1978 the partial skeleton of an American mastodon, Mammut americanum, was salvaged from a drainage ditch in Fulton County, north-central Indiana. The remains were recovered mostly from ca. 170-260 cm below the current land surface in marl overlain by peat and peaty marl. The stratigraphy of the site indicates that the remains were deposited in a small, open-water pond that subsequently filled. The skeleton, which is 41-48% complete, is that of a mature female, ca. 30-34 y old at death based on dental eruption and wear. Postcranial bone measurements indicate that this individual was relatively large for a female. Radiocarbon dating of wood from under the pelvis of the mastodon provided a maximum date of 12,575 ? 260 14C y BP [15,550-13,850 cal y BP] for the animal, which is up to 2575 14C y before the species is believed to have become extinct. Pollen samples from the site corroborate the interpretation that the regional climate was cooler and more humid than at present and supported a mixed spruce-deciduous parkland assemblage. The relatively small size of the molars of this and other mastodons from Indiana supports the hypothesis that late-glacial mastodons - just prior to their extinction - were smaller in size relative to earlier, full-glacial conspecifics. The relationship between molar size and body size is not clear, however, and there may be geographical factors as well as a temporal influence to size variation in these animals.

  18. A preliminary estimate of changing calcrete carbon storage on land since the Last Glacial Maximum

    NASA Astrophysics Data System (ADS)

    Adams, J. M.; Post, W. M.

    1999-05-01

    The glacial-to-interglacial shift in land carbon storage is important in understanding the global carbon cycle and history of the climate system. While organic carbon storage on land appears to have been much less than present during the cold, dry glacial maximum, calcrete (soil carbonate) carbon storage would have been greater. Here we attempt a global estimation of this change; we use published figures for present soil carbonate by biome to estimate changing global soil carbonate storage, on the basis of reconstruction of vegetation areas for four timeslices since the Last Glacial Maximum. It appears that there would most likely have been around a 30-45% decrease in calcrete carbon on land accompanying the transition between glacial and interglacial conditions. This represents a change of about 500-400 GtC (outer error limits are estimated at 750-200 GtC) . In order to be weathered into dissolved bicarbonate, this would take up an additional 500-400 GtC (750-200 GtC) in CO 2 from ocean/atmosphere sources. An equivalent amount to the carbonate leaving the caliche reservoir on land may have accumulated in coral reefs and other calcareous marine sediments during the Holocene, liberating an equimolar quantity of CO 2 back into the ocean-atmosphere system as the bicarbonate ion breaks up.

  19. Abrupt lake-level changes in the Rocky Mountains and surrounding regions since the Last Glacial Maximum

    NASA Astrophysics Data System (ADS)

    Shuman, B. N.; Serravezza, M.

    2016-12-01

    The paleohydrologic record of western North America since the last glacial maximum reveals a wide range of hydroclimatic variability and distinctive patterns associated with abrupt climate changes. To evaluate the sequence of abrupt hydroclimatic shifts and centennial-to-millennial hydrologic variability in western North America over the past 17 ka, we reconstruct lake-level histories from two high-elevation lakes in the Beartooth and Bighorn Mountains. The lakes represent the headwaters of the Missouri River drainage in northern Wyoming, but also have the potential to capture regional hydroclimate variability that links the northern Rocky Mountains to the mid-continent, Pacific Northwest, and the Great Basin. We first discuss the stratigraphic record of lake-level changes in small mid-latitude lakes and then use ground-penetrating radar (GPR) and sediment cores to track the elevations of shoreline sediments within the lakes through time. We compare the stratigraphies to the records from four other lakes in Wyoming and Colorado, and find widespread evidence for a Terminal Pleistocene Drought from 15-11 ka, an early Holocene humid period from 11-8 ka, and a period of severe mid-Holocene aridity from 8-5.7 ka. The northern Wyoming lakes also provide evidence of high levels before ca. 15 ka, including rapid hydroclimatic changes at ca. 16.8 ka during Heinrich Event 1. We place the changes in a broad context by summarizing and mapping water-level changes from 107 additional, previously studied lakes. Important patterns include 1) extensive drying across the western U.S. after 15 ka; 2) coherent sub-regional differences during the Younger Dryas and Pleistocene-Holocene transition; 3) a north-south contrast from 9-6 ka consistent with a northward shift in storm tracks as the influence of the Laurentide Ice Sheet diminished; and 4) rapid increases in effective moisture across much of western North America from 6-4 ka.

  20. Excitation of the earth's rotational axis by recent glacial discharges

    NASA Technical Reports Server (NTRS)

    Gasperini, P.; Sabadini, R.; Yuen, D. A.

    1986-01-01

    The effects of present-day glacial discharges and the growth of the Antarctic ice sheet on exciting the earth's rotational axis are studied. Glacial forcing could cause a maximum change in J2 of about one-third of the observed amount, for the Maxwell rheology and for Burgers' body models with a long-term, lower-mantle viscosity greater than about 10 to the 23rd P. For transient rheologies the amount of excitation due to glacial melting decreases. Polar wander is not much excited by recent glacial melting for the various types of rheologies examined.

  1. Millennial-scale variability to 735 ka: High-resolution climate records from Santa Barbara Basin, CA

    NASA Astrophysics Data System (ADS)

    White, Sarah M.; Hill, Tessa M.; Kennett, James P.; Behl, Richard J.; Nicholson, Craig

    2013-06-01

    Determining the ultimate cause and effect of millennial-scale climate variability remains an outstanding problem in paleoceanography, partly due to the lack of high-resolution records predating the last glaciation. Recent cores from Santa Barbara Basin provide 2500-5700 year "windows" of climate with 10-50 year resolution. Ages for three cores, determined by seismic stratigraphic correlation, oxygen isotope stratigraphy, and biostratigraphy, date to 293 ka (MIS 8), 450 ka (MIS 12), and 735 ka (MIS 18). These records sample the Late Pleistocene, during which the 100 kyr cycle strengthened and the magnitude of glacial-interglacial cyclicity increased. Thus, these records provide a test of the dependence of millennial-scale behavior on variations in glacial-interglacial cyclicity. The stable isotopic (δ18O) composition of planktonic foraminifera shows millennial-scale variability in all three intervals, with similar characteristics (duration, cyclicity) to those previously documented during MIS 3 at this site. Stadial G. bulloides δ18O values are 2.75-1.75‰ (average 2.25‰) and interstadial values are 1.75-0.5‰ (average 1‰), with rapid (decadal-scale) interstadial and stadial initiations of 1-2‰, as in MIS 3. Interstadials lasted 250-1600 years and occurred every 650-1900 years. Stadial paleotemperatures were 3.5-9.5°C and interstadial paleotemperatures were 7.5-13°C. Upwelling, evidenced by planktonic foraminiferal assemblages and δ13C, increased during interstadials, similar to MIS 3; high productivity during some stadials was reminiscent of the Last Glacial Maximum. This study builds upon previous records in showing that millennial-scale shifts were an inherent feature of Northern Hemisphere glacial climates since 735 ka, and they remained remarkably constant in the details of their amplitude, cyclicity, and temperature variability.

  2. Chironomid-based reconstructions of summer air temperature from lake deposits in Lyndon Stream, New Zealand spanning the MIS 3/2 transition

    NASA Astrophysics Data System (ADS)

    Woodward, C. A.; Shulmeister, J.

    2007-01-01

    We present chironomid-based temperature reconstructions from lake sediments deposited between ca 26,600 cal yr BP and 24,500 cal yr BP from Lyndon Stream, South Island, New Zealand. Summer (February mean) temperatures averaged 1 °C cooler, with a maximum inferred cooling of 3.7 °C. These estimates corroborate macrofossil and beetle-based temperature inferences from the same site and suggest climate amelioration (an interstadial) at this time. Other records from the New Zealand region also show a large degree of variability during the late Otiran glacial sequence (34,000-18,000 cal yr BP) including a phase of warming at the MIS 2/3 transition and a maximum cooling that did not occur until the global LGM (ca 20,000 cal yr BP). The very moderate cooling identified here at the MIS 2/3 transition confirms and enhances the long-standing discrepancy in New Zealand records between pollen and other proxies. Low abundances (<20%) of canopy tree pollen in records from late MIS 3 to the end of MIS 2 cannot be explained by the minor (<5 °C) cooling inferred from this and other studies unless other environmental parameters are considered. Further work is required to address this critical issue.

  3. Asynchronous Glacial Chronologies in the Central Andes (15-40°S) and Paleoclimatic Implications

    NASA Astrophysics Data System (ADS)

    Zech, R.; Kull, C.; Kubik, P. W.; Veit, H.

    2006-12-01

    We have established glacial chronologies along a N-S transect over the Central Andes using 10Be surface exposure dating. Our results show that maximum glacial advances occurred asynchronously and reflect the varying influence and shifts of the major atmospheric circulation systems during the Late Quaternary: the tropical circulation in the north and the westerlies in the south. In Bolivia (three research areas in the Cordillera Real and the Cordillera Cochabamba, ~15°S) glacial advances could be dated to ~20 and 12 ka BP. This is in good agreement with published exposure age data from moraines in Bolivia and Peru (provided that all ages are calculated following the same scaling system). Accordingly, the maximum glaciation there probably occurred roughly synchronous to the temperature minimum of the global Last Glacial Maximum (LGM) and the lateglacial cold reversals. Strict correlation with neither the Younger Dryas in the northern hemisphere, nor the Antarctic Cold Reversal is possible due to the current systematic exposure age uncertainties (~10%). Glacier-Climate-Modelling corroborates the sensitivity of the reconstructed glaciers to temperature changes, rather than precipitation. On the contrary, there is good evidence for the dominant role of precipitation changes on the glacial chronologies in the lee of the Cordillera Occidental, i.e. on the Altiplano and further south. The pronounced lateglacial wet phase, which is well documented in lake transgression phases as far south as 28°S (-> tropical moisture source), seems to have caused glacial advances even at ~30°S. In two research areas in Chile at that latitude, we were able to date several lateglacial moraines. Besides, the maximum datable glaciation there occurred at ~30 ka BP. That is significantly earlier than the LGM (sensu strictu) and points to favourable climate conditions for glaciation at that time (particularly increased precipitation). We conclude that the westerlies were more intensive or shifted northward at ~30 ka BP. We have not yet been able to date LGM moraines as far south as ~40°, which would indicate the transition of precipitation- to temperature-sensitive glaciers. Instead, our preliminary exposure age chronology from Valle Rucachoroi (~39°S, Argentina) suggests that the maximum glaciation there occurred also at ~30 ka BP, but that the valleys became ice-free only by ~15 ka BP. Samples from moraines in the cirques are currently in progress and may document lateglacial re-advances.

  4. Mountain glaciation and paleoclimate reconstruction in the Picos de Europa (Iberian Peninsula, SW Europe)

    NASA Astrophysics Data System (ADS)

    Serrano, Enrique; González-Trueba, Juan José; González-García, María

    2012-09-01

    Geomorphic mapping and stratigraphic analysis of a lake core document the late Quaternary glacial history of the Central and Eastern Massifs of the Picos de Europa, northwestern Spain. The distribution of glacial deposits indicates that at their most advanced positions glaciers occupied 9.1 km2, extended as far as 7 km down-valley and had an estimated equilibrium-line altitude (ELA) ranging between 1666 and 1722 m. Radiocarbon dating of sediment deposited in a lake dammed by moraines of this advance show that the maximum glacial extent was prior to 35,280 ± 440 cal yr BP. This advance was followed by two subsequent but less extensive late Pleistocene advances, recorded by multiple moraines flanking both massifs and sedimentary characteristics in the lake deposits. The last recognized glacial episode is the 19th-century maximum extent of small Little Ice Age glaciers in the highest cirques above 2200 m.

  5. Meltwater input to the southern ocean during the last glacial maximum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shemesh, A.; Burckle, L.H.; Hays, J.D.

    1994-12-02

    Three records of oxygen isotopes in biogenic silica from deep-sea sediment cores from the Atlantic and Indian sectors of the Southern Ocean reveal the presence of isotopically depleted diatomaceous opal in sediment from the last glacial maximum. This depletion is attributed to the presence of lids of meltwater that mixed with surface water along certain trajectories in the Southern Ocean. An increase in the drainage from Antarctica or extensive northward transport of icebergs are among the main mechanisms that could have produced the increase in meltwater input to the glacial Southern Ocean. Similar isotopic trends were observed in older climaticmore » cycles at the same cores.« less

  6. Hominin responses to environmental changes during the Middle Pleistocene in central and southern Italy

    NASA Astrophysics Data System (ADS)

    Orain, R.; Lebreton, V.; Russo Ermolli, E.; Sémah, A.-M.; Nomade, S.; Shao, Q.; Bahain, J.-J.; Thun Hohenstein, U.; Peretto, C.

    2013-03-01

    The palaeobotanical record of early Palaeolithic sites from Western Europe indicates that hominins settled in different kinds of environments. During the "mid-Pleistocene transition (MPT)", from about 1 to 0.6 Ma, the transition from 41- to 100-ka dominant climatic oscillations, occurring within a long-term cooling trend, was associated with an aridity crisis which strongly modified the ecosystems. Starting from the MPT the more favourable climate of central and southern Italy provided propitious environmental conditions for long-term human occupations even during the glacial times. In fact, the human strategy of territory occupation was certainly driven by the availabilities of resources. Prehistoric sites such as Notarchirico (ca. 680-600 ka), La Pineta (ca. 600-620 ka), Guado San Nicola (ca. 380-350 ka) or Ceprano (ca. 345-355 ka) testify to a preferential occupation of the central and southern Apennines valleys during interglacial phases, while later interglacial occupations were oriented towards the coastal plains, as attested by the numerous settlements of the Roma Basin (ca. 300 ka). Faunal remains indicate that human subsistence behaviours benefited from a diversity of exploitable ecosystems, from semi-open to closed environments. In central and southern Italy, several palynological records have already illustrated the regional- and local-scale vegetation dynamic trends. During the Middle Pleistocene climate cycles, mixed mesophytic forests developed during the interglacial periods and withdrew in response to increasing aridity during the glacial episodes. New pollen data from the Boiano Basin (Molise, Italy) attest to the evolution of vegetation and climate between MIS 13 and 9 (ca. 500 to 300 ka). In this basin the persistence of high edaphic humidity, even during the glacial phases, could have favoured the establishment of a refuge area for the arboreal flora and provided subsistence resources for the animal and hominin communities during the Middle Pleistocene. This could have constrained human groups to migrate into such a propitious area. Regarding the local climate evolution during the glacial episodes, the supposed displacement from these sites could be linked to the environmental dynamics solely due to the aridity increase, rather than directly to the global climate changes.

  7. Hominin responses to environmental changes during the Middle Pleistocene in Central and Southern Italy

    NASA Astrophysics Data System (ADS)

    Orain, R.; Lebreton, V.; Russo Ermolli, E.; Sémah, A.-M.; Nomade, S.; Shao, Q.; Bahain, J.-J.; Thun Hohenstein, U.; Peretto, C.

    2012-10-01

    The palaeobotanical record of early Palaeolithic sites from Western Europe indicates that hominins settled in different kinds of environments. During the "Mid-Pleistocene Transition (MPT)", from about 1 to 0.6 Ma, the transition from 41-ka to 100-ka dominant climatic oscillations, occurring within a long-term cooling trend, was associated with an aridity crisis which strongly modified the ecosystems. Starting from the MPT the more favorable climate of central and southern Italy provided propitious environmental conditions for long-term human occupations even during the glacial times. In fact, the human strategy of territory occupation was certainly driven by the availabilities of resources. Prehistoric sites such as Notarchirico (ca. 680-600 ka), La Pineta (ca. 600-620 ka), Gaudo San Nicola (ca. 380-350 ka) or Ceprano (ca. 345-355 ka) testify to a preferential occupation of the central and southern Apennines valleys during interglacial phases, while later interglacial occupations were oriented towards the coastal plains, as attested by the numerous settlements of the Roma basin (ca. 300 ka). Faunal remains indicate that human subsistence behaviors benefited of a diversity of exploitable ecosystems, from semi-open to closed environments. In central and southern Italy, several palynological records have already illustrated the regional and local scale vegetation dynamic trends. During the Middle Pleistocene climate cycles, mixed mesophytic forests developed during the interglacial periods and withdrew in response to increasing aridity during the glacial episodes. New pollen data from the Boiano basin (Molise, Italy), attest to the evolution of vegetation and climate between OIS 13 and 9 (ca. 500 to 300 ka). In this basin, the persistence of high edaphic humidity, even during the glacial phases, could have favored the establishment of a refuge area for the arboreal flora and provided subsistence resources for the animal and hominin communities during the Middle Pleistocene. This could have constrained human groups to migrate into such a propitious area. Regarding to the local climate evolution during the glacial episodes, the supposed displacement from these sites could be linked to the environmental dynamics solely due to the aridity increase rather than directly to the global climate changes.

  8. Changes in thermocline structure in the Eastern Equatorial Pacific since the Last Glacial Maximum: A comparative study

    NASA Astrophysics Data System (ADS)

    McChesney, C. L.; Ford, H. L.; McManus, J. F.

    2016-12-01

    The Eastern Equatorial Pacific (EEP) is an important region of study due to its dynamic nature and role in El Niño-Southern Oscillation (ENSO), which is the biggest source of global interannual variability. The EEP is characterized by cool sea surface temperatures that are tightly coupled to a shallow thermocline. Variability in the depth of the EEP thermocline is important in initiating and propagating El Niño events. Here, we investigate changes in thermocline depth during the Last Glacial Maximum (LGM) to gain insight into how conditions within the EEP changed in the context of different boundary conditions (e.g., low CO2, greater ice volume). Using the stable oxygen isotope values of planktonic foraminifera from a range of calcification depths in the water column, we show that the thermocline was deep during the LGM relative to the Holocene at Ocean Drilling Program Site 849 (0°N, 110°W, 3839 m water depth). In comparison to previous studies that have been done in the region, site 849 has the smallest change of δ18O surface values, indicating less glacial cooling. However, site 849 displays even less apparent cooling in subsurface isotopic values, with a difference of -0.39 ‰ when comparing the LGM to the Holocene, suggesting little temperature change. The δ18O values of site 849 during the LGM had a smaller range between subsurface and surface foraminifera of 1.64‰ compared to the Holocene range of 2.11‰. This difference indicates that the thermocline was deeper in the equatorial cold tongue during the LGM. A deep thermocline may have inhibited some of the thermocline related feedbacks in ENSO variability and led to reduced ENSO during the LGM. Future Mg/Ca data will be incorporated to verify temperature.

  9. Beryllium-10 dating of the duration and retreat of the last pinedale glacial sequence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gosse, J.C.; Klein, J.; Evenson, E.B.

    Accurate terrestrial glacial chronologies are needed for comparison with the marine record to establish the dynamics of global climate change during transitions from glacial to interglacial regimes. Cosmogenic beryllium-10 measurements in the Wind River Range indicate that the last glacial maximum (marine oxygen isotope stage 2) was achieved there by 21,700 {+-} 700 beryllium-10 years and lasted 5900 years. Ages of a sequence of recessional moraines and striated bedrock surfaces show that the initial deglaciation was rapid and that the entire glacial system retreated 33 kilometers to the cirque basin by 12,100 {+-} 500 beryllium-10 years.

  10. Timing of last deglaciation in the Cantabrian Mountains (Iberian Peninsula; North Atlantic Region) based on in situ-produced 10Be exposure dating

    NASA Astrophysics Data System (ADS)

    Rodríguez-Rodríguez, Laura; Jiménez-Sánchez, Montserrat; Domínguez-Cuesta, María José; Rinterknecht, Vincent; Pallàs, Raimon; Aumaître, Georges; Bourlès, Didier L.; Keddadouche, Karim; Aster Team

    2017-09-01

    The Last Glacial Termination led to major changes in ice sheet coverage that disrupted global patterns of atmosphere and ocean circulation. Paleoclimate records from Iberia suggest that westerly episodes played a key role in driving heterogeneous climate in the North Atlantic Region. We used 10Be Cosmic Ray Exposure (CRE) dating to explore the glacier response of small mountain glaciers (ca. 5 km2) that developed on the northern slope of the Cantabrian Mountains (Iberian Peninsula), an area directly under the influence of the Atlantic westerly winds. We analyzed twenty boulders from three moraines and one rock glacier arranged as a recessional sequence preserved between 1150 and 1540 m above sea level (a.s.l.) in the Monasterio valley (Redes Natural Park). Results complement previous chronologic data based on radiocarbon and optically stimulated luminescence from the Monasterio valley, which suggest a local Glacial Maximum (local GM) prior to 33 ka BP and a long-standing glacier advance at 24 ka coeval to the global Last Glacial Maximum (LGM). Resultant 10Be CRE ages suggest a progressive retreat and thinning of the Monasterio glacier over the time interval 18.1-16.7 ka. This response is coeval with the Heinrich Stadial 1, an extremely cold and dry climate episode initiated by a weakening of the Atlantic Meridional Overturning Circulation (AMOC). Glacier recession continued through the Bølling/Allerød period as indicate the minimum exposure ages obtained from a cirque moraine and a rock glacier nested within this moraine, which yielded ages of 14.0 and 13.0 ka, respectively. Together, they suggest that the Monasterio glacier experienced a gradual transition from glacier to rock glacier activity as the AMOC started to strengthen again. Glacial evidence ascribable to the Younger Dryas cooling was not dated in the Monasterio valley, but might have occurred at higher elevations than evidence dated in this work. The evolution of former glaciers documented in the Monasterio valley seems consistent with previous 10Be chronologies reported in other mountain ranges of the Iberian Peninsula, which have been recalculated according to a common production rate and scaling scheme. However, the re-evaluation of published 10Be chronologies has highlighted the fact that glacial evidence previously ascribed to the Younger Dryas might be more limited than previously thought and the need for additional studies to characterized the extent of glaciers during the Younger Dryas cooling.

  11. The influence of low latitude forcing on European Ice sheet dynamics

    NASA Astrophysics Data System (ADS)

    Kaboth, Stefanie; Bahr, André; Lourens, Lucas J.

    2017-04-01

    Distinct mid-glacial δ18O enrichment events found at Site U1386 in the Gulf of Cadiz during Marine Isotope Stages 6 and 8 represent a striking feature absent in most deep-sea benthic δ18O records studied worldwide. These δ18O enrichment events are closely related to periods of maximum precession and aligned with previous findings from the Mediterranean and Red Seas. Here we present paired planktic and benthic stable isotope (δ18O and δ13C) and Mg/Ca-based temperature records of Site U1386 of the last 300.000 years. Our results show that these δ18O enrichment events are recorded in both subsurface and bottom water masses and pre-date the largest cooling events along the Iberian Margin and associated European sourced meltwater pulses of the Drenthe and Fuhne major ice-sheet advances, suggesting that they instead correspond to periods of maximum ice volume extend in Europe.

  12. Glacial ocean circulation and stratification explained by reduced atmospheric temperature

    NASA Astrophysics Data System (ADS)

    Jansen, Malte F.

    2017-01-01

    Earth’s climate has undergone dramatic shifts between glacial and interglacial time periods, with high-latitude temperature changes on the order of 5-10 °C. These climatic shifts have been associated with major rearrangements in the deep ocean circulation and stratification, which have likely played an important role in the observed atmospheric carbon dioxide swings by affecting the partitioning of carbon between the atmosphere and the ocean. The mechanisms by which the deep ocean circulation changed, however, are still unclear and represent a major challenge to our understanding of glacial climates. This study shows that various inferred changes in the deep ocean circulation and stratification between glacial and interglacial climates can be interpreted as a direct consequence of atmospheric temperature differences. Colder atmospheric temperatures lead to increased sea ice cover and formation rate around Antarctica. The associated enhanced brine rejection leads to a strongly increased deep ocean stratification, consistent with high abyssal salinities inferred for the last glacial maximum. The increased stratification goes together with a weakening and shoaling of the interhemispheric overturning circulation, again consistent with proxy evidence for the last glacial. The shallower interhemispheric overturning circulation makes room for slowly moving water of Antarctic origin, which explains the observed middepth radiocarbon age maximum and may play an important role in ocean carbon storage.

  13. Glacial ocean circulation and stratification explained by reduced atmospheric temperature

    PubMed Central

    Jansen, Malte F.

    2017-01-01

    Earth’s climate has undergone dramatic shifts between glacial and interglacial time periods, with high-latitude temperature changes on the order of 5–10 °C. These climatic shifts have been associated with major rearrangements in the deep ocean circulation and stratification, which have likely played an important role in the observed atmospheric carbon dioxide swings by affecting the partitioning of carbon between the atmosphere and the ocean. The mechanisms by which the deep ocean circulation changed, however, are still unclear and represent a major challenge to our understanding of glacial climates. This study shows that various inferred changes in the deep ocean circulation and stratification between glacial and interglacial climates can be interpreted as a direct consequence of atmospheric temperature differences. Colder atmospheric temperatures lead to increased sea ice cover and formation rate around Antarctica. The associated enhanced brine rejection leads to a strongly increased deep ocean stratification, consistent with high abyssal salinities inferred for the last glacial maximum. The increased stratification goes together with a weakening and shoaling of the interhemispheric overturning circulation, again consistent with proxy evidence for the last glacial. The shallower interhemispheric overturning circulation makes room for slowly moving water of Antarctic origin, which explains the observed middepth radiocarbon age maximum and may play an important role in ocean carbon storage. PMID:27994158

  14. Glacial ocean circulation and stratification explained by reduced atmospheric temperature.

    PubMed

    Jansen, Malte F

    2017-01-03

    Earth's climate has undergone dramatic shifts between glacial and interglacial time periods, with high-latitude temperature changes on the order of 5-10 °C. These climatic shifts have been associated with major rearrangements in the deep ocean circulation and stratification, which have likely played an important role in the observed atmospheric carbon dioxide swings by affecting the partitioning of carbon between the atmosphere and the ocean. The mechanisms by which the deep ocean circulation changed, however, are still unclear and represent a major challenge to our understanding of glacial climates. This study shows that various inferred changes in the deep ocean circulation and stratification between glacial and interglacial climates can be interpreted as a direct consequence of atmospheric temperature differences. Colder atmospheric temperatures lead to increased sea ice cover and formation rate around Antarctica. The associated enhanced brine rejection leads to a strongly increased deep ocean stratification, consistent with high abyssal salinities inferred for the last glacial maximum. The increased stratification goes together with a weakening and shoaling of the interhemispheric overturning circulation, again consistent with proxy evidence for the last glacial. The shallower interhemispheric overturning circulation makes room for slowly moving water of Antarctic origin, which explains the observed middepth radiocarbon age maximum and may play an important role in ocean carbon storage.

  15. Paleoglaciation of the Tibetan Plateau based on exposure ages and ELA depression estimates

    NASA Astrophysics Data System (ADS)

    Heyman, Jakob

    2014-05-01

    The Tibetan Plateau holds a major part of all glaciers outside the polar regions and an ample record of past glaciations. The glacial history of the Tibetan Plateau has attracted significant interest, with a large body of research investigating the extent, timing, and climatic implications of past glaciations. Here I present an extensive compilation of exposure ages and equilibrium line altitude (ELA) depression estimates from glacial deposits across the Tibetan Plateau to address the timing and degree of past glaciations. I compiled Be-10 exposure age data for a total of 1877 samples and recalculated exposure ages using an updated (lower) global Be-10 production rate. All samples were organized in groups of individual glacial deposits where each deposit represents one glacial event enabling evaluation of the exposure age clustering. For each glacial deposit I estimated the ELA depression based on a simple toe to headwall ratio approach using Google Earth. To discriminate good (well-clustered) from poor (scattered) exposure age groups the glacial deposits were divided into three groups based on exposure age clustering. A major part of the glacial deposits have scattered exposure ages affected by prior or incomplete exposure, complicating exposure age interpretations. The well-clustered exposure age groups are primarily from mountain ranges along the margins of the Tibetan Plateau with a main peak in age between 10 and 30 ka, indicating glacial advances during the global last glacial maximum (LGM). A large number of exposure ages older than 30 ka indicates maximum glaciation predating the LGM, but the exposure age scatter generally prohibits accurate definition of the glacial chronology. The ELA depression estimates scatter significantly, but a major part is remarkably low. Average ELA depressions of 333 ± 191 m for the LGM and 494 ± 280 m for the pre-LGM exposure indicate restricted glacier expansion and limited glacial cooling.

  16. Contrasting scaling properties of interglacial and glacial climates

    PubMed Central

    Shao, Zhi-Gang; Ditlevsen, Peter D.

    2016-01-01

    Understanding natural climate variability is essential for assessments of climate change. This is reflected in the scaling properties of climate records. The scaling exponents of the interglacial and the glacial climates are fundamentally different. The Holocene record is monofractal, with a scaling exponent H∼0.7. On the contrary, the glacial record is multifractal, with a significantly higher scaling exponent H∼1.2, indicating a longer persistence time and stronger nonlinearities in the glacial climate. The glacial climate is dominated by the strong multi-millennial Dansgaard–Oeschger (DO) events influencing the long-time correlation. However, by separately analysing the last glacial maximum lacking DO events, here we find the same scaling for that period as for the full glacial period. The unbroken scaling thus indicates that the DO events are part of the natural variability and not externally triggered. At glacial time scales, there is a scale break to a trivial scaling, contrasting the DO events from the similarly saw-tooth-shaped glacial cycles. PMID:26980084

  17. Mid-depth respired carbon storage and oxygenation of the eastern equatorial Pacific over the last 25,000 years

    NASA Astrophysics Data System (ADS)

    Umling, Natalie E.; Thunell, Robert C.

    2018-06-01

    A growing body of evidence suggests that respired carbon was stored in mid-depth waters (∼1-3 km) during the last glacial maximum (LGM) and released to the atmosphere from upwelling regions during deglaciation. Decreased ventilation, enhanced productivity, and enhanced carbonate dissolution are among the mechanisms that have been cited as possible drivers of glacial CO2 drawdown. However, the relative importance of each of these mechanisms is poorly understood. New approaches to quantitatively constrain bottom water carbonate chemistry and oxygenation provide methods for estimating historic changes in respired carbon storage. While increased CO2 drawdown during the LGM should have resulted in decreased oxygenation and a shift in dissolved inorganic carbon (DIC) speciation towards lower carbonate ion concentrations, this is complicated by the interplay of carbonate compensation, export productivity, and circulation. To disentangle these processes, we use a multiproxy approach that includes boron to calcium (B/Ca) ratios of the benthic foraminifera Cibicidoides wuellerstorfi to reconstruct deep-water carbonate ion concentrations ([CO32-]) and the uranium to calcium (U/Ca) ratio of foraminiferal coatings in combination with benthic foraminiferal carbon isotopes to reconstruct changes in bottom water oxygen concentrations ([O2]) and organic carbon export. Our records indicate that LGM [CO32-] and [O2] was reduced at mid water depths of the eastern equatorial Pacific (EEP), consistent with increased respired carbon storage. Furthermore, our results suggest enhanced mixing of lower Circumpolar Deep Water (LCDW) to EEP mid water depths and provide evidence for the importance of circulation for oceanic-atmospheric CO2 exchange.

  18. Clay mineralogical record on the upper continental slope of the northwestern South China Sea since the Last Glacial Maximum

    NASA Astrophysics Data System (ADS)

    CHEN, Q.; Liu, Z.; Stattegger, K.

    2012-12-01

    Clay mineralogy of two gravity cores (18428 and 18429) on the upper continental slope of the northwestern South China Sea was investigated in order to understand terrigenous sediment sources and to evaluate the contribution from the Red River since the Late Glacial Maximum. Planktonic foraminiferal oxygen isotope and carbonate stratigraphies suggest that Core 18428 is constrained in Holocene while Core 18429 covers the period of MIS 1-2. Clay mineral assemblages of two cores are composed mainly of smectite (18-57%) and illite (21-41%), with minor chlorite (12-21%) and kaolinite (8-26%). In despite of relatively constant values of illite crystallinity, ranging among 0.14°-0.20° Δ2θ, the time series variation in clay mineral distributions indicates a strong glacial-interglacial shift. Contents of illite, chlorite, and kaolinite (Core 18429) in the Holocene are lower than in the glacial period, and vice versa for the smectite content. The provenance analysis based on clay mineralogy suggests the Red River as a predominant sedimentary source of illite, chlorite, and kaolinite during all the depositional period of MIS 1-2. The sea level change actually controlled the variations of clay mineral assemblages on the upper slope since the Last Glacial Maximum. When the sea level was low during the last glacial period, more terrigenous sediments from the Red River could reach the continental slope in the northwestern South China Sea. However, when the sea level is closed to the present situation during the Holocene, most of Red River sediments could be trapped in the Gulf of Tonkin, instead of draining in the deep South China Sea.

  19. Ocean Cooling Pattern at the Last Glacial Maximum

    DOE PAGES

    Zhuang, Kelin; Giardino, John R.

    2012-01-01

    Ocean temperature and ocean heat content change are analyzed based on four PMIP3 model results at the Last Glacial Maximum relative to the prehistorical run. Ocean cooling mostly occurs in the upper 1000 m depth and varies spatially in the tropical and temperate zones. The Atlantic Ocean experiences greater cooling than the rest of the ocean basins. Ocean cooling is closely related to the weakening of meridional overturning circulation and enhanced intrusion of Antarctic Bottom Water into the North Atlantic.

  20. Frozen-bed Fennoscandian and Laurentide ice sheets during the Last Glacial Maximum

    NASA Astrophysics Data System (ADS)

    Kleman, Johan; Hättestrand, Clas

    1999-11-01

    The areal extents of the Laurentide and Fennoscandian ice sheets during the Last Glacial Maximum (about 20,000 years ago) are well known, but thickness estimates range widely, from high-domed to thin, with large implications for our reconstruction of the climate system regarding, for example, Northern Hemisphere atmospheric circulation and global sea levels. This uncertainty stems from difficulties in determining the basal temperatures of the ice sheets and the shear strength of subglacial materials, a knowledge of which would better constrain reconstructions of ice-sheet thickness. Here we show that, in the absence of direct data, the occurrence of ribbed moraines in modern landscapes can be used to determine the former spatial distribution of frozen- and thawed-bed conditions. We argue that ribbed moraines were formed by brittle fracture of subglacial sediments, induced by the excessive stress at the boundary between frozen- and thawed-bed conditions resulting from the across-boundary difference in basal ice velocity. Maps of glacial landforms from aerial photographs of Canada and Scandinavia reveal a concentration of ribbed moraines around the ice-sheet retreat centres of Quebec, Keewatin, Newfoundland and west-central Fennoscandia. Together with the evidence from relict landscapes that mark glacial areas with frozen-bed conditions, the distribution of ribbed moraines on both continents suggest that a large area of the Laurentide and Fennoscandian ice sheets was frozen-based-and therefore high-domed and stable-during the Last Glacial Maximum.

  1. The influence of Antarctic subglacial volcanism on the global iron cycle during the Last Glacial Maximum

    PubMed Central

    Frisia, Silvia; Weyrich, Laura S.; Hellstrom, John; Borsato, Andrea; Golledge, Nicholas R.; Anesio, Alexandre M.; Bajo, Petra; Drysdale, Russell N.; Augustinus, Paul C.; Rivard, Camille; Cooper, Alan

    2017-01-01

    Marine sediment records suggest that episodes of major atmospheric CO2 drawdown during the last glacial period were linked to iron (Fe) fertilization of subantarctic surface waters. The principal source of this Fe is thought to be dust transported from southern mid-latitude deserts. However, uncertainty exists over contributions to CO2 sequestration from complementary Fe sources, such as the Antarctic ice sheet, due to the difficulty of locating and interrogating suitable archives that have the potential to preserve such information. Here we present petrographic, geochemical and microbial DNA evidence preserved in precisely dated subglacial calcites from close to the East Antarctic Ice-Sheet margin, which together suggest that volcanically-induced drainage of Fe-rich waters during the Last Glacial Maximum could have reached the Southern Ocean. Our results support a significant contribution of Antarctic volcanism to subglacial transport and delivery of nutrients with implications on ocean productivity at peak glacial conditions. PMID:28598412

  2. Radiocarbon constraints on the glacial ocean circulation and its impact on atmospheric CO2

    NASA Astrophysics Data System (ADS)

    Skinner, L. C.; Primeau, F.; Freeman, E.; de La Fuente, M.; Goodwin, P. A.; Gottschalk, J.; Huang, E.; McCave, I. N.; Noble, T. L.; Scrivner, A. E.

    2017-07-01

    While the ocean's large-scale overturning circulation is thought to have been significantly different under the climatic conditions of the Last Glacial Maximum (LGM), the exact nature of the glacial circulation and its implications for global carbon cycling continue to be debated. Here we use a global array of ocean-atmosphere radiocarbon disequilibrium estimates to demonstrate a ~689+/-53 14C-yr increase in the average residence time of carbon in the deep ocean at the LGM. A predominantly southern-sourced abyssal overturning limb that was more isolated from its shallower northern counterparts is interpreted to have extended from the Southern Ocean, producing a widespread radiocarbon age maximum at mid-depths and depriving the deep ocean of a fast escape route for accumulating respired carbon. While the exact magnitude of the resulting carbon cycle impacts remains to be confirmed, the radiocarbon data suggest an increase in the efficiency of the biological carbon pump that could have accounted for as much as half of the glacial-interglacial CO2 change.

  3. Surface exposure chronology of the Waimakariri glacial sequence in the Southern Alps of New Zealand: Implications for MIS-2 ice extent and LGM glacial mass balance

    NASA Astrophysics Data System (ADS)

    Rother, Henrik; Shulmeister, James; Fink, David; Alexander, David; Bell, David

    2015-11-01

    During the late Quaternary, the Southern Alps of New Zealand experienced multiple episodes of glaciation with large piedmont glaciers reaching the coastal plains in the west and expanding into the eastern alpine forelands. Here, we present a new 10Be exposure age chronology for a moraine sequence in the Waimakariri Valley (N-Canterbury), which has long been used as a reference record for correlating glacial events across New Zealand and the wider Southern Hemisphere. Our data indicate that the Waimakariri glacier reached its maximum last glaciation extent prior to ∼26 ka well before the global last glaciation maximum (LGM). This was followed by a gradual reduction in ice volume and the abandonment of the innermost LGM moraines at about 17.5 ka. Significantly, we find that during its maximum extent, the Waimakariri glacier overflowed the Avoca Plateau, previously believed to represent a mid-Pleistocene glacial surface (i.e. MIS 8). At the same time, the glacier extended to a position downstream of the Waimakariri Gorge, some 15 km beyond the previously mapped LGM ice limit. We use a simple steady-state mass balance model to test the sensitivity of past glacial accumulation to various climatic parameters, and to evaluate possible climate scenarios capable of generating the ice volume required to reach the full local-LGM extent. Model outcomes indicate that under New Zealand's oceanic setting, a cooling of 5 °C, assuming modern precipitation levels, or a cooling of 6.5 °C, assuming a one third reduction in precipitation, would suffice to drive the Waimakariri glacier to the eastern alpine forelands (Canterbury Plains). Our findings demonstrate that the scale of LGM glaciation in the Waimakariri Valley and adjacent major catchments, both in terms of ice volume and downvalley ice extent, has been significantly underestimated. Our observation that high-lying glacial surfaces, so far believed to represent much older glacial episodes, were glaciated during the LGM, challenges the conventional geomorphic model of glaciation in New Zealand where the vertical arrangement of glacial landform-associations is used to assign successively older glaciation ages.

  4. Recalibration of the yellow Rhizocarpon growth curve in the Cordillera Blanca (Peru) and implications for LIA chronology

    NASA Astrophysics Data System (ADS)

    Jomelli, V.; Grancher, D.; Brunstein, D.; Solomina, O.

    2008-01-01

    A new lichen dating method and new moraine observations enabled us to improve the chronology of glacier advances in the Cordillera Blanca (Peru) during the Little Ice Age (LIA). Our results reveal that an early LIA glacial advance occurred around AD 1330 ± 29. However, a second major glacial advance at the beginning of the 17th century overlapped the earlier stage for most glaciers. Hence, this second glacial stage, dated from AD 1630 ± 27, is considered as the LIA maximum glacial advance in the Cordillera Blanca. During the 17th-18th centuries, at least three glacial advances were recorded synchronously for the different glaciers (AD 1670 ± 24, 1730 ± 21, and 1760 ± 19). The moraines corresponding to the two first stages are close to the one in 1630 suggesting a slow recession of about 18% in the total length of the glacier. From the LIA maximum extent to the beginning of the 20th century, the 24 glaciers have retreated a distance of about 1000 m, corresponding to a reduction of 30% in their length. This rate is comparable to that observed during the 20th century. Estimates of palaeo-Equilibrium Line Altitudes show an increase in altitude of about 100 m from the LIA maximum glacial extension at the beginning of the 17th century to the beginning of the 20th century. Because long time series are not available for precipitation and temperature, this glacial retreat is difficult to explain by past climate changes. However, there is a fair correspondence between changes in glacier length and the δ18O recorded in the Quelccaya ice core at a century timescale. Our current knowledge of tropical glaciers and isotope variations leads us to suggest that this common tropical signal reflects a change from a wet LIA to the drier conditions of today. Finally, a remarkable synchronicity is observed with glacial variations in Bolivia, suggesting a common regional climatic pattern during the LIA.

  5. Late Quaternary geomorphic history of a glacial landscape - new sedimentary and chronological data from the Cordillera de Cochabamba (Bolivia)

    NASA Astrophysics Data System (ADS)

    May, J.-H.; Preusser, F.; Zech, R.; Ilgner, J.; Veit, H.

    2009-04-01

    Throughout the Central Andes, glacial landscapes have long been used for the reconstruction of Late Quaternary glaciations and landscape evolution. Much work has focused on the Andes in Peru, Chile and the Bolivian Altiplano, whereas relatively little data has been published on glaciation history in the eastern Andean ranges and slopes. Even less is known with regard to the postglacial evolution of these glacial landscapes. In the Cordillera de Cochabamba (Bolivia), local maximum advances probably peaked around 20-25 ka BP and were followed by significant readvances between ~12-16 ka BP. This generally points to temperature controlled maximum glacial advances along the humid eastern slopes of the Central Andes, which is supported by glacier-climate-modelling studies. However, most studies include only marginal information with regard to the complex geomorphic and sedimentary situation in the Cordillera de Cochabamba. Furthermore, the chronological results are afflicted with several methodological uncertainties inherent to surface exposure dating and call for application of alternative, independent age dating methods. Therefore this study aims at i) documenting and interpreting the complex glacial geomorphology of the Huara Loma valley in the Cordillera de Cochabamba (Bolivia), ii) analyzing the involved units of glacial sediments, and iii) improving the chronological framework by applying optically stimulated luminescence (OSL) and radiocarbon dating (14C). For this purpose, geomorphic mapping was combined with field documentation of sedimentary profiles. The involved sediments were subject to geochemical and mineralogical analysis in order to deduce information on their erosional and weathering histories. In addition, the interpretation of OSL ages from glacial and proglacial sediments integrated several methodological procedures with regard to sample preparation and statistical analysis of the measurements in order to increase the degree of confidence. These combined efforts confirm two major glacial advances in the Cordillera de Cochabamba, which took place during the global LGM and during the Lateglacial. However, their relative chronologies and sedimentary interpretation indicate that the maximum extent of glaciation at Huara Loma was reached during humid Lateglacial times whereas conditions during the LGM were probably too dry.

  6. Paleodust variability since the Last Glacial Maximum and implications for iron inputs to the ocean

    NASA Astrophysics Data System (ADS)

    Albani, S.; Mahowald, N. M.; Murphy, L. N.; Raiswell, R.; Moore, J. K.; Anderson, R. F.; McGee, D.; Bradtmiller, L. I.; Delmonte, B.; Hesse, P. P.; Mayewski, P. A.

    2016-04-01

    Changing climate conditions affect dust emissions and the global dust cycle, which in turn affects climate and biogeochemistry. In this study we use observationally constrained model reconstructions of the global dust cycle since the Last Glacial Maximum, combined with different simplified assumptions of atmospheric and sea ice processing of dust-borne iron, to provide estimates of soluble iron deposition to the oceans. For different climate conditions, we discuss uncertainties in model-based estimates of atmospheric processing and dust deposition to key oceanic regions, highlighting the large degree of uncertainty of this important variable for ocean biogeochemistry and the global carbon cycle. We also show the role of sea ice acting as a time buffer and processing agent, which results in a delayed and pulse-like soluble iron release into the ocean during the melting season, with monthly peaks up to ~17 Gg/month released into the Southern Oceans during the Last Glacial Maximum (LGM).

  7. High resolution windows into early Holocene climate: Sr/(Ca) coral records from the Huon Peninsula

    NASA Astrophysics Data System (ADS)

    McCulloch, Malcolm; Mortimer, Graham; Esat, Tezer; Xianhua, Li; Pillans, Brad; Chappell, John

    1996-02-01

    High-precision measurements of Sr/Ca ratios are reported for Porites corals from the uplifted Holocene coral terraces at Huon Peninsula, Papua New Guinea. The early Holocene Porites have UTh mass spectrometric ages of 8920 ± 60 yr and 7370 ± 50 yr, and δ 234U(t) values of 145 ± 2, similar to modern seawater. The Sr/Ca coral records provide 5-6 year high resolution (near weekly) time windows into early Holocene sea surface temperatures. Seasonal temperature fluctuations are generally in the range of ± 1°C, with occasional excursions of ± 2°C, which may indicate the more frequent recurrence of very strong ENSO (El Niño-Southern Oscillation) events. Mean annual Sr/Ca temperatures of 24.2 ± 1.1°C and 22.9 ± 0.8°C have been obtained, which are ˜ 2-3°C cooler than that exhibited by a modern Porites. These results indicate that, during the early Holocene, the equatorial western Pacific ocean was at least several degrees cooler than present-day temperatures. This is consistent with late glacial coral records from the Caribbean that indicate lower (˜ 6°C) sea surface temperatures for the equatorial oceans. The Huon Peninsula corals also indicate that SSTs were several degrees cooler than those in the Caribbean during the early Holocene. Thus, although the northern hemisphere summer radiation maximum occurred at ˜ 10 ka, there appears to have been a significant lag in the response of the equatorial western Pacific ocean to this warming. Cooler early Holocene sea surface temperatures in the western Pacific may have been due to changing patterns of ocean-atmosphere circulation, resulting from the exposure of large areas of continental shelf in the southeast Asia region, a consequence of lower glacial sea levels. It is likely that ocean temperatures in the Huon Peninsula were influenced by the opening at ˜ 7 ka of the Torres Strait, that now separates New Guinea from the Australian mainland.

  8. Global patterns of declining temperature variability from the Last Glacial Maximum to the Holocene

    NASA Astrophysics Data System (ADS)

    Rehfeld, Kira; Münch, Thomas; Ho, Sze Ling; Laepple, Thomas

    2018-02-01

    Changes in climate variability are as important for society to address as are changes in mean climate. Contrasting temperature variability during the Last Glacial Maximum and the Holocene can provide insights into the relationship between the mean state of the climate and its variability. However, although glacial-interglacial changes in variability have been quantified for Greenland, a global view remains elusive. Here we use a network of marine and terrestrial temperature proxies to show that temperature variability decreased globally by a factor of four as the climate warmed by 3-8 degrees Celsius from the Last Glacial Maximum (around 21,000 years ago) to the Holocene epoch (the past 11,500 years). This decrease had a clear zonal pattern, with little change in the tropics (by a factor of only 1.6-2.8) and greater change in the mid-latitudes of both hemispheres (by a factor of 3.3-14). By contrast, Greenland ice-core records show a reduction in temperature variability by a factor of 73, suggesting influences beyond local temperature or a decoupling of atmospheric and global surface temperature variability for Greenland. The overall pattern of reduced variability can be explained by changes in the meridional temperature gradient, a mechanism that points to further decreases in temperature variability in a warmer future.

  9. Global patterns of declining temperature variability from the Last Glacial Maximum to the Holocene.

    PubMed

    Rehfeld, Kira; Münch, Thomas; Ho, Sze Ling; Laepple, Thomas

    2018-02-15

    Changes in climate variability are as important for society to address as are changes in mean climate. Contrasting temperature variability during the Last Glacial Maximum and the Holocene can provide insights into the relationship between the mean state of the climate and its variability. However, although glacial-interglacial changes in variability have been quantified for Greenland, a global view remains elusive. Here we use a network of marine and terrestrial temperature proxies to show that temperature variability decreased globally by a factor of four as the climate warmed by 3-8 degrees Celsius from the Last Glacial Maximum (around 21,000 years ago) to the Holocene epoch (the past 11,500 years). This decrease had a clear zonal pattern, with little change in the tropics (by a factor of only 1.6-2.8) and greater change in the mid-latitudes of both hemispheres (by a factor of 3.3-14). By contrast, Greenland ice-core records show a reduction in temperature variability by a factor of 73, suggesting influences beyond local temperature or a decoupling of atmospheric and global surface temperature variability for Greenland. The overall pattern of reduced variability can be explained by changes in the meridional temperature gradient, a mechanism that points to further decreases in temperature variability in a warmer future.

  10. Sedimentological imprints of environmental variability at the Balkan Peninsula on the sediment sequence of Lake Ohrid (Macedonia, Albania) between the Mid Pleistocene Transition and present days: The ICDP SCOPSCO project

    NASA Astrophysics Data System (ADS)

    Francke, Alexander; Wagner, Bernd; Leicher, Niklas; Raphael, Gromig; Leng, Melanie; Lacey, Jack; Vogel, Hendrik; Baumgarten, Henrike; Thomas, Wonik; Zanchetta, Giovanni; Roberto, Sulpizio; Krastel, Sebastian; Lindhorst, Katja

    2015-04-01

    The UNESCO World Heritage site of Lake Ohrid in the Balkans is thought to be the oldest, continuously existing lake in Europe. In order to unravel the geological and evolutionary history of the lake, a deep drilling campaign was conducted in spring 2013 under the umbrella of the ICDP SCOPSCO project. At the coring site "DEEP" in central parts of the lake, more than 1,500 m of sediments were recovered down to a penetration depth of 569 m blf. This sediment sequence is assumed to be more than 1.2 Ma old and likely covers the entire lacustrine deposits of the Lake Ohrid Basin. Currently, an age model for the upper 260m of the DEEP- site sequence is available. This age model is based on chronological tie points (tephrochronology), and wiggle matching of down hole logging data and (bio-)geochemistry data (XRF, TIC, TOC) from the core sequence to the global benthic stack LR04 and local insolation patterns. The data suggests that the upper 260 m of the DEEP-site sequence corresponds to the time period between the Mid Pleistocene Transition (MPT) and present days. During this period, the sedimentological properties of the sediments show a strong dependency on environmental variability in the area. Interglacial deposits appear massive or marbled, contain up to 80 % of CaCO3 (high TIC), high amounts of organic matter (high TOC) and biogenic silica (high BSi), and low contents of clastic material. Glacial deposits are predominantly marbled and calcite is generally absent. Similarly, the amounts of organic matter and biogenic silica are low, and glacial sediments predominately consist of clastic matter. Distinct layers of siderite and uniformly distributed Fe- or Mn- oxides occur in the glacial deposits, vivianite concretions occur in both the glacial and interglacial periods. High CaCO3 contents in deposits formed during warm (interglacial) periods are also known from studies on short pilot cores from Lake Ohrid and are triggered by increased productivity in the lake, such as also indicated by enhanced contents of organic matter and biogenic silica. Thereby, CaCO3 precipitation is caused by photosynthesis induced calcite precipitation during algae blooms in spring and early summer. Negligible contents of TIC in deposits formed during glacial periods can be explained by an overall low productivity (low TOC and BSi) and, in addition, by dilution of CaCO3. Dilution of CaCO3 might be a result of more acid bottom water conditions, triggered by improved mixing conditions (less thermal stratification), oxidation of OM and CO2 release from the surface sediments. Oxygenated surface sediments and degradation of organic matter are indicated by the marbled structure of the glacial sediments implying intensive bioturbation, and by TOC/TN ratios around 4, respectively. The high amount of clastic material in deposits from cold (glacial) periods can be a result of mutual dilution with calcite, organic matter and biogenic silica, but might also indicate more intensive erosion in the catchment due to a less dense vegetation cover.

  11. Late Quaternary carbonate accumulation along eastern South Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Crabill, K.; Slowey, N. C.; Foreman, A. D.; Charles, C.

    2016-12-01

    Water masses originating from both the North Atlantic Ocean and the Southern Ocean intersect the Walvis Ridge and Namibian margin of southwest Africa. Changes in the distribution and properties of these water masses through time are reflected by variations in the nature of the sediments accumulating along this margin. A suite of piston and gravity cores that possess sediment records corresponding to the most recent glacial-interglacial cycles were collected from the water depth range of 550 to 3700 meters. Sediment dry bulk density, XRF analyses and the concentration of CaCO3 were precisely determined at regular depth intervals in these cores. Foraminiferal δ18O along with XRF Fe/Ca data provide an age-depth model for key cores. The age-depth model and dry bulk density will be used with the calcium carbonate contents to calculate the accumulation rates of CaCO3 during each MIS 1-5e. The spatial and temporal variability in both the CaCO3 content and the CaCO3 mass accumulation rates along the Namibian continental slope will be described. Based on comparisons of these two parameters, inferences will be made about how variations of CaCO3 production, dilution of by non-CaCO3 sediment components, and dissolution of CaCO3 due to changes in ocean circulation/climate have occurred during intervals of the last glacial-interglacial cycle.

  12. Olea europaea L. in the North Mediterranean Basin during the Pleniglacial and the Early-Middle Holocene

    NASA Astrophysics Data System (ADS)

    Carrión, Yolanda; Ntinou, Maria; Badal, Ernestina

    2010-04-01

    The paper aims to define the natural distribution of Olea europaea L. var. sylvestris (Miller) Lehr. in the North Mediterranean basin during the Pleniglacial and the Early-Middle Holocene by means of the identification of its wood-charcoal and/or wood at prehistoric sites. For this purpose we have reviewed the previously available information and we have combined it with new wood-charcoal analyses data. We have taken under consideration the presence and frequency of O. europaea L. in the available wood-charcoal sequences, the characteristics of the accompanying flora, the associated chrono-cultural contexts, the broader biogeographical context and the AMS dates provided by Olea wood-charcoal or endocarps. According to the available evidence, during the Middle and Late Pleniglacial (ca 59-11.5 ka cal. BP), Olea would have persisted in thermophilous refugia located in the southern areas of the North Mediterranean basin, the southern Levant and the north of Africa. The Last Glacial Maximum (ca 22-18 ka cal. BP) probably reduced the distribution area of Olea. During the Preboreal and the Boreal (ca 11 500-8800 cal. BP) the species started to expand in the thermomediterranean bioclimatic level. In the western Mediterranean, during the Atlantic period (ca 8800-5600 cal. BP), the species became very abundant or dominant in the thermophilous plant formations and expanded to favorable enclaves outside the limits of the thermomediterranean level.

  13. Late Pleistocene glacial chronology of the Retezat Mts, Southern Carpathians, using 10Be exposure ages

    NASA Astrophysics Data System (ADS)

    Ruszkiczay-Rüdiger, Zsófia; Kern, Zoltán; Urdea, Petru; Braucher, Régis; Madarász, Balázs; Schimmelpfennig, Irene

    2015-04-01

    Our knowledge on the timing of glacial advances in the Southern Carpathians is limited. Recently, some attempts have been made to develop an improved temporal framework for the glaciations of the region using cosmogenic 10Be exposure dating. However, glacial chronology of the Romanian Carpathians remains contradictory. E.g. the timing of the maximum ice advance appears to be asynchronous within the area and also with other dated glacial events in Europe. Main objective of our study is to utilize cosmogenic in situ produced 10Be dating to disentangle the contradictions of the Southern Carpathian Late Pleistocene glacial chronology. Firstly, previously published 10Be data are recalculated in accordance with the new half-life, standardization and production rate of 10Be. The recalculated 10Be exposure ages of the second largest (M2) moraines in the Retezat Mts. appear to be ca. 19-24% older than exposure ages calculated by Reuther et al. (2007, Quat. Int. 164-165, 151-169). This contradicts the earlier conclusions suggesting post LGM age of M2 glacial advance and suggests that M2 moraines can be connected to the end of the LGM with final stabilization possibly at the beginning of the Late Glacial. We emphasize that it is ambiguous to correlate directly the exposure-dated glacier chronologies with millennial scale climate changes due to uncertainties in sample collection and in computation of exposure ages from measured nuclide concentrations. New 10Be samples were collected in order to determine the 10Be exposure age of moraines outside the most prominent generation (M2) including the largest and oldest moraine (M1) and the landforms connected to the smallest ice advances (M4), which remained undated so far. The new exposure ages of M2 moraines are well in harmony with the recalculated ages of Reuther at al. (2007). 10Be exposure age of boulders on the smallest moraine suggest that the last glaciers disappeared in the area during the Late Glacial, indicating no glaciation during the Younger Dryas and Holocene. Previous works, based on geomorphologic analogies and pedological properties suggested that the M1 ice advance was older than LGM, and possibly occurred during the MIS4. Our 10Be exposure dating provided LGM ages for boulders on the M1 side moraine. It is question of further research whether these ages show the time when the glacier abandoned the moraine or they only indicate an LGM erosional event affecting an older moraine. If we accept the LGM age of maximum ice extent (M1), our 10Be exposure age data enables the calculation of a mean glacier retreat rate of 1.3 m/a for the period between M1 and M4 (21.4 to 13.6ka). Alternatively, considering only the oldest 10Be exposure age of the M2 moraine, the M2 to M4 (20.2-13.6ka) glacier retreat rate was slightly lower: 1.1 m/a. Our research was supported by the OTKA PD83610, by the MTA-CNRS cooperation (NKM-96/2014), by the Bolyai Scholarship, and by the 'Lendület' program of the HAS (LP2012-27/2012). The 10Be measurements were performed at the ASTER AMS national facility (CEREGE, Aix en Provence, France).

  14. Glaciation and Hydrologic Variability in Tropical South America During the Last 400,000 Years

    NASA Astrophysics Data System (ADS)

    Fritz, S. C.; Baker, P. A.; Seltzer, G. O.; Ekdahl, E. J.; Ballantyne, A.

    2005-12-01

    The expansion and contraction of northern continental ice sheets is a fundamental characteristic of the Quaternary. However, the extent of tropical glaciation is poorly constrained, particularly for periods prior to the Last Glacial Maximum (LGM). Similarly, the magnitude and timing of hydrologic variation in tropical South America is not clearly defined over multiple glacial cycles. Thus, the relative roles of global temperature change and insolation control of the South American Summer Monsoon (SASM) are unclear. We have reconstructed the timing of glaciation and precipitation variability in the tropical Andes of South America from drill cores from Lake Titicaca, Bolivia/Peru. The longest core (site LT01-2B, 235 m water depth) is 136 m and consists of four major silt-dominated units with high magnetic susceptibility, low organic carbon concentration, and no carbonate, which are indicative of extensive glacial activity in the cordillera surrounding the lake. These units alternate with laminated low-susceptibility units, with high carbonate and organic carbon concentrations, which reflect times when detrital input from the watershed was low and lake-level was lowered to below the outlet threshold, driving carbonate precipitation. Thus, the stratigraphy suggests that the core spans four major periods of glaciation and the subsequent interstadials. Core chronology is based on radiocarbon in the uppermost 25m, U-series dates on aragonite laminae, and tuning of the calcium carbonate stratigraphy in the lowermost sediments to the Vostok CO2 record. High-resolution (ca. 100 yr) sampling of sediments spanning the last glacial stage shows distinct millennial-scale variability from 20 - 65 kyr BP. This variability is evident in the periodic deposition of turbidites, which are characterized by low biogenic silica concentrations, elevated benthic diatom abundances, heavy carbon isotopic values, high C/N ratios, and an increase in mean grain size - a composite signal indicative of enhanced input to this deepwater site of material originally deposited in nearshore regions of the lake. U-series ages at the top of the penultimate (pre-Holocene) unit of laminated sediments suggest that the last major low stand of Lake Titicaca dates from MIS 5.5. Diatom data indicate that this was the most saline interval in the recovered sequence and thus suggest that MIS5.5 was the time of maximum aridity. The tuned drill-core magnetic susceptibility record suggests that glacial stages in the tropical Andes were approximately synchronous with high-latitude glacial stages and globally cold climate, with increased glacial activity in the periods 370-322, 300-238, 230-213, 188-139, and 65-15 kyr BP. Overall, the intervals of increased glaciation are periods when Lake Titicaca was deep, fresh, and overflowing, as inferred from calcium carbonate concentration, carbon isotopic values, and the diatom composition. The timing of lake-level change relative to high-latitude climate and insolation variation suggests that the water balance of the tropical Andes was at least as strongly influenced by global temperature change and global-scale boundary conditions as by insolation control of the SASM.

  15. Chironomid record of Late Quaternary climatic and environmental changes from two sites in Central Asia (Tuva Republic, Russia)—local, regional or global causes?

    NASA Astrophysics Data System (ADS)

    Ilyashuk, Boris P.; Ilyashuk, Elena A.

    2007-03-01

    Sediment cores from two mountain lakes (Lake Grusha at 2413 m a.s.l. and Ak-Khol at 2204 m a.s.l.) situated in the Tuva Republic (southern Siberia, Russia), just north of Mongolia, were studied for chironomid fossils in order to infer post-glacial climatic changes and to investigate responses of the lake ecosystems to these changes. The results show that chironomids are responding both to temperature and to changing lake depth, which is regarded as a sensitive proxy of regional effective moisture. The post-glacial history of this mountain region in Central Asia can be divided into seven successive climatic phases: the progressive warming during the last glacial-interglacial transition (ca 15.8-14.6 cal kyr BP), the warm and moist Bølling-Allerød-like interval (ca 14.6-13.1 cal kyr BP), the cool and dry Younger Dryas-like event (ca 13.1-12.1 cal kyr BP), warmer and wetter conditions during ca 12.1-8.5 cal kyr BP, a warm and dry phase ca 8.5-5.9 cal kyr BP, cold and wet conditions during ca 5.9-1.8 cal kyr BP, as well as cold and dry climate within the last 1800 years. The chironomid records reveal patterns of climatic variability during the Late-glacial and Holocene, which can be correlated with abrupt climatic events in the North Atlantic and the Asian monsoon-dominated regimes. Apparently, the water balance of the studied lakes is controlled by the interrelation between the dominant westerly system and the changing influence of the summer monsoon, as well as the influence of alpine glacier meltwater supply. It is possible that monsoon tracks could have reached the southwest Tuva, resulting in an increase in precipitation at ca 14.6-13.1 and ca 12.1-8.5 cal kyr BP, whereas cyclonic westerlies from the North Atlantic were likely responsible for considerable moisture transport accompanying the global Neoglacial cooling at ca 5.9-1.8 cal kyr BP. These events suggest the changes of the regional pattern of atmospheric circulation, which could be in turn induced by the global climatic shifts. Some discrepancies compared with other reconstructions from Central Asia may be associated with regional (spatial) differences between the changing predominant circulation mechanisms and with local differences in uplift and descent of air masses within the complicated mountain landscape. In this paper, we also discuss the possibilities and perspectives for using chironomids in reconstructions of past temperatures and climate-induced changes in water depth of lakes in Central Asia.

  16. Contrasting scaling properties of interglacial and glacial climates

    NASA Astrophysics Data System (ADS)

    Ditlevsen, Peter; Shao, Zhi-Gang

    2017-04-01

    Understanding natural climate variability is essential for assessments of climate change. This is reflected in the scaling properties of climate records. The scaling exponents of the interglacial and the glacial climates are fundamentally different. The Holocene record is monofractal, with a scaling exponent H˜0.7. On the contrary, the glacial record is multifractal, with a significantly higher scaling exponent H˜1.2, indicating a longer persistence time and stronger nonlinearities in the glacial climate. The glacial climate is dominated by the strong multi-millennial Dansgaard-Oeschger (DO) events influencing the long-time correlation. However, by separately analysing the last glacial maximum lacking DO events, here we find the same scaling for that period as for the full glacial period. The unbroken scaling thus indicates that the DO events are part of the natural variability and not externally triggered. At glacial time scales, there is a scale break to a trivial scaling, contrasting the DO events from the similarly saw-tooth-shaped glacial cycles. Ref: Zhi-Gang Shao and Peter Ditlevsen, Nature Comm. 7, 10951, 2016

  17. Lake evolution of the terminal area of Shiyang River drainage in arid China since the last glaciation

    USGS Publications Warehouse

    Shi, Q.; Chen, F.-H.; Zhu, Y.; Madsen, D.

    2002-01-01

    Investigations of geomorphology and sedimentology, and analyses of radiocarbon dates, grain size and carbonate of the sediment at the present-dry closed basin in the terminal area of Shiyang River in arid China were conducted to recover the history of palaeolake change since the last glacial. The terminal area was covered by eolian sand before 13,000 14C BP. Lacustrine deposits covered the eolian sand after 13,000 14C BP, but were succeeded rapidly by eolian or fluvial deposits ca. 11,200-10,000 BP. This fact plus the grain-size distribution and CaCO3 content showed that climate was extremely dry during the last glacial, but wet-dry oscillations characterized the late glacial. A single coalescent lake, over 45 m deep and 2130 km2, formed between 10,000-6400 14C BP in the basin. The lake disintegrated into several shallow carbonate lakes or swamps gradually after 6400 14C BP. Eolian sand reached into the most part of the basin during the period. The lake evolution in the area generally reflects the East Asian summer monsoon history forced by Northern hemisphere insolation. Short time-scale lake fluctuations also existed in the area since the last glacial. ?? 2002 Elsevier Science Ltd and INQUA. All rights reserved.

  18. Vegetation and Climate Change during the Last Deglaciation in the Great Khingan Mountain, Northeastern China

    PubMed Central

    Wu, Jing; Liu, Qiang; Wang, Luo; Chu, Guo-qiang; Liu, Jia-qi

    2016-01-01

    The Great Khingan Mountain range, Northeast China, is located on the northern limit of modern East Asian Summer Monsoon (EASM) and thus highly sensitive to the extension of the EASM from glacial to interglacial modes. Here, we present a high-resolution pollen record covering the last glacial maximum and the early Holocene from a closed crater Lake Moon to reconstruct vegetation history during the glacial-interglacial transition and thus register the evolution of the EASM during the last deglaciation. The vegetation history has gone through distinct changes from subalpine meadow in the last glacial maximum to dry steppe dominated by Artemisia from 20.3 to 17.4 ka BP, subalpine meadow dominated by Cyperaceae and Artemisia between 17.4 and 14.4 ka BP, and forest steppe dominated by Betula and Artemisia after 14.4 ka BP. The pollen-based temperature index demonstrates a gradual warming trend started at around 20.3 ka BP with interruptions of several brief events. Two cold conditions occurred around at 17.2–16.6 ka BP and 12.8–11.8 ka BP, temporally correlating to the Henrich 1 and the Younger Dryas events respectively, 1and abrupt warming events occurred around at 14.4 ka BP and 11.8 ka BP, probably relevant to the beginning of the Bølling-Allerød stages and the Holocene. The pollen-based moisture proxy shows distinct drought condition during the last glacial maximum (20.3–18.0 ka BP) and the Younger Dryas. The climate history based on pollen record of Lake Moon suggests that the regional temperature variability was coherent with the classical climate in the North Atlantic, implying the dominance of the high latitude processes on the EASM evolution from the Last Glacial Maximum (LGM) to early Holocene. The local humidity variability was influenced by the EASM limitedly before the Bølling-Allerød warming, which is mainly controlled by the summer rainfall due to the EASM front covering the Northeast China after that. PMID:26730966

  19. Vegetation and Climate Change during the Last Deglaciation in the Great Khingan Mountain, Northeastern China.

    PubMed

    Wu, Jing; Liu, Qiang; Wang, Luo; Chu, Guo-qiang; Liu, Jia-qi

    2016-01-01

    The Great Khingan Mountain range, Northeast China, is located on the northern limit of modern East Asian Summer Monsoon (EASM) and thus highly sensitive to the extension of the EASM from glacial to interglacial modes. Here, we present a high-resolution pollen record covering the last glacial maximum and the early Holocene from a closed crater Lake Moon to reconstruct vegetation history during the glacial-interglacial transition and thus register the evolution of the EASM during the last deglaciation. The vegetation history has gone through distinct changes from subalpine meadow in the last glacial maximum to dry steppe dominated by Artemisia from 20.3 to 17.4 ka BP, subalpine meadow dominated by Cyperaceae and Artemisia between 17.4 and 14.4 ka BP, and forest steppe dominated by Betula and Artemisia after 14.4 ka BP. The pollen-based temperature index demonstrates a gradual warming trend started at around 20.3 ka BP with interruptions of several brief events. Two cold conditions occurred around at 17.2-16.6 ka BP and 12.8-11.8 ka BP, temporally correlating to the Henrich 1 and the Younger Dryas events respectively, 1and abrupt warming events occurred around at 14.4 ka BP and 11.8 ka BP, probably relevant to the beginning of the Bølling-Allerød stages and the Holocene. The pollen-based moisture proxy shows distinct drought condition during the last glacial maximum (20.3-18.0 ka BP) and the Younger Dryas. The climate history based on pollen record of Lake Moon suggests that the regional temperature variability was coherent with the classical climate in the North Atlantic, implying the dominance of the high latitude processes on the EASM evolution from the Last Glacial Maximum (LGM) to early Holocene. The local humidity variability was influenced by the EASM limitedly before the Bølling-Allerød warming, which is mainly controlled by the summer rainfall due to the EASM front covering the Northeast China after that.

  20. Initial geochemistry data of the Lake Ohrid (Macedonia, Albania) "DEEP" site sediment record: The ICDP SCOPSCO drilling project

    NASA Astrophysics Data System (ADS)

    Francke, Alexander; Wagner, Bernd; Krastel, Sebastian; Lindhorst, Katja; Mantke, Nicole; Klinghardt, Dorothea

    2014-05-01

    Lake Ohrid, located at the border of Macedonia and Albania is about 30 km long, 15 km wide and up to 290 m deep. Formed within a tectonic graben, Lake Ohrid is considered to be the oldest lake in Europe. The ICDP SCOPSCO (Scientific Collaboration of Past Speciation Conditions in Lake Ohrid) deep drilling campaign at Lake Ohrid in spring 2013 aimed (a) to obtain more precise information about the age and origin of the lake, (b) to unravel the seismotectonic history of the lake area including effects of major earthquakes and associated mass wasting events, (c) to obtain a continuous record containing information on volcanic activities and climate changes in the central northern Mediterranean region, and (d) to better understand the impact of major geological/environmental events on general evolutionary patterns and shaping an extraordinary degree of endemic biodiversity as a matter of global significance. Drilling was carried out by DOSECC (Salt Lake City, USA) using the DLDS (Deep Lake Drilling System) with a hydraulic piston corer for surface sediments and rotation drilling for harder, deeper sediments. Overall, about 2,100 m of sediment were recovered from 4 drill sites. At the "DEEP" site in the center of the lake, seismic data indicated a maximum sediment fill of ca. 700 m, of which the uppermost 568 m sediment were recovered. Initial data from core catcher samples and on-site susceptibility measurements indicate that the sediment sequence covers more than 1.2 million years and provides a continuous archive of environmental and climatological variability in the area. Currently, core opening, core description, XRF and MSCL -scanning, core correlation, and sub-sampling of the sediment cores from the "DEEP" site is conducted at the University of Cologne. High-resolution geochemical data obtained from XRF-scanning imply that the sediments from the "DEEP" site are highly sensitive to climate and environmental variations in the Balkan area over the last few glacial-interglacial cycles. Interglacial periods are characterized by high Ca counts, likely associated with a high content of calcite in the sediments. Previous studies have shown that the calcite contents in sediments from Lake Ohrid are predominantly triggered by precipitation of endogenic calcite resulting from enhanced photosynthesis and higher temperatures. Moreover, high Ca counts mostly correspond to low K counts indicating reduced clastic input and a denser vegetation cover in the catchment. In contrast, high K and low Ca counts characterize glacial periods, indicating reduced precipitation of endognic calcite and enhanced deposition of clastic material. The variations in Ca and K counts mainly represent climatic variations on a glacial-interglacial timescale. Inorganic geochemistry data shall also be used to improve the age control of the "DEEP" site sequence. First findings of macroscopic tephra horizons allow a preliminary age control on the sediment succession, and peaks in K, Sr, Zr, and magnetic susceptibility might indicate the occurrence of cryptotephralayers in the sediment sequence.

  1. Evolution of surface and deep water conditions in the Antarctic Southern Ocean across the MPT

    NASA Astrophysics Data System (ADS)

    Hasenfratz, A. P.; Jaccard, S.; Martinez-Garcia, A.; Hodell, D. A.; Vance, D.; Bernasconi, S. M.; Kleiven, H. F.; Haug, G. H.

    2016-12-01

    The mid-Pleistocene transition (MPT; 1.25-0.7 Myr) marked a fundamental change in the periodicity of the climate cycles, shifting from a 41-kyr to a high-amplitude, asymmetric 100-kyr cycle without any noticeable change in orbital forcing. Hypotheses to explain the MPT involve non-linear responses to orbital forcing, changes in glacial dynamics and internal changes in the carbon cycle. Specifically, a decrease in pCO2 during peak ice age conditions and the associated global cooling has been proposed as one of the possible triggers for the MPT. Previous results have indicated that the Southern Ocean provides a coherent two-part mechanism for the timing and amplitude of the glacial/interglacial pCO2 variations. However, there is still much uncertainty and debate regarding the response of the Antarctic Southern Ocean biogeochemistry to changes invoked for the MPT, and its contribution to the proposed pCO2 variations. Here, we show 1.5 Myr-long records of export production, and planktonic (Neogloboquadrina pachyderma) and benthic (Melonis pompilioides) foraminiferal stable isotopes and trace metals from ODP Site 1094 retrieved from the Atlantic sector of the Antarctic Southern Ocean (53.2°S, 5.1°E, 2807m). While glacial planktonic δ18O increases across the MPT, glacial Mg/Ca-derived SST decrease later, around 700 ka, when glacial atmospheric pCO2 has already dropped. As glacial export production that is crucially related to micronutrients upwelled from the subsurface ocean remains unchanged across the past 1.5 Myr, it seems that cooling of the glacial surface ocean did not significantly alter the stability of the water column. Furthermore, paired measurements of benthic δ18O and Mg/Ca enables the determination of seawater δ18O of the deep ocean, which allows us to estimate changes in the density gradient and the salinity of the deep water.

  2. The Glacial-Interglacial Monsoon Recorded by Speleothems from Sulawesi, Indonesia

    NASA Astrophysics Data System (ADS)

    Kimbrough, A. K.; Gagan, M. K.; Dunbar, G. B.; Krause, C.; Hantoro, W. S.; Cheng, H.; Edwards, R. L.; Shen, C. C.; Sun, H.; Cai, B.; Hellstrom, J. C.; Rifai, H.

    2015-12-01

    The Indo-Pacific Warm Pool is a primary source of heat and moisture to the global atmosphere and a key player in tropical and global climate variability. There is mounting evidence that atmospheric convection and oceanic processes in the tropics can modulate global climate on orbital and sub-orbital timescales. Glacial-interglacial cycles represent the largest natural climate changes over the last 800 kyr with each cycle terminated by rapid global warming and sea level rise. Our understanding of the role and response of tropical atmospheric convection during these periods of dramatic warming is limited. We present the first speleothem paleomonsoon record for southwest Sulawesi (5ºS, 119ºE), spanning two glacial-interglacial cycles, including glacial termination IV (~340 kyr BP) and both phases of termination III (~248 and ~220 kyr BP). This unique record is constructed from multiple stalagmites from two separate caves and is based on a multi-proxy approach (δ18O, δ13C, Mg/Ca, Sr/Ca) that provides insight into the mechanisms controlling Australian-Indonesian summer monsoon variability. Speleothem δ18O and trace element data indicate a rapid increase in rainfall at glacial terminations and wet interglacials. Terminations IV, III, and I are each characterized by an abrupt 3‰ decrease in δ18O. Variability in δ18O leading-in to glacial terminations is also similar, and corresponds to October insolation. Prior to deglaciation, there is a distinct shift to higher δ18O that is synchronized with weak monsoon intervals in Chinese speleothem records. The remarkably consistent pattern among terminations implies that the response of tropical convection to changing background climates is well regulated. Furthermore, we find that speleothem δ13C leads δ18O by ~5 kyr during glacial terminations. The early decrease in speleothem δ13C may reflect the response of tropical vegetation to rising atmospheric CO2 and temperature, rather than regional changes in rainfall.

  3. Post-Glacial Climate Forcing of Surface Processes in the Ganges-Brahmaputra Basin and Implications for the Global Carbon Cycle

    NASA Astrophysics Data System (ADS)

    Hein, C. J.; Galy, V.; France-Lanord, C.; Galy, A.; Kudrass, H. R.; Peucker-Ehrenbrink, B.

    2016-12-01

    Silicate weathering coupled with carbonate precipitation and organic carbon (OC) burial in marine sediments are the primary mechanisms sequestering atmospheric CO2 over a range of timescales. The efficiency of both processes has long been mechanistically linked to climate: increased atmospheric CO2 sequestration under warm/wet conditions acts as a negative feedback, thereby contributing to global climate regulation. Over glacial-interglacial timescales, climate has been proposed to control the export rate of terrestrial silicate weathering products and terrestrial OC to river-dominated margins, as well as the rates of chemical weathering (i.e., the efficiency of carbon sequestration). Focused on the Ganges-Brahmaputra drainage basin, this study quantifies the relative role of climate change in the efficiency of silicate weathering and OC burial following the last glacial maximum. Stable hydrogen (δD) and carbon (δ13C) isotopic compositions of terrestrial plant wax compounds preserved in the Bengal Fan channel-levee system capture variations in the strength of the Indian summer monsoon and vegetation dynamics. Specifically, a 40‰ shift in δD and a 4‰ shift in both bulk OC and plant wax δ13C values between the late glacial and mid-Holocene, followed by a return to more intermediate values during the late Holocene, correlate well with regional post-glacial paleoclimate records. Sediment provenance proxies (Sr, Nd isotopic compositions) reveal that these changes coincided with a focusing of erosion on the southern flank of the Himalayan range during periods of greater monsoon strength and enhanced sediment discharge. However, OC loading, and thus carbon burial efficiency, in the Bengal Fan remained constant through time, demonstrating the primacy of physical erosion and climate-driven sediment export in marine OC sequestration. In contrast, a gradual increase in K/Si* and Ca/Si, and decrease in H2O+/Si*, throughout the study period may demonstrate the decoupling of climate and silicate weathering during the late Holocene, if those ratios are valid proxies for catchment-scale chemical weathering intensity. Together, these results reveal the dominant feedback between climate and sediment-export / OC-burial within the Ganges-Brahmaputra / Bengal Fan system following deglaciation.

  4. Impact of the Agulhas Return Current on the glacial Subantarctic region in the South Indian Ocean

    NASA Astrophysics Data System (ADS)

    Ikehara, M.; Crosta, X.; Manoj, M. C.

    2017-12-01

    The Southern Ocean has played an important role in the evolution of the global climate system. The Southern Ocean circulation is dominated by the Antarctic Circumpolar Current (ACC), the world's longest and largest current system. Sea ice coverage on sea surface strongly affects the climate of the Southern Hemisphere through its impacts on the energy and gas budget, on the atmospheric circulation, on the hydrological cycle, and on the biological productivity. The Agulhas Return Current (ARC) originates from the Agulhas Current, the major western boundary current in the Indian Ocean, and transports heat from subtropical to subantarctic region. It's thought that the Agulhas leakage from the Indian Ocean to the Atlantic was reduced for the last glacial due to a northward shift of the westerlies and ACC, however, there are still unknown yet how the ARC was responded to the reduced Agulhas leakage. A piston core DCR-1PC was collected from the Del Caño Rise (46°S, 44°E, 2632m), Indian sector of the Southern Ocean. Core site located in the Subantarctic region between the Subtropical Front (STF) and Subantarctic Front (SAF). Age model of the core was established by radiocarbon dating of planktic foraminifer Globorotalia bulloides and oxygen isotope stratigraphy of benthic foraminifers Cibicidoides wuellerstorfi and Melonis bareelanus. Sediment of DCR-1PC show the cyclic changes of diatom/carbonate ooze sedimentation corresponding to Southern Ocean fronts' migrations on glacial-interglacial timescales. Records of ice-rafted debris (IRD) and oxygen isotope in planktic foraminfer G. bulloides suggest that the melting of sea ice was significantly increased during the last glacial maximum (LGM) in the Subantarctic surface water. Diatom assemblage based summer SST also shows the relative warmer condition in the Subantarctic during the LGM. These results might be explained by the strong influence of the Agulhas Return Current during the LGM in the Subantarctic. The reduced Agulhas leakage due to a northward shift of the westerlies and ACC impacted significantly on sea ice melting in the glacial Subantarctic region in the South Indian Ocean.

  5. The Cenozoic history of East Antarctic subglacial erosion and sediment flux from the offshore detrital thermochronometric record

    NASA Astrophysics Data System (ADS)

    Thomson, S. N.; Reiners, P. W.; Tochilin, C. J.; Hemming, S. R.; Gehrels, G. E.

    2011-12-01

    To improve and better quantify the record of subglacial erosion and landscape evolution in East Antarctica since the inception of the East Antarctic ice sheet (EAIS) at 34 Ma we have developed a novel technique to triple-date single grains of detrital apatite by U-Pb, fission track, and (U-Th)/He dating. We applied this method to offshore sediments deposited from the Cretaceous through Holocene in Prydz Bay. The modern source region of Prydz Bay incorporates the Lambert Glacier catchment that drains some 20% of the EAIS. In pre-glacial times, landscape reconstructions and sediment analysis imply that Prydz Bay was the site of deposition of fluvial sediments draining large parts of the East Antarctic craton including parts of the now-subglacial Gamburtsev Mountains. Apatite U-Pb ages from samples through the whole stratigraphic section show a dominant Pan-African age signature (ca. 500 Ma) implying much of the Lambert catchment experienced Pan-African metamorphism to temperatures > ca. 500°C. Pre-glacial Late Cretaceous and Eocene fluvial sandstones are characterized by old apatite fission track (AFT) and (U-Th)/He (AHe) ages between about 300 and 220 Ma. AFT and AHe single grain age pairs show two distinct groups, one indicative of fast cooling and erosion during the Permian followed by residence at low near-surface temperatures until the Eocene, and the other indicative of more constant, but very slow erosion rates (<0.02 km/Myr) since the Permian. A few ages between 110-120 Ma are seen in some Late Cretaceous sediments diagnostic of resetting related to local basic magmatism associated with Kerguelen plume activity seen in very localized catchment bedrock exposures. Importantly, our thermochronometric data from pre-glacial (Eocene and older) sediments show no evidence for any enhanced Cretaceous erosion in the Lambert Graben catchment area, despite the almost certain presence of the >2500 m high Gamburtsev mountains. These old ages are indicative of a slowly eroding, low relief landscape since the Permian, and are consistent with the widespread pre-glacial planar erosion surface seen in much of East Antarctica. AFT and AHe age distributions in post-glacial late Miocene to Holocene diamictite show a spread to significantly younger ages (mean ages of ca. 200±50 and 80±30 Ma, respectively). These younger ages are diagnostic of locally enhanced catchment erosion rates in excess of 0.1 km/Myr. Modeled predictions of the age-temperature (depth) profile at 34 Ma indicate the youngest detrital AFT-AHe age pairs seen in sediments as old as late Miocene represent grains previously resident at temperatures of 40-55°C (ca. 2 km) prior to the onset of glaciation. This is in excellent agreement with published morphologic estimates of >2 km of glacial incision into the pre-glacial peneplain at the head of the Lambert glacier. Our results imply that the majority of glacial incision and erosion in East Antarctica was accomplished sometime between the earliest Oligocene and late Miocene.

  6. Late-glacial to Holocene environmental changes and climate variability: evidence from Voldafjorden, western Norway

    NASA Astrophysics Data System (ADS)

    Sejrup, H. P.; Haflidason, H.; Flatebø, T.; Klitgaard Kristensen, D.; Grøsfjeld, K.; Larsen, E.

    2001-02-01

    Sedimentological, micropalaeontological (benthic foraminifers and dinoflagellate cysts), stable isotope data and AMS 14C datings on cores and surface samples, in addition to acoustic data, have been obtained from Voldafjorden, western Norway. Based on these data the late glacial and Holocene sedimentological processes and variability in circulation and fjord environments are outlined. Glacial marine sedimentation prevailed in the Voldafjorden between 11.0 kyr and 9.2 kyr BP (radiocarbon years). In the later part of the Allerød period, and for the rest of the Holocene, there was deposition of fine-grained normal marine sediments in the fjord basin. Turbidite layers, recorded in core material and on acoustic profiles, dated to ca. 2.1, 6.9-7.6, ca. 9.6 and ca. 11.0 kyr BP, interrupted the marine sedimentation. The event dated to between 6.9 and 7.6 kyr BP probably corresponds to a tsunami resulting from large-scale sliding on the continental margin off Norway (the Storegga Tsunami).During the later part of the Allerød period, Voldafjorden had a strongly stratified water column with cold bottom water and warm surface water, reaching interglacial temperatures during the summer seasons. During the Younger Dryas cold event there was a return to arctic sea-surface summer temperatures, possibly with year-round sea-ice cover, the entire benthic fauna being composed of arctic species. The first strong Holocene warming, observed simultaneously in bottom and sea-surface temperature proxies, occurred at ca. 10.1 kyr BP. Bottom water proxies indicate two cold periods, possibly with 2°C lowering of temperatures, at ca. 10.0 (PBO 1) and at 9.8 kyr BP (PBO 2). These events may both result from catastrophic outbursts of Baltic glacial lake water. The remainder of the Holocene experienced variability in basin water temperature, indicated by oxygen isotope measurements with an amplitude of ca. 2°C, with cooler periods at ca. 8.4-9.0, 5.6, 5.2, 4.6, 4.2, 3.5, 2.2, 1.2 and 0.4-0.8 kyr BP. Changes in the fjord hydrology through the past 11.3 kyr show a close correspondence, both in amplitude and timing of events, recorded in cores from the Norwegian Sea region and the North Atlantic. These data suggest a close relationship between fjord environments and variability in large-scale oceanic circulation.

  7. Changes in the Global Hydrological Cycle: Lessons from Modeling Lake Levels at the Last Glacial Maximum

    NASA Astrophysics Data System (ADS)

    Lowry, D. P.; Morrill, C.

    2011-12-01

    Geologic evidence shows that lake levels in currently arid regions were higher and lakes in currently wet regions were lower during the Last Glacial Maximum (LGM). Current hypotheses used to explain these lake level changes include the thermodynamic hypothesis, in which decreased tropospheric water vapor coupled with patterns of convergence and divergence caused dry areas to become more wet and vice versa, the dynamic hypothesis, in which shifts in the jet stream and Inter-Tropical Convergence Zone (ITCZ) altered precipitation patterns, and the evaporation hypothesis, in which lake expansions are attributed to reduced evaporation in a colder climate. This modeling study uses the output of four climate models participating in phase 2 of the Paleoclimate Modeling Intercomparison Project (PMIP2) as input into a lake energy-balance model, in order to test the accuracy of the models and understand the causes of lake level changes. We model five lakes which include the Great Basin lakes, USA; Lake Petén Itzá, Guatemala; Lake Caçó, northern Brazil; Lake Tauca (Titicaca), Bolivia and Peru; and Lake Cari-Laufquen, Argentina. These lakes create a transect through the drylands of North America through the tropics and to the drylands of South America. The models accurately recreate LGM conditions in 14 out of 20 simulations, with the Great Basin lakes being the most robust and Lake Caçó being the least robust, due to model biases in portraying the ITCZ over South America. An analysis of the atmospheric moisture budget from one of the climate models shows that thermodynamic processes contribute most significantly to precipitation changes over the Great Basin, while dynamic processes are most significant for the other lakes. Lake Cari-Laufquen shows a lake expansion that is most likely attributed to reduced evaporation rather than changes in regional precipitation, suggesting that lake levels alone may not be the best indicator of how much precipitation this region receives. Our results indicate that the causes of hydrologic fluctuations are spatially diverse and that future projections will need to consider more than just thermodynamic changes for accurate regional predictions.

  8. Late Quaternary paleoenvironments and paleoclimatic conditions in the distal Andean piedmont, southern Mendoza, Argentina

    NASA Astrophysics Data System (ADS)

    Tripaldi, Alfonsina; Zárate, Marcelo A.; Brook, George A.; Li, Guo-Qiang

    2011-09-01

    The Andean piedmont of Mendoza is a semiarid region covered by extensive and partially vegetated dune fields consisting of mostly inactive aeolian landforms of diverse size and morphology. This paper is focused on the San Rafael plain (SRP) environment, situated in the distal Andean piedmont of Mendoza (34° 30'S), and reports the sedimentology and OSL chronology of two representative exposures of late Quaternary deposits, including their paleoenvironmental and paleoclimatic significance. Eleven facies, including channel, floodplain, fluvio-aeolian interaction, and reworked pyroclastic and aeolian deposits, were described and grouped into two facies associations (FA1 and FA2). FA1 was formed by unconfined sheet flows, minor channelized streams and fluvial-aeolian interaction processes. FA2 was interpreted as aeolian dune and sand-sheet deposits. OSL chronology from the SRP sedimentary record indicates that between ca. 58-39 ka and ca. 36-24 ka (MIS 3), aggradation was governed by ephemeral fluvial processes (FA1) under generally semiarid conditions. During MIS 2, the last glacial maximum (ca. 24-12 ka), a major climatic shift to more arid conditions is documented by significant aeolian activity (FA2) that became the dominant sedimentation process north of the Diamante-Atuel fluvial system. The inferred paleoenvironmental conditions from the SRP sections are in broad agreement with regional evidence.

  9. Reconstruction of the Indian monsoon variability and its environmental impacts over the northwestern Arabian Sea and its surrounding continents since the Last Glacial Maximum: Multi-proxy study of a marine core in the Gulf of Aden

    NASA Astrophysics Data System (ADS)

    Wiem, F.; Bassinot, F. C.; Lézine, A. M.

    2016-12-01

    Core MD92-1002 retrieved from the Gulf of Aden provides a unique paleoenvironmental and paleoclimatic record to study the evolution of continental and marine environments since 20 ka. Palynological analyses (pollen grains, spores, dinoflagellate cysts) were performed and data were combined with geochemical (δ18O, X-Ray Fluorescence) and sedimentological parameters (sedimentation rates, Total Organic Carbon (TOC)). Pollen grains reveal regional hyper-arid conditions during the glacial period, characterized by sparse vegetation cover of Saharo-Sindian origin. The abundance of steppic taxa associated with charcoal fragments suggests strong wind activity. Humidity tracers increased from 14.9 ka and reached their maximum between 9 and 7.5 ka. This maximum is characterized by the development of the tropical mangrove Rhizophora in the Gulf of Aden, reflecting tropical conditions with summer monsoon rains. The timing of events deduced from palynological records and continental data such as lacustrine and palustrine deposits and speleothems from Socotra and Oman, reveals a northward and westward shift of the Inter-Tropical Convergence Zone (ITCZ) summer position at the onset of the Holocene Humid Period (HHP). Dinoflagellate cyst assemblages suggest that the glacial period was characterized by weakened upwellings and well-ventilated bottom water. Primary productivity in the Gulf of Aden increased from 14.5 ka and reached its maximum during the glacial/interglacial transition between 12.6 and 10.8 ka. It took place about 3 ka earlier than the peak intensity of upwellings off the Oman margin, which is associated with the maximum of SW monsoonal winds. This singularity could be explained by the landlocked position of the gulf, at the junction between two orthogonal wind regimes during the boreal summer season (SW monsoon winds prevailing to the East of the Gulf, while NW winds blow along the main axis of the Red Sea to the West). TOC analysis reveals a Glacial-Interglacial variability that is largely decoupled from our reconstruction of surface productivity, suggesting that organic content is mainly controlled by preservation at the sea floor.

  10. Surface Nutrient Utilisation and Productivity During Glacial-Interglacial Periods from the Equatorial Indian Ocean

    NASA Astrophysics Data System (ADS)

    R, C. K.; Bhushan, R.; Agnihotri, R.; Sawlani, R.; Jull, A. J. T.

    2016-12-01

    Seawaters and underlying sediments off Sri Lanka provide a unique marine realm affected by both branches of Northern Indian Ocean i.e. Arabian Sea (AS) and Bay of Bengal (BOB). AS and BOB are known for their distinct response to southwest monsoon. AS experiencing mainly winds and upwelling while BOB receives precipitation driven surface runoff from the Indian sub-continent. Multiple proxies were measured on a radiocarbon dated sediment core raised off Sri Lanka; their down core variations were used to understand oceanic history (nutrient utilisation, surface productivity, nature of organic matter) spanning last glacial-interglacial cycle ( 26 to 2.5 ka BP). Variations in CaCO3, biogenic silica (BSi) and δ15N from 26 ka to 12.5 ka BP indicate the region was experiencing high surface productivity with probably reduced surface nutrient utilisation efficiency. Sedimentary δ15N depth profile is decoupled from down core variations of major productivity indices (e.g. CaCO3, OC), hinting plausibly partial utilization of nutrients in the mixed layer (photic zone). δ13C of OC and C/N (wt. ratio) clearly reveal the terrestrial origin of organic matter at 15 ka BP, a period known for witnessing onset of deglaciation in northern hemisphere. δ13C minimum at 9 ka BP indicates intense monsoonal activity during this time coinciding well with solar insolation (June) maximum of the northern hemisphere. With the onset of Holocene ( 11 ka BP), δ15N variations appear to correlate with BSi and Ba/Ti indicating enhanced utilization of available nutrients at surface. Suggesting surface productivity over the region was probably micro-nutrient limited. The increased inventory of terrestrial runoff in Holocene probably demonstrates enhanced carbon sequestration capability of the region.

  11. The Evolution of Deep Ocean Chemistry and Respired Carbon in the Eastern Equatorial Pacific Over the Last Deglaciation

    NASA Astrophysics Data System (ADS)

    de la Fuente, Maria; Calvo, Eva; Skinner, Luke; Pelejero, Carles; Evans, David; Müller, Wolfgang; Povea, Patricia; Cacho, Isabel

    2017-12-01

    It has been shown that the deep Eastern Equatorial Pacific (EEP) region was poorly ventilated during the Last Glacial Maximum (LGM) relative to Holocene values. This finding suggests a more efficient biological pump, which indirectly supports the idea of increased carbon storage in the deep ocean contributing to lower atmospheric CO2 during the last glacial. However, proxies related to respired carbon are needed in order to directly test this proposition. Here we present Cibicides wuellerstorfi B/Ca ratios from Ocean Drilling Program Site 1240 measured by laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS) as a proxy for deep water carbonate saturation state (Δ[CO32-], and therefore [CO32-]), along with δ13C measurements. In addition, the U/Ca ratio in foraminiferal coatings has been analyzed as an indicator of oxygenation changes. Our results show lower [CO32-], δ13C, and [O2] values during the LGM, which would be consistent with higher respired carbon levels in the deep EEP driven, at least in part, by reduced deep water ventilation. However, the difference between LGM and Holocene [CO32-] observed at our site is relatively small, in accordance with other records from across the Pacific, suggesting that a "counteracting" mechanism, such as seafloor carbonate dissolution, also played a role. If so, this mechanism would have increased average ocean alkalinity, allowing even more atmospheric CO2 to be "sequestered" by the ocean. Therefore, the deep Pacific Ocean very likely stored a significant amount of atmospheric CO2 during the LGM, specifically due to a more efficient biological carbon pump and also an increase in average ocean alkalinity.

  12. A Chronology of Late-Glacial and Holocene Advances of Quelccaya Ice Cap, Peru, Based on 10Be and Radiocarbon Dating

    NASA Astrophysics Data System (ADS)

    Kelly, M. A.; Lowell, T. V.; Schaefer, J. M.

    2007-12-01

    The Quelccaya Ice Cap region in the southeastern Peruvian Andes (~13-14°S latitude) is a key location for the development of late-glacial and Holocene terrestrial paleoclimate records in the tropics. We present a chronology of past extents of Quelccaya Ice Cap based on ~thirty internally consistent 10Be dates of boulders on moraines and bedrock as well as twenty radiocarbon dates of organic material associated with moraines. Based on results from both dating methods, we suggest that significant advances of Quelccaya Ice Cap occurred during late-glacial time, at ~12,700-11,400 yr BP, and during Late Holocene time ~400-300 yr BP. Radiocarbon dating of organic material associated with moraines provides maximum and minimum ages for ice advances and recessions, respectively, thus providing an independent check on 10Be dates of boulders on moraines. The opportunity to use both 10Be and radiocarbon dating makes the Quelccaya Ice Cap region a potentially important low-latitude calibration site for production rates of cosmogenic nuclides. Our radiocarbon chronology provides a tighter constraint on maximum ages of late-glacial and Late Holocene ice advances. Upcoming field research will obtain organic material for radiocarbon dating to improve minimum age constrains for late-glacial and Late Holocene ice recessions.

  13. How Many Seals Were There? The Global Shelf Loss during the Last Glacial Maximum and Its Effect on the Size and Distribution of Grey Seal Populations

    PubMed Central

    Boehme, Lars; Thompson, Dave; Fedak, Mike; Bowen, Don; Hammill, Mike O.; Stenson, Garry B.

    2012-01-01

    Predicting how marine mammal populations respond to habitat changes will be essential for developing conservation management strategies in the 21st century. Responses to previous environmental change may be informative in the development of predictive models. Here we describe the likely effects of the last ice age on grey seal population size and distribution. We use satellite telemetry data to define grey seal foraging habitat in terms of the temperature and depth ranges exploited by the contemporary populations. We estimate the available extent of such habitat in the North Atlantic at present (between 1.42·106 km2 and 2.07·106 km2) and at the last glacial maximum (between 4.74·104 km2 and 2.11·105 km2); taking account of glacial and seasonal sea-ice coverage, estimated reductions of sea-level (123 m) and sea surface temperature hind-casts. Most of the extensive continental shelf waters (North Sea, Baltic Sea and Scotian Shelf), currently supporting >95% of grey seals, were unavailable during the last glacial maximum. A combination of lower sea-level and extensive ice-sheets, massively increased seasonal sea-ice coverage and southerly extent of cold water would have pushed grey seals into areas with no significant shelf waters. The habitat during the last glacial maximum might have been as small as 3% of today's extent and grey seal populations may have fallen to similarly low numbers. An alternative scenario involving a major change to a pelagic or bathy-pelagic foraging niche cannot be discounted. However, hooded seals currently dominate that niche and may have excluded grey seals from such habitat. If as seems likely, the grey seal population fell to very low levels it would have remained low for several thousand years before expanding into current habitats over the past 12,000 years or so. PMID:23300843

  14. Ca isotopes, chemical weathering, and geomorphic controls on long-term climate

    NASA Astrophysics Data System (ADS)

    Moore, J.; Jacobson, A. D.; Holmden, C. E.; Craw, D.

    2009-12-01

    Calcium isotope geochemistry (δ44Ca) offers a unique opportunity to directly quantify proportions of riverine Ca originating from silicate versus carbonate weathering, which is essential for understanding how geomorphic processes affecting landscape evolution, such as tectonic uplift and glaciation, influence the long-term cycling of atmospheric CO2. We measured the elemental and δ44Ca chemistry of river and rock samples from the New Zealand Southern Alps. In combination with our geochemical data, we used runoff and suspended sediment fluxes to elucidate relationships between chemical weathering, mechanical erosion, and long-term climate. The S. Alps have uniform bedrock chemistry but significant tectonic and climatic gradients. West of the main topographic divide, watersheds drain schist and experience high runoff, uplift, and erosion rates. East of the main divide, watersheds drain greywacke or schist and experience lower runoff, uplift, and erosion rates. Glaciated watersheds with high erosion rates are present throughout the mountain range. Both schist and greywacke contain up to 3% metamorphic and hydrothermal calcite. Waters exhibit two-component mixing between calcite and silicate end-members when plotted as δ44Ca versus Ca/Sr. Scatter about the mixing curve is generally smaller than the analytical uncertainty of the measurements and likely reflects variability of the end-member compositions rather than fractionation. We used the mixing relationships to calculate percentages of Ca from silicate weathering. Rivers draining greywacke average 27.6% of Ca from silicate weathering with glaciated and non-glaciated watersheds yielding 41.8 and 19.5%, respectively. Rivers draining schist average 9.8% with glaciated and non-glaciated watersheds yielding 17.7 and 3.9%, respectively. Although Ca fluxes are larger west of the main divide where erosion and runoff are higher, the percentage of Ca from silicate weathering is smaller. Hence, long-term atmospheric CO2 consumption rates do not increase linearly with mechanical erosion because erosion continuously exposes fresh calcite. For non-glacial watersheds, δ44Ca and traditional Ca/Na mixing models yield similar results. However, a substantial difference exists for glacial watersheds. We think δ44Ca is a more sensitive tracer as the difference likely reflects glacial communition, which facilitates rapid and non-stoichiometric release of Ca ions from freshly cleaved silicate surfaces.¶ This study demonstrates the utility of using δ44Ca to trace silicate versus carbonate sources of riverine Ca. Our findings support previous contentions that much of the riverine Ca flux emanating from active orogens originates from carbonate weathering, which is not a sink for atmospheric CO2 over geologic timescales. However, our findings also reveal that silicate weathering and atmospheric CO2 consumption rates in glaciated watersheds are higher than previously realized.

  15. The loess-paleosol profile Datthausen, on the penultimate-glacial terrace of the upper Danube River: Luminescence dating and interpretation

    NASA Astrophysics Data System (ADS)

    Kadereit, Annette; Sauer, Daniela; Kühn, Peter; Herrmann, Ludger; Kösel, Michael; Miller, Christopher; Shinonaga, Taeko; Kreutzer, Sebastian; Starkovich, Britt

    2015-04-01

    The loess-paleosol profile Datthausen is situated on the penultimate-glacial (Würmian) terrace of the upper Danube River in southern Germany. The sequence of reworked, mostly sandy loess deposits exhibits brownish, loamy paleosols in its lower part and slightly de-carbonated and hydromorphic horizons in its upper part. The stratigraphic bisection is interpreted as the transition from the terrestrial Middle Pleniglacial (Middle Würmian) to the Upper Pleniglacial (Upper Würmian). This interpretation is supported by the observation that the upper two of the loamy paleosols show an olive tint and features of sediment reworking at the top (see Sauer et al. in this session). A similar stratigraphic pattern was observed in other central European loess-paleosol sections (Schönhals et al. 1964, E&G 15: 199-206) and was recently corroborated for, e.g., Nussloch on the Upper Rhine and Schwalbenberg II on the Middle Rhine (Antoine et al. 2009, QSR 28: 2955-2973; Schirmer 2012, E&G 61: 32-47). However, the chronometric position of the terrestrial Middle Pleniglacial to Upper Pleniglacial (MPG/UPG) transition is still under debate, as are the palaeoclimatic triggers controlling loess and soil formation. Valuable information hereon may be gained by matching the terrestrial chronologies with the marine and Greenland ice-core records. The chronometry of the Datthausen section is based on blue-light stimulated luminescence (BLSL) dating of small aliquots (ca. 200-500 grains) of quartz coarse grains (125-212 µm), using a single-aliquot regeneration (SAR) protocol (Murray & Wintle 2000, Rad. Meas. 32: 57-73) and a minimum-age model (Galbraith et al. 1999, Archaeometry 41: 339-364). Formation of the paleosols was likely promoted during the warmer Greenland Interstadials (GIS). Luminescence dating on samples taken from these paleosols determines the time of sediment deposition that preceded the soil formation in the respective sediment. We sampled two horizons below and three horizons above the MPG/UPG-boundary. A BLSL-age around ca. 37-35 ka for the lowermost sampled paleosol (6Bg5) suggests soil formation during a period matching GIS7 to GIS5. Therefore, the paleosol could conform to the Lohne Soil at Nussloch and Schwalbenberg II. A BLSL-age around ca. 29 ka for the uppermost MPG-palaeosol (5Bg4) may indicate soil formation during GIS4 or GIS3. Fragments of snail shells in the lowermost dated UPG-horizon (3Bw1) point to a reworked soil sediment. BLSL-dating yielded an age around ca. 26-27 ka. Therefore, at Datthausen the MPG/UPG transition appears to conform to the transition from marine/oxygen isotope stage (MIS/OIS) 3 to 2. De-carbonated horizon 2Bg1 (around ca. 23 ka) may possibly match GIS2. Hydromorphic horizon Cg2 (around ca. 22 ka) fits in a later period of the last glacial maximum (LGM). Correlations between the loess-paleosol sequence and ice-core records are challenging as the luminescence ages have uncertainties of ca. 10 % (1-sigma). Further, the sediments appear partially bleached and, partly affected by bio- or cryturbation. Overall, the chronometry fits to the field observations and the results of the pedological analyses, but the MPG/UPG transition appears to start slightly later than at Nussloch and Schwalbenberg II, where it precedes the MIS3/MIS2 boundary.

  16. Comparison of Glacial Records From 10°S and 11°S in the Peruvian Andes Suggests Similar Forcings but Different Local Influences

    NASA Astrophysics Data System (ADS)

    Smith, J. A.; Rodbell, D. T.

    2010-12-01

    Moraine records of glaciation from three sites in the central Peruvian Andes are broadly consistent over the last glacial cycle (since MIS 5). Surface-exposure dating (10Be) of moraines east and west of Lake Junin (11°00'S, 76°00'W, 4082 masl) and 180 km northwest at the Nevado Jeulla Rajo (NJR) massif (10°00'S, 77°16'W) at the southern end of the Cordillera Blanca suggests a link between glacial advances and increased precipitation associated with Heinrich events. On the eastern side of Lake Junin, the most extensive moraines are >150 ka, but end moraines farther upvalley date to the local last glacial maximum (LLGM, 25-30 ka) and a late-glacial stillstand or readvance (14-18 ka). Surface-exposure ages on a moraine and bedrock in the Santuario Nacional Bosque de Piedras de Huayllay (BPH) on the western side of Lake Junin (10°59'S, 76°20'W) are consistent with 10Be ages on younger moraines on the eastern side: ~26 and ~20 ka on two quartz boulders, ~14-15 ka on four ignimbrite boulders, and ~45 ka on bedrock below a trimline in the valley wall. The NJR massif (ca. 5600 masl) hosts a number of small glaciers within a cirque on its southwestern face; large lateral moraines extend onto the Conococha Plain (ca. 4050 masl) from west-facing valleys. Fault scarps on moraines and valley floors on the western side of NJR show the trace of the active, west-dipping Cordillera Blanca Normal Fault (CBNF). At NJR, 10Be ages indicate that the largest lateral moraines were deposited during similar intervals (27-32 ka and 15-18 ka) to the younger moraines in the eastern Junin valleys and BPH. Differences between the Junin/BPH and NJR records are intriguing. NJR lacks the morphologically distinct pre-MIS 5 moraines that are present in valleys east of Lake Junin, although the Conococha Plain adjacent to NJR is underlain by till and outwash that is likely >50 ka, based on 10Be ages of surface cobbles. At NJR, avulsion of two glacial valleys preserved older, smaller pairs of lateral moraines that are cross-cut by larger, younger moraines. One pair of cross-cut moraines has been dated (56-65 ka) and may be the first geomorphologically distinct evidence of an advance during MIS 4 identified in the region; correlative moraines were apparently not preserved in the Junin valleys. The changes in ice-flow direction at NJR may be related to movement on the CBNF that changed the slope of the Conococha Plain onto which ice flowed. We are in the process of dating additional cross-cutting moraines and moraines offset by the CBNF to gain a better understanding of the timing of the ice-flow shifts. Numerical dating of faulted moraines also provides a means of determining apparent slip rates on a fault. Preliminary results at NJR suggest an apparent slip rate of 2.2-2.8 mm/yr for the CBNF where it offsets one of the late-glacial moraines (15-18 ka).

  17. Accurate and Precise Bottom Water Paleotemperatures from Aragonitic Benthic Foraminiferal Li/Mg: Calibration, Theory, and Application

    NASA Astrophysics Data System (ADS)

    Marchitto, T. M., Jr.; Valley, S.; Lynch-Stieglitz, J.

    2015-12-01

    While great progress has been made in reconstructing past sea surface temperatures, reliable bottom water paleotemperature measurements are not routinely available. We suggest that Li/Mg ratios in biogenic aragonites, particularly in the cosmopolitan benthic foraminifer Hoeglundina elegans, have the potential to bridge this gap. Core top calibration shows that H. elegans Li/Mg decreases by 5.5% per °C (r2 = 0.91), with a relationship that is nearly identical to that displayed by a wide range of corals (r2 = 0.95). The fact that such disparate organisms behave so similarly suggests to us that thermodynamics are shining through the 'vital effects' that so often plague paleoceanographic proxies. We hypothesize that Ca2+ pumping causes Li/Ca and Mg/Ca ratios in the organisms' calcification pools to decline, while Li/Mg remains constant. Rayleigh fractionation has the opposite effect on calcification pool Li/Ca and Mg/Ca (they rise), while Li/Mg still remains essentially constant. Hence any environmental influences on Ca2+ pumping and/or Rayleigh fractionation, such as seawater carbonate chemistry, have no measurable effects on aragonite Li/Mg. Our first downcore test of the Li/Mg proxy is performed in core KNR166-2-26JPC from 546 m water depth in the Florida Straits. Benthic foraminiferal δ18O was previously used to document decreased seawater density during both Heinrich Stadial 1 (HS1) and the Younger Dryas (YD), consistent with flattening of isopycnals across the Florida Current caused by slowdown of the AMOC. Here we show striking agreement between H. elegans Li/Mg and ice-volume-corrected δ18O temperatures since ~17 ka (in both absolute values and temporal changes), confirming that bottom waters abruptly warmed during HS1 and the YD. The YD, which is better-resolved, was ~2°C warmer than the Holocene. Li/Mg indicates that Last Glacial Maximum bottom waters were ~2-3°C, or ~5°C colder than during the Holocene. If these glacial temperatures are accurate, they require a similar seawater δ18O to today, which suggests relative freshening in the face of higher mean ocean δ18O. Overall the Li/Mg paleotemperature reproducibility is very good, with a median five-depth running standard deviation of <0.6°C (even before omitting apparent outliers), a number which certainly includes real temporal variability.

  18. Evidence of Enhanced Respired Carbon in Eastern Equatorial Pacific Deep-Waters over the last 30,000 years

    NASA Astrophysics Data System (ADS)

    Umling, N. E.; Thunell, R.

    2016-12-01

    Rapid decreases in glacial deep water reservoir ages have been observed in the Eastern Equatorial Pacific (EEP; this study), North Pacific (Rae et al., 2014), Southwest Pacific (Sikes et al., 2016), and North Atlantic (Skinner et al., 2013). It has been hypothesized that release of a deep ocean 14C-depleted, respired-carbon reservoir to the surface ocean and atmosphere is the most likely mechanism for the observed increases in atmospheric CO2 concentrations recorded in ice cores during the last glacial-interglacial transition (Broecker and Barker, 2007). This study examines whether oxygenation, organic carbon flux, and carbonate chemistry in the EEP deep-waters reflect an increase in respired carbon associated with recorded 14C-depletions using isotopic and trace element records from three Panama Basin cores (2,650-3,200 m water-depth). An increase in glacial deep-water respired carbon storage would result in a shift of DIC speciation towards lower carbonate ion concentrations along with deoxygenation of bottom waters. Specifically, we use the boron to calcium (B/Ca) and uranium to calcium (U/Ca) ratios of the benthic foraminifera Cibicidoides wuellerstorfi to reconstruct deep-water carbonate ion concentration (Yu and Elderfield, 2007; Raizsch et al., 2011). Additionally, bottom water oxygenation is estimated from the difference in δ13C of benthic foraminifera living in pore waters at the anoxic boundary and of those living in bottom water (Δ δ13C; Hoogakker et al., 2015, 2016), while carbon flux was assessed from the U/Ca and Cd/Ca of foraminiferal authigenic coatings.

  19. Millennial-Scale Variability in the Indian Monsoon and Links to Ocean Circulation

    NASA Astrophysics Data System (ADS)

    DeLong, K. A.; Came, R. E.; Johnson, J. E.; Giosan, L.

    2014-12-01

    Millennial-scale variability in the Indian monsoon was temporally linked to changes in global ocean circulation during the last glacial period, as evidenced by planktic-benthic foraminiferal stable isotope and trace element results from an intermediate depth sediment core from the northwestern Bay of Bengal. Paired planktic foraminiferal Mg/Ca and δ18Oc constrain sea surface temperatures and isolate millennial-scale variations in the δ18O of surface waters (δ18Osw), which resulted from changes in river runoff in the northwestern Bay. Concurrently with low δ18Osw events, benthic foraminiferal δ13C decreased, suggesting an increased influence of an aged water mass at this intermediate depth site during the low salinity events. Benthic foraminiferal Cd/Ca results support the identification of this water mass as aged Glacial Antarctic Intermediate Water (GAAIW). Lagged correlation analysis (r= 0.41) indicates that changes in subsurface properties led changes in surface properties by an average of 380 years. The implication is that Southern Hemisphere climate exerted a controlling influence on the Indian monsoon during the last glacial period.

  20. Timing of maximum glacial extent and deglaciation from HualcaHualca volcano (southern Peru), obtained with cosmogenic 36Cl.

    NASA Astrophysics Data System (ADS)

    Alcalá, Jesus; Palacios, David; Vazquez, Lorenzo; Juan Zamorano, Jose

    2015-04-01

    Andean glacial deposits are key records of climate fluctuations in the southern hemisphere. During the last decades, in situ cosmogenic nuclides have provided fresh and significant dates to determine past glacier behavior in this region. But still there are many important discrepancies such as the impact of Last Glacial Maximum or the influence of Late Glacial climatic events on glacial mass balances. Furthermore, glacial chronologies from many sites are still missing, such as HualcaHualca (15° 43' S; 71° 52' W; 6,025 masl), a high volcano of the Peruvian Andes located 70 km northwest of Arequipa. The goal of this study is to establish the age of the Maximum Glacier Extent (MGE) and deglaciation at HualcaHualca volcano. To achieve this objetive, we focused in four valleys (Huayuray, Pujro Huayjo, Mollebaya and Mucurca) characterized by a well-preserved sequence of moraines and roches moutonnées. The method is based on geomorphological analysis supported by cosmogenic 36Cl surface exposure dating. 36Cl ages have been estimated with the CHLOE calculator and were compared with other central Andean glacial chronologies as well as paleoclimatological proxies. In Huayuray valley, exposure ages indicates that MGE occurred ~ 18 - 16 ka. Later, the ice mass gradually retreated but this process was interrupted by at least two readvances; the last one has been dated at ~ 12 ka. In the other hand, 36Cl result reflects a MGE age of ~ 13 ka in Mollebaya valley. Also, two samples obtained in Pujro-Huayjo and Mucurca valleys associated with MGE have an exposure age of 10-9 ka, but likely are moraine boulders affected by exhumation or erosion processes. Deglaciation in HualcaHualca volcano began abruptly ~ 11.5 ka ago according to a 36Cl age from a polished and striated bedrock in Pujro Huayjo valley, presumably as a result of reduced precipitation as well as a global increase of temperatures. The glacier evolution at HualcaHualca volcano presents a high correlation with precipitation cycles of the Altiplano (Tauca / Coipasa phases) and Heinrich 1 / Younger Dryas cold climatic events. Research funded by Cryocrisis project (CGL2012-35858), Government of Spain

  1. The Glacial BuzzSaw, Isostasy, and Global Crustal Models

    NASA Astrophysics Data System (ADS)

    Levander, A.; Oncken, O.; Niu, F.

    2015-12-01

    The glacial buzzsaw hypothesis predicts that maximum elevations in orogens at high latitudes are depressed relative to temperate latitudes, as maximum elevation and hypsography of glaciated orogens are functions of the glacial equilibrium line altitude (ELA) and the modern and last glacial maximum (LGM) snowlines. As a consequence crustal thickness, density, or both must change with increasing latitude to maintain isostatic balance. For Airy compensation crustal thickness should decrease toward polar latitudes, whereas for Pratt compensation crustal densities should increase. For similar convergence rates, higher latitude orogens should have higher grade, and presumably higher density rocks in the crustal column due to more efficient glacial erosion. We have examined a number of global and regional crustal models to see if these predictions appear in the models. Crustal thickness is straightforward to examine, crustal density less so. The different crustal models generally agree with one another, but do show some major differences. We used a standard tectonic classification scheme of the crust for data selection. The globally averaged orogens show crustal thicknesses that decrease toward high latitudes, almost reflecting topography, in both the individual crustal models and the models averaged together. The most convincing is the western hemisphere cordillera, where elevations and crustal thicknesses decrease toward the poles, and also toward lower latitudes (the equatorial minimum is at ~12oN). The elevation differences and Airy prediction of crustal thickness changes are in reasonable agreement in the North American Cordillera, but in South America the observed crustal thickness change is larger than the Airy prediction. The Alpine-Himalayan chain shows similar trends, however the strike of the chain makes interpretation ambiguous. We also examined cratons with ice sheets during the last glacial period to see if continental glaciation also thins the crust toward higher latitudes. The glaciated North American and European cratons show a trend of modest thinning (~3km), and glaciated western Asia minor thinning (~1.5 km). These values are at the level of model uncertainties, but we note that cratons without ice sheets during the last glacial period show substantially different patterns.

  2. Cosmogenic 10Be ages from the Meirs and Garwood Valleys, Denton Hills, West Antarctica, suggest an absence in LGM Ice Sheet expansion.

    NASA Astrophysics Data System (ADS)

    Fink, David; Joy, Kurt; Storey, Bryan

    2014-05-01

    It has been hypothesised that during interglacials, thinning of the Ross Ice Shelf allowed a more open water environment with increased local precipitation. This resulted in outlet glaciers, which drain the Transantarctic Mountains and fed by the East Antarctic Ice Sheet, advancing during moist warmer periods, apparently out of phase with colder arid dry periods. Significantly the ice core record during these warm periods also shows increased accumulation continent wide The geomorphology of the Denton Hills in the Royal Society Range, West Antarctica, is a result of Miocene fluvial incision reworked by subsequent glacial advances throughout the Quaternary. The Garwood and Miers glacial valleys drain ice across the Denton Hills into the Shelf, and should thus show maximum extent during interstadials. To understand the chronology of late Quaternary glaciations, 15 granitic boulders from terminal moraines were sampled for 10Be and 26Al cosmogenic dating. Obtaining reliable exposure ages of erratics within moraines that represent timing of deposition (i.e. glacial advances) is problematic in polar regions, where glacial activity is principally controlled by ice sheet dynamics. Recycling of previously exposed debris, uncertainty in provenance of glacially transported boulders and a lack of a post-depositional hydrologic process to remove previously exposed material from a valley system, leads to ambiguities in multiple exposure ages from a single coeval glacial landform. More importantly, cold-based ice advance can leave a landform unmodified resulting in young erratics deposited on bedrock that shows weathering and/or inconsistent age-altitude relationships. Primarily, inheritance becomes a difficulty in qualifying exposure ages from polar regions. Preliminary results from the Garwood and Miers Valleys indicate that glaciers in the Denton Hills had begun to retreat from their last maximum positions no later than 23-37 ka, and thus the local last glacial maximum occurred prior to the Antarctic LGM (18-22 ka). No evidence based on cosmogenic ages for post-LGM or Holocene advances were found. These results support an extensive exposure age data set from the nearby Darwin-Hatherton Glacier system that indicates an absence of EAIS expansion across the Transantarctic Mnts during the global LGM period.

  3. High migration rates shape the postglacial history of amphi-Atlantic bryophytes.

    PubMed

    Désamoré, Aurélie; Patiño, Jairo; Mardulyn, Patrick; Mcdaniel, Stuart F; Zanatta, Florian; Laenen, Benjamin; Vanderpoorten, Alain

    2016-11-01

    Paleontological evidence and current patterns of angiosperm species richness suggest that European biota experienced more severe bottlenecks than North American ones during the last glacial maximum. How well this pattern fits other plant species is less clear. Bryophytes offer a unique opportunity to contrast the impact of the last glacial maximum in North America and Europe because about 60% of the European bryoflora is shared with North America. Here, we use population genetic analyses based on approximate Bayesian computation on eight amphi-Atlantic species to test the hypothesis that North American populations were less impacted by the last glacial maximum, exhibiting higher levels of genetic diversity than European ones and ultimately serving as a refugium for the postglacial recolonization of Europe. In contrast with this hypothesis, the best-fit demographic model involved similar patterns of population size contractions, comparable levels of genetic diversity and balanced migration rates between European and North American populations. Our results thus suggest that bryophytes have experienced comparable demographic glacial histories on both sides of the Atlantic. Although a weak, but significant genetic structure was systematically recovered between European and North American populations, evidence for migration from and towards both continents suggests that amphi-Atlantic bryophyte population may function as a metapopulation network. Reconstructing the biogeographic history of either North American or European bryophyte populations therefore requires a large, trans-Atlantic geographic framework. © 2016 John Wiley & Sons Ltd.

  4. Environmental influences on speleothem growth in southwestern Oregon during the last 380, 000 years

    USGS Publications Warehouse

    Ersek, Vasile; Hostetler, Steven W.; Cheng, Hai; Clark, Peter U.; Anslow, Faron S.; Mix, Alan C.; Edwards, R. Lawrence

    2009-01-01

    The growth of carbonate formations in caves (speleothems) is sensitive to changes in environmental conditions at the surface (temperature, precipitation and vegetation) and can provide useful paleoclimatic and paleoenvironmental information. We use 73 230Th dates from speleothems collected from a cave in southwestern Oregon (USA) to constrain speleothem growth for the past 380 000 years. Most speleothem growth occurred during interglacial periods, whereas little growth occurred during glacial intervals. To evaluate potential environmental controls on speleothem growth we use two new modeling approaches: i) a one-dimensional thermal advection–diffusion model to estimate cave temperatures during the last glacial cycle, and ii) a regional climate model simulation for the Last Glacial Maximum (21 000 years before present) that assesses a range of potential controls on speleothem growth under peak glacial conditions. The two models are mutually consistent in indicating that permafrost formation did not influence speleothem growth during glacial periods. Instead, the regional climate model simulation combined with proxy data suggest that the influence of the Laurentide and Cordilleran ice sheets on atmospheric circulation induced substantial changes in water balance in the Pacific Northwest and affected speleothem growth at our location. The overall drier conditions during glacial intervals and associated periods of frozen topsoil at times of maximum surface runoff likely induced drastic changes in cave recharge and limited speleothem growth. This mechanism could have affected speleothem growth in other mid-latitude caves without requiring the presence of permafrost.

  5. Temporal evolution of mechanisms controlling ocean carbon uptake during the last glacial cycle

    NASA Astrophysics Data System (ADS)

    Kohfeld, Karen E.; Chase, Zanna

    2017-08-01

    Many mechanisms have been proposed to explain the ∼85-90 ppm decrease in atmospheric carbon dioxide (CO2) during the last glacial cycle, between 127,000 and 18,000 yrs ago. When taken together, these mechanisms can, in some models, account for the full glacial-interglacial CO2 drawdown. Most proxy-based evaluations focus on the peak of the Last Glacial Maximum, 24,000-18,000 yrs ago, and little has been done to determine the sequential timing of processes affecting CO2 during the last glacial cycle. Here we use a new compilation of sea-surface temperature records together with time-sequenced records of carbon and Nd isotopes, and other proxies to determine when the most commonly proposed mechanisms could have been important for CO2 drawdown. We find that the initial major drawdown of 35 ppm 115,000 yrs ago was most likely a result of Antarctic sea ice expansion. Importantly, changes in deep ocean circulation and mixing did not play a major role until at least 30,000 yrs after the first CO2 drawdown. The second phase of CO2 drawdown occurred ∼70,000 yrs ago and was also coincident with the first significant influences of enhanced ocean productivity due to dust. Finally, minimum concentrations of atmospheric CO2 during the Last Glacial Maximum resulted from the combination of physical and biological factors, including the barrier effect of expanded Southern Ocean sea ice, slower ventilation of the deep sea, and ocean biological feedbacks.

  6. Reconstruction of North American drainage basins and river discharge since the Last Glacial Maximum

    NASA Astrophysics Data System (ADS)

    Wickert, Andrew D.

    2016-11-01

    Over the last glacial cycle, ice sheets and the resultant glacial isostatic adjustment (GIA) rearranged river systems. As these riverine threads that tied the ice sheets to the sea were stretched, severed, and restructured, they also shrank and swelled with the pulse of meltwater inputs and time-varying drainage basin areas, and sometimes delivered enough meltwater to the oceans in the right places to influence global climate. Here I present a general method to compute past river flow paths, drainage basin geometries, and river discharges, by combining models of past ice sheets, glacial isostatic adjustment, and climate. The result is a time series of synthetic paleohydrographs and drainage basin maps from the Last Glacial Maximum to present for nine major drainage basins - the Mississippi, Rio Grande, Colorado, Columbia, Mackenzie, Hudson Bay, Saint Lawrence, Hudson, and Susquehanna/Chesapeake Bay. These are based on five published reconstructions of the North American ice sheets. I compare these maps with drainage reconstructions and discharge histories based on a review of observational evidence, including river deposits and terraces, isotopic records, mineral provenance markers, glacial moraine histories, and evidence of ice stream and tunnel valley flow directions. The sharp boundaries of the reconstructed past drainage basins complement the flexurally smoothed GIA signal that is more often used to validate ice-sheet reconstructions, and provide a complementary framework to reduce nonuniqueness in model reconstructions of the North American ice-sheet complex.

  7. Terrestrial cosmogenic nuclide surface exposure dating of the oldest glacial successions in the Himalayan orogen: Ladakh Range, northern India

    USGS Publications Warehouse

    Owen, L.A.; Caffee, M.W.; Bovard, K.R.; Finkel, R.C.; Sharma, M.C.

    2006-01-01

    Terrestrial cosmogenic nuclide surface exposure dating of moraine boulders and alluvial fan sediments define the timing of five glacial advances over at least the last five glacial cycles in the Ladakh Range of the Transhimalaya. The glacial stages that have been identified are: the Indus Valley glacial stage, dated at older than 430 ka; the Leh glacial stage occurring in the penultimate glacial cycle or older; the Karglacial stage, occurring during the early part of the last glacial cycle; the Bazgo glacial stage, at its maximum during the middle of the last glacial cycle; and the early Holocene Khalling glacial stage. The exposure ages of the Indus Valley moraines are the oldest observed to date throughout the Himalayan orogen. We observe a pattern of progressively more restricted glaciation during the last five glacial cycles, likely indicating a progressive reduction in the moisture supply necessary to sustain glaciation. A possible explanation is that uplift of Himalayan ranges to the south and/or of the Karakoram Mountains to the west of the region may have effectively blocked moisture supply by the south Asian summer monsoon and mid-latitude westerlies, respectively. Alternatively, this pattern of glaciation may reflect a trend of progressively less extensive glaciation in mountain regions that has been observed globally throughout the Pleistocene. ?? 2006 Geological Society of America.

  8. From valley to marginal glaciation in alpine-type relief: Lateglacial glacier advances in the Pięć Stawów Polskich/Roztoka Valley, High Tatra Mountains, Poland

    NASA Astrophysics Data System (ADS)

    Zasadni, Jerzy; Kłapyta, Piotr

    2016-01-01

    The Pięć Stawów Polskich-Roztoka Valley in the High Tatras (Western Carpathians) features typical alpine-type relief with a deeply incised glacial trough and large, compound trough head cirque. The prominent hypsographic maximum in the valley (1680-2000 m) along with a broad cirque bottom had provided a vast space for recording glacial and periglacial landforms, specifically the most recent Lateglacial advances. The valley has been intensively studied before in the context of glacial chronology. In this paper, we re-establish the post-Last Glacial Maximum (LGM) glacial chronology of the valley via detailed geomorphologic mapping, equilibrium line altitude (ELA) reconstruction, and Schmidt hammer (SH) dating, along with a critical review of previously published cosmogenic exposure age data (36Cl) and lacustrine sediment chronology. Our results indicate that the first four of the five distinguished Lateglacial stages (Roztoka I-III, Pusta I) occurred before the Bølling/Allerød (B/A) interstadial; thus, virtually the entire valley became deglaciated in course of the Oldest Dryas cold phase. A distinct reorganization of deglacial patterns from valley-type to marginal-type occurred before B/A warming when the ELA increased above the valley hypsographic maximum concentrated at the cirque bottom elevation. It shows that noticeable deglaciation step can be caused due to topographic reason with a minimal climate forcing. This points also to an important role of glaciated valley hypsography in regulating the distribution of moraines which is rarely taken into account in paleoglaciological reconstructions. We infer that glaciers vanished in the Tatra Mountains during the B/A interstadial. Later, a renewed advance during the Younger Dryas (Pusta II) formed a nearly continuous, festoon shaped pattern of moraines and rock glaciers in close distance to cirque backwalls. Furthermore, we discus some paleoenvironmental significance of the geomorphological record in the valley, as well, the applicability of SH dating in constructing glacial chronology.

  9. Hydrochemical Regions of the Glacial Aquifer System, Northern United States, and Their Environmental and Water-Quality Characteristics

    USGS Publications Warehouse

    Arnold, Terri L.; Warner, Kelly L.; Groschen, George E.; Caldwell, James P.; Kalkhoff, Stephen J.

    2008-01-01

    The glacial aquifer system in the United States is a large (953,000 square miles) regional aquifer system of heterogeneous composition. As described in this report, the glacial aquifer system includes all unconsolidated geologic material above bedrock that lies on or north of the line of maximum glacial advance within the United States. Examining ground-water quality on a regional scale indicates that variations in the concentrations of major and minor ions and some trace elements most likely are the result of natural variations in the geologic and physical environment. Study of the glacial aquifer system was designed around a regional framework based on the assumption that two primary characteristics of the aquifer system can affect water quality: intrinsic susceptibility (hydraulic properties) and vulnerability (geochemical properties). The hydrochemical regions described in this report were developed to identify and explain regional spatial variations in ground-water quality in the glacial aquifer system within the hypothetical framework context. Data analyzed for this study were collected from 1991 to 2003 at 1,716 wells open to the glacial aquifer system. Cluster analysis was used to group wells with similar ground-water concentrations of calcium, chloride, fluoride, magnesium, potassium, sodium, sulfate, and bicarbonate into five unique groups. Maximum Likelihood Classification was used to make the extrapolation from clustered groups of wells, defined by points, to areas of similar water quality (hydrochemical regions) defined in a geospatial model. Spatial data that represented average annual precipitation, average annual temperature, land use, land-surface slope, vertical soil permeability, average soil clay content, texture of surficial deposits, type of surficial deposit, and potential for ground-water recharge were used in the Maximum Likelihood Classification to classify the areas so the characteristics of the hydrochemical regions would resemble the characteristics of the clusters. The result of the Maximum Likelihood Classification is a map showing five hydrochemical regions of the glacial aquifer system. Statistical analysis of ion concentrations (calcium, chloride, fluoride, magnesium, sodium, potassium, sulfate, and bicarbonate) in samples collected from wells completed in the glacial aquifer system illustrates that variations in water quality can be explained, in part, by related environmental characteristics that control the movement of ground water through the aquifer system. A comparison of median concentrations of chemical constituents in ground water among the five hydrochemical regions indicates that ground water in the Midwestern Agricultural Region, the Urban-Influenced Region, and the Western Agriculture and Grassland Region has the highest concentrations of major and minor ions, whereas ground water in the Northern and Great Lakes Forested Region and the Mountain and Coastal Forested Region has the lowest concentrations of these ions. Median concentrations of barium, arsenic, lithium, boron, strontium, and nitrite plus nitrate as nitrogen also are significantly different among the hydrochemical regions.

  10. Paleochannel and beach-bar palimpsest topography as initial substrate for coralligenous buildups offshore Venice, Italy.

    PubMed

    Tosi, Luigi; Zecchin, Massimo; Franchi, Fulvio; Bergamasco, Andrea; Da Lio, Cristina; Baradello, Luca; Mazzoli, Claudio; Montagna, Paolo; Taviani, Marco; Tagliapietra, Davide; Carol, Eleonora; Franceschini, Gianluca; Giovanardi, Otello; Donnici, Sandra

    2017-05-02

    We provide a model for the genesis of Holocene coralligenous buildups occurring in the northwestern Adriatic Sea offshore Venice at 17-24 m depth. High-resolution geophysical surveys and underwater SCUBA diving reconnaissance revealed meandering shaped morphologies underneath bio-concretionned rocky buildups. These morphologies are inferred to have been inherited from Pleistocene fluvial systems reactivated as tidal channels during the post- Last Glacial Maximum transgression, when the study area was a lagoon protected by a sandy barrier. The lithification of the sandy fossil channel-levee systems is estimated to have occurred at ca. 7 cal. ka BP, likely due to the interaction between marine and less saline fluids related to onshore freshwater discharge at sea through a sealed water-table. The carbonate-cemented sandy layers served as nucleus for subsequent coralligenous buildups growth.

  11. Paleoceanographic conditions at approximately 20 and 70 ka recorded in Kikaithyris hanzawai (Brachiopoda) shells

    NASA Astrophysics Data System (ADS)

    Takizawa, Mamoru; Takayanagi, Hideko; Yamamoto, Koshi; Abe, Osamu; Sasaki, Keiichi; Iryu, Yasufumi

    2017-10-01

    The δ13C and δ18O values of fossil brachiopod shells have been widely used as paleoenvironmental proxies. In this study, we investigated intrashell and intraspecific variations in the isotopic and minor element concentrations of well-preserved shells of the brachiopod Kikaithyris hanzawai (Yabe) from the last glacial period (∼20 ka [Last Glacial Maximum; LGM] and ∼70 ka [Marine Isotope Stage 4; MIS4]), collected in the Central Ryukyus, and used these data to estimate the paleoceanographic conditions (seawater temperature, concentration of dissolved inorganic carbon [DIC], and δ13C value of DIC [δ13CDIC]). The δ13C and δ18O profiles along the maximum growth axis, obtained from the inner shell surface, show three distinct intervals, corresponding to changes in shell morphology. These results suggest that the bulk isotopic compositions of brachiopods with complex shell morphologies are unsuitable for paleoenvironmental reconstructions. Nevertheless, there exists a specific shell portion with relatively small intrashell and intraspecific variations. The past seawater temperatures derived from the δ18O values of this portion are consistent with the alkenone- and planktic foraminiferal Mg/Ca-based past seawater temperatures reported in previous studies. The past δ13CDIC values estimated from the δ13C values of the specific shell portion are within the range of the past δ13CDIC values calculated from known atmospheric and oceanographic parameters. The past DIC concentrations reconstructed from the brachiopod-based δ13CDIC values are lower than the present concentrations in the East China Sea, which can be explained by low partial pressure of CO2 during the last glacial period. These results indicate that the δ13C and δ18O values obtained from K. hanzawai shells are potential paleoenvironmental indicators. The intrashell and intraspecific variations in the K. hanzawai shells are different for each minor element. Some anomalously high Mn and Fe concentrations in the shells are probably caused by metabolic factor(s), not by meteoric diagenesis. This suggests that the minor element concentrations are useful but not perfect for distinguishing diagenetically altered and unaltered portions of the shells of K. hanzawai in the studied succession.

  12. Equilibrium-line altitude during the Antarctic Cold Reversal at Río Tranquilo glacier (47°S), Central Patagonia

    NASA Astrophysics Data System (ADS)

    Sagredo, E. A.; Ward, D.; Gonzalez, M. A.; Lowell, T. V.; Kelly, M. A.; Aravena, J. C.

    2013-12-01

    Documenting the magnitude of former glacial fluctuations is critical for understanding the mechanisms and climate signals underlying these glacial events. Here, we estimate the equilibrium line altitudes (ELA) associated with the most prominent glacial advance occurred during the Last Glacial Termination (T1) at Tranquilo glacier (47°S). Geomorphic evidence suggest that, following the Last Glacial Maximum, several small glaciers, which today occupy the headwalls of Río Tranquilo valley, expanded and coalesced, forming the extended version of the Tranquilo glacier at least three different times. 10Be ages suggest that the most prominent of these glacial advances occurred ~13 kyr BP, at the end of the Antarctic Cold Reversal (ACR). Based on glacial geomorphic mapping and the application of a glaciological model (GC2D), we reconstruct the former glacial surface at Tranquilo glacier and estimate the ELA for this major glacial advance. Preliminary data show that the equilibrium line altitude at Tranquilo glacier during the ACR could have been up to 500 m lower than the present. This study represents the first effort to quantify the ELA during the Antarctic Cold Reversal in Patagonia, and provides a baseline to decipher the climatic signals driving this glacial event.

  13. New Data on Vegetation and Climate Reconstruction in the Baikal-Patom Highland (Eastern Siberia) in the Last Glacial Maximum and Early Holocene

    NASA Astrophysics Data System (ADS)

    Henry, A.; Bezrukova, E. V.; Teten'kin, A. V.; Kuz'min, M. I.

    2018-02-01

    The first results of anthracological investigation for Eastern Siberia on the carbonaceous remains of woody and shrubby plants at the archaeological sites Kovrizhka III and IV in the lower reaches of the Vitim River are presented. The results of anthracological studies enabled us to obtain new data on changes in vegetation and climate along the lower reaches of the Vitim River. As a result, new data on human habitation in the lower reaches of the Vitim River in the last glacial maximum and early Holocene were obtained.

  14. Atlantic meridional overturning circulation during the Last Glacial Maximum.

    PubMed

    Lynch-Stieglitz, Jean; Adkins, Jess F; Curry, William B; Dokken, Trond; Hall, Ian R; Herguera, Juan Carlos; Hirschi, Joël J-M; Ivanova, Elena V; Kissel, Catherine; Marchal, Olivier; Marchitto, Thomas M; McCave, I Nicholas; McManus, Jerry F; Mulitza, Stefan; Ninnemann, Ulysses; Peeters, Frank; Yu, Ein-Fen; Zahn, Rainer

    2007-04-06

    The circulation of the deep Atlantic Ocean during the height of the last ice age appears to have been quite different from today. We review observations implying that Atlantic meridional overturning circulation during the Last Glacial Maximum was neither extremely sluggish nor an enhanced version of present-day circulation. The distribution of the decay products of uranium in sediments is consistent with a residence time for deep waters in the Atlantic only slightly greater than today. However, evidence from multiple water-mass tracers supports a different distribution of deep-water properties, including density, which is dynamically linked to circulation.

  15. A long pollen record from lowland Amazonia: Forest and cooling in glacial times

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Colinvaux, P.A.; Moreno, J.E.; Bush, M.B.

    A continuous pollen history of more than 40,000 years was obtained from a lake in the lowland Amazon rain forest. Pollen spectra demonstrate that tropical rain forest occupied the region continuously and that savannas or grasslands were not present during the last glacial maximum. The data suggest that the western Amazon forest was not fragmented into refugia in glacial times and that the lowlands were not a source of dust. Glacial age forests were comparable to modern forests but also included species now restricted to higher evaluations by temperature, suggesting a cooling of the order of 5{degrees} to 6{degrees}C. 23more » refs., 22 tabs.« less

  16. Geomorphical and Geochronological Constrains of the Last Glacial Period in Southern Patagonia, Southern South America

    NASA Astrophysics Data System (ADS)

    García, J.; Hall, B. L.; Kaplan, M. R.; Vega, R. M.; Binnie, S. A.; Hein, A.; Gómez, G. N.; Ferrada, J. J.

    2013-12-01

    Despite the outer limits of the former Patagonian ice sheet (PIS, ~38-55S) having been extensively mapped, it remains unknown if the Patagonian glaciers fluctuated synchronously or asynchronously during the last glacial period. Previous work has revealed asynchronous spatiotemporal ice dynamics along the eastern and western ice-margins at the end of the last glaciation but it is not well understood if the northern and southern parts of the PIS reached concurrent maximum glaciation during the last glacial cycle. The Patagonian Andes is the only landmass involving the southern westerly wind belt latitudinal range, which is thought to have played a key role in past glacial and climate changes. Therefore, reconstructing southern Andes glacier history constitutes a key element for understanding the cause of glaciations in Patagonia and the role of the westerlies in climate change. Here, we discuss paleoglaciological and paleoclimatological implications of new 10Be and 14C data obtained from moraines and strategically selected mires in two contiguous glacially molded basins of south Patagonia (48-55S): Torres del Paine (51S) and Última Esperanza (52S). In this region, we focused our 10Be cosmogenic-dating efforts in the previously undated outer moraines deposited (supposedly) during the last glacial cycle. In order to crosscheck cosmogenic data we collected boulders embedded in moraines and cobbles from the main glaciofluvial plains grading from the outermost moraines. Geomorphic and cosmogenic dating affords evidence for glacial maximum conditions occurring between 40-50 ka (ka = thousand of years before present) in southern Patagonia, which is different from other chronologies within southern South America. We obtained 14C basal ages from sites located within moraine depressions and on former paleolake shorelines and thus these may provide key data on deglaciation and debated regional paleolake history.

  17. Pacing the post-Last Glacial Maximum demise of the Animas Valley glacier and the San Juan Mountain ice cap, Colorado

    NASA Astrophysics Data System (ADS)

    Guido, Zackry S.; Ward, Dylan J.; Anderson, Robert S.

    2007-08-01

    During the Last Glacial Maximum (LGM), a 5000 km2 ice cap covered the San Juan Mountains of southwest Colorado. The largest valley glacier draining this ice cap occupied the Animas Valley and flowed 91 km to the south. To characterize the post-LGM demise of the Animas Valley glacier, we employ cosmogenic 10Be to date the LGM terrace outside the terminal moraines and a suite of seven glacially polished bedrock samples. The 10Be depth profile within the terrace sediments suggests abandonment at 19.4 ± 1.5 ka. As deglaciation began, the ponding of Glacial Lake Durango behind the terminal moraines shut off fluvial sediment supply and caused terrace abandonment. The age of the terrace therefore records the initiation of LGM retreat. Negligible 10Be inheritance in the terrace profile suggests that glacial erosion of the bedrock valley floor from which sediments were derived erased all cosmogenic inventory. Glacial polish exposure ages monotonically decrease up-valley from 17.1 to 12.3 ka, with the single exception of a sample collected from a quartzite rib, yielding an average retreat rate of 15.4 m/yr. This trend and the lack of inherited cosmogenic nuclides in the terrace sediments imply that polish ages accurately record the glacial retreat history. Retreat of the Animas lobe began at a time of regional drying recorded in sediments and shoreline elevations of large lakes. Deglaciation lasted for ˜7.2 k.y., and was complete by 12.3 ± 1.0 ka. The retreat history followed the pattern of increasing insolation and was perhaps fastest during a time of regional drying.

  18. The MIS 3 maximum of the Torres del Paine and Última Esperanza ice lobes in Patagonia and the pacing of southern mountain glaciation

    NASA Astrophysics Data System (ADS)

    García, Juan-Luis; Hein, Andrew S.; Binnie, Steven A.; Gómez, Gabriel A.; González, Mauricio A.; Dunai, Tibor J.

    2018-04-01

    The timing, structure and termination of the last southern mountain glaciation and its forcing remains unclear. Most studies have focused on the global Last Glacial Maximum (LGM; 26.5-19 ka) time period, which is just part of the extensive time-frame within the last glacial period, including Marine Isotope Stages 3 and 4. Understanding the glacial fluctuations throughout the glacial period is a prerequisite for uncovering the cause and climate mechanism driving southern glaciation and the interhemispheric linkages of climate change. Here, we present an extensive (n = 65) cosmogenic 10Be glacier chronology derived from moraine belts marking the pre-global LGM extent of the former Patagonian Ice Sheet in southernmost South America. Our results show the mountain ice sheet reached its maximum extent at 48.0 ± 1.8 ka during the local LGM, but attained just half this extent at 21.5 ± 1.8 ka during the global LGM. This finding, supported by nearby glacier chronologies, indicates that at orbital time scales, the southern mid-latitude glaciers fluctuated out-of-phase with northern hemisphere ice sheets. At millennial time-scales, our data suggest that Patagonian and New Zealand glaciers advanced in unison with cold Antarctic stadials and reductions in Southern Ocean sea surface temperatures. This implies a southern middle latitudes-wide millennial rhythm of climate change throughout the last glacial period linked to the north Atlantic by the bipolar seesaw. We suggest that winter insolation, acting alongside other drivers such as the strength and/or position of the southern westerlies, controlled the extents of major southern mountain glaciers such as those in southernmost South America.

  19. Glacial Buzzcutting and Scarp Encroachment Limit the Height of Tropical Mountains

    NASA Astrophysics Data System (ADS)

    Cunningham, M.; Stark, C. P.; Kaplan, M. R.; Schaefer, J. M.; Winckler, G.

    2016-12-01

    In many mountain ranges hypsometric maxima occur between the glacial equilibrium line altitude (ELA) of the Last Glacial Maximum (LGM) and that of today. A common interpretation of this large-scale observation is that a "glacial buzzsaw" acting throughout the Pleistocene concentrated area within the altitudinal band of ELA fluctuation. This hypothesis remains controversial, however, as there are many examples of uplifted relict surfaces in heavily glaciated areas that occur near the ELA by coincidence. We have focused on the role of glacial erosion in the tropics, where it is spatially restricted to high elevations and temporally limited to global glacial maxima, but appears to have nevertheless truncated vertical orogen growth. Evidence of glacial buzzcutting in some of these ranges has been obscured by post-glacial destruction of glacial valleys by expanding fluvial catchments. We deduce that a duel between glacial buzzcuting and fluvially-driven scarp encroachment has proceeded throughout the Pleistocene in these places. In Costa Rica, we use 10Be and 3He surface-exposure age dating and topographic analysis to confirm that substantial glacial denudation took place at high elevations during the LGM, and employ topographic metrics there and in the Central Range of Taiwan to reveal shrinkage of glacially buzzcut surfaces driven by post-glacial scarp encroachment. These data cast new light on the buzzsaw hypothesis by showing that glacial erosion works with remarkable efficiency in the tropics, precisely where it is likely to be least effective. Our work also draws attention to landscapes with ambiguous signs of glacial erosion, as there are apparent instances of heavily modified, pre-LGM buzzcut surfaces in several tropical ranges. These perched, possibly pre-LGM landscapes may offer a window into previous phases of buzzcutting, and place speed limits on the rate of post-glacial scarp encroachment.

  20. Thinning History of the Weddell Sea Embayment Using in situ 14C Exposure Ages from the Lassiter Coast

    NASA Astrophysics Data System (ADS)

    Nichols, K. A.; Johnson, J.; Goehring, B. M.; Balco, G.

    2017-12-01

    We present a suite of in situ 14C cosmogenic nuclide exposure ages from nunataks at the Lassiter Coast in West Antarctica on the west side of the Weddell Sea Embayment (WSE) to constrain the thinning history of the Ronne-Filchner Ice Shelf. Constraints on past ice extents in the WSE remain relatively understudied, despite the WSE draining 22% of the Antarctic Ice Sheet (AIS). Information lacking includes unambiguous geological evidence for the maximum Last Glacial Maximum (LGM) ice thickness and the timing of subsequent ice retreat in key peripheral locations. Past studies using long-lived cosmogenic nuclides have shown that, due to the cold-based nature of the AIS, inheritance of nuclide concentrations from previous periods of exposure is a common problem. We utilised the cosmogenic nuclide 14C to circumvent the issue of inheritance. The short half-life of 14C means measured concentrations are largely insensitive to inheritance, as relatively short periods of ice cover (20-30 kyr) result in significant 14C decay. Furthermore, samples saturated in 14C will demonstrate that their location was above the maximum LGM thickness of the ice sheet and exposed for at least the past ca. 35 kyr. Preliminary results from four samples indicate elevations between 63 and 360 m above the present-day ice surface elevations were deglaciated between 7 and 6 ka. With little exposed rock above these elevations (ca. 70 m), this may indicate that the locality was entirely covered by ice during the LGM. Additional 14C measurements will form a full elevation transect of samples to decipher the post-LGM thinning history of ice at this location.

  1. Trace and Ultra-trace Elements in the Deepest Part of the Vostok Ice Core, Antarctica: Geochemical Characterization of the Sub-glacial Lake Environment

    NASA Astrophysics Data System (ADS)

    Turetta, C.; Planchon, F.; Gabrielli, P.; Cozzi, G.; Cairns, W.; Barbaro, E.; Petit, J. R.; Bulat, S.; Boutron, C.; Barbante, C.

    2016-12-01

    We present in this study comprehensive data on the occurrence of 25 trace and ultra-trace elements in the deepest part of the Vostok ice core. The determination of Li, Na, Mg, Al, K, Ca, V, Cr, Mn, Fe, Co, Cu, Zn, As, Se, Rb, Sr, Mo, Ag, Cd, Sb, Ba, Pb, Bi and U has been performed in the different types of ice encountered from 3271 m to 3609 m of depth, corresponding to atmospheric ice, glacial flour and to accreted ice originating from the freezing of Lake Vostok waters. From atmospheric ice and glacial flour, the relative contributions of primary aerosols were evaluated for each element using a chemical mass balance approach in order to provide a first order evaluation of their partition between soluble (sea-salt) and insoluble (wind-blown dust) fractions in the ice. Sea-salt spray aerosols are the main source of impurities to the ice for certain elements (Na, Mg and K levels, and in a lesser extent to Ca, Sr, Rb, Li and U) while for other elements (Al, V, Cr, Mn, Fe, Co, Cu, Zn, Mo, Sb, Ba and Pb as well as the non sea salt fractions of Mg, K, Ca, Sr, Rb, Li and U) dust inputs appear to primarily control their depositional variability. For the glacial flour, the comparable levels of elements with the overlying atmospheric ice suggest that incorporation of abrasion debris at the glacier is quite limited in the sections considered. For the accreted ice originating from the subglacial waters of Lake Vostok, we observed a major chemical shift in the composition of the ice showing two distinct trends that we assumed to be derived from the chemical speciation of elements. The study of the glacier ice and the glacial flour has allowed us to perform a detailed characterisation of elemental abundances related to the aerosol sources variability and also to illustrate the interaction between the ice-sheet and the bedrock.

  2. Dominant factors controlling glacial and interglacial variations in the treeline elevation in tropical Africa

    PubMed Central

    Wu, Haibin; Guiot, Joël; Brewer, Simon; Guo, Zhengtang; Peng, Changhui

    2007-01-01

    The knowledge of tropical palaeoclimates is crucial for understanding global climate change, because it is a test bench for general circulation models that are ultimately used to predict future global warming. A longstanding issue concerning the last glacial maximum in the tropics is the discrepancy between the decrease in sea-surface temperatures reconstructed from marine proxies and the high-elevation decrease in land temperatures estimated from indicators of treeline elevation. In this study, an improved inverse vegetation modeling approach is used to quantitatively reconstruct palaeoclimate and to estimate the effects of different factors (temperature, precipitation, and atmospheric CO2 concentration) on changes in treeline elevation based on a set of pollen data covering an altitudinal range from 100 to 3,140 m above sea level in Africa. We show that lowering of the African treeline during the last glacial maximum was primarily triggered by regional drying, especially at upper elevations, and was amplified by decreases in atmospheric CO2 concentration and perhaps temperature. This contrasts with scenarios for the Holocene and future climates, in which the increase in treeline elevation will be dominated by temperature. Our results suggest that previous temperature changes inferred from tropical treeline shifts may have been overestimated for low-CO2 glacial periods, because the limiting factors that control changes in treeline elevation differ between glacial and interglacial periods. PMID:17535920

  3. Dominant factors controlling glacial and interglacial variations in the treeline elevation in tropical Africa.

    PubMed

    Wu, Haibin; Guiot, Joël; Brewer, Simon; Guo, Zhengtang; Peng, Changhui

    2007-06-05

    The knowledge of tropical palaeoclimates is crucial for understanding global climate change, because it is a test bench for general circulation models that are ultimately used to predict future global warming. A longstanding issue concerning the last glacial maximum in the tropics is the discrepancy between the decrease in sea-surface temperatures reconstructed from marine proxies and the high-elevation decrease in land temperatures estimated from indicators of treeline elevation. In this study, an improved inverse vegetation modeling approach is used to quantitatively reconstruct palaeoclimate and to estimate the effects of different factors (temperature, precipitation, and atmospheric CO(2) concentration) on changes in treeline elevation based on a set of pollen data covering an altitudinal range from 100 to 3,140 m above sea level in Africa. We show that lowering of the African treeline during the last glacial maximum was primarily triggered by regional drying, especially at upper elevations, and was amplified by decreases in atmospheric CO(2) concentration and perhaps temperature. This contrasts with scenarios for the Holocene and future climates, in which the increase in treeline elevation will be dominated by temperature. Our results suggest that previous temperature changes inferred from tropical treeline shifts may have been overestimated for low-CO(2) glacial periods, because the limiting factors that control changes in treeline elevation differ between glacial and interglacial periods.

  4. High regional climate sensitivity over continental China constrained by glacial-recent changes in temperature and the hydrological cycle.

    PubMed

    Eagle, Robert A; Risi, Camille; Mitchell, Jonathan L; Eiler, John M; Seibt, Ulrike; Neelin, J David; Li, Gaojun; Tripati, Aradhna K

    2013-05-28

    The East Asian monsoon is one of Earth's most significant climatic phenomena, and numerous paleoclimate archives have revealed that it exhibits variations on orbital and suborbital time scales. Quantitative constraints on the climate changes associated with these past variations are limited, yet are needed to constrain sensitivity of the region to changes in greenhouse gas levels. Here, we show central China is a region that experienced a much larger temperature change since the Last Glacial Maximum than typically simulated by climate models. We applied clumped isotope thermometry to carbonates from the central Chinese Loess Plateau to reconstruct temperature and water isotope shifts from the Last Glacial Maximum to present. We find a summertime temperature change of 6-7 °C that is reproduced by climate model simulations presented here. Proxy data reveal evidence for a shift to lighter isotopic composition of meteoric waters in glacial times, which is also captured by our model. Analysis of model outputs suggests that glacial cooling over continental China is significantly amplified by the influence of stationary waves, which, in turn, are enhanced by continental ice sheets. These results not only support high regional climate sensitivity in Central China but highlight the fundamental role of planetary-scale atmospheric dynamics in the sensitivity of regional climates to continental glaciation, changing greenhouse gas levels, and insolation.

  5. Chronology of the last glacial maximum in the upper Bear River Basin, Utah

    USGS Publications Warehouse

    Laabs, B.J.C.; Munroe, Jeffrey S.; Rosenbaum, J.G.; Refsnider, K.A.; Mickelson, D.M.; Singer, B.S.; Caffee, M.W.

    2007-01-01

    The headwaters of the Bear River drainage were occupied during the Last Glacial Maximum (LGM) by outlet glaciers of the Western Uinta Ice Field, an extensive ice mass (???685 km2) that covered the western slope of the Uinta Mountains. A well-preserved sequence of latero-frontal moraines in the drainage indicates that outlet glaciers advanced beyond the mountain front and coalesced on the piedmont. Glacial deposits in the Bear River drainage provide a unique setting where both 10Be cosmogenic surface-exposure dating of moraine boulders and 14C dating of sediment in Bear Lake downstream of the glaciated area set age limits on the timing of glaciation. Limiting 14C ages of glacial flour in Bear Lake (corrected to calendar years using CALIB 5.0) indicate that ice advance began at 32 ka and culminated at about 24 ka. Based on a Bayesian statistical analysis of cosmogenic surface-exposure ages from two areas on the terminal moraine complex, the Bear River glacier began its final retreat at about 18.7 to 18.1 ka, approximately coincident with the start of deglaciation elsewhere in the central Rocky Mountains and many other alpine glacial localities worldwide. Unlike valleys of the southwestern Uinta Mountains, deglaciation of the Bear River drainage began prior to the hydrologie fall of Lake Bonneville from the Provo shoreline at about 16 ka. ?? 2007 Regents of the University of Colorado.

  6. Climatic Oscillations 10,000-155,000 yr B.P. at Owens Lake, California Reflected in Glacial Rock Flour Abundance and Lake Salinity in Core OL-92

    NASA Astrophysics Data System (ADS)

    Bischoff, James L.; Menking, Kirsten M.; Fitts, Jeffrey P.; Fitzpatrick, John A.

    1997-11-01

    Chemical analyses of the acid-soluble and clay-size fractions of sediment samples (1500-yr resolution) reveal oscillations of lake salinity and of glacial advances in core OL-92 back to 155,000 yr B.P. Relatively saline conditions are indicated by the abundance of carbonate and smectite (both pedogenic and authigenic), reflected by Ca, Sr, and Mg in the acid-soluble suite, and by Cs 2O, excess MgO, and LOI (loss on ignition) in the clay-size fraction. Rock flour produced during glacial advances is represented by the abundance of detrital plagioclase and biotite in the clay-size fraction, the ratio of which remains essentially constant over the entire time span. These phases are quantitatively represented by Na 2O, TiO 2, Ba, and Mn in the clay fraction. The rock-flour record indicates two major ice-advances during the penultimate glacial cycle corresponding to marine isotope stage (MIS) 6, no major advances during the last interglaciation (entire MIS 5), and three major advances during the last glacial cycle (MIS 2, 3, and 4). The ages of the latter three correspond rather well to 36Cl dates reported for Sierra Nevada moraines. The onset of the last interglaciation is shown by abrupt increases in authigenic CaCO 3and an abrupt decrease in rock flour, at about 118,000 yr B.P. according to our time scale. In contrast, the boundary appears to be gradual in the δ 18O record in which the change from light to heavy values begins at about 140,000 yrs B.P. The exact position of the termination, therefore, may be proxy-dependent. Conditions of high carbonate and low rock flour prevailed during the entire period from 118,000 yr B.P. until the glacial advance at 53,000 yr B.P. signaled the end of this long interglaciation.

  7. Climatic Oscillations 10,000-155,000 yr B.P. at Owens Lake, California Reflected in Glacial Rock Flour Abundance and Lake Salinity in Core OL-92

    USGS Publications Warehouse

    Bischoff, J.L.; Menking, K.M.; Fitts, J.P.; Fitzpatrick, J.A.

    1997-01-01

    Chemical analyses of the acid-soluble and clay-size fractions of sediment samples (1500-yr resolution) reveal oscillations of lake salinity and of glacial advances in core OL-92 back to 155,000 yr B.P. Relatively saline conditions are indicated by the abundance of carbonate and smectite (both pedogenic and authigenic), reflected by Ca, Sr, and Mg in the acid-soluble suite, and by Cs2O, excess MgO, and LOI (loss on ignition) in the clay-size fraction. Rock flour produced during glacial advances is represented by the abundance of detrital plagioclase and biotite in the clay-size fraction, the ratio of which remains essentially constant over the entire time span. These phases are quantitatively represented by Na2O, TiO2, Ba, and Mn in the clay fraction. The rock-flour record indicates two major ice-advances during the penultimate glacial cycle corresponding to marine isotope stage (MIS) 6, no major advances during the last interglaciation (entire MIS 5), and three major advances during the last glacial cycle (MIS 2, 3, and 4). The ages of the latter three correspond rather well to 36Cl dates reported for Sierra Nevada moraines. The onset of the last interglaciation is shown by abrupt increases in authigenic CaCO3 and an abrupt decrease in rock flour, at about 118,000 yr B.P. according to our time scale. In contrast, the boundary appears to be gradual in the ??18O record in which the change from light to heavy values begins at about 140,000 yrs B.P. The exact position of the termination, therefore, may be proxy-dependent. Conditions of high carbonate and low rock flour prevailed during the entire period from 118,000 yr B.P. until the glacial advance at 53,000 yr B.P. signaled the end of this long interglaciation. ?? 1997 University of Washington.

  8. Decadal-scale climate drivers for glacial dynamics in Glacier National Park, Montana, USA

    USGS Publications Warehouse

    Pederson, G.T.; Fagre, D.B.; Gray, S.T.; Graumlich, L.J.

    2004-01-01

    Little Ice Age (14th-19th centuries A.D.) glacial maxima and 20th century retreat have been well documented in Glacier National Park, Montana, USA. However, the influence of regional and Pacific Basin driven climate variability on these events is poorly understood. We use tree-ring reconstructions of North Pacific surface temperature anomalies and summer drought as proxies for winter glacial accumulation and summer ablation, respectively, over the past three centuries. These records show that the 1850's glacial maximum was likely produced by ???70 yrs of cool/wet summers coupled with high snowpack. Post 1850, glacial retreat coincides with an extended period (>50 yr) of summer drought and low snowpack culminating in the exceptional events of 1917 to 1941 when retreat rates for some glaciers exceeded 100 m/yr. This research highlights potential local and ocean-based drivers of glacial dynamics, and difficulties in separating the effects of global climate change from regional expressions of decadal-scale climate variability. Copyright 2004 by the American Geophysical Union.

  9. Tracing glacial refugia of Triturus newts based on mitochondrial DNA phylogeography and species distribution modeling

    PubMed Central

    2013-01-01

    Introduction The major climatic oscillations during the Quaternary Ice Age heavily influenced the distribution of species and left their mark on intraspecific genetic diversity. Past range shifts can be reconstructed with the aid of species distribution modeling and phylogeographical analyses. We test the responses of the different members of the genus Triturus (i.e. the marbled and crested newts) as the climate shifted from the previous glacial period (the Last Glacial Maximum, ~21 Ka) to the current interglacial. Results We present the results of a dense mitochondrial DNA phylogeography (visualizing genetic diversity within and divergence among populations) and species distribution modeling (using two different climate simulations) for the nine Triturus species on composite maps. Conclusions The combined use of species distribution modeling and mitochondrial phylogeography provides insight in the glacial contraction and postglacial expansion of Triturus. The combined use of the two independent techniques yields a more complete understanding of the historical biogeography of Triturus than both approaches would on their own. Triturus newts generally conform to the ‘southern richness and northern purity’ paradigm, but we also find more intricate patterns, such as the absence of genetic variation and suitable area at the Last Glacial Maximum (T. dobrogicus), an ‘extra-Mediterranean’ refugium in the Carpathian Basin (T. cristatus), and areas where species displaced one another postglacially (e.g. T. macedonicus and western T. karelinii). We provide a biogeographical scenario for Triturus, showing the positions of glacial refugia, the regions that were postglacially colonized and the areas where species displaced one another as they shifted their ranges. PMID:23514662

  10. Tracing glacial refugia of Triturus newts based on mitochondrial DNA phylogeography and species distribution modeling.

    PubMed

    Wielstra, Ben; Crnobrnja-Isailović, Jelka; Litvinchuk, Spartak N; Reijnen, Bastian T; Skidmore, Andrew K; Sotiropoulos, Konstantinos; Toxopeus, Albertus G; Tzankov, Nikolay; Vukov, Tanja; Arntzen, Jan W

    2013-03-20

    The major climatic oscillations during the Quaternary Ice Age heavily influenced the distribution of species and left their mark on intraspecific genetic diversity. Past range shifts can be reconstructed with the aid of species distribution modeling and phylogeographical analyses. We test the responses of the different members of the genus Triturus (i.e. the marbled and crested newts) as the climate shifted from the previous glacial period (the Last Glacial Maximum, ~21 Ka) to the current interglacial. We present the results of a dense mitochondrial DNA phylogeography (visualizing genetic diversity within and divergence among populations) and species distribution modeling (using two different climate simulations) for the nine Triturus species on composite maps. The combined use of species distribution modeling and mitochondrial phylogeography provides insight in the glacial contraction and postglacial expansion of Triturus. The combined use of the two independent techniques yields a more complete understanding of the historical biogeography of Triturus than both approaches would on their own. Triturus newts generally conform to the 'southern richness and northern purity' paradigm, but we also find more intricate patterns, such as the absence of genetic variation and suitable area at the Last Glacial Maximum (T. dobrogicus), an 'extra-Mediterranean' refugium in the Carpathian Basin (T. cristatus), and areas where species displaced one another postglacially (e.g. T. macedonicus and western T. karelinii). We provide a biogeographical scenario for Triturus, showing the positions of glacial refugia, the regions that were postglacially colonized and the areas where species displaced one another as they shifted their ranges.

  11. Physical basis for a thick ice shelf in the Arctic Basin during the penultimate glacial maximum

    NASA Astrophysics Data System (ADS)

    Gasson, E.; DeConto, R.; Pollard, D.; Clark, C.

    2017-12-01

    A thick ice shelf covering the Arctic Ocean during glacial stages was discussed in a number of publications in the 1970s. Although this hypothesis has received intermittent attention, the emergence of new geophysical evidence for ice grounding in water depths of up to 1 km in the central Arctic Basin has renewed interest into the physical plausibility and significance of an Arctic ice shelf. Various ice shelf configurations have been proposed, from an ice shelf restricted to the Amerasian Basin (the `minimum model') to a complete ice shelf cover in the Arctic. Attempts to simulate an Arctic ice shelf have been limited. Here we use a hybrid ice sheet / shelf model that has been widely applied to the Antarctic ice sheet to explore the potential for thick ice shelves forming in the Arctic Basin. We use a climate forcing appropriate for MIS6, the penultimate glacial maximum. We perform a number of experiments testing different ice sheet / shelf configurations and compare the model results with ice grounding locations and inferred flow directions. Finally, we comment on the potential significance of an Arctic ice shelf to the global glacial climate system.

  12. Climate Controls on Last Glacial Maximum to Early Holocene Glacier Extents in the Rwenzori Mountains, Uganda-Democratic Republic of Congo

    NASA Astrophysics Data System (ADS)

    Jackson, M. S.; Kelly, M. A.; Russell, J. M.; Baber, M.; Loomis, S. E.

    2014-12-01

    The climate controls on past and present tropical glacier fluctuations are unclear. Here we present a chronology of past glacial extents in the Rwenzori Mountains (~1ºN, 30ºE), on the border of Uganda and the Democratic Republic of Congo, and compare this with local and regional paleoclimate records to infer the climate controls on glaciation. The Rwenzori Mountains host the most extensive glacial system in Africa and are composed of quartz-rich bedrock lithologies, enabling 10Be dating. Our dataset includes thirty 10Be ages of boulders on moraines estimated to have been deposited between the end of the last glacial period and early Holocene time. In the Mubuku Valley, eight 10Be ages of large (~50-150 m relief) lateral moraines that extend down to ~2000 m asl indicate that deposition occurred at ~23.4 ka (n=4) and ~20.1 ka (n=4), contemporaneously with the global Last Glacial Maximum (LGM). Local and regional paleoclimate records document dry, cool conditions in East Africa during this time. Therefore, we suggest that cooler temperatures were a primary influence on the LGM glacial extents. Upvalley from these samples, six 10Be ages of boulders on moraines (between 3450 and 3720 m asl) document stillstands or readvances of glacier ice at ~14.3 ka (n=2), ~13.2 ka (n=2), and ~11.1 ka (n=2). In the nearby Nyagumasani Valley sixteen 10Be ages of boulders on moraines at similar elevations (3870-4020 m asl) indicate stillstands or readvances at ~11.5 ka (n=4), ~10.6 ka (n=4), and ~10.5 ka (n=4). Local and regional paleoclimate records indicate dry conditions during Younger Dryas time, wet conditions during early Holocene time, and no significant late-glacial temperature reversal. Thus, the relationship between glacier advance and climate conditions during late-glacial time remains enigmatic. We continue to develop the moraine chronology in order to improve our interpretations of climate controls on glacier fluctuations during late-glacial to early Holocene time.

  13. A Reconstruction of Temperature and δ18O Data Since the Last Glacial Maximum Using Soil and Gastropods from the Chinese Loess Plateau

    NASA Astrophysics Data System (ADS)

    Mitsunaga, B.; Mering, J. A.; Eagle, R.; Bricker, H. L.; Davila, N.; Trewman, S.; Burford, S.; Li, G.; Tripati, A. K.

    2016-12-01

    The climate of the Chinese Loess Plateau is affected by the East Asian Monsoon, an important water source for over a billion people. We are examining how temperature and hydrology on the Loess Plateau has changed since the Last Glacial Maximum (18,000 - 23,000 years before the present) in response to insolation, deglaciation, and rising levels of greenhouse gases. Specifically, we are reconstructing temperature and meteoric δ18O through paired clumped and oxygen isotope analyses performed on carbonate minerals. Clumped isotope thermometry—the use of 13C—18O bond frequency in carbonates—is a novel geochemical proxy that provides constraints on mineral formation temperatures and can be combined with carbonate δ18O to quantify meteoric δ18O. We have measured a suite of nodular loess concretions and gastropod shells from the modern as well as the Last Glacial Maximum from 15 sites across the Chinese Loess Plateau. These observations constrain spatial variations in temperature and precipitation, which in turn will provide key constraints on models that simulate changes in regional climates and monsoon intensity over the last 20,000 years.

  14. Geology and quaternary environments of the first preglacial palaeolithic sites found in Alberta, Canada

    NASA Astrophysics Data System (ADS)

    Chlachula, Jiří

    A pebble-tool industry, including two chronologically different stone artifact assemblages reminiscent of the Eurasian Palaeolithic, has been recorded in Late Pleistocene sections at two locations in the Bow River valley, southwestern Alberta. Authenticity and provenance of the deeply buried archaeological record is evidenced by culture-diagnostic percussion-flaked artifacts incorporated in preglacial fluvial gravels and overlying glacial diamictons and by identical textural patterns on stone tools found in and eroded from the exposures. Geological context suggests a fluctuating braided river setting during the earlier occupation. Discarded ( lower series) quartzite and hard carbonate rock artifacts, subglacially entrained into the Cordilleran Bow Valley till, document distortion of the earlier site (Silver Springs) by a valley glacier emerging from the Rocky Mountain ice-lobe. Following the valley deglaciation, a later occupation episode is manifested by a formally analogous flaked lithic assemblage excavated in situ on top of the till at a nearby site (Varsity Estates). This more recent occupation surface was subsequently buried under 24 m of glaciolacustrine sediments after submergence of the river valley by a proglacial lake (Glacial Lake Calgary) dammed by the Laurentide ice advance into the eastern Calgary area, implying a minimum early Late Wisconsinan age (ca. >21,000 BP) for the lithic industry. The presence of the later ( upper series) artifact assemblage and the associated palynological data do not support the view that envisages an extremely cold, inhospitable glacial environment on the eastern slopes of the Canadian Rocky Mountains throughout the Late Wisconsinan. Their stratigraphic position also indicates temporal asynchroneity between Cordilleran and Laurentide ice during the last glacial maximum in the Bow River valley, the area of presumed coalescence of the two ice-masses. Although a more rapid response of the western mountain glacier to climatic change is evident, the apparent absence of pedogenic alteration of the till surface and the fresh appearance of the excavated stone artifacts suggest that a short time span separated the two glacial events. The archaeological record provides evidence of an earlier Palaeo-American peopling of western interior Canada long before the emergence of the Final Pleistocene Palaeoindian cultures, characterized by elaborate bifacial stone projectile-point flaking technologies traditionally regarded as the earliest cultural manifestations in North America. Silver Springs is the first early site on the continent found below glacial deposits. Realization that other American Palaeolithic sites, potentially of considerable antiquity, should be recognized in similar geological settings, and introduction of adequate geoarchaeological site-survey techniques, have crucial relevance for elucidation of the earliest New World prehistory.

  15. Coupling of equatorial Atlantic surface stratification to glacial shifts in the tropical rainbelt.

    PubMed

    Portilho-Ramos, R C; Chiessi, C M; Zhang, Y; Mulitza, S; Kucera, M; Siccha, M; Prange, M; Paul, A

    2017-05-08

    The modern state of the Atlantic meridional overturning circulation promotes a northerly maximum of tropical rainfall associated with the Intertropical Convergence Zone (ITCZ). For continental regions, abrupt millennial-scale meridional shifts of this rainbelt are well documented, but the behavior of its oceanic counterpart is unclear due the lack of a robust proxy and high temporal resolution records. Here we show that the Atlantic ITCZ leaves a distinct signature in planktonic foraminifera assemblages. We applied this proxy to investigate the history of the Atlantic ITCZ for the last 30,000 years based on two high temporal resolution records from the western Atlantic Ocean. Our reconstruction indicates that the shallowest mixed layer associated with the Atlantic ITCZ unambiguously shifted meridionally in response to changes in the strength of the Atlantic meridional overturning with a southward displacement during Heinrich Stadials 2-1 and the Younger Dryas. We conclude that the Atlantic ITCZ was located at ca. 1°S (ca. 5° to the south of its modern annual mean position) during Heinrich Stadial 1. This supports a previous hypothesis, which postulates a southern hemisphere position of the oceanic ITCZ during climatic states with substantially reduced or absent cross-equatorial oceanic meridional heat transport.

  16. Quantifying the influence of the terrestrial biosphere on glacial-interglacial climate dynamics

    NASA Astrophysics Data System (ADS)

    Davies-Barnard, Taraka; Ridgwell, Andy; Singarayer, Joy; Valdes, Paul

    2017-10-01

    The terrestrial biosphere is thought to be a key component in the climatic variability seen in the palaeo-record. It has a direct impact on surface temperature through changes in surface albedo and evapotranspiration (so-called biogeophysical effects) and, in addition, has an important indirect effect through changes in vegetation and soil carbon storage (biogeochemical effects) and hence modulates the concentrations of greenhouse gases in the atmosphere. The biogeochemical and biogeophysical effects generally have opposite signs, meaning that the terrestrial biosphere could potentially have played only a very minor role in the dynamics of the glacial-interglacial cycles of the late Quaternary. Here we use a fully coupled dynamic atmosphere-ocean-vegetation general circulation model (GCM) to generate a set of 62 equilibrium simulations spanning the last 120 kyr. The analysis of these simulations elucidates the relative importance of the biogeophysical versus biogeochemical terrestrial biosphere interactions with climate. We find that the biogeophysical effects of vegetation account for up to an additional -0.91 °C global mean cooling, with regional cooling as large as -5 °C, but with considerable variability across the glacial-interglacial cycle. By comparison, while opposite in sign, our model estimates of the biogeochemical impacts are substantially smaller in magnitude. Offline simulations show a maximum of +0.33 °C warming due to an increase of 25 ppm above our (pre-industrial) baseline atmospheric CO2 mixing ratio. In contrast to shorter (century) timescale projections of future terrestrial biosphere response where direct and indirect responses may at times cancel out, we find that the biogeophysical effects consistently and strongly dominate the biogeochemical effect over the inter-glacial cycle. On average across the period, the terrestrial biosphere has a -0.26 °C effect on temperature, with -0.58 °C at the Last Glacial Maximum. Depending on assumptions made about the destination of terrestrial carbon under ice sheets and where sea level has changed, the average terrestrial biosphere contribution over the last 120 kyr could be as much as -50 °C and -0.83 °C at the Last Glacial Maximum.

  17. Map showing spatial and temporal relations of mountain and continental glaciations on the Northern Plains, primarily in northern Montana and northwestern North Dakota

    USGS Publications Warehouse

    Fullerton, David S.; Colton, Roger B.; Bush, Charles A.; Straub, Arthur W.

    2004-01-01

    This report is an overview of glacial limits and glacial history on the plains in northern Montana and northeastern North Dakota (long 102?-114?W.) and also in adjacent southern Alberta and Saskatchewan, Canada. In the Rocky Mountains and on the plains adjacent to the mountains in Montana, the map also depicts spatial relations of valley glaciers and piedmont ice lobes to continental ice sheets. Glacial limits east of 102?, in the United States and also in adjacent Canada, are depicted on published maps of the U.S. Geological Survey Quaternary Geologic Atlas of the United States (I-1420) map series. The limits shown here are from data compiled for the Lethbridge, Regina, Yellowstone, and Big Horn Mountains 4? x 6? quadrangles in the Quaternary Geologic Atlas series. This geospatial database has been prepared with a degree of detail appropriate for viewing at a scale of 1:1,000,000. Because of the degree of generalization required, the map is intended for regional analysis, rather than for detailed analysis in specific areas. It depicts the geographic positions of the limits of mountain and continental glaciations and the limits of selected glacial readvances. That information provides a foundation for reconstruction of geologic history and for reconstruction. The base map is simplified. Selected hydrographic features, selected towns and cities, selected physiographic features, and a grid of 1? x 2? topographic quadrangles are included to aid the reader in location of the glacial limits and other features that are depicted here on other maps at different scales. Most of the geologic data were compiled at 1:250,000 scale. The nominal reading scale of the digitized map data is 1:1,000,000. Enlargement will not restore resolution that was lost by simplification or generalization of data. Accompanying illustrations show regional directions of ice movement from Canada into the United States during maximum Illinoian glaciation, during maximum late Wisconsin glaciation, and during a later regional glacial readvance maximum

  18. Assessing the variability of glacier lake bathymetries and potential peak discharge based on large-scale measurements in the Cordillera Blanca, Peru

    NASA Astrophysics Data System (ADS)

    Cochachin, Alejo; Huggel, Christian; Salazar, Cesar; Haeberli, Wilfried; Frey, Holger

    2015-04-01

    Over timescales of hundreds to thousands of years ice masses in mountains produced erosion in bedrock and subglacial sediment, including the formation of overdeepenings and large moraine dams that now serve as basins for glacial lakes. Satellite based studies found a total of 8355 glacial lakes in Peru, whereof 830 lakes were observed in the Cordillera Blanca. Some of them have caused major disasters due to glacial lake outburst floods in the past decades. On the other hand, in view of shrinking glaciers, changing water resources, and formation of new lakes, glacial lakes could have a function as water reservoirs in the future. Here we present unprecedented bathymetric studies of 124 glacial lakes in the Cordillera Blanca, Huallanca, Huayhuash and Raura in the regions of Ancash, Huanuco and Lima. Measurements were carried out using a boat equipped with GPS, a total station and an echo sounder to measure the depth of the lakes. Autocad Civil 3D Land and ArcGIS were used to process the data and generate digital topographies of the lake bathymetries, and analyze parameters such as lake area, length and width, and depth and volume. Based on that, we calculated empirical equations for mean depth as related to (1) area, (2) maximum length, and (3) maximum width. We then applied these three equations to all 830 glacial lakes of the Cordillera Blanca to estimate their volumes. Eventually we used three relations from the literature to assess the peak discharge of potential lake outburst floods, based on lake volumes, resulting in 3 x 3 peak discharge estimates. In terms of lake topography and geomorphology results indicate that the maximum depth is located in the center part for bedrock lakes, and in the back part for lakes in moraine material. Best correlations are found for mean depth and maximum width, however, all three empirical relations show a large spread, reflecting the wide range of natural lake bathymetries. Volumes of the 124 lakes with bathymetries amount to 0.9 km3 while the volume of all glacial lakes of the Cordillera Blanca ranges between 1.15 and 1.29 km3. The small difference in volume of the large lake sample as compared to the smaller sample of bathymetrically surveyed lakes is due to the large size of the measured lakes. The different distributions for lake volume and peak discharge indicate the range of variability in such estimates, and provides valuable first-order information for management and adaptation efforts in the field of water resources and flood prevention.

  19. Beyond the Seafloor: a Plio-Pleistocene Archive of Glacial Geomorphology from Basin-Wide 3D Seismic Reflection Data on the Mid-Norwegian Shelf

    NASA Astrophysics Data System (ADS)

    Newton, A.; Huuse, M.

    2015-12-01

    Oil and gas exploration on the mid-Norwegian shelf has created an extensive geophysical and geological database. As such, this margin has become one of the most comprehensively studied formerly-glaciated continental margins in the world. Industrial operations have concentrated on the structure and geohazard potential of glacial sediments whilst academic work has looked at reconstructing environmental conditions during and since the Last Glacial Maximum (LGM). This has generally consisted of mapping seafloor glacial geomorphology and a limited number of shallow sediment cores. Despite the increasingly large volume of 3D seismic reflection data available across the majority of the shelf, only limited work has been carried out investigating the oldest glaciations. A Plio-Pleistocene archive of glacial-interglacial history is preserved offshore and represents a unique study site because of the availability of 100s of 3D seismic reflection datasets. This database allows numerous different glacial erosion events and glacial landforms to be imaged throughout the glacially-derived NAUST Formation. We present an inventory of glacial history for the mid-Norwegian shelf and review the implications for the glacial history of Northwest Europe. This record shows glacial landforms such as iceberg scours, mega-scale glacial lineations and grounding-zone wedges, each of which provides an insight into ice characteristics. Dating is limited to a few tentative dates based on side-wall core data but we infer a further dating chronology based on dated sediments from the Voring Plateau, fluctuations in the benthic δ18O derived global sea level record, interpretation of seismic facies and the overall architecture. Glacial evidence is present regularly throughout the stratigraphy with the earliest evidence for marine terminating ice found at the base of the NAUST Formation at ~2.8 Ma.

  20. Craniometric analysis of European Upper Palaeolithic and Mesolithic samples supports discontinuity at the Late Glacial Maximum

    PubMed Central

    Brewster, Ciarán; Meiklejohn, Christopher; von Cramon-Taubadel, Noreen; Pinhasi, Ron

    2014-01-01

    The Last Glacial Maximum (LGM) represents the most significant climatic event since the emergence of anatomically modern humans (AMH). In Europe, the LGM may have played a role in changing morphological features as a result of adaptive and stochastic processes. We use craniometric data to examine morphological diversity in pre- and post-LGM specimens. Craniometric variation is assessed across four periods—pre-LGM, late glacial, Early Holocene and Middle Holocene—using a large, well-dated, dataset. Our results show significant differences across the four periods, using a MANOVA on size-adjusted cranial measurements. A discriminant function analysis shows separation between pre-LGM and later groups. Analyses repeated on a subsample, controlled for time and location, yield similar results. The results are largely influenced by facial measurements and are most consistent with neutral demographic processes. These findings suggest that the LGM had a major impact on AMH populations in Europe prior to the Neolithic. PMID:24912847

  1. Thermodynamic and Dynamic Causes of Pluvial Conditions During the Last Glacial Maximum in Western North America

    NASA Astrophysics Data System (ADS)

    Morrill, Carrie; Lowry, Daniel P.; Hoell, Andrew

    2018-01-01

    During the last glacial period, precipitation minus evaporation increased across the currently arid western United States. These pluvial conditions have been commonly explained for decades by a southward deflection of the jet stream by the Laurentide Ice Sheet. Here analysis of state-of-the-art coupled climate models shows that effects of the Laurentide Ice Sheet on the mean circulation were more important than storm track changes in generating wet conditions. Namely, strong cooling by the ice sheet significantly reduced humidity over land, increasing moisture advection in the westerlies due to steepened humidity gradients. Additionally, the removal of moisture from the atmosphere by mass divergence associated with the subtropical high was diminished at the Last Glacial Maximum compared to present. These same dynamic and thermodynamic factors, working in the opposite direction, are projected to cause regional drying in western North America under increased greenhouse gas concentrations, indicating continuity from past to future in the mechanisms altering hydroclimate.

  2. Differences in ice retreat across Pine Island Bay, West Antarctica, since the Last Glacial Maximum: Indications from multichannel seismic reflection data

    USGS Publications Warehouse

    Uenzelmann-Neben, G.; Gohl, K.; Larter, R.D.; Schlüter, P.

    2007-01-01

    An understanding of the glacial history of Pine Island Bay (PIB) is essential for refining models of the future stability of the West Antarctic Ice Sheet (WAIS). New multichannel seismic reflection data from inner PIB are interpreted in context of previously published reconstructions for the retreat history in this area since the Last Glacial Maximum. Differences in the behavior of the ice sheet during deglaciation are shown to exist for the western and eastern parts of PIB. While we can identify only a thin veneer of sedimentary deposits in western PIB, eastern PIB shows sedimentary layers ≤ 400 msTWT. This is interpreted as a result of differences in ice retreat: a fast ice retreat in western PIB accompanied by rapid basal melting led to production of large meltwater streams, a slower ice retreat in eastern PIB is most probably the result of smaller drainage basins resulting in less meltwater production.

  3. Dust fluxes and iron fertilization in Holocene and Last Glacial Maximum climates

    NASA Astrophysics Data System (ADS)

    Lambert, Fabrice; Tagliabue, Alessandro; Shaffer, Gary; Lamy, Frank; Winckler, Gisela; Farias, Laura; Gallardo, Laura; De Pol-Holz, Ricardo

    2015-07-01

    Mineral dust aerosols play a major role in present and past climates. To date, we rely on climate models for estimates of dust fluxes to calculate the impact of airborne micronutrients on biogeochemical cycles. Here we provide a new global dust flux data set for Holocene and Last Glacial Maximum (LGM) conditions based on observational data. A comparison with dust flux simulations highlights regional differences between observations and models. By forcing a biogeochemical model with our new data set and using this model's results to guide a millennial-scale Earth System Model simulation, we calculate the impact of enhanced glacial oceanic iron deposition on the LGM-Holocene carbon cycle. On centennial timescales, the higher LGM dust deposition results in a weak reduction of <10 ppm in atmospheric CO2 due to enhanced efficiency of the biological pump. This is followed by a further ~10 ppm reduction over millennial timescales due to greater carbon burial and carbonate compensation.

  4. An Ocean Tale of Two Climates: Modern and Last Glacial Maximum

    NASA Astrophysics Data System (ADS)

    Ferrari, R. M.

    2014-12-01

    In the present climate, the ocean below 2 km is mainly filled by waters sinking into the abyss around Antarctica and in the North Atlantic. Paleo proxies indicate that waters of North Atlantic origin were instead absent below 2 km at the Last Glacial Maximum (LGM), resulting in an expansion of the volume occupied by Antarctic origin waters. I will argue that this rearrangement of deep water masses is dynamically connected to the expansion of summer sea ice around Antarctica. A simple theory will be introduced to suggest that these deep waters only came to the surface under summer sea ice, which insulated them from atmospheric forcing, and were weakly mixed with overlying waters, thus being able to store carbon for long times. I will show that this unappreciated link between the expansion of sea ice and the appearance of a voluminous and insulated water mass appear to be crucial in explaining the ocean's role in regulating atmospheric carbon dioxide on glacial-interglacial timescales.

  5. Modeling the evolution of the Laurentide Ice Sheet from MIS 3 to the Last Glacial Maximum: an approach using sea level modeling and ice flow dynamics

    NASA Astrophysics Data System (ADS)

    Weisenberg, J.; Pico, T.; Birch, L.; Mitrovica, J. X.

    2017-12-01

    The history of the Laurentide Ice Sheet since the Last Glacial Maximum ( 26 ka; LGM) is constrained by geological evidence of ice margin retreat in addition to relative sea-level (RSL) records in both the near and far field. Nonetheless, few observations exist constraining the ice sheet's extent across the glacial build-up phase preceding the LGM. Recent work correcting RSL records along the U.S. mid-Atlantic dated to mid-MIS 3 (50-35 ka) for glacial-isostatic adjustment (GIA) infer that the Laurentide Ice Sheet grew by more than three-fold in the 15 ky leading into the LGM. Here we test the plausibility of a late and extremely rapid glaciation by driving a high-resolution ice sheet model, based on a nonlinear diffusion equation for the ice thickness. We initialize this model at 44 ka with the mid-MIS 3 ice sheet configuration proposed by Pico et al. (2017), GIA-corrected basal topography, and mass balance representative of mid-MIS 3 conditions. These simulations predict rapid growth of the eastern Laurentide Ice Sheet, with rates consistent with achieving LGM ice volumes within 15 ky. We use these simulations to refine the initial ice configuration and present an improved and higher resolution model for North American ice cover during mid-MIS 3. In addition we show that assumptions of ice loads during the glacial phase, and the associated reconstructions of GIA-corrected basal topography, produce a bias that can underpredict ice growth rates in the late stages of the glaciation, which has important consequences for our understanding of the speed limit for ice growth on glacial timescales.

  6. Trans-pacific glacial response to the Antarctic Cold Reversal in the southern mid-latitudes

    NASA Astrophysics Data System (ADS)

    Sagredo, Esteban A.; Kaplan, Michael R.; Araya, Paola S.; Lowell, Thomas V.; Aravena, Juan C.; Moreno, Patricio I.; Kelly, Meredith A.; Schaefer, Joerg M.

    2018-05-01

    Elucidating the timing and regional extent of abrupt climate events during the last glacial-interglacial transition (∼18-11.5 ka) is critical for identifying spatial patterns and mechanisms responsible for large-magnitude climate events. The record of climate change in the Southern Hemisphere during this time period, however, remains scarce and unevenly distributed. We present new geomorphic, chronological, and equilibrium line altitude (ELA) data from a climatically sensitive mountain glacier at Monte San Lorenzo (47°S), Central Patagonia. Twenty-four new cosmogenic 10Be exposure ages from moraines provide a comprehensive glacial record in the mid-latitudes of South America, which constrain the timing, spatial extent and magnitude of glacial fluctuations during the Antarctic Cold Reversal (ACR, ∼14.5-12.9 ka). Río Tranquilo glacier advanced and reached a maximum extent at 13.9 ± 0.7 ka. Three additional inboard moraines afford statistically similar ages, indicating repeated glacier expansions or marginal fluctuations over the ACR. Our record represents the northernmost robust evidence of glacial fluctuations during the ACR in southern South America, documenting not only the timing of the ACR maximum, but also the sequence of glacier changes within this climate event. Based on ELA reconstructions, we estimate a cooling of >1.6-1.8 °C at the peak of the ACR. The Río Tranquilo record along with existing glacial reconstructions from New Zealand (43°S) and paleovegetation records from northwestern (41°S) and central-west (45°S) Patagonia, suggest an uniform trans-Pacific glacier-climate response to an ACR trigger across the southern mid-latitudes. We posit that the equatorial migration of the southern westerly winds provides an adequate mechanism to propagate a common ACR signal across the Southern Hemisphere.

  7. Weathering pits as indicators of the relative age of granite surfaces in the Cairngorm mountains, Scotland

    USGS Publications Warehouse

    Hall, A.M.; Phillips, W.M.

    2006-01-01

    Weathering pits 1-140 cm deep occur on granite surfaces in the Cairngorms associated with a range of landforms, including tors, glacially exposed slabs, large erratics and blockfields. Pit depth is positively correlated with cosmogenic exposure age, and both measures show consistent relationships on individual rock landforms. Rates of pit deepening are non-linear and a best fit is provided by the sigmoidal function D = b1+ exp(b2+b3/t). The deepest pits occur on unmodified tor summits, where 10 Be exposure ages indicate that surfaces have been exposed to weathering for a minimum of 52-297 ka. Glacially exposed surfaces with pits 10-46 cm deep have given 10 Be exposure durations of 21-79 ka, indicating exposure by glacial erosion before the last glacial cycle. The combination of cosmogenic exposure ages with weathering pit depths greatly extends the area over which inferences can be made regarding the ages of granite surfaces in the Cairngorms. Well-developed weathering pits on glacially exposed surfaces in other granite areas are potential indicators of glacial erosion before the Last Glacial Maximum. ?? Swedish Society for Anthropology and Geography.

  8. A glacial record of the last termination in the southern tropical Andes

    NASA Astrophysics Data System (ADS)

    Bromley, G. R.; Schaefer, J. M.; Winckler, G.; Hall, B. L.; Todd, C. E.; Rademaker, K.

    2012-12-01

    The last glacial termination represents the highest-magnitude climate change of the last hundred thousand years. Accurate resolution of events during the termination is vital to our understanding of how - and why - the global climate system transitions from a full glacial to interglacial state, as well as the causes of abrupt climate change during the late-glacial period. Palaeoclimate data from low latitudes, though relatively sparse, are particularly valuable, since the tropical ocean and atmosphere likely play a crucial role in Quaternary climate variability on all timescales. We present a detailed glacier record from the Andes of southern Peru (15°S), resolved with 3He surface-exposure dating and spanning the last glacial maximum and termination. Our dataset reveals that glaciers in this part of the Southern Hemisphere maintained their Late Pleistocene maxima for several millennia and that the onset of the termination may have occurred relatively late. Deglaciation was punctuated by two major advances during the late-glacial period. Following the glacial-interglacial transition, our preliminary chronologic and morphologic data suggest that, in contrast to the Northern Hemisphere, glaciers in the southern tropical Andes have experienced overall shrinkage during the Holocene.

  9. Glacier fluctuations in the Rwenzori Mountains, Uganda, during the Last Glacial Maximum and Termination 1

    NASA Astrophysics Data System (ADS)

    Kelly, M. A.; Jackson, M. S.; Russel, J.; Doughty, A. M.; Howley, J. A.; Cavagnaro, D. B.; Zimmerman, S. R. H.

    2016-12-01

    The tropics exert a profound influence on global climate; however, the role of the tropics in past climate change is uncertain. In particular, it is unclear whether the tropics may initiate abrupt climate changes or instead respond to high-latitude change. Determining the timing and spatial variability of past change in the tropics is a first step to addressing the role of the low-latitudes in both past and future climate changes. To investigate these questions, we present a cosmogenic 10Be chronology from a suite of moraines in the Rwenzori Mountains, Uganda. These results indicate that ice was most extensive early during the Last Glacial Maximum (LGM; 26.0-19.5 kyr), prior to the global sea-level lowstand at 20.5 kyr. Low-magnitude, millennial-scale glacial oscillations occurred throughout the LGM. Retreat from the LGM position was underway by 21.5 kyr, though ice remained extensive in the Rwenzori until at least 18.5 ka. Similar chronologies from elsewhere in the tropics suggest that glaciers across the low-latitudes achieved their maxima in the earliest stages of the LGM, during a period of high (mean annual) equatorial insolation and decreasing Northern Hemisphere summer insolation. In addition, the larger-scale recession that occurred subsequent to 21.5 kyr predates the post-glacial rise in atmospheric CO2 at 18.1 kyr. Therefore, we suggest that something other than Northern Hemisphere or equatorial insolation or atmospheric CO2 may have influenced the millennial-scale glacial oscillations throughout the LGM as registered by Rwenzori moraines. The chronology of glacial fluctuations in the Rwenzori Mountains is similar to other glacial chronologies located outside the tropics in both the Northern and Southern Hemispheres, suggesting that glaciers across the globe may have responded to a common forcing throughout the LGM and Termination 1.

  10. Pleistocene glacial evolution of Fuentes Carrionas (Cantabrian Range, NW Spain)

    NASA Astrophysics Data System (ADS)

    Pellitero, Ramon

    2014-05-01

    Fuentes Carrionas is a massif situated at the N of Spain, between Castilla y Leon and Cantabria regions. It is the second highest mountain massif of the Cantabrian Range after Picos de Europa, with peaks over 2500 m.a.s.l. and valleys well over 1000 m.a.s.l. Fuentes Carrionas was glaciated during Quaternary, and even during the Holocene and as far as Little Ice Age the presence of glaciers, or at least permafrost is controversial. Results from glacial geomorphology analysis of Fuentes Carrionas Massif are presented. Based on the interpretation of glacial landforms, glacial evolution since the Last Glacial Maximum until Pleistocene deglaciation is described. Four different glacial equilibrium phases are identified, the last one divided into two pulsations. Deglaciation process took place between 36 ka BP and 11 ka BP. Local Last Glacial Maximum is dated back to 36-38 ka. BP, therefore earlier than LGM. Glaciers reached 15 km. long and occupied valleys down to 1250 m.a.s.l. during this phase. By European LGM (20-18 ka.BP) glaciers had substantially retreated to fronts about 1700 m.a.s.l. A final stage with two marked pulsations shows only small glaciers located at cirques above 2000 m.a.s.l. and, finally, only small cirque glaciers at North and Northeast orientation above 2200 m.a.s.l. Both these phases have been correlated to Oldest and Younger Dryas, although no dates have been done yet. A palaeoenvironmental reconstruction is proposed, based on ELA (Equilibrium Line Altitude) rise. ELA has been calculated with the AAR method and 0.67 ratio. This reconstruction shows that temperatures ranged between 9°C and 10°C lower than present ones at the end of Pleistocene, depending on a precipitations variation between 30% higher and 20% lower than current ones. Further research will focus on these retreat phases, especially on Younger Dryas identification and reconstruction for this site and the rest of Cantabrian Range.

  11. Somma-Vesuvius ground deformation over the last glacial cycle

    NASA Astrophysics Data System (ADS)

    Marturano, Aldo; Aiello, Giuseppe; Barra, Diana

    2013-04-01

    Vertical ground movements at Somma-Vesuvius during the last glacial cycle have been inferred from micropalaeontological and petrochemical analyses of rock samples from boreholes drilled at the archaeological sites of Herculaneum and Pompeii as well as on the apron of the volcano and the adjacent Sebeto and Sarno Valleys. Opposing movements occurred during the periods preceding and following the Last Glacial Maximum (LGM). The uplift began 20 ka ago with marine deposits rising several tens of metres up to 25 m a.s.l., recovering previous subsidence which occurred during the Late glacial period, suggesting a strict connection between volcano-tectonic and glacial cycles. Here we present the analysis of deposits predating the LGM, which confirms subsidence of the Campanian Plain where Mt. Somma-Vesuvius is located, shows variable surface loading effects and highlights the volcano-tectonic stages experienced by the volcano. The self-balancing mechanism of the volcanic system, evolving towards an explosive, subaerial activity 60 ka ago, is testified to by a large ground oscillation in phase with sea level change during the last glacial cycle.

  12. Late Pleistocene glaciation of the Mt Giluwe volcano, Papua New Guinea

    USGS Publications Warehouse

    Barrows, T.T.; Hope, G.S.; Prentice, M.L.; Fifield, L.K.; Tims, S.G.

    2011-01-01

    The Mt Giluwe shield volcano was the largest area glaciated in Papua New Guinea during the Pleistocene. Despite minimal cooling of the sea surface during the last glacial maximum, glaciers reached elevations as low as 3200 m. To investigate changes in the extent of ice through time we have re-mapped evidence for glaciation on the southwest flank of Mt Giluwe. We find that an ice cap has formed on the flanks of the mountain on at least three, and probably four, separate occasions. To constrain the ages of these glaciations we present 39 new cosmogenic 36Cl exposure ages complemented by new radiocarbon dates. Direct dating of the moraines identifies that the maximum extent of glaciation on the mountain was not during the last glacial maximum as previously thought. In conjunction with existing potassium/argon and radiocarbon dating, we recognise four distinct glacial periods between 293-306 ka (Gogon Glaciation), 136-158 ka (Mengane Glaciation), centred at 62 ka (Komia Glaciation) and from >20.3-11.5 ka (Tongo Glaciation). The temperature difference relative to the present during the Tongo Glaciation is likely to be of the order of at least 5 ??C which is a minimum difference for the previous glaciations. During the Tongo Glaciation, ice was briefly at its maximum for less than 1000 years, but stayed near maximum levels for nearly 4000 years, until about 15.4 ka. Over the next 4000 years there was more rapid retreat with ice free conditions by the early Holocene. ?? 2011 Elsevier Ltd.

  13. Holocene and latest Pleistocene climate and glacier fluctuations in Iceland

    NASA Astrophysics Data System (ADS)

    Geirsdóttir, Áslaug; Miller, Gifford H.; Axford, Yarrow; Ólafsdóttir, Sædís

    2009-10-01

    Multiproxy climate records from Iceland document complex changes in terrestrial climate and glacier fluctuations through the Holocene, revealing some coherent patterns of change as well as significant spatial variability. Most studies on the Last Glacial Maximum and subsequent deglaciation reveal a dynamic Iceland Ice Sheet (IIS) that responded abruptly to changes in ocean currents and sea level. The IIS broke up catastrophically around 15 ka as the Polar Front migrated northward and sea level rose. Indications of regional advance or halt of the glaciers are seen in late Alleröd/early Younger Dryas time and again in PreBoreal time. Due to the apparent rise of relative sea level in Iceland during this time, most sites contain evidence for fluctuating, tidewater glacier termini occupying paleo fjords and bays. The time between the end of the Younger Dryas and the Preboreal was characterized by repeated jökulhlaups that eroded glacial deposits. By 10.3 ka, the main ice sheet was in rapid retreat across the highlands of Iceland. The Holocene thermal maximum (HTM) was reached after 8 ka with land temperatures estimated to be 3 °C higher than the 1961-1990 reference, and net precipitation similar to modern. Such temperatures imply largely ice-free conditions across Iceland in the early to mid-Holocene. Several marine and lacustrine sediment climate proxies record substantial summer temperature depression between 8.5 and 8 ka, but no moraines have been detected from that time. Termination of the HTM and onset of Neoglacial cooling took place sometime after 6 ka with increased glacier activity between 4.5 and 4.0 ka, intensifying between 3.0 and 2.5 ka. Although a distinct warming during the Medieval Warm Period is not dramatically apparent in Icelandic records, the interval from ca AD 0 to 1200 is commonly characterized by relative stability with slow rates of change. The literature most commonly describes Little Ice Age moraines (ca AD 1250-1900) as representing the most extensive ice margins since early Holocene deglaciation, with temperature depressions of 1-2 °C compared to the AD 1961-1990 average. Steep north-south and west-east temperature gradients are reconstructed in the Holocene records of Iceland, suggesting a strong maritime influence on the terrestrial climate of Iceland.

  14. Last Glacial Maximum Salinity Reconstruction

    NASA Astrophysics Data System (ADS)

    Homola, K.; Spivack, A. J.

    2016-12-01

    It has been previously demonstrated that salinity can be reconstructed from sediment porewater. The goal of our study is to reconstruct high precision salinity during the Last Glacial Maximum (LGM). Salinity is usually determined at high precision via conductivity, which requires a larger volume of water than can be extracted from a sediment core, or via chloride titration, which yields lower than ideal precision. It has been demonstrated for water column samples that high precision density measurements can be used to determine salinity at the precision of a conductivity measurement using the equation of state of seawater. However, water column seawater has a relatively constant composition, in contrast to porewater, where variations from standard seawater composition occur. These deviations, which affect the equation of state, must be corrected for through precise measurements of each ion's concentration and knowledge of apparent partial molar density in seawater. We have developed a density-based method for determining porewater salinity that requires only 5 mL of sample, achieving density precisions of 10-6 g/mL. We have applied this method to porewater samples extracted from long cores collected along a N-S transect across the western North Atlantic (R/V Knorr cruise KN223). Density was determined to a precision of 2.3x10-6 g/mL, which translates to salinity uncertainty of 0.002 gms/kg if the effect of differences in composition is well constrained. Concentrations of anions (Cl-, and SO4-2) and cations (Na+, Mg+, Ca+2, and K+) were measured. To correct salinities at the precision required to unravel LGM Meridional Overturning Circulation, our ion precisions must be better than 0.1% for SO4-/Cl- and Mg+/Na+, and 0.4% for Ca+/Na+, and K+/Na+. Alkalinity, pH and Dissolved Inorganic Carbon of the porewater were determined to precisions better than 4% when ratioed to Cl-, and used to calculate HCO3-, and CO3-2. Apparent partial molar densities in seawater were determined experimentally. We compare the high precision salinity profiles determined using our new method to profiles determined from the traditional chloride titrations of parallel samples. Our technique provides a more accurate reconstruction of past salinity, informing questions of water mass composition and distribution during the LGM.

  15. Evidence of a low-latitude glacial buzzsaw: Progressive hypsometry reveals height-limiting glacial erosion in tropical mountain belts

    NASA Astrophysics Data System (ADS)

    Cunningham, M.; Stark, C. P.; Kaplan, M. R.; Schaefer, J. M.; Winckler, G.

    2017-12-01

    It has been widely demonstrated that glacial erosion limits the height of mid-latitude mountain ranges—a phenomenon commonly referred to as the "glacial buzzsaw." The strength of the buzzsaw is thought to diminish, or die out completely, at lower latitudes, where glacial landscapes occupy only a small part of mountain belts affected by Pleistocene glaciation. Here we argue that glacial erosion has actually truncated the rise of many tropical orogens. To elicit signs of height-limiting glacial erosion in the tropics, we employ a new take on an old tool: we identify transient geomorphic features by tracking the evolution of (sub)catchment hypsometry with increasing elevation above base level, a method we term "progressive hypsometry." In several tropical mountain belts, including the Central Range of Taiwan, the Talamanca of Costa Rica, the Finisterres of Papua New Guinea, and the Rwenzoris of East Africa, progressive hypsometry reveals transient landscapes perched at various elevations, but the highest of these transient features are consistently glacial landscapes near the lower limit of late-Pleistocene glacial equilibrium line altitude (ELA) fluctuation. We attribute this pattern to an efficient glacial buzzsaw. In many cases, these glacial landscapes are undergoing contemporary destruction by headward propagating, fluvially-driven escarpments. We deduce that a duel between glacial buzzcutting and fluvially-driven scarp propagation has been ongoing throughout the Pleistocene in these places, and that the preservation potential of tropical glacial landscapes is low. To this end, we have identified possible remnants of glacial landscapes in the final stages of scarp consumption, and use 3He surface exposure age dating of boulders and bedrock surfaces in two of these landscapes to constrain major geomorphic activity to before the onset of the Last Glacial Maximum. Our work points to a profound climatic influence on the evolution of these warm, tectonically active, tropical mountain ranges and identifies glaciation as a trigger of autogenic behavior in flanking fluvial landscapes.

  16. Abrupt climatic changes as triggering mechanisms of massive volcanic collapses: examples from Mexico (Invited)

    NASA Astrophysics Data System (ADS)

    Capra, L.

    2010-12-01

    Climate changes have been considered to be a triggering mechanism for large magmatic eruptions. However they can also trigger volcanic collapses, phenomena that cause the destruction of the entire sector of a volcano, including its summit. During the past 30 ka, major volcanic collapses occurred just after main glacial peaks that ended with a rapid deglaciation. Glacial debuttressing, load discharge and fluid circulation coupled with the post-glacial increase of humidity and heavy rains can activate the failure of unstable edifices. Looking at the synchronicity of the maximum glaciations during the late Pleistocene and Holocene in the northern and southern hemispheres it is evident that several volcanic collapses are absent during a glacial climax, but start immediately after it during a period of rapid retreat. Several examples can be detected around the world and Mexico is not an exception. The 28 ka Nevado de Toluca volcanic collapse occurred during an intraglacial stage, under humid conditions as evidenced by paleoclimatic studies on lacustrine sediments of the area. The debris avalanche deposit associated to this event clearly shows evidence of a large amount of water into the mass previous to the failure that enhanced its mobility. It also contains peculiar, plastically deformed, m-sized fragment of lacustrine sediments eroded from glacial berms. The 17 ka BP collapse of the Colima Volcano corresponds to the initial stage of glacial retreat in Mexico after the Last Glacial Maximum (22-17.5ka). Also in this case the depositional sequence reflects high humidity conditions with voluminous debris flow containing a large amount logs left by pine trees. The occurrence of cohesive debris flows originating from the failure of a volcanic edifice can also reflect the climatic conditions, indicating important hydrothermal alteration and fluid circulation from ice-melting at an ice-capped volcano, as observed for example at the Pico de Orizaba volcano for the Tetelzingo lahar, which collapse occurred after the Terminal Glacial (15-11 ka). Furthermore, significant global warming can be responsible for the collapse of ice-capped unstable volcanoes, an unpredictable hazard that in few minutes can bury inhabited areas.

  17. Exposure dating and glacial reconstruction at Mt. Field, Tasmania, Australia, identifies MIS 3 and MIS 2 glacial advances and climatic variability

    NASA Astrophysics Data System (ADS)

    Mackintosh, A. N.; Barrows, T. T.; Colhoun, E. A.; Fifield, L. K.

    2006-05-01

    Tasmania is important for understanding Quaternary climatic change because it is one of only three areas that experienced extensive mid-latitude Southern Hemisphere glaciation and it lies in a dominantly oceanic environment at a great distance from Northern Hemisphere ice sheet feedbacks. We applied exposure dating using 36Cl to an extensive sequence of moraines from the last glacial at Mt. Field, Tasmania. Glaciers advanced at 41-44 ka during Marine oxygen Isotope Stage (MIS) 3 and at 18 ka during MIS 2. Both advances occurred in response to an ELA lowering greater than 1100 m below the present-day mean summer freezing level, and a possible temperature reduction of 7-8°C. Deglaciation was rapid and complete by ca. 16 ka. The overall story emerging from studies of former Tasmanian glaciers is that the MIS 2 glaciation was of limited extent and that some glaciers were more extensive during earlier parts of the last glacial cycle. Copyright

  18. Freshwater control of ice-rafted debris in the last glacial period at Mono Lake, California, USA

    NASA Astrophysics Data System (ADS)

    Zimmerman, Susan R. H.; Pearl, Crystal; Hemming, Sidney R.; Tamulonis, Kathryn; Hemming, N. Gary; Searle, Stephanie Y.

    2011-09-01

    The type section silts of the late Pleistocene Wilson Creek Formation at Mono Lake contain outsized clasts, dominantly well-rounded pebbles and cobbles of Sierran lithologies. Lithic grains > 425 μm show a similar pattern of variability as the > 10 mm clasts visible in the type section, with decreasing absolute abundance in southern and eastern outcrops. The largest concentrations of ice-rafted debris (IRD) occur at 67-57 ka and 46-32 ka, with strong millennial-scale variability, while little IRD is found during the last glacial maximum and deglaciation. Stratigraphic evidence for high lake level during high IRD intervals, and a lack of geomorphic evidence for coincidence of lake and glaciers, strongly suggests that rafting was by shore ice rather than icebergs. Correspondence of carbonate flux and IRD implies that both were mainly controlled by freshwater input, rather than disparate non-climatic controls. Conversely, the lack of IRD during the last glacial maximum and deglacial highstands may relate to secondary controls such as perennial ice cover or sediment supply. High IRD at Mono Lake corresponds to low glacial flour flux in Owens Lake, both correlative to high warm-season insolation. High-resolution, extra-basinal correlation of the millennial peaks awaits greatly improved age models for both records.

  19. Progressive glacial retreat in the Southern Altiplano (Uturuncu volcano, 22°S) between 65 and 14 ka constrained by cosmogenic 3He dating

    NASA Astrophysics Data System (ADS)

    Blard, Pierre-Henri; Lave, Jérôme; Farley, Kenneth A.; Ramirez, Victor; Jimenez, Nestor; Martin, Léo C. P.; Charreau, Julien; Tibari, Bouchaïb; Fornari, Michel

    2014-07-01

    This work presents the first reconstruction of late Pleistocene glacier fluctuations on Uturuncu volcano, in the Southern Tropical Andes. Cosmogenic 3He dating of glacial landforms provides constraints on ancient glacier position between 65 and 14 ka. Despite important scatter in the exposure ages on the oldest moraines, probably resulting from pre-exposure, these 3He data constrain the timing of the moraine deposits and subsequent glacier recessions: the Uturuncu glacier may have reached its maximum extent much before the global LGM, maybe as early as 65 ka, with an equilibrium line altitude (ELA) at 5280 m. Then, the glacier remained close to its maximum position, with a main stillstand identified around 40 ka, and another one between 35 and 17 ka, followed by a limited recession at 17 ka. Then, another glacial stillstand is identified upstream during the late glacial period, probably between 16 and 14 ka, with an ELA standing at 5350 m. This stillstand is synchronous with the paleolake Tauca highstand. This result indicates that this regionally wet and cold episode, during the Heinrich 1 event, also impacted the Southern Altiplano. The ELA rose above 5450 m after 14 ka, synchronously with the Bolling-Allerod.

  20. Expansion of the North Pacific subpolar gyre during the Last Glacial Maximum

    NASA Astrophysics Data System (ADS)

    Gray, W. R.; Rae, J. W. B.; Wills, R. C.; Burke, A.; Taylor, B.

    2017-12-01

    Due to the opposite sign of the wind-stress forcing in the Pacific subpolar and subtropical gyres, the two gyres are characterised by vastly different nutrient and temperature regimes; the subpolar gyre is cold and nutrient-rich, whereas the subtropical gyre is warm and nutrient poor. The relative extent of the gyres therefore exerts a first order control on biogeochemistry and meridional ocean heat transport in the North Pacific Ocean. Here, by compiling all previously published planktic foraminferal d18O and sea-surface temperature data from across the North Pacific, we show a striking and hitherto unknown feature of the Glacial North Pacific; the southward expansion of the subpolar gyre by 5 degrees. We show, in the PMIP3 ensemble of state-of-the-art climate models, that this expansion is associated with a strengthening of the westerly winds. The southward expansion of the subpolar gyre would have brought nutrient-rich waters further south, providing a solution to the long-standing question of why, while productivity decreased throughout the subpolar gyre during Last Glacial Maximum, it increased in the transition zone between the gyres. The expansion and contraction of the subpolar/subtropical gyres over glacial-interglacial cycles could provide a mechanism to modulate meridional ocean heat transport.

  1. Terrestrial biomarkers in the sediment of the East Sea (Japan Sea) since the MIS 11: implications for paleoproductivity and paleoclimatic changes

    NASA Astrophysics Data System (ADS)

    Hyun, S.; Suh, Y. J.; Woo, K. S.; Ikehara, M.

    2014-12-01

    Terrestrial biomarkers such as n-alkanes and cholesterol were analyzed to infer the variations of paleoproductivity and the corresponding paleoclimatologic information from the sediment of the Korean Plateau, East Sea (Japan Sea) since the Marine Isotope Stage (MIS) 11 (ca. 400 ka). Previous studies of SST variation have shown that glacial-interglacial scale changes were quite variable with the maximum range of 26oC in MIS 7, and the minimum range of 12oC during MIS 2 and 6. The distribution of terrestrial n-alkanes signatures is characterized by the occurrence of high odd number frequency with a minor contribution of specific compound (nC27 only). Average Chain Length (ACL) and Carbon Preferences Index (CPI), both of which are derived from n-alkane combination, show similar shifting between glacial and interglacial periods. This suggests that paleovegetation communities had been changed in responding to paleoclimatological variations, and the input amount of terrestrial compound was strongly linked with paleoclimatologic changes. In particular, depleted values of δ13Corg during MIS 2, 8 and 10 were coincident with lower nitrogen isotope values indicating local paleoceanographic effects such as paleoproductivity changes. Decoupling between δ13Corg and δ15Norg during MIS 1, 3, 5, 7 and coupling of the two during MIS 8 and 11 can be observed, which appear to be interpreted as local productivity changes. In particular, high abundance of cholesterol and C21 n-alkanes, which were derived from diatom, increased during interglacial periods. Therefore, alkenones, SST and n-alkanes signatures coincide with δ13Corg and δ15Norg variations during glacial-interglacial cycles and further strongly associated with cholesterol abundance suggesting that the paleoenvironmental conditions in East Sea during glacial-interglacial periods were sensitive not only to global climate changes but also to local paleceanographic variations. Surface water circulation around the Korea Plateau associated with eustatic sea-level changes may have been linked with paleoproductivity changes, at least on the Korea Plateau of the East Sea (Japan Sea) since the last MIS 11.

  2. North Pacific atmospheric rivers and their impact on North America since the Last Glacial Maximum

    NASA Astrophysics Data System (ADS)

    Lora, J. M.; Mitchell, J.; Risi, C.; Tripati, A.

    2017-12-01

    Using climate models and reanalysis data, we investigate the climatology of North Pacific atmospheric rivers, as well as the influence of the Last Glacial Maximum conditions on the circulation and moisture budget of the eastern North Pacific and western North America. Atmospheric transport of water vapor from the North Pacific is the primary source of moisture for most of western North America. Wintertime precipitation accounts for upwards of 75% of the total along the west coast of the United States, and atmospheric rivers in particular deliver large fractions of this precipitation in high-intensity events. Proxy records from western North America indicate a much wetter environment in Nevada and southern California at the Last Glacial Maximum, which has been interpreted as evidence for a southward shift of the mid-latitude jet stream, which steers extratropical storms, in the eastern North Pacific. Our results show that a southeastward shift and intensification of the atmospheric river ``track'' into the continent, resulting from a reorganized atmospheric circulation in response to the North American ice sheets, can explain the inferred hydroclimate changes. We also examine the relative contributions of the mean flow and transient systems to these changes, and diagnose the relative importance of thermodynamic and dynamical mechanisms.

  3. Exploring the impact of climate variability during the Last Glacial Maximum on the pattern of human occupation of Iberia.

    PubMed

    Burke, Ariane; Levavasseur, Guillaume; James, Patrick M A; Guiducci, Dario; Izquierdo, Manuel Arturo; Bourgeon, Lauriane; Kageyama, Masa; Ramstein, Gilles; Vrac, Mathieu

    2014-08-01

    The Last Glacial Maximum (LGM) was a global climate event, which had significant repercussions for the spatial distribution and demographic history of prehistoric populations. In Eurasia, the LGM coincides with a potential bottleneck for modern humans and may mark the divergence date for Asian and European populations (Keinan et al., 2007). In this research, the impact of climate variability on human populations in the Iberian Peninsula during the Last Glacial Maximum (LGM) is examined with the aid of downscaled high-resolution (16 × 16 km) numerical climate experiments. Human sensitivity to short time-scale (inter-annual) climate variability during this key time period, which follows the initial modern human colonisation of Eurasia and the extinction of the Neanderthals, is tested using the spatial distribution of archaeological sites. Results indicate that anatomically modern human populations responded to small-scale spatial patterning in climate variability, specifically inter-annual variability in precipitation levels as measured by the standard precipitation index. Climate variability at less than millennial scale, therefore, is shown to be an important component of ecological risk, one that played a role in regulating the spatial behaviour of prehistoric human populations and consequently affected their social networks. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Evolutionary History Underlies Plant Physiological Responses to Global Change Since the Last Glacial Maximum

    NASA Astrophysics Data System (ADS)

    Becklin, K. M.; Medeiros, J. S.; Sale, K. R.; Ward, J. K.

    2014-12-01

    Assessing family and species-level variation in physiological responses to global change across geologic time is critical for understanding factors that underlie changes in species distributions and community composition. Ancient plant specimens preserved within packrat middens are invaluable in this context since they allow for comparisons between co-occurring plant lineages. Here we used modern and ancient plant specimens preserved within packrat middens from the Snake Range, NV to investigate the physiological responses of a mixed montane conifer community to global change since the last glacial maximum. We used a conceptual model to infer relative changes in stomatal conductance and maximum photosynthetic capacity from measures of leaf carbon isotopes, stomatal characteristics, and leaf nitrogen content. Our results indicate that most of the sampled taxa decreased stomatal conductance and/or photosynthetic capacity from glacial to modern times. However, plant families differed in the timing and magnitude of these physiological responses. Additionally, leaf-level responses were more similar within plant families than within co-occurring species assemblages. This suggests that adaptation at the level of leaf physiology may not be the main determinant of shifts in community composition, and that plant evolutionary history may drive physiological adaptation to global change over recent geologic time.

  5. Antarctic ice dynamics and southern ocean surface hydrology during the last glacial maximum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Labeyrie, L.D.; Burckle, L.; Labracherie, M.

    1985-01-01

    Eight high sedimentation rate cores located between 61/sup 0/S and 43/sup 0/S in the Atlantic and Indian sectors of the Southern Ocean have been studied in detail for foraminifera and diatom /sup 18/O//sup 16/O ratios, and changes in radiolarian and diatom specific abundance. Comparison of these different parameters permits a detailed description of the surface water hydrology during the last glacial maximum. The authors demonstrate that from 25 kyr BP to 15 kyr BP a large number of icebergs formed around the Antarctic continent. Melting along the Polar Front decreased surface salinity by approximately 1.5 per thousand between 43/sup 0/Smore » and 50/sup 0/S. They propose that an increase of snow accumulation at the Antarctic periphery and downdraw during maximum ice extension are primary causes for this major discharge of icebergs.« less

  6. Glacial geology of the Hellas region on Mars

    NASA Technical Reports Server (NTRS)

    Kargel, Jeffrey S.; Strom, Robert G.; Johnson, Natasha

    1991-01-01

    A glacial geologic interpretation was recently presented for Argyre, which is herein extended to Hellas. This glacial event is believed to constitute an important link in a global cryohydric epoch of Middle Amazonian age. At glacial maximum, ice apparently extended far beyond the regions of Argyre and Hellas, and formed what is termed as the Austral Ice Sheet, an agglomeration of several ice domes and lobes including the Hellas Lobe. It is concluded that Hellas was apparently heavily glaciated. Also glaciation was young by Martian standards (Middle Amazonian), and ancient by terrestrial standards. Glaciation appears to have occurred during the same period that other areas on Mars were experiencing glaciation and periglacial activity. Glaciation seems to have occurred as a geological brief epoch of intense geomorphic activity in an era characterized by long periods of relative inactivity.

  7. Present and former equilibrium-line altitudes near Mount Everest, Nepal and Tibet

    USGS Publications Warehouse

    Williams, V.S.

    1983-01-01

    New information on equilibrium-line altitudes (ELAs) of present and former glaciers in the Mount Everest area of eastern Nepal and southern Tibet has been derived from field mapping and interpretation of topographic maps and Landsat imagery. Present ELAs rise from south to north across the Himalayan Range from 5200 to 5800 m, as indicated by the altitudes of lowest cirque glaciers and highest lateral and medial moraines on valley glaciers. In contrast, ELAs during maximum late Pleistocene glaciation rose in altitude from 4300 to 5500 m across the range, as indicated by altitudes of lowest cirque floors and maximum extent of glacial deposits. Highest ELAs occurred on previously unrecognized ice caps that formerly covered extensive highland areas in Tibet north of the range crest. During four distinct Holocene glacial advances of subequal magnitude, ELAs were depressed about 30% as much as the late Pleistocene maximum depression. Depression of ELAs during the late Pleistocene glaciation was about twice as great south of the range crest (950 m) as north of it (400 m). Although the present northward decrease in precipitation causes ELAs to rise northward for 85 km at 7.1 m km-1, the gradient during maximum late Pleistocene glaciation was 11 m km-1. Such a great contrast in glacier response to climate change over a short distance is remarkable and probably reflects increased aridity on the Tibetan Plateau and increased climatic contrast across the Himalayan Range during glacial ages.

  8. Surface Exposure Dating of the Huancané III Moraines in Peru: A Record of Quelccaya Ice Cap's Maximum Extent during the Last Glacial Period

    NASA Astrophysics Data System (ADS)

    Baranes, H. E.; Kelly, M. A.; Stroup, J. S.; Howley, J. A.; Lowell, T. V.

    2012-12-01

    The climatic conditions that influenced the tropics during the height of the last glacial period are not well defined and controversial. There are disparities in estimates of temperature anomalies (e.g., MARGO, 2009; Rind and Peteet, 1985; CLIMAP, 1976), and critical terrestrial paleotemperature proxy records in tropical regions are poorly dated (e.g., Porter, 2001). Defining these conditions is important for understanding the mechanisms that cause major shifts in climate, as the tropics are a primary driver of atmospheric and oceanic circulation. This study aims to constrain the timing of maximum glacier extents in the Cordillera Oriental in southern Peru during the last glacial period by applying surface exposure (beryllium-10) dating to the Huancané III (Hu-III) moraines. The Hu-III moraines mark the maximum extent of Quelccaya Ice Cap (QIC) (13.93°S, 70.83°W), the largest tropical ice cap, during the last ice age. The eight beryllium-10 ages presented here yield 17,056 ± 520 yrs ago as a minimum age for the onset of recession from the ice cap advance marked by the Hu-III moraines. Comparing this age to other paleoclimate records indicates that the ice cap advance marked by the Hu-III moraines is more likely associated with a North Atlantic climate event known as Heinrich I (H1; 16,800 yrs ago, Bond et al., 1992, 1993) than with global cooling at the Last Glacial Maximum (LGM; ~21,000 yrs ago, Denton and Hughes, 1981). This result suggests that climate processes in the North Atlantic region are linked to climatic conditions in the tropical Andes. A mesoscale climate model and an ice-flow model are currently being developed for QIC. The moraine data presented in this study will be used with these two models to test response of QIC to North Atlantic and global climate events.

  9. Colonization in North American Arid Lands: The Journey of Agarito (Berberis trifoliolata) Revealed by Multilocus Molecular Data and Packrat Midden Fossil Remains

    PubMed Central

    Angulo, Diego F.; Amarilla, Leonardo D.; Anton, Ana M.; Sosa, Victoria

    2017-01-01

    Here we conduct research to understand the evolutionary history of a shrubby species known as Agarito (Berberis trifoliolata), an endemic species to the Chihuahuan Desert. We identify genetic signatures based on plastid DNA and AFLP markers and perform niche modelling and spatial connectivity analyses as well as niche modelling based on records in packrats to elucidate whether orogenic events such as mountain range uplift in the Miocene or the contraction/expansion dynamics of vegetation in response to climate oscillations in the Pliocene/Pleistocene had an effect on evolutionary processes in Agarito. Our results of current niche modelling and palaeomodelling showed that the area currently occupied by Berberis trifoliolata is substantially larger than it was during the Last Interglacial period and the Last Glacial Maximum. Agarito was probably confined to small areas in the Northeastern and gradually expanded its distribution just after the Last Glacial Maximum when the weather in the Chihuahuan Desert and adjacent regions became progressively warmer and drier. The most contracted range was predicted for the Interglacial period. Populations remained in stable areas during the Last Glacial Maximum and expanded at the beginning of the Holocene. Most genetic variation occured in populations from the Sierra Madre Oriental. Two groups of haplotypes were identified: the Mexican Plateau populations and certain Northeastern populations. Haplogroups were spatially connected during the Last Glacial Maximum and separated during interglacial periods. The most important prediction of packrat middens palaeomodelling lies in the Mexican Plateau, a finding congruent with current and past niche modelling predictions for agarito and genetic results. Our results corroborate that these climate changes in the Pliocene/Pleistocene affected the evolutionary history of agarito. The journey of agarito in the Chihuahuan Desert has been dynamic, expanding and contracting its distribution range and currently occupying the largest area in its history. PMID:28146559

  10. Origin and paleoclimatic significance of late Quaternary loess in Nebraska: Evidence from stratigraphy, chronology, sedimentology, and geochemistry

    USGS Publications Warehouse

    Muhs, Daniel R.; Bettis, E. Arthur; Aleinikoff, John N.; McGeehin, John P.; Beann, Jossh; Skipp, Gary; Marshall, Brian D.; Roberts, Helen M.; Johnson, William C.; Benton, Rachel

    2008-01-01

    Loess is one of the most extensive surficial geologic deposits in midcontinental North America, particularly in the central Great Plains region of Nebraska. Last-glacial-age loess (Peoria Loess) reaches its greatest known thickness in the world in this area. New stratigraphic, geochronologic, mineralogic, and geochemical data yield information about the age and provenance of Peoria Loess, as well as evaluation of recent climate models. Sixteen new radiocarbon ages and recently acquired optically stimulated luminescence ages indicate that Peoria Loess deposition in Nebraska occurred between ca. 25,000 cal yr B.P. and ca. 13,000 cal yr B.P. After ca. 13,000 cal yr B.P. a period of pedogenesis began, represented by the dark, prominent Brady Soil. At some localities, further loess deposition was minimal. At other localities, sometime after ca. 11,000 cal yr B.P., there were additional episodes of loess deposition (Bignell Loess) intermittently throughout the Holocene. The spatial variability of particle size abundances in Peoria Loess shows a northwest-to-southeast fining in Nebraska, consistent with maps of previous workers that show a northwest-to-southeast thinning of loess. These observations indicate that paleowinds that deposited the loess were from the west or northwest and that the source or sources of Peoria Loess lay to the west or northwest. New mineralogical and geochemical data indicate that the most important sources of loess were likely Tertiary siltstones of the White River and Arikaree Groups, silt facies of Pliocene eolian sediments, and small contributions from Pierre Shale. It is likely that fine-grained silts were transported episodically through the Nebraska Sand Hills from Tertiary and Cretaceous bedrock sources to the north, in agreement with a model presented recently. The identification of Tertiary siltstones and silts as the primary sources of loess is consistent with isotopic data presented in a companion paper. Contributions of glaciogenic silt from the Platte and Missouri Rivers were limited to loess zones close to the valleys of those drainages. An earlier computer-based model of global dust generation during the last glacial period did not identify the Great Plains of North America as a significant source of nonglaciogenic eolian silt. However, a refined version of this model does simulate this region as a significant non-glacial dust source during the last glacial period, in good agreement with the results presented here.

  11. Climate sensitivity derived from orbital-scale, δ11B-based pCO2 estimates in the early Pleistocene, ~1.5 Ma

    NASA Astrophysics Data System (ADS)

    Dyez, K. A.; Hoenisch, B.

    2015-12-01

    Atmospheric CO2 concentrations in the late Pleistocene have been characterized from ancient air bubbles trapped within polar ice sheets. Ice-core records clearly demonstrate the glacial-interglacial relationship between the global carbon cycle and climate, but they are so far limited to the last 800 ky, when glacial cycles occurred approximately every 100-ky. Boron isotope ratios (δ11B) recorded in the tests of fossil planktic foraminifera offer an opportunity to extend the atmospheric pCO2 record into the early Pleistocene, when glacial cycles instead occurred approximately every 41-ky. We present a new high-resolution record of planktic foraminiferal d11B, Mg/Ca (a sea surface temperature proxy) and salinity estimates from the deconvolution of δ18O and Mg/Ca. Combined with reasonable assumptions of ocean alkalinity, these data allow us to estimate pCO2 over three of the 41-ky climate cycles at ~1.5 Ma. Our results confirm the hypothesis that climate and atmospheric pCO2 were coupled beyond ice core records and provide new constraints for studies of long-term CO2 storage and release, regional controls on the early Pleistocene carbon cycle, and estimating climate sensitivity before the mid-Pleistocene transition.

  12. High Resolution Glacial-interglacial Climatic Variations in the South China Sea during the Last 220,000 Years

    NASA Astrophysics Data System (ADS)

    Huang, K.; You, C.; Li, M.; Shieh, Y.

    2002-12-01

    The Asian monsoon plays an important role of both regional and global climatic variations. The South China Sea (SCS) located between Southeast Asia continent and Western Pacific Ocean is an ideal place for studying oceanographic responses and changes of monsoon system in the past. Planktonic foraminiferal shells separated from two deep sea cores, ODP Site 1144 and SCS 15B, located near the northeast continental slope and the central ocean basin respectively were used to reconstruct high-resolution climatic records during the last 220 kyrs. Average of 20 individual foraminiferal shells were hand picked and cleaned thoroughly for high precision trace element/calcium ratios (i.e., Mg/Ca, Sr/Ca, and Ba/Ca) determination using a Thermo-Fannigan Element II ICP-MS installed at NCKU. Isotopic compositions of oxygen, carbon, boron and strontium also were measured by stable isotope ratio or Triton TI thermal ionization mass spectrometer. Mg/Ca and Sr/Ca in foraminiferal shells are sensitive proxies for sea surface temperature, chemical weathering and hydrothermal activity on seafloor. The SCS foraminiferal shells Mg/Ca and Sr/Ca show negative correlation with interesting glacial-interglacial variations. The calculated Mg/Ca SSTs varied as large as 6-7 °C with the highest temperature occurred at oxygen stage 5. The Sr/Ca ratios change about 16 % (1.200-1.429 mmole/mole), possibly a result of periodic sea level changes which influencing terrigenous inputs or continental shelves weathering. On the other hand, the Ba/Ca display large variations (0.031-0.117 mmole/mole), possibly reflecting upwelling intensity or SCS bottom water chemistry. The boron isotopic compositions in planktonic foraminiferal shells are used to estimate pH in the surface ocean. Combining these proxies, high-resolution oceanic environmental records in the SCS were reconstructed for the last 220 kyrs. The results obtained from the SCS can be used to gain a better understanding of land-sea interaction in this region.

  13. Millennial-scale variations of late Pleistocene radiolarian assemblages in the Bering Sea related to environments in shallow and deep waters

    NASA Astrophysics Data System (ADS)

    Itaki, Takuya; Kim, Sunghan; Rella, Stephan F.; Uchida, Masao; Tada, Ryuji; Khim, Boo-Keun

    2012-02-01

    A high-resolution record of the radiolarian assemblage from 60 to 10 ka was investigated using a piston core (PC-23A) obtained from the northern slope of the Bering Sea. Faunal changes based on the 29 major radiolarian taxa demonstrated that the surface and deep water conditions in the Bering Sea were related to the orbital and millennial-scale climatic variations known as glacial-interglacial and Dansgaard-Oeschger (D-O) cycles, respectively. During interstadial periods of the D-O cycles, the assemblage was characterized by increases in the high-latitude coastal species Rhizoplegma boreale and the upper-intermediate water species Cycladophora davisiana, while the sea-ice related species Actinomma boreale and A. leptodermum and many deep-water species such as Dictyophimus crisiae and D. hirundo tended to be reduced. This trend was more apparent in two laminated intervals at 15-13.5 and 11.5-11 ka, which were correlated with well-known ice-sheet collapse events that occurred during the last deglaciation: melt-water pulse (MWP)-1A and MWP-1B, respectively. The radiolarian faunal composition in these periods suggests that oceanic conditions were different from today: (1) surface water was affected by increased melt-water discharge from continental ice-sheet, occurring at the same time as an abrupt increase in atmospheric temperature, (2) upper-intermediate water (ca. 200-500 m) was well-ventilated and organic-rich, and (3) lower-intermediate water (ca. 500-1000 m) was oxygen-poor. Conversely, the sea-ice season might have been longer during stadial periods of the D-O cycles and the last glacial maximum (LGM) compared to the interstadial periods and the earliest Holocene. In these colder periods, deep-water species were very abundant, and this corresponded to increases in the oxygen isotope value of benthic foraminifera. Our findings suggest that the oxygen-rich water was present in the lower-intermediate layer resulting from intensified ventilation.

  14. Vegetation and climate history in arid western China during MIS2: New insights from pollen and grain-size data of the Balikun Lake, eastern Tien Shan

    NASA Astrophysics Data System (ADS)

    Zhao, Yongtao; An, Cheng-Bang; Mao, Limi; Zhao, Jiaju; Tang, Lingyu; Zhou, Aifeng; Li, Hu; Dong, Weimiao; Duan, Futao; Chen, Fahu

    2015-10-01

    Marine Isotope Stage (MIS) 2 is mostly a cold period encompassing the Last Glacial Maximum (LGM), but the regional expression of MIS2 in arid areas of China is not well known. In this paper, we use high-resolution lacustrine pollen and grain-size records from Balikun Lake to infer vegetation, lake evolution, and climate in arid western China during MIS2. Our results suggest that: 1) the regional vegetation around Balikun was mainly dominated by desert and/or desert-steppe, and Balikun Lake was relatively shallow and experienced high aeolian input during MIS2; 2) distinctive runoff from mountain glacial meltwater in the eastern parts of the Balikun basin caused a high relative abundance of Artemisia pollen during the LGM (26.5-19.2 cal kyr BP), while simultaneously the desert areas expanded as indicated by the high abundance of desert shrubs (e.g., Elaeagnaceae, Rhamnaceae, Hippophae). This cold and dry LGM climate triggered a substantial lowering of lake level; 3) an extremely cold and dry climate prevailing from 17.0 to 15.2 cal kyr BP, correlated with Heinrich event 1 (H1), would explain the low vegetation cover found then; and 4) the warm and humid Bølling/Allerød interstadial (BA: ca. 15-ca. 13 cal kyr BP) is clearly recorded in the Balikun region by the development of wetland herb communities (e.g., Poaceae, Cyperaceae, Typha), and the lake level rose due to increased runoff. Our results challenge the traditional view of cold and wet climatic conditions and high lake levels in arid western China during the LGM, and we propose that changes in local temperature modulated by July insolation was an indispensable factor in triggering vegetation evolution in the Balikun region during MIS2.

  15. Deglaciation and Latest Pleistocene and Early Holocene Glacier Readvances on the Alaska Peninsula: Records of Rapid Climate Change Due to Transient Changes, in Solar Intensity and Atmospheric CO2 Content?

    DTIC Science & Technology

    Geologic mapping near Windy Creek, Katmai National Park, identified two sets of glacial deposits postdating late-Wisconsin Iliuk moraines and...between ca. 10,000 and 12,000 years B.P. We suggest that rapid deglaciation following deposition of the Iliuk drift occurred ca. 13,000-12,000 years B.P

  16. Response of the Amazon rainforest to late Pleistocene climate variability

    NASA Astrophysics Data System (ADS)

    Häggi, Christoph; Chiessi, Cristiano M.; Merkel, Ute; Mulitza, Stefan; Prange, Matthias; Schulz, Michael; Schefuß, Enno

    2017-12-01

    Variations in Amazonian hydrology and forest cover have major consequences for the global carbon and hydrological cycles as well as for biodiversity. Yet, the climate and vegetation history of the lowland Amazon basin and its effect on biogeography remain debated due to the scarcity of suitable high-resolution paleoclimate records. Here, we use the isotopic composition (δD and δ13C) of plant-waxes from a high-resolution marine sediment core collected offshore the Amazon River to reconstruct the climate and vegetation history of the integrated lowland Amazon basin for the period from 50,000 to 12,800 yr before present. Our results show that δD values from the Last Glacial Maximum were more enriched than those from Marine Isotope Stage (MIS) 3 and the present-day. We interpret this trend to reflect long-term changes in precipitation and atmospheric circulation, with overall drier conditions during the Last Glacial Maximum. Our results thus suggest a dominant glacial forcing of the climate in lowland Amazonia. In addition to previously suggested thermodynamic mechanisms of precipitation change, which are directly related to temperature, we conclude that changes in atmospheric circulation are crucial to explain the temporal evolution of Amazonian rainfall variations, as demonstrated in climate model experiments. Our vegetation reconstruction based on δ13C values shows that the Amazon rainforest was affected by intrusions of savannah or more open vegetation types in its northern sector during Heinrich Stadials, while it was resilient to glacial drying. This suggests that biogeographic patterns in tropical South America were affected by Heinrich Stadials in addition to glacial-interglacial climate variability.

  17. Massive Freshwater discharges: an example from Glacial Lake Missoula

    NASA Astrophysics Data System (ADS)

    Lopes, C.; Mix, A. C.

    2016-12-01

    Massive inputs of freshwater into the ocean are known to disrupt climate. This has been fairly studied in the North Atlantic with freshwater inputs from the Laurentide ice sheet and glacial Lake Agassiz. The association of these discharges with global warming has lead us to look for such prints in marine sediments. Here we show the records of Glacial Lake Missoula outbursts during the warming singe the Last Glacial Maximum in two marine cores off Oregon and California that show the presence of freshwater diatoms that are linked to massive discharges of freshwater from the glacial lake Missoula. The dynamics and timing of these north Pacific mega-flood events are fairly constrained by terrestrial records, however, the consequences of such discharges of freshwater in the northeast Pacific regional circulation remains unknown. Nevertheless we were able to estimate a salinity decrease of almost 6.0 PSU more than 400 km to the south (off northern California) during the last glacial interval (from 16-31 calendar (cal) k.y. B.P.). Anomalously high abundances of freshwater diatoms in marine sediments from the region precede generally accepted dates for the existence of glacial Lake Missoula, implying that large flooding events were also common during the advance of the Cordilleran Ice Sheet.

  18. How well do we really know the timing and extent of glaciers during the Last Glacial Maximum in the Alps?

    NASA Astrophysics Data System (ADS)

    Ivy-Ochs, Susan; Braakhekke, Jochem; Monegato, Giovanni; Gianotti, Franco; Forno, Gabriella; Hippe, Kristina; Christl, Marcus; Akçar, Naki; Schluechter, Christian

    2017-04-01

    The Last Glacial Maximum (LGM) in the Alps saw much of the mountains inundated by ice. Several main accumulation areas comprising local ice caps and plateau icefields fit into a picture of transection glaciers flowing into huge valley glaciers. In the north the valley glaciers covered long distances (hundreds of kilometers) to reach the forelands where they spread out in fan-shaped piedmont lobes tens of kilometers across, e.g. the Rhine glacier. In the south travel distances to the mountain front were often shorter, the pathway steeper. Nevertheless, not all glaciers even reached beyond the front, as the temperatures were notably warmer in the south. For example at Orta the glacier snout remained within the mountains. Where glaciers reached the forelands they stopped abruptly and the moraine amphitheaters were constructed, e.g. at Ivrea and Rivoli-Avigliana. Sets of stacked moraines built-up as glacier advance was directly confined by the older moraines. We may temporally and spatially identify the culmination of the last glacial cycle by pinpointing the outermost moraines that date to the LGM (generally about 26-24 ka). On the other hand, the timing of abandonment of foreland positions is given by ages of the innermost, often lake-bounding, moraines (about 19-18 ka). Between the two, glacier fluctuations left the stadial moraines. In the Linth-Rhine system three stadials have been recognized: Killwangen, Schlieren and Zurich. Nevertheless, already in the Swiss sector correlation of the LGM stadials among the several foreland lobes is not unambiguous. Across the Alps, not only north to south but also west to east, how do the timing and extent of glaciers during the LGM vary? Recent glacier modelling by Seguinot et al. (2017) informs and suggests the possibility of differences in timing for reaching of the maximum extent and for the number of oscillations of individual lobes during the LGM. At present few sites in the Alps have detailed enough geomorphological constraints with well-dated ice-marginal positions for in depth discussion of outermost, innermost and in between moraines. Where locations of the LGM farthest extent are conflicting depending on author, we are trying to establish the precise location of the most extensive LGM position by directly dating moraine boulders with cosmogenic 10Be. Here we present 10Be data from the Orta and Rivoli-Avigliana amphitheatres. A key comparison is with the Tagliamento amphitheatre to the east, where dating testifies to a two-phase maximum (Monegato et al. 2007). Furthermore, comparison is made to sites north of the Alps including previously unpublished data. Monegato G. et al. 2007. Evidence of a two-fold glacial advance during the last glacial maximum in the Tagliamento end moraine system (eastern Alps). Quaternary Research 68: 284-302. Seguinot J. et al. 2017. Modelling last glacial cycle ice dynamics in the Alps. EGU2017-8982

  19. On the glacial and inter-glacial thermohaline circulation and the associated transports of heat and freshwater

    NASA Astrophysics Data System (ADS)

    Ballarotta, M.; Falahat, S.; Brodeau, L.; Döös, K.

    2014-03-01

    The change of the thermohaline circulation (THC) between the Last Glacial Maximum (LGM, ≈ 21 kyr ago) and the present day climate are explored using an Ocean General Circulation Model and stream functions projected in various coordinates. Compared to the present day period, the LGM circulation is reorganised in the Atlantic Ocean, in the Southern Ocean and particularly in the abyssal ocean, mainly due to the different haline stratification. Due to stronger wind stress, the LGM tropical circulation is more vigorous than under modern conditions. Consequently, the maximum tropical transport of heat is slightly larger during the LGM. In the North Atlantic basin, the large sea-ice extent during the LGM constrains the Gulf Stream to propagate in a more zonal direction, reducing the transport of heat towards high latitudes and reorganising the freshwater transport. The LGM circulation is represented as a large intrusion of saline Antarctic Bottom Water into the Northern Hemisphere basins. As a result, the North Atlantic Deep Water is shallower in the LGM simulation. The stream functions in latitude-salinity coordinates and thermohaline coordinates point out the different haline regimes between the glacial and interglacial period, as well as a LGM Conveyor Belt circulation largely driven by enhanced salinity contrast between the Atlantic and the Pacific basin. The thermohaline structure in the LGM simulation is the result of an abyssal circulation that lifts and deviates the Conveyor Belt cell from the area of maximum volumetric distribution, resulting in a ventilated upper layer above a deep stagnant layer, and an Atlantic circulation more isolated from the Pacific. An estimation of the turnover times reveal a deep circulation almost sluggish during the LGM, and a Conveyor Belt cell more vigorous due to the combination of stronger wind stress and shortened circulation route.

  20. Displaced phylogeographic signals from Gyrodactylus arcuatus, a parasite of the three-spined stickleback Gasterosteus aculeatus, suggest freshwater glacial refugia in Europe

    USGS Publications Warehouse

    Lumme, Jaakko; Mäkinen, Hannu; Ermolenko, Alexey V.; Gregg, Jacob L.; Ziętara, Marek S.

    2016-01-01

    We examined the global mitochondrial phylogeography of Gyrodactylus arcuatus, a flatworm ectoparasite of three-spined stickleback Gasterosteus aculeatus. In accordance with the suggested high divergence rate of 13%/million years, the genetic variation of the parasite was high: haplotype diversity h = 0.985 and nucleotide diversity π = 0.0161. The differentiation among the parasite populations was substantial (Φst = 0.759), with two main allopatric clades (here termed Euro and North) accounting for 54% of the total genetic variation. The diversity center of the Euro clade was in the Baltic Sea, while the North clade was spread across the Barents and White Seas. A single haplotype within the North clade was found in the western and eastern Pacific Ocean. Divergence of main clades was estimated to be circa 200 thousand years ago. Each main clade was further divided into six distinct subclades, estimated to have diverged in isolation since 135 thousand years ago. This second division corresponds approximately to the Eemian interglacial predating the last glacial maximum. A demographic expansion of the subclades is associated with colonisation of northern Europe since the last glacial maximum, circa 15–40 thousand years ago. The parasite phylogeny is most likely explained by sequential isolated bottlenecks and expansions in numerous allopatric refugia. The postglacial intermingling and high variation in the marine parasite populations, separately in the Baltic and Barents Seas, suggest low competition of divergent parasite matrilines, coupled with a large population size and high rate of dispersal of hosts. The genetic contribution of the assumed refugial fish populations maintaining the parasite during the last glacial maximum was not detected among the marine sticklebacks, which perhaps were infected after range expansion.

  1. Displaced phylogeographic signals from Gyrodactylus arcuatus, a parasite of the three-spined stickleback Gasterosteus aculeatus, suggest freshwater glacial refugia in Europe.

    PubMed

    Lumme, Jaakko; Mäkinen, Hannu; Ermolenko, Alexey V; Gregg, Jacob L; Ziętara, Marek S

    2016-08-01

    We examined the global mitochondrial phylogeography of Gyrodactylus arcuatus, a flatworm ectoparasite of three-spined stickleback Gasterosteus aculeatus. In accordance with the suggested high divergence rate of 13%/million years, the genetic variation of the parasite was high: haplotype diversity h=0.985 and nucleotide diversity π=0.0161. The differentiation among the parasite populations was substantial (Φst=0.759), with two main allopatric clades (here termed Euro and North) accounting for 54% of the total genetic variation. The diversity center of the Euro clade was in the Baltic Sea, while the North clade was spread across the Barents and White Seas. A single haplotype within the North clade was found in the western and eastern Pacific Ocean. Divergence of main clades was estimated to be circa 200 thousand years ago. Each main clade was further divided into six distinct subclades, estimated to have diverged in isolation since 135 thousand years ago. This second division corresponds approximately to the Eemian interglacial predating the last glacial maximum. A demographic expansion of the subclades is associated with colonisation of northern Europe since the last glacial maximum, circa 15-40 thousand years ago. The parasite phylogeny is most likely explained by sequential isolated bottlenecks and expansions in numerous allopatric refugia. The postglacial intermingling and high variation in the marine parasite populations, separately in the Baltic and Barents Seas, suggest low competition of divergent parasite matrilines, coupled with a large population size and high rate of dispersal of hosts. The genetic contribution of the assumed refugial fish populations maintaining the parasite during the last glacial maximum was not detected among the marine sticklebacks, which perhaps were infected after range expansion. Copyright © 2016 Australian Society for Parasitology. All rights reserved.

  2. Tropical climate at the last glacial maximum inferred from glacier mass-balance modeling

    USGS Publications Warehouse

    Hostetler, S.W.; Clark, P.U.

    2000-01-01

    Model-derived equilibrium line altitudes (ELAs) of former tropical glaciers support arguments, based on other paleoclimate data, for both the magnitude and spatial pattern of terrestrial cooling in the tropics at the last glacial maximum (LGM). Relative to the present, LGM ELAs were maintained by air temperatures that were 3.5??to 6.6 ??C lower and precipitation that ranged from 63% wetter in Hawaii to 25% drier on Mt. Kenya, Africa. Our results imply the need for a ~3 ??C cooling of LGM sea surface temperatures in the western Pacific warm pool. Sensitivity tests suggest that LGM ELAs could have persisted until 16,000 years before the present in the Peruvian Andes and on Papua, New Guinea.

  3. The timing and cause of glacial activity during the last glacial in central Tibet based on 10Be surface exposure dating east of Mount Jaggang, the Xainza range

    NASA Astrophysics Data System (ADS)

    Dong, Guocheng; Zhou, Weijian; Yi, Chaolu; Fu, Yunchong; Zhang, Li; Li, Ming

    2018-04-01

    Mountain glaciers are sensitive to climate change, and can provide valuable information for inferring former climates on the Tibetan Plateau (TP). The increasing glacial chronologies indicate that the timing of the local Last Glacial Maximum (LGM) recorded across the TP is asynchronous, implying different local influences of the mid-latitude westerlies and Asian Summer Monsoon in triggering glacier advances. However, the well-dated sites are still too few, especially in the transition zone between regions controlled by the two climate systems. Here we present detailed last glacial chronologies for the Mount Jaggang area, in the Xainza range, central Tibet, with forty-three apparent 10Be exposure-ages ranging from 12.4 ± 0.8 ka to 61.9 ± 3.8 ka. These exposure-ages indicate that at least seven glacial episodes occurred during the last glacial cycle east of Mount Jaggang. These include: a local LGM that occurred at ∼61.9 ± 3.8 ka, possibly corresponding to Marine Isotope Stage 4 (MIS 4); subsequent glacial advances at ∼43.2 ± 2.6 ka and ∼35.1 ± 2.1 ka during MIS 3; one glacial re-advance/standstill at MIS3/2 transition (∼29.8 ± 1.8 ka); and three glacial re-advances/standstills that occurred following MIS 3 at ∼27.9 ± 1.7 ka, ∼21.8 ± 1.3 ka, and ∼15.1 ± 0.9 ka. The timing of these glacial activities is roughly in agreement with North Atlantic millennial-scale climate oscillations (Heinrich events), suggesting the potential correlations between these abrupt climate changes and glacial fluctuations in the Mount Jaggang area. The successively reduced glacial extent might have resulted from an overall decrease in Asian Summer Monsoon intensity over this timeframe.

  4. 20th-century glacial-marine sedimentation in Vitus Lake, Bering Glacier, Alaska, U.S.A.

    USGS Publications Warehouse

    Molnia, B.F.; Post, A.; Carlson, P.R.

    1996-01-01

    Vitus Lake, the ice-marginal basin at the southeastern edge of Bering Glacier, Alaska, U.S.A., is a site of modern, rapid, glacial-marine sedimentation. Rather than being a fresh-water lake, Vitus Lake is a tidally influenced, marine to brackish embayment connected to the Pacific Ocean by an inlet, the Seal River. Vitus Lake consists of five deep bedrock basins, separated by interbasinal highs. Glacial erosion has cut these basins as much as 250 m below sea level. High-resolution seismic reflection surveys conducted in 1991 and 1993 of four of Vitus Lake's basins reveal a complex, variable three-component acoustic stratigraphy. Although not fully sampled, the stratigraphy is inferred to be primarily glacial-marine units of (1) basal contorted and deformed glacial-marine and glacial sediments deposited by basal ice-contact processes and submarine mass-wasting; (2) acoustically well-stratified glacial-marine sediment, which unconformably overlies the basal unit and which grades upward into (3) acoustically transparent or nearly transparent glacial-marine sediment. Maximum thicknesses of conformable glacial-marine sediment exceed 100 m. All of the acoustically transparent and stratified deposits in Vitus Lake are modern in age, having accumulated between 1967 and 1993. The basins where these three-part sequences of "present-day" glacial-marine sediment are accumulating are themselves cut into older sequences of stratified glacial and glacial-marine deposits. These older units outcrop on the islands in Vitus Lake. In 1967, as the result of a major surge, glacier ice completely filled all five basins. Subsequent terminus retreat, which continued through August 1993, exposed these basins, providing new locations for glacial-marine sediment accumulation. A correlation of sediment thicknesses measured from seismic profiles at specific locations within the basins, with the year that each location became ice-free, shows that the sediment accumulation at some locations exceeds 10 m year-1.

  5. Quaternary glacial landforms and evolution in the Cantabrian Mountains (Northern Spain): a synthesis from current data

    NASA Astrophysics Data System (ADS)

    Serrano, Enrique; José González-Trueba, Juan; Pellitero, Ramón; González-García, María; Gómez-Lende, Manuel

    2014-05-01

    In Northern Iberian Peninsula are located the Cantabrian Mountains, a mountain system of 450 km length, reaching 2648 m in the Picos de Europa. It is an Atlantic mountain in the North slope, with a Atlantic Mediterranean transitional climate in the South slope.More than thirty-five massifs developed glaciers during the Pleistocene. Studies on glacial morphology are known from the XIX century and they have focused mainly on the maximum extent of glaciers. Nowadays there are detailed geomorphological maps, morphostratigraphic surveys and estimation of Equilibrium Line Altitude in different massifs and on different stages. During the last decade studies on glacial evolution and glaciation phases have been made, and the first chronological data have been published. In this work we presents the reconstruction of the glacial evolution in the Cantabrian Mountains during the Pleistocene and Holocene, based on recent chronological data (30 dates made using OSL, AMS and C14) and morphostratigraphic correlations obtained by several research groups. The number of reconstructed glacial stages varies among the different massifs, form one to four different stages. The highest massifs located in the central portion of the Cantabrian Mountains have the most complex glacial features, with at least four different moraine complexes stepped between the 400 m a.s.l in the Northern slope and 800 m a.s.l. in the Southern slope for the lowest moraine complexes, and the highest and youngest, located above 2100 m a.s.l. An ancient glacial phase has been pointed to MIS 12 -more than 400 ka-, disconnected from the present day glacial morphology. During Upper Pleistocene three main stages have been identified. The first one, the local glacial maximum, could be prior to the LGM, as all dates refer to chronologies prior to 28-38 ka. Some authors locate this stage prior to 45 and 65 ka, during the 50-70 ka cold stage. It could be a wet stage, when the main fronts reached the Iberian Peninsula from the SW. The second stage is located to around 30 ka, and point to a dryer stage when glaciers was shorter but thicker. The third stage is located at 20-18 ka, contemporary from the LGM. Glaciers are located inside of glacier-shaped mountain valleys. A few moraine complexes located in the highest massif have been related to Lateglacial, coinciding with cold phases (Dryas) recorded in the Picos de Europa lakes and paleolakes. Finally, during the Holocene only small glaciers developed in the Picos de Europa, which have been assigned to LIA. Nowadays there are still glacial ice remains in four glacial cirques of Picos de Europa, close to the LIA moraines.

  6. Glacial meltwater cooling of the Gulf of Mexico - GCM implications for Holocene and present-day climates

    NASA Technical Reports Server (NTRS)

    Oglesby, Robert J.; Maasch, Kirk A.; Saltzman, Barry

    1989-01-01

    The NCAR Community Climate Model GCM is presently used to investigate the possible effects on regional and hemispheric climates of reduced SSTs in the Gulf of Mexico, in view of delta-O-18 records and terrestrial evidence for at least two major glacial meltwater discharges after the last glacial maximum. Three numerical experiments have been conducted with imposed gulfwide SST coolings of 3, 6, and 12 C; in all cases, significant reductions arise in the North Atlantic storm-track intensity, together with a strong decrease in transient eddy water vapor transport out of the Gulf of Mexico. Other statistically significant changes occur across the Northern Hemisphere.

  7. The simulated climate of the Last Glacial Maximum and insights into the global marine carbon cycle

    NASA Astrophysics Data System (ADS)

    Buchanan, Pearse J.; Matear, Richard J.; Lenton, Andrew; Phipps, Steven J.; Chase, Zanna; Etheridge, David M.

    2016-12-01

    The ocean's ability to store large quantities of carbon, combined with the millennial longevity over which this reservoir is overturned, has implicated the ocean as a key driver of glacial-interglacial climates. However, the combination of processes that cause an accumulation of carbon within the ocean during glacial periods is still under debate. Here we present simulations of the Last Glacial Maximum (LGM) using the CSIRO Mk3L-COAL (Carbon-Ocean-Atmosphere-Land) earth system model to test the contribution of physical and biogeochemical processes to ocean carbon storage. For the LGM simulation, we find a significant global cooling of the surface ocean (3.2 °C) and the expansion of both minimum and maximum sea ice cover broadly consistent with proxy reconstructions. The glacial ocean stores an additional 267 Pg C in the deep ocean relative to the pre-industrial (PI) simulation due to stronger Antarctic Bottom Water formation. However, 889 Pg C is lost from the upper ocean via equilibration with a lower atmospheric CO2 concentration and a global decrease in export production, causing a net loss of carbon relative to the PI ocean. The LGM deep ocean also experiences an oxygenation ( > 100 mmol O2 m-3) and deepening of the calcite saturation horizon (exceeds the ocean bottom) at odds with proxy reconstructions. With modifications to key biogeochemical processes, which include an increased export of organic matter due to a simulated release from iron limitation, a deepening of remineralisation and decreased inorganic carbon export driven by cooler temperatures, we find that the carbon content of the glacial ocean can be sufficiently increased (317 Pg C) to explain the reduction in atmospheric and terrestrial carbon at the LGM (194 ± 2 and 330 ± 400 Pg C, respectively). Assuming an LGM-PI difference of 95 ppm pCO2, we find that 55 ppm can be attributed to the biological pump, 28 ppm to circulation changes and the remaining 12 ppm to solubility. The biogeochemical modifications also improve model-proxy agreement in export production, carbonate chemistry and dissolved oxygen fields. Thus, we find strong evidence that variations in the oceanic biological pump exert a primary control on the climate.

  8. Constraints on soluble aerosol iron flux to the Southern Ocean at the Last Glacial Maximum

    PubMed Central

    Conway, T.M.; Wolff, E.W.; Röthlisberger, R.; Mulvaney, R.; Elderfield, H.E.

    2015-01-01

    Relief of iron (Fe) limitation in the Southern Ocean during ice ages, with potentially increased carbon storage in the ocean, has been invoked as one driver of glacial–interglacial atmospheric CO2 cycles. Ice and marine sediment records demonstrate that atmospheric dust supply to the oceans increased by up to an order of magnitude during glacial intervals. However, poor constraints on soluble atmospheric Fe fluxes to the oceans limit assessment of the role of Fe in glacial–interglacial change. Here, using novel techniques, we present estimates of water- and seawater-soluble Fe solubility in Last Glacial Maximum (LGM) atmospheric dust from the European Project for Ice Coring in Antarctica (EPICA) Dome C and Berkner Island ice cores. Fe solubility was very variable (1–42%) during the interval, and frequently higher than typically assumed by models. Soluble aerosol Fe fluxes to Dome C at the LGM (0.01–0.84 mg m−2 per year) suggest that soluble Fe deposition to the Southern Ocean would have been ≥10 × modern deposition, rivalling upwelling supply. PMID:26204562

  9. Radiocarbon constraints on the glacial ocean circulation and its impact on atmospheric CO2

    PubMed Central

    Skinner, L. C.; Primeau, F.; Freeman, E.; de la Fuente, M.; Goodwin, P. A.; Gottschalk, J.; Huang, E.; McCave, I. N.; Noble, T. L.; Scrivner, A. E.

    2017-01-01

    While the ocean’s large-scale overturning circulation is thought to have been significantly different under the climatic conditions of the Last Glacial Maximum (LGM), the exact nature of the glacial circulation and its implications for global carbon cycling continue to be debated. Here we use a global array of ocean–atmosphere radiocarbon disequilibrium estimates to demonstrate a ∼689±53 14C-yr increase in the average residence time of carbon in the deep ocean at the LGM. A predominantly southern-sourced abyssal overturning limb that was more isolated from its shallower northern counterparts is interpreted to have extended from the Southern Ocean, producing a widespread radiocarbon age maximum at mid-depths and depriving the deep ocean of a fast escape route for accumulating respired carbon. While the exact magnitude of the resulting carbon cycle impacts remains to be confirmed, the radiocarbon data suggest an increase in the efficiency of the biological carbon pump that could have accounted for as much as half of the glacial–interglacial CO2 change. PMID:28703126

  10. Global snowline and mountain topography: a contrasted view

    NASA Astrophysics Data System (ADS)

    Champagnac, Jean-Daniel; Herman, Frédéric; Valla, Pierre

    2013-04-01

    The examination of the relationship between Earth's topography and present and past climate (i.e., long-term elevation of glaciers Equilibrium Line Altitude) reveals that the elevation of mountain ranges may be limited or controlled by glaciations (e.g. Porter, 1989). This is of prime importance, because glacial condition would lead to a limit the mountain development, hence the accumulation of gravitational energy and prevent the development of further glacial conditions as well as setting the erosion in (peri)glacial environments. In this study, we examine the relationships between topography and the global Equilibrium Line Altitude of alpine glaciers around the world (~ long term snowline, i.e. the altitude where the ice mass balance is null). This analysis reinforce a global study previously published (Champagnac et al., 2012), and provide a much finer view of the climate-topography-tectonics relationships. Specifically, two main observations can be drawn: 1) The distance between the (averaged and maximum) topography, and the ELA decreases pole ward the poles, and even become reversed (mean elevation above to ELA) at high latitude. Correlatively, the elevation of very large portion of land at mid-latitude cannot be related to glaciations, simply because it was never glaciated (large distance between topography and long-term mean ELA). The maximum distance between the ELA and the topography is greater close to the equator and decreases poleward. In absence of glacial and periglacial erosion, this trend cannot have its origin in glacial and periglacial processes. Moreover, the ELA elevation shows a significant (1000~1500m) depression in the intertropical zone. This depression of the ELA is not reflected at all in the topography 2) The distribution of relief on Earth, if normalized by the mean elevation of mountain ranges (as a proxy for available space to create relief, see Champagnac et al., 2012 for details) shows a latitudinal band of greater relief between ~40 and ~60° (or between ELA of ~500m to ~2500m a.s.l.). This mid-latitude relatively greater relief challenges the straightforward relationship between glaciations, erosion and topography. Oppositely, it suggests that glacier may be more efficient agent in temperate area, with an important amplitude between glacial and interglacial climate. This is consistent with the view of a very variable glacier erodibility that can erode and protect the landscape, as well as with studies documenting a bimodal location of the preferred glacial erosion, at relatively high elevation (around the long-term ELA), and at much lower elevation (close to the glacial maximum lower reaches), thanks to efficient water lubrication of the glacier bases that greatly enhance the sliding velocity (Herman et al., 2011). These findings show that the relation between the mountain topography and the long term snowline is not as straightforward as previously proposed (e.g. Egholm et al., 2009) . Beside the role of tectonic forcing highlighted by several authors (e.g. Pedersen et al., 2010;Spotila and Berger, 2010),, the importance of the glacial erosion appears to be crucial at mid latitude, but more complex at both high and low latitude. Moreover, the relief at mid latitude appears to be higher, hence suggesting a positive correlation between relief and topographic control of glacier on the landscape Champagnac, J.-D., Molnar, P., Sue, C., and Herman, F.: Tectonics, Climate, and Mountain Topography, Journal of Geophysical Research B: Solid Earth, 117, doi:10.1029/2011JB008348, 2012. Egholm, D. L., Nielsen, S. B., Pedersen, V. K., and Lesemann, J. E.: Glacial effects limiting mountain height, Nature, 460, 884-888, 2009. Herman, F., Beaud, F., Champagnac, J.-D., Lemieux, J.-M., and Sternai, P.: Glacial hydrology and erosion patterns: A mechanism for carving glacial valleys, Earth and Planetary Science Letters, 310, 498-508, 2011. Pedersen, V. K., Egholm, D. L., and Nielsen, S. B.: Alpine glacial topography and the rate of rock column uplift: a global perspective, Geomorphology, 122, 129-139, 10.1016/j.geomorph.2010.06.005, 2010. Porter, S. C.: Some geological implications of average Quaternary glacial conditions., Quaternary Research, 32, 245-261, 1989. Spotila, J. A., and Berger, A. L.: Exhumation at orogenic indentor corners under long-term glacial conditions: Example of the St. Elias orogen, Southern Alaska, Tectonophysics, 490, 241-256, doi:10.1016/j.tecto.2010.05.015, 2010.

  11. A ~25 ka Indian Ocean monsoon variability record from the Andaman Sea

    USGS Publications Warehouse

    Rashid, H.; Flower, B.P.; Poore, R.Z.; Quinn, T.M.

    2007-01-01

    Recent paleoclimatic work on terrestrial and marine deposits from Asia and the Indian Ocean has indicated abrupt changes in the strength of the Asian monsoon during the last deglaciation. Comparison of marine paleoclimate records that track salinity changes from Asian rivers can help evaluate the coherence of the Indian Ocean monsoon (IOM) with the larger Asian monsoon. Here we present paired Mg/Ca and δ18O data on the planktic foraminifer Globigerinoides ruber (white) from Andaman Sea core RC12-344 that provide records of sea-surface temperature (SST) and δ18O of seawater (δ18Osw) over the past 25,000 years (ka) before present (BP). Age control is based on nine accelerator mass spectrometry (AMS) dates on mixed planktic foraminifera. Mg/Ca-SST data indicate that SST was ∼3 °C cooler during the last glacial maximum (LGM) than the late Holocene. Andaman Sea δ18Osw exhibited higher than present values during the Lateglacial interval ca 19–15 ka BP and briefly during the Younger Dryas ca 12 ka BP. Lower than present δ18Osw values during the BØlling/AllerØd ca 14.5–12.6 ka BP and during the early Holocene ca 10.8–5.5 ka BP are interpreted to indicate lower salinity, reflect some combination of decreased evaporation–precipitation (E–P) over the Andaman Sea and increased Irrawaddy River outflow. Our results are consistent with the suggestion that IOM intensity was stronger than present during the BØlling/AllerØd and early Holocene, and weaker during the late glaciation, Younger Dryas, and the late Holocene. These findings support the hypothesis that rapid climate change during the last deglaciation and Holocene included substantial hydrologic changes in the IOM system that were coherent with the larger Asian monsoon.

  12. Tropical Climate Variability From the Last Glacial Maximum to the Present

    DTIC Science & Technology

    2005-09-01

    between the tropics and extrat- ropics remains an open question. Over the course of the glacial-interglacial cycles of the past 800,000 years, the high...roughly 80% of the total CSEs. The remaining 12 Younger Dryas in the Cariaco Basin. CSE peaks are consistently smaller than those mentioned [29] CSEs I...33] CSEs 8 and 15 remain unidentified. It is evident record. Identification and downcore analysis of these CSE from their downcore trends, however

  13. Human population dynamics in Europe over the Last Glacial Maximum.

    PubMed

    Tallavaara, Miikka; Luoto, Miska; Korhonen, Natalia; Järvinen, Heikki; Seppä, Heikki

    2015-07-07

    The severe cooling and the expansion of the ice sheets during the Last Glacial Maximum (LGM), 27,000-19,000 y ago (27-19 ky ago) had a major impact on plant and animal populations, including humans. Changes in human population size and range have affected our genetic evolution, and recent modeling efforts have reaffirmed the importance of population dynamics in cultural and linguistic evolution, as well. However, in the absence of historical records, estimating past population levels has remained difficult. Here we show that it is possible to model spatially explicit human population dynamics from the pre-LGM at 30 ky ago through the LGM to the Late Glacial in Europe by using climate envelope modeling tools and modern ethnographic datasets to construct a population calibration model. The simulated range and size of the human population correspond significantly with spatiotemporal patterns in the archaeological data, suggesting that climate was a major driver of population dynamics 30-13 ky ago. The simulated population size declined from about 330,000 people at 30 ky ago to a minimum of 130,000 people at 23 ky ago. The Late Glacial population growth was fastest during Greenland interstadial 1, and by 13 ky ago, there were almost 410,000 people in Europe. Even during the coldest part of the LGM, the climatically suitable area for human habitation remained unfragmented and covered 36% of Europe.

  14. Covariation of deep Southern Ocean oxygenation and atmospheric CO2 through the last ice age.

    PubMed

    Jaccard, Samuel L; Galbraith, Eric D; Martínez-García, Alfredo; Anderson, Robert F

    2016-02-11

    No single mechanism can account for the full amplitude of past atmospheric carbon dioxide (CO2) concentration variability over glacial-interglacial cycles. A build-up of carbon in the deep ocean has been shown to have occurred during the Last Glacial Maximum. However, the mechanisms responsible for the release of the deeply sequestered carbon to the atmosphere at deglaciation, and the relative importance of deep ocean sequestration in regulating millennial-timescale variations in atmospheric CO2 concentration before the Last Glacial Maximum, have remained unclear. Here we present sedimentary redox-sensitive trace-metal records from the Antarctic Zone of the Southern Ocean that provide a reconstruction of transient changes in deep ocean oxygenation and, by inference, respired carbon storage throughout the last glacial cycle. Our data suggest that respired carbon was removed from the abyssal Southern Ocean during the Northern Hemisphere cold phases of the deglaciation, when atmospheric CO2 concentration increased rapidly, reflecting--at least in part--a combination of dwindling iron fertilization by dust and enhanced deep ocean ventilation. Furthermore, our records show that the observed covariation between atmospheric CO2 concentration and abyssal Southern Ocean oxygenation was maintained throughout most of the past 80,000 years. This suggests that on millennial timescales deep ocean circulation and iron fertilization in the Southern Ocean played a consistent role in modifying atmospheric CO2 concentration.

  15. Human population dynamics in Europe over the Last Glacial Maximum

    PubMed Central

    Tallavaara, Miikka; Luoto, Miska; Korhonen, Natalia; Järvinen, Heikki; Seppä, Heikki

    2015-01-01

    The severe cooling and the expansion of the ice sheets during the Last Glacial Maximum (LGM), 27,000–19,000 y ago (27–19 ky ago) had a major impact on plant and animal populations, including humans. Changes in human population size and range have affected our genetic evolution, and recent modeling efforts have reaffirmed the importance of population dynamics in cultural and linguistic evolution, as well. However, in the absence of historical records, estimating past population levels has remained difficult. Here we show that it is possible to model spatially explicit human population dynamics from the pre-LGM at 30 ky ago through the LGM to the Late Glacial in Europe by using climate envelope modeling tools and modern ethnographic datasets to construct a population calibration model. The simulated range and size of the human population correspond significantly with spatiotemporal patterns in the archaeological data, suggesting that climate was a major driver of population dynamics 30–13 ky ago. The simulated population size declined from about 330,000 people at 30 ky ago to a minimum of 130,000 people at 23 ky ago. The Late Glacial population growth was fastest during Greenland interstadial 1, and by 13 ky ago, there were almost 410,000 people in Europe. Even during the coldest part of the LGM, the climatically suitable area for human habitation remained unfragmented and covered 36% of Europe. PMID:26100880

  16. Periodic Glacial Lake Outburst Floods threatening the oldest Buddhist monastery in north-west Nepal

    NASA Astrophysics Data System (ADS)

    Kropáček, J.; Neckel, N.; Tyrna, B.; Holzer, N.; Hovden, A.; Gourmelen, N.; Schneider, C.; Buchroithner, M.; Hochschild, V.

    2014-11-01

    Since 2004 Halji Village, home of the oldest Buddhist Monastery in north-west Nepal has suffered from recurrent Glacial Lake Outburst Floods (GLOFs). Studies of recent satellite images identified a supra-glacial lake, located at a distance of 6.5 km from the village, as a possible source of the flood. During a field survey in 2013, the finding was confirmed and several entrances to en-glacial conduits which are draining the lake were found. The topography of the lake basin was then mapped by combining Differential Global Positioning System (DGPS) measurements with a Structure From Motion (SFM) approach from terrestrial photographs. From this model the maximum filling capacity of the lake has been estimated as 1.06 × 106 m3 with a maximum discharge of 77.8 m3 s-1 calculated using an empirical relation. The flooded area in the valley has been estimated by employing a raster-based hydraulic model considering six scenarios of discharge volume and surface roughness. To understand the changes in glacier geometry in the last decade the thinning and retreat of Halji Glacier have been analysed by geodetic mass balance measurements and a time series of satellite images respectively. The GLOF occurrences have further been correlated with cumulative temperature and cumulative liquid precipitation calculated from the High Asia Reanalysis (HAR) dataset. Finally, effective mitigation measures and adaption strategies for Halji village have been discussed.

  17. Fire and ice: volcanic and glacial impacts on the phylogeography of the New Zealand forest fern Asplenium hookerianum.

    PubMed

    Shepherd, Lara D; Perrie, Leon R; Brownsey, Patrick J

    2007-11-01

    In the Southern Hemisphere there has been little phylogeographical investigation of forest refugia sites during the last glacial. Hooker's spleenwort, Asplenium hookerianum, is a fern that is found throughout New Zealand. It is strongly associated with forest and is a proxy for the survival of woody vegetation during the last glacial maximum. DNA sequence data from the chloroplast trnL-trnF locus were obtained from 242 samples, including c. 10 individuals from each of 21 focal populations. Most populations contained multiple, and in many cases unique, haplotypes, including those neighbouring formerly glaciated areas, while the predominant inference from nested clade analysis was restricted gene flow with isolation by distance. These results suggest that A. hookerianum survived the last glacial maximum in widespread populations of sufficient size to retain the observed phylogeography, and therefore that the sheltering woody vegetation must have been similarly abundant. This is consistent with palynological interpretations for the survival in New Zealand of thermophilous forest species at considerably smaller distances from the ice sheets than recorded for the Northern Hemisphere. Eastern and central North Island populations of A. hookerianum were characterized by a different subset of haplotypes to populations from the remainder of the country. A similar east-west phylogeographical pattern has been detected in a diverse array of taxa, and has previously been attributed to recurrent vulcanism in the central North Island.

  18. Laurentide Ice Sheet Meltwater Geochemistry During the MIS 3 Warm Phase from Single-Shell Trace Element and Isotope Measurements

    NASA Astrophysics Data System (ADS)

    Branson, O.; Vetter, L.; Fehrenbacher, J. S.; Spero, H. J.

    2016-12-01

    The geochemical variability between individual foraminifera within single core intervals records both palaeo-oecanographic conditions and ecology. Within the biological context of foraminiferal species, this population variability may be interpreted to provide unparalleled paleoenvironmental information. For example, coupled trace element and stable isotope analyses of single O. universa offer a powerful tool for reconstructing the δ18O of Laurentide Ice Sheet (LIS) meltwater, by calculating the intercept between temperature-corrected δ18O water and Ba/Ca salinity estimates (Vetter et al., in review). This offers valuable insights into the dynamics of ice sheet melting at the end of the last glacial maximum. Here we apply similar coupled single-shell laser ablation (LA-ICP-MS) and isotope ratio mass spectrometry (IRMS) techniques to explore the δ18O of Laurentide meltwater during H4 and bracketing intervals. The application of these methods to down-core samples requires the development of robust LA-ICP-MS data processing techniques to identify primary signals within Ba contaminated samples, and careful consideration of palaeo Ba/Ca-salinity relationships. Our analyses offer a significant advance in systematic LA-ICP-MS data processing methods, offer constraints on the variability of riverine Ba fluxes, and ultimately provide δ18O estimates of LIS meltwater during H4.

  19. Response to climate change of montane herbaceous plants in the genus Rhodiola predicted by ecological niche modelling.

    PubMed

    You, Jianling; Qin, Xiaoping; Ranjitkar, Sailesh; Lougheed, Stephen C; Wang, Mingcheng; Zhou, Wen; Ouyang, Dongxin; Zhou, Yin; Xu, Jianchu; Zhang, Wenju; Wang, Yuguo; Yang, Ji; Song, Zhiping

    2018-04-12

    Climate change profoundly influences species distributions. These effects are evident in poleward latitudinal range shifts for many taxa, and upward altitudinal range shifts for alpine species, that resulted from increased annual global temperatures since the Last Glacial Maximum (LGM, ca. 22,000 BP). For the latter, the ultimate consequence of upward shifts may be extinction as species in the highest alpine ecosystems can migrate no further, a phenomenon often characterized as "nowhere to go". To predict responses to climate change of the alpine plants on the Qinghai-Tibetan Plateau (QTP), we used ecological niche modelling (ENM) to estimate the range shifts of 14 Rhodiola species, beginning with the Last Interglacial (ca. 120,000-140,000 BP) through to 2050. Distributions of Rhodiola species appear to be shaped by temperature-related variables. The southeastern QTP, and especially the Hengduan Mountains, were the origin and center of distribution for Rhodiola, and also served as refugia during the LGM. Under future climate scenario in 2050, Rhodiola species might have to migrate upward and northward, but many species would expand their ranges contra the prediction of the "nowhere to go" hypothesis, caused by the appearance of additional potential habitat concomitant with the reduction of permafrost with climate warming.

  20. Palaeo-ice stream pathways in the easternmost Amundsen Sea Embayment, West Antarctica

    NASA Astrophysics Data System (ADS)

    Klages, Johann P.; Kuhn, Gerhard; Graham, Alastair G. C.; Smith, James A.; Hillenbrand, Claus-Dieter; Nitsche, Frank O.; Larter, Rob D.; Gohl, Karsten

    2015-04-01

    Multibeam swath bathymetry datasets collected over the past two decades have been compiled to identify palaeo-ice stream pathways in the easternmost Amundsen Sea Embayment. We mapped 3010 glacial landforms to reconstruct palaeo-ice flow in the ~250 km-long Abbot Glacial Trough that was occupied by a large palaeo-ice stream, fed by two tributaries (Cosgrove and Abbot) that reached the continental shelf edge during the last maximum ice-sheet advance. The mapping has enabled a clear differentiation between glacial landforms interpreted as indicative of wet- (e.g. mega-scale glacial lineations) and cold-based ice (e.g. hill-hole pairs) during the last glaciation of the continental shelf. Both the regions of fast palaeo-ice flow within the palaeo-ice stream troughs, and the regions of slow palaeo-ice flow on adjacent seafloor highs (referred to as inter-ice stream ridges) additionally record glacial landforms such as grounding-zone wedges and recessional moraines that indicate grounding line stillstands of the ice sheet during the last deglaciation from the shelf. As the palaeo-ice stream flowed along a trough with variable geometry and variable subglacial substrate, it appears that trough sections characterized by constrictions and outcropping hard substrate that changes the bed gradient, led the pace of grounding-line retreat to slow and subsequently pause, resulting in the deposition of grounding-zone wedges. The stepped retreat recorded within the Abbot Glacial Trough corresponds well to post-glacial stepped retreat interpreted for the neighbouring Pine Island-Thwaites Palaeo-Ice Stream trough, thus suggesting a uniform pattern of episodic retreat across the eastern Amundsen Sea Embayment. The correlation of episodic retreat features with geological boundaries further emphasises the significance of subglacial geology in steering ice stream flow. Our new geomorphological map of the easternmost Amundsen Sea Embayment resolves the pathways of palaeo-ice streams that were probably all active during the last maximum extent of the ice sheet on this part of the shelf, and reveals the style of postglacial grounding-line retreat. Both are important input variables in ice sheet models and therefore can be used for validating the reliability of these models.

  1. Glacial history of Tranquilo glacier (Central Patagonia) since the Last Glacial Maximum through to the present.

    NASA Astrophysics Data System (ADS)

    Sagredo, E. A.; Araya, P. S.; Schaefer, J. M.; Kaplan, M. R.; Kelly, M. A.; Lowell, T. V.; Aravena, J. C.

    2014-12-01

    Deciphering the timing and the inter-hemispheric phasing of former glacial fluctuations is critical for understanding the mechanisms and climate signals underlying these glacial events. Here, we present a detailed chronology of glacial fluctuations for Río Tranquilo glacier (47°S), since the LGM, including up to the present. Río Tranquilo is a small glacial valley located on the northern flank of Monte San Lorenzo, an isolated granitic massif, ~70 km to the east of the southern limit of the Northern Patagonian Icefield. Although Mt. San Lorenzo is located on the leeward side of the Andes, it is one of the most glacierized mountains in the region, with an ice surface area of ~140 km2. Geomorphic evidence suggests that during past episodes of climate change several small glaciers that today occupy the headwalls of Río Tranquilo valley expanded and coalesced, depositing a series of moraines complexes along the flanks and bottom of the valley. We used two independent dating techniques to constrain the age of the glacial history of the area. 10Be surface exposure ages from boulders located atop moraine ridges reveal that Río Tranquilo valley underwent glacial expansion/stabilization during at least the LGM (late LGM?), Late glacial (ACR and Younger Dryas) and Mid-Holocene. Within the Mid-Holocene limits, tree-ring based chronology indicates that Río Tranquilo glacier expanded during the Late Holocene as well. Our results are the first detailed chronology of glacial fluctuations from a single valley glacier, spanning the entire period from the (end of the) LGM up to the present, in southern South America. By identifying different glacial episodes within a single alpine valley, this study provides baseline data for studying the relative magnitude of the climate events responsible for these glacial events.

  2. Late Quaternary Glaciation of the Naches River Drainage Basin, Washington Cascades

    NASA Astrophysics Data System (ADS)

    Sheffer, H. B.; Goss, L.; Shimer, G.; Carson, R. J.

    2014-12-01

    The Naches River drainage basin east of Mount Rainer includes tributary valleys of the Little Naches, American, Bumping, and Tieton rivers. An investigation of surface boulder frequency, weathering rind thicknesses, and soil development on moraines in these valleys identified two stages of Pleistocene glaciations in the American, Bumping, and Tieton drainages, followed by Neoglaciation. These stages include a more extensive early glaciation (Hayden Creek?), and the later Evans Creek Glaciation (25-15 ka). Thick forest cover, limited road cuts, and widespread post-glacial mass wasting hamper efforts to determine the maximum extent of glaciation. However, glacial striations at Chinook Pass, moraine complexes in the vicinity of Goose Egg Mountain, ice-transported boulders and striations on Pinegrass Ridge, and a boulder field possibly derived from an Evans Creek jökulhaup in the Tieton River valley, all point to extensive Pleistocene ice in the central tributaries of the Naches River. Lowest observed ice elevations in the Tieton (780 m), Bumping (850 m), and American (920 m) drainages increase towards the north, while glacial lengths decrease from 40 to 28 km. The Little Naches is the northernmost drainage in the study, but despite a maximum elevation (1810 m) that exceeds the floor of ice caps to the south, glacially-derived sediments are not evident and the surrounding peaks lack cirques. The absence of ice in the Little Naches drainage, along with the systematic northward change in glacial length and lowest observed ice elevations in the other drainages, are likely due to a precipitation shadow northeast of Mount Rainier. In contrast, the source of glacial ice in the Tieton drainage to the southeast was the Goat Rocks peaks. Ground-based study of neoglacial moraines and analysis of 112 years of topographic maps and satellite imagery point to rapid retreat of the remaining Goat Rocks glaciers following the Little Ice Age.

  3. Aspects of late Quaternary geomorphological development in the Khangai Mountains and the Gobi Altai Mountains (Mongolia)

    NASA Astrophysics Data System (ADS)

    Lehmkuhl, Frank; Nottebaum, Veit; Hülle, Daniela

    2018-07-01

    The reconstruction of geomorphological processes as a result of environmental change is approached by investigating and dating some fluvial, aeolian and lacustrine archives at specific locations that form a N-S basin and range transect across the Khangai Mountains south to the eastern Gobi Altai mountains in Mongolia. Geomorphological processes varied a) spatially with different climatic conditions and vegetation cover in relation to different elevation and latitude and b) temporally due to climatic shifts during the late Quaternary. In total, 15 sections from three distinct sub-regions along that transect were dated by 22 OSL ages. The Khangai Mountain sub-region exhibits mainly late Glacial to Holocene aeolian silty to sandy cover sediments mainly in the upper catchment reaches (>1800 m a.s.l.). Sections in the northern and central Gobi represent river terraces and alluvial fans in basin areas as well as aeolian sediments in the mountains above 2200 m a.s.l. The oldest terrace surface found in this study (T2; NGa1) dates to the penultimate Glacial cycle. The T1 terrace surfaces, on the northern Khangai Mountain front and in the central Gobi sub-region yield a maximum accumulation during the global Last Glacial Maximum (gLGM) and late Glacial time. During the gLGM phase represents rather sheetflow dominated transport built the alluvial fans and in late Glacial times the sediments exhibit more debrisflow controlled accumulation. Incision, forming the T1-terrace edges is therefore, supposed for the Pleistocene-Holocene transition and subsequent early Holocene. The geomorphic evidence is interpreted as stronger fluvial morphodynamics induced by enhanced humidity under beginning interglacial conditions. These processes coincided with the development of aeolian mantles at higher altitudes in the Khangai and Gobi Altai mountains where higher temperatures and humidities supported the formation of a vegetation cover, that served as a dust trap at least since late Glacial times and reduced the sediment supply on the alluvial fans.

  4. The Labrador Sea during the Last Glacial Maximum: Calcite dissolution or low biogenic carbonate fluxes?

    NASA Astrophysics Data System (ADS)

    Marshall, Nicole; de Vernal, Anne; Mucci, Alfonso; Filippova, Alexandra; Kienast, Markus

    2017-04-01

    Low concentrations of biogenic carbonate characterize the sediments deposited in the Labrador Sea during the last glaciation. This may reflect poor calcite preservation and/or low biogenic carbonate productivity and fluxes. Regional bottom water ventilation was reduced during the Last Glacial Maximum (LGM), so the calcite lysocline might have been shallower than at present in the deep Labrador Sea making dissolution of calcite shells in the deep Labrador Sea possible. To address the issue, a multi-proxy approach based on micropaleontological counts (coccoliths, foraminifers, palynomorphs) and biogeochemical analyses (alkenones) was applied in the investigation of core HU2008-029-004-PC recovered in the northwestern Labrador Sea. Calcite dissolution indices based on the relative abundance benthic foraminifera shells to their organic linings as well as on fragmentation of planktonic foraminifera shells were used to evaluate changes in calcite dissolution/ preservation since the LGM. In addition, the ratio of the concentrations of coccoliths, specifically of the alkenone-producer Emiliania huxleyi, and alkenones (Emiliania huxleyi: alkenones) was explored as a potential new proxy of calcite dissolution. A sharp increase in coccoliths, foraminifers and organic linings from nearly none to substantial concentrations at 12 ka, reflect a jump to significantly greater biogenic fluxes at the glacial-interglacial transition. Furthermore, conventional dissolution indices (shells/linings of benthic foraminifera and fragmentation of planktic foraminifers) reveal that dissolution is not likely responsible for the lower glacial abundances of coccoliths and foraminifers. Only the low Emiliania huxleyi: alkenones ratios in glacial sediments could be interpreted as evidence of increased dissolution during the LGM. Given the evidence of allochthonous alkenone input into the glacial Labrador Sea, the latter observations must be treated with caution. Overall, the records indicate that low biogenic fluxes during the LGM were the most likely cause of the decreased biogenic carbonate concentrations.

  5. The narrow endemic Norwegian peat moss Sphagnum troendelagicum originated before the last glacial maximum

    PubMed Central

    Stenøien, H K; Shaw, A J; Stengrundet, K; Flatberg, K I

    2011-01-01

    It is commonly found that individual hybrid, polyploid species originate recurrently and that many polyploid species originated relatively recently. It has been previously hypothesized that the extremely rare allopolyploid peat moss Sphagnum troendelagicum has originated multiple times, possibly after the last glacial maximum in Scandinavia. This conclusion was based on low linkage disequilibrium in anonymous genetic markers within natural populations, in which sexual reproduction has never been observed. Here we employ microsatellite markers and chloroplast DNA (cpDNA)-encoded trnG sequence data to test hypotheses concerning the origin and evolution of this species. We find that S. tenellum is the maternal progenitor and S. balticum is the paternal progenitor of S. troendelagicum. Using various Bayesian approaches, we estimate that S. troendelagicum originated before the Holocene but not before c. 80 000 years ago (median expected time since speciation 40 000 years before present). The observed lack of complete linkage disequilibrium in the genome of this species suggests cryptic sexual reproduction and recombination. Several lines of evidence suggest multiple origins for S. troendelagicum, but a single origin is supported by approximate Bayesian computation analyses. We hypothesize that S. troendelagicum originated in a peat-dominated refugium before last glacial maximum, and subsequently immigrated to central Norway by means of spore flow during the last thousands of years. PMID:20717162

  6. High resolution analysis of northern Patagonia lake sediments

    NASA Astrophysics Data System (ADS)

    Jarvis, S. W.; Croudace, I. W.; Langdon, P. G.; Rindby, A.

    2009-04-01

    Sediment cores covering the period from the last glacial maximum through the Holocene to the present have been collected from sites in the Chacubuco valley, southern Chile (around 47°08'S, 72°25'W, to the east of the North Patagonian Icecap). Cores were taken from five lakes and one recently dried lake bed. Short cores (0.2 to 0.5m), covering approximately the last two hundred years, were taken from all the lakes. Additionally, long sequences were obtained from one of the lakes and from the dried lake bed, the latter sequence extending back to the last glacial maximum as indicated by thick clay at the base. Each of the lakes are small-medium sized and are open systems situated at 300-1000m above sea level. The shorter cores comprise predominantly clastic gyttja but show a number of distinct changes in colour and chemical composition that suggest major environmental changes over the period of sediment accumulation. This is also reflected in variations in the loss on ignition of samples from the cores and in elemental profiles produced by scanning the cores with the Itrax micro-XRF corescanner at 200μm resolution. The long sequence from the dried lake bed has very low organic content glacial clay at the base, interpreted as last glacial maximum basal clay following determination in the field that this layer exceeded 2m in thickness. Similar sediments occur within a stratigraphically discrete section of approximately 14cm and may relate to a stadial event. The latter section also shows a drop in organic content and appears to be glacial clay incorporating some coarse sandy components indicative of detrital input from the catchment. The second long sequence, from a carbonate lake, includes two mineral layers indicating increased detrital input from the catchment. The deeper and thicker of these layers appears similar to the 14cm layer in the first long sequence, while the upper layer comprises a fine grain size indicative of rock flour and hence also of glacial activity in the catchment. Variation of elemental composition of these ‘glacial' layers is also clear from the Itrax data. It therefore appears that there have been significant reglaciation events in the catchment since the last glacial maximum. Many cores contain tephra layers, identified both visually and from the Itrax scans. Some of these have been confirmed as volcanic ash from the 1991 eruption of Mt Hudson, which at 45°54'S, 72°58'W is the southern-most volcano in the Chilean Andes and only 140km from the study area. Further work is underway to confirm and identify the source and age of other suspected tephra layers. Sediment accumulation rates in the upper parts of the cores are of the order of 1mm/yr (as determined by lead-210, caesium-137 dating and the 1991 Hudson tephra). Given XRF scan resolutions of up to 200μm there is thus the potential for investigation of sub-annual variability. Funding has been obtained to determine carbon-14 dates for the lower parts of the longer cores. The reproducibility and accuracy of the Itrax data has been validated using conventional WD-XRF spectrometry and the work presented will also include geochemical interpretation of the XRF data and comparison with recorded and proxy-inferred climate data for the region.

  7. Influence of dynamic vegetation on climate change and terrestrial carbon storage in the Last Glacial Maximum

    NASA Astrophysics Data System (ADS)

    O'ishi, R.; Abe-Ouchi, A.

    2013-07-01

    When the climate is reconstructed from paleoevidence, it shows that the Last Glacial Maximum (LGM, ca. 21 000 yr ago) is cold and dry compared to the present-day. Reconstruction also shows that compared to today, the vegetation of the LGM is less active and the distribution of vegetation was drastically different, due to cold temperature, dryness, and a lower level of atmospheric CO2 concentration (185 ppm compared to a preindustrial level of 285 ppm). In the present paper, we investigate the influence of vegetation change on the climate of the LGM by using a coupled atmosphere-ocean-vegetation general circulation model (AOVGCM, the MIROC-LPJ). The MIROC-LPJ is different from earlier studies in the introduction of a bias correction method in individual running GCM experiments. We examined four GCM experiments (LGM and preindustrial, with and without vegetation feedback) and quantified the strength of the vegetation feedback during the LGM. The result shows that global-averaged cooling during the LGM is amplified by +13.5 % due to the introduction of vegetation feedback. This is mainly caused by the increase of land surface albedo due to the expansion of tundra in northern high latitudes and the desertification in northern middle latitudes around 30° N to 60° N. We also investigated how this change in climate affected the total terrestrial carbon storage by using offline Lund-Potsdam-Jena dynamic global vegetation model (LPJ-DGVM). Our result shows that the total terrestrial carbon storage was reduced by 597 PgC during the LGM, which corresponds to the emission of 282 ppm atmospheric CO2. In the LGM experiments, the global carbon distribution is generally the same whether the vegetation feedback to the atmosphere is included or not. However, the inclusion of vegetation feedback causes substantial terrestrial carbon storage change, especially in explaining the lowering of atmospheric CO2 during the LGM.

  8. Deep South Atlantic carbonate chemistry and increased interocean deep water exchange during last deglaciation

    NASA Astrophysics Data System (ADS)

    Yu, Jimin; Anderson, Robert F.; Jin, Zhangdong; Menviel, Laurie; Zhang, Fei; Ryerson, Fredrick J.; Rohling, Eelco J.

    2014-04-01

    Carbon release from the deep ocean at glacial terminations is a critical component of past climate change, but the underlying mechanisms remain poorly understood. We present a 28,000-year high-resolution record of carbonate ion concentration, a key parameter of the global carbon cycle, at 5-km water depth in the South Atlantic. We observe similar carbonate ion concentrations between the Last Glacial Maximum and the late Holocene, despite elevated concentrations in the glacial surface ocean. This strongly supports the importance of respiratory carbon accumulation in a stratified deep ocean for atmospheric CO2 reduction during the last ice age. After ˜9 μmol/kg decline during Heinrich Stadial 1, deep South Atlantic carbonate ion concentration rose by ˜24 μmol/kg from the onset of Bølling to Pre-boreal, likely caused by strengthening North Atlantic Deep Water formation (Bølling) or increased ventilation in the Southern Ocean (Younger Drays) or both (Pre-boreal). The ˜15 μmol/kg decline in deep water carbonate ion since ˜10 ka is consistent with extraction of alkalinity from seawater by deep-sea CaCO3 compensation and coral reef growth on continental shelves during the Holocene. Between 16,600 and 15,000 years ago, deep South Atlantic carbonate ion values converged with those at 3.4-km water depth in the western equatorial Pacific, as did carbon isotope and radiocarbon values. These observations suggest a period of enhanced lateral exchange of carbon between the deep South Atlantic and Pacific Oceans, probably due to an increased transfer of momentum from southern westerlies to the Southern Ocean. By spreading carbon-rich deep Pacific waters around Antarctica for upwelling, invigorated interocean deep water exchange would lead to more efficient CO2 degassing from the Southern Ocean, and thus to an atmospheric CO2 rise, during the early deglaciation.

  9. Mixed fortunes: ancient expansion and recent decline in population size of a subtropical montane primate, the Arunachal macaque Macaca munzala.

    PubMed

    Chakraborty, Debapriyo; Sinha, Anindya; Ramakrishnan, Uma

    2014-01-01

    Quaternary glacial oscillations are known to have caused population size fluctuations in many temperate species. Species from subtropical and tropical regions are, however, considerably less studied, despite representing most of the biodiversity hotspots in the world including many highly threatened by anthropogenic activities such as hunting. These regions, consequently, pose a significant knowledge gap in terms of how their fauna have typically responded to past climatic changes. We studied an endangered primate, the Arunachal macaque Macaca munzala, from the subtropical southern edge of the Tibetan plateau, a part of the Eastern Himalaya biodiversity hotspot, also known to be highly threatened due to rampant hunting. We employed a 534 bp-long mitochondrial DNA sequence and 22 autosomal microsatellite loci to investigate the factors that have potentially shaped the demographic history of the species. Analysing the genetic data with traditional statistical methods and advance Bayesian inferential approaches, we demonstrate a limited effect of past glacial fluctuations on the demographic history of the species before the last glacial maximum, approximately 20,000 years ago. This was, however, immediately followed by a significant population expansion possibly due to warmer climatic conditions, approximately 15,000 years ago. These changes may thus represent an apparent balance between that displayed by the relatively climatically stable tropics and those of the more severe, temperate environments of the past. This study also draws attention to the possibility that a cold-tolerant species like the Arunachal macaque, which could withstand historical climate fluctuations and grow once the climate became conducive, may actually be extremely vulnerable to anthropogenic exploitation, as is perhaps indicated by its Holocene ca. 30-fold population decline, approximately 3,500 years ago. Our study thus provides a quantitative appraisal of these demographically important events, emphasising the ability to potentially infer the occurrence of two separate historical events from contemporary genetic data.

  10. The simulated climate of the Last Glacial Maximum and insights into the global carbon cycle.

    NASA Astrophysics Data System (ADS)

    Buchanan, P. J.; Matear, R.; Lenton, A.; Phipps, S. J.; Chase, Z.; Etheridge, D. M.

    2016-12-01

    The ocean's ability to store large quantities of carbon, combined with the millennial longevity over which this reservoir is overturned, has implicated the ocean as a key driver of glacial-interglacial climates. However, the combination of processes that cause an accumulation of carbon within the ocean during glacial periods is still under debate. Here we present simulations of the Last Glacial Maximum (LGM) using the CSIRO Mk3L-COAL Earth System Model to test the contribution of key biogeochemical processes to ocean carbon storage. For the coupled LGM simulation, we find that significant cooling (3.2 °C), expanded minimum (Northern Hemisphere: 105 %; Southern Hemisphere: 225 %) and maximum (Northern Hemisphere: 145 %; Southern Hemisphere: 120 %) sea ice cover, and a reorganisation of the overturning circulation caused significant changes in ocean biogeochemical fields. The coupled LGM simulation stores an additional 322 Pg C in the deep ocean relative to the Pre-Industrial (PI) simulation. However, 839 Pg C is lost from the upper ocean via equilibration with a lower atmospheric CO2 concentration, causing a net loss of 517 Pg C relative to the PI simulation. The LGM deep ocean also experiences an oxygenation (>100 mmol O2 m-3) and deepening of the aragonite saturation depth (> 2,000 m deeper) at odds with proxy reconstructions. Hence, these physical changes cannot in isolation produce plausible biogeochemistry nor the required drawdown of atmospheric CO2 of 80-100 ppm at the LGM. With modifications to key biogeochemical processes, which include an increased export of organic matter due to a simulated release from iron limitation, a deepening of remineralisation and decreased inorganic carbon export driven by cooler temperatures, we find that the carbon content in the glacial oceanic reservoir can be increased (326 Pg C) to a level that is sufficient to explain the reduction in atmospheric and terrestrial carbon at the LGM (520 ± 400 Pg C). These modifications also go some way to reconcile simulated export production, aragonite saturation state and oxygen fields with those that have been reconstructed by proxy measurements, thereby implicating past changes in ocean biogeochemistry as an essential driver of the climate system.

  11. Equilibrium line altitudes and climate during the Late Holocene glacial maximum in the Andes

    NASA Astrophysics Data System (ADS)

    Sagredo, E. A.; Lowell, T. V.; Kelly, M. A.; Aravena, J.

    2012-12-01

    Documenting the spatial and temporal pattern of climate change associated with widespread glacial fluctuations during Late Holocene time is critical for understanding the mechanisms underlying these climatic/glacial events. Here, we estimate the change in equilibrium line altitudes (ELAs) associated with the most prominent glacial advance during the last millennium for four alpine glaciers in different climatic regimes in the Andes. We reconstruct scenarios of the climatic conditions (temperature and precipitation anomalies) that accommodate the ELA depressions. The glaciers studied are an unnamed glacier in the Cordillera Vilcanota (13°S), Tapado glacier (30°S), Cipreses glacier (34°S) and Tranquilo glacier (47°S). Results from the combined geomorphic analysis and application of a surface energy and mass balance model suggest that there is not a unique combination of temperature and precipitation conditions that accommodates the ELA change recorded since the Late Holocene maximum at the four sites. Assuming no change in precipitation, the ELA depressions could be explained by a cooling (with respect to present-day values) of at least -0.7°C at Cordillera Vilcanota, -1.0°C at Tapado glacier, -0.5°C at Cipreses glacier and -1.3°C at Tranquilo glacier. In contrast, assuming no change in temperature, the ELA depressions could be explained by an increase in the precipitation of at least 0.51 m (63% of the annual precipitation) at Cordillera Vilcanota, 0.33 m (95%) at Tapado glacier, 0.17 m (21%) at Cipreses glacier and 0.68 m (62%) at Tranquilo glacier. Our results serve as targets to test predictions from models of global climate dynamics for the last millennium and contribute to the understanding of the mechanisms underlying the Late Holocene glacial fluctuations.

  12. Effects of mantle rheologies on viscous heating induced by Glacial Isostatic Adjustment

    NASA Astrophysics Data System (ADS)

    Huang, PingPing; Wu, Patrick; van der Wal, Wouter

    2018-04-01

    It has been argued that viscous dissipation from mantle flow in response to surface loading during glacial cycles can result in short-term heating and thus trigger transient volcanism or changes in mantle properties, which may in turn affect mantle dynamics. Furthermore, heating near the Earth's surface can also affect the stability of ice sheets. We have studied the magnitude and spatial-temporal distribution of viscous heating induced in the mantle by the realistic ice model ICE-6G and gravitationally consistent ocean loads. Three types of mantle rheologies, including linear, non-linear and composite rheologies are considered to see if non-linear creep can induce larger viscous heating than linear rheology. We used the Coupled-Laplace-Finite-Element model of Glacial Isostatic Adjustment (GIA) to compute the strain, stress and shear heating during a glacial cycle. We also investigated the upper bound of temperature change and surface heat flux change due to viscous heating. We found that maximum viscous heating occurs near the end of deglaciation near the edge of the ice sheet with amplitude as high as 120 times larger than that of the chondritic radioactive heating. The maximum heat flux due to viscous heating can reach 30 mW m-2, but the area with large heat flux is small and the timescale of heating is short. As a result, the upper bound of temperature change due to viscous heating is small. Even if 30 glacial cycles are included, the largest temperature change can be of the order of 0.3 °C. Thus, viscous heating induced by GIA cannot induce volcanism and cannot significantly affect mantle material properties, mantle dynamics nor ice-sheet stability.

  13. The history of Antarctic Peninsula glaciation

    USGS Publications Warehouse

    Barker, Peter F.

    2007-01-01

    As Co-Chief Scientist on DSDP Leg 35 in 1974, Cam Craddock (1930-2006) produced the first useful information on Cenozoic Antarctic Peninsula glaciation - an early middle Miocene (15-17 Ma) apparent glacial onset. Subsequent work, onshore and offshore, has greatly extended our knowledge but that early conclusion stands today. Cenozoic Antarctic Peninsula palaeoclimate as presently known is broadly consistent with global palaeoclimate proxies. Initial glacial onset was within the Eocene-Oligocene boundary interval (although earlier, short-lived glaciations have been proposed, from indirect measurements) and the peninsula probably became deglaciated in the earliest Miocene (ca. 24 Ma). The renewed middle Miocene glaciation probably continued to the present and, for the last 9 Myr at least, has persisted through glacial (orbital) cycles, with grounded ice advance to the shelf edge during maxima. Although orbital cyclicity affected earlier AP palaeoclimate also, the level of glaciation through a complete cycle is uncertain.

  14. Atlantic Ocean Circulation at the Last Glacial Maximum: Inferences from Data and Models

    DTIC Science & Technology

    2012-09-01

    available. Uncertainties in proxies themselves, and in the dating of the proxy records, are generally lower for the LGM than for periods further back...proven useful in understanding new aspects of the modern ocean circulation. Due to the poor dating resolution of sediment cores from the LGM period, and...Environmental Processes of the Ice Age: Land, Oceans, Glaciers (EPI- LOG) project was an effort to reconstruct the state of the Earth in glacial states; a

  15. Investigating Long-term Behavior of Outlet Glaciers in Greenland

    NASA Technical Reports Server (NTRS)

    Csatho, Beata; vanderVeen, Kees; Schenk, Toni

    2005-01-01

    Repeat surveys by airborne laser altimetry in the 1990s have revealed significant thinning of outlet glaciers draining the interior of the Greenland Ice Sheet, with thinning rates up to several meters per year. To fully appreciate the significance of these recent glacier changes, the magnitude of retreat and surface lowering must be placed within the broader context of the retreat since the Last Glacial Maximum and, more significantly, of the retreat following the temporary glacier advance during the Little Ice Age (LIA). The LIA maximum stand is marked by trimlines, sharp boundaries between recently deglacifated unvegetated rocks, and vegetated surfaces at higher elevations. The objective of this project was to demonstrate the use of remote sensing data to map these trimlines and other glacial geomorphologic features.

  16. The Distribution and Magnitude of Glacial Erosion on 103-year Timescales at Engabreen, Norway

    NASA Astrophysics Data System (ADS)

    Rand, C.; Goehring, B. M.

    2017-12-01

    We derive the magnitudes of glacial erosion integrated over 103-year timescales across a transect transverse to the direction of ice flow at Engabreen, Norway. Understanding the distribution of glacial erosion is important for several reasons, including sediment budgeting to fjord environments, development of robust landscape evolution models, and if a better understanding between erosion and ice-bed interface properties (e.g., sliding rate, basal water pressure) can be developed, we can use records of glacial erosion to infer glaciological properties that can ultimately benefit models of past and future glaciers. With few exceptions, measurements of glacial erosion are limited to the historical past and even then are rare owing to the difficulty of accessing the glacier bed. One method proven useful in estimating glacial erosion on 103-year timescales is to measure the remaining concentrations of cosmogenic nuclides that accumulate in exposed bedrock during periods of retracted glacier extent and are removed by glacial erosion and radioactive decay during ice cover. Here we will present measurements of 14C and 10Be measured in proglacial bedrock from Engabreen. Our transects are ca. 600 and 400 meters in front of the modern ice front, and based on historical imagery, was ice covered until the recent past. Initial 10Be results show an increase in concentrations of nearly an order of magnitude from the samples near the center of the glacial trough to those on the lateral margin, consistent with conceptual models of glacial erosion parameterized in terms of sliding velocity. Naïve exposure ages that assume no subglacial erosion range from 0.22 - 9.04 ka. More importantly, we can estimate erosion depths by assuming zero erosion of the highest concentration sample along the two transects and calculate the amount of material removed to yield the lower concentrations elsewhere along the two transects. Results indicate minimum erosion depths of 1-183 cm for most ice proximal transect and 7-56 cm for the more distal one.

  17. Paleoclimate

    USGS Publications Warehouse

    Bartlein, Patrick J.; Hostetler, Steven W.; Alder, Jay R.; Ohring, G.

    2014-01-01

    As host to one of the major continental-scale ice sheets, and with considerable spatial variability of climate related to its physiography and location, North America has experienced a wide range of climates over time. The aim of this chapter is to review the history of those climate variations, focusing in particular on the continental-scale climatic variations between the Last Glacial Maximum (LGM, ca. 21,000 years ago or 21 ka) and the present, which were as large in amplitude as any experienced over a similar time span during the past several million years. As background to that discussion, the climatic variations over the Cenozoic (the past 65.5 Myr, or 65.5 Ma to present) that led ultimately to the onset of Northern Hemisphere glaciation at 2.59 Ma will also be discussed. Superimposed on the large-amplitude, broad-scale variations from the LGM to present, are climatic variations on millennial-to-decadal scales, and these will be reviewed in particular for the Holocene (11.7 ka to present) and the past millennium.

  18. Deep Arctic Ocean warming during the last glacial cycle

    USGS Publications Warehouse

    Cronin, T. M.; Dwyer, G.S.; Farmer, J.; Bauch, H.A.; Spielhagen, R.F.; Jakobsson, M.; Nilsson, J.; Briggs, W.M.; Stepanova, A.

    2012-01-01

    In the Arctic Ocean, the cold and relatively fresh water beneath the sea ice is separated from the underlying warmer and saltier Atlantic Layer by a halocline. Ongoing sea ice loss and warming in the Arctic Ocean have demonstrated the instability of the halocline, with implications for further sea ice loss. The stability of the halocline through past climate variations is unclear. Here we estimate intermediate water temperatures over the past 50,000 years from the Mg/Ca and Sr/Ca values of ostracods from 31 Arctic sediment cores. From about 50 to 11 kyr ago, the central Arctic Basin from 1,000 to 2,500 m was occupied by a water mass we call Glacial Arctic Intermediate Water. This water mass was 1–2 °C warmer than modern Arctic Intermediate Water, with temperatures peaking during or just before millennial-scale Heinrich cold events and the Younger Dryas cold interval. We use numerical modelling to show that the intermediate depth warming could result from the expected decrease in the flux of fresh water to the Arctic Ocean during glacial conditions, which would cause the halocline to deepen and push the warm Atlantic Layer into intermediate depths. Although not modelled, the reduced formation of cold, deep waters due to the exposure of the Arctic continental shelf could also contribute to the intermediate depth warming.

  19. Latest Pleistocene and Holocene glacial events in the Colonia valley, Northern Patagonia Icefield, southern Chile

    USGS Publications Warehouse

    Nimick, David A.; Mcgrath, Daniel; Mahan, Shannon; Friesen, Beverly A.; Leidich, Jonathan

    2016-01-01

    The Northern Patagonia Icefield (NPI) is the primary glaciated terrain worldwide at its latitude (46.5–47.5°S), and constraining its glacial history provides unique information for reconstructing Southern Hemisphere paleoclimate. The Colonia Glacier is the largest outlet glacier draining the eastern NPI. Ages were determined using dendrochronology, lichenometry, radiocarbon, cosmogenic 10Be and optically stimulated luminescence. Dated moraines in the Colonia valley defined advances at 13.2 ± 0.95, 11.0 ± 0.47 and 4.96 ± 0.21 ka, with the last being the first constraint on the onset of Neoglaciation for the eastern NPI from a directly dated landform. Dating in the tributary Cachet valley, which contains an ice-dammed lake during periods of Colonia Glacier expansion, defined an advance at ca. 2.95 ± 0.21 ka, periods of advancement at 810 ± 49 cal a BP and 245 ± 13 cal a BP, and retreat during the intervening periods. Recent Colonia Glacier thinning, which began in the late 1800s, opened a lower-elevation outlet channel for Lago Cachet Dos in ca. 1960. Our data provide the most comprehensive set of Latest Pleistocene and Holocene ages for a single NPI outlet glacier and expand previously developed NPI glacial chronologies.

  20. The late-glacial fluvial terrace t7 at Raunheim (lower River Main), Germany. Constraining the chronological placement by optical stimulated luminescence dating.

    NASA Astrophysics Data System (ADS)

    Thiemeyer, Heinrich; Kadereit, Annette; Zipf, Lars; Flettner, Stephan

    2017-04-01

    The lower River Main valley exhibits up to seven fluvial terrace levels (t1 - t7, according to the stratigraphy of Semmel 1969). The lowermost terrace (t7) represents the most recently formed level which due to stratigraphical considerations is assumed to be of Late Pleistocene age (Semmel 1969). However, the chronological placement of the terrace has not been determined by numerical dating so far. The area was apparently roamed by Late Palaeolithic people as evidenced by artefacts which were discovered on a former sandy river bank between 87 m and 91 m above sea level on top of the t7 east of the town of Raunheim. We took this opportunity to open four trenches in order to localize additional in situ Palaeolithic artefacts and to investigate the stratigraphy of the sediments and soils and, for the first time, to provide numerical ages in order to narrow down the period of the t7 activity. Eight samples from three profiles in three of the trenches were collected for optical stimulated (OSL) dating. OSL dating occurred applying a blue light stimulated luminescence (BLSL) single aliquot regeneration (SAR) protocol (Murray & Wintle 2000) to small aliquots (few 102 grains) of quartz coarse grain separates (125 - 212 µm). The trenches showed that the t7 sediments consist of fluvial sand over gravel. They are overlain by calcareous loamy and sandy overbank deposits. At the investigated site the Holocene Cambisol at the surface passes into a Gleysol that has developed in a palaeochannel which is incised into the t7. The trenches revealed further that only parts of the Late Palaeolithic site are in situ and therefore contemporaneous with the fluvial sediments beneath the Cambisol. The upper part of the sections consists of colluvial deposits lying on truncated Cambisols. The OSL dating places the section into the period spanning the last glacial maximum (LGM) / late glacial to the late Holocene. The oldest investigated fluvial t7 sediments date around 24.7 ka. Slightly younger ages, around ca. 17 ka and ca. 14 ka, indicate that fluvial activity continued into late glacial times and that the deposits were last partly reworked. The colluvial deposits date from approximately 5000 BP until today reflecting the long lasting agricultural use of the old settled river terraces on the lower River Main. A peat layer indicates that the channel in the t7 was still active in Holocene times and finally filled only in the Middle Ages, according to palynological investigations. Murray, A.S. & Wintle, A.G. (2000): Luminescence dating of quartz using an improved single aliquot regenerative-dose protocol. - Radiation Measurements 32: 57-73. Semmel, A. (1969): Quartär. - Erl. Geologische Karte von Hessen 1:25000 Blatt 5916 Hochheim a. Main, 3. Aufl., 209 pp., Wiesbaden.

  1. 8800 years of high-altitude vegetation and climate history at the Rutor Glacier forefield, Italian Alps. Evidence of middle Holocene timberline rise and glacier contraction

    NASA Astrophysics Data System (ADS)

    Badino, Federica; Ravazzi, Cesare; Vallè, Francesca; Pini, Roberta; Aceti, Amelia; Brunetti, Michele; Champvillair, Elena; Maggi, Valter; Maspero, Francesco; Perego, Renata; Orombelli, Giuseppe

    2018-04-01

    Sedimentary archives at or near the timberline ecotone in Alpine glaciated areas contain records to study Holocene climate change and the interplay between climate, ecosystems, and humans. We focused on records of timberline and glacier oscillations in the Rutor Glacier forefield (Western Italian Alps) in the last 8800 years. Human activity in this area was negligible for most of the Holocene. We adopted an integrative stratigraphic approach including proxies for glacier advance and timberline estimation, sedimentary events, and reconstructed temperatures. Changes in timberline ecotone correlate to climate until the Middle Ages. Pollen-stratigraphic evidence of a primary plant succession highlights a lag beween local deglaciation and the first reliable 14C age. The radiocarbon chronology points to a prolonged phase of glacier contraction between 8.8 and 3.7 ka cal BP. Even later the glacier remained within its LIA limits. Between 8.4 and 4 ka cal BP MAT-inferred TJuly fluctuated near 12.4 °C, ca. 3.1 °C higher than today. During this period, a Pinus cembra forest belt grew at 2600 m asl with an upper limit of tree groves placed 434 ± 310 m above the current open forest limit. This Holocene phase of thermal maximum ended between 3.98 and 3.51 ± 70 ka cal BP and with a substantial rearrangement of forest composition; temperature reconstruction shows a decrease of 1.8 °C. This climate deterioration concluded the Subboreal thermal optimum, mirroring glacial advances widely documented in the Alps. The Rutor Glacier advanced at ca. AD 1093 ± 65, and remained inside the LIA maximum extent. The LIA started since AD 1594, and culminated between AD 1751 and 1864.

  2. Geographic and temporal trends in proboscidean and human radiocarbon histories during the late Pleistocene

    NASA Astrophysics Data System (ADS)

    Ugan, Andrew; Byers, David

    2007-12-01

    The causes of large animal extinctions at the end of the Pleistocene remain a hotly debated topic focused primarily on the effects of human over hunting and climate change. Here we examine multiple, large radiocarbon data sets for humans and extinct proboscideans and explore how variation in their temporal and geographic distributions were related prior to proboscidean extinction. These data include 4532 archaeological determinations from Europe and Siberia and 1177 mammoth and mastodont determinations from Europe, Siberia, and North America. All span the period from 45,000 to 12,000 calendar years BP. We show that while the geographic ranges of dated human occupations and proboscidean remains overlap across the terminal Pleistocene of the Old World, the two groups remain largely segregated and increases in the frequency of human occupations do not coincide with declines in proboscidean remains. Prior to the Last Glacial Maximum (LGM; ca 21,000 years BP), archaeological 14C determinations increase slightly in frequency worldwide while the frequency of dated proboscidean remains varies depending on taxon and location. After the LGM, both sympatric and allopatric groups of humans and proboscideans increase sharply as climatic conditions ameliorate. Post-LGM radiocarbon frequencies among proboscideans peak at different times, also depending upon taxon and location. Woolly mammoths in Beringia reach a maximum and then decline beginning between 16,000 and 15,500 years BP, woolly mammoths in Europe and Siberia ca 14,500 and 13,500 BP, and Columbian mammoth and American mastodont only after 13,000 BP. Declines among woolly mammoths appear to coincide with the restructuring of biotic communities following the Pleistocene-Holocene transition.

  3. A Bi-hemispheric perspective on the last glacial termination from the Southern Alps of New Zealand and the Altai Mountains of western Mongolia

    NASA Astrophysics Data System (ADS)

    Strand, P.; Putnam, A. E.; Schaefer, J. M.; Denton, G.; Putnam, D.; Barrell, D.; Schwartz, R.; Sambuu, O.

    2016-12-01

    The last glacial termination ( 18,000 - 11,000 yrs ago) represents the last great global warming and the last time CO2 rose by a substantial amount before the industrial period. Understanding the processes that drove this glacial to interglacial transition will help refine the global climate system sensitivity to CO2 and will place ongoing global warming into a paleoclimatic context. Here, we test possible drivers of the last glacial termination by comparing chronologies of mountain glacier recession in the middle latitudes of both polar hemispheres. Extra-polar mountain glaciers are highly sensitive to changes in atmospheric temperature. Thus glacier landforms, such as moraine ridges constructed along glacier margins, afford quantitative insight into past climate conditions. We present 10Be surface-exposure chronologies and glacial geomorphologic maps of mountain glacier recession since the Last Glacial Maximum in the Southern Alps of New Zealand (44°S, 170°E) and in the Altai Mountains of western Mongolia (49°N, 88°E). On the basis of these chronologies from opposing hemispheres, we will evaluate the relative roles of rising atmospheric CO2, local insolation forcing, and ocean-atmosphere reorganizations in driving the warming that ended the last ice age.

  4. Asynchronous glaciations in arid continental climate

    NASA Astrophysics Data System (ADS)

    Batbaatar, Jigjidsurengiin; Gillespie, Alan R.; Fink, David; Matmon, Ari; Fujioka, Toshiyuki

    2018-02-01

    Mountain glaciers at ∼26-19 ka, during the global Last Glacial Maximum near the end of the last 105 yr glacial cycle, are commonly considered on the basis of dating and field mapping in several well-studied areas to have been the largest of the late Quaternary and to have advanced synchronously from region to region. However, a numerical sensitivity model (Rupper and Roe, 2008) predicts that the fraction of ablation due to melting varies across Central Asia in proportion to the annual precipitation. The equilibrium-line altitude of glaciers across this region likely varies accordingly: in high altitude, cold and arid regions sublimation can ablate most of the ice, whereas glaciers fed by high precipitation cannot ablate completely due to sublimation alone, but extend downhill until higher temperatures there cause them to melt. We have conducted field studies and 10Be dating at five glaciated sites along a precipitation gradient in Mongolia to test the Rupper/Roe model. The sites are located in nearby 1.875 × 1.875° cells of the Rupper/Roe model, each with a different melt fraction, in this little-studied region. The modern environment of the sites ranges from dry subhumid in the north (47.7° N) to arid in the south (45° N). Our findings show that the maximum local advances in the dry subhumid conditions predated the global Last Glacial Maximum and were likely from MIS 3. However, we also found that at ∼8-7 ka a cirque glacier in one mountain range of the arid Gobi desert grew to a magnitude comparable to that of the local maximum extent. This Holocene maximum occurred during a regional pluvial period thousands of years after the retreat of the Pleistocene glaciers globally. This asynchronous behavior is not predicted by the prevailing and generally correct presumption that glacier advances are dominantly driven by temperature, although precipitation also plays a role. Our findings are consistent with and support the Rupper/Roe model, which calls for glaciation in arid conditions only at high altitudes of sub-freezing temperatures, where the melt fraction in ablation is low. We expect a heterogeneous pattern of glacial responses to a changing modern climate in cold arid regions; an individual glacier advance should not be necessarily interpreted as evidence of cooling climate.

  5. Reliable radiocarbon evidence for the maximum extent of the West Antarctic Ice Sheet in the easternmost Amundsen Sea Embayment during the Last Glacial Maximum

    NASA Astrophysics Data System (ADS)

    Hillenbrand, C. D.; Klages, J. P.; Kuhn, G.; Smith, J.; Graham, A. G. C.; Gohl, K.; Wacker, L.

    2016-02-01

    We present the first age control and sedimentological data for the upper part of a stratified seismic unit that is unusually thick ( 6-9 m) for the outer shelf of the ASE and overlies an acoustically transparent unit. The transparent unit probably consists of soft till deposited during the last advance of grounded ice onto the outer shelf. We mapped subtle mega-scale glacial lineations (MSGL) on the seafloor and suggest that these are probably the expressions of bedforms originally moulded into the surface of the underlying till layer. We note that the lineations are less distinct when compared to MSGLs recorded in bathymetric data collected further upstream and suggest that this is because of the blanketing influence of the thick overlying drape. The uppermost part (≤ 3 m) of the stratified drape was sampled by two of our sediment cores and contains sufficient amounts of calcareous foraminifera throughout to establish reliable age models by radiocarbon dating. In combination with facies analysis of the recovered sediments the obtained radiocarbon dates suggest deposition of the draping unit in a sub-ice shelf/sub-sea ice to seasonal-open marine environment that existed on the outer shelf from well before (>45 ka BP) the Last Glacial Maximum until today. This indicates the maximum extent of grounded ice at the LGM must have been situated south of the two core locations, where a well-defined grounding-zone wedge (`GZWa') was deposited. The third sediment core was recovered from the toe of this wedge and retrieved grounding-line proximal glaciogenic debris flow sediments that were deposited by 14 cal. ka BP. Our new data therefore provide direct evidence for 1) the maximum extent of grounded ice in the easternmost ASE at the LGM (=GZWa), 2) the existence of a large shelf area seawards the wedge that was not covered by grounded ice during that time, and 3) landward grounding line retreat from GZWa prior to 14 cal. ka BP. This knowledge will help to improve LGM ice sheet reconstructions and to quantify precisely the volume of LGM ice-sheet build-up in Antarctica. Our study also alludes to the possibility that refugia for Antarctic shelf benthos may have existed in the ASE during the last glacial period.

  6. Climatic Instability and Regional Glacial Advances in the Late Ediacaran

    NASA Astrophysics Data System (ADS)

    Hannah, J. L.; Stein, H. J.; Marolf, N.; Bingen, B.

    2014-12-01

    The Ediacaran Period closed out the environmentally raucous Neoproterozoic Era with the last of multiple glacial events and the first ephemeral glimmer of multicellular life. As such, evolution of Earth's biosphere and the marine environments that nurtured this nascent biota are of particular interest. Because the Ediacaran biota appear in the stratigraphic record just above tillites in many localities, inferences are naturally drawn to link glaciation to bioevolution. Here we review known controls on the timing and extent of the late Ediacaran Gaskier and Varanger glacial events, bolstered by new constraints on the Moelv tillite of South Norway. The elusive mid-Ediacaran glacial strata are poorly dated, patchy in distribution, and relatively limited in thickness. The type Gaskier glaciogenic units in Newfoundland are 582 to 584 Ma, based on U-Pb zircon ages from intercalated ash beds [1]. The Varanger glaciogenic deposits in northern Norway, in contrast, remain only roughly constrained to ca. 630 to 560 Ma. Post-Gaskier negative carbon isotope excursions (CIEs) have been reported from multiple localities in both China and SW United States, suggesting climatic instability in the late Ediacaran. Although most localities lack solid geochronology, paleontologic constraints place the Hongtiegou glacial diamictite and accompanying CIE in the Chaidam Basin, NW China, in the latest Ediacaran, ca. 555 Ma [2]. We previously suggested that the Moelv tillite in south Norway was roughly equivalent to the Gaskier, based on an imprecise Re-Os age of ~560 Ma [3] for the underlying Biri shale. Reanalysis of these data shows that the upper part of the shale section was disturbed by a redox front during the Caledonian orogeny. The undisturbed lower part of the section yields a more precise Model 1 isochron age of 559.5 ± 6.2 Ma, clearly post-dating the Gaskier event well outside analytical uncertainty. These new results bolster arguments that the Gaskier glaciation was not a global "snowball Earth" event; rather, there may have been multiple Ediacaran glacial advances - perhaps only at high latitudes - marked by tillites of regional, but not global extent. [1] Bowring et al. 2002, Astrobiology 2: 457-458. [2] Shen et al. 2010, Prec. Res. 177: 241-252. [3] Hannah et al. 2007, Geochim. Cosmochim. Acta 71: A378.

  7. Sediment property changes in response to the glacial activity on the continental slope to the eastern side of Pennell-Iselin Bank in the Ross Sea, Antarctica

    NASA Astrophysics Data System (ADS)

    Ha, Sangbeom; Khim, Boo-Keun; Colizza, Ester; Marci, Patrizia; Sagnotti, Leonardo; Caricchi, Chiara; Langone, Leonardo; Giglio, Federico; Kuhn, Gerhard

    2017-04-01

    High latitude marine environments including the Antarctic continental margin have sensitively responded to the climate change, and the Ross Sea is one of these examples. Subglacial marine sedimentary changes have been studied extensively in the continental shelf areas of the Ross Sea to understand the growth and retreat of glaciers in response to the glacial-interglacial changes. However, the continental slope areas of the Ross Sea have not been investigated comparatively less. Thus, in order to comprehend the glaciomarine sedimentation change on the continental slope of the Ross Sea, 3 gravity cores (GC1, GC2, GC3) and 3 box cores (BC1, BC2, BC3) were collected from 3 sites (RS14-C1, C2, C3 by decreasing water depth), respectively, across the continental slope to the eastern side of the Pennell-Iselin Bank during XXIX PNRA (Rosslope II) cruise in 2014. A variety of sedimentological (grain size, magnetic susceptibility, XRF) and geochemical (biogenic opal, total organic carbon, CaCO3, δ13C of organic matter) properties were analyzed along with AMS 14C dating of bulk sediments. All core sediments consist of mostly hemipelagic sandy clay or silty clay with scattered IRD (Ice-Rafted Debris). Sediment color of three cores changes consistently downward from brown to gray with some alternations in core GC1. Based on the basic sediment properties such as sediment color, grain size, and magnetic susceptibility, sediment lithology was decided to divide Unit A and Unit B, both of which were further divided into two subunits. Despite old carbon effect, AMS 14C dates confirm that Unit A belongs to the Holocene and Unit B covers the deglacial to last glacial period at the top of cores. Unit A is characterized by low TOC, low CaCO3, low biogenic opal content and low C/N ratios, whereas Unit B is characterized by high TOC, high CaCO3, moderate to high biogenic opal content and high C/N ratios. Consequently, Unit A represents the modern and interglacial sediments deposited mainly by the suspension settling of biogenic particles in the open marine condition. In contrast, because Unit B shows higher TOC, CaCO3 content and C/N ratios, these sediments might be supplied by the lateral melt-water plume or distal part of debris flow originated from the front of grounding ice in the subglacial continental shelf under the ice shelf and during the glacial or post-glacial period. Thus, Unit B contains mostly reworked and eroded continental shelf sediments and IRDs. In addition, because the peaks of biogenic opal and TOC contents at Site C1 are distinctly higher than Sites C2 and C3, surface water production occurred under seasonally open marine condition at the deeper Site C1. In conclusion, the influence of subglacial continental shelf sedimentation in terms of melt-water transport and/or distal stage of debris flow was limited as far as to Site C2 during the deglacial and glacial period. However, such depositional effect was insignificant, but the seasonal open marine condition was recognized, at the deeper Site C1 in the continental slope of the Ross Sea.

  8. Strong and deep Atlantic meridional overturning circulation during the last glacial cycle.

    PubMed

    Böhm, E; Lippold, J; Gutjahr, M; Frank, M; Blaser, P; Antz, B; Fohlmeister, J; Frank, N; Andersen, M B; Deininger, M

    2015-01-01

    Extreme, abrupt Northern Hemisphere climate oscillations during the last glacial cycle (140,000 years ago to present) were modulated by changes in ocean circulation and atmospheric forcing. However, the variability of the Atlantic meridional overturning circulation (AMOC), which has a role in controlling heat transport from low to high latitudes and in ocean CO2 storage, is still poorly constrained beyond the Last Glacial Maximum. Here we show that a deep and vigorous overturning circulation mode has persisted for most of the last glacial cycle, dominating ocean circulation in the Atlantic, whereas a shallower glacial mode with southern-sourced waters filling the deep western North Atlantic prevailed during glacial maxima. Our results are based on a reconstruction of both the strength and the direction of the AMOC during the last glacial cycle from a highly resolved marine sedimentary record in the deep western North Atlantic. Parallel measurements of two independent chemical water tracers (the isotope ratios of (231)Pa/(230)Th and (143)Nd/(144)Nd), which are not directly affected by changes in the global cycle, reveal consistent responses of the AMOC during the last two glacial terminations. Any significant deviations from this configuration, resulting in slowdowns of the AMOC, were restricted to centennial-scale excursions during catastrophic iceberg discharges of the Heinrich stadials. Severe and multicentennial weakening of North Atlantic Deep Water formation occurred only during Heinrich stadials close to glacial maxima with increased ice coverage, probably as a result of increased fresh-water input. In contrast, the AMOC was relatively insensitive to submillennial meltwater pulses during warmer climate states, and an active AMOC prevailed during Dansgaard-Oeschger interstadials (Greenland warm periods).

  9. Grounded meets floating

    NASA Astrophysics Data System (ADS)

    Walker, Ryan T.

    2018-04-01

    A comprehensive assessment of grounding-line migration rates around Antarctica, covering a third of the coast, suggests retreat in considerable portions of the continent, beyond the rates expected from adjustment following the Last Glacial Maximum.

  10. The role of glacial cycles in promoting genetic diversity in the Neotropics: the case of cloud forests during the Last Glacial Maximum

    PubMed Central

    Ramírez-Barahona, Santiago; Eguiarte, Luis E

    2013-01-01

    The increasing aridity during the Last Glacial Maximum (LGM) has been proposed as a major factor affecting Neotropical species. The character and intensity of this change, however, remains the subject of ongoing debate. This review proposes an approach to test contrasting paleoecological hypotheses by way of their expected demographic and genetic effects on Neotropical cloud forest species. We reviewed 48 paleoecological records encompassing the LGM in the Neotropics. The records show contrasting evidence regarding the changes in precipitation during this period. Some regions remained fairly moist and others had a significantly reduced precipitation. Many paleoecological records within the same region show apparently conflicting evidence on precipitation and forest stability. From these data, we propose and outline two demographic/genetic scenarios for cloud forests species based on opposite precipitation regimes: the dry refugia and the moist forests hypotheses. We searched for studies dealing with the population genetic structure of cloud forest and other montane taxa and compared their results with the proposed models. To date, the few available molecular studies show insufficient genetic evidence on the predominance of glacial aridity in the Neotropics. In order to disentangle the climatic history of the Neotropics, the present study calls for a general multi-disciplinary approach to conduct future phylogeographic studies. Given the contradictory paleoecological information, population genetic data on Neotropical cloud forest species should be used to explicitly test the genetic consequences of competing paleoecological models. PMID:23531632

  11. A cosmogenic nuclide chronology of the last glacial transition in North-West Nelson, New Zealand-new insights in Southern Hemisphere climate forcing during the last deglaciation [rapid communication

    NASA Astrophysics Data System (ADS)

    Shulmeister, James; Fink, David; Augustinus, Paul C.

    2005-05-01

    We present a new glacial chronology for the last glacial interglacial transition, c. 20 to 10 ka, from the Cobb Valley, NW Nelson, New Zealand, based on a suite of 10Be and 26Al cosmogenic exposure ages. This chronology describes one of the most comprehensive deglaciation sequences from a late Quaternary valley system in the Southern Hemisphere. We chronicle the decay from the last (local) glacial maximum as follows: onset of the last deglaciation that commenced no earlier than 18-19 ka, followed by numerous short-term still-stands and/or minor re-advances over the ensuing 3-4 kyr, and complete evacuation of ice by 14 ka. We find no evidence to indicate a late glacial re-advance commensurate with the Northern Hemisphere Younger Dryas chronozone. The absence of a major glacial re-advance in this valley during the latter stages of the last glacial interglacial transition (LGIT) precludes a thermal decline in excess of about 3 °C and suggests no decline. The absence of late LGIT re-advances in the mountains of North-West Nelson, while deglacial readvances occurred in the main ranges of the Southern Alps can be best explained if westerly wind forcing rather than large-scale thermal decline is the primary control on glacier fluctuations, at least during the deglaciation. These findings challenge models of global climate change predicated on synchrony of millennial-scale glacial transitions due to thermal changes between Northern and Southern Hemispheres.

  12. New Zealand supereruption provides time marker for the Last Glacial Maximum in Antarctica

    USGS Publications Warehouse

    Dunbar, Nelia W.; Iverson, Nels A.; Van Eaton, Alexa R.; Sigl, Michael; Alloway, Brent V.; Kurbatov, Andrei V.; Mastin, Larry G.; McConnell, Joseph R.; Wilson, Colin J. N.

    2017-01-01

    Multiple, independent time markers are essential to correlate sediment and ice cores from the terrestrial, marine and glacial realms. These records constrain global paleoclimate reconstructions and inform future climate change scenarios. In the Northern Hemisphere, sub-visible layers of volcanic ash (cryptotephra) are valuable time markers due to their widespread dispersal and unique geochemical fingerprints. However, cryptotephra are not as widely identified in the Southern Hemisphere, leaving a gap in the climate record, particularly during the Last Glacial Maximum (LGM). Here we report the first identification of New Zealand volcanic ash in Antarctic ice. The Oruanui supereruption from Taupo volcano (25,580  ±  258 cal. a BP) provides a key time marker for the LGM in the New Zealand sector of the SW Pacific. This finding provides a high-precision chronological link to mid-latitude terrestrial and marine sites, and sheds light on the long-distance transport of tephra in the Southern Hemisphere. As occurred after identification of the Alaskan White River Ash in northern Europe, recognition of ash from the Oruanui eruption in Antarctica dramatically increases the reach and value of tephrochronology, providing links among climate records in widely different geographic areas and depositional environments.

  13. Could brown bears (Ursus arctos) have survived in Ireland during the Last Glacial Maximum?

    PubMed Central

    Leonard, Saoirse A.; Risley, Claire L.; Turvey, Samuel T.

    2013-01-01

    Brown bears are recorded from Ireland during both the Late Pleistocene and early–mid Holocene. Although most of the Irish landmass was covered by an ice sheet during the Last Glacial Maximum (LGM), Irish brown bears are known to have hybridized with polar bears during the Late Pleistocene, and it is suggested that the Irish brown bear population did not become extinct but instead persisted in situ through the LGM in a southwestern ice-free refugium. We use historical population modelling to demonstrate that brown bears are highly unlikely to have survived through the LGM in Ireland under any combination of life-history parameters shown by living bear populations, but instead would have rapidly become extinct following advance of the British–Irish ice sheet, and probably recolonized Ireland during the end-Pleistocene Woodgrange Interstadial from a closely related nearby source population. The time available for brown bear–polar bear hybridization was therefore restricted to narrow periods at the beginning or end of the LGM. Brown bears would have been extremely vulnerable to extinction in Quaternary habitat refugia and required areas substantially larger than southwestern Ireland to survive adverse glacial conditions. PMID:23676655

  14. Could brown bears (Ursus arctos) have survived in Ireland during the Last Glacial Maximum?

    PubMed

    Leonard, Saoirse A; Risley, Claire L; Turvey, Samuel T

    2013-08-23

    Brown bears are recorded from Ireland during both the Late Pleistocene and early-mid Holocene. Although most of the Irish landmass was covered by an ice sheet during the Last Glacial Maximum (LGM), Irish brown bears are known to have hybridized with polar bears during the Late Pleistocene, and it is suggested that the Irish brown bear population did not become extinct but instead persisted in situ through the LGM in a southwestern ice-free refugium. We use historical population modelling to demonstrate that brown bears are highly unlikely to have survived through the LGM in Ireland under any combination of life-history parameters shown by living bear populations, but instead would have rapidly become extinct following advance of the British-Irish ice sheet, and probably recolonized Ireland during the end-Pleistocene Woodgrange Interstadial from a closely related nearby source population. The time available for brown bear-polar bear hybridization was therefore restricted to narrow periods at the beginning or end of the LGM. Brown bears would have been extremely vulnerable to extinction in Quaternary habitat refugia and required areas substantially larger than southwestern Ireland to survive adverse glacial conditions.

  15. Late Quaternary megafloods from Glacial Lake Atna, Southcentral Alaska, U.S.A.

    NASA Astrophysics Data System (ADS)

    Wiedmer, Michael; Montgomery, David R.; Gillespie, Alan R.; Greenberg, Harvey

    2010-05-01

    Geomorphic, stratigraphic, geotechnical, and biogeographic evidence indicate that failure of a Pleistocene ice dam between 15.5 and 26 ka generated a megaflood from Glacial Lake Atna down the Matanuska Valley. While it has long been recognized that Lake Atna occupied ≥ 9000 km 2 of south-central Alaska's Copper River Basin, little attention has focused on the lake's discharge locations and behaviors. Digital elevation model and geomorphic analyses suggest that progressive lowering of the lake level by decanting over spillways exposed during glacial retreat led to sequential discharges down the Matanuska, Susitna, Tok, and Copper river valleys. Lake Atna's size, ˜ 50 ka duration, and sequential connection to four major drainages likely made it a regionally important late Pleistocene freshwater refugium. We estimate a catastrophic Matanuska megaflood would have released 500-1400 km 3 at a maximum rate of ≥ 3 × 10 6 m 3 s - 1 . Volumes for the other outlets ranged from 200 to 2600 km 3 and estimated maximum discharges ranged from 0.8 to 11.3 × 10 6 m 3 s - 1 , making Lake Atna a serial generator of some of the largest known freshwater megafloods.

  16. Relative sea-level changes and crustal movements in Britain and Ireland since the Last Glacial Maximum

    NASA Astrophysics Data System (ADS)

    Shennan, Ian; Bradley, Sarah L.; Edwards, Robin

    2018-05-01

    The new sea-level database for Britain and Ireland contains >2100 data points from 86 regions and records relative sea-level (RSL) changes over the last 20 ka and across elevations ranging from ∼+40 to -55 m. It reveals radically different patterns of RSL as we move from regions near the centre of the Celtic ice sheet at the last glacial maximum to regions near and beyond the ice limits. Validated sea-level index points and limiting data show good agreement with the broad patterns of RSL change predicted by current glacial isostatic adjustment (GIA) models. The index points show no consistent pattern of synchronous coastal advance and retreat across different regions, ∼100-500 km scale, indicating that within-estuary processes, rather than decimetre- and centennial-scale oscillations in sea level, produce major controls on the temporal pattern of horizontal shifts in coastal sedimentary environments. Comparisons between the database and GIA model predictions for multiple regions provide potentially powerful constraints on various characteristics of global GIA models, including the magnitude of MWP1A, the final deglaciation of the Laurentide ice sheet and the continued melting of Antarctica after 7 ka BP.

  17. Atmospheric Rivers Enhanced Water Delivery to Southwestern North America at the Last Glacial Maximum

    NASA Astrophysics Data System (ADS)

    Lora, J. M.; Mitchell, J.; Risi, C. M.; Tripati, A. K.

    2015-12-01

    Proxy reconstructions of the late Pleistocene paleoclimate indicate that southwestern North America was significantly more wet at the Last Glacial Maximum (LGM; ~21 ka) than in the present. Pluvial paleolakes were abundant throughout the Great Basin and as far south as the modern Mojave Desert. The source of precipitation that fed these lakes and the role of evaporation in the hydrologic balance are debated. A leading hypothesis is increased Pacific winter storm frequency as a result of the jet stream being split or shifted south by the North American ice sheets. Alternative hypotheses include enhanced monsoonal precipitation, a re-routing of the storm track across the continent, and/or reduced evaporation. Using LGM simulations from the PMIP3 ensemble and the LMDZ general circulation model, and comparing to proxy records of LGM precipitation in the region, we find that atmospheric rivers, narrow filaments of humid tropical air, were strengthened over the eastern Pacific during glacial intervals and directed into southern California. A strengthened Aleutian Low and a weakened North Pacific High produced a mean state conducive to this strong, south-shifted atmospheric river system, which enhanced moisture delivery into the southwestern part of the Great Basin.

  18. Southern Hemisphere climate variability forced by Northern Hemisphere ice-sheet topography

    NASA Astrophysics Data System (ADS)

    Jones, T. R.; Roberts, W. H. G.; Steig, E. J.; Cuffey, K. M.; Markle, B. R.; White, J. W. C.

    2018-02-01

    The presence of large Northern Hemisphere ice sheets and reduced greenhouse gas concentrations during the Last Glacial Maximum fundamentally altered global ocean-atmosphere climate dynamics. Model simulations and palaeoclimate records suggest that glacial boundary conditions affected the El Niño-Southern Oscillation, a dominant source of short-term global climate variability. Yet little is known about changes in short-term climate variability at mid- to high latitudes. Here we use a high-resolution water isotope record from West Antarctica to demonstrate that interannual to decadal climate variability at high southern latitudes was almost twice as large at the Last Glacial Maximum as during the ensuing Holocene epoch (the past 11,700 years). Climate model simulations indicate that this increased variability reflects an increase in the teleconnection strength between the tropical Pacific and West Antarctica, owing to a shift in the mean location of tropical convection. This shift, in turn, can be attributed to the influence of topography and albedo of the North American ice sheets on atmospheric circulation. As the planet deglaciated, the largest and most abrupt decline in teleconnection strength occurred between approximately 16,000 years and 15,000 years ago, followed by a slower decline into the early Holocene.

  19. Did Antarctic Intermediate Water in the Southeast Pacific expanded vertically or only deepened?

    NASA Astrophysics Data System (ADS)

    Martinez-Mendez, G.; Lamy, F.; Mohtadi, M.; Hebbeln, D.

    2017-12-01

    Paleoceanographic and modelling studies have demonstrated in the last few years that deep waters are not the single protagonists in the global circulation scheme. Intermediate waters also play various and important roles. Particularly, the Antarctic Intermediate Water (AAIW) is key for the ventilation of mid-depths and thermocline levels, with its influence being noticeable till the eastern equatorial Pacific; it is involved in rapid reorganizations of the Global Circulation and also, most plausibly, in trapping and releasing atmospheric CO2 on glacial-interglacial time scales. In recent years, several records about the past variability of the AAIW have been published while they all lay at the lower edges of the influence of this water mass and, hence, mostly only conclusions about the AAIW variability at its deep boundary could be drawn. Here we present a novel record covering several glacial-interglacial cycles from the upper levels of this water mass. Site GeoB15020 was drilled with the MARUM Sea floor drill rig (MeBo) off Chile (27.29°S; 71.05°W) at 550 m water depth (core length: 78 meters composite depth). We will present δ18O, δ13C downcore records and Mg/Ca-derived ambient temperature from peak interglacial and peak glacial periods. The records will be compared with published results from Site GeoB15016 (Martínez-Méndez et al., 2013), which lays at nearly the same position but at 956 m water depth, i.e. both cores bound the main tongue of AAIW today. The results of GeoB15016 had shown increase presence of the AAIW at the site, but it was not possible to relate unequivocally this increased presence to a deepening of the core of the AAIW or to an increase in production. Results from GeoB15020 will allow answering that dichotomy. In addition, actual changes in the intrinsic characteristics of the AAIW are poorly constrained. Therefore, we will additionally present high resolution (multi-decadal time scales) δ18O, δ13C and Sortable Silt records from core GeoB3359-3 (35.23°S; 72.81°W, 678 m, 380 cm core length) to investigate fluctuations within the core of AAIW from the Last Glacial Maximum to the present and relate those to the changes observed downstream.

  20. The Last Interglacial-Glacial cycle (MIS 5-2) re-examined based on long proxy records from central and northern Europe

    NASA Astrophysics Data System (ADS)

    Helmens, Karin F.

    2014-02-01

    Current multi-proxy studies on a long sediment sequence preserved at Sokli (N Finland), i.e. in the central area of Fennoscandian glaciations, are drastically changing classic ideas of glaciations, vegetation and climate in northern Europe during the Late Pleistocene. The sediments in the Sokli basin have escaped major glacial erosion due to non-typical bedrock conditions. In this review, the Sokli record is compared in great detail with other long proxy records from central, temperate and northern, boreal Europe. These comprise the classic records of La Grande Pile (E France) and Oerel (N Germany) and more recently obtained records from Horoszki Duże (E Poland) and Lake Yamozero (NW Russia). The focus of the review is on pollen, lithology and macrofossil- and insect-based temperature inferences. The long records are further compared with recent proxy data from nearby terrestrial sites as well as with the rapidly accumulating high-resolution proxy data from the ocean realm. The comparison allows a re-examination of the environmental history and climate evolution of the Last Interglacial-Glacial (LI-G) cycle (MIS 5-2). It shows that environmental and climate conditions during MIS 5 (ca 130-70 ka BP) were distinctly different from those during MIS 4-2 (ca 70-15 ka BP). MIS 5 is characterized by three long forested intervals (broadly corresponding to MIS 5e, 5c, 5a), both in temperate and northern boreal Europe. These mild periods were interrupted by two short, relatively cold and dry intervals (MIS 5d and 5b) with mountain-centered glaciation in Fennoscandia. Millennial scale climate events were superimposed upon these longer lasting climate fluctuations. The time interval encompassing MIS 4-2 shows open vegetation. It is characterized by two glacial maxima (MIS 4 and 2) with sub-continental scale glaciation over northern Europe and dry conditions in strongly continental eastern European settings. High amplitude climate oscillations of millennial duration characterized the climate variability of MIS 3. Mild climate conditions in early MIS 3 caused large-scale deglaciation of the Fennoscandian Ice Sheet, and ice-free conditions with Betula-dominated vegetation (including tree birch) persisted over large parts of Fennoscandia, possibly interrupted by glaciation, during major part of MIS 3 till ca 35 ka BP. Overall, MIS 5 was mostly mild with warmest or peak interglacial conditions at the very start during MIS 5e. MIS 4-2 was mostly cold with most extreme or peak glacial conditions in the closing phase during MIS 2. This points to a subdivision of the last climate cycle into an early, overall mild interglacial half and a late, overall cold glacial half, each with duration of ca 50 ka. This review also shows that the climate variability in central and northern Europe during the LI-G cycle was mostly in degrees of continentality with major shifts in winter temperature and precipitation values; summer temperatures, on the other hand, remained largely unchanged. It points to the waxing and waning of sea-ice over the North Atlantic Ocean as a possible characteristic feature of the Late Pleistocene. The present compilation, based on long terrestrial sequences, high-resolution multi-proxy data from the oceans, and quantified paleo-climate data, strongly favors a definition of entire Marine Oxygen Isotope Stage 5 as the Last Interglacial similar as in the original marine stratigraphy and the stratigraphy at La Grande Pile in France. The proxy-based climate data places the start of the Last Glacial at the base of MIS 4 and the northwest European Pleniglacial. It shows that the division between the Eemian (MIS 5e) and the Early Weichselian (MIS 5d-a) is not useful, as not relevant from a climate point of view.

  1. A modeling approach to investigate the sensitivity of plankton phenology to global change since the Last Glacial Maximum

    NASA Astrophysics Data System (ADS)

    Kretschmer, K.; Kucera, M.; Schulz, M.

    2016-02-01

    Plankton phenology is a key aspect of ecosystem dynamics. Up to now, it is not known how sensitive this parameter is to environmental perturbations and what magnitude of change is conceivable under extreme climate change scenarios. For example, one could argue that the phenology of the dominant Arctic planktonic foraminifera species Neogloboquadrina pachyderma will only shift slightly recording the more or less delayed onset of spring ocean warming. This assumption can be tested by examining the likely phenology of this species in the fossil record. Although phenology is difficult to derive directly from proxies, it can be estimated for past periods by models. Here we use an ecosystem modeling approach to investigate seasonal variations of N. pachyderma since the Last Glacial Maximum (LGM) in the North Atlantic. The model implies that the phenology of N. pachyderma during the LGM and the ensuing Heinrich Event 1 shifted by several months from the modern situation with a maximum seasonal production occurring later in the year (i.e. boreal summer). In comparison with the fossil records our model performs well in reproducing the observed abundance patterns and range shifts in the studied species during the last glacial period. Hence, the predicted large (and partly no-analog) shifts in the phenology of N. pachyderma are a plausible scenario. For instance, its maximum growth during Heinrich Event 1 in a region northeast of Newfoundland occurred during a part of the season where this species never peaks anywhere in the North Atlantic at present. Understanding the drivers of this change and knowing the potential adaptive space of phenology shifts are essential in predictions of plankton response to future global change scenarios.

  2. Ice stream reorganization and glacial retreat on the northwest Greenland shelf

    NASA Astrophysics Data System (ADS)

    Newton, A. M. W.; Knutz, P. C.; Huuse, M.; Gannon, P.; Brocklehurst, S. H.; Clausen, O. R.; Gong, Y.

    2017-08-01

    Understanding conditions at the grounding-line of marine-based ice sheets is essential for understanding ice sheet evolution. Offshore northwest Greenland, knowledge of the Last Glacial Maximum (LGM) ice sheet extent in Melville Bugt was previously based on sparse geological evidence. This study uses multibeam bathymetry, combined with 2-D and 3-D seismic reflection data, to present a detailed landform record from Melville Bugt. Seabed landforms include mega-scale glacial lineations, grounding-zone wedges, iceberg scours, and a lateral shear margin moraine, formed during the last glacial cycle. The geomorphology indicates that the LGM ice sheet reached the shelf edge before undergoing flow reorganization. After retreat of 80 km across the outer shelf, the margin stabilized in a mid-shelf position, possibly during the Younger Dryas (12.9-11.7 ka). The ice sheet then decoupled from the seafloor and retreated to a coast-proximal position. This landform record provides an important constraint on deglaciation history offshore northwest Greenland.

  3. A refined chronology of prehistoric Madagascar and the demise of the megafauna

    NASA Astrophysics Data System (ADS)

    Crowley, Brooke E.

    2010-09-01

    The vertebrate community of Madagascar is one of the most unique and diverse on Earth, yet faunal diversity today is just a fraction of that present in the Pleistocene and Early Holocene. An understanding of the chronology of extinction relative to climate change and anthropogenic factors is essential to test hypotheses for extinction. Here, I combine over 200 new radiocarbon dates with published 14C dates from extinct and extant subfossil vertebrates. These new data provide evidence for the prolonged existence of both extant and extinct endemic terrestrial vertebrate species well before human arrival, with habitation of some localities extending back before the Last Glacial Maximum. I analyze the data for patterns among body sizes and ecoregions in relation to four major historical events: human arrival (ca 2500 years ago), establishment of human settlements (ca 1500 years ago), Late Holocene aridification (peaking ca 1000 years ago), and European arrival (ca 500 years ago). Patterns in endemic species abundance after human arrival differ depending on body size and geographic location. Within the first 500 years after human arrival, there were population declines in (1) very large species (>150 kg) and large species (10-150 kg) in the Dry Deciduous Forest, (2) large species in the Central Highlands, and (3) very large species in the Spiny Thicket. This first pulse of declines was likely triggered by human predation. Large species continued to be well represented in the Spiny Thicket and Succulent Woodland until ca 1000 years ago, when their populations plummeted. This second pulse of declines may have been solely triggered by continued human predation, or it may have resulted from a combination of increasing Late Holocene aridity and human impacts in the form of hunting and habitat modification. The abundance of endemic animals weighing <10 kg increased dramatically in the aftermath of the decline in large-bodied species.

  4. Reduced El Niño-Southern Oscillation during the Last Glacial Maximum

    NASA Astrophysics Data System (ADS)

    Ford, Heather L.; Ravelo, A. Christina; Polissar, Pratigya J.

    2015-01-01

    El Niño-Southern Oscillation (ENSO) is a major source of global interannual variability, but its response to climate change is uncertain. Paleoclimate records from the Last Glacial Maximum (LGM) provide insight into ENSO behavior when global boundary conditions (ice sheet extent, atmospheric partial pressure of CO2) were different from those today. In this work, we reconstruct LGM temperature variability at equatorial Pacific sites using measurements of individual planktonic foraminifera shells. A deep equatorial thermocline altered the dynamics in the eastern equatorial cold tongue, resulting in reduced ENSO variability during the LGM compared to the Late Holocene. These results suggest that ENSO was not tied directly to the east-west temperature gradient, as previously suggested. Rather, the thermocline of the eastern equatorial Pacific played a decisive role in the ENSO response to LGM climate.

  5. Stable water isotope behavior during the last glacial maximum: A general circulation model analysis

    NASA Technical Reports Server (NTRS)

    Jouzel, Jean; Koster, Randal D.; Suozzo, Robert J.; Russell, Gary L.

    1994-01-01

    Global water isotope geochemisty during the last glacial maximum (LGM) is simulated with an 8 deg x 10 deg atmospheric general circulation model (GCM). The simulation results suggest that the spatial delta O-18/temperature relationships observed for the present day and LGM climates are very similar. Furthermore, the temporal delta O-18/temperature relationship is similar to the present-day spatial relationship in regions for which the LGM/present-day temperature change is significant. This helps justify the standard practice of applying the latter to the interpretation of paleodata, despite the possible influence of other factors, such as changes in the evaportive sources of precipitation or in the seasonality of precipitation. The model suggests, for example, that temperature shifts inferred from ice core data may differ from the true shifts by only about 30%.

  6. Assessing the proposed pre-last glacial maximum human occupation of North America at Coats-Hines-Litchy, Tennessee, and other sites

    NASA Astrophysics Data System (ADS)

    Tune, Jesse W.; Waters, Michael R.; Schmalle, Kayla A.; DeSantis, Larisa R. G.; Kamenov, George D.

    2018-04-01

    Genomic studies indicate that the first Pleistocene foragers who entered North America diverged from ancestral populations in Beringia sometime after the Last Glacial Maximum (LGM); however, several archaeological sites in North America have been proposed to predate the LGM. We present the results of our excavation and analysis of one such site, Coats-Hines-Litchy, Tennessee, which show that this site is a paleontological locality containing a geofact assemblage that pre-dates the LGM. Other sites in North America that purportedly predate the LGM occur in geomorphic contexts that are also conducive to the formation of geofact assemblages. As such, we propose that the reported artifacts from these sites were created by natural processes. No sites in North America currently provide credible evidence of a pre-LGM occupation.

  7. Late Quaternary history of contourite drifts and variations in Labrador Current flow, Flemish Pass, offshore eastern Canada

    NASA Astrophysics Data System (ADS)

    Marshall, Nicole R.; Piper, David J. W.; Saint-Ange, Francky; Campbell, D. Calvin

    2014-10-01

    Contourite drifts of alternating sand and mud, shaped by the Labrador Current, formed during the late Quaternary in Flemish Pass seaward of the Grand Banks of Newfoundland, Canada. The drifts preserve a record of Labrador Current flow variations through the last glacial maximum. A high-resolution seismic profile and a transect of four cores were collected across Beothuk drift on the southeast side of Flemish Pass. Downcore and lateral trends in grain size and sedimentation rate provide evidence that, between 16 and 13 ka, sediment was partitioned across Beothuk drift and the adjacent Flemish Pass floor by a strong current flow but, from 29 to 16 ka, sedimentation was more of a blanketing style, represented by draped reflections interpreted as being due to a weaker current. The data poorly resolve the low sedimentation rates since 13 ka, but the modern Labrador Current in Flemish Pass is the strongest it has been in at least the past 29 ka. Pre-29 ka current flow is interpreted based on reflection architecture in seismic profiles. A prominent drift on the southwestern side of Flemish Pass formed above a mid-Miocene erosion surface, but was buried by a mass-transport deposit after the penultimate glacial maximum and after drift deposition switched to eastern Flemish Pass. These findings illustrate the temporal complexity of drift sedimentation and provide the first detailed proxy for Labrador Current flow since the last glacial maximum.

  8. Timing of glacier advances and climate in the High Tatra Mountains (Western Carpathians) during the Last Glacial Maximum

    NASA Astrophysics Data System (ADS)

    Makos, Michał; Dzierżek, Jan; Nitychoruk, Jerzy; Zreda, Marek

    2014-07-01

    During the Last Glacial Maximum (LGM), long valley glaciers developed on the northern and southern sides of the High Tatra Mountains, Poland and Slovakia. Chlorine-36 exposure dating of moraine boulders suggests two major phases of moraine stabilization, at 26-21 ka (LGM I - maximum) and at 18 ka (LGM II). The dates suggest a significantly earlier maximum advance on the southern side of the range. Reconstructing the geometry of four glaciers in the Sucha Woda, Pańszczyca, Mlynicka and Velicka valleys allowed determining their equilibrium-line altitudes (ELAs) at 1460, 1460, 1650 and 1700 m asl, respectively. Based on a positive degree-day model, the mass balance and climatic parameter anomaly (temperature and precipitation) has been constrained for LGM I advance. Modeling results indicate slightly different conditions between northern and southern slopes. The N-S ELA gradient finds confirmation in slightly higher temperature (at least 1 °C) or lower precipitation (15%) on the south-facing glaciers during LGM I. The precipitation distribution over the High Tatra Mountains indicates potentially different LGM atmospheric circulation than at the present day, with reduced northwesterly inflow and increased southerly and westerly inflows of moist air masses.

  9. Glacial isostatic stress shadowing by the Antarctic ice sheet

    NASA Technical Reports Server (NTRS)

    Ivins, E. R.; James, T. S.; Klemann, V.

    2005-01-01

    Numerous examples of fault slip that offset late Quaternary glacial deposits and bedrock polish support the idea that the glacial loading cycle causes earthquakes in the upper crust. A semianalytical scheme is presented for quantifying glacial and postglacial lithospheric fault reactivation using contemporary rock fracture prediction methods. It extends previous studies by considering differential Mogi-von Mises stresses, in addition to those resulting from a Coulomb analysis. The approach utilizes gravitational viscoelastodynamic theory and explores the relationships between ice mass history and regional seismicity and faulting in a segment of East Antarctica containing the great Antarctic Plate (Balleny Island) earthquake of 25 March 1998 (Mw 8.1). Predictions of the failure stress fields within the seismogenic crust are generated for differing assumptions about background stress orientation, mantle viscosity, lithospheric thickness, and possible late Holocene deglaciation for the D91 Antarctic ice sheet history. Similar stress fracture fields are predicted by Mogi-von Mises and Coulomb theory, thus validating previous rebound Coulomb analysis. A thick lithosphere, of the order of 150-240 km, augments stress shadowing by a late melting (middle-late Holocene) coastal East Antarctic ice complex and could cause present-day earthquakes many hundreds of kilometers seaward of the former Last Glacial Maximum grounding line.

  10. Post-Glacial and Paleo-Environmental History of the West Coast of Vancouver Island

    NASA Astrophysics Data System (ADS)

    Dallimore, A.; Enkin, R. J.

    2005-12-01

    Annually laminated sediments in anoxic fjords are potentially ideal paleoclimate recorders, particularly once proxy measurements for atmospheric, oceanographic and sedimentological conditions have been calibrated. On the west coast of Canada, these sediments also record the changing environment as glaciers retreated from this area about 12 ka y BP. In Effingham Inlet, a 40 m core taken from the French ship the Marion Dufresne as part of the international IMAGES/PAGES program, gives evidence of an isolation basin at maximum glacial isostatic rebound and lowest paleo-sea level followed by eustatic sea level rise about 10 ka y BP. The Late Pleistocene record also marks dramatic changes in glacial sedimentary source and transport. Excellent chronological control is provided by complementary yet independent dating methods including radiocarbon dates on both plants and shells, identification of the Mazama Ash, varve counting and paleomagnetic, paleosecular variation correlations in the lower, pro-glacial section of the core which does not contain organic material. Paleoenvironmental evidence from this core provides information on immediate post-glacial conditions along the coast and rapid climatic changes throughout the Holocene, with implications for the possibility of early human migration routes and refugia.

  11. Palaeolithic landscapes of Europe and environs, 150,000-25,000 years ago: An overview

    NASA Astrophysics Data System (ADS)

    Van Andel, T. H.; Tzedakis, P. C.

    When considering the evolution and migrations of Neandertalers and early modem human beings, the harsh conditions of the last glacial maximum are often implicitly or explicitly assumed as their environmental background. This perception is false: the conditions of the high glacial apply to a small fraction of late Pleistocene time. Here we review the palaeoenvironmental history of Europe from 150,000 to 25,000 years ago with the aid of data from long cores of ice and marine and continental sediments. The results are displayed in four sketch maps that illustrate the landscapes of an interglacial-glacial cycle. The maps, connected by palaeoenvironmental histories, show that especially between 60,000 and 25,000 years ago, a critical part of the Palaeolithic, the glacial landscapes were for much of the time less barren than is generally assumed, but numerous climate changes on a scale of several millennia are evident, placing a premium on accurate dating of the co-evolution of humans and landscape. Moreover, during the glacial interval abrupt climatic changes lasting from a century to a few millennia were common. Their importance for landscape changes and their impact on human activity remain to be ascertained.

  12. 10Be and 36Cl Surface Exposure age of the Puerto Banderas Moraine, Lago Argentino, Argentina, 50°S

    NASA Astrophysics Data System (ADS)

    Becker, R. A.; Ackert, R. P.; Singer, B. S.; Douglass, D. C.; Caffee, M.; Kurz, M.; Mickelson, D. M.; Rabassa, J.

    2005-12-01

    The Antarctic Cold Reversal (ACR) and Younger Dryas (YD) are prominent late deglacial cool periods expressed in polar ice and high latitude marine sediments between 14.8-12.7 and 12.7-11.5 ka, respectively. Debate centers on the extent to which YD cooling affected the earth`s surface, particularly in the mid- to high latitudes of the Southern Hemisphere. Resolving the timing of late glacial cooling is critical to determining the degree of inter-hemispheric synchroneity as the climate system evolved after the global Last Glaciation Maximum (LGM) 16 ka. The Puerto Banderas moraine was deposited at 50°S in the rain shadow east of the Andes and between LGM moraines 60 km to the east and the present south Patagonian Ice Cap 40 km to the west. It is a sharp-crested ridge 30 km long and 10-15 m high, topped by numerous erratic boulders >1 m high ideally suited for surface exposure dating. Radiocarbon dating provides only broad age limits. A weighted mean of three 14C ages on peat younger than the moraine of 11.7±0.3 cal. ka (2 σ), along with glacier behavior elsewhere in the Andes, led John Mercer to propose that the Puerto Banderas moraine is late glacial, ca. 15 ka. Recent mapping and two additional 14C ages suggest that the moraine may have been deposited in stages between 15.4 and 11.9 ka. New cosmogenic surface exposure ages from the most prominent part of this moraine, however, indicate a considerably younger age. The weighted mean of 10Be ages from quartz in 8 boulders is 11.3±0.7 ka. Moreover, the weighted mean of 36Cl ages from 8 other boulders is 10.9±0.9 ka. The weighted mean age of all 16 boulders is 11.1±0.5 ka. Uncertainties include analytical and production rate contributions. Our previous work in the region suggests that production rates may be 10% higher than expected owing to reduced air pressure during the late glacial and the early Holocene. Thus, the age of 11.1±0.5 ka is a maximum for the Puerto Banderas moraine and although it is possible that it formed after the YD, it is highly unlikely that it was deposited during the ACR. Lago Cardiel, a closed lake basin 175 km to the NE, was highest at 11.7 ka. Marine sediments cored west of the Andes at 41°S show warm sea surface temperatures and low salinity at 11.0 ka, consistent with increased precipitation and glacial erosion. These paleoclimate proxies imply that the Puerto Banderas records southern Patagonian Ice Cap expansion due to increased precipitation, likely tied to focusing of the moisture-laden southern Westerly storm track at 50°S between 12 and 11 ka.

  13. Hypsometry and the distribution of high-alpine lakes in the European Alps

    NASA Astrophysics Data System (ADS)

    Prasicek, Günther; Otto, Jan-Christoph; Buckel, Johannes; Keuschnig, Markus

    2017-04-01

    Climate change strongly affects alpine landscapes. Cold-climate processes shape the terrain in a typical way and ice-free overdeepenings in cirques and glacial valleys as well as different types of moraines favor the formation of lakes. These water bodies act as sediment sinks and high-alpine water storage but may also favor outburst and flooding events. Glacier retreat worldwide is associated with an increasing number and size of high-alpine lakes which implies a concurrent expansion of sediment retention and natural hazard potential. Rising temperatures are regarded to be the major cause for this development, but other factors such as the distribution of area over elevation and glacier erosional and depositional dynamics may play an important role as well. While models of ice flow and glacial erosion are employed to understand the impact of glaciers on mountain landscapes, comprehensive datasets and analyses on the distribution of existing high-alpine lakes are lacking. In this study we present an exhaustive database of natural lakes in the European Alps and analyze lake distribution with respect to hypsometry. We find that the distribution of lake number and lake area over elevation only weakly coincides with hypsometry. Unsurprisingly, largest lakes are often tectonically influenced and located at the fringe of the mountain range and in prominent inter-montane basins. With increasing elevation, however, the number of lakes, lake area and total area decrease until a local minimum is reached around the equilibrium line latitude (ELA) of the last glacial maximum (LGM). Above the LGM ELA, total area further decreases, but lake number and area increase again. A local maximum in lake area coincides with an absolute maximum in lake number between the ELAs of the LGM and the little ice age around 2500 m. We conclude that glacial erosional and depositional dynamics control the distribution and size of high-alpine lakes and thus demand for exceptional attention when predicting future lake development.

  14. The role of historical and contemporary processes on phylogeographic structure and genetic diversity in the Northern Cardinal, Cardinalis cardinalis

    PubMed Central

    2011-01-01

    Background Earth history events such as climate change are believed to have played a major role in shaping patterns of genetic structure and diversity in species. However, there is a lag between the time of historical events and the collection of present-day samples that are used to infer contemporary population structure. During this lag phase contemporary processes such as dispersal or non-random mating can erase or reinforce population differences generated by historical events. In this study we evaluate the role of both historical and contemporary processes on the phylogeography of a widespread North American songbird, the Northern Cardinal, Cardinalis cardinalis. Results Phylogenetic analysis revealed deep mtDNA structure with six lineages across the species' range. Ecological niche models supported the same geographic breaks revealed by the mtDNA. A paleoecological niche model for the Last Glacial Maximum indicated that cardinals underwent a dramatic range reduction in eastern North America, whereas their ranges were more stable in México. In eastern North America cardinals expanded out of glacial refugia, but we found no signature of decreased genetic diversity in areas colonized after the Last Glacial Maximum. Present-day demographic data suggested that population growth across the expansion cline is positively correlated with latitude. We propose that there was no loss of genetic diversity in areas colonized after the Last Glacial Maximum because recent high-levels of gene flow across the region have homogenized genetic diversity in eastern North America. Conclusion We show that both deep historical events as well as demographic processes that occurred following these events are critical in shaping genetic pattern and diversity in C. cardinalis. The general implication of our results is that patterns of genetic diversity are best understood when information on species history, ecology, and demography are considered simultaneously. PMID:21599972

  15. Increased seasonality in the Western Mediterranean during the last glacial from limpet shell geochemistry

    NASA Astrophysics Data System (ADS)

    Ferguson, Julie E.; Henderson, Gideon M.; Fa, Darren A.; Finlayson, J. Clive; Charnley, Norman R.

    2011-08-01

    The seasonal cycle is a fundamental aspect of climate, with a significant influence on mean climate and on human societies. Assessing seasonality in different climate states is therefore important but, outside the tropics, very few palaeoclimate records with seasonal resolution exist and there are currently no glacial-age seasonal-resolution sea-surface-temperature (SST) records at mid to high latitudes. Here we show that both Mg/Ca and oxygen isotope (δ 18O) ratios in modern limpet ( Patella) shells record the seasonal range of SST in the western Mediterranean — a region particularly susceptible to seasonal change. Analysis of a suite of fossil limpet shells from Gibraltar shows that SST seasonality was greater during the last glacial by ~ 2 °C as a result of greater winter cooling. These extra-tropical seasonal-resolution SST records for the last glacial suggest that the presence of large ice-sheets in the northern hemisphere enhances winter cooling. This result also indicates that seasonality in the Mediterranean is not well-represented in most palaeoclimate models, which typically show little change in seasonal amplitude, and provides a new test for the accuracy of climate models.

  16. Evolution of the climatic tolerance and postglacial range changes of the most primitive orchids (Apostasioideae) within Sundaland, Wallacea and Sahul.

    PubMed

    Kolanowska, Marta; Mystkowska, Katarzyna; Kras, Marta; Dudek, Magdalena; Konowalik, Kamil

    2016-01-01

    The location of possible glacial refugia of six Apostasioideae representatives is estimated based on ecological niche modeling analysis. The distribution of their suitable niches during the last glacial maximum (LGM) is compared with their current potential and documented geographical ranges. The climatic factors limiting the studied species occurrences are evaluated and the niche overlap between the studied orchids is assessed and discussed. The predicted niche occupancy profiles and reconstruction of ancestral climatic tolerances suggest high level of phylogenetic niche conservatism within Apostasioideae.

  17. Quaternary glacial, lacustrine, and fluvial interactions in the western Noatak basin, Northwest Alaska

    USGS Publications Warehouse

    Hamilton, T.D.

    2001-01-01

    The 130 km long Noatak basin is surrounded by mountains of the western Brooks Range. Middle and late Pleistocene glaciers flowing southeast into the basin dammed a succession of proglacial lakes defined by shorelines, outlet channels and upper limits of wave erosion. More than 60 bluffs along the Noatak River and its principal tributaries expose glacial and glaciolacustrine sediments that exhibit cut-and-fill relationships with interglacial and interstadial river-channel and floodplain deposits. This report focuses on the western Noatak basin, where high bluffs created by deep postglacial erosion record four major glacial advances. During the Cutler advance, a floating ice tongue terminated in a large proglacial lake that filled the Noatak basin. The retreating glacier abandoned a trough along the valley center that subsequently filled with about 40m of sediment during several younger glaciations and probably two major interglacial episodes. Alluvium that formed near the beginning of the younger interglaciation contains the 140,000 yr old Old Crow tephra. The subsequent closely spaced Okak and Makpik advances are clearly younger than the maximum of the last interglaciation, but they preceded a middle Wisconsin (36-30 ka) nonglacial interval in the Noatak basin. The Okak advance terminated in an extensive lake, whereas glaciers of the Makpik and the subsequent Anisak advances flowed into much narrower lakes that filled only the basin center. The Anisak advance, bracketed by radiocarbon ages of about 35 and 13.6 ka, represents the Last Glacial Maximum (LGM) in the western Noatak basin. Correlations with the oldest and youngest glacial deposits of the central Brooks Range are clear, but relationships to events of intermediate age are more tenuous. Early Pleistocene and older glacial advances from the central Brooks Range must have filled the Noatak basin and overflowed northward through Howard Pass. A younger glacial advance, of inferred middle Pleistoscene (Sagavanirktok River) age, extended down the Noatak valley into the basin center, but its deposits are deeply buried beneath the basin floor and must be older than the Cutler moraine. The Cutler advance may have been synchronous with the older of two advances of Itkillik I age in the Atongarak Creek area, but other evidence indicates that the Okak-Makpik moraine succession more likely was synchronous with the two Atongarak Creek moraines. Radiocarbon ages, surface morphology, soil and weathering profiles, and lake-level history all support correlation of the last (Anisak) major glacial advance in the western basin with the Douglas Creek moraine farther east and with Itkillik II (late Wisconsin) glaciation of the central Brooks Range. ?? 2000 Elsevier Science Ltd.

  18. Variability of neodymium isotopes associated with planktonic foraminifera in the Pacific Ocean during the Holocene and Last Glacial Maximum

    NASA Astrophysics Data System (ADS)

    Hu, Rong; Piotrowski, Alexander M.; Bostock, Helen C.; Crowhurst, Simon; Rennie, Victoria

    2016-08-01

    The deep Pacific Ocean holds the largest oceanic reservoir of carbon which may interchange with the atmosphere on climatologically important timescales. The circulation of the deep Pacific during the Last Glacial Maximum (LGM), however, is not well understood. Neodymium (Nd) isotopes of ferromanganese oxide coatings precipitated on planktonic foraminifera are a valuable proxy for deep ocean water mass reconstruction in paleoceanography. In this study, we present Nd isotope compositions (εNd) of planktonic foraminifera for the Holocene and the LGM obtained from 55 new sites widely distributed in the Pacific Ocean. The Holocene planktonic foraminiferal εNd results agree with the proximal seawater data, indicating that they provide a reliable record of modern bottom water Nd isotopes in the deep Pacific. There is a good correlation between foraminiferal εNd and seawater phosphate concentrations (R2 = 0.80), but poorer correlation with silicate (R2 = 0.37). Our interpretation is that the radiogenic Nd isotope is added to the deep open Pacific through particle release from the upper ocean during deep water mass advection and aging. The data thus also imply the Nd isotopes in the Pacific are not likely to be controlled by silicate cycling. In the North Pacific, the glacial Nd isotopic compositions are similar to the Holocene values, indicating that the Nd isotope composition of North Pacific Deep Water (NPDW) remained constant (-3.5 to -4). During the LGM, the southwest Pacific cores throughout the water column show higher εNd corroborating previous studies which suggested a reduced inflow of North Atlantic Deep Water to the Pacific. However, the western equatorial Pacific deep water does not record a corresponding radiogenic excursion, implying reduced radiogenic boundary inputs during the LGM probably due to a shorter duration of seawater-particle interaction in a stronger glacial deep boundary current. A significant negative glacial εNd excursion is evident in mid-depth (1-2 km) cores of the eastern equatorial Pacific (EEP) which may suggest a stronger influence of NPDW return flow to the core sites and decreased local input in the EEP. Taken together, our Nd records do not support a dynamically slower glacial Pacific overturning circulation, and imply that the increased carbon inventory of Pacific deep water might be due to poor high latitude air-sea exchange and increased biological pump efficiency in glacial times.

  19. The calcium isotope evolution of Lake Lisan, the Dead Sea glacial precursor

    NASA Astrophysics Data System (ADS)

    Bradbury, H. J.; Turchyn, A. V.; Wong, K.; Torfstein, A.

    2016-12-01

    Calcium is a stoichiometric component of carbonate minerals whose calcium isotopic composition reflects changes in the calcium isotope composition of the water from which it precipitates as well as the calcium isotope fractionation factor during precipitation. The lacustrine deposits of the last glacial Dead Sea (Lisan Formation) are dominated by carbonate minerals (aragonite) that record the geochemical history of the lake. The sediment sequence comprises alternating laminae of aragonite and clay-rich marls, interspersed with primary gypsum beds and disseminated secondary gypsum crystals. The aragonite precipitated annually during high lake stands associated with wet periods, while the primary gypsum precipitated during low lake conditions (arid periods). We report the calcium isotopic composition (δ44Ca in ‰ relative to bulk silicate earth) of primary aragonite laminae, primary gypsum and secondary gypsum at 1-5kyr resolution throughout the Lisan Formation sampled at the Masada section (70 - 14.5 ka). The δ44Ca of the primary gypsum averages +0.29‰, and displays smaller temporal variations than the aragonite, which averages -0.35‰ but ranges between +0.18‰ and -0.68‰. The aragonite δ44Ca changes temporally in sync with the previously reconstructed lake level suggesting the aragonite δ44Ca reflects changes in the lake calcium balance during lake level changes. The secondary gypsum composition (-0.3‰) corresponds to coeval aragonite samples. For the secondary gypsum to have a similar δ44Ca to the aragonite it is likely that the calcium derived from the aragonite in a near quantitative fashion through recrystallization of the aragonite to gypsum. A numerical box model is used to explore the effect of changing lake water levels on the calcium isotope composition of the aragonite and gypsum over the time interval studied.

  20. The Early Miocene Climatic Optimum (18-16 Ma): Stable Isotope and Mg/Ca Records from ODP Leg 189 Site 1168.

    NASA Astrophysics Data System (ADS)

    Syed, S.; Pekar, S.

    2008-12-01

    Ice volume estimates for the late early Miocene (~18-16 Ma) were derived from paired oxygen isotope records and Mg/Ca ratios from ODP Site 1168, which is located on the southwest slope of Tasmania. These records indicate the presence of a dynamic ice sheet in Antarctica, with ice-volume estimates up to present day levels occurring with relatively warm bottom water temperatures during isotope events Mi1b (17.9-17.6 Ma) and Mi2 (16.2 Ma). These records also indicate ice-volume decreased significantly during the Early Miocene Climatic Optimum ~17.2 to 16.4 Ma suggesting a near complete collapse of the East Antarctic Ice Sheet, based on an approximately 1‰ decrease in oxygen isotope value of seawater. Bottom water temperatures (BWT) derived from Mg/Ca ratios indicate temperature varied from ~8°C to 3°C, during the early Miocene, with the warmest BWT's occurring during glacial maxima and lowest occurring during glacial minima. Mg/Ca records from other records also indicate ice-volume increases coinciding with deep sea warming. These records suggest Antarctic glaciation may have been influenced by the moisture input by warm saline deep waters (WSDW) originating from the Indian Ocean/Tethys Sea. These WSDW would become entrained and ultimately upwell near Antarctica, resulting in delivering increased moisture/snowfall and therefore increased ice volume on the Antarctic continent. However, an alternative interpretation of the records could be that temperature estimates derived from Mg/Ca ratios may be over estimating the magnitude of temperature changes, thus resulting in an overestimation of ice-volume changes.

  1. A Chronologic Dual-Hemisphere Approach to the Last Glacial Termination from the Southern Alps of New Zealand and the Altai Mountains of Western Mongolia

    NASA Astrophysics Data System (ADS)

    Strand, P.; Putnam, A. E.; Schaefer, J. M.; Denton, G.; Barrell, D.; Putnam, D.; Schwartz, R.; Sambuu, O.; Radue, M. J.; Lindsay, B. J.; Stevens, J.

    2017-12-01

    Understanding the processes that drove the last glacial termination in the tropics and mid-latitudes is a major unresolved problem in paleoclimate. The most recent glacial to interglacial transition represents the last great global warming and the last time CO2 rose by a substantial amount before the industrial period. Determining the speed of this warming will help refine the global climate system sensitivity to CO2 and will place ongoing global warming into a paleoclimatic context. Here, we test possible drivers of the last glacial termination by comparing chronologies of mountain glaciers, which are highly sensitive to changes in atmospheric temperature, in the middle latitudes of both polar hemispheres. The dating of glacier landforms, such as moraine ridges constructed along glacier margins, affords quantitative insight into past climate conditions. We present 10Be surface-exposure chronologies and glacial geomorphologic maps of mountain glacier recession since the Last Glacial Maximum in the Southern Alps of New Zealand (44°S, 170°E) and in the Altai Mountains of western Mongolia (49°N, 88°E). On the basis of these chronologies from opposing hemispheres, we evaluate the relative roles of rising atmospheric CO2, local insolation forcing, and ocean-atmosphere reorganizations in driving the global warming that ended the last ice age.

  2. Groundwater reorganization in the Floridan aquifer following Holocene sea-level rise

    NASA Astrophysics Data System (ADS)

    Morrissey, Sheila K.; Clark, Jordan F.; Bennett, Michael; Richardson, Emily; Stute, Martin

    2010-10-01

    Sea-level fluctuations, particularly those associated with glacial-interglacial cycles, can have profound impacts on the flow and circulation of coastal groundwater: the water found at present in many coastal aquifers may have been recharged during the last glacial period, when sea level was over 100m lower than present, and thus is not in equilibrium with present recharge conditions. Here we show that the geochemistry of the groundwater found in the Floridan Aquifer System in south Florida is best explained by a reorganization of groundwater flow following the sea-level rise at the end of the Last Glacial Maximum approximately 18,000 years ago. We find that the geochemistry of the fresh water found in the upper aquifers at present is consistent with recharge from meteoric water during the last glacial period. The lower aquifer, however, consists of post-sea-level-rise salt water that is most similar to that of the Straits of Florida, though with some dilution from the residual fresh water from the last glacial period circulation. We therefore suggest that during the last glacial period, the entire Floridan Aquifer System was recharged with meteoric waters. After sea level rose, the increased hydraulic head reduced the velocity of the groundwater flow. This velocity reduction trapped the fresh water in the upper aquifers and initiated saltwater circulation in the lower aquifer.

  3. The Growth Response of Two Diatom Species to Atmospheric Dust from the Last Glacial Maximum.

    PubMed

    Conway, Tim M; Hoffmann, Linn J; Breitbarth, Eike; Strzepek, Robert F; Wolff, Eric W

    2016-01-01

    Relief of iron (Fe) limitation in the surface Southern Ocean has been suggested as one driver of the regular glacial-interglacial cycles in atmospheric carbon dioxide (CO2). The proposed cause is enhanced deposition of Fe-bearing atmospheric dust to the oceans during glacial intervals, with consequent effects on export production and the carbon cycle. However, understanding the role of enhanced atmospheric Fe supply in biogeochemical cycles is limited by knowledge of the fluxes and 'bioavailability' of atmospheric Fe during glacial intervals. Here, we assess the effect of Fe fertilization by dust, dry-extracted from the Last Glacial Maximum portion of the EPICA Dome C Antarctic ice core, on the Antarctic diatom species Eucampia antarctica and Proboscia inermis. Both species showed strong but differing reactions to dust addition. E. antarctica increased cell number (3880 vs. 786 cells mL-1), chlorophyll a (51 vs. 3.9 μg mL-1) and particulate organic carbon (POC; 1.68 vs. 0.28 μg mL-1) production in response to dust compared to controls. P. inermis did not increase cell number in response to dust, but chlorophyll a and POC per cell both strongly increased compared to controls (39 vs. 15 and 2.13 vs. 0.95 ng cell-1 respectively). The net result of both responses was a greater production of POC and chlorophyll a, as well as decreased Si:C and Si:N incorporation ratios within cells. However, E, antarctica decreased silicate uptake for the same nitrate and carbon uptake, while P. inermis increased carbon and nitrate uptake for the same silicate uptake. This suggests that nutrient utilization changes in response to Fe addition could be driven by different underlying mechanisms between different diatom species. Enhanced supply of atmospheric dust to the surface ocean during glacial intervals could therefore have driven nutrient-utilization changes which could permit greater carbon fixation for lower silica utilization. Additionally, both species responded more strongly to lower amounts of direct Fe chloride addition than they did to dust, suggesting that not all the Fe released from dust was in a bioavailable form available for uptake by diatoms.

  4. The Growth Response of Two Diatom Species to Atmospheric Dust from the Last Glacial Maximum

    PubMed Central

    Hoffmann, Linn J.; Breitbarth, Eike; Strzepek, Robert F.; Wolff, Eric W.

    2016-01-01

    Relief of iron (Fe) limitation in the surface Southern Ocean has been suggested as one driver of the regular glacial-interglacial cycles in atmospheric carbon dioxide (CO2). The proposed cause is enhanced deposition of Fe-bearing atmospheric dust to the oceans during glacial intervals, with consequent effects on export production and the carbon cycle. However, understanding the role of enhanced atmospheric Fe supply in biogeochemical cycles is limited by knowledge of the fluxes and ‘bioavailability’ of atmospheric Fe during glacial intervals. Here, we assess the effect of Fe fertilization by dust, dry-extracted from the Last Glacial Maximum portion of the EPICA Dome C Antarctic ice core, on the Antarctic diatom species Eucampia antarctica and Proboscia inermis. Both species showed strong but differing reactions to dust addition. E. antarctica increased cell number (3880 vs. 786 cells mL-1), chlorophyll a (51 vs. 3.9 μg mL-1) and particulate organic carbon (POC; 1.68 vs. 0.28 μg mL-1) production in response to dust compared to controls. P. inermis did not increase cell number in response to dust, but chlorophyll a and POC per cell both strongly increased compared to controls (39 vs. 15 and 2.13 vs. 0.95 ng cell-1 respectively). The net result of both responses was a greater production of POC and chlorophyll a, as well as decreased Si:C and Si:N incorporation ratios within cells. However, E, antarctica decreased silicate uptake for the same nitrate and carbon uptake, while P. inermis increased carbon and nitrate uptake for the same silicate uptake. This suggests that nutrient utilization changes in response to Fe addition could be driven by different underlying mechanisms between different diatom species. Enhanced supply of atmospheric dust to the surface ocean during glacial intervals could therefore have driven nutrient-utilization changes which could permit greater carbon fixation for lower silica utilization. Additionally, both species responded more strongly to lower amounts of direct Fe chloride addition than they did to dust, suggesting that not all the Fe released from dust was in a bioavailable form available for uptake by diatoms. PMID:27384948

  5. Modelling of mineral dust for interglacial and glacial climate conditions with a focus on Antarctica

    DOE PAGES

    Sudarchikova, Natalia; Mikolajewicz, Uwe; Timmreck, C.; ...

    2015-05-19

    The mineral dust cycle responds to climate variations and plays an important role in the climate system by affecting the radiative balance of the atmosphere and modifying biogeochemistry. Polar ice cores provide unique information about deposition of aeolian dust particles transported over long distances. These cores are a palaeoclimate proxy archive of climate variability thousands of years ago. The current study is a first attempt to simulate past interglacial dust cycles with a global aerosol–climate model ECHAM5-HAM. The results are used to explain the dust deposition changes in Antarctica in terms of quantitative contribution of different processes, such as emission,more » atmospheric transport and precipitation, which will help to interpret palaeodata from Antarctic ice cores. The investigated periods include four interglacial time slices: the pre-industrial control (CTRL), mid-Holocene (6000 yr BP; hereafter referred to as \\"6 kyr\\"), last glacial inception (115 000 yr BP; hereafter \\"115 kyr\\") and Eemian (126 000 yr BP; hereafter \\"126 kyr\\"). One glacial time interval, the Last Glacial Maximum (LGM) (21 000 yr BP; hereafter \\"21 kyr\\"), was simulated as well to be a reference test for the model. Results suggest an increase in mineral dust deposition globally, and in Antarctica, in the past interglacial periods relative to the pre-industrial CTRL simulation. Approximately two-thirds of the increase in the mid-Holocene and Eemian is attributed to enhanced Southern Hemisphere dust emissions. Slightly strengthened transport efficiency causes the remaining one-third of the increase in dust deposition. The moderate change in dust deposition in Antarctica in the last glacial inception period is caused by the slightly stronger poleward atmospheric transport efficiency compared to the pre-industrial. Maximum dust deposition in Antarctica was simulated for the glacial period. LGM dust deposition in Antarctica is substantially increased due to 2.6 times higher Southern Hemisphere dust emissions, 2 times stronger atmospheric transport towards Antarctica, and 30% weaker precipitation over the Southern Ocean. The model is able to reproduce the order of magnitude of dust deposition globally and in Antarctica for the pre-industrial and LGM climates.« less

  6. Cosmogenic exposure-age chronologies of Pinedale and Bull Lake glaciations in greater Yellowstone and the Teton Range, USA

    USGS Publications Warehouse

    Licciardi, J.M.; Pierce, K.L.

    2008-01-01

    We have obtained 69 new cosmogenic 10Be surface exposure ages from boulders on moraines deposited by glaciers of the greater Yellowstone glacial system and Teton Range during the middle and late Pleistocene. These new data, combined with 43 previously obtained 3He and 10Be ages from deposits of the northern Yellowstone outlet glacier, establish a high-resolution chronology for the Yellowstone-Teton mountain glacier complexes. Boulders deposited at the southern limit of the penultimate ice advance of the Yellowstone glacial system yield a mean age of 136??13 10Be ka and oldest ages of ???151-157 10Be ka. These ages support a correlation with the Bull Lake of West Yellowstone, with the type Bull Lake of the Wind River Range, and with Marine Isotope Stage (MIS) 6. End moraines marking the maximum Pinedale positions of outlet glaciers around the periphery of the Yellowstone glacial system range in age from 18.8??0.9 to 16.5??1.4 10Be ka, and possibly as young as 14.6??0.7 10Be ka, suggesting differences in response times of the various ice-cap source regions. Moreover, all dated Pinedale terminal moraines in the greater Yellowstone glacial system post-date the Pinedale maximum in the Wind River Range by ???4-6 kyr, indicating a significant phase relationship between glacial maxima in these adjacent ranges. Boulders on the outermost set and an inner set of Pinedale end moraines enclosing Jenny Lake on the eastern Teton front yield mean ages of 14.6??0.7 and 13.5??1.1 10Be ka, respectively. The outer Jenny Lake moraines are partially buried by outwash from ice on the Yellowstone Plateau, hence their age indicates a major standstill of an expanded valley glacier in the Teton Range prior to the Younger Dryas, followed closely by deglaciation of the Yellowstone Plateau. These new glacial chronologies are indicative of spatially variable regional climate forcing and temporally complex patterns of glacier responses in this region of the Rocky Mountains during the Pleistocene. ?? 2008 Elsevier Ltd. All rights reserved.

  7. Pleistocene refugia and genetic diversity patterns in West Africa: Insights from the liana Chasmanthera dependens (Menispermaceae)

    PubMed Central

    Schmidt, Marco; Muellner-Riehl, Alexandra Nora; Ogundipe, Oluwatoyin Temitayo; Paule, Juraj

    2017-01-01

    Processes shaping the African Guineo-Congolian rain forest, especially in the West African part, are not well understood. Recent molecular studies, based mainly on forest tree species, confirmed the previously proposed division of the western African Guineo-Congolian rain forest into Upper Guinea (UG) and Lower Guinea (LG) separated by the Dahomey Gap (DG). Here we studied nine populations in the area of the DG and the borders of LG and UG of the widespread liana species, Chasmanthera dependens (Menispermaceae) by amplified fragment length polymorphism (AFLP), a chloroplast DNA sequence marker, and modelled the distribution based on current as well as paleoclimatic data (Holocene Climate Optimum, ca. 6 kyr BP and Last Glacial Maximum, ca. 22 kyr BP). Current population genetic structure and geographical pattern of cpDNA was related to present as well as historical modelled distributions. Results from this study show that past historical factors played an important role in shaping the distribution of C. dependens across West Africa. The Cameroon Volcanic Line seems to represent a barrier for gene flow in the present as well as in the past. Distribution modelling proposed refugia in the Dahomey Gap, supported also by higher genetic diversity. This is in contrast with the phylogeographic patterns observed in several rainforest tree species and could be explained by either diverging or more relaxed ecological requirements of this liana species. PMID:28301470

  8. Drastic lake level changes of Lake Van (eastern Turkey) during the past ca. 600 ka: climatic, volcanic and tectonic control

    NASA Astrophysics Data System (ADS)

    Cukur, D.; Krastel, S.; Schmincke, H.; Sumita, M.; Tomonaga, Y.; Damci, E.

    2013-12-01

    Lake Van is the largest soda lake in the world with a present surface of 3,574 km2 and a maximum water depth of 450 m. Sedimentary deposits in the lake preserve one of the most complete record of continental climate in the Middle East since the Middle Pleistocene. We studied these deposits to characterize the evolution of the lake level and its possible relationships with changes in climate, volcanic, and regional tectonics since the formation of the lake ca. 600 ka ago. Changes in lake level were determined based on high-resolution seismic reflection profiles showing erosional surfaces, changes in stratal geometries such as downward shifts in coastal onlap, and recognition of distinctive stratigraphic features such as prograding delta clinoforms. Our results show that Lake Van has undergone drastic changes in surface elevation by as much as 600 meters over the past ca. 600 ka. Five major lowstands occurred at ca. ~600 ka, ca. 365-340 ka, ca 290-230 ka; ca. 150-130 ka; and ca. 30-14 ka. During a first period (A) (ca. 600-ca 230 ka) lake levels changed drastically by hundreds of m but at longer time intervals between low and high stands. Changes occurred more frequently but mostly by a few tens of m during the past ca. 230 ka years where we can distinguish a first period (B1) of stepwise transgressions between ca. 230 and 150 ka followed by a short regression between ca. 150 and 130 ka. Lake level rose stepwise again during period B2 lasting until ca 30 ka. During the past 30 ka a regression and a final transgression each lasted ca. 15 ka years. The major lowstand periods in Lake Van occurred during glacial periods, arguing for a climatic control of these lake-level fluctuations (i.e., significantly reduced precipitation leading to lake level low stands). Although climate forcing may have been the dominant cause for the drastic lake level changes of Lake Van, volcanic and tectonic forcing factors are also invoked. For example, the number of distinct tephra layers, some several meters thick, has drastically increased in the upper ca 100 m (the past ca. 230 ka). The highest density of excellent reflectors occurs in this interval. Tectonic activity evidenced by extensional and/or compressional faults across the basin margins may have also affected the lake level fluctuations in Lake Van. This series of reconstructions using seismic stratigraphy from this study enlighten the understanding of tectonically-active lacustrine basins and provide a model for similar basins elsewhere.

  9. Regional environment and hydrology changes documented by lake sediments from Lake Dalianhai, northeastern Tibetan Plateau since the last glacial maximum and their relationship with Asian summer monsoon variability

    NASA Astrophysics Data System (ADS)

    Wu, D.; Chen, F.; Zhou, A.; Abbott, M. B.

    2016-12-01

    Variability of the Asian summer monsoon (ASM) significantly affects environment and hydrology conditions within its area of influence, as well as economic and social development. Thus it is important to investigate the variability of the ASM on various time-scales and to explore its underlying forcing mechanisms, in order to improve our ability to predict the long-term trends of regional and global climate. Northeastern Tibetan Plateau, a margin area of modern ASM, is sensitive to summer monsoon changes. Existing paleoclimate records from this region contain conflicting evidence for the timing of summer monsoon advance into this region: an early arrival pre-Younger Dryas or a late arrival at the beginning of the Holocene. In addition, it is also debated that whether the Holocene ASM maximum in this region occurred during the early Holocene or the middle Holocene. Here we present a high-resolution record of a 52-m drilling core from Lake Dalianhai in this region. Multiply geochemistry indexes were obtained from the sediment core. 22 AMS 14C data from plant remains and bulk organic matters illustrate that the upper 52 m core covered the whole period since the last glacial maximum (LGM). The results generally indicate that the Lake Dalianhai was occupied by very shallow water body with eolian sand surrounding the lake from 20 to 15 ka BP (1ka=1000 cal yr). With the beginning of the B/A warm period, the sedimentary sequence changed to grey lacustrine clay abruptly. The sedimentary environment was relatively stable under a high lake level state during the B/A period which was marked with fine mean grain size, and high exogenous detrital element content (such as Al, K, Ti and Rb), but with low organic matter content. This perhaps was caused by the increasing of ASM precipitation. Increased contents of element Ca, Sr, and Br, as well as TOC and TN, highlight the increase of ASM during the Holocene. However, reddish lacustrine clay with lower magnetic susceptibility and low TOC and TN content during the early Holocene may indicate lower lake level. The contents of Sr, Br, TOC and TN reached a higher status and carbonate carbon isotope decreased sharply and maintained low values since around 7ka BP, thus indicating the lake changed to another status.

  10. Environmental evolution in Picos de Europa (Cantabrian Mountains, Northern Spain) since the last glacial cycle.

    NASA Astrophysics Data System (ADS)

    Nieuwendam, Alexandre; Ruiz-Fernández, Jesús; Oliva, Marc; Lopes, Vera; Cruces, Anabela; da Conceição Freitas, Maria

    2015-04-01

    The Western Massif of the Picos de Europa includes some of the highest elevations of the Cantabrian Mountains. The maximum ice expansion in this limestone range during the last glacial cycle preceded the global Last Glacial Maximum. A 5.4 m long sedimentary sequence was collected from Belbín, a depression damned by a moraine in a mid-altitude environment of this massif. Using a combination of several approaches we have reconstructed the environmental stages and intensity of cryogenic processes since that period until today: (1) geomorphological mapping combining field evidences, aerial photographs and topographic maps; (2) lithostratigraphic description of the cores identifying different sedimentary units; (3) Grain-size analyses of the fine fraction by laser diffraction; and (4) quartz grains using Cailleux (1942) analysis with modifications from Mycielska-Dowgiałło and Woronko (1998). The studied accumulative kame terrace has preserved a Late Quaternary record with geomorphological and climatic events, variable accumulation rates, and distinct grain properties resulting from frost and chemical weathering. The basal dating of the sediments of this section shows that the maximum glacial extent occurred prior to 37.2 ka cal BP. The lithostratigraphic analysis of the section shows evidence of four major stages regarding the environmental evolution in the area: (1) from 37.2 to 29 ka there was a phase with intense periglacial activity and deposition of slope deposits; (2) from 29 to 22 ka, the depression of Belbín gradually infilled; (3) from 22 to 8 ka, a paleolake was present in the study site; (4) since 8 ka, the lake became infilled. Besides, human-induced fires started at 4.9 ka probably for grazing purposes. Based on the sediment stratigraphy the data presented, demonstrates that in Belbín area there have been persistent cryogenic conditions since the last glacial cycle until present-day, with different degrees of intensity and type of weathering processes. However, in some cases there are uncertainties between the time of climatic transition and geomorphic adjustment to changing climate conditions. The combination of silt abundance and peculiar quartz grain micromorphology can be an instrument for tracing cryogenic weathering in sedimentary archives. This demonstrates that depending on local conditions these analyses may be very useful indicators of past geomorphological events and interpretation can determine climatic conditions during quartz grains formation.

  11. A Late Glacial to Holocene record of environmental change from Lake Dojran (Macedonia, Greece)

    NASA Astrophysics Data System (ADS)

    Francke, A.; Wagner, B.; Leng, M. J.; Rethemeyer, J.

    2013-02-01

    A Late Glacial to Holocene sediment sequence (Co1260, 717 cm) from Lake Dojran, located at the boarder of the F.Y.R. of Macedonia and Greece, has been investigated to provide information on climate variability in the Balkan region. A robust age-model was established from 13 radiocarbon ages, and indicates that the base of the sequence was deposited at ca. 12 500 cal yr BP, when the lake-level was low. Variations in sedimentological (H2O, TOC, CaCO3, TS, TOC/TN, TOC/TS, grain-size, XRF, δ18Ocarb, δ13Ccarb, δ13Corg) data were linked to hydro-acoustic data and indicate that warmer and more humid climate conditions characterised the remaining period of the Younger Dryas until the beginning of the Holocene. The Holocene exhibits significant environmental variations, including the 8.2 and 4.2 ka cooling events, the Medieval Warm Period and the Little Ice Age. Human induced erosion processes in the catchment of Lake Dojran intensified after 2800 cal yr BP.

  12. Rangewide glaciation in the Sierra Nevada, California

    USGS Publications Warehouse

    Moore, James G.; Moring, Barry C.

    2013-01-01

    The 600-km-long Sierra Nevada underwent extensive Pleistocene glaciation except for its southernmost 100 km. Presently, ∼1700 small glaciers and ice masses near the crest of the range occur above 3250 m in elevation; these covered an area of ∼50 km2 in 1972. Fourteen of the largest glaciers decreased by about one half in area during the period from 1900 to 2004.Rock glaciers, generally glacial ice covered by 1–10 m of rockfall debris, occur in about the same span of the range as ice and permanent snowfields. They are, on average, lower by 200–300 m, apparently because of the insulating layer of rocky rubble that protects their internal ice from the sun’s heat and from wind.The principal Pleistocene glacial stages are the Sherwin (ca. 820 ka), Tahoe (170–130 and ca. 70 ka), Tioga (14–28 ka), and Recess Peak (13 ka). Some 7040 glacial lakes, produced primarily by quarrying from bedrock, were mostly exposed after recession of the Tioga glacial stage. The lakes largely mark the area of primary snow accumulation. Below the lower limit of the lakes, ice flowed downward into river-cut canyons, forming major trunk glaciers within the zone of ablation.The range is in general a westward-tilted block upfaulted on its east side. Therefore, the main late Pleistocene trunk glaciers (Tahoe/Tioga) west of the crest extend 25–60 km, whereas those east of the crest extend only 5–20 km. Because of higher precipitation northward, glacial features such as the toes of existing glaciers and rock glaciers, as well as the late season present-day snowline, all decrease in elevation northward. Likewise, the elevation of the lower limit of glacial lakes, an indication of the zone of snow accumulation during the late Pleistocene, decreases about the same degree. This similarity suggests that the overall climate patterns of the late Pleistocene, though cooler, were similar to those of today. The east slope glaciers show a similar northward depression, but they are ∼500–1000 m higher.The upper part of the glacial system was erosive over a broad highland area as the evenly distributed ice in the accumulation zone moved to lower elevation. The abundant lake basins record this erosive action. The lower part of the glacier system was largely confined to major preexisting river canyons in which melting dominated. The average of rangewide estimates of the equilibrium line altitude (ELA)—the boundary between the upper snow and ice accumulation zone and the lower ablation zone—of many late Pleistocene glaciers parallels, and is only 200–300 m above, the altitude of the lower limit of the lakes. Hence, the lake zone provides a means of estimating the ELA.

  13. Revised Quaternary glacial succession and post-LGM recession, southern Wind River Range, Wyoming, USA

    NASA Astrophysics Data System (ADS)

    Dahms, Dennis; Egli, Markus; Fabel, Derek; Harbor, Jon; Brandová, Dagmar; de Castro Portes, Raquel; Christl, Marcus

    2018-07-01

    We present here a more complete cosmogenic chronology of Pleistocene glacial deposits for the Wind River Range, Wyoming, USA. Fifty-one new and thirty-nine re-calculated 10Be and 26Al exposure ages from Sinks and North Fork canyons, Stough Basin, Cirque of the Towers and the Temple Lake valley allow us to more tightly constrain the timing and sequence of glacial alloformations in the southern portion of the range. Moraines, diamicts and bedrock exposures here have previously been correlated with as many as five Pleistocene and four Holocene glacial events. Exposure ages from Pleistocene alloformations associated with trunk glaciers in Sinks Canyon and North Fork Canyon generally confirm earlier age estimates. Cosmogenic radionuclide (CRN, 10Be and 26Al) ages from moraines and striated bedrock surfaces previously mapped as Pinedale correspond to MIS2, while boulder exposure ages from moraines mapped as Bull Lake correspond generally to MIS5-MIS6. Geomorphic data from a moraine previously mapped as Younger pre-Sacagawea Ridge appears to correspond most closely to the Sacagawea Ridge glacial episode (MIS-16), but the uncertainty of a single 10Be exposure age suggests the unit could be as young as MIS-10 or as old as MIS-18. Boulders from a diamict on Table Mountain previously reported as Older pre-Sacagawea Ridge yield two 10Be exposure ages that suggest the presence of Early Pleistocene glacial activity here possibly older than 1-2 Ma (>MIS-30). Bedrock exposure ages within Sinks Canyon suggest the Pinedale valley glacier had retreated from the floor of Sinks Canyon to above PopoAgie Falls by ca. 15.3 ka. Cirque glaciers in Stough Basin appear to have retreated behind their riegels by ca. 16 ka, which suggests the cirque glaciers were decoupling across their riegels from the valley glaciers below at this time, prior to their readvance to form Lateglacial moraines. New 10Be boulder exposure ages from moraines previously correlated to the Temple Lake and Alice Lake allostratigraphic units in the cirques of Stough Basin and Cirque of the Towers show general equivalence to the stadial event just prior to the onset of the Bølling interstadial (17.5-14.7 ka) and to the Intra-Allerød Cold Period-Younger Dryas stadial phase (13.9-11.7 ka), respectively. From this evidence, the Temple Lake Alloformation of the Wind River Mountains now should correspond to the INTIMATE GS-2.1a (Oldest Dryas) stadial event while the Alice Lake Alloformation should correspond to the INTIMATE GS-2 stadial (IACP-Younger Dryas). Thus, we consider that evidence no longer exists for early-to mid-Holocene glacial events in the southern Wind River Range.

  14. Late Wisconsinan glaciation and postglacial relative sea-level change on western Banks Island, Canadian Arctic Archipelago

    NASA Astrophysics Data System (ADS)

    Lakeman, Thomas R.; England, John H.

    2013-07-01

    The study revises the maximum extent of the northwest Laurentide Ice Sheet (LIS) in the western Canadian Arctic Archipelago (CAA) during the last glaciation and documents subsequent ice sheet retreat and glacioisostatic adjustments across western Banks Island. New geomorphological mapping and maximum-limiting radiocarbon ages indicate that the northwest LIS inundated western Banks Island after ~ 31 14C ka BP and reached a terminal ice margin west of the present coastline. The onset of deglaciation and the age of the marine limit (22-40 m asl) are unresolved. Ice sheet retreat across western Banks Island was characterized by the withdrawal of a thin, cold-based ice margin that reached the central interior of the island by ~ 14 cal ka BP. The elevation of the marine limit is greater than previously recognized and consistent with greater glacioisostatic crustal unloading by a more expansive LIS. These results complement emerging bathymetric observations from the Arctic Ocean, which indicate glacial erosion during the Last Glacial Maximum (LGM) to depths of up to 450 m.

  15. Little Ice Age mapping as a tool for identifying hazard in the paraglacial environment: The case study of Trentino (Eastern Italian Alps)

    NASA Astrophysics Data System (ADS)

    Zanoner, Thomas; Carton, Alberto; Seppi, Roberto; Carturan, Luca; Baroni, Carlo; Salvatore, Maria Cristina; Zumiani, Matteo

    2017-10-01

    The Little Ice Age (LIA) is a well-recognized climatic event during which the glaciers in the Alps advanced and reached their maximum Holocene extent. During their retreat following the LIA, the glaciers left large areas of loose or poorly consolidated glacial deposits in their forelands, which are subject to paraglacial reworking and may represent potential hazards for human infrastructures. In this study, we present a regional scale mapping of the LIA and post-LIA glacial deposits and a reconstruction of the maximum LIA extents of glaciers in the same area. This work is motivated by a local law requiring the classification of areas subject to natural hazards in Trentino (Italian Alps). Results highlight that glaciers shrunk by 63% from the LIA maximum, leaving 30 km2 of unconsolidated deposits, which are subject to geomorphic paraglacial processes. Potentially hazardous consequences can occur, in particular, during high-magnitude instantaneous events, causing debris and mud flows, mass wasting from debris-covered ice, and floods from small moraine-dammed lakes.

  16. Chronological and geomorphological investigation of fossil debris-covered glaciers in relation to deglaciation processes: A case study in the Sierra de La Demanda, northern Spain

    NASA Astrophysics Data System (ADS)

    Fernández-Fernández, José M.; Palacios, David; García-Ruiz, José M.; Andrés, Nuria; Schimmelpfennig, Irene; Gómez-Villar, Amelia; Santos-González, Javier; Álvarez-Martínez, Javier; Arnáez, José; Úbeda, José; Léanni, Laëtitia; Aumaître, Georges; Bourlès, Didier; Keddadouche, Karim; Aster Team

    2017-08-01

    In this study, fossil debris-covered glaciers are investigated and dated in the Sierra de la Demanda, northern Spain. They are located in glacial valleys of approximately 1 km in length, where several moraines represent distinct phases of the deglaciation period. Several boulders in the moraines and fossil debris-covered glaciers were selected for analysis of 10Be surface exposure dating. A minimum age of 17.8 ± 2.2 ka was obtained for the outermost moraine in the San Lorenzo cirque, and was attributed to the global Last Glacial Maximum (LGM) or earlier glacial stages, based on deglaciation dates determined in other mountain areas of northern Spain. The youngest moraines were dated to approximately 16.7 ± 1.4 ka, and hence correspond to the GS-2a stadial (Oldest Dryas). Given that the debris-covered glaciers fossilize intermediate moraines, it was deduced that they developed between the LGM and the Oldest Dryas, coinciding with a period of extensive deglaciation. During this deglaciation phase, the cirque headwalls likely discharged large quantities of boulders and blocks that covered the residual ice masses. The resulting debris-covered glaciers evolved slowly because the debris mantle preserved the ice core from rapid ablation, and consequently they remained active until the end of the Late Glacial or the beginning of the Holocene (for the San Lorenzo cirque) and the Holocene Thermal Maximum (for the Mencilla cirque). The north-facing part of the Mencilla cirque ensured longer preservation of the ice core.

  17. Reconstructing temperatures in the Maritime Alps, Italy, since the Last Glacial Maximum using cosmogenic noble gas paleothermometry

    NASA Astrophysics Data System (ADS)

    Tremblay, Marissa; Spagnolo, Matteo; Ribolini, Adriano; Shuster, David

    2016-04-01

    The Gesso Valley, located in the southwestern-most, Maritime portion of the European Alps, contains an exceptionally well-preserved record of glacial advances during the late Pleistocene and Holocene. Detailed geomorphic mapping, geochronology of glacial deposits, and glacier reconstructions indicate that glaciers in this Mediterranean region responded to millennial scale climate variability differently than glaciers in the interior of the European Alps. This suggests that the Mediterranean Sea somehow modulated the climate of this region. However, since glaciers respond to changes in temperature and precipitation, both variables were potentially influenced by proximity to the Sea. To disentangle the competing effects of temperature and precipitation changes on glacier size, we are constraining past temperature variations in the Gesso Valley since the Last Glacial Maximum (LGM) using cosmogenic noble gas paleothermometry. The cosmogenic noble gases 3He and 21Ne experience diffusive loss from common minerals like quartz and feldspars at Earth surface temperatures. Cosmogenic noble gas paleothermometry utilizes this open-system behavior to quantitatively constrain thermal histories of rocks during exposure to cosmic ray particles at the Earth's surface. We will present measurements of cosmogenic 3He in quartz sampled from moraines in the Gesso Valley with LGM, Bühl stadial, and Younger Dryas ages. With these 3He measurements and experimental data quantifying the diffusion kinetics of 3He in quartz, we will provide a preliminary temperature reconstruction for the Gesso Valley since the LGM. Future work on samples from younger moraines in the valley system will be used to fill in details of the more recent temperature history.

  18. Reconstructing spatial and temporal patterns of paleoglaciation along the Tian Shan

    NASA Astrophysics Data System (ADS)

    Harbor, J.; Stroeven, A. P.; Beel, C.; Blomdin, R.; Caffee, M. W.; Chen, Y.; Codilean, A.; Gribenski, N.; Hattestrand, C.; Heyman, J.; Ivanov, M.; Kassab, C.; Li, Y.; Lifton, N. A.; Liu, G.; Petrakov, D.; Rogozhina, I.; Usubaliev, R.

    2012-12-01

    Testing and calibrating global climate models require well-constrained information on past climates of key regions around the world. Particularly important are transitional regions that provide a sensitive record of past climate change. Central Asia is an extreme continental location with glaciers and rivers that respond sensitively to temporal variations in the dominance of several major climate systems. As an international team initiative, we are reconstructing the glacial history of the Kyrgyz and Chinese Tian Shan, based on mapping and dating of key localities along the range. Remote-sensing-based geomorphological mapping, building on previous maps produced by Kyrgyz, Russian, Chinese and German scholars, is being augmented with field observations of glacial geomorphology and the maximum distribution of erratics. We are using cosmogenic nuclide (CN) 10Be dating of moraines and other landforms that constrain the former maximum extents of glaciers. Study sites include the Ala-Archa, Ak-Shyrak and Inylchek/Sary-Dzaz areas in Kyrgyzstan and the Urumqi valley (as well as its upland and southern slopes), and the Tumur and Bogeda peak areas in China. Comparing consistently dated glacial histories along and across the range will allow us to examine potential shifts in the dominance patterns of climate systems over time in Central Asia. We are also comparing ages based on CN with optically stimulated luminescence (OSL) and electron spin resonance (ESR) dates. The final stage of this project will use intermediate complexity glacier flow models to examine paleoclimatic implications of the observed spatial and temporal patterns of glacier changes across Central Asia and eastern Tibet, focused in particular on the last glacial cycle.

  19. Mitogenomes from Two Uncommon Haplogroups Mark Late Glacial/Postglacial Expansions from the Near East and Neolithic Dispersals within Europe

    PubMed Central

    Olivieri, Anna; Pala, Maria; Gandini, Francesca; Kashani, Baharak Hooshiar; Perego, Ugo A.; Woodward, Scott R.; Grugni, Viola; Battaglia, Vincenza; Semino, Ornella; Achilli, Alessandro; Richards, Martin B.; Torroni, Antonio

    2013-01-01

    The current human mitochondrial (mtDNA) phylogeny does not equally represent all human populations but is biased in favour of representatives originally from north and central Europe. This especially affects the phylogeny of some uncommon West Eurasian haplogroups, including I and W, whose southern European and Near Eastern components are very poorly represented, suggesting that extensive hidden phylogenetic substructure remains to be uncovered. This study expanded and re-analysed the available datasets of I and W complete mtDNA genomes, reaching a comprehensive 419 mitogenomes, and searched for precise correlations between the ages and geographical distributions of their numerous newly identified subclades with events of human dispersal which contributed to the genetic formation of modern Europeans. Our results showed that haplogroups I (within N1a1b) and W originated in the Near East during the Last Glacial Maximum or pre-warming period (the period of gradual warming between the end of the LGM, ∼19 ky ago, and the beginning of the first main warming phase, ∼15 ky ago) and, like the much more common haplogroups J and T, may have been involved in Late Glacial expansions starting from the Near East. Thus our data contribute to a better definition of the Late and postglacial re-peopling of Europe, providing further evidence for the scenario that major population expansions started after the Last Glacial Maximum but before Neolithic times, but also evidencing traces of diffusion events in several I and W subclades dating to the European Neolithic and restricted to Europe. PMID:23936216

  20. The impact of Pleistocene climate change on an ancient arctic–alpine plant: multiple lineages of disparate history in Oxyria digyna

    PubMed Central

    Allen, Geraldine A; Marr, Kendrick L; McCormick, Laurie J; Hebda, Richard J

    2012-01-01

    The ranges of arctic–alpine species have shifted extensively with Pleistocene climate changes and glaciations. Using sequence data from the trnH-psbA and trnT-trnL chloroplast DNA spacer regions, we investigated the phylogeography of the widespread, ancient (>3 million years) arctic–alpine plant Oxyria digyna (Polygonaceae). We identified 45 haplotypes and six highly divergent major lineages; estimated ages of these lineages (time to most recent common ancestor, TMRCA) ranged from ∼0.5 to 2.5 million years. One lineage is widespread in the arctic, a second is restricted to the southern Rocky Mountains of the western United States, and a third was found only in the Himalayan and Altai regions of Asia. Three other lineages are widespread in western North America, where they overlap extensively. The high genetic diversity and the presence of divergent major cpDNA lineages within Oxyria digyna reflect its age and suggest that it was widespread during much of its history. The distributions of individual lineages indicate repeated spread of Oxyria digyna through North America over multiple glacial cycles. During the Last Glacial Maximum it persisted in multiple refugia in western North America, including Beringia, south of the continental ice, and within the northern limits of the Cordilleran ice sheet. Our data contribute to a growing body of evidence that arctic–alpine species have migrated from different source regions over multiple glacial cycles and that cryptic refugia contributed to persistence through the Last Glacial Maximum. PMID:22822441

  1. The enigma of the Australian Alps, young landscapes and missing cryogenic features.

    NASA Astrophysics Data System (ADS)

    Slee, Adrian; Shulmeister, James; Clark, Doug

    2014-05-01

    Widespread evidence for pre last glacial cycle glaciation of late Quaternary ages has been documented from mid-latitude southern hemisphere mountain environments in New Zealand, southern South America and the Tasmanian Highlands. On mainland Australia however cirque and small valley glaciation in the Australian Alps is limited to OIS 4-3 and the last glacial maximum (OIS 2) (Barrows et al. 2001). This contrasts with the other southern hemisphere glacial records that indicate significantly more extensive glaciations preceding the last glacial cycle. In both the Southern Andes and Tasmania the maximum glaciations occurred prior to 783 kya (Glasser et al. 2008, Colhoun et al. 2010) while in tectonically active New Zealand it is at least clear that the scale of glaciation has been diminishing over the last 3 glacial cycles (Shulmeister et al. 2010). In all these locations early workers argued for extensive ice coverage, but subsequent investigations limited the extent and number of glacial advances before more recent work has locally re-extended the glacial limits and greatly increased the number of glacial advances. Similarly, in the highlands of SE Australia the possibility of more pervasive ice coverage was initially entertained; but since the 1960s and especially the 1980s the general consensus is that the lack of glacial evidence is a result of cold dry conditions prevailing for much of the Quaternary on the Australian Alps (Reeves et al. 2013) Recent work by the authors on the extent of relict periglacial block deposits in Australia have identified these block deposits as far north as 29°30'S on the Great Dividing Range, confirming strong freeze-thaw conditions well into the sub-tropics at moderate (900-1200 m) elevations. Curiously, however, the same mapping work has also highlighted the limited development of block deposits and other freeze-thaw landforms, such as tors, in the highest regions of the Australian Alps, in areas beyond the known limits of glaciation. It is also noteworthy that the periglacial features on mainland SE Australia that have absolute ages relate primarily to the last glacial maximum (Barrows et al. 2004). This again contrasts with Tasmania were the periglacial features are both associated with multiple ice ages and are often polygenetic. This presentation reviews geomorphic evidence from two of the highest regions of SE Australia (Bogong High Plains and the Kosciuszko Massif) to determine the extent and nature of cryogenic landscape features in these areas. It will attempt to resolve questions both about the nature of processes operating in these landscapes and add to the debate about the curious paucity of pre-last glacial landscapes at high elevations in SE Australia. References: Barrows, T.T., Stone, J.O., Fifield, L.K. and Cresswell, R.G., 2001. Late Pleistocene glaciation of the Kosciuszko Massif, Snowy Mountains, Australia. Quaternary Research, 55: 179-189 Barrows, T.T., Stone, J. O. and Fifield. L.K, 2004. Exposure ages for Plestocene periglacial deposits in Australia. Quaternary Science Reviews, Vol. 23 (5-6): 697-708 Colhoun, E.A., Kiernan, K., Barrows, T.T. and Geode, A., 2010, Advances in Quaternary studies in Tasmania. Geological Society, London, Special Publications 346:121-139 Glasser, N.F., Jansson, K.N., Harrison, S. and Klenman, J., 2008. The glacial geomorphology and Pleistocene history of South America between 38°S and 56°S. Quaternary Science Reviews 27 (3-4): 365-390 Reeves, J.M., Barrows, T.T., Cohen, T.J., Kiem, A.S., Bostock, H.C., Fitzsimmons, K.E., Jansen, J.D., Kemp, J., Krause, C., Petherick, L. and Phipps, S.J., Climate variability over the last 35,000 years recorded in marine and terrestrial archives in the Australian region: an OZ-INTIMATE compilation. Quaternary Science Reviews 74: 21-34 Shulmeister, J, Thackray, G.D., Rieser, U, Hyatt, O.M, Rother, H., C.C. Smart, and D.J.A. Evans 2010. The stratigraphy, timing and climatic implications of glacilacustrine deposits in the middle Rakaia Valley, South Island, New Zealand. Quaternary Science Reviews 29:2362-2381.

  2. New insights into the Weichselian environment and climate of the East Siberian Arctic, derived from fossil insects, plants, and mammals

    NASA Astrophysics Data System (ADS)

    Sher, A. V.; Kuzmina, S. A.; Kuznetsova, T. V.; Sulerzhitsky, L. D.

    2005-03-01

    Multidisciplinary study of a key section on the Laptev Sea Coast (Bykovsky Peninsula, east Lena Delta) in 1998-2001 provides the most complete record of Middle and Late Weichselian environments in the East Siberian Arctic. The 40-m high Mamontovy Khayata cliff is a typical Ice Complex section built of icy silts with a network of large syngenetic polygonal ice wedges, and is richly fossiliferous. In combination with pollen, plant macrofossil and mammal fossils, a sequence of ca 70 insect samples provides a new interpretation of the environment and climate of the area between ca 50 and 12 ka. The large number of radiocarbon dates from the section, together with an extensive 14C database on mammal bones, allows chronological correlation of the various proxies. The Bykovsky record shows how climate change, and the Last Glacial Maximum in particular, affected terrestrial organisms such as insects and large grazing mammals. Both during the presumed "Karginsky Interstadial" (MIS 3) and the Sartanian Glacial (MIS 2), the vegetation remained a mosaic arctic grassland with relatively high diversity of grasses and herbs and dominance of xeric habitats: the tundra-steppe type. This biome was supported by a constantly very continental climate, caused by low sea level and enormous extension of shelf land. Variations within the broad pattern were caused mainly by fluctuations in summer temperature, related to global trends but overprinted by the effect of continentality. No major changes in humidity were observed nor were advances of modern-type forest or forest-tundra recorded, suggesting a major revision of the "Karginsky Interstadial" paradigm. The changing subtypes of the tundra-steppe environment were persistently favourable for mammalian grazers, which inhabited the shelf lowlands throughout the studied period. Mammal population numbers were lowered during the LGM, especially toward its end, and then flourished in a short, but impressive peak in the latest Weichselian, just before the collapse of the tundra-steppe biome. Throughout MIS 3 and MIS 2, the climate remained very favourable for the aggradation of permafrost. No events of regional permafrost degradation were observed in the continuous Bykovsky sequence until the very end of the Pleistocene.

  3. Control of Atmospheric CO2 by the Ocean's Biological Pump and Shelf-Basin Fractionation

    NASA Astrophysics Data System (ADS)

    Anderson, R. F.; Fleisher, M. Q.; Mix, A. C.

    2006-12-01

    Identifying the cause of the dramatic correlation between atmospheric CO2 concentrations and past climate variability has been one of the principal goals of paleoclimate research over the past quarter century. Several plausible mechanisms have been proposed, and each has been rejected as being incapable by itself of accounting for the full range (80 to 100 ppm) of glacial to interglacial variability of atmospheric CO2 concentration. Consequently, recent studies have focused on scenarios by which a combination of mechanisms work synergistically to account for the full range of CO2 variability. We will present evidence from equatorial Pacific sediment cores that increased strength of the ocean's biological pump was primarily responsible for drawdown of atmospheric CO2 during the early stages of glaciation, and that increased ocean alkalinity (or, more specifically, an increase in the ocean carbonate ion concentration) led to a further reduction of atmospheric CO2 during maximum glaciation. Increased strength of the biological pump is manifest as increasing differences between the carbon isotope composition of planktonic and benthic foraminifera during early stages of glaciation, as predicted a quarter century ago in classic works by Broecker and by Shackleton. Increased carbonate ion concentration is manifest by increased preservation and burial of calcium carbonate in deep equatorial Pacific sediments. The carbon isotope record is noisy, but the pattern is repeated over each of the past three glacial cycles, lending confidence to its reliability. Increased preservation and burial of CaCO3 occurred each time the oxygen isotope composition of benthic foraminifera rose above a threshold value corresponding to a sea level lowering of roughly 70 m below present. This relationship is reproduced systematically throughout the past 450 kyr, again lending confidence to the finding and supporting the view that shelf-basin fractionation, or the shift in CaCO3 deposition from continental shelves to the deep sea, was involved. There is substantial uncertainty in the sensitivity of atmospheric CO2 to each of these factors, but the records suggest roughly equal CO2 drawdown by each process.

  4. The influence of climate on peatland extent in Western Siberia since the Last Glacial Maximum

    PubMed Central

    Alexandrov, G. A.; Brovkin, V. A.; Kleinen, T.

    2016-01-01

    Boreal and subarctic peatlands are an important dynamical component of the earth system. They are sensitive to climate change, and could either continue to serve as a carbon sink or become a carbon source. Climatic thresholds for switching peatlands from sink to source are not well defined, and therefore, incorporating peatlands into Earth system models is a challenging task. Here we introduce a climatic index, warm precipitation excess, to delineate the potential geographic distribution of boreal peatlands for a given climate and landscape morphology. This allows us to explain the present-day distribution of peatlands in Western Siberia, their absence during the Last Glacial Maximum, their expansion during the mid-Holocene, and to form a working hypothesis about the trend to peatland degradation in the southern taiga belt of Western Siberia under an RCP 8.5 scenario for the projected climate in year 2100. PMID:27095029

  5. The influence of climate on peatland extent in Western Siberia since the Last Glacial Maximum.

    PubMed

    Alexandrov, G A; Brovkin, V A; Kleinen, T

    2016-04-20

    Boreal and subarctic peatlands are an important dynamical component of the earth system. They are sensitive to climate change, and could either continue to serve as a carbon sink or become a carbon source. Climatic thresholds for switching peatlands from sink to source are not well defined, and therefore, incorporating peatlands into Earth system models is a challenging task. Here we introduce a climatic index, warm precipitation excess, to delineate the potential geographic distribution of boreal peatlands for a given climate and landscape morphology. This allows us to explain the present-day distribution of peatlands in Western Siberia, their absence during the Last Glacial Maximum, their expansion during the mid-Holocene, and to form a working hypothesis about the trend to peatland degradation in the southern taiga belt of Western Siberia under an RCP 8.5 scenario for the projected climate in year 2100.

  6. Reply to comment received from J. C. Knight regarding "Last Glacial Maximum cirque glaciation in Ireland and implications for reconstructions of the Irish Ice Sheet" by Barth et al. (2016), Quaternary Science Reviews 141, 85-93

    NASA Astrophysics Data System (ADS)

    Barth, Aaron M.; Clark, Peter U.; Clark, Jorie; McCabe, A. Marshall; Caffee, Marc

    2016-10-01

    We concluded that our new 10Be chronology records onset of retreat of a cirque glacier within the Alohart basin of southwestern Ireland 24.5 ± 1.4 ka, placing limiting constraints on reconstructions of the Irish Ice Sheet (IIS) and Kerry-Cork Ice Cap (KCIC) during the Last Glacial Maximum (LGM) (Barth et al., 2016). Knight (2016) raises two main arguments against our interpretation: (1) the glacier in the Alohart basin was not a cirque glacier, but instead a southern-sourced ice tongue from the KCIC overtopping the MacGillycuddy's Reeks, and (2) that the boulders we sampled for 10Be exposure dating were derived from supraglacial rockfall rather than transported subglacially, experienced nuclide inheritance, and are thus too old. In the following, we address both of these arguments.

  7. Late Cenozoic Climate Change and its Implications on the Denudation of Orogen Syntaxes

    NASA Astrophysics Data System (ADS)

    Mutz, Sebastian; Ehlers, Todd

    2017-04-01

    The denudation history of active orogens is often interpreted in the context of modern climate gradients. Despite the influence of climatic conditions on erosion rates, information about paleoclimate evolution is often not available and thus not considered when denudation histories are interpreted. In this study, we analyze output from paleoclimate simulations conducted with ECHAM5-wiso at T159 (ca. 80x80km) resolution. Specifically, we analyze simulations of pre-industrial (PI, pre-1850), Mid-Holocene (MH, ca. 6ka), Last Glacial Maximum (LGM, ca. 21ka) and Pliocene (PLIO, ca. 3ka) climates and focus on a selection of orogen syntaxes as study regions (e.g. Himalaya, SE Alaska, Cascadia, and Central Andes). For the selected region, we carry out a cluster analysis using a hybrid of hierarchical and k-means clustering procedures using mean annual temperature (MAT), temperature amplitude, mean annual precipitation (MAP), precipitation amplitude and u-wind and v-wind in different months to provide a general overview of paleoclimates in the study regions. Additionally, we quantify differences between paleoclimates by applying two-group linear discrimination analyses to the simulation output for a similar selection of variables. Results indicate the largest differences to the PI climate are observed for the LGM and PLIO climates in the form of widespread cooling and reduced precipitation in the LGM and warming and enhanced precipitation during the PLIO. These global trends can be observed for most locations in the investigated areas, but the strength varies regionally and the trends in precipitation are less uniform than trends in temperatures. The LGM climate shows the largest deviation in annual precipitation from the PI climate, and shows enhanced precipitation in the temperate Andes, and coastal regions for both SE Alaska and the US Pacific Northwest Pacific. Furthermore, LGM precipitation is reduced in the western Himalayas and enhanced in the eastern Himalayas, resulting in a shift of the wettest regional climates eastward along the orogen towards the eastern syntax. The cluster-analysis results also suggest more climatic variability across latitudes east of the Andes in the PLIO climate than in other time-slice experiments conducted here. Results from the discriminant analysis show that the quantified differences in climate and the relative contribution to these differences by each of the analyzed parameters are highly variable in space for each of the paleoclimates. Taken together, these results highlight significant changes in Late Cenozoic regional climatology over active orogens on time scales ranging from glacial cycles to geologic. As a result, future interpretation of recent and paleo denudation rates in these areas from sediment flux inventories, cosmogenic radionuclides, or low-temperature thermochronology techniques warrant careful consideration of these changes.

  8. Influence of glacial ice sheets on the Atlantic meridional overturning circulation through surface wind change

    NASA Astrophysics Data System (ADS)

    Sherriff-Tadano, Sam; Abe-Ouchi, Ayako; Yoshimori, Masakazu; Oka, Akira; Chan, Wing-Le

    2018-04-01

    Coupled modeling studies have recently shown that the existence of the glacial ice sheets intensifies the Atlantic meridional overturning circulation (AMOC). However, most models show a strong AMOC in their simulations of the Last Glacial Maximum (LGM), which is biased compared to reconstructions that indicate both a weaker and stronger AMOC during the LGM. Therefore, a detailed investigation of the mechanism behind this intensification of the AMOC is important for a better understanding of the glacial climate and the LGM AMOC. Here, various numerical simulations are conducted to focus on the effect of wind changes due to glacial ice sheets on the AMOC and the crucial region where the wind modifies the AMOC. First, from atmospheric general circulation model experiments, the effect of glacial ice sheets on the surface wind is evaluated. Second, from ocean general circulation model experiments, the influence of the wind stress change on the AMOC is evaluated by applying wind stress anomalies regionally or at different magnitudes as a boundary condition. These experiments demonstrate that glacial ice sheets intensify the AMOC through an increase in the wind stress at the North Atlantic mid-latitudes, which is induced by the North American ice sheet. This intensification of the AMOC is caused by the increased oceanic horizontal and vertical transport of salt, while the change in sea ice transport has an opposite, though minor, effect. Experiments further show that the Eurasian ice sheet intensifies the AMOC by directly affecting the deep-water formation in the Norwegian Sea.

  9. Reconstructing spatial and temporal patterns of paleoglaciation across Central Asia

    NASA Astrophysics Data System (ADS)

    Stroeven, Arjen P.

    2014-05-01

    Understanding the behaviour of mountain glaciers and ice caps, the evolution of mountain landscapes, and testing global climate models all require well-constrained information on past spatial and temporal patterns of glacier change. Particularly important are transitional regions that have high spatial and temporal variation in glacier activity and that can provide a sensitive record of past climate change. Central Asia is an extreme continental location with glaciers that have responded sensitively to variations in major regional climate systems. As an international team, we are reconstructing glacial histories of several areas of the Tibetan Plateau as well as along the Tian Shan, Altai and Kunlun Mountains. Building on previous work, we are using remote sensing-based geomorphological mapping augmented with field observations to map out glacial landforms and the maximum distributions of erratics. We then use cosmogenic nuclide Be-10 and Al-26, optically stimulated luminescence, and electron spin resonance dating of moraines and other landforms to compare dating techniques and to constrain the ages of defined extents of paleo-glaciers and ice caps. Comparing consistently dated glacial histories across central Asia provides an opportunity to examine shifts in the dominance patterns of climate systems over time in the region. Results to date show significant variations in the timing and extent of glaciation, including areas in the southeast Tibetan Plateau and Tian Shan with extensive valley and small polythermal ice cap glaciation during the global last glacial maximum in contrast to areas in central and northeast Tibetan Plateau that had very limited valley glacier expansion then. Initial numerical modelling attempting to simulate mapped and dated paleoglacial extents indicates that relatively limited cooling is sufficient to produce observed past expansions of glaciers across the Tibetan Plateau, and predicts complex basal thermal regimes in some locations that match patterns of past glacial erosion inferred from landform patterns and ages. Future modelling will examine glacier behaviour along major mountain ranges across central Asia.

  10. Select, High-Resolution Windows Into Sub-Centennial-Scale Climate Variability in the Western Pacific Warm Pool Between 7 and 12 ka

    NASA Astrophysics Data System (ADS)

    Quinn, T. M.; Taylor, F. W.; Cheng, H.; Edwards, R. L.; Burr, G.; Chen, Y.

    2004-12-01

    Post-glacial, coral-based climate records from the Western Pacific Warm Pool (WPWP), a region that serves as a major heat and moisture source to the ocean-atmosphere system, provide sub-annually resolved windows into climate variability on interannual to multi-decadal timescales from this climatologically significant region. Paleoclimate reconstructions based on fossil corals require that the skeletal geochemistry be unaffected by diagenesis and that secular changes in seawater chemistry be known. Global seawater \\delta18O variations can be constrained using knowledge of past variations in ice volume, whereas much less is known about global seawater Sr/Ca variations, if they occur in the post-glacial interval. Our paleoclimate reconstructions are based on monthly resolved \\delta18O and Sr/Ca records in fossil Porites corals from the Western Solomon Islands ( ˜8° S, ˜157° E; Tetepare and Rendova). Post-depositional alteration of our fossil coral samples is minimal based on mineralogic (XRD), petrographic (SEM) and geochemical criteria (preservation of modern marine initial \\delta234U values). Four of these fossil coral time series are of particular interest: 99RND (age, 7,992±42; ~45 years), 01T-B (age, 7,647±73; ~65 years), 01T-AQ (age, 10,208±44; ~30 years), and 99TET-B (age, 11,987±69; ~ 30 years). We apply a model that uses simultaneous variations in coral \\delta18O and Sr/Ca in combination with estimates of post-glacial changes in seawater chemistry to reconstruct mean climate state during the early Holocene and the Younger Dryas. Model results indicate that on average SSTs in the WPWP were within 1° C of modern and that surface waters were more saline than modern during each of the four time intervals during which our fossil corals grew.

  11. Miocene Antarctic ice dynamics in the Ross Embayment (Western Ross Sea, Antarctica): Insights from provenance analyses of sedimentary clasts in the AND-2A drill core

    NASA Astrophysics Data System (ADS)

    Cornamusini, Gianluca; Talarico, Franco M.

    2016-11-01

    A detailed study of gravel-size sedimentary clasts in the ANDRILL-2A (AND-2A) drill core reveals distinct changes in provenance and allows reconstructions to be produced of the paleo ice flow in the McMurdo Sound region (Ross Sea) from the Early Miocene to the Holocene. The sedimentary clasts in AND-2A are divided into seven distinct petrofacies. A comparison of these with potential source rocks from the Transantarctic Mountains and the coastal Southern Victoria Land suggests that the majority of the sedimentary clasts were derived from formations within the Devonian-Triassic Beacon Supergroup. The siliciclastic-carbonate petrofacies are similar to the fossiliferous erratics found in the Quaternary Moraine in the southern McMurdo Sound and were probably sourced from Eocene strata that are currently hidden beneath the Ross Ice Shelf. Intraformational clasts were almost certainly reworked from diamictite and mudstone sequences that were originally deposited proximal to the drill site. The distribution of sedimentary gravel clasts in AND-2A suggests that sedimentary sequences in the drill core were deposited under two main glacial scenarios: 1) a highly dynamic ice sheet that did not extend beyond the coastal margin and produced abundant debris-rich icebergs from outlet glaciers in the central Transantarctic Mountains and South Victoria Land; 2) and an ice sheet that extended well beyond the coastal margin and periodically advanced across the Ross Embayment. Glacial scenario 1 dominated the early to mid-Miocene (between ca. 1000 and 225 mbsf in AND-2A) and scenario 2 the early Miocene (between ca. 1138 and 1000 mbsf) and late Neogene to Holocene (above ca. 225 mbsf). This study augments previous research on the clast provenance and highlights the added value that sedimentary clasts offer in terms of reconstructing past glacial conditions from Antarctic drill core records.

  12. Flowline Modeling of the Quelccaya Icecap to Constrain Tropical Climate Fluctuations During the Holocene

    NASA Astrophysics Data System (ADS)

    Malone, A.; Pierrehumbert, R.; Insel, N.; Lowell, T. V.; Kelly, M. A.

    2012-12-01

    The response of the tropics to climate forcing mechanisms is poorly understood, and there is limited data regarding past tropical climate fluctuations. Past climate fluctuations often leave a detectable record of glacial response in the location of moraines. Computer reconstructions of glacial length variations can thus help constrain past climate fluctuations. Chronology and position data for Holocene moraines are available for the Quelccaya Ice Cap in the Peruvian Andes. The Quelccaya Ice Cap is the equatorial region's largest glaciated area, and given its size and the available data, it is an ideal location at which to use a computer glacier model to reconstruct past glacial extents and constrain past tropical climate fluctuations. We can reproduce the current length and shape of the glacier in the Huancane Valley of the Quelccaya Ice Cap using a 1-D mountain glacier flowline model with an orographic precipitation scheme, an energy balance model for the ablation scheme, and reasonable modern climate conditions. We conduct two experiments. First, we determine the amount of cooling necessary to reproduce the observed Holocene moraine locations by holding the precipitation profile constant and varying the mean sea surface temperature (SST) values. Second, we determine the amount of precipitation increase necessary to reproduce the observed moraine locations by holding the mean SST value constant and varying the maximum precipitation values. We find that the glacier's length is highly sensitive to changes in temperature while only weakly sensitive to changes in precipitation. In the constant precipitation experiment, a decrease in the mean SST of only 0.35 °C can reproduce the nearest Holocene moraine downslope from the current glacier terminus and a decrease in the mean SST of only 1.43 °C can reproduce the furthest Holocene moraine downslope from the current terminus. In the experiment with constant SST, the necessary increase in maximum precipitation is much greater. An increase in the maximum precipitation of 30% is necessary to reproduce the nearest Holocene moraine and an increase in the maximum precipitation of 130% is necessary to reproduce the furthest Holocene moraine. Our results provide a range of values for the mean SST and maximum precipitation that can reproduce the location of Holocene glacial moraines, constraining some of the climate fluctuations in the tropics during the Holocene. These constraints can be used to test hypotheses for climate forcing mechanisms during Holocene events such as the Little Ice Age and possibly provide insight into future tropical climate fluctuations given current and future forcing mechanisms.

  13. Climate change likely to favor shift toward warmer climate states of the Pliocene and Eocene

    NASA Astrophysics Data System (ADS)

    Burke, K. D.; Williams, J. W.

    2017-12-01

    As the world warms due to rising greenhouse gas concentrations, the climate system is moving toward a state without precedent in the historical record. Various past climate states have been proposed as potential analogues or model systems for the coming decades, including the early to middle Holocene, the last interglacial, the middle Pliocene, and the early Eocene. However, until now, such comparisons have been qualitative. To compare these time periods to the projected climate states for the 21st and 22nd centuries, we conduct a climate similarity analysis using the standardized Euclidean distance metric (SED) and seasonal means of surface air temperature and precipitation. We make this future-to-past comparison using 30-year mean climatologies, for every decade between 2020 and 2280 AD (27 total comparisons). The list of past earth system states includes the historical period (1940-1970 AD), a pre-industrial control (ca. 1850), the middle Holocene (ca. 6 ka), the last glacial maximum (ca. 21 ka), the last interglacial (ca. 125 ka), the middle Pliocene (ca. 3 Ma), and the early Eocene (ca. 50-55 Ma). To reduce uncertainties resulting from choice of earth system model, analyses are based on simulations from three earth system models (HadCM, CCSM, NASA/GISS Model-E), using in part experiments from PMIP2, PMIP3/CMIP5, EoMIP, and PlioMIP. Results are presented for two representative concentration pathways (RCP's 4.5, 8.5). By 2050 AD, the most common past climate analogue is sourced from the Pliocene for RCP 8.5, while by 2190 AD, the Eocene becomes the source of the most common past climate analogue. For RCP 4.5, in which radiative forcings stabilize this century, the Pliocene becomes the most important past climate analogue by 2100 AD. Low latitude climates are the first to most closely resemble these past earth warm periods. The mid-latitudes then follow this pattern by the end of the 22nd century. Although no past state of the earth system is a perfect analogue for the Anthropocene, these analyses clarify the similarities between the expected climates of the future and the geological climates of the past.

  14. Development and Application of Sr/Ca-δ18O-Sea Surface Temperature calibrations for Last Glacial Maximum-Aged Isopora corals in the Great Barrier Reef

    NASA Astrophysics Data System (ADS)

    Brenner, L. D.; Linsley, B. K.; Potts, D. C.; Felis, T.; Mcgregor, H. V.; Gagan, M. K.; Inoue, M.; Tudhope, A. W.; Esat, T. M.; Thompson, W. G.; Tiwari, M.; Fallon, S.; Humblet, M.; Yokoyama, Y.; Webster, J.

    2016-12-01

    Isopora (Acroporidae) are sub-massive to massive corals found on most modern and fossil Indo-Pacific reefs. Despite their abundance, they are largely absent from the paleoceanographic literature but have the potential to provide proxy data where other commonly used corals, such as Porites, are sparse. The retrieval of Isopora fossils during International Ocean Discovery Program Leg 325 in the Great Barrier Reef (GBR) signaled the need to evaluate their possible paleoceanographic utility. We developed modern skeletal Sr/Ca- and δ18O-sea surface temperature (SST) calibrations for six modern Isopora colonies collected at Heron Island in the southern GBR. Pairing the coral Sr/Ca record with monthly SST data yielded Reduced Major Axis Sr/Ca- and δ18O-SST sensitivities of -0.054 mmol/mol/°C and -0.152 ‰/°C, respectively, falling within the range of published Porites values. We applied our Isopora-based regressions and previously published sensitivities from other species to a suite (n=37) of fossil samples collected from IODP 32. The calibrations produced a range of 3-7°C of warming, averaging 5°C, in the GBR from 22 ka to modern climate. This SST change is similar or slightly larger than other coral studies and larger than planktonic foraminifera Mg/Ca records. The planktonic Mg/Ca records from the Indonesian and Western Pacific Warm Pools indicate a warming of 3-3.5°C since 23ka (Linsley et al., 2010) while a fossil coral record from Tahiti indicates a warming of 3.2°C from 9.5ka to present (DeLong et al., 2010) and western Pacific coral records suggest a cooling of 5-6°C (Gagan et al., 2010; Guilderson et al., 1994: Beck et al., 1997), although these value might require rescaling (Gagan et al., 2012) resulting in slightly warmer temperature calculations. Our Isopora fossils from the GBR speak to the spatial heterogeneity of warming since the LGM and the continued need to develop more records for a more comprehensive understanding of the deglaciation.

  15. Climatic implications of glacial evolution in the Tröllaskagi peninsula (northern Iceland) since the Little Ice Age maximum. The cases of the Gljúfurárjökull and Tungnahryggsjökull glaciers

    NASA Astrophysics Data System (ADS)

    Fernández-Fernández, José M.; Andrés, Nuria; Brynjólfsson, Skafti; Sæmundsson, Þorsteinn; Palacios, David

    2017-04-01

    The Tröllaskagi peninsula is located in northern Iceland, between meridians 19°30'W and 18°10'W, jutting out into the North Atlantic to latitude 66°12'N and joining the central highlands to the south. About 150 glaciers located on the Tröllaskagi peninsula reached their Holocene maximum extent during the Little Ice Age (LIA) maximum at the end of the 19th century. The sudden warming at the turn of the 20th century triggered a continuous retreat from the LIA maximum positions, interrupted by a reversal trend during the mid-seventies and eighties in response to a brief period of climate cooling. The aim of this paper is to analyze the relationships between glacial and climatic evolution since the LIA maximum. For this reason, we selected three small debris-free glaciers: Gljúfurárjökull, and western and eastern Tungnahryggsjökull, at the headwalls of Skíðadalur and Kolbeinsdalur, as their absence of debris cover makes them sensitive to climatic fluctuations. To achieve this purpose, we used ArcGIS to map the glacier extent during the LIA maximum and several dates over four georeferenced aerial photos (1946, 1985, 1994 and 2000), as well as a 2005 SPOT satellite image. Then, the Equilibrium-Line Altitude (ELA) was calculated by applying the Accumulation Area Ratio (AAR) and Area Altitude Balance Ratio (AABR) approaches. Climatological data series from the nearby weather stations were used in order to analyze climate development and to estimate precipitation at the ELA with different numerical models. Our results show considerable changes of the three debris-free glaciers and demonstrates their sensitivity to climatic fluctuations. As a result of the abrupt climatic transition of the 20th century, the following warm 25-year period and the warming started in the late eighties, the three glaciers retreated by ca. 990-1330 m from the LIA maximum to 2005, supported by a 40-metre ELA rise and a reduction of their area and volume of 25% and 33% on average, respectively. The 1.5 °C warming recorded at the city of Akureyri from late 19th century to 2005 does not agree with the 0.3 °C value obtained from the ELA rise and lapse rate. On the contrary it demonstrates that other factors - for example, precipitation and wind - have been decisive in the evolution of the glaciers. All the models applied suggest a precipitation increase of 700 mm water equivalent at the mean ELA since the LIA maximum, and higher and lower values depending on warm and cold periods respectively. The overall increase in precipitation is compatible with the increase in the surface temperature of the North Atlantic and a possible negative-to-positive shift in North Atlantic Oscillation (NAO) mode. However, the link between winter accumulation and prevailing wind directions recorded at nearby weather stations remains unclear. Research funded by Deglaciation project (CGL2015-65813-R), Government of Spain.

  16. Holocene tectonics and fault reactivation in the foothills of the north Cascade Mountains, Washington

    USGS Publications Warehouse

    Sherrod, Brian L.; Barnett, Elizabeth; Schermer, Elizabeth; Kelsey, Harvey M.; Hughes, Jonathan; Foit, Franklin F.; Weaver, Craig S.; Haugerud, Ralph; Hyatt, Tim

    2013-01-01

    We use LiDAR imagery to identify two fault scarps on latest Pleistocene glacial outwash deposits along the North Fork Nooksack River in Whatcom County, Washington (United States). Mapping and paleoseismic investigation of these previously unknown scarps provide constraints on the earthquake history and seismic hazard in the northern Puget Lowland. The Kendall scarp lies along the mapped trace of the Boulder Creek fault, a south-dipping Tertiary normal fault, and the Canyon Creek scarp lies in close proximity to the south-dipping Canyon Creek fault and the south-dipping Glacier Extensional fault. Both scarps are south-side-up, opposite the sense of displacement observed on the nearby bedrock faults. Trenches excavated across these scarps exposed folded and faulted late Quaternary glacial outwash, locally dated between ca. 12 and 13 ka, and Holocene buried soils and scarp colluvium. Reverse and oblique faulting of the soils and colluvial deposits indicates at least two late Holocene earthquakes, while folding of the glacial outwash prior to formation of the post-glacial soil suggests an earlier Holocene earthquake. Abrupt changes in bed thickness across faults in the Canyon Creek excavation suggest a lateral component of slip. Sediments in a wetland adjacent to the Kendall scarp record three pond-forming episodes during the Holocene—we infer that surface ruptures on the Boulder Creek fault during past earthquakes temporarily blocked the stream channel and created an ephemeral lake. The Boulder Creek and Canyon Creek faults formed in the early to mid-Tertiary as normal faults and likely lay dormant until reactivated as reverse faults in a new stress regime. The most recent earthquakes—each likely Mw > 6.3 and dating to ca. 8050–7250 calendar years B.P. (cal yr B.P.), 3190–2980 cal. yr B.P., and 910–740 cal. yr B.P.—demonstrate that reverse faulting in the northern Puget Lowland poses a hazard to urban areas between Seattle (Washington) and Vancouver, British Columbia (Canada).

  17. The large mean body size of mammalian herbivores explains the productivity paradox during the Last Glacial Maximum.

    PubMed

    Zhu, Dan; Ciais, Philippe; Chang, Jinfeng; Krinner, Gerhard; Peng, Shushi; Viovy, Nicolas; Peñuelas, Josep; Zimov, Sergey

    2018-04-01

    Large herbivores are a major agent in ecosystems, influencing vegetation structure, and carbon and nutrient flows. During the last glacial period, a mammoth steppe ecosystem prevailed in the unglaciated northern lands, supporting a high diversity and density of megafaunal herbivores. The apparent discrepancy between abundant megafauna and the expected low vegetation productivity under a generally harsher climate with a lower CO 2 concentration, termed the productivity paradox, requires large-scale quantitative analysis using process-based ecosystem models. However, most of the current global dynamic vegetation models (DGVMs) lack explicit representation of large herbivores. Here we incorporated a grazing module in a DGVM based on physiological and demographic equations for wild large grazers, taking into account feedbacks of large grazers on vegetation. The model was applied globally for present-day and the Last Glacial Maximum (LGM). The present-day results of potential grazer biomass, combined with an empirical land-use map, infer a reduction in wild grazer biomass by 79-93% owing to anthropogenic land replacement of natural grasslands. For the LGM, we find that the larger mean body size of mammalian herbivores than today is the crucial clue to explain the productivity paradox, due to a more efficient exploitation of grass production by grazers with a large body size.

  18. Glacial refugia and recolonization pathways in the brown seaweed Fucus serratus.

    PubMed

    Hoarau, G; Coyer, J A; Veldsink, J H; Stam, W T; Olsen, J L

    2007-09-01

    The last glacial maximum (20,000-18,000 years ago) dramatically affected extant distributions of virtually all northern European biota. Locations of refugia and postglacial recolonization pathways were examined in Fucus serratus (Heterokontophyta; Fucaceae) using a highly variable intergenic spacer developed from the complete mitochondrial genome of Fucus vesiculosus. Over 1,500 samples from the entire range of F. serratus were analysed using fluorescent single strand conformation polymorphism. A total of 28 mtDNA haplotypes was identified and sequenced. Three refugia were recognized based on high haplotype diversities and the presence of endemic haplotypes: southwest Ireland, the northern Brittany-Hurd Deep area of the English Channel, and the northwest Iberian Peninsula. The Irish refugium was the source for a recolonization sweep involving a single haplotype via northern Scotland and throughout Scandinavia, whereas recolonization from the Brittany-Hurd Deep refugium was more limited, probably because of unsuitable soft-bottom habitat in the Bay of Biscay and along the Belgian and Dutch coasts. The Iberian populations reflect a remnant refugium at the present-day southern boundary of the species range. A generalized skyline plot suggested exponential population expansion beginning in the mid-Pleistocene with maximal growth during the Eems interglacial 128,000-67,000 years ago, implying that the last glacial maximum mainly shaped population distributions rather than demography.

  19. Large Scale Anthropogenic Reduction of Forest Cover in Last Glacial Maximum Europe

    PubMed Central

    Pfeiffer, Mirjam; Kolen, Jan C. A.; Davis, Basil A. S.

    2016-01-01

    Reconstructions of the vegetation of Europe during the Last Glacial Maximum (LGM) are an enigma. Pollen-based analyses have suggested that Europe was largely covered by steppe and tundra, and forests persisted only in small refugia. Climate-vegetation model simulations on the other hand have consistently suggested that broad areas of Europe would have been suitable for forest, even in the depths of the last glaciation. Here we reconcile models with data by demonstrating that the highly mobile groups of hunter-gatherers that inhabited Europe at the LGM could have substantially reduced forest cover through the ignition of wildfires. Similar to hunter-gatherers of the more recent past, Upper Paleolithic humans were masters of the use of fire, and preferred inhabiting semi-open landscapes to facilitate foraging, hunting and travel. Incorporating human agency into a dynamic vegetation-fire model and simulating forest cover shows that even small increases in wildfire frequency over natural background levels resulted in large changes in the forested area of Europe, in part because trees were already stressed by low atmospheric CO2 concentrations and the cold, dry, and highly variable climate. Our results suggest that the impact of humans on the glacial landscape of Europe may be one of the earliest large-scale anthropogenic modifications of the earth system. PMID:27902716

  20. The salinity, temperature, and delta18O of the glacial deep ocean.

    PubMed

    Adkins, Jess F; McIntyre, Katherine; Schrag, Daniel P

    2002-11-29

    We use pore fluid measurements of the chloride concentration and the oxygen isotopic composition from Ocean Drilling Program cores to reconstruct salinity and temperature of the deep ocean during the Last Glacial Maximum (LGM). Our data show that the temperatures of the deep Pacific, Southern, and Atlantic oceans during the LGM were relatively homogeneous and within error of the freezing point of seawater at the ocean's surface. Our chloride data show that the glacial stratification was dominated by salinity variations, in contrast with the modern ocean, for which temperature plays a primary role. During the LGM the Southern Ocean contained the saltiest water in the deep ocean. This reversal of the modern salinity contrast between the North and South Atlantic implies that the freshwater budget at the poles must have been quite different. A strict conversion of mean salinity at the LGM to equivalent sea-level change yields a value in excess of 140 meters. However, the storage of fresh water in ice shelves and/or groundwater reserves implies that glacial salinity is a poor predictor of mean sea level.

  1. Paleodistribution modeling suggests glacial refugia in Scandinavia and out-of-Tibet range expansion of the Arctic fox.

    PubMed

    Fuentes-Hurtado, Marcelo; Hof, Anouschka R; Jansson, Roland

    2016-01-01

    Quaternary glacial cycles have shaped the geographic distributions and evolution of numerous species in the Arctic. Ancient DNA suggests that the Arctic fox went extinct in Europe at the end of the Pleistocene and that Scandinavia was subsequently recolonized from Siberia, indicating inability to track its habitat through space as climate changed. Using ecological niche modeling, we found that climatically suitable conditions for Arctic fox were found in Scandinavia both during the last glacial maximum (LGM) and the mid-Holocene. Our results are supported by fossil occurrences from the last glacial. Furthermore, the model projection for the LGM, validated with fossil records, suggested an approximate distance of 2000 km between suitable Arctic conditions and the Tibetan Plateau well within the dispersal distance of the species, supporting the recently proposed hypothesis of range expansion from an origin on the Tibetan Plateau to the rest of Eurasia. The fact that the Arctic fox disappeared from Scandinavia despite suitable conditions suggests that extant populations may be more sensitive to climate change than previously thought.

  2. Fire and vegetation shifts in the Americas at the vanguard of Paleoindian migration

    NASA Astrophysics Data System (ADS)

    Pinter, Nicholas; Fiedel, Stuart; Keeley, Jon E.

    2011-02-01

    Across North and South America, the final millennia of the Pleistocene saw dramatic changes in climate, vegetation, fauna, fire regime, and other local and regional paleo-environmental characteristics. Rapid climate shifts following the Last Glacial Maximum (LGM) exerted a first-order influence, but abrupt post-glacial shifts in vegetation composition, vegetation structure, and fire regime also coincided with human arrival and transformative faunal extinctions in the Americas. We propose a model of post-glacial vegetation change in response to climatic drivers, punctuated by local fire regime shifts in response to megaherbivore-driven fuel changes and anthropogenic ignitions. The abrupt appearance of humans, disappearance of megaherbivores, and resulting changes in New World fire systems were transformative events that should not be dismissed in favor of climate-only interpretations of post-glacial paleo-environmental shifts in the Americas. Fire is a mechanism by which small human populations can have broad impacts, and growing evidence suggests that early anthropogenic influences on regional, even global, paleo-environments should be tested alongside other potential causal mechanisms.

  3. Extra-Mediterranean refugia: The rule and not the exception?

    PubMed Central

    2012-01-01

    Some decades ago, biogeographers distinguished three major faunal types of high importance for Europe: (i) Mediterranean elements with exclusive glacial survival in the Mediterranean refugia, (ii) Siberian elements with glacial refugia in the eastern Palearctic and only postglacial expansion to Europe and (iii) arctic and/or alpine elements with large zonal distributions in the periglacial areas and postglacial retreat to the North and/or into the high mountain systems. Genetic analyses have unravelled numerous additional refugia both of continental and Mediterranean species, thus strongly modifying the biogeographical view of Europe. This modified notion is particularly true for the so-called Siberian species, which in many cases have not immigrated into Europe during the postglacial period, but most likely have survived the last, or even several glacial phases, in extra-Mediterranean refugia in some climatically favourable but geographically limited areas of southern Central and Eastern Europe. Recently, genetic analyses revealed that typical Mediterranean species have also survived the Last Glacial Maximum in cryptic northern refugia (e.g. in the Carpathians or even north of the Alps) in addition to their Mediterranean refuge areas. PMID:22953783

  4. Impact of climate changes during the last 5 million years on groundwater in basement aquifers.

    PubMed

    Aquilina, Luc; Vergnaud-Ayraud, Virginie; Les Landes, Antoine Armandine; Pauwels, Hélène; Davy, Philippe; Pételet-Giraud, Emmanuelle; Labasque, Thierry; Roques, Clément; Chatton, Eliot; Bour, Olivier; Ben Maamar, Sarah; Dufresne, Alexis; Khaska, Mahmoud; Le Gal La Salle, Corinne; Barbecot, Florent

    2015-09-22

    Climate change is thought to have major effects on groundwater resources. There is however a limited knowledge of the impacts of past climate changes such as warm or glacial periods on groundwater although marine or glacial fluids may have circulated in basements during these periods. Geochemical investigations of groundwater at shallow depth (80-400 m) in the Armorican basement (western France) revealed three major phases of evolution: (1) Mio-Pliocene transgressions led to marine water introduction in the whole rock porosity through density and then diffusion processes, (2) intensive and rapid recharge after the glacial maximum down to several hundred meters depths, (3) a present-day regime of groundwater circulation limited to shallow depth. This work identifies important constraints regarding the mechanisms responsible for both marine and glacial fluid migrations and their preservation within a basement. It defines the first clear time scales of these processes and thus provides a unique case for understanding the effects of climate changes on hydrogeology in basements. It reveals that glacial water is supplied in significant amounts to deep aquifers even in permafrosted zones. It also emphasizes the vulnerability of modern groundwater hydrosystems to climate change as groundwater active aquifers is restricted to shallow depths.

  5. Glacial lake drainage in Patagonia (13-8 kyr) and response of the adjacent Pacific Ocean

    PubMed Central

    Glasser, Neil F.; Jansson, Krister N.; Duller, Geoffrey A. T.; Singarayer, Joy; Holloway, Max; Harrison, Stephan

    2016-01-01

    Large freshwater lakes formed in North America and Europe during deglaciation following the Last Glacial Maximum. Rapid drainage of these lakes into the Oceans resulted in abrupt perturbations in climate, including the Younger Dryas and 8.2 kyr cooling events. In the mid-latitudes of the Southern Hemisphere major glacial lakes also formed and drained during deglaciation but little is known about the magnitude, organization and timing of these drainage events and their effect on regional climate. We use 16 new single-grain optically stimulated luminescence (OSL) dates to define three stages of rapid glacial lake drainage in the Lago General Carrera/Lago Buenos Aires and Lago Cohrane/Pueyrredón basins of Patagonia and provide the first assessment of the effects of lake drainage on the Pacific Ocean. Lake drainage occurred between 13 and 8 kyr ago and was initially gradual eastward into the Atlantic, then subsequently reorganized westward into the Pacific as new drainage routes opened up during Patagonian Ice Sheet deglaciation. Coupled ocean-atmosphere model experiments using HadCM3 with an imposed freshwater surface “hosing” to simulate glacial lake drainage suggest that a negative salinity anomaly was advected south around Cape Horn, resulting in brief but significant impacts on coastal ocean vertical mixing and regional climate. PMID:26869235

  6. Drainage capture and discharge variations driven by glaciation in the Southern Alps, New Zealand

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ann V. Rowan; Mitchell A. Plummer; Simon H. Brocklehurst

    Sediment flux in proglacial fluvial settings is primarily controlled by discharge, which usually varies predictably over a glacial–interglacial cycle. However, glaciers can flow against the topographic gradient to cross drainage divides, reshaping fluvial drainage networks and dramatically altering discharge. In turn, these variations in discharge will be recorded by proglacial stratigraphy. Glacial-drainage capture often occurs in alpine environments where ice caps straddle range divides, and more subtly where shallow drainage divides cross valley floors. We investigate discharge variations resulting from glacial-drainage capture over the past 40 k.y. for the adjacent Ashburton, Rangitata, and Rakaia basins in the Southern Alps, Newmore » Zealand. Although glacial-drainage capture has previously been inferred in the range, our numerical glacier model provides the first quantitative demonstration that this process drives larger variations in discharge for a longer duration than those that occur due to climate change alone. During the Last Glacial Maximum, the effective drainage area of the Ashburton catchment increased to 160% of the interglacial value with drainage capture, driving an increase in discharge exceeding that resulting from glacier recession. Glacial-drainage capture is distinct from traditional (base level–driven) drainage capture and is often unrecognized in proglacial deposits, complicating interpretation of the sedimentary record of climate change.« less

  7. Chronology and provenance of last-glacial (Peoria) loess in western Iowa and paleoclimatic implications

    USGS Publications Warehouse

    Muhs, Daniel R.; Bettis, E. Arthur; Roberts, Helen M.; Harlan, Stephen S.; Paces, James B.; Reynolds, Richard L.

    2013-01-01

    Geologic archives show that the Earth was dustier during the last glacial period. One model suggests that increased gustiness (stronger, more frequent winds) enhanced dustiness. We tested this at Loveland, Iowa, one of the thickest deposits of last-glacial-age (Peoria) loess in the world. Based on K/Rb and Ba/Rb, loess was derived not only from glaciogenic sources of the Missouri River, but also distal loess from non-glacial sources in Nebraska. Optically stimulated luminescence (OSL) ages provide the first detailed chronology of Peoria Loess at Loveland. Deposition began after ~ 27 ka and continued until ~ 17 ka. OSL ages also indicate that mass accumulation rates (MARs) of loess were not constant. MARs were highest and grain size was coarsest during the time of middle Peoria Loess accretion, ~ 23 ka, when ~ 10 m of loess accumulated in no more than ~ 2000 yr and possibly much less. The timing of coarsest grain size and highest MAR, indicating strongest winds, coincides with a summer-insolation minimum at high latitudes in North America and the maximum southward extent of the Laurentide ice sheet. These observations suggest that increased dustiness during the last glacial period was driven largely by enhanced gustiness, forced by a steepened meridional temperature gradient.

  8. Glacial changes in warm pool climate dominated by shelf exposure and ice sheet albedo

    NASA Astrophysics Data System (ADS)

    Di Nezio, P. N.; Tierney, J. E.; Otto-Bliesner, B. L.; Timmermann, A.; Bhattacharya, T.; Brady, E. C.; Rosenbloom, N. A.

    2017-12-01

    The mechanisms driving glacial-interglacial changes in the climate of the Indo-Pacific warm pool (IPWP) are unclear. We addressed this issue combining model simulations and paleoclimate reconstructions of the Last Glacial Maximum (LGM). Two drivers - the exposure of tropical shelves due to lower sea level and a monsoonal response to ice sheet albedo - explain the proxy-inferred patterns of hydroclimate change. Shelf exposure influences IPWP climate by weakening the ascending branch of the Walker circulation. This response is amplified by coupled interactions akin to the Bjerknes feedback involving a stronger sea-surface temperature (SST) gradient along the equatorial Indian Ocean (IO). Ice sheet albedo enhances the import of cold, dry air into the tropics, weakening the Afro-Asian monsoon system. This "ventilation" mechanism alters temperature contrasts between the Arabian Sea and surrounding land leading to further monsoon weakening. Additional simulations show that the altered SST patterns associated with these responses are essential for explaining the proxy-inferred changes. Together our results show that ice sheets are a first order driver of tropical climate on glacial-interglacial timescales. While glacial climates are not a straightforward analogue for the future, our finding of an active Bjerknes feedback deserves further attention in the context of future climate projections.

  9. Magnetic Properties of Bermuda Rise Sediments Controlled by Glacial Cycles During the Late Pleistocene

    NASA Astrophysics Data System (ADS)

    Roud, S.

    2015-12-01

    Sediments from ODP site 1063 (Bermuda Rise, North Atlantic) contain a high-resolution record of geomagnetic field behavior during the Brunhes Chron. We present rock magnetic data of the upper 160 mcd (<900 ka) from hole 1063D that show magnetic properties vary in concert with glacial cycles. Magnetite appears to be the main magnetic carrier in the carbonate-dominated interglacial horizons, yet exhibits contrasting grain size distributions depending on the redox state of the horizons. Higher contributions of single domain magnetite exist above the present day sulfate reduction zone (ca. 44 mcd) with relatively higher multidomain magnetite components below that likely arise from the partial dissolution of SD magnetite in the deeper, anoxic horizons. Glacial horizons on the other hand, characterized by enhanced terrigenous deposition, show no evidence for diagenetic dissolution but do indicate the presence of authigenic greigite close to glacial maxima (acquisition of gyro-remanence, strong magnetostatic interactions and SD properties). Glacial horizons contain hematite (maxima in HIRM and S-Ratio consistent with a reddish hue) and exhibit higher ARM anisotropy and pronounced sedimentary fabrics. We infer that post depositional processes affected the magnetic grain size and mineralogy of Bermuda rise sediments deposited during the late Pleistocene. Hematite concentration is interpreted to reflect primary terrigenous input that is likely derived from the Canadian Maritime Provinces. A close correlation between HIRM and magnetic foliation suggests that changes in sediment composition (terrigenous vs. marine biogenic) were accompanied by changes in the depositional processes at the site.

  10. Ba/Ca in Planktonic Foraminifera as a Recorder of Freshwater Input to the Ocean: Proxy Refinement in the Gulf of Papua, Papua New Guinea

    NASA Astrophysics Data System (ADS)

    Gibson, K.

    2015-12-01

    In the study of paleoclimate, the past several decades have seen large strides in the advancement of proxies designed to reconstruct changes in sea surface temperature (SST); however, techniques for reconstructing ocean salinity are less well developed. The ratio of Ba/Ca in planktic foraminiferal tests has shown initial promise as a tool for reconstructing salinity in continental margin sites near river mouths. In these environments, Ba/Ca shows an inverse correlation with salinity, and often a less clear correlation to nutrients or indicators of productivity, as is more typical in open-ocean settings. An ideal area in which to apply and test foraminiferal Ba/Ca as a proxy for freshwater input is the Western Pacific Warm Pool (WPWP), where temperatures are relatively stable, but large variations in precipitation are today driven by the El Nino Southern Oscillation (ENSO) and strength of the Australian-Indonesian monsoon. Foraminiferal Ba/Ca in sediments proximal to a river mouth should therefore reflect changes in riverine input, which in turn reflect variations in precipitation on different timescales. We present here planktic foraminiferal δ18O, Ba/Ca, and Mg/Ca records spanning the last glacial-interglacial transition from marine sediment cores in the Gulf of Papua, located in the WPWP. The δ18O records show an increase in the magnitude of glacial-interglacial (G-IG) δ18O change (Δ18O) moving away from the coastline and the mouth of the primary local freshwater source, the Fly River. The reduced amplitude in G-IG Δ18O in the cores closer to shore, manifested by more negative δ18O values before ~20 kyr ago, is likely due to freshwater input from the Fly River, with the effects diminishing with distance from the Fly River source. Temperature and sea level are also changing over the deglaciation, however, contributing to the signal recorded in the calcite δ18O. We use planktic Mg/Ca analyses and independent records of sea level change to isolate the component of foraminiferal δ18O that is due to salinity, which we then compare to the Ba/Ca records. With continued work toward proxy development, Ba/Ca has the potential to provide insight into past changes in precipitation in the WPWP in response to large or rapid climate change.

  11. Evolution of the climatic tolerance and postglacial range changes of the most primitive orchids (Apostasioideae) within Sundaland, Wallacea and Sahul

    PubMed Central

    Mystkowska, Katarzyna; Kras, Marta; Dudek, Magdalena

    2016-01-01

    The location of possible glacial refugia of six Apostasioideae representatives is estimated based on ecological niche modeling analysis. The distribution of their suitable niches during the last glacial maximum (LGM) is compared with their current potential and documented geographical ranges. The climatic factors limiting the studied species occurrences are evaluated and the niche overlap between the studied orchids is assessed and discussed. The predicted niche occupancy profiles and reconstruction of ancestral climatic tolerances suggest high level of phylogenetic niche conservatism within Apostasioideae. PMID:27635348

  12. The vegetation history of the last glacial-interglacial cycle in eastern New South Wales, Australia

    NASA Astrophysics Data System (ADS)

    Williams, N. J.; Harle, K. J.; Gale, S. J.; Heijnis, H.

    2006-10-01

    We present a reconstruction of the vegetation history of the last glacial-interglacial cycle (ca. 75 k cal. yr BP-present) at Redhead Lagoon, an enclosed lake basin in coastal, eastern New South Wales, Australia. The sequence of vegetation change at the site is broadly comparable with the pattern of climatically induced changes observed in many other pollen records in southeast Australia. Open woodland-herbland and woodland-forest communities correspond with glacial and interglacial periods respectively, with an additional change towards a more open understorey vegetation assemblage over the last 40 000 yr. The driest conditions appear to have occurred during the height of the last glacial (some time between 30 and 20 k cal. yr BP). This is consistent with other records from southeast Australia, and provides support for a poleward shift in the subtropical anticyclone belt and, less certainly, for the thesis that the Southern Hemisphere westerlies intensified during this period. In marked contrast to most sites in southeast Australia, Casuarinaceae dominates the pollen record through the height of the last glacial period and into the Holocene. The postglacial climatic amelioration is accompanied by the general reappearance of tree pollen in the record, by the disappearance of several open and disturbed environment indicator taxa, by increases in organic sediment deposition and pollen taxon diversity, and by higher water balances. While climate appears to have been the major control on patterns of vegetation change at this site throughout most of the last glacial-interglacial cycle, changes in depositional environment and hydrology have also played a role. Significantly, substantial increases in the rate and magnitude of many indicators of environmental disturbance since European settlement suggest that humans are now the most important mechanism for environmental change. Copyright

  13. Replicate phylogenies and post-glacial range expansion of the pitcher-plant mosquito, Wyeomyia smithii, in North America.

    PubMed

    Merz, Clayton; Catchen, Julian M; Hanson-Smith, Victor; Emerson, Kevin J; Bradshaw, William E; Holzapfel, Christina M

    2013-01-01

    Herein we tested the repeatability of phylogenetic inference based on high throughput sequencing by increased taxon sampling using our previously published techniques in the pitcher-plant mosquito, Wyeomyia smithii in North America. We sampled 25 natural populations drawn from different localities nearby 21 previous collection localities and used these new data to construct a second, independent phylogeny, expressly to test the reproducibility of phylogenetic patterns. Comparison of trees between the two data sets based on both maximum parsimony and maximum likelihood with Bayesian posterior probabilities showed close correspondence in the grouping of the most southern populations into clear clades. However, discrepancies emerged, particularly in the middle of W. smithii's current range near the previous maximum extent of the Laurentide Ice Sheet, especially concerning the most recent common ancestor to mountain and northern populations. Combining all 46 populations from both studies into a single maximum parsimony tree and taking into account the post-glacial historical biogeography of associated flora provided an improved picture of W. smithii's range expansion in North America. In a more general sense, we propose that extensive taxon sampling, especially in areas of known geological disruption is key to a comprehensive approach to phylogenetics that leads to biologically meaningful phylogenetic inference.

  14. Impact of abrupt deglacial climate change on tropical Atlantic subsurface temperatures

    PubMed Central

    Schmidt, Matthew W.; Chang, Ping; Hertzberg, Jennifer E.; Them, Theodore R.; Ji, Link; Otto-Bliesner, Bette L.

    2012-01-01

    Both instrumental data analyses and coupled ocean-atmosphere models indicate that Atlantic meridional overturning circulation (AMOC) variability is tightly linked to abrupt tropical North Atlantic (TNA) climate change through both atmospheric and oceanic processes. Although a slowdown of AMOC results in an atmospheric-induced surface cooling in the entire TNA, the subsurface experiences an even larger warming because of rapid reorganizations of ocean circulation patterns at intermediate water depths. Here, we reconstruct high-resolution temperature records using oxygen isotope values and Mg/Ca ratios in both surface- and subthermocline-dwelling planktonic foraminifera from a sediment core located in the TNA over the last 22 ky. Our results show significant changes in the vertical thermal gradient of the upper water column, with the warmest subsurface temperatures of the last deglacial transition corresponding to the onset of the Younger Dryas. Furthermore, we present new analyses of a climate model simulation forced with freshwater discharge into the North Atlantic under Last Glacial Maximum forcings and boundary conditions that reveal a maximum subsurface warming in the vicinity of the core site and a vertical thermal gradient change at the onset of AMOC weakening, consistent with the reconstructed record. Together, our proxy reconstructions and modeling results provide convincing evidence for a subsurface oceanic teleconnection linking high-latitude North Atlantic climate to the tropical Atlantic during periods of reduced AMOC across the last deglacial transition. PMID:22908256

  15. Impact of abrupt deglacial climate change on tropical Atlantic subsurface temperatures.

    PubMed

    Schmidt, Matthew W; Chang, Ping; Hertzberg, Jennifer E; Them, Theodore R; Ji, Link; J, Link; Otto-Bliesner, Bette L

    2012-09-04

    Both instrumental data analyses and coupled ocean-atmosphere models indicate that Atlantic meridional overturning circulation (AMOC) variability is tightly linked to abrupt tropical North Atlantic (TNA) climate change through both atmospheric and oceanic processes. Although a slowdown of AMOC results in an atmospheric-induced surface cooling in the entire TNA, the subsurface experiences an even larger warming because of rapid reorganizations of ocean circulation patterns at intermediate water depths. Here, we reconstruct high-resolution temperature records using oxygen isotope values and Mg/Ca ratios in both surface- and subthermocline-dwelling planktonic foraminifera from a sediment core located in the TNA over the last 22 ky. Our results show significant changes in the vertical thermal gradient of the upper water column, with the warmest subsurface temperatures of the last deglacial transition corresponding to the onset of the Younger Dryas. Furthermore, we present new analyses of a climate model simulation forced with freshwater discharge into the North Atlantic under Last Glacial Maximum forcings and boundary conditions that reveal a maximum subsurface warming in the vicinity of the core site and a vertical thermal gradient change at the onset of AMOC weakening, consistent with the reconstructed record. Together, our proxy reconstructions and modeling results provide convincing evidence for a subsurface oceanic teleconnection linking high-latitude North Atlantic climate to the tropical Atlantic during periods of reduced AMOC across the last deglacial transition.

  16. Erosion patterns produced by the paleo Haizishan ice cap, SE Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Fu, P.; Stroeven, A. P.; Harbor, J.; Hättestrand, C.; Heyman, J.; Caffee, M. W.

    2017-12-01

    Erosion is a primary driver of landscape evolution, topographic relief production, geochemical cycles, and climate change. Combining in situ 10Be and 26Al exposure age dating, geomorphological mapping, and field investigations, we examine glacial erosion patterns of the almost 4,000 km2 paleo Haizishan ice cap on the southeastern Tibetan Plateau. Our results show that ice caps on the low relief Haizishan Plateau produced a zonal pattern of landscape modification. In locations where apparent exposure ages on bedrock are consistent with the last deglaciation, complete resetting of the cosmogenic exposure age clock indicates glacial erosion of at least a few meters. However, older apparent exposure ages on bedrock in areas known to have been covered by the paleo ice cap during the Last Glacial Maximum indicate inheritance and thus limited glacial erosion. Inferred surface exposure ages from cosmogenic depth profiles through two saprolites vary from resetting and thus saprolite profile truncation to nuclide inheritance indicating limited erosion. Finally, significant nuclide inheritance in river sand samples from basins on the scoured plateau surface also indicate limited glacial erosion during the last glaciation. Hence, for the first time, our study shows clear evidence of preservation under non-erosive ice on the Tibetan Plateau. As patterns of glacial erosion intensity are largely driven by the basal thermal regime, our results confirm earlier inferences from geomorphology for a concentric basal thermal pattern for the paleo Haizishan ice cap during the LGM.

  17. Phylogenetic assemblage structure of North American trees is more strongly shaped by glacial-interglacial climate variability in gymnosperms than in angiosperms.

    PubMed

    Ma, Ziyu; Sandel, Brody; Svenning, Jens-Christian

    2016-05-01

    How fast does biodiversity respond to climate change? The relationship of past and current climate with phylogenetic assemblage structure helps us to understand this question. Studies of angiosperm tree diversity in North America have already suggested effects of current water-energy balance and tropical niche conservatism. However, the role of glacial-interglacial climate variability remains to be determined, and little is known about any of these relationships for gymnosperms. Moreover, phylogenetic endemism, the concentration of unique lineages in restricted ranges, may also be related to glacial-interglacial climate variability and needs more attention. We used a refined phylogeny of both angiosperms and gymnosperms to map phylogenetic diversity, clustering and endemism of North American trees in 100-km grid cells, and climate change velocity since Last Glacial Maximum together with postglacial accessibility to recolonization to quantify glacial-interglacial climate variability. We found: (1) Current climate is the dominant factor explaining the overall patterns, with more clustered angiosperm assemblages toward lower temperature, consistent with tropical niche conservatism. (2) Long-term climate stability is associated with higher angiosperm endemism, while higher postglacial accessibility is linked to to more phylogenetic clustering and endemism in gymnosperms. (3) Factors linked to glacial-interglacial climate change have stronger effects on gymnosperms than on angiosperms. These results suggest that paleoclimate legacies supplement current climate in shaping phylogenetic patterns in North American trees, and especially so for gymnosperms.

  18. Glacier changes since Local Last Glacial Maximum in the South-West slope of Nevado Hualcán, Cordillera Blanca, Peru, deduced from moraine mapping and GIS-based analysis

    NASA Astrophysics Data System (ADS)

    Giráldez, Claudia; Palacios, David; Haeberli, Wilfried; Úbeda, Jose; Schauwecker, Simone; Torres, Judith

    2014-05-01

    Anticipating and assessing hazards and risks associated with the shrinking of surface and subsurface ice in cold mountain chains is facilitated by empirical-quantitative data on present and past rates of change, as well as by a general understanding of related landforms and landscape evolution through time. Rock/ice avalanches and devastating outburst floods from glacial lakes indeed constitute a major cause of severe damage in populated mountain areas such as the Cordillera Blanca whose combination of tectonic, topographic and glaciological characteristics make it a threatened region. This study focuses on the Río Chucchún catchment above the city of Carhuaz, which was recently affected by a flood/debris flow from a rock/ice avalanche impacting a recently grown lake (Laguna 513). Traces left by past glaciations strongly affect the current geomorphodinamic behaviour of the catchment. For instance, a prominent sediment-filled glacial overdeepening behind Younger Dryas (YD) moraines (Pampa de Shonquil) with its retention function strongly influenced the chain of processes initiated by the outburst of Laguna 513. The aim of this study is to reconstruct earlier glacial phases in the SW slope of Nevado Hualcán (Río Chucchún catchment), in order to compile quantitative information on surface areas and Equilibrium Line Altitudes (ELAs). To do so, glacier stages were assigned to five different glacial phases, through photointerpretation and moraine cartography: 2003; 1962; Hualcán-I-LIA (15th to 18th centuries); Hualcán-II-YD (~12,5 ka BP); and Hualcán-III-LLGM (~34 to 21 ka BP). Glacial stages Hualcán-I-LIA, Hualcán-II-YD and Hualcán-III-LLGM present relative dating based on previous studies from different authors in the Peruvian Andes. Once glaciers were delimited, their surface areas and Equilibrium Line Altitudes (ELAs) were calculated. For ELA estimation three different methods were used: the mid-range elevation, the Accumulation Area Ratio (AAR), and the Area x Altitude Balance Ratio (AABR). The results show a decrease in surface area with respect to Hualcán-III-LLGM of 16% for Hualcán-II-YD; 50% for Hualcán-I-LIA; and 74% for 2003. With respect to 2003, ELAs shifted ~520 m since the Local Last Glacial Maximum (LLGM), ~470 m since a marked late-glacial stage (YD?), ~130 m since the Little Ice Age (LIA) and about ~100 m since 1962. If the changes are exclusively attributed to temperature effects, warming since LLGM can be estimated at some 3°C and since the maximum glacier extent of LIA at about 0.8°C. Such values are rather close to mean global temperature change during the corresponding intervals. Most of the ELA shift since LIA appears to have taken place during recent decades characterized by very rapid glacier shrinkage, although air temperature does not seem to have risen considerably during the last 30 years. These results along with other environmental and social approaches will contribute to a better understanding of impacts from climate change and glacier shrinkage in order to develop adaptation, mitigation and disaster risk reduction strategies in the Peruvian Andes.

  19. Glacial isostatic adjustment using GNSS permanent stations and GIA modelling tools

    NASA Astrophysics Data System (ADS)

    Kollo, Karin; Spada, Giorgio; Vermeer, Martin

    2013-04-01

    Glacial Isostatic Adjustment (GIA) affects the Earth's mantle in areas which were once ice covered and the process is still ongoing. In this contribution we focus on GIA processes in Fennoscandian and North American uplift regions. In this contribution we use horizontal and vertical uplift rates from Global Navigation Satellite System (GNSS) permanent stations. For Fennoscandia the BIFROST dataset (Lidberg, 2010) and North America the dataset from Sella, 2007 were used respectively. We perform GIA modelling with the SELEN program (Spada and Stocchi, 2007) and we vary ice model parameters in space in order to find ice model which suits best with uplift values obtained from GNSS time series analysis. In the GIA modelling, the ice models ICE-5G (Peltier, 2004) and the ice model denoted as ANU05 ((Fleming and Lambeck, 2004) and references therein) were used. As reference, the velocity field from GNSS permanent station time series was used for both target areas. Firstly the sensitivity to the harmonic degree was tested in order to reduce the computation time. In the test, nominal viscosity values and pre-defined lithosphere thicknesses models were used, varying maximum harmonic degree values. Main criteria for choosing the suitable harmonic degree was chi-square fit - if the error measure does not differ more than 10%, then one might use as well lower harmonic degree value. From this test, maximum harmonic degree of 72 was chosen to perform calculations, as the larger value did not significantly modify the results obtained, as well the computational time for observations was kept reasonable. Secondly the GIA computations were performed to find the model, which could fit with highest probability to the GNSS-based velocity field in the target areas. In order to find best fitting Earth viscosity parameters, different viscosity profiles for the Earth models were tested and their impact on horizontal and vertical velocity rates from GIA modelling was studied. For every tested model the chi-square misfit for horizontal, vertical and three-dimensional velocity rates from the reference model was found (Milne, 2001). Finally, the best fitting models from GIA modelling were compared with rates obtained from GNSS data. Keywords: Fennoscandia, North America, land uplift, glacial isostatic adjustment, visco-elastic modelling, BIFROST. References Lidberg, M., Johannson, J., Scherneck, H.-G. and Milne, G. (2010). Recent results based on continuous GPS observations of the GIA process in Fennoscandia from BIFROST. Journal of Geodynamics, 50. pp. 8-18. Sella, G. F., Stein, S., Dixon, T. H., Craymer, M., James, T. S., Mazotti, S. and Dokka, R. K. (2007). Observations of glacial isostatic adjustment in "stable" North America with GPS. Geophysical Research Letters, 34, L02306. Spada, G., Stocchi, P. (2007). SELEN: A Fortran 90 program for solving the "sea-level equation". Computers & Geosciences, 33:538-562, 2007. Peltier, W. R. (2004). Global glacial isostasy and the surface of the ice-age Earth: The Ice-5G (VM2) model and GRACE. Annu. Rev. Earth Planet. Sci., 32:111-149, 2004. Fleming, K. and Lambeck, K. (2004). Constraints on the Greenland Ice Sheet since the Last Glacial Maximum from sea-level observations and glacial-rebound models. Quaternary Science Reviews 23 (2004), pp. 1053-1077. Milne, G. A. and Davis, J. L. and Mitrovica, J. X. and Scherneck, H.-G. and Johansson, J. M. and Vermeer, M. and Koivula, H. (2001). Space-geodetic constraints on glacial isostatic adjustment in Fennoscandia. Science 291 (2001), pp. 2381-2385.

  20. Precession-paced thermocline water temperature changes in response to upwelling conditions off southern Sumatra over the past 300,000 years

    NASA Astrophysics Data System (ADS)

    Wang, Xingxing; Jian, Zhimin; Lückge, Andreas; Wang, Yue; Dang, Haowen; Mohtadi, Mahyar

    2018-07-01

    Modern variations of sea surface temperature (SST) and thermocline water temperature (TWT) off southern Sumatra are responding to local upwelling conditions which are controlled by the Australian-Indonesian winter monsoon. The relationships between SST, TWT and upwelling during the past glacial-interglacial cycles are less clearly understood. In this study, SST and TWT variabilities over the past 300 kyr are reconstructed by using foraminiferal Mg/Ca-paleothermometry in sediment core SO139-74 KL off southern Sumatra (6°32.6‧S, 103°50‧E; 1690 m water depth). Whereas SST shows a clear glacial-interglacial cycle, TWT displays a predominant cycle at the precession band. Generally, the TWT record varies with total organic carbon content, revealing that similar to today, TWT and upwelling intensity off southern Sumatra vary in concert during the past 300 kyr. The lack of glacial-interglacial variability in the TWT suggests a limited role of glacial boundary conditions, such as changing sea level and ice volume, on the upwelling intensity in this region. The vertical gradients of upper water δ18O and temperature at this site also reveal precessional cyclicity. Our model simulation of air-sea interaction further supports the low TWTs during periods of enhanced upwelling and precession minimum.

  1. Sediment Production and Storage Through a Glacial-Interglacial Cycle on a Cool-Temperate Glaciated Margin

    NASA Astrophysics Data System (ADS)

    Powell, R. D.

    2001-12-01

    The southern Alaska margin has high coastal mountains, which coupled with temperate glaciation, result in extremely high modern erosion rates (e.g. Jaeger et al., 2001), possibly exceeding rates of orogenic uplift (Meigs and Sauber, 2000). Where measured, modern sediment yields are among the highest of any basin worldwide (Hallet et al., 1996; Elverhoi et al., 1998; Jaeger et al., 1998). In Muir Inlet, Glacier Bay, sediment yields from slowly retreating glaciers decrease logarithmically with decreasing drainage basin area (Powell, 1991), a trend also reflected in regional data synthesized in Hallet et al. (1996). Alley (1997) then hypothesized that if erosion increases with basin area then where two tributaries join, deeper erosion would ensue, which is consistent with linear erosional troughs and hanging valleys. The idea is also consistent with the general downglacier increase in water flux at the glacier bed. However over longer periods, data from seismic profiles of the Gulf of Alaska shelf, show sediment yields are nearly the same through a glacial-interglacial cycle; regional data from other glaciated basins appear to confirm that trend (Elverhoi et al., 1998). If yields are continuously high from bedrock erosion, then why are mountains not eroded to base level because erosion rates are higher than isostatic uplift? Why are trends in yields apparently different during recent retreats with decreasing basin sizes than during longer term glacial cycles? Answers to these questions may be numerous and compound; however, one possibility will be evaluated. We know there is significant modern bedrock erosion occurring during glacial retreat and that also appears to have been the case during advance. Native stories describing the last (Little Ice Age) advance in Glacier Bay describe a large amount of sediment being produced (Powell et al., 1995) indicating that significant erosion was occurring. Fjord-wall stratigraphy shows that sediment had infilled much of the Bay up to ca. 200 m above modern sea level (Goldthwait,1986) prior to the LIA. During that advance, all sediments were then eroded down to bedrock, locally up to 400-500 m below sea level (Powell and Molnia, 1989), and then dumped at the Bay entrance, the site of maximum advance Powell et al., 1995). By inference, because most sediment packages on the shelf are deposited during glacially advanced phases, they probably mostly include sediment redistributed from fjords and inner shelf with a minor component from freshly eroded mountain bedrock. The ELA, under which most erosion may occur (Meigs and Sauber, 2000), lies over fjords during glacial maxima where the glacier is probably thickest with pressure melting and melting/freezing occurring at the bed. Erosion of sediment deposited there during a retreat phase may be enhanced, as may fjord over-deepening, whereas, thinner ice over mountains is likely to be cold at the bed, limiting erosion. As the glacier retreats the ELA moves toward the mountains as may the center of erosion, which then occurs mainly on bedrock. Mountain uplift may be enhanced during interglacials when glacio-isostatic rebound occurs and increased erosion adds to the isostatic effect. Therefore, during glacial-interglacial cycles average sediment yields from a glacier may not vary significantly, but the main centers of erosion change through time as does the eroding substrate and locations of depocenters.

  2. Proglacial hydrology in the tropical Andes: lessons from the Cordillera Blanca, Peru (Invited)

    NASA Astrophysics Data System (ADS)

    McKenzie, J. M.; Mark, B. G.; Baraer, M.

    2009-12-01

    Understanding the complexities of tropical Andean hydrology is critical for managing modern water resources and interpreting paleohydrologic records. Glaciers are the most visible component of these systems, responding to global climate change and acting as critical hydrologic reservoirs. Tropical Andean glaciers are undergoing rapid retreat with complex impacts on the downstream hydrology. Groundwater is also an important component of the Andean regional hydrologic system, but its contribution is difficult to assess due to remote site access, minimal baseline data, and lack of continuous historical discharge and precipitation measurements. We have synthesized hydrochemical data from synoptically sampled glacial melt water, groundwater, precipitation, and stream discharge collected intermittently between 1998 and July 2008 throughout the Callejon de Huaylas, a 5000 km2 watershed that drains the western side of the Cordillera Blanca in northern Perú. Our data from 2004 to 2006 show systematic annual shifts in the isotopic ratios (δ18O and δ2H) of river water, indicating an increase in glacial melt water input, and we are able to use these changes across the Cordillera Blanca to estimate an average increase of 1.6 (± 1.1) % in the specific discharge of the glacierized basins. Enhanced total stream discharge in more glacierized catchments (>20% glacier area) is demonstrated by a significant positive trend in a 43-year discharge anomaly record. Our hydrochemical basin characterization method (HBCM) uses chemical mass balance mixing to quantify the contribution of glacial melt water, groundwater, and surface runoff to streams for different valleys and nested watersheds in the Callejon de Huaylas. The Yanamarey basin (7% glaciated) has been observed since 1998 and the HBCM results show good agreement with measured stream discharge (maximum R2 of 0.99) for monthly cumulative values. These results suggest that for most of the studied years groundwater is the main contributor (median value = 59%) to basin outflow during the dry season and also that it is subject to large flux variations. The groundwater system appears to have two flow components with 3- and 18-to-36- month residence times. The pro-glacial area in the Callejon de Huaylas has extensive long, relatively low-relief valleys that connect to the main Rio Santa Valley. We have assessed groundwater contributions to river outflow using HBCM from four of these valleys with differing geomorphic features (e.g., lakes, wetlands, glacial cover) and bedrock lithology, and find that there is a connection between increasing glacial cover and decreasing relative groundwater contributions. The groundwater is stored and flows through the heterogeneous unconsolidated valley fill materials (e.g., glacial-lacustrine and landslide deposits) deposited since the local last glacial maximum. The results from this study have important implications for interpreting high resolution paleohydrologic records from Andean glacial valleys. Groundwater is a critical component of the hydrologic system, in particular for high elevation watersheds, and the resulting outflow from these basins is already partially time-integrated due to groundwater mixing and storage.

  3. Sensitivity of Photosynthetic Gas Exchange and Growth of Lodgepole Pine to Climate Variability Depends on the Age of Pleistocene Glacial Surfaces

    NASA Astrophysics Data System (ADS)

    Osborn, B.; Chapple, W.; Ewers, B. E.; Williams, D. G.

    2014-12-01

    The interaction between soil conditions and climate variability plays a central role in the ecohydrological functions of montane conifer forests. Although soil moisture availability to trees is largely dependent on climate, the depth and texture of soil exerts a key secondary influence. Multiple Pleistocene glacial events have shaped the landscape of the central Rocky Mountains creating a patchwork of soils differing in age and textural classification. This mosaic of soil conditions impacts hydrological properties, and montane conifer forests potentially respond to climate variability quite differently depending on the age of glacial till and soil development. We hypothesized that the age of glacial till and associated soil textural changes exert strong control on growth and photosynthetic gas exchange of lodgepole pine. We examined physiological and growth responses of lodgepole pine to interannual variation in maximum annual snow water equivalence (SWEmax) of montane snowpack and growing season air temperature (Tair) and vapor pressure deficit (VPD) across a chronosequence of Pleistocene glacial tills ranging in age from 700k to 12k years. Soil textural differences across the glacial tills illustrate the varying degrees of weathering with the most well developed soils with highest clay content on the oldest till surfaces. We show that sensitivity of growth and carbon isotope discrimination, an integrated measure of canopy gas exchange properties, to interannual variation SWEmax , Tair and VPD is greatest on young till surfaces, whereas trees on old glacial tills with well-developed soils are mostly insensitive to these interannual climate fluctuations. Tree-ring widths were most sensitive to changes in SWEmax on young glacial tills (p < 0.01), and less sensitive on the oldest till (p < 0.05). Tair correlates strongly with δ13C values on the oldest and youngest tills sites, but shows no significant relationship on the middle aged glacial till. It is clear that growth and photosynthetic gas exchange parameters are sensitive to glacial till surfaces, which is evident by the different responses to SWEmax and Tair across sites.

  4. Plant macrofossil evidence for an early onset of the Holocene summer thermal maximum in northernmost Europe

    PubMed Central

    Väliranta, M.; Salonen, J. S.; Heikkilä, M.; Amon, L.; Helmens, K.; Klimaschewski, A.; Kuhry, P.; Kultti, S.; Poska, A.; Shala, S.; Veski, S.; Birks, H. H.

    2015-01-01

    Holocene summer temperature reconstructions from northern Europe based on sedimentary pollen records suggest an onset of peak summer warmth around 9,000 years ago. However, pollen-based temperature reconstructions are largely driven by changes in the proportions of tree taxa, and thus the early-Holocene warming signal may be delayed due to the geographical disequilibrium between climate and tree populations. Here we show that quantitative summer-temperature estimates in northern Europe based on macrofossils of aquatic plants are in many cases ca. 2 °C warmer in the early Holocene (11,700–7,500 years ago) than reconstructions based on pollen data. When the lag in potential tree establishment becomes imperceptible in the mid-Holocene (7,500 years ago), the reconstructed temperatures converge at all study sites. We demonstrate that aquatic plant macrofossil records can provide additional and informative insights into early-Holocene temperature evolution in northernmost Europe and suggest further validation of early post-glacial climate development based on multi-proxy data syntheses. PMID:25858780

  5. Region-wide and ecotype-specific differences in demographic histories of threespine stickleback populations, estimated from whole genome sequences.

    PubMed

    Liu, Shenglin; Hansen, Michael M; Jacobsen, Magnus W

    2016-10-01

    We analysed 81 whole genome sequences of threespine sticklebacks from Pacific North America, Greenland and Northern Europe, representing 16 populations. Principal component analysis of nuclear SNPs grouped populations according to geographical location, with Pacific populations being more divergent from each other relative to European and Greenlandic populations. Analysis of mitogenome sequences showed Northern European populations to represent a single phylogeographical lineage, whereas Greenlandic and particularly Pacific populations showed admixture between lineages. We estimated demographic history using a genomewide coalescence with recombination approach. The Pacific populations showed gradual population expansion starting >100 Kya, possibly reflecting persistence in cryptic refuges near the present distributional range, although we do not rule out possible influence of ancient admixture. Sharp population declines ca. 14-15 Kya were suggested to reflect founding of freshwater populations by marine ancestors. In Greenland and Northern Europe, demographic expansion started ca. 20-25 Kya coinciding with the end of the Last Glacial Maximum. In both regions, marine and freshwater populations started to show different demographic trajectories ca. 8-9 Kya, suggesting that this was the time of recolonization. In Northern Europe, this estimate was surprisingly late, but found support in subfossil evidence for presence of several freshwater fish species but not sticklebacks 12 Kya. The results demonstrate distinctly different demographic histories across geographical regions with potential consequences for adaptive processes. They also provide empirical support for previous assumptions about freshwater populations being founded independently from large, coherent marine populations, a key element in the Transporter Hypothesis invoked to explain the widespread occurrence of parallel evolution across freshwater stickleback populations. © 2016 John Wiley & Sons Ltd.

  6. Aeolian stratigraphy describes ice-age paleoenvironments in unglaciated Arctic Alaska

    NASA Astrophysics Data System (ADS)

    Gaglioti, Benjamin V.; Mann, Daniel H.; Groves, Pamela; Kunz, Michael L.; Farquharson, Louise M.; Reanier, Richard E.; Jones, Benjamin M.; Wooller, Matthew J.

    2018-02-01

    Terrestrial paleoenvironmental records with high dating resolution extending into the last ice age are rare from the western Arctic. Such records can test the synchronicity and extent of ice-age climatic events and define how Arctic landscapes respond to rapid climate changes. Here we describe the stratigraphy and sedimentology of a yedoma deposit in Arctic Alaska (the Carter Section) dating to between 37,000 and 9000 calibrated radiocarbon years BP (37-9 ka) and containing detailed records of loess and sand-sheet sedimentation, soil development, carbon storage, and permafrost dynamics. Alternation between sand-sheet and loess deposition provides a proxy for the extent and activity of the Ikpikpuk Sand Sea (ISS), a large dune field located immediately upwind. Warm, moist interstadial times (ca. 37, 36.3-32.5, and 15-13 ka) triggered floodplain aggradation, permafrost thaw, reduced loess deposition, increased vegetation cover, and rapid soil development accompanied by enhanced carbon storage. During the Last Glacial Maximum (LGM, ca. 28-18 ka), rapid loess deposition took place on a landscape where vegetation was sparse and non-woody. The most intense aeolian activity occurred after the LGM between ca. 18 and 15 ka when sand sheets fringing the ISS expanded over the site, possibly in response to increasingly droughty conditions as summers warmed and active layers deepened. With the exception of this lagged LGM response, the record of aeolian activity at the Carter Section correlates with other paleoenvironmental records from unglaciated Siberia and Alaska. Overall, rapid shifts in geomorphology, soils, vegetation, and permafrost portray an ice-age landscape where, in contrast to the Holocene, environmental change was chronic and dominated by aeolian processes.

  7. Tropical North Atlantic subsurface warming events as a fingerprint for AMOC variability during Marine Isotope Stage 3

    NASA Astrophysics Data System (ADS)

    Parker, Andrew O.; Schmidt, Matthew W.; Chang, Ping

    2015-11-01

    The role of Atlantic Meridional Overturning Circulation (AMOC) as the driver of Dansgaard-Oeschger (DO) variability that characterized Marine Isotope Stage 3 (MIS 3) has long been hypothesized. Although there is ample proxy evidence suggesting that DO events were robust features of glacial climate, there is little data supporting a link with AMOC. Recently, modeling studies and subsurface temperature reconstructions have suggested that subsurface warming across the tropical North Atlantic can be used to fingerprint a weakened AMOC during the deglacial because a reduction in the strength of the western boundary current allows warm salinity maximum water of the subtropical gyre to enter the deep tropics. To determine if AMOC variability played a role during the DO cycles of MIS 3, we present new, high-resolution Mg/Ca and δ18O records spanning 24-52 kyr from the near-surface dwelling planktonic foraminifera Globigerinoides ruber and the lower thermocline dwelling planktonic foraminifera Globorotalia truncatulinoides in Southern Caribbean core VM12-107 (11.33°N, 66.63°W, 1079 m depth). Our subsurface Mg/Ca record reveals abrupt increases in Mg/Ca ratios (the largest equal to a 4°C warming) during the interstadial-stadial transition of most DO events during this period. This change is consistent with reconstructions of subsurface warming events associated with cold events across the deglacial using the same core. Additionally, our data support the conclusion reached by a recently published study from the Florida Straits that AMOC did not undergo significant reductions during Heinrich events 2 and 3. This record presents some of the first high-resolution marine sediment derived evidence for variable AMOC during MIS 3.

  8. Traces of Old Glaciations in East-central Alaska

    NASA Astrophysics Data System (ADS)

    Duk-Rodkin, A.; Barendregt, R. W.; Weber, F.

    2001-12-01

    The East-central Alaska record of glaciations is similar to that preserved in the west-central Yukon. Surficial geologic mapping of the Yukon-Tanana upland has indicated at least 5 glacial periods including at least one early Holocene. The two earliest glaciations are of pre-Mid Pleistocene age and followed regional erosion and renewed uplift ca.4 Ma. The earliest glaciation of west-central Yukon occurred between 2.6 and 2.9 Ma, forming a continuous carapace of ice covering all the mountain ranges except for a small part of the Dawson Range. This first glaciation was also the most extensive in the region, and resulted in the NW diversion of Yukon River into Alaska by the Cordilleran Ice Sheet. Stratigraphic evidence of 6 glaciations of pre-Mid Pleistocene age is preserved in the western Canadian sector of the Tintina Trench. The limits of these glaciations have been mapped in Yukon on the basis of glacial landforms and the distribution of erratics. Although morphological features of older glaciations (Plio-Pleistocene) are generally not well preserved, there is relatively good control on the distribution of glacial features for two of the older glaciations in Mt.Harper, Alaska. Stratigraphic evidence of at least 3 older glaciations is found in the Goodpastor River. An initial magnetostratigraphic study of three sites in east-central Alaska have yielded normal magnetic polarities only. The sites are:(1) a relatively weathered lowermost till outcropping along Goodpastor River on the Yukon-Tanana upland,(2) an extremely weathered high level moraine (609m) on the western side of the Gerstle River, near Granite Mt.in the Alaska Range and (3)ca.914m pediment containing glacial erratics and a luvisol at its surface, located on Tok River, Tanana Valley, Alaska Range. The normal polarity of the first site likely indicates a Brunhes age rather than a normal subchron within the Matuyama Reversed Chron based on the modest degree of weathering of the till and lack of any reversed overprint. The second site may be related to an older glacial event based on the high degree of clast weathering (>90%) and the presence of a luvisol over 1m depth. Clasts at the third site are better preserved suggesting the normal magnetization of these sediments may be Brunhes age. Deeply weathered clasts and red soils (Wounded Moose Paleosol)are found on pre-Mid Pleistocene glacial drift surfaces in west-central Yukon and appear also to be present on the older drift surfaces in east-central Alaska (for example, the well developed paleosol exposed in a borrow pit at the Tok town site). The presence of relatively old (early Brunhes) glacial deposits at high elevations (third site) could be explained by tectonic uplift, however a minimum of 300m of post depositional uplift would be required to account for the present elevation of these surfaces. Evidence for the diversion of the Yukon River by the first glaciation is seen near Circle, Alaska where lower fluvial gravels free of argillites of eastern (Ogilvie Mountains) provenance, are overlain by glacial outwash gravels containing approximately 8% argillites. The lower gravels are considered Late Pliocene (Gauss) based on plant macro fossils and normal polarity, and based on the absence of argillites, are clearly preglacial. Normally magnetized Late Pliocene pre-glacial fluvial gravels, the White Channel gravels, are found in the Tintina Trench and Klondike Plateau, which are conformably overlain by the Klondike outwash gravels associated with the first glaciation.

  9. Marine record of late quaternary glacial-interglacial fluctuations in the Ross Sea and evidence for rapid, episodic sea level change due to marine ice sheet collapse

    NASA Technical Reports Server (NTRS)

    Anderson, John B.

    1991-01-01

    Some of the questions to be addressed by SeaRISE include: (1) what was the configuration of the West Antarctic ice sheet during the last glacial maximum; (2) What is its configuration during a glacial minimum; and (3) has it, or any marine ice sheet, undergone episodic rapid mass wasting. These questions are addressed in terms of what is known about the history of the marine ice sheet, specifically in Ross Sea, and what further studies are required to resolve these problems. A second question concerns the extent to which disintegration of marine ice sheets may result in rises in sea level that are episodic in nature and extremely rapid, as suggested by several glaciologists. Evidence that rapid, episodic sea level changes have occurred during the Holocene is also reviewed.

  10. Forest contraction in north equatorial Southeast Asia during the Last Glacial Period

    PubMed Central

    Wurster, Christopher M.; Bird, Michael I.; Bull, Ian D.; Creed, Frances; Bryant, Charlotte; Dungait, Jennifer A. J.; Paz, Victor

    2010-01-01

    Today, insular Southeast Asia is important for both its remarkably rich biodiversity and globally significant roles in atmospheric and oceanic circulation. Despite the fundamental importance of environmental history for diversity and conservation, there is little primary evidence concerning the nature of vegetation in north equatorial Southeast Asia during the Last Glacial Period (LGP). As a result, even the general distribution of vegetation during the Last Glacial Maximum is debated. Here we show, using the stable carbon isotope composition of ancient cave guano profiles, that there was a substantial forest contraction during the LGP on both peninsular Malaysia and Palawan, while rainforest was maintained in northern Borneo. These results directly support rainforest “refugia” hypotheses and provide evidence that environmental barriers likely reduced genetic mixing between Borneo and Sumatra flora and fauna. Moreover, it sheds light on possible early human dispersal events. PMID:20660748

  11. Seafloor geomorphology of western Antarctic Peninsula bays: a signature of ice flow behaviour

    NASA Astrophysics Data System (ADS)

    Munoz, Yuribia P.; Wellner, Julia S.

    2018-01-01

    Glacial geomorphology is used in Antarctica to reconstruct ice advance during the Last Glacial Maximum and subsequent retreat across the continental shelf. Analogous geomorphic assemblages are found in glaciated fjords and are used to interpret the glacial history and glacial dynamics in those areas. In addition, understanding the distribution of submarine landforms in bays and the local controls exerted on ice flow can help improve numerical models by providing constraints through these drainage areas. We present multibeam swath bathymetry from several bays in the South Shetland Islands and the western Antarctic Peninsula. The submarine landforms are described and interpreted in detail. A schematic model was developed showing the features found in the bays: from glacial lineations and moraines in the inner bay to grounding zone wedges and drumlinoid features in the middle bay and streamlined features and meltwater channels in the outer bay areas. In addition, we analysed local variables in the bays and observed the following: (1) the number of landforms found in the bays scales to the size of the bay, but the geometry of the bays dictates the types of features that form; specifically, we observe a correlation between the bay width and the number of transverse features present in the bays. (2) The smaller seafloor features are present only in the smaller glacial systems, indicating that short-lived atmospheric and oceanographic fluctuations, responsible for the formation of these landforms, are only recorded in these smaller systems. (3) Meltwater channels are abundant on the seafloor, but some are subglacial, carved in bedrock, and some are modern erosional features, carved on soft sediment. Lastly, based on geomorphological evidence, we propose the features found in some of the proximal bay areas were formed during a recent glacial advance, likely the Little Ice Age.

  12. Late Pleistocene oscillations of the Drau Glacier (southern Austria)

    NASA Astrophysics Data System (ADS)

    Karnitschar, Christina; Reitner, Jürgen; Draganits, Erich

    2016-04-01

    The Drau Glacier was the largest Pleistocene glacier in the southeastern part of the Alps and significantly shaped the landscape in this region. The study area is located at the termination of the Drau Glacier in the southern part of Austria (Carinthia). The investigation aims to decipher glacial dynamics during the Late Pleistocene glacial advance, stabilisation and final recession of this glacier based on geological/geomorphological mapping, interpretation of airborne laser scan (ALS) topographic data and lithostratigraphic investigations of glacial and periglacial sediments. Special emphasis is laid on the reconstruction of the maximum extent of the glaciation (LGM). Based on previous mapping by Bobek (1959) and Ucik (1996-1998) more details have been gained for the paleogeographic reconstruction based on glacial and non-glacial erosion and accumulation features. These include traces of pre-Upper Pleistocene glaciation, drumlins, terminal moraines and kettle holes. Paleogeographic reconstruction was done with correlation of different outcrops based on lithostratigraphy and ALS topography. Sequences of gravel related to glacial advance covered by till, followed by periglacial sediments allowed detailed reconstruction of the glacial sequence in this area and the complex succession of various extents of the Drau Glacier. References Bobek, Hans. 1959: Der Eisrückgang im östlichen Klagenfurter Becken. In: Mitteilungen der österreichischen geographischen Gesellschaft, Wien. Ucik, Friedrich Hans. 1996: Bericht über geologische Aufnahmen im Quartär auf Blatt 204 Völkermarkt, Jb. Geol. B.-A., 141, S. 340, Wien. Ucik, Friedrich Hans. 1997: Bericht über geologische Aufnahmen im Quartär auf Blatt 204 Völkermarkt, Jb. Geol. B.-A., 141, S. 325-326, Wien. Ucik, Friedrich Hans. 1998: Bericht über geologische Aufnahmen im Quartär auf Blatt 204 Völkermarkt, Jb. Geol. B.-A., 142, S. 333-334, Wien.

  13. Glacial conditions in the Red Sea

    NASA Astrophysics Data System (ADS)

    Rohling, Eelco J.

    1994-10-01

    In this paper, results from previous studies on planktonic foraminifera, δ18O, and global sea level are combined to discuss climatic conditions in the Red Sea during the last glacial maximum (18,000 B.P.). First, the influence of 120-m sea level lowering on the exchange transport through the strait of Bab-el-Mandab is considered. This strait is the only natural connection of the Red Sea to the open ocean. Next, glacial Red Sea outflow salinity is estimated (about 48 parts per thousand) from the foraminiferal record. Combined, these results yield an estimate of the glacial net water deficit, which appears to have been quite similar to the present (about 2 m yr-1). Finally, budget calculation of δ18O fluxes suggests that the glacial δ18O value of evaporation was about 50% of the present value. This is considered to have resulted from substantially increased mean wind speeds over the glacial Red Sea, which would have caused a rapid drop in the kinematic fractionation factor for 18O. The sensitivity of the calculated values for water deficit and isotopic fractionation to the various assumptions and estimates is evaluated in the discussion. Improvents are to be expected especially through research on the glacial salinity contrast between the Red Sea and Gulf of Aden. It is argued, however, that such future improvement will likely result in a worsening of the isotopic discrepancy, thus increasing the need for an additional mechanism that influenced fractionation (such as mean wind speed). This study demonstrates the need for caution when calculating paleosalinities from δ18O records under the assumption that the modern S∶δ18O relation has remained constant through time. Previously overlooked factors, such as mean wind speed, may have significantly altered that relation in the past.

  14. Using environmental isotopes along with major hydro-geochemical compositions to assess deep groundwater formation and evolution in eastern coastal China

    NASA Astrophysics Data System (ADS)

    Xu, Naizheng; Gong, Jianshi; Yang, Guoqiang

    2018-01-01

    Hydrochemical analysis and environmental isotopic tracing are successfully applied to study groundwater evolution processes. Located in eastern China, the Jiangsu Coastal Plain is characterized by an extensively exploited deep groundwater system, and groundwater salinization has become the primary water environmental problem. This paper provides a case study on the use of a hydrochemical and environmental isotopic approach to assess possible mixing and evolution processes at Yoco Port, Jiangsu Province, China. Hydrochemical and isotopic patterns of deep groundwater allow one to distinguish different origins in deep water systems. HCO3- is the dominant anion in the freshwater samples, whereas Na+ and Cl- are the dominant major ions in the saline samples. According to δ18O, δ2H and 14C dating, the fresh water is derived from precipitation under a colder climate during the Glacial Maximum (Dali Glacial), while the saline groundwater is influenced by glacial-interglacial cycles during the Holocene Hypsithermal. The δ18O, δ2H and 3H data confirm that deep groundwater in some boreholes is mixed with overlying saline water. The deep groundwater reservoir can be divided into a saline water sector and a fresh water sector, and each show distinct hydrochemical and isotopic compositions. The saline groundwater found in the deep aquifer cannot be associated with present seawater intrusion. Since the Last Glacial Maximum in the Late Pleistocene, the deep groundwater flow system has evolved to its current status with the decrease in ice cover and the rising of sea level. However, the hydraulic connection is strengthened by continuous overexploitation, and deep groundwater is mixed with shallow groundwater at some points.

  15. Salt exchange in the Indian-Atlantic Ocean Gateway since the Last Glacial Maximum: A compensating effect between Agulhas Current changes and salinity variations?

    NASA Astrophysics Data System (ADS)

    Simon, Margit H.; Gong, Xun; Hall, Ian R.; Ziegler, Martin; Barker, Stephen; Knorr, Gregor; van der Meer, Marcel T. J.; Kasper, Sebastian; Schouten, Stefan

    2015-10-01

    The import of relatively salty water masses from the Indian Ocean to the Atlantic is considered to be important for the operational mode of the Atlantic Meridional Overturning Circulation (AMOC). However, the occurrence and the origin of changes in this import behavior on millennial and glacial/interglacial timescales remains equivocal. Here we reconstruct multiproxy paleosalinity changes in the Agulhas Current since the Last Glacial Maximum and compare the salinity pattern with records from the Indian-Atlantic Ocean Gateway (I-AOG) and model simulations using a fully coupled atmosphere-ocean general circulation model. The reconstructed paleosalinity pattern in the Agulhas Current displays coherent variability with changes recorded in the wider I-AOG region over the last glacial termination. We infer that salinities simultaneously increased in both areas consistent with a quasi interhemispheric salt-seesaw response, analogous to the thermal bipolar seesaw in response to a reduced cross-hemispheric heat and salt exchange during times of weakened AMOC. Interestingly, these hydrographic shifts can also be recognized in the wider Southern Hemisphere, which indicates that salinity anomalies are not purely restricted to the Agulhas Current System itself. More saline upstream Agulhas waters were propagated to the I-AOG during Heinrich Stadial 1 (HS1). However, the salt flux into the South Atlantic might have been reduced due to a decreased volume transport through the I-AOG during the AMOC slowdown associated with HS1. Hence, our combined data-model interpretation suggests that intervals with higher salinity in the Agulhas Current source region are not necessarily an indicator for an increased salt import via the I-AOG into the South Atlantic.

  16. Export production in the New-Zealand region since the Last Glacial Maximum

    NASA Astrophysics Data System (ADS)

    Durand, Axel; Chase, Zanna; Noble, Taryn L.; Bostock, Helen; Jaccard, Samuel L.; Kitchener, Priya; Townsend, Ashley T.; Jansen, Nils; Kinsley, Les; Jacobsen, Geraldine; Johnson, Sean; Neil, Helen

    2017-07-01

    Increased export production (EP) in the Subantarctic Zone (SAZ) of the Southern Ocean due to iron fertilisation has been proposed as a key mechanism for explaining carbon drawdown during the last glacial maximum (LGM). This work reconstructs marine EP since the LGM at four sites around New Zealand. For the first time in this region, 230-Thorium-normalised fluxes of biogenic opal, carbonate, excess barium, and organic carbon are presented. In Subtropical Waters and the SAZ, these flux variations show that EP has not changed markedly since the LGM. The only exception is a site currently north of the subtropical front. Here we suggest the subtropical front shifted over the core site between 18 and 12 ka, driving increased EP. To understand why EP remained mostly low and constant elsewhere, lithogenic fluxes at the four sites were measured to investigate changes in dust deposition. At all sites, lithogenic fluxes were greater during the LGM compared to the Holocene. The positive temporal correlation between the Antarctic dust record and lithogenic flux at a site in the Tasman Sea shows that regionally, increased dust deposition contributed to the high glacial lithogenic fluxes. Additionally, it is inferred that lithogenic material from erosion and glacier melting deposited on the Campbell Plateau during the deglaciation (18-12 ka). From these observations, it is proposed that even though increased glacial dust deposition may have relieved iron limitation within the SAZ around New Zealand, the availability of silicic acid limited diatom growth and thus any resultant increase in carbon export during the LGM. Therefore, silicic acid concentrations have remained low since the LGM. This result suggests that both silicic acid and iron co-limit EP in the SAZ around New Zealand, consistent with modern process studies.

  17. Changes in monsoon-driven upwelling in the South China Sea over glacial Terminations I and II: a multi-proxy record

    NASA Astrophysics Data System (ADS)

    Sadatzki, Henrik; Sarnthein, Michael; Andersen, Nils

    2016-06-01

    Upwelling intensity in the South China Sea has changed over glacial-interglacial cycles in response to orbital-scale changes in the East Asian Monsoon. Here, we evaluate new multi-proxy records of two sediment cores from the north-eastern South China Sea to uncover millennial-scale changes in winter monsoon-driven upwelling over glacial Terminations I and II. On the basis of U/Th-based speleothem chronology, we compare these changes with sediment records of summer monsoon-driven upwelling east of South Vietnam. Ocean upwelling is traced by reduced (UK'37-based) temperature and increased nutrient and productivity estimates of sea surface waters (δ13C on planktic foraminifera, accumulation rates of alkenones, chlorins, and total organic carbon). Accordingly, strong winter upwelling occurred north-west of Luzon (Philippines) during late Marine Isotope Stage 6.2, Heinrich (HS) and Greenland stadials (GS) HS-11, GS-26, GS-25, HS-1, and the Younger Dryas. During these stadials, summer upwelling decreased off South Vietnam and sea surface salinity reached a maximum suggesting a drop in monsoon rains, concurrent with speleothem records of aridity in China. In harmony with a stadial-to-interstadial see-saw pattern, winter upwelling off Luzon in turn was weak during interstadials, in particular those of glacial Terminations I and II, when summer upwelling culminated east of South Vietnam. Most likely, this upwelling terminated widespread deep-water stratification, coeval with the deglacial rise in atmospheric CO2. Yet, a synchronous maximum in precipitation fostered estuarine overturning circulation in the South China Sea, in particular as long as the Borneo Strait was closed when sea level dropped below -40 m.

  18. Glacial evolution in King George and Livingston Islands (Antarctica) since the Last Glacial Maximum based on cosmogenic nuclide dating and glacier surface reconstruction - CRONOANTAR project

    NASA Astrophysics Data System (ADS)

    Ruiz Fernández, Jesús; Oliva, Marc; Fernández Menéndez, Susana del Carmen; García Hernández, Cristina; Menéndez Duarte, Rosa Ana; Pellitero Ondicol, Ramón; Pérez Alberti, Augusto; Schimmelpfennig, Irene

    2017-04-01

    CRONOANTAR brings together researchers from Spain, Portugal, France and United Kingdom with the objective of spatially and temporally reconstruct the deglaciation process at the two largest islands in the South Shetlands Archipelago (Maritime Antarctica), since the Global Last Glacial Maximum. Glacier retreat in polar areas has major implications at a local, regional and even planetary scale. Global average sea level rise is the most obvious and socio-economically relevant, but there are others such as the arrival of new fauna to deglaciated areas, plant colonisation or permafrost formation and degradation. This project will study the ice-free areas in Byers and Hurd peninsulas (Livingston Island) and Fildes and Potter peninsulas (King George Island). Ice-cap glacier retreat chronology will be revealed by the use of cosmogenic isotopes (mainly 36Cl) on glacially originated sedimentary and erosive records. Cosmogenic dating will be complemented by other dating methods (C14 and OSL), which will permit the validation of these methods in regions with cold-based glaciers. Given the geomorphological evidences and the obtained ages, a deglaciation calendar will be proposed and we will use a GIS methodology to reconstruct the glacier extent and the ice thickness. The results emerging from this project will allow to assess whether the high glacier retreat rates observed during the last decades were registered in the past, or if they are conversely the consequence (and evidence) of the Global Change in Antarctica. Acknowledgements This work has been funded by the Spanish Ministry of Economy, Industry and Competitiveness (Reference: CTM2016-77878-P).

  19. Using environmental isotopes along with major hydro-geochemical compositions to assess deep groundwater formation and evolution in eastern coastal China.

    PubMed

    Xu, Naizheng; Gong, Jianshi; Yang, Guoqiang

    2018-01-01

    Hydrochemical analysis and environmental isotopic tracing are successfully applied to study groundwater evolution processes. Located in eastern China, the Jiangsu Coastal Plain is characterized by an extensively exploited deep groundwater system, and groundwater salinization has become the primary water environmental problem. This paper provides a case study on the use of a hydrochemical and environmental isotopic approach to assess possible mixing and evolution processes at Yoco Port, Jiangsu Province, China. Hydrochemical and isotopic patterns of deep groundwater allow one to distinguish different origins in deep water systems. HCO 3 - is the dominant anion in the freshwater samples, whereas Na + and Cl - are the dominant major ions in the saline samples. According to δ 18 O, δ 2 H and 14 C dating, the fresh water is derived from precipitation under a colder climate during the Glacial Maximum (Dali Glacial), while the saline groundwater is influenced by glacial-interglacial cycles during the Holocene Hypsithermal. The δ 18 O, δ 2 H and 3 H data confirm that deep groundwater in some boreholes is mixed with overlying saline water. The deep groundwater reservoir can be divided into a saline water sector and a fresh water sector, and each show distinct hydrochemical and isotopic compositions. The saline groundwater found in the deep aquifer cannot be associated with present seawater intrusion. Since the Last Glacial Maximum in the Late Pleistocene, the deep groundwater flow system has evolved to its current status with the decrease in ice cover and the rising of sea level. However, the hydraulic connection is strengthened by continuous overexploitation, and deep groundwater is mixed with shallow groundwater at some points. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. A reconstruction of atmospheric carbon dioxide and its stable carbon isotopic composition from the penultimate glacial maximum to the last glacial inception

    NASA Astrophysics Data System (ADS)

    Schneider, R.; Schmitt, J.; Köhler, P.; Joos, F.; Fischer, H.

    2013-11-01

    The reconstruction of the stable carbon isotope evolution in atmospheric CO2 (δ13Catm), as archived in Antarctic ice cores, bears the potential to disentangle the contributions of the different carbon cycle fluxes causing past CO2 variations. Here we present a new record of δ13Catm before, during and after the Marine Isotope Stage 5.5 (155 000 to 105 000 yr BP). The dataset is archived on the data repository PANGEA® (www.pangea.de) under 10.1594/PANGAEA.817041. The record was derived with a well established sublimation method using ice from the EPICA Dome C (EDC) and the Talos Dome ice cores in East Antarctica. We find a 0.4‰ shift to heavier values between the mean δ13Catm level in the Penultimate (~ 140 000 yr BP) and Last Glacial Maximum (~ 22 000 yr BP), which can be explained by either (i) changes in the isotopic composition or (ii) intensity of the carbon input fluxes to the combined ocean/atmosphere carbon reservoir or (iii) by long-term peat buildup. Our isotopic data suggest that the carbon cycle evolution along Termination II and the subsequent interglacial was controlled by essentially the same processes as during the last 24 000 yr, but with different phasing and magnitudes. Furthermore, a 5000 yr lag in the CO2 decline relative to EDC temperatures is confirmed during the glacial inception at the end of MIS5.5 (120 000 yr BP). Based on our isotopic data this lag can be explained by terrestrial carbon release and carbonate compensation.

  1. Glaciolacustrine deposits formed in an ice-dammed tributary valley in the south-central Pyrenees: New evidence for late Pleistocene climate

    NASA Astrophysics Data System (ADS)

    Sancho, Carlos; Arenas, Concha; Pardo, Gonzalo; Peña-Monné, José Luis; Rhodes, Edward J.; Bartolomé, Miguel; García-Ruiz, José M.; Martí-Bono, Carlos

    2018-04-01

    Combined geomorphic features, stratigraphic characteristics and sedimentologic interpretation, coupled with optically stimulated luminescence (OSL) dates, of a glacio-fluvio-lacustrine sequence (Linás de Broto, northern Spain) provide new information to understand the palaeoenvironmental significance of dynamics of glacier systems in the south-central Pyrenees during the Last Glacial Cycle (≈130 ka to 14 ka). The Linás de Broto depositional system consisted of a proglacial lake fed primarily by meltwater streams emanating from the small Sorrosal glacier and dammed by a lateral moraine of the Ara trunk glacier. The resulting glacio-fluvio-lacustrine sequence, around 55 m thick, is divided into five lithological units consisting of braided fluvial (gravel deposits), lake margin (gravel and sand deltaic deposits) and distal lake (silt and clay laminites) facies associations. Evolution of the depositional environment reflects three phases of progradation of a high-energy braided fluvial system separated by two phases of rapid expansion of the lake. Fluvial progradation occurred during short periods of ice melting. Lake expansion concurred with ice-dam growth of the trunk glacier. The first lake expansion occurred over a time range between 55 ± 9 ka and 49 ± 11 ka, and is consistent with the age of the Viu lateral moraine (49 ± 8 ka), which marks the maximum areal extent of the Ara glacier during the Last Glacial Cycle. These dates confirm that the maximum areal extent of the glacier occurred during Marine Isotope Stages 4 and 3 in the south-central Pyrenees, thus before the Last Glacial Maximum. The evolution of the Linás de Broto depositional system during this maximum glacier extent was modulated by climate oscillations in the northern Iberian Peninsula, probably related to latitudinal shifts of the atmospheric circulation in the southern North-Atlantic Ocean, and variations in summer insolation intensity.

  2. Climate sensitivity of Tibetan Plateau glaciers - past and future implications

    NASA Astrophysics Data System (ADS)

    Heyman, Jakob; Hubbard, Alun; Stroeven, Arjen P.; Harbor, Jonathan M.

    2013-04-01

    The Tibetan Plateau is one of the most extensively glaciated, non-Polar regions of the world, and its mountain glaciers are the primary source of melt water for several of the largest Asian rivers. During glacial cycles, Tibetan Plateau glaciers advanced and retreated multiple times, but remained restricted to the highest mountain areas as valley glaciers and ice caps. Because glacier extent is dominantly controlled by climate, the past extent of Tibetan glaciers provide information on regional climate. Here we present a study analyzing the past maximum extents of glaciers on the Tibetan Plateau with the output of a 3D glacier model, in an effort to quantify Tibetan Plateau climate. We have mapped present-day glaciers and glacial landforms deposited by formerly more extensive glaciers in eight mountain regions across the Tibetan Plateau, allowing us to define present-day and past maximum glacier outlines. Using a high-resolution (250 m) higher-order glacier model calibrated against present-day glacier extents, we have quantified the climate perturbations required to expand present-day glaciers to their past maximum extents. We find that a modest cooling of at most 6°C for a few thousand years is enough to attain past maximum extents, even with 25-75% precipitation reduction. This evidence for limited cooling indicates that the temperature of the Tibetan Plateau remained relatively stable over Quaternary glacial cycles. Given the significant sensitivity to temperature change, the expectation is perhaps that a future warmer climate might result in intense glacier reduction. We have tested this hypothesis and modeled the future glacier development for the three mountain regions with the largest present-day glacier cover using a projected warming of 2.8 to 6.2°C within 100 years (envelope limits from IPCC). These scenarios result in dramatic glacier reductions, including 24-100% ice volume loss after 100 years and 77-100% ice volume loss after 300 years.

  3. Cryptic sub-ice geology revealed by a U-Pb zircon study of glacial till in Dronning Maud Land, East Antarctica

    NASA Astrophysics Data System (ADS)

    Jacobs, Joachim; Opås, Birgitte; Elburg, Marlina; Läufer, Andreas; Estrada, Solveig; Ksienzyk, Anna K.; Damaske, Detlef; Hofmann, Mandy

    2017-04-01

    We have targeted the southern side of the Dronning Maud Land (DML) Mountains, East Antarctica, in search of moraine material that might reveal the presence and nature of any cryptic terranes in the ice-covered region of the East Antarctic polar plateau. Nine samples of unconsolidated glacial till, carried by the northward flowing East Antarctic Ice Sheet to the southern side of the DML escarpment, were collected and processed for U-Pb zircon analyses. The samples resulted in ca. 1100 new U-Pb zircon ages between ca. 2000 and 500 Ma. The oldest Palaeoproterozoic zircons come from the easternmost localities with a probable source region in the western part of the Ruker Craton. Major Stenian and Tonian age peaks are recognised. Tonian rocks are well known from the SW terrane in the Sør Rondane Mountains and characterise a major Tonian Oceanic Arc Super Terrane. Stenian ages of ca. 1080 Ma on the other hand are far less common in the outcropping region. Although Late Mesoproterozoic ages are common in both the Maud Province of western-central DML as well as in the Rayner Complex, the Stenian rocks in this study differ with respect to composition and/or isotope geochemistry; they are juvenile, subduction-related and resemble an early phase of oceanic arcs that was so far unknown in this region. In the W, the oldest age peak is ca. 800-720 Ma with possible counterparts in the Schirmacher Oasis. All samples show a protracted Late Neoproterozoic/Early Palaeozoic overprint, accompanied by igneous addition, most likely related to the East African-Antarctic Orogen. This overprint appears most intense in the westernmost locality, in the vicinity of the Forster Magnetic Anomaly and lasted for ca. 150 Ma; an E-ward younging of metamorphic ages is observed. The new moraine samples together with previous outcrop studies reveal that this region has undergone two major phases of oceanic arc/terrane accretion; the first one from ca. 1100-900 Ma is probably related to accretion tectonics outboard of Rodinia, the second one from ca. 850 - 580 Ma occurred as a result of ocean closure and finally Gondwana amalgamation.

  4. Evolution of a Greenland Ice sheet Including Shelves and Regional Sea Level Variations

    NASA Astrophysics Data System (ADS)

    Bradley, Sarah; Reerink, Thomas; van de Wal, Roderik S. W.; Helsen, Michiel; Goelzer, Heiko

    2016-04-01

    Observational evidence, including offshore moraines and marine sediment cores infer that at the Last Glacial maximum (LGM) the Greenland ice sheet (GIS) grounded out across the Davis Strait into Baffin Bay, with fast flowing ice streams extending out to the continental shelf break along the NW margin. These observations lead to a number of questions as to weather the GIS and Laurentide ice sheet (LIS) coalesced during glacial maximums, and if so, did a significant ice shelf develop across Baffin Bay and how would such a configuration impact on the relative contribution of these ice sheets to eustatic sea level (ESL). Most previous paleo ice sheet modelling simulations of the GIS recreated an ice sheet that either did not extend out onto the continental shelf or utilised a simplified marine ice parameterisation to recreate an extended GIS, and therefore did not fully include ice shelf dynamics. In this study we simulate the evolution of the GIS from 220 kyr BP to present day using IMAU-ice; a 3D thermodynamical ice sheet model which fully accounts for grounded and floating ice, calculates grounding line migration and ice shelf dynamics. As there are few observational estimates of the long-term (yrs) sub marine basal melting rates (mbm) for the GIS, we developed a mbm parameterization within IMAU-ice controlled primarily by changes in paleo water depth. We also investigate the influence of the LIS on the GIS evolution by including relative sea level forcing's derived from a Glacial Isostatic Adjustment model. We will present results of how changes in the mbm directly impacts on the ice sheet dynamics, timing and spatial extent of the GIS at the glacial maximums, but also on the rate of retreat and spatial extent at the Last interglacial (LIG) minimum. Results indicate that with the inclusion of ice shelf dynamics, a larger GIS is generated which is grounded out into Davis strait, up to a water depth of -750 m, but significantly reduces the GIS contribution to Last interglacial ESL.

  5. δ18O and salinity variability from the Last Glacial Maximum to Recent in the Bay of Bengal and Andaman Sea

    NASA Astrophysics Data System (ADS)

    Sijinkumar, A. V.; Clemens, Steven; Nath, B. Nagender; Prell, Warren; Benshila, Rachid; Lengaigne, Matthieu

    2016-03-01

    Oxygen isotopes of surface, thermocline and bottom dwelling foraminifera were analysed from two well-dated Andaman Sea cores and combined with nine previously published records from the Bay of Bengal (BoB) and Andaman Sea to create a transect spanning 20°N to 5°N. Combined with temperature estimates and the observed seawater δ18O-salinity relationship, these data are used to estimate past changes in BoB salinity structure. Compared to modern, mid-Holocene (9-6 cal ka BP) surface waters in the northern BoB were 2.5 psμ (8%) fresher, Andaman Sea were 3.8 psμ (12%) fresher, and southern BoB were 1.2 psμ (3.5%) fresher. Conversely, during the last glacial maximum (LGM), surface waters in the northern BoB were 2.9 psμ (9%) more saline while Andaman Sea were essentially unchanged and southern BoB were 1.7 psμ (4.9%) more saline compared to modern. The relative freshness of the Andaman during the last glacial maximum is likely the result of basin morphology during sea level low stand, resulting in reduced surface water mixing with the open BoB as well as shelf emergence, causing increased proximity of the core locations to river outflow. Sensitivity experiments using a regional ocean model indicate that the increased mid-Holocene north to south (20°N to 5°N) salinity gradient can be achieved with a ∼50% increase in precipitation/runoff while the decreased glacial age gradient can be achieved with a ∼50% reduction in precipitation/runoff. During the deglaciation, both surface and thermocline-dwelling species in the Andaman and northern BoB exhibit depleted δ18O within the Younger Dryas (YD), indicating colder and/or more saline conditions. None of the records from the southern BoB site have clear YD structure, possibly due to the combined effects of bioturbation and low sedimentation rates.

  6. Geochronology of Quaternary glaciations from the tropical Cordillera Huayhuash, Peru

    NASA Astrophysics Data System (ADS)

    Hall, Sarah R.; Farber, Daniel L.; Ramage, Joan M.; Rodbell, Donald T.; Finkel, Robert C.; Smith, Jacqueline A.; Mark, Bryan G.; Kassel, Christopher

    2009-12-01

    The Cordillera Huayhuash in the central Peruvian Andes (10.3°S, 76.9°W) is an ideal mountain range in which to study regional climate through variations in paleoglacier extents. The range trends nearly north-south with modern glaciers confined to peaks >4800 m a.s.l. Geomorphology and geochronology in the nearby Cordillera Blanca and Junin Plain reveal that the Peruvian Andes preserve a detailed record of tropical glaciation. Here, we use ASTER imagery, aerial photographs, and GPS to map and date glacial features in both the western and eastern drainages of the Cordillera Huayhuash. We have used in situ produced cosmogenic 10Be concentrations in quartz bearing erratics on moraine crests and ice-polished bedrock surfaces to develop an exposure age chronology for Pleistocene glaciation within the range. We have also collected sediment cores from moraine-dammed lakes and bogs to provide limiting 14C ages for glacial deposits. In contrast to the ranges to the north and south, most glacial features within the Cordillera Huayhuash are Lateglacial in age, however we have identified features with ages that span ˜0.2 to ˜38 ka with moraine sets marking the onset of glacier retreat at ˜0.3 ka, ˜9-10 ka, ˜13-14 ka, ˜20-22 ka, and >26 ka. The range displays a pronounced east-west variation in maximum down-valley distance from the headwall of moraine crests with considerably longer paleoglaciers in the eastern drainages. Importantly, Lateglacial paleoglaciers reached a terminal elevation of ˜4000 m a.s.l. on both sides of the Cordillera Huayhuash; suggesting that temperature may have been a dominant factor in controlling the maximum glacier extent. We suggest that valley morphology, specifically valley slope, strongly influences down-valley distance to the maximum glacier extent and potential for moraine preservation. While regionally there is an extensive record of older (>50 ka) advances to the north (Cordillera Blanca) and to the south (Junin region), the apparent lack of old moraines in this locality may be explained by the confined morphology of the Cordillera Huayhuash valleys that has inhibited the preservation of older glacial geomorphic features.

  7. Gypsophila bermejoi G. López: A possible case of speciation repressed by bioclimatic factors.

    PubMed

    de Luis, Miguel; Bartolomé, Carmen; García Cardo, Óscar; Álvarez-Jiménez, Julio

    2018-01-01

    Gypsophila bermejoi G. López is an allopolyploid species derived from the parental G. struthium L. subsp. struthium and G. tomentosa L. All these plants are gypsophytes endemic to the Iberian Peninsula of particular ecological, evolutionary and biochemical interest. In this study, we present evidence of a possible repression on the process of G. bermejoi speciation by climatic factors. We modelled the ecological niches of the three taxa considered here using a maximum entropy approach and employing a series of bioclimatic variables. Subsequently, we projected these models onto the geographical space of the Iberian Peninsula in the present age and at two past ages: the Last Glacial Maximum and the mid-Holocene period. Furthermore, we compared these niches using the statistical method devised by Warren to calculate their degree of overlap. We also evaluated the evolution of the bioclimatic habitat suitability at those sites were the soil favors the growth of these species. Both the maximum entropy model and the degree of overlap indicated that the ecological behavior of the hybrid differs notably from that of the parental species. During the Last Glacial Maximum, the two parental species appear to take refuge in the western coastal strip of the Peninsula, a region in which there are virtually no sites where G. bermejoi could potentially be found. However, in the mid-Holocene period the suitability of G. bermejoi to sites with favorable soils shifts from almost null to a strong adaptation, a clear change in this tendency. These results suggest that the ecological niches of hybrid allopolyploids can be considerably different to those of their parental species, which may have evolutionary and ecologically relevant consequences. The data obtained indicate that certain bioclimatic variables may possibly repress the processes by which new species are formed. The difference in the ecological niche of G. bermejoi with respect to its parental species prevented it from prospering during the Last Glacial Maximum. However, the climatic change in the mid-Holocene period released this block and as such, it permitted the new species to establish itself. Accordingly, we favor a recent origin of the current populations of G. bermejoi.

  8. Gypsophila bermejoi G. López: A possible case of speciation repressed by bioclimatic factors

    PubMed Central

    de Luis, Miguel; García Cardo, Óscar; Álvarez-Jiménez, Julio

    2018-01-01

    Gypsophila bermejoi G. López is an allopolyploid species derived from the parental G. struthium L. subsp. struthium and G. tomentosa L. All these plants are gypsophytes endemic to the Iberian Peninsula of particular ecological, evolutionary and biochemical interest. In this study, we present evidence of a possible repression on the process of G. bermejoi speciation by climatic factors. We modelled the ecological niches of the three taxa considered here using a maximum entropy approach and employing a series of bioclimatic variables. Subsequently, we projected these models onto the geographical space of the Iberian Peninsula in the present age and at two past ages: the Last Glacial Maximum and the mid-Holocene period. Furthermore, we compared these niches using the statistical method devised by Warren to calculate their degree of overlap. We also evaluated the evolution of the bioclimatic habitat suitability at those sites were the soil favors the growth of these species. Both the maximum entropy model and the degree of overlap indicated that the ecological behavior of the hybrid differs notably from that of the parental species. During the Last Glacial Maximum, the two parental species appear to take refuge in the western coastal strip of the Peninsula, a region in which there are virtually no sites where G. bermejoi could potentially be found. However, in the mid-Holocene period the suitability of G. bermejoi to sites with favorable soils shifts from almost null to a strong adaptation, a clear change in this tendency. These results suggest that the ecological niches of hybrid allopolyploids can be considerably different to those of their parental species, which may have evolutionary and ecologically relevant consequences. The data obtained indicate that certain bioclimatic variables may possibly repress the processes by which new species are formed. The difference in the ecological niche of G. bermejoi with respect to its parental species prevented it from prospering during the Last Glacial Maximum. However, the climatic change in the mid-Holocene period released this block and as such, it permitted the new species to establish itself. Accordingly, we favor a recent origin of the current populations of G. bermejoi. PMID:29338010

  9. Tephra from andesitic Shiveluch volcano, Kamchatka, NW Pacific: chronology of explosive eruptions and geochemical fingerprinting of volcanic glass

    NASA Astrophysics Data System (ADS)

    Ponomareva, Vera; Portnyagin, Maxim; Pevzner, Maria; Blaauw, Maarten; Kyle, Philip; Derkachev, Alexander

    2015-07-01

    The ~16-ka-long record of explosive eruptions from Shiveluch volcano (Kamchatka, NW Pacific) is refined using geochemical fingerprinting of tephra and radiocarbon ages. Volcanic glass from 77 prominent Holocene tephras and four Late Glacial tephra packages was analyzed by electron microprobe. Eruption ages were estimated using 113 radiocarbon dates for proximal tephra sequence. These radiocarbon dates were combined with 76 dates for regional Kamchatka marker tephra layers into a single Bayesian framework taking into account the stratigraphic ordering within and between the sites. As a result, we report ~1,700 high-quality glass analyses from Late Glacial-Holocene Shiveluch eruptions of known ages. These define the magmatic evolution of the volcano and provide a reference for correlations with distal fall deposits. Shiveluch tephras represent two major types of magmas, which have been feeding the volcano during the Late Glacial-Holocene time: Baidarny basaltic andesites and Young Shiveluch andesites. Baidarny tephras erupted mostly during the Late Glacial time (~16-12.8 ka BP) but persisted into the Holocene as subordinate admixture to the prevailing Young Shiveluch andesitic tephras (~12.7 ka BP-present). Baidarny basaltic andesite tephras have trachyandesite and trachydacite (SiO2 < 71.5 wt%) glasses. The Young Shiveluch andesite tephras have rhyolitic glasses (SiO2 > 71.5 wt%). Strongly calc-alkaline medium-K characteristics of Shiveluch volcanic glasses along with moderate Cl, CaO and low P2O5 contents permit reliable discrimination of Shiveluch tephras from the majority of other large Holocene tephras of Kamchatka. The Young Shiveluch glasses exhibit wave-like variations in SiO2 contents through time that may reflect alternating periods of high and low frequency/volume of magma supply to deep magma reservoirs beneath the volcano. The compositional variability of Shiveluch glass allows geochemical fingerprinting of individual Shiveluch tephra layers which along with age estimates facilitates their use as a dating tool in paleovolcanological, paleoseismological, paleoenvironmental and archeological studies. Electronic tables accompanying this work offer a tool for statistical correlation of unknown tephras with proximal Shiveluch units taking into account sectors of actual tephra dispersal, eruption size and expected age. Several examples illustrate the effectiveness of the new database. The data are used to assign a few previously enigmatic wide-spread tephras to particular Shiveluch eruptions. Our finding of Shiveluch tephras in sediment cores in the Bering Sea at a distance of ~600 km from the source permits re-assessment of the maximum dispersal distances for Shiveluch tephras and provides links between terrestrial and marine paleoenvironmental records.

  10. Warming and surface ocean acidification over the last deglaciation: implications for foraminiferal assemblages

    NASA Astrophysics Data System (ADS)

    Dyez, K. A.; Hoenisch, B.; deMenocal, P. B.

    2017-12-01

    Although plankton drift with ocean currents, their presence and relative abundance varies across latitudes and environmental seawater conditions (e.g. temperature, pH, salinity). While earlier studies have focused on temperature as the primary factor for determining the regional species composition of planktic foraminiferal communities, evidence has recently been presented that foraminiferal shell thickness varies with ocean pH, and it remains unclear whether ongoing ocean acidification will cause ecological shifts within this plankton group. The transition from the last glacial maximum (LGM; 19,000-23,000 years B.P.) to the late Holocene (0-5,000 years B.P.) was characterized by both warming and acidification of the surface ocean, and thus provides an opportunity to study ecosystem shifts in response to these environmental changes. Here we provide new δ11B, Mg/Ca, and δ18O measurements from a suite of global sediment cores spanning this time range. We use these geochemical data to reconstruct ocean temperature, pH and salinity and pair the new data with previously published analyses of planktic foraminifera assemblages to study the respective effects of ocean warming and acidification on the foraminiferal habitat. At most open-ocean sample locations, our proxies indicate warming and acidification similar to previously published estimates, but in some marginal seas and coastal locations pH changes little between over the glacial termination. At face value, these observations suggest that warming is generally more important for ecosystem changes than acidification, at least over the slow rates of warming and ocean acidification in this time period. While geochemical data collection is being completed, we aim to include these data in an ecological model of foraminiferal habitat preferences.

  11. Late Pleistocene glacial fluctuations in Cordillera Oriental, subtropical Andes

    NASA Astrophysics Data System (ADS)

    Martini, Mateo A.; Kaplan, Michael R.; Strelin, Jorge A.; Astini, Ricardo A.; Schaefer, Joerg M.; Caffee, Marc W.; Schwartz, Roseanne

    2017-09-01

    The behavior of subtropical glaciers during Middle to Late Pleistocene global glacial maxima and abrupt climate change events, specifically in Earth's most arid low-latitude regions, remains an outstanding problem in paleoclimatology. The present-day climate of Cordillera Oriental, in arid northwestern Argentina, is influenced by shifts in subtropical climate systems, including the South American Summer Monsoon. To understand better past glacier-subtropical climates during the global Last Glacial Maximum (LGM, 26.5-19 ka) and other time periods, we combined geomorphic features with forty-two precise 10Be ages on moraine boulders and reconstructed paleo-equilibrium line altitudes (ELA) at Nevado de Chañi (24°S) in the arid subtropical Andes. We found a major glacial expansion at ∼23 ± 1.6 ka, that is, during the global LGM. Additional glacial expansions are observed before the global LGM (at ∼52-39 ka), and after, at 15 ± 0.5 and 12 ± 0.6 ka. The ∼15 ka glacial event was found on both sides of Chañi and the ∼12 ka event is only recorded on the east side. Reconstructed ELAs of the former glaciers exhibit a rise from east to west that resembles the present subtropical climate trajectory from the Atlantic side of the continent; hence, we infer that this climate pattern must have been present in the past. Based on comparison with other low-latitude paleoclimate records, such as those from lakes and caves, we infer that both temperature and precipitation influenced past glacial occurrence in this sector of the arid Andes. Our findings also imply that abrupt deglacial climate events associated with the North Atlantic, specifically curtailed meridional overturning circulation and regional cooling, may have had attendant impacts on low subtropical Southern Hemisphere latitudes, including the climate systems that affect glacial activity around Nevado de Chañi.

  12. Record of late Pleistocene glaciation and deglaciation in the southern Cascade Range. I. Petrological evidence from lacustrine sediment in Upper Klamath Lake, southern Oregon

    USGS Publications Warehouse

    Reynolds, R.L.; Rosenbaum, J.G.; Rapp, J.; Kerwin, M.W.; Bradbury, J.P.; Colman, S.; Adam, D.

    2004-01-01

    Petrological and textural properties of lacustrine sediments from Upper Klamath Lake, Oregon, reflect changing input volumes of glacial flour and thus reveal a detailed glacial history for the southern Cascade Range between about 37 and 15 ka. Magnetic properties vary as a result of mixing different amounts of the highly magnetic, glacially generated detritus with less magnetic, more weathered detritus derived from unglaciated parts of the large catchment. Evidence that the magnetic properties record glacial flour input is based mainly on the strong correlation between bulk sediment particle size and parameters that measure the magnetite content and magnetic mineral freshness. High magnetization corresponds to relatively fine particle size and lower magnetization to coarser particle size. This relation is not found in the Buck Lake core in a nearby, unglaciated catchment. Angular silt-sized volcanic rock fragments containing unaltered magnetite dominate the magnetic fraction in the late Pleistocene sediments but are absent in younger, low magnetization sediments. The finer grained, highly magnetic sediments contain high proportions of planktic diatoms indicative of cold, oligotrophic limnic conditions. Sediment with lower magnetite content contains populations of diatoms indicative of warmer, eutrophic limnic conditions. During the latter part of oxygen isotope stage 3 (about 37-25 ka), the magnetic properties record millennial-scale variations in glacial-flour content. The input of glacial flour was uniformly high during the Last Glacial Maximum, between about 21 and 16 ka. At about 16 ka, magnetite input, both absolute and relative to hematite, decreased abruptly, reflecting a rapid decline in glacially derived detritus. The decrease in magnetite transport into the lake preceded declines in pollen from both grass and sagebrush. A more gradual decrease in heavy mineral content over this interval records sediment starvation with the growth of marshes at the margins of the lake and dilution of detrital material by biogenic silica and other organic matter.

  13. Simulations of cataclysmic outburst floods from Pleistocene Glacial Lake Missoula

    USGS Publications Warehouse

    Denlinger, Roger P.; O'Connell, D. R. H.

    2009-01-01

    Using a flow domain that we constructed from 30 m digital-elevation model data of western United States and Canada and a two-dimensional numerical model for shallow-water flow over rugged terrain, we simulated outburst floods from Pleistocene Glacial Lake Missoula. We modeled a large, but not the largest, flood, using initial lake elevation at 1250 m instead of 1285 m. Rupture of the ice dam, centered on modern Lake Pend Oreille, catastrophically floods eastern Washington and rapidly fills the broad Pasco, Yakima, and Umatilla Basins. Maximum flood stage is reached in Pasco and Yakima Basins 38 h after the dam break, whereas maximum flood stage in Umatilla Basin occurs 17 h later. Drainage of these basins through narrow Columbia gorge takes an additional 445 h. For this modeled flood, peak discharges in eastern Washington range from 10 to 20 × 106 m3/s. However, constrictions in Columbia gorge limit peak discharges to 6 m3/s and greatly extend the duration of flooding. We compare these model results with field observations of scabland distribution and high-water indicators. Our model predictions of the locations of maximum scour (product of bed shear stress and average flow velocity) match the distribution of existing scablands. We compare model peak stages to high-water indicators from the Rathdrum-Spokane valley, Walulla Gap, and along Columbia gorge. Though peak stages from this less-than-maximal flood model attain or exceed peak-stage indicators along Rathdrum-Spokane valley and along Columbia gorge, simulated peak stages near Walulla Gap are 10–40 m below observed peak-stage indicators. Despite this discrepancy, our match to field observations in most of the region indicates that additional sources of water other than Glacial Lake Missoula are not required to explain the Missoula floods.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bennett, Katrina E.; Cannon, Alex J.; Hinzman, Larry

    Climate change will shift the frequency, intensity, duration and persistence of extreme hydroclimate events and have particularly disastrous consequences in vulnerable systems such as the warm permafrost-dominated Interior region of boreal Alaska. This work focuses on recent research results from nonparametric trends and nonstationary generalized extreme value (GEV) analyses at eight Interior Alaskan river basins for the past 50/60 years (1954/64–2013). Trends analysis of maximum and minimum streamflow indicates a strong (>+50%) and statistically significant increase in 11-day flow events during the late fall/winter and during the snowmelt period (late April/mid-May), followed by a significant decrease in the 11-day flowmore » events during the post-snowmelt period (late May and into the summer). The April–May–June seasonal trends show significant decreases in maximum streamflow for snowmelt dominated systems (<–50%) and glacially influenced basins (–24% to –33%). Annual maximum streamflow trends indicate that most systems are experiencing declines, while minimum flow trends are largely increasing. Nonstationary GEV analysis identifies time-dependent changes in the distribution of spring extremes for snowmelt dominated and glacially dominated systems. Temperature in spring influences the glacial and high elevation snowmelt systems and winter precipitation drives changes in the snowmelt dominated basins. The Pacific Decadal Oscillation was associated with changes occurring in snowmelt dominated systems, and the Arctic Oscillation was linked to one lake dominated basin, with half of the basins exhibiting no change in response to climate variability. The paper indicates that broad scale studies examining trend and direction of change should employ multiple methods across various scales and consider regime dependent shifts to identify and understand changes in extreme streamflow within boreal forested watersheds of Alaska.« less

  15. Reversed flow of Atlantic deep water during the Last Glacial Maximum.

    PubMed

    Negre, César; Zahn, Rainer; Thomas, Alexander L; Masqué, Pere; Henderson, Gideon M; Martínez-Méndez, Gema; Hall, Ian R; Mas, José L

    2010-11-04

    The meridional overturning circulation (MOC) of the Atlantic Ocean is considered to be one of the most important components of the climate system. This is because its warm surface currents, such as the Gulf Stream, redistribute huge amounts of energy from tropical to high latitudes and influence regional weather and climate patterns, whereas its lower limb ventilates the deep ocean and affects the storage of carbon in the abyss, away from the atmosphere. Despite its significance for future climate, the operation of the MOC under contrasting climates of the past remains controversial. Nutrient-based proxies and recent model simulations indicate that during the Last Glacial Maximum the convective activity in the North Atlantic Ocean was much weaker than at present. In contrast, rate-sensitive radiogenic (231)Pa/(230)Th isotope ratios from the North Atlantic have been interpreted to indicate only minor changes in MOC strength. Here we show that the basin-scale abyssal circulation of the Atlantic Ocean was probably reversed during the Last Glacial Maximum and was dominated by northward water flow from the Southern Ocean. These conclusions are based on new high-resolution data from the South Atlantic Ocean that establish the basin-scale north to south gradient in (231)Pa/(230)Th, and thus the direction of the deep ocean circulation. Our findings are consistent with nutrient-based proxies and argue that further analysis of (231)Pa/(230)Th outside the North Atlantic basin will enhance our understanding of past ocean circulation, provided that spatial gradients are carefully considered. This broader perspective suggests that the modern pattern of the Atlantic MOC-with a prominent southerly flow of deep waters originating in the North Atlantic-arose only during the Holocene epoch.

  16. Historical trends and extremes in boreal Alaska river basins

    DOE PAGES

    Bennett, Katrina E.; Cannon, Alex J.; Hinzman, Larry

    2015-05-12

    Climate change will shift the frequency, intensity, duration and persistence of extreme hydroclimate events and have particularly disastrous consequences in vulnerable systems such as the warm permafrost-dominated Interior region of boreal Alaska. This work focuses on recent research results from nonparametric trends and nonstationary generalized extreme value (GEV) analyses at eight Interior Alaskan river basins for the past 50/60 years (1954/64–2013). Trends analysis of maximum and minimum streamflow indicates a strong (>+50%) and statistically significant increase in 11-day flow events during the late fall/winter and during the snowmelt period (late April/mid-May), followed by a significant decrease in the 11-day flowmore » events during the post-snowmelt period (late May and into the summer). The April–May–June seasonal trends show significant decreases in maximum streamflow for snowmelt dominated systems (<–50%) and glacially influenced basins (–24% to –33%). Annual maximum streamflow trends indicate that most systems are experiencing declines, while minimum flow trends are largely increasing. Nonstationary GEV analysis identifies time-dependent changes in the distribution of spring extremes for snowmelt dominated and glacially dominated systems. Temperature in spring influences the glacial and high elevation snowmelt systems and winter precipitation drives changes in the snowmelt dominated basins. The Pacific Decadal Oscillation was associated with changes occurring in snowmelt dominated systems, and the Arctic Oscillation was linked to one lake dominated basin, with half of the basins exhibiting no change in response to climate variability. The paper indicates that broad scale studies examining trend and direction of change should employ multiple methods across various scales and consider regime dependent shifts to identify and understand changes in extreme streamflow within boreal forested watersheds of Alaska.« less

  17. Congruence between distribution modelling and phylogeographical analyses reveals Quaternary survival of a toadflax species (Linaria elegans) in oceanic climate areas of a mountain ring range.

    PubMed

    Fernández-Mazuecos, Mario; Vargas, Pablo

    2013-06-01

    · The role of Quaternary climatic shifts in shaping the distribution of Linaria elegans, an Iberian annual plant, was investigated using species distribution modelling and molecular phylogeographical analyses. Three hypotheses are proposed to explain the Quaternary history of its mountain ring range. · The distribution of L. elegans was modelled using the maximum entropy method and projected to the last interglacial and to the last glacial maximum (LGM) using two different paleoclimatic models: the Community Climate System Model (CCSM) and the Model for Interdisciplinary Research on Climate (MIROC). Two nuclear and three plastid DNA regions were sequenced for 24 populations (119 individuals sampled). Bayesian phylogenetic, phylogeographical, dating and coalescent-based population genetic analyses were conducted. · Molecular analyses indicated the existence of northern and southern glacial refugia and supported two routes of post-glacial recolonization. These results were consistent with the LGM distribution as inferred under the CCSM paleoclimatic model (but not under the MIROC model). Isolation between two major refugia was dated back to the Riss or Mindel glaciations, > 100 kyr before present (bp). · The Atlantic distribution of inferred refugia suggests that the oceanic (buffered)-continental (harsh) gradient may have played a key and previously unrecognized role in determining Quaternary distribution shifts of Mediterranean plants. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  18. Geology, hydrology, and water quality of the glacial drift aquifer in the vicinity of the Nelson landfill near Yorkville, Illinois

    USGS Publications Warehouse

    Kay, Robert T.

    2006-01-01

    The geologic and hydrologic characteristics of the sand-and-gravel deposits that compose the glacial drift aquifer in the vicinity of the Nelson Landfill site in Yor-kville, Illinois indicate that the aquifer could be devel-oped as a source of public water supply. The geology of these deposits within the Newark Bedrock Valley is com-plex, however, and a detailed investigation of their water bearing and transmitting properties will be required to successfully locate high-capacity wells. Volatile organic compounds, pesticides, and cyanide were not detected in ground water during this investiga-tion. Metals and nitrogen compounds were not detected at concentrations above their Maximum Contaminant Level. Iron, manganese, and aluminum were detected at concentrations above their Secondary Maximum Con-taminant Level and various constituents were detected at concentrations above background levels downgradi-ent of the landfill. Nitrate and ammonia, presumably derived from agricultural practices, also were detected in samples from locations hydraulically upgradient of the landfill. Oxidation-reduction conditions in the aquifer become more reducing with depth. This change is reflected by a change in the type of nitrogen compound detected and the concentration of dissolved oxygen and iron in the glacial drift aquifer. Concentrations of some of the major ions and metals may be affected by disso-lution of carbonate minerals in the aquifer and perhaps road salts.

  19. Changes in opal flux and the rain ratio during the last 50,000 years in the equatorial Pacific

    NASA Astrophysics Data System (ADS)

    Richaud, Mathieu; Loubere, Paul; Pichat, Sylvain; Francois, Roger

    2007-03-01

    Changes in the orgC/CaCO 3 ratio in particles sinking from the surface to the deep ocean have the potential to alter the atmospheric pCO 2 over the span of a glacial/interglacial cycle. Recent paleoceanographic and modern observational studies suggest that silica is a key factor in the global carbon biogeochemical cycle that can influence the flux ratio, especially at low latitudes, through "silicic acid leakage" [Brzezinski, M., Pride, C., Franck, M., Sigman, D., Sarmiento, J., Matsumoto, K., Gruber, N., Rau, R., Coale, K., 2002. A switch from Si(OH) 4 to NO3- depletion in the glacial Southern Ocean. Geophysical Research Letters 29, 5]. To test this hypothesis, we reconstruct biogenic fluxes of CaCO 3, orgC and Si for three equatorial Pacific cores. We find evidence that a floral shift from a SiO 2-based community to a CaCO 3-based occurred, starting in mid-marine isotope stage (MIS) 3 (24-59 cal. ka) and declining toward MIS 2 (19-24 cal. ka). This could reflect the connection of the Peru upwelling system to the subantarctic region, and we postulate that excess silica was transported from the subantarctic via the deep Equatorial Undercurrent to the eastern equatorial Pacific. In the eastern equatorial Pacific only, we document a significant decrease in rain ratio starting mid-MIS 3 toward MIS 2. This decrease is concomitant with a significant decrease in silica accumulation rates at the seabed. This pattern is not observed in the Pacific influenced by equatorial divergence and shallow upwelling, where all reconstructed fluxes (CaCO 3, orgC, and opal) increase during MIS 2. We conclude that the overall calcium carbonate pump weakened in the EEP under Peru upwelling influence.

  20. Non-synchronous climate change along the western margin of North America during glacial terminations

    NASA Astrophysics Data System (ADS)

    Herbert, T. D.; Liu, Z.; Barron, J.; Heusser, L.; Lyle, M.; Mix, A.; Ravelo, A. C.

    2003-04-01

    A regional set of cores now exists to study the evolution of ocean surface temperatures and other paleoclimatic signals along the west coast of North America. Core locations range from Vancouver Island to the north, to the tip of Baja California to the south. We report on the evolution of sea surface temperatures and marine productivity, as recorded by alkenones. Several sites also have pollen records, allowing us to compare marine and terrestrial responses. We find that surface climate signals covary tightly with global climate, as represented by benthic d18O, through 80% of a typical glacial-interglacial cycle. However, the associations during glacial maxima and terminations break into three regional patterns. North of Point Conception (heart of the California Current), SST patterns are very similar to benthic d18O and to Greenland ice core surface temperature data to at least 30 ka (ODP Site 1019). In the California borderland region, warmings begin during peak glacial conditions, and significantly precede the deglacial sea level rise. Off Baja California, SST follows benthic d18O, but without the high frequency oscillations of temperature observed in Greenland. These changes outline regional reorganizations of surface winds and currents during times of maximum ice volume. Our data suggests that the geographic extent and intensity of the California Current system was much reduced during glacial maxima in comparison to modern conditions.

  1. Glacial landform assemblages in the catchment area of the upper Quitarasca valley (Cordillera Blanca, Perú)

    NASA Astrophysics Data System (ADS)

    Iturrizaga, L.

    2012-04-01

    The research project focuses on the glacial landform sequences in the upper Quitarasca valley (8°51´S/77°36´W) with particular consideration of the Pucahirca glacier. The study area is located at the eastern side of the Cordillera Blanca, about almost 40 km valley upstream of the confluence with the Rio Santa valley. The highest catchment area is the Pucahirca Massif (6020 m a.s.l.). The present glacier tongue terminates at an elevation of 4500 m a.s.l.. The investigations analyzed the extent of the glaciations from the Last Glacial Maximum to modern times in regard to the transition of the moraine types during the course of deglaciation. The distinct moraine stages were correlated with existent glacial chronologies of adjacent valleys. Due to the hazard potential of the Laguna Safuna Alta, which developed in the late 1940s at the terminus of the Pucahirca glacier, detailed studies have been carried out by various research groups in regard to the composition of the historical / Neoglacial moraine composition providing at the same time valuable material for multi-temporal comparison of the recent development of the glacier tongue. The investigations presented here are part of a project on the glacial geomorphology in the Tropical Andes, financed by the Alexander von Humboldt Foundation.

  2. Influential aspects of glacial resource for establishing Kuhl system (gravity flow irrigation) in the Hindu Kush, Karakoram and Himalaya ranges.

    PubMed

    Ashraf, Arshad; Iqbal, Ayesha

    2018-04-27

    The meltwater components play an important role in the hydrological regime of the Hindu Kush, Karakorum and Himalaya (HKH) region, in terms of high demand of water for food and fiber from snow and glacial resource. The communities of Himalayan mountains are facing challenges of food security owing to lack of the resource information for meeting their water requirements. In this study, suitability index approach was adopted to assess glacier resource potential for establishing kuhl irrigation system in HKH ranges of Pakistan. The basis of indexing is glacier accessibility and water yield potential of the glacial resource for irrigation estimated in terms of number and ice reserve of the glaciers. The suitability index was found good for about 1.4% glaciers constituting about 80% of the total ice reserves of the HKH region. Medium suitability constitutes about 36.1% glaciers with 12.6% of the total ice reserves, while low suitability was assessed for about 60% glaciers containing 1.5% ice reserves only. Maximum unit glacial reserve was estimated for Shigar basin, i.e., 1.44 km 3 , and among HKH ranges, 0.46 km 3 for the Karakoram range. A regular monitoring of the glacial resource would prove helpful in assessing vulnerability of this resource to climate change in the high Himalayan region in future. Copyright © 2018. Published by Elsevier B.V.

  3. Millenial-scale climatic and vegetation changes in a northern Cerrado (Northeast, Brazil) since the Last Glacial Maximum

    NASA Astrophysics Data System (ADS)

    Ledru, Marie-Pierre; Ceccantini, Gregorio; Gouveia, Susy E. M.; López-Sáez, José Antonio; Pessenda, Luiz C. R.; Ribeiro, Adauto S.

    2006-05-01

    In the Southern Hemisphere, lacustrine sediments started to be deposited with the beginning of the deglaciation at ca 19,000 cal yr BP. At this time the region of Lake Caço was dominated by sparse and shrubby vegetation with dominance of steppic grasses in a poor sandy soil. The landscape did not present any ecological characteristics of a modern Cerrado. However single pollen grains of two Cerrado indicators, Byrsonima and Mimosa, suggest that some Cerrado species were able to survive under the prevailing arid climate, probably as small shrubs. After 15,500 cal yr BP, a sudden increase in the moisture rates is evidenced with the progressive expansion of rainforest showing successive dominance of various associations of taxa. The development of the forest stopped abruptly at the end of the Pleistocene between 12,800 and 11,000 cal yr BP, as attested by strong fires and the expansion of Poaceae. In the early Holocene an open landscape with a relatively high level of water in the lake preceded the progressive expansion of Cerrado species towards a denser forested landscape; fires are recorded from then on, resulting in the physiognomy of the Cerrado we know today. Late Pleistocene paleoenvironmental records from northern Brazil reflect the interplay between insolation forcing of two hemispheres with the local components represented by the interannual shift of the Inter Tropical Convergence Zone and the influence of seasonal equatorwards polar air incursions.

  4. Testing the Deglacial Global Ocean Alkalization Hypothesis Using Foraminifer-based Mg/Ca, Shell Weight, and MFI

    NASA Astrophysics Data System (ADS)

    Ward, B. M.; Mekik, F.; Pourmand, A.

    2015-12-01

    In light of evidence for extensive modern ocean acidification, it has become imperative to better understand the global carbon cycle by reconstructing past ocean acidification/alkalization events. Our goal is to test the deglacial global alkalization hypothesis using a multi-proxy approach by reconstructing the pH, temperature, and [CO32-] of thermocline waters and the dissolution in deep sea sediments over the last 25,000 years in core ME-27 from the eastern equatorial Pacific. Our specific research questions are: Is there unequivocal evidence for a deglacial ocean alkalization event? If yes, what was the magnitude of the alkalization event? If no, how can we explain why evidence of this event is missing from our core? We inferred temperature from Mg/Ca, and habitat water [CO32-] from sized-normalized shell weight in Neogloboquadrina dutertrei. Dissolution in sediments was estimated using the Globorotalia menardii Fragmentation Index (MFI). We see no clear indication of a deglacial ocean alkalization event with our proxies. Neither our shell weight, nor MFI data show a more alkaline deglacial ocean compared to the Last Glacial Maximum and the modern Interglacial. Instead, we observe a steady decrease in thermocline [CO32-], and increase in deep sea calcite preservation since the LGM. Our results may indicate that the global alkalization event was obscured in ME-27 due to higher organic carbon fluxes during the deglacial, and/or due to yet undetermined effects of temperature on the foraminifer shell weight proxy.

  5. Using species-specific paleotemperature equations with foraminifera: A case study in the Southern California Bight

    USGS Publications Warehouse

    Bemis, B.E.; Spero, H.J.; Thunell, R.C.

    2002-01-01

    Species-specific paleotemperature equations were used to reconstruct a record of temperature from foraminiferal ??18O values over the last 25 kyr in the Southern California Bight. The equations yield similar temperatures for the ??18O values of Globigerina bulloides and Neogloboquadrina pachyderma. In contrast, applying a single paleotemperature equation to G. bulloides and N. pachyderma ??18O yields different temperatures, which has been used to suggest that these species record the surface-to-thermocline temperature gradient. In Santa Barbara Basin, an isotopically distinct morphotype of G. bulloides dominates during glacial intervals and yields temperatures that appear too cold when using a paleotemperature equation calibrated for the morphotype common today. When a more appropriate paleotemperature equation is used for glacial G. bulloides, we obtain more realistic glacial temperatures. Glacial-interglacial temperature differences (G-I ??T) calculated in the present study indicate significant cooling (??? 8-10??C) throughout the Southern California Bight during the last glacial maximum (LGM). The magnitude of glacial cooling varies from ???8??C near the middle of the Southern California Bight (Tanner Basin and San Nicolas Basin) to ???9??C in the north (Santa Barbara Basin) and ???9.5-10??C in the south (Velero Basin and No Name Basin). Our temperature calculations agree well with previous estimates based on the modern analog technique. In contrast, studies using N. pachyderma coiling ratios, U37k??? indices, and transfer functions esfimate considerably warmer LGM temperatures and smaller G-I ??T. ?? 2002 Elsevier Science B.V. All rights reserved.

  6. Thriving in the Cold: Glacial Expansion and Post-Glacial Contraction of a Temperate Terrestrial Salamander (Plethodon serratus)

    PubMed Central

    Newman, Catherine E.; Austin, Christopher C.

    2015-01-01

    The dynamic geologic history of the southeastern United States has played a major role in shaping the geographic distributions of amphibians in the region. In the phylogeographic literature, the predominant pattern of distribution shifts through time of temperate species is one of contraction during glacial maxima and persistence in refugia. However, the diverse biology and ecology of amphibian species suggest that a “one-size-fits-all” model may be inappropriate. Nearly 10% of amphibian species in the region have a current distribution comprised of multiple disjunct, restricted areas that resemble the shape of Pleistocene refugia identified for other temperate taxa in the literature. Here, we apply genetics and spatially explicit climate analyses to test the hypothesis that the disjunct regions of these species ranges are climatic refugia for species that were more broadly distributed during glacial maxima. We use the salamander Plethodon serratus as a model, as its range consists of four disjunct regions in the Southeast. Phylogenetic results show that P. serratus is comprised of multiple genetic lineages, and the four regions are not reciprocally monophyletic. The Appalachian salamanders form a clade sister to all other P. serratus. Niche and paleodistribution modeling results suggest that P. serratus expanded from the Appalachians during the cooler Last Glacial Maximum and has since been restricted to its current disjunct distribution by a warming climate. These data reject the universal applicability of the glacial contraction model to temperate taxa and reiterate the importance of considering the natural history of individual species. PMID:26132077

  7. Risky business: The impact of climate and climate variability on human population dynamics in Western Europe during the Last Glacial Maximum

    NASA Astrophysics Data System (ADS)

    Burke, Ariane; Kageyama, Masa; Latombe, Guilllaume; Fasel, Marc; Vrac, Mathieu; Ramstein, Gilles; James, Patrick M. A.

    2017-05-01

    The extent to which climate change has affected the course of human evolution is an enduring question. The ability to maintain spatially extensive social networks and a fluid social structure allows human foragers to ;map onto; the landscape, mitigating the impact of ecological risk and conferring resilience. But what are the limits of resilience and to which environmental variables are foraging populations sensitive? We address this question by testing the impact of a suite of environmental variables, including climate variability, on the distribution of human populations in Western Europe during the Last Glacial Maximum (LGM). Climate variability affects the distribution of plant and animal resources unpredictably, creating an element of risk for foragers for whom mobility comes at a cost. We produce a model of habitat suitability that allows us to generate predictions about the probable distribution of human populations and discuss the implications of these predictions for the structure of human populations and their social and cultural evolution during the LGM.

  8. Antarctic grounding-line migration

    NASA Astrophysics Data System (ADS)

    Slater, T.; Konrad, H.; Shepherd, A.; Gilbert, L.; Hogg, A.; McMillan, M.; Muir, A. S.

    2017-12-01

    Knowledge of grounding-line position is critical for quantifying ice discharge into the ocean, as a boundary condition for numerical models of ice flow, and as an indicator of ice sheet stability. Although geological investigations have documented extensive grounding-line retreat since the period of the Last Glacial Maximum, observations of grounding line migration during the satellite era are restricted to a handful of locations. We combine satellite altimeter observations of ice-elevation change and airborne measurements of ice geometry to track movement of the Antarctic Ice Sheet grounding line. Based on these data, we estimate that 22%, 3%, and 10% of the West Antarctic, East Antarctic, and Antarctic Peninsula ice sheet grounding lines are retreating at rates faster than the typical pace since the Last Glacial Maximum, and that the continent loses over 200 km2 of grounded-ice area per year. Although by far the fastest rates of retreat occurred in the Amundsen Sea Sector, the Pine Island Glacier grounding line has stabilized - likely as a consequence of abated ocean forcing during the survey period.

  9. On the differences between Last Glacial Maximum and Mid-Holocene climates in southern South America simulated by PMIP3 models

    NASA Astrophysics Data System (ADS)

    Berman, Ana Laura; Silvestri, Gabriel E.; Tonello, Marcela S.

    2018-04-01

    Differences between climate conditions during the Last Glacial Maximum (LGM) and the Mid-Holocene (MH) in southern South America inferred from the state-of-the-art PMIP3 paleoclimatic simulations are described for the first time in this paper. The aim is to expose characteristics of past climate changes occurred without human influence. In this context, numerical simulations are an indispensable tool for inferring changes in near-surface air temperature and precipitation in regions where proxy information is scarce or absent. The analyzed PMIP3 models describe MH temperatures significantly warmer than those of LGM with magnitudes of change depending on the season and the specific geographic region. In addition, models indicate that seasonal mean precipitation during MH increased with respect to LGM values in wide southern continental areas to the east of the Andes Cordillera whereas seasonal precipitation developed in areas to the west of Patagonian Andes reduced from LGM to MH.

  10. The de-correlation of westerly winds and westerly-wind stress over the Southern Ocean during the Last Glacial Maximum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Wei; Lu, Jian; Leung, Lai-Yung R.

    2015-02-22

    This paper investigates the changes of the Southern Westerly Winds (SWW) and Southern Ocean (SO) upwelling between the Last Glacial Maximum (LGM) and preindustrial (PI) in the PMIP3/CMIP5 simulations, highlighting the role of the Antarctic sea ice in modulating the wind stress effect on the ocean. Particularly, a discrepancy may occur between the changes in SWW and westerly wind stress, caused primarily by an equatorward expansion of winter Antarctic sea ice that undermines the wind stress in driving the liquid ocean. Such discrepancy may reflect the LGM condition in reality, in view of that the model simulates this condition hasmore » most credible simulation of modern SWW and Antarctic sea ice. The effect of wind stress on the SO upwelling is further explored via the wind-induced Ekman pumping, which is reduced under the LGM condition in all models, in part by the sea-ice “capping” effect present in the models.« less

  11. Stable isotopes of fossil teeth corroborate key general circulation model predictions for the Last Glacial Maximum in North America

    NASA Astrophysics Data System (ADS)

    Kohn, Matthew J.; McKay, Moriah

    2010-11-01

    Oxygen isotope data provide a key test of general circulation models (GCMs) for the Last Glacial Maximum (LGM) in North America, which have otherwise proved difficult to validate. High δ18O pedogenic carbonates in central Wyoming have been interpreted to indicate increased summer precipitation sourced from the Gulf of Mexico. Here we show that tooth enamel δ18O of large mammals, which is strongly correlated with local water and precipitation δ18O, is lower during the LGM in Wyoming, not higher. Similar data from Texas, California, Florida and Arizona indicate higher δ18O values than in the Holocene, which is also predicted by GCMs. Tooth enamel data closely validate some recent models of atmospheric circulation and precipitation δ18O, including an increase in the proportion of winter precipitation for central North America, and summer precipitation in the southern US, but suggest aridity can bias pedogenic carbonate δ18O values significantly.

  12. Effects of midlatitude westerlies on the paleoproductivity at the Agulhas Bank slope during the penultimate glacial cycle: Evidence from coccolith Sr/Ca ratios

    NASA Astrophysics Data System (ADS)

    Mejia, Luz Maria; Ziveri, Patrizia; Cagnetti, Marilisa; Bolton, Clara; Zahn, Rainer; Marino, Gianluca; Martinez Mendez, Gema; Stoll, Heather

    2015-04-01

    Because modern primary productivity on the Agulhas Bank, off South Africa, is linked to the mid-latitude westerlies, a paleoproductivity record from this area could be used to investigate past may changes in the westerlies dynamics. Coccolith Sr/Ca is a suitable productivity indicator to explore paleoproductivity from the penultimate glacial-interglacial cycle because it is independent of preservation changes that may accompany changes in deepwater circulation. In the Agulhas Bank slope core MD96-2080, the coccolith Sr/Ca record shows that phases of depressed productivity coincided with periods of stratification in the same core, indicated by high relative abundances of the coccolithophore Florisphaera profunda, and with low relative abundances of the upwelling indicator G. bulloides in the Cape Basin. This coherence suggests that upwelling regulated productivity throughout this region. As in the present, we infer that periods of low productivity result from northward positions of the westerlies which block the upwelling-promoting easterlies. Productivity minima also coincide with periods of increased ice-rafted detritus (IRD) deposition on the Agulhas Plateau, which also indicates extreme northward positions of the westerlies. The influence of the westerlies appears to be obliquity-conditioned, as productivity minima occur during low obliquity intervals. The dynamic connection between productivity and the westerlies is supported by coeval salinity changes in the South Indian Gyre that likewise respond sensitively to a poleward contraction of the westerlies.

  13. Climatic oscillations in central Italy during the Last Glacial-Holocene transition: the record from Lake Accesa

    NASA Astrophysics Data System (ADS)

    Magny, Michel; de Beaulieu, Jacques-Louis; Drescher-Schneider, Ruth; Vannière, Boris; Walter-Simonnet, Anne-Véronique; Millet, Laurent; Bossuet, Gilles; Peyron, Odile

    2006-05-01

    This paper presents an event stratigraphy based on data documenting the history of vegetation cover, lake-level changes and fire frequency, as well as volcanic eruptions, over the Last Glacial-early Holocene transition from a terrestrial sediment sequence recovered at Lake Accesa in Tuscany (north-central Italy). On the basis of an age-depth model inferred from 13 radiocarbon dates and six tephra horizons, the Oldest Dryas-Bølling warming event was dated to ca. 14 560 cal. yr BP and the Younger Dryas event to ca. 12 700-11 650 cal. yr BP. Four sub-millennial scale cooling phases were recognised from pollen data at ca. 14 300-14 200, 13 900-13 700, 13 400-13 100 and 11 350-11 150 cal.yrBP. The last three may be Mediterranean equivalents to the Older Dryas (GI-1d), Intra-Allerød (GI-1b) and Preboreal Oscillation (PBO) cooling events defined from the GRIP ice-core and indicate strong climatic linkages between the North Atlantic and Mediterranean areas during the last Termination. The first may correspond to Intra-Bølling cold oscillations registered by various palaeoclimatic records in the North Atlantic region. The lake-level record shows that the sub-millennial scale climatic oscillations which punctuated the last deglaciation were associated in central Italy with different successive patterns of hydrological changes from the Bølling warming to the 8.2ka cold reversal. Copyright

  14. Groundwater hydrochemistry in the active layer of the proglacial zone, Finsterwalderbreen, Svalbard

    USGS Publications Warehouse

    Cooper, R.J.; Wadham, J.L.; Tranter, M.; Hodgkins, R.; Peters, N.E.

    2002-01-01

    Glacial bulk meltwaters and active-layer groundwaters were sampled from the proglacial zone of Finsterwalderbreen during a single melt season in 1999, in order to determine the geochemical processes that maintain high chemical weathering rates in the proglacial zone of this glacier. Results demonstrate that the principle means of solute acquisition is the weathering of highly reactive moraine and fluvial active-layer sediments by supra-permafrost groundwaters. Active-layer groundwater derives from the thaw of the proglacial snowpack, buried ice and glacial bulk meltwaters. Groundwater evolves by sulphide oxidation and carbonate dissolution. Evaporation- and freeze-concentration of groundwater in summer and winter, respectively produce Mg-Ca-sulphate salts on the proglacial surface. Re-dissolution of these salts in early summer produces groundwaters that are supersaturated with respect to calcite. There is a pronounced spatial pattern to the geochemical evolution of groundwater. Close to the main proglacial channel, active layer sediments are flushed diurnally by bulk meltwaters. Here, Mg-Ca-sulphate deposits become exhausted in the early season and geochemical evolution proceeds by a combination of sulphide oxidation and carbonate dissolution. At greater distances from the channel, the dissolution of Mg-Ca-sulphate salts is a major influence and dilution by the bulk meltwaters is relatively minor. The influence of sulphate salt dissolution decreases during the sampling season, as these salts are exhausted and waters become increasingly routed by subsurface flowpaths. ?? 2002 Elsevier Science B.V. All rights reserved.

  15. Reconstructing the migration patterns of late Pleistocene mammals from northern Florida, USA

    NASA Astrophysics Data System (ADS)

    Hoppe, Kathryn A.; Koch, Paul L.

    2007-11-01

    We used analyses of the strontium isotope ( 87Sr/ 86Sr) ratios of tooth enamel to reconstruct the migration patterns of fossil mammals collected along the Aucilla River in northern Florida. Specimens date to the late-glacial period and before the last glacial maximum (pre-LGM). Deer and tapir displayed low 87Sr/ 86Sr ratios that were similar to the ratios of Florida environments, which suggest that these taxa did not migrate long distance outside of the Florida region. Mastodons, mammoths, and equids all displayed a wide range of 87Sr/ 86Sr ratios. Some individuals in each taxon displayed low 87Sr/ 86Sr ratios that suggest they ranged locally, while other animals had high 87Sr/ 86Sr ratios that suggest they migrated long distances (> 150 km) outside of the Florida region. Mastodons were the only taxa from this region that provided enough well-dated specimens to compare changes in migration patterns over time. Pre-LGM mastodons displayed significantly lower 87Sr/ 86Sr ratios than late-glacial mastodons, which suggests that late-glacial mastodons from Florida migrated longer distances than their earlier counterparts. This change in movement patterns reflects temporal changes in regional vegetation patterns.

  16. Geomorphologic Mapping of a Last Glacial Maximum Moraine Sequence in the Far Eastern Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Lindsay, B. J.; Putnam, A. E.; Strand, P.; Radue, M. J.; Dong, G.; Kong, X.; Li, M.; Sheriff, M.; Stevens, J.

    2017-12-01

    The abrupt millennial-scale climate events of the last glacial cycle constitute an important component of the ice-age puzzle. A complete explanation of glacial cycles, and their rapid terminations, must account for these millennial climatic `flickers'. Here we present a glacial geomorphologic map of a moraine system in a formerly glaciated valley within the mountains of Litang County in the eastern Tibetan Plateau of China. Geomorphologic mapping was conducted by interpreting satellite imagery, structure-from-motion imagery and digital elevation models, and field observations. This map provides context for a parallel ongoing 10Be exposure-dating effort, the preliminary results of which may be available by the time of this 2017 AGU Fall Meeting. We interpret the mapped moraines to document the millennial-scale pulsebeat of glacier advances in this region during the peak of the last ice age. Because changes in mountain glacier extent in this region are driven by atmospheric temperature, these moraines record past millennial climate changes. Altogether this mapping and exposure-dating approach will provide insight into the mechanisms for millennial-scale glacier and climate fluctuations in the interior of Asia.

  17. Sea-level records from the U.S. mid-Atlantic constrain Laurentide Ice Sheet extent during Marine Isotope Stage 3

    PubMed Central

    Pico, T; Creveling, J. R.; Mitrovica, J. X.

    2017-01-01

    The U.S. mid-Atlantic sea-level record is sensitive to the history of the Laurentide Ice Sheet as the coastline lies along the ice sheet's peripheral bulge. However, paleo sea-level markers on the present-day shoreline of Virginia and North Carolina dated to Marine Isotope Stage (MIS) 3, from 50 to 35 ka, are surprisingly high for this glacial interval, and remain unexplained by previous models of ice age adjustment or other local (for example, tectonic) effects. Here, we reconcile this sea-level record using a revised model of glacial isostatic adjustment characterized by a peak global mean sea level during MIS 3 of approximately −40 m, and far less ice volume within the eastern sector of the Laurentide Ice Sheet than traditional reconstructions for this interval. We conclude that the Laurentide Ice Sheet experienced a phase of very rapid growth in the 15 kyr leading into the Last Glacial Maximum, thus highlighting the potential of mid-field sea-level records to constrain areal extent of ice cover during glacial intervals with sparse geological observables. PMID:28555637

  18. Climate and vegetation since the Last Interglacial (MIS 5e) in a putative glacial refugium, northern Idaho, USA

    NASA Astrophysics Data System (ADS)

    Herring, Erin M.; Gavin, Daniel G.

    2015-06-01

    There are very few terrestrial sediment records from North America that contain a nearly continuous sequence spanning from the Last Interglacial period to the present. We present stratigraphic records of pollen and several other proxies from a Carex-dominated wetland, Star Meadows, located 140 km south of the maximum extent of the Cordilleran Ice Sheet and near the current southern extent of interior mesic forests in northern Idaho. Many species in this region are disjunct by 160 km of arid steppe and dry forest from their more extensive distribution along the Pacific Northwest coast and may have survived in an interior refugium. The chronology for the upper 251 cm was determined by six radiocarbon dates and one tephra deposit, and the age of the remainder of the core (251-809 cm) was estimated by correlation with SPECMAP δ18O. Fluctuating water levels were inferred from alternating peat, biogenic silica, and aquatic pollen types. During MIS 5e the region was warmer and drier than today and was dominated by Pinus (likely Pinus contorta) mixed conifer forest surrounding a Carex meadow. A cool-moist climate (MIS 5b-5d) soon developed, and the site was inundated with deep water. Pollen indicated wetland vegetation (Betula glandulosa, Typhaceae, and Salix) developed around a lake with a Pseudotsuga/Larix and Picea forest on the surrounding slopes. During MIS 5a, a warmer climate supported a Pseudotsuga/Larix, Abies, and Picea forest on the surrounding hillsides and a Carex-dominated environment within a dry meadow. From MIS 4 to MIS 3, a cool and wet Pinus and Picea forest predominated. Water levels rose, enabling Nuphar to persist within a perennial lake while a sedge fen established along the lake margin. As climate transitioned into MIS 2, a cooler and drier climate supported a Pinus and Picea subalpine parkland, though water levels remained high enough to support Nuphar. During the Last Glacial Maximum the sediment was mainly silt and clay with high Artemisia and very poor pollen preservation. Glaciers descended to 500 m elevation above Star Meadows in adjacent drainages suggesting a periglacial environment occurred at the site. Lake level decreased through the Pleistocene-Holocene transition (ca. 11.7 ka) and the site returned to a sedge peatland surrounded by an open Pinus forest. The most striking vegetation change occurred in the middle to late Holocene with the first occurrence and then later dominance of Cupressaceae pollen, most likely Thuja plicata, which is a dominant species in modern interior mesic forests. The late Holocene vegetation was uniquely mesic in the context of the last 120,000 years, casting doubt on this region serving as a glacial refugium.

  19. Intermitted Occurrence of Millennial-scale Variability of East Asian Summer Monsoon before 1.45 Ma based on the High-resolution Br Record of the Japan Sea Sediments

    NASA Astrophysics Data System (ADS)

    Tada, R.; Seki, A.; Ikeda, M.; Irino, T.; Ikehara, K.; Karasuda, A.; Sugisaki, S.; Sagawa, T.; Itaki, T.; Kubota, Y.; Murayama, M.; Lu, S.; Murray, R. W.; Alvarez Zarikian, C. A.

    2017-12-01

    It is well-known that Dansgaard-Oeschger Cycles (DOC) and East Asian Summer Monsoon (EASM) are closely linked during the last glacial period, and that Atlantic Meridional Ocean Circulation (AMOC) played a key role to amplify and propagate the DOC signal. Climatic model studies also suggested that on and off of AMOC caused simultaneous north-south shifts of westerly jets (WJ) in both hemispheres and ITCZ. Since WJ over East Asia bounds the northern limit of EASM front, it is likely that N-S shifts of WJ caused millennial-scale variability of EASM precipitation distribution. This linkage can be traced back to ca. 0.4 Ma based on comparison of synthetic Greenland temperature record of Barker et al. (2011) with d18O record of Chinese speleothems, and back to 0.8 Ma based on comparison of synthetic Greenland temperature record with Br profile of the hemipelagic sediments of the Japan Sea (reflecting marine organic carbon content and considered as a proxy of EASM) retrieved from Site U1424 during IODP Exp. 346. Br profile of the Japan Sea sediments also implies that millennial-scale variability of EASM was persistent since ca. 1.45 Ma ago, which was probably linked with AMOC variability. However, presence/absence of millennial-scale variability of EASM and possibility of its linkage with AMOC variability are not known for the period before 1.45 Ma. Here we extend our Br record of Site U1424 back to ca. 3 Ma and demonstrate that there was intermitted occurrence of millennial-scale EASM variability since ca. 2.5 Ma when LR04 glacial d18O value first exceeded ca. 4 permil. This may suggest the presence of threshold of ice volume to cause millennial-scale variability of AMOC and EASM.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allison, N.; Finch, A.A.; Tudhope, A.W.

    The Sr/Ca of coral skeletons demonstrates potential as an indicator of sea surface temperatures (SSTs). However, the glacial-interglacial SST ranges predicted from Sr/Ca of fossil corals are usually higher than from other marine proxies. We observed infilling of secondary aragonite, characterized by high Sr/Ca ratios, along intraskeletal pores of a fossil coral from Papua New Guinea that grew during the penultimate deglaciation (130 {+-} 2 ka). Selective microanalysis of unaltered areas of the fossil coral indicates that SSTs at {approx}130 ka were {le} 1 C cooler than at present in contrast with bulk measurements (combining infilled and unaltered areas) whichmore » indicate a difference of 6-7 C. The analysis of unaltered areas of fossil skeletons by microprobe techniques may offer a route to more accurate reconstruction of past SSTs.« less

  1. Simulated Last Glacial Maximum Δ14CATM and the Deep Glacial Ocean Reservoir

    NASA Astrophysics Data System (ADS)

    Mariotti, V.; Paillard, D.; Roche, D. M.; Bouttes, N.; Bopp, L.

    2012-12-01

    Δ14Catm has been estimated at 420 ± 80‰ (INTCAL09) during the Last Glacial Maximum (LGM) compared to preindustrial times (0‰), but mechanisms explaining this difference are not yet resolved. Δ14Catm is a function of cosmogenic production in high atmosphere and of carbon cycling in the Earth system (through carbon exchange with the superficial reservoirs, ocean and continental biosphere). 10Be-based reconstructions show a contribution of the cosmogenic production term of only 200 ± 200‰ at the LGM. The remaining 220‰ of Δ14Catm variation between the LGM and preindustrial times have thus to be explained by changes in the carbon cycle. Recently, Bouttes et al. (2010) proposed to explain most of the difference in atmospheric pCO2 between glacial and interglacial times by brine-induced ocean stratification in the Southern Ocean. This mechanism involves the formation of very saline water masses that can store Dissolved Inorganic Carbon (DIC) in the deep ocean. During glacial times, the sinking of brines is enhanced and more DIC is stored in the deep ocean, lowering atmospheric pCO2. Such an isolated ocean reservoir would be characterized by a low Δ14C signature. Evidence of such 14C-depleted deep waters during the LGM has recently been found in the Southern Ocean (Skinner et al., 2010). The degassing of this carbon with low Δ14C would then reduce Δ14Catm throughout the deglaciation. We have further developed the CLIMBER-2 model to include a cosmogenic production of 14C as well as an interactive atmospheric 14C reservoir. We investigate the role of both sinking of brines and cosmogenic production, alongside iron and vertical diffusion mechanisms to explain changes in Δ14Catm during the last deglaciation. In our simulations, not only the sinking of brine mechanism is consistent with past Δ14C data but also it explains most of the differences in atmospheric pCO2 and Δ14C between LGM and preindustrial times.

  2. Changing Dust Provenance to the South Atlantic Since the Last Glacial Maximum and Implications for the Southern Hemisphere Wind Belts

    NASA Astrophysics Data System (ADS)

    Franzese, A. M.; Goldstein, S. L.; Hemming, S. R.

    2017-12-01

    The Southern Hemisphere Westerly Winds are known to be important for climate due to their effects on the global carbon cycle and on the global thermohaline circulation (THC). Numerous proxy records have been interpreted to indicate significant glacial to interglacial changes in the SHWW. There is no clear consensus regarding their strength and position during the Last Glacial Maximum (LGM), though most observations are consistent with an equatorward displacement of the glacial wind belts. We test this hypothesis using geochemical provenance measurements of deep-sea sediments deposited along the Mid-Atlantic Ridge between 24°S and 37°S. In the central South Atlantic, dust can be delivered from South America via the Westerlies, or from Africa via the Trade Winds. The dust sources on South America and Africa have very different geochemical signatures, making it possible to distinguish between eolian transport via the Westerlies vs. the Trade Winds. Any northward shift in the Southern Hemisphere Westerlies should increase the northward extent of a South American provenance in sediments dominated by eolian sources. We measured major and trace element concentrations, and radiogenic isotopes of Ar, Sr, Nd, and Pb on the <5 μm lithogenic sediments from a latitudinal transect of cores along the flanks of the Mid-Atlantic Ridge. In general, the data point to an older continental provenance for the northernmost sites, and a much younger provenance for the southernmost sites, consistent with western Africa as the primary source of sediment in the north, and South American sediments being delivered to the south. Glacial sediments display a clear compositional boundary near 30°S, which likely reflects the boundary between the Westerlies and the Trade Winds. The data are therefore not consistent with northward shifted wind belts at the LGM. The observed variations in terrigenous sediment composition at these sites may, however, be consistent with an equatorward displacement of the SHWW through the deglaciation. The results may also point to changes in the continental source regions supplying dust to the atmosphere as the glaciers retreated.

  3. Deep circulation changes in the South Atlantic since the Last Glacial Maximum from Nd isotope and multi-proxy records

    NASA Astrophysics Data System (ADS)

    Wei, R.; Abouchami, W.; Zahn, R.; Masque, P.

    2016-01-01

    We report down-core sedimentary Nd isotope (εNd) records from two South Atlantic sediment cores, MD02-2594 and GeoB3603-2, located on the western South African continental margin. The core sites are positioned downstream of the present-day flow path of North Atlantic Deep Water (NADW) and close to the Southern Ocean, which makes them suitable for reconstructing past variability in NADW circulation over the last glacial cycle. The Fe-Mn leachates εNd records show a coherent decreasing trend from glacial radiogenic values towards less radiogenic values during the Holocene. This trend is confirmed by εNd in fish debris and mixed planktonic foraminifera, albeit with an offset during the Holocene to lower values relative to the leachates, matching the present-day composition of NADW in the Cape Basin. We interpret the εNd changes as reflecting the glacial shoaling of Southern Ocean waters to shallower depths combined with the admixing of southward flowing Northern Component Water (NCW). A compilation of Atlantic εNd records reveals increasing radiogenic isotope signatures towards the south and with increasing depth. This signal is most prominent during the Last Glacial Maximum (LGM) and of similar amplitude across the Atlantic basin, suggesting continuous deep water production in the North Atlantic and export to the South Atlantic and the Southern Ocean. The amplitude of the εNd change from the LGM to Holocene is largest in the southernmost cores, implying a greater sensitivity to the deglacial strengthening of NADW at these sites. This signal impacted most prominently the South Atlantic deep and bottom water layers that were particularly deprived of NCW during the LGM. The εNd variations correlate with changes in 231Pa/230Th ratios and benthic δ13C across the deglacial transition. Together with the contrasting 231Pa/230Th: εNd pattern of the North and South Atlantic, this indicates a progressive reorganization of the AMOC to full strength during the Holocene.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sudarchikova, Natalia; Mikolajewicz, Uwe; Timmreck, C.

    The mineral dust cycle responds to climate variations and plays an important role in the climate system by affecting the radiative balance of the atmosphere and modifying biogeochemistry. Polar ice cores provide unique information about deposition of aeolian dust particles transported over long distances. These cores are a palaeoclimate proxy archive of climate variability thousands of years ago. The current study is a first attempt to simulate past interglacial dust cycles with a global aerosol–climate model ECHAM5-HAM. The results are used to explain the dust deposition changes in Antarctica in terms of quantitative contribution of different processes, such as emission,more » atmospheric transport and precipitation, which will help to interpret palaeodata from Antarctic ice cores. The investigated periods include four interglacial time slices: the pre-industrial control (CTRL), mid-Holocene (6000 yr BP; hereafter referred to as \\"6 kyr\\"), last glacial inception (115 000 yr BP; hereafter \\"115 kyr\\") and Eemian (126 000 yr BP; hereafter \\"126 kyr\\"). One glacial time interval, the Last Glacial Maximum (LGM) (21 000 yr BP; hereafter \\"21 kyr\\"), was simulated as well to be a reference test for the model. Results suggest an increase in mineral dust deposition globally, and in Antarctica, in the past interglacial periods relative to the pre-industrial CTRL simulation. Approximately two-thirds of the increase in the mid-Holocene and Eemian is attributed to enhanced Southern Hemisphere dust emissions. Slightly strengthened transport efficiency causes the remaining one-third of the increase in dust deposition. The moderate change in dust deposition in Antarctica in the last glacial inception period is caused by the slightly stronger poleward atmospheric transport efficiency compared to the pre-industrial. Maximum dust deposition in Antarctica was simulated for the glacial period. LGM dust deposition in Antarctica is substantially increased due to 2.6 times higher Southern Hemisphere dust emissions, 2 times stronger atmospheric transport towards Antarctica, and 30% weaker precipitation over the Southern Ocean. The model is able to reproduce the order of magnitude of dust deposition globally and in Antarctica for the pre-industrial and LGM climates.« less

  5. Overdeeping and stratigraphy of a typical Alpine foreland glacier

    NASA Astrophysics Data System (ADS)

    Salcher, Bernhard; Reinhard, Starnberger; Götz, Joachim

    2015-04-01

    The Northern Alpine Foreland was repeatedly covered by massive piedmont glaciers during Quaternary peak glacial periods. Remnants of the Salzach foreland glacier (Austria/Germany) represent the easternmost of a series of piedmont glaciers entering the Foreland by major Alpine valleys reaching far into the Alpine Molasse. The area of the former Salzach foreland glacier (SFG) marks a unique place as remnants of at least 4 glacial maxima meet an abundant geodatabase including information on the digital topography and the internal built up of glacial deposits derived from outcrops and several hundreds of drillings. During the LGM, it covered an area of more than 1000 km² and was even more extensive during older peak glacial periods. The lack of absolute ages as well as systemic investigation of the internal built up did so far impede the reconstruction on its dynamics. Here we aim to bring more light into the erosional and depositional history of a typical north Alpine piedmont glacier, the SFG, by analyzing drill log data, field outcrops, topography and the depositional ages of sediments. We focus on the proximal (axial) and distal parts of the SFG lobe. Some of the major unresolved questions regarding the Quaternary evolution of the major Alpine foreland glaciers are: Is the glacial erosion of Miocene bedrock the consequence of one glacial cycle or does it rather reflect successive erosional events during each glacial period? What is the spatial variability and potential depth of erosion? What is the structure and internal built up these deposits? The intent of this study is not to answer these questions in detail but to deliver important constraints: Our results indicate that more than 300- 400 m of bedrock were eroded during an early peak glacial period (such as antepenultimate glacial period or even earlier). Erosion was rather uniform across the lobe with larger values only occurring in the center (axis) of the glacier. Accumulation of more than 100 m of deposits occurred later, potentially during the antepenultimate and penultimate glacial maximum (MIS 6). Deposits suggest a characteristic stratigraphy of glaciofluvial sediments and basal tills, with the lithofacies of fluvial sediments varying from the proximal to distal lobe parts. The general impact of the LGM (MIS2) seems to be minor.

  6. INTERACTION OF CLIMATE AND LAND USE IN FUTURE TERRESTRIAL CARBON STORAGE AND RELEASE

    EPA Science Inventory

    The processes controlling total carbon (C) storage and release from the terrestrial biosphere are still poorly quantified. e conclude from analysis of paleodata and climate biome model output that terrestrial C exchanges since the last glacial maximum (LGM) were dominated by slow...

  7. Noble Gas Proxy Evidence Of Holocene Climate Fluctuations In The Elwha Watershed, Olympic Mountains, Washington

    EPA Science Inventory

    Paleotempertures retrieved from the groundwater archives in the largest watershed (≈800 km2) in the Olympic Mountains suggest asynchronous Olympic Peninsula climate responses during the Everson interstade period after the last continental glacial maximum. Dissolved noble gases fr...

  8. Deglaciation and post-glacial environmental evolution in the Western Massif of Picos de Europa

    NASA Astrophysics Data System (ADS)

    Ruiz-Fernández, Jesús; Oliva, Marc; García, Cristina; López-Sáez, José Antonio; Gallinar, David; Geraldes, Miguel

    2014-05-01

    This study examines the process of deglaciation of the Western Massif of Picos de Europa through field work, geomorphological mapping, sedimentary records and absolute datings of 14C. This massif has several peaks over 2,400 m a.s.l. (Peña Santa de Castilla, 2,596 m; Torre Santa María, 2,486 m; Torre del Mediu, 2,467 m). It is composed mainly by Carboniferous limestones. This area has been intensively affected by karstic dissolution, Quaternary glaciers and fluvio-torrential processes (Miotke, 1968; Moreno et al, 2010; Ruiz-Fernández et al, 2009; Ruiz-Fernández, 2013). At present day, periglacial processes are active at the highest elevations (Ruiz-Fernández, 2013). We have identified four main glacial stages regarding the deglaciation of the massif: (i) maximum advance corresponding to the Last Glaciation, (ii) retreat and stabilization after the maximum advance, (iii) Late Glacial, and (iv) Little Ice Age. Sedimentological studies also contribute data to the understanding of the chronological framework of these environmental changes. The datings of the bottom sediments in two long sequences (8 and 5.4 m) provided a minimum age of 18,075 ± 425 cal BP for the maximum advance stage and 11,150 ± 900 cal BP for retreat and stabilization in the phase following the maximum advance. The ongoing analyses of these sequences at very high resolution will provide new knowledge about the environmental conditions prevailing since the deglaciation of the massif. References Miotke, F.D. (1968). Karstmorphologische studien in der glazial-überformten Höhenstufe der Picos de Europa, Nordspanien. Hannover, Selbtverlag der Geografischen Gessellschaft, 161 pp. Moreno, A., Valero, B.L., Jiménez, M., Domínguez, M.J., Mata, M.P., Navas, A., González, P., Stoll, H., Farias, P., Morellón, M., Corella, J.P. & Rico, M. (2010). The last deglaciation in the Picos de Europa National Park (Cantabrian Mountains, Northern Spain). Journal of Quaternary Science, 25 (7), 1076-1091. Ruiz-Fernández, J. (2013). Las formas de modelado glaciar, periglaciar y fluviotorrencial del Macizo Occidental de los Picos de Europa (Cordillera Cantábrica). Unpublished PhD Thesis, University of Oviedo, 314 pp. Ruiz-Fernández, J., Poblete. M.A., Serrano, P., Martí, C. & García-Ruiz, J.M. (2009). Morphometry of glacial cirques in the Cantabrian Range (Northwest Spain). Zeitschrift für Geomorphologie N. F., 53, 47-68.

  9. A Multi-Proxy Approach to Reconstruct Climate Variability in the Western Mediterranean across the Penultimate and Last Glacial Period

    NASA Astrophysics Data System (ADS)

    Dixit, Y.; Toucanne, S.; Bonnin, L.; Fontanier, C.; Jouet, G.; Tripati, A. K.

    2016-12-01

    The Mediterranean as a model miniature ocean is an ideal study area for the links between climate change and anoxia. Organic rich-sapropelic deposits punctuate Quaternary sediments series in the basin. These deposits reveal the occurrence of anoxic conditions during times when the circulation of the Mediterranean ocean was deeply perturbed. The `'Nilotic paradigm' proposes anoxia was a direct result of massive inputs of fresh water from the Nile. It is also possible that these sapropels could occur in response to periods of intense rainfall and riverine discharge on the northern Mediterranean coast. To resolve the sequence of events linked to sapropel deposition in the western Mediterranean, we use a multi-proxy (oxygen and carbon isotopes, benthic foraminifera assemblage and trace element geochemistry of foraminifera calcite) approach to examine sediments from the Tyrhennian Sea off the eastern Corsica margin in order to reconstruct climate variability during the penultimate glacial termination, and we compare results to those for the last glacial period. Our preliminary results show increased abundance of epifaunal and deep infaunal benthic species during MIS 5e ( 122-125 kyr BP), accompanied by a rise in Mg/Ca-based sea surface temperature (SST) using G. bulloides. A sharp decline in SST at 135 kyr BP coincides with Heinrich Stadial 5 in the North Atlantic. We will compare the timing of Mg/Ca-based SST minima and reconstructed water d18O variations to Heinrich Stadials in the North Atlantic in order to infer the mechanisms responsible for cooling in the Tyrrhenian Sea. This analysis should shed light on the proposed atmospheric teleconnection causing cooling of western Mediterranean waters via intensification of the Northern Hemisphere high-latitude wind systems.

  10. Hydrogeochemistry of Maine seepage lakes and related groundwaters

    NASA Astrophysics Data System (ADS)

    Stauffer, Robert E.; Wittchen, Bruce D.

    1992-10-01

    Southeastern Maine contains numerous small seepage lakes (no perennial surface inflows or outflows), set in felsic, glacial deposits (eskers, pitted outwash, glacio-marine deltaic terraces) dating from the Wisconsin glacial retreat ca. 12 500 years B.P. The modern landscape is either forested or maintained as low blueberry heath by semi-annual mowing and burning. Although local precipitation is currently moderately acidic (volume-weighted pH ≈ 4.5), spring waters issuing from the glacial deposits are only weakly acidic (6.1 < pH < 7.0), and bicarbonate-buffered (120 to 300 mmol m -3) on account of tertiary weathering by dissolved CO 2. The order of mobility (denudation rate) for base cations (BC) is: Ca > Na > Mg > K, the same as for upland granitic terrane in the same region. Springwater composition is temporally stable but geographically variable. The most dilute springwaters drain blueberry barrens. Here, chemical weathering is limited by available acidity as evidenced by the relatively high final pHs (> 6.3) and low concentrations of strong oxy-anions (nitrate, sulfate) and dissolved inorganic carbon (DIC < 250 μM). Closely neighboring lakes often range widely in alkalinity, BC, and F, depending on their connection to the local groundwater system. Tracer analysis indicates seepage inflow is equal to 5-50 cm year -1 for typical regional seepage lakes, vs. higher rates (> 100 cm year -1) for groundwater discharge lakes. Approximately 88% of Si inputs to regional seepage lakes is retained in the sediments. Non-marine sulfate is lowest in groundwater discharge lakes containing the highest concentrations of BC and F, and featuring the shortest hydraulic residence times, suggesting that S retention in lake sediments is currently less efficient than in the adjoining terrestrial soils and vegetation.

  11. Sedimentary organic matter variations in the Chukchi Borderland over the last 155 kyr

    NASA Astrophysics Data System (ADS)

    Rella, S. F.; Uchida, M.

    2011-03-01

    Knowledge on past variability of sedimentary organic carbon in the Arctic Ocean is important to assess natural carbon cycling and transport processes related to global climate changes. However, the late Pleistocene oceanographic history of the Arctic is still poorly understood. In the present study we show sedimentary records of total organic carbon (TOC), C/N and CaCO3 from a piston core recovered from the northern Northwind Ridge in the far western Arctic Ocean, a region potentially sensitively responding to past variability in surface current regimes and sedimentary processes such as coastal erosion. An age model based on correlation of our CaCO3 record with the benthic δ18O stack, supplemented by lithological constraints, suggests that the piston core records paleoenvironmental changes of the last 155 kyr. According to this age model, TOC and C/N show orbital-scale increases and decreases that can be respectively correlated to the waxing and waning of large ice sheets dominating the Eurasian Arctic, suggesting advection of fine suspended matter derived from glacial erosion to the Northwind Ridge by eastward flowing intermediate water and/or surface water and sea ice during cold episodes of the last two glacial-interglacial cycles. At millennial scales, increases in TOC and C/N appear to correlate to a suite of Dansgaard-Oeschger Stadials between 120 and 40 ka before present (BP) and thus seem to respond to abrupt northern hemispheric temperature changes. Between 65 and 40 ka BP, closures and openings of the Bering Strait could have additionally influenced TOC and C/N variability. CaCO3 content tends to anti-correlate with TOC and C/N on both orbital and millennial time scales, which we interpret as enhanced sediment advection from the carbonate-rich Canadian Arctic via an extended Beaufort Gyre during warm periods of the last two glacial-interglacial cycles and increased terrestrial organic carbon advection from the Siberian Arctic during cold periods when the Beaufort Gyre contracted. We propose that this pattern may be related to orbital- and millennial-scale variations of dominant atmospheric surface pressure systems expressed in mode shifts of the Arctic Oscillation.

  12. Reconstructing the Glacial Cycle of the Last 150 ka in the Southern Bay of Bengal

    NASA Astrophysics Data System (ADS)

    Holmes, B.; Dekens, P.; Weber, M. E.; Lantzsch, H.; Reilly, B. T.; Das, S. K.; Martos, Y. M.; Williams, T.

    2017-12-01

    The Himalayas and resulting monsoonal climate provide the source and mechanism for sediment deposition in the Bay of Bengal. Sediments from the distal Bengal Fan collected during IODP expedition 354, with the exception the westernmost Site U1454, show a several meter thick, hemipelagic top layer representing the Late Quaternary. This interval has abundant foraminifera throughout and therefore presents a unique opportunity to reconstruct oceanographic conditions, alongside records of terrestrial climate variability. We reconstructed oceanographic conditions at IODP site U1452 (8°N, 87°E, 3671 m water depth), in the southern Bay of Bengal. The age model was constructed by tuning the core's sediment lightness, L*, to the EDML ice core. The Toba Ash 1 (73.7 ka) is an additional constraint leading to an age model with a total of 35 tie points. We sampled the top 3.5 m of sediment at 2 cm resolution, and picked between 8 to 30 tests of the mixed surface layer planktonic foraminifera G. sacculifer from each sample. The tests were cracked open between two glass plates and the sample was homogenized before being split into separate aliquots for d18O and Mg/Ca analysis. Mg/Ca data range from 2.5 to 4.1 mmol/mol and show a SST change of 2-4°C between glacial and interglacial times. The δ18O data range from -2.63 to 0.17‰. The data shows the shift from the cooler glacial period into the warming interglacial period at 15 ka ending the LGM. The apparent late timing of the deglaciation in the record could be an artifact of lower resolution of the δ18O data (compared to the benthic stack). It is also possible the offset in the timing is due to the age model limitations and the assumption of linear sedimentation rates between tie points. We will further explore the age model implications by measuring d18O on benthic foraminifera where available in the sediment core. In collaboration with scientists from IODP Expedition 354, this data can be used to examine the link between tropical ocean conditions, monsoon strength, and glacial cycles.

  13. Correlation of Brunhes detrital-layer stratigraphy into the North Atlantic from Orphan Knoll (Labrador Sea)

    NASA Astrophysics Data System (ADS)

    Channell, J. E.; Hodell, D. A.; Romero, O. E.; Hillaire-Marcel, C.; de Vernal, A.; Stoner, J. S.; Mazaud, A.; Roehl, U.

    2011-12-01

    IODP Site U1302-U1303, on the SE flank of Orphan Knoll (Labrador Sea), has a record of detrital layers that extends through most of the Brunhes Chron. The age model is built by tandem matching of relative paleointensity (RPI) and oxygen isotope data (δ18O) from Neogloboquadrina pachyderma (sin.) to reference records, indicating a mean Brunhes sedimentation rate of 14 cm/kyr. Sedimentation back to marine isotope stage (MIS) 18 is characterized by detrital layers that are detected by higher than background gamma-ray attenuation (GRA) density, peaks in X-ray fluorescence (XRF) indicators for detrital carbonate (Ca/Sr) and detrital silicate (Si/Sr), an ice-rafted debris (IRD) proxy (>106 μm), magnetic susceptibility, and magnetic grain-size peaks. The age model enables correlation of Site U1302/03 to IODP Site U1308 (re-drill of DSDP Site 609) in the heart of the central Atlantic IRD belt where an age model and a similar set of detrital-layer proxies have already been derived. Ages of Heinrich layers H1, H2, H4, H5 and H6 are within ~2 kyr at the two sites (H0, H3 and H5a are not observed at Site U1308), and agree with previous work at Orphan Knoll within ~3 kyr. At Site U1308, Brunhes detrital layers are restricted to peak glacials and glacial terminations back to MIS16, however, these same proxies at Site U1302/03 indicate detrital layers distributed throughout the record in both glacial and most interglacial stages. At Site U1302/03, we distinguish Heinrich-type layers in glacial stages, which are associated with IRD (some of which have near-synchronous analogues at Site U1308), from detrital layers within interglacial stages manifested by multiple detrital layer proxies (including Ca/Sr) but usually not associated with IRD, that may be attributed to a distinct depositional process, namely drainage and debris-flow events funneled down the nearby NAMOC (North Atlantic Mid-Ocean Channel).

  14. Sediment-palaeosol successions in Calabria and Sardinia suggest spatially differentiated palaeo-vegetation patterns in southern Italy during the Last Glacial period

    NASA Astrophysics Data System (ADS)

    Sauer, Daniela; Zucca, Claudio; Al-Sharif, Riyad; Zwanzig, Lisa; Madrau, Salvatore; Andreucci, Stefano; Pascucci, Vincenzo; Kadereit, Annette; Scarciglia, Fabio; Brückner, Helmut

    2016-04-01

    Several lakes on the southern Italian peninsula provide valuable palaeoenvironmental archives of the Last Glacial period. These archives include, e.g., the long high-resolution record from varved lake sediments of Lago Grande di Monticchio, the bigger one of two maar lakes situated on top of Mt. Vulture. Its pollen record indicates (1) temperate deciduous forest during MIS5.2-MIS5.1 (St. Germain 2); (2) frequent vegetation fluctuations, then Artemisia steppe during MIS5.1-MIS4; (3) alternations between open steppe (stadials) and wooded steppe (interstadials) during MIS3; and (4) open steppe during MIS2 (Last Glacial Maximum). However, only few palaeosol records of this period have been reported from southern Italy in the literature so far. Such records would allow for gaining insight also into spatial patterns of the vegetation cover during this period that should have formed, e.g., according to relief, elevation, and continentality gradient (related to the much lower coastline during the last glacial period). So far, we have studied three sediment-palaeosol successions in southern Italy, two in the Calabria region, and one in north-western Sardinia. All of them have developed in alluvial fan deposits resting on littoral sediments of the Last Interglacial period (MIS 5). The southernmost succession studied is located near Lazzaro (south of Reggio di Calabria). It is exposed in an alluvial fan overlying the MIS5.5 terrace. Due to strong tectonic uplift (1.3 m ka-1) the alluvial fan has been dissected by the same creek which previously had built it up. Therefore, its internal structure is exposed, exhibiting a detailed sediment-palaeosol sequence. The palaeosols are mainly characterized by accumulation of soil organic matter (SOM), bioturbation and secondary carbonates. They represent Chernozem- and Phaeozem-like soils that most likely formed under steppe to forest steppe. SOM of the two uppermost Lazzaro palaeosols was 14C-dated to 26.8-28.8 ka cal BP and 28.9-30.3 ka cal BP, respectively. Thus, the formation of these soils falls into the period for which the lacustrine record indicates alternations between open and wooded steppe. The second palaeosol-sediment succession was found in a similar geomorphological situation near Piale, ca. 30 km north of the Lazzaro profile. In this case, the major part of the alluvial fan was removed by the creek (flowing from east to west), so that only its southernmost edge is preserved. SOM of the two lowermost palaeosols embedded in it was 14C-dated to 44.8-45.8 ka cal BP and 45.2-46.2 ka cal BP, respectively. The palaeosols of the Piale profile are very dark, almost carbonate-free, and several of them are characterized by an aeolian component (volcanic ash). The third sediment-palaeosol succession is exposed at the north-western coast of Sardinia, ca. 1.5 km north of Porto Palmas. The succession has developed in alluvial fan deposits that are constrained in a narrow valley, thus forming a valley infilling. Where the valley opens into the sea, this infilling is exposed in a high cliff. The sediment-palaeosol succession is sandwiched between marine deposits at the bottom (attributed to MIS 5c), and a sandy cover on top, dated to 23±4 ka by optically stimulated luminescence (OSL). 14C dating was performed on charcoal fragments that were abundant in several horizons. Interestingly, in contrast to the two sediment-palaeosol successions in Calabria, the palaeosols exposed in NW Sardinia do not represent dark steppe and forest steppe soils. The NW Sardinian Late Pleistocene palaeosols are brownish, reflecting rather forest environments. This difference suggests somewhat more humid and less continental conditions in this area compared to Calabria, during the Last Glacial period. However, more of these terrestrial archives along the coast of S Italy would need to be studied to gain a deeper understanding of spatial patterns of Last Glacial vegetation and environments.

  15. The Glacial-Interglacial summer monsoon recorded in southwest Sulawesi speleothems: Evidence for sea level thresholds driving tropical monsoon strength

    NASA Astrophysics Data System (ADS)

    Kimbrough, A. K.; Gagan, M. K.; Dunbar, G. B.; Krause, C.; Di Nezio, P. N.; Hantoro, W. S.; Cheng, H.; Edwards, R. L.; Shen, C. C.; Sun, H.; Cai, B.; Rifai, H.

    2016-12-01

    Southwest Sulawesi lies within the Indo-Pacific Warm Pool (IPWP), at the center of atmospheric convection for two of the largest circulation cells on the planet, the meridional Hadley Cell and zonal Indo-Pacific Walker Circulation. Due to the geographic coincidence of these circulation cells, southwest Sulawesi serves as a hotspot for changes in tropical Pacific climate variability and Australian-Indonesian summer monsoon (AISM) strength over glacial-interglacial (G-I) timescales. The work presented here spans 386 - 127 ky BP, including glacial terminations IV ( 340 ky BP) and both phases of TIII (TIII 248 ky BP and TIIIa 217 ky BP). This record, along with previous work from southwest Sulawesi spanning the last 40 kyr, reveals coherent climatic features over three complete G-I cycles. The multi-stalagmite Sulawesi speleothem δ18O record demonstrates that on G-I timescales, the strength of the AISM is most sensitive to changes in sea level and its impact on the regional distribution of land and shallow ocean. Stalagmite δ18O and trace element (Mg/Ca) data indicate a rapid increase in rainfall at glacial terminations and wet interglacials. TIV, TIII, TIIIa, and TI are each characterized by an abrupt 3‰ decrease in δ18O that coincides with sea level rise and flooding of the Sunda and Sahul shelves. Strong evidence for a sea level (flooding/exposure) threshold is found throughout the southwest Sulawesi record. This is most clearly demonstrated over the period 230 - 212 ky BP (MIS 7d-7c), when a sea level fall to only -80 to -60 m for 10 kyr results in a weakened AISM and glacial conditions, followed by a full termination. Taken together, both glaciations and glacial terminations imply a sea level threshold driving the AISM between two primary levels of intensity (`interglacial' & `glacial'). These massive, sea-level driven shifts in AISM strength are superimposed on precession-scale variability associated with boreal fall insolation at the equator, indicating sensitivity to tropical Pacific influence on warm pool convection.

  16. Climatic variability during the penultimate interglacial (MIS 7) and glacial (MIS 6) periods recorded in a speleothem from Kanaan cave, Lebanon (Central Levant)

    NASA Astrophysics Data System (ADS)

    Nehme, Carole; Verheyden, Sophie; Breitenbach, Sebastian F. M.; Gillikin, David P.; Verheyden, Anouk; Cheng, Hai; Edwards, Laurence; Hellstrom, John; Noble, Stephen R.; Farrant, Andrew R.; Sahy, Diana; Goovaerts, Thomas; Salem, Ghada; Claeys, Philippe

    2017-04-01

    Little is known about terrestrial climate dynamics of the Levant during the penultimate interglacial-glacial period. A well-dated stalagmite ( 194 to 154 ka) from Kanaan cave, located near the Mediterranean in Lebanon, is examined for its petrography, growth history, and stable isotope geochemistry to answer the climate instability pattern of the glacial MIS 6 and possible wet phases. A highly resolved continental climate record from the northern Levant has been recovered from this precisely U-Th-dated speleothem, spanning the late penultimate interglacial (equivalent of the MIS 7) to the mid-penultimate glacial period ( MIS 6). The stalagmite grew slowly and discontinuously with an unstable isotopic pattern from 194 and at least up to 178 ka. Subsequently, the stalagmite ceased growing from 169.5 to 163.1 ka (interpolated ages) with a hiatus of ca. 6.24 ka according to the model age. However, low δ 18O and δ 13C values indicate generally cold, but overall more humid climate compared to the last glacial (MIS 3). Higher growth rates during the mid-penultimate glacial period ( 163-154 ka) are most probably linked to increased water recharge in the vadose zone. A short More distinct layering in the upper section compared to the basal part of the stalagmite suggests stronger seasonality from 163 ka to 154 ka. Negative oxygen and carbon isotope excursions were found at ˜155.5 ka, ˜156 ka, between ˜159.6 and ˜160.1 ka and at ˜162.6 ka. The inferred Kanaan cave humid intervals during the mid-penultimate period follow variations of pollen records in the Eastern and Western Mediterranean basins and correlate well with the synthetic Greenland records and East Asian Summer Monsoon Interstadials, indicating short warm/wet periods similar to the D-O events during MIS 4-3 in the Eastern Mediterranean region.

  17. Climate change decouples oceanic primary and export productivity and organic carbon burial

    PubMed Central

    Lopes, Cristina; Kucera, Michal; Mix, Alan C.

    2015-01-01

    Understanding responses of oceanic primary productivity, carbon export, and burial to climate change is essential for model-based projection of biological feedbacks in a high-CO2 world. Here we compare estimates of productivity based on the composition of fossil diatom floras with organic carbon burial off Oregon in the Northeast Pacific across a large climatic transition at the last glacial termination. Although estimated primary productivity was highest during the Last Glacial Maximum, carbon burial was lowest, reflecting reduced preservation linked to low sedimentation rates. A diatom size index further points to a glacial decrease (and deglacial increase) in the fraction of fixed carbon that was exported, inferred to reflect expansion, and contraction, of subpolar ecosystems that today favor smaller plankton. Thus, in contrast to models that link remineralization of carbon to temperature, in the Northeast Pacific, we find dominant ecosystem and sea floor control such that intervals of warming climate had more efficient carbon export and higher carbon burial despite falling primary productivity. PMID:25453073

  18. Fire and vegetation shifts in the Americas at the vanguard of Paleoindian migration

    USGS Publications Warehouse

    Pinter, N.; Fiedel, S.; Keeley, J.E.

    2011-01-01

    Across North and South America, the final millennia of the Pleistocene saw dramatic changes in climate, vegetation, fauna, fire regime, and other local and regional paleo-environmental characteristics. Rapid climate shifts following the Last Glacial Maximum (LGM) exerted a first-order influence, but abrupt postglacial shifts in vegetation composition, vegetation structure, and fire regime also coincided with human arrival and transformative faunal extinctions in the Americas. We propose a model of post-glacial vegetation change in response to climatic drivers, punctuated by local fire regime shifts in response to megaherbivore-driven fuel changes and anthropogenic ignitions. The abrupt appearance of humans, disappearance of megaherbivores, and resulting changes in New World fire systems were transformative events that should not be dismissed in favor of climate-only interpretations of post-glacial paleo-environmental shifts in the Americas. Fire is a mechanism by which small human populations can have broad impacts, and growing evidence suggests that early anthropogenic influences on regional, even global, paleo-environments should be tested alongside other potential causal mechanisms.

  19. Major advance of South Georgia glaciers during the Antarctic Cold Reversal following extensive sub-Antarctic glaciation

    PubMed Central

    Graham, Alastair G. C.; Kuhn, Gerhard; Meisel, Ove; Hillenbrand, Claus-Dieter; Hodgson, Dominic A.; Ehrmann, Werner; Wacker, Lukas; Wintersteller, Paul; dos Santos Ferreira, Christian; Römer, Miriam; White, Duanne; Bohrmann, Gerhard

    2017-01-01

    The history of glaciations on Southern Hemisphere sub-polar islands is unclear. Debate surrounds the extent and timing of the last glacial advance and termination on sub-Antarctic South Georgia in particular. Here, using sea-floor geophysical data and marine sediment cores, we resolve the record of glaciation offshore of South Georgia through the transition from the Last Glacial Maximum to Holocene. We show a sea-bed landform imprint of a shelf-wide last glacial advance and progressive deglaciation. Renewed glacier resurgence in the fjords between c. 15,170 and 13,340 yr ago coincided with a period of cooler, wetter climate known as the Antarctic Cold Reversal, revealing a cryospheric response to an Antarctic climate pattern extending into the Atlantic sector of the Southern Ocean. We conclude that the last glaciation of South Georgia was extensive, and the sensitivity of its glaciers to climate variability during the last termination more significant than implied by previous studies. PMID:28303885

  20. Ground-water quality in the Red River of the North Basin, Minnesota and North Dakota, 1991-95

    USGS Publications Warehouse

    Cowdery, T.K.

    1998-01-01

    Agricultural land use and soil texture can explain pesticide distributions; soil texture best explains nutrient distributions in waters in surficial aquifers. Confining beds protect waters in buried glacial aquifers from land use effects, resulting in no or low concentrations of nutrients and pesticides. Upward movement of bedrock waters high in dissolved solids concentration can increase concentrations in waters in buried glacial and, to a lesser degree, waters in surficial aquifers in the Lake Plain and Drift Prairie areas. Waters in surficial aquifers exceeded the U.S. Environmental Protection Agency (USEPA) maximum contaminant level in drinking water for nitrate in the Drift Prairie (27 percent) and Moraine (8 percent) areas. Their limited areal extent and susceptibility to contamination restrict the usefulness of surficial aquifers as a drinking water source. Waters in buried glacial aquifers exceeded USEPA health advisories for dissolved solids, sodium, and manganese. Sixty-six percent of waters in surficial aquifers also exceeded the Health Advisory for manganese.

  1. Sedimentary record on the Indian Summer Monsoon since the Last Glacial Maximum: Evidence from the southeastern Andaman Sea

    NASA Astrophysics Data System (ADS)

    Shi, Xuefa; Liu, Shengfa; Cao, Peng; Khokiattiwong, Somkiat; Kornkanitnan, Narumol

    2016-04-01

    The Indian Summer Monsoon (ISM) generated by across-equatorial pressure gradient between the Asian continent and the southern Indian Ocean is a major component of the Asian monsoon system and establishes interactions among the ocean, land and atmosphere. Provenance and paleoclimate changes in the Andaman Sea during the last 26 ka were reconstructed from high-resolution records of grain-size, major elements and Sr-Nd isotopes in core ADM-9. The values of ɛNd(0) and 87Sr/86Sr were in good agreement with those of Irrawaddy River sediments, indicating a common source of origin. Two sensitive grain-size intervals (3.4-7.5 and 16.8-21.2 μm) were identified; the former was controlled primarily by sea-level change, whereas the latter was related to Irrawaddy River discharge and South-west Current transport driven by the ISM. Proxies of chemical weathering (K/Al) and terrigenous input (Ti/Ca) coupled with sensitive grain-size interval (16.8-21.2 μm population) revealed that the ISM was weak during ~15-26 ka BP and then strengthened gradually to a maximum during ~7-9 ka BP; subsequently, the ISM exhibited a generally declining trend to ~2 ka BP. The variation of the ISM recorded in this work is consistent with ISM variations observed in an open area in the northern Indian Ocean and in adjacent continents, implying the evolution of the Asia summer monsoon since 26 ka.

  2. Geomorphic and shallow-acoustic investigation of an Antarctic Peninsula fjord system using high-resolution ROV and shipboard geophysical observations: Ice dynamics and behaviour since the Last Glacial Maximum

    NASA Astrophysics Data System (ADS)

    García, Marga; Dowdeswell, J. A.; Noormets, R.; Hogan, K. A.; Evans, J.; Ó Cofaigh, C.; Larter, R. D.

    2016-12-01

    Detailed bathymetric and sub-bottom acoustic observations in Bourgeois Fjord (Marguerite Bay, Antarctic Peninsula) provide evidence on sedimentary processes and glacier dynamics during the last glacial cycle. Submarine landforms observed in the 50 km-long fjord, from the margins of modern tidewater glaciers to the now ice-distal Marguerite Bay, are described and interpreted. The landforms are grouped into four morpho-sedimentary systems: (i) glacial advance and full-glacial; (ii) subglacial and ice-marginal meltwater; (iii) glacial retreat and neoglaciation; and (iv) Holocene mass-wasting. These morpho-sedimentary systems have been integrated with morphological studies of the Marguerite Bay continental shelf and analysed in terms of the specific sedimentary processes and/or stages of the glacial cycle. They demonstrate the action of an ice-sheet outlet glacier that produced drumlins and crag-and-tail features in the main and outer fjord. Meltwater processes eroded bedrock channels and ponds infilled by fine-grained sediments. Following the last deglaciation of the fjord at about 9000 yr BP, subsequent Holocene neoglacial activity involved minor readvances of a tidewater glacier terminus in Blind Bay. Recent stillstands and/or minor readvances are inferred from the presence of a major transverse moraine that indicates grounded ice stabilization, probably during the Little Ice Age, and a series of smaller landforms that reveal intermittent minor readvances. Mass-wasting processes also affected the walls of the fjord and produced scars and fan-shaped deposits during the Holocene. Glacier-terminus changes during the last six decades, derived from satellite images and aerial photographs, reveal variable behaviour of adjacent tidewater glaciers. The smaller glaciers show the most marked recent retreat, influenced by regional physiography and catchment-area size.

  3. A global perspective on Glacial- to Interglacial variability change

    NASA Astrophysics Data System (ADS)

    Rehfeld, Kira; Münch, Thomas; Ho, Sze Ling; Laepple, Thomas

    2017-04-01

    Changes in climate variability are more important for society than changes in the mean state alone. While we will be facing a large-scale shift of the mean climate in the future, its implications for climate variability are not well constrained. Here we quantify changes in temperature variability as climate shifted from the Last Glacial cold to the Holocene warm period. Greenland ice core oxygen isotope records provide evidence of this climatic shift, and are used as reference datasets in many palaeoclimate studies worldwide. A striking feature in these records is pronounced millennial variability in the Glacial, and a distinct reduction in variance in the Holocene. We present quantitative estimates of the change in variability on 500- to 1500-year timescales based on a global compilation of high-resolution proxy records for temperature which span both the Glacial and the Holocene. The estimates are derived based on power spectral analysis, and corrected using estimates of the proxy signal-to-noise ratios. We show that, on a global scale, variability at the Glacial maximum is five times higher than during the Holocene, with a possible range of 3-10 times. The spatial pattern of the variability change is latitude-dependent. While the tropics show no changes in variability, mid-latitude changes are higher. A slight overall reduction in variability in the centennial to millennial range is found in Antarctica. The variability decrease in the Greenland ice core oxygen isotope records is larger than in any other proxy dataset. These results therefore contradict the view of a globally quiescent Holocene following the instable Glacial, and imply that, in terms of centennial to millennial temperature variability, the two states may be more similar than previously thought.

  4. Extensive MIS 3 glaciation in southernmost Patagonia revealed by cosmogenic nuclide dating of outwash sediments

    NASA Astrophysics Data System (ADS)

    Darvill, Christopher M.; Bentley, Michael J.; Stokes, Chris R.; Hein, Andrew S.; Rodés, Ángel

    2015-11-01

    The timing and extent of former glacial advances can demonstrate leads and lags during periods of climatic change and their forcing, but this requires robust glacial chronologies. In parts of southernmost Patagonia, dating pre-global Last Glacial Maximum (gLGM) ice limits has proven difficult due to post-deposition processes affecting the build-up of cosmogenic nuclides in moraine boulders. Here we provide ages for the Río Cullen and San Sebastián glacial limits of the former Bahía Inútil-San Sebastián (BI-SSb) ice lobe on Tierra del Fuego (53-54°S), previously hypothesised to represent advances during Marine Isotope Stages (MIS) 12 and 10, respectively. Our approach uses cosmogenic 10Be and 26Al exposure dating, but targets glacial outwash associated with these limits and uses depth-profiles and surface cobble samples, thereby accounting for surface deflation and inheritance. The data reveal that the limits formed more recently than previously thought, giving ages of 45.6 ka (+139.9/-14.3) for the Río Cullen, and 30.1 ka (+45.6/-23.1) for the San Sebastián limits. These dates indicate extensive glaciation in southern Patagonia during MIS 3, prior to the well-constrained, but much less extensive MIS 2 (gLGM) limit. This suggests the pattern of ice advances in the region was different to northern Patagonia, with the terrestrial limits relating to the last glacial cycle, rather than progressively less extensive glaciations over hundreds of thousands of years. However, the dates are consistent with MIS 3 glaciation elsewhere in the southern mid-latitudes, and the combination of cooler summers and warmer winters with increased precipitation, may have caused extensive glaciation prior to the gLGM.

  5. Glacial refugia, recolonization patterns and diversification forces in Alpine-endemic Megabunus harvestmen.

    PubMed

    Wachter, Gregor A; Papadopoulou, Anna; Muster, Christoph; Arthofer, Wolfgang; Knowles, L Lacey; Steiner, Florian M; Schlick-Steiner, Birgit C

    2016-06-01

    The Pleistocene climatic fluctuations had a huge impact on all life forms, and various hypotheses regarding the survival of organisms during glacial periods have been postulated. In the European Alps, evidence has been found in support of refugia outside the ice shield (massifs de refuge) acting as sources for postglacial recolonization of inner-Alpine areas. In contrast, evidence for survival on nunataks, ice-free areas above the glacier, remains scarce. Here, we combine multivariate genetic analyses with ecological niche models (ENMs) through multiple timescales to elucidate the history of Alpine Megabunus harvestmen throughout the ice ages, a genus that comprises eight high-altitude endemics. ENMs suggest two types of refugia throughout the last glacial maximum, inner-Alpine survival on nunataks for four species and peripheral refugia for further four species. In some geographic regions, the patterns of genetic variation are consistent with long-distance dispersal out of massifs de refuge, repeatedly coupled with geographic parthenogenesis. In other regions, long-term persistence in nunataks may dominate the patterns of genetic divergence. Overall, our results suggest that glacial cycles contributed to allopatric diversification in Alpine Megabunus, both within and at the margins of the ice shield. These findings exemplify the power of ENM projections coupled with genetic analyses to identify hypotheses about the position and the number of glacial refugia and thus to evaluate the role of Pleistocene glaciations in driving species-specific responses of recolonization or persistence that may have contributed to observed patterns of biodiversity. © 2016 John Wiley & Sons Ltd.

  6. Neotropical forest expansion during the last glacial period challenges refuge hypothesis.

    PubMed

    Leite, Yuri L R; Costa, Leonora P; Loss, Ana Carolina; Rocha, Rita G; Batalha-Filho, Henrique; Bastos, Alex C; Quaresma, Valéria S; Fagundes, Valéria; Paresque, Roberta; Passamani, Marcelo; Pardini, Renata

    2016-01-26

    The forest refuge hypothesis (FRH) has long been a paradigm for explaining the extreme biological diversity of tropical forests. According to this hypothesis, forest retraction and fragmentation during glacial periods would have promoted reproductive isolation and consequently speciation in forest patches (ecological refuges) surrounded by open habitats. The recent use of paleoclimatic models of species and habitat distributions revitalized the FRH, not by considering refuges as the main drivers of allopatric speciation, but instead by suggesting that high contemporary diversity is associated with historically stable forest areas. However, the role of the emerged continental shelf on the Atlantic Forest biodiversity hotspot of eastern South America during glacial periods has been ignored in the literature. Here, we combined results of species distribution models with coalescent simulations based on DNA sequences to explore the congruence between scenarios of forest dynamics through time and the genetic structure of mammal species cooccurring in the central region of the Atlantic Forest. Contrary to the FRH predictions, we found more fragmentation of suitable habitats during the last interglacial (LIG) and the present than in the last glacial maximum (LGM), probably due to topography. We also detected expansion of suitable climatic conditions onto the emerged continental shelf during the LGM, which would have allowed forests and forest-adapted species to expand. The interplay of sea level and land distribution must have been crucial in the biogeographic history of the Atlantic Forest, and forest refuges played only a minor role, if any, in this biodiversity hotspot during glacial periods.

  7. Numerical simulations of the Cordilleran ice sheet through the last glacial cycle

    NASA Astrophysics Data System (ADS)

    Seguinot, Julien; Rogozhina, Irina; Stroeven, Arjen P.; Margold, Martin; Kleman, Johan

    2016-03-01

    After more than a century of geological research, the Cordilleran ice sheet of North America remains among the least understood in terms of its former extent, volume, and dynamics. Because of the mountainous topography on which the ice sheet formed, geological studies have often had only local or regional relevance and shown such a complexity that ice-sheet-wide spatial reconstructions of advance and retreat patterns are lacking. Here we use a numerical ice sheet model calibrated against field-based evidence to attempt a quantitative reconstruction of the Cordilleran ice sheet history through the last glacial cycle. A series of simulations is driven by time-dependent temperature offsets from six proxy records located around the globe. Although this approach reveals large variations in model response to evolving climate forcing, all simulations produce two major glaciations during marine oxygen isotope stages 4 (62.2-56.9 ka) and 2 (23.2-16.9 ka). The timing of glaciation is better reproduced using temperature reconstructions from Greenland and Antarctic ice cores than from regional oceanic sediment cores. During most of the last glacial cycle, the modelled ice cover is discontinuous and restricted to high mountain areas. However, widespread precipitation over the Skeena Mountains favours the persistence of a central ice dome throughout the glacial cycle. It acts as a nucleation centre before the Last Glacial Maximum and hosts the last remains of Cordilleran ice until the middle Holocene (6.7 ka).

  8. Microrefugia and Shifts of Hippophae tibetana (Elaeagnaceae) on the north side of Mt. Qomolangma (Mt. Everest) during the last 25000 years.

    PubMed

    Xu, Lu; Wang, Hao; La, Qiong; Lu, Fan; Sun, Kun; Fang, Yang; Yang, Mei; Zhong, Yang; Wu, Qianhong; Chen, Jiakuan; Birks, H John B; Zhang, Wenju

    2014-01-01

    Microrefugia at high altitudes or high latitudes are thought to play an important role in the post-glacial colonization of species. However, how populations in such microrefugia have responded to climate changes in alternating cold glacial and warm interglacial stages remain unclear. Here we present evidence to indicate the Rongbuk Valley of the Mt. Qomolangma (Mt. Everest) area, the highest region on earth, had microrefugia for Hippophae tibetana and discuss how this low shrub was adapted to the extreme climate fluctuations of the last 25,000 years by shifts. By integrating geological, glaciological, meteorological, and genetic information, we found that the Rongbuk Valley was not only a glacial microrefugium but also an interglacial microrefugium for H. tibetana: the former was located on the riverbank below 4800 m above sea level (asl) or lower area and the latter at ∼ 5000 m asl. Our results show that after the Last Glacial Maximum (LGM), H. tibetana in the valley has undergone upward and downward migrations around ∼ 5000 m driven by climate fluctuations and the population in the glacial microrefugium has suffered extinction or extreme contraction. Moreover, with the rise of temperature in the last four decades, the upper limit of H. tibetana has shifted at least 30 m upward. Combining population history and recent range shift of this species is important in predicting the fate of this endemic species to future climate changes.

  9. Microrefugia and Shifts of Hippophae tibetana (Elaeagnaceae) on the North Side of Mt. Qomolangma (Mt. Everest) during the Last 25000 Years

    PubMed Central

    Lu, Fan; Sun, Kun; Fang, Yang; Yang, Mei; Zhong, Yang; Wu, Qianhong; Chen, Jiakuan; Birks, H. John B.; Zhang, Wenju

    2014-01-01

    Microrefugia at high altitudes or high latitudes are thought to play an important role in the post-glacial colonization of species. However, how populations in such microrefugia have responded to climate changes in alternating cold glacial and warm interglacial stages remain unclear. Here we present evidence to indicate the Rongbuk Valley of the Mt. Qomolangma (Mt. Everest) area, the highest region on earth, had microrefugia for Hippophae tibetana and discuss how this low shrub was adapted to the extreme climate fluctuations of the last 25,000 years by shifts. By integrating geological, glaciological, meteorological, and genetic information, we found that the Rongbuk Valley was not only a glacial microrefugium but also an interglacial microrefugium for H. tibetana: the former was located on the riverbank below 4800 m above sea level (asl) or lower area and the latter at ∼5000 m asl. Our results show that after the Last Glacial Maximum (LGM), H. tibetana in the valley has undergone upward and downward migrations around ∼5000 m driven by climate fluctuations and the population in the glacial microrefugium has suffered extinction or extreme contraction. Moreover, with the rise of temperature in the last four decades, the upper limit of H. tibetana has shifted at least 30 m upward. Combining population history and recent range shift of this species is important in predicting the fate of this endemic species to future climate changes. PMID:24841004

  10. Monitoring of Bashkara glacial lakes (the Central Caucasus) and modelling of their potential outburst.

    NASA Astrophysics Data System (ADS)

    Krylenko, I.; Norin, S.; Petrakov, D.; Tutubalina, O.; Chernomorets, S.

    2009-04-01

    In recent decades due to glacier retreat the glacial lakes in the Central Caucasus, as well as in other high-mountainous areas of the world, have expanded intensively. As result the risk of lake outbursts and destructive floods is raising. In this paper we present one of the most potentially hazardous lakes of this region - a group of glacial lakes near the Bashkara glacier in the upper Adylsu river valley, to the southeast of Mt. Elbrus. Total area of these lakes is about 100,000m2, and a total volume exceeds 1,000,000 m3. The biggest of them - the Bashkara lake has formed in late 1930s - early 1940s and the small Lapa lake has appeared in the end of 1980s. The Bashkara lake outburst occurred twice in the end of 1950s and produced devastating debris flows of ca. 2 million m3. We have monitored these lakes since 1999. Our work includes detailed field research: constant measurements of water level during warm period, annually repeated bathymetric surveys, geodetic surveys, observations on dam condition and some special measurements (i.e. water temperature distribution, current velocity). Also we use aerial and satellite images to obtain data about dynamic of areas for the lakes. From 2001 to 2006 years volume of the Lapa lake has increased 5 times (from 30,000 m3 to 140,000 m3), the Bashkara lake in this period was quasi-stable. In 2006-2008 volume of the Lapa lake has decreased due to sedimentation, however, rapid growth of water level in Bashkara lake (more than 20 sm. per day) has suddenly begun. As a result, volume of the Bashkara lake exceeded 1,000000 m3 in July 2008 whereas in 2001 -2007 year it was about 800,000 m3. Previous maximum of water level was exceeded on 3,5 m, moraine dam with ice core was overtopped and overflow has started. Thus, Bashkara glacier lakes are unstable and risk of outburst is increasing. To assess parameters and zones of potential outburst flood in the Adylsu River valley we have carried out hydrodynamic simulation. Two computer models, based on solving of two-dimensional Saint-Venant equations -"River" (the Russia, author V.Belikov) and "Flo-2D" (the USA, authors J.S.O'Brien, R.Garcia) were used. The "River" model is based on the irregular triangular grid, therefore it is possible to calculate flow in details. On the other hand there is no debris flow block in this model yet and "Flo-2D" was applied to calculate potential debris flow parameters, because transformation of flood into debris flow is likely here. Input data for simulation were following: digital terrain model of Adylsu valley, made on the on the basis of map with scale 1:25000, outburst hydrograph, calculated for case of englacial drainage channels formation (Vinogradov's model, Russia), some empirical relationships between volume of the glacial lake and maximum discharge of outburst (i.e. Clague and Mathews, Walder and Costa) were also applied. The mean value of the maximum discharge for potential outburst obtained by different methods was about 150 m3 /c. According to results of hydrodynamic modelling, movement of flood wave downstream the valley will be fast, peak of flood will cover distance from upper part of valley to lowest (8 km) for about half an hour. The depth of the flow on the floodplain is about 1-1.5 m and could reach 6 m in some sites. There are hotel, large camping site and several bridges in the hazardous zone. In 2008 early warning system was designed and installed at the Bashkara lake.

  11. Limited, episodic diversification and contrasting phylogeography in a New Zealand cicada radiation.

    PubMed

    Marshall, David C; Hill, Kathy B R; Marske, Katharine A; Chambers, Colleen; Buckley, Thomas R; Simon, Chris

    2012-09-11

    The New Zealand (NZ) cicada fauna contains two co-distributed lineages that independently colonized the isolated continental fragment in the Miocene. One extensively studied lineage includes 90% of the extant species (Kikihia + Maoricicada + Rhodopsalta; ca 51 spp.), while the other contains just four extant species (Amphipsalta - 3 spp. + Notopsalta - 1 sp.) and has been little studied. We examined mitochondrial and nuclear-gene phylogenies and phylogeography, Bayesian relaxed-clock divergence timing (incorporating literature-based uncertainty of molecular clock estimates) and ecological niche models of the species from the smaller radiation. Mitochondrial and nuclear-gene trees supported the monophyly of Amphipsalta. Most interspecific diversification within Amphipsalta-Notopsalta occurred from the mid-Miocene to the Pliocene. However, interspecific divergence time estimates had large confidence intervals and were highly dependent on the assumed tree prior, and comparisons of uncorrected and patristic distances suggested difficulty in estimation of branch lengths. In contrast, intraspecific divergence times varied little across analyses, and all appear to have occurred during the Pleistocene. Two large-bodied forest taxa (A. cingulata, A. zelandica) showed minimal phylogeographic structure, with intraspecific diversification dating to ca. 0.16 and 0.37 Ma, respectively. Mid-Pleistocene-age phylogeographic structure was found within two smaller-bodied species (A. strepitans - 1.16 Ma, N. sericea - 1.36 Ma] inhabiting dry open habitats. Branches separating independently evolving species were long compared to intraspecific branches. Ecological niche models hindcast to the Last Glacial Maximum (LGM) matched expectations from the genetic datasets for A. zelandica and A. strepitans, suggesting that the range of A. zelandica was greatly reduced while A. strepitans refugia were more extensive. However, no LGM habitat could be reconstructed for A. cingulata and N. sericea, suggesting survival in microhabitats not detectable with our downscaled climate data. Unlike the large and continuous diversification exhibited by the Kikihia-Maoricicada-Rhodopsalta clade, the contemporaneous Amphipsalta-Notopsalta lineage contains four comparatively old (early branching) species that show only recent diversification. This indicates either a long period of stasis with no speciation, or one or more bouts of extinction that have pruned the radiation. Within Amphipsalta-Notopsalta, greater population structure is found in dry-open-habitat species versus forest specialists. We attribute this difference to the fact that NZ lowland forests were repeatedly reduced in extent during glacial periods, while steep, open habitats likely became more available during late Pleistocene uplift.

  12. Holocene glacier fluctuations and migration of Neolithic yak pastoralists into the high valleys of northwest Bhutan

    NASA Astrophysics Data System (ADS)

    Meyer, M. C.; Hofmann, Ch.-Ch.; Gemmell, A. M. D.; Haslinger, E.; Häusler, H.; Wangda, D.

    2009-06-01

    Here we present geomorphologic, palaeoenvironmental and archaeo-botanical data which elucidate the Late Pleistocene and Holocene glacial history of the high, mountain-locked Himalayan valleys in northwest Bhutan and provide one of the earliest proofs of human activity yet known for the High Himalaya range. In this area, difficult to access, close linkage between climatic change, glacier fluctuations and human migration patterns has been discovered. Glacier systems in the studied area are characterized by avalanching and debris mantled glacier snouts, with the significant local influence of the Indian summer monsoon causing decoupling of glacier responses from temperature changes but supporting the idea of monsoonal forcing. Geomorphologic mapping, together with Optically Stimulated Luminescence (OSL) and radiocarbon dating of ice-proximal sediments, has been used to construct a local glacial chronology. Local ice-stream networks developed during the Early Holocene (ca 10,000-9000 a ago) and during the early part of the Mid Holocene (6710 ± 90-4680 ± 155 cal a BP) at which times there were ice advances of about 5 km from the modern glacier termini. At such times, the intensity of pro- and periglacial processes would have intensified and ice-dammed lakes were probably common as well, rendering human colonization of the high valleys in northwest Bhutan impossible. An abrupt shift to dry climatic conditions on the Tibetan Plateau between 5000 and 4500 a BP coincided with glacial decay and the onset of morphodynamically stable conditions on the broad valley floors of the high valleys in this part of the Himalaya. Palynological data suggest that the sudden disappearance of juniper and rhododendron pollen, the immediate onset of pollen input from cereals (confirmed by detailed SEM analysis) and a clear pattern of over-grazing, trampling and peat deterioration can be linked to human arrival in the valleys at ca 4280 ± 130 cal a BP. Extensive charcoal horizons dating to 4745 ± 250 and 4680 ± 155 cal a BP are interpreted as evidence for human use of fire and forest clearances and agree spatially and temporally with the pollen-based picture. Charcoal occurrences as old as 6710 ± 90 cal a BP might be linked to yet earlier exploration of these Himalayan valleys during phases of low glacial activity. We provide an account of the colonization of these high valleys in response to glacial and monsoonal change and argue that the most likely founder societies come from the Tibetan Plateau, where yak and barley based pastoralism and Neolithic settlements are known to have existed since the Mid Holocene.

  13. Anatomy of Some Non-Heinrich Events During The Last Glacial Maximum on Laurentian Fan

    NASA Astrophysics Data System (ADS)

    Gil, I. M.; Keigwin, L. D.

    2013-12-01

    High-resolution diatom assemblage analyses coupled with oxygen and carbon isotopic records from a new 28 m piston core on Laurentian Fan reveal significant sedimentological and marine productivity changes related to variability of the nearby Laurentide Ice Sheet during the Last Glacial Maximum. Between 21.0 and 19.7 ka and between 18.8 and 18.6 ka, olive-grey clays intervals interrupt the usual glacial red-clays sedimentation. The timing of these two intervals corresponds to reported occurrence of layers low in detrital carbonate (LDC, considered as non-Heinrich events) that occurred between Heinrich Event 1 and 2. Diatoms are only abundant during those LDC - olive-grey clay intervals and suggest ice retreat (allowing light penetration necessary to diatoms). The species succession reveals also different environmental conditions. The 21.0 to 19.7 ka interval is divisible to two main periods: the first was characterized by environmental conditions dominated by ice, while the second period (starting at 20.2 ka) was warmer than the first. During the shorter 18.8 to 18.6 ka interval, conditions were even warmer than during the 20.2 to 19.7 ka sub-interval. Finally, the comparison of the interpreted oceanographic conditions with changes in Ice Rafted Debris and other records from the North Atlantic will bring a new insight into those episodes that precede the transition to deglaciation beginning ~18.2 ka on Laurentian Fan (based on δ18-O in N. pachyderma (s.)).

  14. Palaeodistribution modelling of European vegetation types at the Last Glacial Maximum using modern analogues from Siberia: Prospects and limitations

    NASA Astrophysics Data System (ADS)

    Janská, Veronika; Jiménez-Alfaro, Borja; Chytrý, Milan; Divíšek, Jan; Anenkhonov, Oleg; Korolyuk, Andrey; Lashchinskyi, Nikolai; Culek, Martin

    2017-03-01

    We modelled the European distribution of vegetation types at the Last Glacial Maximum (LGM) using present-day data from Siberia, a region hypothesized to be a modern analogue of European glacial climate. Distribution models were calibrated with current climate using 6274 vegetation-plot records surveyed in Siberia. Out of 22 initially used vegetation types, good or moderately good models in terms of statistical validation and expert-based evaluation were computed for 18 types, which were then projected to European climate at the LGM. The resulting distributions were generally consistent with reconstructions based on pollen records and dynamic vegetation models. Spatial predictions were most reliable for steppe, forest-steppe, taiga, tundra, fens and bogs in eastern and central Europe, which had LGM climate more similar to present-day Siberia. The models for western and southern Europe, regions with a lower degree of climatic analogy, were only reliable for mires and steppe vegetation, respectively. Modelling LGM vegetation types for the wetter and warmer regions of Europe would therefore require gathering calibration data from outside Siberia. Our approach adds value to the reconstruction of vegetation at the LGM, which is limited by scarcity of pollen and macrofossil data, suggesting where specific habitats could have occurred. Despite the uncertainties of climatic extrapolations and the difficulty of validating the projections for vegetation types, the integration of palaeodistribution modelling with other approaches has a great potential for improving our understanding of biodiversity patterns during the LGM.

  15. Indonesian vegetation response to changes in rainfall seasonality over the past 25,000 years

    NASA Astrophysics Data System (ADS)

    Dubois, Nathalie; Oppo, Delia W.; Galy, Valier V.; Mohtadi, Mahyar; van der Kaars, Sander; Tierney, Jessica E.; Rosenthal, Yair; Eglinton, Timothy I.; Lückge, Andreas; Linsley, Braddock K.

    2014-07-01

    The hydrologic response to climate forcing in the Indo-Pacific warm pool region has varied spatially over the past 25,000 years. For example, drier conditions are inferred on Java and Borneo for the period following the end of the Last Glacial Maximum, whereas wetter conditions are reconstructed for northwest Australia. The response of vegetation to these past rainfall variations is poorly constrained. Using a suite of 30 surface marine sediment samples from throughout the Indo-Pacific warm pool, we demonstrate that today the stable isotopic composition of vascular plant fatty acids (δ13CFA) reflects the regional vegetation composition. This in turn is controlled by the seasonality of rainfall consistent with dry season water stress. Applying this proxy in a sediment core from offshore northeast Borneo, we show broadly similar vegetation cover during the Last Glacial Maximum and the Holocene, suggesting that, despite generally drier glacial conditions, there was no pronounced dry season. In contrast, δ13CFA and pollen data from a core off the coast of Sumba indicate an expansion of C4 herbs during the most recent glaciation, implying enhanced aridity and water stress during the dry season. Holocene vegetation trends are also consistent with a response to dry season water stress. We therefore conclude that vegetation in tropical monsoon regions is susceptible to increases in water stress arising from an enhanced seasonality of rainfall, as has occurred in past decades.

  16. Deep ocean nutrients during the Last Glacial Maximum deduced from sponge silicon isotopic compositions

    NASA Astrophysics Data System (ADS)

    Hendry, Katharine R.; Georg, R. Bastian; Rickaby, Rosalind E. M.; Robinson, Laura F.; Halliday, Alex N.

    2010-04-01

    The relative importance of biological and physical processes within the Southern Ocean for the storage of carbon and atmospheric pCO 2 on glacial-interglacial timescales remains uncertain. Understanding the impact of surface biological production on carbon export in the past relies on the reconstruction of the nutrient supply from upwelling deep waters. In particular, the upwelling of silicic acid (Si(OH) 4) is tightly coupled to carbon export in the Southern Ocean via diatom productivity. Here, we address how changes in deep water Si(OH) 4 concentrations can be reconstructed using the silicon isotopic composition of deep-sea sponges. We report δ30Si of modern deep-sea sponge spicules and show that they reflect seawater Si(OH) 4 concentration. The fractionation factor of sponge δ30Si compared to seawater δ30Si shows a positive relationship with Si(OH) 4, which may be a growth rate effect. Application of this proxy in two down-core records from the Scotia Sea reveals that Si(OH) 4 concentrations in the deep Southern Ocean during the Last Glacial Maximum (LGM) were no different than today. Our result does not support a coupling of carbon and nutrient build up in an isolated deep ocean reservoir during the LGM. Our data, combined with records of stable isotopes from diatoms, are only consistent with enhanced LGM Southern Ocean nutrient utilization if there was also a concurrent reduction in diatom silicification or a shift from siliceous to organic-walled phytoplankton.

  17. Arctic Dinoflagellate Migration Marks the Oligocene Glacial Maximum: Implications for the Rupelian-Chattian Boundary

    NASA Astrophysics Data System (ADS)

    van Simaeys, S.; Brinkhuis, H.; Pross, J.; Williams, G. L.; Zachos, J. C.

    2004-12-01

    Various geochemical and biotic climate proxies, and notably deep-sea benthic foraminiferal δ 18O records indicate that the Eocene 'greenhouse' state of the Earth gradually evolved towards an earliest Oligocene 'icehouse' state, eventually triggering the abrupt appearance of large continental ice-sheets on Antarctic at ˜33.3 Ma (Oi-1 event). This, however, was only the first of two major glacial events in the Oligocene. Benthic foraminiferal δ 18O records show a second positive excursion in the mid Oligocene, consistent with a significant ice-sheet expansion and/or cooling at 27.1 Ma (Oi-2b) coincident with magnetosubchron C9n. Here, we report on a mid Oligocene, globally synchronous, Arctic dinoflagellate migration event, calibrated against the upper half of C9n. A sudden appearance, and abundance increases of the Arctic taxon Svalbardella at lower-middle latitudes coincides with the so-called Oi-2b benthic δ 18O event, dated at ˜27.1 Ma. This phenomenon is taken to indicate significant high-latitude surface water cooling, concomitant Antarctic ice-sheet growth, and sea level lowering. The duration of the Svalbardella migrations, and the episode of profound cooling is estimated as ˜500 ka, and is here termed the Oligocene Glacial Maximum (OGM). Our records suggest a close link between the OGM, sea-level fall, and the classic Rupelian-Chattian boundary, magnetostratigraphically dating this boundary as ˜27.1 Ma.

  18. Trends in the Diversity, Distribution and Life History Strategy of Arctic Hydrozoa (Cnidaria)

    PubMed Central

    Ronowicz, Marta; Kukliński, Piotr; Mapstone, Gillian M.

    2015-01-01

    This is the first attempt to compile a comprehensive and updated species list for Hydrozoa in the Arctic, encompassing both hydroid and medusa stages and including Siphonophorae. We address the hypothesis that the presence of a pelagic stage (holo- or meroplanktonic) was not necessary to successfully recolonize the Arctic by Hydrozoa after the Last Glacial Maximum. Presence-absence data of Hydrozoa in the Arctic were prepared on the basis of historical and present-day literature. The Arctic was divided into ecoregions. Species were grouped into distributional categories according to their worldwide occurrences. Each species was classified according to life history strategy. The similarity of species composition among regions was calculated with the Bray-Curtis index. Average and variation in taxonomic distinctness were used to measure diversity at the taxonomic level. A total of 268 species were recorded. Arctic-boreal species were the most common and dominated each studied region. Nineteen percent of species were restricted to the Arctic. There was a predominance of benthic species over holo- and meroplanktonic species. Arctic, Arctic-Boreal and Boreal species were mostly benthic, while widely distributed species more frequently possessed a pelagic stage. Our results support hypothesis that the presence of a pelagic stage (holo- or meroplanktonic) was not necessary to successfully recolonize the Arctic. The predominance of benthic Hydrozoa suggests that the Arctic could have been colonised after the Last Glacial Maximum by hydroids rafting on floating substrata or recolonising from glacial refugia. PMID:25793294

  19. Trends in the diversity, distribution and life history strategy of Arctic Hydrozoa (Cnidaria).

    PubMed

    Ronowicz, Marta; Kukliński, Piotr; Mapstone, Gillian M

    2015-01-01

    This is the first attempt to compile a comprehensive and updated species list for Hydrozoa in the Arctic, encompassing both hydroid and medusa stages and including Siphonophorae. We address the hypothesis that the presence of a pelagic stage (holo- or meroplanktonic) was not necessary to successfully recolonize the Arctic by Hydrozoa after the Last Glacial Maximum. Presence-absence data of Hydrozoa in the Arctic were prepared on the basis of historical and present-day literature. The Arctic was divided into ecoregions. Species were grouped into distributional categories according to their worldwide occurrences. Each species was classified according to life history strategy. The similarity of species composition among regions was calculated with the Bray-Curtis index. Average and variation in taxonomic distinctness were used to measure diversity at the taxonomic level. A total of 268 species were recorded. Arctic-boreal species were the most common and dominated each studied region. Nineteen percent of species were restricted to the Arctic. There was a predominance of benthic species over holo- and meroplanktonic species. Arctic, Arctic-Boreal and Boreal species were mostly benthic, while widely distributed species more frequently possessed a pelagic stage. Our results support hypothesis that the presence of a pelagic stage (holo- or meroplanktonic) was not necessary to successfully recolonize the Arctic. The predominance of benthic Hydrozoa suggests that the Arctic could have been colonised after the Last Glacial Maximum by hydroids rafting on floating substrata or recolonising from glacial refugia.

  20. Simulation of the Greenland Ice Sheet over two glacial-interglacial cycles: investigating a sub-ice-shelf melt parameterization and relative sea level forcing in an ice-sheet-ice-shelf model

    NASA Astrophysics Data System (ADS)

    Bradley, Sarah L.; Reerink, Thomas J.; van de Wal, Roderik S. W.; Helsen, Michiel M.

    2018-05-01

    Observational evidence, including offshore moraines and sediment cores, confirm that at the Last Glacial Maximum (LGM) the Greenland ice sheet (GrIS) expanded to a significantly larger spatial extent than seen at present, grounding into Baffin Bay and out onto the continental shelf break. Given this larger spatial extent and its close proximity to the neighbouring Laurentide Ice Sheet (LIS) and Innuitian Ice Sheet (IIS), it is likely these ice sheets will have had a strong non-local influence on the spatial and temporal behaviour of the GrIS. Most previous paleo ice-sheet modelling simulations recreated an ice sheet that either did not extend out onto the continental shelf or utilized a simplified marine ice parameterization which did not fully include the effect of ice shelves or neglected the sensitivity of the GrIS to this non-local bedrock signal from the surrounding ice sheets. In this paper, we investigated the evolution of the GrIS over the two most recent glacial-interglacial cycles (240 ka BP to the present day) using the ice-sheet-ice-shelf model IMAU-ICE. We investigated the solid earth influence of the LIS and IIS via an offline relative sea level (RSL) forcing generated by a glacial isostatic adjustment (GIA) model. The RSL forcing governed the spatial and temporal pattern of sub-ice-shelf melting via changes in the water depth below the ice shelves. In the ensemble of simulations, at the glacial maximums, the GrIS coalesced with the IIS to the north and expanded to the continental shelf break to the southwest but remained too restricted to the northeast. In terms of the global mean sea level contribution, at the Last Interglacial (LIG) and LGM the ice sheet added 1.46 and -2.59 m, respectively. This LGM contribution by the GrIS is considerably higher (˜ 1.26 m) than most previous studies whereas the contribution to the LIG highstand is lower (˜ 0.7 m). The spatial and temporal behaviour of the northern margin was highly variable in all simulations, controlled by the sub-ice-shelf melting which was dictated by the RSL forcing and the glacial history of the IIS and LIS. In contrast, the southwestern part of the ice sheet was insensitive to these forcings, with a uniform response in all simulations controlled by the surface air temperature, derived from ice cores.

Top